
JavaScript for
Sound Artists
Learn to Code with the Web Audio API

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-1&iName=master.img-000.jpg&w=395&h=104

JavaScript for
Sound Artists
Learn to Code with the Web Audio API

Authored by: William Turner
Edited by: Steve Leonard

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20161208

International Standard Book Number-13: 978-1-138-96153-1 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC),
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Turner, William (Web site developer), author. | Leonard, Steve
(Web site developer), author.
Title: JavaScript for sound artists : learn to code with the Web Audio API /
William Turner, Steve Leonard.
Description: Boca Raton : Taylor & Francis, CRC Press, 2017.
Identifiers: LCCN 2016032832| ISBN 9781138961531 (pbk. : alk. paper) |
ISBN 9781138731134 (hardback : alk. paper)
Subjects: LCSH: Computer sound processing. | JavaScript (Computer program
language) | Webcasting.
Classification: LCC TK7881.4 .T87 2017 | DDC 006.5--dc23
LC record available at https://lccn.loc.gov/2016032832

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com/
https://lccn.loc.gov/2016032832
http://www.taylorandfrancis.com
http://www.crcpress.com

v

Contents

Preface xv

Acknowledgment xix

1. Overview and Setup 1

What Is a Program? .1
What Is JavaScript? .1
HTML, CSS, and JavaScript .2
What Is a Web Application? .3
What Is the Web Audio API? .3
Setting Up Your Work Environment .4

Setup View in Browser for Windows . .6
Setup View in Browser for Mac .6

How to Create Code Snippets .6
Accessing the Chrome Developer Tools . .7
Troubleshooting Problems and Getting Help .8

vi Contents

2. Getting Started with JavaScript and the Web Audio API 9

Hello Sound Program .9
Variables .10
null .12
Documenting Your Code with Comments .12
Exploring Variables with an Oscillator .12
console.log() . .13
String .14

Built-In String Methods . .15
toUpperCase() .15
toLowerCase() .15
charAt() .15
replace() .16
slice() .16

The length Property . .17
Numbers .17

How to Determine the Data Type of a Variable . .17
Examples of Arithmetic Operators .18
Examples of Precedence . .18
Math.min() and Math.max() . .19
Math.ceil() and Math.floor() .19
Math.random() .19
Math.abs() . .20

Number-to-String Conversion . .20
Arrays . .20
push() . .21
pop() .21
shift() .22
unshift() .22
concat() .22

Summary .22

3. Operators 23

What Are Operators? . .23
Assignment Operators .24

Assignment . .24
Addition Assignment .24
Subtraction Assignment .25
Multiplication Assignment .25
Division Assignment . .25
Modulo Assignment .25

The Boolean Data Type .25
Comparison Operators .26

Equality Operator .26

viiContents

Strict Equality Operator .27
Greater Than and Less Than Operators .27
Greater Than or Equal to Operator . .27
Less Than or Equal to Operator .28
Not Equal to Operator .28
Strict Not Equal to Operator .28
Logical Operators .28
The Logical AND Operator .29
The Logical OR Operator .29
The NOT Operator .29

Summary .30

4. Conditional Statements and Loops 31

Conditional Statements . .31
The if Statement .32
The switch Statement .33
Ternary Operator .34

Loops .35
for Loops .35

Using for Loops with Arrays .36
while Loops . .37
When to Use for Loops and When to Use while Loops 38

Summary .38

5. Functions 39

Functions—A Simple Example .39
Parts of a Function .40
Function Expressions .41
Abstracting Oscillator Playback . .41
A Working Effects Box Example .42
The Arguments Object . .43

Function Scope .44
Why You Should Always Declare Your Variables with var46

Variable Hoisting .46
How Hoisting Affects Functions .47

Anonymous Functions .48
Closures .49

What Is a Closure? .49
Callback Functions .52

Working with JavaScript’s Built-In Callback Functions53
filter() . .53
map() .53

Recursion . .54
Summary .55

viii Contents

6. Objects 57

JavaScript Data Types .57
Looping through Objects .59
When to Use Objects Rather Than Arrays . .60
How to Check If an Object Has Access to a
Particular Property or Method .60
Cloning Objects .60
Prototypal Inheritance .61
The "this" Keyword . .61
The bind Function .62
Summary .64

7. Node Graphs and Oscillators 65

The AudioContext() Method .65
Node Graphs .66
Oscillators .66
The stop Method .67
The onended Property .67
How to Stop Oscillators and Restart Them .67
The type Property .68
The frequency Property . .69
The detune Property . .69
Summary .69

8. Using HTML and CSS to Build User Interfaces 71

What Is a User Interface? .71
HTML . .71

Explanation of the HTML Template .72
Understanding HTML Elements . .73
Form and Input Elements .76

CSS .77
Comments .79
Element Selectors .79
Grouping Selectors . .80
Descendent Selectors .80
Child Selectors .80
class and id .81
Modifying the App Interface .81
Margin, Border, and Padding . .84
Removing List Element Bullet Points .86
Font Size, Style (Type), and Color .86
Centering Block-Level Elements .87
Summary .89

ixContents

9. DOM Programming with JavaScript 91

How Does JavaScript Communicate with the DOM? 91
HTML . .91
JavaScript .92

Building the Application . .93
How to Trigger an Oscillator by Clicking a Button .93
Toggling the Start/Stop Text . .94
Programming the Frequency Slider .96
Changing the Frequency in Real Time . .97
Changing Waveform Types .99
Completed Code with Waveform Selection . .100
Giving an Outline to the Selected Waveform Type 101
Summary .102

10. Simplifying DOM Programming with JQuery 103

What Is JQuery? .103
JQuery Setup .103
Referencing JQuery Directly .104
Using JQuery from a CDN .104
How to Use JQuery .105
Selecting HTML Elements .105
Storing DOM Selectors as Variables .105
Using Methods .106

HTML . .106
JQuery/JavaScript to Change a Single Property106
JQuery/JavaScript to Change Multiple Properties107

Method Chaining . .107
HTML . .107
CSS .107
JQuery/JavaScript .107
HTML . .108
JQuery/JavaScript .108

The this Keyword .108
HTML . .108
JQuery/JavaScript .108

Refactoring the Oscillator Player to Use JQuery . .108
Without JQuery . .109
With JQuery . .109

Setting Up the Event Listener for the User-Selected List Element 110
Event Listener without JQuery . 110
Event Listener with JQuery . 111

Modifying the Code in setInterval . 111
setInterval Method without JQuery . 111
setInterval Method with JQuery .112

x Contents

onOff Method without JQuery . .112
$onOff Selector with JQuery .112

Summary .113

11. Loading and Playing Audio Files 115

Prerequisites .115
The Two Steps to Loading an Audio File . 116
The XMLHttpRequest Object . 117
get Requests . 117

A Word on Audio File Type Compatibility . 118
Synchronous versus Asynchronous Code Execution 118
Processing the Audio Buffer with the Node Graph 120
Summary .120

12. Factories and Constructors 121

JavaScript and the Concept of Class .121
What Are Classes? .122
The Factory Pattern .122
Dynamic Object Extension . .123
Private Data . .124
Getters and Setters .124
Constructors and the new Keyword . .125
Adding Methods to Constructors .126
The Prototype Object and the Prototype Property126
Why Do Constructors Exist If You Can Do the Same
Thing with Factories? .128
Summary .128

13. Abstracting the File Loader 129

Thinking about Code Abstraction .129
Creating the Abstraction .130
Walking through the Code . .132
Summary .135

14. The Node Graph and Working with Effects 137

How to Think About the Node Graph . .137
Gain Nodes .138
The Placement of Nodes Is Up to You . .139
What Effects Are Available? .139
How to Determine the Nodes You Need to
Create the Effect You Want . 140

xiContents

A Real-World Example .141
Some Effects Require Development Work .141
Summary .142

15. The Biquad Filter Node 143

Using the Biquad Filter Node . .143
Filter Types .144
Creating an Equalizer .146
Graphic EQ .146
Parametric EQ .148
Summary .149

16. The Convolver Node 151

Convolution Reverb .151
Where to Get Pre-Recorded Impulse Response Files152
Using Impulse Response Files .152

HTML . .153
JavaScript .153

Controlling the Amount of Reverberation .154
Summary .155

17. Stereo Panning, Channel Splitting, and Merging 157

The Stereo Panner Node .157
The Channel Splitter .158
The Channel Merger .159
Merging All Channels of a Multichannel File into
a Single Mono Channel .159
Using the Merger and Splitter Nodes Together . .160
Summary .160

18. The Delay Node 161

The Delay Node .161
Creating Echo Effects .162
Creating Slap Back Effects .162
Creating a Ping-Pong Delay .163
Summary .164

19. Dynamic Range Compression 165

The Dynamics Compressor Node .165
Summary .167

xii Contents

20. Time 169

The Timing Clock .169
The start Method .170
Looping Sounds .170
Update Your Audio Loader Library .171
Changing Audio Parameters over Time . .171
The Audio Parameter Methods .172

The setValueAtTime Method .172
The exponentialRampToValueAtTime Method 172
The linearRampToValueAtTime Method .173
The setTargetAtTime() Method .173
The setValueCurveAtTime() Method .173

Summary . 174

21. Creating Audio Visualizations 175

A Brief Word on Fourier Analysis . .175
A Brief Explanation of Binary-Coded Decimal Numbers176
The Spectrum Analyzer .176

JavaScript/JQuery .176
HTML . .177
CSS .178

Walking through the Code . .179
Storing the Frequency Data in an Array .180
How to Think About the frequencyData Array 181

Building the Display Interface .181
Connecting the Analyzer to the DOM .182
Summary .183

22. Adding Flexibility to the Audio Loader Abstraction 185

The Updated Interface . .185
Modifying the Library . .186
Modifying audioBatchLoader .188
An Explanation of the Previous Code Edit .188
Summary .189

23. Building a Step Sequencer 191

The Problem .191
Can I Use setInterval or setTimeout? .192
The Solution .193
How It Works .193
Changing Tempo .195
Building the Sequencer .196

xiiiContents

Playing Back Sounds in Sequence .197
Creating the User Interface Grid .202

HTML . .202
CSS .203

Adding Interactivity to the Grid Elements .205
Summary .206

24. AJAX and JSON 207

AJAX .207
JSON . .208
Making an AJAX Call to the iTunes Search API .208
How the Code Works .209

HTML . .210
JavaScript .210

Creating Your Own Web API to Reference Synthesizer Patch Data 210
The Data Structure . .213

HTML . .213
CSS . 214

How the Code Works .216
Building on the API . .217

data.js . .217
module.js .218

Extend the JSON Object .219
Summary .220

25. The Future of JavaScript and the Web Audio API 221

The Web Audio API 1 .0 . .221
3D Spacial Positioning .221

Raw Modification of Audio Buffer Data . .222
Suggestions for Continued Learning .222

JavaScript 6 .222
node.js . .223
The Web MIDI API . .223
Open Sound Control .223

Summary .223
Further Reading .223
Book Website .223

Index 225

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-1&iName=master.img-001.jpg&w=395&h=104

xv

Preface

Learning to program can be daunting, and we want to be the first to congratu-
late you for taking on the challenge! Second, we want to thank you for choosing
this book .

Who Is This Book For?
This book is for anyone who is involved in the world of creative audio and wants
to learn to program using the JavaScript language . There are many programming
books directed toward artists to help them build websites, mobile applications,
games, and other things, but next to none is directed exclusively toward the
sound arts community . This book is designed to fill this role and to teach the
fundamentals of web-based software development, and specifically, the basics of
the JavaScript programming language to sound artists .

What This Book Is Not
This book is not an audio technology reference . It does not take the time to
explain the fundamentals of audio theory or sound engineering in depth . Words
and phrases like dynamic range compression, convolution reverb, and sample
rate are thrown around like candy with only a cursory explanation (if they are

xvi Preface

explained at all) . We assume that you are either familiar with many of these core
audio concepts or know enough to find the answers on your own . If you need
an accommodating audio technology reference, we suggest David Miles Huber’s
excellent book Modern Recording Techniques, Taylor & Francis .

This book is also not directed toward experienced programmers who are
simply interested in JavaScript or the Web Audio API . If this describes you, then
you may find some value here, but you are not the intended audience .

How to Learn to Program
The following are a few tips to help you get the most from this book .

Make Connections
Generally, it is easier to learn new things by making associations and connec-
tions to areas that you are already familiar with . If you have ever programmed
a synth or a MIDI sequencer, then you have already done a form of program-
ming . The contents of this book are designed to be a bridge that connects a
world you are (presumably) familiar with (sound and audio technology) to a
topic you are less familiar with—JavaScript and programming . We suggest that
you tap into whatever has drawn you to sound art while learning the material
in this book .

Flow and Frustration Are Not Opposites
It’s very important to embrace a sense of flow when learning to program . It is also
important to embrace frustration as part of the flow state and not as the antithesis
of it . When you learn something new, the neurons in your brain are making con-
nections; this may physically feel like frustration, but it just means your brain is
rewiring—literally . Embrace this .

Make It Habitual
Programming is all about learning a bunch of little things that combine to make
big things . The best way to learn a lot of little things is through repetition and
habit . One way to do this is to simply accept programming as a new part of your
lifestyle and do a little bit (or a lot) every day .

Be Creative and Have Personal Projects
It is a good idea to have your own personal programming projects . The more you
are personally invested in a project, the more you will learn .

Talk and Teach
One of the best ways to validate your own learning is to teach someone else .
If you don’t have anyone to teach, then you can substitute this by writing tutori-
als . This will force you to collect your thoughts and express them clearly .

xviiPreface

Keep Going
Our final piece of advice is to simply stick with it .
Best of luck!
If you have any questions or comments, you can find us at:
http://www .javascriptforsoundartists .com

William Turner
Steve Leonard

http://www.javascriptforsoundartists.com

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-1&iName=master.img-002.jpg&w=395&h=104

xix

Acknowledgment

Thanks to technical assistant Keith Oppel .

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-1&iName=master.img-003.jpg&w=395&h=104

1

1

What Is a Program?
A program is any set of instructions that is created or followed . In this book, we
focus on writing computer programs, which are lists of instructions that a com-
puter carries out . These instructions can be written and stored in various forms .
Some of the first modern computers used punched cards, switches, and cables .
Early analog music synthesizers were a type of computer that used a patchbay
style interface to manually allow a programmer to create specific sounds .

What Is JavaScript?
JavaScript is a multipurpose programming language initially created to aid
developers in adding dynamic features to websites . The language was initially
created in 11 days and released in 1995 by a company called Netscape . Developed
by Brendan Eich, its original release name was LiveScript . When Netscape intro-
duced support for the language in its browser, LiveScript was renamed JavaScript .
Although JavaScript is similar in name to the Java programming language, they
are completely unrelated . Today, JavaScript is used in everything from robotics
to home automation systems .

Overview
and Setup

1. Overview and Setup2

HTML, CSS, and JavaScript
The three main technologies used to build websites and web applications are
HTML, CSS, and JavaScript .

HTML stands for hypertext markup language and is the standard by which
we create documents for the World Wide Web . You program HTML by writing
elements (sometimes referred to as tags for brevity) . These elements contain text
and other nested elements, which make up the document’s content .

CSS stands for cascading style sheets and is a tool used to modify how HTML
elements and text are presented . CSS is primarily a visual design tool . For exam-
ple, with CSS you could modify an HTML element and give it an orange back-
ground, change its font size, place it vertically or horizontally, or perform any
number of creative visual changes .

JavaScript is used to add interactive responses to user input . Every time a
user clicks, scrolls, taps, moves the mouse cursor, types, or performs an interac-
tive event, JavaScript code can be triggered to change the page in some manner .

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-2&iName=master.img-000.jpg&w=287&h=119
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-2&iName=master.img-001.jpg&w=287&h=206

What Is the Web Audio API? 3

The JavaScript language was initially designed to perform these functions within
the context of designing websites and applications .

What Is a Web Application?
A web application is any website that contains more than static, non-interactive
pages . This means that, in a web application, the pages have some interactive
components in addition to the static text and images displayed . In the early
days of the World Wide Web, websites were composed mostly of collections of
static documents connected through highlighted text called hyperlinks . These
static pages had no interaction with databases . In the early 1990s, this began to
change, and web developers began creating websites that had features similar to
desktop applications that allowed users to interact with the page via form fields,
buttons, and other interactive means to send data over a web server to and from
a database .

Early web applications were slow and limited by the technology of the
time . In the early 2000s, a culmination of technical shifts that included client-
side- rather than server-side-focused web applications helped make web appli-
cations more responsive . Part of this shift is attributable to a technology called
AJAX (asynchronous JavaScript and XML) . This technology pushed dynamic
web application development forward by allowing the browser to retrieve and
send data to a web server without having to automatically refresh the page in
the process . As the J in AJAX indicates, JavaScript is central to this technology,
and web applications began to approach the interactive speed of their desktop
counterparts .

As you might expect, within the audio world there were attempts to lever-
age this new technology, which resulted in browser-based audio players, edi-
tors, and musical instruments . Many of these applications were initially written
using a technology called Flash . This is a proprietary technology that required
the user to download and install an additional plug-in to run all programs
written in it .

In 2008, a newer version of the HTML standard was written, called
HTML-5 . This version included an audio player that could directly stream
sound files off a web server using a single line of HTML code . The player also
included built-in, user-facing controls for play, fast-forward, rewind, pause,
stop, loop, and other actions . However, for serious audio development, this was
inadequate . Web application developers and audio aficionados wanted some-
thing more fully featured .

What Is the Web Audio API?
The Web Audio API is a series of exposed code pieces that you can use to accom-
plish musical and audio tasks in a web browser with less effort than if you were
to create them all from scratch . The unexposed portion of the Web Audio API
lies in the web browser’s source code and is written in whatever language the web
browser itself is written in . The technical core of web browsers is usually written

1. Overview and Setup4

in multiple lower-level languages, which can include (but are not limited to) C++,
Java, and machine language .

To understand the Web Audio API, you must first understand what an API
is . API stands for application programming interface . An API is a portion of code
that a programmer is given access to, which controls a larger unseen body of
code within certain constraints . Imagine if, in order to learn how to play your
favorite musical instrument, you had to literally build it from scratch . As you
can imagine, this would get very tedious—especially if the instrument were to
break . Thus, it’s much more convenient to learn to play a premade musical instru-
ment . The convenience here is that the construction process is removed and your
only concern is what is important to you, which is the controls needed to use the
instrument . In a similar manner, programmers write APIs that expose only small
pieces of code for developers to use, and these small pieces of code allow you to
do a lot of work with minimal effort .

In addition to being able to load and play back sound files, the Web
Audio API also allows you to generate sound from scratch in the form of
oscillators . You can then manipulate any sound playback or generation using
filters, reverb effects, dynamic compressors, delay effects, and a host of other
options .

Setting Up Your Work Environment
To begin working, you must first determine what browser you are going to trou-
bleshoot with . In real-world environments, you would use a test suite to trouble-
shoot among different browsers and platforms . In this book, we are going to keep
things simple and only use Google Chrome . The next thing you need is a code
editor . For the exercises, we assume you will be using the Sublime Text editor .
Technically, you can use any code editor you want, but Sublime Text is offered as
a free trial download and is extremely powerful and widely used . We think it’s
worth your investment of time to learn it .

The next thing you need to do is create a folder with a basic work template .

 1. If you are not already using it, go to this URL to download and install
Google Chrome: https://www .google .com/chrome/browser/desktop/ .

 2. Go to http://www .sublimetext .com/ and download and install Sublime
Text .

 3. Create a folder on your desktop or in a directory and call it web audio
template .

 4. Open Sublime Text, and in the window that appears, type the following
code into it . Then save the file (go to the File menu in Sublime Text and
click Save As) as index.html and choose your web audio template folder
as the directory to save it in .

https://www.google.com/chrome/browser/desktop/
http://www.sublimetext.com/

Setting Up Your Work Environment 5

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>app</title>
<script src="js/app.js"></script>
<link rel="stylesheet" href="css/app.css">

</head>
<!--___BEGIN APP-->
<body>

</body>
<!--__END APP-->

</html>

5. Inside the web audio template folder, create another folder called css .

 6. In Sublime Text, create a new file by going to the File menu and click
New . Save this file in your css folder as app .css . Leave the contents of this
file empty .

 7. In the web audio template folder, create another folder called js .

 8. Create a new empty document in Sublime Text, then type "use strict";
(including quotations and semicolon) at the top of it and save it as app .
js in the js folder you just created . This places your JavaScript in strict
mode . Strict mode is a restrictive form of JavaScript that enforces better
programming practices . All JavaScript code examples in this book will
assume you have strict mode enabled .

You are now going to add a few extensions to Sublime Text that will make work-
ing with the editor easier in the long term . To do this, you must first download
and install the package manager plug-in . Go to the following link and follow the
directions on the left side of the window: https://packagecontrol .io/installation .
When done, close the console by entering the keys: Ctrl + ` (apostrophe, on the
key with the ~) .

 1. In the Sublime Text menu, go to Tools > Command Palette, and in
the form field that appears, type install . You should see an option
menu appear that says Package control: Install package . Click this menu
option .

 2. Another form field with a series of options appears . This form field allows
you to search and explore various plug-ins for Sublime Text . You are now
going to install a plug-in that allows you to create a local web server that
will be necessary when working with audio files . In the form field, type
Sublime server . A list of search results should appear . Click the
first one . Look at the bottom of the Sublime Text window, and you

https://packagecontrol.io/installation

1. Overview and Setup6

should see “installing” in small text . When this process is done, quit and
restart Sublime Text . We will cover the specifics of the web server in a
later chapter . But rest assured that this setup will be time well spent . To
verify that the plug-in is installed, go to Tools > SublimeServer > Start
SublimeServer . Open your web browser to http://localhost:8080/, and it
should display SublimeServer at the top of the page .

 3. This last plug-in you are going to install lets you open HTML files in
Chrome from within Sublime Text . To install the View in Browser plug-
in, go to Tools > Command Palette and in the form field that appears,
type install . Click Package control: Install package . Then do a search
for View in Browser, and select the first option that appears . Once the
installation is done, you will need to go to the following menu to set up
the plug-in to work with Chrome .

Setup View in Browser for Windows
In Sublime Text, go to the Preferences menu and click Package Settings . Look for
the View in Browser menu item, hover over it, and select Settings – Default . Select
all the code you see and copy it . You are now going to paste it into the Settings –
User page of the same plug-in . So go back to the Preferences menu and select
Package Settings > View in Browser > Settings – User . Paste all the code you just
copied into this window . At the very bottom, you should see a line of code that
says “browser”: “firefox” . Change the word firefox to either chrome, or chrome64
if you have a 64-bit operating system . It should look like this: “browser”: “chrome”
or “browser”: “chrome64” . If you open an empty document in Sublime Text and
use the key command Ctrl + Alt + V, Chrome should launch and open that page .

Setup View in Browser for Mac
As soon as the plug-in is downloaded, you should be able to open an empty
Sublime Text document in Chrome using the key command Control +
Option + C .

How to Create Code Snippets
It can be helpful to know how to create code snippets that you can access without
writing them out character-by-character every time . Thankfully, Sublime Text
has a feature that allows you to do this with snippets . To create a snippet, do the
following steps:

 1. In Sublime Text menu, go to Tools > New Snippet .

 2. In the window that appears, delete everything on line 3 and paste the
following text: This is a test snippet.

http://localhost:8080/

Accessing the Chrome Developer Tools 7

3. On line 6, remove the <!-- and --> characters and type the word
test in between the two elements . The result should look like this:
<tabTrigger>test</tabTrigger> .

4. Save the file in the default directory that appears and call it test.
sublime-snippet .

 5. Open your index.html file in Sublime Text, type the word test, then
tap the TAB button on your keyboard . The phrase "this is a test
snippet" should appear in the editor .

Accessing the Chrome Developer Tools
Google Chrome has a built-in suite of troubleshooting tools called the Chrome
Developer Tools . You can access these tools by opening the browser and using
the key commands:

Windows OS or Linux: Ctrl + Shift + J

Mac: Command + Option + J

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-2&iName=master.img-002.jpg&w=288&h=145
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-2&iName=master.img-003.jpg&w=288&h=144

1. Overview and Setup8

We are not going to go over the utility of the developer tools just yet, but they will
be highlighted throughout the book .

Troubleshooting Problems and Getting Help
If you have any trouble, try using search engines to research solutions . One very
good resource is http://stackoverflow .com, which is a community of programmers
who ask and answer questions . They have a nice section on JavaScript as well as a
lively Web Audio API community that you can find at: http:// stackoverflow .com/
questions/tagged/web-audio .

http://stackoverflow.com
http://stackoverflow.com/questions/tagged/web-audio
http://stackoverflow.com/questions/tagged/web-audio

9

2 Getting Started
with JavaScript
and the Web
Audio API

Hello Sound Program
In an introduction to a programming language, the first program you write is
often called “Hello World,” which prints the words “Hello World” on the screen .
Because we are using the Web Audio API to create sounds, this section explains
how to create a “Hello Sound” application that immediately plays a sound when
you run it .

Copy the folder web audio template from the last chapter to a new directory,
and rename the copy to hello_sound .

Type the code below into the app.js file that is present within the hello_sound
folder . Save it and then launch the index.html file from your web browser . You
should hear a basic sine wave oscillator playing .

var audioContext = new AudioContext();
var osc = audioContext.createOscillator();
osc.type = "sine";
osc.connect(audioContext.destination);
osc.start(audioContext.currentTime);

After you verify that the Hello Sound program works, close the browser . You
just wrote your first Web Audio API program!

2. Getting Started with JavaScript and the Web Audio API10

The code you just ran is a basic oscillator generation and playback script .
The first line in the script is called the “Audio Context” and this tells the
browser that you are using the Web Audio API . The next line of code creates an
oscillator . The third line of code assigns a waveform type to the oscillator, whereas
line four connects the oscillator to a virtual audio output called the destination,
which is analogous to the speakers of your computer . The last line starts the oscil-
lator playing . We will cover detailed operation of the Web Audio API in future
chapters . First, though, we need to cover the basics of the JavaScript language .

Variables
One of the first steps in writing a program is understanding variables and variable
assignment . Variables are word forms that are used to store data . For example:

var waveformType = "sawtooth";

The variable here is named waveformType . This is preceded by the var
keyword . You always specify the var keyword prior to declaring the variable .
Declaring a variable means you are creating a new variable . After the var
keyword, you type a space and give a name to your variable . Variable names
are typically a reflection of something they represent . In this case, the vari-
able is being used to describe a type of oscillator waveform and so is named
 waveformType. You probably noticed the odd capitalization of the word
“type” in waveformType. The convention of capitalizing words to distin-
guish them within variable names is called camel case . This convention is used
because variable names cannot contain white space to separate them . If you
rewrote the variable in the following manner, you get an error:

var waveform type = "sawtooth"; //____returns an error

Type the above code into the app.js file of your hello_sound template .
Launch Chrome and open the developer tools (Windows: Ctrl + Shift + J or Mac:
Command + Option + J) . Inside the console tab, you should see an error similar
to the one in the following image .

The text in gray is the actual error and is identified as a syntax error . To the
right of the error, you can see the file and the line number where the error
occurred . This number corresponds to the line number in your file, which might
differ from the one in the image . After you see the error, remove the line you
added that is causing the error in app.js and save the file .

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-3&iName=master.img-000.jpg&w=288&h=68

Variables 11

After you declare and name a variable, you can assign some data to it . You
use the assignment operator “=” to do this .

It is important to understand that in JavaScript the “=” symbol is not called
the equal sign and its functionality does not mean equal to . The “=” symbol indi-
cates assignment, so it is called the assignment operator . The value on the right
side of the assignment operator contains the data you want to assign to the vari-
able name on the left side . In the following example, the string "sawtooth" is
assigned to the variable waveformType.

var waveformType = "sawtooth";

When you assign a string of words to a variable, you must place them
between quotation marks . The resulting data type is called a string . Data
types represent the types of data that you can use in your program . Different
programming languages have different data types . JavaScript has six data types,
and one of these is the string data type (see Chapter 6 for a list of JavaScript data
types) .

After you assign data to your variable, you must end the variable declaration
with a semicolon .

In summary, there are five parts to a variable declaration:

 ◾ The var keyword

 ◾ The variable name

 ◾ The assignment operator

 ◾ The data you wish to assign to the variable

 ◾ The closing semicolon

You can assign multiple variables at once using the following syntax:

var osc1 = 1200,
 osc2 = 1300,
 osc3 = 100;

In some cases, you might want to declare a variable and not assign data to it,
as in the following example:

var waveformType;

If you do this, JavaScript automatically assigns undefined to it . You can
also assign undefined explicitly like this:

var waveformType = undefined;

The keyword undefined is another JavaScript data type . Notice that
undefined is not enclosed in quotation marks because it is not a string but
represents a data type .

2. Getting Started with JavaScript and the Web Audio API12

null
The primitive value null is similar to the primitive value undefined . Both
can act as a placeholder for empty variables . When the typeof operator
(discussed later in this chapter) is used to determine the type of null, the result
is object . This is not what you might expect and is a flaw in the language . The
correct returned value should be null . Because of this, we suggest that you
never use null and always use undefined .

Documenting Your Code with Comments
When you are programming, it is a good habit to type messages into your code
that are intended to be read by human beings (yourself or others) and not be inter-
preted by the computer . These messages are called comments . You can write either
single-line or multiline comments in your program, and they look like this:

//This is a single line comment.
//It begins with two forward slash characters
//These end at the end of the line
/* This is a multi-line comment and begins with a forward slash
 and asterisk. It ends with an asterisk and a forward slash */

In a real-world scenario, we might comment our code like this:

var waveformType = "sawtooth"; // oscillator variable

All the characters from the // to the end of the line are ignored by the
computer .

Exploring Variables with an Oscillator
Now that you understand what variables are, the following example shows how
you use them .

Open up the code you wrote at the beginning of this chapter, and add the
variable waveformType to it, as in the following code:

var audioContext = new AudioContext();
var waveformType = "sawtooth"; //___added variable
var osc = audioContext.createOscillator();
osc.type = "sine";
osc.connect(audioContext.destination);
osc.start(audioContext.currentTime);

Replace the osc.type assignment with the waveformType variable like
this:

var audioContext = new AudioContext();
var waveformType = "sawtooth"; //___added variable
var osc = audioContext.createOscillator();
osc.type = waveformType; //__Assigned it to our oscillator type
osc.connect(audioContext.destination);
osc.start(audioContext.currentTime);

console.log() 13

Launch your web browser, and instead of hearing a sine waveform, you
should hear a sawtooth waveform .

In this example, the following declarations assign values to variables that
represent other waveform types .

var audioContext = new AudioContext();
//___ 4 variables that represent oscillator waveforms
var saw = "sawtooth";
var sine = "sine";
var tri = "triangle";
var square = "square";
//___ A variable intended to contain one of these waveforms
var currentWaveform = undefined;
currentWaveform = square;
//_____________________________Start of oscillator
var osc = audioContext.createOscillator();
osc.type = currentWaveform; // Assigned it to our oscillator type
osc.connect(audioContext.destination);
osc.start(audioContext.currentTime);

Each of the four new variables contains a string that represents an oscillator
waveform type . The square variable is assigned to the currentWaveform
variable in the following line:

currentWaveform = square;

Notice that no new declaration is required for the currentWaveform
variable to assign (and replace) whatever was previously assigned to it . The new
data on the right side of “=” is assigned to currentWaveform . If you launch
your web browser, you will hear a square wave play . In programming, being able
to overwrite variables in this manner is referred to as mutability (changeability),
and we say that variables are mutable . The opposite of this is called immutability .

console.log()
When programs begin to get big, it can be difficult to know what value is assigned
to a variable at any given moment . One way you can find out is by using a built-in
feature called console.log() .

The way you do this is by typing console.log() into your code at the
point where you want to check a given variable’s assignment . You then place the
variable name inside the parentheses .

To see what the currentWaveform variable has as its assignment, you
do this:

var audioContext = new AudioContext();
//Added 4 variables that represent oscillator waveforms
var saw = "sawtooth";
var sine = "sine";
var tri = "triangle";
var square = "square";
var currentWaveform = undefined;

2. Getting Started with JavaScript and the Web Audio API14

currentWaveform = square;
console.log(currentWaveform); //___ square
//____________________________________Start of oscillator
var osc = audioContext.createOscillator();
osc.type = currentWaveform; // Assigned it to our oscillator type
osc.connect(audioContext.destination);
osc.start(audioContext.currentTime);

Launch Chrome, open the developer tools and click the console tab; you will
see the output of our console.log() .

One thing to remember is that because variables can have different values at
different times, the output of console.log() depends on where it is placed in
the program . If you modify the last example and place console.log() imme-
diately after the currentWaveform variable, which has undefined assigned
to it, then undefined is output to the log .

//__________A variable intended to contain one of these waveforms
var currentWaveform = undefined;
console.log(currentWaveform); //______results in "undefined"
currentWaveform = square;

So far we’ve mentioned three of the six data types in JavaScript . The first was
string, the second was undefined, and the last was null .

Before we go further, let’s explore the string data type a bit more in depth .

String
As we already discovered, strings are denoted by quotation marks . The variable
below is a string:

var oscillator = "square";

You can manipulate strings in different ways . One of the most common is
by combining multiple strings into one string . This is called concatenation, and it
works by using the plus sign (+) like this:

var oscillator = "saw" + "tooth";
console.log(oscillator); // sawtooth

Here is another example of concatenating two variables and storing them in
a new variable .

var phrase = "This sound is an ";
var soundType = "oscillator";
var sentence = phrase + soundType;
console.log(sentence); // "This sound is an oscillator".

Notice that strings can contain white space .
This is a perfectly valid string, even though it contains a lot of white-space

characters:

var myFavoriteSynthCompany = "My favorite synth company is Moog";

String 15

If you want to get the number of characters in a string, you can use what is
called the length property like this:

console.log(myFavoriteSynthCompany.length); // 33

The output of the length property includes the white-space characters of
the string .

Built-In String Methods
JavaScript has a series of built-in tools called methods that allow you to manipulate
data . Some of these methods are specifically designed to manipulate string data .

These are called string methods .
To see how to use a string method, take a look at the examples of the

 toUpperCase() and toLowerCase() methods .

toUpperCase()

This method changes all the characters in a string to uppercase .

var oscillator = "sawtooth";
oscillator.toUpperCase(); // SAWTOOTH

toLowerCase()

This method changes all the characters in a string to lowercase .

var oscillator = "SAWTOOTH";
oscillator.toLowerCase(); // "sawtooth"

Some useful string methods are:

charAt() Returns a character at any given index in a string
replace() Finds and replaces a group of characters in a string
slice() Extracts part of a string

You do not need to immediately memorize how each of these methods
works, but it’s a good idea to know about them . This way, when you do need to
implement any of the functionalities they provide, you know which tool to reach
for . If you would like to explore more string methods, a good resource is the
Mozilla Developer Network at: https://developer .mozilla .org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/String .

Let’s go through each one of these and explain how to use them .

charAt()

This method gets a character at any given index value within a string . For exam-
ple, if you have the string "oscillator-1" and want to know what the second letter
of this string is without actually looking at it, you can do this:

var sound = "oscillator";
console.log(sound.charAt(1)); // "s"

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

2. Getting Started with JavaScript and the Web Audio API16

Now you might be wondering why charAt(1) returns “s” and not "o" .
The reason is that the count begins at zero . So, to get the first letter do this:

console.log(sound.charAt(0)); // "o"

When an index list begins with zero, it is called a zero-based index .

replace()

This method finds a group of characters in a string and replaces them with
another string . If you want to replace an entire word, you can do it like this:

var myFavoriteSynthCompany = "My favorite synth company is
 Moog. Moog is great!";
var myNewFavoriteSynthCompany = myFavoriteSynthCompany.
 replace("Moog","Dave Smith Instruments");
console.log(myNewFavoriteSynthCompany); /*My favorite synth
 company is Dave Smith Instruments. Moog is great!*/

As you probably noticed, when using the replace method in this manner it
only replaces the first instance of the word you select . To replace all instances of
the word, you need to use the following syntax to globally replace them in the
string .

var myFavoriteSynthCompany = "My favorite synth company is
 Moog. Moog is great!";
var myNewFavoriteSynthCompany = myFavoriteSynthCompany.
 replace(/Moog/gi,"Dave Smith Instruments");
console.log(myNewFavoriteSynthCompany); /*My favorite synth company
 is Dave Smith Instruments. Dave Smith Instruments is great!*/

The g stands for global and the i denotes case insensitivity . If you want the
string replacement to be case sensitive, you use a g and omit the i . These charac-
ters are part of a pattern-matching language for string data called regular expres-
sions . Regular expressions are an advanced topic that will not be covered further
in this book .

slice()

This method extracts part of a string .

var oscillator = "sawtooth";
var sound = oscillator.slice(0,3);
console.log(sound); // saw

Like charAt(), slice() works on a zero-based index . This means the
first character is always zero . The slice method takes two values: a beginning
index value and an ending index value . When a method takes values, they are
called arguments . The charAt() method takes one argument . The slice()
method takes two arguments . The slice method’s first argument is where the slice
starts, and this value is included in the slice . The second value is where the slice

Numbers 17

ends and is noninclusive . This means all the characters up to, but not including,
the second value are included in the slice .

