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Preface

I came to write about this position as a result of my professional experience. I
attended and participated in a lot of conferences, mostly in Europe. They were
philosophy, mathematics and logic conferences. I observed that, for the most part,
mathematicians and logicians did not behave as though they adhered to a philosophy
of mathematics. In particular, with some exceptions, they did not seem to show
adherence to one foundation of mathematics in a philosophical way. Some were
working on some issues in a foundation, and were wedded to it as a result of
their invested time and energy, not so much (again with some exceptions) for
philosophical reasons. Yet, my studies in the philosophy of mathematics would have
me believe that it is imperative that one have a philosophical outlook or position, and
one should work within it. I was puzzled.

Oversimplifying: the philosophers seemed to be convinced that mathematics is
one thing and that to show this one just pointed to the foundation of mathematics,
and this was a particular theory in mathematics. The philosophers seemed to be
completely ignoring the fact that there are several rival foundations, and none has
a completely privileged position, except maybe Zermelo-Fraenkel set theory – but
even that could not support the philosophical claims, since there were all sorts of
equi-consistency proofs around. There would be no point in making such proofs if
the other ‘rival’ foundations were for nought. Mathematicians and logicians in their
presentations and in casual speech were quite willing to take seriously other theories
that conflicted with the ones they were working in. In fact that is one of the reasons
they go to conferences: to find out what is going on in other fields, to see how results
in one area of mathematics share features with their own. They would quite happily
talk of rival foundations in the same breath, and not be casting one away. Instead,
they embraced the lot.

I was convinced that if one wanted to give a philosophy of all of today’s
working mathematics, one had to give a philosophy that was not foundational. I was
going to call the position Meinongian structuralism, but Bill Griffiths convinced
me that the name was too baroque. It later occurred to me that ‘pluralism’ would
work as a name. Once I fastened on ‘pluralism’, I noticed the word used by a
few philosophers of mathematics such as Shapiro and Maddy. In contrast to the

vii



viii Preface

philosophers, mathematicians for the most part behave in a pluralist way. I conclude
that pluralism is ‘in the air’. But if we look at how the word is used, we find it is used
in so many different ways as to be almost useless! It occurred to me that it would
be a useful service to develop a philosophical account of pluralism as a philosophy,
as opposed to ‘pluralism’ being used to gesture towards a vague and ambiguous
attitude of tolerance.

I confess to feeling I am a bit of a philosophical charlatan, since I hardly think I
am doing anything original, again, since the idea is already very much in the air. At
other times I think I am a charlatan on the grounds that the position is so obvious,
as to be platitudinous. It seems to hardly qualify as a position at all, since it is
just an articulation of the prevailing attitude of practicing mathematicians. But, then
I quickly realise that this is not at all the case. Once developed in its entirety, I
discovered how radical the position is. It is deeply radical. As such, if my arguments
are persuasive, then the book will either convert readers, or act as a strong warning
to treat the word ‘pluralism’ with care, use it sparingly, or only in the negative. One
person’s modus ponens is another’s modus tollens.

Washington, DC, USA Michèle Friend
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Chapter 1
Introduction

Abstract The introduction is meant as a guide to reading the book. I briefly
describe the parts and individual chapters of the book. I also outline some
conventions adopted in the book.

1.1 Introduction

There are four parts to this book. The first is motivational. I give motivations for
adopting pluralism from four separate starting points: realism, Maddy’s naturalism,
Shapiro’s structuralism and formalism. For reading this part of the book, I suggest
reading the first chapter on realism in order to gain some orientation concerning plu-
ralism, and as an introduction to some vocabulary which is used idiosyncratically.
There is a glossary for further reference, or to use as a reminder.

The three other chapters of the first part are self-contained, and are directed
towards philosophers with certain inclinations. That is, if one has naturalist inclina-
tions, one should read the naturalism chapter. If one has structuralist inclinations,
one should read the structuralism chapter and if one has formalist inclinations,
one should read the formalism chapter. If the reader is none of the above, then
she can read these chapters only to become acquainted with some motivations
for adopting pluralism. This part of the book is not exhaustive in discussing all
possible motivations for pluralism. Not only are there only a few non-pluralist
positions discussed, but even within the motivational chapters on naturalism and
structuralism I target one philosopher’s philosophy in this area, not all of the
well received versions. The philosophers in question are Maddy and Shapiro,
respectively. Motivating pluralism from other starting points is part of the greater
pluralist programme. Similarly, comparing and contrasting other positions with
pluralism is part of the greater programme. I return to it in one section of Chap. 14.

Pluralism is not just one position in the philosophy of mathematics, it is a family
of positions. This is one of the reasons I call it a ‘programme’. This book gives a
starting push to the programme. Different members of the family are distinguished
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2 1 Introduction

along the dimensions of: degree (of pluralism), underlying logic and sort of
pluralism. Examples of sorts are: foundational, methodological, epistemological
and alethic. The pluralist not only distinguishes himself from other positions in
the philosophy of mathematics, he is inspired by other positions. In particular, the
pluralist retains lessons from the realist, the naturalist, the structuralist, the formalist
and the constructivist. The last source of inspiration will be put to work in the fourth
part of the book.

The second part of the book concerns the details of how to cope with the
inevitable conflicts and contradictions which surface when entertaining very differ-
ent philosophical positions and mathematical theories under one theory. This part
concerns reasoning in the light of contradiction and conflict. I first present pluralism
as a philosophical position in its own right. I make reference to a paraconsistent
formal system as a guide to reasoning about conflicting ideas without necessarily
having to decide that one idea is correct and the other is not, or that one position
‘wins’ over another. Sometimes one does win, but in more sophisticated arguments,
there will not be a clearly correct position. Since I am presenting a philosophical
position, I can only make reference to a formal system of logic, as opposed to
using a formal system. This is because the pluralist philosopher is not comparing
propositions or well-formed formulas and reasoning from these to theorems or
conclusions. This is why I write about using a formal logic metaphorically in
Chap. 7. The logic is used to set parameters and to sanction and guide the reasoning
about whole theories. For this reason, the notions of rigour of argument and the idea
of communication become very important to the pluralist. These are discussed in
Chaps. 8, 9, and 14. We shall see in these chapters a tension and a struggle with
meaning, ontology and truth. These are traded for the more practice reflecting:
communication, rigour and protocol. The struggle is the struggle of the pluralist.
It is the cost of taking on board the task of explaining what mathematics is about
without compromising on the real subtleties in operation in mathematics.

In the third part of the book I work with the paradoxes of tolerance and the idea of
transcending one’s own position. The paradoxes of tolerance surface when we ask
the questions: ‘does it makes sense to be tolerant towards those who are intolerant of
our own tolerant position?’ and ‘are there not some things the pluralist is intolerant
towards?’ In Chap. 10, I discuss the paradoxes, and explain that the pluralist is
not a global pluralist, but a maximal pluralist. He would be a global pluralist if
he were tolerant of everything. He is a maximal pluralist if he is as tolerant as
possible without his position becoming self-defeating. The maximal pluralist is
intolerant towards dogmatism, and particular moves made by, say, realists, naturalist
and structuralists against other positions, and pluralism.

In Chap. 11 we visit the more subtle question of whether the pluralist is pluralist
towards himself. Another way to ask this is to ask if the pluralist is dogmatic in the
ways identified in the previous chapter. To answer this question, we first explore
Meyer’s collapsing lemma. I use this to a very modest end, to indicate that the
paraconsistent logician wedded to LP (a particular paraconsistent logic) will have to
be pluralist about interpretations of his logic. The result generalises to anyone who
is both pluralist and fixes on a particular logic to underpin his pluralism.
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1.2 A Note on Conventions 3

In contrast, if we are logical pluralists, then we have another reason to be pluralist
about pluralism. Using other logics will give a different flavour to pluralism. The
pluralist is pluralist towards himself just in virtue of admitting alternative logical
formal systems to underpin pluralism. Again, qua programme, here we see that we
can make different versions of pluralism by adopting different underlying formal
logical systems.

The fourth part of the book puts the pluralist to work. I indicate some sample
pluralist exercises. The first concerns the notion of proof in mathematics. The
pluralist analyses the notion of proof as it is used by the working mathematician
and draws conclusions about the role of proof in mathematics. In Chap. 13, I
undertake a different sort of exercise. This concerns pluralism about conflicting
philosophies of logic. In Chap. 14, I launch three sorts of project, one is to take
a feather from Maddy’s hat, and identify an aspiration of some mathematicians,
articulate and define the aspiration and put it to work to partly resolve a technical
problem, and to deepen our understanding concerning the problem. The second
project is to explore the notion of rational reconstruction, to see what they can teach
us. The third discusses the issue of working in a trivial setting. This part of the
book demonstrates how pluralism is programmatic. There is a lot of work for the
pluralist philosopher of mathematics. For the reader who is interested in reading
as little as possible, while still forming a view of pluralism, I suggest reading
Chaps. 2, 6, and 11.

1.2 A Note on Conventions

Definitions for technical terms are usually given at their first mention, but not
invariably, for example in this introduction I have used many such words without
giving a definition. Technical terms are given a definition in the glossary. The index
should provide further guidance.

‘The pluralist’ is used to name a character who takes on some sort of pluralist
philosophy of mathematics. The definite article is used in the same way as when we
say ‘the logician’ and are referring, not to an individual (person) but to a species,
or type of person. More technically, ‘the pluralist’ is not a first-order singular term,
but a second-order singular term. Pluralism is a family of positions. As such, the
different pluralisms have many features in common, and can all avail themselves of
most of the same arguments against other positions.

I use ‘he’ throughout for the pluralist. This is because I am a ‘she’ and I do
not want to show prejudice. Other philosophical or mathematical characters might
be given the preposition ‘he’, ‘she’ or ‘it’. I use ‘it’ for the more obscure, remote
or extreme positions, which are just philosophical constructs. In these cases it is
possible that no one ever did or ever will hold the position. It is supposed that if
someone were to hold the position, such a person would not hold it for long. It is
more a position to be temporarily entertained than seriously defended. An example
is the trivialist. An example is the trivialist position. A trivialist is an ‘it’.

http://dx.doi.org/10.1007/978-94-007-7058-4_13
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4 1 Introduction

Foreign words, and phrases which I wish to emphasise, are italicised. There
should not be very much confusion resulting from italics playing two roles. ‘Or’
is taken as inclusive throughout the text.

There are two chapters which were co-written with Pedeferri. Therefore, in
both these chapters I use the first person plural. In other chapters, I use the first
person singular. After the acknowledgments, preface and introduction, names of
philosophers or mathematicians are only ever written using the family name.

My punctuation might also raise eyebrows. I part company with Fowler and
Gowers, and put a comma after ‘for’ when it is used in the sense close to that of
‘since’. I part company with the conventions of the grammar check on my computer,
and do not always precede ‘which’ with a comma. Single quotation marks, or
inverted commas, are use to show that a term is a technical term. They are also
sometimes used to show mild irony. For the most part, they could be replaced by
the words: ‘as it were’ or ‘so called’, but this would be more tedious than using the
elegant single inverted comma.

Finally, I should add a word about the index. The index is lengthy, and has
some odd entries. The purpose of the index is twofold. One purpose is for a reader
interested in, say, finding out what I have to say about realism, and nothing else. But
the other use is when a reader wants to re-read, say, an example, and remembers that
it concerned an unusual phrase such as: ‘the inconsistency of UN declarations’. For
this second reason, odd entries, such as, ‘UN declaration’ are in the index.
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Chapter 2
The Journey from Realism to Pluralism

Abstract In this chapter I take the reader on a journey from a naı̈ve realist position
through to the beginnings of pluralism. Some simplifying assumptions are made,
but this is done in order to introduce some of the concepts we find in pluralism,
not to defeat all realist positions. In particular, in order to set the stage, the naı̈ve
realist will take Zermelo Fraenkel set theory to be the foundation for mathematics
in a philosophically robust sense of capturing the essence, ontology and absolute
truth of mathematics. The reader is given several reasons to abandon the naı̈ve
realist conception and to consider a more pluralist conception. The main aspect
of pluralism discussed here is pluralism in foundations. ‘Pluralism in foundations’
is an oxymoron, and therefore, is unstable. Some other aspects of pluralism are
then introduced: pluralism in perspective, pluralism in methodology and pluralism
in measure of success.

2.1 Introduction: ZF Monism

Since this is the beginning of the of book, I should issue a warning. Especially in
this chapter, I tell some lies. Or, rather, I begin with oversimplifications. This will
be alarming for the more sophisticated readers. However, rest assured that as we
proceed through the book, most of these oversimplifications will be re-expressed,
refined, honed and made more explicit. The reason for the oversimplifications is
that since this is a new position in the philosophy of mathematics, I prefer to start
with some very naı̈ve ideas.

In explaining a philosophical position, it is sometimes useful to start from a
quite different, but easily recognised position, even if we think no one occupies
it.1 Realism is a familiar position in the philosophy of mathematics. However, since

1As we shall see in the subsequent chapters, I shall take the reader through journeys with other
starting points: naturalism, structuralism and formalism. Balaguer (1998) works through different
versions of realism, and teaches us to use the word carefully. It is quite possible that no one
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8 2 The Journey from Realism to Pluralism

‘realism’ is such a broad term with so many connotations and aspects, I shall fix the
term and restrict ‘realism’ to a ‘monist foundationalist’ position, where Zermelo-
Fraenkel set theory (henceforth: ‘ZF’) is The Foundation.2

Explaining and defining the terms just used: ZF is an axiomatic theory. Zermelo
developed most of the axioms and Fraenkel added the axiom of replacement (Potter
2004, 296). The theory is very general. In ZF we study sets of objects, combinations
of sets, the comparison of sets with each other, and the creation of one set from
another, or of a new set from several others: for example, by taking their intersection
or union.

