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Preface

This volume grew out of the Project “Poincaré, Philosopher of Science”1 of the
Centro de Filosofia das Ciências, the Center for the Philosophy of Science, at
the University of Lisbon. Over several years, in various colloquia and confer-
ences, Poincaré scholars and philosophers of science from around Europe and the
Americas joined with the Poincaré Project’s members in Lisbon, to consider novel
perspectives on all the facets of Poincaré’s thought on the philosophy of mathe-
matics and natural science and to try to find a coherent perspective on Poincaré’s
philosophy of science as a whole. This volume reflects the most important facets
of Poincaré’s contributions to the philosophy of science, by bringing together some
characteristic papers from the Poincaré Project. It is by no means a complete record
of the work of the Project, nor can it claim to contain all of the most important
papers that eventually emerged from it; many of these have been published in
other venues and reached other audiences. The purpose of the volume is, rather,
to exhibit the impact of the Poincaré Project on contemporary interpretations of
Poincaré’s thought, through a broad sample of the innovative scholarship that the
Project has fostered—and, even more, to exhibit the extraordinary breadth and depth
of Poincaré’s work in the foundations of mathematics and science and to encourage
the growing interest in the philosophical importance of his work.

The editors would like to thank everyone who participated and assisted in the
Poincaré Project, in addition to those whose papers are collected here, but in
particular Professor Augusto Franco de Oliveira, leader of the Poincaré Project, and
Olga Pombo, head of the Centro de Filosofia das Ciências, for their inspiration and
support. We would also like to thank Lucy Fleet of Springer for her untiring support
of this volume.

Lisbon, Portugal María de Paz

1Financed by Portuguese Science and Technology Foundation (PTDC/FIL/64748/2006).
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Introduction

The work of Henri Poincaré (1854–1912) extends over many fields within
mathematics and mathematical physics. In mathematics, he was instrumental in
the development of the theory of functions, mathematical logic, topology, and,
most famously, non-Euclidean geometry; in physics, he played a role in the
development of celestial mechanics, thermodynamics, statistical mechanics, and
electrodynamics. It is therefore somewhat astonishing, in retrospect, to reflect on the
magnitude and importance of Poincaré’s contributions in all these fields. A survey
of his original scientific work would indeed be a history of the transition from the
nineteenth century to modern mathematics and physics. But his scientific work was
inseparable from his groundbreaking philosophical views, and the scientific ferment
in which he participated was inseparable from the philosophical controversies in
which he played a pre-eminent part. The subsequent history of the mathematical
sciences and the philosophy of the mathematical sciences were deeply affected by
Poincaré’s philosophical analyses of the relations between and among mathematics,
logic, and physics, and, more generally, the relations between formal structures and
the world of experience.

During the twentieth century, some standard interpretations of Poincaré’s philo-
sophical views emerged which, a century after his death, are ripe for reassessment.
For example, his philosophy of mathematics is mainly negatively characterized by
his rejection of logicism and formalism understood as pure manipulation of sym-
bols. His conventionalist view of the foundations of geometry and physics, too, has
yet to be fully clarified; it had a decisive influence on the views of Einstein and the
logical positivist movement, but in recent debates over the fate of logical positivism
and the foundations of science, Poincaré’s original insights into the relation between
mathematical structures and experience have not been adequately appreciated. Thus
in philosophy of science as in philosophy of mathematics, contemporary debates
center on questions whose formation was profoundly affected by Poincaré’s work
and which can still be further illuminated by a better understanding of what Poincaré
contributed.

xi



xii Introduction

The essays in this volume are divided by the broad topics of foundations of
mathematics, foundations of physics, and general philosophy of science. It might
seem, on the one hand, that this division is artificial, because the boundaries cannot
be very precisely drawn; Poincaré’s foundational work in mathematics is never
remote from his interest in physical application, and his work in the foundations of
physics always involved reflection on mathematical methods; both were thoroughly
colored by his broader philosophical interests. And his philosophical reflections
always originated in reflections on specific problems in physics and mathematics,
their logical, epistemological, and practical foundations. On the other hand, the
inseparability of mathematics, physics, and philosophy within Poincaré’s thinking
is a central part of the motivation for this entire project and therefore of this volume.

Poincaré’s philosophy of science is primarily thought of in connection with his
celebrated defense of conventionalism, particularly concerning physical geometry.
His argument that our knowledge of the structure of space and time depends on con-
ventional choices—on “definitions in disguise” that assign empirical significance
to geometrical concepts—undoubtedly accounts for much of his influence on the
evolution of the philosophy of science in the twentieth century. It suggested that
because of the crucial role of definitions in applying geometry to the world, the
choice between different theories is like the choice between different languages to
express the same physical facts. There might be compelling grounds for a particular
choice, but these can only come from considerations of simplicity and convenience;
there can be no meaningful question of truth. The intrinsic philosophical interest
of Poincaré’s conventionalism arises from the light that it shed on the relation
between physical laws and the definitions of the physical concepts that those laws
employ. The idea that the fundamental principles of physics play a peculiar role,
distinct both from logical principles and from empirical laws, was a fairly old
one going back (at least) as far as Kant’s theory of the synthetic a priori: such
principles appear to have the force of necessity, yet also to describe the contingent
world of empirical facts. The best example was Euclidean geometry, seen as resting
on universal and necessary principles that, nonetheless, describe the space of our
experience. Kant’s explanation was that such principles are determined by the form
of our spatial intuition. By Poincaré’s time, however, this view appeared to be fatally
undermined by the development and the empirical application of non-Euclidean
geometry. The first step in this process was the empiricist view of Helmholtz. Where
more traditional empiricists, like Mach and Mill, treated the fundamental principles
of geometry as inductive generalizations, Helmholtz argued that their inductive basis
lay in more primitive physical principles: the free mobility of rigid bodies and the
rectilinear propagation of light. Geometry is both formal and empirical, according
to Helmholtz, because it is the formal development of postulates whose empirical
content ultimately derives from these elementary physical facts.

What distinguished Poincaré’s approach was that it offered an explanation of
the necessary aspect of geometry, without appealing to the notion of synthetic
a priori knowledge. Here there is no need for a detailed account of Poincaré’s
conventionalism, which is discussed at length in the essays by Folina and De
Paz. Nor is it necessary to try to represent conventionalism as a general guiding
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principle throughout Poincaré’s philosophical reflections. Conventionalism, taken
in its simplest sense as an account of the role of free choice in the empirical interpre-
tation of mathematics, is only one aspect of Poincaré’s thinking. A more important
aspect is his emphasis on those fundamental principles that provide criteria for the
interpretation and application of fundamental concepts. One role of these principles
is to provide implicit definitions of the concepts that occur in them. For example,
Newton’s second law does not begin from a precisely defined concept of force;
it specifies precisely what force is as a measurable theoretical magnitude, by
identifying acceleration, as its geometrical correlate. Yet is more than a definition,
and so is more than an analytic principle in Kant’s sense, that is, a mere exposition of
what predicates are “contained” in the concept of force. The empirical content of the
law consists in the program that it defines, for determining the forces of interaction
among bodies from their observed relative accelerations; it makes their relations
intelligible as interactions. The form of necessity that it imposes lies in its strict
requirement that absolutely every component of every accelerated motion can be
traced to a physical source, thus completing an action-reaction pair. In principle, one
might be tempted to call this an unfalsifiable claim, compatible with any finite body
of empirical evidence. In practice, it defines the perturbation theory for Newtonian
mechanics. Within the framework defined by Newton’s laws, the investigation of
any interacting system can start from the simplest idealized model, and every
deviation from the ideal behavior is informative, giving rise to a succession of
corrections to the initial simplified estimates of the properties of the system.

We thus see that Poincaré’s conventionalism is one facet of a broader philo-
sophical orientation that defines, not only an approach to general questions in the
philosophy and methodology of science, but also a perspective on foundational
problems in mathematics and mathematical physics, from which the role of formal
principles appears in a particularly revealing light. Poincaré’s technical researches
were never completely detached from his appreciation of the general structural
principles that organize particular fields of inquiry and define their fundamental
questions. In the foundations of geometry, this orientation directs Poincaré not only
to the explicitly philosophical questions surrounding the nature of space and time
and the empirical status of non-Euclidean geometry, but also to the exploration of
Klein’s group-theoretic conception, the connections between geometry and formal
logic, and the generalization of geometry through the development of analysis situs
and the first steps toward modern topology. This expanded conceptual framework
for geometry, in turn, enabled Poincaré to develop his distinctive group-theoretic
approach to electrodynamics, a clear forerunner to Einstein’s theory of relativity.
The same philosophical orientation appears in Poincaré’s studies on the foundations
of probability theory and his uses of probabilistic considerations as a framework
for thinking about the foundations of thermodynamics, statistical mechanics, and
celestial mechanics.

This complicated mixture of detailed conceptual analysis, in the foundations
of science, with reflections on the most general problems in the philosophy of
science—methodological, epistemological, and even metaphysical—is an essen-
tial feature of Poincaré as philosopher and is therefore the central motivation
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for the present collection of essays. It starts with a set of essays on general
aspects of Poincaré’s philosophy of science—beginning with his early philosophical
education—and proceeds to essays on some aspects of his work in the foundations
of mathematics and physics. It is not meant to offer a complete picture of Poincaré’s
philosophy, but, rather, a framework for further study of the interactions between
philosophical and scientific inquiry that gave his scientific work, remarkable as it
was from a purely scientific perspective, its distinctive philosophical character and
its enduring relevance to the philosophy of the exact sciences.



Part I
Poincaré’s Philosophy of Science



Portrait of Henri Poincaré as a Young
Philosopher: The Formative Years (1860–1873)

Laurent Rollet

“Il nous arrivait quelquefois de philosopher: Poincaré souriait
doucement de la psychologie et de la théodicée naïves qu’on
enseignait alors en vue du baccalauréat. Je me souviens
également de longues conversations sur les raisons scientifiques
et philosophiques de croire à l’existence de la vie dans d’autres
planètes”.

(Paul Appell 1925)

Abstract The question of the origins of Henri Poincaré’s philosophy gave rise to
numerous studies during the last decades. This article proposes to follow a track
that has not been explored in detail so far: the aim is to follow Poincaré during
his training years in high school in Nancy until he entered the Ecole Polytechnique
in 1873. Different sources, old or recent, offer the possibility of reconstructing his
school career. They also give some clues about his first contacts with the field of
philosophy, through his readings, his family and social relationships or the curricula
then in effect in public education. To carry out this mainly biographical program,
we will first give an account of his family background and explore the characters of
his social and cultural world in a small university town. In a second step, we will
study in detail the functioning of the high school and of the faculties of Nancy in
the 1860s. Finally, we will propose different trails concerning the construction of
his philosophical horizon during his youth.

L. Rollet (�)
Laboratoire d’histoire des sciences et de philosophie – Archives Henri Poincaré (UMR 7117
CNRS/Nancy université)/Maison des sciences de l’homme Lorraine (USR CNRS 3261),
University of Lorraine, 91 Avenue de la Libération, F-54000, Nancy, France
e-mail: laurent.rollet@univ-lorraine.fr

M. de Paz and R. DiSalle (eds.), Poincaré, Philosopher of Science: Problems
and Perspectives, The Western Ontario Series in Philosophy of Science 79,
DOI 10.1007/978-94-017-8780-2__1, © Springer ScienceCBusiness Media Dordrecht 2014
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4 L. Rollet

Henri Poincaré as Philosopher: An “Epistemic Bastard”?

Henri Poincaré published, during his life, three philosophical works that achieved
great success with the general public and with the philosophical community: Science
and Hypothesis (Poincaré 1902), The Value of Science (Poincaré 1905) and Science
and Method (Poincaré 1908). These three books – four if we include the posthumous
Last Thoughts (Poincaré 1913) – constitute the heart of the philosophy of Poincaré,
whose influence on the epistemology of the twentieth century cannot be doubted.

However, Poincaré was first an engineer and a scientist, and not a “professional”
philosopher. In addition, except for his long collaboration with the Revue de
métaphysique et de morale (a score of 20 articles from 1893 to his death), many
of his philosophical works were published in scientific journals or magazines on
science popularization.1

What is the philosophy of Poincaré? What type of “philosopher” was he? How
did he enter into philosophy? What were his relations with the French philosophical
community? Is it possible to have a precise idea of the connections between his
scientific practice and his so-called philosophical thinking? Who were the authors
who influenced his philosophy?

We could respond to these questions by different strategies: for example, we
could invoke the anchorage of Poincaré’s thought in his own research practices
and in the scientific debates of his time; this would mean giving precedence to the
networks of conceptual influences with various scientists (Hermann von Helmholtz,
James Clerk Maxwell, etc.).2 We could also analyze his thought from a more
systematic angle, in order to clarify the philosophical structure and establishing its
consistency. We could, finally, try to characterize it by relying on the degree of
Poincaré’s proximity with the professional philosophical community at the end of
the nineteenth century.

Whatever strategy or strategies are adopted – which are not necessarily mutually
incompatible – it seems difficult to hope to characterize Poincaré’s philosophy
without defining at least minimally the terms “philosophy” and “philosopher”. If
it is not certain that we can propose a fully satisfactory answer to such general
questions, we can, however, try to give them a historical color by situating them in
the context of the first decades of the Third Republic (1870–1914).

At the end of the nineteenth century, French philosophy began a movement
of professionalization and became more and more the business of professors.
This trend was linked, of course, to the gradual empowerment of the academic
field; it created university professors, no longer reciters, but researchers, and it
followed the general movement of the development of the educational system. This
process is particularly visible when we compare the two halves of the nineteenth

1These articles were then collected in the volumes of the Bibliothèque de philosophie scientifique
cited above. On the composition of these volumes see Poincaré 2002.
2For example, see the important work of Adolf Grünbaum 1963 and Jerzy Giedymin 1982 in the
years 1970–1980 or, more recently, the contribution of João Príncipe 2012.
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century: before 1850, the most important French philosophers were very often
non-professional – thus alien to the academic community – or thinkers without
real philosophical training. Conversely, the philosophers of the second half of the
nineteenth century were usually perfectly integrated into the academic community
and could claim a depth of philosophical formation (many were then educated at
the Ecole normale supérieure). Professionalization contributed to create a coherent
philosophical community and guaranteed the authority of philosophical discourses,
an authority secured by the reproduction of the professorial corps: the profession
was equipped with specialized journals, specific training, competitions, and it
was organized around venues for social interaction – international congresses and
learned societies, such as the Société française de philosophie (Fabiani 1988,
28–29).

But this era of professionalization was also marked by increasing participation
of scientists in philosophical debates, a movement which could only undermine the
monopoly of the philosophers over philosophical discourse. The scientists expressed
themselves in literary and philosophical journals and challenged disciplinary com-
partmentalization.

This is the case with Henri Poincaré, Pierre Duhem and other scientists as well.
How, then, should we characterize their interventions in the philosophical field?
These were not professional philosophers, in the sense that they did not occupy
chairs in philosophy, but they were no less perceived as thinkers of first rank on
the philosophical scene, and their contributions were widely solicited by the editors
of philosophical journals.3 Moreover, illustrious thinkers like Poincaré or Duhem
were only the most visible part of a very broad community that included amateurs,
representatives of different scientific disciplines, engineers, military, etc. These
hundreds of actors, who published in a large number of philosophical, scientific and
popular magazines, who contributed to the emergence of an epistemology among
the French, are sometimes designated by the expression scientist-epistemologists, a
designation proposed by Jean-Claude Pont and Marco Panza (1995). One might
prefer, however, without any pejorative implication, the expression “epistemic
bastards” coined by Christophe Prochasson (1991, 175). This very evocative
characterization perfectly describes the disciplinary indecision and the ambiguity of
the intervention of these scientists on the philosophical and intellectual scene; they
evolved within a vaguely delimited territory comprising science, philosophy and
popularization of science, which made their professional identity relatively opaque.
These designations certainly do not solve the problems of identity, but at least
they highlight the singularity of a certain practice of philosophy at the turn of the
nineteenth century, of which Poincaré is without question an exemplar.4 The study

3As well, for the first number of the Revue de métaphysique et de morale, 1893, its founders Elie
Halevy and Xavier Léon would do everything to obtain an article of Poincaré, helped in this by
Emile Boutroux and Henri Bergson (Simon-Nahum 1991).
4For a critical discussion of the category of “scientist-epistemologist,” see the doctoral dissertation
in progress by Jules-Henri Greber. A preview is available in his paper, “Caractériser un contexte à
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of his philosophical ideas – from their emergence to their dissemination – must take
into account this context of professionalization and reconfiguration of philosophical
practices.5

But another element of context deserves a special study. We know the important
role played by philosophy as a school discipline within French education at the
time of Poincaré. Regarded as the crowning achievement of secondary studies,
philosophy was an intellectual and social marker; it constituted an essential step
in the formation of l’honnête homme, in a context where only a minority of students
had access to the baccalaureate and higher studies.

Poincaré belonged to this minority, and was therefore subject to this ideal of
training of the elite by the study of great authors, and by following a program
carefully defined by ministerial committees. The purpose of this article is to follow
him during his years of training at the high school of Nancy up to his entry to
the Ecole polytechnique in 1873. Diverse sources, old or recent (Darboux 1913;
Xardel 2012; Bellivier 1956; Appell 1925, as well as his correspondence6) offer the
possibility of reconstructing his path in a relatively detailed way, and to obtain a
few clues to his first contact with the field of philosophy, through his readings, his
family and social relations, or the education programs then in force. To carry out
this mainly biographical program, we will first recount his family origins, and we
will explore the character of his social and cultural universe in a small provincial
university. Second, we will study in detail the operation of the high school and the
faculties of Nancy in the 1860s. Finally we will propose different paths for how the
future scientist was able to expand his philosophical horizon in his younger years.

The Social and Cultural Environment of the Young Poincaré

Henri Poincaré was born in Nancy on April 29, 1854. His mother, Eugénie Launois,
originated in Arrancy in the Meuse, and came from a rich family of landowners.
His father, Emile Léon, originated in Neufchâteau, in the Vosges. He kept a medical
practice, which provided him a comfortable enough income but, at the same time,
he pursued a career as a teacher and researcher. He started as assistant professor at
the preparatory school of medicine in Nancy at the end of 1850, and he was able
to obtain a chair of professor of hygiene in 1872 in the new Faculty of Medicine
created at Nancy, following the loss of Strasbourg after the war of 1870. His research
focused on diabetes, on the nervous system (E.-L. Poincaré 1873–1874), and also

partir d’une base de données : le cas de la philosophie et de l’histoire des sciences entre 1870 et
1930” (Greber 2012, 541–574).
5A study that I have been able to carry out in the course of a doctoral dissertation which resulted
in the book, Henri Poincaré (1854–1912): des mathématiques à la philosophie. Etude du parcours
intellectuel social et politique d’un mathématicien au tournant du siècle (Rollet 2000).
6While in press, it is also searchable on-line: http://www.univ-nancy2.fr/poincare/chp/

http://www.univ-nancy2.fr/poincare/chp/
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on industrial hygiene (E.-L. Poincaré 1886), a field in which he seems to have been
a pioneer.7 Distinguished member of the University, member of the local academy,8

and municipal councilor, Emile-Léon Poincaré was a well-known figure in good
society in Nancy, and he enjoyed strong social, intellectual and political support,
which his son would also enjoy.

In the immediate background of the Poincaré family, we find first Antonin
Poincaré (1825–1911), the brother of Emile-Léon Poincaré. A polytechnicien, he
had a brilliant career as a hydrographic engineer in the Meuse. His marriage
with Marie-Nanine Ficatier-Gillon produced the future President of the Republic,
Raymond Poincaré (1860–1934) and the physicist Lucien Poincaré (1862–1920),
called to become a vice-rector of the Academy of Paris. In the branch of Launois,
we find several uncles trained at the Military School of Saint-Cyr,9 local elected
officials – such as Charles Comon (1825–1897) who would be mayor of the city of
Longuyon – or the geologist Auguste Daubrée (1814–1896), a remote cousin who
was the director of Paris mining school [Ecole des mines de Paris] at the time when
Poincaré studied there.

The political connections of the family were numerous and influential. Through
his situation in the municipal council, Poincaré’s father was close to Auguste
Bernard (1824–1883), mayor of Nancy and senator. The family also counted
among its relations several politicians – legislators, senators and even ministers:
Jean Eugène Billy (1830–1878), Jules Develle (1845–1919) or even Henri Varroy
(1826–1883). These friendships were the mark of an accession to a moderate and
conservative republicanism that Henri Poincaré would retain in his adult life.10 We
may add that in an era when the wealthier families developed strategic alliances
through marriages, the young mathematician would unite his destiny to Louise
Poulain d’Andecy, great-granddaughter of the naturalist Etienne Geoffroy Saint-
Hilaire, daughter of an administrator of a well-known French bank (the Crédit
foncier de France), whose family was linked to that of Jules Ferry.11

The Poincaré family’s social circle in the years 1850–1870 seems to have
consisted predominantly of university colleagues. The Poincaré family was thus
very friendly with the Xardel family: just like Emile-Léon Poincaré, Jean Pierre
Romain Xardel was a liberal doctor and taught at the preparatory school of
medicine; one of his sons, Paul (1854–1933), would be a very close friend of
Henri Poincaré at the Lycée de Nancy and would pursue a career in the army
after studies at Saint-Cyr (ending his career with the rank of two-star general).

7Some see him as a precursor of occupational medicine. On the life and work of Emile-Léon
Poincaré, cf. Drouelle 1986; Salf 2000 and Joly 2000.
8The Académie de Stanislas: it brought together a large part of the local elites, including the
intellectual and academic elites.
9Adrien Launois (1842–1917) and Gaspard-Auguste Launois (1806–1886).
10Note that Gaspard-Auguste Launois would be a member of Constituent Assembly of 1848, and
that his uncle Antonin would refuse to take an oath to the Emperor in 1852.
11Concerning Poincaré’s wife, see Rollet 2012b.
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The entourage of friends also included two professors of the faculty of sciences
of Nancy: Camille Forthomme (1821–1884) and Nicolas Renard (1823–1880).
Educated at the Ecole normale supérieure, Forthomme was professor of physics
at the high school of Nancy during many years (where he had Poincaré as a student)
prior to obtaining the chair of the faculty of chemistry in 1869. Well-known in the
intellectual circles of Nancy, he was a member of the municipal council and would
sponsor the candidature of Léon Poincaré to the Académie de Stanislas in 1862. As
for Renard, also a normalien, he held the chair in pure and applied mathematics
and then that of applied mathematics; he would distinguish himself by the work of
mathematical physics devoted to the study of electrical and magnetic phenomena
under the single-fluid hypothesis. A deep friendship bound the three families, who
received each other regularly, and whose children shared the games and recreations
(Aline Boutroux was a close friend of the daughter of Renard, Marie (Boutroux
2012)). Also among the relatives of Poincaré were the family of the historian Alfred
Rambaud (1842–1905), a Russia specialist, founder of the anticlerical newspaper
Le progrès de l’Est, and future Minister of Public Education, as well as the family
of Jules Rinck, a rich Nancy linen merchant whose son, Elie, would be a very close
friend of Henri Poincaré (they studied together at the Ecole polytechnique) (Rollet
2012a).

Born into a family of the intellectual bourgeoisie of province, Poincaré grew up
in an environment where compliance with social conventions was very important.
It was considered good form to attend religious services (as a good Catholic, he
would make his communion) and to arrange charity tours. The practice of public
lectures was still well established at the university, and attending the meetings
of school or the lectures of professors newly installed in their chairs – including
those of the Faculty of Letters – was a highly esteemed leisure activity. At the
Poincaré home, salons were held, and family friends came to organize theatrical
performances (staging, especially, lightweight plays tailored to young ears, such
as the vaudevilles of Eugène Labiche); the most common leisure activities were
literary games (charades, end rhymes, rebus, poetry), whist, dance, piano, and song.
Poincaré’s father was, in addition, a passionate traveler, and summer holidays were
devoted to wanderings in the Vosges, in Germany, in England or in Paris (which the
family visited for a week during the universal exhibition of 1867).

From a young age, Poincaré seems to have done a wide variety of reading.
Highly gifted, he possessed an abundant library consisting of books rewarding his
educational successes. His childhood friend Paul Xardel recounts that the future
scientist helped him to discover the novels of Marcel Aymard, Jules Verne, Emile
Erckmann and Alexandre Chatrian, Victor Hugo or the works of Alphonse de
Lamartine. He also tells us that he was interested in poetry and history, and that
he read some philosophy, unfortunately without indicating his preferred authors
(Xardel 2012). Poincaré was also very interested in geography (he was a regular
reader of the magazine Le tour du monde) and he read popularizations of science
such as Louis Figuier’s La terre avant le déluge (Figuier 1862). With his sister, he
corrected proofs of the works of his father. Moreover, at the age of 13, he began to
read books in special mathematics (Fig. 1).
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Fig. 1 Henri Poincaré at the
time of his communion, 1865
(Source: Livre du centenaire
de la naissance d’Henri
Poincaré, Paris,
Gauthier-Villars, 1955)

All of these facts precisely indicate the social and cultural environment in which
Poincaré was immersed during his years of training. They are not in themselves
surprising in light of the sociology of provincial elite in the second half of the
nineteenth century. They do enable us to see however, what might have been
his spontaneous philosophy, inherited from his family and its social habitus: the
young Poincaré seems to have displayed a great openness toward the sciences and
demonstrated a certain faith in scientific and technical progress; he shows evidence
of an average religiosity, tending progressively toward agnosticism or skepticism.12

He was undoubtedly a patriot.13 He adhered to liberal values and to a moderate

12We know from statements made by Poincaré to Doctor Edouard Toulouse in 1897 (Toulouse
1910, 143) that he must have been losing faith toward 18 years of age.
13His sister told a detailed story of their children’s games, in which the cult of Jeanne d’Arc (Joan
of Arc) – very present at that time in Lorraine – played a central role. In the year of his communion
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republicanism. The tragic circumstances of the war of 1870 – when he was 16
years old – constituted a deep shock for him: one of his military uncles was taken
prisoner at the battle of Sedan, the home of his maternal grandparents in Arrancy
was completely looted by the enemy, and his family was forced to billet for months
a senior German officer (Boutroux 2012). At a time when patriotic values were very
strong – Nancy was a military city – Poincaré could not help adhering to the ideal
of a reconstruction of the country by science.14 This may be the reason why he
supported Adolphe Thiers politics in 1873, which on the other side, resulted in a
bloody suppression of the Paris Commune.15

The Training of Poincaré at the Lycée de Nancy

The Organization of Study in Secondary Education in the 1860s

In the middle of the 1860s, enrollment in secondary education amounted to a little
more than 140,000 pupils (Prost 1968, 45), a misleading figure because many of
the students did not pursue their schooling up to the baccalaureate and ended their
schooling after the small classes (or what was often called the “small high school”
[petit lycée]). In 1865, 4,097 baccalaureates of letters and 1,763 baccalaureates of
science were given (Meuriot 1919). The baccalaureate degree was therefore the
symbol of belonging to a bourgeois and intellectual elite. The Parisian grandes
écoles (Ecole polytechnique, Saint-Cyr, Ecole normale supérieure, etc.) were very
prestigious among the local notables, who would strive to send their children there
when they had the requisite capacities and talents. For years there was a market for
the preparation for competitions to enter these grandes écoles, in which both the
public high schools and the private Parisian institutions took part (Belhoste 2001).

(1865), Poincaré also wrote a play in 5 acts on Jeanne d’Arc (which would be subsequently turned
into an opera) (Boutroux 2012).
14Recall here the motto of the Ecole polytechnique, which takes all its meaning after the defeat
of 1870: “Pour la Patrie, les Sciences et la Gloire”. Poincaré in 1881 would join the French
Association for the Advancement of Science, whose motto was: “Par les sciences, pour la Patrie”.
15He thus signed, along with his comrades in the classe de mathématiques spéciales of the high
school, a petition in favor of the president Adolphe Thiers when he was forced to resign by the
monarchists in 1873: “The students of special mathematics of Nancy to M. Thiers. Letter of the
inhabitants of Nancy to Mr. Thiers. You have appealed to the judgment of history; you could with
the same pride and the same confidence have appealed to the judgment of your fellow citizens.
You fall under the blows of the coalition parties; you fall against the will of the country. For us,
inhabitants of a city still occupied, it is not without a sense of deep pain and anxiety that we
learned of the retirement of the great citizen who, since our disasters, has worked tirelessly for the
rehabilitation of France and the liberation of the territory. France does not forget any of these great
services rendered by you to the homeland and the Republic that you have so rightly proclaimed the
necessary form of our government.”
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However, in 1865, the imperial lycée de Nancy was one of the first provincial high
schools to establish a section of mathematics dedicated to the preparation of these
very competitive examinations.

To study at the high school represented a major cost to families: the tuition fees
for an external student ranged from 120 francs per annum for the elementary classes
(which would be called college today) to 200 francs per year for the higher division
(classes de rhétorique and classe de philosophie). The expenses for the classe de
mathématiques spéciales would amount to 250 francs, to which would be added the
special charges for conferences, repetitions, and exams (60 to 145 francs, depending
on the level of schooling). For boarding students, the annual costs were much more
significant, between 800 and 1,000 francs per annum.16 Needless to say, the French
educational system was at this time very rigid: it was closely controlled by the
imperial administration, which intended it to perpetuate the cultural model of the
dominant conventional humanities.

In Poincaré’s time the schooling of pupils was organized into three divisions. The
elementary division continued to the end of the seventh-grade class; it was centered
on history, religion, Latin and French grammar, geography, mathematics and the
learning of a foreign language. After having passed an examination, students could
then be oriented toward the division of grammar, which went to the sixth grade at
the end of the fourth; this was centered on the teaching of Latin, French, the Greek
grammar, history and geography, mathematics and of a living language. Then came
the higher division, which was then experiencing major upheavals.

Since the reform of secondary education put in place by the Minister of Public
Education Hippolyte Fortoul in 1852, this last step of the secondary studies was
organized following the system of bifurcation. The idea of this reform was to put an
end to the sterile debates on the pre-eminence of letters or of science, by establishing
two Baccalaureate degrees, different but of equal value. All the secondary school
students had a common instruction from the sixth grade to the fourth grade. At the
end of the fourth, after undergoing a serious examination, they were divided into
three categories. The “unfit”, or the students whose families did not intend them for
long studies, would leave secondary education. The remaining pupils were divided,
according to their abilities, within the two sections of the higher division, one to a
predominantly literary and the other to the predominantly scientific division.

The scientific section was preparatory to the baccalaureate of science and was
particularly directed to students seeking to enter the special schools – such as, for
example, Nancy School of Forestry [Ecole forestière de Nancy]17 – who were not
headed to an industrial or commercial career, or who were considering joining a
science faculty or a faculty of medicine. The literary section was preparatory to the

16These figures go back to 1876: Brochure de présentation du Lycée de Nancy, Archives
Départementales de Meurthe-et-Moselle, 1 T 596. For comparison, 200 francs represented nearly
3 months of salary for a worker at this time.
17Poincaré would successfully pass these competitions, with the aim of preparing for the more
difficult examinations of the Parisian grandes écoles.
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baccalaureate of letters and was directed to students wishing to do literary studies,
or to move on to legal careers. This system of bifurcation had been designed to
modernize the teaching, particularly in the opening on the living languages and on
the sciences. For the latter, it favored a very utilitarian pedagogy, in order to offer
students a training that could help them in the labor market.

The Fortoul reform of 1852 had resulted in the replacement of the classe de
philosophie by a classe de logique and by the abolition of the agrégation of
philosophy.18 It was a time in which political authorities sought to influence the
teachings in this area, to call in question the weight of the École normale supérieure
(which the imperial regime was defying) and to reassure the families who might
worry about the seditious and potentially immoral nature of philosophy teaching
(according to Fortoul, the vocation of the Ecole normale supérieure was to train
professors, and not rheteurs).

This reform was very much criticized, and imperfectly implemented in the high
schools. The parents, who were often very attached to the prestige of the classical
humanities at a time when the conflict between the “old” and the “modern” was
always alive, considered it incomprehensible. Consequently, the bifurcation would
be eliminated in 1864 by the minister Victor Duruy.

Duruy’s reform restored the unity of teaching and therefore recreated the classe
de philosophie, considered again as the crowning achievement of secondary studies.
In addition, it restored the agrégation of philosophy of 1863.19 Therefore it restored,
by 1865, the unity of a secondary education based on the humanistic education. The
baccalaureate of science would come after the complete cycle of literary studies and
could be prepared by a mathematics course.

The Tests for the Baccalaureate

It was, therefore, in an educational system marked by profound upheavals that
Poincaré undertook his studies at the upper secondary school of Nancy, where he
entered as an external on October 1862. He was then 8 years old. Previously he
had benefited from the private courses of Alphonse Hinzelin, a friend of the family
(who had signed Poincaré’s birth certificate as a witness in 1854). A journalist and
local scholar, Hinzelin was a regular contributor to the journal L’impartial, in which
he published many patriotic texts. He would prepare several books devoted to the
geography and history of the Meurthe (Hinzelin 1857) as well as vaudevilles. It is he

18For a detailed study of the system of the bifurcation, see the works of Maurice Gontard (Gontard
1972), and Nicole Hulin (Hulin 1982 and Hulin 1986).
19In French educational system, the agrégation is an elitist national competition for the recruitment
of teachers in every discipline (mathematics, physics, philosophy, etc.). During nineteenth century,
most of the professeurs agrégés came from the Ecole normale supérieure.
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Coefficient Marks

Written examina-
tion 

Latin Composition 1 4

Latin Version 1 2

French Composition 1 3

Oral examination Analysis of an author Greek 1 3

Latin 1 2

French 1 2

Philosophy 1 2

History and geography 1 2

Elements of science 1 3

1 3

Optional test in German 1 3

29

Fig. 2 Poincaré’s marks for the baccalaureate of letters (5 August 1871) (Appell 1925) (In the
wake of the Duruy reform, the scheme of notation had been reviewed in depth. Whereas before
students were evaluated using balls of different colors, from 1865 onwards a rating scale to 5 notes
was adopted: 0, 1 (fair), 2 (fairly well), 3 (Good), 4 (very well))

who probably initiated Poincaré into mathematics, an area in which he had prepared
a short manual of calculus in 1860 (Hinzelin 1860).

Poincaré’s schooling in small classes was brilliant. He seems to have been just
as gifted for humanities as for the sciences. The fourth class [quatrième] (1867),
however, revealed his mathematical precocity. Georgel, his teacher, said to his
mother: “Madam, your son will be a mathematician” (Appell 1925, 16). Poincaré
had the choice, after the ninth grade, between a curriculum for literature and a
curriculum for science.20 He oriented himself towards a classical and literary course
which was called classe de rhétorique. His professor of literature in the latter,
Alexandre de la Roche du Teilloy, prepared him for the baccalaureate of letters, and
very quickly noticed his originality.21 In August 1871, Poincaré therefore passed his
baccalaureate of letters with honors [mention bien] (Fig. 2).

20In his book on Henri Poincaré, the mathematician Paul Appell indicates that Poincaré was subject
to the system of bifurcation (Appell 1925, 18). This is very likely a confusion or a historical
reconstruction (his book was published in 1925), since Poincaré passed his baccalaureate nearly 6
years after the decree abolishing the system.
21“One day, I had proposed to him as a subject for composition, preparatory to the baccalaureate
of letters, the differences between man and animal; after having read me his work, jotted on small
pieces of paper of all sizes, he asked me what mark it was likely to get in the review; I replied that
I could not say, very good or mediocre, and that it was too personal, too original, too daring, too
strong even for a candidate for the baccalaureate degree. Wishing to retain such a curious study, I
made him promise to copy it; his modesty would not allow him to keep his word”. Cited in Darboux
1913.
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Coefficient Notes

Written examina-
tion 

Scientific Composition 1 0

1 2

Oral examination Mathematics 1 3

1 4

Physics 1 2

1 4

15

Fig. 3 Poincaré’s marks for the baccalaureate of science (7 November 1871) (Appell 1925)

Poincaré wanted to proceed directly to his baccalaureate of science in the wake
of the baccalaureate of letters, but his jury insisted that he benefit from a special
preparation. He therefore followed the course of elementary mathematics up to
the autumn session, which took place in November. His mark was only “Assez
bien,” due to a zero in one of the scientific compositions on geometric progressions.
This note was disqualifying, but Poincaré benefited from the clemency of the jury
(Fig. 3).

For what reason? The answer is the academic trusteeship, which was exercised
over the high schools. The responsibility for the baccalaureate examinations fell to
the professors of the faculties of science and of letters, and not to the secondary
teachers (the latter would only be associated with juries from 1902). These were
therefore the academics who were responsible for organizing the review sessions
(two to three per year, depending on the time) and who were questioning the
candidates. However, among Poincaré’s examiners for the science baccalaureate
were none other than Camille Forthomme and Nicolas Renard, great friends of
the Poincaré family and who knew very well the value of the candidate. With
his two baccalaureate degrees, Poincaré was pursuing his studies in elementary
mathematics. His ambition was to prepare for the competitions for the grandes
écoles. To do this, he joined in 1872 the classe de mathématiques spéciales of the
high school, where he developed a friendship with Paul Appell. As we know, he
was fifth in the competition for the Ecole normal supérieure, and first in that of the
Ecole polytechnique. He would enter in this last school with the rank of major.

The Philosophical Formation of Poincaré

Now, let us return to the philosophical formation of Poincaré. Logically, after the
classe de rhétorique, Poincaré would have had to get into the classe de philosophie.
He made the choice, however, not to follow this path. He therefore prepared the
philosophical part of baccalaureate degree by himself, by taking a few private
lessons (Boutroux 2012). As we have seen previously, several testimonies suggest



Portrait of Henri Poincaré as a Young Philosopher: The Formative Years (1860–1873) 15

that he already had a certain philosophical erudition. His choice not to go in the
classe de philosophie might seem surprising at first glance, but it is not as atypical
as one might think. In fact, pupils could be present at a session of the baccalaureate
of letters without having done a full year of philosophy, and it was therefore not
uncommon for professors of philosophy to have almost no students at the end of the
school year (Poucet 1999).

Several questions then arise. What were the programs of education and the
pedagogical practices in philosophy in the years 1870–1871? What was the nature
of the philosophical examinations to which he was submitted? What philosophical
knowledge was he required to demonstrate? From whom did he take particular
courses in philosophy? Before proposing elements of an answer to these questions,
it is appropriate to turn to the consequences of the reform of bifurcation.

The replacement of the classe de philosophie by the classe de logique in 1852
had the effect of narrowing the perimeter of philosophical education. Moreover,
the abolition of the agrégation of philosophy had created a deficit of teachers in
this area. As a result, in the 1860s, the philosophy teachers in the high schools
did not necessarily have a specific training in philosophy; they came very often
from a faculty of arts and held a BA in French and Literature.22 Moreover, literary
education could have played a part in the philosophical formation of students
because his program gave a strong emphasis on classical authors.

The Duruy reform restored the class in philosophy under its former name, and
reintroduced the agrégation in philosophy. While the baccalaureate consisted of
oral exams, this created written tests and recast the entire educational program.
This reform of philosophy was called for by the intellectual community, by
academics and by a large number of secondary teachers, coming both from public
and confessional high schools. Some saw in the restoration of the philosophy a
challenge for the discipline itself, the deletion of the agrégation having contributed
to dispersing and disrupting the philosophy teachers. There were others who felt
that the issue at stake lay within the framework of the debate over scientific
materialism.23 It goes without saying that the failure of the system of the bifurcation
marked an important victory of the literary and the Catholic parties in the intense
decades-old struggle between supporters of scientific education and defenders of the
literary education (Gontard 1972).

22Thus in 1865, in the classical high schools, of 75 Chairs in philosophy, 37 were occupied by
professors – that is to say by agrégés (17 in philosophy, 20 letters) – and 38 by course instructors
(mainly bachelors of Arts and Literature). Within this population of 75 teachers there were 6
ecclesiastics (Poucet 1999, 23–24).
23For a corroborating example, consider Father Lacordaire’s 1872 Discours sur les études
philosophiques: “Reason is a gift of God. To kill philosophy is kill reason in its most profound
exercise, and in its highest manifestation. Where there is no more philosophy, there really begins
the reign of physics. Philosophy not only serves as preparation for Christianity in exercising the
reason in and turning toward the interior spectacle of the soul; it is also its shield against a terrible
enemy, the sophists .... At any price, we must elevate philosophical studies and introduce to it those
who can exert some influence on the intellectual leadership of our homeland“ (Lacordaire 1872,
252 and 260).
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From 1852, the teaching program in philosophy was organized around four major
issues: study of the human mind and language, method in the various orders of
knowledge, application of the rules of the method to the study of the principal moral
truths, and analysis of philosophical authors. From 1865 onwards, the program
of philosophy for the Baccalaureate of Letters was redefined around four major
divisions: psychology, logic, morality, and theodicy.

The classical authors in the program were Xenophon (Memoirs de Socrate), Plato
(Gorgias), Cicero (De re publica, Tusculanae quaestiones, De Officiis), Seneca
(Selected Letters), Arnault and Nicod (Logique de Port Royal), Descartes (Discours
de la méthode), Pascal (De l’autorité en matière de philosophie, Réflexions sur la
géométrie en général, De l’art de persuader), Bossuet (Traité de la connaissance
de Dieu et de soi-même) and Fénelon (Traité de l’existence de Dieu) (Fig. 4).

We do not know the details of the tests passed by Poincaré in the examinations,
other than French composition. Considering the circumstances – Nancy was then
under German occupation – this had for its topic, “How a nation can recover.”
Poincaré’s contribution clearly made a very good impression on its reviewers
(Appell 1925). In philosophy, Poincaré passed an oral test of a quarter of an hour
that focused on the entire philosophical program. He had to prove to his examiner
that he possessed sufficient knowledge on philosophical questions drawn at random
from the program. This test was primarily an exercise of memory where the manual
played a decisive role.

In 1860–1870, teaching practices in philosophy do not seem to have rested on
the drafting of philosophical essays. The codified exercise of the dissertation in
French was then being put in place, but it was rather reserved to students who were
destined for professorial chairs (the normaliens, candidates for the agrégation); it
did not become the central exercise for the training of secondary school students
until the years 1880–1890 (Poucet 2001). Without knowing on what points of the
philosophy program Poincaré was questioned, we can at least get a general idea
from the subjects treated by the candidates at the Ecole normale supérieure or to
the agrégation: “the laws of nature” (agrégation 1850), “the main rules that serve as
the basis of induction” (agrégation 1860), “human knowledge, the concepts which
do not come directly or indirectly from experience” (agrégation 1895), “of the
true philosophical method, comparison of the methods of Bacon and of Descartes,
their similarities and differences” (Ecole normale supérieure 1850), “existence and
nature of the soul, exposition of the entire philosophy of Descartes” (Ecole normale
supérieure 1863) (Poucet 2001).

From whom did Poincaré take courses in philosophy? In the absence of evidence,
direct or indirect, it seems impossible to answer this question. However, the
exploration of the local educational context allows one to formulate a few plausible
paths. Who was in the position of teaching philosophy in Nancy?

At the lycée de Nancy, there was one professor of philosophy: Jean-Baptiste
Dupond (1821–1875). He was educated at the Ecole normale supérieure (promotion
1842). After having obtained his agrégation in 1848, he had taught at the high
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Psychology Logic Moral Theodicy

Of psychological facts
and consciousness

Of truth and error. Of
the obvious, the certain,
the probable

Various reasons for our
actions

Existence of God.
Evidence of the existence
of God

The faculties of the
soul: sensitivity,
intellectual faculties,
activity

Signs and language in
their connection with
thought

Moral Conscience.
Distinction of good and
evil. Duty and virtue

Key attributes of God.
of Providence. Rebuttals
and objections from
physical harm and moral
evil

Sensitivity: the senses,
the sensations and
feelings

Of the method: analysis
and synthesis

Merit and demerit.
Penalties and rewards.
Moral sanction

Human destiny. Evidence
of the immortality of the
soul, moral or religious
duties of man toward
God

Intellectual Faculties:
perception, consciousness,
memory, imagination,
judgment, reason

Analogy, induction and
deduction. reasoning,
syllogism

Division of duties. Duties
of Man toward himself,
toward his fellows, the
family and the State

Notions of history of
philosophy

Ideas in general, their
origin, their characters.
Concepts and primary
truths

On definition, division
and classification

On activity and its
various characters.
Voluntary and free
activity. Demonstration
of freedom

Methods in the different
orders of science

On personality, the 
spirituality of the soul. 
Distinction of the soul 
and of the body and 
their connections 

Authority of the
testimony of men

Errors and sophistry

Fig. 4 Philosophy program for the baccalaureate of letters, 1865 (Poucet 1999, 365–366)

schools of Périgueux and Bourges before being appointed to Nancy at the beginning
of 1850. Starting in 1864, he offered courses in the literary section as well as in the
section dedicated to the preparation for the special schools. Without any possible
doubt, Poincaré could have encountered his teaching, about which unfortunately
we do not know anything.24 Dupond seems to have been entirely dedicated to his
teaching work; he is not known not to have any publications, and he did not take

24He could have been his student in the class of elementary mathematics, after obtaining his two
baccalaureate degrees, because instruction in philosophy was often dispensed with.



18 L. Rollet

Fig. 5 Henri Poincaré at 18
(Source: Livre du centenaire
de la naissance d’Henri
Poincaré, Paris,
Gauthier-Villars, 1955)

part in the academies and local learned societies. He would keep his position in
Nancy until 1872 and then finish his career at the high school in Clermont-Ferrand
(Fig. 5).25

If we now look at the Faculty of Letters, the chair of philosophy was held
by Amédée De Margerie (1825–1905). Educated at the Ecole normale supérieure
(promotion 1845) and agrégé (1847), he had taught philosophy in various high
schools in province before being appointed a professor at the Faculty in 1856.
A Catholic campaigner, he was very active within labor circles. When the Wallon
Act established in July 1875 the freedom of higher education and therefore allowed
the creation of private faculties, De Margerie would resign from his position
to participate in the foundation of the Catholic Faculty of Lille, of which he
would serve as Dean until his retirement. He was one of the organizers of the
international scientific congresses of Catholics (1888, 1891, 1893) as well as a
staunch advocate of the monarchy and the Catholic tradition. Opposed to liberalism
and to gallicanism, he became actively involved in the legitimist camp from 1873,
supporting the Count of Chambord and the party of restoration of the monarchy.

Among his abundant publications, one should mention De la famille, leçons de
philosophie morale (De Margerie 1860), Théodicée: études sur Dieu, la Création
et la Providence (De Margerie 1865), a handbook of contemporary philosophy
(De Margerie 1870) as well as a large number of books of a political inspiration
which would enjoy a certain success in monarchist circles.26 His philosophical
point of view was close to the spiritualistic currents represented by Elme Caro or
Léon Ollé-Laprune; it was influenced by the Thomist doctrines, and opposed to the
skepticism of Kant (De Margerie 1864a) and to Darwinism (De Margerie 1864b).
He would serve as director of the Catholic magazine La quinzaine: revue littéraire,
artistique et scientifique from 1894 to 1907.

25His replacement in the high school would be Armand Biechy, author of a thesis on the method
of Bacon (Biéchy 1855).
26La restauration de France (1871), La solution (1881), Avant la bataille (1881), etc.
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De Margerie evolved in the same academic and political circles as Poincaré’s
father, and the two families were on familiar terms. He was a well-known personal-
ity in Nancy: like Emile-Léon Poincaré, De Margerie was a member of the munici-
pal council and of the Académie de Stanislas. Elected to this society in 1857, he was
the only philosopher to take an active part, through the publication of various articles
in the Memoires de l’Académie de Stanislas. His son, Antonin De Margerie, was
the same age as Aline, Poincaré’s sister. Poincaré and Antonin De Margerie were
together at the imperial high school and then at the Ecole polytechnique.27 Amédée
De Margerie was thus socially close to Poincaré. Such proximity does not by itself
suffice as evidence, and does not allow us to say with certainty that it was he who
prepared the young candidate for the tests of the baccalaureate. It is, however, a plau-
sible hypothesis. It was, in any case, in front of Amédée De Margerie that Poincaré
would undergo his oral exam in philosophy, for which he would get the mark of 2
(“Assez bien”). It can be reasonably assumed that Poincaré would have prepared for
the philosophical test using his examiner’s manual of contemporary philosophy.