The length Property
The length property is an additional tool that allows you to get the number of
characters in a string . A property looks similar to a method but does not include
parentheses and does not require arguments to return a value . The character
count of the length property starts at one, not zero .

var instrument = "piano";
console.log(instrument.length); // 5

If you want to get the last value of a string, you can combine the length
property with the charAt() method . This allows you to retrieve the last char-
acter in a string in a manner that doesn’t require you to know how long the
string is . The code shows an example of this . The reason you subtract 1 from
the length property is because the length property begins counting at one,
whereas charAt() begins counting at zero . Therefore, you subtract 1 from the
length property to compensate for the offset .

var sound = "oscillator-1";
var oscNumber = sound.charAt(sound.length - 1);
console.log(oscNumber); // 1

Numbers
In JavaScript, numbers are a distinct data type . Below is a variable named
 frequencyValue, and it is assigned a number of 200 . It is then assigned to
the oscillator’s pitch . If you place the code below in a new JavaScript file and run
it, you will hear an oscillator play at a frequency of 200 Hz . Modify the number
value assigned to the frequencyValue variable and launch the code to hear
the oscillator play at different pitches .

var audioContext = new AudioContext();
var frequencyValue = 200; //___Create variable frequencyValue
var waveform = "sawtooth";
var osc = audioContext.createOscillator();
osc.type = waveform;
//_____ assign it to the oscillators pitch
osc.frequency.value = frequencyValue;
osc.connect(audioContext.destination);
osc.start(audioContext.currentTime);

How to Determine the Data Type of a Variable
You can discern the difference between data types in variables by using the
typeof operator .

var waveform = "sine";
var polyphony = 16;

2. Getting Started with JavaScript and the Web Audio API18

console.log(typeof waveform); // string
console.log(typeof polyphony); // number

Unlike strings, numbers do not use quotation marks . In fact, if you did use
a number with quotation marks, its data type would not be number, it would be
string.

Here’s an example:

var oscillators = "6";
var polyphony = 6;
console.log(typeof oscillators); // string
console.log(typeof polyphony); // number

You can do basic math with numbers using the following symbols . These
symbols are called arithmetic operators .

+ Addition
− Subtraction
* Multiplication
/ Division
% Modulo

Examples of Arithmetic Operators
console.log(5 + 5); // 10
console.log(10 - 5); // 5
console.log(5 * 5); // 25
console.log(25 / 5); // 5
console.log(10 % 9); // 1

The last symbol (%) might be new to you, and it is pronounced moj-uh-loh .
The purpose of this symbol is to output the remainder of a division . So, for
example:

console.log(12 % 9); // This equals 3

The precedent rules of algebra also apply . If you wrap a calculation in paren-
theses, the calculation inside the parentheses is performed first .

Examples of Precedence
var oscillator1 = 1000;
var oscillator2 = 100;
var oscillator3 = 20;
var combinedOscillator = oscillator1 +(oscillator2 * oscillator3);
console.log(combinedOscillator); // 3000

If you want to do more elaborate calculations, JavaScript has a built-in tool
called the Math object, which allows you to use a collection of math methods to
manipulate numbers .

Numbers 19

So, for example, if you want to round a decimal number to its nearest integer,
you can use Math.round() like this:

Math.round(1000.789); // outputs 1001

Some useful math object methods are:

Math.min() Finds the smallest number in a collection of numbers
Math.max() Finds the largest number in a collection of numbers
Math.ceil() Rounds a decimal number up to the nearest integer and removes the

decimal values
Math.floor() Removes the decimal values of a number, making it an integer
Math.random() Creates a random number between 0 and 1
Math.abs() Returns the absolute value of a number

Let’s go over each of these one by one . If you would like to explore more
math methods, a good site is the Mozilla Developer Network at: https://developer
 .mozilla .org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math .

Math.min() and Math.max()
Math.min() finds the smallest number in a collection of numbers, whereas
Math.max() allows you to find the largest number in a collection of numbers .

Math.min(5000, 2000, 80); // 80
Math.max(5000, 2000, 80); // 5000
//___________________________With variables
var freq_1 = 5000;
var freq_2 = 2000;
var freq_3 = 80;
Math.min(freq_1, freq_2, freq_3); // 80
Math.max(freq_1, freq_2, freq_3); // 5000

Math.ceil() and Math.floor()
These two methods turn a decimal number into an integer . Math.ceil()
rounds up to the next higher integer value if there are any nonzero digits to the
right of the decimal, whereas Math.floor() keeps the integer value after dis-
carding the digits to the right of the decimal .

Math.ceil(3.00333); // 4
Math.floor(3.9999); // 3

Math.random()

The random method creates a random number between zero and one .

var randomNumber = Math.random();
console.log(randomNumber); // example: 0.019790495047345757

You can combine Math.random() with Math.floor() to create a
random number between two values . The expression in the following example
creates a random integer between 20 and 20,000 .

https://developermozilla org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developermozilla org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

2. Getting Started with JavaScript and the Web Audio API20

var max = 20000;
var min = 20;
var randomInteger = Math.floor(Math.random() *
 (max - min + 1) + min);
console.log(randomInteger); // Between 20 and 20000

Math.abs()

The abs method allows you to get the absolute value of a number .

var num = Math.abs(-100);
console.log(num); // 100

This is useful for finding the difference between numeric variables of
unknown values .

var a = 1000;
var b = 5000;
console.log(Math.abs(b - a)); // 4000

Number-to-String Conversion
If you want to convert between numbers and numeric strings, you can use the
following techniques .

To convert a string to a number, place the plus symbol (+) before the string
like this:

var numericString = "120";
var num = +numericString; // plus symbol
console.log(num); // 120
console.log(typeof num); // number

If you want to convert a number to a numeric string, concatenate the num-
ber with an empty string like this:

var num = 80;
var numericString = num + "";
console.log(numericString); // 80
console.log(typeof numericString); // string

If you attempt to do a math operation using nonnumeric values, sometimes
you will receive a returned value of NaN . This stands for not a number . Here is
an example of attempting to add two values in which one value is a number and
the other is not .

var osc1 = undefined;
var osc2 = 200;
console.log(osc1 + osc2); // NaN

Arrays
Arrays are a construct that holds multiple pieces of data . You can think of them
as variables that hold more than one item . Arrays are expressed using brackets,

Arrays 21

where each item is separated by a comma . Each item in the array is designated an
index number with the first item starting at zero .
var waveforms = []; // empty array
var waveforms = ["square", "sawtooth", "triangle", "sine"]; //
 array with some data

If you want to access any of these data, you can use the following notation:

waveforms[0]; // square
waveforms[1]; // sawtooth
waveforms[2]; // triangle
waveforms[3]; // sine
waveforms[4]; // undefined (no data)

If you want to know how many items are inside an array, use the length
property like this:

var waveforms = ["square", "sawtooth", "triangle", "sine"];
waveforms.length; // 4

Arrays come with built-in methods that you can use to manipulate
the data in them . A full list of these are available at the Mozilla Developer
Network at this URL: https://developer .mozilla .org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Array . We are only going to go over a
handful of these and they are:

push() Adds additional items to the end of an array
pop() Removes a single item from the end of an array
shift() Removes a single item from the beginning of an array
unshift() Adds additional items to the beginning of an array
concat() Concatenates arrays together into one array

push()

This method adds items to the end of an array .

var synthFrequencies = [5000, 1000, 500];
synthFrequencies.push(100); /*This places a new item at the end of
 the array*/
console.log(synthFrequencies); // [5000, 1000, 500, 100]

You can use the push method to add multiple items at once .

var synthFrequencies = [5000, 1000, 500];
synthFrequencies.push(100, 50, 30);
console.log(synthFrequencies); // [5000, 1000, 500, 100, 50, 30]

pop()

This method removes a single item at the end of an array .

var synthFrequencies = [5000, 1000, 500];
synthFrequencies.pop();
console.log(synthFrequencies); // [5000, 1000]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

2. Getting Started with JavaScript and the Web Audio API22

If you want to capture the last item you removed from an array in a variable,
do this:

var synthFrequencies = [5000, 1000, 500];
var lastItem = synthFrequencies.pop();
console.log(lastItem); // 500

shift()

This method removes an item from the beginning of an array .

var synthFrequencies = [5000, 1000, 500];
synthFrequencies.shift();
console.log(synthFrequencies); // [1000, 500]

If you want to capture the first item you removed from an array in a variable,
do this:

var synthFrequencies = [5000, 1000, 500];
var firstItem = synthFrequencies.shift();
console.log(firstItem); // 5000

unshift()

This method adds new items to the beginning of an array .

var synthFrequencies = [5000, 1000, 500];
synthFrequencies.unshift(7500, 6000);
console.log(synthFrequencies); // [7500, 6000, 5000, 1000, 500]

concat()

This method merges multiple arrays together into one array .

var drumMachines = ["MPC", "Machine", "TR 808"];
var keyboards = ["Juno", "ARP", "Jupiter"];
var percussion = ["vibraphone", "bongos"];
var stringed = ["guitar", "bass", "harp"];
var instruments = drumMachines.concat(keyboards, percussion,
 stringed);
console.log(instruments); /* ['MPC','Machine','TR 808','Juno','ARP',
 'Jupiter','vibraphone','bongos','guitar','bass','harp'] */

Summary
In this chapter, you learned about variables, comments, numbers, strings, and
arrays . In the next chapter, you will learn about various assignment and logical
operators .

23

3

You learned about the basic assignment operator (=) and some of the arithmetic
operators in the previous chapter . In this chapter, we are going to explore other
assignment operators, as well as comparison operators, that allow you to deter-
mine the relationship between variables and values, such as whether they have
the same value . We will also explore the Boolean data type, which has either a
true or a false value that can be assigned to variables or is the result of a compari-
son operation .

What Are Operators?
Operators represent actions that you use to change the value of a variable, or
compare values or variables . The word operand is used to describe a value being
used in an operation involving operators . So in the following example, the oper-
ands are 300 and 400 . The output of the comparison is said to be what the expres-
sion evaluates to . In the following example, the operation evaluates to false .

300 == 400 /*The values here (300 and 400) are called operands,
 and the output evaluates to false.*/

Operators fall into arithmetic, assignment, or logical categories . The arith-
metic operators that we covered in the previous chapter are used with numbers .

Operators

3. Operators24

The assignment operators are used to assign values to variables . The logical oper-
ators are used to compare two values and return a true or false value based
on the result of the comparison .

Assignment Operators
Assignment operators are used to assign data to variables . Here is a list of assign-
ment operators:

Assignment Operator Name

= Assignment
+= Addition assignment
-= Subtraction assignment
*= Multiplication assignment
/= Division assignment
%= Modulo assignment

Assignment
This operator assigns a value to a variable .

var osc = 100;

With assignment operators, you can also assign variables to other variables .

var osc1 = 100;
var osc2 = osc1;
console.log(osc2); // 100

Addition Assignment
This operator increments a numeric variable or appends a string to a variable .
In the following example, an oscillator is assigned a value of 100 and then incre-
mented by 100 to give it a value of 200 .

var osc = 100;
osc += 100;
console.log(osc); // 200

To demonstrate the use of the addition assignment operator, the following
code sets an ever-increasing frequency change to an oscillator and you can listen
to the effect . A method called setInterval() is defined, although the specifics
of setInterval() are not important at this time . What is important is under-
standing that the addition assignment operator is incrementing the frequency
value by 100 every 0 .5 seconds when setInterval() is called .

var audioContext = new AudioContext();
var osc = audioContext.createOscillator();
osc.frequency.value = 300;
osc.connect(audioContext.destination);
osc.start(audioContext.currentTime);

What Are Operators? 25

setInterval(function(){
 osc.frequency.value += 100; /*____Increment frequency value by
 100 every 0.5 seconds*/
 console.log(osc.frequency.value); //_____View change
},500); //________________________500 milliseconds is 0.5 seconds

When you use the addition assignment operator with a string, the string you
supply is concatenated with the variable . Here is an example:

var keyboards = "";
keyboards += "Korg ";
keyboards += "Yamaha ";
keyboards += "Kurzweil ";
console.log(keyboards); // Korg Yamaha Kurzweil

Subtraction Assignment
This operator is used to decrement a numeric variable .

var osc = 500;
osc -= 100;
console.log(osc); // 400

Multiplication Assignment
This operator multiplies a variable with a value and assigns it to the variable .

var osc = 200;
osc *= 2;
osc *= 2;
console.log(osc); // 800

Division Assignment
This operator divides a variable by a value and assigns it to the variable .

var osc = 200;
osc /= 2;
osc /= 2;
console.log(osc); // 50

Modulo Assignment
This operator divides a variable by a value and assigns the remainder of that divi-
sion to the variable .

var osc = 200;
osc %= 150;
console.log(osc); // 50

The Boolean Data Type
The Boolean data type is either true or false . This is conveyed by the word-form
values true and false . Booleans are important because you can use them to

3. Operators26

program on or off (true or false) values into the code . So, for example, you could
use them as a value that toggles an oscillator on or off . Assigning a Boolean value
to a variable in JavaScript looks like this:

var oscillatorIsOn = true; // true
oscillatorIsOn = false; // changed to false

Boolean values can also be the result of the comparison operators described
below or used in conditionals statements, which we will cover in the next chapter .

Comparison Operators
Comparison operators are used to compare two variables or values . They out-
put a true or false value depending on whether the variables or values are
similar or different from one another in some way . The similarity or difference
being tested for is dependent on the operator used . So, for example, if you test
whether two values are the same using the strict equality operator (===) and
they are not the same, the resulting value is false . There are eight comparison
operators .

Comparison Operator Name

== Equality operator
=== Strict equality operator
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
!= Not equal to
!== Strict not equal to

Equality Operator
This operator checks whether the left operand is equal to the right operand .
It then returns a Boolean value to represent the outcome of the comparison .

200 == 200; // true
"200hz" == "200hz"; // true
var osc1 = "200hz";
var osc2 = "200hz";
console.log(osc1 == osc2); // true

The equality operator can be a bit tricky because it attempts to do a data type
coercion before comparing operands . Data type coercion occurs when the code
interpreter (in our case the web browser) attempts to convert one data type into
another . In the following example, we compare a number and a numeric string .
JavaScript tries to convert the string to a number before doing the comparison .
If the string is a numeric string, the conversion is successful, and the compari-
son is performed . In this case, the result of the comparison is the Boolean value

What Are Operators? 27

true because the numeric string “200” is successfully converted to the value
200, which matches the value of osc1 .

var osc1 = 200;
var osc2 = "200";
console.log(osc1 == osc2); // true

If a nonnumeric string is compared against a number, the result is always
false .

200 == "oscillator" // false

Strict Equality Operator
To protect against the confusion of type coercion using the equality operator, you
can use the strict equality operator . This operator does not do data type coercion .
This means that, if any numeric string is compared against a number, the result
is always false . For newer JavaScript programmers, we suggest that you always
use this operator . Restricting yourself to this operator helps to mitigate problems
involving coercion before they start .

//_________________________Examples
900 === 900 // true
var osc1 = 200;
var osc2 = "200";
console.log(osc1 === osc2); // false

Greater Than and Less Than Operators
These operators produce a Boolean result that is based on whether the left oper-
and is less than or greater than the right operand .

100 < 200 // true
300 < 200 // false
300 > 200 // true
300 > 500 // false

The greater than and less than operators do data type coercion as shown in
this example:

600 > "500" // true
600 < "500" // false

Greater Than or Equal to Operator
This operator returns a Boolean value of true if the first operand is greater than
or equal to the second operand .

var osc1 = 300;
var osc2 = 500;
var osc3 = 300;
osc3 >= osc1 // true
osc2 >= osc1 // true
osc1 >= osc2 // false

3. Operators28

The greater than or equal to operator does data type coercion as shown in
this example:
300 >= "300" // true

Less Than or Equal to Operator
This operator returns a Boolean value of true if the left operand is less than or
equal to the right operand .
300 <= 300 // true
300 <= 500 // true
300 <= 200 // false

The less than or equal to operator does data type coercion as shown in these
examples:
300 <= "300" // true
300 <= "500" // true
300 <= "200" // false

Not Equal to Operator
This operator is a combination of the NOT symbol and the equal sign . The NOT
symbol is expressed as an exclamation mark and is sometimes referred to as the
bang operator . When NOT is coupled with an equal sign to produce the not equal
to operator, it can be used to return a Boolean value that is based on whether two
values are not equal to each other . If the two values are not equal, the result is
true . If the two values are equal, the result is false .
300 != 200 // true
300 != 300 // false

The not equal to operator does data type coercion as shown in this example:
"300" != 300 // false

Strict Not Equal to Operator
This operator returns a Boolean value that is based on whether two values are
not equal to each other . The strict not equal to operator, unlike the not equal to
operator, does not do type coercion .

"300" !== 300 // true
300 !== 300 // false

Logical Operators
Logical operators allow you to check if a collection of statements is true or false
and return a Boolean value based on this information .

Logical Operator Name

&& AND
|| OR
! NOT

What Are Operators? 29

The Logical AND Operator
The logical AND operator evaluates to true only if all the operands are true . The
way it works is that first, the value on the right side of the operator is evaluated,
and if its value is false, the Boolean value of false is returned . In this case, the
value on the left side of the operator is never considered!

If the value on the right side of the operator evaluates to true, then and only
then does the AND operator check the value on the left side of the operator . If the
value on the left side of the operator is false, then the Boolean value false is
returned . In the case where both the values on the left and right sides of the logi-
cal AND operator are true, the Boolean value true is returned .

true && true // true
true && false // false
false && true // false
false && false // false

The Logical OR Operator
This operator returns true as long as either of the operands is true .

true || true // true
true || false // true
false || true // true
false || false // false

The NOT Operator
This operator inverts a Boolean value .

!false // true
!true // false

Another way to look at this code is that, if a value is not false, then it is
true, and if its value is not true, then it is false .

In JavaScript, there are six values that evaluate to false . They are the following:

false

""

null

undefined

0

NaN

All other values evaluate to true .
When you specify the NOT operator twice in a row before a variable or an

operand, the resultant value is its original Boolean value .

!!false // false
!!true // true
!!0 // false

3. Operators30

!!"" // false
!!null // false
!!undefined // false
!!NaN // false

Summary
In this chapter, you learned about JavaScript assignment and logical operators,
the Boolean data type, and what values evaluate to false . In the next chapter,
you will learn to leverage these tools using two new concepts: conditionals and
loops .

31

4 Conditional
Statements
and Loops

Conditional statements and loops are two of the most widely used constructs
in programming . Conditional statements allow your program to make choices
based on a set of criteria . Loops use repetition, allowing your program to com-
plete many tasks quickly .

Conditional Statements
To create programs that do more than basic calculations or print text, they must
be able to make decisions . You can program these decisions by using conditional
statements . Conditional statements check if a value is true or false and then exe-
cute a branch of code based on this condition . We are going to go over the follow-
ing three conditional statements:

 ◾ if

 ◾ switch

 ◾ ternary

4. Conditional Statements and Loops32

The if Statement
The syntax of an if statement consists of the if keyword, a pair of parentheses,
and two curly braces . This is what an empty if statement looks like:

if(){
}

To use an if statement, you place a value or condition inside the paren-
theses and some code to execute inside the curly braces . If the condition inside
the parentheses evaluates to true, the code inside the curly braces is executed .
If the condition evaluates to false, no action is taken and the code inside the
curly braces is skipped . In the following code, an if statement is used to check
if an oscillator frequency is set to 80 Hz prior to play start . If it is, the oscillator
plays; if it is not, the code inside the curly braces is ignored and the oscillator
does not play .

//___________________________________BEGIN Setup
var audioContext = new AudioContext();
var osc = audioContext.createOscillator();
osc.type = "sawtooth";
osc.frequency.value = 80;
osc.connect(audioContext.destination);
//___________________________________END Setup
//___________________________________BEGIN Check frequency
if(osc.frequency.value === 80){
 osc.start(audioContext.currentTime);
}
//___________________________________END Check frequency

If statements can also have an optional else branch that executes if the
initial condition evaluates to false . In the following code, the if statement
checks to see if frequency.value is 100 Hz . If this condition is true, the oscil-
lator begins to play . If this condition is false, the else branch executes, assigns
frequency.value to 50 Hz, and starts the oscillator playing .

//____________________________________BEGIN Setup
var audioContext = new AudioContext();
var osc = audioContext.createOscillator();
osc.type = "sawtooth";
osc.frequency.value = 200;
osc.connect(audioContext.destination);
//____________________________________END Setup
//____________________________________BEGIN Conditional
if(osc.frequency.value === 100){
 //__evaluates to false
 osc.start(audioContext.currentTime);
}else{
 //__So this plays
 osc.frequency.value = 50;
 osc.start(audioContext.currentTime);
}
//____________________________________END Conditional

Conditional Statements 33

Suppose you want to check for more than two conditions and do something
different for each one, you can do this by creating an if statement with multiple
else if branches in sequence . The final else statement catches all conditions
that were not met along the way . An empty example looks like this:

if(){

}else if(){

}else{

}

In the following working example, the code executes and checks to see
if osc.type is set to "sine" . If this condition evaluates to false, the else
if branch runs and checks if the oscillator type is set to "sawtooth" . This
evaluates to true, and the oscillator starts playing . If osc.type is not set
to "sine" or "sawtooth" (in other words, if both conditions evaluated to
false), then the result is execution of console.log(), which outputs “no
condition met .”

var audioContext = new AudioContext();
var osc = audioContext.createOscillator();
osc.type = "sawtooth";
osc.connect(audioContext.destination);
if(osc.type === "sine"){
 osc.start(audioContext.currentTime);
}else if(osc.type === "sawtooth"){
 osc.frequency.value = 50;
 osc.start(audioContext.currentTime);
}else{
 console.log("no condition met");
}

The switch Statement
If you catch yourself writing an if statement with a lot of else if branches,
you should consider using a switch statement . A switch statement allows you
to check if a variable has a particular value assigned to it and then runs a block of
code that begins where that value is defined . The following code is an example of
an empty switch statement . The expression in parentheses determines a value .
The case statements define values that you want to catch and then run some
code . Each case statement is terminated by a break statement because otherwise
the code following the break statement is run . At the end of the switch state-
ment, you can define the optional default keyword that specifies the code to
run if none of the other case statements evaluate to true (the value is not one
that you expected) .

switch(expression){
 case "value1": //__if true
 //_______then do something
 break;

4. Conditional Statements and Loops34

 case "value2": //__if true
 //_______then do something
 break;
 default: //____if all other cases are false
 //_____________then do this
}

The following code is an example of a switch statement that checks the
value of an oscillator type and sets its frequency value based on its being a sine,
sawtooth, or square wave . If the oscillator is not one of these types, the default
branch executes and sets osc.frequency.value to 200 .

//____________________________BEGIN Setup
var audioContext = new AudioContext();
var osc = audioContext.createOscillator();
osc.type = "sawtooth";
osc.connect(audioContext.destination);
//____________________________END Setup
//____________________________BEGIN Switch statement
switch(osc.type) {
 case "sawtooth":
 osc.frequency.value = 50;
 osc.start(audioContext.currentTime)
 break;
 case "sine":
 osc.frequency.value = 100;
 osc.start(audioContext.currentTime);
 break;
 case "square":
 osc.frequency.value = 150;
 osc.start(audioContext.currentTime);
 break;
 default:
 osc.frequency.value = 200;
 osc.start(audioContext.currentTime);

}
//____________________________END Switch statement

Ternary Operator
If you are writing a conditional statement that contains a single comparison
clause (it returns only one of two conditions), then you can use a ternary opera-
tor . The ternary operator has three parts: an expression and two executed
statements . The first part is an expression that is tested for true or false and is
separated from the executed code by a question mark . If the expression evalu-
ates to true, the code to the left of the colon is run . If the expression evaluates
to false, the code to the right of the colon is run . The syntax of the ternary
operator looks like this:

/*
expression ? if true run this code : if false run this code
*/

Loops 35

The following code is an example of the ternary operator in action . This code
checks if the oscillator type is set to “sawtooth” . If it is, the frequency is set to
50; otherwise, it is set to 500 .

//______________________________BEGIN setup
var audioContext = new AudioContext();
var osc = audioContext.createOscillator();
osc.type = "sine";
osc.connect(audioContext.destination);
osc.start(audioContext.currentTime);
//_______________________________END setup
//_______________________________BEGIN Ternary example
osc.type === "sawtooth" ? osc.frequency.value = 50 : osc.frequency.
 value = 500;
//_______________________________END Ternary example

Loops
Computers are very good at doing lots of simple tasks very fast . One of the tools
available to leverage this capability is loops . Loops allow you to repeat a task until a
condition or set of conditions are met . We will cover the following types of loops:

 ◾ for

 ◾ while

for Loops
The following code is an example of a for loop that counts to 16 and outputs
each loop number to the console . The text that follows explains the keywords and
what each component of the for loop does .

for(var i = 0; i <=16; i+=1){
 console.log(i);
}

A for loop consists of the for keyword and opening and closing parenthe-
ses . Inside the parentheses are three parts separated by semicolons . The first part
is the initialization variable, and in this case it is set to zero .

for(var i = 0; i <=16; i+=1){
 console.log(i);
}

The next part is the conditional statement, which is used to determine a
condition to check upon each iteration of the loop . As long as this condition is
true, the loop will iterate (run another time) . In the following example, the condi-
tion tells the for loop to continue iterating as long as the value of the variable i
is less than or equal to 16 .

for(var i = 0; i <=16; i+=1){
 console.log(i);
}

4. Conditional Statements and Loops36

The next part is used to increment the initialization variable . On each
loop, the variable i is incremented by one and eventually reaches 17 and stops
looping .

for(var i = 0; i <=16; i+=1){
 console.log(i);
}

The last part of a for loop is the code block that is defined by the opening
and closing curly braces . Any code that is written in between these curly braces
gets repeated for each loop iteration .

for(var i = 0; i <=16; i+=1){
 console.log(i); // code here gets repeated for each loop
}

When for loops are run, they are very fast . Below is a script that uses an
additional helper function to pause each iteration of a for loop . The loop modi-
fies the frequency of a playing oscillator on each iteration . The helper function
pauses the loop (which is its only function), so you can hear each change .

/*__________________________________BEGIN Helper function.
Ignore this code it is simply being used to pause the for loop */
function sleep(milliseconds) {
 var start = new Date().getTime();
 for (var i = 0; i < 1e7; i++) {
 if ((new Date().getTime() – start) > milliseconds){
 break;
 }
 }
}
//__________________________________END Helper function
//__________________________________BEGIN Web Audio API setup
var audioContext = new AudioContext();
var osc = audioContext.createOscillator();
osc.type = "sawtooth";
osc.frequency.value = 30;
osc.connect(audioContext.destination);
osc.start(audioContext.currentTime);

//__________________________________END Web Audio API setup
//_________________________________BEGIN audible for-loop example
for(var i =0 ; i < 10; i+=1){
 osc.frequency.value +=100;
 sleep(500);
}
//_________________________________END audible for-loop example

Using for Loops with Arrays
It is common to use loops to modify and extract data from arrays . The follow-
ing code has an empty array and a for loop . The for loop iterates four times,
and on each iteration, the string “synth” is concatenated with the i variable
and is pushed to the synths array . The result is the creation of four entries in

Loops 37

the synths array, each consisting of the word “synth” followed by a dash and
a number .

var synths = [];
for (var i = 1; i <= 4; i += 1) {
 synths.push("synth-" + i);
}
console.log(synths); //['synth-1', 'synth-2', 'synth-3', 'synth-4']

If you want to modify each value in an existing array, you can do so by
looping through the array and modifying the value at each iteration . To do this,
set the conditional statement termination value to the length of the array . In
the following code, this is done with synths.length. You can then access
the individual values of the array within the loop by placing the iterator vari-
able inside the brackets next to it .

var synths = ['synth-1', 'synth-2', 'synth-3', 'synth-4'];
console.log(synths.length); //__This is 4
for (var i = 0; i < synths.length; i += 1) {
 console.log(synths[i]);
}

The following code shows a modification of the previous code where each
value in the array has “0hz” appended to it .

var synths = ['synth-1', 'synth-2', 'synth-3', 'synth-4'];
for (var i = 0; i < synths.length; i += 1) {
 synths[i] += "0hz";
}
console.log(synths); /*['synth-10hz', 'synth-20hz', 'synth-30hz',
 'synth-40hz']*/

while Loops
The while loop is useful when you are unsure of how many iterations will be
needed to complete a task . A simple example is a live podcast website that allows
users to connect and listen while a show is on the air . As a programmer you might
not know how long the show will last but you want to continuously check for
new user connections for the duration of the show and allow them to listen in .
The pseudocode for this example might look something like this:

var onAir = true;
while(onAir){
 // check for new visitors and connect them
}

The while loop consist of the while keyword, opening and closing paren-
theses, and opening and closing curly braces . A conditional statement is placed
in the parentheses, which allows the loop to iterate as long as the condition
remains true . When the condition becomes false, the loop stops . The following

4. Conditional Statements and Loops38

example loops as long as the freq variable is greater than zero . At each iteration,
the freq variable decrements until it is zero and the loop terminates .

var freq = 7000;
while (freq > 0) {
 console.log(freq);
 freq -= 100;
}

When to Use for Loops and When to Use while Loops
The rule of thumb for deciding whether to use a for or while loop is that a for
loop is typically used when you know the number of iterations that are needed
to complete the loop, and a while loop is used when you don’t know how many
iterations are needed to complete the loop .

Summary
In this chapter, you have learned how to incorporate decision-making into your
programs using conditional statements . You have also learned how to use loops
to accomplish tasks quickly and how loops can be leveraged when working with
arrays . In the next chapter, you will learn how to incorporate functions into your
programs .

39

5

In this chapter, you will learn about functions, various ways to work with
functions, and variable scope . Functions allow you to write code in a way that
avoids repetition . They also allow you to encapsulate your code and perform
a specific task based on a set of inputs . Scope pertains to the context in which
variables are declared . JavaScript handles variables differently depending on
their scope, and you will learn how to use variables in functions when writing
programs .

Functions—A Simple Example
To explain functions, let’s look at the design of an audio effects module . Imagine
a simple hardware audio effects box equipped with a single input channel and a
single output channel . Now imagine this effects box changes the original input in
some way depending on a collection of user-defined settings . In this design, the
output of the effects box is the result of the input signal combined with the user
settings that produce some change in the original signal .

Functions

5. Functions40

The following example shows how you might code the effects box example
for a fixed selection . The effectsBox function takes an input, multiplies that
input by two, and returns the result .

function effectsBox(input) {
 return input * 2;
}
console.log(effectsBox(120)); // Output 240

The following example shows how you can multiply the input by a
value selected by the user, which is coded in the form of a parameter called
multiplier .

function effectsBox(input, multiplier) {
 return input * multiplier;
}
console.log(effectsBox(120, 2)); // Output 240

Parts of a Function
To create a function, you start by typing the function keyword followed by
a function name . Immediately following the function name, you place opening
and closing parentheses, and then immediately after these you place opening and
closing curly braces .

function add(){
 // function body
}

You can give the function placeholders for input values called parameters,
which you place inside the parentheses and separate by commas .

function add(a, b){

}

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-6&iName=master.img-000.jpg&w=259&h=145

Functions—A Simple Example 41

The final part of a function is an optional return statement that outputs a
value when the function completes .

function add(a, b){
return a + b;

}

To run the function (also called invoking the function), you type the func-
tion name followed by an opening parenthesis . If the function has parameters,
you enter values for these, which in the context of invoking the function are
called arguments . You end the function with a closing parenthesis .

add(2, 5); // 7

If you invoke the function with arguments not defined by the function, no
error is returned and the system ignores the additional arguments .

add(2, 5, 999); //__The third argument is ignored and output is 7

Function Expressions
As an alternative to using function declaration syntax, you can write your
functions using expression syntax, where you assign the function to a variable
like this:

var add = function (a,b){
 return a + b;
};
add(2,3); // 5

The function expression syntax emphasizes an important aspect of JavaScript
functions: they can be treated like data and passed around between variables .
Here’s an example of the previous code with a variable named container that
stores the result of running the add function with arguments 2 and 3:

var add = function (a, b) {
 return a + b;
};
var container = add(2, 3);
console.log(container); // 5

Abstracting Oscillator Playback
The following function playOsc plays an oscillator and has two arguments .
The first, oscType, determines the oscillator waveform type, which for the Web
Audio API supports sine, sawtooth, triangle, and square in the form of a string .
The second argument is the frequency value in hertz . Because the code neces-
sary to generate the oscillator is encapsulated in a function, you can now invoke
the function by writing only one line of code each time you create an oscillator .

5. Functions42

This means you avoid the repetition of writing out all of the oscillator creation
code every time you create the oscillator .

var audioContext = new AudioContext(); //___Initializes web audio api

function playOsc(oscType, freq) {
 var osc = audioContext.createOscillator();
 osc.type = oscType;
 osc.frequency.value = freq; //____freq is a parameter
 osc.connect(audioContext.destination);
 osc.start(audioContext.currentTime);
}

playOsc("sine", 330); //____Plays oscillator at 330hz

/*____We can play multiple oscillators at once using only
 one line of code each time! Adding another sine at 340 will
 create a pulsating effect*/

playOsc("sine", 340);

A Working Effects Box Example
The following code demonstrates a simplified working example of how an effects
box might look when written as a function . The example consists of three func-
tions . The first two functions generate oscillators . The third function is the actual
effectsBox() function that accepts an oscillator and a filter value as inputs,
and then applies the filter to the oscillator .

var audioContext = new AudioContext();
//___________________________________BEGIN Custom sound
function customSound(filterVal) {
 var osc_1 = audioContext.createOscillator();
 var osc_2 = audioContext.createOscillator();
 var filter = audioContext.createBiquadFilter();
 filter.type = "lowpass";
 osc_1.type = "sawtooth";
 osc_1.frequency.value = 300;
 osc_2.type = "sawtooth";
 osc_2.frequency.value = 402;
 filter.frequency.value = filterVal || filter.frequency.value;
 osc_1.connect(filter);
 osc_2.connect(filter);
 filter.connect(audioContext.destination);
 osc_1.start(audioContext.currentTime);
 osc_2.start(audioContext.currentTime);
}
//___________________________________END Custom sound

//___________________________________BEGIN square wave
function square(filterVal) {
 var osc = audioContext.createOscillator();
 var filter = audioContext.createBiquadFilter();
 filter.type = "lowpass";
 osc.type = "square";
 osc.frequency.value = 100;

Functions—A Simple Example 43

 filter.frequency.value = filterVal || filter.frequency.value;
 osc.connect(filter);
 filter.connect(audioContext.destination);
 osc.start(audioContext.currentTime);
}

//___________________________________END square wave

//___________________________________BEGIN effectsBox

function effectsBox(sourceInput, filterParam) {
 sourceInput(filterParam);
}
//___________________________________END effectsBox
effectsBox(customSound, 80); // Example

The Arguments Object
JavaScript contains an array-like object that allows you to access the arguments
of a function in the form of a zero-based list . This pseudo-array does not have
access to any of the methods of a conventional array except the length property .
The following code outputs the argument values by specifying the arguments
object in console.log() .

function playOsc(oscType, freq){
 console.log(arguments[0]);
 console.log(arguments[1]);
}
playOsc("sine", 200); // sine 200

You can use the arguments object to create default values for function
arguments . The following code checks to see if an argument is undefined, and if
it is, sets its value to “sawtooth .”

function playOsc(oscType) {
 //_______Set default of oscType to sawtooth
 if (arguments[0] === undefined) {
 oscType = "sawtooth";
 }
 return oscType;
}
console.log(playOsc()); //___sawtooth
console.log(playOsc("sine")); //___sine

The arguments object can be combined with the length property and a
conditional statement to ensure that an error is given if any arguments are left
empty . To create your own error statement, you use the throw keyword . In the
following code, the conditional statement checks to see if the number of argu-
ments is not two, and if the conditional evaluates to true, then an error is given
(or thrown) to indicate this result .

function playOsc(oscType,freq){
 if(arguments.length !==2){
 throw “Error! This function takes two arguments"
 }

5. Functions44

}
playOsc("sine"); //___Error! This function takes two arguments

You can add another check to ensure that the correct data types are being
entered like this:

function playOsc(oscType, freq) {
 if (arguments.length !== 2) {
 throw "Error! This function takes two arguments";
 }
 //_____Check for correct argument data types
 if (typeof oscType !== "string" || typeof freq !== "number") {
 throw "Please enter the correct argument types";
 }
}
playOsc(100, true); //___Please enter the correct argument types

You can also use the arguments object to limit an argument to a list of
specific values . The following function takes a single argument that is intended
to be one of the four waveform types . If the argument is not one of these four
values, an error is thrown . When the function is invoked, the code loops through
an array of the four waveform types . If any of the waveform types matches the
argument value, a variable named waveformValid is set to the Boolean value
true . Then a conditional statement checks the value of waveformValid . If it
is false, an error is thrown; otherwise, the function runs to completion .

function playOsc(oscType){
 var waveforms = ["sawtooth","sine","triange","square"];
 var waveformValid = false;
 for(var i =0; i < waveforms.length; i+=1){
 if(arguments[0] === waveforms[i]){
 waveformValid = true;
 }
 }
 if(waveformValid === false){
 throw "please enter sawtooth, sine, triangle or square
 as an argument"
 }
}
playOsc("fat beats");
/*___Error: Uncaught please enter sawtooth, sine, triangle or
 square as an argument___*/
playOsc("square"); //___works

Function Scope
Scope is a concept that defines how one part of a program can access variables in
another part of a program . In the ECMAScript 5 version of JavaScript, there are
only two forms of scopes: a global scope and function scope (also called a local
scope) . This means that if you declare a variable within a function, it is specific to
that function and does not conflict with any other variables that have the same
name and are defined outside of that function . Functions have access to their

Function Scope 45

own variables and they also have access to any variables in a higher scope, which
includes the global scope .

In one of our previous examples, we created a function to play an oscilla-
tor . Notice that although the audioContext variable is not included inside
the playOsc function, it is still accessible . This is because audioContext is
defined in a higher scope: the global scope .

//____audioContext is global
var audioContext = new AudioContext();
//____ playOsc has access to it
function playOsc(oscType, freq){
 var osc = audioContext.createOscillator();
 osc.type = oscType;
 osc.frequency.value = freq; //____freq is a parameter
 osc.connect(audioContext.destination);
 osc.start(audioContext.currentTime);
}
playOsc("sine", 330);//____Plays oscillator at 330hz

You can use function scope to protect variables defined in a function not
only from variables defined in a higher scope but from variables defined in other
functions . In the following example, there are two functions . One has data, and
the other wants data . The data of the first function is not accessible to the other
function because it is hidden in a local scope .

function iHaveData() {
 var data = "The data";
}
function iWantData() {
 return data;
}
iWantData(); // data is not defined

If you declare two variables with the same name and one is globally
scoped (or in a higher scope) and the other is locally scoped within a func-
tion, the locally scoped variable is referenced when the code in the function
is running .