Definition3 The Foundation is an axiomatically presented mathematical theory to
which all or most of successful existing mathematics can be reduced. It can be used
normatively to exclude from bona fide mathematics any purported mathematics
which cannot be reduced to the axiomatic theory.

Definition Successful existing mathematics is the body of mathematical theories
and results about those theories that are currently judged by the mathematical
community to be ‘good mathematics’ (as indicated by publication, reference in
discussion, use in classrooms and study groups, airing at conferences and so on).
This will include past mathematics not presently under mathematical investigation,
but, for all that, not dismissed as bad mathematics.

What counts as successful existing mathematics is revisable. We might find out
that what we thought was a good mathematical theory turns out not to be. Thus,
‘successful existing mathematics’ is a vague term, but the imprecision of the
boundaries of application of the term need not concern us in the present context.

Definition The monist foundationalist believes that there is a unique correct,
or true, foundation for mathematics, and uses The Foundation normatively to
determine what is to count as successful existing mathematics.

What might motivate someone to adopt monist foundationalism? In the late
nineteenth century and the early twentieth century, we developed various set
theories. They were not all fully axiomatised at first. Cantor’s set theory was not
presented as a fully axiomatised theory at all. Despite they’re not being presented as
fully axiomatised, we discovered that set theories were very powerful. By ‘powerful’
we mean that a great deal of mathematics can be reduced to set theory. That is, we
can translate, say, arithmetic, into the language of, say, ZF, avail ourselves of the
axioms and inference rules of the proof theory of ZF, contribute some definitions in
the language of ZF, and obtain, through proof, a number of theorems or ‘results’.

presently holds the position I give here. It is, admittedly, a caricature. That does not matter for
present purposes, since (1) the point is to start from a familiar position, not an occupied and
carefully defended position, and (2) this chapter is not meant as a knock-down argument against
realism in all its forms. Rather, we begin with a naı̈ve and familiar view in order to introduce
pluralism.
2This is quite different from a ‘full-blooded realism’ (Balaguer 1998, 5).
3 The definitions in this chapter are to be read as working definitions. As such, in a more exacting
context, they might require further refinement. Definitions are repeated in the glossary.
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We can then translate back into the language used in the original arithmetic. If we
compare the results we obtained in the original arithmetic to those we obtain in the
ZF version of arithmetic, then we can prove that we can in principle reproduce all of
the results of the original arithmetic in ZF. That is, there is no theorem of arithmetic,
which does not have an analogue in ZF. Therefore, in principle, there is a complete
reduction of arithmetic into ZF. The power of set theory consists in the fact that
not only arithmetic, but also analysis and geometry, and therefore most of working
mathematics can all be reduced to set theory. Because of the power of ZF, it can be
presented as a candidate for founding mathematics.

ZF was not the only set theory developed. There were (and still are) rival theories
of sets, and there arose problems with some of the theories with the discovery
of paradoxes. Even apart from the paradoxes, other conceptual puzzles surfaced
such as how to conceive of very large totalities, which many of us now think
of as proper classes. These were both philosophical and technical problems. The
paradoxes and puzzles produced a crisis in mathematics (Giaquinto 2002) and hailed
the foundational and axiomatic movements. It was thought that mathematics needed
a ‘secure’ foundation, since it was clear that some mathematical activity was deeply
flawed. Philosophers, or professional mathematicians assuming a philosophical role,
(henceforth: philosophers)4 contributed in culling some set theories, such as the so-
called naı̈ve theories. The culling did not eliminate all but one set theory. So we
had no clear unique founding set theory, we had several. Nevertheless, we can say
that presently we have honed in on one. Under the received view today, we can say
that ZF is the ‘orthodoxy’ of mathematics (Maddy 1997, 22). ‘Orthodoxy’ can be
taken to mean ‘the most accepted theory’ or reference point for mathematics. Or,
it can mean that ZFC (ZF with the axiom of choice) ‘codifies current mathematical
practice’ (Hrbacek et al. 2009, 2). How might a philosopher interpret such phrases?
There are conceptually distinct roles that ZF can play as ‘orthodoxy’. Let us start at
one extreme. The position: monist foundationalism reads ‘orthodoxy’ to mean that
ZF sets the parameters for what is to count as mathematics. The reason for starting
with this is not plausibility, but familiarity and conceptual simplicity. Philosophers
are all familiar with some (less extreme) version of realism. At this extreme end of
realism, The Foundation plays the following four roles.

1. All of what is counted as ‘mathematics’ has to be reducible to, or can be
faithfully5 translated into, The Foundation. The Foundation gives the scope of

4Obviously, being a professional mathematician does not preclude one from having philosophical
thoughts or from writing quite philosophically about mathematics. The distinction here is not
professional but conceptual, in the sense of philosophical and mathematical problems or puzzles
requiring different sorts of solution.
5By ‘faithfully’ I mean that the language being translated into, here the language of ZF, has the
expressive power to capture the nuances of the original concepts as expressed in the original
language. A test for loyalty of a definition, say, would be that analogues of all of the same theorems
can be derived when the definition is expressed in ZF as can be derived using the definition of the
original language, all other definitions, theorems, lemmas and proof techniques remaining equal.
In contrast, a reduction would be unfaithful if fewer or more (non-equivalent) theorems could be
derived. Ancient Latin can only make an unfaithful translation of a modern computer manual.
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the correct use of the word ‘mathematics’, or, we might say, the foundational
theory determines the extension of the term ‘mathematics’. We might call this
‘the semantic determining role of The Foundation’.

Another, but related, role is that

2. the foundational theory tells us what the basic ontology of mathematics is: what
it is that mathematicians ultimately study. In the case of ZF, it is sets, and not, for
example, lines, planes, numbers or cuts. We might call this ‘the ontological role
of The Foundation’.

As a corollary,

3. what counts as correct, or legitimate methodology is also determined by ZF. This
is ‘the methodological role’ played by The Foundation. We give some axioms,
elaborate definitions and then prove theorems within ZF.

We might even

4. confer an epistemic role to ZF, by saying that to really understand and know
mathematics, we have to study set theory. The rest of mathematics, written in
other languages, is a pale imitation, and studying mathematics, not presented
as a part of set theory, might even mislead us into thinking that we know an
area of mathematics when we do not. Call this ‘the epistemological role of The
Foundation’. All these roles meant to have normative force over the practice of
mathematics.

To hold that ZF plays all four roles is quite extreme, but this is where we shall
begin our journey. The monist foundationalist who confers all four roles on the
foundational theory is also the most extreme opponent to pluralism. So the journey
from monist foundationalism to pluralism is long. In the course of the journey, we
shall meet considerations that trouble the extreme position. Since considerations are
not full arguments, each elicits different legitimate reactions. There will be better
arguments in the chapter on structuralism. Thus, before we see the considerations
we should add a note about how to think of them.

Upon thinking about the considerations, a reader might be prompted to muster
arguments against the pluralist, or she might modify, or even change, her position.
Thus, the considerations, can be thought of as: (a) points of re-entrenchment for
the convinced monist foundationalist, (b) calls for conservative modification of
the monist foundationalist view or (c) points of rejection or doubt towards monist
foundationalism. The last leads us closer to the pluralist position. Since not every
reader will be willing to follow me for the whole journey, we can think of the journey
as an exercise in mapping out the philosophical territory and discovering where one
stands ab initio (Fig. 2.1).

The monist foundationalist holds an extreme position because it has a vision of
reformation.

Definition The reformation is a movement to constrain successful existing mathe-
matics by The Foundation.



2.1 Introduction: ZF Monism 11

Fig. 2.1 ZF set theory as a foundation

If ZF is the orthodoxy of mathematics in a strong sense and is a good candidate
for The Foundation, then we might think that we have an equal trade-off between
good mathematics, as practiced, and set theory. If we have an equal trade-off, then
we can do mathematics in the language of set theory or we can do mathematics in
the original language developed for that theory, and the two are equivalent. In other
words, we could set up two communities of mathematicians. One would continue
to work in the languages of our plethora of mathematical theories: Euclidean
geometry, topology, calculus, algebra and so on, but not set theory directly (in the
sense of using only the language of set theory). The other would simply work in
set theory. According to our reducing results concerning The Foundation, in the
long run, the plethora community would produce a number of results; and the set
theory community would produce analogues of all of the results of the plethora
community. The order of producing the results would be different – because notation
is differently suggestive, but ‘at the end of the day’ equivalent results would be
generated. If this is an accurate prediction of what would happen, then this confirms
(in a somewhat circular manner) that we have an equal trade-off.

However, the prediction would probably not be met. This is because the set
theoretic community will produce some results not produced by the plethora
community. The latter would concern results unique to set theory. It would seem
that the set theory community is, therefore, better off, at least in the long run.

We now have good reason to initiate the reformation. It would be a wonderful
feat to reform mathematical practice by stipulating that we only do mathematical
work in the language of set theory, and we confine ourselves to the axioms of set
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theory and are allowed to introduce definitions only in the language of set theory.
This would clear up misunderstandings, cut down on the time spent learning new
symbols and vocabulary, and cut out all of the work which we do showing that two
theorems in different areas of mathematics are equivalent in some respects since
this would be clear and explicit if our work was all done within set theory in the
first place. Under the reformation, mathematics would become an explicitly unified
discipline.

Unfortunately, the suggested reformation would incur considerable loss. It is not
at all clear that the set theory community simply reproduces all of the results of the
plethora community, plus some more. Sometimes we use one area of mathematics
to inform us about another area. We translate from the first area into the second,
make a proof in the second and re-translate back to the original area. The reason for
taking this circuitous route is that the execution of the proof, and what to look for,
are much more obvious in the second area than in the first. For example, Arrighi
and Dowek (2010) turn to quantum computing to make some sense of the notion of
computable function in a space of infinite dimensions. Note that, strictly speaking,
they could have generated the same results in the original classical theory.6 However,
it would not have been obvious, and it would not have been at all evident in the
classical logic framework. Lobachevsky, whose work we shall discuss later in the
book, turns to hyperbolic geometry to make sense of the notion of an indefinite
integral in Euclidean geometry. So there is a heuristic advantage, and maybe even
an epistemic advantage to working in different frameworks or theories. Moreover,
it would be a mistake to think that these are isolated cases. Therefore, this is one
reason to be cautious about the reformation.

However, the reformer would be quite right to retort that this is not a serious
objection. The difference between the plethora community and the set theory
community influences the order in which results are discovered, not in the body of
results themselves. Furthermore, strictly speaking, and as we noted earlier, the set
theory community will produce some results not produced in the other community.
Moreover, their work will be more efficient, since they are not doubling up on
results, and then have to prove the equivalence of theorems.

Notice that this retort is strongly underpinned by the sort of realism that
emphasises monism in the sense of pre-supposing that there is a unique body of
truths, or theorems, to be discovered. If we do not hold this pre-supposition, then
the retort carries no weight. But it is a difficult presupposition to give up altogether,
as witnessed by the very fact that philosophers are at pains to give arguments as to
why non-uniqueness should not worry us. For example, see Balaguer (1998). Let us
introduce some more vocabulary, and re-express the two antagonistic positions in
that new vocabulary.

6This point was made in the oral presentation of the material, (Computability in Europe 2010) but
is not obvious in the written version.
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Definition Realism in mathematics has two conceptually distinct versions: realism
in ontology and realism in truth-value (Wright 1986, 9).

Definition Realism in ontology is the position that the ontology of the subject we
are realists about is independent of our investigations or knowledge.7

Some pluralists are anti-realist in ontology.

Definition Anti-realists are all those who are not realists. Following Wright (1986,
2), there are two sorts. Anti-realists can assume just a negative view vis-à-vis the
realist and be sceptics. On the positive side they can be idealists, who believe that it
is our ideas that shape the world around us, and determine our ontology. The idealist
anti-realist is someone who epistemically constrains truth (rejects verification-
transcendent truths).8

Definition A realist in truth-value of the sentences of a theory holds that the truth-
value of sentences of a theory is independent of our ability to judge or establish or
discover them.

Some pluralists are anti-realist in truth-value.
Note that one person can be a realist about one area of discourse and an anti-

realist about another; for example, it is common to be a realist about physical
objects, but an anti-realist about humour. Such split positions are fairly common.
It is less common to be a global realist or anti-realist. Returning to mathematics, the
anti-realist thinks of the mathematician as a sort of creator. In contrast, the realist
thinks of the mathematician as a discoverer, who then enters the discoveries in a
well-organised form in, what is suggestively called ‘The Book of Proofs’.

Definition The Book of Proofs is a unique book that records all of the proofs of
mathematics made in the foundational theory in normal form.9

Under this conception, mathematics consists in the results of the completed Book of
Proofs. The process of doing mathematics is subservient to the discovery of those
results.

The alternative anti-realist view emphasises the epistemology over the ontology,
and thinks of mathematics as a process that leads to results. The importance of
results lies in their continuing the process of establishing knowledge – ‘results’ are
not ends. They are steps in a process.