Is it possible to consider Amédée De Margerie as Poincaré’s initiator into
philosophy? This seems more difficult. In effect, Amédée De Margerie was far
from sharing the social and political ideas of Poincaré’s father, and it is doubtful
that the two families would have gotten along.28 In addition, if one considers the
hostility that the philosopher demonstrated toward Kantianism and Darwinism, or
even his positions on traditional values and religion, it seems difficult to consider
the future mathematician as his philosophical disciple, since the latter would go
in a diametrically opposed direction based on a form of neo-Kantianism, with a
distinctly evolutionary view of epistemology. One might even be tempted to see in
the reminiscences of Paul Appell, which served as the epigraph to this article, an
underhand critical evocation of Amédée De Margerie:

We used occasionally to philosophize: Poincaré smiled gently at the psychology and the
naive theodicy that was then taught in the course of the baccalaureate’s degree. I also
remember long conversations on the scientific and philosophical reasons to believe in the
existence of life in other planets. (Appell 1925, 23)

Conclusions

Recalling the original aim of this paper – to characterize the philosophy of
Poincaré – the account of the philosophical formation of the future mathematician
has opened certain pathways, but has not reached a definitive conclusion. At least

27After his studies at the Ecole polytechnique, Antonin De Margerie (1856–1914) would join the
artillery corps and end his career with the rank of colonel.
28Aline Boutroux painted a rather critical portrait of the personality of Amédée De Margerie, point-
ing out in particular that his courses took the form of long and boring sermons (Boutroux 2012).
In addition, in his correspondence with his mother while a student at the Ecole polytechnique,
Poincaré spoke in very distant terms about his relations with the philosopher’s son.



20 L. Rollet

we have discovered some unpublished biographical or autobiographical sources,
but we have to admit that the documents at our disposal do not allow us to draw
more than a quite imperfect portrait of Poincaré as a (very) young philosopher. Was
he interested in philosophy in his youth? Certainly, yes. The challenge is then to
determine what, in his course of training, in his social and intellectual relations,
in his social milieu, in his readings, determined, one way or another, his interest
in philosophical questions. As we have seen, the elucidation of this question must
take account of different historical contexts in which the trajectory of the young
Poincaré was inserted, and it requires us to consider him as a minor player in a
system of social constraints. The aim is then to reconstruct this system in the most
fine-grained way possible and to incorporate it into the trajectory of his life. This
would mean conceiving of the biography of Poincaré, not only as the story of a life
in which science played a central role, but also a social and intellectual history.

Our journey stops in 1873, the year Poincaré left Nancy to enter at the Ecole
Polytechnique. Then began a period of training during which one can find many
traces of Poincaré’s proximity to philosophy and philosophers. The most essential
is without doubt his meeting with his future brother-in-law, Emile Boutroux (who
would replace Amédée De Margerie in the chair of philosophy in the Faculty of
Letters of Nancy in 1876). On this basis, Poincaré would enter into relationships
with Paul and Jules Tannery, Louis Liard and Félix Ravaisson.29

Another trace, less known, but perhaps equally important, is the subject of the
relationship that Poincaré seems to have maintained with Auguste Calinon (1850–
1900?). Educated at the Ecole polytechnique (promotion 1870) and then turned
towards civil engineering, Calinon pursued the career of industrial engineer in the
Lorraine steel industry, not far from Nancy.30 Author of several studies on mechan-
ics and geometry, he was among those thinkers who attempted in the 1880s to found
a philosophical mathematics (Calinon 1885, 1888, 1889, 1893, 1895, 1900), that is
to say, a discipline in which the methods and tools of conventional mathematical
theory are put at the service of an epistemological problem, specifically concerning
the conditions of possibility of a general theory of the determinations of space.
He thus conceived of a general geometry comprehending all possible geometries,
within which Euclidean geometry constitutes only a particular case. Such a geom-
etry would, according to him, invalidate the thesis that Euclidean geometry is the
only possible true geometry, without questioning the idea that Euclidean geometry
is privileged on empirical grounds.

At first sight, and judging by the correspondence of Poincaré, the two authors
encountered one another only in the middle of the 1880s, on the occasion of a
short epistolary exchange dated 1886 (Rollet 2007, 122–125). However, we find

29An essential source for this period, particularly for the years 1873–1878, is the correspondence
of Poincaré with his mother and sister (http://www.univ-nancy2.fr/poincare/chp/). For more details
on the meeting Poincaré-Boutroux and its consequences see Nye 1979, as well as Rollet 2000 and
Boutroux 2012 (chapter XXVII).
30Biographical information about her is very scarce. For an overview, cf. Maubeuge 1975.

http://www.univ-nancy2.fr/poincare/chp/
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that the two men regularly saw one another from 1874, to the point of spending
several days together on vacation in the Vosges. In addition, shortly before she
married Emile Boutroux, Calinon officially asked for the hand of Poincaré’s sister
in marriage (Rollet 2012a). Knowing the philosophical conceptions of Poincaré
on non-Euclidean geometry, it seems difficult not to consider the existence of an
ongoing relationship between the two authors.

For the time being, the life and work of Poincaré continue to resist the efforts
of biographers. One hundred years after the death of Poincaré, and in a context of
scarcity, these few traces have no other ambition than to establish a few chapters or
sections of this biography that we have yet to write.
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Poincaré and the Invention of Convention

Janet Folina

Abstract Jules Henri Poincaré is famous for his “conventionalist” philosophy
of science. But what exactly does this mean? Poincaré invented the category of
convention because he thought that there are some central principles in science that
are neither based on intuition, empirical data, nor that are arbitrary stipulations.
His views here resemble those of Wittgenstein, in particular, as presented in On
Certainty. The invention of convention is lauded (for example, by Robert DiSalle)
as a genuine philosophical discovery. But it is also critiqued (for example by
Michael Friedman) as yielding a vision of science that is too rigid – one that is
refuted by general relativity. This paper aims to defend Poincaré’s views about
conventions by focusing on his central idea that conventional choices, though “free”,
are “guided” by experience. I will argue that conventionalism is not a commitment
to fixed a priori stipulations, as DiSalle and Friedman propose. Rather, it mandates
empirically motivated shifts in (even geometric) conventions – a view surprisingly in
accord with Friedman’s “relativized a priori”, and thus more consistent with general
relativity than is generally thought.

Poincaré’s views about mathematics and science are fascinating and remain largely
plausible. Highlights include the following. Logic is empty, so it is not a source
of significant information. Mathematics is not empty; so logicism – the view that
at least arithmetic (and possibly more of mathematics) is logic – must be false. In
fact, Kant was right that a core of pure mathematical knowledge is based on a priori
intuition and thus it has a synthetic a priori status. In this way, mathematics provides
an a priori foundation for natural science, which should itself be viewed (at least in
part) from a structural realist perspective.
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How does conventionalism fit into this semi-Kantian picture? Poincaré presents
conventions as intermediary principles found in scientific disciplines that lie on
the border between pure mathematics (the synthetic a priori) and the natural
sciences (the synthetic a posteriori). The disciplines in question, for Poincaré, are
geometry and parts of physics. What is the role of conventions? Why does Poincaré
introduce this new category into the taxonomy of science? Why do references to
conventions virtually disappear in his later philosophical writings? What aspects of
his conventionalist philosophy, if any, can be salvaged from its apparent collision
with General Relativity?

This paper argues that to better understand Poincaré’s invention of convention we
must focus on the role of experience in both choosing and evaluating conventions.
Poincaré was intrigued by the fact that the principles he came to regard as
conventions played an essential role in science, yet failed to fit any traditional
semantic or epistemic categories. He argued that they are neither analytic, nor
empirical, nor synthetic a priori. (In this way, his vision resembles that of the later
Wittgenstein, in particular as presented in On Certainty.) This invention constitutes
a genuine philosophical discovery, as Robert DiSalle has argued (DiSalle 2006,
Chapter 3). I will review his reasons for inventing this scientific category, with the
goal of showing that for Poincaré experience plays a crucial role in determining
conventions, even those in geometry.

Experience also plays an important role in evaluating conventions; I appeal to
this role, in particular, to reconstruct Poincaré’s views as rationally as possible. Of
course some of his views may simply be outmoded, such as his unwavering support
of Euclidean geometry. He acknowledged that scientific conventions can, and do,
shift; and he argued for the coherence and utility of non-Euclidean geometry. Yet he
repeatedly asserted that Euclidean geometry need never be given up. This implies a
vision of geometric conventions as having a special place in the scientific hierarchy.
Indeed Poincaré compared the different geometries to languages, which are neither
true nor false, and which cannot in principle be either confirmed or undermined by
experience.

In light of this protectionism towards Euclidean geometry, Michael Friedman has
argued that Poincaré’s geometric conventionalism was refuted by general relativity,
which treats physical geometry as empirical (Friedman 1999, especially Chapter 4).
The shift to general relativity (GR) showed, in other words, that geometry need not
be treated as a mere language; instead, it can be regarded as providing part of the
(broadened) empirical content of physics. In this way, Friedman also corrects the
logical positivists’ appeal to Poincaré’s conventionalism, showing how – far from
supporting GR – it is inconsistent with it.

In the latter part of this paper I attempt to mitigate the inconsistency between
GR and Poincaré’s conventionalism. Certainly there are some very general conven-
tionalist views that remain true – for example, that there are empirical-sounding
sentences that don’t play an empirical role in science; that we have to postulate,
or presuppose, some (empirical or quasi-empirical) truths in order to test other
hypotheses; that science has a framework, or structure, that includes both un-testable
and indirectly testable components. Does anything more specific to Poincaré
survive?
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Now Friedman has shown that GR is inconsistent with Poincaré’s central views
about geometry; this includes the special, protected status of geometry, owing to
its intermediary position in the scientific hierarchy – between the synthetic a priori
truths of mathematics and the empirical truths of physics. Also, the way Poincaré
appears to construe the function of the scientific hierarchy is no longer acceptable –
in particular, the idea that mathematics offers us exactly three geometric alternatives
(the three dimensional geometries of constant curvature) from which we must
choose one as the basis for physical measurement. So Poincaré’s philosophy of
geometry cannot be reconstructed as consistent with relativity, no matter how
charitable we may try to be. But I will argue that more of conventionalism survives
than one might think; that is, conventionalism and relativity are not as inconsistent
as they may at first seem.

What can easily be forgotten in hindsight is Poincaré’s emphasis on the central
role of experience, not only in making but also in evaluating conventional choices.
That is, despite references to liberty in this context, Poincaré did not regard the
choice of a geometric system, or any convention, as arbitrary or completely free. In
using the term “convention” he is making a claim about convenience, rather than
arbitrariness (as in a “mere” convention). Geometric choices are free but guided
by experience; moreover, geometric choices, like all conventional choices, can be
revised in the light of further experience. Why does this matter?

In their critiques of geometric conventionalism, DiSalle and Friedman both cite
as a central error Poincaré’s rigid classification of geometry as a priori. Rather than
conventionalism in general, DiSalle argues that Poincaré’s error lies in

: : : his particular view of the privileged status of space. The theory of space will not be
overturned by principles of physics, because space is exhaustively defined for us as a pre-
physical notion, and because, therefore, the transition from geometry to physics must always
introduce extraneous elements into the concept of space. That geometry has always involved
such elements, : : : was an empiricist conviction that Poincaré never took to heart (DiSalle
2006, 94).

Friedman also argues that Poincaré’s vision of physical geometry – though correct
for classical physics – is incompatible with relativity theory, because of his
presupposition that physical geometry belongs to “the a priori part of our theoretical
framework” (Friedman 1999, 85). Similarly, according to DiSalle, Poincaré’s under-
standing of the way the concepts of physical geometry function in science meant that
“they had to be considered a priori rather than empirical” (DiSalle 2006, 95).

I want to call into question this way of framing Poincaré’s error. It explains
the inconsistency between Poincaré’s views and GR by supposing that Poincaré
was committed to a fairly sharp distinction between the a priori and the empirical
elements of a theory; and that the function of geometric and other conventional
principles makes them a priori and not empirical. Moreover it supposes that, once
stipulated, geometric principles are isolated from empirical results owing to their
a priori status. In contrast, I will argue that the point of inventing the category of
conventions was to provide a new classification for certain principles that seemed to
be neither a priori nor empirical. Rather, in my view, he regarded them as having an
intermediary epistemic status, which he struggled to articulate.
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Unlike Quine, Poincaré is not out to dispute the validity of our general
distinctions. Poincaré is committed to principles that are clearly a priori – those
of logic, mathematics and language (the synthetic and the analytic a priori). He is
also committed to the fact that certain scientific assertions are clearly empirical –
for example, the more experimental areas of science (often giving the example of
optics). What he disputes is the exhaustive nature of these distinctions, introducing
the idea that there are principles that cannot be categorized along ordinary lines, or
by ordinary criteria. These include, in particular, the conventions of geometry and
mechanics, which he argues are neither empirical nor a priori in the ordinary senses;
perhaps they seemed to him to be a bit of both.

Conventions act a priori, in that they contribute some of the framework principles
necessary for the methodology of science. But they are also both suggested by and
acted upon by experience, in that conventions are rooted in experience and prompt
choices that must respond to, and sometimes change in the light of, empirical data.
In this latter respect, they resemble empirical assertions.

To reiterate, given, or within, a framework, conventions act as a priori principles.
But Poincaré recognized that frameworks change, and these changes come from
the influence of experience. (In this sense, he can also be considered a naturalist.
See Stump 1989.) Thus Poincaré’s view is not that conventions are absolutely
a priori, but that they are only relatively a priori.1 Both Friedman and DiSalle
cite the rigidity of Poincaré’s conventions as an obstacle to a more flexible view
about the presuppositions of science; and that we have to wait for Reichenbach and
Carnap for a more modern, empiricist, approach to framework principles (See, for
example, Friedman 1999, Chapter 3). In contrast, I see Poincaré’s conventionalism
as itself providing the basis of this more flexible attitude. For certain periods of time
conventions function like a priori truths, but unlike ordinary a priori truths they are
susceptible to revision owing to changes in data and/or theory.2

To appreciate what might survive of Poincaré’s conventionalism, and his geo-
metric conventionalism in particular, we thus need to revisit the crucial roles of
experience in articulating and evaluating conventions. Though Poincaré viewed
geometry as holding a privileged, more protected, position in the scientific hierarchy,
he did not regard it as absolutely protected by its position and function in the
hierarchy. Despite his own comparisons, Poincaré’s conventions should not be
understood as arbitrary, or analytic like linguistic conventions; nor should they be
understood as a priori in any ordinary sense. Scientific conventions have a special
character. They must be free in that neither logic, nor mathematics, nor experience

1The idea of the relative, or relativized, a priori has recently taken hold, owing largely to the
influence of Friedman 1999 and 2001. There is a growing body of literature on the topic, including
several new essays by Friedman extending and modifying his views (for example, Friedman 2011,
and 2012). See Stump 2011 for an account of Arthur Pap’s similar “functional a priori”, and
Poincaré’s influence on Pap. Like Stump, I support an interpretation of Poincaré’s conventionalism
as rather close to the relativized a priori.
2For just one example, he comes to accept the existence of atoms after first denying them, thus
giving up a principle of the continuity of nature.
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force particular principles on us. That is, there must be more than one viable
alternative – a choice must be made. However conventions are also answerable to
our empirical situation and data – the facts that guide our initial conventional choices
as well as any revision of those choices.

Focusing too much on the freedom of conventions can encourage a misun-
derstanding of scientific conventions as arbitrary – something Poincaré was, in
fact, determined to refute (See Poincaré 1905a/1958, Chapter X). It can also
make the refutation of conventionalism seem inevitable, owing to changes in
scientific frameworks. In contrast, on this interpretation, conventions are features of
a scientific framework that respond to empirical information. Thus, conventionalism
is not a commitment to fixed a priori stipulations. Rather, it mandates empirically
motivated shifts in (even geometric) conventions – a view surprisingly in accord
with the relativized a priori, and thus less in conflict with relativity.3

Background and Context

Conventionalism gets the spotlight in Poincaré’s first book, Science and Hypothesis,
where it is presented as a middle position between naïve realism and simple skepti-
cism, one that recognizes both the complexity and structure of science. As he put it,
“To doubt everything or to believe everything are two equally convenient solutions;
both dispense with the necessity of reflection” (Poincaré 1902a/1952, xxii).

Complexity

On the one hand, conventionalism should be distinguished from a general skeptical
attitude. Overemphasizing the role of choice and construction in science, and under-
emphasizing the role of experiment, can lead one to skepticism. But doubting
everything is a superficial epistemic stance, which is neither justified nor fruitful.
Poincaré aims to distinguish his view that conventions, and choices, are necessary

3In writing this paper I realize I have entered a thick territory. The literature on, and related
to, Poincaré’s conventionalism is enormous and I cannot pretend to have mastered it. I have
approached the topic by first re-reading Poincaré’s central texts and then by addressing just a
few secondary works that have particularly influenced me. I hope to make a small contribution to
this literature by supporting a slightly more empirical interpretation of conventions. I thank Maria
de Paz and Robert DiSalle for inviting me to contribute to this volume; Michael Friedman, Robert
Disalle and David Stump for their excellent work on this topic; and David Stump for comments
on an earlier, written draft. Several audiences should also be thanked for putting up with early,
half-baked talks on some of this material, including those at our Poincaré session at HOPOS, June
2012, and especially those attending the Foundations of Physics and Mathematics Workshop at the
University of Western Ontario, May 2012.
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from a view that renders them as closer to sufficient. Scientists do not create facts, as
he argues (Poincaré 1905a/1958, Chapter X). The scientist may create a convenient
language in which facts can be expressed, but the success of science shows that
experience (of facts) is central to scientific methodology. Thus, Poincaré regards
conventions as part of an account of science that acknowledges choice but also
emphasizes the necessity of experience for objective knowledge. It is part of a
picture of science aimed to repudiate both global skepticism and simple relativism.

On the other hand, Poincaré also distinguished conventionalism from the view
that science is certain. Overemphasizing the basis of science in the certainty of
logic and mathematics can lead one to naïve realism, which also overestimates
the certainty of the experimental method (while oversimplifying the structure of
scientific judgment). Poincaré describes this view as follows:

To the superficial observer scientific truth is unassailable, : : : Mathematical truths are
derived from a few self-evident propositions, by a chain of flawless reasonings : : : . By them
the Creator is fettered, as it were, and His choice is limited to a relatively small number of
solutions. A few experiments, therefore, will be sufficient to enable us to determine what
choice He has made : : : . This, to the minds of most people, : : : is the origin of certainty in
science (Poincaré 1902a/1952, xxi).

Poincaré here points out two things. First, mathematics is not simply making
deductions from a small number of “self-evident” axioms and leading to a few
mathematical options. Second, science is not simply conducting a few crucial
experiments in order to decide between the narrow set of options provided by
mathematics. Just as we shouldn’t overemphasize the importance of convention,
so we shouldn’t oversimplify the roles of either mathematics or testing in science.
Clarifying the nature and functions of conventions in science is meant to help
correct both of these mistakes – that of the skeptic and that of the naïve, or over-
zealous, realist. As a philosophical response to both naïve realism and skepticism,
conventionalism thus supports the complexity of science.

Structure

Conventionalism is also a view about the structure of science. As a philosophical
position, it opposes thoroughgoing empiricism and homogeneous holism. Geometry
cannot be directly tested since tests are done on bodies, not space; because geometry
cannot be directly tested, Poincaré argues that geometric empiricism has no rational
meaning. And though the different parts of a scientific framework are connected,
Poincaré argues, against holism, that a scientific theory is not a simple set of
homogeneous propositions. The parts of science form a structure, which can
be understood. Conventions constitute some of the implicit structure of science,
structure that binds mathematics to the empirical world and enables empirical
testing. Furthermore, Science and Hypothesis argues that the way to understand the
parts of the structure of science is in terms of the different degrees to which those
parts are testable; these different degrees will correspond to position in the scientific
hierarchy.
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Conventional sciences comprise the middle two sections of this hierarchy and of
the book, between a first section on pure mathematics and a last section on “nature”,
or experimental science. Conventional principles thus lie between the truths of pure
mathematics – the a priori domain provided by logic and intuition – and the truths
of the experimental sciences – the empirical domain governed more directly by
experience. The category of convention is in this way central to the sciences of
geometry and mechanics, which occupy the two middle sections of Science and
Hypothesis, and which correspond to two main types of conventions for Poincaré.

Conventions are thus situated in Poincaré’s hierarchy – between pure mathe-
matics and the more experimental areas of natural science – for they are neither a
priori in any ordinary sense, nor straightforwardly empirical, or testable. As Michael
Friedman points out, they provide Poincaré with a way to accommodate the quasi-
empirical aspects of science that Kant mistakenly took to be a priori (metric and
general, physical principles) (Friedman 1999, 81). Though geometric conventions
may be closer to pure mathematics, and therefore further from experiment than
mechanical conventions, I will argue that like any other conventional science,
geometry relies on choice and experience.

The Nature of Conventions: Free but Guided

A coherent account of Poincaré’s geometric conventionalism begins with the
distinction between pure and applied geometry, and it emphasizes the freedom of
conventions. That is, we are free to develop various pure geometric systems – within
some minimal confines such as consistency. And the stipulation, or choice, of which
geometric system to apply in physics is also free. It is only after these two steps of
pure and applied mathematics that the account emphasizes the role of experience:
when the combination of physics plus geometric system is tested. The nature of
the scientific hierarchy, on this view, means that geometry is chosen strictly prior
to testing; and the choice of a geometric system, like the choice of a linguistic
convention, is free.

A virtue of this account is its clarity. There is both a logical distinction and a
temporal separation between pure mathematics and its application, and between its
application and any empirical testing. Furthermore, there is much to recommend it
in Poincaré’s own rhetoric. Indeed some of his remarks about pure geometry make
conventionalism seem like formalism, such as the idea that axioms are disguised
definitions of the basic geometrical concepts. Here he is arguing against a traditional
conception of geometric axioms as meaning-reflections that result in truths about
space. Instead he is endorsing a view closer to formalism about axioms – that
they are meaning-determinations that stipulate how we use certain spatial concepts.
The traditional view of axioms yields a traditional view of mathematical truth. The
alternative view he seems to be endorsing yields a more relativized, or “indexed”,
concept of truth – that of “true in” one system or another.
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In calling geometric axioms “definitions in disguise” (1902a/1952, 50) Poincaré
is furthering a picture of axioms as truth-makers. Geometry does not lead us to
truth; rather, in some sense it creates truth, in that it articulates a framework in
which mathematical truths can be discovered. The results are “true in” Euclidean
or Lobachevskian geometry, though not true simpliciter. Geometric axioms are
meaning determinations for Poincaré, because he thinks we don’t have a definite
pre-theoretic concept of point, line, plane, etc. (See for example, 1905a/1958,
45–46). As in algebra, there is more than one legitimate mathematical structure
that instantiates the basic geometric concepts. Thus, the tidy view of Poincaré’s
geometric conventionalism emphasizes its relation to both algebraic formalism,
which preceded it, and Hilbertian axiomatics, the development of which was mostly
subsequent.

Despite its clarity, I find this interpretation incomplete. Granted, Poincaré’s
philosophy of geometry is very close to formalism. Poincaré distinguished pure
from applied geometry, and he maintained that results derived within a pure
geometrical system remain “rigorously true” even if the empirical world fails to
precisely satisfy them. But he also believed that if the empirical world failed to
approximately satisfy our geometric results, then we would never have developed
such a geometry.

For one thing, Poincaré did not approve of formalist approaches to mathematics
in general. He famously argued against Hilbert that formal systems do not stand
mathematically on their own; rather, they need to presuppose some basic truths of
mathematics (such as induction) (See his circularity arguments in Poincaré 1905b–
1906b/1996; see also Folina 2006). These basic truths of pure mathematics are
synthetic a priori and are forced on us by the nature of our minds.

Secondly, though the basic truths of geometry are not synthetic a priori, since
geometric axioms are not forced on us by our minds, neither are they merely formal,
arbitrary rules added to the synthetic a priori, pure mathematical basis. This is
because geometric principles are not chosen only by considerations of consistency.
For example, he praises Hilbert for making great progress in geometry, but he
also considers his approach to be “incomplete” because it focuses on “the logical
point of view alone” (Poincaré 1902c/1994, 167). Lacking in Hilbert’s account is
a connection between the geometric terms and experience that could help us to
understand and choose between different systems of postulates.

Any convention provides a “rule of action”; but unlike games, scientific rules
of action are shaped by empirical conditions (Poincaré 1905a/1958, 114). Poincaré
sees geometry as intimately connected to experience, and the empirical world, in
ways that a merely formal set of rules is not. Though he considers geometric axioms
to be disguised definitions of the basic terms, by this he means that the terms have
no precise prior meaning, from informal or experiential contexts – not that they have
no prior meaning at all! Experience provides rough, or crude, meanings for the basic
geometric terms; and geometric postulates are not empty rules for this reason.4

4Thanks to David Stump for making me clarify this point.
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Geometry requires significant empirical conditions for its very existence, includ-
ing conditions on the outer world as well as conditions on ourselves, our bodies.
In terms of truth, work within an area of geometry has a formal-mathematical
character: there are well-defined concepts, axioms, deductive proofs, etc. But in
terms of subject matter, Poincaré saw geometry as less pure and more empirical
than other areas of mathematics, owing to geometry’s dependence on a number of
empirical facts, which he tried to articulate. For him, geometry was, in a sense, too
empirical to be like other areas of pure mathematics, yet not empirical enough to
be a natural science. Some of the richness of conventionalism involves the ways
in which even the pure geometric work is guided and supported by experience (to
which we shall turn shortly).

Third, empirical information also plays a crucial role in choosing an applied
geometry. The idea that there is a clean separation between the stipulation of an
applied geometry and subsequent scientific activity – including physical tests and
assessments of the results – just seems too simple for what Poincaré struggled to
articulate. It implies that there is a one-way path from pure mathematics, through
geometric and mechanical conventions, to physical experiments, with everything in
the process, or hierarchy, fixed before the next step is taken. In contrast, in the latter
part of this paper I will explore a more complex interpretation, where the “arrows”,
the influences, between conventions and experimental science go both ways.

Admittedly, Poincaré did seem to think that a geometric system is ordinarily
fixed, or chosen, prior to physical testing; this would especially have seemed to be
the case to him: an important figure at a transitional time.5 But central to Poincaré’s
view of conventions is the provision that empirical results can reverberate back
through the chain of sciences after the fact, so to speak, of the stipulation. This
reverberation can then lead to a revision of those stipulations, those conventions, as
well as the more straightforwardly physical parts of a theory. That is, it is not the
case that once stipulated, conventions, including those of geometry, are absolutely
fixed and not revisable. To put it yet another way, there is a little bit of holism and a
little bit of empiricism in Poincaré’s conventionalism.6

For these reasons I will emphasize in what follows the sense in which con-
ventions are guided rather than in which they are free. Freedom, the idea of a
multiplicity of structures, was well known by the early 1800s, from algebra. The
inventiveness of the category of convention is in the sense in which they are guided
by experience.

Experience leaves us our freedom of choice, but it guides us by helping us to discern
the most convenient path to follow : : : . Some : : : have forgotten that there is a difference
between liberty and the purely arbitrary (1902a/1952, xxiii).

5Thanks to Bill Demopoulos for this point; Friedman 2001 and DiSalle 2006 also emphasize this.
6Though note: Stump 1989 cautions that any holism Poincaré endorses is specific; that is, Poincaré
does not advance a general holism or appeal to general under-determination considerations to
advance the flexibility of conventions.
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First we will review the empirical conditions that surround the subject matter of
geometry; these are the empirical preconditions for the possibility of pure geometry.
Second, we will review the ways in which experience plays a role in assessing our
choice of applied geometry. Such choices are necessarily responsive to empirical
data, owing to the fact that once chosen, a geometric system becomes part of a
larger system, of geometry plus physics, which can then be more explicitly tested.
I first turn to the role the empirical world plays in fulfilling preconditions for pure
geometry.

Empirical Preconditions: The Subject Matter of Geometry

Poincaré argues that geometry begins more in our bodies and less in cognition. For
example, it may be motivated by a desire to solve a puzzle: did that object move
or did it change? Poincaré’s point is that the very distinction between change of
place and change of state presupposes something about the world; and we solve
the puzzle with our bodies and by observation, not merely with our minds and by
thinking. Poincaré emphasizes the following empirical preconditions for geometry
in Part II of Science and Hypothesis. (References will be to page numbers from
1902a/1952, unless otherwise noted, for the rest of this section.)

1. Solid bodies (or approximate solids) (45)
If the world were entirely fluid, he argues, there would be no system of distance
measures. In such a world we might develop topology, provided there were some
jello-type substances or provided some detectable differences between the various
fluids. But ideas central to metric geometries, such as identity of line segments,
areas, angles, etc., require some roughly solid bodies.

2. Motion – of solid bodies
Poincaré points out that the mere existence of solids is not sufficient; if there were
solids but they could not move, or did not move, we would not form an idea
of displacements (60). So the solids have to be able to move – while remaining
approximately in the same state – for the question of a change of position versus a
change of state not only to be raised, but also to be intelligible. That is, the motion
of (relatively) solid bodies outside of us is what prompts us both to distinguish, and
to raise questions, concerning change of place versus change of state.

3. Motion of our bodies
In addition, our bodies have to move, because this is how we distinguish a change
of state from a change of position (57–59). That is, though the motion of other
objects may be what prompts such questions, determining an answer involves the
motion of our bodies, according to Poincaré. And since the meaning of any question
depends in part on how it is answered, the motion of our own bodies is also central
for understanding the distinction between change of state and change of position.
Consider an ice cream cone that is melting. I can’t “correct” or un-melt the ice
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cream by moving my body around the cone, nor by moving the cone relative to
my body. This is how I know that the ice cream is undergoing a change of state.
In contrast, consider a horse that has run past me. I first see it from the side,
and then it turns to face me. By moving my body (provided the horse stands
still) I can “correct” the change in how the horse looked and return our relative
positions back to an earlier one. Since I can “correct” our relative positions I infer
that the horse changed place and not state. In this way, Poincaré thinks that the
distinction between changes of position and changes of state requires mobility –
that of both other objects and our own bodies (relative to the motion of outer
objects).

4. Consciousness – of our attempts to make corrective motions described above
Our corrective motions must be voluntary/intentional to prompt us to make the
central distinctions, and they must be accompanied by conscious sensations (59).
I think the reasoning here is that without consciousness of our attempts to correct
relative positions, there would be no consciousness of the group theoretic structure
emerging in our encounters with moveable solid bodies.

5. Homogeneity of space, or free mobility (approximate/empirical)
Homogeneity and iteration are implicitly assumed in the ordinary geometric
construction postulates; and these spatial properties are generated by the perception
of (approximate) free rigid body motion. Poincaré acknowledges that there is an
empirical catalyst here: the at least approximate homogeneity of space is shown
by the at least approximate existence of rigid body motion – which we idealize
and assume is indefinitely iterable (45). If physical space were not approximately
homogeneous we would not be able to reliably distinguish between change of state
and change of position; and the group structure would not emerge in experience.

These central empirical preconditions for geometry must then be joined with
some a priori preconditions. According to Poincaré, we’re also guided by our minds
in certain crucial ways that shape the development of geometry.

1. Group concept
The idea of a group guides us to be geometrical because we apply it to displacements
of rigid bodies. With it we can pursue the above distinction between state and
position; and it perhaps motivates us to organize data into certain classes. The group
concept, Poincaré asserts, pre-exists in our minds as an a priori concept (rather than
an a priori intuition). (For example, 1902a/1952, 70; 1905a/1958, 126.)

2. Time
For the idea of groups of rigid motions to emerge we need to be able to comprehend
our corrective motions in terms of sequences of sensations (58). And similarly to
Kant, Poincaré argues that time is an a priori form of experience. Temporal ordering
is imposed on us rather than chosen: “The order in which we arrange conscious
phenomena does not admit of any arbitrariness. It is imposed upon us and of it
we can change nothing” (1905a/1958, 26). But time is not empirical because if
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it were, time would be perceived neither as infinite in extent nor continuous (or
even everywhere dense). Suppose that time were the result of labeling and storing
actual memories. To this Poincaré objects, “[b]ut these labels can only be finite in
number. On that score, psychological time should be discontinuous. Whence comes
the feeling that between any two instants there are others : : : . How could that be, if
time were not a form preexistent in our mind?” (1905a/1958, 26, translation slightly
modified). Though the measure of time requires conventions about simultaneity
and duration, the nature of qualitative time is a priori imposed, and includes the
awareness of the successive linear structure of time. Succession of processes is
central to mathematical geometry, for geometric constructions are must typically
be carried out in a definite order.

3. Repetition
Finally, the possibility of repeating, or iterating, spatial motions is also presupposed
in the ordinary geometric construction postulates (64). This idea, and in particular,
general or indefinite repetition, is – Poincaré argues – given a priori as the central
a priori intuition underlying all of mathematics. (See, e.g., Poincaré 1902a/1952,
chapter I, especially section V.)

Accepting that all of the preconditions are met, we are limited to three options for
three-dimensional space: Euclidean (no curvature), Riemannian (constant positive
curvature) and Lobachevskian (constant negative curvature). So logic plus intuition
(indefinite iteration) plus the other a priori preconditions (psychological time and the
group concept) plus the empirical preconditions (solids, motion, consciousness, etc.)
yields three possible geometries. We choose Euclidean because it is the simplest
model that accords well with experience (1905a/1958, 38–39).

One way experience might yield a different set of options is if no group-theoretic
structure emerged from experience. That is, even if the group concept were a
priori, we would not think it applied to motion if there were no approximate
solid body motions. The point is that unlike arithmetic, Poincaré views geometry
as depending crucially on both humans and the world having specific physical
properties: we and other objects can move about while (roughly) retaining the rest
of our properties (especially shape properties). For Poincaré this is an empirical
precondition for the possibility of a mathematically codifiable system of length-
measure.

Given the empirical preconditions on geometry, a natural thought is that geom-
etry is empirical. However, Poincaré explicitly refutes this natural thought, arguing
as follows. The subject matter of geometry is not actual physical bodies. If it were,
it would be “experimental geometry”, which would be refuted since physical bodies
never precisely satisfy Euclidean definitions. They do not move exactly rigidly,
and we cannot physically instantiate perfect circles, straight lines or right angles,
for example. Yet mathematical geometry remains “rigorously true” (1902a/1952,
50), so its subject matter must be ideal objects (ideal straight lines, ideal rigid
bodies, etc.). Though our experience of approximate rigid bodies provides an
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empirical precondition for our having the geometrical concepts (70), the subject
matter of (pure) geometry is ideal.7

Poincaré’s preconditions thus contribute to an explanation of geometry as a
mathematical subject matter; they make sense of the fact that beings like us in
a world like this would do geometry. And they largely define the subject matter
of (traditional) geometry. As the simplest option to roughly model our sense
experiences, Euclidean geometry is natural but not forced on us. (All of the options
are mathematically legitimate.) Thus, he argues that experience also guides us
in a second, posterior, sense – in providing criteria for choosing between the
mathematical options.

Empirical Information: The Assessment of Geometry

Even though the options are severely limited by Poincaré’s preconditions, there are
options. So the scientist can raise the question, which geometry is the true model of
space? Of course Poincaré famously ridicules this question, comparing it to that of
whether the use of meters or yards is the “true” way to measure length. But he does
argue that physics guides the more explicit choice between geometric systems via
criteria such as simplicity and convenience. Whereas the empirical pre-conditions
influence us in a pre-scientific sense (explaining the possibility, or maybe even
likelihood, of the pure mathematical work), posterior empirical conditions include
scientific evidence. Geometry begins with our bodies in the empirical world; and
it returns to the empirical world after its mathematical development. At this point,
Poincaré argues, convenience, or simplicity, guides the evaluation of a larger system
that includes physics and geometry.8

In this context Poincaré emphasizes the intermediary status of geometric con-
ventions. Though there cannot be a crucial experiment that determines the “true”
geometry, testing guides us in our choice.

In fine, it is our mind that furnishes a category for nature. But this category is not a bed
of Procrustes into which we violently force nature, mutilating her as our needs require. We

7It might be objected here that since mathematical geometry is about ideal objects, Poincaré’s
emphasis on the empirical preconditions for geometry – for its “genesis” – may simply result from
confusing the context of discovery with the context of justification. That is, just because certain
empirical conditions need to be met in order to account for the existence of geometry does not
mean that, once established, the empirical preconditions are relevant to its subject matter. After
all, we also need blood in our brains to do arithmetic; but arithmetic is still a bona fide a priori
area of mathematics despite this precondition. The difference is that there being blood in the brain
is a mere precondition; and has no bearing on what arithmetic is about. In contrast, the empirical
preconditions in part define the subject matter of geometry: systems of rigid body motions. This
context of discovery, in other words, is relevant to the subject matter of geometry in a way unlike
the arithmetic case.
8Of course, a physical theory that is not empirically adequate would be very inconvenient!
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offer to nature a choice of beds among which we choose the couch best suited to her stature
(Poincaré 1898/1996, 1011).

Nature has a stature, which testing and empirical evidence help to reveal. Empirical
results guide our choice of a best “couch” for nature’s “stature”. Remarks like
these, where Poincaré emphasizes that conventions are choices guided by empirical
evidence, are central to my interpretation of conventions as responsive to experience,
rather than merely fixed by stipulations in advance of physical testing.

Of course Poincaré also, repeatedly, emphasizes that experience does not make
the choice for us. The reason is that the various geometric options are all consistent
with experience – provided one is willing to modify, or add, other physical
hypotheses. Chapter V of Science and Hypothesis is largely an argument that a
geometric system cannot be directly contradicted by experience (1902a/1952, 75).
The “Euclidean hypothesis” and the “non-Euclidean hypotheses” can both always
be used to interpret a series of experiments (76); this is why geometric empiricism
is meaningless (79).

But any part of a scientific theory can be protected if we are willing to adjust
other parts. This is essentially Quine’s holism. To be distinctive, conventionalism
must connect some special feature of the convention in question, such as its position
in the hierarchy, with the propriety or impropriety of such protection schemes. That
is, to distinguish conventionalism from holism, it must be committed to the view
that conventions are, and should be, more protected from refutation than the more
empirical parts of science.9

Indeed this is Poincaré’s view. His remarks about untestability, inter-
translatability, and geometry’s privileged place in the hierarchy all support a view
of geometry as rather like a linguistic or conceptual framework, which Michael
Friedman explains rather well:

[G]eometry cannot depend on the behavior of actual bodies. For, according to the above-
described hierarchy of sciences, the determination of particular physical forces presupposes
the laws of motion, and the laws of motion in turn presuppose geometry itself: one must first
set up a geometry before one can establish a particular theory of physical forces. We have
no other choice, therefore, but to select one or another geometry on conventional grounds,
which we then can use, so to speak, as a standard measure or scale for the testing and
verification of properly empirical or physical theories of force (Friedman 1999, 78).

To determine what forces there are on objects, involves determining which motions
are non-inertial motions; and this presupposes some geometric principles (by which

9As mentioned above, along these lines, Stump argues that in contrast with Quine, Poincaré’s
holism is not general, but limited to special cases. Poincaré rejects Newtonian absolute space,
and any substantival understanding of space. So adjustments in geometry are legitimate because
geometry is not describing a thing with its own properties (space); rather it is just a tool for
describing the relationships of bodies. (And Poincaré comes into conflict with GR precisely here
since GR is essentially a substantival theory of space.) Whereas I am connecting the degree of
protection a principle gets to its position in the hierarchy, Stump is furthering an account of a
deeper reason why something is a convention, and thus why it occupies a protected position in the
hierarchy. See Stump 1989, section V.
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we can decide shortest distances and the like). But if such measurements presuppose
a system of geometry, then we cannot decide geometry from them.

This gives geometry a special status (which GR of course rejects). If geometry is
prior to testing, and more like a linguistic framework than an empirical hypothesis,
then good scientific practice means it should be more protected than the empirical
aspects of the theory. Along these lines Poincaré argues elsewhere that science
would not be fruitful if, in response to negative data, scientists routinely changed the
meanings of some terms rather than the empirical content of a theory (1905a/1958,
123). This shows that Poincaré thought that (even if there is no sharp boundary)
there is a workable distinction between linguistic and empirical principles. Good
scientific practice, then, would seem to recommend the protection of convention
along with the explicit linguistic, analytic, principles presupposed.

The protection of geometric conventions, in particular, is furthermore supported
by the fact that Poincaré regarded them as more fundamental than those of
mechanics – the other “home” of conventions.

The experiments which have led us to adopt as more convenient the fundamental conven-
tions of geometry refer to bodies which have nothing in common with those that are studied
by geometry. They refer to the properties of solid bodies and to the propagation of light in
a straight line. These are mechanical, optical experiments. In no way can they be regarded
as geometrical experiments (1902a/1952, 136–137).

Geometry is about ideal objects, whereas mechanics is about real objects.

On the other hand, the fundamental conventions of mechanics and the experiments which
prove to us that they are convenient, certainly refer to the same objects or to analogous
objects. Conventional and general principles are the natural and direct generalisations of
experimental and particular principles (137).

Principles are empirical laws that have been elevated, but geometric conventions
were never empirical.

Principles are conventions and definitions in disguise. They are, however, deduced from
experimental laws, and these laws have, so to speak, been erected into principles to which
our mind attributes an absolute value (138).

For Poincaré, then, geometric and mechanical principles are both conventional, in
that they both contribute to a testing framework. But geometric principles are about
ideal objects, and thus they are more abstract than mechanical principles.

To summarize, there are at least three ways in which Poincaré regards geometric
systems as similar to linguistic conventions: (i) a geometric system must be fixed
prior to testing some physical hypotheses (geometry is relatively necessary); (ii)
any of the main geometric “languages” can be substituted (inter-translated) with
some systematic changes in the description of the results; and (iii) geometry is about
ideal, rather than real, objects. Because geometric principles are more ideal, they
closer to mathematics and more like a language than mechanical principles. They
will thus naturally be more protected from refutation – on grounds consistent with
good scientific practice. So, the vision is the following: all scientific conventions
should be somewhat protected from empirical refutation; and geometric conventions
should arguably be the most protected since they are the most ideal, or the closest
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to linguistic conventions. At the two extremes, the truths of pure mathematics and
logic are absolutely protected and the experimental areas of science are much more
open to revision.

The problem of relativity is that it shows that scientific practice violates this
account, which seems to require the relatively strong protection of geometry in the
light of new evidence. Can Poincaré explain what leads physics to adopt a new,
empiricist approach to space? I will argue below that geometric conventionalism is
not as inconsistent with GR as it may seem. Though its position in the hierarchy
means geometry is more protected than mechanics and the experimental sciences,
conventionalism dictates that applied geometry is not to be absolutely protected.

The Revisability of Geometry

Poincaré regarded geometric choices as revisable in the light of empirical evidence;
this follows simply from the fact that all conventions are subject to empirical checks.
Regarding mechanics, he remarks, “if a principle ceases to be fecund, experiment
without contradicting it directly will nevertheless have condemned it” (1905a/1958,
110). A convention can thus be fruitful or not without being directly verified or
contradicted. It can also “cease to be fecund”, so it can be fruitful for a while, after
which it is less fruitful. This speaks to a view of scientific theory as in flux, and a
view of conventions as responsive to change. That is, changes in scientific evidence
and its interpretation can lead to changes in conventions. Is there any reason to think
that this attitude applies to mechanical conventions only?

Poincaré is unclear on this point. For example, he writes, “Which : : : . [of the Lie
groups] shall we take to characterize a point in space? Experiment has guided us by
showing us what choice adapts itself best to the properties of our bodies; but there
its role ends” (1902a/1952, 88). This seems to imply that experience plays a pre-
conditional role only, after which its “role ends”. Yet he writes earlier in the same
chapter about the possibility of revising geometry after an initial choice, in the light
of experimental data:

If, therefore, we were to discover negative parallaxes, or to prove that parallaxes are higher
than a certain limit, we should have a choice between two conclusions: we could give up
Euclidean geometry, or modify the laws of optics, and suppose that light is not rigorously
propagated in a straight line (73).

Here a different picture is forwarded, whereby a geometric choice might need to
be reconsidered after the fact, owing to later experimental results.10 Thus Poincaré

10Of course Poincaré famously did not think we would ever make such a choice; continuing: “It is
needless to add that every one would look upon this solution as the more advantageous. Euclidean
geometry, therefore, has nothing to fear from fresh experiments” (1902a/1952, 73). This confidence
was probably based on the assumption that the alternative would require too deep of a shift to be
worth the scientific and conceptual upheaval. Indeed, relativity was a revolutionary shift, involving
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makes apparently inconsistent remarks about the relationship between experience
and geometry.

Admitting that there is a lack of consistency, or clarity, I nevertheless think that
the more flexible interpretation is more charitable to Poincaré. As he says:

If our experiences should be considerably different, the geometry of Euclid would no longer
suffice to represent them conveniently, and we should choose a different geometry (Poincaré
1898/1996, 1011).

Geometric choices, like other conventions, can cease to be fruitful; and in this
way they, like other conventions, are answerable to future scientific findings and
choices.

How flexible might Poincaré have been had he lived long enough to know
about GR? GR does not simply choose a different geometry from among the
three geometries of constant curvature, which is what Poincaré admits as possible.
Instead, it introduces a new relationship between space and physics. So we cannot
merely invoke his views about choice on the basis of the two quotes above; we must
also extend his views.

As we saw above, Poincaré essentially articulates the two basic interpretive
options for understanding the crucial results about space regarded as supporting
GR.11 Space (empty) can be fixed as Euclidean, and we can interpret results such as
parallax and planetary orbits as physical relationships involving mass, gravity, etc.;
we can say, for example, that light bends owing to the gravitational force exerted
on it by massive bodies. Alternatively we can adopt a new paradigm, stipulating
that light travels in straight lines, or shortest paths, and accept that space is a non-
Euclidean, variably curved manifold. On this second alternative what has shifted
is which aspect of the theoretical framework is playing the conventional role. For
example, it is not just that we have given up the stipulation of Euclidean geometry;
in its place is a new stipulation about light (among many other changes of course).12

The choice at this point depends on the criterion of overall simplicity in the light of
the two scientific “packages”.

The more modern, holist/empiricist understanding behind GR would I suspect
have been difficult for Poincaré, for reasons I will sketch below. Still, in defense
of conventionalism more generally, he could point out that GR still requires the
stipulation of a convention – that light travels along shortest paths. In addition, in

changes at many levels, including conceptual levels, and resulting in new relationships between
mathematics and physics. Nevertheless Poincaré recognized the possibility of revising a geometric
choice when faced with new data; it was not the policy of conventionalism to prohibit such changes.
He asserted that we would not adopt a different geometry, not that we could not or should not.
11Friedman points out, interestingly, that Poincaré’s conventionalism is the only option to GR that
Einstein himself recognized (Friedman 2001, 111).
12Similarly, Friedman argues that the special theory of relativity proceeds “in perfect conformity
with Poincaré’s underlying philosophy in Science and Hypothesis, by ‘elevating’ an already
established empirical fact into the radically new status of what Poincaré calls a ‘definition in
disguise’” (Friedman 2001, 111).
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its favor is a gain in overall efficiency, which is what conventionalism generally
endorses. Nevertheless, it must be conceded that GR does seem to clash pretty
squarely with geometric conventionalism.