So, for example, in the following code, the multFreq function takes a sin-
gle argument and multiplies it by a value that is assigned to the multiplier
 variable . The globally scoped multiplier is not referenced when mult-
Freq() is running because the function has a locally scoped variable with the
same name .

var multiplier = 4; /*______This variable is not referenced by
 multFreq*/
function multFreq(frequency) {
 var multiplier = 2; //_____Because this one has the same name
 return frequency * multiplier;
}
console.log(multFreq(200)); // 400
console.log(multiplier); // 4

5. Functions46

If the locally scoped multiplier variable declaration inside the previous
function is removed, then during function execution, the code will look outside
the function for a variable with the referenced name .

var multiplier = 4;
function multFreq(frequency) {
 /*__There is no local multiplier variable so it finds one in the
 scope above it__*/
 return frequency * multiplier;
}
console.log(multFreq(200)); // 800

Why You Should Always Declare
Your Variables with var
In JavaScript, the use of global variables should generally be kept to a minimum .
This is because when programs get large, the accumulation of global variables
increases the likelihood of naming collisions . Typically, this is not a problem for
small applications . However, when programs begin to grow, they will usually
incorporate libraries and third-party scripts that depend on some global vari-
ables . Accidently overwriting these global variables can cause your program to
break .

When you declare a variable from within a function without the var state-
ment, the variable is referenced from the global scope when the function is
invoked . This can have the side effect of overwriting a preexisting global variable
with the same name and creating an unexpected name collision . The following
code demonstrates how this can happen .

The following example contains a global variable called multiplier .
There is also a variable called multiplier inside of the multFreq function
that is not declared using the var statement . When the function is invoked, the
 multiplier variable references the global multiplier variable, changing its
value from 4 to 2! This is an example of why you should always declare your vari-
ables with the var statement .

var multiplier = 4;
function multFreq(frequency) {
 multiplier = 2; //____________Notice no var declaration!
 return frequency * multiplier;
}
console.log(multFreq(200)); // 400
console.log(multiplier); //____Changed to 2!

Variable Hoisting
Whether you declare your variables globally or within a function, you should
always declare them at the top of the current scope . The reason for this is a phe-
nomenon called hoisting . To understand hoisting, you must first understand that
variable declaration and initialization are two different things . In the following
code, a variable is declared using the var statement and then it is initialized on
the next line .

Why You Should Always Declare Your Variables with var 47

var myData; //_______________________________variable declared
myData = "important data goes here";//__variable initialized
//The following variable is declared and initialized in one line
var playOsc = false;

When you declare a variable, the JavaScript interpreter immediately (behind
the scenes) decouples the declaration from the initialization and moves the vari-
able declaration to the top of the current scope . The following example demon-
strates this . The code on the left shows a function named run that contains a
variable named test, which is declared after it is initialized . When this func-
tion is invoked, JavaScript changes the order and places the declaration at the
top of the current scope, in effect making the function look identical to the code
on the right . This is why the globally scoped test variable is not overwritten
when the function is invoked, even though it appears at first glance that it should
be, because the local test variable is not yet declared . Because of hoisting, it is
considered best practice to declare your variables at the top of the current scope,
which is where they will be declared anyway.

How Hoisting Affects Functions
In addition to hoisting affecting variables, it also affects functions . And hoisting
works differently based on whether the function is written with declaration or
expression syntax .

Consider the following function declaration . In this code, the function is
invoked before it is declared, yet it still works! This is because behind the scenes,
the declaration is hoisted to the top of the scope, which allows you to execute the
function even though it is not yet declared .

multFreq(200, 2); /*__This still works even though it is invoked
 before it is declared!_*/
function multFreq(input, val) {
 return input * val;
}

The following example of the same function written using expression syntax,
however, throws an error . This happens because function expressions are treated
like variables, with the declaration being hoisted to the top . Remember that
the initialization of the variable still happens where the variable is initialized

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-6&iName=master.img-001.jpg&w=288&h=113

5. Functions48

in the code . In this case, the function is run before the initialization that defines
the function occurs . The lesson here is that when you use function expressions,
you must declare functions before you invoke them . This is good practice with all
your functions as it makes your code less confusing and more readable .

multFreq(200, 2); //___ error! “multFreq is not a function”.
var multFreq = function(input, val) {
 return input * val
}

Anonymous Functions
Anonymous functions are functions that do not have a name . Technically, the
function in the following code is an anonymous function because the variable
it is assigned to is not the function name . It is the container name for an anony-
mous function .

var multFreq = function(input, val) {
 return input * val;
}

To give this function a name, you do it like this:

var multFreq = function nameGoesHere(input, val) {
 return input * val;
}

Note, however, that to invoke the function, you use the variable name that it
is assigned to .

multFreq(100,2); // 200

In JavaScript, it is possible to create a function that is invoked immediately
after it is declared . This type of function is called an immediately invoked func-
tion expression or IIFE (pronounced “iffy”) . This method is useful if you want to
briefly encapsulate and run a block of code only once . The syntax looks like this:

//______________________BEGIN IIFE
(function run() {
 return "data";
}());
//______________________END IIFE

To view the output, you can wrap it in console.log() .

console.log(
//______________________BEGIN IIFE
(function run() {
 return "data";
}());
//______________________END IIFE
);

Closures 49

The first thing to notice is that the function is wrapped in parentheses . This
is optional, but is considered best practice because it helps differentiate the con-
struct syntactically from non-IIFE functions .

(function run() {
 return "data";
}());

The next thing to notice is the parentheses toward the end of the function
before the closing, encapsulating parenthesis . This syntax is what invokes the
function .

(function run() {
 return "data";
}());

To add parameters and arguments, you put parameters in the first set of
parentheses and arugments in the second set of parentheses .

(function add(a, b) { //_____ parameters
 return a + b;
}(2, 3)); //___________________arguments

Closures
One of the most difficult aspects of the JavaScript language for new program-
mers to grasp is closures . Understanding closures will ultimately allow you to
write cleaner code while giving you a powerful tool to solve a host of prob-
lems you will inevitably run into . Understanding the concept of closure can
be a bit difficult at first . But in the long term, the benefits are worth the time
investment .

What Is a Closure?
A closure is an inner function that has access to the scope of its outer environ-
ment even after that outer environment has returned . To understand what this
means, you must first solidify your understanding of scope . The following exam-
ple demonstrates how a function has access to its local scope, the global scope,
and its local arguments .

var globalVariable = "global variable";
function doSomething(argInput) {
 var localVariable = "local variable";
 console.log(argInput);
 console.log(globalVariable);
 console.log(localVariable);
}

doSomething("argument input"); /*_________This outputs: "argument
 input" "global variable" "local variable" because the function
 has access to its own scope and the outer scope.*/

5. Functions50

If a function is defined inside another function, it too has access to
the data of the harboring function, as well as its own locally scoped vari-
ables . In the following example, testScope() is a harboring function for
innerFunction() .

var globalVariable = "global variable";

function testScope(argInput) {
 var testScopeLocalVariable = "local variable from testScope";
 //____The inner function has access to everything outside of it
 function innerFunction() {
 var localVariable = "local variable from innerFunction";
 console.log(argInput);
 console.log(globalVariable);
 console.log(testScopeLocalVariable);
 console.log(localVariable);
 }

 innerFunction();
}

testScope("argument input");

/*The console logs:
"argument input"
"global variable"
"local variable from testScope"
"local variable from innerFunction"
*/

As we mentioned, a closure is an inner function that has access to the scope
of its outer environment even after that outer environment has returned . The
previous examples demonstrated scope access . The following example demon-
strates what it means for a function to have scope access even after the outer
environment has returned . The outer environment can be either the global envi-
ronment or another function . The following code includes the effectsBox
function that contains a single variable named component . The effects-
Box function returns a function that returns the value of component . When
the initial effectsBox function is invoked, it returns a function declaration
named openEffectsBox to the outer scope (in this case the global scope) .
This openEffectsBox function declaration is then assigned to a variable
called getComponent, which is then invoked and returns the string “Pulled
out component .”

The important thing to realize here is that a closure (the inner function) can
return data (such as the component variable) from its containing environment
[in this case effectsBox()] even after that outer environment [effects-
Box()] has returned .

function effectsBox() {
 var component = "Pulled out component";
 return function openEffectsBox() {
 return component;
 };
}

Closures 51

var getComponent = effectsBox(); /*___stores "openEffectsBox"
 function in a variable.*/
console.log(getComponent()); // "Pulled out component"

The previous example can be modified to demonstrate how state can be
modified and retained using the closure . In this code, there is an additional
counter variable that increments each time the inner openEffectsBox
function is invoked . Since closures allow access to the scope of a contain-
ing function even after that containing function has returned, the returned
function can continue to increment the counter variable and have access to
its state .

function effectsBox() {
 var counter = 0;
 var component = "Pulled out component";
 return function openEffectsBox() {
 return component + " " + (counter += 1);
 };
}
var getComponent = effectsBox(); //___stores "openEffectsBox"
 function in a variable.

getComponent(); // "Pulled out component 1"
getComponent(); // "Pulled out component 2"
getComponent(); // "Pulled out component 3"
getComponent(); // "Pulled out component 4"

Here is an example of a function designed to play an oscillator by returning
an inner function that remembers the outer environment’s state . This example
shows how the inner function accesses the function arguments of the outer func-
tion even after the outer function returns . The playOsc function takes parame-
ter type, whereas the inner function it returns takes parameter freq . The outer
function is invoked with the argument “sine”; thereafter, the inner function is
invoked with a frequency value . The result is a sine wave that plays at a set fre-
quency value of 140 Hz .

var audioContext = new AudioContext();

function playOsc(type) {

 return function(freq) {
 var osc = audioContext.createOscillator();
 osc.type = type;
 osc.frequency.value = freq;
 osc.connect(audioContext.destination);
 osc.start(audioContext.currentTime);
 };
}
var sinewave = playOsc("sine");
sinewave(140); //____________Plays sine wave at 140 hz

Closure is an advanced concept that can be used to protect a portion of a
program from the global scope, retain state, and organize your code . Its specific

5. Functions52

use cases will gradually become more apparent as your skill as a programmer
develops . For now, it is important to grasp what a closure is .

Callback Functions
A callback is a function that is used as an argument to another function . The
following example demonstrates addition of two numbers using a callback .

function doMath(callback) {
 return callback();
}

function addTwoNumbers() {
 return 2 + 2;
}
doMath(addTwoNumbers); // 4

When working with callbacks, you will often see function invocations where
the callback declaration is placed directly in a function argument .

function doStuff(callback) {
 return callback();
}

doStuff(function() { // ___Callback declaration is used directly
 return //___data
});

The following function is an example of using a callback to make a func-
tion more flexible . The calculateFrequencies function is designed to
take three arguments . The first two are numbers and the third is a callback that
manipulates the other arguments . If the user does not use a callback, then the
function defaults to multiplying the two arguments together .

function calculateFrequencies(a, b, callback) {
 if (callback === undefined) {
 return a * b;
 } else {
 return callback(a, b);
 }
}
function diff(a, b) {
 return Math.abs(a - b);
}

console.log(calculateFrequencies(200, 2));// 400___Multiplies numbers
console.log(calculateFrequencies(1000, 4000, diff));/*3000___uses
 custom callback to find the difference*/

The previous example demonstrates how passing a callback to a function
provides the action taken by the callback, whereas passing nonfunction values
provides data input .

Callback Functions 53

Working with JavaScript’s Built-In Callback Functions
Learning to design your own functions that use callbacks is an advanced topic .
As a beginner, the more important thing for you to know is how to use preex-
isting methods that have been designed to use callbacks . The following are two
examples of built-in JavaScript methods that use callbacks to help you work with
arrays .

Array Method Description

filter() Compares each element in an array to a conditional statement
and returns a new array of elements that meet the condition

map() Calls a function on each element in an array and returns a new
array with the mapped value of each element in the input array

filter()

The filter method compares each element in an array to a conditional state-
ment and returns a new array of only those elements that meet the filter condition .
The following example uses filter() to loop through an array of frequency
values to create a new array of values greater than or equal to 1000 .

var freq1 = 1200,
 freq2 = 570,
 freq3 = 100,
 freq4 = 1500;

var frequencyList = [freq1, freq2, freq3, freq4];

var filteredFrequencies = frequencyList.filter(function(value) {
 return value >= 1000;
});

console.log(filteredFrequencies); //___ [1200,1300]

map()

The map function calls a function on each element in an array and returns a new
array that contains the mapped data for each element in the input array .

The following example uses map() to add 100 to each value in an array and
return a new array named newFreqs .

var freqs = [100, 200, 300];
var newFreqs = freqs.map(function (val) {
 return val + 100;
});

console.log(newFreqs); //__ [200, 300, 400]

The callback functions of both map() and filter() take three arguments .
In order of their position, these are value, index, and array . The value
argument is the array value at the current index, the index argument is the
 current index value, and the array argument is the array that the callback is

5. Functions54

being applied to . In the following example, a map method is applied to an array
and all three arguments are logged to the console .

var freqs = [100, 200, 300];
var newFreqs = freqs.map(function(val, index, arr) {
 var message = "current value: " + val + " current index index: "
 + index + " array: " + arr;
 console.log(message);
 return val;
});
/*___This logs the following to the console
current value: 100 current index: 0 array: 100,200,300
current value: 200 current index: 1 array: 100,200,300
current value: 300 current index: 2 array: 100,200,300
*/

Recursion
Recursion is an advanced programming topic, and it will only be explored briefly
in this chapter .

A recursive function is a function that calls itself . The following is an exam-
ple of a recursive function .

function x(){
 return x()
}

If you run the previous code, it will crash your browser . This is because,
when a recursive function runs indefinitely, it eventually uses up the resources of
your code interpreter (in this case the web browser) and creates an error . To use
recursion effectively, you need to set a condition to terminate the recursion . This
condition is called the base case .

The following example is a recursive function named loopFromTo that
contains a working base case . loopFromTo takes two arguments, and both
are numbers . In the function body, a conditional is used to check if the argu-
ment named start is less than the argument named end . As long as this con-
dition is true, loopFromTo calls itself and on each iteration increments the
start argument by one . This continues until the recursion terminates when
start ceases to be less than end and the conditional statement evaluates to
false .

function loopFromTo(start, end) {
 console.log(start);
 if (start < end) {
 return loopFromTo(start += 1, end)
 }
}

loopFromTo(1, 8) //______ 1,2,3,4,5,6,7,8

Summary 55

Recursive functions can be used in place of looping constructs and are an
invaluable tool in many complex algorithms . If recursion seems confusing don’t
worry, you can program perfectly good applications while you become familiar
with it .

Summary
In this chapter, you learned how to create and use functions . In the next chapter,
you will expand your understanding of JavaScript to include a concept called
object-orientated programming .

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-6&iName=master.img-002.jpg&w=395&h=104

57

6

So far, we discussed five of JavaScript’s six data types . These are string, number,
Boolean, undefined, and null . These are called primitive data types . Anything that
is not a primitive data type is of the object data type . In the previous chapter, you
learned about functions, which are of the object data type . In this chapter, you will
learn how to program using object literals, which are also of the object data type .

JavaScript Data Types
The JavaScript data types are:

 ◾ String

 ◾ Number

 ◾ Boolean

 ◾ Undefined

 ◾ Null

 ◾ Object

Objects

6. Objects58

The object data type includes functions, arrays, and object literals . Arrays and
functions have already been explored, so here is a general definition of object
literals: Object literals are a collection of comma-separated key-value pairs that
are contained within curly braces .

Note: Developers in the JavaScript world commonly refer to object literals as
objects. However, object literals and the object data type are two different things.
One way to understand the difference is to recognize that the object data type is a
category that contains object literals, functions, and arrays.

In the following code, an object named obj is created and the values within
curly braces are assigned to it .

var obj = {
 key1: "value1",
 key2: "value2"
};

A key is similar to a variable, and a value is similar to the data assigned to
a variable . The key and value of an object is called a property for nonfunctions
assigned to a key, or a method for functions assigned to a key .

var obj = {
 key: "value", //___This is a property
 doSomething: function(){ //___This is a method
 }
};

Conceptually, object literals are used to model real-world elements in
your code . So, for example, the following object is used to model a music
album .

//_________________This is an object that contains album data
var album = {
 name:"Thriller Funk",
 artist:"James Jackson",
 format:"wave",
 sampleRate:44100
}

To access data from an object, you can use dot notation, which looks like
this:

album.name; // Thriller Funk
album.artist; // James Jackson
album.format; // wave
album.sampleRate; // 44100

Alternatively, you can use bracket notation to access values in an object .

album["sampleRate"]; // 44100

Looping through Objects 59

If you use a bracket notation, you must type the key in the form of a
string .

album["sampleRate"]; //__The key is a string

You can use methods to modify or retrieve data from an object . Here is an
example of an object that contains a method that returns the name and artist
information of an object named song .

var song = {
 name: "Funky Shuffle",
 artist: "James Jackson",
 format: "wave",
 sampleRate: 44100,
 //_____________________________BEGIN Method
 nameAndArtist: function() {
 return "Name: " + song.name + " | " + "Artist: " + song.artist
 }
 //_____________________________END Method
}

You can invoke methods with dot notation and trailing parentheses .

//__________________________________BEGIN method invocation
song.nameAndArtist(); // Name: Funky Shuffle| Artist: James Jackson
//__________________________________END method invocation

Looping through Objects
To loop through the keys and values of an object, you use a for in loop . You
code a for in loop like this:

var song = {
 name: "Funky Shuffle",
 artist: "James Jackson",
 format: "wave",
 sampleRate: 44100
}
//______________________BEGIN for in loop
for (var prop in song) {
 console.log(prop + ":"); //__Outputs each key
 console.log(song[prop]); //__Outputs each value
}
//______________________END for in loop

The structure of a for in loop consists of the for keyword followed by a
variable that represents the value of each property . In the previous example, this
variable was named prop . The variable name is followed by the in keyword and
the name of the object you want to loop through .

Often you will want to modify the properties of an object you are looping
through while not modifying any of its methods . One way you can do this is by

6. Objects60

using a conditional statement and the typeof operator to act only on property
values that are not functions . This usage is shown in the following code:

var song = {
 name: "Funky Shuffle",
 artist: "James Jackson",
 format: "wave",
 sampleRate: 44100,
 nameAndArtist: function() {
 return "Name: " + song.name + " | " + "Artist: " + song.artist;
 }

};

for (var prop in song) {
 if (typeof song[prop] !== "function") {
 console.log(song[prop]); //___Omits methods
 }
}

When to Use Objects Rather Than Arrays
You have probably noticed that objects and arrays are similar because they allow
you to organize collections of data . If you are curious about when to use an array
rather than an object, the rule of thumb is that if the order of the data matters,
you should always use an array . The reason for this is that there is nothing in the
JavaScript specification that guarantees the order in which key-value pairs of an
object are returned in a loop .

How to Check If an Object Has Access to a
Particular Property or Method
If you want to check whether a property or method is available to an object, you
can use the in operator .

var song = {
 name: "Funky Shuffle",
 artist: "James Jackson",
 getArtist: function() {
 return song.artist;
 }
};
console.log("artist" in song); //true
console.log("getArtist" in song); //true

Cloning Objects
If you want to create an object that has access to another object’s properties and
methods, while being extensible, you can use the Object.create() function .
The following example shows an object being cloned using this method .

The "this" Keyword 61

var effects = {
 reverbs: {
 hall: "Hall reverb being used",
 plate: "Plate reverb being used",
 smallRoom: "Small room reverb being used"
 },
 guitar: {
 flange: "Flange being used",
 wahWah: "Wah wah being used"
 }
};

var updatedEffects = Object.create(effects);
console.log(updatedEffects.reverbs); //returns reverb object
console.log(updatedEffects.guitar); // returns guitar object

You can then extend the newly created object with properties and methods .
updatedEffects.filters = {
 lowPass: "Lowpass filter being used",
 highPass: "Highpass filter being used"
};
console.log(updatedEffects.filters); // returns filter object
console.log(effects.filters); // undefined

Prototypal Inheritance
It is important to understand that Object.create() does not literally copy the
properties and methods to a new object but provides a reference to the properties
and methods contained in the parent object(s) . This hierarchy of references between
objects is called prototypal inheritance . The following code shows this by cloning
multiple objects and including comments of the hierarchy of property accessibility .
var synth = {
 name: "Moog",
 polyphony: 32
};

var synthWithFilters = Object.create(synth); // clone synth
// synthWithFilters now has access to name and polyphony properties
synthWithFilters.filters = ["lowpass", "highpass", "bandpass"];
 // add property
/*The original synth object does not have access to the filters
 property.*/
var synthWithFiltersAndEffects = Object.create(synthWithFilters);
 // clone synthWithFilters
synthWithFiltersAndEffects.effects = ["reverb", "flange",
 "chorus"]; // add property
/*Neither the synth object nor the synthWithFilters object have
 access to the effects property*/

The "this" Keyword
JavaScript contains a keyword called this that is used in methods to refer to an
object . In the following code, the method named nameAndArtist references
its containing object directly by using its name, which is song .

6. Objects62

var song = {
 name: "Funky Shuffle",
 artist: "James Jackson",
 format: "wave",
 sampleRate: 44100,
 //_____________________________BEGIN Method
 nameAndArtist: function() {
 return "Name: " + song.name + " | " + "Artist:" + song.artist;
 }
 //_____________________________END Method
};

The reference to song can be replaced with the this keyword, and the
result is the same .

nameAndArtist: function() {
 return "Name: " + this.name + " | " + "Artist: this.artist";
};

The bind Function
The usefulness of the this keyword becomes apparent when you realize that
any function or method can be applied to any object. The easiest way to dem-
onstrate this is by using the built-in JavaScript method called bind . The bind
method points a function’s this value to the object specified in the first argu-
ment (the bound object) . You can then invoke the function on the bound object .
In the following code, bind points the getName function’s this value to an
object named album.

var song = {
 name: "Funky Shuffle",
 artist: "James Jackson",
 format: "wave",
 sampleRate: 44100
};

function getName() {
 return this.name;
}
var getNameOfSong = getName.bind(song); /*assign bound function to
 a variable*/
//_______Then invoke it!
console.log(getNameOfSong()); // Funky Shuffle

If you want to specify arguments in a function created with bind, you can
do this in one of two ways . The first is to specify the arguments in the newly
created function . In the following example, a function named descriptor is
invoked on an object named blastSound . An argument is then passed to the
describeBlastSound function .

The bind Function 63

var blastSound = {
 name: "Blast"
};

function descriptor(message) {
 return this.name + ": " + message;
}

var describeBlastSound = descriptor.bind(blastSound);
console.log(describeBlastSound("This is an explosive sound"));
 //Blast: This is an explosive sound

Alternatively, you can specify the arguments in the statement where you
bind the function to the object . You do this by first specifying the object to bind
to, then specifying arguments you want to use and separating them with com-
mas, as in the following example:

var describeBlastSound = descriptor.bind(blastSound, "This is an
 explosive sound");
console.log(describeBlastSound()); /*Blast: This is an explosive
 sound*/

As you can see, even when a function has not been written as a method on a
particular object, you can still apply the function to that object . This also means
that you can use a method of one object and apply it to a completely different
object . The following code uses a method named getNameAndArtist of an
object named song and applies it to an object named Album.

var album = {
 name: "Funky Shuffle",
 artist: "James Jackson",
 format: "wave",
 sampleRate: 44100
};
var song = {
 name: "Analogue Heaven",
 artist: "The Keep It Reels",
 getNameAndArtist: function() {

 return "Name: " + this.name + " | Artist: " + this.artist;
 }
};
var getNameOfAlbum = song.getNameAndArtist.bind(album);
console.log(getNameOfAlbum()); /*Name: Funky Shuffle | Artist:
 James Jackson*/

If a function is invoked outside the context of an object, its this value
points to one of two values, depending on whether strict mode is used or not .
If strict mode is used, its this value is undefined . If strict mode is not used, its
this value points to an invisible object called the global object, which contains
all the built-in properties and methods of the web browser . You can view the

6. Objects64

value of this by using console.log(this) in the global scope without
strict mode .

Summary
In this chapter, you learned how to program with objects . In the next chapter,
you will learn the basics of the Web Audio API node graph and working with
oscillators .

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-7&iName=master.img-000.jpg&w=287&h=97

65

7

In previous chapters, you learned the basics of working with JavaScript
data types and how to use the Web Audio API to generate basic tones . In
this chapter, you will use your understanding of JavaScript to get a better
understanding of two core features of the Web Audio API: node graphs and
oscillators .

The AudioContext() Method
The Web Audio API is accessed by using a collection of properties and methods
of an object that you create using the AudioContext() method .

var audioContext = new AudioContext();

AudioContext() is a constructor that returns an object when you use the
keyword new . Constructors and the new keyword are explained in Chapter 12 .
For now, the important thing to understand is that AudioContext() returns
an object containing all of the methods and properties that you use to access the
Web Audio API .

Node Graphs
and Oscillators

7. Node Graphs and Oscillators66

Node Graphs
A node graph is a collection of nodes . A node in a node graph is an object that
represents an audio input source, such as an oscillator, or an object designed to
manipulate an audio input source, such as a filter . These nodes are connected
together using a method named connect .

The following code is an example of an oscillator node connected to a filter
node .

"use strict";
var audioContext = new AudioContext();
//_____________BEGIN create oscillator and filter
var filter = audioContext.createBiquadFilter();
var oscillator = audioContext.createOscillator();
//_____________END create oscillator and filter
//______________BEGIN connect oscillator to filter
oscillator.connect(filter);
//_____________END connect oscillator to filter
//_____________BEGIN connect filter to computer speakers
filter.connect(audioContext.destination);
//_____________END connect filter to computer speakers

//_____________BEGIN start oscillator playing

oscillator.start(audioContext.currentTime);
//_____________END start oscillator playing

In the previous code, the oscillator object is created using the
createOscillator method of the audio context and stored in a variable
named oscillator . You create the filter object in a similar way by invoking
the createBiquadFilter method of audioContext . The oscillator is
connected to the filter using connect() . The filter is connected to a prop-
erty named destination . The destination represents the output of your
computer’s audio system . To start the oscillator playing, you use a method of
the oscillator object named start . The start method takes one argu-
ment that determines the time the oscillator starts playing . The value of
 audioContext.currentTime is the current time in seconds within the Web
Audio API, starting when AudioContext was invoked . (The topic of time is
discussed in Chapter 20 .)

Oscillators
Oscillators, like all Web Audio API nodes, have their own custom proper-
ties and methods . The following methods and properties are discussed in this
chapter .

Method Description

start Starts oscillator playing
stop Stops oscillator playing

How to Stop Oscillators and Restart Them 67

Property Description

onended Executes a custom function when
oscillator stops

type Sets the type of waveform assigned to
the oscillator

frequency Sets the frequency value of the
oscillator in hertz

detune Sets an offset of the current frequency
value in cents

The stop Method
The stop method determines when an oscillator stops . It takes one numeric
argument that represents a time value in seconds . The following code starts an
oscillator playing and stops it 3 seconds into the future .

var oscillator = audioContext.createOscillator();
oscillator.connect(audioContext.destination);
oscillator.start(audioContext.currentTime);
oscillator.stop(audioContext.currentTime + 3);

The onended Property
If you want to launch a function after the oscillator stop method has run, you
assign that function to the onended property . The following code outputs the
string “Oscillator has stopped” to the console after its stop method completes .

var oscillator = audioContext.createOscillator();
oscillator.connect(audioContext.destination);
oscillator.start(audioContext.currentTime);
oscillator.stop(audioContext.currentTime + 3);
oscillator.onended = function() {
console.log("Oscillator has stopped");

};

How to Stop Oscillators and Restart Them
When an oscillator is stopped, it cannot be restarted . Instead, it must be recre-
ated and then started . To demonstrate this, the following code attempts to restart
an oscillator after it has stopped, which results in failure .

var audioContext = new AudioContext();
var oscillator = audioContext.createOscillator();
oscillator.connect(audioContext.destination);
oscillator.start(audioContext.currentTime);
oscillator.stop(audioContext.currentTime + 3);

oscillator.onended = function() {
 oscillator.start(audioContext.currentTime); // fails!
};

7. Node Graphs and Oscillators68

The following code recreates an oscillator and starts it playing 1 second after
the previous oscillator stops .

var oscillator = audioContext.createOscillator();
oscillator.connect(audioContext.destination);
oscillator.start(audioContext.currentTime);
oscillator.stop(audioContext.currentTime + 3);

oscillator.onended = function() {
 oscillator = audioContext.createOscillator();
 oscillator.connect(audioContext.destination);
 oscillator.start(audioContext.currentTime + 1); /*start in
 one second*/
};

The type Property
The type property of an oscillator sets its waveform type in the form of a string .
There are four predefined waveform shapes available .

 ◾ sawtooth

 ◾ sine

 ◾ square

 ◾ triangle

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-8&iName=master.img-000.jpg&w=259&h=113
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-8&iName=master.img-001.jpg&w=166&h=134

Summary 69

You assign a waveform type to an oscillator like this:

var audioContext = new AudioContext();
var oscillator = audioContext.createOscillator();
oscillator.connect(audioContext.destination);
oscillator.type = "sawtooth";
oscillator.start(audioContext.currentTime);

The default waveform type is sine .

The frequency Property
To set an oscillator’s frequency, you must set the frequency property to a
number . The frequency value is represented in hertz .

var oscillator = audioContext.createOscillator();
oscillator.connect(audioContext.destination);
oscillator.frequency.value = 80; //_____80 hertz
oscillator.start(audioContext.currentTime);

The detune Property
The detune property is expressed in cents . In the Western music scale, there are
100 cents per half-step note . This makes it easy to create musical note relationships
using detune . The following code plays a note at a frequency of 130 .81 hertz
and is the frequency of a C3 note . The oscillator stops, and a half-second later a
second note plays with the same frequency.value and a detune.value of
100 cents, making the note value C#3 .

var audioContext = new AudioContext();
var oscillator = audioContext.createOscillator();
oscillator.connect(audioContext.destination);
oscillator.frequency.value = 130.81; //________C3
oscillator.start(audioContext.currentTime);
oscillator.stop(audioContext.currentTime + 2);

oscillator.onended = function() {
 oscillator = audioContext.createOscillator();
 oscillator.frequency.value = 130.81; // C3 note
 oscillator.detune.value = 100; /*sets the note to one half step
 higher to C#3*/
 oscillator.connect(audioContext.destination);
 oscillator.start(audioContext.currentTime + 0.5);
 oscillator.stop(audioContext.currentTime + 2.5);
};

Summary
In this chapter, you learned the basics of node graphs and oscillators . In the next
chapter, you will learn the basics of HTML and CSS and create the interface for
your first Web Audio API applications .

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-8&iName=master.img-002.jpg&w=395&h=104

71

8 Using HTML
and CSS to
Build User
Interfaces

In this chapter, you will learn the basics of HTML and CSS, giving you the neces-
sary tools to build user interfaces for your Web Audio API applications . You will
do this by building a user interface intended to trigger an oscillator that includes
interactive controls to select frequency and waveform type . In the next chapter,
you will combine the interface with JavaScript code to build your first working
interactive application .

What Is a User Interface?
A user interface, also called a UI, is the part of an application that a user interacts
with . A music synthesizer’s UI is the keyboard, as well as the knobs and sliders
that allow you to modify the sound of the instrument . In a website or applica-
tion, the UI can include buttons, form fields, sliders, scroll bars, and other ele-
ments that facilitate user control .

HTML
HTML stands for hypertext markup language and is the language used to cre-
ate static websites . In Chapter 1, you learned that HTML consists of elements,
sometimes referred to as tags, that make up the page of an HTML document . To
be treated as an HTML document, a file must be saved with .html appended to

8. Using HTML and CSS to Build User Interfaces72

its name . A file extension is a group of characters placed after a period in a file
name that indicates the file’s format . In the case of a file named index.html,
the file extension is .html .

The following code is from the HTML template you created in Chapter 1 . It
consists of a collection of elements required to make a document W3C compliant .
W3C stands for World Wide Web Consortium; this group is responsible for the
development of web standards . Unlike JavaScript, HTML does not return errors
if your code is written incorrectly, so you need additional tools to find HTML
errors . You can test the compliance of an HTML document by running your code
through the HTML validation tool at the following URL: https://validator .w3 .org .

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>app</title>
<script src="js/app.js"></script>
<link rel="stylesheet" href="css/app.css">

</head>
<!--___ BEGIN APP-->
<body>

</body>
<!--___ END APP-->

</html>

Explanation of the HTML Template
The first element in an HTML file, <!DOCTYPE>, declares what version of HTML
the page is written in . For HTML5, use <!DOCTYPE html> . As of this writ-
ing, HTML5 is the newest version of the HTML specification . The next element,
<html>, encapsulates the remainder of the code . <html> represents the “root”
of the document and contains the <head> and <body> elements . The <head>
element describes information about the document, whereas the <body> ele-
ment describes the content on the visible page .

Within the <head> element, the <meta> tag defines which keyboard
character encoding is used on the web page . Character encodings represents
the way that characters on your physical keyboard get translated to text .
UTF-8 covers most languages and is also the standard for the modern web .
The <title> element is used to give your page a title . The remaining code
inside the <head> element includes references to external files that contain
JavaScript and CSS code .

Immediately before the body element is a comment . HTML comments are
written using the following syntax:

<!—comment goes here -->

Inside the <body> element is where you write the bulk of your HTML code .
In the following example, the <p> and <h1> elements between the opening and

https://validator.w3.org

Understanding HTML Elements 73

closing body tags show how HTML is used to display text . The <h1> element is
a heading element and the <p> element is a paragraph element . As the names
imply, you use the heading element to create title headings and the paragraph
element to encapsulate text that represents a paragraph .

<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>Template</title>
<script src="js/app.js"></script>
<link rel="stylesheet" href="css/app.css">

</head>
<!--__BEGIN APP-->
<body>

<h1> Creating an Interface </h1>
<p>In this chapter we will go over HTML and CSS</p>

 </body>
 <!--__END APP-->
</html>

Understanding HTML Elements
In the HTML specification there are over 100 elements to choose from . Each one
of these has a specific use case . A full list is available at the following URL: https://
developer .mozilla .org/en-US/docs/Web/HTML/Element .

The sheer number of elements may be daunting at first, but once you under-
stand how to use a small handful of these elements, it becomes easier to learn the
others . For the purposes of this chapter, only the following elements are used:

<div> Div element
Defines a general-purpose block-level container

 Span element
Defines a general-purpose inline container

<h1> to <h6> Heading element
Creates a heading title

<p> Paragraph element
Wraps paragraph text

<form> Form element
Encapsulates input elements and denotes form fields

<input> Input element
Creates entry fields for forms

<hr> Horizontal rule element
Displays a horizontal line

 Unordered list element
Contains list elements

 List item element
Contains text that is an item in a list

https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element

8. Using HTML and CSS to Build User Interfaces74

When you write HTML and CSS, you must understand two primary con-
cepts . First, HTML web pages consist of a hierarchy of elements that form a
nested tree-like structure . This is called the HTML Document Object Model (or
DOM for short) . The following diagram reflects the node tree of the previous
example .

Second, most elements contain opening and closing tags that are used to
encapsulate other elements . The processes of encapsulating elements within other
elements and treating the containing elements as boxes is commonly referred to
as the box model .

The following code emphasizes the box model by adding elements that
contain other elements . This includes a containing <div> that encapsulates a
<form> element . The <form> element then encapsulates <input>, ,
and <p> (paragraph) elements .

<body>
<h1> Creating an Interface </h1>
<p>In this chapter we will go over HTML and CSS</p>
<div>

<form>
<input id ="on-off" type = "button" value="start">

Click to start oscillator
<p>Use slider to modify frequency</p>

<input type= "range">
</form>

</div>
</body>

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-000.jpg&w=287&h=133

Understanding HTML Elements 75

The tree structure of the modified HTML is reflected in the following
diagram .

The rendering of the code looks like the following figure .

HTML elements come in two categories: block-level and inline . The differ-
ence between the two is that block-level elements display vertically and inline ele-
ments display horizontally . The <div> and elements are two elements
that reflect these characteristics . <div> is a block-level element and is

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-001.jpg&w=267&h=270
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-002.jpg&w=175&h=154

8. Using HTML and CSS to Build User Interfaces76

an inline element . These are both considered generic container elements . This
means that they convey no special meaning but are useful to help lend structure
to your page when no other elements are appropriate . The following code demon-
strates how these elements are interpreted when they are rendered in the browser .
The <hr> element is used solely to create a visual demarcation (horizontal line)
between the two examples .

<body>

 This text is inside a span

 This text is inside a span

<hr>
<div>

 This text is inside a div
</div>
<div>

 This text is inside a div
</div>

</body>

Form and Input Elements
<form> is a block-level element intended to encapsulate <input> elements .
<input> elements are used to create text fields, buttons, and range sliders . The
type attribute is used to define the type of data the element is expected to dis-
play, which can change how the element appears on the page . So for example, if
you set the type attribute to range, it creates a slider .

<form>
<input type = "range">

</form>

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-003.jpg&w=201&h=177

Form and Input Elements 77

The type attribute comes with a built-in list of possible settings, some of
which are shown in the following code . The value attribute gives the <input>
element a default setting, as shown in the following demonstration code (code
that is not used in your final application):
<body>

<form>
<p>Input element type set to "button"</p>
<input type = "button" value="start">
<hr>
<p>Input element type set to "range"</p>
<input type= "range">
<hr>
<p>Input element set to a "number"</p>
<input type = "number" value="44.100">
<hr>
<p>Input element set to a "text"</p>
<input type= "text" value ="sine">

</form>
</body>

CSS
CSS stands for cascading style sheets and is the technology used to style web
pages and web applications . Like HTML, CSS does not throw errors when writ-
ten improperly . To check for errors, you can use the W3C CSS validator tool at
this URL: https://jigsaw .w3 .org/css-validator/ .