7Ontology is usually presupposed to be consistent. There are no impossible objects, there are
no pairs of objects whose existence precludes each other. Of course, paraconsistent ontologies
are a different matter (no pun intended). For our gross sketch, we need not consider this added
complexity.
8In the last chapter of the book, I am more explicit and subtle than this. It will turn out that the
pluralist is, in some respects, a type of sceptic, and he is neutral on the realist, idealist axis of
debate; but this added subtlety will be introduced in due course.
9The idea of The Book of Proofs has a history. In the original conception, all perfect proofs were
entered. There was no guarantee that there would only be one proof for each theorem, since there
was no presupposition that there was only one founding theory for mathematics. However, if we
assume monism in foundations, then The Book of Proofs will only have one proof per theorem.



14 2 The Journey from Realism to Pluralism

Since we shall return many times to the realist and anti-realist’s considerations
throughout the book, rather than exhaust the issues here, let us simply use our new
vocabulary to reformulate the antagonists we saw earlier. The realist in mathematics
is a reformer. The goal of mathematics is to generate proofs to enter into the
Book of Proofs. The language and format of the proofs will be determined by The
Foundation. The content of mathematics consists in the theorems found in The Book
of Proofs.

The anti-realist, and pluralist suggest that restricting mathematical activity to
entering proofs into The Book of Proofs would result in a loss, or at least a very
long delay, in generating some results. This is because we have results today, which
were easily and efficiently generated when ignoring the constraints advocated by
reformist movement.

We should be careful, for, it looks as though the argument of the anti-realist rests
on a quantifier confusion. There might be some results more easily gained before
the reformation. However, after the reformation said results are not precluded. They
are not lost altogether, just postponed. Furthermore, notice that there is a net gain in
efficiency, since a lot of pre-reformation results will be completely obvious (in virtue
of unifying the language of mathematics). Even better, since the reformation ensures
that we are discovering the truth in mathematics, we shall not be led astray and
generate mathematical falsehoods! This too is a net gain in efficiency. In terms of
quantity of results, there is a standoff between the antagonists. The issue is over the
order in which results are derived or produced, or, which are considered obvious and
which not. If the mathematics of the plethora does not include set theory, then the
anti-realist suffers a net loss since there will be some results (only obtainable in set
theory), which will not be obtained by in the plethora mathematics. But if we include
set theory in the plethora, then the camps are equal. Therefore, the disagreement is
over the importance of obtaining mathematical results in a certain order.

2.2 Parting Company with the Reformists: Pluralism
Within ZF

Here is a more serious consideration against the Reformation. We mentioned that
there are rival set theories, but even ‘ZF’ is ambiguous. The astute reader will
have noticed that I never specified whether I was discussing first-order ZF (ZF1)
or second-order ZF (ZF2), and I only just mentioned one natural extension of ZF
made by adding the axiom of choice to ZF to make ZFC. ZF1, ZF2, ZFC1 and
ZFC2 are different formal theories. They have different axioms. In ZF2, some of the
axioms will contain second-order quantifiers; in ZF1 analogues of the second-order
axioms will be presented as axioms schemes. Moreover, there are many operations
and concepts only expressible in ZF2. For example the concept of finitude is only
second-order expressible (Shapiro 1991, 226). It follows that ZF2 is not reducible
to ZF1, but ZF1 is contained in ZF2. For this reason and for the purposes of giving a
foundation for ‘mathematics’ – given the claims above about reducing mathematics
(as it is practiced independent of set theory) and then proving theorems proper to
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set theory – we had better specify that we are considering ZF2 as our foundation. It
does not matter much, but we have to pick one, and ZF2 for a foundation is prima
facie more plausible because of its greater expressive power. We might also want
the axiom of choice since it is used essentially in a lot of proofs. But let us save that
discussion for later. If we choose ZF2 we clearly have a strong candidate for The
Foundation.10

We should not take this decision lightly. This is because there remains con-
siderable suspicion concerning second-order quantifiers, whether, for example, to
interpret these as substitutional or objectual.11 Strictly speaking this is not a problem
of ZF set theory, it is an ambiguity in second-order logic. But in the meta-language
of second-order logic, we use the language of sets quite liberally, and we naturally
interpret those sets as sets in ZF, more or less. If it turned out that there was a strong
reason to favour one sort of second-order quantifier over the other, then this should
affect our understanding of quantifiers in ZF as well.

The substitutional interpretation has it that the second-order quantifier gives us a
license for substitution, and therefore, plays a grammatical role. We do not substitute
objects but names for objects. Substitution is a linguistic act. The number of names
available is determined by the name forming operations of the language. There will
only be countably many.

In contrast, under the more common objectual reading of second-order quanti-
fiers, quantifiers quantify over objects. If we are quantifying over a domain with
more than countably may objects, then there are more objects than there are names.
In general, a second-order quantifier ranges over the powerset of the set of objects in
the domain of first-order quantification. When we read the quantifiers in, say, 8P or
9x objectually, the second-order universal quantifier ranges over the full powerset
of the domain, since to every subset of the domain there corresponds a property
(treated as an object of quantification in its own right). The cardinal number of
properties will be 2@2 if our domain is @2, for example. In contrast, under the
substitutional reading, we may only replace the P by names for properties which
we can define in the language. There are only countably many definitions in any
countable language, because there are only countably many symbols and all strings,
which make a definition, are finite.12

The significance of the dispute over substitutional or objectual interpretations
of the second-order quantifier shows us that even if we say that The Foundation
is ZF2, we still have an ambiguity. The ambiguity is philosophically significant. It
bears, at least, on the notions of (1) ontology, (2) methodology, (3) justification and
(4) epistemology. If there are only countably many properties, then it is not clear
what we are doing when we think we are performing mathematical operations on

10If our second-order quantifiers are Henkin quantifiers, then we only appear to have greater
expressive power than in first-order ZF. See for example Väänänen (2001, 504–505).
11For a discussion of the difficulty in interpreting Frege on this issue see Boolos (1998, 225).
12Under a substitutional reading, V D L. Definitions are in the next section. For those in the know:
under an objectual reading, V D L is independent. So the size of the set theoretic universe is
decided if we insist that ZF2 includes a substitutional reading of the quantifiers.
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sets of cardinality greater than @0. The different interpretations of the second-order
quantifiers bear on (1) ontology because quantifiers are supposed to be quantifying
over objects. If the second-order ones only quantify over objects, or subsets of
objects which we can define in a (countable) language, then only the denotations of
the definitions are treated as objects, and there are strictly fewer of these than there
are possible properties of an infinite set iff there are powerset many of the latter,
and we give an objectual reading of the quantifiers. While the objectual reading
is more prevalent, it is not determined by the theory itself. Therefore, ZF2 with a
substitutional reading of the second-order quantifiers is a genuine ambiguity.

In contrast, under an ontology-committing reading of the quantifiers, the ob-
jectual interpretation is ontologically determining, and presupposes a number of
metaphysical arguments or decisions. Ceteris paribus, a philosopher with realist
inclinations will tend towards the objectual interpretation, and the anti-realist to-
wards the substitutional interpretation, although, not necessarily (since the so-called
‘objectual’ quantifier does not have to be read as forcing ontological commit-
ment).13 The different interpretations of second-order quantifiers also concern (2)
methodology. For, under the substitutional interpretation, the bounds of language
are to be taken more seriously in the methodology of making proofs because
which inferences are legitimate will sometimes depend on the number of names
available for quantification. The bounds of language, in the form of number of
symbols and the arrangement of symbols in finite strings, constrains (if only ideally,
and not practically (since the practical constraint is present regardless)) the range
of possibilities for instanciating the second-order quantifiers. (3) Justifications,
similarly, can invoke said constraints under a substitutional interpretation, but
could not be invoked under an objectual interpretation. Lastly, the (4) epistemology
suggested by The Foundation is different under the two interpretations. Under the
substitutional interpretation, the limitations of language are part of the epistemology,
whereas under the objectual interpretation they are not. Or, at least, they are not on
the grounds of the interpretations of the second-order quantifiers. There might, of
course, be other reasons, such as practical reasons, for bringing linguistic constraints
to bear on an account of ontology, methodology, justification and epistemology,
but, at least ab initio, these can be made quite separately from mathematical or
metaphysical reasons concerning the interpretation of the quantifier symbols.

It follows that decisions, such as how to interpret second-order quantifiers are
not to be taken lightly. For, one of the attractions and reasons for proposing a unique
Foundation is that one gets at the truth of the matter, and this truth is not relative but
unique and correct.14 These considerations show us that even if we do claim that “ZF

13In systems which allow empty domains, universal formulas (ones with the universal quantifier as
the main operator) do not entail the existential counter-part. So 8x(Fx)` 9x (Fx) is not valid in such
systems. Some of these constructive systems have a separate second-order predicate E, which is a
sort of metaphysical constant that does indicate ontological commitment. The existential quantifier
is read strictly as ‘some’, never as ‘there exists’.
14For the realist, we would prefer the word ‘absolute’. If the anti-realist is of the cloth marked:
‘truth is epistemically constrained’, then he could still very well be convinced that there is a unique
such truth, but it is determined by our epistemology.
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Fig. 2.2 ZF1 inside ZF2 with
substitutional second-order
quantifiers extending ZF1
into part of ZF2

is the orthodoxy in mathematics”, we have made a highly ambiguous claim, and,
unless we are willing to modify the claim to be more precise, the use of the definite
article in the claim is misleading. If we are determined to be monist foundationalists,
then we have to disambiguate, choose a unique foundation and be correct in our
choice. Someone sceptical that it is always possible, or even desirable, to completely
disambiguate and determine one foundation and confer upon it a normative role in
mathematics is on the way to becoming more pluralist (Fig. 2.2).

2.3 Pluralism in Extensions of ZF: ZF as a Programme

Noting that the above problems are not resolved to this day, we can simply suspend
judgment and remain agnostic (which is a form of pluralism). Under our newly
found agnosticism, as a textual convention, we return to writing ‘ZF’ as ambiguous
between ZF1, ZF2, and two readings of the second-order quantifiers in ZF2, that is,
‘ZF’ is ambiguous between at least four options.

The next problem to confront the reformists is that there are axioms that extend
ZF. Examples include the axiom of choice, V D L and the higher cardinal axioms.
Explaining the terms: the axiom of choice states that for any set of sets, there is
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a function that will select one member of each of these sets to form a new set.15

The continuum hypothesis, CH, implies that V D L. The continuum hypothesis is
that @1 D 2@0 . V D L is a statement about the set theoretic universe, and how
each stage in the hierarchy is constituted. V is Zermelo’s cumulative hierarchy
where at stage ’ C 1, we find the union of all of the combinatorially–determined
subsets of ’. The notion of combinatorics is ontological. The universal quantifier in
the term ‘all of the combinatorially determined subsets’ ranges over all subsets of
objects, regardless of how we would describe these or name them. Sometimes this
is referred to as ‘the iterative conception’ of the set theoretic hierarchy. In contrast,
the set theoretic hierarchy L (developed by Gödel) is formed in the following way.
At each stage ’ C 1, we take all of the subsets at stage ’ which can be defined by
a first-order formula in the language of set theory and whose quantifiers range over
objects as they are determined (by a first-order formula) at level ’ (Maddy 1997,
65). The higher cardinal axioms are statements to the effect that a set exists which
has a particular cardinality. Examples of such cardinal numbers include strongly
inaccessible cardinals, measurable cardinals, Woodin cardinals and so on. These
axioms are not reducible to ZF. So adding some of the axioms that correspond to
the different cardinals makes a new theory, which extends ZF non-conservatively.16

What do we think of these? Many mathematicians are interested in these
axioms, and the theorems that result from adding them to ZF. Most mathematicians
are indifferent, since they have no bearing on their studies. Nevertheless, some
mathematicians believe that some of the proposed extending axioms are true. Apart
from phenomenological evidence, what we do know is that some of these are
fruitful, in the sense that we use such axioms to learn about ‘smaller’ numbers.
In further support of such axioms, we also have indirect proofs that individual
axioms and some combinations of axioms are consistent with ZF. But not all pairs
of such axioms are consistent with ZF. We cannot just extend ZF by adding all of
them, because then (if ZF is consistent) we would have a trivial theory.17 If we are
committed to there being a unique extension of ZF, then we have to make choices,
since the phenomenological evidence does not concur.

If we think that there is a correct extension of ZF, then we think of set theory as a
(foundational) programme, rather than as an axiomatised or closed finished theory.
Under this conception, ZF does not capture the whole of mathematics, but rather the

15There are different versions of the axiom, or family of axioms of choice. We shall only be as
specific as we think it necessary for the purposes of the considerations being made.
16An extension of a theory is conservative if no new theorems can be proved, so really the
‘extension’ is in redundant shortcuts. A theory is non-conservatively extended if new theorems
can be proven.
17A trivial theory in mathematics is one where every well-formed formula written in the language
of the theory is true, so in particular, the negation of every formula is also true. This make the
theory quite useless. To make such a theory, one would have to consider ex contradictione quodlibet
inferences to be valid, and there would have to be a contradiction derivable in the theory from the
axioms. We could then prove any formula using ex contradictione quodlibet arguments. We shall
visit trivialism several times in this book.
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core of mathematics. Some extension of ZF, probably some extension of ZFC will
be a fuller core. What happens to the alternative extensions? Those, with Gödel, i.e.,
the monists, who are attracted to the idea of the uniqueness of a foundation, hold the
belief that if18 there is an extension, then it is unique and correct. Gödel believed in
the systematicity of philosophy (Parsons 2010, 167) and the powers of the human
mind. In Parson’s words: Gödel’s philosophical convictions were driven by a

rationalistic optimism. This is first of all a belief, probably held before any philosophical
arguments for it had been developed, of the powers of the human mind, especially in
the sphere of human reason : : : . With respect to mathematics, he shared the conviction
associated with Hilbert that for every well-formulated mathematical problem, there is in
principle a solution, although his own incompleteness theorem implies that this might
require introducing new axioms beyond those used in current mathematics. (Parsons
2010, 169)

Some mathematicians and some philosophers share Gödel’s convictions.19 We can
call such a person a Gödelian optimist. A Gödelian optimist believes that the
mathematical community will reach agreement over which is the correct extension
of set theory, since she will be swayed by reasoned argument. Even more ambitious,
the Gödelian optimist will have the faith that the mathematical community will be
correct in their collective judgment.20 If we project into the Gödelian optimist’s
future happy time of correct convergence, The Foundation will give a formal
representation of some independent (from the theory or its formal representation)
ontological reality. In other words, for the monist foundationalist who takes the
possible extensions of ZF seriously, she thinks that today, we are still looking for
The Foundation. She is an optimist because she believes that we shall eventually
find said foundation (Fig. 2.3).