In addition, several more specific factors favor the view that Poincaré would have
(at least initially) preferred the first option – that of stipulating that empty space is
Euclidean and treating the relevant results as physical. Firstly, and most obvious,
is Poincaré’s consistent defense of Euclidean geometry. Secondly, Poincaré does
distinguish between mathematics and physics; and he aligns (pure) geometry with
the mathematical. For example, he writes that:

experience brings us into contact only with representative space, which is a physical
continuum, never with geometric space, which is a mathematical continuum. At the very
most it would appear to tell us that it is convenient to give to geometric space three
dimensions, so that it may have as many as representative space (1905a/1958, 69).

There are at least three “spaces” for Poincaré (possibly more if we differentiate
between the “spaces” of our different senses): perceptual – which is involved in
the pre-conditions for geometry; mathematical – the study of the idealized objects
after the mathematical systems are developed; and physical – the “space” of our
best physical theories, including the behavior of light and masses in relation to
one another. (On this point see also Stump 1989.) The separation of mathemati-
cal/geometric space from the “space” of GR is consistent with his differentiation
between mathematical space and physical space.

Third, it is not clear that Poincaré regarded Riemannian, variably curved, “geom-
etry” as a bona fide geometry. On the one hand, his insistence on generality and the
iterability of mathematical operations leads him to dismiss geometries of variable
curvature as merely “analytic” (1902b/1982, 63). Distinctive of mathematics, he
argues, is generality and the fact that induction applies to its processes (1902a/1952,
Chapter I). For geometry to be genuinely mathematical, its constructions must be
everywhere iterable, so everywhere possible. If geometry is in some sense about
rigid motion, then a manifold of variable curvature, especially where the degree of
curvature depends on something contingent like the distribution of matter, would
not allow a thoroughly mathematical, idealized treatment. Yet Poincaré also writes
favorably about Riemannian geometries, defending them as mathematically coher-
ent (1902c/1994, 163–164). Furthermore, he admits that geometries of constant
curvature rest on a hypothesis – that of rigid body motion – that “is not a self evident
truth” (1902b/1982, 61). In short, he seems ambivalent.

Whether his conception of geometry includes or rules out variable curvature is
unclear. I think we can surmise that he recognized Riemannian geometry as mathe-
matical, and interesting, but as very different and more abstract than geometries of
constant curvature, which are based on the further limitations discussed above (those
motivated by a world satisfying certain empirical preconditions). These limitations
enable key idealizations, which in turn allow constructions and synthetic proofs that
we recognize as “geometric”.

In any case, it remains plausible that Poincaré would have viewed GR’s codi-
fication of space as more or less detaching physical “space” from (mathematical)
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geometry. He might, in other words, still think of mathematical, inert, space as rela-
tional, homogeneous, etc.; but physical “space”, as GR conceives it, is substantival,
for it has an effect on the behavior of objects in it, and it is not homogeneous.
Since Poincaré rejects absolute space but accepts (at least the possibility of)
the ether, his position on Euclidean geometry may thereby be salvageable along
the following lines. Traditional (constant curvature) geometries are mathematical
theories of space, while GR, in effect, forwards a physical theory about the ether
(one that entails, in fact, that none of the ordinary mathematical-geometric options
apply).13 Though (mathematical) geometry may be conceptually prior to physics,
and also more ideal than mechanics, we can change our decision about which
geometric structure should be presupposed, if any. “If our experiences should be
considerably different, the geometry of Euclid would no longer suffice to represent
them conveniently, and we should choose a different geometry” (1898/1996, 1011).
If experience could lead us to choose a different geometry, then neither geometry’s
position in the hierarchy, nor its similarity to a language, ensures it either absolute
protection or scientific applicability.

Conclusion

Convention is an invention that plays a distinctive role in Poincaré’s philosophy of
science. In terms of how they contribute to the framework of science, conventions
are not empirical. They are presupposed in certain empirical tests, so they are
(relatively) isolated from doubt. Yet they are not pure stipulations, or analytic, since
conventional choices are guided by, and modified in the light of, experience. Finally
they have a different character from genuine mathematical intuitions, which provide
a fixed, a priori synthetic foundation for mathematics. Conventions are thus distinct
from the synthetic a posteriori (empirical), the synthetic a priori and the analytic a
priori.

The importance of Poincaré’s invention lies in the recognition of a new category
of proposition and its centrality in scientific judgment.14 This is more important than
the special place Poincaré gives Euclidean geometry. Nevertheless, I think it’s possi-
ble to accommodate some of what he says about the priority of Euclidean geometry
with the use of non-Euclidean geometry in science, including the inapplicability of
any geometry of constant curvature in physical theories of global space. Poincaré’s
insistence on Euclidean geometry is based on criteria of simplicity and convenience.
But these criteria surely entail that if giving up Euclidean geometry somehow results
in an overall gain in simplicity then that would be condoned by conventionalism.

13Interestingly, Einstein also saw GR as a kind of ether theory. Einstein 1920, referenced in Stump
1989, 362, note 104.
14Indeed, as Wittgenstein argues, in any domain of objective, empirical judgment (See Wittgenstein
1969).
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The a priori conditions on geometry – in particular the group concept, and the
hypothesis of rigid body motion it encourages – might seem a lingering obstacle
to a more flexible attitude towards applied geometry, or an empirical approach to
physical space. However, just as the apriority of the intuitive continuum does not
restrict physical theories to the continuous; so the apriority of the group concept
does not mean that all possible theories of space must allow free mobility.15 This,
too, can be “corrected”, or overruled, by new theories and new data, just as, Poincaré
comes to admit, the new quantum theory might overrule our intuitive assumption
that nature is continuous. That is, he acknowledges that reality might actually
be discontinuous – despite the apriority of the intuitive continuum (1913/1963;
compare p. 44 and chapter VI).16

As with quantum mechanics, so with relativity: the practice of science depends
both on our making certain conventional choices and on our treating these choices
as provisional; they are revisable in the light of further experience and better, more
efficient theories. For these reasons I have urged an interpretation of Poincaré’s
conventionalism that de-emphasizes the rigidity of conventions and the hierarchy in
which they exist, and focuses instead on their flexibility and responsiveness to new
data and new theories. If this is right, then conventionalism is closely continuous
with, rather than distinct from, recent work on the more flexible “relativized”, or
provisional, a priori.

References

DiSalle, R. 2006. Understanding space-time. Cambridge: Cambridge University Press.
Ehrlich, P. (ed.). 1994. Real numbers, generalizations of the reals, and theories of continua.

Dordrecht: Kluwer.
Ewald, W. (ed.). 1996. From Kant to Hilbert, a source book in the foundations of mathematics,

vols. I and II. Oxford: Clarendon Press.
Folina, J. 2006. Poincaré’s circularity arguments for mathematical intuition. In The Kantian legacy

in nineteenth century science, ed. M. Friedman and A. Nordmann, 275–293. Cambridge, MA:
MIT Press.

Friedman, M. 1999. Reconsidering logical positivism. Cambridge: Cambridge University Press.
Friedman, M. 2001. The dynamics of reason. Stanford: CSLI Publications.
Friedman, M. 2011. Extending the dynamics of reason. Erkenntnis 75(3): 431–444.
Friedman, M. 2012. Reconsidering the dynamics of reason: Response to Ferrari, Mormann,

Nordmann, and Uebel. Studies in History and Philosophy of Science, Part A 43(1): 47–53.
Friedman, M., and A. Nordmann (eds.). 2006. The Kantian legacy in nineteenth century science.

Cambridge, MA: MIT Press.

15Recall, the group concept is part of an explanation of why we are geometrical beings, and why
we are naturally limited to a small class of geometries.
16Apriority for Poincaré does not thereby guarantee applicability; this is just one way his vision
seems quite different from Kant’s.



Poincaré and the Invention of Convention 45

Poincaré, H. 1898/1996. On the Foundations of Geometry. Trans. T.J. McCormack (reprint of
original translation in the Monist). In From Kant to Hilbert, A Source Book in the Foundations
of Mathematics, ed. W. Ewald, vol. 2. Oxford: Clarendon Press.

Poincaré, H. 1902a/1952. Science and Hypothesis. Trans. W.J.G. (reprint of the 1905 Walter Scott
publication in English). New York: Dover.

Poincaré, H. 1902b/1982. Science and Hypothesis. Trans. G. Halsted (reprinted in The Foundations
of Science (volume containing Poincaré’s Science and Hypothesis, The Value of Science and
Science and Method)). Washington, DC: University Press of America.

Poincaré, H. 1902c/1994. Review of Hilbert’s Foundations of Geometry. Trans. E. Huntington.
In Real Numbers, Generalizations of the Reals, and Theories of Continua, ed. P. Ehrlich.
Dordrecht: Kluwer Academic.

Poincaré, H. 1905a/1958. The Value of Science. Trans. G. Halsted. New York: Dover.
Poincaré, H. 1905b/1996, 1906a/1996, 1906b/1996. Mathematics and Logic I, II, and III. Trans.

G. Halsted and W. Ewald. In From Kant to Hilbert, A Source Book in the Foundations of
Mathematics, ed. W. Ewald, vol. 2. Oxford: Clarendon Press.

Poincaré, H. 1913/1963. Mathematics and Science: Last Essays. Trans. J. Bolduc. New York:
Dover.

Stump, D. 1989. Henri Poincaré’s philosophy of science. Studies in History and Philosophy of
Science 20(3): 335–363.

Stump, D. 2011. Arthur Pap’s functional theory of the a priori. HOPOS 1: 273–289.
Wittgenstein, L. 1969. On Certainty. Trans. and ed. G.E.M. Anscombe and G.H. von Wright.

Oxford: Blackwell Publishing.



The Third Way Epistemology:
A Re-characterization of Poincaré’s
Conventionalism

María de Paz

Abstract The aim of this paper is to clarify some crucial aspects of Poincaré’s
philosophy of science, and especially the notion of ‘convention’. This will lead to
a better understanding of the differing interpretations of his views that have been
proposed, and to a reassessment of the conventionalist philosophy of science 100
years after Poincaré’s passing. The first section presents a short contextualization
of conventionalism with the nineteenth century philosophical landscape. In the
second one, we briefly expose two conflicting ways of interpreting Poincaré’s
conventionalism regarding natural science, that is, physics and mechanics. In the
third section, the core of this paper, we analyze the different concepts of convention
that are found in Poincaré’s works. Finally, we offer some concluding remarks on
Poincaré’s views in light of present-day philosophical concerns.

A Short Sketch of Poincaré’s Conventionalism Contextualized

During the first half of the nineteenth Century, metaphysical idealism was the
dominant philosophical stream. It could be characterized as a philosophy that
focused on natural human experience, in order to understand the ultimate reality
by taking man as a spiritual being. So, it takes the ‘I’ as the point of departure and
focuses on the subject, leaving aside the external aspects of the world. During the
course of that century, the positivist philosophy of Auguste Comte also emerged.
This stream stressed the primacy of facts, moved away from metaphysics, and
sought its ground in the idea of science as the ideal form of knowledge. The
dominance of these two streams in academic philosophy continued during the
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second half of nineteenth century. Despite their differences, they dealt with some
common problems and, as a result, they influenced each other, giving place to
several philosophical streams that took elements from both.1

Positivism, with its particular view of science, attracted the attention not only of
philosophers, but also of scientists who proposed epistemological interpretations
of their professional activity, leading to a rapprochement between science and
philosophy. As a result, in the last quarter of nineteenth century, when philosophy of
science was not yet an academic subject,2 several epistemological positions emerged
that were held not only by philosophers but also by scientists. Some of these
positions were neo-Kantianism, critical positivism, instrumentalism, inductivism,
and conventionalism. As is well known, the last was Poincaré’s position regarding
geometry and physics, and the name ‘conventionalism’ comes after his own use of
the word ‘convention’.

In the history of philosophy there have been several conventionalist conceptions,
mainly regarding the kinds of norm that govern a society. These means that what is
valid or acceptable depends on the agreement of a determined group of people. The
idea of governing a society based on agreements among individuals has its origin
in the distinction between what is “given by nature” and what is created by man. In
this sense, a social conventionalist conception considers society as a human product
and, consequently, not natural. This kind of positions is very understandable on the
basis of the “social contract” concept. However, the application of these ideas to
science, especially to natural science, is not as clear as in the social context. Insofar
as science is considered knowledge of nature, how is it possible that such knowledge
could be the result of an agreement among individuals? Or more generally, how is
it possible that knowledge of nature would be not natural, and would be a human
creation?

Conventionalist positions regarding science could be understood in two main
ways: on the one hand, we consider truth itself as a matter of convention; or, on the
other, we consider that certain propositions, commonly taken as true, are not true,
but are conventions.

The first one of these positions is closer to social contractualism, for it treats
truth as a matter of stipulation by a group of people. In the case of science, this
group will be the scientific community. As a result, the truth of scientific theories,

1There were of course other philosophical schools at that time, such as materialism, spiritualism,
and some forms of existentialism. French spiritualism was dominated by Victor Cousin, who
was very influenced by Hegel’s and Schelling’s idealism. In this respect, we can say that every
one of these streams emerged as a “reaction against” or as “adding a rider” to, these two main
philosophical streams. This idea can also be found in Mandelbaum (1971, 4–5).
2Moritz Schlick’s chair in “Philosophy of the Inductive Sciences” at Vienna University is usually
regarded as the academic instauration of philosophy of science (cf. Friedman 2001, 12). However,
Mach’s chair on “History and Theory of Inductive Sciences,” at the same University (a chair also
occupied by Boltzmann), is a precedent. In France, the chairs of “General History of the Sciences”
in the Collège de France (created by Comte in 1892), and the chair of “History of Philosophy
regarding Sciences” at the Sorbonne (created by Gaston Milhaud in 1909) are precedents likewise.
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or the truth of the elements that play a part in science, is decided by reference to
the common interests of this group. This assertion answers the question of how the
conventions emerge, and the more precise answer is by the decision of a scientist
or of a group of scientists. Such a decision can be completely arbitrary, which leads
to extreme nominalist positions in which science does not correspond to nature nor
has any connection at all with it; rather, it reflects exclusively the particular needs
of the scientist or of the scientific community.

This kind of conception is characterized as “nominalist”, which is a kind of
instrumentalist position, because of the fact that, in general, it is not committed to
any ontology, and it treats definitions of scientific terms that are arbitrarily stipulated
as linguistic conventions. So, it denies that a definition can state the nature of a thing,
or be anything other than the explanation of a symbol. As a result, all scientific truths
can be deduced from linguistic conventions regarding the meaning of words.

Nevertheless, the conception that we aim to characterize here, which actually
emerges in the historical period that we outlined before, and which corresponds
to Poincaré’s view, follows the second way of understanding conventionalism.
This philosophy aims at showing that certain propositions that are commonly
taken as true are not so, but are instead conventions. This does not mean that
Poincaré understood truth as conventional; it only means that not every element
in science taken as true is in fact true, or even an assertion of truth, because certain
central principles are based on conventions. Consequently, our scientific theories are
governed by these conventional elements.

Conventionalism in this sense arose in the same context as the “back to
Kant” movement. This last movement emerged firstly in philosophy, but it was
quite important in science because of the critical foundation for science that it
proposed, taking epistemology rather than metaphysics as the fundamental aspect
of philosophy. The idea of re-thinking Kant was partly a consequence of a reaction
against metaphysical idealism, which in some respects had moved away from Kant’s
transcendental idealism. As part of the reconsideration of the Kantian perspective,
it made sense to consider whether some of the knowledge that Kant considered as
synthetic a priori could have a different status, such as conventional.

Moreover, the conventionalist perspective involved a reaction against Comtian
positivism, the other dominant stream at the time, by asserting the possibility that
not everything in science comes directly from nature, that is, not everything is dis-
covered from empirical observations. On the contrary, conventionalism considered
the role of the scientist in the theoretical constitution of science, instead of being
a simple data-collector or an event-descriptor. This meant that conventionalism
inquired into the creative role of the scientist, and into the dependence of certain
kinds of scientific statement on the scientist’s free choice.

In sum, then, the conventionalist interpretation of science that emerged by the end
of nineteenth century, and that was represented by Poincaré’s thinking, pursued two
central aims: to challenge the status of certain scientific “truths” in order to show
that they are conventions, and to highlight the scientist’s role in the constitution of
these conventions and therefore in the constitution of science.
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Poincaré’s conventionalism has its origins in his position regarding geometry.
He denied the Kantian dictum that geometrical axioms were synthetic a priori
judgments and said that they are, instead, conventions. Poincaré held that if the
Euclidean axioms were universal and necessary truths, they would be imposed on
us in such a way that we could not conceive, or construct a theoretical coherent
edifice on, any proposition opposed to them (Poincaré 1902, 74). This mean that
there could not be non-Euclidean geometry. As there are, in fact, logically consistent
non-Euclidean geometries, Poincaré asks if the axioms of geometry might be
experimental truths (Poincaré 1902, 75). The answer to this question is no, just
as it was regarding synthetic a priori judgments. The axioms of geometry are not
experimental truths, because we can never have any experience at all of the bodies
that play a part in geometry: that is, we have no experience of straight lines or
of perfect spheres, or of any other ideal geometrical form. Therefore geometrical
axioms are neither a priori truths nor experimental facts. Thus, he created a new
epistemological category to characterize the kind of knowledge that geometrical
axioms represent. Accordingly, his view was in opposition, not only to rationalistic
and Kantian aprioristic interpretations of geometry, but also to an empiricist one.

Poincaré extended his position to natural science, namely mechanics and physics,
and this is where the main problems of interpretation come to light. Most of these
problems concern whether the notion of convention is the same in natural science as
in geometry. This problem leads to the two main lines of interpretation that we will
now describe.3

Two Ways of Understanding Poincaré’s Physical
Conventionalism

The first of these two lines of interpretation considers physical conventionalism as
a mere extension of geometrical conventionalism. On the other side, the second
one considers that physical conventionalism is an epistemological position that
originated in geometrical conventionalism, but then developed quite independently.

The first kind of interpretation views conventionalism in geometry as a con-
sequence of the development of non-Euclidean geometries. In fact, the existence
of alternative geometries to the Euclid’s was the starting point for Poincaré’s
epistemological reflections on geometry, as is shown in his 1887 paper “Sur
les hypothèses fondamentales de la géométrie”. But, what is the meaning of
considering physical conventionalism as a mere sequel or a natural consequence
of geometrical conventionalism? It means, first of all, that Poincaré’s position
regarding natural science does not contribute with anything new to what was already

3By this, we do not mean that the interpretation of geometrical conventionalism is fully unprob-
lematic, but as we will show, the notion of convention is univocal for geometry, even if the
interpretations are not.
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said for geometry. A consequence of this meaning is that as geometry is not true
or false, then natural science is not either. Therefore, the conventionalist position
would be understood as opposed to the concepts of truth and falsity in science.
Accordingly, in our scientific theories we would not have true statements about
the world, but only conventional statements that do not tell anything about nature.
In natural science, we would be dealing with idealizations rather than empirical
objects, just as we do in geometry. So, conventionalism puts into question the kind of
knowledge about the world that we have from natural science. Even if we consider
that conventions in physics are limited to just a few principles, these principles,
situated in the highest level of the theories, could not bear any truth-value, as is the
case for geometrical conventions. If scientific theories express any truth, they would
not express it at the highest level.

Such an interpretation leads to the idea that science does not advance, at least in
the sense that it does not approach a true description of nature. Accordingly, there
can be no epistemic progress in science, because we do not obtain any knowledge
from our scientific theories. Furthermore, taken to its limit, this argument removes
every element in science related to the truth, insofar as there is no question of
truth in Poincaré’s conception of geometry. This would lead to the understanding
of Poincaré’s philosophy as ‘global conventionalism’. Such an interpretation of
Poincaré’s philosophy would lead us to consider him a nominalist, and it makes
trivial the part of the decision elements that can play a role in science.

This view was held and spread by Grünbaum, although not in such an extreme
form, since he did not discuss Poincaré’s philosophy of science in general.
Grünbaum’s interpretation was presented as an argument against Reichenbach’s,
and it is deeply linked with the reception that Poincaré’s work had in the years after
his decease, especially within the Vienna Circle and its intellectual heirs.4 Usually,
the interpreters following this line have mainly paid attention to the role played
by convention in geometry. Regarding the relation between conventionalism and
physical theories, their attention was focused on relativity theory: on the one side,
because of the role of geometry in general relativity, mainly because of the so-called
‘geometrization of forces’; and, on the other side, because of the role that Poincaré
attributes to relativity principle in his dynamics of the electron. As a result, in this
interpretive tradition, the relevance of the analysis of other mechanical problems
and concepts for the genesis of conventionalism is largely neglected.

This last point is precisely where the second line of interpretation has been
focused. This second view came up with Giedymin’s criticism of Grünbaum’s
position (Giedymin 1977), developed during the 1970s and 1980s. It does not deny
that geometric conventionalism is the origin of physical conventionalism, which

4Grünbaum 1963a, is his most famous contribution, but he also outlines his position in subsequent
papers such as Grünbaum 1963b, Grünbaum 1968, and especially Grünbaum 1978, where he
discusses what he considers the most important problem in geometrical conventionalism: the so-
called ‘parallax argument’. See also Rougier 1920 and Reichenbach 1928. We do not want to enter
into the details of this interpretation since it is more widespread than the other.
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cannot be coherently contradicted, since it is widely accepted that Poincaré used
the word ‘convention’ first for geometry and only later for physics. Instead, this
interpretation asserts the epistemological independence and autonomy of physical
conventionalism; that is, physical conventionalism may have originated with the
use of conventions in geometry, but it was subsequently constituted as a separate
doctrine.

This interpretation takes into account the relevance of the “physics of principles”
program to Poincaré’s thinking. That is, this line considers how the analysis and
creation of theories about natural phenomena led to a certain epistemological
position regarding natural science. As a result, this view shows how the use of
certain fundamental mechanical concepts that have no central part in geometry, such
as time, force or energy, prompted the independence of Poincaré’s thinking about
physics from his thinking about geometry. Prominent among present-day defenses
of this conception is the work of Pulte, who showed the independence of physical
conventionalism by rooting it in the nineteenth century development of mechanics.

Pulte considers that conventionalism regarding mechanics and physics was not
started by Poincaré, although he was its most outstanding representative. He also
denies that this position originated in the problems raised by the development
of non-Euclidean geometries, even though such problems prompted the use of
the word ‘convention’ in Poincaré’s philosophy (Pulte 2000, 48). To Pulte, in
fact, conventionalism does not have a single founder. On the contrary, it is a
consequence of scientific practice reacting against several philosophical conceptions
of science, such as traditional empiricism, rationalism and Kantian critical idealism.
In this sense, it fits well with our presentation of Poincaré’s conventionalism as
a philosophy that, contemporaneously with neo-Kantianism, rejects metaphysical
idealism and positivism. In Pulte’s view, conventionalism is a philosophical position
that came to light by the development of nineteenth century mathematical physics,
specifically by the critical foundations of mechanics proposed by Jacobi.

In his 1847–1848 lectures on mechanics, Jacobi criticized Lagrange’s analytical
mechanics “for its inability to describe the behavior of real physical bodies” (Pulte
2000, 60) and, more importantly, because of the status of the first principles of
mechanics. Jacobi believed that in his attempt to give an axiomatic origin to certain
mechanical principles, Lagrange proposed a dogmatic view that did not provide a
mathematical proof of those principles. As a result he concluded that those axioms
could not have the same status as the axioms of pure mathematics. Furthermore,
Jacobi reckoned that the fundamental principles of mechanics, although in need
of some empirical confirmation, could not be definitively established by empirical
evidence. He therefore suggested that they could be considered as conventions,
because their adoption implied a certain decision made by the theoretical scientist
(Jacobi 1996, 3). Thus, there is always room for choice in the search for mechanical
principles (Pulte 2009, 86). Besides, as these principles do not have mathematical or
empirical proofs that can provide certainty, we can only assume that they correspond
to nature (Jacobi 1996, 3), which implies a decision about the use of these
principles, made on the scientist’s part. Hence, Pulte establishes the independence
of physical conventionalism from Jacobi’s conception, pointing out that, exactly as
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Poincaré, Jacobi introduced an epistemological category that does not depend only
on experience and that cannot be identified with the Kantian a priori principles.

Giedymin also argues that the origins of the conventionalist philosophy of
physics can be traced back into the beginnings of nineteenth Century. He finds
its roots in the scientific conception named ‘the physics of principles,’ anticipated
by Lagrange and Fourier, among others, but especially by Hamilton (Giedymin
1982, 44). According to Giedymin, the physics of principles aims at subsuming
several experimental facts or several empirical laws under principles formulated in
an abstract mathematical language which expresses a common structure to different
scientific theories, and which reveals the epistemic content that we can obtain from
nature. This is a kind of method to extract what is common among rival theories
with the aim of avoiding theoretical controversy, or allowing the free choice of the
theoretical explanation of those principles. As a result, the theoretical interpreta-
tion of the principles is conventional. Furthermore, the principles themselves are
conventional because of our decision to take them as condensers of empirical laws.
The conventional part can be also appreciated in the language in which they are
expressed, that is, mathematical language, which shows that our mind has an active
role in the production of knowledge.

The idea of a ‘third way epistemology’ is taken from Pulte, who addresses it
to clarify the status of those physical principles, called ‘conventions’ by Poincaré,
which are “neither inductive generalizations nor are they synthetic a priori proposi-
tions imposed by reason” (Pulte 2000, 51). In this sense, Poincaré’s conventionalism
could be viewed as a middle path between empiricism and rationalism, taking
elements from both. But this would not be in the Kantian way, but, rather, an
alternative epistemology in which the role of decision and choice, in a pragmatic
sense, is essential to the development of knowledge. Accordingly, a convention, as
a decisional element for the scientist, would be the third way between an empirical
and an a priori judgment.

The outstanding problem of the controversy between these two interpretations
of Poincaré’s philosophy is precisely the lack of clarity around the notion of
‘convention’. But what if this is not a univocal word? What if convention has
different meanings in Poincaré’s philosophy of science? Then we could state that
the polysemy of convention would amount to a polysemy of interpretations that
will be rightly founded, depending on the emphasis that one would ascribe to one
meaning of convention. A clarification of this notion is our next step. We aim to
show that ‘convention’ is used in several different senses and contexts in Poincaré’s
work.

Different Senses of the Word ‘Convention’ in Poincaré

We will divide this part in two: first, the conventions explicitly asserted by Poincaré
as such; and second, those elements which can be interpreted as conventions but that
are not explicitly asserted by Poincaré as such.
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Explicit Conventions

The explicit conventions include: the axioms of geometry; measurement conven-
tions and coordinate systems; the linguistic conventions; disguised definitions; and
the principles of mechanics (and of physics generally).

Axioms or Principles of Geometry

This is the most common sense of understanding Poincaré’s conventions. None of
his commentators misses this sense. There are many texts in which the axioms of
geometry are declared as conventions by Poincaré. For example, in Science and
Hypothesis he states: “The geometrical axioms are therefore neither synthetic a
priori intuitions nor experimental facts. They are conventions” (Poincaré 1902, 75).

Poincaré dismissed the possibility that the Euclidean axioms are synthetic a priori
propositions because, if they were so, they would be imposed on us in such a way
that we could not conceive any non-Euclidean geometry. He also dismissed the idea
that the axioms are experimental facts, because we cannot have any experience
of ideal geometrical objects. Axioms of geometry are not experimental facts also
because geometry is not a science submitted to constant revision: it is an exact
science (Poincaré 1902, 75), and empirical statements can never be exactly true. He
also asserted the freedom to choose among different conventions, which is guided by
experience but not determined by it. From this he inferred that the question about the
truth in geometry is non-sensical. By stressing the role of decision in the application
of geometry, Poincaré, in effect, constituted conventions as a new epistemological
category. Thus, the axioms of geometry exemplify his “third way” epistemology.

Measurement Conventions and Coordinate Systems

We have analyzed these two kinds of conventions together, because the determina-
tions that Poincaré pointed out for one kind are always valid for the other. On the one
side are those conventions that define systems of measurement, such as the metric
system, the Imperial and the US customary units and, of course, the natural units.
On the other side are systems constructed to determine positions in space, such as
Cartesian coordinates, polar coordinates, cylindrical and spherical coordinates and
so on, as well as conventions for the measurement of time. Regarding the latter,
Poincaré distinguished time as it is subjectively given to us, or psychological time,
from time as defined within an objective system of measurement, or physical time
(Poincaré 1905, 42). It is this last one which concerns us.

Poincaré (1905, 43) asks, what is the meaning of saying that the time between
midday and one in the afternoon is equal to the time between two and three in the
afternoon? This assertion has no meaning by itself: it can only have the meaning
that we are able to define for it. That is, it is a matter of convention. In fact, we can
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understand it as the claim that the minute hand of the clock sweeps out the same
space (the whole disc of the clock) between midday and one in the afternoon, as
between two and three in the afternoon. That is, to measure time, what we do is to
spatialize it: we agree that covering the same space at a constant velocity amounts
to the same time interval, and this is a convention. As Poincaré says: “There is no
way of measuring time more true than another; that which is generally adopted is
only more convenient” (Poincaré 1905, 46). So, measurement conventions are not
experimental truths nor they are a priori truths, but they are conventions, and thus
representative, like geometrical conventions, of the third way epistemology.

In fact, these conventions are explicitly considered as the same kind of conven-
tion as geometrical axioms, since, when Poincaré asks about the truth of Euclidean
geometry, he also says: “We might as well ask if the metric system is true, and
if the old weights and measures are false; if Cartesian coordinates are true and
polar coordinates false” (Poincaré 1902, 76). And the conclusion that applies to
geometry is the same for the measurement systems: they are not true or false, but
only more or less convenient. However, we must emphasize a difference between
measurement conventions or coordinate systems and geometrical axioms. Poincaré
says that the choice of a geometry is guided by experience, but is the choice of the
metric system also guided by experience? Or the choice of a coordinate system?
This last is usually chosen by pragmatic considerations, such as coordinate systems
useful for graphing particular functions. We also know that the choice of the metric
system is guided by simplicity, which is one of the features that Poincaré always
stresses for the choice of a particular convention. But we have no indication that such
choices are influenced by experimental reasons, whereas for Euclidean geometry,
we have the experimental evidence that “it sufficiently agrees with the properties
of natural solids” (Poincaré 1902, 76). This is not to state that the choice among
measurement systems is arbitrary (it is not, because it is guided by simplicity), or
that it is an arbitrary convention, but just to show that the reasons for this choice are
not empirical. As a result, it is not exactly the same as the choice among possible
geometries. Experience indeed plays a role in the choice of a geometry, for Poincaré;
it is the ‘occasion’ of its creation, by providing us with the knowledge of solid bodies
(Heinzmann 2001b, 458). And it also guides us in the choice of the more convenient
geometry. This is not the case for measurement conventions, whether regarding
space or time measurements. As a result, we can state a difference between these
two kinds of conventions, even if it is a subtle difference. Nevertheless, both of them
belong to this ‘epistemological’ category.

Linguistic Conventions

This is the most common kind of convention. They are usually referred to as
‘conventions of language’ and they are constituted by an arbitrary agreement among
the community of speakers. At first sight, it would seem trivial to point out this
kind of convention in Poincaré’s philosophy, and perhaps that is why they are not
pointed out by most of his commentators. However, we think that it is not quite
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trivial. From our point of view, these are important conventions because science is
expressed in language, in a specific language created for it. As a result, this kind
of convention is present in every science. By this, I mean that they are present in
mathematics and in physics, as is shown by these words from The Value of Science:

If, therefore, during an eclipse, it is asked: Is it growing dark? Everyone will answer yes.
Doubtless those speaking a language where bright was called dark, and dark bright, would
answer no. But of what importance is that? (1905, 226).

In the same way, in mathematics, when I have laid down the definitions and the postulates,
which are conventions, a theorem henceforth can only be true or false. But to answer the
question: Is this theorem true? It is no longer to the witness of my senses that I shall have
recourse, but to reasoning (Poincaré 1905, 158).

So, linguistic conventions are relevant to science because the constitution of
scientific language is essential to express, for example, scientific facts. Then, these
conventions must be established prior to the expression of scientific facts. They are
at the first levels of science, since language is the way in which science is stated.
They are close to measurement conventions and coordinate systems, but they are
chosen as an arbitrary agreement by the community of speakers, thus, they do not
have simplicity as a criterion of choice. So, the main difference with the others is that
they are agreed by a group in an arbitrary way, whereas a coordinate system could be
chosen by an individual researcher guided by simplicity. However, they still belong
to the new category, but understood in a wide sense. Language is used to classify the
facts, not only to express scientific assertions; asserting a fact in scientific language
places it within a determined category of facts, that is, in a specific classification, and
every classification assumes a certain convention: “Facts are classed in categories,
and if I am asked whether the fact that I ascertained belongs or does not belong in
such a category, I shall not hesitate.

Doubtless this classification is sufficiently arbitrary to leave a large part to man’s freedom
or caprice. In a word, this classification is a convention” (Poincaré 1905, 158).

Disguised Definitions

From his first discussion of conventions, Poincaré associated them with disguised
definitions, as is shown in the Introduction to Science and Hypothesis, where
he discusses the different kinds of hypothesis: “others are hypotheses only in
appearance, and reduce to definitions or to conventions in disguise” (Poincaré 1902,
24). These definitions have sometimes been interpreted as ‘implicit definitions’,
but we want to show that this interpretation is wrong. A disguised definition is
not necessarily an implicit definition. It is an explicit definition functioning as
something different, for example, as an axiom. Poincaré says: “the axioms of
geometry (I do not speak of those of arithmetic) are only definitions in disguise”
(Poincaré 1902, 76). This means, as Heinzmann says, that a disguised definition is
opposed to an ordinary definition because it is not a simple description of the things,
but it is something else (Heinzmann 2001a, 4). In the case of the axioms of geometry
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it means that disguised definitions play an essential role, because depending on
what conventions or definitions we choose, we will have an Euclidean, Riemannian
or Lobatchevskian geometry. So, on the one hand, geometrical conventions are
linguistic definitions, in the sense that definitions are part of a language; we need
the semantic part to constitute a language, and definitions have a semantic function.
Geometries could be interpreted as languages, and as such, they are similar to the
linguistic definitions that we have described above, because they are conventions
regarding the meaning of words, for example, the definition of a straight line is a
convention. On the other hand, geometrical conventions are different from the trivial
linguistic definitions because they have different functions; linguistic definitions
have no other specific function, such as axioms or postulates. Therefore, regarding
geometry, definitions in disguise can be identified with the first kind of conventions
that we have described, because they play the role of first principles.

Some conventions regarding time, such as succession and synchrony, are also
definitions, because physical time requires definitions (Poincaré 1905, 46). Regard-
ing succession, Poincaré states that when we pay attention to very distant events,
such as the observation of a very distant star and something happening on earth, it
is a question of convention to establish which one of the events happened before or
after the other. And it is exactly the same for simultaneity. We cannot immediately
determine the simultaneity of distant events because if we use, for example, a
method of cross-signals to establish the simultaneity of two events, we have to take
into account the travel time of the signal itself. We do not have the intuition of the
equality of two durations, and we can only decide the simultaneity of two events
by definition. As a result, we need some rules to measure time, and we use these
rules to establish a convention that allows us to determine the synchrony of distant
events. We launch this convention on the basis of the simplicity and convenience of
physical laws:

The simultaneity of two events or the order of their succession, the equality of two durations,
are to be so defined that the enunciation of natural laws may be as simple as possible
(Poincaré 1905, 54).

Conventions as definitions in disguise appear not only present in geometry and
in the measure of time, but also in physics. For example, when we say that “force is
the product of the mass and the acceleration” (Poincaré 1902, 120), Poincaré asserts
that this is not an experimental law but only a definition. Because this definition
corresponds to the second law of Newtonian mechanics, it is a disguised definition,
because it functions not as a definition, but as a law of mechanics.

Understanding this kind of definition is important to understanding which parts
of the science are conventional and which are empirical, because some difficulties
that we find in mechanics are “due to the fact that treatises on mechanics do not
clearly distinguish between what is experiment, what is mathematical reasoning,
what is convention, and what is hypothesis” (Poincaré 1902, 111).

The role of definitions in the establishment of geometrical axioms, rules for
time-measurement, or mechanical principles makes clear that the latter are neither
experimental facts or a priori propositions. These definitions, or conventions, are
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established by scientists in a way that stresses their creative role. This is another
aspect of conventions that makes them a distinctive part of Poincaré’s third way
epistemology.

Principles of Mechanics (and of Physics)

Poincaré characterizes the principles of mechanics as conventions in the Intro-
duction of Science and hypothesis: “In mechanics we shall be led to analogous
conclusions, and we shall see that the principles of this science, although more
directly based on experience, still share the conventional character of the geomet-
rical postulates” (Poincaré 1902, 26). Nonetheless, Poincaré himself distinguished
between geometrical axioms as conventions and principles of mechanics as conven-
tions: the latter are more directly based on experience. If we take this assertion
seriously, we cannot agree with the first line of interpretation, which views
Poincaré’s conventionalism in physics as just an extension of his conventionalism
regarding geometry. The link with empirical facts is what introduces an element of
verification in science, and as a result an element of truth. Consequently, we cannot
agree with an interpretation that removes every element of truth from Poincaré’s
philosophy of science or, more precisely, from his philosophy of physics.

Now, we have to distinguish between at least two kinds of convention regarding
the principles of mechanics. There are those like the law of force, which are
definitions in disguise, as we have just shown; and there are others which are
extreme idealizations of experimental conditions such as the law of inertia. In this
case, we suppose that there could really be a free particle or a free body in motion, in
order to verify that “A body under the action of no force can only move uniformly in
a straight line” (Poincaré 1902, 112). Once again Poincaré rejects the idea that this
could be a synthetic a priori proposition, because if this were the case, the Greeks
would not have thought that motion ceases with the cause of motion. But we also
know that we cannot have experience of a body not subject to the action of any force.
A body on earth is always under the influence of gravitational force, so there is no
such thing as a free body, but we act on the assumption that there could be. That is,
by convention, we decide to abstract from the action of all forces in order to assert
the law of inertia. As a result, it is not an a priori principle or an empirical law, it is a
convention. Here again we have a representative of Poincaré’s new epistemological
category, characteristic of the “third way” epistemology.

Implicit Conventions

Now, we will consider some conventions that we can find in Poincaré’s philosophy
but that are not explicitly identified as such. We will also show why we think that
they can, nonetheless, be interpreted as conventions. These fall into two categories:
indifferent hypotheses and natural hypotheses. The purpose of this section is not to
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compound the problem of the interpretation of the word ‘convention’ in Poincaré’s
philosophy by applying it to even more kinds of principle. On the contrary, we want
to show its deeper internal coherence, by using this concept to clarify more elements
of his philosophy.

Indifferent Hypotheses

Poincaré characterizes this kind of hypothesis twice. First, in the Introduction to
Science and Hypothesis, he distinguishes different kinds of hypothesis, and second,
in Chapter IX, he presents another typology of hypotheses, saying, “There is a
second category of hypotheses which I shall qualify as indifferent. In most questions
the analyst assumes, at the beginning of his calculations, either that matter is
continuous, or the reverse, that it is formed of atoms” (Poincaré 1902, 166). These
hypotheses are again characterized in chapter X of Science and Hypotheses as
follows: “Hypotheses of this kind have therefore only a metaphorical sense. [ : : : ]
They may be useful to give satisfaction to the mind, and they will do no harm as
long as they are only indifferent hypotheses” (Poincaré 1902, 176). They are useful
in the sense that they have an explanatory role for us, but they cannot be considered
either true or false. Accordingly, the utility of these hypotheses is only practical:
they help us to save intellectual effort, because they provide convenient images of
the theories that they are associated with. Thus, they consolidate scientific concepts
by means of their simplicity.

Indifferent hypothesis can be interpreted as “conventions freely invented by the
mind,” as suggested by Giedymin (1982, VIII) and other commentators (Heinzmann
2009, 166; Uebel 1998–1999, 79). In this sense, “convention” could be understood
as an arbitrary agreement, regarding, for example, one mechanical model as
more convenient than another, or the atomic hypothesis as more convenient than
the hypothesis of continuous matter. Interpreting these indifferent hypotheses as
conventions arises from accepting that there is no empirical determination of them;
they are completely created by the scientist. Their use depends on the scientist’s
decision to adopt them because of their simplicity, not because of their relationship
with the world. Thus, they are not empirical truths; nor are they a priori truths,
because they are neither self-evident nor universally valid. In fact, they are not truths
at all.

However, this kind of convention is different from every other kind of convention
that we have identified before. From my point of view, that is the reason why
Poincaré does not explicitly characterize them as conventions. I think that he wanted
to distinguish them from other kinds of convention that are epistemologically
relevant. By ‘epistemologically relevant’ I mean conventions that make a difference
in physical theory: if we change those conventions, we get a different theory, and
that is not the case with indifferent hypothesis. Indifferent hypotheses are called
indifferent, precisely because their adoption does not modify essential points in
the structure of a theory or in its epistemological value. As a result, the choice
of an indifferent hypothesis depends on its convenience and on its heuristic value
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for the explanation of the theory, and not on its epistemological merits. So, while
such hypotheses are not chosen in a completely arbitrary way, they are indifferent
regarding their epistemological basis. In any case, since these hypotheses make
statements about the underlying ontology of a theory, they concern metaphysics
rather than physics. Their use in physics is heuristic or methodological because
their truth or their epistemological status is not relevant to physics, but is a question
outside of science.

Evidently such hypotheses are restricted to physics; they do not appear in
geometry. This establishes another difference between geometrical and physical
conventionalism, since this kind of hypothesis is a feature of the latter but not
the former. So, we can say that in Poincaré’s theory of natural science, there are
some conventions with a purely heuristic function, which would have no place in
his epistemological analysis of geometry.

These conventions emerge from the need to simplify our theories. They are
sustained by the practical convenience of the theoretical explanations that we can
obtain by using them. The criterion of choice among alternative conventions is
precisely their heuristic value, the methodological simplicity that they provide to
our calculations. As a result, although they are freely invented by the scientist, they
are not adopted arbitrarily, because simplicity is a criterion of choice. Interpreting
indifferent hypotheses as conventions means that insofar as they are methodological
tools, the heuristic tools used to construct our theories depend on the scientist in two
senses: first, they are products of the scientist’s creativity; second, it is the scientist
who decides to use them, based on an individual judgment of their simplicity. So, in
the case of indifferent hypotheses, the conventionalist position stresses once again
the creative role of the scientist.

Natural Hypotheses

Natural hypotheses are also defined in the same typology of chapter IX of Science
and hypothesis:

First of all, there are those [hypotheses] which are quite natural and necessary. It is difficult
not to suppose that the influence of very distant bodies is quite negligible, that small
movements obey a linear law, and that effect is a continuous function of its cause. I will
say as much for the conditions imposed by symmetry. All these hypotheses affirm, so to
speak, the common basis of all the theories of mathematical physics. They are the last that
should be abandoned (Poincaré 1902, 166).

If we consider the examples provided by Poincaré himself, these hypotheses
are taken from experience. But they have a different purpose than empirical
generalizations. They are practical rules that help us to constitute our theories of
mathematical physics. They are taken from experience, but our aim is not to verify
them; rather, we use them to constitute empirical laws.

In this sense, as Walter argues, indifferent hypotheses are practical rules that are
not falsifiable, given their role within our theoretical constructions (Walter 2010,
133). That is, they cannot be refuted because of the use that we make of them, by
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deciding to treat them as valid in order to constitute a theory. This means that there
are some elements in the process of the formation of theories that have an empirical
origin, but are not falsifable by experience for some reason. From our perspective,
this reason is that the scientist decides to not expose them to falsification, but to
treat them as exactly true. Thus it is by decision that these theoretical elements are
immune to empirical revision.

These hypotheses have a regulative role for scientific practice, because they
are rules that guide our procedures for constructing theories. But they also have
a constitutive role, because they help us in organizing our empirical knowledge, in
putting phenomena in the form of equations. That is why these hypotheses form
the common ground of our theories of mathematical physics and that is why they
are the last that should be abandoned. Without these theoretical assumptions we
will not be able to write differential equations and, consequently, we will not have
mathematical physics.

From our point of view, these hypotheses can be interpreted as conventions of a
certain kind: firstly, because our use of them is based on the decision to treat them
as unfalsifiable. That is exactly what happens with conventions in natural science,
especially with conventions such as mechanical principles (Poincaré 1902, 128).
They are inspired by experimental laws and transformed into conventions by the
use that we make of them, guided by convenience and simplicity. It is we who grant
them their conventional status. So, if we stress the role of decision in science, we
can identify natural hypothesis as the last kind of conventions. Thus they are neither
empirical truths nor self-evident a priori truths.

We can identify these natural hypotheses with the kind of convention described
by Giedymin as “elements which though literally false are useful for the attainment
of certain cognitive aims” (Giedymin 1991, 5). This means that even if we could
prove that these assertions are not strictly true, because they are useful to make
generalizations, we decide to use them without submitting them to any empirical
tests. As a result, we decide to give them a status which is not true or false,
but conventional. So, they fit well with Jacobi’s idea that scientist has to assume
that there are some principles that correspond to nature, in order to apply them
because even if they have an experimental ground, empirical verification does not
assure their universality (Jacobi 1996). Thus, conventions of this kind emerge from
experience, but they are not falsifiable by it, because of their status as practical
rules. They are sustained by the scientist’s own determination to obtain a systematic
description of certain phenomena.

However, in most of the cases in which we use natural hypotheses, we do not
choose among two or more alternative conventions on the basis of their convenience,
as we do with indifferent hypotheses. By this we mean that a convention in this
sense does not always imply a choice among empirically equivalent theories, as
in the case of mechanical models. Sometimes, a convention implies a process of
decision not among equivalent alternatives, but between using or not using a certain
principle that can be useful for the formation of laws, as in the case for natural
hypotheses. The idea that convention does not necessarily imply a choice among
two equivalent principles or hypotheses is illustrated by the principle of inertia,
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which is a convention in the fifth sense stated by us. We do not have an alternative
equivalent choice to this principle. We need it as a fundamental principle in physics.

So, a natural hypothesis is motivated by practical reasons, and accepted without
consideration of its truth or falsity. Such hypotheses function as pre-conditions
that guide the scientist in the selection of facts or scientific laws, and so they
are regulative. That is why we can distinguish them from indifferent hypotheses,
because the decision to adopt them, and the use that we make of them, is not
equivalent. They are epistemologically relevant because their use determines the
kind of knowledge that we will obtain. In this sense, they are constitutive.

By asserting that they are constitutive, we agree with Friedman’s view that
conventions are ‘presuppositions’ (Friedman 2001, 71) or pre-conditions, as we said
above, for the formation of empirical laws. Thus, the kind of necessity for these
conventions is not absolute or universal; they are necessary for our science. This
means that without these conventions, or with different ones, science would not be
the same, either in its methodology or in its results. The very constitution of science
would be altered.

This is the last kind of convention that further supports our claim of the
polysemy of this word in Poincaré’s philosophy. At the same time, we have seen
that convention is present in every level of scientific practice, from the most
basic hypotheses used to link experimental facts, to the more general and abstract
hypotheses that enable us to construct theoretical laws.

Concluding Remarks

In conclusion, we want to note which kinds of convention are especially relevant to
geometry, and which ones to physics. For geometry, we have linguistic conventions
(3) regarding the meaning of terms, the axioms of geometry (1) in the role of
disguised definitions (4), and conventions for measurement and coordinate systems
(2). For mechanics and physics we also have linguistic conventions (3), because
they are needed to state scientific facts. But for mechanics we have as well the
axioms of geometry (1) and the measurement conventions (2), because as Friedman
asserts, “we would have no laws of motion if we did not presuppose spatial
geometry” (Friedman 1999, 76). So mechanics needs the prior constitution of
geometry. In addition, mechanical principles (5) may be conventions in the two
forms specified, that is as disguised definitions (4), and as extreme idealizations
of experimental conditions. But, for the construction of physical and mechanical
theories, we also make assertions regarding their underlying ontology, and here
we find the conventions known as indifferent hypotheses (6). Finally, to constitute
generalizations and other empirical laws, we need principles such as the principle
of physical induction or the idea that the influence of very distant bodies is
quite negligible. These are natural hypotheses, and their use is another kind of
conventional choice (7).
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Now, we can understand that if we pay only attention to conventions as axioms
of geometry, which are neither true nor false, we could be lead easily to a nominalist
interpretation of Poincaré’s philosophy by stressing particular elements, such as the
idea of translation or the idea that conventionalism depends only on the choice of a
physical geometry.