CSS files use the .css file extension . To use CSS with an HTML file, you
must first create a CSS document and then connect it to your HTML document
using the <link> element in the <head> . The following example illustrates this
usage, which is applied for the remainder of this chapter .
<!DOCTYPE html>
<html>

<head>
<meta charset="UTF-8">
<title>CSS and HTML</title>
<link rel="stylesheet" href="css/app.css">

</head>

https://jigsaw.w3.org/css-validator/
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-004.jpg&w=170&h=144

8. Using HTML and CSS to Build User Interfaces78

 <body>
 <h1> Creating an Interface </h1>
 <p>In this chapter we will go over HTML and CSS</p>
 <div>
 <form>
 <input id ="on-off" type = "button" value="start">
 Click to start oscillator
 <p>Use slider to modify frequency</p>
 <input type= "range">
 </form>
 </div>
 </body>
<html>

To ensure that your CSS document is being read properly, open your HTML
document in Chrome and open the developer tools . If you made an error, the
console will indicate this in red .

After the CSS file is linked you can begin to apply CSS styling to the HTML
elements . For example, if you want to change the background color of the page,
in your CSS file you select the body element and set the background-color
property to a color value . This is shown in the following example where the back-
ground color is changed to orange . As an alternative to using the name of the
color, you can set the color using a hex color code value such as #ffa500 or a
red–green–blue value such as rgb(255,165,0) .

body{
 background-color:orange;
}

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-005.jpg&w=322&h=62
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-006.jpg&w=322&h=110

Element Selectors 79

The procedure for applying CSS to an element is as follows:

1. Select the element you want to affect and type its name in your CSS file .
In the previous example, this was body .

 2. Type an opening and closing curly brace . These two braces are commonly
referred to as a code block . Inside the code block you place properties and
set values following a colon . In the previous example, the property was
background-color and its value was orange . Each property value
setting ends with a semicolon .

The CSS specification includes many properties . A full list of properties is avail-
able at this URL: https://developer .mozilla .org/en-US/docs/Web/CSS/Reference .

Comments
Just like HTML or JavaScript, you can add comments to your CSS file using the
following syntax:

/* This is a CSS comment */

Element Selectors
When you select elements directly, all instances of the element are selected and
the same CSS styling is applied to them . For example, in the following demon-
stration code, every <div> on the page is selected and given a background color
of blue .

div{
 background-color:blue;
}

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-007.jpg&w=201&h=167

8. Using HTML and CSS to Build User Interfaces80

Grouping Selectors
If you want to apply the same styles to multiple selectors you can do so in one
line of code by grouping selectors . You do this by separating each element with a
comma . The following demonstration code selects the <p>, , and <h1> ele-
ments and applies the same font color to each one .

p,li,h1{
 color:green; //Changes font color of all three elements to green
}

Descendent Selectors
If you want to access an element only if it is nested inside of a particular element,
you can do this with descendent selectors . The CSS syntax for this type of selector
is expressed by typing the parent element, a space, and then the element you want
to select . In the following code, a descendant selector is used to select all
elements that are nested in any <div> element . In the following demonstration
code, the font color of each element is set to blue .

div li{
color:blue;

}

It is important to realize that descendant selectors select all the descen-
dent elements no matter how nested they are . If the previous CSS example
were applied to the following HTML code, it would change the font color
of all of the elements to blue even though they are nested in a
element .

<div>

Item-1
Item-2
Item-3

</div>

Child Selectors
Child selectors are similar to descendent selectors with the difference that the
selected element can only be one level deep relative to the parent . A child selec-
tor is made using the “>” symbol with the parent element on its left side and the
child element on its right . The following demonstration code will select all
elements that are children of elements .

ul > li{
 /* do something */
}

Modifying the App Interface 81

class and id
Often when selecting elements, you do not want to select every element of a par-
ticular type . Rather, you might want to select either individual instances of ele-
ments or groups of elements . You can single out an individual element for styling
by using an identifier called id . Conversely, you can designate a collection of
elements as a group by using an identifier called class .

To single out an element using an id, you must first define id as an attribute
of an HTML element . The syntax looks like the following:

<div id = "controls">
<!—- content -->
</div>

In your CSS you can then select this individual element by preceding its id
with a hashtag character .

#controls{
 /* properties and values go here */
}

Keep in mind that id names are intended to be used only once in your
HTML and are applied to a single element!

Modifying the App Interface
In the following code, an additional <div> is added to the page and encloses a
collection of elements . You might be wondering why <h2> is used as the first
element instead of another <h1> . The reason is that the number value of the
heading element is intended to represent the precedence of the information con-
tained within it . The lowest number is most important and each higher number
is less important . So for example, the information contained in the <h1> element
should take precedence because it conveys more overall meaning as it relates
to the web page . You might notice that there is a size difference in the way the
browser renders these elements . You should ignore this size difference and focus
on content precedence . You can always change the font size using CSS to make
these elements any size you want, including setting them all to the same size .

The next element is with an id of oscillator-list . This element con-
tains a series of elements, each given an id name of a particular waveform type .
 is an unordered list element and is intended to encapsulate the elements,
which are list elements . As the name implies, these elements are used to create lists .
<body>
 <h1> Creating an Interface </h1>
 <p>In this chapter we will go over HTML and CSS</p>
 <div>
 <form>
 <input id ="on-off" type = "button" value="start">
 Click to start oscillator
 <p>Use slider to modify frequency</p>
 <input type= "range">

8. Using HTML and CSS to Build User Interfaces82

 </form>
 </div>

 <div>
 <h2>Waveform</h2>
 <ul id="oscillator-list">
 <li id="sawtooth">sawtooth
 <li id="sine"> sine
 <li id="triangle">triangle
 <li id="square">square

 </div>
</body>

In the following CSS, each element is selected via its id and given a
background color .

#sawtooth{
 background-color: #336E91;
}
#sine{
 background-color: #783d47;
}
#triangle{
 background-color: #3b3040;
}
#square{
 background-color: #b85635;
}

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-008.jpg&w=164&h=124
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-009.jpg&w=164&h=124

Modifying the App Interface 83

Now that you know how to single out an element using id selectors, it is time
to learn how to group elements using class selectors .

In your HTML document, assign the two <div> elements the class osc-
controls . Then encapsulate the first <h1> and <p> inside a new <div>,
and place another <div> element at the bottom of the page that contains a
paragraph element with the phrase “JavaScript for Sound Artists Demo”
inside of it .

You should have a total of four <div> elements in this code, which looks
like this:

<body>
<div>

<h1> Creating an Interface </h1>
<p>In this chapter we will go over HTML and CSS</p>

 </div>
 <div class="osc-controls">
 <form>
 <input id ="on-off" type = "button" value="start">
 Click to start oscillator
 <p>Use slider to modify frequency</p>
 <input type= "range">
 </form>
 </div>
 <div class="osc-controls">
 <h2>Waveform</h2>
 <ul id="oscillator-list">
 <li id="sawtooth">sawtooth
 <li id="sine"> sine
 <li id="triangle">triangle
 <li id="square">square

 </div>
 <div>
 <p>JavaScript for Sound Artists Demo</p>
 </div>
</body>

To select the osc-controls class from CSS, you must preface the class
name with a dot .

.osc-controls{ /* Notice the dot selector */
 /* set property values */
}

In the following code, the osc-controls class is given a border . Only the
middle two <div> elements respond to these changes because the first and third
<div> on the page do not have the class osc-controls assigned to them .

.osc-controls {
 border-style:solid;
 border-color: #BC6527;
 border-width: 2px;
 border-radius:10px;
}

8. Using HTML and CSS to Build User Interfaces84

You might notice that the page looks a little awkward because the start
button is now pushed up against the left edge of its container . Also, the two
<divs> with borders are stacked directly on top of one another with no space
between them . You could make this look a bit cleaner by creating some space
between these elements . To do this, you should have an understanding of
the following three properties: margin, border, and padding .

Margin, Border, and Padding
Both block-level and inline elements have access to border, margin, and
 padding properties, although they respond to them differently . These three prop-
erties correspond to three layers of space around an element . The border property
creates a border around an element . The padding property creates a layer of space
that resides inside the border . The margin property creates a layer of space that
resides outside the border .

To create a bit of space between the text and a <div> element border, include
the following code in your CSS file:

div{
 padding:20px;
}

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-010.jpg&w=198&h=151
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-011.jpg&w=201&h=114

Margin, Border, and Padding 85

If you want to apply padding or a margin to only specific sides of an element,
you can do so by using the following properties:

margin-top
margin-right
margin-bottom
margin-left
padding-top
padding-right
padding-bottom
padding-left

The two outlines around the middle <div> elements could use some space
between them . The following code creates this space by using the bottom-
margin property with a value of 20px .

.osc-controls {
 border-style:solid;
 border-color: #BC6527;
 border-width: 2px;
 border-radius:10px;
margin-bottom:20px;

}

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-012.jpg&w=178&h=148
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-013.jpg&w=178&h=159

8. Using HTML and CSS to Build User Interfaces86

Removing List Element Bullet Points
The following code removes the bullet points from each list item by select-
ing all of the elements that are descendents of an element with an id of
 oscillator-list and applying a property called list-style-type with
a value of none .

#oscillator-list li{ /* Descendent selector */
 list-style-type: none;
}

You can remove the space previously occupied by the bullet points by setting
the padding-left property to zero on the parent element .

#oscillator-list{
 padding-left:0px;
}

Font Size, Style (Type), and Color
As a touch-up, the following code selects all the elements that harbor text and
sets their font size to 1.5em, which is a bit larger than the current value . An
em is equivalent to a parent element’s font size, or, if there is no parent, the web
browser’s default text size . For most web browsers, this value is about 16 pixels,
which in CSS is written as 16px . Therefore, assuming there is no parent element,
2em is equivalent to 32 pixels and 1.5em to 24 pixels .

p,span,li,input{
 font-size:1.5em;
}

The default font type for Chrome is Times New Roman . You can change the
font type if you like . The following code changes the font type to Arial .

body{
 background-color:orange;
font-family: "Arial";

}

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-014.jpg&w=224&h=61
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-015.jpg&w=224&h=64

Centering Block-Level Elements 87

The font color of the text describing the waveform types is black, which is
difficult to read because the background color of each is dark . The follow-
ing code changes the text color property to white .

#oscillator-list li{
 list-style-type: none;
color:white;

}

Centering Block-Level Elements
If you want to center a block-level element, you can do so by setting its width to
a value smaller than its containing element and applying a margin property
with a value of 0 auto. This sets the left and right margin values to auto-
matically extend to the boundaries of the container, centering the element . In the
following code, a <div> with a class of application contains all the HTML
within the body element . Its CSS is set to a fixed width and centered by specifying
 margin: 0 auto .

<body>
<div class="application">

<div>
<h1> Creating an Interface </h1>
<p>In this chapter we will go over HTML and CSS</p>

</div>
<div class="osc-controls">

<form>
<input id ="on-off" type = "button" value="start">
Click to start oscillator
<p>Use slider to modify frequency</p>
<input type= "range">

</form>
</div>
<div class="osc-controls">

<h2>Waveform</h2>

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-016.jpg&w=174&h=167

8. Using HTML and CSS to Build User Interfaces88

 <ul id="oscillator-list">
 <li id="sawtooth">sawtooth
 <li id="sine"> sine
 <li id="triangle">triangle
 <li id="square">square

 </div>
 <div>
 <p>JavaScript for Sound Artists Demo</p>
 </div>
 </div>
</body>

The CSS for the newly created div is as follows .

.application{
 width:550px;
 margin:0 auto;
}

As a final step, remove the first <p> element and replace the text of the <h1>
element with the title Oscillator Generator .

<div class="application">
<div>

<h1> Oscillator Generator </h1>
</div>
<div class="osc-controls">

<form>
<input id ="on-off" type = "button" value="start">
Click to start oscillator
<p>Use slider to modify frequency</p>
<input type= "range">

</form>
</div>
<div class="osc-controls">

<h2>Waveform</h2>
<ul id="oscillator-list">

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-017.jpg&w=178&h=166

Summary 89

<li id="sawtooth">sawtooth
<li id="sine"> sine
<li id="triangle">triangle
<li id="square">square

</div>
<div>

<p>JavaScript for Sound Artists Demo</p>
</div>

</div>

Summary
In this chapter, you created the user interface for a small application . In the next
chapter, you will add JavaScript code to make the application fully functional .

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-018.jpg&w=177&h=185

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-9&iName=master.img-019.jpg&w=395&h=104

91

9 DOM
Programming
with JavaScript

This chapter shows you how to add JavaScript to CSS and HTML . By the end of
the chapter, you will have created a fully functioning application with interactive
controls .

How Does JavaScript Communicate with
the DOM?
The DOM (Document Object Model) contains a collection of JavaScript properties
and methods that allows you to manipulate HTML elements and to write code that
responds to user-invoked actions such as mouse clicks and form submissions .
Typically, when writing an application, you want to ask yourself two things . The first
is, what do you want or expect the user to do? The second is, what should happen in
response to user actions? So for example, the following code contains a play but-
ton, and when a user clicks it the browser runs a built-in function called alert .
This function displays a pop-up with the message: You clicked play .

HTML
<body>
 <input id="play-button" type="button" value="PLAY">
</body>

9. DOM Programming with JavaScript92

JavaScript
window.onload = function() {
 var playButton = document.getElementById("play-button");
 playButton.addEventListener("click", function() {
 alert("You clicked the play button");
 });
};

The first line of JavaScript, window.onload = function(){}, restricts
the code in the function scope from running until all of the HTML code has
loaded . If the JavaScript were to load before the HTML, then any JavaScript
intended to affect HTML elements or respond to user events like mouse clicks
would either not be recognized or would be only partially recognized . The result
in either of these cases is nonworking code .

The next line selects a DOM element with an id of play-button and stores
it in a variable called playButton . This is done using getElementById,
a method of the document object .

The document object is not part of the core JavaScript language . Instead, it
is an object provided by the DOM API, making it part of the web browser .

var playButton = document.getElementById("play-button");

The next line of code applies the eventListener method to the
playButton .

playButton.addEventListener("click", function() {
 alert("You clicked the play button");
});

The playButton.addEventListener method waits for a user to apply
an action and then invokes a callback function . In this case, the action is a mouse
click and is specified in the first argument of the function . The second argument
is the callback . The callback runs when the user clicks on the element with the id
of play-button, which invokes alert() .

The JavaScript DOM API contains many methods and properties . In this
chapter, only the following of these are used .

Method or Property Description

addEventListener Allows elements to respond to user events such as mouse clicks
getElementById Selects an element by id
getElementsByTagName Selects elements by tag name
getElementsByClassName Selects elements by class
classList.add Adds a class to an element
classList.contains Checks whether an element has a specified class name
classList.remove Removes a class from an element
setAttribute Sets an attribute on an element
innerHTML Gets and sets the content of an element
value Sets or gets the value of an input element

How to Trigger an Oscillator by Clicking a Button 93

Building the Application
In the previous chapter, you built a user interface using CSS and HTML . You are
now going to write the code to make this a working JavaScript application . To get
started, create a copy of the final project in Chapter 8 and make sure you create
a folder that contains a file named app.js . Your directory structure should look
like the one in the following image .

In the app.js file, make sure you have strict mode enabled . All JavaScript
code is written below the use strict string .

"use strict";

Set your index .html file to reference the app .js file .

<head>
 <meta charset="UTF-8">
 <title>CSS and HTML</title>
<script src="js/app.js"></script>

 <link rel="stylesheet" href="css/app.css">
</head>

How to Trigger an Oscillator by Clicking a Button
The user interface you created in the previous chapter contained a button with
the id of on-off . You are now going to write code to start an oscillator playing
when this button is clicked .

"use strict";
var audioContext = new AudioContext();
window.onload = function() {
 var onOff = document.getElementById("on-off");
 onOff.addEventListener("click", function() {

var osc = audioContext.createOscillator();
osc.type = "sawtooth";
osc.frequency.value = 300;
osc.connect(audioContext.destination);
osc.start(audioContext.currentTime);

 });
};

Although this code starts the oscillator playing, it does not stop it from play-
ing . The following changes implement the stop feature by adding a conditional

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-10&iName=master.img-000.jpg&w=167&h=102

9. DOM Programming with JavaScript94

statement to addEventListener to check whether a variable named osc is
set to false . If osc is false, an oscillator is created and assigned to it . This makes
the Boolean value of the osc variable true, and the start method is invoked,
allowing the oscillator to play . If the user clicks the Start button again, the condi-
tional statement sees that the osc variable has the Boolean value true and runs
the code in the else branch . This stops the oscillator from playing and resets
osc to false .

"use strict";
var audioContext = new AudioContext();
window.onload = function() {
 var onOff = document.getElementById("on-off");
 /*___BEGIN set initial
 osc state to false*/

var osc = false;

 /*___END set initial
 osc state to false*/
 onOff.addEventListener("click", function() {
 /*_____________________________________BEGIN Conditional
 statement to check if osc is TRUE or FALSE*/

if (!osc) { /*_________________________Is osc false? If so then
 create and assign oscillator to osc and play it.*/

 osc = audioContext.createOscillator();
 osc.type = "sawtooth";
 osc.frequency.value = 300;
 osc.connect(audioContext.destination);
 osc.start(audioContext.currentTime);

/*_________________________________Otherwise stop it and
 reset osc to false for next time.*/

} else {

osc.stop(audioContext.currentTime);
osc = false;

}
 /*_____________________________________END Conditional
 statement to check if osc is TRUE or FALSE*/
 });
};

Toggling the Start/Stop Text
Though the code in the previous example works, the following feature makes it
more user-friendly: Program the button text and associated span element text
to display the words start or stop depending on whether the oscillator is playing
or not .

Toggling the Start/Stop Text 95

You can implement this feature as follows:

"use strict";
var audioContext = new AudioContext();
window.onload = function() {
 var onOff = document.getElementById("on-off");
var span = document.getElementsByTagName("span")[0];

 /*___BEGIN set initial osc
 state to false*/
 var osc = false;
 /*___END set initial osc
 state to false*/

 onOff.addEventListener("click", function() {
 /*_____________________________________BEGIN Conditional
 statement to check if osc is TRUE or FALSE*/

 if (!osc) { /*_________________________Is osc false? If so then
 create and assign oscillator to osc variable and play it.*/
 osc = audioContext.createOscillator();
 osc.type = "sawtooth";
 osc.frequency.value = 300;
 osc.connect(audioContext.destination);
 osc.start(audioContext.currentTime);

onOff.value = "stop";
span.innerHTML = "Click to stop oscillator";

 /*_________________________________Otherwise stop it and
 reset osc to false for next time.*/
 } else {

 osc.stop(audioContext.currentTime);
 osc = false;

onOff.value = "start";
span.innerHTML = "Click to start oscillator";

 }

 /*_____________________________________END Conditional
 statement to check if osc is TRUE or FALSE*/
 });
};

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-10&iName=master.img-001.jpg&w=193&h=133

9. DOM Programming with JavaScript96

This code introduces a new DOM method called getElementsBy-
TagName as well as two new DOM properties: innerHTML and value . The
getElementsByTagName method allows you to select a collection of elements
on the page by tag name . You can then specify an individual element using array-
style index selectors . The index selection represents the order of the element on
the page, with the first element starting at 0 . To select the first span element on
the page, you specify getElementsByTagName(“span”)[0] . If there are
several span elements and you want to select the third one from the top of the
page, you specify the index as 2, and the selector looks like this:

document.getElementsByTagName("span")[2]

It is important to understand that DOM elements are not arrays, even though
the notation used to select them is similar to that used for arrays . DOM elements
are referred to as nodes .

Programming the Frequency Slider
You are now going to add functionality to the frequency slider . The following
code shows how you capture the value of the frequency slider when the oscillator
is clicked . This is done using the value property . The value is then stored in a
variable named freqSliderVal and represents the frequency of the oscillator .
Additionally, the freqSliderVal is logged to the console, allowing you to see
changes made to it .

"use strict";
var audioContext = new AudioContext();
window.onload = function() {
 var onOff = document.getElementById("on-off");
 var span = document.getElementsByTagName("span")[0];

 /*___BEGIN set initial osc
 state to false*/
 var osc = false;
 /*___END set initial osc
 state to false*/
 onOff.addEventListener("click", function() {
 /*_____________________________________BEGIN Conditional
 statement to check if osc is TRUE or FALSE*/

var freqSliderVal = document.getElementsByTagName(“input”)[1].
 value;

console.log(freqSliderVal);

 if (!osc) { /*_________________________Is osc false? If so then
 create and assign oscillator to osc variable and play it.*/
 osc = audioContext.createOscillator();
 osc.type = "sawtooth";
 osc.frequency.value = freqSliderVal;
 osc.connect(audioContext.destination);
 osc.start(audioContext.currentTime);
 onOff.value = "stop";

Changing the Frequency in Real Time 97

 span.innerHTML = "Click to stop oscillator";
 /*_________________________________Otherwise stop it and
 reset osc to false for next time.*/
 } else {

 osc.stop(audioContext.currentTime);
 osc = false;
 onOff.value = "start";
 span.innerHTML = "Click to start oscillator";
 }
 /*_____________________________________END Conditional
 statement to check if osc is TRUE or FALSE*/
 });
};

Changing the Frequency in Real Time
The code in the previous example works, but there is a cost . To hear the fre-
quency changes, the user must turn the oscillator off, move the frequency
slider, and then start the oscillator again . You could provide a seamless expe-
rience if the user could hear the effect in real time while moving the slider . To
implement this, you can use setInterval() to check for state changes of
the range slider and then apply them to the osc.frequency value .

The purpose of setInterval() is to invoke a function repeatedly at
a specified time interval . In the following code, setInterval() takes two
arguments . The first is a callback and the second is a number that represents a
 millisecond interval value (in this case, 50 ms) . When setInterval() runs,
the callback is invoked repeatedly at the time interval specified in the second
argument . The freqSliderVal variable has been placed outside the scope
of both the onOff.addEventListener and setInterval methods so
that both of them have access to it . The setInterval method contains a
conditional that checks to see whether osc is false, and if so displays the mes-
sage “Oscillator is stopped . Waiting for oscillator to start,” in the console . The
moment the oscillator starts, setInterval() reassigns freqSliderVal to
the respective <input> range value and assigns that value to osc.frequency.
value . Because setInterval() does this in 50-ms increments, it creates near
real-time change in the oscillator frequency when you move the frequency slider .

"use strict";
var audioContext = new AudioContext();
window.onload = function() {
 var onOff = document.getElementById("on-off");
 var span = document.getElementsByTagName("span")[0];

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-10&iName=master.img-002.jpg&w=184&h=68

9. DOM Programming with JavaScript98

 /*___BEGIN set initial osc
 state to false*/
 var osc = false;
 /*___END set initial osc
 state to false*/

 /*___BEGIN set initial
 frequency value*/
 var freqSliderVal = document.getElementsByTagName("input")[1].
 value;
 /*___END set initial
 frequency value*/

 /*___BEGIN check range
 slider value and set frequency of oscillator*/

 setInterval(function() {

 if (!osc) {

 console.log("Oscillator is stopped. Waiting for oscillator to
 start");

 } else {

 freqSliderVal = document.getElementsByTagName("input")[1].value;
 osc.frequency.value = freqSliderVal;
 console.log("Oscillator is playing. Frequency value is " +
 freqSliderVal);
 }

 }, 50);

 /*___End check range slider
 value and set frequency of oscillator*/

 onOff.addEventListener("click", function() {

 /*_____________________________________BEGIN Conditional
 statement to check if osc is TRUE or FALSE*/

 if (!osc) { /*_________________________Is osc false? If so then
 create and assign oscillator to osc variable and play it.*/
 osc = audioContext.createOscillator();
 osc.type = "sawtooth";
 osc.frequency.value = freqSliderVal;
 osc.connect(audioContext.destination);
 osc.start(audioContext.currentTime);
 onOff.value = "stop";
 span.innerHTML = "Click to stop oscillator";
 /*_________________________________Otherwise stop it and
 reset osc to false for next time.*/
 } else {

 osc.stop(audioContext.currentTime);
 osc = false;

Changing Waveform Types 99

 onOff.value = "start";
 span.innerHTML = "Click to start oscillator";
 }

 /*_____________________________________END Conditional
 statement to check if osc is TRUE or FALSE*/
 });
};

Changing Waveform Types
You are now going to write code to allow users to click one of the four waveforms
on the page and set the oscillator to play the selected waveform .

To do this, use the eventListener() method to capture the id of
the element clicked by the user . Because the id of each is the name of
a waveform, you must assign this id to the osc.type property . You want
users to be able to update the waveform type without having to repeatedly
restart the oscillator, and you can do this similarly to the frequency slider
changes in the previous example .

In the following code, you create a variable named selectedWaveform
to give the oscillator a default waveform type and to store any selected waveform
changes .

var selectedWaveform = "sawtooth";

This value is then assigned to osc.type .

if (!osc) {
 osc = audioContext.createOscillator();
 osc.type = selectedWaveform;
 osc.frequency.value = freqSliderVal;
 osc.connect(audioContext.destination);
 osc.start(audioContext.currentTime);
 onOff.value = "stop";
 span.innerHTML = "Click to stop oscillator";
}

Next, create a variable named waveformTypes and assign it the result of
calling getElementsByTagName() . The waveformTypes value is used to
select one of the four elements on the page .

var waveformTypes = document.getElementsByTagName('li');

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-10&iName=master.img-003.jpg&w=167&h=73

9. DOM Programming with JavaScript100

Next, create a function named select that is used as a callback for a series
of event listeners used to select the id of the clicked by the user .

function select() {
 selectedWaveform = document.getElementById(this.id).id;
 console.log(selectedWaveform); // Outputs id
}

Next, a for loop is used to examine each node and assign an event
listener to each one . Each event listener is set to respond to a click event that
invokes the callback function select . When the select function runs, it cap-
tures the id of the element clicked by the user . This id is then stored in the
selectedWaveform variable .

for (var i = 0; i < waveformTypes.length; i++) {
 waveformTypes[i].addEventListener('click', select, false);
}

Completed Code with Waveform Selection
"use strict";
var audioContext = new AudioContext();
window.onload = function() {
 var onOff = document.getElementById("on-off");
 var span = document.getElementsByTagName("span")[0];
 var osc = false;
 var freqSliderVal = document.getElementsByTagName("input")[1].value;

 /*___BEGIN set selected
 waveform type value*/

 var selectedWaveform = "sawtooth";
 /*___END set selected
 waveform type value*/

 /*___BEGIN select all
 elements*/
 var waveformTypes = document.getElementsByTagName('li');
 /*___END select all
 elements*/

 /*___BEGIN callback to
 select by id and assign id name to selectWaveform*/
 function select() {
 selectedWaveform = document.getElementById(this.id).id;
 console.log(selectedWaveform);
 }

 /*___END callback to select
 by id and assign id name to selectWaveform*/

 /*___BEGIN loop through all
 elements and set a click eventListener on them*/

 for (var i = 0; i < waveformTypes.length; i++) {
 waveformTypes[i].addEventListener('click', select);
 }

Giving an Outline to the Selected Waveform Type 101

 /*___END loop through all
 elements and set a click eventListener on them*/

 setInterval(function() {

 if (!osc) {

 console.log("Oscillator is stopped. Waiting for oscillator to
 start");

 } else {

 freqSliderVal = document.getElementsByTagName("input")[1].
 value;
 osc.frequency.value = freqSliderVal;
 console.log("Oscillator is playing. Frequency value is " +
 freqSliderVal);
 osc.type = selectedWaveform;
 }

 }, 50);

 onOff.addEventListener("click", function() {

 if (!osc) {
 osc = audioContext.createOscillator();
 osc.type = selectedWaveform;
 osc.frequency.value = freqSliderVal;
 osc.connect(audioContext.destination);
 osc.start(audioContext.currentTime);
 onOff.value = "stop";
 span.innerHTML = "Click to stop oscillator";
 } else {

 osc.stop(audioContext.currentTime);
 osc = false;
 onOff.value = "start";
 span.innerHTML = "Click to start oscillator";
 }
 });
};

Giving an Outline to the Selected Waveform Type
When a user selects a waveform type, there is no visual cue that identifies
the type selected . The following code adds a white outline to the selected
waveform .

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-10&iName=master.img-004.jpg&w=193&h=86

9. DOM Programming with JavaScript102

In the CSS file, create a class named selected-waveform and give
it an outline property with a width of 2 pixels and the color white . Then,
add this class dynamically to the element that corresponds to the
selected waveform type . To remove the selected waveform class of the pre-
viously selected element, use a for loop to examine all of the ele-
ments and invoke classList.remove("selected-waveform") on
each one .

In the CSS file, create the class .

.selected-waveform{
 outline:2px solid white;
}

In the JavaScript file, add the following code to the select function .

function select() {

//_____________________________________BEGIN select element by id
var selectedWaveformElement = document.getElementById(this.id);
//_____________________________________END select element by id

 selectedWaveform = document.getElementById(this.id).id;
 console.log(selectedWaveform);

 /*_____________________________________BEGIN remove any
 previously added selected-waveform classes*/

for (var i = 0; i < waveformTypes.length; i += 1) {
waveformTypes[i].classList.remove("selected-waveform");

}
 /*_____________________________________END remove any previously
 added selected-waveform classes*/

 /*_____________________________________BEGIN add the selected-
 waveform class to the selected element*/

selectedWaveformElement.classList.add("selected-waveform");
 /*_____________________________________END add the selected-
 waveform class to the selected element*/
}

Summary
In this chapter, you learned how JavaScript interacts with the DOM . In the next
chapter, you will learn the basics of a library named JQuery that makes DOM
programming with JavaScript easier .

103

10 Simplifying
DOM
Programming
with JQuery

In the previous chapter, you learned how JavaScript interacts with the DOM .
In this chapter, you will learn how to simplify the process of adding interactive
components to your application by using a library called JQuery . The objective
of this chapter is not to teach you the entire JQuery API, but to give you the foun-
dational knowledge to make JQuery a part of your programming toolkit . You can
find the JQuery API at this URL: https://api .jquery .com/ .

What Is JQuery?
JQuery is a library written in JavaScript intended primarily for DOM manipula-
tion . A library is a collection of preassembled code pieces designed to make a par-
ticular group of tasks easier . JQuery contains a large collection of methods and
properties that can be used individually or combined to help ease the complexity
of JavaScript DOM programming .

JQuery Setup
You can set up JQuery in one of two ways . The first is to download the library
and reference it from an HTML file . The second is to reference it from a con-
tent delivery network (CDN for short) . A CDN is a service accessible through

https://api.jquery.com/

10. Simplifying DOM Programming with JQuery104

the World Wide Web where you can reference code libraries and other files .
The downside of using a CDN is that you will always need a working Internet
connection to access it .

Referencing JQuery Directly
To reference JQuery directly, first download the library at this URL: http://
jquery .com/ . Next, use the following code as an example of how to reference
the library .

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title></title>

<script type="text/javascript" src="js/jquery-2.1.4.min"
 charset="utf-8"></script>
 <script src="js/app.js"></script>
 <link rel="stylesheet" href="css/app.css">
 </head>
 <!--___ BEGIN APP-->
 <body>

 </body>
 <!--___ END APP-->
</html>

Using JQuery from a CDN
The following code references JQuery from a Google CDN library collection at
this URL: https://developers .google .com/speed/libraries/ .

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title></title>

<script type="text/javascript" src="https://ajax.googleapis.
 com/ajax/libs/jquery/2.1.0/jquery.js" charset="utf-8">
 </script>
 <script src="js/app.js"></script>
 <link rel="stylesheet" href="css/app.css">
 </head>
 <!--___ BEGIN APP-->
 <body>

 </body>
 <!--___ END APP-->
</html>

http://jquery.com/
http://jquery.com/
https://developers.google.com/speed/libraries/

Storing DOM Selectors as Variables 105

In the previous chapter, your JavaScript code was encapsulated in the fol-
lowing function:

window.onload = function() {
 // code goes here
};

This was done to ensure that the code loads after the browser renders the
HTML document . JQuery comes bundled with a function that does the same
thing with slightly different syntax .

$(function(){
 // code goes here
});

How to Use JQuery
The most fundamental use cases for JQuery require knowledge of two things . The
first is how to select an HTML element . The second is how to do something with
that element .

Selecting HTML Elements
The following code shows how to select an HTML element .

$("div") // this selects all div elements on the page

The syntax for element selectors always begins with a dollar sign, fol-
lowed by two parentheses . You place the element wrapped in quotes inside the
parentheses . JQuery selectors borrow from CSS selector syntax . If you know
how to select elements using CSS, you can quickly learn to select elements in
JQuery . The following are a few examples of CSS selectors and their JQuery
counterparts .

Selection Type CSS JQuery

Element div{} $("div")

Child p > span{} $("p > span")

Descendent p span{} $("p span")

Multi div, span, p{} $("div, span, p ")

id #item{} $("#item")

Class .item{} $(".item")

Storing DOM Selectors as Variables
In some circumstances, you might find it aesthetically preferable to store your
DOM selectors as variables . The following code is a modified version of the

10. Simplifying DOM Programming with JQuery106

previous example with the div selector stored in a variable . The variable is pre-
ceded by a dollar sign to emphasize that it is a JQuery selector . Storing the DOM
selector as a variable has the same effect as selecting the element directly .

$(function() {
var $transportControl = $("div");

});

Using Methods
After you have selected an element, you can modify it in some way using JQuery’s
built-in methods . JQuery comes with a large collection of methods; however, in
this chapter we are only going to use the following methods:

Method Summary

on Attaches event listeners to an element
css Modifies the CSS of an element
fadeIn Fades in an element over time
fadeOut Fades out an element over time
val Sets or gets the value attribute of an input element
addClass Adds a class to an element
removeClass Removes a class from an element
eq Selects an element based on an index value
text Sets or gets the text of an element

The following is an example of using css() to modify the look of an ele-
ment . css() can be used either to change a single property or to set multiple
properties using an object as an argument . An example of both use cases is given
in the following code:

HTML
<div>Play</div>
<div>Stop</div>
<div>Rewind</div>
<div>Fast Forward</div>
<div>Pause</div>

To change a single property:

JQuery/JavaScript to Change a Single Property

$(function() {
 $("div").css("background-color","orange");
});

Method Chaining 107

To change multiple properties:

JQuery/JavaScript to Change Multiple Properties

$(function() {
 $("div").css({
 backgroundColor:"orange",
 width:"100px",
 borderStyle:"solid"
 });
});

Method Chaining
If you want to apply multiple methods to an element, you can connect them in suc-
cession so that they are invoked one after another . This is called method chaining .

In the following code, all of the div elements have their CSS display property
set to none . JQuery is used to select the div elements and set their CSS proper-
ties using css() . The fadeIn method is then chained to each div, so that every
div on the page fades in over the course of 1 second (1000 milliseconds) . The first
argument of fadeIn() is the duration of the animation in milliseconds . When
fadeIn()completes, the fadeOut method is invoked, which fades out all div
elements over the course of 1 second .

HTML
<div>Play</div>
<div>Stop</div>
<div>Rewind</div>
<div>Fast Forward</div>
<div>Pause</div>

CSS
div{
 display:none;
}

JQuery/JavaScript

$(function() {
 $("div").css({
 backgroundColor: "orange",
 width: "100px",
 borderStyle: "solid"
 }).fadeIn(1000).fadeOut(1000); // example of method chaining
});

The following HTML code contains an input element with its type attri-
bute set to button . This is selected with JQuery and set to respond to click events
via an event listener . The method used for this is on(), which takes two arguments .

10. Simplifying DOM Programming with JQuery108

The first argument is a string that defines the event type and the second is a callback
that is invoked when the event is fired .

HTML
<input type="button" value = "Play">

JQuery/JavaScript

$(function() {
 $("input").on("click",function(){ //click event listener

alert("You clicked play");
});

});

The this Keyword
The this keyword in JQuery can be used as a shorthand for the currently selected
DOM element . The following HTML code contains three input elements . Using
JQuery, these three elements are assigned a click event listener . When a user
clicks an input button, the $(this) selector is used to single out the individual
element the user clicked . The val method returns the value attribute of the
clicked element .

HTML
<input type="button" value = "Play">
<input type="button" value = "Pause">
<input type="button" value = "Stop">

JQuery/JavaScript

$(function() {
 $("input").on("click",function(){ /*assign event listener to all
 input elements*/
 console.log($(this).val()); /*use the this keyword to access the
 element clicked and return its value property*/
 });
});

Refactoring the Oscillator Player to Use JQuery
Now that you understand some JQuery basics, you are going to refactor the appli-
cation you created in the previous chapter by replacing the built-in JavaScript
DOM methods with JQuery selectors and methods .

Copy the completed code from the previous chapter to a new directory . In
your index.html file reference the JQuery library .

Refactoring the Oscillator Player to Use JQuery 109

<head>
 <meta charset="UTF-8">
 <title>CSS and HTML</title>
<script type="text/javascript" src="https://ajax.googleapis.

 com/ajax/libs/jquery/2.1.0/jquery.js" charset="utf-8">
 </script>
 <script src="js/app.js"></script>
 <link rel="stylesheet" href="css/app.css">
</head>

Replace the app.js file with a new empty file with the same name .
In the old application, you used this function to encapsulate your code:

window.onload = function() {
}

In the new version of your code, make sure you replace window.onload
with the equivalent JQuery function . Also put "use strict" and the
AudioContext instantiation at the top of the file, as in the following example:

"use strict";
var audioContext = new AudioContext();
$(function(){
 // all code will go here
});

Next, modify the first three variables of the JavaScript file to use JQuery
selectors .