We part company with the Gödelian optimist if we consider that such belief
and faith are not mathematical convictions but metaphysical convictions, even if
they are born of mathematical experience and bear on mathematics; such beliefs
and convictions cannot be assumed to be reliable, even in mathematics! When we
part company with the optimist, we think that Gödel’s beliefs are either unlikely
to be met or we simply insist on being agnostic about what the future will bring.
We are agnostic if we think that we do not have sufficient evidence to maintain
that there is a unique underlying reality over which we shall eventually have full
mastery through formal representation. Our agnosticism is based on the grounds that
phenomenology, or gut feeling, or vividness, or mathematical experience, or even
genius are unreliable guides to metaphysical truth; and this, simply on the grounds
that different people, including the geniuses, have different gut feelings and have
been misled.

18It is possible that no extension is correct.
19The rub lies in what is to count as a solution. I think it is safe to say that a naı̈ve view of solution
was assumed in these writings. That is, a solution is a definite and unique answer. With the Gödel
archives being made increasingly available, this view of Gödel might be revised.
20Gödel was not using ZF as a foundation. He, with Bernays had developed their own set theory.
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Fig. 2.3 ZF, represented as a
line with extending lines
representing axiom
extensions. All but one of the
lines is crossed out. This is
the unique accepted extension

To take our first step towards pluralism we have to admit that we do not have
sufficient evidence to support Gödelian optimism. The pluralist accepts that on
present evidence, there are rival extensions, and ironically, we have learned from
Gödel that there is no absolute mathematical way (yet)21 to adjudicate between them
(Fig. 2.4).

To adjudicate we need to make some extra-mathematical considerations. One
promising route to this is to follow some work done by Maddy. Her purpose is to
give formal expression to principles that would help us determine one extension of
ZF, thus bringing us closer towards the desired convergence. Maddy’s principles
and her work will be looked at in detail in the next chapter. Suffice it to say that,
for present purposes, Maddy’s principles encourage convergence to one extension
of ZF; and so they encourage the monist foundationalist.

However, they are only principles (she calls them ‘maxims’ but this makes no
difference to the point here). We can turn the tables on the Gödelian optimist
who follows Maddy’s route towards convergence, and give formal expression to
principles that encourage divergence as well! In the final chapter of the book I
suggest extending her approach in a pluralist vein. I suggest we develop other formal
principles. Some of these will run into conflict with Maddy’s particular goals. Since

21Gödel is usually interpreted as having hoped and believed that we would eventually find some
very powerful axioms that would determine the correct and unique truth for us. This interpretation
of Gödel might soon be revised.
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Fig. 2.4 ZF represented as a
line with extending lines
representing axiom
extensions

we can develop alternative, nay conflicting, principles, this indicates that there is no
mathematical reason to favour convergence towards one unique extension, this is a
metaphysical preference, and is not mathematically necessary.

The pluralist is exactly someone who will at least in principle entertain the
possibility that there are several extensions of ZF. The extensions are not equivalent
to each other, and some pairs of extensions preclude each other – because if added
together they would make set theory trivial. Moreover, the evidence is not in, to say
that there will be convergence, unless it is metaphysically, or politically, forced.
Here, ‘forcing’ presupposes a strong hope for convergence or a conviction that
mathematics has to be unified by a single theory or programme (in the sense of
one extending direction of ZF). If this hope or conviction is sufficiently strong, then
it will blind the mathematical community to alternatives. The hope and conviction
are applied by force if there is insufficient mathematical justification for them.
The pluralist prefers to avoid force, and seeks a way to accommodate the present
mathematical situation as he sees it.22

22Of course, if the foundational monist is correct, then he is right to try to force mathematicians to
stay on the straight and narrow path. It is the same with religious fundamentalists. If they are correct
in their beliefs, then they are doing exactly the right thing to try to force others to adhere to the
correct faith. Until more evidence is in, however, such attempts at forcing are, at best, patronising.
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2.4 Pluralism in Foundations

Already this is a bit heady and too pluralistic for some thinkers, but we have only
gone a few steps in our journey towards pluralism. To continue our journey, we
should consider alternative foundational theories. Let us begin with alternative set
theories. The word ‘set’ is not, and has never been, fully determined by ZF.23

‘Set’ is implicitly defined by the axioms of a set theory, and even then the implicit
definition might be ambiguous.24 For example, Aczel’s non well-founded set theory
does not have a first smallest set from which the other sets are constructed only
‘upward’, so the conception of ‘set’ does not preclude ‘negative’, or ‘wanting’
sets, the hierarchy of which, descends downwards in mirror image to the (ZF-type)
hierarchy of positive sets. The conception of ‘set’ we find in the theory of semi-sets
developed by VopMenka and Hájek (1972) and (VopMenka 2013) is the ‘usual (ZF)
one’ but we also add to this, the notion of semi-set which is related to the ‘usual
conception of set’, so, strictly speaking ‘set’ is ambiguous between ‘proper set’
and ‘semi-set’. What makes the notion of semi-set different from that of ZF set is
that a semi-set is not ontologically neat in the sense of having a particular cardinal
number of elements. Very roughly, we might think of a ‘semi-set’ as corresponding
to a mass noun, as opposed to a count noun, or we can think of a semi-set as having
indeterminate boundaries.

Hrbacek has also developed a foundational theory that uses multiple layers of
ZF set theory. So a set in Hrbacek’s set theory is not only found at a level in the
set-theoretic hierarchy, but (replicas of ‘it’) are found at multiple such levels, each
is then further contextualised by a level of magnitude (relative to which we find
macro and micro levels). The level of magnitude is something determined by our
present interest or application of set theory. One of the advantages of their approach
is to make better sense of the notion of infinitesimal, and so make better sense of
calculus than does ZF. Hrbacek’s theory still makes reference to ‘ZF set theory’, so
he uses ZF as a reference point, since he uses many copies of ZF super-imposed.
The reasons for using ZF and not another set theory are partly to use a mathematical
theory that is familiar today to mathematicians. In other words, other set theories
could have been used to the same effect (of explaining the calculus, for example)
and the choice is one governed by present day popularity, not so much a sense of a
priori correctness!

23This point was very nicely made by Sebastik in the Logic Colloquium 2010 presentation: On
Bolzano’s Beyträge, Paris, 31 July 2010. There he points out that he will insist on the use of the
word ‘set’ when translating Bolzano, but to remember that the word ‘set’ is ambiguous, especially
in Bolzano. This is nothing new, and it is not outrageous to think of set this way. As a point
of comparison, Sebastik points out that he word ‘atom’ too meant something very different to
Democritus than it did to Bohr. So while many modern readers might see the word ‘set’ and think
immediately of ZF sets, and therefore be confused or feel deceived when reading Bolzano, they
should instead realise that ZF has no monopoly over the use of the term.
24See the discussion of the proposed axiom V D L above.
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Fig. 2.5 Several foundations

The implicit definition of ‘set’ in each of these theories is quite different. Notice
too, that in describing all of these alternatives, we mentioned ZF set theory as a
starting point. These alternative set theories are not reducible to ZF set theory. But
they make reference to ZF, and use ZF as a core. In all cases, ZF is embedded in
them.

If we are to take these set theories seriously, then we have to tell something
like the following story about ZF. ZF does not determine the (implicit) definition
of the word ‘set’. There are others. Nevertheless, we can observe in the practice of
mathematics that ZF acts as a point of reference for many mathematicians. What
does this mean? It means that we take ZF as a standard of measure. We have
few absolute consistency proofs, and few verifications of mathematics against the
physical world; so we require some reassurance that our mathematical theories are
‘correct’. We use ZF as such a measure of reassurance.

If a proposed mathematical theory can be reduced to ZF, then this is very
reassuring. If we can show that the theory is equi-consistent with ZF then this is
quite reassuring. If we can show neither, then we have to look elsewhere. In other
words, under this ‘reassuring default’ attitude, ZF is just a familiar and reassuring
theory. If ZF is a point of reference, then it does not determine what counts as
mathematics and what does not. ZF neither prescribes mathematical practice, nor
does it circumscribe the content of ‘mathematics’. It does not hold the monopoly on
ontology, methodology or epistemia. The pluralist believes that we are not warranted
in thinking that ZF is an absolute guide, it is just a point of reference (Fig. 2.5).

The next step on the journey is to consider that there are alternative foundations
that not only completely absorb ZF or other set theories, but they use an essentially
different language, so embedding has to go through a translation and interpretation.
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These include: category theory25 and type theory. Both of these are mathematical
theories that can inform us about set theory. For example, in category theory we
can form a category of sets. Then the whole of set theoretic semantics, closed under
the axioms and operations of set theory form a category. We can then use this way
of thinking about set theory to compare, for example, the category of sets to the
category of proper classes and we use the functors of category theory to make the
comparisons.

Straying further, we also have paraconsistent set theories, where we think of
classical set theories as a special case. It counts as a special case in the sense that
it is consistent. In a paraconsistent set theory, we can derive contradictions, and we
have contradictory sets. If we are careful about how we make the paraconsistent
set theory, then all of the classical results are preserved for the classical part
of paraconsistent set theory, and we get more, which is the special work with
contradiction.

Explaining to those unfamiliar with these notions: a contradiction is a con-
junction of a formula and its negation. It takes the form: P & �P, where P is a
well-formed formula, ‘&’ is conjunction and ‘�’ is negation. In a classical theory,
any formula of the language is derivable from a contradiction. We call a theory in
which every wff of the language of the theory is derivable a ‘trivial theory’. The
paraconsistent and relevant logicians block the inference from a contradiction to
any formula at all, and therefore, have different constraints on their proof theory.
See appendix one for an introduction to one sort of paraconsistent logic, the logic
LP (logic of paraconsistency). We shall meet paraconsistency many times in this
book.

Definition The pluralist in foundations believes that there is insufficient evidence
to think that there is a unique foundation for mathematics. Moreover, the pluralist
in foundations works under the assumption that there is no reason to think that
there will be a convergence to a unique theory in the future. He takes seriously the
possibility that there are several, together inconsistent, foundations for mathematics.

So now we have pluralism about mathematical foundations. This is our first
sort of pluralism. Pluralists in foundations understand that candidate foundational
theories are not all closed completed theories. They can all be thought of as
programmes in their own right, as we saw with set theory and its extensions. There
are other sorts of pluralism. We turn to these to give a first taste of the wider view
of pluralism.

25There is a heated debate between the category theorists and the set theorists on the ‘Foundations
of Mathematics’ website. The argument is over whether set theory can say everything category
theory can, so is the more fundamental theory, or whether category theory can say everything set
theory can, so is the more fundamental. It seems, from the outside, that at this point in the debate,
the two theories, or programmes, climb against each other. At present there is no obvious end to
the debate.
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2.5 Beyond Pluralism in Foundations: Pluralism
in Perspectives

There is more to pluralism, than pluralism in foundations. So far, we have noticed
that alternative foundational theories have been developed, and if we are pluralists
about these then we intend to take them all seriously ‘as foundations’. However,
in using this language we notice that we start to lose grip on the notion of
foundation. A plurality of foundations is not stable, and is not itself a foundation.
Therefore, ultimately, ‘pluralism in foundations’ is an unstable position, or one
where ‘foundation’ is completely divorced from its original metaphorical meaning.
Since the metaphor of ‘foundation’ has lost its grip, it would be better to think of
a plurality of theories, each of which can be used to get some sort of very general
perspective on the rest of mathematics. So, what were thought of as foundations, are
now more perspectives or vantage points. Leaving behind pluralism in foundations,
we shift to the idea of pluralism in perspectives.

Definition The pluralist in perspectives demurs from favouring one perspective
on mathematics. Each mathematical theory, which is powerful enough to give a
perspective on quite a lot of mathematics, will have its philosophical sins and
virtues. There is insufficient evidence to think that there is an absolute perspective
that is best either philosophically or mathematically.

To understand what is meant by ‘perspective’, forget the foundational theories
or programmes. Instead characterise mathematics by giving an organisational
perspective on mathematics. What distinguishes a foundation from a perspective is
that the perspective is not necessarily in the form of an axiomatic theory, but looks
more like a programme. Moreover, it has fewer of the metaphysical pretentions of
a foundation. There might be some axioms, but the list of axioms, if there is one,
is incomplete in the sense that we could add more. There might be some sense
of truth and ontology, but not the familiar realist one. An excellent example of an
organisational perspective with its attending philosophy is Shapiro’s structuralism.
We shall see this in greater detail in the chapter on structuralism. For now, what
is important is that Shapiro does not consider himself to be giving a foundation
for mathematics, but rather he is working with model theory and the language of
second-order logic. Model theory is not presented in axiomatic form. Yet it is used
to compare mathematical structures to each other, where a structure is a domain of
objects together with predicates, relations and operations pertaining to the objects.
A mathematical theory can be thought of as a structure, so with model theory we
can compare mathematical theories. Model theory is not a foundational theory in
the philosophical sense of foundation since it lacks some of the characteristics we
associated with foundations. Running through these:

(i) in Shapiro’s structuralism, model theory circumscribes the content of
mathematics,26

26Shapiro does make some conciliatory remarks about being more general, and adopting alternative
perspectives. Nevertheless, while he acknowledges that this is a possibility, he proceeds as though
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(ii) the ontology of his structuralism is quite different from that of set
theory, since the ontology is structures, and what counts as a structure is
determined by a further meta-structure, so ultimately ontology is always
relative to a structure.