But we have shown that convention is a key concept in Poincaré’s third way epis-
temology. It plays this role, first, because it is the category that defines the middle
path between rationalism and empiricism; taken as a pluralistic concept, convention
allows us to subsume several kinds of scientific statement that cannot be located as
purely rational or purely empirical. Second, it introduces a novel appreciation of the
role of pragmatic decision, guided by simplicity and convenience.

In order to clarify these ideas, we want to consider some questions put forward
by Alan Richardson5: what is the point of distinguishing the different uses of
convention in Poincaré’s philosophy? Is it just to clarify the texts? Or is it a kind of
defense in order to give support to the pluralism by the assertion of the polysemy
of convention? Or is it just to show that Poincaré did not know at all what he
was talking about, as Margaret Masterman argued in the case of Thomas Kuhn
(Masterman 1970)?

Firstly, we agree that these distinctions do clarify Poincaré’s texts and lead
to a better understanding of Poincaré’s philosophy. More than this, however,
clarifying the meaning of convention in natural science also illuminates the role
of creation in Poincaré’s physical conventionalism. That is, it helps to demarcate
what is given from what is created, or the observational content from the scientist’s
voluntary decisions to construct a convenient systematic description. Explicating
the concept of convention also illuminates the distinction between two senses
of conventionalism in Poincaré’s philosophy, one for geometry and another for
mechanics and physics, because this latter, as Pulte suggested contains different
elements than the former, such as natural and indifferent hypotheses (cf. Pulte
2000, 54). So, we think that the second line of interpretation is more pertinent
than the first one. But we have taken a step beyond Pulte’s ideas, by showing the
existence and importance of conventions in different levels of scientific practice and
not only in mechanical principles.

Secondly, the clarification of these senses of convention is also a defense of
Poincaré’s philosophy: by clarifying this concept, we find that the polysemy of
convention reveals that the solutions proposed by Poincaré, for particular scientific
problems, are solutions specific to those problems, not necessarily valid in every
moment of the development of a science. This means that the scientist, or better, the
scientist-philosopher, has to re-think the principles and concepts on which theories
are constructed. And, from our point of view, this fits well with the view of scientific
practice as a human activity that is constantly changing. Besides, the plurality
of meanings is also coherent with the conventionalist principle of “theoretical

5Richardson asked me this question after the symposium on Poincaré presented at the HOPOS
conference in 2012.
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tolerance”, which remarks the scientist’s freedom “to work with any interesting
theoretical interpretation of experimentally adequate principles” (Giedymin 1982,
190). That is, as long as the principles fit well with the experimental evidence, there
could be many theoretical explanations behind them, and this is consistent with the
conventionalist viewpoint.

This point was clearly stated by Poincaré: “If therefore a phenomenon allows of a
complete mechanical explanation, it allows of an unlimited number of others, which
will equally take into account all the particulars revealed by experiment” (Poincaré
1902, 224).

Finally, we certainly do not want to maintain that Poincaré did not know what
he was talking about. It is true that there are some inaccuracies or ambiguities in
his reflections, regarding, for example, the criteria that guide us in the choice of a
geometry as compared with the criteria that guide us in the choice of a measurement
system. But in those cases, Poincaré tended to use metaphors and analogies in order
to clarify his thoughts and to attain better explanations. And we have also to consider
that he was not trying to construct a rigorous philosophy, but only reflecting on the
way science is practiced, as a practicing scientist.

As a result, from our point of view, a complete and coherent interpretation of
Poincaré’s conventionalism must take into account this plurality of meanings of
convention, and show that it makes sense in light of the wide range of problems
studied by Poincaré from a philosophical perspective. It also makes sense in light
of his opinion that science is always changing, and is never definitively constituted.
Accordingly, Poincaré’s philosophy of science is a philosophy constructed to point
out provisional solutions to specific scientific problems, rather than as a system
valid once and forever. For that reason, Poincaré’s conventionalism is a philosophy
of science that is continually rewritten in the course of science.
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Poincaré, Indifferent Hypotheses
and Metaphysics

Antonio A.P. Videira

: : : the denial of all metaphysics is still metaphysical, and
precisely this is what I call modern metaphysics

(Poincaré [1904, 217], apud During [2001, 87–88])

Abstract The objective of this paper is twofold. First, Poincaré’s ideas regarding
the role of indifferent hypotheses in physics are described, and the relationship
between this particular type of hypothesis and metaphysics is also analyzed. By
formulating a relationship between indifferent hypotheses and metaphysics, the
author will seek to determine this concept of metaphysics – albeit in an obscure
fashion – in the thinking of the French mathematician. This relationship was not
presented by Poincaré himself. It is described here in order to suggest that the failure
of the French savant in developing a coherent epistemology for science is at least
partially due to his reluctance to accept that indifferent hypotheses are a constituent
part of scientific practice.

Introduction

In this article, I intend to resume a fascinating and controversial topic in the history
of science and in the history of the philosophy of science: the relationship between
science and metaphysics from the perspective of the scientist. Of course, my goal
is not to try to understand such a relationship throughout the whole of its history.
That would be an overly ambitious claim, as well as being quite impractical to carry
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out. Moreover, it is certain that over time this relationship has undergone important
changes, which have been positive at some moments whilst having been negative at
other times. That is, at some (a few) times, scientists have given metaphysics relative
importance, while at other times (most often), they have held it in contempt. Even
indifference, which is almost always fueled by scientists and not by philosophers,
has been present. In the scope of this text, I am interested in the interaction
between science and metaphysics as expressed by the considerations developed
by the physicist, mathematician and philosopher Henri Poincaré regarding the
controversial role played by (according to him) the so-called indifferent hypotheses
in physics.

In general, it is considered that metaphysics gradually moved away from the
natural sciences during the nineteenth century (Jungnickel and McCormmach 1990).
Over the years, mainly as of the 1830s and the rise of positivism, a doctrine that
was developed explicitly for the purpose of combating metaphysics, the latter was
perceived as not contributing to the development of science and society. Instead,
metaphysics would be considered to constitute an obstacle to scientific progress and,
as such, should definitely be eradicated. Thus, at the end of the eighteen hundreds, it
was not common to find men of science who were interested in, nor concerned with,
issues such as the origin of the world or the destiny of human beings. In retrospect, it
is now known that this task – i.e., answering such questions – has not been fulfilled
nor could it be. Despite the public contempt for metaphysics, little by little, scientists
began to be forced to reflect on the relationship between science and metaphysics.
In part, this obligation was triggered by the need to describe events that were not
visible to the naked eye. Starting out with thermodynamics, and later because of
electromagnetism and matters relating to radiation, scientists were led to construct
models that made use of causes which are not reducible to structures comparable to
human scale. The use of molecules, atoms and electric current in thermodynamics
and electromagnetism are examples of such entities, which lead to discussions about
what should actually be considered to be an object with a right to exist in the real
world. Do these objects (atoms or electric currents) actually exist or are they mere
fiction? (Videira 1997).

Respecting an old philosophical tradition, every question involving the issue
of existence was routinely classified as belonging to the domain of metaphysics.
In the late nineteenth century and the beginning of the next one, metaphysics
still stubbornly remained “close” to science, as some scientists and even Poincaré
himself, albeit grudgingly, had to take a stand about the reasons for keeping
metaphysics alive. Not only Poincaré reflected on this theme; Boltzmann and
Maxwell, to keep up with the other two who had been randomly selected, were also
concerned about understanding the intrinsic strength of metaphysics (Videira 1992).

More specifically, in the case of Poincaré, his participation was involuntary in a
certain way, and it can be explained not only by the new scientific developments
of the era, but it also was a result of the need he felt to respond to the criticisms
that were directed at him by the French philosopher Edouard Le Roy, who was one
of Henri Bergson’s former students, and by Bergson himself. Accused by Le Roy
of being a conventionalist, Poincaré reiterated that scientific laws were creations of
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the human spirit, even while he maintained his belief that science would be able
to describe external reality. Despite the intrinsic interest of this debate, as shown
in the final chapters of The Value of Science, this article is not meant to comment
on it. Here I will limit myself to comment – with no pretense to be exhaustive –
on the reasons given by Poincaré himself to try to deny science of any and all
interest in metaphysics. Strictly speaking, I think one cannot make a definitive
comment on Poincaré’s position as to why metaphysics cannot be excluded from
reflections about the nature of science. It seems to me that at the end of his life – The
Value of Science was published seven years before his death – Poincaré entertained
some relevant and serious doubts about the coherence of some of his positions that
had been previously divulged. The defense of the realist position made it so that
Poincaré approached the gateway to metaphysics, through which he consciously
refused to pass. Even so, Poincaré recognized that realism could not be supported
only by epistemological reasons; in other words, supported by reasons which took
into account the specific nature of scientific knowledge. Contrary to what had been
believed for a long time, the type of knowledge that is characterized by science
cannot be used to support alone the realist position. Being more than a philosophical
position, realism is a decision of metaphysical nature.

According to Ubaldo Sanzo, Poincaré developed epistemological thinking with-
out the participation of ontological or metaphysical considerations (Sanzo 1996).
Otherwise, the French savant would have refused allowing the establishment of
the external world to play a significant role in the process of justifying its own
epistemology. However, his refusal cost him a certain price. The price paid was that
of never being able to answer the following question: how can we support or justify
the certainty of our thoughts? Let me explain. As of the 1890s, when it became
clear that there undeniably remained a pluralism in physical theories, Poincaré, who
himself was a supporter of pluralism, realized that he probably would be unable
to find a solution to the problem of the foundation of an epistemology on any
rigorously coherent basis. For him, ‘a rigorously coherent basis’ meant, for example,
that the scientist and epistemologist have no obligation to build a philosophy that is
systematic and systemizing.

Since the Enlightenment, natural scientists entertained serious suspicions in
relation to the attempts at organization of scientific practice that were proposed by
philosophers. The adjective ‘systematic’ could not be used to understand science,
since the latter continually changes, modifying the content of its theories. As of the
mid-nineteenth century, it seemed increasingly evident that science would always
be subject to evolutionary processes, much like what happens in the world of
living organisms. As is known, Poincaré was not the only one to believe in the
evolution of science, since Boltzmann and Maxwell, along with Ernst Mach and
Wilhelm Ostwald, were also supporters of Charles Darwin’s theory of evolution
(Engels 1995).

In particular, the evolution of physics forced Poincaré to reflect on the effects
of these evolutionary processes. Questions such as ‘could the emergence of new
theories threaten science regarding its ability to understand nature?’ or ‘how could
one argue that the theories and laws of physics remain true if they themselves
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undergo major changes?’ came to constitute the agenda of the scientists mentioned
above. According to Elie During, Poincaré’s position when he faced this agenda can
be expressed in the following words:

On the one hand, [there was the concern] to recognize and draw the consequences from
a constant feature of the history of the sciences: the temporary character of theories, with
evidence provided by the succession of scientific revolutions. On the other hand, but at the
same time, [remained the concern] to recognize the objective value of science, and the fact
that an effective position had [to be] effectively taken on what was real, not only in the
field of technical and applied sciences ( : : : ) but even at the level of theories of physics.
How can one reconcile these two concerns? And how can one understand this “effective
position on what is real”, as supposed by science regarding the world? This is what is at
stake in Science and Hypothesis. A dual strategic concern is echoed: it is about fighting
the spontaneous arrogance and dogmatism of scientists, while at the same time defending
the value of science against the superficial skepticism that was maintained by “common
people”. (During 2001, 11–12, emphasis in the original)

Let us return to the expression ‘a rigorously coherent basis.’ A second possibility
to understand it, if we accept the ideas of René Thom (1987), is to avoid episte-
mological audacity, that is, to refuse to want to answer questions concerning the
nature of reality. In other words, one must resist metaphysical temptations. Further
on in this article, I will show that the apparently inevitable use of characterized
hypotheses, which Poincaré called indifferent hypotheses, weakens the ability
to resist formulation of considerations regarding reality, and even reality that is
investigated by science. In fact, indifferent hypotheses are a legitimate part of
physics, and there is no way to avoid the presence of metaphysics in it. Before
proceeding, allow me to comment quickly on some observations about the strategy
which I will adopt upon trying to reach the goal that I have set.

Interlude

In order to move toward my goal of showing one of the main philosophical tensions
experienced by Poincaré, which, despite his explicit unwillingness, he yielded to
the provocations created by metaphysics, I believe it is important to point out the
way (i.e., the strategy) that I will accomplish the goal of showing that the French
scientist revised his position on ‘first philosophy’. I begin by describing what I will
not do in this work. For example, I do not intend to go through all the philosophical
works of Poincaré. Thus, I recognize that is not my intention to reconstruct his
arguments about the nature, purpose and methods of science thoroughly. The
perspective I adopt, which is consciously daring or even bold, portrays Poincaré as
an ambivalent scientist-philosopher in regards to the relationship between science
and metaphysics. In a few instances in his philosophical texts, Poincaré appears to be
someone who believes in his own ability to give certainty to scientific propositions.
In others, he displays his suspicions about an epistemology which is deliberately
constructed without resorting to metaphysical elements.
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However, the search for coherence carried out by Poincaré leads me to make
but a single comment on the totality of his epistemological production. Upon
looking closely at the set of his reflections, it becomes possible for us to see that
it was organized so that he could defend his positions without feeling the need
to provide detailed arguments. Poincaré’s writings, as already mentioned by some
commentators (During 2001), were published to express views and opinions – his
and those of others – and not to analyze opposing arguments, as currently occurs
in the field of philosophy of science. Poincaré seems wary of long and detailed
arguments as if their size and complexity could raise doubts in the mind of his
reader:

Behind the elegant prose of articles and prefaces that supply the article in Science and
Hypothesis, [there is] no concern for the “popularization” of science, and [there is] no desire
for systematic exposition. Poincaré did not spend much time with the preparation of his
texts and he rarely returned to them. He conceived them as interventions. Rather than to
consolidate a philosophical position, his concepts and arguments served him as support, as
temporary setups for [the realization] of circumstantial operations. (During 2001, 7)

The above quotation leads us in a direction different from that which is usually
followed by the interpreters of his thinking, according to whom Poincaré had
developed a clear, well established philosophical position. That does not seem to us
to be During’s position, and it certainly is not ours. The clarity, candor and accuracy
of Poincaré’s claims hide the lack of precise, detailed arguments. However, although
it is not difficult to verify the presence of these features, it is far from me to conclude
that his theses are incomprehensible, because they are simple.

Poincaré Faced with Worldly Issues

Since I do not intend to construct a comprehensive analysis of Poincaré’s
philosophical thinking, allow me to defend my opinion by resorting to a single
text of the French savant. The article, which I have chosen to discuss in favor of my
interpretation of Poincaré and metaphysics, does not openly and explicitly discuss
the presence of the latter. In the text ‘New Concepts of Matter’ (Poincaré 1933), the
title of his contribution to the volume devoted to materialism, published in 1913,
and therefore after his death, Poincaré avoided making a pronouncement about
burning issues such as: the meaning of human existence, even if they did figure into
the agenda of themes of the book in which his work came out. However, when it
comes to metaphysics, only voluntarism is not enough to stop it. An indication of
the weakness of voluntarism, which is not to be confused with will power, in which
Poincaré is great, is the frequency of the expression “form of thinking” that appears
in his text.

If it seems unquestionable that after the First World War people widely discussed
the role of visions of the world, it is certain that at the time of the publication of the
book about materialism, a year before the war which was scheduled by European
powers and which was meant to be the war to end all wars, people also commented
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about the characteristics by which, for example, human cultures and societies
differed from each other. It is not uncommon to find references to the term ‘vision of
the world’, linking it to philosophical positions close to relativism and culturalism,
since that would serve to embody our understanding of what the world is.

Attempts at explanation – even scientific one – would occur inside the visions of
the world. It starts with a distinction, which is unsurpassable for many, between the
world and the way we understand it. There would be no possibility of understanding
the world without resorting to a vision or image, i.e., without resorting to elements,
which are often freely chosen by the scientists themselves or even by lay people, that
is, by common people, that prove necessary to make science itself real and effective.
One example is the regularity of behavior attributed to natural phenomena. As with
other publications by Poincaré, in his text on the conception of matter, we found
no reflection on causality, determinism and unity of nature, which are traditional,
metaphysical issues that could be analyzed in the light of science.

In the text that was chosen, Poincaré does not seem interested in taking a stand on
whether science is materialistic or not, nor whether it would necessarily lead us to
accept materialism. His concern is to show how science evolves. Therefore, he does
not answer the question of whether science is materialistic or not since he believed
that this does not have a precise meaning, which prevents the formulation of a
satisfactory response. Poincaré’s problem seems to lie in his inability to understand
the meaning of the word ‘materialism’. This is a misleading concept. Nonetheless,
and as if not to disappoint his readers, most of which were probably religious
practitioners, Poincaré said that not all scientists are materialists, since science does
not control their lives, at least not the totality of their lives (Rollet 1996). In other
words, science does not reach the level of values that are responsible for decisions
regarding how one should live.

As previously stated, the article ‘New Concepts of Matter’ is intended to provide
arguments in favor of a certain conception of the evolution of science, particularly
physics. Throughout the nineteenth century, and having as motivation the most
important transformations which occurred in the scientific disciplines, there was
a widespread need to show that science, even as it was going through processes of
improvement and replacement of theories and models, could continue to supply the
goal of understanding reality. In Poincaré’s viewpoint, this claim can be expressed
as if he did not want to deny the effective possibility of attributing truth value to
scientific laws and theories. He seems to hold that visions of the world are the basis
upon which science builds theories about objects and phenomena, which in turn
are known to exist in relationships that are found in theories. Those relationships
are more important than the actual objects and phenomena that supposedly exist in
nature, and in fact, the ‘true object’ that is recognizable by science is formed by
these relationships. Poincaré’s position is sometimes understood as being in favor
of realism of a structural type (During 2001).

In the article of 1913, Poincaré states that history moves like a pendulum. On
certain occasions, history nears the atomistic position, while after a period of time,
and whether it is short or long does not matter, it approaches the opposite position,
advocated by supporters of continuity. Without telling us why, at this moment
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Poincaré takes a bold step by asserting that this pendulum cannot be avoided, “ : : :
science is doomed to oscillate constantly between atomism and continuity, between
the mechanism and dynamism and, conversely, [even] these oscillations will never
stop” (Poincaré 1933).

The impossibility of imposing an end to these oscillations is explained by the
French mathematician as follows:

This struggle [between the antagonistic positions mentioned above] will last as long as
science does, since it is due to the opposition of two irreconcilable needs of the human spirit,
of which the latter could not break away without ceasing to exist. [These irreconcilable
requirements are:] that of understanding, and we can only comprehend that which is finite,
and that of to seeing and we can only see extension, which is infinite. (Poincaré 1933, 50)

The characterization given by Poincaré to the process of development of human
knowledge suggests that the need for resorting to visions of the world – which is
also inevitable and permanent – stems from a characteristic of the latter, namely,
its weakness, that is, in its inherent inability to comprehend totality. In that which
concerns him, weakness is not only permanent, but it is also constitutive, originating
from the fact that the human spirit observes objects from a viewpoint that is
external to him. There is always an insuperable distance between the spirit (or the
subject) and the object. In other words, it is never possible to reach a situation
whereby it would be feasible to have a metaphysical stillness achieved through
the determination of a bridge built between the spirit and the object; the spirit and
the object must never be confused or fusioned. Furthermore, for Poincaré, dualism,
which is one of the hallmarks of Modern Thought, is inevitable.

Realism According to Poincaré

Realism, a philosophical position that Poincaré does not forego, is directly con-
nected to the objectivity of science. One might even think that realism and
objectivity may blend into one. It seems to me that it may still be possible to show
the presence of continuity between the different branches of science. Poincaré never
forgot a lesson he learned in his own time: that science, with a considerable and
seemingly unpredictable frequency, can be revised. In spite of constantly undergoing
revisions, science does not need to open up to its capacity to describe reality.
Therefore, Poincaré saw himself as being obliged to show how these revisions do
not prevent the recognition, expressed through theories and laws, that reality is
intelligible and understandable. How then can one reconcile these two apparently
irreconcilable demands between the ‘fact’ that science has a (very busy) history and
its objective value as perceived in its ability to say things about reality? The key
to answering this question lies in the belief, which was never abandoned by the
French scientist, that reality is displayed in the invariable relationships that science
formulates from observations of natural phenomena. Whether in physics, or in
geometry, the ‘real’ objects of science are constituted by relationships, which remain
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invariable in a certain group of transformations. For Poincaré, this invariability is the
most faithful characteristic of scientific objectivity (Zahar 2001).

Evolution and transformation should not prevent the formulation of a unified
conception of science; hence Poincaré’s concern about finding a solution to the
above question can ensure continuity between theories. This continuity between
two theories is not the result of the analysis of objects of a certain type, nor of the
particular nature of a process that exists in nature, but rather of the logical forms
of the structures that underlie their physical content. The analysis of natural objects
and processes does not absolutely supply us with what theories talk about, which
nonetheless does not prevent them from being considered true.

It can be stated that Poincaré was a skeptic with regard to the physical content
of theories; but regarding structures, he was a realist. When he was led to try to
determine his position, Poincaré was content to say that a scientific theory is, at
best, likely to correctly represent certain structures of reality, without ever being
able to say what these structures are. Thus, at the epistemological level, he took a
pessimistic position.

Poincaré maintained that there were no hypotheses about nature – here he refers
to essences – of things, but only about the relationships between these things. With
regard to the ontologies retained by mechanical models, and the nature of the entities
and processes postulated by both of them (ontology and nature), they are topics
to be decided on conventional levels. They are called indifferent hypotheses that
are related to entities and processes, of which one cannot have direct experience.
The concept of Poincaré’s theory of physics can be understood as being structural.
His physics was structural physics. According to him, structures are linked to the
notion of a group, and the latter is characterized by a set of operations governed
by general properties of combination (associativity, reversibility, etc.). In short,
Poincaré’s realism is supported by the existence of mathematical relations, which
remain unchanged even if the phenomena described may differ amongst themselves.

Dangerous, but Necessary Hypotheses

Poincaré distinguished at least three types of hypotheses in physics (Poincaré 1933).
However, as noted above, his attention was particularly focused on indifferent
hypotheses, since they generally consisted of assertions concerning the structure
of matter. The adjective ‘indifferent’ which is used by Poincaré to underline this
kind of hypotheses, although it may be comfortable regarding the construction and
understanding of a specific theory, exerts no influence on the scientific value of this
same theory, whose laws are based on differential equations, which are responsible
for its structure (Poincaré 1933).

If at several times Poincaré is direct and very economical in the use of the
words used to express his thoughts, situations arise in which he is obliged to pursue
the discursive formulations necessary to avoid the presence of metaphysics. The
latter means, in the case which interests us here, the formulation of speculative
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thoughts and theories about reality, its structure and its modes of operation and
organization. Even while believing it is almost impossible to end metaphysical
discussions, Poincaré believed it would be useful to discuss the nature and function
of the constituent elements of any theory of physics, and even more so when those
elements could be used as a gateway for metaphysics to be mixed with science . In
particular, Poincaré believed that the most favorable elements for the existence of
such a mixture would be hypotheses. His distrust should not be seen as meaning
the acceptance of the positivist attitude in science. Indeed, Poincaré tried to avoid
“ontological boldness”: “ : : : Poincaré’s epistemology is, in fact, a persistent and
persevering reduction of scientific hypotheses to pure and simple conventions”
(Daston and Galison 2007).

Like virtually all scientists after Kant, Poincaré thought that science could never
know things as they are, that is, it is within the domain of essences they would
be found, once and for all, forbidden to scientific practice. In the case of science,
the support given to the Kantian thesis can be explained by a deliberate attempt
to avoid metaphysical speculation. Metaphysics would not be helpful in seeking
out solutions to scientific problems. On the contrary, any attempt to resort to
metaphysics would imply the emergence of new problems for which no one could
provide solutions (Giedymin 1982).

Since the prohibition of the use of hypotheses had been formulated by Newton,
they were seen – mainly by positivists, empiricists and inductivists – as suspicious
and dangerous, which however was not enough to keep them from being used.
Hypotheses seemed to be indispensable, and their presence a necessity. Yet Poincaré
believed it to be possible to control the use of hypotheses if the reason for their need
was understood. An intermediate step, to be carried out so that the understanding
of the necessity of using hypotheses could be achieved, was the recognition of
different types of hypotheses that were frequent in physics. Some hypotheses could
be subjected to empirical testing. In this case, they were called conceptive truths.
A second type performed the function of fixing one’s thinking, clearing up the
logical schema of a theory, just like its internal structure. Here, the role played
by hypotheses is didactic. Finally, a third type of hypotheses is called apparent
hypotheses. They are apparent because they can be reduced to definitions or to
conventions in disguise. The strength of such hypotheses is due to their ability to
accurately check mathematics and science by employing the latter. In Poincaré’s
thinking, these hypotheses play a key role, since they are freely created by the human
spirit (Sanzo 1996). It must be noted that such conventions are imposed on science
but not on nature. Any attempt to impose them on nature is to be seen as a remark
in favor of metaphysics, and this is done by the imposition that natural phenomena
may follow the rules of human thinking.

However, stating that these hypotheses are conventions does not mean that they
are arbitrary, at least not totally and absolutely. Experiments can serve to formulate
such hypotheses, since it is useful to show us the easy way in its formulation.
Although it may sound ambiguous, and perhaps even contradictory, the rigor of
the sciences is due to the presence of apparent hypotheses that are created by
scientists, which makes the conscious effort of scientists responsible for accuracy.
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Being aware, accuracy is the result of a decision, making the spirit of the scientist
more acute during the formulation of scientific theories.

As it is the result of a decision, the control of hypotheses comes to be associated
with voluntarism. How can one ensure that voluntarism is enough to prevent the
proliferation of hypotheses, thus jeopardizing the accuracy of scientific theories?
That is, how can one trust the common sense of scientists? It became important
to formulate a regulator criterion to prevent the proliferation of hypotheses, and
it should ideally be economical and easy to use it. Poincaré was concerned with
the formulation of a criterion that would meet this need. His criterion was mainly
quantitative, and his preference tended to be for those theories that used the fewest
possible assumptions. For example, Poincaré preferred energetism over atomic
theory, because the former no longer required the use of atoms, even as fiction.

At the end of the nineteenth century, the issue regarding the reality of atoms was
not an issue that really worried Poincaré. His attention was focused on knowing
whether the atomic hypothesis had an unavoidable role in the construction of
theories of physics such as thermodynamics. The answer to this problem would
be found through experiments, since they are the only source of truth for science.

Stating that hypotheses are conventions does not mean they all are admissible.
Once again, use and excessive belief in the “powers” of the hypotheses are sources
of serious problems for scientists. To avoid excessive liberality, Poincaré sought
to assess the degree of admissibility of a hypothesis by means of the resources of
fecundity and simplicity.

As shown in the discussion with E. Le Roy, Poincaré did not accept easily the
conventionalist label, although that qualification is not so unbefitting for him (Sanzo
1996). His discomfort was not so much due to the label, but rather to the confusion
that was often established between conventionalism, nominalism, and skepticism.
Being comfortable is not the same as being arbitrary. In order to establish this
distinction between convenience and arbitrariness, Poincaré analyzed the nature of
truth in physics and the truth found in mathematics. They are two types of criterion
of truth. Mathematics can tell us nothing about reality. Its role in physics arises
during the work of organizing the theories and laws of the latter.

In order to clarify his viewpoints about the differences between physics and
mathematics, Poincaré compared the first to a library. The collections of books that
are classified and organized in the halls of libraries are substitutes for the laws and
theories of physics, i.e., collections of books and magazines are substitutes for the
latter. Experimental physics is the only field of science that can enrich and enhance
a library’s catalog, as it discovers new natural facts. On the other hand, the goal
of mathematical physics is to organize the library’s catalog, it is up to mathematical
physics to organize the facts “collected” by experimental physics. This arrangement,
or organization, provides no new information to librarians. The library does not
become richer or more complete if its catalog is better designed. No collection is
found in it as though it resulted from a donation provided by mathematical physics.
The latter can help the reader to find more easily the book he seeks. By pointing
things out for librarians and indicating gaps in their collections, mathematical
physics suggests the performing of new experiments, which may eventually increase
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the knowledge of phenomena that occur in nature. In other words, we can say that
mathematical physics contributes to the spread of scientific laws in order to increase
and improve the efficiency of science.

Every generalization is a hypothesis. This is enough to show the relevance that
hypotheses have for science. Every hypothesis goes further than that; it states more
than what is found in the experiments that were performed. Strictly speaking,
a hypothesis cannot avoid going beyond them, because from its constitution a
statement is to be made, for which today – or even forever – empirical evidence is not
yet available. In order to avoid the “excesses” present in hypotheses, it is necessary
and compulsory to submit them to the demands of empirical verification. The
abandonment of hypotheses, which are not sustained by facts, prevents speculation
and dogmatism, as it helps create a barrier against metaphysics.

Mathematical physics plays an important role in the exact formulation of
hypotheses, which in a considerable number of situations, are tacit and unconscious.
The requirement of conceptual precision, which is to be obeyed in the formulation of
hypotheses, obligates scientists to formulate the exact content of their hypothetical
statements. But why does generalization usually take a mathematical form? This
is due to the fact that an observable phenomenon consists of the superposition
of a large number of elementary phenomena, which are similar to each other.
Mathematics allows scientists to combine something similar with something else
that is similar. Their goal is to find the result of a combination, taken as a whole,
without having to rebuild it part by part.

The mathematical physicist recognizes the homogeneity of a physical object
because it has an admirable degree of symmetry. Indeed, mathematical symmetry
enables physicists to conceptualize perceived analogies between different phenom-
ena; this was the case of Maxwell, who, according to Poincaré, had a deep intuition
to find symmetries. The Scottish physicist, according to his continental colleague,
always used his intuition to find the mathematical analogies between optics,
magnetism and electricity to formulate his own version of electromagnetic theory.
The requirement of symmetry between the fields of physics allowed Maxwell to
create and to find physical analogies. The hypotheses imposed by symmetry are the
common basis of all theories of mathematical physics. This should make it possible
to have knowledge of the hidden harmony of things, or to find the symmetries that
lie behind phenomena.

Indifferent hypotheses receive this designation because they do not change
anything in a theory. One of Poincaré’s examples was mathematical analysis, which
can be stated hypothetically, at the very beginning, that matter is continuous or
discrete. Regardless of the position adopted, it does not change the method of
application of infinitesimal calculus. These indifferent hypotheses would not be
dangerous, as long as it were possible to know explicitly that they are present.
They may even be useful, whether as an artifice of calculation or to support
understanding through the use of concrete images. There is therefore no reason
to suspect indifferent hypothesis before proceeding to analyze their content and
wording. In short, the recognition of their hypothetical character is not enough to
ban them from the scientific scene.
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Conclusion

According to Poincaré, one cannot obtain information about an interesting exper-
iment if it does not go through a process of generalization. Bits of information
that are not connected to each other have no interest whatsoever. The element that
puts the information together is a hypothesis which, like the bricks that form a
house, constitutes the whole of the experiment. Hypotheses are indispensable to
science. The verification provided by experiments is insufficient to allow for safe
and definitive control over the hypotheses; yet control is necessary to prevent or
decrease speculation in science. Actually, it is impossible to reduce to zero the
level of speculation in science, even if it is due to the unavoidable presence of
tacit and unconscious hypotheses in science. These often are not even recognized
as hypotheses, which make them particularly dangerous. Critical analysis, mathe-
matical physics and experiments can help ward off metaphysics, but not enough to
make it disappear once and for all.

Against expectations, and fueled mainly by empiricists and positivists, general-
ization and unity in science are not obtained by means of empirical facts or ideas
that are empirically verified, whether by generalization or by unity, both are based
on hypotheses that are freely formulated by scientists. These hypotheses can be
modified in a process that is infinite and endless.

It is an odd conclusion, since the pace of science therefore seemed to be dictated
by metaphysics and not by experiments or theory. However, one thing seems certain,
and even though this conclusion has been obtained from an analysis of Poincaré’s
own thinking, he himself would never accept it. Accepting it, according to him,
would mean denying the possibility of practicing science.
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Poincaré in Göttingen

Reinhard Kahle

Abstract In this paper we discuss the relation between Henri Poincaré and the
Göttingen mathematician David Hilbert, in particular, in connection with Poincaré’s
visit to Göttingen in 1909.

Introduction

Henri Poincaré (1854–1912) was one of the foremost mathematicians in the
world, with an extremely broad range of scientific activities, including pure and
applied mathematics, mathematical physics, and astronomy.1 From his extensive
correspondence,2 one can see that Poincaré was in contact with essentially the entire
mathematical world of his times, and this included, of course, the two mathematical
centers of Germany, Berlin and Göttingen. After Gauß, Göttingen remained a leader
in mathematics with mathematicians like Dirichlet and Riemann; however, due
to the organisational talents of Felix Klein, Göttingen was able to open, step by
step, more professorships for Mathematics. The appointment of David Hilbert in
1895 turned out to be the luckiest one, as Hilbert soon reached the international
mathematical forefront, alongside Poincaré.

In this paper, we retrace some influence Poincaré had on Hilbert’s work on
the foundations in mathematics, in particular by a talk Poincaré gave in 1909
in Göttingen. Regarding Poincaré’s relations to the Göttingen mathematicians, it

1For a general view on Poincaré, his life and his work see the two recent books Verhulst 2012 and
Gray 2013.
2See the more than 2,000 letters documented and partly digitalized by the Archives Henri Poincaré
in Nancy at http://www.univ-nancy2.fr/poincare/chp/hpcoalpha.xml.
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is worth mentioning that Poincaré’s work was, initially, closer to Klein’s.3 They
started a correspondence in June 1881,4 and although Klein left the field in 1882,5 he
kept a friendly relationship with Poincaré as one can see from his correspondence.
Poincaré travelled to Göttingen to visit Klein when he was on a trip to Halle
to visit Cantor in May 1895.6 But next to two letters to Klein,7 we have no
further information about this visit to Göttingen. Klein also tried, in 1902, to invite
Poincaré to the meeting of the International Astronomical Society which took place
in Göttingen; however, the invitation was unsuccessful.8 When Poincaré was in
Göttingen in 1909, the Hilbert family “gave a large reception for the Frenchman
and for Klein whose sixtieth birthday fell during the visit” (Reid 1970, 120); but
we have no further information about his contact with Klein by that time, and all
correspondence concerning the visit is already in the hands of Hilbert.

Poincaré and Hilbert

First Meeting

Hilbert met Poincaré for the first time when visiting Paris in 1886. His first
impressions are documented in letters to Klein:

3See Klein’s exposition in the closing chapter on automorphic functions in Klein 1927, Vol. 1
(English translation in Klein 1979). He opens the report thus: “It is now time for me to tell of the
appearance of H. Poincaré and of the personal relations which developed between us and which
laid the foundations for the further development of the whole subject” (Klein 1979, 355).
4By this time, Klein was still in Leipzig; he moved to Göttingen in 1886. Poincaré was already
since 1884, i.e., before the arrival of Klein, corresponding member of the (Hanover) Royal Society
of Sciences in Göttingen; he became foreign member in 1892.
5It is a known story that Klein’s mathematical work stopped after he collapsed during some kind
of competition with Poincaré; here his own words (Klein 1979, 360):

In fact, I was again able to precede Poincaré by a little, for my offprints were sent off at
the end of November 1882; while the first issue of the Acta, which contains Poincaré’s first
paper, appeared at the beginning of December 1882 [ : : : ]

The price I had to pay for my work was extraordinarily high –my health completely
collapsed. In the next years I had to take long leaves and to renounce all productive activity.
[ : : : ] My real productive activity in theoretical mathematics parished in 1882.

Thus Poincaré had a free field and, until 1884, went on to publish his five great papers on
the new functions. [ : : : ]

6The visit to Halle is documented in a letter from Cantor to Poincaré from 15.12.1895 (Poincaré
1986; Cantor 1991). See also Décaillot 2011, 30.
7Undated letters from Poincaré to Klein (Poincaré 1989, XXVII and XXVIII).
8See the letter of Klein to Poincaré from 14.1.1902 (Poincaré 1989, XXXII) and the one from Karl
Schwarzschild to Poincaré from 22.4.1902 (Poincaré 1989, footnote 120, 138; a scan of the letter
is available at the webpage mentioned in footnote 2) and the report of the meeting (Kreutz 1902).
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He lectures very clearly and to my way of thinking very understandably although as a
French student here remarks, a little bit too fast. He gives the impression of being very
youthful and nervous. Even after our introduction, he does not seem to be very friendly;
but I am inclined to attribute this to his apparent shyness, which we have not yet been in a
position to overcome because of our lack of linguistic ability. (Reid 1970, 23)

And:

But about Poincaré I can only say the same –that he seems reserved because of shyness, but
that with skillful treatment he would open up. (Reid 1970, 23)

The International Congresses of Mathematicians

As far as we know, Poincaré and Hilbert met next only at the International Congress
of Mathematicians (ICM) in 1900 in Paris. At this congress Hilbert gave his
famous “Mathematische Probleme” speech, and although there is no report on direct
response or interaction with Poincaré, there is a letter from Poincaré to Hilbert where
he granted him 15 min more for the talk.9 Reid describes the impact of the talk as
follows:

His rapidly growing fame –exceeded now only by that of Poincaré– promised that a
mathematician could make a reputation for himself by solving one of the Paris problems.
(Reid 1970, 84)

In fact, the International Congresses of Mathematicians quickly became the most,
prominent platform from which to address the entire mathematical world. For the
first congress in 1897 in Zürich Poincaré prepared an opening address, “an informal
talk [ : : : ] on the way in which pure analysis and mathematical physics serve each
other” (Reid 1970, 55). In fact, Poincaré did not attend the meeting because of the
dead of his mother, but the paper was read by Jérôme Franel (Verhulst 12, 45f). Also
Hilbert did not attend the congress in Zürich, but he was impressed by Poincaré’s
paper (Reid 1970, 55). When he prepared his Paris talk, he “wanted to reply to
Poincaré with a defense of mathematics for its own sake, but he also had another

9Cf. http://www.univ-nancy2.fr/poincare/chp/text/hilbert05.xml, Poincaré a Hilbert, Ca. 1899-
début 1900:

Mon cher Collègue,

Nous serons très heureux d’entendre votre communication. Nous vous accordons volontiers
trois quarts d’heure; seulement ne le racontez pas, tout le monde ferait la même demande.
Pour ce que vient de vous-plus on aura, plus on sera content.

Votre bien dévoué,

Poincaré.

(Cod. Ms. D. Hilbert 312, Handschriftenabteilung, Niedersächsische Staats- und Universitätsbi-
bliothek. A transcription and commentary appeared in Poincaré 1986, 208).

http://www.univ-nancy2.fr/poincare/chp/text/hilbert05.xml
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idea” (Reid 1970, 69). Asking Minkowski for his opinion, he was in favor of this
other idea:

I have re-read Poincaré’s lecture : : : and I find that all his statements are expressed in such a
mild form that one cannot take exceptions to them [ : : : ] Most alluring would be the attempt
at a look into the future and a listing of the problems on which mathematicians should try
themselves during the coming century. With such a subject you could have people talking
about your lecture decades later. (Reid 1970, 69)

In 1904 the ICM took place in Heidelberg. Hilbert delivered a talk (Hilbert
1905b) which contained the first outline of what later –in the 1920s– became
Hilbert’s programme. Poincaré did not attend the congress in Heidelberg, but he
discussed Hilbert’s talk already in 1905 (Poincaré 1905).10 And in 1908 in Rome,
he presented a plenary lecture which can be considered as a response to Hilbert.11

One gets the impression that two of the world’s leading mathematicians used the
ICMs as a communication platform.

The Bolyai Prizes

In 1905 the Hungarian Academy of Science launched a new prize for mathemati-
cians, in honor of Janos and Farkas Bolyai (the famous founding son-father duo
who initially investigated non-Euclidean geometry) worth the impressive amount of
10,000 gold crowns. The committee of the first edition of this prize consisted of
Julius Kőnig, Gustav Rados, Gaston Darboux, and Felix Klein. As Reid writes:

[ : : : ] but, even before the committee met, it was clear to everyone in the mathematical world
that the choice would be between two men. The final vote was unanimous. The Bolyai Prize
would go to Henri Poincaré, [ : : : ] but the committee also voted unanimously that, as a mark
of their high respect for David Hilbert, the report which they made to the Academy on their
choice would treat his mathematical work to the same extent that it treated Poincaré’s. ‘No
cash, but honor’, Klein wrote Hilbert regretfully from Budapest. (Reid 1970, 106)

In the published report of Rados (1906) one finds an appreciation of Hilbert’s
work alongside Poincaré’s, even though the latter took the prize. It should not come
to a surprise, then, that in the second edition of the Bolyai Prize, in 1910, the
recipient was David Hilbert. This time, Poincaré was in the committee (together
with Julius Kőnig, Gustav Rados and Gösta Mittag-Leffler) and he also wrote
the report on Hilbert’s work (Poincaré 1912). However, the prize was awarded in
absentia and therefore Poincaré and Hilbert did not meet at this opportunity.12

10In this context, it is worth mentioning that Poincaré reviewed in 1902 (Poincaré 1902), Hilbert’s
famous book Grundlagen der Geometrie which acquainted Poincaré with Hilbert’s axiomatic
method.
11Poincaré was present in Rome, but due to his poor health during the conference, the talk was, in
fact, read by Gaston Darboux, cf. Gray 1991 and Verhulst 2012, 50.
12More information about the Bolyai prize ––which vanished with World War I, and which
was revived only in 2000–– one may find at the site of the Hungarian Academy of Science,
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The 1909 Visit of Poincaré to Göttingen

Paul Wolfskehl (1856–1906), a Mathematician and son of a rich banker in Darm-
stadt, bequeathed an important amount to the first person to prove Fermat’s Last
Theorem. This is the famous Wolfskehl Prize.13 The money was deposited with
the Royal Academy of Science in Göttingen who was entitled to use the interest
to invite mathematicians to Göttingen. As chairman of the respective committee, it
was Hilbert who sent the first invitation, in 1908, out to Henri Poincaré.14

It is worth noting that most of the survived correspondence between Poincaré and
Hilbert (7 of 10 letters) is concerned with the organization of this visit. We reprint in
Fig. 1 the letter of Hilbert to Poincaré from February 25, 1909, which gives a good
illustration of the style of the correspondence. It also indicates that the topics of the
last two talks of Poincaré were chosen on request of Hilbert.15

Poincaré’s Talks in Göttingen

During his visit, Poincaré gave six talks which were published in 1910 (Poincaré
1910).16 The first five talks were given in German, the last in French, and their titles
read (in English):

1. On Fredholm’s equations
2. Application of the theory of integral equations for the flood movement of the sea
3. Applications of integral equations for Hertz waves

http://www.mathe.bme.hu/akademia/jbimp.html. It contains a link to an interesting historical note
(cf. Szénássy) where one reads: “I also mention that Poincaré and Hilbert did not receive the award
in Budapest: instead, it was delivered to them by official channels. As far as I know, Hilbert had
never been to Budapest; [ : : : ]”.
13It was awarded, in 1997 just 10 years before a 100 year limit expired, to Andrew Wiles. The
amount was no longer comparable with the original value but still around 75,000 DM (German
Marks). For more about the history of Paul Wolfskehl and the Wolfskehl Prize, see Barner 1997.
In addition to the story that the money of the Wolfskehl donation melted during the German
hyperinflation and two monetary reforms, we learned once (without being able to recall the source)
that the Wolfskehl commission was forced to invest their money in German war bonds, which, of
course, were completely worthless after the war. However, infracting the order some money was
kept aside.
14About the following years we know from Reid (1970, 1351), that in 1910 H. A. Lorentz was
invited; in 1911 no lecturer was invited but Zermelo received a prize of 5,000 Marks; in 1912
Sommerfeld was invited; and in 1913 a conference on the Kinetic Theory of Matter was organized;
finally, in 1914 Haar and Debye were invited as guest professors. Hilbert also planned to invite
Bertrand Russell, whose visit due to World War I never materialized (Sieg 1999, Appendix B).
15We thank the Archives Henri Poincaré, UMR 7117 CNRS – Nancy-Université, Université Nancy
2, France (Prof. Gerhard Heinzmann) for the permission of the reprint.
16A scanned version of the chapters of the book is available under http://projecteuclid.org/euclid.
chmm/1263313049, a text version under http://www.univ-nancy2.fr/poincare/bhp/hp1910sv.xml.

http://www.mathe.bme.hu/akademia/jbimp.html
http://projecteuclid.org/euclid.chmm/1263313049
http://projecteuclid.org/euclid.chmm/1263313049
http://www.univ-nancy2.fr/poincare/bhp/hp1910sv.xml
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Göttingen, February 25, 1909

Highly honored Mr. Colleague,

As I already took the liberty to write you, we
plan to consult for the Göttingen “Poincaré

engnittöG-nonemos,82–22lirpA,”keew
mathematicians. Would it maybe possible
for you, to discuss a topic from mathe-
matical physics or astronomy and one of
logico-philosophical character? In this case,
we could also invite the respective Göttingen
colleagues to your lectures.
[A paragraph on the mathematical society in
Göttingen]
[A paragraph on an event for Gauß’s birth-
day on April 30th]
[A paragraph on the death of Minkowski]
Best regards
Yours respectfully
Hilbert

Fig. 1 Hilbert’s letter to Poincaré from February 25, 1909
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4. On the reduction of Abel integral and the theory of Fuchs functions
5. On transfinite numbers
6. The new mechanics

The first four concern integral equations, the last is about relativity theory. In
the following we will focus on the fifth one, which is of “logico-philosophical
character”.17 Before, let us recall a report of Reid of a rather cool reception of
Poincaré in Göttingen:

Socially and mathematically, the situation was delicate. The breakdown which had changed
the entire course of Klein’s career had been brought about by his competition with the
young Poincaré. Now the leading mathematicians in the world were Hilbert and Poincaré,
but the Bolyai Prize had gone to Poincaré. To many people in Göttingen, the Frenchman’s
presence was an unwelcome reminder that the mathematical world was not a sphere, with
its center at Göttingen, but an ellipsoid.

Poincaré’s choice of subjects for his lectures did not help the situations. He decided to speak
on integral equations and relativity theory, both areas in which he had made substantial
contributions, and he probably chose these topics because he knew that the Göttingen
mathematicians were interested in them. But a foreign mathematician who was present
was very surprised at the coolness with which the famous guest was received. ‘We were
surprised’, one of the Göttingen docents explained, ‘that Poincaré would come and talk to
us about integral equations!’ (Reid 1970, 120)

The cool reception is also discussed in a recent paper by Barrow-Green (2011,
41ff) providing the following evidence from a letter of Oswald Veblen to Georg
Birkhoff, Berlin 25.12.1913:

[Hilbert] also struck me as being both urbane and magnanimous, although the stories one
hears do not bear this out –for example, the stories told from the German point of view
about Poincaré’s visit to Göttingen put Hilbert and the others in rather a bad light.

Reid notes, however, that Hilbert maintained a friendly attitude towards Poincaré
(for instance, by addressing him as “My Dear Friend”). One may ask whether the
mentioned “coolness” was only a reaction of some followers who saw in Poincaré a
rival of their admired master Hilbert, while the masters themselves had no problems
at all. The only “first hand report” we found in Reid’s Courant biography (Reid
1976) where she writes:

Hilbert offered his own assistant to [Poincaré], and as a result Courant had the opportunity
to observe together the two men who were unanimously acknowledged as the greatest
mathematicians in the world at that time. They treated each other with a great deal of
respect, he told me, but there was no spark between them like that between Hilbert and
Minkowski.