Without JQuery

With JQuery

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-11&iName=master.img-000.jpg&w=287&h=85
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-11&iName=master.img-001.jpg&w=287&h=87

10. Simplifying DOM Programming with JQuery110

This code uses $("#on-off") to select the oscillator start or stop button by
id . It is denoted by the hash selector . You then use $("span") to select the span
that contains message text . This selection is done by element and, because there
is only one span element on the page, you do not need to be more specific . Lastly,
$("input").eq(1).val() is used to select the range slider value of the second
input element on the page, which is stored in a variable named $freqSlider-
Val . This is done by making a general element selection for all input elements
and specifying the second one on the page with the eq(1) method . The eq()
method enables selection of elements by index with its argument being the index
value . Once the correct input element is selected, val() is used to get its value
attribute .

Setting Up the Event Listener for the
User-Selected List Element
In the old application, the user interface code for oscillator selection was a bit
complex . First, you needed to create a loop that attached a click event listener to
all elements . Then you created a function named select to be invoked
as a callback for each of those event listeners . When the user clicked an
element, the select() callback looped through every and removed any
class identifiers titled selected-waveform . It then assigned the selected-
waveform class to only the clicked element .

With JQuery, much of this complexity can be avoided . The following images
show the contrast between the old version and a refined JQuery implementation .

Event Listener without JQuery

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-11&iName=master.img-002.jpg&w=287&h=220

111Modifying the Code in setInterval

Event Listener with JQuery

The refactored JQuery code assigns a click event listener to all
elements . When the user clicks an element, its id is stored in a vari-
able named selectedWaveform . selectedWaveform is referenced
in a higher scope and is used later to set the oscillator type . The rem-
oveClass() method is used to remove the selected-wavefrom class
from all elements . The last line of code uses $(this) to select the
specific the user clicked and invokes addClass() to give it the class
selected-waveform .

Modifying the Code in setInterval
The only modification you need to make to setInterval is the replacement of
freqSliderVal with a JQuery DOM selector .

setInterval Method without JQuery

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-11&iName=master.img-003.jpg&w=311&h=170
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-11&iName=master.img-004.jpg&w=311&h=130

10. Simplifying DOM Programming with JQuery112

setInterval Method with JQuery

The remaining changes require you to modify the name of the onOff selec-
tor variable to $onOff and replace the addEventListener with the on()
method set to respond to click events . Then rename the freqSliderVal to
$freqSliderVal, replace the span.innerHTML with $messageText.
text(), and lastly replace onOff.value with the JQuery equivalent of
$onOff.val() .

onOff Method without JQuery

$onOff Selector with JQuery

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-11&iName=master.img-005.jpg&w=302&h=94
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-11&iName=master.img-006.jpg&w=201&h=146
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-11&iName=master.img-007.jpg&w=201&h=144

Summary 113

Summary
In this chapter, you learned the basics of using JQuery for DOM manipulation .
You also refactored the code in the previous chapter to contrast the difference
between working with and without JQuery . In the next chapter, you will learn
how to import and play back audio files with the Web Audio API .

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-11&iName=master.img-008.jpg&w=395&h=104

115

11 Loading
and Playing
Audio Files

In this chapter, you will learn the basics of working with audio files . This includes
how to load, play, and run audio files through the node graph to take advantage
of its built-in effects .

Prerequisites
To load and play back audio files, you must be running a web server . Chapter 1
gives you instructions about how to integrate a web server with Sublime Text by
installing a package called Sublime Server . Your audio files are referenced from
the directory the web server is pointing to, which you can set up as follows:

 1. Create a folder on your desktop with a new project template .

 2. Start the Sublime Text web server by selecting Tools > SublimeServer >
Start SublimeServer .

 3. Open the sidebar (if it isn’t already open) by selecting View > Side Bar >
Show Side Bar .

 4. Drag the template folder to the side bar panel .

11. Loading and Playing Audio Files116

5. Open a web browser and enter: http://localhost:8080 in the URL field .

 6. Click the link to the template folder . An empty screen is displayed
because the initial template is empty .

For this exercise, you will need an audio file that is short and preferably of MP3
format (for compatibility issues) . The file referenced in the example code is
snare.mp3 . Create a directory in your template folder and name it sounds,
then copy your MP3 file there .

The Two Steps to Loading an Audio File
Loading an audio file is done in two steps:

1. Store the audio file in a buffer using the XMLHttpRequest object .

 2. Decode the buffer with decodeAudioData .

In the first step, you use the built-in browser object named XMLHttpRequest
to store the collected audio file in a buffer . This object is part of the web browser
and is independent of the Web Audio API . A buffer is a small piece of internal
memory used to store data so that it can be accessed quickly . Storing the file this
way provides low latency playback and the ability to modify the raw waveform
data, which is useful for some applications .

In the second step, you use the decodeAudioData method to decode the
audio file buffer you created in the first step . After the Web Audio API has read
and decoded the audio data, you can assign the object to a variable and reference
it in the node graph for playback .

The following example shows how you load a single audio file, after which
you can play it back by clicking on the browser window . The rest of this chapter
is dedicated to explaining each line in this example and how all the lines work
together .

var audioContext = new AudioContext();
var audioBuffer;
var getSound = new XMLHttpRequest();
getSound.open("get", "sounds/snare.mp3", true);
getSound.responseType = "arraybuffer";

getSound.onload = function() {
 audioContext.decodeAudioData(getSound.response, function(buffer) {
 audioBuffer = buffer;
 });
};

getSound.send();

function playback() {
 var playSound = audioContext.createBufferSource();
 playSound.buffer = audioBuffer;

http://localhost:8080

The XMLHttpRequest Object 117

 playSound.connect(audioContext.destination);
 playSound.start(audioContext.currentTime);
}
window.addEventListener("mousedown", playback);

The XMLHttpRequest Object
The first step to importing an audio file is to create a new XMLHttpRequest
object . This object allows you to import data over the http protocol, which is
the same protocol used to load web pages . This data can then be stored in various
forms . The code to create the object is as follows:

var getSound = new XMLHttpRequest();

The XMLHttpRequest function invocation returns an object literal that is
stored in a variable named getSound . This is done using the new keyword . The
new keyword will not be covered until the next chapter, but don’t worry . For now,
the important thing is to understand that XMLHttpRequest is a function that
returns an object . This object contains a large collection of built-in properties
and methods . For loading sound files, you need five of these methods:

 ◾ open

 ◾ responseType

 ◾ onload

 ◾ response

 ◾ send

The next line of code uses the open method to fetch the audio file . This method
has three arguments .

var getSound = new XMLHttpRequest();
getSound.open("get","sound/snare.mp3",true);

To clearly understand the purpose of the first argument requires a brief
explanation of a command called a get request .

get Requests
When you type a URL into a web browser and “go” to a website, the web browser
does not actually go anywhere . What actually happens is the browser issues a com-
mand to the website server that initiates a download of the HTML content and
other files needed to view it . This command is called a get request . The beauty of
get requests is that you can use them outside the context of typing a URL into a
browser . In other words, you can write code to run get requests behind the scenes .
This is how XMLHttpRequest is used to pull audio files into your application—
and why the first argument of the open method is “get” .

11. Loading and Playing Audio Files118

The second argument to the open method is the path to the file you want to
fetch . For this example, an MP3 file named snare.mp3 is imported .

A Word on Audio File Type Compatibility
It is important to understand that audio file type compatibility is dependent on
which web browser you use . If you want your application to be compatible with
multiple web browsers, you have to include multiple audio files of different for-
mats and write conditional code to determine what format to use based on the
rendering browser . The three most popular audio file formats for web browsers
are WAV, OGG, and MP3 . An audio file format compatibility chart for various
browsers is available here: http://caniuse .com/#search=audio%20format .

The third argument to the open method determines whether the open
operation is done in a synchronous or asynchronous manner . The true value
selects the asynchronous setting, whereas false selects the synchronous set-
ting . Understanding the difference between synchronous and asynchronous
code execution is an in-depth topic and requires some explaining .

Synchronous versus Asynchronous
Code Execution
When the browser executes code, it does so from top to bottom . As a result, a
function that takes a long time to execute creates a noticeable delay in the pro-
gram itself . This is because the code is executing synchronously .

When you use the XMLHttpRequest object to retrieve data synchronously
from a server, the time delay between making the get request and when the actual
data is returned can create a noticeable delay in the execution of your program .
This delay is particularly noticeable when you load a large audio file and then have
to wait for its entire contents to load into memory before your program continues .

Delays in execution are why doing such operations synchronously is dis-
couraged and doing them asynchronously is preferred . Working asynchronously
lets you run the open method while immediately allowing your program to con-
tinue executing to completion . In the meantime, the audio file continues to load
behind the scenes, regardless of how long it takes to complete . When the audio
file is available (when it is done loading), you can use it . When code is executed
in this manner, we say that it is nonblocking. Of course, the downside of this
is that if you have an audio file loading and it is taking a long time, the user of
your program might be wondering why nothing is playing even though the page
has rendered! This problem can be remedied by presenting a message to users to
warn them that they will have to wait for the audio file to finish loading . In the
meantime, they can explore other parts of your application .

The next line of code sets a property called responseType to a value of
arraybuffer . The responseType property defines how the data you are
importing is made available to your program . Generally, the XMLHttpRequest
object is used to fetch text files, and in those cases you might choose one of
the other available responseType settings such as text or document .

http://caniuse.com/#search=audio%20format

Synchronous versus Asynchronous Code Execution 119

For sound files, arraybuffer is used . This is a general container for binary
data that is useful for audio files .

var getSound = new XMLHttpRequest();
getSound.open("get","sounds/snare.mp3",true);
getSound.responseType = "arraybuffer";

The next line of code begins with an onload function that is invoked after
the data (the audio file) has completed loading . Within the onload function,
decoding of the audio data takes place that makes it usable by the Web Audio
API . You do this with a method called decodeAudioData that takes two argu-
ments . The first argument is a property called response that represents the
loaded (and undecoded) audio data .

getSound.onload = function() {
 audioContext.decodeAudioData(getSound.response, function(buffer) {
 audioBuffer = buffer;
 });
};

The second argument to the onload function is a callback function that
allows you to capture the result of the decoded audio data and do something with
it . To capture the decoded file, you must pass it as an argument of the callback
function . In this case, the name given for this decoded information is buffer .
To make buffer accessible to the rest of the program, you can assign it to a
global variable .

var audioContext = new AudioContext();
var audioBuffer;
var getSound = new XMLHttpRequest();
getSound.open("get", "snare.mp3", true);
getSound.responseType = "arraybuffer";
getSound.onload = function() {
 audioContext.decodeAudioData(getSound.response, function(buffer) {

audioBuffer = buffer; // stored as global variable
});

};

The last line is the send method . This method initiates the
XMLHttpRequest .

getSound.send();

Now that the audio file is loaded into a buffer, the playback function con-
tains the required code to connect it to the node graph and eventually play it
back . The first line assigns a method called createBufferSource to a vari-
able . This method is used to create a buffer source node that is used for audio buf-
fers . In other words, it is like createOscillator, but instead of being used to
create oscillators, it is used to create a node that can play back the contents of an
audio buffer . To inject the audio buffer into the node graph, you need to assign it
to a property of the buffer source node named buffer .

11. Loading and Playing Audio Files120

function playback() {

 var playSound = audioContext.createBufferSource();
 playSound.buffer = audioBuffer;
 playSound.connect(audioContext.destination);
 playSound.start(audioContext.currentTime);
}

You can now connect the buffer to the audioConext.destination and
set the start time .

function playback() {

 var playSound = audioContext.createBufferSource();
 playSound.buffer = audioBuffer;
playSound.connect(audioContext.destination);
playSound.start(audioContext.currentTime);

}

The last line of code is an event listener that lets you play back the file when
the window is clicked .

window.addEventListener("mousedown", playback);

If you click on the page, you should hear the audio file play .

Processing the Audio Buffer with the Node Graph
When the audio buffer is fed into the node graph, you can process it with its built-
in effects . In the following code, the node graph connection has been modified to
include a property of the audio buffer named playbackRate . This changes the
playback speed of the sound . To double the speed, set the value to 2; to play the
sound back at half speed, set the value to 0 .5 .

function playback() {
 var playSound = audioContext.createBufferSource();
 playSound.buffer = audioBuffer;
playSound.playbackRate.value = 0.5;

 playSound.connect(audioContext.destination);
 playSound.start(audioContext.currentTime);
}

Summary
Each time you want to import an audio file into your program, you must initiate
XMLHttpRequest with all the method and property settings shown in this
chapter . You can imagine that duplicating this code repeatedly for each file is
unfeasible for a large-scale application . By abstracting away this complexity, you
can program a solution to this problem that lets you import multiple audio files
with only a few lines of code . In the next two chapters, you will learn how to do
this while learning about two new object creation methodologies: factories and
constructors .

121

12 Factories and
Constructors

In the previous chapter, you learned how to import audio files . You also learned
that loading multiple files can require a tremendous amount of code duplica-
tion . Because repeating code is something that should be avoided, it is a good
idea to abstract your audio file loading program into a library that imports all
the required files with a minimal amount of code duplication . In this chapter,
you will learn two new object creation patterns to help you do this . The first pat-
tern, called factory, is used to create your audio loader library . The second pat-
tern, called constructor, is introduced primarily because of its prevalence in the
JavaScript world, making it an important pattern to familiarize yourself with .
Factories and constructors are almost identical . The difference lies solely in
minor implementation details and syntax . In other words, anything you can do
with one of these patterns you can do with the other . Your choice of which to use
comes down to personal choice .

In the next chapter, you will put what you learn here to work and build your
audio file loading library .

JavaScript and the Concept of Class
Programming languages that are organized around objects that interact with
one another are usually referred to as object oriented . JavaScript is considered

12. Factories and Constructors122

an object-oriented language, although it differs from traditional object-oriented
languages in one important way: JavaScript lacks what are called classes.

What Are Classes?
With most object-oriented programming languages, to create an object you must
first create a class, which is a kind of blueprint that your object is derived from .
For example, imagine a class for a mixing console that contains a number of
audio channels . When you create an object from this class, you have the option
to determine the channel count on the fly . In this regard, the class acts as a kind
of scaffolding for the creation of objects while offering a degree of flexibility for
individual object customization .

The beauty of JavaScript is that when you create objects directly, you do not
need classes . In fact, classes don’t exist in JavaScript . However, if you want to
program in a class-based style, you can do so easily with either of two available
object creation patterns: factory and constructor .

The Factory Pattern
Factory is a fancy term for describing a function that returns an object .

function makeObj(){
 var obj = {};
 return obj;
}
var newObj = makeObj();

You can use factories to set properties and methods on the objects they return .
In the following example, the factory makeRecord is used to create objects that
represent music albums . With factories, property values are assigned to the returned
object through function arguments . In the following example, the object’s property
values represent information about each record, including title, artist, and year .

function makeRecord(title, artist, year) {
 var record = {};
 record.title = title;
 record.artist = artist;
 record.year = year;

 return record;
}
var weAreHardcore = makeRecord("We Are Hardcore", "The Psycho
Electros", 2016);

console.log(weAreHardcore.title); // "We Are Hardcore"
console.log(weAreHardcore.artist); // "The Psycho Electros"
console.log(weAreHardcore.year); // 2016

If you want to create default values for properties, you can assign them like this:

function makeRecord(title, artist, year) {
 var record = {};

Dynamic Object Extension 123

 record.title = title;
 record.artist = artist;
 record.year = year;
 record.fullAlbum = true;

 return record;
}

var weAreHardcore = makeRecord("We Are Hardcore",
 "The Psycho Electros", 2016);
console.log(weAreHardcore.fullAlbum); // true

You can also include methods in your factories .

function makeRecord(title, artist, year) {
 var record = {};
 record.title = title;
 record.artist = artist;
 record.year = year;
 record.summary = function() {
 return "Title:" + record.title + ". Artist:" + record.artist +
 ". Year:" + record.year;
 };

 return record;
}
var weAreHardcore = makeRecord("We Are Hardcore",
 "The Psycho Electros", 2016);

console.log(weAreHardcore.summary()); /*Title:We Are Hardcore.
 Artist:The Psycho Electros. Year:2016*/

Dynamic Object Extension
Objects created with factories, like all objects, can be extended to include addi-
tional properties and methods . The following example creates a new prop-
erty named leadSinger and a new method named getAllProperties .
getAllProperties loops through the object properties and logs those that
are not functions to the console .

function makeRecord(title, artist, year) {
 var record = {};
 record.title = title;
 record.artist = artist;
 record.year = year;
 record.summary = function() {
 return "Title:" + record.title + ". Artist:" + record.artist +
 ". Year:" + record.year;
 };
 return record;
}

var weAreHardcore = makeRecord("We Are Hardcore",
 "The Psycho Electros", 2016);

12. Factories and Constructors124

weAreHardcore.leadSinger = "Fred The Butcher";
weAreHardcore.getAllProperties = function() {
 for (var prop in weAreHardcore) {
 if (typeof weAreHardcore[prop] != "function") {
 //_______________Loop ignores methods!
 console.log(prop + ":" + weAreHardcore[prop]);
 //____________Only loops through properties
 }
 }
};

weAreHardcore.getAllProperties();

/*_____________________RESULT

title:We Are Hardcore
artist:The Psycho Electros
year:2016
leadSinger:Fred The Butcher

___________________________*/

Private Data
Sometimes you want to create data that is accessible to your objects but is either
inaccessible to the outside scope or cannot be changed . To do this, you can make
data private by assigning it to a variable inside the factory . In the following exam-
ple, a variable named id stores some private information .

function makeRecord(id) {
 var id = id; // Private data
 console.log(id + " is private data");
 var record = {};
 return record;
}
var myRecord = makeRecord("2323415432");
console.log(myRecord.id); /*undefined. This is a property of the
 object, not the private data!*/

Getters and Setters
Private data can be retrieved by creating a method inside the factory that is designed
to return it . A method used to retrieve private information is called a getter.

function makeRecord(id) {
 var id = id;
 var record = {};
 record.getId = function() { // getter
 return id;
 };
 return record;
}

var myRecord = makeRecord("1121210937");

myRecord.getId(); // 1121210937

Constructors and the new Keyword 125

Conversely, methods that are used to modify private data are called setters .
In the following code, a setter is created that allows you to change the value of id
while restricting the input to a ten-digit string .

function makeRecord(id) {
 var id = id;
 var record = {};
 record.getId = function() {
 return id;
 };
 record.setId = function(newId) {

if (typeof newId === "string" && newId.length === 10) {
 id = newId;

} else {
 throw ("id must be a ten-digit string");

}

 };
 return record;

}
var myRecord = makeRecord("9876543210");
myRecord.getId(); // 9876543210
myRecord.setId("1000000001");
myRecord.getId(); // 1000000001

Programming with factories is a common pattern in JavaScript and one that
you should be sure to familiarize yourself with . Factories give you a simple syntax
for abstracting complex code, while offering you the privacy of function scope
coupled with the flexibility of object extension .

Constructors and the new Keyword
Another pattern for object creation is called the constructor . Like a factory, a con-
structor is a function that returns an object . The following code shows an imple-
mentation of the makeRecord factory using a constructor .

function Record(title, artist, year) {
 this.title = title;
 this.artist = artist;
 this.year = year;
}
var weAreHardcore = new Record("We Are Hardcore",
 "The Psycho Electros", 2016);

console.log(weAreHardcore.title); // We Are Hardcore
console.log(weAreHardcore.artist); // The Psycho Electros
console.log(weAreHardcore.year); // 2016

As you can see, there are some differences between factories and construc-
tors . The first is the naming convention for functions . With constructors, it is
considered good practice to name them with a capitalized noun . This convention
exists solely to help distinguish constructors from nonconstructors and does not

12. Factories and Constructors126

throw an error if it is not used . The lack of an explicitly created object is the next
difference . With constructors, instead of immediately creating an object in your
function declaration, begin by writing your properties using the this keyword .
In a constructor, this points to the object that is created from it . These proper-
ties are assigned values through the constructor function arguments or, if you
want to create default values, you can assign them directly to the property .

function Record(title, artist, year) {
 this.title = title;
 this.artist = artist;
 this.year = year;
 this.fullAlbum = true; // default value
}

var weAreHardcore = new Record("We Are Hardcore",
 "The Psycho Electros", 2016);

console.log(weAreHardcore.fullAlbum); // true

You invoke a constructor using the new keyword . This is the command that
tells the interpreter that you are using the function as a constructor . In response,
the interpreter creates and returns an object . In the previous example, the return
value is assigned to the variable named weAreHardcore .

Adding Methods to Constructors
If you want to add methods to constructors, the syntax looks like this:

function Record(title, artist, year) {
 this.title = title;
 this.artist = artist;
 this.year = year;
}
Record.prototype.summary = function() {
 return "Title:" + this.title + ". Artist:" + this.artist +
 ". Year:" + this.year;
};

var weAreHardcore = new Record("We Are Hardcore",
 "The Psycho Electros", 2016);
weAreHardcore.summary(); /*Title:We Are Hardcore. Artist:The
 Psycho Electros. Year:2016*/

Admittedly, this syntax is a bit odd looking . So, to clarify what is happening,
let’s look at two concepts interwoven with constructors: the prototype object and
the prototype property .

The Prototype Object and the Prototype Property
Every time you create a function in JavaScript, a hidden object gets created in the
background that is tied to the function that created it . This object is not visible or
accessible and does absolutely nothing unless you decide to use your function as

The Prototype Object and the Prototype Property 127

a constructor . If you use your function as a constructor, this otherwise dormant
object becomes accessible through a property called prototype and is called the
prototype object .

When you attach methods to constructors, you are expected to attach them
to the prototype property, which in turns attaches them to the hidden proto-
type object . Any objects you create with your constructor have access to these
methods .

Record.prototype.summary = function() {
 return "Title:" + this.title + ". Artist:" + this.artist +
 ". Year:" + this.year;
};

Although you can attach your methods without using the prototype prop-
erty, the drawback to this approach is that every time you create a new object, all
of the methods are initialized, and this requires more memory . This might have
been a concern in 1995 when JavaScript was designed and computers were much
slower, but the large amount of available memory in modern computers makes
this issue negligible . This is the reason factories are a viable alternative . The syn-
tax for adding methods without using the prototype object looks like this:

function Record(title, artist, year) {
 this.title = title;
 this.artist = artist;
 this.year = year;
 this.summary = function() {

return "Title:" + this.title + ". Artist:" + this.artist +
 ". Year:" + this.year;
 };
}

var weAreHardcore = new Record("We Are Hardcore",
 "The Psycho Electros", 2016);
weAreHardcore.summary(); /*Title:We Are Hardcore. Artist:The
 Psycho Electros. Year:2016*/

You can use getters and setters, as you do with factories, to work with private
data in constructors . The following example contains a private variable named
id and uses a getter to retrieve it, as well as a setter that allows it to be changed
to a ten-digit string . Note that the getter and setter are not implemented on the
prototype property, because if they were, the private data would not be available
to them .

function Record(id) {
 var id = id;
 this.getId = function() {
 return id;
 };

 this.setId = function(newId) {
 if (typeof newId === "string" & & newId.length === 10) {
 id = newId;

12. Factories and Constructors128

 } else {
 throw ("id must be a ten digit string");
 }

 };
}
var myRecord = new Record("9876543210");
myRecord.getId(); // 9876543210

myRecord.setId("0123456789");
myRecord.getId(); //0123456789

Why Do Constructors Exist If You Can Do the
Same Thing with Factories?
At the time when JavaScript was developed in 1995, one of the most popular
languages in the world was Java . Out of a desire to appease Java developers and
lure them into using JavaScript, the language was designed to mirror Java’s syn-
tax . Part of this effort included adding constructors to the language that were
designed to look like Java classes . This happened irrespective of the fact that
behind the scenes JavaScript is not a class-based language .

Summary
In this chapter, you learned how to create JavaScript pseudoclasses using facto-
ries and constructors . In the next chapter, you will create a simplified audio file
loader library using the factory pattern .

129

13 Abstracting
the File
Loader

Now that you are familiar with factories and constructors from the previous
chapter, you can abstract the audio buffer loader you created in Chapter 11 into
a library that loads multiple sound files using less code . You do this using the
factory pattern .

Thinking about Code Abstraction
Organizing your code into abstractions can be a daunting task . However, there
are two steps you can follow to simplify the process . The first step is to determine
whether you need an abstraction in the first place . If you are repeatedly typing
out a large amount of code for the same task, then the answer is probably yes . The
second step, if you decide you need an abstraction, is to determine what type of
interface works for your abstraction . You were exposed to one example of a popu-
lar interface in Chapter 11, where you worked with the JQuery library . JQuery’s
interface allows you to treat HTML elements as objects that you can attach meth-
ods to . This is an excellent choice for an interface, but sometimes a simple func-
tion invocation that returns a string or number works just as well . Ultimately, it
depends on your objective and the nature of the code you are abstracting .

One way to help you decide on the best approach is to work backward
and write out how you would like the interface to look and function prior to

13. Abstracting the File Loader130

implementing it . The interface for the audio file abstraction you create in this
chapter looks like the following example:

var sound = audioBatchLoader({
 kick: "kick.mp3",
 snare: "snare.mp3",
 hihat: "hihat.mp3",
 shaker: "shaker.mp3"
});
sound.snare.play(); // Play

With this approach, a factory function takes an object as an argument . The object
you input into the factory contains a list of property names, each of which is assigned a
directory of an audio file in the form of a string . The beauty of this approach is its clar-
ity and extensibility . The interface shown in sound.snare.play() attempts to
read, somewhat like English, from the list of sound files to play . Even if you have never
seen this code before, you can understand what it is doing: selecting a sound named
snare and playing it . Decoupling the object that contains many audio files from the
invoking function makes the code easier to read, as shown in the following example:

var audioFiles = {
 kick: "kick.mp3",
 snare: "snare.mp3",
 hihat: "hihat.mp3",
 shaker: "shaker.mp3"
 //______hundreds of audio files could be listed here.........
};

var sound = audioBatchLoader(audioFiles);
sound.snare.play(); // Play

If the user of your abstraction decides they want to extend it to do new
things, without having to modify the source code in the original function, they
have some flexibility . So for example, if they wanted to extend the returned object
to play multiple audio buffers, they could do this:

sound.playSnareAndShaker = function() {
 sound.snare.play();
 sound.shaker.play();
};

sound.playSnareAndShaker(); // plays two sounds with one line of code

Creating the Abstraction
The following code is the finished abstraction . The remainder of this chapter is
dedicated to building up this example line by line and explaining how it works .
Create a new template project and save the following code in the JavaScript folder
in a file named audiolib.js .

"use strict";

var audioContext = new AudioContext();

Creating the Abstraction 131

function audioFileLoader(fileDirectory) {
 var soundObj = {};
 var playSound = undefined;
 var getSound = new XMLHttpRequest();
 soundObj.fileDirectory = fileDirectory;
 getSound.open("GET", soundObj.fileDirectory, true);
 getSound.responseType = "arraybuffer";
 getSound.onload = function() {
 audioContext.decodeAudioData(getSound.response, function(buffer) {
 soundObj.soundToPlay = buffer;

 });
 };

 getSound.send();

 soundObj.play = function(time) {
 playSound = audioContext.createBufferSource();
 playSound.buffer = soundObj.soundToPlay;
 playSound.connect(audioContext.destination);
 playSound.start(audioContext.currentTime + time ||
 audioContext.currentTime);
 };

 soundObj.stop = function(time) {
 playSound.stop(audioContext.currentTime + time || audioContext.
 currentTime);
 };
 return soundObj;
}

function audioBatchLoader(obj) {

 for (var prop in obj) {
 obj[prop] = audioFileLoader(obj[prop]);

 }

 return obj;

}

var sound = audioBatchLoader({

 kick: "sounds/kick.mp3",
 snare: "sounds/snare.mp3",
 hihat: "sounds/hihat.mp3",
 shaker: "sounds/shaker.mp3"

});

window.addEventListener("mousedown", function() {
 sound.snare.play();
});

You now need to reference the file in your index.html file .

<head>
<meta charset="UTF-8">
<title></title>

13. Abstracting the File Loader132

 <script src="js/audiolib.js"></script>
 <script src="js/app.js"></script>
 <link rel="stylesheet" href="css/app.css">
</head>

Create a folder named sounds . This is the directory used to hold your audio
files .

Walking through the Code
The function named audioFileLoader creates and returns an object named
soundObj .

function audioFileLoader(){
 var soundObj = {};
 return soundObj;
};

To specify a directory for the file to be used, a parameter is assigned to a
property of soundObj named fileDirectory .

function audioFileLoader(fileDirectory){
 var soundObj = {};
 soundObj.fileDirectory = fileDirectory;
 return soundObj;
};

You can now create the XMLHttpRequest object and set all the required
properties and methods . You can also implement the decodeAudioData
method to make the buffer usable by the Web Audio API . These lines of code
should already be familiar to you because they are the same buffer load-
ing and decoding tools you learned about in Chapter 11, with one small dif-
ference . In Chapter 11 the decoded buffer was assigned to a variable named
 audioBuffer . In this implementation, the decoded buffer is assigned to a
property of soundObj named soundToPlay .

function audioFileLoader(fileDirectory) {
 var soundObj = {};
 var getSound = new XMLHttpRequest();
 soundObj.fileDirectory = fileDirectory;
 getSound.open("GET", soundObj.fileDirectory, true);

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-14&iName=master.img-000.jpg&w=100&h=122

Walking through the Code 133

 getSound.responseType = "arraybuffer";
 getSound.onload = function() {

audioContext.decodeAudioData(getSound.response, function(buffer) {
 soundObj.soundToPlay = buffer; // Property assigned buffer

});
 };

 getSound.send();
 return soundObj;
}

You can now create a playback method that is an extension of soundObj to
play back the buffers .

function audioFileLoader(fileDirectory) {

 var soundObj = {};
 soundObj.fileDirectory = fileDirectory;
 var getSound = new XMLHttpRequest();
 getSound.open("GET", soundObj.fileDirectory, true);
 getSound.responseType = "arraybuffer";
 getSound.onload = function() {
 audioContext.decodeAudioData(getSound.response, function(buffer) {
 soundObj.soundToPlay = buffer;

 });
 };

 getSound.send();

 soundObj.play = function(time) {

var playSound = audioContext.createBufferSource();
playSound.buffer = soundObj.soundToPlay;
playSound.connect(audioContext.destination);
playSound.start(audioContext.currentTime + time ||

 audioContext.currentTime);
 };

 return soundObj;

}

The time argument of the play function determines the number of seconds
you want the audio file to play into the future . The logical expression (audio-
Context.currentTime + time || audioContext.currentTime)
is used to determine whether the time argument is empty and, if it is, then the
start method does not add additional seconds to the value of audioContext.
currentTime . When no arguments are set, the sound plays immediately .

soundObj.play = function(time) {

 var playSound = audioContext.createBufferSource();
 playSound.buffer = soundObj.soundToPlay;
 playSound.connect(audioContext.destination);

13. Abstracting the File Loader134

 playSound.start(audioContext.currentTime + time ||
 audioContext.currentTime);
};

The stop method lets users determine when a sound will stop playback .

soundObj.stop = function(time) {
 playSound.stop(audioContext.currentTime + time ||
 audioContext.currentTime);

}

You can now load the files and play them .

var sound = audioFileLoader("sounds/snare.mp3");
window.addEventListener(“mousedown”, function() {
 sound.play(); // plays at "current time" because no arguments are set
 sound.play(2); // plays 2 seconds into the future
});

This code works, but it reveals a new potential problem . If you want to load
multiple files, you have to type out an audioFileLoader invocation for each
one, like this:

var kick = audioFileLoader("sounds/kick.mp3");
var snare = audioFileLoader("sounds/snare.mp3");
var hihat = audioFileLoader("sounds/hihat.mp3");
var shaker = audioFileLoader("sounds/shaker.mp3");

One way to mitigate this additional repetition is to create a helper function
that loops through an object that contains a collection of audio file directories
and invoke the audioFileloader on each file . You can then return the object .
This will allow each sound to be accessible via its property name . The following
code demonstrates this:

function audioBatchLoader(obj) {
 for (var prop in obj) {
 obj[prop] = audioFileLoader(obj[prop]);
 }
 return obj;
}

var sound = audioBatchLoader({
 kick: "sounds/kick.mp3",
 snare: "sounds/snare.mp3",
 hihat: "sounds/hihat.mp3",
 shaker: "sounds/shaker.mp3"
});

Each file is now accessible using the following syntax:

sound.kick.play();
sound.snare.play();
sound.hihat.play();
sound.shaker.play();

Summary 135

You now have a working library to load multiple audio files . The following
code sets an event listener on the window . If you click it, you will hear the loaded
sound play .

var sound = audioBatchLoader({

 kick: "sounds/kick.mp3",
 snare: "sounds/snare.mp3",
 hihat: "sounds/hihat.mp3",
 shaker: "sounds/shaker.mp3"

});

window.addEventListener("mousedown", function() {

 sound.snare.play();

});

Summary
In this chapter, you learned the basics of how to think about abstraction, while
creating a new tool for loading and playing back multiple audio files . In the next
few chapters, you will learn how to manipulate audio via the node graph using
various effects .

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-14&iName=master.img-001.jpg&w=395&h=104

137

14 The Node
Graph and
Working
with Effects

Up to this point, the topic of the node graph has only been partially described
and has been used mostly as a tool to explain related concepts . In this chap-
ter, you will learn how to work with the node graph to develop custom signal
chains for complex audio applications . The Web Audio API includes many
built-in objects that let you manipulate audio in creative ways . You also learn
how to include these objects in your applications and use them to create
 customized effects .

How to Think About the Node Graph
In a real-world recording studio, you route audio signals by connecting micro-
phones and other sound sources to a sound mixer . The sound mixer is configured
with its own routing scheme, which allows access to equalizers, dynamics pro-
cessors, and other effects . The Web Audio API node graph is designed to mirror
the characteristics of a real-world sound mixer . This is done by connecting input
sources such as oscillators and audio buffers to other objects that manipulate
the sonic characteristics of these input sources in some way . The various objects
(including the input sources) that make up the signal chains are called nodes and
are connected to one another using a method named connect() . You can think
of connect() as a virtual audio cable used to chain the output of one node to

14. The Node Graph and Working with Effects138

the input of another node . The final end point connection for any Web Audio
application is always going to be the audioContext.destination . You can
think of the audioContext.destination as the speakers of your applica-
tion . This collection of connections is what is referred to as the node graph, shown
in the figure below .

Gain Nodes
In a real-world recording studio, you typically use a sound mixer with multiple
channel strips and a routing matrix to split and combine audio signals . With
the Web Audio API node graph, you use gain nodes to split and combine input
sources . Gain nodes allow independent volume control over input sources and act
as virtual mixing channels .

The following code is an example of creating two oscillators and connect-
ing each one to an independent gain node for individual volume control . These
are summed to a third gain node, which is connected to the audioContext.
destination .

//________________________________BEGIN create sawtooth oscillator
var oscSaw = audioContext.createOscillator();
oscSaw.type = "sawtooth";
oscSaw.frequency.value = 118;
oscSaw.start(audioContext.currentTime);
//________________________________END create sawtooth oscillator

/*________________________________BEGIN create gain node and
 connect sawtooth oscillator*/

var gainSaw = audioContext.createGain();
gainSaw.gain.value = 0.6; // set volume
oscSaw.connect(gainSaw);

/*________________________________END create gain node and connect
 sawtooth oscillator*/

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-15&iName=master.img-001.jpg&w=323&h=83

What Effects Are Available? 139

/*________________________________BEGIN create triangle wave
 oscillator*/
var oscTri = audioContext.createOscillator();
oscTri.type = "triangle";
oscTri.frequency.value = 120;
oscTri.start(audioContext.currentTime);
/*________________________________END create triangle wave
 oscillator*/

/*________________________________BEGIN create gain node and
 connect triangle wave oscillator*/

var gainTri = audioContext.createGain();
gainTri.gain.value = 3; // set volume
oscTri.connect(gainTri);

/*________________________________END create gain node and connect
 triangle wave oscillator*/

//____SUM Both Oscillators___
var gainOscSum = audioContext.createGain();
gainOscSum.gain.value = 1;
gainTri.connect(gainOscSum);
gainSaw.connect(gainOscSum);
//____Connect to the audioContext.destination

gainOscSum.connect(audioContext.destination);

The Placement of Nodes Is Up to You
It is important to realize that due to the flexible nature of the node graph, you
can place your input sources and other nodes at any part of the chain . Imagine
you have ten gain nodes all connected in series, and you want to inject an oscil-
lator into the sixth one . This is perfectly fine because the oscillator is unaffected
by the first five gain nodes in the chain by being funneled through the last
five gain nodes prior to reaching the audioContext.destination . This
is not just a feature of gain nodes but the nature of the node graph . You can
place any input source, or any other node, anywhere you want in the node graph
signal chain. The order in which you connect objects is dependent on the result
you want .

What Effects Are Available?
The following chart contains some of the nodes that are characteristic of the effect
processors you see in real-world recording studios . These effects are called modi-
fication nodes, but for clarity they are referred to as effects nodes in this book . The
specifics of effects nodes are explored in later chapters . The focus of this chapter
is to give you a general understanding of how these effects nodes can be incorpo-
rated into the node graph .

14. The Node Graph and Working with Effects140

Node Name Effect Description

Gain Volume
modification

Sets the volume of an input source . Gain nodes are
also used as virtual mixing channels that can be
connected in parallel or in series .

StereoPanner 2D equal power
panning

Changes the stereo placement of sound in 2D
space .

BiquadFilter EQ filter Accentuates or attenuates part of the frequency
spectrum of an input source .

Delay Audible delay Creates a time delay between when an input
source plays and when the signal is made
audible .

Convolver Convolution
reverberation

Creates reverberation effects by referencing
impulse response files that model real-world
spaces . Can also be used creatively for nonreverb
applications .

DynamicsCompressor Dynamic range
compression

Modifies the volume of a signal dynamically .

How to Determine the Nodes You Need to
Create the Effect You Want
If you have an idea for an effect you want to incorporate into your application,
you can follow these steps to help determine the tools you need to create it:

1. Determine the specific type of effect you want (chorus, tremolo, hall
reverberation, multiband, EQ, etc .) .

 2. Determine the nature of the effect . In other words, if the effect you want
is a chorus, then the nature of the effect is an audible delay . If the effect
you want is a multiband equalizer, then the nature of the effect is audio
filtering .