(iii) Shapiro’s structuralist perspective does not claim a monopoly on method-
ology, since these are determined within a structure and can be imported
from one structure to another.

But (iv) Shapiro’s structuralist does claim to say quite a lot about epistemology.
What we can know in and about mathematics is determined by model
theory.

We know about one structure from the point of view of another (meta-)structure, and
there is no other epistemia in mathematics.27 Shapiro defends his choice of organi-
sational perspective, but not against all possible alternatives. In a pluralist vein, one
could develop a version of structuralism-as-a-perspective from a constructive point
of view, for example. In this case, structures all have to be constructed (according
to constructivist sanctioned operations), where the permitted constructions are those
that respect certain constructive epistemic constraints.

It is important to note here, since this issue will re-surface, that foundationalist
aspirations are neither intrinsic, nor essential, to the philosophy of mathematics.
We can do a lot of good philosophical work once we adopt a perspective. The
work could be local, or it could pertain to a very large part of mathematics. See,
for example, the recent work by the ‘maverick philosophers of mathematics’,28

represented by Larvor, Corfield, Cellucci and Rav, amongst others.

2.6 Pluralism in Methodology

Pluralism in perspective invites us to consider pluralism in methodology:

Definition The pluralist in methodology is tolerant towards proof techniques,
methods and results being imported from one area of mathematics into another. He is
also not averse to the suggestion that techniques in disciplines outside mathematics
can be useful to mathematics and the philosophy of mathematics.

model theory is the only perspective. There is some tension in his writing. Whether the model
theory perspective is an end point or a starting point depends on one’s reading of Shapiro. I invite
him to join me in becoming a pluralist in perspective, if he is not so already.
27Epistemia should not be confused with heuristics, how we learn, our private experience of
knowledge, how we come to form beliefs and so on. Epistemia is an idealised notion of knowledge
tout court.
28The term “maverick philosophers of mathematics” appears in a conference announcement for a
conference in June 2009 held at the university of Hertfordshire. Originally, it comes from Asprey
and Kitcher (1988, 17).
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We shall see examples of importing proof techniques from ‘foreign parts’ in the
chapter on formalism. It is a brute observation that a lot of present day mathematical
writing mixes methodologies and results from various areas. We could even say that
there are two styles of mathematical work. In one, we do work purely within a
mathematical theory. For example, we might produce a result in analysis using only
the techniques developed in analysis, but increasingly we also see the other style
of work in mathematics where results and techniques are imported from different
areas. A good result in one area will be given an analogue in another and then it is
used in the second area. Given that the ‘areas’ have very conflicting things to say,
this might not always be legitimate.

Definition The methodological monist is someone who objects to the use of
imported methodologies.

In contrast, the methodological pluralist will allow it with caution. We shall see this
more closely in Chaps. 5, 9, and 14.

Pluralism in methodology does not have to be restricted to mathematical
methodologies being used in mathematical contexts. If we accept that there is
no sharp distinction between mathematics and philosophy, then we can also be
pluralist towards philosophical and other scientific methodologies, such as those
used in sociology, psychology and neuro-science. Each of these disciplines can
inform both the philosopher and the mathematician. Arguing for the antecedent
of the conditional, i.e., that there is no sharp distinction between mathematics and
philosophy, consider first that many good mathematicians are also philosophers,
and vice-versa. Examples are: Russell, Dedekind, Frege, Cantor, VopMenca, Hilbert,29

Brouwer and Martin-Löf. In each case, their mathematical and philosophical work
inform each other. From quite a different perspective, we can say that there are
mathematical ideas that are partly philosophical. For example, Church’s Thesis that
a function is effectively computable iff it is Turing computable30; where ‘effectively
computable’ is not a concept that is absolute or constant across all interpretations.
Church meant it as an intuitive concept (Folina 1998, 302). This is what makes the
Thesis interesting, as opposed to tautological, or true in virtue of being a stipulation.

The conclusion to draw from these considerations is that philosophy and mathe-
matics are not easily separable. Note that much of the meeting between philosophy
and mathematics occurs with logic. Note also that there are, of course, areas of
mathematics that are quite untainted with philosophy, and areas of philosophy
untainted by mathematics. While philosophical argument pre-supposes some logic,
the author of the argument might not have a particular formal representation of
logic in mind. In fact, he might think of formal representations as distortions of a

29Some philosophers would not count Hilbert as a philosopher. For them, he was a mathematician,
whose mathematics and suggested programme had philosophical implications. I prefer to err on
the side of generosity, and allow him into the philosophical fold.
30There are different ways of stating the thesis. The point is that in most versions there will be an
irreducibly vague or ambiguous philosophical term, otherwise we do not have an interesting thesis,
but instead we have a tautology, or stipulative definition (Folina 1998).

http://dx.doi.org/10.1007/978-94-007-7058-4_5
http://dx.doi.org/10.1007/978-94-007-7058-4_9
http://dx.doi.org/10.1007/978-94-007-7058-4_14
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more primitive, or pure, reasoning, and therefore disingenuous. The influence, in
such cases will go the other way: a logician might be intrigued by a verbal form of
argument, and might try to give that form loyal formal representation. See Chap. 7
for details. Once this is done, it enters the body formal, and is readily available to
the body mathematical and the body philosophical. Thus, once we become pluralist
in methodology, we see a blurring of the distinction between mathematics and
philosophy and other disciplines too.

2.7 Pluralism in Measures of Success

One can be even more radical in one’s pluralism. So far, we have been interested
in complete mathematical theories, or programmes that are well established. We
have ignored incomplete theories, not in the technical sense of ‘incomplete’, but
rather in the sense ‘uncompleted’: where not all the details are yet written down,
not all the ideas a fully thought through. We have also been ignoring unsuccessful
mathematics. For the pluralist, ignoring incomplete or unsuccessful mathematics is a
mistake. If, as philosophers, we want to explain mathematics, part of the explanation
has to include an account of mistakes and error in mathematics. Moreover, errors can
be small, easily corrected, or they can be disastrous (such as when we discover that
our theory is trivial). But even the disastrous ones contribute to our understanding
of mathematics. This is witnessed by the fact that we learn from the mistakes,
and develop good mathematical theories only after having made the mistake. This
point was famously made by Lakatos. We sometimes even find that we have
misdiagnosed a mistake. There are many examples of this. For a start, see the work
done in patching up Frege’s formal system. There are several non-equivalent ways
of making a good mathematical theory based on the wreckage of the original theory.
The philosophical and technical importance of each is then a source of debate. There
is then some sense in which Frege’s work was not a waste of time. It had a measure
of success, but not the one he intended. See Chap. 14 for details. We might call this
sort of pluralism ‘pluralism in success’.

Definition Pluralism in success is the view that while there are different measures
of success in mathematics, and these are sometimes well accepted, an unsuccessful
theory (according to the first measures) is very successful tout court. There might be
other respects in which the theory is very successful, and exploring this is sometimes
philosophically fruitful. We shall return to these issues several times in the book.
This was a first wash.

2.8 Conclusion

We have now completed the first journey. Recalling the sights we visited, we saw
pluralism within ZF foundationalism. This took the form of noting the ambiguity
in the very idea of Zermelo-Fraenkel set theory. We then also noted that ZF is,

http://dx.doi.org/10.1007/978-94-007-7058-4_7
http://dx.doi.org/10.1007/978-94-007-7058-4_14
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in some sense, an uncompleted theory. There are many, together incompatible,
extensions of ZF. So, we might think of ZF as a foundational programme, rather
than as a foundation. We might then examine our attitudes concerning different
extensions, and the pluralist’s attitude is one of agnosticism concerning eventual
convergence of set theory to one theory with the four philosophical characteristics:
determining the scope, ontology, methodology and epistemology of mathematics.
We then ventured further and recognised alternative other ‘foundational’ theories.
This introduces us to the idea of pluralism in foundations. But this pluralism is
unstable. So if we follow the pluralist this far, we have to go further to a more stable
position: pluralism in perspectives. We then discovered that we can push pluralism
along other dimensions. Pluralism in perspectives invites us to consider: pluralism
in methodology and pluralism in success.

On the journey we have seen the pluralist as more tolerant than his counterpart.
However, we might ask: is the pluralist ever intolerant, and if so, what about? The
answer has been implicit throughout our journey. The pluralist is intolerant towards
dogmatism and absolutism. He calls for making explicit all contexts within which
philosophical claims are made, when they are in the forms of judgments such as: ‘X
is true’, ‘X is best’, ‘X is correct’ and so on. Or at least, he urges our investigating
the limitations of our claims. The pluralist is not merely admitting that dogmatic
claims might be erroneous. Rather, there might well be no fact of the matter, and
dogmatism is simply misplaced on present evidence. At least this is the pluralist’s
moderate face. But I warned in the introduction to this chapter that I would tell some
lies. When in close company, and feeling less moderate, the pluralist will outright
admit that looking for an absolute or correct point of view might be locally useful,
but ultimately is probably (i.e., on present evidence) quite futile and is a mistaken
way of proceeding in philosophy of mathematics. We shall see this in greater detail
in the final part of the book where we put pluralism to work on a few test cases.

In his intolerance, the pluralist flirts with paradox as we might see from the
question: is the pluralist always/ absolutely intolerant towards dogmatism? To see
the flirtation through, the reader will have to wait for the third part of the book,
where the pluralist transcends his own pluralism.
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Chapter 3
Motivating Maddy’s Naturalist to Adopt
Pluralism

Abstract In this chapter, the reader is taken on a journey from Maddy’s naturalist
position to a more pluralist position. The pluralist is inspired by Maddy’s mathemat-
ical naturalism in the following respect. With Maddy, the pluralist is very interested
in the practice of mathematics, and is quite willing to let mathematical practice
delimit what is to count as ‘mathematics’. The pluralist parts company with Maddy
over the data concerning the philosophical inclinations of mathematicians. Given
different data, the pluralist finds himself driven towards a more pluralist conception
of mathematics than Maddy’s.

3.1 Introduction

The idea behind this chapter is to show a reader who has naturalist sympathies
how naturalism inspires and can lead to pluralism. Whether or not the arguments
are convincing will depend on how seriously one takes certain evidence found in
mathematical practice, what one includes in such practice, the version of naturalism
one has adopted, how one interprets Quine and how courageous one is in one’s
naturalist convictions. Thus, the arguments are not definitive, but rather, qualitative.
They are intended to give another sort of introduction to pluralism.

I begin the chapter with setting the stage. In the first sections, I discuss
naturalism with reference to Quine and Maddy.1 naturalists are wary of a priori
metaphysics and theories which cannot be tested against the natural world. They un-
derstand ‘science’ to include physics, chemistry and biology as canonical examples.
Traditionally, Quinean naturalists have had notorious difficulty explaining the place

1A lot of my reading of Quine is indirect and comes from Maddy. I deliberately take Maddy’s
Quine in order to emphasise her developments of naturalism. I am not so concerned with loyalty
to Quine. There are less and more sophisticated (and flexible) interpretations of Quine. It turns out
that the very sophisticated readings approach my overall point of view quite well.
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of pure mathematics. Is it a priori metaphysics or science?2 Quine’s solution
is to make ontological commitments to only the part of mathematics that is
indispensable to science. For many pure mathematicians this is unacceptable. This
is because Quine’s position gives second place to pure mathematics against applied
mathematics and science, and, from the mathematician’s point of view, this makes
little sense. Maddy wants to develop Quinean naturalism, but she makes some
changes. She treats mathematics as a science in its own right. Maddy’s version of
naturalism is a significant improvement on Quine’s, in the sense that it respects the
mathematician’s view of mathematics. To make the change, she draws on Quine’s
meta-philosophical pragmatism,3 and gives a naturalist philosophy of mathematics,
as opposed to a naturalist philosophy of science.

After discussing this background, I move to the main point of the chapter,
which is to criticise Maddy for not going far enough in her naturalist inclinations.
I invite her to follow them through and become a pluralist. I shall then discuss
Colyvan’s naturalism, but shall not give it centre stage, since he follows Quine in
considering only the causal, or physically based, sciences as ‘science’. He is not
given centre stage because convincing Colyvan of pluralism would require quite
different arguments. Within his framework – of what he counts as real mathematics –
some aspects of pluralism follow very easily. But other aspects would require careful
treatment, which I prefer to save for another project.