Integral equations were one of the central research topics of Hilbert and stood
at the beginning of his activity in Physics (Reid 1970, Chap. XVI and p. 126f). In
1912, he published the important monograph Grundzüge einer allgemeinen Theorie
der linearen Integralgleichungen (Hilbert 1912), which consisted of a compilation
of papers published between 1904 and 1910 in the Nachrichten der K. Gesellschaft

17For more information about all talks, see Gray 2013, 416 ff.
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der Wissenschaften zu Göttingen. In the final version we do not find any reference
to Poincaré’s talks in 1909 in Göttingen (but Poincaré is of course, mentioned in
connection with other references).18 In lack of other evidence we cannot judge the
impact of Poincaré’s talks on integral equations; we have, however, a lot of evidence
concerning the impact of his fifth talk on transfinite numbers.

The Talk on Transfinite Numbers

Poincaré’s talk on transfinite numbers in Göttingen, delivered on April 27, 1909,
was not particularly original; one may consider it as a synopsis of earlier papers,
in particular the three on Mathematics and Logic (Poincaré 1905, 1906a, b), which
also found their way into the highly influential book Science and Method published
in 1908 (Poincaré 1908).19

The Göttingen talk start off with a discussion of Richard’s paradox, moves on
with the proposal of predicative definitions, and finishes with a rather harsh criticism
of set theory, addressing explicitly Zermelo’s well-ordering theorem.

In the following, we reprint the English translation by William Ewald (1996,
22.G).20

On transfinite numbers

[1] Gentlemen! I wish to speak to you today about the concept of transfinite cardinal
number; in particular, I want to speak first of an apparent contradiction that this concept
contains. About that I say the following in advance: in my view an object is only thinkable
when it can be defined with a finite number of words. An object that is in this sense finitely
definable, I shall for brevity call simply ‘definable’. Accordingly, an undefinable object is
also unthinkable. Similarly, I shall call a law ‘expressible’ if it can be expressed in a finite
number of words.

[2] Now, Richard has shown that the totality of definable objects is denumerable, that is,
that the cardinal number of this totality is @0. The proof is quite simple: if ˛ is the number
of words in the dictionary, then with n words one can define at most ˛n objects. If one now
lets n grow beyond all limits, one sees that one never gets beyond a denumerable totality.
The power of the set of thinkable objects would then be @0. Schoenflies has objected against
this proof that one can define several objects, indeed even infinitely many, with a single
definition. As an example he cites the definition of constant functions, of which there are
obviously infinitely many. But this objection is inadmissible, because by such definitions it
is not at all the individual ojects that are defined, but their totality, which is a single object:
in our example the set of constant functions. The objection of Shoenflies is therefore not
conclusive.

18Here, and at many other places, one may ask how good Hilbert was in mentioning work of others.
In his lecture notes he was usually sparingly in the bibliography and one gets the impression that
he was not too much concerned with references.
19These papers are reprinted in English translations, together with indications of the changes made
in the book edition in Ewald 1996, 22.D-F.
20We are indebted to William B. Ewald for the permission to reprint his translation. The paragraph
numbers are additions of the translation.
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[3] Now, as is well known, Cantor proved that the continuum is not denumerable; this con-
tradicts the proof of Richard. The question therefore arises which of the two proofs is cor-
rect. I maintain that they are both correct and the contradiction only apparent. To support this
contention I shall give a new proof of the Cantorian theorem: we therefore assume that an
interval AB is given, and a law by which every point of the interval is correlated with a whole
number. For the sake of simplicity we shall designate points by the numbers correlated to
them. We now divide our interval by two arbitrarily chosen points A1 and A2 into three parts,
which we designate as sub-intervals of level 1; these again we divide into three parts and
obtain sub-intervals of level 2, we imagine this process continued into the infinite, whereby
the length of the sub-intervals decreases beneath every bound. Now point 1 belongs to one
or, if it coincides with A1 or A2, at most two of the sub-intervals of level1; there is therefore
certainly one to which it does not belong. Here we look for the point with the lowest number,
which now must be at least 2. Among the three sub-intervals of the second level which
belong to the interval of the first level in which we find ourselves, there is again at least
one to which the last-considered point does not belong. We continue the process with this
interval, and so obtain a sequence of intervals which has the following properties: each of
them is contained in all the preceding intervals, and an interval of the nth level contains none
of the points 1 to n � 1. From the first property it follows that there must be at least one point
which is common to them all; but from the second property it follows that the number of this
point must be greater than any finite number –that is, no number can be correlated with it.

[4] Now what have we presupposed for this proof? We have presupposed a law that
correlates a whole number to every point of the interval. Then we were able to define
a point to which no whole number is correlated. In this regard the different proofs of
this theorem do not differ. But for that it was necessary that the law first be determinate.
According to Richard, such a law should seemingly have to exist, but Cantor has proved
the opposite. How do we get out of this dilemma? To start, we ask about the meaning of
the word ‘definable’. We take the table of all finite sentences and strike out all those which
define no point. We correlate the remaining sentences with the whole numbers. If we now
undertake the scrutiny of the table anew, it will in general turn out that we must now let
several sentences stand that we had earlier struck out. For earlier the sentences in which
one spoke of the law of correlation itself had no meaning, since the points were not yet
correlated to the whole numbers. These sentences now have a meaning and must remain in
our table. Should we now set up a new law of correlation the same difficulty would repeat
itself, and so no ad inifinitum. But herein lies the solution of the apparent contradiction
between Cantor and Richard. Let M0 be the set of whole numbers, M1, the set of all points
of our interval definable after the first scrutiny of the table of all infinite sentences, G1 the
law of correlation between the two sets. A new set M2 of definable points arises through
this law. But a new law G2 belongs to M1 C M2, through which there arises a new set, M3,
etc. Now, Richard’s proof show that, wherever I break the process off, a law always exists,
while Cantor proves that the process can be continued arbitrarily far. Therefore there exists
no contradiction between the two.

[5] The appearance of contradiction comes from the fact that Richard’s law of correlation
lacks a property which I designate, with an expression borrowed from the English
philosophers, as ‘predicative’. (In Russell, from whom I borrow the word, a definition of
two concepts A and A0 is not predicative if A occurs in the definition of A0 and conversely.)
I understand by this the following: every law of correlation presupposes a determinate
classification. I now call a correlation predicative, if the corresponding classification is
predicative. And I call a classification predicative if it is not changed by the introduction
of new elements. But this is not the case for Richard’s classification; rather the introduction
of the law of correlation alters the division of the sentences into those which have a meaning
and those which have none. What is here meant by the word ‘predicative’ is best illustrated
by an example. If I am to deposit a set of objects into a number of boxes two things can
occur: either the objects already deposited are conclusively in their places, or, when I deposit
a new object, I must always take the others out again (or at any rate some of them). In the first
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case I call the classification predicative, in the second not. Russell has given a good example
of a non-predicative definition: let A be the smallest whole number whose definition requires
more than a hundred German words. A must exist, since one can define only a finite number
of numbers with a hundred words. But the definition which we have just given of this num-
ber contains less than a hundred words. And the number A is thus defined as undefinable.

[6] Now, Zermelo has objected against the rejection of non-predicative definitions that a
great part of mathematics would become invalid as well, for instance, the proof of the
existence of a root of an algebraic equation.

[7] This proof, as is well known, runs as follows:

[8] An Equation F(x) D 0 is given. One now profess that jF(x)j must have a minimum; let
x0 be one of the arguments for which the minimum occurs, so that

jF.x/j � jF .x0/j :
From this it then follows that F(x0) D 0. Now here the definition of F(x0) is not predicative,
for this value depends upon the totality of the values of F(x), to which it itself belongs.

[9] I cannot admit the legitimacy of this objection. One can reshape the proof so that the
non-predicative definition disappears. To this end, I consider the totality of arguments of
the form (m C ni)/p where m, n, and p are whole numbers. Then I can draw the same
conclusions as before, but the value of the argument for which the minimum of jF(x)j
occurs does not in general belong to the arguments considered. In this way we avoid the
circle in the proof. One can demand of every mathematical proof that the definitions, etc.,
occurring therein be predicative; otherwise the proof would not be rigorous.

[10] How do things now stand with the classical proof of the Bernstein theorem? Is it
unobjectionable? The theorem states, as is well known, that if three sets A, B, and C are
given, where A is contained in B and B in C, and if A is equivalent to C, then A must also
be equivalent to B. So here too it is a question of a law of correlation. If the first law of
correlation (between A and C) is predicative, then the proof shows that there must also be a
predicative law of correlation between A and B.

[11] Now, as far as the second transfinite @1 is concerned, I am not entirely convinced that
it exists. One reaches it by considering the totality of ordinal numbers of the power @0; it
is clear that this totality must be of a higher power. But the question arises whether it is
self-contained, and therefore of whether we may speak of its power without contradiction.
There is not in any case an actual infinite.

[12] What, then, are we to think of the famous problem of the continuum? Can one well-
order the points of space? What do we mean thereby? There are two cases possible here:
either one asserts that the law of well-ordering is finitely statable, and then this assertion is
unproven; even Zermelo does not claim to have proved such an assertion. Or we grant the
possibility that the law is not finitely statable. Then I can no longer attach any sense to this
statement; it is for me merely empty words. Here lies the difficulty. And that is indeed the
cause of the conflict over the theorem of Zermelo, a theorem that is nearly a stroke of genius.
This conflict is very peculiar: one side rejects the postulate of choice but holds the proof to
be correct; the other admits the postulate of choice, but does not acknowledge the proof.

[13] However I could speak about this for many more hours without solving the question.
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One may note, that Poincaré did not repeat here his criticism of the alleged
circularity concerning the use of induction in Hilbert’s foundational programme,
which was addressed for instance, quite explicitly, in Poincaré 1906b.21

The Aftermath of the Talk

Poincaré’s talk on transfinite numbers in Göttingen is known for two reasons: its
role in the ambient polemic with Zermelo and its motivation for Chwistek’s turn to
predicativity.

A statement like “There is not in any case an actual infinite”22 is clearly an
offense in the presence of Zermelo, who had just published his axiomatization of
set theory. Of course, it was not the first time that he faced this allegation, and the
discussion with Poincaré was already manifest in several publications. However,
the personal confrontation between the two in Göttingen is a zenith point. The full
discussion is well-documented in the recent Zermelo biography (Ebbinghaus 2007,
§2, in particular pp. 64–67), with explicit reference to the 1909 talk (Ebbinghaus
2007, 110), but there is one particular testimony concerning Zermelo’s reaction.
More than 50 years later, in 1964, Richard Courant reported the following (Courant
1981, 162)23:

I remember once when Henri Poincaré came to Göttingen shortly before his death to give a
number of very interesting talks on different topics; [ : : : ] another was on the foundations of
mathematics. It was a violent attack against Cantorism and against the principles of choice
and theorems such as the one about well-ordering. Zermelo had just proved the fact that
every set can be well-ordered and was sitting near him at his feet. Poincaré wanted to be
polite (he could be devastatingly impolite if he tried to be friendly) and he thundered against
the Cantor attitude and against the trend in mathematics to do something in this direction.
He said, “Even the almost ingenious proof of Mr. Zermelo has to be completely scotched
and thrown out of the window”. Zermelo, who was a very passionate and very strange
fellow, was in despair and fury and at the dinner the same day he would have shot Poincaré
if he had been a little bit more skillful, but he was a clumsy person.

The talk of Poincaré was also attended by the Polish logician Leon Chwistek,
who was in Göttingen at that time. Chwistek took Poincaré’s objections seriously
and started to work on a predicative version of the theory given in Whitehead and
Russell’s Principia Mathematica (Whitehead and Russell 1913). For it, he was
explicitly acknowledged in the second edition of the Principia (Whitehead and
Russell 1927).24 His work, however, was not well received. We should not omit that

21See Sieg 1999, 7.
22The original German reads: “Ein actual Unendliches gibt es jedenfalls nicht”.
23Also Barrow-Green 2011, 41f refers to this quotation, but remarks “Courant’s memory –he was
recalling events that had taken more than fifty years earlier– might not have been entirely reliable”.
24For a detailed discussion of his work in relation to the Principia see Linsky 2011.
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Hilbert had a PhD student, Heinrich Behmann, who wrote between 1914 and 1918
his thesis on the Principia Mahtematica with special attention to the reducibility
axiom (which is essential for impredicativity) (Mancosu 1999). However, we are
not aware that –in contrast to Chwistek– Behmann’s work can be related to
Poincaré.

Here we would like to illustrate a third, less known, result of Poincaré’s
Göttingen talk: its influence on Hilbert’s foundational work.25 It is known that
from the turn of the century on, Hilbert had a particular interest in the foundations
of mathematics. This is evident from the second problem of the famous problem
list presented at the International Congress of Mathematicians in Paris in 1900 –
the consistency of the axioms of arithmetic. Hilbert’s address in 1904 at the
International Congress of Mathematicians in Heidelberg is usually regarded as
the first public sketch of what later became Hilbert’s programme. Following the
“official” historiography, as given for instance by Blumenthal in 1935 in the
Collected Works of Hilbert (Blumenthal 1935; Hilbert 1935), his foundational
research paused, stopping at this point in 1904, until it resumed in 1917.26 However,
a closer inspection shows that Hilbert did not put these matters aside completely.
Indeed, in 1905 he gave a lecture course in Göttingen on Logische Principien des
mathematischen Denkens (Logical principles of the mathematical thinking) (Hilbert
1905a), and he gave further lectures on similar topics in 1910 (Hilbert 1910) and in
1914/15 (Hilbert 1915). In this context, the talk of Poincaré in 1909 left a definite
trace in Hilbert’s work: the official notes of the lecture course in 1905 contain
marginal with explicit references to Poincaré.

In Fig. 2 we reprint page 202 of these lecture notes; they were written by Ernst
Hellinger, but the marginals are clearly in Hilbert’s hand. It is evident that Hilbert
reused these lecture notes.27 They are occasionally commented, but the number of
marginals on the given page is exceptionally high. All three, and one more on the
following page can be related to issues raised in Poincaré’s talk.

The marginals on the side and on bottom of the page are given in Figs. 3 and 4.28

Both remarks are related to the Poincaré’s question “about the meaning of the
word ‘definable’” (§4, above).

25This aspect was, with more emphasize on the paradoxes, already highlighted in Kahle 2011; the
current section reuses, in particular, the marginals of Hilbert in his lecture notes from 1905.
26Addressing Howard Stein, Sieg sees one of the reasons for the postponement of Hilbert’s work
in Proof Theory in Poincaré’s criticism of the potential vicious circle in the approach concerning
induction (Sieg 1999, footnote 15, p. 7). This, however, should not be extended to foundational
work in general.
27For instance, the draft notes for a lecture in 1914/15 contain an explicit reference for them.
28We are indebted to the Mathematical Institute of the University of Göttingen (Prof. Jörg Brüdern)
for the permission to use here copies of the original lecture notes kept in the library of the
Mathematical Institute.
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Fig. 2 Hilbert 1905a, 202

The third marginal takes up, quite literally, Berry’s paradox, as it was given at
the end of §5. In English it reads:

The smallest integer which is not definable by 100 words is a self contradicting concept,
since this number would be defined by these words which are less than 100! not clearly
decidable whether a sequence of words makes sense or not. Arbitrariness of [?]: subjective.

The use of “100 words” as a measure suggests that indeed Hilbert learned Berry’s
paradox from Poincaré’s talk.
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“In one interpretation
the text made sense, in
the other not.”

Fig. 3 Hilbert 1905a, 202, detail

“Now one could say: if the text is not clear, so leave it out[?]: if 2
√
2 is

irrational, write 1; if it is rational, write [?] is today equivocal, but tomorrow
maybe completely clear.”

Fig. 4 Hilbert 1905a, 202, detail

The last marginal given on page 203, mentions Poincaré by name and gives
an interesting although not cogent counterargument to his repeated table scanning
procedure in §4, see Fig. 5.29

Berry’s paradox found its way in several further lectures by Hilbert. This
paradox is of interest because it shows that the mathematical paradoxes are not
just a consequence of transfinite set theory (as it was probably the general feeling
among foundational thinkers at the beginning). Hilbert’s interest in the foundations
of mathematics are, at least in part, motivated by the mathematical paradoxes,
and his lecture notes show a constant struggle with them (Kahle 2006). Even if
there is no further reference to Poincaré’s talk in later publications, we find a
striking reminiscence to it in the second volume of Hilbert and Bernays’s seminal
monograph Grundlagen der Mathematik: as preparation for Gödel’s theorems
Bernays formalizes Richard’s paradox, (Hilbert and Bernays 1939, S. 273ff). From
a modern perspective, the treatment of Richard’s paradox looks quite unmotivated
at this place; but it might have been chosen as it was a challenge given to Hilbert by
Poincaré.

29We follow Ewald in translating “Tafel” by “table” although “blackboard” would be a more
literally translation.
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“The procedure of Poincaré, where he passes
the tables again and again shows clearly the
problems, but contains a contradiction in it-
self. Because the rule according to which one
has to pass the tables once and—with respect
to the executed substitutions—again, is also
written on a table and has therefore a sense
already in the first pass.”
This counterargument looks quite ingenious

and should apply to a table with all finite sen-
tences (as in Poincaré’s presentation). How-
ever, it should be easy to construct a “Berry-
style” analog where one considers only defini-
tions of a certain length which still allow self-
reference to switch the meaningfulness of some
sentences from round to round, while the rule
to pass the board again and again might be
excluded as being too long.
We are not aware of any trace of Hilbert’s

counterargument outside this lecture notes,
and it was apparently never put forward in
a broader discussion.

Fig. 5 Hilbert 1905a, 203, detail
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Poincaré and the Principles of the Calculus

Augusto J. Franco de Oliveira

Abstract Poincaré wrote several papers and sections of books on geometry and
space, less on the continuum, but very little on the basic notions of the infinitesimal
calculus. The 1905 paper “Cournot et les Principes du Calcul Infinitesimal” is one
of the very few places where Poincaré expounds his own views on the subject,
although by way of comment of Cournot’s Traité élémentaire des fonctions : : :
(1841) and Traité de l’enchaînement des idées : : : (1861), which he cites profusely,
and whose ideas in this subject were otherwise neglected by both contemporaries
and modern commentators. In this paper we analyze Poincaré’s paper with two
aims: to characterize briefly his ideas regarding the calculus and, in particular, the
use of actual infinitesimals, and the relation between these findings and his concept
of the continuum. It would seem that Poincaré endorses most if not all of what
Cournot has to say about infinitesimals.

Intuition and the Continuum in Poincaré: Some Background

Infinitesimal calculus relies on the real continuum, so we begin by looking briefly
at Poincaré’s ideas concerning the real continuum.1

Communication presented to the colloquium “Poincaré, philosopher of science: Problems and
perspectives”, FCUL, Lisbon, January 26–27, 2011. A shortened version of this talk was delivered
at the 10th SPIMNS meeting, Univ. Évora, December 11, 2010.
1This is discussed at length, for example, in Folina 1992, especially Chaps. 6 and 9. Also useful
for historical background is Bell 2010.
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As we know, intuition plays a relevant role in Poincaré’s conception of
mathematical proof and in all of his philosophy of mathematics, and also in his
conception of the two main mathematical domains, that of arithmetic (arithmetical
intuition, which gives rise to mathematical induction) and that of geometry
(geometric intuition of continuity). It is with this second sort that we are concerned
here.

Geometric intuition is of a synthetic a priori nature, much in the sense of Kant.
It provides an epistemological foundation for the concept of the real continuum
(in any dimension), which is neither the constructivist continuum (too trivial and
restrictive in order to develop classical analysis) nor the set-theoretic continuum of
Dedekind or Cantor, obtained from below (rationals) by set-theoretic means which
appeal to both objectionable axioms (infinity, choice, power set) and impredicative
definitions.

Poincaré does not accept such notions as that of an arbitrary collection of subsets
of an infinite set like the set of natural numbers. For that matter, even this set as a
whole entity is questionable, since he only admits the potential infinite, and because
of this he is nearer to intuitionism/constructivism. On the other hand, however, he
does not admit the constructivist (or any other, e.g. set-theoretic) construction of the
continuum from below. For him, the classical continuum is a genuine mathematical
domain, a primitive realm we are aware of in virtue of a priori geometric intuition.
It is something which is known intuitively, via the form of experience which
enables us to link our sense experiences and to possess a concept of an enduring
object (so called “outer” experience). The mathematical continuum is the result of
mathematical refinement of this fundamental primitive intuition. In this sense it is
more classical than intuitionistic, but it is not a totality in the usual sense of set
theory.

With regard to the basic notions of the infinitesimal calculus proper, namely the
use of infinitesimals or infinitely small numbers (or variable quantities, or whatever,
see below), let us recall that the process of rigorization (or arithmetization) of the
calculus took place mainly during the latter half of the nineteenth century, but can
be thought as having started earlier in that century with Cauchy and Bolzano. This
process can be regarded as a three-fold process in the foundations of the calculus
which comprises of:

1. the (slow) eradication of actual (numerical) infinitesimals in favor of limits in the
definitions of the basic notions (continuity, derivative, integral);

2. the eradication of intuitive geometrical properties of curves in proofs of theorems
of the calculus; and finally,

3. the set-theoretic construction (e.g. by Dedekind and Cantor in the early 1970s)
of the fundamental set of the real numbers—the arithmetical continuum.

(2) and (3) are intimately related, because it turns out that one of fundamental
properties of the real numbers—the Archimedean Property—is incompatible with
non-zero actual infinitesimals, and for this very reason Georg Cantor saw no future
for actual numerical infinitesimals. Neither did Bertrand Russell.
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An infinitesimal quantity was traditionally regarded as one which is in some sense
smaller than any finite quantity but not necessarily equal to zero. For applications,
but also in the minds of many mathematicians (for example, Cournot, see below)
an infinitesimal (an infiniment petit) is a quantity so small that its square and all
higher powers can be neglected (rigourously). In the theory of limits the term
“infinitesimal” does not refer to a special sort of number but rather to any sequence
of numbers or real function (an object of a type higher than that of numbers)
whose limit is zero. An infinitesimal magnitude, on the other hand, was conceived
as a continuum “viewed in the small,” an “ultimate part” of a continuum (in any
dimension), which remains continuously divisible, so it cannot be confused with a
point. It is in this sense that in the seventeenth century mathematicians like Kepler
held that continuous curves are “composed” of infinitesimal straight lines.

But the eradication of actual numerical infinitesimals mentioned above was not
definitive, as we now know from the creation in the 1960s of nonstandard analysis
[first, by A. Robinson, later versions by H. J. Keisler, E. Nelson and others—there
are now several distinct (and even incompatible) versions of nonstandard analysis].
Of course, Poincaré could not have known that this was going to happen but, as
we shall see, it is reasonable to suspect that, if it had happened in Poincaré’s time,
it would not have surprised him at all, in spite of the fact that he would, for the
most part, simply reject the modern foundations of nonstandard analysis, probably
for the same reasons that he rejected the set-theoretic foundations at the end of the
nineteenth century and beginning of the twentieth.

Poincaré frequently uses notions like “infinitely small”, right from his first work
on the three body problem, where at a place he supposes that one of bodies is
infinitely small. A clarifying passage as to his acceptance of infinitesimals can be
found in Chap. II of Poincaré (1902), La Science et l’Hypothèse, pp. 27–28:

No; the works of Du Bois-Reymond demonstrate it in a striking way.

We know that mathematicians distinguish between infinitesimals of different orders are
infinitesimal, not only in an absolute way, but also in relation to those of first order. It is not
difficult to imagine infinitesimals of fractional and even irrational order, and thus we find
again that scale of the mathematical continuum which has been dealt with in the preceding
pages.

Further, there are infinitesimals which are infinitely small in relation to those of the first
order, and, on the contrary, infinitely great in relation to those of order 1Ce, and that
however small e may be. Here, then, are new terms intercalated in our series : : : I shall
say that thus has been created a sort of continuum of the third order.

It would be easy to go further, but that would be idle; one would only be imagining symbols
without possible application, and no one would think of doing that. The continuum of the
third order, to which the consideration of the different orders of infinitesimals leads, is itself
not useful enough to have won citizenship, and geometers regard it as a mere curiosity. The
mind uses its creative faculty only when experience requires it.

Poincaré’s attitude towards the continuum resembles in certain respects that of
the intuitionists (see below): while the continuum exists, and is knowable intuitively,
it is not a “completed” set-theoretical object. It is geometric intuition, not set theory,
upon which the totality of real numbers is ultimately grounded.
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Du Bois-Reymond believed that a full understanding of the continuum was
beyond the capabilities of mathematicians. However he had already developed
a theory of infinitesimals in Über die Paradoxen des Infinitärcalcüls (“On the
paradoxes of the infinitary calculus”) in 1877. He writes:

The infinitely small is a mathematical quantity and has all its properties in common with the
finite : : : A belief in the infinitely small does not triumph easily. Yet when one thinks boldly
and freely, the initial distrust will soon mellow into a pleasant certainty : : : A majority of
educated people will admit an infinite in space and time, and not just an “unboundedly
large”. But they will only with difficulty believe in the infinitely small, despite the fact that
the infinitely small has the same right to existence as the infinitely large : : :

Were the sight of the starry sky lacking to mankind; had the race arisen and developed
as cave dwellers in enclosed spaces; had its scholars instead of wandering through the
distant places of the universe telescopically, only looked for the smallest constituents of
form and so were used in their thoughts to advancing into the boundless in the direction
of the immeasurably small: who would doubt then that the infinitely small would take the
same place in our system of concepts that the infinitely large does now? Moreover, hasn’t the
attempt in mechanics to go back down to the smallest active elements long ago introduced
into science the atom, the embodiment of the infinitely small? And don’t as always skillful
attempts to make it superfluous for physics face with certainty the same fate as Lagrange’s
battle against the differential? (See O’Connor and Robertson 2005)

Cournot and the Infinitesimals

Poincaré wrote many papers and sections of books on geometry and space, less on
the continuum, but very little on the basic notions of analysis.2 As far as I know,
his paper “Cournot et les Principes du Calcul Infinitesimal” (1905),3 contains a
substantial amount of what is known about his views on this subject, albeit in an
indirect or implicit manner. This paper is not very well known, practically it is never
mentioned in philosophical analysis of Poincaré’s writings, but it is very rich as
a source of philosophical ideas, namely of relations between mathematics and the
natural world. We must also be aware that on some occasions Poincaré changed his
opinions on some subjects during his philosophical years, and that his writings are
often not easy to understand without some kind of interpretation.

In this paper, Poincaré mainly comments on Cournot’s points of view, as exposed
in two major books: Traité élémentaire des fonctions : : : (1841), see p. 23, and Traité
de l’enchaînement des idées : : : (1861), p. 24, which he cites profusely, but he also
expresses opinions of his own on the subjects under review. My conjecture is that,

2A number of papers by Poincaré on philosophy of mathematics have been translated in
Portuguese: Henri Poincaré, Filosofia da Matemática. Breve Antologia de textos de Filosofia da
Matemática de Henri Poincaré. Org. and ed. by A. J. Franco de Oliveira. Cadernos de Filosofia
das Ciências, 10, 2010, Centro de Filosofia das Ciências da Universidade de Lisboa.
3The similarity between Poincaré’s title and mine is no accident.
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in talking about Cournot’s views, Poincaré is revealing some of his own ideas about
the subject discussed, some of which are in agreement with Cournot’s.

Let’s begin by summarizing some of Cournot’s ideas on the calculus.4

The so-called two methods of the calculus, that of limits and that of infinitesimals
(infiniment petits), the Newtonian and the Leibnizian, respectively, seemed to the
critics of Cournot’s time to differ profoundly and not be simply reduced to a
difference of notation. To Cournot himself the two methods appeared to be not
merely distinct, but opposite. Each was the exact inverse of the other. How and
why? The answer is found in his scheme of thought, in his philosophical tenets, and
is near at hand. Cournot was a thoroughgoing realist. There was an external universe
quite independent of any thinker. Kant was wrong in regarding space and time as
merely conditions upon the understanding, as forms inherent in the constitution
of the human mind and not in the exterior things which it perceives. Space and
time, however, and other magnitudes are continuous. Natural changes, as growths,
expansions, contractions, velocities, accelerations, are continuous. These proceed
infinitesimally. The natural order is from the infinitesimal (infiniment petit) to the
finite. This natural order is also (for Cournot) the rational as opposed to the logical,
which latter, unlike the former, depends upon the thinker. The thinker is man, who,
because of his infirmity, cannot proceed rationally but only logically, i.e., from the
finite to the infiniment petit. Accordingly the method of limits is logical, but not
rational, while that of infinitesimals is rational, but not logical. Both, however, are
available for dealing with continuities. Both are rigorous, the former directly, the
latter indirectly, through the former.

For Cournot, the distinction or opposition between the rational and the logical is
fundamental and very significant, despite their etymological equivalence. Rational
order holds of things considered in themselves independently of thoughts or
thinkers. Logical order is merely a property of language regarded as instrument
of thought. The former consists in, resides in, first principles, simplicities, which
are quite independent of their discovery and out of which the complex directly
arises. The latter proceeds in the inverse order, by a kind of reductio ad absurdum,
indirectly from the complex and secondary to the simple and primary. Reason
is, then, something absolute and would be the same for thinkers of different
psychological constitution from that of man. Cause, on the other hand, is relative,
has a double origin, physical and psychological. Consequently all truths, all verities,
be they mathematical theorems or physical phenomena, have their reason, but only
phenomena have their cause.

Cournot mentions the notion of “infinitely small” in the Preface (pp. viii, x),
which he attributes to Leibnitz, but never defines “infinitesimal” or “infinitely small”
before using this notion for the first time on p. 81 of the Traité élémentaire.

Let us now turn to Poincaré’s 1905 paper on Cournot.

4For a more extensive account see the review by Keyser 1905.
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Poincaré on Cournot and Infinitesimals

In his paper, Poincaré begins by saying that he has difficulty in understanding past
controversies over the principles of the calculus, and that “we are willing to see no
more than a difference of notation between the two founders of the integral calculus
[Newton and Leibnitz]”. Cournot had written (Preface, p. ix of Traité) that both
theories complement each other.

Poincaré refers to “Cournot’s theory of compensation of errors” as a simple
answer to objections by philosophers [Bishop Berkeley, Bernard Nieuwentijdt], but I
did not find this theory developed in Cournot’s Traité. Perhaps he was thinking of the
author of such a theory, which was not Cournot but the earlier (by 50 years) Lazare
M. Carnot (1753–1823), in Réflexions sur la Métaphysique du Calcul Infinitesimal,
see p. 22, Carnot (1970). For Poincaré, the remaining doubts were lifted by “what
has been called the arithmetization of mathematical analysis”. But this process,
essentially of a logical nature, had the consequence of separating mathematics away
from nature, so there still remains room for philosophical indagation as to whether
“the procedures of the differential and integral calculus, nowadays completely
justified from the logical point of view, can be legitimately applied to nature. The
continuum that is offered to us by nature and that which is in a certain manner a
unity is similar to the mathematical continuum”.

If we admit that natural phenomena can be represented by numbers and
mathematical functions, the rules of the infinitesimal calculus can be applied to
these functions. However (my translation), “What the observation gives us directly,
is not a number, it is a feeling which is not itself expressible by a number since
we cannot distinguish it from other neighboring feelings ( : : : ) physical continuity
consists precisely in this kind of fusion of the elements in close vicinity. ( : : : )
We see that as our observation aids improve, the boundaries between which the
number representative of an unspecified natural phenomenon must remain become
increasingly narrow, but the smaller and smaller gap in-between will never become
rigorously null. We believe however that this progress has no bounds, that we
will never be able to say, for example: a weight could never be evaluated with
a margin of error less than one thousandths or of one millionth of a milligram.
This is precisely the postulate which we admit implicitly when we apply the laws
of mathematical analysis and in particular those of the infinitesimal calculus to
nature.”

Next, Poincaré makes these points more precise by means of some examples
from science, and concludes: “In this way the physicist can always apply the rules of
the calculus without fear a rebuttal from experience”. Before beginning his citations
and comments on Cournot, he argues to the effect of dismissing other conceptions
of the real world, namely those that regard the world as discontinuous (such as those
of atomistic philosophers like Évellin (1881) and J. Bertrand).

Then there come two long citations of Cournot, with the aim of explaining
Cournot’s position with respect to these problems. A summary of these was given
above, but it is interesting and instructive to read the whole texts as cited by
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Poincaré. In this section, all citations from either Poincaré or Cournot are translated
by me; those by Cournot are rendered in italics so as to be distinguished from those
by Poincaré.

Indeed, he says (Théorie des fonctions,5 t. I, p. 85), if we could compare, from the
beginning, the method of limits and the infinitesimal method, we would see that both tend
to the same purpose, which is to express the law of continuity in the variation of quantities,
but they do so by means of inverse processes. In the first method, given a question on the
quantities that vary continuously, it is first assumed that they change suddenly from one
state to another; and then we search what happens when we tighten more and more the
interval which separates two consecutive states. It is clear that only in retrospect can we
obtain in this way the simplifications which result from the continuity : : :

In any case the infinitesimal method is not just an ingenuous trick; it is the natural expression
of the mode of generation of the physical quantities which grow by smaller elements
that any finite quantity. Also, ( : : : ) when a body cools down, the relationship between
the elementary variations of heat and time is the reason for the relationship which exists
between the finite variations of these very quantities, the term reason being taken here in its
philosophical meaning.

From this point of view, one was able to say justifiably that the infinitely small exist in
nature, and it would certainly be advisable to call f 0 (x) the generating or primitive function,
and f (x) the derived function, contrary to what Lagrange did.

In short, the infinitesimal method is better appropriated to the nature of things.

It is the direct method, from the objective point of view. On the other hand, the concept
of the infinitely small can only be defined logically in an indirect manner by means of the
limits6; so that from the logical and subjective point of view, the conclusive rigor belongs
directly to the method of limits and indirectly to the infinitesimal method, while the latter
becomes, using certain definitions of words, a pure translation of the first.

“Geometers have another way of expressing the same thing”, he says again (L’enchaînement
des idées fondamentales,7 t. I, p. 87). ( : : : ) It would be wrong to see in this expression
of infinitely small nothing more than an abbreviation agreed upon, a form of language,
apparently more convenient because it is most commonly used. ( : : : )

5Traité élémentaire de la théorie des fonctions et du calcul infinitésimal, 2 volumes, Paris,
Hachette, 1841.
6It is not clear exactly how this is supposed to have been done. Perhaps Cournot had in mind
A. Cauchy’s (Cours d’Analyse, 1821) definition of infinitesimals in terms of variable quantities
(such as sequences) tending to zero, or L. M. Carnot’s remark “We will call every quantity, which
is considered as continually decreasing, (so that it may be made as small as we please, without
being at the same time obliged to make those quantities vary the ratio of which it is our object
to determine,) an Infinitely small Quantity.” (Réflexions : : : , 1797, 1821, English translation 1932,
§14), or later “the difference between any quantity and its limit is exactly that which we should call
an infinitely small quantity” (Réflexions : : : , §100). Defining infinitesimals in terms of limits turns
out to be an idea which is difficult to reconcile with the idea of an actual infinitesimal number or
quantity.
7Traité de l’enchaînement des idées fondamentales dans les sciences et dans l’histoire, 2 volumes,
Paris, Hachette, 1861.
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And again (ibid., p. 37):

A body that moves from the rest position begins by having an infinitely small velocity; at
the same time it remains contrary to reason that there is in the world today a body animated
by an infinitely large velocity.

All that is infinitely small escapes our observation, but not the conditions of natural
phenomena; everything that is infinitely large escapes both our observations and the actual
conditions of the production of phenomena.

Note the asymmetry between the infinitely small and infinitely large, at least as
regards our observations of nature or of moving bodies.

Poincaré also comments on this: “It seems that the sharpness of these quotes
leaves nothing to be desired. The infinitely large can have no actual existence, but it
is not the same with the infinitely small. On the contrary, from the objective point
of view, the infinitely small pre-exists to the finite. It is our human logic which
proceeds from the finite to the infinitely small, nature always proceeds from the
infinitely small to the finite. Newton remained faithful to human logic, Leibnitz was
closer to nature. They therefore complement each other; the former could not give
us but an imperfect image of the world, the latter could not do without what he
borrowed from the former, or, in his own way, without which he would have been
lacking in demonstrative rigor”.

Does this citation represent some kind of “approval” or endorsement on the
part of Poincaré? In any case, Poincaré admits that infinitesimals can have actual
or objective existence, but can this existence be accepted mathematically? From
a mathematical point of view, if we wish to have an extended (Leibnizian)
mathematical continuum which comprises non zero infinitely small numbers, and
we wish to preserve as many rules of calculus as possible, then the non-zero
infinitesimals are invertible and their inverses are the infinitely large numbers.
Certainly in the history of the calculus up to the middle of the nineteenth century
the question was hardly raised, if at all.

After discussing and refuting again some arguments that come from atomistic
positions, Poincaré goes on to say:

So these infinitely small that are the true reason of things are not atoms and, on the other
hand, they are also not becoming, as they are rationally prior, so to speak, to observable
finite quantities. Leibnizian infinitesimals, it is true, are only just becoming, or at least do
not play any role in mathematical reasoning, this is where the infinitesimal method becomes
‘a pure translation of the method of limits’.

( : : : ) The opposition between the logical and the rational order is an idea that is frequent
in Cournot. The human mind is forced to rise from the given data, which is complex, to the
principles, which are simple; this is the logical order that is imposed on us by the weakness
of our intelligence; it is the order of discovery, but we do not possess perfect knowledge
until we retreat from simple principles to complex consequences, following the rational
order, that is to say the order that is adopted by Nature itself. ( : : : )

And further down (p. 64):

The rational order should not be confused with the logical order, although one of these
words has the same root in Greek that the other has in Latin. The rational order belongs to
things, considered in themselves, the logical order is the order of the language, which for
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us is the instrument of thought : : : We distinguish very well among the proofs of the same
theorem, all blameless in terms of the rules of logic, those which give us the true reason
of the theorem proved, that is those which follow in logical sequence of the propositions
the order in which the corresponding truths are generated, as one is the reason for the
other. Accordingly, we say that a proof is indirect when it reverses the rational order, when
the truth obtained as a consequence in the logical deduction is conceived by the mind as
contradicting the truths which serve as logical premises.

The typical indirect proof is obviously the proof by reductio ad absurdum. Cournot is well
aware that the method of limits leaves nothing to be desired from the point of view of
mathematical rigor and that in reality it comes down to a reductio ad absurdum, identical to
the exhaustion method of the ancients.. ( : : : )

Let us therefore rely on the indirect method to return to the principles; but let us not hasten
back as soon as we can, to the direct method, the method conforming to the rational order
that makes us know the real reasons of things.

One may wonder what meaning Cournot attached to this word reason, but he takes pain to
explain it to us and distinguishing the reason from the cause. ( : : : ) So the cause is something
relative, which depends on the psychological constitution of the thinking subject; reason,
however, is independent of the subject, it is something absolute. For Cournot, who does not
hesitate to believe in an external world whose existence is quite independent of the subject,
this means that the cause is only an appearance, and the reason is the reality. ( : : : )

And the infinitely small are the reason of things, but it seems at first that the main difficulty
is not even suspected. These infinitely small, the reason of things, are they perpetually
becoming, like the Leibnizian infinitesimals? For those of us who do not believe in the
possibility of conceiving an external world independent of the thinking subject, this would
be the easiest and most natural solution. The primary reason always flees before the mind
who seeks it but can never reach it, and it would be the Leibnizian infinitely small which
would best symbolize this eternal flight.

But there is nothing that allows us to assign such a thought to Cournot; ( : : : ) So when
Cournot says that the infinitely small are the primary reason of things, it is indeed a primary
reason placed outside of us, it is not an indefinitely small, and as it is not an Évellinien atom,
it must be an actual infinitely small. The contradiction that most minds believe they see in
the actual infinite did not concern Cournot; he did not take this objection to be of any great
value.

It has often been repeated, he says (loc. cit., p. 37), that the idea of the infinite has a
mathematical purely negative value : : : Arithmetic gives me the idea of the infinite in the
sense that nothing limits the series of numbers; this is nothing but a negative idea, if you will,
it is just the timely idea of the indefinite rather than that of the infinite. But when I conceive
the infinity of time and space, it is really an infinite in actuality, necessarily imposed on my
mind and of which I have a clear idea, although I can make an image or representation
of it. If it is the continuous movement which involves the effective existence of an infinite
number of intermediate positions, I have not only a clear idea, but a representation of the
phenomenon. Here we could argue that what we can represent is the physical continuum,
very different, as we have explained, from the mathematical continuum.

Anyway, Cournot’s thinking seems clear; the contradiction that we believe to have found
in the notion of actual infinite is merely apparent; and it is only due to the weakness of our
minds, it exists only in the logical order logic is alien to the rational order.

Such a solution certainly does not satisfy everyone, and I do not think, however, that any
realistic solution could satisfy everyone, but I find sufficient to have just highlighted the
philosopher’s true thought; it only remains for me to find out how he justified it in his own
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eyes. Up until now we have seen only claims, it is time to see the reasons that support them.
Where does this tranquility with which he believes to have discovered the real reasons for
things come from?

It is the case that he believes that above formal logic there is another logic (loc. cit., p. 3) by
means of which we realize the reasons for distinguishing the essential from the accidental,
the absolute from the relative, the reality from the appearance. What device do we have
for distinguishing the absolute from the relative motion; for example, why do we prefer the
Copernican system to that of Ptolemy, it is because it is simpler, and we conclude that not
only that it is more convenient, but also that it is more real (loc. cit., p. 18). ( : : : )

However, Newton’s law lets us know the infinitely small variation in velocity suffered by
celestial bodies under the influence of their mutual attraction in an infinitely small time
lapse. Kepler’s laws, on the contrary, let us predict the finite variations of that very velocity
in a finite time. And as the same difference in simplicity is found in all physical problems,
we must conclude that it is the infinitely small, that is to say, the simple, that is the reason
for the finite, that is, the complex.

If you wanted to replace the gentle ramp of Leibnizian continuum by the Évellinien stairs,
however numerous and close the steps you would never find the same simplicity, because
the magnitude, ceasing to be continuous, in the mathematical sense of the word, would cease
to be homogeneous, since everything could remain similar to the part. And then we would
have to admit that it is the simple, that is to say, the continuous, which is the appearance,
and the complex, that is to say, the discreet, that is the reality. We should then believe that
the glass through which we see objects gives them a simplicity that is not theirs.

This seems impossible to Cournot. In summary, it is the belief in the simplicity of nature, a
belief itself based on the principle of sufficient reason, from which he draws his conviction.

If we complicate a formula, he says (loc. cit., p. 104), as new facts are revealed to the
observation, it becomes less and less probable as a law of Nature : : : If, on the contrary,
the facts acquired in observations subsequent to the construction of the hypothesis are well
connected by it, especially if the facts predicted as consequences of the hypothesis are
subsequently confirmed, the probability of the hypothesis can increase up to leave no room
for doubt in an enlightened mind.

This simplicity, this symmetry that becomes the criterion of certainty, cannot be met except
in the mathematical ideas of order and form. This is where Cournot finds ‘the pre-eminence
and the role of the mathematical sciences. Mathematics is the science par excellence, the
most perfect example of scientific form and construction.’ The world, in short, should be
simple and it cannot be so if it is built on the model of mathematical quantity.

Conclusion

If infinitesimals are the reasons of things and exist in nature (something that
Poincaré does not deny nor criticize in any way), should not mathematics try
to diminish the “gap” between the rational or natural order and the logical or
mathematical?

I have tried to find affinities between Cournot and Poincaré on the principles of
the calculus. Although I cannot affirm this with certainty at this point, I have the
feeling (or intuition) that it is so, as a working hypothesis.
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One of the assets of nonstandard analysis is precisely that of a better modelization
of natural phenomena. Poincaré saw this to be true in the practice and philosophy of
mathematicians that lived before his time, in the form of infinitesimals, at the hands
of Cournot and others, and, it seems to me, that at least he was sympathetic towards
these notions and methods. How much of this he practiced himself remains to be
investigated.
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Does the French Connection (Poincaré,
Lautman) Provide Some Insights Facing
the Thesis That Meta-mathematics Is
an Exception to the Slogan That Mathematics
Concerns Structures?

Gerhard Heinzmann

Abstract There are at least two versions of modern structuralism and each has its
proper difficulties: if one adopts the in re version, the crucial feature is that the
background ontology is not understood in structural terms; if one adopts the ante
rem version, the crucial feature is that the talk about structures is exposed to a kind
of third man objection.

The main thesis of this paper is that Poincaré’s conventionalism and Lautman’s
structuralism must be ranked among these sources of structuralism that try to escape
the mentioned difficulties.

Poincaré uses a psycho-physiological approach in order to justify his convention-
alism in geometry, which is an improvement of an attenuated version of ante rem
structuralism, and Lautman proposes a metaphysical dialectic in order to justify his
anti-foundationalist position, which brings ante rem and in re structuralism together.
Poincaré’s approach fails for technical reasons whereas Lautman’s approach fails
for its aporetic conceptual vagueness.

My present concern is to incorporate the French historical inheritance in the
systematic discussion of mathematical structuralism.

Introduction

I first give a short outline of standard results on structures from a philosophical point
of view as they can be find in the works of Shapiro 1997, Resnik 1997 or Chihara
2004.

I shall call a domain of objects together with certain functions and relations on
the domain satisfying certain given conditions a “system”. A special group, e.g.
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Poincaré’s group of displacements is a system. The abstract form of a system is
called a structure. Under structuralism I understand the philosophical thesis that
mathematics is not concerned with any particular ontology but with structures or
with systems that share a common structure.

According to the structuralists’ account, mathematical objects are places in
structures. What is the difference between “place” and “object”? There are different
possibilities to answer this question and, consequently to interpret the relation
between structure and systems that exemplify them.

The first position says that places are offices and not officeholders. The “places
are-offices perspective” presupposes a background ontology that supplies objects
that fill the places of the structure. A structure is anything that can be exemplified by
a type of systems, but there is no such thing as “the structure”. The number structure
is a pattern common to all number systems, which are not necessarily isomorphic.
This position is a so-called structuralism without structures, and it is in this sense
anti-realistic and eliminative. The eliminative structure program paraphrases places-
are-objects statements in terms of a places-are-offices perspective with respect
to systems different from the structure. For an anti-realistic structuralist place-
are-objects statements are not to be taken literally: the apparent singular terms
mask implicit bound variables. They are disguised definitions. Talk of numbers
is convenient shorthand for talk about all systems that exemplify the structure.
Talk of structures generally is convenient shorthand for talk about systems. The
essence of a number being just its structural relation to other numbers, anything
at all can be “4” when it occupies the place corresponding to the office “4” in
a system exemplifying the natural number structure. But we cannot and need not
answer the question whether 1 2 4 (von Neumann’s notation) or not (Zermelo’s
notation). We have no objects with an internal composition so that the last
question is a meta-mathematical one concerning the background-theory, which is
normally the set hierarchy V. In other words, the back-ground theory cannot be
a mathematical theory if mathematics is considered in an anti-realistic structural
way. Otherwise, one should find a background-theory for the set theoretical
structure etc.

The second interpretation of the token-type relation between systems and
structure is a realistic one: tokens can, so to say, be destroyed. Contrary to the in
re structuralist, the ante rem structuralist takes the pattern to exist independent of
any systems that exemplify it. The structure is prior to the mathematical objects it
contains. For the ante rem realist the distinction between position and object is a
relative one. The idea is that the places of the natural number structure, considered
from the “places-are-objects perspective”, can be organized into a system, and this
system exemplifies the natural number structure whose places are now viewed from
the “places are offices-perspective”. The “places-are–office perspective” refers here
not to a system different from the structure. So, in a sense, each structure exemplifies
itself. When we invoke the “places-are object-perspective”, in “2 is ⎨⎨∅⎬⎬” the “is”
is an identification, in contrast, when we invoke the “places are-offices perspective”,
the “is” constitutes a copula relative to a system exemplifying the structure.