 3. Research the Web Audio API specification to find a node that you can
use to create the effect . Many times, creating the exact effect you want
requires combining different nodes or combining similar nodes with
slightly modified parameters .

 4. Invoke the respective method of the AudioContext to create the node
(or nodes if you are using more than one) . This is a method that starts with
the word create, such as createGain() or createBiquadFilter() .

 5. Connect the object (or objects if you are using more than one) to the
node graph in the part of the signal chain that you want .

 6. Modify the built-in properties and methods of the object(s) to manipu-
late the input source(s) in the manner you want .

Some Effects Require Development Work 141

A Real-World Example
Assume you want to apply a low-pass (also called lowpass) filter to an oscillator .
(A low-pass filter is a filter that only allows signals below a certain frequency to
pass .) To do this, you first research the Web Audio API documentation to see
whether this type of filter is supported . You can search the specification directly
at: https://www .w3 .org/TR/webaudio . An alternative reference (and one that is a
bit more readable) is the Mozilla Developer Network documentation at: https://
developer .mozilla .org/en-US/docs/Web/API/Web_Audio_API .

When researching, do a search for “filters” or “lowpass .” In the results, you
will discover that there is a specialized node called a biquad filter that is dedi-
cated to audio filtering . This node includes a property named type that you can
set to lowpass . As the value implies, this filter type is used to apply a low-pass
filter to an input source . To apply this to your application, you first invoke the
createBiquadFilter() method, which returns an object that you store in a
variable . You then connect an input source, such as an oscillator or array buffer,
to this object using the connect method .

var audioContext = new AudioContext();

var osc = audioContext.createOscillator();
osc.start(audioContext.currentTime);
var filter = audioContext.createBiquadFilter();
filter.type = "lowpass";
osc.connect(filter);
filter.connect(audioContext.destination);

The final step is to define any additional properties or methods to custom-
ize the effect . Properties or methods that allow you to customize the behavior
of nodes are called audio params (short for audio parameters) . In the previous
example, type is an audio param . The following code sets another audio param
named frequency to the value 250 . This defines where the low-pass filter
begins to cut off in the frequency spectrum .

var audioContext = new AudioContext();

var osc = audioContext.createOscillator();
osc.start(audioContext.currentTime);
var filter = audioContext.createBiquadFilter();
filter.type = "lowpass"; // audio param
filter.frequency.value = 250; // audio param
osc.connect(filter);

filter.connect(audioContext.destination);

Some Effects Require Development Work
It is important to understand that the Web Audio API’s effects nodes are build-
ing blocks . This means that some of the effects you want to achieve might require
additional development work on your part . For example, if you want to use a

https://www.w3.org/TR/webaudio
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

14. The Node Graph and Working with Effects142

multiband equalizer, you won’t find a “multiband equalizer node” in the Web
Audio API specification . Instead, you must build your own multiband equalizer
using a collection of BiquadFilter nodes .

Summary
In this chapter, you were formally introduced to the node graph and how to cre-
ate custom signal chains using input sources and effects nodes . In the next few
chapters, you will build on this knowledge and explore the specifics of some of
these effects nodes .

143

15

One of the most common ways to manipulate sound is by boosting or attenuating
a range of frequencies using audio filters . A familiar example of this is the use of
audio equalizers to brighten or muffle a sound . The Web Audio API has a node
named BiquadFilter that allows you to create different types of audio filters
that can be connected together to create various forms of equalizers . In this chap-
ter, you will learn how to use the BiquadFilter node, and in the process, you
will create a seven-band graphic equalizer and a single-band parametric equalizer .

Using the Biquad Filter Node
To use the BiquadFilter node, you must first instantiate it using the create
BiquadFilter function and store the returned object in a variable .

var audioContext = new AudioContext();
var filter = audioContext.createBiquadFilter();

Once you create the object, you can connect an input source to it . The follow-
ing example connects an oscillator to the object .

var audioContext = new AudioContext();
var osc = audioContext.createOscillator();
var filter = audioContext.createBiquadFilter();

The Biquad
Filter Node

15. The Biquad Filter Node144

osc.connect(filter); // connect input source to filter
osc.start(audioContext.currentTime);
filter.connect(audioContext.destination); /*connect filter to
 audioContext.destination*/

Filter Types
BiquadFilter contains a property named type that defines the type of filter
the node behaves like . If you do not explicitly set the type property, its default
value is lowpass . You can see this in the console.log() output in the fol-
lowing code:

var audioContext = new AudioContext();
var osc = audioContext.createOscillator();
var filter = audioContext.createBiquadFilter();
filter.frequency.value = 250;
console.log(filter.type); // default is lowpass
osc.connect(filter);
osc.start(audioContext.currentTime);
filter.connect(audioContext.destination);

To explicitly set the type property to lowpass, you write the following
code:

filter.type = "lowpass";

In addition to the type property, BiquadFilter has a property named
frequency.value that allows you to assign a particular frequency to the
object . The value is in hertz and is represented by a number . The default value
is 350 .

filter.frequency.value = 1000; // 1000 Hz or 1kHz

The type value of a BiquadFilter node determines if it has two addi-
tional properties: gain and Q . The gain.value property allows you to boost
or attenuate frequency.value . The Q.value property represents the band-
width of the frequency value . Bandwidth represents the reach by which neighbor-
ing frequencies are affected in relation to changes made to the gain of the selected
frequency . The following images demonstrate the difference between a narrow
bandwidth setting and a wide bandwidth setting of a 1 kHz frequency using a
peaking filter .

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-16&iName=master.img-000.jpg&w=322&h=83

Filter Types 145

The effect Q.value and gain.value have on frequency.value depends
on the filter’s type setting . The following chart lists the available filter types and
describes the relationship between type, frequency, Q, and gain properties .

Type Description Frequency Q Gain

lowpass Frequencies below the
cutoff are allowed to
pass through .
Frequencies above the
cutoff are attenuated .

The cutoff
frequency .

The larger the value,
the greater the
peak produced .

Not used

highpass Frequencies above the
cutoff are allowed to
pass through .
Frequencies below the
cutoff are attenuated .

The cutoff
frequency .

Sets the width of the
frequency band .
The greater the
number, the
narrower the value .

Not used

bandpass Frequencies inside the
range of frequencies
pass through .
Frequencies outside the
range are attenuated .

The center of
the range of
frequencies .

Sets the width of the
frequency band .
The greater the
number, the
narrower the value .

Not used

lowshelf Frequencies lower than
the upper limit get a
boost or an attenuation
depending on the gain
setting .

The upper
limit of the
frequencies
receiving the
boost or
attenuation .

Not used Creates a boost
in decibel . If
the value is
negative, the
gain is
attenuated .

highshelf Frequencies higher than
the lower limit get a
boost or an attenuation
depending on the gain
setting .

The lower
limit of the
frequencies
getting a
boost or an
attenuation .

Not used Creates a boost
in decibel . If
the value is
negative, the
gain is
attenuated .

peaking Frequencies inside a
range of frequencies are
boosted or attenuated
depending on the gain
setting .

The middle of
the
frequency
range getting
a boost or an
attenuation .

Sets the width of the
frequency band .
The greater the
number, the
narrower the value .

Creates a boost
in decibel . If
the value is
negative, the
gain is
attenuated .

Continued

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-16&iName=master.img-001.jpg&w=322&h=83

15. The Biquad Filter Node146

Type Description Frequency Q Gain

notch Frequencies inside a
range of frequencies are
not allowed to pass
through .

The center of
the range of
frequencies .

Controls the width
of the frequency
band . The greater
the Q value, the
smaller the
frequency band
produced .

Not used

allpass Allows all frequencies
through but changes
their phase
relationship .

The frequency
where the
center of the
phase
transition
occurs .

Controls how sharp
the transition is at
the selected
frequency . The
larger this value,
the sharper the
transition
produced .

Not used

Creating an Equalizer
Two of the most common types of equalizers are parametric and graphic .
A graphic equalizer allows you to boost or attenuate a series of fixed frequen-
cies but does not include the ability to modify the bandwidth of those selected
frequencies . Parametric equalizers, on the contrary, allow you to select a specific
frequency, boost or attenuate it, and change the bandwidth range . You can use
BiquadFilter nodes to design either of these equalizers, and many others .

Graphic EQ
The following diagram and code show how to create a seven-band graphic equal-
izer . You do this by chaining a series of BiquadFilter nodes together and set-
ting their type properties to peaking . Keep in mind that the only parameter
the user of a graphic equalizer should be allowed to change is the gain of each
filter . The input and output source for this example is abstracted using a function
named multibandEQ .

var filter1 = audioContext.createBiquadFilter();
filter1.type = "peaking"; /*______Do not let user modify. This is a
 graphic EQ!*/
filter1.gain.value = 0;
filter1.Q.value = 1; /*___________Do not let user modify. This is a
 graphic EQ!*/
filter1.frequency.value = 64; /*__Do not let user modify. This is a
 graphic EQ!*/

var filter2 = audioContext.createBiquadFilter();

Graphic EQ 147

filter2.type = "peaking"; /*______Do not let user modify. This is a
 graphic EQ!*/
filter2.gain.value = 0;
filter2.Q.value = 1; /*___________Do not let user modify. This is a
 graphic EQ!*/
filter2.frequency.value = 150; /*_Do not let user modify. This is a
 graphic EQ!*/

var filter3 = audioContext.createBiquadFilter();
filter3.type = "peaking"; /*______Do not let user modify. This is a
 graphic EQ!*/
filter3.gain.value = 0;
filter3.Q.value = 1; /*___________Do not let user modify. This is a
 graphic EQ!*/
filter3.frequency.value = 350; /*_Do not let user modify. This is a
 graphic EQ!*/

var filter4 = audioContext.createBiquadFilter();
filter4.type = "peaking"; /*______Do not let user modify. This is a
 graphic EQ!*/
filter4.gain.value = 0;
filter4.Q.value = 1; /*___________Do not let user modify. This is a
 graphic EQ!*/
filter4.frequency.value = 1000; /*Do not let user modify. This is a
 graphic EQ!*/

var filter5 = audioContext.createBiquadFilter();
filter5.type = "peaking"; /*______Do not let user modify. This is a
 graphic EQ!*/
filter5.gain.value = 0;
filter5.Q.value = 1; /*___________Do not let user modify. This is a
 graphic EQ!*/
filter5.frequency.value = 2000; /*Do not let user modify. This is a
 graphic EQ!*/

var filter6 = audioContext.createBiquadFilter();
filter6.type = "peaking"; /*______Do not let user modify. This is a
 graphic EQ!*/
filter6.gain.value = 0;
filter6.Q.value = 1; /*___________Do not let user modify. This is a
 graphic EQ!*/
filter6.frequency.value = 6000; /*Do not let user modify. This is a
 graphic EQ!*/

var filter7 = audioContext.createBiquadFilter();
filter7.type = "peaking"; /*______Do not let user modify. This is a
 graphic EQ!*/
filter7.gain.value = 0;
filter7.Q.value = 1; /*___________Do not let user modify. This is a
 graphic EQ!*/
filter7.frequency.value = 12000; /*Do not let user modify. This is a
 graphic EQ!*/

function multibandEQ(inputConnection, outputConnection) {

 inputConnection.connect(filter1);
 filter1.connect(filter2);
 filter2.connect(filter3);

15. The Biquad Filter Node148

 filter3.connect(filter4);
 filter4.connect(filter5);
 filter5.connect(filter6);
 filter6.connect(filter7);
 filter7.connect(outputConnection);

}

The code files for this chapter include versions of both the graphic and para-
metric equalizers with user interface controls . These applications allow you to
toggle the playback of a song and change parameters of the BiquadFilter
nodes in real time by using the interactive sliders .

Parametric EQ
You can design a parametric equalizer in a similar way to the graphic equal-
izer by chaining a series of BiquadFilter nodes together and setting their
type properties to peaking . The primary difference of the parametric equalizer
is that the frequency, gain, and bandwidth are modifiable by the user . Keep in
mind that with multiband parametric equalizers, the filter type may have mul-
tiple options available . To keep the code simple and short, the following example
shows how to create a single-band parametric equalizer with type set to the value
peaking . The input and output source in this code is abstracted using a func-
tion named parametricEQ .

var parametricEQ1 = audioContext.createBiquadFilter();
parametricEQ1.type = "peaking";
parametricEQ1.gain.value = 0; // allow the user to change this
parametricEQ1.Q.value = 1; // allow the user to change this
parametricEQ1.frequency.value = 1000;
function parametricEQ(inputConnection, outputConnection) {
 inputConnection.connect(parametricEQ1);
 parametricEQ1.connect(outputConnection);
}

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-16&iName=master.img-003.jpg&w=264&h=182

Summary 149

Summary
In this chapter, you learned about the BiquadFilter node and how to use it to
create custom equalizers and filter arrangements . Keep in mind that the exam-
ples here are kept simple, and like the node graph itself, your filter arrangements
can be as complex as you want to make them . In the next chapter, you will learn
about another signal processing node: the convolver node .

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-16&iName=master.img-004.jpg&w=263&h=208

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-16&iName=master.img-005.jpg&w=395&h=104

151

16 The
Convolver
Node

In this chapter, you will learn how to use the convolver node . The convolver
allows you to apply reverberation to node graph input sources by referencing a
special kind of audio file called an impulse response .

Convolution Reverb
When an acoustic sound is created, its characteristics are shaped by its immedi-
ate environment . This is due to sound waves bouncing off and around various
obstacles . These obstacles can be made of different materials that affect the sound
in different ways . The result of sound emanating from a small room has different
characteristics than sound emanating from a large room . Because the human
ear can hear these differences, when this information is transmitted to the brain,
we perceive these characteristics as room ambience . Modern advancements in
digital audio technology allow us to record the ambience of any real-world envi-
ronment and apply it to any digital audio signal directly . These recorded ambi-
ences are stored as a special file called an impulse response . An impulse response
file is made by recording a single sound burst in an environment, which could
be white noise, a sine wave sweep, or even a balloon pop . This recording is then
run through a special digital algorithm to create a single file called an impulse
response . This impulse response file is combined or convolved with another input

16. The Convolver Node152

source to give the targeted sound the spacial characteristics of the room that the
impulse is modeled from .

The format of impulse response files can be any audio file type includ-
ing WAV, MP3, AIFF, or OGG . However, to use them with the Web Audio
API, impulse response files must be in a browser-compatible audio format .
For this chapter, we use WAV files because they are of higher quality than
MP3 files . And because impulse response files are small, load time is not a
concern .

Where to Get Pre-Recorded Impulse
Response Files
There are many online resources where you can download impulse response files
for free, such as: http://www .openairlib .net/ .

Using Impulse Response Files
To use impulse response files, you must first load them, decode them, and store
them in a buffer .

var audioContext = new AudioContext();
var impulseResponseBuffer;
var getSound = new XMLHttpRequest();
getSound.open("get", "sounds/impulse.js", true); // impulse file
getSound.responseType = "arraybuffer";

getSound.onload = function() {
 audioContext.decodeAudioData(getSound.response, function(buffer) {
 impulseResponseBuffer = buffer;
 });
};
getSound.send();

After the file is stored in a buffer, the next step is to wire up the necessary
nodes to apply the effect to an input source . To integrate the impulse response
into the node graph configuration, you must first create a convolver node using
audioContext.createConvolver() and store the returned object in a
variable .

var convolver = audioContext.createConvolver();

You then assign the loaded impulse response buffer to the buffer property of
the object .

convolver.buffer = impulseResponseBuffer;

Next, you connect any input source you want to the convolver node . Here is
an example of connecting an oscillator .

http://www.openairlib.net/

Using Impulse Response Files 153

var osc = audioContext.createOscillator();
var convolver = audioContext.createConvolver();
osc.type = "sawtooth";
convolver.buffer = impulseResponseBuffer;
osc.connect(convolver);
convolver.connect(audioContext.destination);
osc.start(audioContext.currentTime);

The following HTML and JavaScript code combines the impulse file
loader, node graph connections, and JQuery DOM selectors to allow you to
play the oscillator by clicking an HTML button and holding it . This allows
you to hear the reverberation effect more explicitly because the reverb tail is
audible after removing your finger from the mouse button and stopping the
oscillator .

HTML
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title></title>
 <script type="text/javascript" src="https://ajax.googleapis.
 com/ajax/libs/jquery/2.1.0/jquery.js"></script>
 <script src="js/app.js"></script>
 </head>
 <body>
 <button>Oscillation</button>
 </body>
</html>

JavaScript
"use strict";
var audioContext = new AudioContext();
var impulseResponseBuffer;
var getSound = new XMLHttpRequest();
getSound.open("get", "sounds/impulse.wav", true);
getSound.responseType = "arraybuffer";

getSound.onload = function() {
 audioContext.decodeAudioData(getSound.response, function(buffer) {
 impulseResponseBuffer = buffer;
 });
};

getSound.send();

/*___BEGIN playback
 functionality*/

var osc = audioContext.createOscillator();

16. The Convolver Node154

function playback() {
 var convolver = audioContext.createConvolver();
 osc = audioContext.createOscillator();
 osc.type = "sawtooth";
 convolver.buffer = impulseResponseBuffer;
 osc.connect(convolver);
 convolver.connect(audioContext.destination);
 osc.start(audioContext.currentTime);
}

$(function() {

 $("button").on("mousedown", function() {
 playback();
 });

 $("button").on("mouseup", function() {
 osc.stop();
 });
});

Controlling the Amount of Reverberation
In the previous code example, the amount of reverb applied to the oscillator is
fixed at 100 percent . If you want to make the effect variable, which allows you to
control how much of the effect is applied to the input source, you can do so by
splitting the input source with a gain node and routing one split to the convolver
node prior to connecting it to the destination . You then connect the other split
directly to the destination . You use gain.value to blend the amount of the
effect you want to hear .

The following diagram and node graph configuration code demonstrate the
splitting operation .

var gain = audioContext.createGain();
var convolver = audioContext.createConvolver();

osc = audioContext.createOscillator();
osc.type = "sawtooth";
convolver.buffer = impulseResponseBuffer;
osc.connect(convolver);
convolver.connect(gain);
gain.gain.value = 0.2;
gain.connect(audioContext.destination);
osc.connect(audioContext.destination);
osc.start(audioContext.currentTime);

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-17&iName=master.img-000.jpg&w=323&h=48

Summary 155

Summary
In this chapter, you learned how to use the convolver node to apply an impulse
response file to an input source . You also learned how to use gain nodes to control
the amount of the effect you want to hear . In the next chapter, you will learn how
to modify the panning of stereo input sources and how to create sophisticated
routing schemes using the channel and merger nodes .

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-17&iName=master.img-001.jpg&w=395&h=104

157

17 Stereo
Panning,
Channel
Splitting, and
Merging

The Web Audio API includes a stereo panner node that lets you pan input sources
to any part of the stereo field . It also includes nodes that let you split multichan-
nel audio files into separate channels as well as merge multichannel input sources
into a specified output channel . In this chapter, you will learn how to use these
nodes to manipulate multichannel input sources .

The Stereo Panner Node
To use the stereo panner node, you first invoke createStereoPanner() and
store the returned object in a variable .

var stereoPanner = audioContext.createStereoPanner();

You can then connect any input source to the node and use pan.value to
set the location in the stereo field where you want to place the sound . The pan.
value property setting is a number between 1 and −1, where 1 represents a 100
percent pan to the right and −1 represents a 100 percent pan to the left . In the
following example, an oscillator is connected to a stereo panner node and is set
50 percent to the left .

var oscillator = audioContext.createOscillator();
var stereoPanner = audioContext.createStereoPanner();

17. Stereo Panning, Channel Splitting, and Merging158

stereoPanner.pan.value = -0.5;
oscillator.connect(stereoPanner);
stereoPanner.connect(audioContext.destination);
oscillator.start(audioContext.currentTime);

The stereoPanner() uses an equal power algorithm to pan input sources .
This means that when a stereo input source is panned, the audio content on the
attenuated side is summed with the audio on the amplified side .

The Channel Splitter
If you want to isolate the individual channels of a multichannel input source
or do not want your stereo input sources to be subjected to an equal power
algorithm, you must use the channel splitter . This node isolates any channel
of a multichannel input source for further processing . This applies to both
stereo and other multichannel audio input sources, such as 5 .1 surround files .
To create a channel splitter, you invoke the createChannelSplitter()
method with a single argument and store the returned object in a variable .
The argument value is the number of channels of the audio source material
that you intend to connect to the splitter . If no argument is specified, the
default is 6 . In the following example, a stereo file is split, so the argument is
set to 2 .

var splitter = audioContext.createChannelSplitter(2);

To use the channel splitter, you connect input sources to it and then connect
the splitter to other nodes . When connecting the splitter to a destination node,
you specify the channel of the input source to connect to in the second argument
of the connect() method . This argument is a number that represents the chan-
nel as an index value . The following chart displays the index for each channel of
a six-channel input source .

Channel Index Value

L 0
R 1
SL 2
SR 3
C 4
LFE 5

The following code shows the correspondence between the channel index
argument and its respective channel type .

stereoInputSource.connect(splitter);
splitter.connect(audioContext.destination, 0); /*outputs left
 side/channel of stereo input source*/
splitter.connect(audioContext.destination, 1); /*outputs right
 side/channel of stereo input source*/

Merging All Channels of a Multichannel File into a Single Mono Channel 159

The following code shows how to modify the gain value of individual left and
right channels of a stereo input source . In other words, this configuration is the
opposite of an equal power panning algorithm .

var splitter = audioContext.createChannelSplitter(2);
var pannerLeft = audioContext.createStereoPanner();
var pannerRight = audioContext.createStereoPanner();
var left = audioContext.createGain();
var right = audioContext.createGain();
sound = audioContext.createBufferSource();
sound.loop = true;
sound.buffer = bufferSource;
sound.connect(splitter);
splitter.connect(left, 0); //___connect left channel to gain node
splitter.connect(right, 1); //__connect right channel to gain node
left.gain.value = leftVal; /*_________independent left channel
 control*/
right.gain.value = rightVal; /*________independent right channel
 control*/
left.connect(pannerLeft);
pannerLeft.pan.value = -1;
pannerRight.pan.value = 1;
right.connect(pannerRight);
pannerLeft.connect(audioContext.destination);
pannerRight.connect(audioContext.destination);
sound.start(audioContext.currentTime + time || audioContext.
 currentTime);

The Channel Merger
If you want to combine multiple mono input sources and route them to a specific
channel in the stereo (or multichannel) spectrum, you use a channel merger . The
function invocation for the channel merger node takes one argument that deter-
mines how many input channels the object accepts . If no argument is given, the
default is 6 .

var merger = audioContext.createChannelMerger();

When connecting an input source to a channel merger, you must specify the
output channel using the third argument of the connect method .

inputSource.connect(merger, 0, 1); /*outputs all channels of
 inputSource to right channel*/

Merging All Channels of a Multichannel File
into a Single Mono Channel
To combine a multichannel file into a single mono output, which is placed at the
center of the stereo spectrum, you set the channel merger invocation argument
to 1, and then connect the input source to the channel merger .

17. Stereo Panning, Channel Splitting, and Merging160

var multiChannelInputSource = audioContext.createBufferSource();
var merger = audioContext.createChannelMerger(1); /*Set number of
 channels*/
stereoInputSource.buffer = audioBuffer;
stereoInputSource.connect(merger);
merger.connect(audioContext.destination);

Using the Merger and Splitter Nodes Together
The merger and splitter nodes can be used in conjunction with one another to
route specific input channels to specific output channels . The following code
takes the left and right sides of a stereo input source and swaps them .

stereoInputSource.connect(splitter);
splitter.connect(merger, 0, 1); // input left and output right
splitter.connect(merger, 1, 0); // input right and output left
merger.connect(audioContext.destination);

If you connect an audio input source, such as an audio buffer source node,
directly to a channel merger node, there is no reason to set the second argument
of the connect method to a value other than 0 . This is because the merger node
has a single output .

audioBufferSource.connect(merger, 0, 1);

If the input of a channel merger is a channel splitter, the second argument
of the connect method is the channel of the input source sent to the merger .

var channelSplitter = audioContext.createChannelSplitter();
var channelMerger = audioContext.createChannelMerger();
var sound = audioContext.createBufferSource();
sound.buffer = audioBuffer;
sound.connect(channelSplitter);
channelSplitter.connect(channelMerger, 0, 0); /*The left channel
 of playSound is connected to the channel merger*/

channelMerger.connect(audioContext.destination);

Summary
In this chapter, you learned how to apply stereo panning to audio input sources .
You also learned how to work with the channel splitter and channel merger
nodes . In the next chapter, you will explore how to create delay effects using the
delay node .

161

18

In the world of creative audio, delays are a common method used to create
time-based effects . In this chapter, you will learn how to use the delay node to
create the most common delay effects: echo, slap back, and ping-pong .

The Delay Node
The delay node is used to adjust the time between when an input source plays
and when it becomes audible . The following example connects an audio buffer
to a delay node . The delayTime.value property determines the delay time in
seconds .

var sound = audioContext.createBufferSource();
var delay = audioContext.createDelay();
delay.delayTime.value = 1; // One second
sound.buffer = audioBuffer;
sound.connect(delay);
delay.connect(audioContext.destination);
sound.start(audioContext.currentTime);

If you listen to the result of the previous example, you will notice that it does
not provide the repetitive echo delay effect that is typical of an effects processor .

The Delay
Node

18. The Delay Node162

This is because the only thing the delay node does is pause the audio from playing
for a set amount of time . If you want a repetitive echo effect, you must create it .

Creating Echo Effects
To create an echo effect, you configure a node graph scheme that sets the delayed
signal to feed back on itself .

The gain.value property controls the amount of the effect and the
delayTime.value property controls the length of the delay . The following
code applies the effect to an audio buffer .

var sound = audioContext.createBufferSource();
var delayAmount = audioContext.createGain();
var delay = audioContext.createDelay();
sound.buffer = audioBuffer;
delay.delayTime.value = 0.5;
delayAmount.gain.value = 0.5;
sound.connect(delay);
delay.connect(delayAmount);
delayAmount.connect(delay);
delayAmount.connect(audioContext.destination);
sound.connect(audioContext.destination);
sound.start(audioContext.currentTime);

Creating Slap Back Effects
A slap back effect is a quick delay of 40–140 ms . To create this type of effect, you
split an input source and connect one branch to the delay and the other branch
to the destination . You also connect the delay node to a gain node to control
the volume of the effect . The node configuration for a slap back is shown in the
following example and figure .

var sound = audioContext.createBufferSource();
var delayAmount = audioContext.createGain();
var delay = audioContext.createDelay();
sound.buffer = audioBuffer;
delay.delayTime.value = 0.06;
delayAmount.gain.value = 0.5;
sound.connect(delay);
delay.connect(delayAmount);

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-19&iName=master.img-000.jpg&w=287&h=63
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-19&iName=master.img-001.jpg&w=287&h=41

Creating a Ping-Pong Delay 163

delayAmount.connect(audioContext.destination);
sound.connect(audioContext.destination);
sound.start(audioContext.currentTime);

Creating a Ping-Pong Delay
A ping-pong effect is an echo delay where the echo toggles between the left and right
side of the stereo spectrum . This effect can be created by spitting an input source to
the left and right outputs, running each of those outputs through independent delay
and gain nodes, and then feeding back the signal from the gain to its own delay as
well as the delay being used to process the other side of the stereo spectrum .

The following code implements the configuration shown in the above figure .

//___BEGIN setup

var sound = audioContext.createBufferSource();
sound.buffer = audioBuffer;

var merger = audioContext.createChannelMerger(2);
var splitter = audioContext.createChannelSplitter(2);

var leftDelay = audioContext.createDelay();
var rightDelay = audioContext.createDelay();

var leftFeedback = audioContext.createGain();
var rightFeedback = audioContext.createGain();

//__END setup

sound.connect(splitter);
sound.connect(audioContext.destination);

splitter.connect(leftDelay, 0);
leftDelay.delayTime.value = 0.5;

leftDelay.connect(leftFeedback);
leftFeedback.gain.value = 0.6;
leftFeedback.connect(rightDelay);

splitter.connect(rightDelay, 1);
rightDelay.delayTime.value = 0.5;
rightFeedback.gain.value = 0.6;

rightDelay.connect(rightFeedback);
rightFeedback.connect(leftDelay);

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-19&iName=master.img-002.jpg&w=287&h=79

18. The Delay Node164

leftFeedback.connect(merger, 0, 0);
rightFeedback.connect(merger, 0, 1);

//___BEGIN output

merger.connect(audioContext.destination);
//___END output

sound.start(audioContext.currentTime);

Summary
The delay node by itself is not complicated or difficult to use, but when combined
with other nodes it can be a powerful tool for the creation of interesting audio
effects . In the next chapter, you will continue exploring the node graph and learn
how to apply dynamic range compression to audio input sources .

165

19 Dynamic
Range
Compression

In this chapter, you will learn about the dynamics compressor node . This node
allows you to apply dynamic range compression to audio input sources .

The Dynamics Compressor Node
Dynamic range compression is the process of automatically attenuating an audio
signal when its decibel level exceeds a specified threshold . This is analogous to
manually turning down the volume knob on your radio when a piece of music
gets too loud and then turning it back up during a quieter passage . When this
action is done with a dynamic range compressor, you get the benefits of automa-
tion, speed, and the precision of a computer .

The Web Audio API comes with a built-in tool called the dynamics com-
pressor node that allows you to apply dynamic range compression to audio input
sources . To use it, you must first invoke the createDynamicsCompressor()
method and store the resulting object in a variable .

var compressor = audioContext.createDynamicsCompressor();

The object provides you with a collection of five properties that affect the
dynamic range of an audio input source . A sixth property called reduction
is also available, but it does not affect the input source in any way . The reduction

19. Dynamic Range Compression166

property is used exclusively to output a reduction value . These properties are
briefly described in the following chart . All properties except reduction take a
number as their assignment . The reduction property provides only a readout
value .

Property Description

Threshold The decibel value above which the compression will start taking effect . Its default
value is −24, with a nominal range of −100 to 0 .

Ratio Determines how much compression is administered . Setting the ratio to 2 means
that for every 2 dB that the signal exceeds the threshold there will be only 1 dB in
amplitude change . The ratio property takes a number between 1 and 20 .

Knee A decibel value representing the range above the threshold where a curve is created
that smoothly transitions to the compressed part of the signal . Its default value is
30, with a nominal range of 0–40 .

Release Sets the release speed of the compression effect . The amount of time (in seconds) to
reduce the gain by 10 dB . Its default value is 0 .003, with a nominal range of 0–1 .

Attack Sets the attack speed of the compression effect . The amount of time (in seconds) to
increase the gain by 10 dB . Its default value is 0 .250, with a nominal range of 0 to 1 .

Reduction A numeric readout of the reduction being applied . The reduction property does not
affect the signal and is used for metering purposes .

The following code demonstrates how to apply the dynamics compres-
sor node to an audio input source . In this example, for every 12 dB the signal
 surpasses a threshold of −40 dB, its output is increased by 1 dB .

//___BEGIN setup

 var sound = audioContext.createBufferSource();
 var compressor = audioContext.createDynamicsCompressor();
 sound.buffer = audioBuffer;

//__END setup

 sound.connect(compressor);
 compressor.threshold.value = -40;
 compressor.ratio.value = 12;

//___BEGIN output

 compressor.connect(audioContext.destination);
//___END output
 sound.start(audioContext.currentTime);

Anyone familiar with the world of creative audio will immediately be famil-
iar with every property available to the dynamics compressor node except one:
reduction . The reduction property, specific to the Web Audio API, out-
puts a numeric value representing the amount of reduction the compressor
is imposing on the input source . The following code uses setInterval()
to allow you to see the change in reduction value as an audio input source is
compressed .

Summary 167

//___BEGIN setup
 var compressor = audioContext.createDynamicsCompressor();

 var sound = audioContext.createBufferSource();
 sound.buffer = audioBuffer;

//__END setup

 sound.connect(compressor);
 compressor.threshold.value = -40;
 compressor.ratio.value = 12;

 //___BEGIN output
 compressor.connect(audioContext.destination);
 //___END output

 sound.start(audioContext.currentTime);

 window.setInterval(function() {
 console.log(compressor.reduction.value);
}, 50);

Summary
Using the dynamics compressor node is not complicated . It contains all the
basic parameters needed to modify the dynamic range of any input source con-
nected to it .

In the next chapter you will learn how to work with time in the Web
Audio API .

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-20&iName=master.img-000.jpg&w=288&h=99

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-20&iName=master.img-001.jpg&w=395&h=104

169

20

In this chapter, you will learn how to work with time to schedule Web Audio
API sound playback points, how to create loops, and how to automate parameter
changes .

The Timing Clock
When you invoke a new instance of the audio context, the Web Audio API’s
internal timing clock begins to tick . This timing reference is in seconds and is
expressed as a decimal number . The timing clock is tied to your computer’s inter-
nal audio hardware subsystem, giving it a degree of precision that can align with
sounds at the sample level . If you want to see the current value of the audio clock,
you can use the currentTime property of the audio context .

console.log(audioContext.currentTime);

When you play an audio event, the Web Audio API requires you to schedule it .
Remember that the unit you use for time value scheduling is seconds. If you want
to schedule an event immediately, you can use the currentTime property of the
audio context .

Time

20. Time170

You have already had some exposure to scheduling the playback of sounds in
previous chapters, such as in the following example code:

sound.start(audioContext.currentTime); // Play immediately
sound.start(audioContext.currentTime + 2); /*Play audio buffer two
 seconds into the future*/

The start Method
The start method is used to begin a sound playing . The start method takes
three arguments . The first argument schedules when the sound plays, either
immediately or in the future . The second argument sets a start point that deter-
mines where to begin playback from in the audio buffer . The third argument sets
when a sound ceases to play . For a real-world example, imagine you were playing
back a 4/4 drum loop and 0 .5 seconds into the loop the drummer hit the snare
drum . If you want to start playback from this point, you set the second argument
of start() to 0 .5 .

sound.start(audioContext.currentTime,0.5);

The third argument sets how much of the sound will play . If you have a sound
that is 4 seconds long and you only want to hear the first 2 seconds, then you set
the third argument to 2 .

sound.start(audioContext.currentTime,0, 2);

Looping Sounds
To loop sounds, you set the loop property of an audio buffer source node to
true . To set the start point of a loop, you use the property loopStart . To
set the end point of a loop, you use the property loopEnd .

sound.loop = true;
 sound.loopStart = 1; /*Set loop point at one second after
 beginning of playback*/
 sound.loopEnd = 2; /*Set loop end point at two seconds after
 beginning of playback*/

Sometimes when trying to discern playback and loop points, it is useful to
know the length of an audio file . You can get this information using a property of
the sound buffer named duration .

var sound = audioContext.createBufferSource();
sound.buffer = buffer;
sound.buffer.duration; // length in seconds of audio file

Included in the code examples for this chapter is an application that allows
you to modify the playback and loop points of an audio file in real time using
interactive sliders .

Changing Audio Parameters over Time 171

Update Your Audio Loader Library
The play() method of your audio loader library is not designed to access the
second and third arguments of the start method . You can make these argu-
ments available with the following modifications to your code:

soundObj.play = function(time, setStart, setDuration) {
 playSound = audioContext.createBufferSource();
 playSound.buffer = soundObj.soundToPlay;
 playSound.connect(audioContext.destination);
 playSound.start(audioContext.currentTime + time || audioContext.
 currentTime, setStart || 0, setDuration || soundObj.soundToPlay.
 duration);
};

The start and end point settings are now available .

sounds.snare.play(0, 1, 3);

Changing Audio Parameters over Time
Up to this point you have changed audio parameters by directly setting the value
property to a number .

var osc = audioContext.createOscillator();
osc.frequency.value = 300;

The Web Audio API comes with a collection of methods that allow you to
schedule audio parameter values immediately or at some point in the future .
The following code shows a list of these methods .

setValueAtTime(arg1,arg2)
exponentialRampToValueAtTime(arg1,arg2)
linearRampToValueAtTime(arg1,arg2)

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-21&iName=master.img-000.jpg&w=167&h=166

20. Time172

setTargetAtTime(arg1,arg2,arg3)
setValueCurveAtTime(arg1,arg2,arg3)

You can use these methods in place of setting the value property of an audio
parameter .

osc.frequency.value = 100; // Set value directly
osc.frequency.setValueAtTime(arg1,arg2); /*Set value with audio
 parameter method*/

The Audio Parameter Methods
The setValueAtTime Method
The setValueAtTime method allows you to create an abrupt change of an
audio parameter at a future period in time . The first argument is the value the
parameter will be changed to, and the second argument is the time that it will
take to change to that value . In the following example, 5 seconds after the code is
run, a gain node parameter value is abruptly changed from 1 to 0 .1 .

var osc = audioContext.createOscillator();
var volume = audioContext.createGain();
osc.connect(volume);
volume.gain.value = 1;
volume.gain.setValueAtTime(0.1,audioContext.currentTime + 5);
osc.start(audioContext.currentTime);
volume.connect(audioContext.destination);

To use any of the other audio parameter methods that are described next,
you must first initialize their settings using setValueAtTime() . This is shown
in the code examples for each method .