3.2 Quine’s Naturalism

Quine is a naturalist, and as such, favours scientific explanations. The reason is that
they involve causal entities and give us accurate predictions. These causal entities
are ‘real’, ‘in the world’, ‘independent of us and our theories’, but he recognises
that in theory-building, we have many possibilities open to us. We build a scientific
theory with a combination of observed data and metaphysics. We restrict the number
of possibilities through considerations such as: deploying Occam’s razor, fit with
the rest of our web of beliefs, simplicity and so on. Nevertheless, what is essential
in a science is that it accords with the data, and gives us predictive power. For
Quine, naturalism means favouring: scientific methodology, scientific ontology and

2Quine understood that some metaphysics is inevitable in science. This was his critique against the
positivists (who thought at one extreme that it is possible to do all science without metaphysics).
When more moderate, the positivists wanted to rid science of as much metaphysics as possible.
What Quine, like Popper, was against was a priori metaphysics, where we construct irrefutable
theories.
3Quine had a preference for scientific investigations, but his meta-philosophical pragmatism is
what Maddy draws on. She acknowledges her preference for investigating pure mathematics, as a
science in its own right. I should like to thank Zawidzki for helping me appreciate the distinction
between Quine’s preferences and his meta-philosophical pragmatic naturalism, which allows him
to accommodate modifications to his views on the basis of different preferences.
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scientifically discovered facts over other forms of enquiry, where ‘science’ means:
physics, chemistry and biology. When Quine was writing, these were the canonical
examples because they were the most successful of the sciences.

From a naturalist point of view, the ‘softer’ sciences should try to approach
the ‘hard sciences’ as much as possible: rely on observed and measured data, and
speculate judiciously, according to what some call the theoretical virtues: simplicity,
elegance, fit with other ideas and theories. Mathematics and philosophy are soft
sciences, in this sense. There is little, or no, observed data.

Since philosophy is a ‘soft science’, the philosophy of a science takes second
place to that science, at least with respect to determining the scope of the subject
of enquiry and the methods of enquiry. Quine calls this philosophical attitude
‘science first’. He takes the attitude very seriously. In Quine (1981), he characterises
naturalism as the “abandonment of the goal of a first philosophy.” (Quine 1981, 72).

Explaining: ‘first philosophy’ is the opposing view to ‘science first’. If, contra
Quine, a philosopher has a ‘first philosophy’ attitude, then he thinks that philosophy
should determine the parameters of a science. If, with Quine, he has a ‘science
first’ attitude, then he lets science, as it is practiced, determine the parameters of
what counts as ‘science’. Under a science first attitude, the philosopher’s task is to
make a philosophy, which accommodates the scope of the practice. Since part of the
practice is philosophical, the philosopher should also pay heed to the philosophical
inclinations of practicing scientists.4 Of course, the philosopher does this critically,
since she has more training in philosophy. Maddy interprets this to mean that
philosophy is relegated to second rank to science, and this interpretation of Quine
will, of course, breed resentment amongst philosophers who are inclined towards a
first philosophy attitude. At this stage in our considerations, we have said nothing to
justify the feeling of resentment. We shall return to the resentment later, when we
discuss ‘the status problem’, and more extensively, when we examine Maddy and
Colyvan’s naturalisms. Before we do this we should visit the relationship between
mathematics and science, since important features are shared in the relationship
between mathematics and science, on the one hand, and philosophy and science on
the other.

4There are two distinct aspects to taking heed of the scientist. One is to take what practicing
scientists do and discover seriously, the other is to take what they say about the philosophy
of science seriously. The first is less controversial, since it will be at least a starting point for
any philosophy of science. The second is taken seriously, especially when scientists are also
philosophers. In fact, some would say that to be a good scientist, one has to be a bit of a
philosopher too. But this is thought of as the exception by some philosophers who pay no attention
to philosophical remarks made by scientists – since they are not qualified to make them. This
dismissal relies on an easy partitioning of philosophy and science, but such partitioning is a little
strained. This is plain when one considers that this sort of distinction only starts to make sense when
we think of the modern education system where people are asked to specialise in one area early,
and this prevents them from spending a lot of time in another. This is a very recent phenomenon.
Newton and Leibniz, for example, were hardly ‘trained in science’ to the exclusion of other forms
of ‘training’ or enquiry.
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Turning to the issue of mathematics: on the one hand, mathematics is perfectly
rigorous and is used extensively in science. Quine is not anti-mathematics and logic,
in fact, he has made contributions to both fields, so he does not consider mathematics
to be like astrology or bad metaphysics. Nevertheless, the entities of mathematics
do not play a causal role in the world, and therefore, mathematics is somewhat
suspect for Quine.5 Esoteric, pure mathematics, involving, for example large
cardinals, intentional operators, infinite spatial dimensions, hardly helps us with
our predictions. As a result, all too often, the only counter-check to mathematical
theories is other mathematical theories. The reconciliation between mathematics
and science comes from the famous indispensability argument.

This runs as follows. First, notice that some of mathematics is indispensable to
our best scientific theories. Quine’s naturalist then concludes that all the parts of
mathematics, which are indispensable to science, are bona fide ‘real’ mathematics.
We then ‘round out’ the mathematics to give a completed mathematical theory.
Lastly, we commit ourselves to the ontology of the whole of the minimal mathe-
matical theory which will ‘do the job’ required of it by science. This is Quine’s
pragmatic move. For the Quinean naturalist, it follows that we are ontologically
only committed to that part of the mathematical ontology, which is indispensable
to the hard sciences. Thus, Quine partitions mathematics into the ‘real part’
(indispensable to science) and the ‘recreational’ part (Quine 1981).6 What he means
by ‘recreational’ is not that it is designed for amusement by amateurs; but rather,
that we lack sufficient reason to be committed to the ontology of that part of
mathematics, given the present state of science.

Of course, probably (by induction on the history of science) it will turn out that
science needs more mathematics than it presently uses; as scientific results increase,
we sometimes find that the ‘real’ part of mathematics also increases. In the future,
these hitherto ‘recreational’ parts of mathematics will turn out to be indispensable,

5This is especially true of the ‘early Quine’. The ‘later Quine’ accepted much more of
mathematics and logic. This is done mainly through a fairly extensive ‘rounding out’ of the part
of mathematics needed for science. Nevertheless, even the later Quine’s starting point is science,
not mathematics itself.
6The scope of ‘recreational mathematics’ is a matter of debate. Quine was in favour of first-order
Zermelo-Fraenkel set theory. Colyvan argues that if we take a ‘holistic approach’ then pretty much
all of present day practiced mathematics is in the ‘real’ part, since there is some link between the
immediately applied (to science) parts of mathematics and the ‘nether reaches’ (Colyvan 2001,
107 footnote 23). Insofar as Colyvan’s holistic attitude is convincing the recovery of most of
mathematics is an artefact of the vast development of crosschecking in mathematics, the application
of one mathematical theory, to check another. I discuss this especially in Chaps. 7, 8, 9 and 14. The
difference between the pluralist and Maddy, on the one hand, and Colyvan and Quine on the other,
lies in the presumed reason why mathematics is good science. For the pluralist and Maddy, the
reason is that mathematics is rigorous, has a perfectly good methodology. For Quine and Colyvan,
the physical world, prediction and causation are the ultimate reasons we can seriously engage in
mathematics.

http://dx.doi.org/10.1007/978-94-007-7058-4_7
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at which time those parts are promoted from ‘recreational’ to ‘real’.7 But, until
the Quinean naturalist finds applications in, or links to, the physical sciences,
he remains agnostic as to the reality of the purported ontology of ‘recreational’
mathematics. Arguably, at the present state of play, scientists and Quinean naturalist
philosophers should make no ontological commitment to: proper classes, perfect
spheres, categories, sets of cardinality greater than @1, spaces of infinite dimensions
and so on.8 Although, in part, this depends on how generous we are in our ‘rounding
out’ and our criteria for choice of minimal mathematical theory.

Now we shall consider an objection to the indispensability argument and then
turn to Maddy’s solution. The objection comes from mathematicians, and we shall
call it ‘the status problem’. What counts as science is determined by scientists, and
mathematicians are there to supply the formal machinery necessary for science.
Therefore, what counts as ‘real mathematics’ is also determined by scientists. So,
mathematicians play second-fiddle to scientists. Presently, the recreational part of
mathematics is ‘a lot’ of mathematics.9 This is alarming for the mathematician
because a lot of mathematics is taken less seriously than the very small fragment
of mathematics needed for science.10

This is the present state of play, but the future does not look much better. There
is no guarantee that science will catch up with the developments in mathematics.

7We also have to be careful about the relationship between the rate of increase of the scope of real
mathematics and the rate of increase in practiced mathematics. If the rate of increase of the first is
far inferior to the second, then more and more of mathematics will be considered to be recreational
by the Quinean naturalist. There is no guarantee about the relative rates of increase of ‘real’ and
‘recreational’ mathematics.
8Arguably, we do not need the full set of reals for science. We actually only ever (will) use a finite
(and very small) number of reals. In fact, we do not need the real numbers at all. All we need is
an approximation of some of them. Thus, strictly speaking, we only need the rational numbers for
science, and not even all of those. Even if the mathematicians have an algorithm for producing
the expansion of …, for example, the scientists only need it to be expanded finitely, not infinitely.
So they do not need the full mathematical theory of the reals. Regardless of whether or not the
reader agrees, the cut off point between real and recreational mathematics is not important for the
argument here. The cut off could be higher. Even if we consider a very high cardinal axiom as
important for science, we would still be missing quite a lot of other high cardinal numbers, an
infinite number at least!
9As noted, Colyvan makes a case for most, if not all, of mathematics being necessary for science.
We shall look at objections to Colyvan’s naturalism in Sect. 3.4 of this chapter.
10If we were very keen on positing as few mathematical objects as ‘possible’, and if we are willing
to entertain the idea that inconsistent objects are possible, then if we first note that we only ever
use a finite number of predicates in science, then “Any mathematical theory presented in first-
order logic has a finite paraconsistent model.” (Bremer 2010, 35). So, provided we agreed that
a first-order language was enough for science (which Quine would agree to), and we allow the
existence of inconsistent mathematical objects, then we only need a finite theory: one with a
largest finite number. Since allowing inconsistent mathematical objects is not to everyone’s taste,
we then engage in a negotiation between our metaphysical taste and our keenness to reduce our
mathematical ontology.
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That is, the recreational part of mathematics might well ‘increase’11 at a greater
rate than the rate of mathematics used in science. So, ever increasing amounts of
mathematics will be considered to be recreational to the Quinean naturalist. Of
course, things might not turn out this way, the real and the recreational part might
increase at the same rate, or it could turn out that the real part increases at a faster
rate, and they eventually merge, developing in tandem, for ever, or only temporarily.

Merging seems unlikely for two reasons. One is that mathematicians working in
‘pure’ mathematics tend to be driven by considerations internal to mathematics, and
not so much to the applications of mathematics in science. This could be changed
with politics, culture and economics – we simply stop having many positions in
universities for research in pure mathematics. While such a cultural decision would
affect the rate of development of recreational mathematics, especially if we were
to make this decision in a sufficient number of countries, recreational mathematics,
done in free time, as a hobby, would not for these cultural and economic reasons
have to increase only at the rate of ‘real’ mathematics. This is not a knockdown
argument, but depends on what we take to be secure cultural interests and the
independence of those interests from the drive of mathematicians to produce results
regardless.

The other reason it seems unlikely that the part of mathematics needed for science
will catch up to the recreational part of mathematics is that science deals with the
measureable. Our measuring instruments can only use rational numbers and rational
lengths. Put another way, a rational length, provided it is precise beyond a certain
measure, will be all that is needed for tests against ‘the real world’ – even if our
(pure) mathematical theory tells us that there is an irrational number needed in the
theory. So, we do not need a very developed theory of ‘real numbers’ (obviously
real numbers are not ‘real’ in Quine’s sense!) in order to carry out science and
test our mathematics. Rational approximations will do. There are perfectly good
(to serve as instruments of science) mathematical theories which can accommodate
this naturalist attitude. However, mathematicians studying pure mathematics will
continue to develop mathematics well beyond what is measurable by physical
instruments. Moreover, the theories built upon theories of reals – all of the branches
of analysis, and the mathematical theories which house pure analysis continue to be
developed, and there is no mathematical reason to think that this development either
has to slow down or stop (Fig. 3.1).

Depending on how the graphs develop, fewer or more mathematicians will feel
that they have been given short shrift by the Quinean. Nevertheless, the objection to
Quine so far is more-or-less an argument from ‘political correctness’, where we try
not to offend too many mathematicians. But there is a deeper issue.

11The notion of ‘increasing’ mathematics is at least ambiguous. It is not clear if we are counting
theories, theorems, objects or what. Nevertheless, at an intuitive level we can see the point. No
doubt, there will be some measures of ‘quantity of mathematics’ where the ‘rate of growth’ of
mathematics outstrips scientific applications significantly – say by adding sets of large cardinal
numbers; and yet other measures will show a slower ‘rate of growth’.
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Fig. 3.1 Graph showing progress in science, growth of mathematics used in science and growth
of mathematics independent of science

There is a conceptual mismatch between the Quinean and some sorts of
mathematician. The mismatch is that much of the ‘recreational’ part of mathematics
is ‘foundational’ from the point of view of mathematics, and therefore, it is more
important, in the eyes of the mathematician. For this second reason, mathematicians
object to Quine’s scientific naturalism. Recall Quine’s distinction between ‘real’
and ‘recreational’ mathematics. This is not a distinction recognised by working
mathematicians. The closest distinction mathematicians recognise, is that between
pure and applied mathematics. But the mathematician’s distinction is importantly
different from Quine’s. The mathematician’s distinction concerns use and purpose
or end in developing techniques, not on justifying ontological commitment.12 That
is, some mathematics is developed to solve a particular applied problem. Ancient
mathematics was developed with very practical problems in mind, and modern
pragmatists could be forgiven if they surmised that ontological commitment by the
Ancients was never to mathematical entities, but only to physical ones. However,
those tempted to make this surmise should do well to remember the enchanted and
metaphysically rich world of the Ancients. For them the pure geometrical forms

12The mismatch can also be identified with what Buldt and Schlimm call an Aristotelian conception
of mathematics and a non-Aristotelian conception (Buldt and Schlimm 2010, 40). Roughly,
twentieth century mathematics takes a more top-down, structuralist approach to mathematics, so
applications are almost accidents; whereas an Aristotelian approach is one of abstraction from the
observable world. If Buldt and Schlimm are correct in their diagnosis of the change in mathematical
conception, then, in this respect, we might see Quine as still being entrenched in an Aristotelian
conception of mathematics, (at least in this respect) whereas the practice of mathematics today is
non-Aristotelian.
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were quite real, and pertained perfectly to the physical world. Nevertheless, they
were perfections, never realised on earth. Regardless, mathematics has changed in
important ways since Antiquity, and mathematics has developed as a discipline in
its own right. This development is only occasionally driven by practical problems
in application. More important, the ontology of mathematical theories is not
determined by application at all. It is determined by: quantifiers, models, semantics,
intuition and the like. Thus, while the mathematician distinguishes applied from
pure mathematics in terms of purpose, it is quite foreign to him to distinguish his
ontological commitment along this dividing line. So Quine’s scientific naturalism
rings a false note with the mathematicians.