Does the French Connection (Poincaré, Lautman) Provide Some Insights. . . 115

The problem raised by this interpretation is the status of a structure as type. Are
there some identity-conditions? Is a structure an entity? The answer is surely: no!
But what does it mean, then, to speak of a structure?

Poincaré

Now, concerning Poincaré, it is obvious that he was strongly influenced by and
attuned to a philosophical movement consisting of a mixture of positivism and Neo-
Kantianism, namely the so-called “Boutroux Circle” (Nye 1979).1 The members
of the circle criticized at the same time Comte’s determinism and Kant’s static
view of the mind’s structure. The existence of consistent non-Euclidean geometries,
used by Poincaré in order to overcome difficulties of the theory of “real” geometry
as a tool in function theory, leads him to study “the structural relations between
Euclidean and non-Euclidean geometry” (Nye 1979, 111). Whereas the existence
of different geometries prevents one from considering geometric propositions as
necessary truths determined by a priori intuitions, mathematical exactness and
the impossibility of defining distance empirically prevent one from considering
geometric propositions as empirical descriptions. This is why Poincaré introduces
“propositions” in the core of his theory of mathematical knowledge not as genuine
bearers of general semantic information, but as hypotheses. The axioms of metric
geometry are apparent hypotheses, i.e. conventions, neither true nor false. The
introduction of this formal and decisional aspect in mathematics was held always
as the modernist aspect of Poincaré’s philosophy of science. On the contrary, it is
little known that Poincaré should be ranked with Duhem among the forerunners of
Quine who survive his criticism of logical empiricism:

(a) for his conception of geometrical conventions as a kind of bicephalous selection
of analytical but non-logical propositions, “guided” at the same time by
experience.2

(b) for his “relationalism” which in certain aspects comes close to Quine’s doctrine:
both attempt to account philosophically for the incompleteness of (scientific)
objects. Poincaré argues that what science can attain

is not things themselves, as the dogmatists in their simplicity imagine, but the relations
between things; outside those relations there is no reality knowable. (Poincaré 1902,
XXIV)

What are the links between Poincaré’s relationalism and the geometrical conven-
tions? They are nothing but two different aspects of Poincaré’s structural approach.
Concerning the relational aspect, David Stump remarks:

1Cf. for the following (Heinzmann/Stump 2013).
2Because Poincaré distinguished very well between analytic and synthetic sentences, the analogy
to Quine must be restricted to conventions.
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Poincaré and Hilbert argue for a new conception of geometrical systems [ : : : ] Poincaré
holds that outside of the context of an axiomatic system, geometrical primitives mean
nothing [ : : : ] He argues that geometry concerns only the relations expressed in the axioms,
and not some inherent features of the primitives [ : : : ] The set of relations that holds between
the primitives constitute the form, not the matter, of geometric objects, and these are what
is studied. (Stump 1996, 482–84)

Geometry is the study of the form of the group together with its properties.
This form (Dstructure) of the group preexists in our minds, and certain relations
of our experience are represented by apparent hypotheses or conventions. The
empirical objects satisfying the relations as matter of the form are described
by indifferent hypotheses. They concern the ontological but not the structural
determination of elementary phenomena. Such indifferent hypotheses are mere
metaphorical crutches, useful for thought but “unverifiable” and “useless” as such
(Poincaré 1902, 156). They are conventional in the usual sense of the word; that
is to say, they are “arbitrary,” but compelled by rational agreement. In general, the
ontological determination of singular objects is, from a scientific perspective, an
over-determination: scientific objectivity is purely relational, while the relata remain
inaccessible to human knowledge.

Thus, the form of the group constitutes the relational aspect of Poincaré’s
structuralism. But what does it mean that the relational form is described by apparent
hypotheses or conventions?

Poincaré’s approach is not identical with Hilbert’s axiomatic approach. His
often quoted structural Credo, saying that in mathematics the word “existent”
means “exempt from contradiction” (Poincaré 1902, 44; 1905a, 819), must be seen
under a non-Hilbertian light. For reasons concerning above all the involvements of
impredicative procedures, Poincaré excludes proving mathematical reliability by a
consistency proof in the Hilbertian way. He takes a structural position without com-
pletely disengaging meaning and knowledge from ostension. Nevertheless, Poincaré
begins his alternative reliability construction only apparently with sensations as
ostensive contacts with the given. In reality, he introduces, similarly to Helmholtz’s
conception of intuition as imagined sensible impressions, a representation of a two-
places sensation relation, based on the imagination of single sensations.3 They
are the office-holders of the categories (forms) of sensible space and of groups.
Poincaré’s conventions in geometry are the tools to close the gap between the
exactness of a structure and the objectivity of sensation-relations based on an
imagined ostensive contact (reflecting on sensations). If this interpretation is right,
then Poincaré’s concept of structure is not the new Hilbertian one deriving from
his axiomatization of Euclidean geometry, but constitutes a development of the

3Representation of an object in the sensible space means nothing else than the deliberate and
conscious reproduction of muscular sensations thought necessary to reach the object: “When it is
said, [ : : : ] that we “localise” an object in a point of space, what does it mean? It simply means that
we represent to ourselves these movements that must take place to reach that object [ : : : ] When I
say that we represent to ourselves there movements, I only mean that we represent to ourselves the
muscular sensations which accompany them” (Poincaré 1902, 57; our emphasis).



Does the French Connection (Poincaré, Lautman) Provide Some Insights. . . 117

traditional algebraic one and concerns continuous groups. His epistemological
project has a strong affinity with Schlick’s General Theory of Knowledge.

By recognizing Poincaré’s legacy for the structural point of view, Schlick insisted
on the conventional aspect of his structuralism. He saw in Poincaré’s conventions a
third type of definitions between the axiomatic or implicit and concrete or ostensive
ones. These conventions are, as (Friedman 2007, 100) observes, “crucial for an
understanding of how we achieve a coordination between concepts and empirical
reality in the mathematical exact sciences”. I quote Schlick:

To define a concept implicitly is to determine it by means of its relations to other concepts.
But to apply such a concept to reality is to choose, out of the infinite wealth of relations
in the world, a certain group or complex and to embrace as a unit by designating it with
a name. By suitable choice it is always possible under certain circumstances to obtain an
unambiguous designation of the real by means of the concept. Conceptual definitions and
coordinations that come into being in this fashion we call conventions (using this term in the
narrower sense, because in the broader sense, of course, all definitions are agreements). It
was Henri Poincaré who introduced the term convention in this narrower sense into natural
philosophy; and one of the most important tasks of that discipline is to investigate the nature
and meaning of the various conventions found in natural science. (Schlick 1979, 91f)

So, according to Schlick, Poincaré’s conventions combine conceptual definitions
and coordinations.

How should one understand this affirmation?
An answer can be found by examining four steps in Poincaré’s psycho-

physiological reconstruction of the genesis of geometrical space. It gives an
instantialist view of geometrical relations. In his early articles, Poincaré argues
that geometry concerns only the relations expressed in the axioms, and not some
inherent features of the primitives: “What we call geometry is nothing but the study
of formal properties of a certain continuous group; so we may say, space is a group”
(Poincaré 1898, 41).

The first step of Poincaré’s construction of geometrical groups proceeds from
the observable fact that a set of impressions can be modified in two distinct ways:
on the one hand without our feeling muscular sensations, and on the other, by
a voluntary motor action accompanied by muscular sensations. So, similarly to
Carnap’s Aufbau, the starting point is here the definition (guided by experience)
of two two-place relations: an external chance ’ (with ‘x ’ y’ for ‘x changes in y
without muscular sensation’) and an internal change S (with ‘x S y’ for ‘x changes
in y accompanied by muscular sensations’).

In the second step, he introduces a classification of external changes, some of
which can be compensated by an internal change, while others cannot. The first are
called changes of position, the second changes of state. One presupposes that the
compensation is by convention exact and not approximate. In the third step, Poincaré
defines, modulo an identity condition with respect to the compensation by internal
changes, the equivalence class of changes of position, and calls it a displacement
(see Poincaré 1905b, Chap. IV):

1. Two internal changes have to be considered identical if they have induced the
same muscular sensations.
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4. If �, � is an equivalent relation, then the equivalence class of the changes
of position is a displacement. So we can recognize that two displacements are
identical.

The fourth step and Poincaré’s main result is that each set of displacement classes
(external and internal) forms a group in the mathematical sense.

The group of displacement is in fact an adjustment to the general group
preexisting in our mind as a form of our understanding, which the specific
displacement-structure (Dtransformation group) exemplifies. In other words, the
form in the mind leads to a special kind of platonic universals or ante rem
structure. Thus, the genesis of geometry is based on an epistemological process
founded on previous classifications, carried out as a relationship between a structure
as norm of invariance and conventional adjusted systems as instantiations or
exemplifications of these norms (the sensation compensation are only approximate).
The exemplification of the group-structure by a variety of systems (Delement of
harmony) is not a logical but an esthetical operation without an explicit identity
(harmony) criterion (Dmathematician as artist). This is why the exemplification of
structures and the esthetic perspective are “solidary” [VS, Chap. V].

Now, the special variant of convention, where there exists a choice between
different possibilities, only becomes involved at a further step of the sensory-
mathematical construction where the properties of the transformation group are
studied and decisions are taken concerning the distance. It follows that the axiom
of Euclidean distance is a conventional definition influenced by simplicity and
commodity and guided as a whole by experience: it is a disguised definition or
an apparent hypothesis. Poincaré uses the term disguised definition up to 1899,
the year of Hilbert’s famous Foundations of Geometry, to express the fact that
language apparently used descriptively is not so in actuality. Certain axioms appear
descriptive, but instead constitute the only way to define certain entities (see
Poincaré 1899, 274). Such entities are found to be defined only up to structural
equivalence: they reflect well the truth of certain relations between relata whose
qualities remain—as according with Helmholtz and others—unknowable.

Contrary to in re structuralists, Poincaré’s structure of a general group is not
ontologically, but rather epistemically dependent on its instances. Contrary to ante
rem structuralists, Poincaré doesn’t speak of the structure as such but uses it as
a metamathematical tool for his psycho-physiological genesis of real actions with
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imagined sensations: the structure is not itself a position in a meta-structure but
the psycho-physiological procedure is the ratio cognoscendi of its existence in our
mind. In this sense geometry is as such a whole system, understood by a pragmatic
procedure, which is irreducible to a combination of clearly distinguished parts of
conceptual analysis and aesthetic exemplifications.

As Philippe Nabonnand remarked, Poincaré’s presentation of geometrical space
is as a whole circular:

in his 1898 paper, [he] put forward a (mathematical) explanation of the three dimensions of
space. He observed that the Euclidean group, selected after many conventions, can be seen
as acting on a space of three, four or five dimensions. The choice of a three-dimensional
space is justified by considerations of commodity. Unfortunately, Poincaré’s argument is
vicious because the choice of the Euclidean group was grounded on Lie’s classification of
transformation-groups operating on R3. (Heinzmann and Nabonnand 2008, 171)

Nevertheless, Poincaré noted his mistake and introduced in 1905 (VS) a three-
dimensional physical continuum in order to justify his utilization of Lie’s clas-
sification. The consequence is that Geometry is no longer independent of any
mathematical space (Nabonnand). The structure of space must be presupposed as
a primitive notion, contrary to the pragmatically suggested group notion existing in
our mind!

Lautman

Between 1930 and 1940, three PhD students and friends at the Ecole Normale
Supérieur at Paris, having a common interest in logic and philosophy of mathe-
matics, were a driving force leading to the work of Bourbaki, and they had the
common fate to disappear prematurely. Jacques Herbrand was a mathematician,
Albert Lautman a mathematically well-trained philosopher, and Jean Cavaillès a
philosopher and historian of set theory. Lautman is less well known than Cavaillès
as a scientist (Jean Petitot wrote in 1987 one of the first articles on Lautman) and
as a resistance fighter: nevertheless, like Cavaillès, he was killed in 1944 by the
German occupying power.

Albert Lautman defended his PhD in 1937 with a principal and a complemen-
tary thesis, entitled respectively Essai sur les notions de structure et d’existence
en mathématiques and Essai sur l’unité des sciences mathématiques dans leur
développement actuel.4 He shared with Poincaré the opinion that formalism and
intuitionism fail together as reliable positions on the foundations of science, that
is, as philosophical views of the nature of scientific objects and of scientific
understanding (Lautman 2006, 181). His purpose was to solve the Hilbertian
problem of the conflicts echoed in mathematical practice through the structural
method used in Algebra and the constructive method, conceiving the real numbers

4Reprinted in (Lautman 2006).
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and the operations of Analysis as generalizations from number theory. The tool he
imagined is an adequate interpretation of the structural method so that the conflict
in fact disappears in favor of the algebraic method (Lautman 2006, 87).

Lautman’s intuitionistic opponents were Pierre Boutroux and Maximilien Win-
ter, who formulated their theses in the books l’Idéal scientifique des mathématiciens
(1920) and La méthode dans la philosophie des mathématiques (1911). Boutroux
considered “independent mathematical entities with respect to the theories where
they are defined.” Speaking of “algebraic or logical clothes by which we seek to
represent such a being,” he presupposed, according to Lautman, a kind of neutrality
of the formalism with respect to that which is formalized.

There was also a formalist opponent to Lautman: naturally, this was not Hilbert,
but Carnap and the Vienna Circle around 1937. As did Cavaillès and Herbrand,
Lautman went in the late twenties to Germany (Berlin, 1929). The French neo-
Kantian tradition, enriched with the German experience of the fertility of structural
relations, led him to oppose the reductionist and “static” character of Logical
Empiricism. Theories, rather than isolated concepts or primitive notions linked
by primitive logical propositions, have to be objects of the scientific philosophy.
Mathematical reality should not be conceived as “being static” but as the result of
the possibility of determining certain beings from one other, i.e. the result of a set
of links (Lautman 2006, 226).

Lautman distinguished two points of view of the concept of structure: the syn-
tactic or genuine structural perspective, and the semantic or extensive perspective.
This distinction is identical to or at least very close to our modern ante rem—in re
distinction (Lautman 2006, 66). Both perspectives belong, according to Lautman, to
metamathematics: the first concerns the construction “of certain perfect structures,
[ : : : ] and this regardless of whether there are concrete (“effective”) theories
having the properties in question” (Lautman 2006, 131). Lautman associated with
this syntactic structural (ante rem) perspective such proof theoretic properties as
“provable”, “refutable”, “irrefutable” or “non-contradictory”.

The semantic perspective, concerning the existence of interpretations, uses the
extensive processes of set theory by considering the fields of individuals that can
serve as values to arguments in a formula of the theory. The semantic properties
associated with this perspective are validity, satisfiability etc. (Lautman 2006, 182).
According to this in re interpretation, the properties of mathematical beings are of
a structural kind, exemplified by different systems. Take, for example, the property
of divisibility of the number 21. If the domain is the field K of rational numbers, the
result is: 3, 7; if it is the field K

p
–5, the result is: 3, 7, (1C2

p
–5), (1–2

p
–5).

The question then arises, how did Lautman conceive the relation between the
two perspectives on structure? The answer can be found by analyzing the split
between the old genetic method and the new structural method in mathematics
with respect to the relation between essence and existence (Lautman 2006, 65).
According to the classical point of view, the question concerning this relation is still
asking about the same being. According to the structural point of view, by contrast,
when the transition from essence to existence is possible, it always concerns the
passage of one kind of being to another kind of being. For example, according to
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the classical point of view in Analysis, the relationship between “discontinuous”
and “continuous” or between “finite” and “infinite” is conceived as an expansion of
the finite (discontinuous) or by the narrowing of the infinite (continuous), where the
finite (discontinuous) is still considered in extension as a part of infinity (continuity).
On the contrary, the structural point of view sees in the finite and the infinite not
two extremes of a move to make, but two distinct kinds of being, each with its
own endowed structure, supporting relations of similarity between them. But how
should one compare them? At first glance, Lautman’s answer sounds very vague:
“By focusing on the frame of beings (armatures des êtres), which are compared,
one indeed discovers between the finite and the infinite an analogy of structures”
(Lautman 2006, 122/123). How can we speak about structures?

Lautman’s answer is based on a more liberal concept of “structural content”:
to conceive “a structure whose elements are neither entirely arbitrary nor built up
really but conceived as a mixed form that derives its fruitfulness of its dual nature”
(Lautman 2006, 46).

In perspicacious way, Lautman identified the completeness theorem of the
predicate calculus as a trivial technical realization of the intended dialectic between
essence and existence, which is inadequate to be extended to more complex theories
(Lautman 2006, 183/184). Naturally, when the system is not complete, there is no
equivalence between the non-contradiction of the system and the existence of an
interpretation of this system. The existence of a model “is a stronger requirement
than non-contradiction, so that there will be a dissociation between the [genuine]
structural view and the extensive point of view” (Lautman 2006, 184).

Now, in order to understand the internal unity of the ante rem and in re
perspective on a structure, Lautman uses a biological metaphor: He notes: “It is
obvious that the mathematical entity as we understand it is not unlike a dynamic
living thing” (Lautman 2006, 140). However, the structural conception and the
dynamic conception of mathematics seem at first opposed: “one tends, he says, to
consider a mathematical theory as a whole, [ : : : ] independent of time, the other on
the contrary does not separate the temporal stages of its development” (Lautman
2006, 130).

Hence Lautman’s vision considered structures from a distinctive perspective,
nearer to mathematical practice: the mathematical solutions of the problems they
pose should contain an infinite number of degrees. Partial results and comparisons,
stopped halfway when organized under the unit of the same theme, could per-
haps, in their movement, manifest emerging links between abstract ideas. These
links Lautman proposed to call “dialectical” (Lautman 2006, 131). He tried to
develop a conception of mathematical reality that would combine the two kinds
of structuralism with the life-metaphor attributed to theories. The understanding of
a mathematical entity must involve two reciprocal aspects: “the essence of a form
being realized in a matter created by the form, and the essence of a matter giving
rise to the forms drawn by the structure of the matter” (Lautman 2006, 186).

Like Poincaré, Lautman viewed the ontological commitment as concerning
relations and not objects, and the mathematical activity or experience as the ratio
cognoscendi of a structure, determining within this process new elements. Contrary
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to Poincaré, however, he viewed the relations in question as only regulative, and
saw no fixed structure preexisting in itself or in our minds. Like Neurath and Quine,
Lautman was not seeking for an ab ovo sub-basement of mathematics, but staying
afloat in the boat, he presupposed a preliminary background structure. Nevertheless,

the reality of mathematics is not made of the act of the intellect that creates or understands,
but it appears to us in this act and cannot be fully characterized independently of those
mathematics that are their indispensable support. [ : : : ] The reality inherent in mathematical
theories is that they are participating in an ideal reality that is dominant with respect to
mathematics, and which is knowable only through it. [ : : : ] We see in mathematics a way
of structuring a basic domain [structure] interpretable in terms of existence for some new
things [ : : : ] that the structure of the domain seems to preform. (Lautman 2006, 66–68)

Now, I think that what interests us today in Lautman is not his platonistic
solution itself, i.e. the proposal that the intrinsic reality of mathematical entities,
facts or theories lies in their dialectical participation in ideas which dominate them
(Lautman 2006, 237) and which are themselves realities. What is subtle is his
insight in the essential difference between the nature of mathematics and the nature
of the Dialectic. This insight leads to an alternative interpretation of Poincaré’s
and Quine’s thesis of the incompleteness of mathematical objects and the ideas to
which they belong: this incompleteness is neither an epistemic deficiency possessed
finally by all objects according to Poincaré, nor purely a verbal accommodation
with respect to a set theoretic progression possessing itself ontological commitment
(Quine 1986, 401), but an ontological peculiarity: “Ideas are not models whose
mathematical entities are merely copies. The Genesis is no longer seen as the
creation of the concrete material from the idea, but the advent of concepts related
to the concrete in an analysis of the Idea.” (Lautman 2006, 238; my emphasis).
In fact he distinguishes “notions” and “ideas” in order to underline the different
status of philosophy and mathematics. While mathematical notions “describe
existing relations between mathematical entities”, the ideas describing dialectical
relations do not assert any existing relation between notions. Ideas concern possible
relationships between such notions, as, for example, between “formal systems” and
their models or the relationship between the infinite and the finite. The analogies
between structures cannot be expressed on the level of structures. The identity of
a structure is not a mathematical subject, and the concept of structure as such not
a mathematical object. The analogies between structures are as ideas “incarnated”
or, as Poincaré would say, suggested “in the very movement of the mathematical
theories” (Lautman 2006, 12). The systematical point of this parallel to Poincaré
was seen by Lautman himself when he remarked that “the process of linking
theory and experience symbolizes the relation between ideas and mathematical
theories” (Petitot 1987, 105) The ideas have, according to Lautman, no ontological
commitments and no anteriority with respect to their instantiations (Petitot 1987,
87), but rather raise questions and “are only the problematic issue relating to any
of the existing situations.” (Lautman 2006, 242/243). In short, as Petitot expressed
it, the dialectic between ideas and notions is historic and ideas are by no means
irreducible essences of an intellectual world (Petitot 1987, 95).
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If we try treating structures as individuals and describing their relations, we
are treating structures themselves as positions in a structure of structures. Lautman
avoids such a circularity in the following way: “Metamathematics embodied in the
generation of ideas [ : : : ] cannot give rise in turn to a meta-metamathematics; the
regression stops when the mind has reached the patterns by which the dialectic is
constituted. We see our reference to Platonism is well justified” (Lautman 2006,
232). In other terms, the classical view of structures cannot be substituted, without
precautions, by a structural view of structures. Structures are neither mathematical
objects nor properties of such objects, because they depend also, as we have seen, on
a system of representation. Structures, as Lautmanian ideas (minus Platonism), are
patterns. What I mean by “pattern” is a schema whose general and singular aspects
are in a perpetual interplay or in a dialectical link. The concept of “pattern” makes
it possible to avoid ante rem and in re structuralism (cf. Oliveri 2007, 163).

In this sense, Resnik is right, and Lautman would agree, that the structural
approach to mathematics “would be no worse off than set theory, which cannot
recognize its own universe of discourse as a set”. Indeed, this limitation has
only a negative bearing on structuralism, “if structuralism [is] purported to be a
mathematical theory rather than a philosophical account of mathematics”. But,
we have seen that Lautman was not pursuing a foundational program, but rather
hoping to achieve a deeper understanding of mathematical practice. His solution:
philosophically, the concept of structure is dominated by a dialectical idea of a
“pattern” that brings two perspectives together: (a) the structure as an essence of
a form, realized in a matter, created by the form, and (b) the essence of a matter
giving rise to the forms. This dialectical ante rem—in re solution seems no worse
off than the ante-rem dialectic that considers structures in an alternating perspective,
either from a “place-to-be-filled” or from a “places-are-objects” point of view, i.e.
the doctrine that each structure can exemplify itself (Shapiro 1997, 89). This is
formulated in a Lautmanian way by Chihara: “A structure is the abstract form of
a system, and insofar as it exemplifies itself, it must be a system which has as its
form the very form that it itself is” (Chihara 2004, 67).
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Part III
Poincaré on the Foundations of Physics



Henri Poincaré: The Status of Mechanical
Explanations and the Foundations
of Statistical Mechanics

João Príncipe

Abstract The first goal of this paper is to show the evolution of Poincaré’s opinion
on the mechanistic reduction of the principles of thermodynamics, placing it in
the context of the science of his time. The second is to present some of his
work in 1890 on the foundations of statistical mechanics. He became interested
first in thermodynamics and its relation with mechanics, drawing on the work
of Helmholtz on monocyclic systems. After a period of skepticism concerning
the kinetic theory, he read some of Maxwell’s memories and contributed to the
foundations of statistical mechanics. I also show that Poincaré’s contributions to
the foundations of statistical mechanics are closely linked to his work in celestial
mechanics and its interest in probability theory and its role in physics.

Introduction

The scientific oeuvre of Poincaré is immense, even if we consider only the fields
of mechanics, astronomy, and mathematical physics. His interest in the theories
of elasticity, waves, electromagnetism, and thermodynamics, as well, is marked
by significant contributions. One of his contemporaries noted that he was more
a conquerer than colonizer: he contributed significantly to many areas without
staying there too long. Many of his memoirs and articles have an unfinished and
open character. These general characteristics apply to his contributions to statistical
mechanics.1

1“A contemporary said of him, he was a conqueror, not a colonialist.” Boyer et Merzbach 1968,
676, §27. 3.
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The primary aim of this paper is to show the evolution of Poincaré’s views on the
mechanistic reduction of the principles of thermodynamics, placing it in the context
of the science of his time. The second is to present some of his work, around 1890,
on the foundations of statistical mechanics. He looked first to thermodynamics and
its relationship with mechanics, inspired by Helmholtz’s on monocyclic systems.
After a period of skepticism about the kinetic theory, he carefully read some of the
memoires of Maxwell and contributed to the foundations of statistical mechanics. I
also show that Poincaré’s contributions to the foundations of statistical mechanics
depend closely on his work in celestial mechanics and his interest in probabilities
and their role in physics.

Classical statistical mechanics treats systems of material bodies subject to the
laws of mechanics and with a huge number of degrees of freedom. It allows to
one infer observable properties of these systems using statistical methods. Its initial
domain was quite limited, to the case of gases. The kinetic theory of gases, for
simplicity, had three formulations: the elementary kinetic theory of Clausius (1857–
58), based on the concept of mean free path; Maxwell’s second theory, which
leads to the Boltzmann equation (1866); and the ensembles approach of Maxwell-
Boltzmann-Gibbs (1879). Maxwell and Boltzmann, from specific models (elastic
spheres, material points interacting through a Newtonian potential), then took the
path of greatest generality to justify the equilibrium distribution, equipartition
and the tendency towards equilibrium. This path is based on the formulation
of Hamilton’s mechanics, and it involves Liouville’s theorem and the ergodic
hypothesis. Josiah Willard Gibbs’ 1902 book, Elementary principles of statistical
mechanics, presented these methods in a systematic and independent way, compared
to the initial context where ideas have emerged – that of the kinetic theory of
gases. Twentieth- century statistical mechanics would be applied to more general
systems, and its development would be closely linked to the history of quantum
theory.

The kinetic theory of gases was struggling to establish itself at least until the
end of the nineteenth century, except in the United Kingdom. The specific heat
anomaly, and the small number of specific predictions, could be invoked against
it. Its main achievement was a theory of transport phenomena, an area where it
provided new relationships with, and access to, molecular parameters. Given the
structuring role generally given to mechanics, the mechanical reduction of thermal
phenomena could not fail to win favor; but further reductions existed which did
not presuppose any specific model for substance and that did not make use of
probabilities. The thermodynamics of the principles, a macroscopic theory, had a
much more extensive domain than the field of kinetic theory. The analytical theory
of heat, concerning heat diffusion, was able to develop without any connection to
the kinetic theory.
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Strictly Mechanistic Reduction of Thermodynamics

Up to 1870, French scientists, despite their interest in the work of Clausius, showed
very little interest in kinetic theory. The reception of the first kinetic theory of gases
became a conceptual framework dominated by the tradition of laplacian molecular
physics, and the optical tradition, originated by Fresnel and Cauchy. These two
traditions share a molecular ontology, where everything is explained by postulating
the existence of atoms or molecules centres of force. Concerning the nature of heat,
vibration theory, proposed by Ampère (1835), allowed for a qualitative unity of
light and heat, in the context of the Laplacian ontology. Ampère wrote: “it is to
molecular vibrations and their propagation in their environment that I attribute all
phenomena of sound; it is to atomic vibrations and their propagation in the ether
that I attribute all those of heat and light.” These traditions bore many fruits in
the fields of elasticity, hydrodynamics, elastic ether theory, etc. They enabled a
unifying vision, ensuring consistency between the various theories, with celestial
mechanics playing the role of an archetype; they benefited from the intellectual
authority of masters such as Newton, Laplace, Fresnel, Ampère, etc.; and they
were institutionally strengthened by the centralized and hierarchical character of
the scientific community. These traditions coexisted with a more recent attitude of
theoretical agnosticism, in experimental and theoretic work of Victor Regnault, who,
however, still did not deny the molecular ontology. The identity of French physics
also depended on a somewhat vague ideal of rigour and clarity in research and in
the presentation of the results. Around 1885, Ampère’s version of the molecular
physics program was still alive. It still promised a unifying vision. (Ampère 1835,
436, 434–435; Príncipe 2008, “Conclusions.”)

After 1850, molecular physics in the style of Laplace or Ampère found itself in
competition with other approaches, especially outside France: (phenomenological)
thermodynamics and kinetic theories. The latter involved only a minority of scien-
tists around the world, because they had very few applications, many anomalies, and
they involved ways new and difficult reasoning, especially in the second theory of
Maxwell. Also, it should be noted that in the second half of the nineteenth century,
there had been several kinetic conceptions of heat, and that someone like Clausius
could accept or at least recognize this pluralism. This situation can be compared to
that of the multiplicity of contemporary mechanical theories of the optical ether. The
French, strong on Regnault’s work on static properties of gases and vapours, were
particularly sensitive to the anomalies of the kinetic theories. They were working
especially in the tradition of Ampère’s vibrational conception of heat. It was only
after 1890 that the French took the kinetic theory as an object of scientific research,
a change due to the intervention of scientists of a younger generation, more open to
foreign physics. Henri Poincaré and Marcel Brillouin, both born in 1854, took an
interest in Maxwell’s second theory and the foundations of statistical mechanics, in
a way shaped by their own research programs.2

2On the survival of several kinetic conceptions of heat, see Príncipe 2008, 8, and Chaps. 4 and 6.
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In 1886 Poincaré obtained the chair of mathematical physics and probability
calculus at the Sorbonne, which favored even more his interests in theoretical
physics. He taught the mathematical theory of light, and in the spring of 1888, he
taught a course on Maxwell’s Treatise on Electricity and Magnetism. In the follow-
ing years, he taught the electrical theories of Helmholtz, Hertz, Larmor and Lorentz.
In 1888–89, he taught thermodynamics. He considered the question of compatibility
between mechanism and thermodynamics, by analyzing the mechanical analogies
proposed by Hermann von Helmholtz between the second principle and monocyclic
systems described in the Hamiltonian formalism.

One should not confuse the mechanical analogies between the second principle
and periodic or monocyclic mechanical systems, developed by Boltzmann, Clausius
and Helmholtz, with concrete models of heat motion, in particular that of the kinetic
theory. These analogies are formal analogies, and do not imply anything about the
precise nature of the movement that is heat. These analogies were already of interest
to the French scientists. Although around 1870, kinetic theory was taught in schools
according to the views of Clausius, from the research point of view the French took a
special interest in the analogy that Clausius proposed between the second principle
and behavior of periodic systems. These analogies are compatible with vibration
theory, the microscopic model for the material is not specified, and probabilistic
considerations played no role.3

General Characteristics of Helmholtz’s Approach

In 1884, in “On the statics of monocyclic systems,” Helmholtz introduced the
notions of polycyclic and monocyclic systems, presenting an analogy to the second
principle for the case of reversible processes. In a memoire of 1886, “On the
principle of least action,” he distinguished between complete and incomplete
systems and considers irreversible processes. In this analogy the system obeys the
conservation of energy, and is described by the Langrangian equations that can be
derived from the principle of least action. The use of this principle allows him to
avoid assuming particular atomic models. This strategy originated in Maxwell’s
use of the Langrangian method in his electromagnetic theory, to obtain the field
equations without a detailed model of the ether; Poincaré considered this strategy to
be Maxwell’s great innovation (Poincaré 1890b, préface; see J. J. Thomson 1888,
4; Klein 1972, §5, 70–71; Bierhalter 1993, 442).

The last chapter of Poincaré’s Thermodynamique is devoted to “The reduction
of the principles of thermodynamics to the general principles of mechanics.” Here

3Boltzmann was the first to develop these ideas; see Boltzmann 1866, Clausius 1871; Boltzmann
1871. A review of these articles may be found in Truesdell 1975, 59–60. On Clausius and the
French, see Príncipe 2008, Chap. 7.
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Poincaré expounds and criticizes the ideas of the German scientist.4 Consider, fol-
lowing Helmholtz and Poincaré, a general mechanical system obeying Lagrange’s
equations (or, equivalently, Hamilton’s equations). The system is described by a set
of n generalized coordinates q; the corresponding velocities are Pq D dq=dt; the state
of the system is described by a single function, its Lagrangian:

L D L.q; Pq/ D T � V;

where T .q; Pq/ is the kinetic energy of the system, V(q) the potential of the internal
forces. Let P be the generalized external force corresponding to the generalized
coordinate of the same index, and p D @L=@ Pq the generalized quantity of motion;
then for each generalized coordinate we write the respective Lagrangian (Poincaré
1892a, §311):

d

dt

@L

@ Pq � @L

@q
D P:

The dynamical evolution is governed by the system of these n equations.
Helmholtz distinguishes two groups of generalized coordinates: those which

vary very slowly, the qa, and those that vary rapidly, the qb. The parameters that
vary slowly are controlled by a macroscopic observer (for example volume, or
the center of gravity of a body). A suggestive terminology was proposed by J. J.
Thomson: he distinguished between macroscopically controllable variables qa and
the non-controllables qb, corresponding to molecular motions, defining the thermal
state of a body. When these rapid periodic motions are described by several non-
controllable generalized coordinates qb, Helmholtz speaks of polycyclic systems.
In a monocyclic system, we admit the existence of certain relations between the
velocities of the different parts of the system in such a way that these periodic
motions are described by a single coordinate; those rapid motions that take place
without altering the configuration of the system are analogous to the rotation of
a flywheel or of a fluid circulating in a vortex (J. J. Thomson 1888, Chap. VI,
“Temperature,” §46; see Poincaré 1892a, §314; Langevin 1913, 706).

The Analogue of the Second Principle for Reversible Processes

Helmholtz mechanically defined a function sharing the same properties as entropy
and the role of the temperature is played by the vis viva of these rapid movements.
For the case of reversible processes that are infinitely slow, Helmholtz formulated

4Darrigol described the method usually employed by Poincaré : “He read scientific texts quickly
as a whole, and reconstructed the reasonings in his own manner. The result was often clearer than
the original, revealed some essential features in full light, but overlooked other important ones”,
Darrigol 2000, 353.
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three “natural” hypotheses. First, the velocities of the non-controllable coordinates
are much greater than those of the controllable coordinates: Pqb >> Pqa � 0 (hypoth-
esis I). The non-controllable coordinates are cyclic (or gyrostatic) – (hypothesis II).
Therefore, they do not figure in the Lagrangian, and the corresponding equations
are5:

Pb D d

dt

�
@L

@ Pqb
�

D dpb

dt
:

If dQ is the energy transmitted during the change of coordinates qb, we have:

dQ D
X

Pbdqb D
X

Pb Pqbdt D
X

Pqb dpb
dt
dt D

X
Pqbdpb:

The kinetic energy is a homogeneous and quadratic function of the generalized
velocities (if the connections don’t depend explicitly on the time). Since the terms
containing the Pqa are infinitely smaller, we have:

d

dt

�
@L

@ Pqa
�

�
X
b

˛ab Rqb:

Admitting that the non-controllable coordinates have very small accelerations
(since we are considering an equilibrium situation, and the constant temperature will
be represented by the kinetic energy corresponding to an observably constant molec-
ular velocity6) –hypothèse III, the anterior derivative is zero and the Lagrangian
becomes:

@L

@qa
D �Pa (Poincaré 1892a, §316).

By the previous considerations and by the theorem of homogeneous functions of
degree n:

2T D
X

Pq @T
@ Pq D

X
Pqp �2Tb D

X
Pqbpb:

For the case of a monocyclic system, containing a single gyrostatic coordinate,
we have (Poincaré 1892a, §317; Helmholtz 1884a, §3: “Monocyklische Systeme”):

dQ D Pqbdpb; 2Tb D Pqbpb:

5The hypothesis that the non-controllable variables do not figure in the potential energy is, from a
modern point of view, reasonable for ideal gases but not for real gases, liquids and solids, where
the interactions between molecules can’t be ignored.
6Bierhalter maintains that Helmholtz was inspired by the first kinetic theories, for which the
velocities of gas molecules were equal and constant. (Bierhalter 1993, 434 and 443.)
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We can thus find an integrating factor of dQ for this case:

dQ

Pqb D dpb and so
dQ

Tb
D 2d .logpb/ :

We thus have an analogue to the second law of thermodynamics (for reversible
processes) if we allow that the temperature corresponds to the kinetic energy. This
is suggested by the kinetic theory of gases, as Helmholtz had remarked in his first
article.7

Poincaré then analyzed the case of thermal equilibrium between two bodies. The
coupling (called “isomore”, after the Greek expression for “same denominator”)
between two monocyclic systems with the same integrating factor (temperature)
corresponds to the condition of thermal equilibrium. Since in a monocyclic system,
it is impossible to operate directly on the gyrostatic coordinates qb by means
of external forces, heat cannot be transmitted across these coordinates except by
its coupling to another monocyclic system, and the coupling has to be isomore.
Poincaré did not see how this theory would explain the fact that two bodies in
contact, with the same temperature would not exchange calorific energy:

It is necessary to explain why, when two bodies with the same temperature are placed in
contact, no heat passes from one to the other. The explanation has been attempted. The two
bodies have been compared to two pullies with equal rotational velocities; when the pullies
are turned, there is no shock and no transmission of living force from one to the other;
when the two bodies are placed in contact, there will be no shocks between the molecules,
the latter having the same velocity since the temperatures of the two bodies are the same.
This explanation is far from satisfying.

By this, perhaps Poincaré means that the explanation is not compatible with the
equipartition of energy: if two gases at the same temperature have molecules with
different masses, their velocities should be different.8

Vibratory Motion and Monocyclic Systems

Poincaré asserts: “Molecular motions appear to be vibratory motions this way and
that around a fixed point.” He does not say that this is restricted to solid bodies. He
is probably referring to the vibratory theory of heat. Poincaré wants to show that
in this case the kinetic energy is still an integral divisor of dQ, which represents

7“Hier tritt die Analogie mit der kinetischen Gastheorie schon sehr deutlich heraus. Die Temperatur
� ist der lebendigen Kraft proportional” (Helmholtz 1884a, fin du §3.) Martin Klein notes that
Helmholtz had recognized that thermal motion is not strictly monocyclic: “I have affirmed from
the beginning that thermal movement is not strictly monocyclic.” translated from Helmholtz 1884a,
757; see Klein 1972, 67.
8Poincaré 1892a, §331. See Bryan 1891, §26 et §27, Helmholtz 1884b, end of §6 “Koppelung
je zweier Systeme”; Bierhalter 1993, 446. The name for the coupling is first explained at the
beginning of §5 of Helmholtz 1884a.
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an original contribution (Poincaré 1892a, §322–326; quote from the beginning of
§322; see also §315).

Allow that there is only one parameter that varies rapidly. It is not cyclic, since
it figures in the potential energy of a vibratory motion. Here hypotheses I and III
remain valid, but not hypothesis II. The potential and kinetic energies are:

V D A .qa/ q
2
b

2
C C .qa/ ; T D B.qa/ Pq2b

2
:

The Lagrangian corresponding to this coordinate qb is:

d .BPqb/
dt

C Aqb D �P:

For a stationary vibratory motion P is zero and A and B are constant; in that case:

A D !2B; qb D h sin .!t C '/ ; Pqb D h! cos .!t C '/:

Given the extreme rapidity of the oscillations, if one considers a sufficiently long
time, it is the mean value of the kinetic energy that intervenes. As cos2x D 1=2, we
have:

T D Bh2!2

4
D Ah2

4
:

We can calculate the work of the force P during “a time ıt, very small in an
absolute sense but nonetheless very large in relation to the period of vibration”:

ıQ D �
Z
Pdqb D

Z
dB

dt
Pqbdqb C

Z
B
d Pqb
dt
dqb C

Z
Aqbdqb:

The first factor in the first integral of the second member may be considered as

constant, the derivative dB/dt being small; the integral of
Z

Pqbdqb taken over a time

ıt is replaced by the product of ıt with the average value h2!2/2 of Pq2b ; thus the first
integral of the second member becomes:

dB

dt
ıt
h2!2

2
D h2!2ıB

To calculate the two other integrals, Poincaré develops A and B by reference
to increasing powers of t. The fact that ıt is small permits one to consider only
the linear part of these linear developments; the first derivatives of A and B are
considered as constants. Moreover, one can choose ıt in such a way that at the
beginning and at the end of this interval q is null. After some clever calculations,
Poincaré arrives at the expression (Poincaré 1892a, §325):

ıQ

T
D 3

ıB

B
C 2

ı
�
!2h2

�
!2h2

� ıA

A
;
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which is an exact differential. Then, Helmholtz’s theory permits the generalization
of useful results for perfect gases to other states (of matter); in conclusion:

Clausius’s theorem [for reversible processes, dQ/T is an exact differential] is, in conse-
quence, well enough proven for the case of a vibratory state of molecules in the case of a
swirling state (Poincaré 1892a, end of §325)

Irreversibility and Mechanism

For a holonomic mechanical system, the kinetic energy is a quadratic function of
the generalized velocities Pq. To make the system return to its initial state by the
same path, we can change the sign of the time parameter (change dt to –dt); then
the Pq become – Pq but the quadratic terms do not change, nor does V D V(q); thus
the Lagrangian function remains the same. The same considerations apply to the
Lagrangian equations d

dt
@L
@ Pq � @L

@q
D P , since dt and Pq simultaneously change

sign while q and P remain indifferent. Therefore, Poincaré writes: “the sytem,
when it reverts to its initial state, passes again exactly through those states that it
had assumed in departing form the initial state; the transformations are therefore
reversible” (Poincaré 1892a, §326).

However, Helmholtz found systems, called incomplete systems, for which the
kinetic energy contains powers of odd exponents. He also showed that all the general
equations that are valid for complete systems retain their form for the case of
incomplete systems. In particular, the kinetic energy is an integral divisor of the
quantity of heat for incomplete monocyclic systems. But if for complete systems,
T D T .qa; Pq/ is a quadratic function of the generalized velocities, in the case of
incomplete systems T0 can have terms of odd degree with respect to the generalized
velocities, because one part of the qa, D qc, depends on the Pqb . The consequence is
that a change of sign of the time implies a change in the Lagrangian – “irreversible
phenomena could thus take pace with incomplete systems; this is what Helmholtz
admits.” The analogy for irreversibility consists in comparing the thermal motion
of molecules with hidden stationary movements. In the case of the spinning top, the
top that spins is distinguished from the dead top by its capacity to resist the action of
external forces that tend to change the direction of the action of rotation. Helmholtz
conceives of this top is enclosed in a shell, thus remaining invisible and inviolable
by humans.9

9Poincaré 1892a, 442. An illustration of a case where the living force ceases to be proportional to
the square of the velocity is that of a wheel turning on an axis equipped with a centrifugal force
regulator; if the angular momentum increases, the bearings of the regulator recede from the axis
while increasing the moment of inertia, so that the kinetic energy is not simply proportional to the
square of the angular velocity. Poincaré 1892a, 431.
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In spite of the interest of Helmholtz’s ideas, Poincaré, by a sufficiently general
argument, shows that they cannot account for irreversible phenomena. In his note,
“On the attempts at a mechanical explanation of the principles of thermodynamics,”
he poses the following question: “Can we, by representing the world as composed
of atoms, explain why heat never passes from a cold body to a hot one?”.10

Suppose a general mechanical system obeying the equations of Hamilton. The
Hamiltonian is:

H .p; q/ D
X

pa Pqa �L;

summing over the variables p and q.
For the case where the system is shielded from all external action, the Hamilto-

nian equations are, Pa D 0:

Pqa D @H

@pa
; Ppa D �@H

@qa
:

If natural processes simultaneously obey the equations of mechanics and
Carnot’s principle, there must exist a function S(q,p), “that is constantly increasing
and that we will call the entropy”. Then we can prove:

dS

dt
D

X �
@S

@q

dq

dt
C @S

@p

dp

dt

�
D

X �
@S

@q

@H

@p
� @S

@p

@H

@q

�
> 0:

Or, again, using the Poisson brackets,

dS

dt
D fS;H g > 0:

Poincaré thought that he could demonstrate the impossibility of such an inequal-
ity while admitting that “the system, while remaining soustrait of all external action,
is subject to such connections that the entropy is susceptible of a maximum”. This
state should correspond to a state of equilibrium. We can develop H and S in
a power series (q˛ � qo

˛), (p˛ � po
˛), where the index o refers to the situation of

equilibrium. The first term of the expansion can be cancelled owing to the fact
that the two functions, H and S, are defined up to a constant. Since we assume
the expansion is done close to the values corresponding to a maximum of entropy,
the first derivatives cancel for qo

˛, po
˛ . If we consider small variations around the

equilibrium configuration, we can restrict ourselves to the quadratic terms. The
entropy will then be represented by a quadratic form (where the x represent either
the q or the p and the derivatives are calculated from their equilibrium values):

10Poincaré 1889, 550. Helmholtz’s papers are explicitly cited at the beginning of this note. The
proof appears also in Poincaré 1892a, §328 ff.
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S D
X
i;j

@2S

@xi @xj

�
xi � xoi

��
xj � x0j

�
:

Since we admit that S has a maximum for qo
˛ , po

˛, this form is negative definite.
In order that the Hamiltonian can also be represented by a quadratic form, the

first-order terms of its development should cancel. Poincaré justifies this as follows:
“The derivatives of H cancel each other equally, because this maximum is an
equilibrium position and so Pp˛ and Pq˛ must cancel.” The form H can be definite
or indefinite. Poincaré tells us nothing about the relation between these conditions
and those that can represent thermodynamic equilibrium.

Admitting that S and H are representable by quadratic forms near the maximum
entropy, Poincaré shows that their Poisson bracket is also a quadratic form that
is not positive definite. This result is intuitive, in the sense that the Poisson
bracket transforms the squared terms of the quadratic forms into rectangular forms
(of indefinite sign). Note that if the development of the Hamiltonian in series
carries linear terms, the plausibility increases of the impossibility of the inequality
(S,H)> 0 increases (Poincaré 1892a, §330).

Poincaré ends this note with the following conclusion:

We should conclude that the two principles of the increase of entropy and of least action
(understood in the Hamiltonian sense) are irreconcilable. Thus if Mr. Helmholtz has shown,
with admirable clarity, that the laws of reversible phenomena derive from dynamics, it
seems probable that we will have to look elsewhere for an explanation of irreversible
phenomena, and give up on the familiar hypotheses of rational mechanics from which one
derives the equations of Lagrange and Hamilton. (Poincaré 1889, 553)

In 1891, this note provoked a severe critique from George Bryan, who insisted
that the equilibrium conditions imposed by Poincaré implied that all parts of the
system are at rest. Since the entropy of a monocyclic system is the logarithm
of a moment, if the latter is zero then the entropy will be infinite, contrary
to Poincaré’s supposition. This criticism seems correct. Bryan is doubtless also
correct that the kinetic molecular interpretation of temperature is incompatible with
Poincaré’s equilibrium conditions. Zermelo briefly mentioned Poincaré’s note as
another attempt to show that irreversible processes cannot always be explained by
Helmholtz’s theory. Finally, the note got the attention of Louis de Broglie, for whom
“these attempts at an interpretation of the second law of thermodynamics that is
mechanical, but not statistical, have only led to very fragmentary results taht only
apply to very special models.” (Bryan 1891, 106–107; de Broglie 1948, Chap. V:
119; Zermelo 1896; see Bierhalter 1993, 455 and Brush 1976, §14.7, note 4).