The exponentialRampToValueAtTime Method
The exponentialRampToValueAtTime() method allows you to create a
gradual change of the parameter value . Unlike the abrupt change of setValue
AtTime(), this method follows an exponential curve . The following code dem-
onstrates this by changing an oscillator’s frequency from 200 Hz to 3 kHz over
the course of 3 seconds .

var osc = audioContext.createOscillator();
var volume = audioContext.createGain();
osc.frequency.value = 200;
osc.frequency.setValueAtTime(osc.frequency.value, audioContext.
 currentTime); //____Set initial values!
osc.frequency.exponentialRampToValueAtTime(3000, audioContext.
 currentTime + 3);
osc.start(audioContext.currentTime);
osc.connect(audioContext.destination);

The Audio Parameter Methods 173

The linearRampToValueAtTime Method
The linearRampToValueAtTime method is similar to exponential-
RampToValueAtTime() but follows a gradual linear curve instead of an expo-
nential curve .

var osc = audioContext.createOscillator();
var volume = audioContext.createGain();
osc.frequency.value = 200;
osc.frequency.setValueAtTime(osc.frequency.value, audioContext.
 currentTime); // Set initial values
osc.frequency.linearRampToValueAtTime(3000, audioContext.
 currentTime + 3);
osc.start(audioContext.currentTime);
osc.connect(audioContext.destination);

The setTargetAtTime() Method
The setTargetAtTime() method takes three arguments . The first argument
is the final value of the audio parameter, the second argument is the time the
change will begin, and the third argument is a time constant that determines
how long the change will take to complete . The larger the number of the third
 argument, the longer the change takes to complete .

var osc = audioContext.createOscillator();
var volume = audioContext.createGain();
osc.frequency.value = 200;
osc.frequency.setValueAtTime(osc.frequency.value, audioContext.
 currentTime); // Set initial values
osc.frequency.setTargetAtTime(3000, audioContext.currentTime,2);
osc.start(audioContext.currentTime);
osc.connect(audioContext.destination);

The setValueCurveAtTime() Method
The setValueCurveAtTime() method allows you to create a custom curve
based on a collection of audio parameter values stored in an array . This method
takes three arguments . The first argument is an array of values . The array used is
a special kind of array called a float32Array(), which is a typed array . Typed
arrays are better performing than conventional arrays and allow some Web Audio
APIs to work directly with binary data . The syntax for a float32Array()
requires you to explicitly set the number of index values and looks like the fol-
lowing code:

var waveArray = new Float32Array(10); //__Set number of index values
waveArray[0] = 20;
waveArray[1] = 200;
waveArray[2] = 20;
waveArray[3] = 200;
waveArray[4] = 20;
waveArray[5] = 200;

20. Time174

waveArray[6] = 20;
waveArray[7] = 200;
waveArray[8] = 20;
waveArray[9] = 200;

The second argument represents when you want the changes to begin, and
the third argument is the time span you want the changes to take place within .
The following code demonstrates this by toggling the frequency of an oscillator
from 100 to 500 Hz and back again over the course of 3 seconds . This creates a
wobble effect .

var waveArray = new Float32Array(10);
waveArray[0] = 100;
waveArray[1] = 500;
waveArray[2] = 100;
waveArray[3] = 500;
waveArray[4] = 100;
waveArray[5] = 500;
waveArray[6] = 100;
waveArray[7] = 500;
waveArray[8] = 100;
waveArray[9] = 500;

var osc = audioContext.createOscillator();
var volume = audioContext.createGain();
osc.frequency.value = 500;
osc.frequency.setValueAtTime(osc.frequency.value, audioContext.
 currentTime); // Set initial values
osc.frequency.setValueCurveAtTime(waveArray, audioContext.
 currentTime + 1, 3);
osc.start(audioContext.currentTime);
osc.connect(audioContext.destination);

Summary
In this chapter, you learned the fundamentals of working with time . You learned
how to loop and schedule sound playback, as well as how to schedule parameter
value changes . In the next chapter, you will learn how to create audio visualiza-
tions using the Analyser node .

175

21 Creating
Audio
Visualizations

In this chapter, you will learn how to use the Analyser node to create a spec-
trum analyzer that displays real-time amplitude information of audio signals
across a collection of frequency bands . The Web Audio API includes a node
named Analyser that gives you real-time frequency and time domain infor-
mation about audio input sources . This information can be used to create custom
visual representations of audio signals that include (but are not limited to) spec-
trum analyzers, phase scopes, and waveform renders .

A Brief Word on Fourier Analysis
Before you get started, you must first have a basic conceptual understanding of
Fourier analysis . Fourier analysis is a difficult topic involving a lot of impres-
sive math, so a proper coverage of the topic is well beyond the scope of this
book . The main point you need to understand is that Fourier analysis is a way
to take amazingly complex things like sound waves and simplify them . With
this approach, a signal (referred to as a function) can be either represented or
approximated by a combination of simpler periodic signals or functions, such
as sine and cosine waves . Replicating a sound is also theoretically possible by
combining an infinite number of these waveforms . In theory, a perfect replica
(or perfect separation of constituent parts) is realized from this combination,

21. Creating Audio Visualizations176

but in practice, human beings lack infinite time and computing power, so you
will always have to make do with an approximation .

Some of the most common forms of Fourier analysis in audio processing are
called fast Fourier transforms, or more commonly FFTs . The goal of an FFT is to
quickly give you a useful approximation without doing too much computational
work and slowing down the system .

A Brief Explanation of Binary-Coded
Decimal Numbers
To better understand how the Web Audio API gives you access to the time and
frequency domain of audio input sources, you need to understand how to read
binary-coded decimal numbers . A binary system is composed of a series of on and
off values called bits . Bits are read in 8-bit groupings called bytes, which have an
equivalent decimal value . Bits are read from right to left and each value is either
an on value represented by a 1, or an off value represented by a 0 . The decimal
equivalent of a grouping of bits is calculated by exponentially counting from
right to left and adding all of the on values together .

When all bits are on, a byte has a value of 255 . This allows for 256 total possible
values (0–255) .

The Spectrum Analyzer
The following program creates a basic frequency spectrum analyzer using an
oscillator as its input source . The rest of this chapter is dedicated to explaining
how this code works .

JavaScript/JQuery
"use strict";
$(function() {
 var audioContext = new AudioContext();
 var analyzer = audioContext.createAnalyser();
 var osc = audioContext.createOscillator();

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-22&iName=master.img-000.jpg&w=166&h=49
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-22&iName=master.img-001.jpg&w=167&h=87

The Spectrum Analyzer 177

 var frequencyData = new Uint8Array(analyzer.frequencyBinCount);
 //___Create array
 analyzer.getByteFrequencyData(frequencyData);
 //______________________Store frequency data
 console.log(frequencyData.length);
 console.log(frequencyData);

 var app = $(".app");
 var bars = undefined;

 osc.frequency.value = 120;
 osc.connect(analyzer);
 analyzer.connect(audioContext.destination);
 osc.start(audioContext.currentTime);
 analyzer.fftSize = 2048;
 console.log(analyzer.frequencyBinCount); // 1024

 //________________________________BEGIN Visualization

 $(".bin-count-number").text(analyzer.fftSize / 2); // ____Bin count

 for (var i = 0; i < analyzer.frequencyBinCount; i++) {

 $(".app").append("<div></div> " + i + "");
 }

 bars = $(".app > div");

 function update() {
 requestAnimationFrame(update);

 analyzer.getByteFrequencyData(frequencyData);

 for (var i = 0; i < bars.length; i += 1) {

 bars[i].style.height = frequencyData[i] + 'px';

 }

 }

 update();

 //_______________________________END visualization

});

HTML
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title></title>
 <script type="text/javascript" src="js/jquery.js"></script>
 <script src="js/app.js"></script>
 <link rel="stylesheet" href="css/app.css" type="text/css">
 </head>

21. Creating Audio Visualizations178

 <!--__BEGIN
 APP-->

 <body>
 <p class="bin-count">
 Bin count:<b class="bin-count-number">
 </p>

 <div class="app">
 </div>
 </body>
 <!--__END
 APP-->

</html>

CSS
.app{

 position: relative;
 margin: 10px;

}

.app > div {
 width: 0.1px;
 background-color: orange;
 display: inline-block;
 outline-style:solid;
 outline-color:orange;
 outline-width: 0.1px;
 margin-left:8px;

}

span{
 display:inline-block;
 font-size:14px;
 color:rgba(128, 128, 128, 0.5);
 margin:2px;

}

.bin-count{
 position:absolute;
 left:30%;
 float:right;
 font-size:2em;
 height:50px;

}

Walking through the Code 179

The output of the application looks like the following figure .

Walking through the Code
The first step to creating a spectrum analyzer is to invoke Analyser() and
connect input sources to the returned object . For this application, the only input
source used is an oscillator and the output of the analyser variable is
connected directly to audioContext.destination .

var analyzer = audioContext.createAnalyser();
var oscillator = audioContext.createOscillator90;
oscillator.connect(analyzer);
analyzer.connect(audioContext.destination);

The Analyser interface enables you to perform various FFTs on the audio
stream . The FFT used to create a spectrum analyzer transforms the time domain
of the audio signal into normalized (or limited) frequency-domain data . This is
done by chopping the original audio signal into parts, typically called bins, and
performing an analysis and transformation on each part .

The size of the FFT is stored in the fftSize property of the Analyser
node and the default value is 2048 . The allowed values are any power of 2 between
32 and 2048 . If you set it wrong, you will get an error . The number of bins avail-
able is one half of the fftSize property and is accessible by a read-only prop-
erty of the Analyser node named frequencyBinCount .

analyzer.fftSize = 2048;
console.log(analyzer.frequencyBinCount); // 1024... or half of fftSize

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-22&iName=master.img-002.jpg&w=287&h=241

21. Creating Audio Visualizations180

Each bin is designated a range of frequencies called a band, and the following
formula determines the range of each band:

 (Sample Rate)/(FFT Size) = (Band Size)

Example:

 44,100/2048 = 21 .533203125

Storing the Frequency Data in an Array
The next step is to create an array to store the frequency data . A special kind of
array called a typed array is required for this task . A typed array is an array-like
object specifically designed for working with binary data .

//______________________Create typed array
var frequencyData = new Uint8Array(analyzer.frequencyBinCount);

//______________________Store frequency data
analyzer.getByteFrequencyData(frequencyData);

There are two kinds of typed arrays that the Analyser node is designed
to work with: Float32Array and Uint8Array . The index values of a
Float32Array are always a decimal number between 0 and 1 . The index val-
ues of a Uint8Array are limited to 8 bits of information and will always be
an integer between 0 and 255 . Using a Float32Array allows for up to 32 bits
of information and gives you more precision but is more resource intensive .
This is in contrast to Uint8Array, which is more resource efficient but less pre-
cise . This application uses a Uint8Array . A Float32Array or Uint8Array
must be created using the keyword new .

In the following code, the Uint8Array is invoked with a single argu-
ment that determines the number of indexes it will have by using analyzer.
frequencyBinCount .

var frequencyData = new Uint8Array(analyzer.frequencyBinCount);
console.log(frequencyData.length); // 1024

You now store the frequency domain data in the array using
getByteFrequencyData() .

analyzer.getByteFrequencyData(frequencyData);

If the frequencyData array is a Float32Array instead of a
Uint8Array, you use the getFloatFrequencyData() method and the
code looks like this:

analyzer.getFloatFrequencyData(frequencyData);

181How to Think About the frequencyData Array

How to Think About the frequencyData Array
Each index value of the frequencyData array can be any number between 0
and 255 . This value is correlated with the energy intensity of the frequency band
that is designated by that particular array index . The following diagrams can help
to clarify this .

Building the Display Interface
The following line of code renders the current number of bins to the Document
Object Model (DOM) .

$(".bin-count-number").text(analyzer.fftSize / 2); //____Bin count

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-22&iName=master.img-004.jpg&w=288&h=101
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-22&iName=master.img-005.jpg&w=181&h=135

21. Creating Audio Visualizations182

The following for loop creates a div for each bin . Inside each div, a span
is created that displays a number that corresponds to each bin .

for (var i = 0; i < analyzer.frequencyBinCount; i++) {

 $(".app").append("<div></div> " + i + "");

}

The bars variable selects all div elements and is used later in the code .

bars = $(".app > div");

Connecting the Analyzer to the DOM
To read and use frequencyData, the program must continuously check its cur-
rent state so that the DOM can be updated with the new information . This can be
done by placing analyzer.getByteFrequencyData(frequencyData) in
the requestAnimationFrame function . requestAnimationFrame is a
method that tells the browser that you wish to perform an animation . When it is
time to update the animation, requestAnimationFrame calls the function that
you passed to it . The update rate matches the display refresh rate of the web browser .

function update() {
 requestAnimationFrame(update);
 analyzer.getByteFrequencyData(frequencyData);

}

update();

To create the vertical frequency bars, the for loop updates the CSS height
property of each div stored in the bar variable . The value given to each div is
a pixel representation of the current frequencyData array index . This value
is between 0 and 255 px .

function update() {
 requestAnimationFrame(update);
 analyzer.getByteFrequencyData(frequencyData);

for (var i = 0; i < bars.length; i += 1) {

bars[i].style.height = frequencyData[i] + 'px';

}

}

update();

The user interface of the spectrum analyzer is designed to create a div for all
bins . You can change the size of the FFT to lower the bin count .

analyzer.fftSize = 64;

Summary 183

The application you created in this chapter works with frequency-domain
data . If you want to work with time-domain data, the Analyser node has two
methods that let you copy it to a typed array . The first method is getByteTime
DomainData () and is for use with a Uint8Array() . The second method
is getFloatTimeDomainData () and is for use with Float32Array() .
To store the time domain data in a Uint8Array(), you write the following code:

var frequencyData = new Uint8Array(analyzer.frequencyBinCount);

analyzer.getByteTimeDomainData(frequencyData);

Summary
In this chapter, you learned about the Analyser node and created a frequency
spectrum analyzer application .

Up until now, when adding new nodes that affect audio buffers, you have
applied the changes to a single node graph that affects all audio buffer input
sources . In the next chapter, you will update the audio loader library that you
created in Chapter 13 to allow users to create customized node graphs for indi-
vidual audio buffers .

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-22&iName=master.img-006.jpg&w=287&h=144

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-22&iName=master.img-007.jpg&w=395&h=104

185

22 Adding
Flexibility to
the Audio
Loader
Abstraction

In this chapter, you will add flexibility to the audio loader abstraction and give
users independently customizable node graphs for audio buffer input sources . In
its current state, the audio loader library you created in Chapter 13 only allows
you to create one universal node graph configuration . So any files that you load
have to conform to this configuration . This is undesirable for two reasons . The
first is that when you create a library, you don’t want the user to have to mod-
ify its internals to get the functionality they want . The second reason is that
it is useful to have the choice to apply completely different effects to different
audio input sources, which requires node configurations that are independently
customizable .

The Updated Interface
When you create any library or abstraction, it is helpful to first define what the
interface will look like and then work backward toward its creation . In this
case, the following example shows how the final interface will look . This is
similar to the current library except that the object that audioBatchLoader
takes as an argument has a method that defines a custom node graph . This
node graph is applied to all audio files referenced as properties in the contain-
ing object .

22. Adding Flexibility to the Audio Loader Abstraction186

"use strict";

var soundData = {
 kick: "sounds/kick.mp3",
 snare: "sounds/snare.mp3",
 //__BEGIN custom node graph
 nodeGraph: function nodeGraph(sound) {
 var gain = audioContext.createGain();
 gain.gain.value = 1;
 sound.connect(gain);
 gain.connect(audioContext.destination);
 }
 //__END custom node graph
}

var sound = audioBatchLoader(soundData); //Takes the object as
 argument
sound.kick.play(); // Sound plays using custom node graph
sound.snare.play(); // Sound plays using custom node graph

This interface allows you to add one method to the object; and this method
then sets the node graph configuration for all sound files referenced as properties
of that object .

Modifying the Library
Make a copy of the empty template folder you created in Chapter 1 and rename it
to Chapter 22 . In the js folder, place a copy of the completed audio loader library
you modified in Chapter 20 and reference it from the index.html file .

<head>
 <meta charset="UTF-8">
 <title>app</title>
 <script src="js/audiolib.js"></script>
 <script src="js/app.js"></script>
 <link rel="stylesheet" href="css/app.css">
</head>

Next, create a directory named “sounds” and place an MP3 file named
“snare” in it (this file is available in the downloadable code examples) . Copy the
following code into the app.js file .

"use strict";
var sound = audioFileLoader("sounds/snare.mp3", function(sound){
 var gain = audioContext.createGain();
 gain.gain.value = 0.2;
 sound.connect(gain);
 gain.connect(audioContext.destination);

});

window.addEventListener("mousedown", function() {
 sound.play();

});

Modifying the Library 187

window.addEventListener("mouseup", function() {
 sound.stop();

});

If you run the previous code, it will not work . In the audiolib.js file you
will now modify the function named audioFileLoader so that the previous
code works . These modifications will let users load single files, each of which has
a unique node graph . Once this works, we will go over how to modify audio-
BatchLoader to load multiple files .

In your audiolib.js file, modify the code to include a callback function
like the following example:

var audioContext = new AudioContext();
function audioFileLoader(fileDirectory, callback) {
 var playSound = undefined;
 var soundObj = {};

 soundObj.fileDirectory = fileDirectory;
 var getSound = new XMLHttpRequest();
 getSound.open("GET", soundObj.fileDirectory, true);
 getSound.responseType = "arraybuffer";
 getSound.onload = function() {
 audioContext.decodeAudioData(getSound.response, function(buffer) {
 soundObj.soundToPlay = buffer;

 });
 }

 getSound.send();

 soundObj.play = function(time) {
 playSound = audioContext.createBufferSource();
 playSound.buffer = soundObj.soundToPlay;

playSound.connect(audioContext.destination);
 playSound.start(audioContext.currentTime + time ||
 audioContext.currentTime, setStart || 0, setDuration ||
 soundObj.soundToPlay.duration);

callback(playSound);

 }

 soundObj.stop = function(time) {

 playSound.stop(audioContext.currentTime + time || audioContext.
 currentTime);

 }
 return soundObj;

};

In the previous code, the callback now fulfills the role of a customizable node
graph and the code will now work . However, there is still one problem: If the user
does not use a callback, then an error results .

var sound = audioFileLoader("sounds/snare.mp3"); // ERROR!

22. Adding Flexibility to the Audio Loader Abstraction188

This error can be dealt with by simply using a conditional to check if the call-
back is a function . If the conditional returns false (because the user didn’t set it),
a default node graph is set in its place .

To do this, modify the code as follows:

soundObj.play = function(time) {
 playSound = audioContext.createBufferSource();
 playSound.buffer = soundObj.soundToPlay;
 playSound.start(audioContext.currentTime + time || audioContext.
 currentTime);

callback(playSound);
if (typeof callback === "function") {

return callback(playSound);
}else {

return playSound.connect(audioContext.destination);
}

}

This code now works whether the function is invoked with a callback or not .

Modifying audioBatchLoader
You will now edit the audioBatchLoader function to check if its parame-
ter object contains a method, and if it does, the method is set as the callback of
audioFileLoader . This code applies a custom node graph to a group of files .

function audioBatchLoader(obj) {
var callback = undefined;
var prop = undefined;

for (prop in obj) {
if (typeof obj[prop] === "function") {

callback = obj[prop];
delete obj[prop];

}
}

 for (prop in obj) {

 obj[prop] = audioFileLoader(obj[prop], callback);
 //___Place function as callback

 }
 return obj;
}

An Explanation of the Previous Code Edit
If a method is found on obj, it is assigned to the variable named callback .
The method is then deleted from obj using the delete keyword . The deletion
is necessary so that the audioFileLoader does not attempt to reference it as
an audio file directory .

Summary 189

The following code is an example of loading a collection of files with a custom
node graph . This code now works .

"use strict";

var sound = audioBatchLoader({
 snare: "sounds/snare.mp3",
 kick: "sounds/kick.mp3",
 hihat: "sounds/hihat.mp3",
 nodes: function(sound) {
 var gain = audioContext.createGain();
 sound.connect(gain);
 gain.gain.value = 0.5;
 gain.connect(audioContext.destination);

 }
});

window.addEventListener("mousedown", function() {
 sound.snare.play();
});

window.addEventListener("mouseup", function() {
 sound.snare.stop();
});

One thing you should be aware of is that the object that the
audioBatchLoader takes as an argument is intended to have only one
method . If it has more than one method, then one of them is overwritten .
When using a for-in loop, the properties and methods of the targeted object
are not returned in any particular order . Because of this, you cannot know
which method is used and which one is overwritten until the sound is played
back . For this reason, you might want to write an error check to throw an error
for argument objects that have more than one method . This is left up to you to
implement .

Summary
In this chapter, you added additional flexibility to your audio loader library and
in the process you were exposed to a real-world example of how callback func-
tions can be useful when designing a library . In the next chapter you will learn
how to build an interactive music sequencer .

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-23&iName=master.img-000.jpg&w=395&h=104

191

23 Building
a Step
Sequencer

Music applications, like sequencers and drum machines, allow users to record,
edit, and play back sounds as a collection of organized note arrangements . Due
to the nature of the Web Audio API and its relationship to the DOM, music
sequencing applications are a challenge to create . In this chapter, you will learn
why this is so and how to meet the challenge by building a basic drum pattern
step sequencer .

The Problem
The Web Audio API lets you schedule events immediately or in the future .
A problem with this approach is that once an event is scheduled, it cannot be
unscheduled . So for example, the following code schedules three drum sounds
to play in an 8th note pattern for four bars .

var kick = audioFileLoader("sounds/kick.mp3");
var snare = audioFileLoader("sounds/snare.mp3");
var hihat = audioFileLoader("sounds/hihat.mp3");

var tempo = 120; //_____BPM (beats per minute)
var eighthNoteTime = (60 / tempo) / 2;

23. Building a Step Sequencer192

function playDrums() {
 // Play 4 bars of the following:
 for (var bar = 0; bar < 4; bar++) {
 var time = bar * 8 * eighthNoteTime;
 // Play the bass (kick) drum on beats 1, 5
 kick.play(time);
 kick.play(time + 4 * eighthNoteTime);

 // Play the snare drum on beats 3, 7
 snare.play(time + 2 * eighthNoteTime);
 snare.play(time + 6 * eighthNoteTime);
 // Play the hi-hat every eighth note.
 for (var i = 0; i < 8; ++i) {
 hihat.play(time + i * eighthNoteTime);
 }
 }
}

If you want to change the tempo relationship of these sounds in the middle
of the four bars, you can’t . Instead, you have to wait until the sounds have com-
pleted playing . This is true of any scheduled events that you might want to change
during playback . And this restriction is not relegated to just tempo changes .

Can I Use setInterval or setTimeout?
You might be wondering if you can use setInterval or setTimeout to solve
this problem . The following code uses setInterval to increment a counter at
a specified beats per minute (BPM), and depending on the counter value, a par-
ticular drum sound is played . This creates a rhythmic pattern .

var kick = audioFileLoader("sounds/kick.mp3");
var snare = audioFileLoader("sounds/snare.mp3");
var hihat = audioFileLoader("sounds/hihat.mp3");

var tempo = 120; //_____BPM (beats per minute)
var milliseconds = 1000;
var eighthNoteTime = ((60 * milliseconds) / tempo) / 2;

var counter = 1;
window.setInterval(function() {
 if (counter === 8) {
 counter = 1;
 } else {
 counter += 1;
 }
 if (counter) {
 hihat.play();
 }
 if (counter === 3 || counter === 7) {
 snare.play();
 }
 if (counter === 1 || counter === 5) {
 kick.play();
 }

}, eighthNoteTime);

How It Works 193

The problem with this approach is that both the setTimeout and
setInterval methods have timings that are imprecise and unstable . There
are two reasons for this . The first is that the smallest unit of time available to
these methods is an integer of 1 millisecond, which is not precise enough for
audio sample-level values like 44 .100 kHz . The other problem is that unlike the
Web Audio API timing clock, these methods can be interrupted by ancillary
browser activity like page rendering and redraws . Although you might expect
setInterval or setTimeout to run at every nth millisecond, depending on
factors outside your control, the value will likely be larger and audibly noticeable .

The Solution
The solution to the problem is to create a relationship between the Web Audio
API timing clock and the browser’s internal setTimeout method to create a
look-ahead mechanism that recursively loops and checks if events will be sched-
uled at some time in the future . If this is the case, the scheduling happens and
the event(s) takes place . This gives you enough leeway to cancel events at the last
moment if needed .

One thing to keep in mind is that because setTimeout is inherently
unstable, we know that this relationship will always have an unstable aspect to it .
Whether or not this approach is stable enough for your applications is for you to
decide . One thing we can be certain of is that it is much more accurate than using
setInterval or setTimeout on its own .

How It Works
The basis for the relationship between the Web Audio API timing clock and the
browser’s internal setTimeout method is expressed in the following code:

var audioContext = new AudioContext();
var futureTickTime = audioContext.currentTime;
function scheduler() {
 if (futureTickTime < audioContext.currentTime + 0.1) {
 futureTickTime += 0.5; //____can be any time value. 0.5 happens
 to be a quarter note at 120 bpm
 console.log(futureTickTime);
 }
 window.setTimeout(scheduler, 0);
}
scheduler();

The way the previous code works is that the setTimeout function loops
recursively, and upon each iteration, a conditional checks whether the value of
futureTickTime is within a tenth of a second of the audioContext.cur-
rentTime . If this evaluates to true then futureTickTime is incremented
by 0 .5, which is half a second in “Web Audio Time .” The futureTickTime vari-
able remains set at this value until audioContext.currentTime “catches
up with it” once again . Then within a tenth of a second, futureTickTime is

23. Building a Step Sequencer194

incremented by a half-second into the future . This pattern continues for as long
as the function is allowed to run .

Because a half-second translates to a quarter note at 120 beats per minute,
the following code uses this information to create a 1/4th note timing count that
is logged to the console .

var futureTickTime = audioContext.currentTime;
var counter = 1;
function scheduler() {
 if (futureTickTime < audioContext.currentTime + 0.1) {

console.log("This is beat: " + counter);
 futureTickTime += 0.5; /*____can be any time value. 0.5 happens
 to be a quarter note at 120 bpm*/

counter += 1;
if (counter > 4) {

counter = 1;
}

 }
 window.setTimeout(scheduler, 0);
}
scheduler();

The following code builds on the previous example and plays an oscil-
lator on each count . The oscillator is connected to a gain node named
 metronomeVolume which is connected to the destination . The gain node is
added because the final application in this chapter uses it to toggle the oscil-
lator volume on and off .

var futureTickTime = audioContext.currentTime;
var counter = 1;
var osc = audioContext.createOscillator();
var metronomeVolume = audioContext.createGain();
function playMetronome(time) {
osc = audioContext.createOscillator();
osc.connect(metronomeVolume);

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-24&iName=master.img-000.jpg&w=168&h=161

Changing Tempo 195

metronomeVolume.connect(audioContext.destination);
osc.start(time);
osc.stop(time + 0.1);

}

function scheduler() {
 if (futureTickTime < audioContext.currentTime + 0.1) {

 console.log("This is beat: " + counter);
playMetronome(futureTickTime);

 futureTickTime += 0.5; //____can be any time value. 0.5 happens
 //____________________________to be a quarter note at 120 bpm

 counter += 1;
 if (counter > 4) {
 counter = 1;
 }
 }
 window.setTimeout(scheduler, 0);
}
scheduler();

Changing Tempo
If you want to change the tempo, you have to change the time relationship
between events . You can do this by altering when events are scheduled to start
with the futureTickTime variable . The following formula is useful for con-
verting beats (quarter notes) to seconds .

var tempo = 120.0; // tempo (in beats per minute);
var secondsPerBeat = (60.0 / tempo);

The application you build assumes the use of a 16th note grid . You can design it
with any beat division(s) you want, but for simplicity it is hard-coded with 16 notes .
The following code converts the futureTickTime variable from a time value
that represents a quarter note to a time value that represents a 16th note . The oscillator
is also modified to play a different frequency on the downbeat .

var futureTickTime = audioContext.currentTime;
var counter = 1;
var tempo = 120;
var secondsPerBeat = 60 / tempo;
var counterTimeValue = (secondsPerBeat / 4); //___16th note
var osc = audioContext.createOscillator();
var metronomeVolume = audioContext.createGain();

function playMetronome(time) {
 osc = audioContext.createOscillator();
 osc.connect(metronomeVolume);
 metronomeVolume.connect(audioContext.destination);
 osc.frequency.value = 500;
 osc.start(time);
 osc.stop(time + 0.1);

}

23. Building a Step Sequencer196

function scheduler() {
 if (futureTickTime < audioContext.currentTime + 0.1) {
 console.log("This is 16th is: " + counter);
 playMetronome(futureTickTime);
 futureTickTime += counterTimeValue;

 if (counter === 1) {
 osc.frequency.value = 500;
 } else {
 osc.frequency.value = 300;
 }

 counter += 1;
 if (counter > 16) {
 counter = 1;
 }
 }
 window.setTimeout(scheduler, 0);
}

scheduler();

You can now change the tempo by modifying the tempo variable .

Building the Sequencer
You are now going to build the sequencer application . Create a copy of the Web
Audio template folder you created in Chapter 1 and rename it to sequencer . In the
index.html file, reference both the JQuery library and the audiolib.js file that you
updated in Chapter 20 . Inside the sequencer folder, create a folder named sounds
and place the audio files for the sequencer application in it .

Copy the following code to app.js and save the file . This code refactors the
previous code you have written . This version is more readable and the metro-
nome is given its own function .

"use strict";
var audioContext = new AudioContext();
var futureTickTime = audioContext.currentTime,
 counter = 1,
 tempo = 120,
 secondsPerBeat = 60 / tempo,
 counterTimeValue = (secondsPerBeat / 4),
 osc = audioContext.createOscillator(),
 metronomeVolume = audioContext.createGain();

//___BEGIN metronome
function playMetronome(time, playing) {
 if (playing) {
 osc = audioContext.createOscillator();
 osc.connect(metronomeVolume);
 metronomeVolume.connect(audioContext.destination);
 osc.frequency.value = 500;
 if (counter === 1) {
 osc.frequency.value = 500;

Playing Back Sounds in Sequence 197

 } else {
 osc.frequency.value = 300;
 }
 osc.start(time);
 osc.stop(time + 0.1);
 }
}

//__END Metronome

function playTick() {
 console.log("This is 16th note: " + counter);
 counter += 1;
 futureTickTime += counterTimeValue;
 if (counter > 16) {
 counter = 1;
 }
}

function scheduler() {
 if (futureTickTime < audioContext.currentTime + 0.1) {
 playMetronome(futureTickTime , true);
 playTick();
 }
 window.setTimeout(scheduler, 0);
}
scheduler();

Playing Back Sounds in Sequence
You will now create a series of arrays that represent music sequencer tracks . Each
of these arrays stores counter values . On each iteration of the counter, a for loop
runs to check if any of the arrays holds the current counter value . If any of them
does, the sound associated with that array plays . The arrays are associated with
the correct sound through a function named scheduleSound() . This func-
tion takes four arguments:

 ◾ The track array

 ◾ The sound to play

 ◾ The current count value

 ◾ The time to schedule the sound

The track arrays are populated with values so that you can hear a drum sequence
immediately .

var futureTickTime = audioContext.currentTime,
 counter = 1,
 tempo = 120,
 secondsPerBeat = 60 / tempo,

23. Building a Step Sequencer198

 counterTimeValue = (secondsPerBeat / 4),
 osc = audioContext.createOscillator(),
 metronomeVolume = audioContext.createGain();

/*___BEGIN load sound
 samples*/

var kick = audioFileLoader("sounds/kick.mp3");
var snare = audioFileLoader("sounds/snare.mp3");
var hihat = audioFileLoader("sounds/hihat.mp3");
var shaker = audioFileLoader("sounds/shaker.mp3");

//___END load sound samples

//___BEGIN Array Tracks

var kickTrack = [1, 9, 11],
 snareTrack = [5, 13],
 hiHatTrack = [13, 14, 15, 16],
 shakerTrack = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16];

//___END Array Tracks

function scheduleSound(trackArray, sound, count, time) {

 for (var i = 0; i < trackArray.length; i += 1) {
 if (count === trackArray[i]) {
 sound.play(time);
 }
 }
}

//___BEGIN metronome

function playMetronome(time, playing) {

 if (playing) {
 osc = audioContext.createOscillator();
 osc.connect(audioContext.destination);
 osc.frequency.value = 500;
 if (counter === 1) {
 osc.frequency.value = 500;
 } else {
 osc.frequency.value = 300;
 }
 osc.start(time);
 osc.stop(time + 0.1);
 }
}

//__END Metronome

function playTick() {

 console.log("This is 16th note: " + counter);
 counter += 1;
 futureTickTime += counterTimeValue;

Playing Back Sounds in Sequence 199

 if (counter > 16) {
 counter = 1;
 }

}

function scheduler() {
 if (futureTickTime < audioContext.currentTime + 0.1) {
 playMetronome(futureTickTime, true);

scheduleSound(kickTrack, kick, counter, futureTickTime -
 audioContext.currentTime);

scheduleSound(snareTrack, snare, counter, futureTickTime -
 audioContext.currentTime);

scheduleSound(hiHatTrack, hihat, counter, futureTickTime -
 audioContext.currentTime);

scheduleSound(shakerTrack, shaker, counter, futureTickTime -
 audioContext.currentTime);

 playTick();
 }
 window.setTimeout(scheduler, 0);
}

scheduler();

You might be wondering why the scheduleSound() function invo-
cations are subtracting the audioContext.currentTime from the
futureTickTime() .

scheduleSound(kickTrack, kick, counter, futureTickTime -
 audioContext.currentTime);

This is done because the audio library you built in Chapter 13 is designed to
reference audioContext.currentTime by default and adds any additional
numeric arguments to this value . You subtract audioContext.current-
Time from futureTickTime because these values will be combined when the
play() method of your library is invoked .

When scheduler() is invoked, the drum sequence does not start imme-
diately because it takes time for the audio buffers and files to load . This behav-
ior can be corrected by modifying the code so that the scheduler is initiated by
a play/stop button . In your HTML code, create a button with a class of play-
stop-button and give it text of play/stop .

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title></title>
 <script src="https://ajax.googleapis.com/ajax/libs/
 jquery/2.1.0/jquery.js"></script>
 <script src="js/audiolib.js"></script>
 <script src="js/app.js"></script>
 <link rel="stylesheet" href="css/app.css">
 </head>

23. Building a Step Sequencer200

 <!--___BEGIN APP-->
 <body>

 <!--HTML code-->
 <button class="play-stop-button">
 Play / Stop
 </button>

 </body>
 <!--__END APP-->
</html>

You now use JQuery to interface with the DOM and have to wrap your code
in a document-ready function . The following code defines the play/stop button
functionality .

$(function() {
 var futureTickTime = audioContext.currentTime,
 counter = 1,
 tempo = 120,
 secondsPerBeat = 60 / tempo,
 counterTimeValue = (secondsPerBeat / 4),
 osc = audioContext.createOscillator(),
 metronomeVolume = audioContext.createGain(),

timerID = undefined,
isPlaying = false;

 /*___BEGIN load sound
 samples*/

 var kick = audioFileLoader("sounds/kick.mp3");
 var snare = audioFileLoader("sounds/snare.mp3");
 var hihat = audioFileLoader("sounds/hihat.mp3");
 var shaker = audioFileLoader("sounds/shaker.mp3");

 /*___END load sound
 samples*/

 //___BEGIN Array Tracks

 var kickTrack = [1, 9, 11],
 snareTrack = [5, 13],
 hiHatTrack = [13, 14, 15, 16],
 shakerTrack = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
 15, 16];

 //___END Array Tracks

 function scheduleSound(trackArray, sound, count, time) {

 for (var i = 0; i < trackArray.length; i += 1) {
 if (count === trackArray[i]) {
 sound.play(time);
 }
 }

}

Playing Back Sounds in Sequence 201

//___BEGIN metronome

function playMetronome(time, playing) {

 if (playing) {
 osc = audioContext.createOscillator();
 osc.connect(metronomeVolume);
 metronomeVolume.connect(audioContext.destination);
 osc.frequency.value = 500;
 if (counter === 1) {
 osc.frequency.value = 500;
 } else {
 osc.frequency.value = 300;
 }
 osc.start(time);
 osc.stop(time + 0.1);
 }
 }

 //__END Metronome

 function playTick() {
 console.log("This is 16th note: " + counter);
 counter += 1;
 futureTickTime += counterTimeValue;
 if (counter > 16) {
 counter = 1;
 }
 }

 function scheduler() {
 if (futureTickTime < audioContext.currentTime + 0.1) {
 playMetronome(futureTickTime, true);
 scheduleSound(kickTrack, kick, counter, futureTickTime -
 audioContext.currentTime);
 scheduleSound(snareTrack, snare, counter, futureTickTime -
 audioContext.currentTime);
 scheduleSound(hiHatTrack, hihat, counter, futureTickTime -
 audioContext.currentTime);
 scheduleSound(shakerTrack, shaker, counter, futureTickTime -
 audioContext.currentTime);
 playTick();
 }

timerID = window.setTimeout(scheduler, 0);
 }
scheduler();

function play() {
isPlaying = !isPlaying;

if (isPlaying) {
counter = 1;
futureTickTime = audioContext.currentTime;
scheduler();

} else {
window.clearTimeout(timerID);

23. Building a Step Sequencer202

 }
 }
 $(".play-stop-button").on("click", function() {
 play();
 });
});

If you launch this code from your server and click the play/start button, it
will start and stop the application .

Creating the User Interface Grid
So far you have built a working 16th note sequencer that plays back sound
sequences via a collection of “array tracks” in code . You are now going to
create a user interface that allows users to create these sequences from a web
page .

To do this, you create four div elements positioned as rows, and each of these
contains 16 child divs . The CSS displays these child divs horizontally as a col-
lection of small squares . The first row controls playback of the kick drum, the
second row the snare, the third row the hi-hat, and the fourth row the shaker .
The sequencer has an additional button that turns the metronome on and off and
an input slider that controls the tempo .

HTML
The following code is the HTML for the application .