We can also detect some irony in Quine’s position. In Quine’s naturalism, it is
science that determines the distinction between real and recreational mathematics.
So while the distinction is one we find in mathematics (as a subject or academic
discipline) it is a distinction that is neither recognised by mathematicians, nor is it
a scientific distinction. It is a philosophical distinction that determines ontological
commitment. It is the Quinean naturalist philosopher who has spoken, and decided
to relegate the decision to practicing scientists as to what counts as real or
recreational mathematics. Ontological commitment is a properly philosophical
concern. I join Maddy in criticising Quine because of the status problem. We leave
Quine to face his critics, and turn to Maddy’s mathematical naturalist with her
solutions.13

3.3 Maddy’s Naturalism

As she remarks in her Second Philosophy (2007), the term ‘naturalism’ is over-used
now, in 2007, and has come to mean too many different things. This is why she
shifts to ‘second philosophy’ as the name for her position. While I agree with
Maddy that ‘naturalism’ is over used, I shall continue to use the term here. For
the purposes of discussing naturalism, I shall be largely inspired by Maddy’s earlier

13Arguably, this criticism of Quine relies on taking too seriously Quine’s taste for science, and
attributing this to the naturalist position. Arguably, this is a distortion of Quine, and if we look at his
meta-philosophical pragmatism, then we see that he would, if pressed, endorse taking mathematics
seriously in just the way Maddy does, and he would simply acknowledge that she has different
concerns from his. I do not mind if one takes this reading of Quine. If one does, then one says
that Maddy just extends Quine’s naturalist programme to include mathematics. For this reason
I sometimes call her position ‘mathematical naturalism’. Under this reading of Quine, Maddy is
Quinean, and both resonate with the pluralist. The reason for not treating this interpretation of
Quine in the main text is that Maddy sees herself as departing from Quine on this issue, and I
am really concerned with introducing the reader to pluralism, not in making an accurate critique
of Quine. I apologise for any clumsiness in representing Quine’s position. More sophisticated
interpretations of Quine approach pluralism.
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work, her (1997).14 In her (1997), Maddy disagrees with Quine’s partitioning of
mathematics into the dispensable and the indispensable part. She treats mathematics
as a science. Despite her disagreement with Quine, she does consider herself to
be a naturalist. Because Maddy’s naturalist is someone who treats mathematics
as a science, we could call her a mathematical naturalist. That is, she takes
the mathematician’s words and practice seriously when trying to determine what
is to count as ‘mathematics’. She tailors her philosophy to fit the reports of
mathematicians and the practice of mathematics.

In other words, Maddy agrees with Quine that there are better and worse
methodologies, forms of enquiry etc. Where she departs from Quine is over the
scope of the best sort of enquiry. Departing from Quine, she does not restrict her
ontological commitment to entities which can play a causal role, or rigorously
inform this role (the rounding out of the mathematical theory), but widens her
ontological commitment to include the entities postulated, and necessary for, the
best and most encompassing part of mathematics, where that ‘part’ is determined,
not by science, not by philosophers, but by mathematicians themselves.

This extending of the notion of ‘best enquiry’ solves the status problem.
Maddy will not alarm the mathematicians, since, under her reading it turns out
that all of set theory, for example, is now part of our ‘best scientific enquiry’.
The distinction between real and recreational mathematics disappears in Maddy.
Ontological commitment is determined in the usual mathematical way, and is not
hostage to application outside pure mathematics. Set theory acquires central position
in mathematics, which, according to her, is in accord with how most mathematicians
view mathematics.15

Once Maddy has solved the status problem, we find that the solution brings with
it other revisions for her version of the naturalist philosophy. Maddy’s mathematical
naturalist will inherit some of the irony of Quine’s position. The irony has to do with
using philosophy to argue that philosophy takes a secondary position with respect
to mathematics. This is more clearly her argument in her (2007) where she calls
her position ‘second philosophy’. The position is consistent (many mathematicians
would agree with her here), but it is ironic.

We shall look at two problems. One is associated with what I shall call ‘the
topological argument’, the second is more ironic and self-referential. To see the
first, we should revisit the issue of ontological commitment. Concerning ontology,
we learn that Maddy is a realist about the foundational part of mathematics,
namely ZFC. It is to this extent, and in this way, that Maddy solves the status

14Her more recent book Second Philosophy, Maddy (2007) gives motivation for and develops
the work done in Naturalism (Maddy 1997), but in it, too, Maddy does not take her own
philosophical directives far enough, according to the pluralist. In some ways, for the pluralist,
her more interesting work is done in her (1997). We shall see this in Chap. 14.
15This is not central, in the sense of what it is that most mathematicians do most of the time, but
in the sense of is a recognised foundation of mathematics. Of course, one wants to specify in what
respect a theory is a foundation, but that does not have to be done for these purposes.

http://dx.doi.org/10.1007/978-94-007-7058-4_14
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problem. In Maddy’s mathematical naturalism, it turns out that most of mathematics
(everything reducible to set theory) is serious and real mathematics. All of the
entities in the ZFC set theoretic universe are real objects. So, most mathematicians
will be happy, indeed, all those who study a part of mathematics reducible to set
theory. But remember the original concern of the scientific naturalist: that onto-
logical commitment be justified, and in some sense be testable (against ‘reality’).
Applications of mathematics to the physical world will not sanctify set theory, since
‘the real world’ can only be used as a rather crude test for a tiny fragment of set
theory,16 if it can be used as a test at all.17 The physical world can hardly help us
choose between mathematical theories which all ‘fit’ the observed data. We cannot
use the physical world to test the consistency of set theory in any absolute sense. All
such checks are dependent checks for consistency: ZFC is consistent, iff any theory
reducible to ZFC is consistent. But this is a circular argument for: the consistency
of ZFC, the truth of ZFC or the merits of ontological commitment to the entities of
ZFC. Strictly speaking, from a circular argument, we can draw no conclusions.

The most obvious independent checks (for consistency, truth and ontological
reality) for ZFC are relative consistency checks against more powerful set theories:
ZFC plus some other axioms such as higher cardinal axioms. Unfortunately, these

16A short anecdote: at a conference on Brouwer and Intuitionism, Martin-Löf was asked by John
Thomas “how much of mathematics is really needed for science?” Martin-Löf’s reply was: “a
very tiny amount”. As has already been remarked, how one measures ‘a lot of mathematics’
and ‘a little mathematics’ is simply not clear. Nevertheless, we can say that if we imagined
physicists, chemists and biologists being asked to decide on the basis of ‘usefulness for their
science’ which mathematicians in a mathematics department to keep in employment, the great
majority of mathematicians would be fired. In fact, they might all be fired, since we already know
quite a lot about the mathematics that is already used, and how to use it, and so further investigation
of the mathematical theory might be thought to be quite useless. For other, philosophically quite
different sources which explore what is the minimum mathematics needed for science see Field
(1980) or Bendaniel (2012).
17A lot of philosophers would think that it is to get the order wrong to think that physical ‘reality’
can act as a test for mathematics. At best it can only be used to test a particular application of
mathematics. Such philosophers are the ones who think that there is a hierarchy of knowledge
with logic at the top, then mathematics, then physics, then chemistry then biology, then the ‘softer’
human sciences. The relationship between the levels of the hierarchy concern necessity or laws (of
a discipline) so, for example, biology is responsible to chemistry, i.e., biology has all of the laws of
logic, mathematics, physics and chemistry. Biology cannot violate those, and has a few extra laws,
which do not pertain to chemistry, or any discipline above it in the hierarchy. Thus, moving up the
hierarchy, chemistry contains laws. Those are all of the laws of logic, mathematics and physics.
None of these can be violated by chemical reactions. Also chemistry has its own laws not found in
physics or any area higher in the hierarchy (Fig. 3.2).

We are not concerned with philosophers who have this view of natural or scientific laws here,
and as a reader might well suspect, the pluralist has a rather more complicated picture of laws.
Nevertheless, the pluralist will maintain that holding mathematics hostage to the physical world
makes no sense. What does make sense for the pluralist is to use ‘physical reality’ to judge the fit
of a mathematical theory as a model for some part of physical reality, and nothing else.
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Fig. 3.2 The hierarchy of knowledge

more powerful theories are even less (epistemically) likely18 than ZFC, to be
consistent, true or capture the real mathematical ontology. At the very least, this is
because extensions of ZFC have not undergone the scrutiny of ZFC, but also the new
axioms are less widely understood by mathematicians, or are understood by fewer
mathematicians. For really independent checks we would have to look to alternative
set theories, or alternative foundations. In fact, there are a number of proofs of equi-
consistency between ZFC and other theories. But these are unavailable to Maddy!
Maddy can hardly say that she has good independent evidence of the reality of
the ZFC ontology because of the equi-consistency of ZFC with a theory with a
quite different ontology. This is because she follows what she takes to be Gödel’s
philosophical view of mathematics as representative of mathematicians, and so she
supports (with some qualifiers) a realist philosophy of mathematics. If one is an
ontological realist about set theory, then one can have no truck with alternative
theories – since they are based on a fictional or false ontology. One would hardly
find comfort in being told that one’s theory is consistent with a false one.

We are then left with the question-begging argument. Let us widen the circle of
argument, and see if we can release it from the charge of question begging. Call the
wider argument: ‘the topological argument’.19 Examining the topological argument
more closely, it is that:

ZFC plays such a central role in mathematics: it is very frequently used as a
reference point by mathematicians, the equi-consistency results show us that if
ZFC were shown to be inconsistent, then so would be most of mathematics.

ZFC is very fruitful.

18This is meant in the sense of epistemic likelihood, that is ‘given what we know’ or what we ‘are
certain of’. In these senses, ZFCC is less likely true than ZFC.
19‘Topological’ is chosen here just to refer to the notion of centrality and of fruitfulness together.
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Therefore, it cannot be a mere mistake that ZFC plays this central role, there is an
underlying reason, namely the truth of ZFC and the reality of the ontology.20

The argument is a mixed type of topological, inductive and inference to the best
explanation argument. It is topological because appealing to the notion of centrality
and anchoring of ZFC. The mathematics on the periphery can be modified, but if
ZFC is central, then its consistency affects most of mathematics. It is an inductive
argument, in the sense of ‘ampliative’. The conclusion is made more probable, or
supported by the premises, but not logically guaranteed by them. Moreover, the
conclusion relies on the idea that the best explanation for convergence is truth, and
ontology is what ‘makes’ the truth true. Thus, the conclusion very much depends on
certain philosophical inclinations, some would say ‘prejudices’.

Ontological realism concerning ZFC is a philosophical position; so is realism
in truth. The tests for the ontology and the truth are more abstruse mathematics
combined with philosophical argument. For this reason, the mathematicians who
are realists (in ontology or truth) hold a philosophical stance. But Maddy adopts
a mathematics-first attitude vis-à-vis the relationship between mathematics and
philosophy. For Maddy, philosophy is not part of good scientific or mathematical en-
quiry. Therefore, she is no more entitled to use philosophy or endorse philosophical
arguments (even if they implicitly come from the mathematicians), or philosophical
conclusions than she is entitled to use or endorse arguments from astrology. Maddy
(1997, 204) makes a direct comparison of astrology to mathematics, but not to
philosophy. She says more about philosophy in her (2007), but her treatment there
is not fully satisfying, since Maddy is not entitled to use philosophical arguments,
because, strictly speaking, philosophy does not hold methodological merit, unlike
science or mathematics. If she insists on drawing a line between the ‘good’ areas of
enquiry and the ‘bad’, then the philosopher finds himself on the ‘bad’ side, and this
is the problem of irony.