Poincaré and Maxwell’s Kinetic Theory of Gases

Poincaré published two editions of his course on thermodynamics. The second,
in 1908, differed little from the first, except insofar as Poincaré’s opinion on the
kinetic theory was concerned. At the end of the preface to the first edition, Poincaré
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repeated the conclusion of his 1889 note: “I end with the theory of monocyclic
systems. I will only cite my conclusion: Mechanism is incompatible with Clausius’s
theorem.” In an issue of Nature in 1892, there was a debate between Poincaré and
P. G. Tait. Tait accused Poincaré of having forgotten the kinetic theory in his course
of Thermodynamique. Poincaré responded that he “wanted to remain completely
apart from molecular hypotheses,” and that he found the kinetic theory “not very
satisfying”. In the following year Poincaré’s position regarding the kinetic theory
would become rather more favorable.11

Poincaré began to take an interest in the kinetic theory of gases in the course
of his lecture on the papers of Maxwell, which was probably connected with
his interest in ionic theories of electromagnetism (notably that of Lorentz), as
the development of theoretical microphysics favored atomistic theories of heat.
In 1893, Poincaré carefully read Maxwell’s paper of 1866 and raised a correct
objection to Maxwell’s reasoning to justify the law of adiabatic expansion of a gas.
This interesting criticism went straight to the foundations of statistical mechanics.
Poincaré would take an interest above all in the most abstract justifications for
equilibrium distribution, equipartition, and the tendency to equilibrium. That is to
say, he favored the ensemble approach of Hamiltonian mechanics and he quickly
saw the connection with a theorem in the three-body problem.12

The Article “Le mécanisme et l’expérience”

Poincaré spoke for the first time about the importance of his recurrence theorem
for the attempts at a mechanistic reduction of Carnot’s principle in the article
“Le mécanisme et l’expérience” (1893a), published in the inaugural issue of the
Revue de Métaphysique et de Morale. Experience shows that in nature there are “a
crowd of irreversible phenomena,” which appear to be difficult to reconcile with
mechanistic reduction. Poincaré divided mechanists into two groups. One was the
side of Helmholtz, who did not use statistical reasoning, and the other was the
English. Speaking of Maxwell (whom he considered to be English), he wrote:

The apparent irreversibility of natural phenomena has to do with the fact that molecules are
too small and too numerous for the coarseness of our senses : : : . Maxwell introduces the
fiction of a “demon” whose eyes are subtle enough to distinguish molecules, and whose
hands are small enough and quick enough to grasp them. For such a demon : : : there would
be no difficulty in making heat pass from a cold body to a hot one : : : .The kinetic theory
of gases is up to now the most serious attempt to reconcile mechanism with experience.
(Poincaré 1893a, 536)

11Poincaré 1892b, 485. Boltzmann stated, at the end of the preface to the first part of his Leçons
(1896a), that “no one wanted to give much space to my work. It was cited with respect by Kirchoff
and by Poincaré just at the end of his Thermodynamique, but not used when the occasion presented
itself.”
12Poincaré 1893b; see the reference to this criticism in Boltzmann 1896a, note à la formule (187),
see also Príncipe 2008, §10.4.1. On Poincaré’s contributions to electromagnetism and the theory
of electrons, see Darrigol 2000, Chap. 9, especially §9.3.3.
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Poincaré here speaks of the thought experiment now known as “Maxwell’s
demon.” In a letter to P. G. Tait in December 1867, reprised in his Theory of Heat
(1871), Maxwell considers a finite being capable of seeing individual molecules.
Controlling a barrier that separates the two parts of a chamber full of gas, this being
could provoke a flow of heat (without compensation, that is without consuming
work) letting only the fastest-moving molecules pass in one direction and only the
slowest in the other. Maxwell therefore admits that the validity of the second law
is only statistical (Maxwell to Tait, 11 déc. 1867, see also Maxwell to Strutt, 6
December 1870, in Maxwell 1990, vol. 2, 328–334, 582–583). Poincaré adds that
the kinetic theory is not incompatible with his recurrence theorem:

An easily established theorem teaches us that a finite world, subject only to the laws of
mechanics, will always pass again through a state very close to its initial state. On the
contrary, according to accepted experimental laws, (if we grant them an absolute validity,
and if we wish to push their consequences to the fullest), the universe tends to a certain final
state from which it will not be able to depart. In this final state : : : all bodies will be : : : at
the same temperature : : : . Has anyone remarked that the English kinetic theories can escape
from this contradiction? The world, according to them, first tends toward a state where it
would remain for a long time without any apparent change : : : but it would not maintain that
state forever : : : .it would remain there only for an enormously long time, even longer than
the number of molecules is large. This state would therefore not be the definitive death of
the universe, but a kind of sleep, from which it would awaken after millions of millions of
centuries.

This theorem, and the status of mechanism, were discussed by Zermelo and
Boltzmann in 1896. The latter asserted, like Poincaré that the recurrences, for the
usual macroscopic systems, escape our experience (Poincaré 1893a, 536. See Brush
1976, §14.7, 632–640).

The Recurrence Theorem

The recurrence theorem appears in Poincaré’s paper, “Sur le problème des trois
corps et les équations de la dynamique,” which received the Oscar II of Sweden
Prize, January 21, 1899.

The Three-Body Problem

The three-body problem is one of the most celebrated problems of mechanics: given
three material points interacting according to the law of universal gravitation, freely
moveable in space; to find their motions from given initial conditions. From 1750
to the end of the nineteenth century, several hundred articles were published on this
subject. Poincaré’s paper went through two formulations (1889 et 1890), of which
only the second was published. The notion of the stability of a system, initially
defined by the confinement of the variables that define the system, was replaced in
1890 by that of Poisson: the movable point P (describing, for example, a planet),
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should return after a sufficiently long time, if not to its initial position, then to an
arbitrarily nearby point to the initial position (recurrence).13

Some periodic solutions were already known. Poincaré studied the non-periodic
solutions (the asymptotic and the doubly asymptotic solutions) and developed
qualitative methods. These non-periodic solutions are infinitely improbable, but
“taken together with the periodic solutions : : :make up, so to speak, the tangled
fabric formed by the totality of general orbits.”14

The Concept of Integral Invariant

The concept of the integral invariant was created by Poincaré in the framework of his
research on the differential equations of Hamiltonian systems. Recall his definition:

dx1

X1
D dx2

X2
D � � � D dxn

Xn
D dt;

a system of differential equations. Let x0
1, : : : , x0

n be any point in a domain D(0) of
k dimensions. This set of points will occupy, at another instant t, another domain of
k dimensions, D(t). A k-dimensional integral over the domain D(t) is an integral
invariant of order k of the system of equations if the value of this integral is
independent of t. The typical example is the constant volume of a determinate part
of an incompressible fluid. For a Hamiltonian system with n degrees of freedom,
Poincaré shows that:

I1D
Z X

i

dqidpi ; I2D
Z X

i;k

dqidpidqkdpk; ::::::; InD
Z
dq1dp1dq2dp2 : : : dqndpn;

are integral invariants. In particular, the integral In is an integral invariant cor-
responding to the condition of incompressibility of a fluid in the phase space
(Liouville’s theorem).

Poincaré took great advantage of the invariants I1, In in his researches on some
special solutions (periodic solutions of the second type and doubly asymptotic solu-

13On the history of the problem, see Whittaker 1899 and Barrow-Green 1997. The first version, that
of 1889, was printed but not published, because a crucial error was detected in the demonstration
of stability. It was in the second version that the recurrence theorem played a decisive role in the
structure of the paper. See Robadey 2006.
14Von Zeipel 1921, in Œuvres de Poincaré, vol. 11, 308. Here is an example of an asymptotic orbit,
in a system consisting of a Sun, an Earth, and two moons of infinitely small mass: “Suppose an
observer placed on the Earth and slowly turning on himself so as to be in constant view of the Sun.
The Sun will appear to him to be at rest, and the moon L1, with a periodic orbit, will appear to
describe a closed curve C. Moon L2 will then describe for him a sort of spiral of which the arms,
more and more tightly wound, will indefinitely approach the curve C.” Poincaré 1891, Œuvres
vol. 8, 532–533.
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tions) and on the question of the stability of motion. He immediately remarked on
the existence of unstable orbits: “The existence of asymptotic solutions : : : suffices
to show that if the initial position of point P is suitably chosen, the point P will
not re-pass an infinite number of times as nearly as one might like to the initial
position”. Poincaré went on to establish the exceptional character of these unstable
solutions: “There will be an infinity of solutions of the problem that will not have
stability : : : in the sense of Poisson; but there will be an infinity that do have it. I
would add that the first can be regarded as exceptional” (Poincaré 1890a Sect. 8,
“Usage des invariants intégraux”, Œuvres vol. 7, 313–314).

Poincaré began by demonstrating the following theorem. Consider a space of
N dimensions and assume that the hypervolume

R
dx1dx2 : : : dxN is an integral

invariant; if the point P remains at a finite distance and if we consider any region g0

of this space, no matter how small the region s, there will be trajectories that cross
it an infinite number of times. The demonstration shows that the total volume of
the series of regions of space that succeed the region g0 becomes infinite if there is
no recurrence (Poincaré 1890a, Œuvres vol. 7, 316). The calculation of the time of
return is a very delicate problem on which Poincaré, as far as I know, said nothing
in his papers.

The Exceptional Character of Trajectories Without Recurrence

After his study of asymptotic solutions, Poincaré studied possible trajectories
without the property of recurrence. The previous demonstration did not seem to
allow for this type of trajectory, and it seemed necessary to harmonize the two
results. The quasi-periodic character is almost always there in the evolution of a
conservative system; Poincaré expressed it using the concept of probability. This
concept appears explicitly in the enunciation of the corollary of the recurrence
theorem in the final version of the paper (1890a):

Corollary. It follows from the preceding that there exists an infinity of trajectories that cross
the region ı(P0) infinitely many times; : : : but there may exist others that only cross the
region a finite number of times : : : . It will suit our purposes to say that the probability that
the initial position of a mobile point P belongs to a certain region ı(P0) is to the probability
that the initial position belongs to another region ı0(P0) as the volume of ı(P0) is to the
volume of ı0(P0).

The probabilities being thus defined, I propose to establish that the probability that a
trajectory ı(P0) starting from a point does not cross this region more than k time is zero, no
matter how large k is or how small the region ı(P0). That is what I mean when I say that
trajectories that only cross ı(P0) a finite number of times are exceptional. (Poincaré 1890a,
Œuvres VII, p. 316)

The historian Anne Robadey remarks that the recurrence theorem (and its
corollary), of which the proof is non-constructive, represents, in the history of
mathematical theorems, one of the first examples in which a property is shown
to be valid for “almost all” of the objects in a given class. Poincaré directly
connected the concept of probability and the relative measure of a region. Today
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we characterize the exceptional character of trajectories without recurrence by
saying that they constitute a set of measure zero. The measure theory developed by
Borel, Lebesgue, and others came after this paper of Poincaré’s. The development
of ergodic theory is intimately connected to these developments. The influence
of Borel on Lebesgue, and the influence of Poincaré on the latter, has already
been remarked on. George Birkhoff, one of the mathematicians who contributed
the most to the theory of ergodicity, at a conference on “Probability and physical
systems” (1931), considering the problem of exceptional trajectories (and its lack
of physical significance in light of the impossibility of rigorously determining the
initial conditions), eulogized Poincaré as the first to use, in an intuitive manner,
considerations “of probability 1”; that is, the first to consider, in problems of
theoretical mechanics, sets of measure zero (Von Plato 1994, 110; Poincaré 1896).

“On the Kinetic Theory of Gases” (1894)

In 1894, Poincaré wrote an article presenting his lecture on the foundations of
statistical mechanics and analyzed Kelvin’s criticism of the validity of the ergodic
hypothesis (1892). This criticism immediately aroused the interest of several British
scientists (Watson, Burbury, Bryan and Rayleigh) as well as that of Boltzmann.
Poincaré showed that Kelvin’s examples were not genuine counter-examples to
equipartition.15

Poincaré recognized that great efforts had been expended to develop the kinetic
theory, and that the results of those efforts had not been proportional to the effort
expended; he stated:

I doubt that, up to the present time, it can account for all the known facts. But it’s not a
question of knowing whether it is true; that word, where such a theory is concerned, has no
meaning; it is a question of knowing whether its fertility is spent, or whether it can still help
with further discoveries. (Poincaré 1894, 246)

By that, Poincaré wanted to indicate that the kinetic theory has the status of an
analogy, a scientific illustration in the sense of Maxwell (see Príncipe 2010, 2012).

After recalling the basic conception of the kinetic theory, already presented by
the Bernoullis, Poincaré emphasized that “the theory only took on its definitive
form when Clausius proved his virial theorem.” The internal virial allows us to
understand how remote the behavior of real gases can be from that of an ideal
gas. Then he mentions Clausius’s hypothesis of the proportionality of the energies
associated with the components of molecules to the kinetic energy of translation.
This postulate of Clausius is justified by the theorem of equipartition, of which

15See Thomson 1892 and Brush 1976, §10.9, who concludes: “The outcome seemed to be a general
agreement that most of Kelvin’s test-cases did not prove any violation of the equipartition theorem,
but, on the other hand, that one could not be sure that the theorem was always valid in systems of
a finite number of particles”. See also Príncipe 2008, §10.4.2.
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one possible foundation is the ergodic hypothesis. Recall first the genealogy of
that hypothesis, which came to Poincaré from reading Maxwell’s 1879 paper, “On
Boltzmann’s Theorem on the average distribution of energy in a system of material
points,” in which Maxwell took up the global approach introduced by Boltzmann.
In 1868, Ludwig Boltzmann criticized Maxwell’s proof of the stability of the
distribution with respect to binary collisions, and introduced the distribution that
Gibbs would call micro-canonical. In the case of a gas subject to the action of an
external force field, he introduced the global distribution, a function of the positions
and the velocities of the N molecules of a gas:

�
��!r 1;�!r 2; : : :�!r N ;�!V 1;�!V 2; : : :�!V N

�
;

� d� giving the fraction of the time (considering a very long time) that the system
spends in the element d� D d3r1d3r2 : : : d3rNd3V1d3V2 : : : d3VN . He first shows
that if a system is contained at an instant t within a volume element d� of the
phase space, then at a later instant t C ıt it will be contained in a volume element
d� 0 with the same volume (d� D d� 0, Liouville’s theorem). He deduces from this
that the density � is constant along the entire trajectory. Finally, he admits that
the trajectory of the system in this 6N dimensional space fills the energy level
E D cte. It then results that the density � is uniform on this level. Starting from
this distribution, characterizing a large isolated system, Boltzmann arrived at the
characteristic distribution of a small subsystem (one molecule, for example) that is
weakly coupled (thermally coupled) with its complement (the remainder of the large
system, which plays the role of thermostat). If E* is the energy of this subsystem,
then the distribution associated with it is ˛e� 2hE *. The equipartition of the energy
for the quadratic degrees of freedom is a consequence of this distribution. This law,
now known as the Maxwell-Boltzmann distribution or the canonical Gibbs law, still
remains an essential element of statistical mechanics.16

In 1879, Maxwell attributed to Boltzmann “the general solution of the problem
of the equilibrium of kinetic energy among a finite number of material points,” and
noted that “The only assumption which is necessary for the direct proof [of the
equipartition theorem] is that the system, if left to itself in its actual state of motion,
will, sooner or later, pass through every phase which is consistent with the equation
of energy”.17

In 1894, Poincaré noted that the mean value of a dynamical magnitude should, if
it is accessible to observation, be comprised of “the mean taken at once with respect
to time and with respect to the various molecules; it is, so to speak, a mean value
of mean values.” This assertion suggests that for him, the equivalence of the two

16Boltzmann 1868. A partial translation appears in Barberousse 2002, 150–165. See Darrigol and
Renn 2000.
17Maxwell 1879, Scientific Papers, 714. Maxwell recognized that one could imagine systems
where this condition (the ergodic hypothesis) is a false, but he admits that, for a gas enclosed in a
container, the interaction of the molecules with the barrier permits an explanation of its validity.
ibid., 714–715.
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means was not evident (Poincaré 1894, 249). Poincaré gives the following form to
the equipartition theorem:

If there is no other uniform integral than that of the living forces, and if the living force of
the system is decomposable into two independent parts, the mean values of these two parts,
over a very long time, will be among themselves as the number of their degrees of freedom.

Poincaré noted that the existence of other uniform integrals, for the case of
a material system that is free in space (for which there is conservation of linear
momentum and of angular momentum), changes this form (a case considered in the
second part of Maxwell’s 1879 paper). The modified form insists that the energy
must be the only uniform integral (see below; Poincaré 1894, 253).

Poincaré recognized the anomaly of specific heats, but he believed that this
difficulty, though unresolved, would perhaps not be insurmountable (Poincaré 1894,
255). The isotropic distribution of velocities for a gas at equilibrium, without
action by an external force, is another consequence of “Maxwell’s theorem.”
All “the preceeding suffices to show the importance of Maxwell’s theorem [the
equiprobability of domains of equal volume in the available phase space of a
system]; this is the veritable cornerstone of the theory of gases, which would be
lost without it.” Poincaré gave a form of “Maxwell’s postulate,” allowing him to
justify “Maxwell’s theorem,” which corresponds not to the ergodic hypothesis, but
to the quasi-ergodic hypothesis:

Maxwell admits that, whatever the initial situation of the system, it will always pass an
infinite number of times, I don’t say through all the situations compatible with the existence
of integrals, but as close as one would like to any one of these situations.18

This expression was surely inspired by his recurrence theorem, in which return
is not exact.19

A Theorem on Non-uniform Integrals

Liouville’s theorem implies that the motion of a representative point defines a
continuous point transformation that conserves the extension in phase. In the
ensemble approach this implies that the distribution function corresponding to the

18Poincaré 1894, 252, 255–256. Equiprobability is considered in Poincaré 1896, §89 (course on
probability of 1893–94). There he considers a conservative mechanical system obeying Hamilton’s
equations, for which the initial conditions are unknown; he admits that the probability of finding it
within a volume is proportional to the magnitude of the volume, and deduces Liouville’s theorem.
19Brush 1976, 372, believes that Poincaré confused the two hypotheses. It would be more natural
not to assume that Poincaré was unaware of the distinction between the two hypotheses, but that
he found the second one more natural. Maxwell did not distinguish them. Maxwell 1879, Scientific
Papers 2, 720. In rebuttal, von Plato 1994, 102, praises the 1894 article: “[It] contains the essential
concepts that much later became the tools of the trade of ergodic theory: the requirement that the
trajectories be dense, and that this holds, except for a set of initial conditions of probability 0”.
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permanent state should be constant along each trajectory. Therefore the equilibrium
distribution should, in all generality, have the form

�0 .q; p/ D F .E; 2; : : : ;  2n�1/ ;

F being an arbitrary function of the integrals  i (functions of p and of the q that
remain constant along the length of each trajectory) of the system of 2n Hamiltonian
equations for a conservative system. Maxwell, in 1879, believed that it is the
ergodic hypothesis that justifies that the function F depends only on the energy.
Boltzmann reflected a great deal on the justification of the ergodic hypothesis and
therefore on the “effacement” of the 2n�2 first integrals, and it is probable that
these reflections made him doubt the validity of that hypothesis for the general case
of gases composed of polyatomic molecules.20

Toward 1890, Poincaré formulated a theorem asserting the non-uniformity of
the integrals, apart from energy, of the canonical equations of celestial mechanics.
This result concerned perturbative methods of solving Hamilton’s equations. The
theorem illuminated one of the major problems in the foundations of classical
celestial mechanics – the justification of the role of energy in the distribution
function. A difficult and often ignored question arises. Chapter V of the first volume
of the Nouvelles méthodes de la Mécanique céleste (1892c) is dedicated to the non-
existence of uniform integrals of the canonical equations. Consider a conservative
mechanical system, described by 2n parameters: n coordinates q and n conjugate
momenta p. Poincaré admits that the mechanical system is stable in the sense that
no particle leaves a limited region of space. The kinetic energy, the potential energy,
and the total energy are easily defined. The 2n canonical equations admit 2n�1
integrals that are independent of time. These integrals are in general non-uniform
functions:

The canonical equations of celestial mechanics do not admit (excepting those exceptional
cases that are discussed separately) uniform analytic integrals apart from the energy.
(Poincaré 1892c, 8, 253. See also Born 1925, Brillouin 1964, 109)

A uniform integral of Hamilton’s equations is a function of the p and the q that
remains constant in the course of the evolution of the system. According to the
theorem, the energy is the only “well behaved” integral; the others are non-analytic
functions, with discontinuities and “bizarre” behaviors. A non-uniform integral of
the canonical equations can take a value infinitely close to a given value in the
neighborhood of any point of the phase space.

20Boltzmann early on doubted the validity of the ergodic hypothesis, which is why he preferred in
1871 to return to a generalization of Maxwell’s Ansatz. When he adopted ensembles, he preferred
not to justify them by ergodicity, but rather by the empirical fact that the thermodynamic behavior
of a system does not depend on initial conditions for given external thermodynamic conditions; see
Gallavotti 1994, §3, Barberousse 2000, Chap. V, 158.
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This result had already figured in the paper on the three-body problem (1889–90).
There Poincaré considered the attempts to integrate the equations of celestial
mechanics by trigonometric series whose convergence was unproven. He showed
that the series introduced by Hugo Gyldén and by Anders Lindstedt were divergent.
This divergence followed from the above general result: the absence of a uniform
analytic integral apart from the integral of the living forces that will be valid for all
the equations of dynamics (see Robadey (2006, 22, 25–26, 31) and Barrow-Green
(1997 § 5.9)).

Poincaré’s proof supposes the existence of multiperiodic perturbative solutions
by the method of Delauney (variables action-angle). He shows by reductio that if
there exists another uniform integral besides the energy, the nullity of its Poisson
bracket leads to impossible relations for its Fourier coefficients at various orders
of perturbation. Note that the validity of Poincaré’s theorem is doubted by some
modern authors.21

Léon Brillouin notes that non-analyticity (non-uniformity) is closely connected
with non-separability:

This condition [established by Poincaré’s theorem] resulted in discontinuities in the
solutions obtained by the Hamilton-Jacobi method. It may be explained by the following
statement: For a given mechanical problem with energy conservation and no dissipation, one
may find a few variables that can be separated away from the system. When this has been
done, one is left with the hard core of non-separable variables. This is where the Poincaré
theorem applies, and specifies that the total energy is the only expression represented by
a well-behaved mathematical function. Many other quantities may appear as “constants”
of a certain motion, but they cannot be expressed as analytical and uniform integrals. This
means that any kind of modifications in the problem may provoke an abrupt and sudden
change of the “constants”. This discontinuity may be the result of a very small change
in any parameter in the mechanical equations, or, also, in any small change in the initial
conditions. (Brillouin 1964, 128)

For him, “The Poincaré theorem contains the justification of Boltzmann’s
statistical mechanics, which should apply when (and only when) the total energy
remains the only well-behaved first integral”. In effect, it is reasonable to admit
that the forces between molecules and the interactions between partitions are
perturbations removing all degeneracy in an action-angle development.22

Poincaré himself did nothing to make his theorem known to physicists. His
discussion of the role of the principle of conservation of energy, in the preface
to his Thermodynamique (1892a), does not mention this result.He mentions it

21Kolmogorov in 1954 published a theorem contrary to Poincaré’s. Arnold and Moser generalized
Kolmogorov’s result and formulated a theorem known by the acronym KAM. See: Arnold 1978;
Cercignani 1998, 158.
22Brillouin 1964, 125–126. Borel was one of the rare authors who stated this theory in a treatise on
statistical mechanics. Borel 1925, 20.



Henri Poincaré: The Status of Mechanical Explanations and the Foundations. . . 147

only in his 1894 article on the kinetic theory, saying only that energy is the only
uniform integral for the kind of system for which Maxwell’s postulate is reasonable
(Poincaré 1894, 253).

Conclusion

The scientific personality of Poincaré is characterized by the breadth of his
interests, his familiarity with both French research traditions and foreign works,
his predilection for the big questions, his critical spirit, and his subtlety. He took
a profound interest in celestial mechanics, electrodynamics, thermodynamics, the
calculus of probabilities, among many other questions. His creativity allowed him
to build bridges between different domains of his research.

Poincaré was aware of the problem of the mechanistic reduction of Carnot’s
principle. First, he was interested above all in Helmholtz’s work on monocyclic
systems. The issue had already had an echo in France (Alfred Ledieu and Jules
Moutier were interested in a similar analogy proposed by Clausius). Poincaré
admired Helmholtz’s work in other domains, which doubtless encouraged this
more specific interest. Poincaré taught and developed these ideas, shortly after
their publication; he extended Helmholtz’s argument in the case of vibratory
motions that represent heat in Ampère’s conception. And he showed that, in
spite of their interest, these considerations would not allow for an explanation of
irreversibility. At that time, he knew only the outlines of the work of Maxwell
and of Boltzmann on the kinetic theory. Electromagnetism was one of the subjects
of his first courses on mathematical physics (1889/90); Poincaré gave particular
emphasis to the epistemological significance of Maxwell’s Lagrangian formulation
of electromagnetism, which is one of the great examples of a new phase in the
evolution of that physics that Poincaré called “the physics of the principles”. In this
framework, Maxwell formulated the theorem of the existence of an infinite number
of mechanical models compatible with a Lagrangian system, which suggests an
argument for the underdetermination of theories by empirical evidence. In addition,
Maxwell’s reflections anticipated Poincaré’s idea of a plurality of inter-translatable
languages. This was an idea that encouraged Poincaré’s interest in all of Maxwell’s
work.23

Poincaré was able to establish connections between his research in celestial
mechanics and the foundational problems of classical statistical mechanics (the
ergodic hypothesis and irreversibility). In these two domains, he gave a central role
to the concept of probability for continuous variables. He noted that if his recurrence
theorem were incompatible with the absolute validity of the second principle,
it would be compatible with the probabilistic interpretation of entropy. Another
result obtained by Poincaré, the non-uniformity of the first integrals of Hamilton’s

23Príncipe 2012. Helmholtz was then a foreign member of the Académie des Sciences.
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equations, also concerned the foundations of statistical mechanics. The importance
of this result was not emphasized by Poincaré, and it remained in the shadows until
the 1920’s. It stays ignored by most treatments of statistical mechanics. He also
touched on the problem of the limits of prediction in classical mechanics. In his
so-called popular works, Poincaré affirmed his epistemological pluralism, and often
spoke of the kinetic theory and the importance of probabilities.

In 1906, Poincaré would publish a paper on the kinetic theory of gases, in which
he showed a profound understanding of Gibbs’s treatise and gave a very subtle
analysis of irreversibility. He introduced two concepts, coarse-grained entropy and
fine-grained entropy, which represent a “substantialization” of the ideas discussed
in Chap. XII of Gibbs’s treatise: fine entropy always remains constant, while
coarse entropy, that of the physicists, “that which depends on our usual means
of investigation,” is constantly increasing (Poincaré 1906, Œuvres, vol. 10, 591).
The tendency to irreversibility is therefore a consequence of the limitations on
our means of observation. Poincaré would treat two problems that were simpler
than that of gases (the small planets, and a gas in one dimension) to show that
the tendency to equilibrium can be treated analytically. He showed that, for a
system with a finite number of particles, recurrences are inevitable and Carnot’s
principle is not absolutely valid. Poincaré also showed that, in a system that comes
to equilibrium, its apparent disorder may hide a latent order because of previous
state of equilibrium. This last notion is motivated by his reflections on the initial
notions of Boltzmann’s treatise, notions of disposition without molar organization –
molar ungeorgnete – and of disposition without molecular organization – molekular
ungeordnete. The article ends with the difficult problem of rarified gases. Poincaré
suggests that the behavior of gases can be composed as a mixture of the behavior of
a gas in one dimension and the three-dimensional gas of the kinetic theory; for short
times of evolution, the first kind of behavior is fundamental. (See Príncipe 2008,
§10.8).

Poincaré’s epistemological conceptions, his appreciation of the limits of classical
mechanics, and his taste for the theory of probability explain his openness to
probabilistic explanations in physics, an openness that was rather rare at this period
in France. His writings on probability and on the kinetic theory inspired the next
generation of researchers, especially Émile Borel.
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Henri Poincaré: A Scientist Inspired
by His Philosophy

Isabel Serra

Abstract This paper attempts to analyze the philosophical connections that
Poincaré established between the domains of physics and mathematics, both
explicitly in his philosophical work, and implicitly in his original solutions in
mathematics. Particular emphasis will be placed on the signs of coherence or
incoherence between what is explicit and what is implicit, that is, between his
thought in general and his scientific practice. In Poincaré’s early work on the
group-theoretical approach to differential equations, we see the beginnings of an
original way of connecting geometry with physics. Similarly, in his attack on the
three-body problem in celestial mechanics, and his study of the stability of the
solar system, we see a geometrical approach replacing the analytical one. His
group-theoretic approach to geometry later became the basis for his approach to the
“dynamics of the electron” between 1904 and 1906, an important part of the history
of relativity theory. These are examples of the ways in which, according to Poincaré,
“l’esprit mathématique” leads to the “true, profound analogies,” that is, the deep
structural forms, at the foundations of our physical theories. The understanding of
these connections in practice will illuminate Poincaré’s philosophical view of the
connection between mathematics and physics. But we can say that, on the other
hand, Poincaré’s philosophical views also influenced his scientific work.

Introduction

Henri Poincaré is often regarded as one of the “last universalists”. His universalism,
which expressed itself at the end of his life by the plurality of his fields of knowledge
and the scope of his work, was also expressed, since his youth, by his ability to create
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intersections between different fields of knowledge. Crossing the barriers between
mathematics, physics and philosophy, as well as between different mathematical
fields, Poincaré produced innovative and unexpected results. It is not difficult to
find, in the whole of his scientific and philosophical work, examples that illustrate
this scientific ability.

In order to highlight the links established by Poincaré between various fields of
mathematics, but also between geometry, physics, and philosophy, it is essential
to emphasize certain points of his scientific and philosophical career, especially
those contributions that can be considered as the major ones in light of the inter-
connections between different areas: Fuchsian functions, non-Euclidean geometry
and differential equations, non-Euclidean geometry and philosophy and, ultimately,
geometry and physics.

The Fuchsian Functions: A Starting Point
of the Crossing of Knowledge

When Poincaré wrote: “the mathematician should not be for the physicist a simple
provider of formulas; there must be a more intimate collaboration between them”
(Poincaré 1905a, 104), he was highlighting that the intersection of knowledge was
for him an explicit choice, at least at the later stage of scientific maturity.

The link he saw between mathematics and physics, revealed by the phrase just
quoted, is clearly present throughout his work. Sometimes, the relationship between
the two domains was established involuntarily during his research, and they only
become obvious with the development of results, as was the case with the invention
of Fuchsian functions. Poincaré himself verified that such things happen. The case
of Fuchsian functions illustrates his question: “Who has taught us to know the real,
deep analogies that the eyes do not understand but reason is able to see?” and
especially the answer: “It is the mathematical spirit, which disdains the material
to focus only on the pure form” (Poincaré 1905a, 106), such as to conform itself to
fit to the case of Fuchsian functions.

In 1997, Jeremy Gray and Scott Walter published some previously unpublished
work of Poincaré (Gray and Walter 1997, 1–25), including the discovery of the
Fuchsian functions, as well as Poincaré’s establishment of the relationship between
these functions and the transformations of non-Euclidean geometry. This discovery
of Poincaré resulted from one of his first research topics, the theory of differential
equations in the complex domain. Between 1878 and 1881 he worked on several
aspects of this issue and produced results that would prove to be fundamental in the
evolution of mathematics. His geometrical perspective and his use of the theory of
groups in the study of differential equations have opened new avenues, in particular,
as regards to its applications. On this research Jeremy Gray writes:

The author was very interested in the overall theory of differential equations, whether
first-order real gold linear and complex. Within two years his work was to transform both
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subjects completely, opening up whole new aspects of research in the one, and in the other
leaving little, it has been said, for his successors to do. (Gray 1981, 282)

Poincaré himself recalled this research almost 30 years later. To illustrate the
process of mathematical invention, he described the moment when, during a trip on
an omnibus, it connected two mathematical fields:

At the time where I was putting the foot on the step, the idea came to me, seemingly without
anything in my earlier thoughts to prepare me, that the transformations I used to define the
Fuchsian functions were identical to those of non-Euclidian geometry. (Poincaré 1908, 361)

This idea of Poincaré, which emerged at the beginning of his scientific career,
was the starting point of several avenues of research that he himself, but also other
mathematicians, travelled in the following years. First of all, the theory of functions
that Poincaré called “Fuchsian” (later called “automorphic”) brought “a power of
discovery to non-Euclidean geometry, whose interest up to then had appeared to
be limited to philosophy” (Walter 1996, 95). Indeed, this work of Poincaré is at
the origin of the change in status of non-Euclidean geometry. As a result of his
publications on the subject, in the following years, many mathematicians took an
interest in the topic and taught it in the universities (Walter 1996, 95–96). Poincaré
contributed decisively to the birth of this new branch of geometry, whose importance
was still unsuspected.

The discovery of Fuchsian functions and their connection with non-Euclidean
geometry was an event that had a strong impact in science, and “has helped open a
fertile ground for the new methods of the theory of groups” (Gray 1984, 10).

The discovery was also rich in consequences for the scientific journey of
Poincaré. Non-Euclidean geometry became for him an object of philosophical
thought, which led him to question the empirical origin of geometry and the nature
of physical space (Poincaré 1902, 63–108). His geometrical conventionalism was
developed within this framework (Giedymin 1977, 271–301). In addition, we can
see non-Euclidean geometry as one of his paths to physics. At the time when
Poincaré was working on Fuchsian functions, it was impossible to know what
relationships existed between Euclidean geometry and physical geometry. Indeed,
it is only much later that non-Euclidean geometry would find an application in
relativity. On the other hand, the qualitative study of differential equations in
Poincaré’s first research work also has connections with the three-body problem,
as well as with topology. For Nabonnand, “we have to see the origins of Poincaré’s
topological investigations in his early work on the qualitative theory of differential
equations” (Nabonnand 2000, 35). Stillwell also emphasizes “the importance of
the theory of Fuchsian functions for the genesis of some of Poincaré’s topological
ideas” (Nabonnand 2000, 35). Research on non-linear differential equations and the
study of the global properties for their solutions thus links the work of Poincaré to
non-Euclidean geometry, topology, physics and the philosophy of science. Another
link with physics was established through non-Euclidian geometry which, in turn,
greatly influenced his philosophy.

The ability to integrate different areas of knowledge is characteristic of
Poincaré’s thought, and it can be seen as one of the sources of his philosophy,
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often considered as “the philosophy of a scientist”. However, it is important to
ask like Laurent Rollet asked, “did Poincaré’s philosophy benefit from as much
extensive study as his scientific work?” (Rollet 2007, 7) This question, as well as
Rollet’s answers, has led to new perspectives on the interaction between science
and philosophy in the works of Poincaré. Indeed,

A body of evidence supports an anchorage of Poincaré’s thought in traditional philosophy,
i.e. within an intellectual sphere that does not necessarily have mathematical or physical
theories as its object. (Rollet 2007, 7)

To take Rollet’s questions a bit further, one might consider whether, in addition,
the scientific thought of Poincaré was influenced by philosophy. Did the philosoph-
ical knowledge of which Rollet speaks contribute to Poincaré’s scientific choices?
Was his research guided by his “philosophical spirit”? These hypotheses might help
to explain his ability to cross boundaries between different areas of knowledge given
that Poincaré’s philosophical thought would work as an inspiration for his scientific
work, which, in turn, would be a source of his philosophical thought.

Differential Equations: A Path to Geometry

Differential equations are historically related to the development of mathematical
analysis and problems in geometry or mechanics. Until the eighteenth century
focus was on calculating solutions of these equations for already known functions.
However, in the nineteenth century, methods evolved. Non-integrability of certain
differential equations led in particular to the use of geometry to study the qualitative
behaviour of their solutions. The geometric study of differential equations starts
with L. Cauchy (1789–1857), C. Briot (1817–1882), J. C. Bouquet (1819–1885),
and L. I. Fuchs (1833–1902). Leaving aside the analytical point of view, these
mathematicians studied the properties of integral curves in the neighborhood of a
point. Poincaré studied the global behavior of the curved solutions of differential
equations, based on their results though breaking with local terms used by his
predecessors. He analyzed these solutions “over the extent of the plane” (Poincaré
1881, 376), using the group-theoretic approach in the treatment of Riemann surfaces
(Gray 1981, 273).

This innovative approach would prove to be very fruitful. In fact, in the
publication of his work, Poincaré noted the “vast field of discoveries that opens
before the surveyor” (Poincaré 1881, 377) as well as one of the applications of his
method, the three-body problem (Poincaré 1881, 376), of which his study would
bring him King Oscar II of Sweden Prize in 1887.

The study of the geometric behavior of curved trajectory solutions of differ-
ential equations was presented in a series of memoirs published in 1881 in the
Journal des Mathématiques Pures et Appliquées (Poincaré 1881, 375–422), 1882
(Poincaré 1882, 251–286), 1885 (Poincaré 1885, 167–244) and 1886 (Poincaré
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1886, 151–217). One of the results of this study is the first definition of what is
now called “chaos”:

Occasionally, small differences in the initial conditions generate very large ones in the final
phenomena. A small error in the first would produce a huge mistake in the latter. Prediction
becomes impossible. (Poincaré 1908, 62)

The work of Poincaré on differential equations contains still other aspects
and other major consequences, in particular the development of the study of the
functions that he has named “Fuchsian”.

At that time he developed the qualitative theory of differential equations in the 1880s, the
young Poincaré develops the theory of Fuchsian functions with the explicit objective of
integrating linear functions with algebraic coefficients. (Nabonnand 2000, 36)

Poincaré used and developed some ideas of Lazarus Fuchs on solutions of
these differential equations, which led him to establish contact with the German
mathematician.1 In this scientific and friendly correspondence, Poincaré asked
and received Fuchs’ permission to name the solutions of differential equations
“Fuchsian functions”. Poincaré’s first papers on this work were submitted in 1880
to the Academy of Sciences for the prize competition in the mathematical sciences
(Poincaré 1916–1956, vol. i., 336–372). Some of these results have been published
after the discovery by Jeremy Gray of three supplements to this memoir by Poincaré
in the competition (Gray 1981, 297). Such is the case with the connection between
Fuchsian functions and non-Euclidean geometry that Poincaré highlighted in this
memoir. It was this discovery that made Poincaré famous among the mathematicians
of the time (Gray 2012, 179). Not only it has had important consequences for
mathematics, but it is also rich in historical details (Gray 2012, 178–179).

What should be emphasized here, is that in addition to the prestige that it brings
to Poincaré’s role in mathematics, the idea of linking the Fuchsian functions to
non-Euclidean geometry shows Poincaré’s rare ability to associate mathematical
work and philosophical thinking, which is a style that can also be seen as a sign
of his philosophical thinking. In spite of that, one of the characteristics of his early
work was ignorance of publications related to his research, especially in German
literature. According to Jeremy Gray,

The published work makes abundantly clear the astounding clarity of Poincaré’s mind,
coupled to an almost equally dramatic ignorance of contemporary mathematics. There is
no mention of the work of Schwarz on the hypergeometric equation ( : : : ) nor is there
any mention of the work of Dedekind or Klein, and even Hermite’s work on modular
functions, which he must have known, seems to have been forgotten. We shall see that
these omissions are not mere oversights; Poincaré genuinely did not then know the German
work. The contrast with the deliberately well-read Felix Klein could not be more marked.
(Gray 1981, 298)

1The correspondence between Poincaré and Fuchs was published in Poincaré 1916–1956, Vol. XI,
13–25.



158 I. Serra

In any case, Felix Klein initiated and maintained a correspondence with Poincaré
after reading the three notes “On Fuchsian functions” published in Comptes Rendus
(Poincaré 1916–1956, vol. II, 1–10). Following this correspondence, in which a
number of considerable ideas was traded (Gray 1981, 303–332), in particular on
groups and non-Euclidean geometry, the two mathematicians published several
works. In one of his articles, Poincaré establishes the relationship between number
theory and non-Euclidean geometry (Poincaré 1916–1956, vol. II, 38–40), that
is a new relationship between two mathematical fields, which he has had the
pleasure of discovering (Gray 1981, 324). The following year Poincaré published
two articles in the Acta Mathematica, one on the Fuchsian groups (Poincaré 1916–
1956, vol. II, 108–168) and the other on Fuchsian functions (Poincaré 1916–1956,
vol. II, 169–257), which had results that went far beyond those of Klein (Gray
1981, 333).

It may be said that Poincaré and Klein developed this work in a collaborative
way, but the vision of Poincaré was much deeper and more modern (Gray 1981,
323), even if he was unaware of some results of Riemann. Poincaré was able to
connect several areas of knowledge throughout his work, which was consistent with
the idea of mathematical unity defended by Klein. However,

This insight of Poincaré, so painfully gained by Klein, testifies to the strong hold Klein’s
idea of mathematical unity had upon him. The paradox is that Klein, who had done so
much to further non-Euclidean geometry in the 1870’s, did not appreciate it here. (Gray
1981, 323)

Once more the results of Poincaré show the interweaving between philosophy
and mathematics inherent in his thinking.

Poincaré’s work on differential equations occupied the first years of his scientific
life and covered multiple aspects of the issue. He especially made connections
that other scientists mathematicians did not, even those with more extensive
knowledge. Indeed, he brought together differential equations Fuchsian functions,
non-Euclidean geometry, and the theory of groups. As Jeremy Gray highlights,
throughout tens of pages in his work Differential equations and group theory
from Riemann to Poincaré, some relations between these areas were already being
considered, but Poincaré, despite his “dramatic ignorance of mathematics of his
time” (Gray 1981, 298), fleshed them out with a determination that was not
annihilated by trade with Fuchs or Klein (Gray 1981, 273–379).

It is also possible to identify Poincaré’s philosophical thought in his research on
differential equations in the way that he considered the relationship between physics
and mathematics.

The interaction between physics and mathematics, which had been much trans-
formed since the first mathematical studies of mechanics in the seventeenth and
eighteenth centuries, had a great evolution in the course of nineteenth century,
and even a complicated one. It looks as if during this century there was a divorce
between physics and mathematics, to use the term used by Jeremy Gray (1981,
273–339). Indeed, most mathematicians, even those who seemed to give much
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importance to ties with physics, had not established these links in their publications.
In fact in Germany, pure mathematics only emerged as a specialty in the University
(Gray 1981, VIII).

The treatment of differential equations by Poincaré, as well as by other mathe-
maticians, exhibited the characteristics of purely mathematical work and developed
independently of applications, even when these equations were originally related to
problems in physics. Recognition of the relationship between these two areas, then
growing separately, appears, however, at several times in the work of Poincaré as
part of his philosophical thought. The way he envisaged the relationship between
physical phenomena and mathematical instruments, allows, moreover, a certain
reading of its physical “conventionalism”. Indeed, it seems that the possibility
of finding results in a purely mathematical way, but still consistent with the
phenomena, played a role in Poincaré’s conventionalism. One can even place the
question if it was the case that for Poincaré, the extensive use of mathematics in the
analysis and prediction of the physical facts made physics “conventional.”

Poincaré’s first research work, namely the study of differential equations,
which was developed somewhat in ignorance (for example, of the publications of
Riemann) led him to several mathematical innovations, in particular the idea of
linking these equations to the automorphic functions, to geometry, and to groups.
Poincaré was not looking for working links between physics and philosophy, which
he actually found later. However, in this first phase of the scientific life of Poincaré,
we can say that we can already see a link with physics being established through
geometry, one of the instruments that he later uses in the study of differential
equations. This incursion of the geometry in the treatment of a subject, which was
especially associated with mathematical analysis, can be seen as an example of what
Poincaré himself called “mathematical intuition”:

Thus, logic and intuition have each their necessary role. Both are indispensable. Logic,
which can only give certainty, is the instrument of demonstration: intuition is the instrument
of invention. (Poincaré 1905a, 37)

In the classification that Poincaré made of mathematicians (Poincaré 1905a, 27),
he would certainly belong among the intuitive ones. The power of discovery made
by his geometric approach to differential equations is an illustration of this intuitive
mind. On the other hand, the discovery of the link between Fuchsian functions and
non-Euclidean geometry, which can be also considered as the fruit of his intuition,
had a great impact on Poincaré’s scientific and philosophical future. In particular,
these geometries brought him closer to the question of the nature of the physical
space.

The ideas developed so far may be summarized by saying that Poincaré’s math-
ematical results, although obtained using mathematical instruments and methods,
eventually carried him along roads shared by other areas of knowledge. To complete
this journey he needed qualities that it would be difficult to describe without
resorting to psychology, or to cognitive science or perhaps, even better, to studies
concerning mathematical creation (Van-Quynh 2013).
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Non-Euclidean Geometry: A Tool and a Philosophy

The appearance of non-Euclidean geometry, as was developed by Bolyai (1802–
1860) and Lobachevsky (1792–1856) in the middle of the 19th century, resulted
in a set of discussions and work around the foundations of geometry. The first
publications that take the new geometries into account are those of Riemann (1826–
1866) and Helmholtz (1821–1894) (Torretti 1984, 154).

Helmholtz in his 1870 conference “On the origin and significance of the axioms
of geometry” (1870), presented the work of Bolyai, Lobachevsky, Gauss (1777–
1855), and of Riemann and himself as the scientific foundation of an empiricist
philosophy of geometry in opposition to the Kantian a priori (Torretti 1984, 163).
His theses, which exerted a profound influence on Poincaré, also contain the first
assertions of conventionalist character in geometry (Torretti 1984, 163). Indeed, he
offered some examples of visualization of non-Euclidean situations to emphasize
that the axioms of geometry are not given a priori.

One of the issues raised by the emergence of non-Euclidean geometry is the
compatibility of multiple geometries with physical measurements: In the nineteenth
century and the physics of the time, geometry was naturally interpreted as the
science of space, and space was understood as a real entity. But paradoxically, the
geometric proposals could neither be corroborated nor refuted by events that took
place in this “real” space. Indeed, from Plato to Kant, including for the empiricists,
geometry was thought to describe reality, although it is the result of independent
experience and a priori knowledge (Torretti 1984, 244). The invention of non-
Euclidean geometry naturally raised the question of the nature of the physical space.
Even if it was the case that from the point of view of mathematics the existence of
multiple geometries posed no problem, it remained puzzling from the point of view
of physical measurements which was the true geometry of space.

For Helmholtz, geometry is not simply a working basis for mechanics, but must
be built jointly with it (Torretti 1984, 169). According to him, if to the axioms of
geometry we add proposals relating to the physical or mechanical in the body, then
this same outcome would put forward a system of proposals which could be refuted
or confirmed by experience. Helmholtz thought it was possible to determine the
foundations of geometry from the principles of mechanics. Thus geometry would be
characterized by the properties of the movements of rigid solids. Furthermore, Felix
Klein showed that these movements form a group, bringing another dimension to
the results of Helmholtz:

These are the work of Helmholtz, inspired by the research of Riemann, which form the
logical link between them and the theory of groups of transformations. (Rougier 1920, 56)

Sophus Lie (1842–1899), in The theory of groups of Transformation (Lie 1888–
93), included a few aspects of the work of Helmholtz. In particular, he applied the
transformation group theory to the problem of Helmholtz in order to determine a
system of postulates, which is at the base of general geometry, and that would be
tantamount to the determination of all possible types of kinematic displacement.
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Lie’s approach to the problem of the movement of rigid solids was influenced
by the conception of his friend Felix Klein. According to Lie, it was Klein, who
first suggested the use the theory of transformation groups in this area (Torretti
1984, 171).

In 1872, Felix Klein, in his “Erlangen program” (Klein 1892, 87) defined, unified,
and classified the different geometries using precisely the concept of transformation
group. His research helped in particular to highlight the fundamental property that
motions have when they form a group. Lie’s work showed that geometry can be
reduced to the study of a group; in particular, ordinary geometry is the study of the
Euclidean group of displacements. We can therefore define geometry as the study
of geometric properties that remain invariant under a group of transformations,
a point of view which was systematized by Félix Klein (Klein 1891, 173–180).
After Klein’s work, each geometry, Euclidean or non-Euclidean, is characterized
by the group to which it corresponds and the transformations and their associated
invariants. In this sense a given geometry may be equivalent to another, and what
distinguishes them are the transformation groups and invariants associated of each
geometry.