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>app</title>
 <script src="https://ajax.googleapis.com/ajax/libs/
 jquery/2.1.0/jquery.js"></script>
 <link rel="stylesheet" href="css/app.css">

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-24&iName=master.img-001.jpg&w=322&h=143

Creating the User Interface Grid 203

 <script src="js/audiolib.js"></script>
 <script src="js/app.js"></script>

 </head>
 <!--___BEGIN APP-->
 <body>
 <div class="app-grid">
 </div>
 <button class="play-stop-button">
 Play / Stop
 </button>
 <button class="metronome">Toggle metronome</button>
 <div id="tempoBox">Tempo: 120BPM
 <input id="tempo" type="range" min="30.0" max="160.0"
 step="1" value="120" ></div>
 </body>
 <!--___END APP-->
</html>

CSS
The following code is the CSS for the application .

body{
 background-color:red;
 font-size:25px;
}

button{
 margin-bottom:5px;
 font-size:25px;
}

.track-step{
 width:50px;
 height:50px;
 display:inline-block;
 background-color:orange;
 outline-style:solid;
 outline-width:1px;
 margin-left:5px;
}

To create the div elements for the grid, you use a nested JavaScript for loop .
Each collection of grid items has a parent container .

function play() {
 isPlaying = !isPlaying;

 if (isPlaying) {
 counter = 1;
 futureTickTime = audioContext.currentTime;
 scheduler();
 } else {
 window.clearTimeout(timerID);
 }
}

23. Building a Step Sequencer204

//__________________________________BEGIN create grid
 for (var i = 1; i <= 4; i += 1) {
 $(".app-grid").append("<div class='track-" + i + "-container'
 </div>");
 for (var j = 1; j < 17; j += 1) {
 $(“.track-” + i + “-container”).append(“<div class=’grid-item
 track-step step-" + j + "'</div>");
 }
 }

//__________________________________END create grid

The following code allows you to toggle the metronome on and off .

$(".play-stop-button").on("click", function() {
 play();
});

//___BEGIN metronome toggle
$(".metronome").on("click", function() {
if (metronomeVolume.gain.value) {

metronomeVolume.gain.value = 0;
} else {

metronomeVolume.gain.value = 1;
}

});

//__END metronome toggle

Next you write code that lets users control the tempo from the HTML input
range slider and displays the current tempo on the web page . First, modify the
playTick() function:

function playTick() {
secondsPerBeat = 60 / tempo;
counterTimeValue = (secondsPerBeat / 4);

 console.log("This is 16th note: " + counter);
 counter += 1;
 futureTickTime += counterTimeValue;
 if (counter > 16) {
 counter = 1;
 }
}

Then create the event listener used to control the tempo from the slider:

$(".metronome").on("click", function() {
 if (metronomeVolume.gain.value) {
 metronomeVolume.gain.value = 0;
 } else {
 metronomeVolume.gain.value = 1;
 }
});

$("#tempo").on("change", function() {
tempo = this.value;
$("#showTempo").html(tempo);

});

Adding Interactivity to the Grid Elements 205

You can now modify the tempo of the sequence by moving the HTML
input slider .

Adding Interactivity to the Grid Elements
Each collection of elements with a class of grid-item has a parent . The parent
elements are dynamically created as shown in the following code:

<div class="track-1-container></div>
<div class="track-2-container></div>
<div class="track-3-container></div>
<div class="track-4-container></div>

JQuery has a method named index() that allows you to capture an ele-
ment’s index value relative to a parent element . In the case of the sequencer
application, the index value of the first grid-item of each row is 0 and the last
grid-item index is 15 . You can give this value an offset of +1 so that the first
index grid-item is referenced as 1 and the last is referenced as 16 . This allows for
a correlation between the grid-item index values and the counter value . You
can capture this information by setting an event listener to all elements with
a class of grid-item . When the user clicks the grid-item, the offset index
value is either pushed to or removed from a corresponding track array dependent
on whether the grid-item is active or not . This is what determines if a sound
will play at a certain point in the music sequence . The following code implements
this feature and also modifies the CSS background-color of the grid-item
based on whether it is active or not .

//__________________________________BEGIN create grid
for (var i = 1; i <= 4; i += 1) {
 $(".app-grid").append("<div class='track-" + i + "-container'</div>");
 for (var j = 1; j < 17; j += 1) {
 $(".track-" + i + "-container").append("<div class='grid-item
 track-step step-" + j + "'</div>");
 }
}
//__________________________________END create grid

//______________________BEGIN Grid interactivity
function sequenceGridToggler(domEle, arr) {
$(domEle).on("mousedown", ".grid-item", function() {

var gridIndexValue = $(this).index(); /*__________Get index
 of grid-item*/

var offset = gridIndexValue + 1; /*_______________Add +1 so
 value starts at 1 instead of 0*/

var index = arr.indexOf(offset); /*_______________Check if
 value exists in array*/

if (index > -1) { /*______________________________If index of
 item exist.....*/

arr.splice(index, 1); // _____________________then remove it....
$(this).css("backgroundColor", ""); /*________and change

 color of DOM element to default*/

23. Building a Step Sequencer206

 } else { /*_______________________________________If item does
 not exist.....*/
 arr.push(offset); /*__________________________then push it to
 track array*/
 $(this).css("background-color", "purple"); /*_and change
 color of DOM element to purple.*/

 }
 });
 }

 sequenceGridToggler(".track-1-container", kickTrack);
 sequenceGridToggler(".track-2-container", snareTrack);
 sequenceGridToggler(".track-3-container", hiHatTrack);
 sequenceGridToggler(".track-4-container", shakerTrack);
//______________________END Grid interactivity

Now set the track arrays so that they are empty .

var kickTrack = [1, 9, 11],
snareTrack = [5, 13],
hiHatTrack = [13, 14, 15, 16],
shakerTrack = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16];

var kickTrack = [],
snareTrack = [],
hiHatTrack = [],
shakerTrack = [];

You can now run the sequencer and play back sounds by clicking the squares .
The tempo also changes when the slider is moved .

Summary
In this chapter, you learned how to build a basic music sequencer . You now
understand the core techniques needed to build Web Audio API applications that
rely on event scheduling .

207

24

In this chapter, you are going to learn how to query data using web APIs and to
create your own web API for accessing synth patch data to use in a web audio
synthesizer . Third-party web services commonly allow a portion of their data
to be accessible via a web API . This gives you the ability to query data on their
server and use their data in your applications . An example is the iTunes public
search API that lets developers search media titles in the iTunes store . To begin,
you must first learn about two technologies: AJAX and JSON .

AJAX
AJAX is an acronym that stands for Asynchronous JavaScript and XML . This is a
technology that allows you to use JavaScript to access data asynchronously . You
have already worked with AJAX in previous chapters when loading audio buf-
fers using the XMLHttpRequest object . The X in AJAX refers to XML, which
stands for Extensible Markup Language . This was originally the data exchange
format used with AJAX and is rarely used now . In modern web development, the
data exchange format you use is JSON .

AJAX and
JSON

24. AJAX and JSON208

JSON
JSON stands for JavaScript Object Notation, and it is a data exchange format for
transmitting and receiving data over the HTTP protocol when working with web
APIs . JSON objects are nearly identical to JavaScript object literals, making them
easy to work with . The difference between a JSON object and a JavaScript object
literal is that JSON objects are not assigned to a variable and their keys need to be
written as strings . JSON objects are stored in JavaScript files . The following code
is an example of a JSON object .

{
 "buzzFunk": [{
 "type": "sawtooth",
 "frequency": 65.25

 }, {
 "type": "triangle",
 "frequency": 65.25

 }, {

 "type": "sawtooth",
 "frequency": 67.25

 }]
}

Making an AJAX Call to the iTunes Search API
To demonstrate how to interact with a third-party web API, you are now going to
make a query to the iTunes search API .

Make a copy of the “web audio template” folder you created in Chapter 1,
rename it to “itunes api example” and drag it to the sidebar in Sublime Text .
Next, reference the JQuery library from the index.html file and then copy
the following code to the app.js file .

$(function() {
 var apiURL = "https://itunes.apple.com/search?term=funk&
 media=music&callback=?";
 $.getJSON(apiURL, function(data) {
 console.log(data);

 });
});

Go to Start Sublime Server and in your web browser go to localhost:8080 .
Open the console and you will see an object being returned .

How the Code Works 209

If you click the arrow and unfold the object, you will see a list of objects that
each contains data .

You have just queried the iTunes search API for any music that includes the
keyword “funk” and are now in possession of a JavaScript object that contains
this data .

How the Code Works
JQuery has a collection of methods that abstract the XMLHttpRequest object
and lets developers make AJAX requests with a simple syntax . One of these
methods is $.getJSON . This method issues a request to a server that returns the
queried data . The first argument of $.getJSON is a URL (commonly referred
to as an endpoint) . The endpoint is written as a string, and if you look closely
you can see the search terms embedded in it . These are key/value pairs such as
term=funk and media=music .

"https://itunes.apple.com/search?term=funk&media=music& callback=?";

The part of the endpoint after the “?” symbol is called the query string .
This part of the URL contains the data that is being queried . The “&” symbol
separates the key/value pairs .

https://itunes.apple.com/search?term=funk&media=music&callback=?
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-25&iName=master.img-000.jpg&w=288&h=105
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-25&iName=master.img-001.jpg&w=287&h=160

24. AJAX and JSON210

The iTunes API search terms are assigned to specific keys and in the previ-
ous code, these are term and media . There is no standardization across web
APIs for key/value names, and they are different for each web API . Because the
URL structure for all web APIs is different, you will need to read the documen-
tation for any that you are working with . The documentation for the iTunes
search API is here: https://affiliate .itunes .apple .com/resources/documentation/
itunes-store-web-service-search-api/ .

The next part of the URL string lets you to set a callback to run once the
query completes . In the code example, the callback of $.getJSON is used . If you
want to make a call to the iTunes search API on page load and invoke a function
on completion, it looks like the following code:

HTML
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>app</title>
 <sc ript type=”text/javascript” src=”https://ajax.googleapis.

com/ajax/libs/jquery/2.1.0/jquery.js”>
 </script>
 <script src=”js/app.js”></script>
 <link rel=”stylesheet” href=”css/app.css”>
 </head>
 <!--___BEGIN APP-->
 <body>
 </body>
 <!--___END APP-->
</html>

JavaScript
function logger(data) {
 console.log(data);
}

In the previous example, a function named logger is run when the query
completes .

The $.getJSON method takes a callback as a second argument . The call-
back returns the data object via an argument . In the following code, this argu-
ment is named data, but you can name it anything you want .

$.getJSON(apiURL, function(data) {
console.log(data);

});

Creating Your Own Web API to Reference
Synthesizer Patch Data
You are now going to create your own web API . The goal of this exercise is
to demonstrate how to reference a JSON object that contains synthesizer

https://affiliate.itunes.apple.com/resources/documentation/itunes-store-web-service-search-api/
https://affiliate.itunes.apple.com/resources/documentation/itunes-store-web-service-search-api/

Creating Your Own Web API to Reference Synthesizer Patch Data 211

patch data . The data you will create for your web API is a collection of settings
for the oscillators of a synth . The user interface of the application appears
as in the figure below, and the completed code is available in the resource
examples for this chapter .

Make a new copy of the “web audio template” folder you created in Chapter 1,
name the folder “synthy_api”, and drag the folder to the sidebar in Sublime Text .
Next, reference the JQuery library from the index.html file . Inside the “js”
folder, create a new file named data.js and copy the following JSON object to it
and save the file .

{
 "buzzFunk": [{
 "type": "sawtooth",
 "frequency": 65.25

 }, {

 "type": "triangle",
 "frequency": 65.25

 }, {

 "type": "sawtooth",
 "frequency": 67.25

 }]
}

In the app.js file, save the following code:

$(function() {
 $.getJSON("js/data.js", function(data) {
 console.log(data);
 });
});

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-25&iName=master.img-002.jpg&w=273&h=162

24. AJAX and JSON212

Go to Start Sublime Server and in your web browser go to localhost:8080 .
In the Chrome console, you will see the JSON object .

If you unfold the object, you will see its internals .

A JSON object is different from a regular JavaScript object literal because it
is not assigned to a variable . However, once the data is returned, it is assigned to
a variable and can be passed around and assigned to other variables .

$(function() {
 $.getJSON(“js/data.js”, function(data) {

var patchParams = data;
console.log(patchParams); // object

 });
});

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-25&iName=master.img-003.jpg&w=322&h=115
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-25&iName=master.img-004.jpg&w=322&h=238

The Data Structure 213

The Data Structure
The data structure of the JSON object you are working with contains a single
object property named buzzFunk, which is an array containing three objects
and each holds oscillator data . When this data is loaded into your synth, all
three oscillators combine to create a single sound . Each object has type and
 frequency settings for the oscillator that references it .

The HTML and CSS codes for the keyboard interface used to play the synth
that loads the JSON data are given below . Copy the HTML code to index.html
and the CSS code to app.css .

HTML
<body>
 <h1> Synthy API </h1>
 <ul id="piano">

 <div class="white-key key" id="c1"></div>
 <div class="black-key key" id="c#1"></div>
 <div class="white-key key" id="d1"></div>
 <div class="black-key key" id="d#1"></div>
 <div class="white-key key" id="e1"></div>
 <div class="white-key key" id="f1"></div>
 <div class="black-key key" id="f#1"></div>
 <div class="white-key key" id="g1"></div>
 <div class="black-key key" id="g#1"></div>
 <div class="white-key key" id="a1"></div>
 <div class="black-key key" id="b#1"></div>
 <div class="white-key key" id="b1"></div>
 <div class="white-key key" id="c2"></div>
 <div class="black-key key" id="c#2"></div>
 <div class="white-key key" id="d2"></div>
 <div class="black-key key" id="d#2"></div>
 <div class="white-key key" id="e2"></div>
 <div class="white-key key" id="f2"></div>
 <div class="black-key key" id="f#2"></div>
 <div class="white-key key" id="g2"></div>
 <div class="black-key key" id="g#2"></div>
 <div class="white-key key" id="a2"></div>
 <div class="black-key key" id="b#2"></div>
 <div class="white-key key" id="b2"></div>
 <div class="white-key key" id="c3"></div>
 <div class="black-key key" id="c#3"></div>
 <div class="white-key key" id="d3"></div>
 <div class="black-key key" id="d#3"></div>
 <div class="white-key key" id="e3"></div>
 <div class="white-key key" id="f3"></div>
 <div class="black-key key" id="f#3"></div>
 <div class="white-key key" id="g3"></div>
 <div class="black-key key" id="g#3"></div>
 <div class="white-key key" id="a3"></div>
 <div class="black-key key" id="b#3"></div>
 <div class="white-key key" id="b3"></div>

</body>

24. AJAX and JSON214

CSS
body{
 background-color:purple;
}

h1{
 font-family:"impact";
 color:rgb(228, 208, 230);
 margin-left:10%;
 font-size:70px;
}

li {
 list-style:none;
 float:left;
 display:inline;
 width:40px;
 position:relative;
}

.white-key{
 display:block;
 height:220px;
 background:#fff;
 border:1px solid #ddd;
 border-radius:0 0 3px 3px;
}

.black-key {
 display:inline-block;
 position:absolute;
 top:0px;
 left:-12px;
 width:25px;
 height:125px;
 background:#000;
 z-index:1;

}

The application uses a factory function to load the JSON data . This function
takes two arguments . The first argument is an endpoint that contains the JSON
file, and the second is a property of the JSON object that contains the patch you
want to load . Currently, the JSON file has only one patch named buzzFunk . The
final loading interface for the JSON data looks like the following code:

var synth = apiReader("js/data.js", "buzzFunk"); // load patch
synth.play(keyByDOMIndex); // play a specific note on keyboard
synth.stop(); // stop playing

Delete any code present in app.js and replace it with the following code:

"use strict";
var synth = apiReader("js/data.js", "buzzFunk");
$(function() {

The Data Structure 215

 $(".key").on("mouseover", function() {
 var index = $(this).index('.key');
 synth.play(index);
 });
 $(".key").on("mouseout", function() {
 synth.stop();
 });
});

In the “js” folder, create a new file named module.js and reference it in the
index.html file between the JQuery library and app.js file .

 <head>
 <meta charset="UTF-8">
 <title>app</title>
 <script type="text/javascript" src="https://ajax.googleapis.
 com/ajax/libs/jquery/2.1.0/jquery.js" charset="utf-8"></script>

<script src="js/module.js"></script>
 <script src="js/app.js"></script>
 <link rel="stylesheet" href="css/app.css">
 </head>

In module.js, copy and save the following code:

"use strict";
var audioContext = new AudioContext();

var apiReader = function(endpoint, patchProp) {

 $(function() {

 $.getJSON(endpoint, function(data) {
 app.patchParams = data[patchProp];
 })

 });

 var app = {

 patchParams: undefined,
 oscillators: undefined,

 play: function(id) {

 app.oscillators = app.patchParams.map(function(val) {

 var osc = audioContext.createOscillator();
 osc.type = val.type;
 osc.frequency.value = val.frequency;
 osc.detune.value = (val.frequency) + (id * 100);
 osc.connect(audioContext.destination)
 osc.start(audioContext.currentTime)

 return osc;
 });

 },

24. AJAX and JSON216

 stop: function() {
 for (var i = 0; i < app.oscillators.length; i += 1) {
 app.oscillators[i].stop(audioContext.currentTime);

 }
 }
 }

 return app;

};

Launch the index.html file from Sublime Server and hover your mouse
over the synth keys . You will hear the synth play a collection of oscillators that
reference the settings in the loaded patch data .

How the Code Works
In the module.js file, the factory function named apiReader takes two argu-
ments . The first argument is named endpoint and is the endpoint location of
the JSON file . The second argument is named patchProp and is the property of
the JSON object that contains the synth patch data . The endpoint argument value
is passed to the $.getJSON method . In the body of the $.getJSON callback,
the desired patch of the returned object is referenced and stored in a property
of the app object named app.patchParams .

The purpose of the app object is to contain the properties and methods that
create, connect, start, and stop oscillators using the settings that are listed in the
JSON object property . The first method of the app object is named play . It takes
a single argument and is the index value of a DOM element that represents a key .
When the play method is invoked, the map method loops through each object
in the app.patchParams array and creates an oscillator on each iteration . The
type, frequency.value, and detune.value properties of each oscillator
are assigned . The oscillator is then connected to the node graph and set to start
playing .

app.oscillators = app.patchParams.map(function(val) {
var osc = audioContext.createOscillator();
osc.type = val.type;
osc.frequency.value = val.frequency;
osc.detune.value = (val.frequency) + (id * 100);
osc.connect(audioContext.destination);
osc.start(audioContext.currentTime);

 return osc;
});

The following code provides the index value of a DOM element (the keyboard
note the user hovers their mouse over) multiplied by 100 . The result is added to the
oscillator frequency and assigned to the detune.value property . This makes
the oscillators play back at half-step intervals relative to the keyboard interface .

osc.detune.value = (val.frequency) + (id * 100);

Building on the API 217

Each oscillator is then returned and stored in an array named app.
oscillators .

The stop method is used to stop the oscillators from playing . This method
loops through app.oscillators and invokes a Web Audio API stop method
on each one .

stop: function() {
 for (var i = 0; i < app.oscillators.length; i += 1) {
 app.oscillators[i].stop(audioContext.currentTime);
 }
}

In app.js, the apiReader function is invoked, which returns an object
named synth .

var synth = apiReader("js/data.js", "buzzFunk");

The play and stop methods are placed in two event listeners to start and
stop the oscillators on mouse events .

$(".key").on("mouseover", function() {
 var index = $(this).index('.key');
 synth.play(index);
});
$(".key").on("mouseout", function() {
 synth.stop();
});

When the play method is invoked, the current index value of the div ele-
ment (the “keyboard note”) is captured and passed to the function .

var index = $(this).index('.key');//__get index value of key
synth.play(index);//__________________pass it to play method

Building on the API
The code in module.js is designed to load only the type and frequency of
oscillators, but what if you wanted to load other custom settings such as volume?
The following code adds a volume setting to each oscillator .

data.js
{
 "buzzFunk": [{
 "type": "sawtooth",
 "frequency": 65.25,

"volume": 1
 }, {
 "type": "triangle",
 "frequency": 65.25,

"volume": 1
 }, {

24. AJAX and JSON218

 "type": "sawtooth",
 "frequency": 67.25,
 "volume": 0.3
 }]
}

module.js
"use strict";
var audioContext = new AudioContext();
var apiReader = function(endpoint, patchProp) {

 $(function() {

 $.getJSON(endpoint, function(data) {
 app.patchParams = data[patchProp];
 })

 });
 var app = {
 patchParams: undefined,

gainNodes: undefined,
 oscillators: undefined,

 play: function(id) {

app.gainNodes = app.patchParams.map(function(val) {

var gain = audioContext.createGain();
gain.gain.value = val.volume;
return gain;

});
 app.oscillators = app.patchParams.map(function(val, i) {

 var osc = audioContext.createOscillator();
 osc.type = val.type;
 osc.frequency.value = val.frequency;
 osc.detune.value = (val.frequency) + (id * 100);

osc.connect(app.gainNodes[i]);
app.gainNodes[i].connect(audioContext.destination);
osc.connect(audioContext.destination);

 osc.start(audioContext.currentTime);

 return osc;
 });
 },
 stop: function() {
 for (var i = 0; i < app.oscillators.length; i += 1) {
 app.oscillators[i].stop(audioContext.currentTime);
 }
 }
 }
 return app
};

Extend the JSON Object 219

These file modifications give your code the ability to create a gain node for
each oscillator . The play method of the app object contains a map method that
creates the gain nodes and sets the gain.gain.value property of each one to
the value of the current object’s volume property . All gain nodes are placed in
an array that is assigned to app.gainNodes .

app.gainNodes = app.patchParams.map(function(val) {
 var gain = audioContext.createGain();
 gain.gain.value = val.volume;
 return gain;
});

The oscillators are then connected to the gain nodes in the second map
method .

app.oscillators = app.patchParams.map(function(val, i) {

 var osc = audioContext.createOscillator();
 osc.type = val.type;
 osc.frequency.value = val.frequency;
 osc.detune.value = (val.frequency) + (id * 100);
osc.connect(app.gainNodes[i]);
app.gainNodes[i].connect(audioContext.destination);

 osc.start(audioContext.currentTime);

 return osc;
});

Extend the JSON Object
The JSON object has only one “patch .” You can extend it with as many patches
as you like . The following code extends the object with a property (patch) named
gameSound .

{
 "buzzFunk": [{
 "type": "sawtooth",
 "frequency": 65.25,
 "volume": 1
 }, {
 "type": "triangle",
 "frequency": 65.25,
 "volume": 1
 }, {

 "type": "sawtooth",
 "frequency": 67.25,
 "volume": 0.3
 }],
"gameSound": [{
"type": "square",
"frequency": 100.25,
"volume": 1

24. AJAX and JSON220

 }, {
 "type": "triangle",
 "frequency": 65.25,
 "volume": 1
 }, {

 "type": "sawtooth",
 "frequency": 67.25,
 "volume": 0.3
 }]
}

You then access the gameSound settings by loading them with apiReader .

var synth = apiReader("js/data.js", "gameSound");

Summary
In this chapter, you learned how to query third-party web APIs, work with JSON
files, and create your own web API to load patch data for a synthesizer . The appli-
cation you created only begins to explore what is possible . For a challenge, try
incorporating filters, LFOs, delays, and other settings . In the next chapter, you
will learn about the future of JavaScript and various resources for continued
learning .

221

25 The Future
of JavaScript
and the Web
Audio API

In this book, you have learned the core concepts behind the JavaScript program-
ming language and the Web Audio API . To keep from overcomplicating things,
some parts of both the JavaScript language and the Web Audio API have been
omitted . This chapter presents some of the areas that were skipped and provides
you a few suggestions about what you can learn now to future-proof your new
skills .

The Web Audio API 1.0
As of this writing, the Web Audio API has not reached version 1 .0 . This means
that there are parts of the API that are either changing or have changed but
are not implemented in web browsers . The following two sections talk more
about this .

3D Spacial Positioning
In addition to the StereoPanner node, there are two other spacial positioning
nodes . Both of these nodes allow for 3D style panning . One is called Panner
and the other is called SpacialPanner . Panner has been recently depre-
cated . The replacement for Panner is SpacialPanner . As of this writing,

25. The Future of JavaScript and the Web Audio API222

SpacialPanner has not been implemented in any web browsers . This makes
it difficult to write about it and check the accuracy of code samples . And for this
reason, we opted to omit a detailed explanation of SpacialPanner and pres-
ent a general summary here .

The idea behind 3D spacial positioning is that sound is modified in relation
to two objects in a three-dimensional space . The first object is a sound source that
has its spacial positioning moved using SpatialPanner . The other object is
called SpatialListener that represents a real-world human listener . The util-
ity of this approach is that the SpatialListener object can be programmed
to work with an avatar such as a video game character, where sound that is gen-
erated in a “virtual world” is perceived from a first-person perspective . Volume
changes take place automatically based on the virtual “distance” between the
SpatialListener and any sound-generating virtual objects . For added real-
ism, filters, reverberation, and other effects can be programmed to change the
characteristics of sound based on the perceived position of virtual objects . You
can read about SpatialPanner at the following URL: https://www .w3 .org/
TR/webaudio/#the-spatialpannernode-interface .

You can read about the SpatialListener at this URL: https://www .w3
 .org/TR/webaudio/#idl-def-SpatialListener .

Raw Modi�cation of Audio Buffer Data
The Web Audio API allows for the raw modification of audio data . You do this
by either creating empty audio buffers and populating them with your own pro-
grammed data or by modifying buffers that already contain data such as audio
file information . These modifications can be used to create custom effects and
other useful things like noise generators . The node initially used for this was
named ScriptProcessor, but this been deprecated and replaced with a node
named AudioWorker . Unfortunately, as of this writing there are no web brows-
ers that have implemented the AudioWorker node, so a detailed exploration of
it has been omitted from this book . You can read about the AudioWorker node
at this URL: https://developer .mozilla .org/en-US/docs/Web/API/Web_Audio_
API#Audio_Workers .

Suggestions for Continued Learning
JavaScript 6
http://es6-features .org/(unofficial)

JavaScript 6, technically called ECMAScript 6 or commonly referred to as
ES6, is the newest version of the JavaScript language and is currently being imple-
mented in various JavaScript environments . The material in this book is focused
on the ECMAScript 5 standard and is reflective of the majority of JavaScript in use
around the world at the time of this writing . I suggest that you learn ES6 moving
forward . ES6 has unique features such as block-scoped variables that build on the
ES5 specification . Everything you have learned about ES5 is transferable to ES6 .

https://www.w3.org/TR/webaudio/#the-spatialpannernode-interface
https://www.w3.org/TR/webaudio/#the-spatialpannernode-interface
https://www.w3org/TR/webaudio/#idl-def-SpatialListener
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API#Audio_Workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API#Audio_Workers
http://es6-features.org/
https://www.w3org/TR/webaudio/#idl-def-SpatialListener

Book Website 223

node.js

https://nodejs .org
Node.js is a server-side JavaScript environment based on V8, which is the

same JavaScript engine that runs Google Chrome . Instead of running JavaScript
from a web browser, Node.js allows you to run JavaScript from the terminal on
your computer . It can be used to automate computer tasks, run web servers, and
communicate with databases .

The Web MIDI API
https://www .w3 .org/TR/webmidi/

MIDI, which stands for Music Instrument Digital Interface, is a digital
music instrument protocol created in 1982 by Dave Smith and Chet Wood .
The Web MIDI API allows users to control and manipulate MIDI-equipped
devices using web browsers .

Open Sound Control
http://opensoundcontrol .org/

According to their website, Open Sound Control (OSC) is “a protocol for
communication among computers, sound synthesizers, and other multimedia
devices that is optimized for modern networking technology .” In other words,
OSC is a protocol that facilitates the communication between hardware and soft-
ware over a network .

Summary
In this chapter, you were presented with a list of options for continued learning .
Even though JavaScript has been taught here in the context of working with audio,
it is important to keep in mind that programming is a useful cross- disciplinary
skill that you can use to solve many different types of problems .

Further Reading
 ◾ JavaScript: The Definitive Guide by David Flanagan .
 ◾ Understanding ECMAScript 6 by Nicholas C . Zakas .
 ◾ Programming JavaScript Applications: Robust Web Architecture with

Node, HTML5, and Modern JS Libraries by Eric Elliott .
 ◾ You Don’t Know JS Book Series by Kyle Simpson .
 ◾ Node.js the Right Way: Practical, Server-Side JavaScript That Scales by

Jim R . Wilson .
 ◾ Web Audio API by Boris Smus .

Book Website
http://www .javascriptforsoundartists .com

https://nodejs.org
https://www.w3.org/TR/webmidi/
http://opensoundcontrol.org/
http://www.javascriptforsoundartists.com

http://www.taylorandfrancis.com
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781315659732-26&iName=master.img-000.jpg&w=395&h=104

	get.pdf (p.1-20)
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgment

	get (1).pdf (p.21-28)
	1. Overview and Setup
	What Is a Program?
	What Is JavaScript?
	HTML, CSS, and JavaScript
	What Is a Web Application?
	What Is the Web Audio API?
	Setting Up Your Work Environment
	Setup View in Browser for Windows
	Setup View in Browser for Mac

	How to Create Code Snippets
	Accessing the Chrome Developer Tools
	Troubleshooting Problems and Getting Help

	get (2).pdf (p.29-42)
	2. Getting Started with JavaScript and the Web Audio API
	Hello Sound Program
	Variables
	null
	Documenting Your Code with Comments
	Exploring Variables with an Oscillator
	console.log()
	String
	Built-In String Methods
	toUpperCase()
	toLowerCase()
	charAt()
	replace()
	slice()

	The length Property
	Numbers
	How to Determine the Data Type of a Variable
	Examples of Arithmetic Operators
	Examples of Precedence
	Math.min() and Math.max()
	Math.ceil() and Math.floor()
	Math.random()
	Math.abs()

	Number-to-String Conversion
	Arrays
	push()
	pop()
	shift()
	unshift()
	concat()

	Summary

	get (3).pdf (p.43-50)
	3. Operators
	What Are Operators?
	Assignment Operators
	Assignment
	Addition Assignment
	Subtraction Assignment
	Multiplication Assignment
	Division Assignment
	Modulo Assignment

	The Boolean Data Type
	Comparison Operators
	Equality Operator
	Strict Equality Operator
	Greater Than and Less Than Operators
	Greater Than or Equal to Operator
	Less Than or Equal to Operator
	Not Equal to Operator
	Strict Not Equal to Operator
	Logical Operators
	The Logical AND Operator
	 The Logical OR Operator
	The NOT Operator

	Summary

	get (4).pdf (p.51-58)
	4. Conditional Statements and Loops
	Conditional Statements
	The if Statement
	The switch Statement
	Ternary Operator

	Loops
	for Loops
	Using for Loops with Arrays

	while Loops
	When to Use for Loops and When to Use while Loops

	Summary

	get (5).pdf (p.59-76)
	5. Functions
	Functions—A Simple Example
	Parts of a Function
	Function Expressions
	Abstracting Oscillator Playback
	A Working Effects Box Example
	The Arguments Object

	Function Scope
	Why You Should Always Declare Your Variables with var
	Variable Hoisting
	How Hoisting Affects Functions

	Anonymous Functions
	Closures
	What Is a Closure?

	Callback Functions
	Working with JavaScript’s Built-In Callback Functions
	filter()
	map()

	Recursion
	Summary

	get (6).pdf (p.77-84)
	6. Objects
	JavaScript Data Types
	Looping through Objects
	When to Use Objects Rather Than Arrays
	How to Check If an Object Has Access to a Particular Property or Method
	Cloning Objects
	Prototypal Inheritance
	The "this" Keyword
	The bind Function
	Summary

	get (7).pdf (p.85-90)
	7. Node Graphs and Oscillators
	The AudioContext() Method
	Node Graphs
	Oscillators
	The stop Method
	The onended Property
	How to Stop Oscillators and Restart Them
	The type Property
	The frequency Property
	The detune Property
	Summary

	get (8).pdf (p.91-110)
	8. Using HTML and CSS to Build User Interfaces
	What Is a User Interface?
	HTML

	Explanation of the HTML Template
	Understanding HTML Elements
	Form and Input Elements
	CSS

	Comments
	Element Selectors
	Grouping Selectors
	Descendent Selectors
	Child Selectors
	class and id
	Modifying the App Interface
	Margin, Border, and Padding
	Removing List Element Bullet Points
	Font Size, Style (Type), and Color
	Centering Block-Level Elements
	Summary

	get (9).pdf (p.111-122)
	9. DOM Programming with JavaScript
	How Does JavaScript Communicate with the DOM?
	HTML
	JavaScript

	Building the Application
	How to Trigger an Oscillator by Clicking a Button
	Toggling the Start/Stop Text
	Programming the Frequency Slider
	Changing the Frequency in Real Time
	Changing Waveform Types
	Completed Code with Waveform Selection
	Giving an Outline to the Selected Waveform Type
	Summary

	get (10).pdf (p.123-134)
	10. Simplifying DOM Programming with JQuery
	What Is JQuery?
	JQuery Setup
	Referencing JQuery Directly
	Using JQuery from a CDN
	How to Use JQuery
	Selecting HTML Elements
	Storing DOM Selectors as Variables
	Using Methods
	HTML
	JQuery/JavaScript to Change a Single Property
	JQuery/JavaScript to Change Multiple Properties

	Method Chaining
	HTML
	CSS
	JQuery/JavaScript
	HTML
	JQuery/JavaScript

	The this Keyword
	HTML
	JQuery/JavaScript

	Refactoring the Oscillator Player to Use JQuery
	Without JQuery
	With JQuery

	Setting Up the Event Listener for the User-Selected List Element
	Event Listener without JQuery
	Event Listener with JQuery

	Modifying the Code in setInterval
	setInterval Method without JQuery
	setInterval Method with JQuery
	onOff Method without JQuery
	$onOff Selector with JQuery

	Summary

	get (11).pdf (p.135-140)
	11. Loading and Playing Audio Files
	Prerequisites
	The Two Steps to Loading an Audio File
	The XMLHttpRequest Object
	get Requests

	A Word on Audio File Type Compatibility
	Synchronous versus Asynchronous Code Execution
	Processing the Audio Buffer with the Node Graph
	Summary

	get (12).pdf (p.141-148)
	12. Factories and Constructors
	JavaScript and the Concept of Class
	What Are Classes?
	The Factory Pattern
	Dynamic Object Extension
	Private Data
	Getters and Setters
	Constructors and the new Keyword
	Adding Methods to Constructors
	The Prototype Object and the Prototype Property
	Why Do Constructors Exist If You Can Do the Same Thing with Factories?
	Summary

	get (13).pdf (p.149-156)
	13. Abstracting the File Loader
	Thinking about Code Abstraction
	Creating the Abstraction
	Walking through the Code
	Summary

	get (14).pdf (p.157-162)
	14. The Node Graph and Working with Effects
	How to Think About the Node Graph
	Gain Nodes
	The Placement of Nodes Is Up to You
	What Effects Are Available?
	How to Determine the Nodes You Need to Create the Effect You Want
	A Real-World Example
	Some Effects Require Development Work
	Summary

	get (15).pdf (p.163-170)
	15. The Biquad Filter Node
	Using the Biquad Filter Node
	Filter Types
	Creating an Equalizer
	Graphic EQ
	Parametric EQ
	Summary

	get (16).pdf (p.171-176)
	16. The Convolver Node
	Convolution Reverb
	Where to Get Pre-Recorded Impulse Response Files
	Using Impulse Response Files
	HTML
	JavaScript

	Controlling the Amount of Reverberation
	Summary

	get (17).pdf (p.177-180)
	17. Stereo Panning, Channel Splitting, and Merging
	The Stereo Panner Node
	The Channel Splitter
	The Channel Merger
	Merging All Channels of a Multichannel File into a Single Mono Channel
	Using the Merger and Splitter Nodes Together
	Summary

	get (18).pdf (p.181-184)
	18. The Delay Node
	The Delay Node
	Creating Echo Effects
	Creating Slap Back Effects
	Creating a Ping-Pong Delay
	Summary

	get (19).pdf (p.185-188)
	19. Dynamic Range Compression
	The Dynamics Compressor Node
	Summary

	get (20).pdf (p.189-194)
	20. Time
	The Timing Clock
	The start Method
	Looping Sounds
	Update Your Audio Loader Library
	Changing Audio Parameters over Time
	The Audio Parameter Methods
	The setValueAtTime Method
	The exponentialRampToValueAtTime Method
	The linearRampToValueAtTime Method
	The setTargetAtTime() Method
	The setValueCurveAtTime() Method

	Summary

	get (21).pdf (p.195-204)
	21. Creating Audio Visualizations
	A Brief Word on Fourier Analysis
	A Brief Explanation of Binary-Coded Decimal Numbers
	The Spectrum Analyzer
	JavaScript/JQuery
	HTML
	CSS

	Walking through the Code
	Storing the Frequency Data in an Array
	How to Think About the frequencyData Array
	Building the Display Interface

	Connecting the Analyzer to the DOM
	Summary

	get (22).pdf (p.205-210)
	22. Adding Flexibility to the Audio Loader Abstraction
	The Updated Interface
	Modifying the Library
	Modifying audioBatchLoader
	An Explanation of the Previous Code Edit
	Summary

	get (23).pdf (p.211-226)
	23. Building a Step Sequencer
	The Problem
	Can I Use setInterval or setTimeout?
	The Solution
	How It Works
	Changing Tempo
	Building the Sequencer
	Playing Back Sounds in Sequence
	Creating the User Interface Grid
	HTML
	CSS

	Adding Interactivity to the Grid Elements
	Summary

	get (24).pdf (p.227-240)
	24. AJAX and JSON
	AJAX
	JSON
	Making an AJAX Call to the iTunes Search API
	How the Code Works
	HTML
	JavaScript

	Creating Your Own Web API to Reference Synthesizer Patch Data
	The Data Structure
	HTML
	CSS

	How the Code Works
	Building on the API
	data.js
	module.js

	Extend the JSON Object
	Summary

	get (25).pdf (p.241-244)
	25. The Future of JavaScript and the Web Audio API
	The Web Audio API 1 .0
	3D Spacial Positioning

	Raw Modificaion of Audio Buffer Data
	Suggestions for Continued Learning
	JavaScript 6
	node.js
	The Web MIDI API
	Open Sound Control

	Summary
	Further Reading
	Book Website