At the time when he wrote his work on Fuchsian functions, Poincaré shows that
he already knew non-Euclidean geometry, although it is difficult to determine the
origin of this knowledge (Gray and Walter 1997, 15–16). And it is also the case that
for Poincaré, geometry is nothing but the study of a specific group (Gray and Walter
1997, 15–16).

The equivalence of geometries that results from the work of Riemann, Helmholtz,
Klein and Lie, among others, as well as the use that Poincaré made of non-Euclidean
geometry, became a subject of philosophical reflection for Poincaré, the results of
which were published in 1887 (Poincaré 1887, 203–216), in 1891 (Poincare 1891,
769–774), and later republished in Science and Hypothesis (1902). One celebrated
result is the geometrical conventionalism that remains up to now the subject of so
many questions and interpretations (Giedymin 1992, 423–443).

The use of non-Euclidean geometries was a success from the mathematical point
of view. The three supplements discovered by Jeremy Gray, mentioned before,
reveal how the idea of linking the Fuchsian functions to transformations of non-
Euclidean geometry allowed him to advance so quickly in his research (Gray and
Walter 1997, 15).

Although, according to Scott Walter, “a likely source of the philosophy of
geometry of Poincaré lies in the debates around the logical consistency and the
physical meaning of non-Euclidean geometry from 1870 to 1880” (Walter 1996,
89), it is legitimate to ask whether there is not also, as Rougier suggested, a
link between Poincaré’s use of non-Euclidean geometries in his early work on
differential equations and his conventionalism:

It seems that Poincaré was able to use this theory very soon, following the famous use he
made of non-Euclidean geometries during his research on Fuchsian functions, to solve a
problem of ordinary geometry. (Rougier 1920, 147)
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However, while the discovery of the connection between Fuchsian functions
and non-Euclidean geometries awoke the interest of mathematicians in non-
Euclidean geometry (Walter 1996, 95), the same did not happen with Poincaré’s
conventionalism.

Indeed, Poincaré’s conventionalism seems to make discussion of the nature of the
physical space unnecessary, which did not please geometers, who were not about to
abandon the ability of empirically establishing the geometrical structure of the space
(Walter 1996, 90) nor, of course, did it please physicists. Nevertheless, if Poincaré’s
philosophical position on geometry seems to have distanced him from the problem
of the nature of the space, it maintained a fundamental role in Poincaré’s relationship
with physics. In fact, one of the pathways that led Poincaré to physics a few years
later were the non-Euclidean geometries. His interests in the problems of physics
were also awakened by his teaching of mathematical physics.

Geometry, Physics, and Philosophy

As Professor at the Sorbonne from 1886, Poincaré taught various subjects, including
mathematical physics. Even though until then he was primarily a mathematician
(Darrigol 2000, 352), his links with physics had already been established, whether
through his research subjects, or through geometry. Furthermore, “mathematical
work on the theory of differential equations led him naturally to become interested
in mathematical physics” (Houzel and Paty 1999, 7).

Houzel and Paty describe Poincaré’s teaching at the Sorbonne in the following
manner,

Far from merely reproducing the well-established knowledge of the time, Poincaré pre-
sented and discussed the most recent and newsworthy research. So he introduced Maxwell’s
theory in France and also the work of Hertz, Helmholtz and especially Lorentz’s on
electrodynamics. (Houzel and Paty 1999, 2)

The analysis of the theories of electrodynamics led him to discuss, in particular,
the use of mechanical models in the description of electromagnetic phenomena
(Serra and Paz 2010, 267–272). Even if “most theorists have a constant predilection
for explanations by mechanics or dynamics means” (Poincaré 1902, 178), Poincaré
did not think it fundamental to choose this or that mechanical model to infer
physical laws, but only insisted above all that the model had to be simple (Poincaré
1902, 186).

Poincaré’s conception of the use of mechanical models can be summed up in the
phrase, “if it does not satisfy the principle of least action, there is no mechanical
explanation possible; if it does, then there’s not only one, but an infinite number of
them, and so it follows as soon as there is one, there is an infinite number of them”
(Poincaré 1902, 223).

Poincaré developed the arguments that characterize his “physics of principles’
and his conventionalism as applied to physics not only throughout his philosophical
work, but also in the prefaces of his books (Darrigol 2007, 221–240), In the “General
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Conclusions of the third part” of Science and Hypothesis, Poincaré synthesizes his
ideas on experience, convention and the principles of mechanics that he had already
presented in several articles writing that,

The principles of mechanics therefore come to us in two different aspects. On the one hand,
there are the truths based on experience and verified in a very approximate way, as far as
nearly-isolated systems are concerned. On the other hand are the assumptions applicable to
the whole of the universe and regarded as strictly true. If these assumptions have a generality
and certainty that was lacking in the experimental truths from which they are drawn, it is
because they are finally reducible to simple convention that we have the right to adopt,
because we are certain in advance that no experience will come to contradict them. However,
these conventions are not absolutely arbitrary; they do not arrive from our caprice. We adopt
them because some experiences have shown us that it would be convenient to do so. This
explains how experience could constitute the principles of mechanics, and why, however, it
can never reverse them. Compare this with geometry. The basic propositions of geometry,
such as for example the postulates of Euclid, are no more than conventions, and it is also
as unreasonable to ask whether they are true or false as to ask whether the metric system is
true or false. (Poincaré 1902, 152)

For Giedymin, Poincaré’s research on the foundations of the geometry has
its origin in his physical conventionalism (Giedymin 1977, 271). More recently
Gerhard Heinzmann also wrote,

Setting aside of the difference in size ( : : : ) Poincaré used in mechanics the same procedure
as in geometry in going from empirical laws, understood as general assumptions, to
principles, including explicitly conventional elements. (Heinzmann 2012, 9)

Even if “in physics itself, i.e. in optics and electrodynamics, the conventional ele-
ments seem weakened compared to the mechanical” (Heinzmann 2012, 12), the con-
ventionalism of Poincaré can be seen as a way to cope with the crisis experienced by
the physics of his time. Indeed, the conventionalist conception allows him not only
to justify the inconsistencies between the different theories, but also to consider in an
original way the replacement of one theory by another (Poincaré 1905a, 123–128).

More than justifying the philosophical relevance of Poincaré’s physical con-
ventionalism – as has already been argued (Serra and Paz 2010, 278–281) – it
should be emphasized that the conventionalist philosophy brings into his thought
yet another link between geometry and physics. If, following Giedymin, we consider
that his physical conventionalism was inspired by his geometrical conventionalism
(Giedymin 1977, 271) it is through philosophy that the link is established.

Research in mathematical physics, particularly in the field of electrodynamics,
would make Poincaré establish further links between geometry, physics, and
philosophy. This is what we will discuss in the next section.

Geometry Meets Electrodynamics

During the year 1895 Poincaré published a series of articles discussing several
theories of electrodynamics, in particular that of Lorentz, whose theory was
“the least defective” (Poincaré 1901, 611). Indeed, at the time, despite its flaws,
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Poincaré considered that Lorentz’s theory “gives a very simple explanation of some
phenomena” (Poincaré 1902, 242), which had until then eluded Maxwell’s theory.
In 1900 in a conference at Leyden (Poincaré 1900, 464–488), Poincaré gave a new
interpretation of the Lorentz transformations, in particular of the concept of local
time introduced by the Dutch physicist (Reignier 2004, 2). This concept is seen as
“one of the most important steps of the discovery of relativity” (Reignier 2004, 5).
And “it is possible that the interpretation of Poincaré of local time from Lorentz
worked as a trigger for Einstein’s thinking” (Darrigol 2004, 4).

The concept of transformation group, which was present from Poincaré’s first
research on differential equations, would prove equally essential in the context of
his work on the equations of electrodynamics. Lorentz had found transformations
of coordinates to ensure that Maxwell’s equations have the same form in all inertial
frames. Poincaré showed that these coordinate transformations, which he called
“Lorentz transformations,”2 define a group, the “Lorentz group.” According to Jean
Reignier this “constitutes the essence of the principle of relativity” (Reignier 2004,
9). Indeed, considering that the principle of relativity can be deduced from sym-
metry properties of physical laws, i.e. from the invariance of equations of physics
under the action of a group. Therefore, it is possible to suggest that Poincaré arrived
at a version of the theory of relativity based on the Lorentz group. His results were
published in the paper, “Sur la dynamique de l’électron” (Poincaré 1905b, 494–
550). Research on invariants associated with this group led to other results obtained
by Poincaré, but also by Minkowski, following his reading of Poincaré’s article.

The recognition of the scope of Poincaré’s ideas and of their importance to the
physics of the twentieth century led Feynman to declare:

It was Poincaré who had the idea of analyzing how you can transform the equations of
physics without changing them. He was the first to take account of the symmetry of physical
laws. (Feynman 1967, 94)

The Poincaré symmetry group, so called by Wigner (1967, 15–19), of which
the Lorentz group is a subgroup, defines the set of transformations preserving the
structure of space-time in special relativity.

Poincaré’s role in the emergence of relativity has been the subject of controversy
and countless publications. Here, we can only highlight certain aspects of his
contribution. We want to emphasize especially that the application of the concept of
group in the Lorentz transformations is a paradigmatic example of Poincaré’s way of
creating by integrating knowledge from different fields. Once more, in the context of
relativity, Poincaré used a mathematical object – group – in an innovative way, as he
had done from the very beginning of his scientific life in his research on differential
equations. And, once more, his idea proved to be successful. Indeed, in the twentieth
century, the concepts of symmetry groups and invariance principles have become
essential in modern physics, particularly in quantum mechanics (Wigner 1967, 47).

2The term “Lorentz transformations” designates a group of transformations that forms a subgroup
of the Poincaré transformations.
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Conclusions

The first scientific work of Poincaré (1878–1881) connected several branches of
mathematics in unexpected ways. In the following decades his research would lead
to other connections in various fields, not only within mathematics but also between
mathematics, physics and philosophy.

This network of interactions and influences was probably possible because
the research subjects were suitable. However, the successful construction of this
network by Poincaré happens primarily from his very specific way of approaching
problems. Thus, we can ask ourselves: Wasn’t Poincaré working out his scientific
ideas just like a philosopher?
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Poincaré on the Construction of Space-Time

Robert DiSalle

Abstract One of the enduring challenges for the interpreter of Poincaré is to
understand the connections between his analysis of the geometry of space and
his view of the development of the theory of space-time. On the one hand, he
saw that the invariance group of electrodynamics determines a four-dimensional
space with a peculiar metrical structure. On the other hand, he resisted Einstein’s
special theory of relativity, and continued to regard the Newtonian space-time
structure as a sufficient foundation for the laws of physics. I propose to approach
this question by considering the privileged position that space plays, according
to Poincaré, in our conception of the physical world, and particularly in the
construction of the fundamental concepts by which physical processes submit to
objective measurement. Poincaré’s position results from granting the concept of
space an epistemological priority that, in the face of modern physics, it was unable
to sustain.

Introduction

It is a striking fact that Einstein’s special theory of relativity was discovered by
Einstein, and not by Henri Poincaré. The elements of the special theory were
certainly in Poincaré’s hands before Einstein introduced it: apart from a complete
mastery of the electrodynamics of moving bodies as then understood, Poincaré had
the conviction that electrodynamics phenomena would never violate what he called
“the relativity principle”; he also saw how to represent the Lorentz transformations
as the invariance group of a four-dimensional structure, equivalent to what became
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known as “Minkowski space-time.” He had even undertaken an epistemological
analysis of the concept of simultaneity, and its connection with the speed of light, in
an essay that was known to Einstein before 1905 (Poincaré 1898). It was not entirely
without grounds, therefore, that Einstein’s theory was referred to as “the relativity
theory of Poincaré and Lorentz” (Whittaker 1951). Yet Poincaré did not accept the
chief implication of the relativity theory, as articulated by Einstein and Minkowski:
a new understanding of space and time in which time is relative, the speed of light
is invariant, and the concept of motion relative to the ether has no place. Instead of
treating the symmetry group of electrodynamics in the way that Minkowski did, that
is, as the fundamental symmetry group of a novel space-time structure, Poincaré
treated it as characterizing electrodynamical systems evolving within Newtonian
space-time, which he continued to regard as a sufficient foundation for the laws of
physics.

One of the enduring challenges for the interpreter of Poincaré is to understand
his response to special relativity, and his view of the development of space-time
theory generally, in connection with his philosophical views regarding geometry and
space, and above all his conventionalism. One approach to this problem is to ask,
to what extent was his comparatively conservative treatment of electrodynamics
influenced by his conventionalist approach to geometry in general? (cf. Torretti
1983). To one who views geometry as a matter of conventional choice, it might seem
that resisting relativity is as defensible as resisting non-Euclidean spatial geometry:
if the facts are compatible with more than one theory, physicists are justified in
choosing the simplest alternative. This view is undoubtedly an important part of
the context of Poincaré’s response to relativity. But Poincaré’s conventionalism
was more than a doctrine of choice among empirically equivalent alternatives; it
was also a profound analysis of the origins of our knowledge of space and its
relation to our hypotheses about physics—an analysis that, arguably, made possible
the transformed conception of space-time introduced by Einstein and Minkowski.
I propose, therefore, to begin with a related but quite different question: why did
not Poincaré extend to space-time the kind of epistemological analysis that he
had applied, with such success, to the notion of space? I suggest that a fuller
understanding requires an understanding of the privileged position that space plays,
according to Poincaré, in our conception of the physical world, and particularly in
the construction of the fundamental concepts by which physical processes submit
to objective measurement. Poincaré’s epistemological analysis of the construction
of space could be extended to the construction of space-time, and it was Minkowski
who argued that, given the new developments in electrodynamics, such an extension
was epistemologically necessary. From this perspective, Poincaré’s position results
from granting the concept of space an epistemological priority that, in the face of
modern physics, it was unable to sustain.
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Poincaré’s Conventionalism and Twentieth-Century
Philosophy of Science

Because Poincaré’s conventionalism, on one interpretation or another, became such
an influential part of twentieth-century philosophy of science, it is worthwhile to
distinguish some of Poincaré’s central motivations from their later uses.1 In the
logical empiricist tradition, and its twenty-first-century aftermath, conventionalism
concerned the nature of physical theory as a species of abstract mathematical
structure. It raised the question of how an abstract formalism can possibly yield
claims about the concrete physical world; this became a problem of “coordina-
tion” between a mathematical structure and a set of empirical claims. Logical
empiricism’s solution, inspired by Poincaré, was that a theory becomes interpreted
when the formal structure is supplemented by a convention, an arbitrary stipulation
that links (“coordinates”) fundamental elements of the formalism with elementary
empirical facts. In the nineteenth century, once it became clear that Euclidean
spatial geometry was only a special case within a family of logically equivalent
geometries—the three-dimensional geometries of constant curvature—it became
equally clear that their formal structures were free of any connection to claims
about physical space. In itself, then, a geometry developed from a set of consistent
axioms could not be meaningfully said to be true or false. Empirical claims about
space could be derived only by way of interpretive stipulations, for example, that the
displacements of approximately rigid bodies define a measure of congruence, or that
the paths of light-rays define straight lines. The truth of any such claim, evidently,
is always relative to an interpretation.

This way of thinking about the relation between geometry and experience places
the question of choice between theories, and therefore of theoretical progress, in
a peculiar light. Poincaré’s view has not only, as it were, the positive implication
that applying formal structure to the world requires an arbitrary stipulation; it has
the corresponding negative implication that empirical evidence, by itself, cannot
decide between theoretical alternatives. In the case of spatial geometry, Poincaré’s
celebrated depictions of strange physical worlds, with equivalent Euclidean and
non-Euclidean interpretations, made the second point particularly vivid. Since
the geometry of space can be empirically determined only by measurement, and
since measurements necessarily depend on stipulations regarding the physical
processes that these measurements exploit—the displacements of rigid bodies or the
propagation of light—it follows that measurements cannot be uniquely interpreted
as tests of geometrical claims; they are tests, at once, of the geometrical claims
and the physical hypotheses that are implicit in the measurements. The optical
measurement of the angle sum of a large triangle, on the stipulation that light

1For an insightful recent analysis of Poincaré’s conventionalism, and its significance for the
development of the philosophy of science, see Ben-Menahem (2006). For analysis of Poincaré’s
role in the history of analytic philosophy, see Coffa (1983, 1991).
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travels in a straight line, may be a test of Euclidean geometry; on an alternative
stipulation, it may be a test of whether light travels in a straight line. In effect,
if the measured angle sum differs from 180ı, the claim space is non-Euclidean,
and the claim that light does not characteristically travel in straight lines, are two
(among many) equivalent ways of expressing the same facts. Only considerations
of simplicity, or perhaps other methodological considerations, can justify a decision
between them.

This analysis can be extended in a straightforward way to the decision between
special relativity and Lorentz’s electrodynamics. Einstein stipulates that the velocity
of light is invariant and isotropic, and determines that time and length (and whatever
depends on their measures) varies with the choice of inertial frame in accord with
the Lorentz transformations; Lorentz takes time and length to be invariant, but
hypothesizes that the lengths of objects and the time-intervals of clocks are altered
by interactions between moving bodies and the ether. But these can be represented
as equivalent interpretations, based on opposing initial stipulations, of the same
empirical fact—namely, that the apparent speed of light is the same in every inertial
frame. Against this background, it is not impossible to sympathize with Poincaré’s
indifference to special relativity, or even with his resistance to it, given sufficiently
compelling methodological reasons for adhering to Lorentz’s theory. Moreover, it
is easy to find remarks by Einstein about the role of arbitrary stipulation in the
construction of his own theory. “A common time” for different observers can be
defined only if we “establish by definition that the ‘time’ required by light to travel
from A to B equals the ‘time’ it requires to travel from B to A” (1905, 894). But
he gives no explicit justification for the use of light-signals in particular. And in
later remarks, he speaks as if the isotropy of light-propagation, and its use in time
measurement, is fixed by an arbitrary stipulation. In his popular exposition of his
work (1917), he considers a possible objection to his principle: how can we test
the hypothesis that the speed of light is isotropic, unless we already have a way of
measuring time? The answer is that the principle is only a definition. “Only one
requirement is to be set for the definition of simultaneity: that in every real case
it provides an empirical decision about whether the concept to be defined applies
or not”; that light takes the same amount of time to travel in both directions “is
neither a supposition nor a hypothesis, but a stipulation that I can make according
to my own free discretion, in order to achieve a definition of simultaneity” (1917,
15). In his Princeton lectures (1922), he raises the question of why light-propagation
should play such a central role in his theory, and gives no better answer than that
“It is immaterial what kind of processes one chooses for such a definition of time,”
except that it is “advantageous : : : to choose only those processes concerning which
we know something certain” (1922, 28–29). In short, it is easier to make sense of
Poincaré’s rejection of Einstein’s theory, if it makes sense to regard the latter as
differing from Lorentz’s only in its choice of a language in which to represent the
same empirical content.

Poincaré’s conventionalism, then, is a crucial part of the context within which he
could assert, so to speak, the epistemic right to maintain a Lorentzian interpretation
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of all the evidence for Einstein’s theory. The notion that interpretations are arbitrary,
however, is not the whole explanation for Poincaré’s reaction to special relativity,
nor is it the whole content of Poincaré’s conventionalism itself. Another aspect,
closely related yet distinct, is crucial to understanding the significance of Poincaré’s
view for subsequent philosophers of science, and points to a clearer understanding of
the relation between Poincaré and Einstein. This is Poincaré’s notion of “definition
in disguise”: a principle that has the form of a factual assertion, but says nothing
directly about the world; instead, it fixes the meanings of the concepts that occur
in it. The most familiar example is (again) the principle that light travels in a
straight line, which appears to have the form of a law of nature. It could not be
an empirical claim, however, unless the concept “straight line” were empirically
well defined independently of this principle. Instead, the principle stipulates, in
effect, that the paths of light-rays provide the criterion by which straight lines are
identified in nature, and by which other objects or trajectories are judged to be
straight. Similar examples are Einstein’s aforementioned account of simultaneity,
in which equal time-intervals are defined by the propagation of light, and Newton’s
second law, which specifies that force is measured by acceleration (cf. Poincaré
1902). It is the empirical significance of a concept, that is, the empirical criteria
for its application that is assigned by such a definition, even where the concept
may be thought of as well understood in some other sense. Empirical definition
in this manner may be thought of as a species of implicit definition, in which
concepts are understood by means of the axioms in which they occur, which axioms
therefore do not appeal to or presuppose—though they may be motivated by—
some pre-theoretical intuitions associated with the concept. When Russell (1899)
objected that the undefined primitive concepts of geometry, such as shape, are
known by intuition, Poincaré argued that shape is implicitly defined by the principle
of free mobility: the proposition that “bodies can be moved in space without change
of shape” does not add to a previously-defined concept of shape, but is partly
constitutive of any understanding of “shape” that we have. The proposition thus
states that “in order for measurement to be possible, it is necessary that figures be
susceptible of certain movements, and that there be a certain thing that will not be
altered by those movements and that we will call ‘shape’” (1899, 259). Hilbert’s
(1899) axiomatization of geometry gave the clearest statement, and vindication,
of this general way of thinking, to the consternation of those mathematicians
to whom geometrical concepts were inseparable from intuitions about space.
Euclidean geometry, on this view, does not particularly have constructions in space
as its subject matter; its subject matter is the abstract structure that the axioms
define, and its objects are any objects at all that may be thought of as satisfying
the axioms. Thus the meaning of “straight” is logically defined by the axioms.
A principle such as “light travels in straight lines” is a step toward an empirical
interpretation of the abstract formalism, by arbitrarily assigning a physical meaning
to a mathematical term, thus “coordinating” the abstract formal structure with a
physical structure.
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Experience and Geometry

It is just this way of thinking about the interpretation of a physical theory that poses
the “problem of representation” in its starkest form: how is it possible for an abstract
formal structure to be a representation of the concrete physical world, or even of the
phenomenal world of our experience? Van Fraassen, following Reichenbach (1965),
identified this as “Reichenbach’s problem of coordination.”

[T]he basic perplexity emerges in its purest form when we ask [what does it mean] to
embed the phenomena in an abstract structure. Or to represent them by doing so? : : : Hence
the most fundamental question is this: How can an abstract entity, such as a mathematical
structure, represent something that is not abstract, something in nature? (Van Fraassen
2008, 240)

Van Fraassen’s perplexity starts from Reichenbach’s idea that the mathematical
representation of the world, understood as a formal relation or isomorphism
between the mathematical structure and the phenomena, begs the main question:
a mathematical structure can represent the phenomena only on the assumption
that the latter, too, already have a mathematical representation. This appears to be
an insuperable problem in principle, and Van Fraassen argues that it only has a
pragmatic solution (2008, Chap. 11). Yet a large part of the difficulty is the way
in which the problem is posed. Demopoulos (2013) suggested a more illuminating
way of thinking about the problem of representation:

: : : .[It] should be far from obvious that Reichenbach and Van Fraassen have succeeded
in raising a genuine problem for the representational use of an isomorphism. To begin
with, such a use of the notion requires only that we bring the things correlated under a
concept; doing so does not by itself constitute a mathematical representation. Nor does
such a conceptual representation reduce to or presuppose a mathematical representation.
Any reasonable formulation of the problem of how mathematics represents reality must be
predicated on the assumption that we can provisionally take for granted what is meant by
conceptually representing reality.

Were we to follow Reichenbach and Van Fraassen, we would be forced to reject Frege’s
celebrated solution to the problem of how arithmetic applies to reality : : : . [For] Frege, this
is explained by the fact that our judgments of cardinality rest on relations between concepts,
and concepts sometimes apply to reality. (Demopoulos 2013, 89)

Demopoulos’s remark refers to Frege’s use of “Hume’s principle” in his account
of the natural numbers, as a definition of numerical identity:

For any concepts F and G, the number of Fs is identical with the number of Gs if and only
if the Fs and the Gs are in one-one correspondence. (Demopoulos 2000, 210)

This example suggests that the problem of representation is not the insuperable
one of finding a correspondence between an abstract formalism and a large set of
concrete particulars, but the more tractable task of connecting a mathematical rep-
resentation with a conceptual representation. Poincaré’s examples of the empirical
interpretation of mathematics reveal the essential role played by representations of
this kind. The most striking case is the connection between the formal structure of
geometry and the conceptual representation of space. The elementary experiences
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that are responsible for our awareness of space are not only retinal images or tactile
sensations, but also kinaesthetic sensations occasioned by our voluntary movements.
But spatial geometry is not a representation of the set of those particulars. Rather,
it is a representation of the conceptual scheme through which we interpret those
sensations, in developing a spatial awareness. More precisely, this conceptual
scheme constitutes our awareness of space. Helmholtz had first identified this
conceptual scheme, considering how we come to a notion of space in the first
place—how, in other words, we come to distinguish certain characteristic features
of the world of experience as its peculiarly spatial characteristics. Arguably, Newton
and Kant had taken steps to analyze our knowledge of the geometrical features of
space, and their relation to our spatial intuition. But they did not further analyze
the basis for our spatial intuitions themselves. Helmholtz, by contrast, sought to
explain what had generally been taken for granted by philosophers, namely, our
awareness that a certain kind of intuition is in fact distinctively spatial, i.e. that
certain differences in our environment are sensed specifically as changes of spatial
relations. These are the changes that are controlled by our own voluntary actions:
we can bring about such a change by our own voluntary movement, or cancel it by
a contrary movement, restoring our environment to its previous state (1878, 225–
227). This immediate sensation of arbitrary and reversible changes of perspective is,
in fact, one of the most striking differences between space and time. For Helmholtz,
this shows that the intuition of space that Kant had taken as a starting point has,
after all, a deeper origin—an origin, moreover, that depends on a contingent feature
of the physical world, namely, the free mobility of rigid bodies, of which our own
arbitrary shifts of perspective provide a psychologically immediate exemplar.

Poincaré extended Helmholtz’s analysis in ways that illuminated its philosoph-
ical significance in several ways. On the one hand, Poincaré brought out the
conventional aspect of the link Helmholtz had revealed between geometry and
physics. Helmholtz regarded it as a fact that certain bodies are approximately
rigid, and that certain motions leave their dimensions approximately unchanged;
Riemann had regarded this as only a hypothesis, to be corrected by more exact
empirical knowledge. Poincaré, however, regarded this principle as a definition
like the principle that light travels in a straight line: while it is an empirical fact
that a large set of bodies approximately maintain their relative dimensions, it is
impossible to determine empirically that these really do move without any change
of dimensions, for they provide the empirical criteria for such changes. This was
the basis, as we noted above, for Poincaré’s response to Russell. On the other hand,
Poincaré saw, more clearly than Helmholtz, how the elementary conceptual scheme
of changes in spatial perspective, which constitutes the basis for our intuitive notion
of space, also constitutes the basis for our mathematical representation of space.
Implicit in our understanding of such changes is the principle that they may be
not only executed at will, but also combined and reversed to return to a previous
perspective. But these pre-systematic notions of combination, negation, and identity
provide the basis for the mathematical concept of a group. The group of rigid
motions, in other words, is not merely an abstract formalism that, with the help
of appropriate stipulations, can be given an empirical interpretation. It is, instead,
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a direct mathematical representation of a conceptual scheme that characterizes
one of the most elementary systems of empirical judgments: judgments about the
relative sizes and positions of the objects in one’s environment.2

From Poincaré’s analysis, we can see that the twentieth-century problem of
scientific representation, as described above, was misleadingly posed, because it
began with a false step. The task of connecting scientific theories with experience
is not a task of representing an infinite set of concrete particulars with an abstract
formalism. It is, rather, a more tractable task, one that moves in quite the opposite
direction, and that has actually been accomplished by the earliest development of
geometry. It is only since the nineteenth century that one can consider the infinite
possibilities for abstract geometrical structures, and ask how they can be interpreted
as theories of actual space. But the initial task of formal geometry was, instead, to
give a formal geometrical interpretation to an elementary conceptual structure—a
structure sufficiently elementary to capture the most primitive conception of spatial
experience, but formal enough to serve as the foundation for the group of rigid
motions. The further elaboration of geometry, through nineteenth-century innova-
tions and even the twentieth-century conception of space-time, continues in the
same direction. Even these revolutionary developments maintain their connection
with experience—and their empirical content—as extensions of that elementary
conceptual scheme.

Poincaré furnished a fairly clear account of how such an extension works, even
if subsequent philosophical glosses of his views have made it harder to recognize.
Again, from the twentieth-century perspective, the “definition in disguise” that light
travels in a straight line is one of the arbitrary coordinative definitions that assigns
empirical content to the otherwise uninterpreted formalism of spatial geometry.
For Poincaré, however, spatial geometry is itself an interpretation of our primitive
awareness of voluntary motion and its proto-mathematical (group-theoretic) struc-
ture. The association between these two conceptual schemes is not the result of any
arbitrary decision, though of course we are free to consider alternative schemes; it
is the primitive association through which we have any conception of space at all.
In this primitive scheme, the treatment of lines of sight as straight lines is usually
an obvious and spontaneous move. This association between light propagation and
straight lines becomes a matter of conventional decision only when the question
arises of extending our primitive local conception of space to arbitrarily large areas.
The local conception is uniquely—though, again, not necessarily—captured by the
group of rigid motions. But there are at least two obvious ways of extending it,
theoretically, to arbitrarily large areas. One is by assuming that arbitrarily long lines
of sight are straight—or, more precisely, are definitive of straightness on larger
scales. The other is by assuming that the Euclidean relations that hold locally, on
scales that are within our immediate perceptual grasp, continue to hold at arbitrarily
large scales. Through most of the history of geometry up to the nineteenth century,

2On the connection between Helmholtz’s empiricism and Poincaré’s conventionalism, see DiSalle
2006 (Chap. 3).
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it was never doubted that these two ways would always (even necessarily) lead to
the same result. Once it was understood that they might diverge—chiefly through
the work of Gauss, Bolyai, Lobatchevsky, Riemann, and Helmholtz—empiricists
such as Riemann and Helmholtz argued that the laws of physics, present or future,
would determine how ordinary geometry would extend to larger or smaller scales
(cf. Riemann 1867; Helmholtz 1870). Poincaré recognized that empirical evidence
alone could not compel us to take one way or the other.3

The Relativity of Space and the Relativity of Motion

This view of space, then, provides the background against which we can understand
Poincaré’s reaction to special relativity, and his view of the electrodynamics of
moving bodies and Einstein’s new conception of space and time. Einstein’s theory
developed from a critical analysis of the separation between space and time. The
contradiction that Einstein identified as his starting point, between the invariance of
the velocity of light and the relativity principle, is resolved when we see, on the one
hand, that it presupposes the invariance of simultaneity; and, on the other hand, that
the available means of defining simultaneity—that is, of giving objective criteria
for applying the concept to any pair of events—fail to define an invariant relation.
In short, the relation that constitutes the separation between space and time, by
distinguishing relations in space at a given moment from spatio-temporal relations
among events at different times, has, on Einstein’s analysis, a purely relative
significance. The crucial point, for our purpose, is that the independent status of
spatial relations turns out to depend on a spatio-temporal principle, because the
relation of simultaneity is mediated by a dynamical principle, that is the constancy
of the velocity of light. But the constancy of the velocity of light turns out to satisfy,
unexpectedly, a novel kind of relativity principle, on which simultaneity is relative.
For Poincaré, however, space is constituted completely by a principle that is prior to
the laws of dynamics, the principle of free mobility. The extension of this principle
to the space, or space-time, of physics requires the adoption of conventions that
connect geometry with dynamics.

This view of the autonomy of space is, in turn, central to Poincaré’s understand-
ing of relativity in general. Relativity is, for Poincaré, implicit in the notion of space;
it is an immediate consequence of the homogeneity of space. In this sense it is a pre-
dynamical principle, one that follows from the primitive conception of space based
on our own local displacements.

[A]s I am conscious that, in passing from the position A to the position B, my body has
remained capable of the same movements, I know there is a point of space related to the
point a0 just as any point b is related to the point a, so that the two points a and a0 are

3See in particular Torretti (1977) for the philosophical origins and development of empiricism and
conventionalism.
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equivalent. This is what is called the homogeneity of space. And, at the same time, this is
why space is relative, since its properties remain the same whether it is referred to the axes
A or to the axes B. Thus the relativity of space and its homogeneity are one and the same
thing. (Poincaré 1908, 113)

From the perspective of space-time theory, it is easy to point out the error
in Poincaré’s analysis, an error that has been, indeed, endemic in philosophical
debates over space and motion from the time of Leibniz. The relativity of space in
Poincaré’s sense, meaning the homogeneity of space, is a completely separate issue
from the relativity of motion in the sense of modern physics. From the assumption
that the parts of space are indistinguishable—that there is no preferred origin, and
that spatial translations, reflections, and rotations effect no genuine changes in the
states of physical systems—it does not follow that change of spatial location over
time makes no physical difference, or is not an objective change. Confusing these
two issues was the essential error in some of the classic arguments of Leibniz
(1716) against Newton’s theory of absolute space; Newton also held that space
is homogeneous, and that its parts are indistinguishable, but this was perfectly
compatible with holding that it does make a difference whether a body occupies
the same spatial location at different times. This is analogous to the relativistic
principle that there is no preferred velocity, but any change of velocity makes a
genuine physical difference. The question of absolute motion, in short, has to do,
not with space by itself, but with space-time; it concerns the question how, or
even whether, space is connected through time. Or, in other words, it concerns the
question whether, in addition to spatial relations among things considered at a given
moment, there are also spatio-temporal relations such as “same place at different
times,” or “same velocity at different times”. Such questions pertain to the laws of
dynamics, not to the geometry of space alone.

Maintaining this mistaken connection between the homogeneity of space is one
of the two central errors that characterize Poincaré’s view of relativity in general.
When he claims that dynamical distinctions between states of motion are inherently
philosophically suspect, it is the homogeneity of space that justifies him; this is
why the concept of absolute rotation, which he admits is inseparable from classical
mechanics, strikes him as nonetheless a philosophical embarrassment. But the
dynamical distinction between rotation and non-rotation, as measured by centrifugal
effects, even if it does challenge the most general thesis of the relativity of motion,
certainly does not contradict the homogeneity of space. Geometrically it depends,
not on the rotating body’s changing relation to the individual parts of space, but on
the relative velocities of the individual parts of the rotating body.

This is why the relativity of motion is a spatio-temporal issue, completely
separate from the issue of the relativity of space in Poincaré’s sense. It is a straight-
forward matter to spell out the issue, and even to resolve it, using the framework of
four-dimensional geometry. Here classical space-time is a four-dimensional space,
decomposable into three-dimensional subspaces by the relation of absolute simul-
taneity, which separates space at each moment, and the momentary configuration of
the universe, from space at any other moment; each spatial “slice” is homogeneous,
but the relativity of motion concerns the trajectories or world-lines that connect
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positions of objects over time. According to Newtonian mechanics, there is no
privileged set of trajectories that represent the same spatial locations at different
times—what Newton called “absolute space”—but even if there were, this would
not affect the homogeneity of space itself. The latter concerns only the structure of
space, but the question of privileged trajectories concerns the dynamical laws that
distinguish them.

This criticism of Poincaré might appear, however, to be anachronistic and unfair,
based on a twentieth-century perspective that was only beginning to develop near the
end of Poincaré’s life. It would therefore be illuminating to consider his historical
context. By the time that La science et l’hypothèse was published (1902), the con-
cept of absolute space had already been subjected to a severe critical examination.
One part of this was Mach’s critical analysis of Newton’s principle of inertia and the
concept of absolute rotation, which suggested the possibility of new laws of motion
and eventually motivated Einstein to seek a “general theory of relativity” (Mach
1883). But the more relevant part, for the present discussion, developed entirely
within the framework of Newton’s laws, and led to the insight that the concept of
absolute space is completely superfluous: the essential Newtonian conceptions of
force, mass, and acceleration define an equivalence class of frames of reference,
without requiring a distinguished “absolute space” as a privileged rest-frame. It
is therefore a misconception that special relativity eliminated absolute space from
physics; by the time Einstein began his work on electrodynamics, the concept
of inertial frame was already widely known, and absolute space was already
widely understood to be unnecessary. Thomson (1884) introduced the notions of
“reference-frame” and “reference-dial-traveller,” i.e. a spatial frame and a temporal
standard relative to which motion may be measured, and a new expression of
Newton’s laws: For any system of particles moving anyhow, there exists a reference-
frame and a time-scale with respect to which every acceleration is proportional to
and in the direction of an applied force, and every such force belongs to an action-
reaction pair. Moreover, any frame in uniform rectilinear motion relative to such a
frame is also an inertial frame. Independently, Lange (1885) offered an essentially
equivalent conception, with the more suggestive terminology of “inertial system”
and “inertial time-scale.” Both versions were emphatically cited by Mach, in the
second (1889) and later editions of Die Mechanik,4 as eliminating the need to appeal
to absolute space; indeed, Mach credited Newton himself with the essential idea, as
expressed in his fifth Corollary to the laws of motion.

According to Mach, in other words, even Newton had taken pains to show that
the solutions to problems of motion, as undertaken in the Principia, are independent
of the assumption of absolute space.

By 1905, Einstein, who obviously had read Mach with some care, apparently
felt no need to defend the idea that Newtonian mechanics satisfies the relativity
principle, and, instead of absolute space, requires only “a coordinate system in

4On the development of the concept of inertial frame, see DiSalle (2009); on Mach’s role in this
development, see DiSalle (2002).
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which the equations of mechanics are valid” (Einstein 1905, 892). By the relativity
principle, any system that is in uniform motion relative to such a system is physically
equivalent to it; the open question was whether electrodynamics could show a
similar invariance, instead of defining the velocity of electromagnetic waves as
relative to a stationary medium, the ether, which thereby defines a kind of privileged
rest-frame. This did not imply a violation of the relativity principle, however: the
velocity of light relative to the ether is, after all, still a relative velocity, as was noted
by Maxwell (Maxwell 1878, 35), and by Poincaré himself. Therefore it was coherent
to maintain the equivalence of inertial frames, while acknowledging that one subset
of them happens to represent the rest-frame of a physical object, the ether.

Poincaré, however, does not seem to have been aware of this development in
the foundations of Newtonian mechanics. His second error, then, is his conviction
that the Newtonian distinctions among states of motion, which he admits are well
founded within the theory, require the supposition of absolute space. Given this
conviction, it was therefore natural for him to suppose that absolute rotation posed
a philosophical difficulty. Obviously, Poincaré understood the classical principle of
relativity, as the principle that

: : : the accelerations of the various bodies that make up an isolated system depend only on
their relative velocities and positions, and not on their absolute velocities and positions,
provided that the mobile axes to which their relative motions are referred are engaged
in a uniform rectilinear motion. Or, if you prefer, their accelerations depend only on the
differences of their velocities and the differences of their coordinates, not on the absolute
values of those velocities or those coordinates. (Poincaré 1902, 136)

This way of expressing the principle evidently does not exclude the possibility of
taking absolute space to be the background against which these relative motions are
understood. But Poincaré explicitly rejected the existence of absolute space. The
difficulty that he faced, at least at the time of writing La science et l’hypothèse,
was that absolute space appeared to him to be implicit in Newtonian dynamics,
because (he thought) it is implicit in the dynamical distinction between inertial and
non-inertial, especially rotational, motion. That such a distinction can be made—for
example, that the earth’s rotation can be experimentally established by its equatorial
bulge or by Foucault’s pendulum experiment—“is a fact that shocks the philosopher
but that the physicist is forced to accept” (Poincaré 1902, 99).

And yet, to say in such a case that the earth turns, would that have any meaning? If there
is no absolute space, can something turn without turning in relation to something? And,
on the other hand, how can we admit Newton’s conclusion and believe in absolute space?
(Poincaré 1902, 138)

Apparently unaware of the resolution provided by the concept of inertial frame,
Poincaré resolves the difficulty by treating the rotation of the earth as a matter of
convention. The reasonable inference to draw from the experimental evidence is,

It is more convenient to suppose that the earth turns, because in this way one can express
the laws of mechanics in a much simpler language.

That does not change the fact that absolute space, that is to say the reference-point to which
one must refer the earth in order to know if it really rotates, has no objective existence. For
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the affirmation “the earth turns” has no meaning, since no experiment would permit us to
verify it : : : or, rather, the two expressions “the earth turns” and “it is more convenient to
suppose that the earth turns” have one and the same meaning; there is nothing more in the
one than in the other. (Poincaré 1912, 141)

Poincaré’s remarks highlight an important aspect of the philosophical perspective
from which, around 1905, he approached the problems in electrodynamics that
led Einstein to special relativity. In short, the relativistic aspect of Newtonian
mechanics, which had been a focal point for Einstein, was not entirely clear to
Poincaré.

Conclusion: Poincaré and Special Relativity

After the emergence of special relativity, and of Minkowski’s four-dimensional
account of it (1908, 1909), Poincaré appears to have seen the classical relativity
principle, and the problem of absolute space, in a much clearer light. Now, in
an essay on “L’espace et le temps” (1912), he makes a much clearer distinction
between the relativity of space and the relativity of motion, designating the former
as “psychological relativity,” and the latter as “physical relativity” (1912, 42).
The former refers not only to the homogeneity of space, or the indifference to
changes of position and orientation, but also to the indifference, as far as our
perceptions are concerned, to any deformation of objects that leaves their relative
sizes unchanged. “We can only perceive modifications in the forms of objects
that differ from the simultaneous modifications in the forms of our measuring
instruments” (38). “Geometry is possible only because of our choice to regard
certain instruments as rigid, and to study the group of their displacements” (40).
Physical relativity, however, is much more restricted than psychological relativity:
changes of coordinates must preserve the differential equations of physics. These
will necessarily be altered if we shift to an accelerating or rotating frame of
reference, for then centrifugal or inertial forces will have to be introduced. On the
basis of this principle of relativity, experiments such as Foucault’s pendulum can be
regarded as demonstrating the rotation of the earth. Poincaré adds:

There is something in this that shocks our ideas about the relativity of space a bit, ideas that
are founded on psychological relativity, and this discord has seemed embarrassing to many
philosophers. (Poincaré 1912, 42)

As we have seen, Poincaré himself had formerly felt this same embarrassment,
and so this remark can be read as a diagnosis of his own past error. Now, that he is
aware of the relativistic interpretation of Lorentzian electrodynamics—what he calls
“the principle of relativity of Lorentz” (52)—he appears to appreciate that classical
mechanics and “the new mechanics” are equivalent from the point of view of
“physical relativity,” insofar as each is characterized by a group of transformations
of their spatial and temporal coordinates. The difference arises from the peculiar
nature of the Lorentz transformations, which do not preserve spatial and temporal
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measurements individually. Shapes are deformed in the passage from one Lorentz
coordinate system to another, while simultaneity relations and time intervals are
altered. The important point, Poincaré notes, is that “on the new conception, space
and time are no longer entirely distinct entities that may be viewed separately, but
two parts of a single whole, and two parts that are too closely intertwined to be
easily separated” (Poincaré 1912, 53).

In effect, Poincaré articulates the same view of special relativity that Minkowski
had articulated (1908, 1909). This ought to be unsurprising, given the already-
mentioned steps that Poincaré had earlier taken (1905) toward the appropriate
four-dimensional formulation of special relativity; perhaps one could wonder at
his calling it Lorentz’s principle of relativity, and omitting the name of Einstein.
The crucial difference is that Poincaré represents the new theory and the old as
equivalent alternatives, and the choice between them as a matter of convention.
According to Minkowski, on the contrary, Einstein had shown that the new principle
of relativity “is not an artificial hypothesis, but rather a novel understanding of the
time-concept that is forced upon us by the appearances” (Minkowski 1908, 56).
The core of this new understanding is the relativity of time, following from the
relativity of simultaneity. As Minkowski notes, the difference between Einstein’s
space-time structure and the Newtonian structure, with absolute simultaneity, may
be represented as the difference between a group of transformations preserving the
finite velocity c and a group in which c increases to infinity. But the choice between
them is not conventional; it is determined by Einstein’s destructive critical analysis
of the concept of absolute simultaneity.

Lorentz called the t0 combination of x and t the local time of the uniformly moving electron,
and applied a physical construction of this concept, for the better understanding of the
hypothesis of contraction. But to have recognized clearly that the time of the one electron
is just as good as that of the other, that is, that t and t0 are to be treated equally, was first the
merit of A. Einstein. (Minkowski 1909, 107)

The choice, then, is not a mere question of simplicity; Einstein has shown
that the symmetry relations of the electrodynamics of moving bodies determine a
corresponding symmetry in the measure of simultaneity, in which it is relative to
the choice of inertial frame. That is, the invariance of the velocity of light makes it
impossible to determine an absolute relation of simultaneity.

Poincaré pointed out, rightly, that the alternative “convention” also determines a
theory of time, and imposes general constraints on any definition of the simultaneity
relation. For these reasons one can say that it defines concepts of time and
space, including length and simultaneity (Poincaré 1912, 51). What it does not
provide, as Einstein showed in 1905, are empirical criteria for the application of
these concepts, of a kind that would enable us to establish invariant measures;
Einstein could supply a natural criterion of simultaneity, but it leads directly to
the consequence that simultaneity is relative. Therefore there is no constructive
procedure, in principle or in practice, for constructing the geometry of Newtonian
space-time. Even though Poincaré explains how the determination of length and
time follows from the dynamical symmetries of classical mechanics, his underlying
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assumption is that lengths and times (and therefore simultaneity) are measureable
independently of the dynamical theory, which indeed takes those measures for
granted. Einstein, however, has located the need for a convention at the more
fundamental level, one that supplies empirical criteria for the application of his
own theory, and therefore poses a challenge to supply something equivalent for the
Newtonian theory. The Newtonian definition of simultaneity, however, is no longer
connected to any empirical means of applying it. From the point of view of the
epistemology of time, the Newtonian and the Einsteinian conventions are therefore
not equivalent.

We can see from this comparison that, in one sense, Poincaré’s view of space-
time theories, and in particular of the novel space-time theory that Einstein and
Minkowski constructed—on empirical and theoretical foundations that were so well
known to Poincaré himself—were profoundly influenced by his view of space, and
his epistemological analysis of spatial geometry. From his deep conviction of the
autonomy of space, as the schematic structure of our experience of local motion,
he first developed a view of relativity as a principle determined by the homogeneity
of space alone. On this view he found it difficult to bring the relativity of space
and the classical relativity of motion, as a symmetry principle of dynamics, into a
philosophically coherent whole. In another sense, however, Poincaré may be seen
as failing to bring his analysis of space to bear on the question of space-time. His
account of space reveals that its group structure has a direct empirical significance,
through our experience of free mobility—a significance that is not uniquely and
necessarily determined, insofar as we are free to define its significance by different
conventions, but that is unquestionably sufficient, at least at small spatial scales.
Einstein revealed, however, that, except at the very smallest scales, determining
spatial intervals requires an understanding of simultaneity, sufficient to establish its
empirical significance. Poincaré had enlarged on this very theme, and on the crucial
role of assumptions about light in determining simultaneity, in his essay “La mesure
du temps” (1898). It was Einstein, however, who showed that the invariance of the
speed of light, at one stroke, undermines the Newtonian conception of simultaneity
and defines a new one, with its own direct empirical significance.

On this new definition, again, simultaneity becomes relative, and the objective
measure of space is no longer possible. Then Minkowski showed that the invariance
of the speed of light provides the constructive principle for a new space-time
structure, just as rigid displacements provide a constructive principle for the
structure of space. Because this constructive principle itself provides a destructive
critique of the previous conception of simultaneity, however, it does not permit us
to regard the previous conception of space-time as an equivalent alternative. For the
old assumption of absolute simultaneity was crucial to extending the space of local
displacements to a theory of space-time; it alone made possible that autonomy of
spatial structure on which Poincaré, and the classical picture of space-time, relied.
In other words, the isolation of spatial structure from dynamical structure—from
the structure of space-time—could no longer be maintained, given the facts of
electrodynamics and the want of an empirical criterion of simultaneity. In these
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new experimental and theoretical circumstances, Poincaré’s insight into the relation
between formal structure and experience could be carried forward, not by Poincaré
himself, but by those who saw how to extend its application to the construction of
space-time.
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