Recapitulating: Maddy’s ironic problem is that she uses philosophical argu-
ments to suggest a philosophical position, which (1) leaves little room for doing

20There is a lot to say about this argument, but it would be distracting here. One function of
a footnote is to discuss issues, which would interrupt the flow of the main text. Using the
footnote to this end: briefly, the first premise is only a description of a recent fact in the history
of mathematics. It could be dismissed as an historical accident, having to do with the greater
communication between mathematicians in the twentieth century etc. The second premise makes a
lot of assumptions, and these can be questioned. For example, it holds sway if we assume that
triviality is the only alternative to consistency. The third premise I like to call ‘the argument
from fruit’, i.e., etcetera that if practice or assumption or theory X bears fruit, it follows that
it must be true, correct etc. The argument from fruit is undermined by under-determination of
truth by practice, assumption or theory. There are a number of similar arguments from other
virtues: simplicity, beauty, symmetry, parsimony etc. The topological argument is not strong, when
properly analysed. For some reason, it still persuades. We might learn more, if we give it a more
sensitive treatment, as we do in the main text.
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philosophy of mathematics, and (2) should not be taken seriously at all, since all
arguments from philosophy are not good scientific ones. They use the wrong sort of
methodology.21

The first consideration is ironic in the sense that she should not be writing a
philosophy book, by her own lights; although to do her justice, she does ‘go native’
by the end of her (1997), and there she does some interesting mathematical work.
The irony of (2) shows up with the question: “Should we follow, or dismiss, her
philosophical arguments, since they do not employ a good methodology, by her own
lights?” A good mathematics-first philosopher should dismiss her arguments. Not
only should she dismiss the topological argument (which is the first problem), but
she should also distrust the philosophical argument that vindicates her mathematics-
first attitude (which is the second problem). As a result, Maddy’s argument does not
amount to more than a declaration of position. It should convince no one, not even
herself.

Is this a straw-man interpretation of Maddy’s argument? After all, philosophers
do use arguments to bring readers from one position to another, in order to
then discard the original position. This more sophisticated interpretation reads the
development of Maddy’s position as leading to our ‘throwing away the ladder’.
The final position is that philosophers of mathematics should do mathematics, but
for all that they should not completely dismiss their philosophical training. The
philosophy second stance is meant to set a pecking order between philosophers
and mathematicians. If we follow her argument, then the conclusion is that the
philosopher (qua philosopher) should adopt a fairly minimal role (not no role at
all).22 This she accepts. True to her convictions, by the end of her Naturalism book
(1997), as mentioned earlier, Maddy ‘goes native’ and helps the mathematician to
achieve his stated (set theoretic realist) goals using mathematical methods, hence
demonstrating that she takes her own arguments seriously.

In effect, what we have is an implicit ‘indispensability’ argument for philosophy.
We use the part of philosophy indispensible to the philosopher of mathematics.
Given the ‘minimal role’ reading of Maddy’s mathematical naturalism, the only
role left for the philosopher is to work out what are the goals of mathematicians
and help them – using mathematics. But this is a role assumed by someone who
has made an anthropological or psychological observation of what mathematicians
are after, and then practices mathematics to address the observed problems faced by
the mathematicians. This does not leave much for the philosopher to do, at least qua
philosopher, especially since mathematicians tend to assume these roles themselves!

21It is quite interesting that in her more recent book: Second Philosophy, she practices first
philosophy to argue for second philosophy, and only practices second philosophy starting on page
246, in a 411 page book, excluding index, bibliography etc. And even then, she does not spend the
rest of the book practicing second philosophy. Rather, she deftly moves from first to second and
back. So, looking at her own practice, she cannot really object that much to first philosophy.
22In her book Second Philosophy, Maddy devotes a whole section to the question of the
philosophical role left for the second philosopher. She is both well aware of the problem, and
does answer it in a way that is similar to what I say here.
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They are usually asking what it is that they want to work out, and how to do this
using mathematical means! It seems obvious to leave it up to them, especially since
they are better trained in mathematics.

In passing, we should note that, in general, Maddy’s naturalism will encounter
some resistance from the philosophical camp, especially in the philosophy of
mathematics. So, now we are back to the status problem, this time for philosophers.
Some philosophers23 are unwilling to adopt this minimal role vis-à-vis mathematics,
since it does not seem to be much of a philosophical role. Maddy’s mathematical
naturalism is not meant to be philosophical precisely because the philosopher is
not allowed to judge the practice of mathematicians.24 So some, less naturalistically
inclined philosophers will not see much point to mathematical naturalism, but at
this stage of our investigation, this is just a matter of taste. We have a draw. But
we shall revisit the relationship between philosophy and mathematics in more detail
later. For philosophers inclined towards realism, structuralism or formalism, they
are invited to consult the other chapters in this part of the book. But for those who
are still not sure, they might be interested in another form of naturalism, or rather,
another way of adopting, and adapting, the lessons of Quine and providing a good
philosophy of mathematics.

3.4 Colyvan’s Naturalism; Colyvan, the Pluralist and Maddy

Prima facie, Colyvan’s naturalism does not suffer from the problem of irony.
He does not take seriously the philosophy-second attitude, since, for him, there
is no hard and fast line between mathematics and philosophy. For Colyvan, the
two inform each other and are indispensable to each other. All we can say about
the distinction is that there are extremes: areas of philosophy, which have almost
nothing to do with mathematics, and areas of mathematics, which have almost
nothing to do with philosophy. Nevertheless, there is a significant and interesting
vague border between them.

However, for Colyvan, there is a border between science on the one side and
mathematics and philosophy on the other. Because of the border, Colyvan faces
the status problem. The indispensability arguments are what determine the real
part of mathematics. On the theme of the ‘widening of scope’ of what counts as
‘good science’, Colyvan will include all of mathematics and philosophy necessary
to do science. Nevertheless, for Colyvan, it is ‘science’ (in Quine’s sense) that sets
the standard to which mathematics or philosophy should aspire.25 He re-captures

23We shall encounter these again soon, so do not forget them.
24In this case, appearances are deceptive, as we shall see shortly.
25As has been mentioned, this is ‘back to front’ for some mathematicians and even some computer
scientists. The borderline between science and mathematics, and the relationship between them is
quite intricate. For example, if we consider simple scientific experiments to be algorithms (they
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a lot of mathematics by appeal to the notion of ‘rounding out’ the mathematical
theory, which is indispensable to science.26 So, he will not, prima facie, offend so
many mathematicians: almost all of them are doing real mathematics, according to
Colyvan. Of course, there is still the issue of priority. The mathematician does not
think that she needs science to sanctify her research, so she will not appreciate the
idea that we begin with science, and from that recover the real part of mathematics.
We note, but leave aside, the priority issue here.

One way to take issue with Colyvan is to show less generosity in the rounding out
of the mathematical theory. As we saw in the first section, if we are very suspicious
of mathematical ontology, then we only need a finite mathematical ontology:

A mathematics which does not commit us to the infinite is a nice thing for anyone with
reductionist and/ or realist [about physical entities] leanings. As far as we know the universe
is finite, and if space-time is (quantum) discrete there isn’t even an infinity of space-time
points. The largest number may be indefinitely large. So we never get to it (e.g., given our
limited resources to produce numerals by writing strokes). (Bremer 2010, 36)27

Similarly, it is only rather crude philosophy, which is needed to execute science.
The distinction between indispensable and recreational philosophy cannot be drawn
neatly along lines of quantities of ontology, nevertheless the observation holds that
for science to ‘progress’ it needs very little philosophy. Of course, how we detect
and measure progress is a fraught issue, but we leave it aside or now. It follows
that most philosophers are doing recreational philosophy (since they are not helping
science). For this reason, Colyvan’s naturalism offends many philosophers.

For Colyvan’s naturalism, the irony problem re-surfaces. He too is a philoso-
pher, whose methodology is, therefore, dubious at best. He should, like Maddy
‘go native’, but do science, not mathematics. Moreover, he should not take his
philosophical conclusions seriously at all. Grosso modo, the problems re-surface
along different lines than for Maddy, but they re-surface nevertheless. So, what does
the pluralist have to say about all this?

The pluralist does not single out science as marking the standard to which
mathematics or philosophy should aspire, and so, parts company with Colyvan,
and joins Maddy. The pluralist widens Maddy’s ‘good methodology’ to include

are just finite procedures), See (Beggs et al. 2010). What we discover is that the notion of physical
experiment carries not only imprecision in measurement, but also a type of uncertainty. We can
use mathematical techniques to detect and measure the uncertainty of the data obtained through
such simple experiments! This points to an inadequacy in physical science, vis-à-vis computational
science, and this inadequacy cannot be recognised by a Quinean naturalist, since science sets the
highest standard (for truth, measurement etc.) not mathematics.
26Colyvan argues that the ‘rounding out’ process re-captures a lot of mathematics. This is a move
made to please the mathematicians who, prima facie, cannot recognise their mathematics when
seen through the naturalist lens. But his project can be reversed. Rather than show that it is
‘reasonable’ for the naturalist to recapture a lot of mathematics, we could just as well stick to
our suspicion of mathematical ontology. If we do this, then the ‘rounding out’ need capture very
little, only a finite number of numbers.
27Careful. The finite mathematics is an inconsistent one. Discussion of paraconsistent mathematics
will be resumed in Chap. 6.

http://dx.doi.org/10.1007/978-94-007-7058-4_6
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(at least) philosophy, so the pluralist parts company with Maddy. For the pluralist,
an important ingredient to philosophical enquiry is defining, revising and qualifying
what sort of role one is taking, when, for what purpose, and how, to evaluate
success in said role. Success will be evaluated in terms of communication along
with standards of rigour. Rigour in argument is the guarantor of good methodology.
And standards of rigour can only be evaluated philosophically, in the first instance.28

Thus, philosophy is indispensable to philosophy, mathematics and science, and is
what ensures the high standards in methodological practice of all three!

For the pluralist, there is no absolute evaluation, which says that one area of
enquiry is sanctioned while another is not. Rather, the pluralist recognises that such
evaluation is made relative to a set of goals, and these, in turn are revisable, more or
less informative, more or less interesting, useful etc. As a result of these differences,
where Maddy sees a narrow set of tasks for the philosopher, the pluralist sees a wide
range of tasks.

Despite the difference in final position, the pluralist is quite delighted with
some aspects of Colyvan and Maddy’s work. He takes from Colyvan the lesson
of not making any strong distinction between philosophy and mathematics, or
between mathematics and other areas of enquiry. The pluralist takes from Maddy
the commitment to take seriously what the mathematician says, and more important,
will take her up actively on her suggestion concerning the positive contribution the
philosopher can make to mathematics. For, despite her mathematics first attitude,
Maddy’s work carries philosophical import. We shall see this in the final part of
this book when we widen her work and propose our own principles which are both
philosophically and mathematically driven. Rather than giving ‘a reduced role’29 to
the philosopher, the suggestion the pluralist takes from Maddy opens on to a vista of
important projects. To see this picture clearly, see the final chapter, in Part IV. What
will be salient to note here is the general idea behind the technical work Maddy
does, since we shall return to it in that final chapter.

In general, Maddy starts with identifying set theoretic realism as the preferred
philosophy of mathematics by mathematicians. She is chiefly inspired by Gödel.
However, as she develops her naturalism, she begins to realise that present day
mathematicians are not realists, in the same way as Gödel. Instead, she observes
that mathematicians have a general goal to extend ZF set theory in a way that
is fruitful, where Gödel would have had us extend formal set theory to represent
mathematics as it really is. More strongly, and more precisely, if we are interested
in the fruitfulness of extensions of ZFC, then we add new axioms which do not
contradict, or change anything that we find in ZF. Moreover, the extension should be

28We could test rigour according to some fairly rigid, nay formal rules, but these, in turn would
have to resonate with a pre-formal sense of rigour. Thus, at best we could engage in a dialectic
between attempts to give a formal or very precise definition of rigour, and the intuitive idea.
29An anonymous reviewer to a paper where I develop these ideas commented that “Maddy accepts
the reduced role of the philosopher.” The pluralist follows her naturalist arguments, but assumes a
very important philosophical role. The full pluralist does not assume a ‘reduced’ role at all.
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maximal, in the sense of being as generous as possible (short of triviality). This goal
she calls MAXIMIZE and she gives it formal expression. We shall see the formal
expression in the final chapter of this book. Despite her avowed departure from
realism, a vestige of it remains, in that she develops another principle, which she
calls UNIFY.30 This principle urges that we converge on one MAXIMAL consistent
extension of ZF. The philosophically important move she makes towards pluralism
is the trading of realist truth, for maximizing and unifying principles. This trade is
a good one, according to the pluralist, and encourages other similar trades.

3.5 From Maddy’s Naturalism to Pluralism

The pluralist who has followed Maddy through her reasoning and practice is
inspired to take up some of her themes, but only after making the substitution
of plausibility for truth. The substitution is applauded by the pluralist. This is
because one of the upshots of the substitution is that ontological commitment
and ‘truth’ (as the term is used by the working mathematician) only makes sense
in the context of a theory.31 Principles reflect aspirations, and aspirations are not
taken to be independent, absolute or true concepts. They are based on experience,
phenomenology, styles of learning, education and other traits that are irreducibly
subjective or inter-subjective. Once expressed, they can be recognised to be shared
by others, but this is no guarantee that they will lead to truth or correctness. Once
we take seriously the idea that ontological commitment is internal to a theory, we
have a form of ontological pluralism in mathematics.32

Definition The ontological pluralist is someone who believes that the ontology of
mathematics is not unified by one semantics or one model. Rather, ‘ontology’ is a
term that is relative to a theory.

See the chapter on Structuralism for a proper development of the concept. The
ontological pluralist, rejects UNIFY, or better, restricts its import to serving some
realist set theorists. Under ontological pluralism, alternative extensions of ZFC
can co-habit side-by-side without conflict since there is no global, or absolute,

30Since she is careful to acknowledge that these are maxims, and not guarantors of truth or correct
real ontology, we can take the liberty to call these ‘principles’.
31We assume here the following default relationship between ontology and truth. The ontology of
a theory is the ‘truth-makers’ of the theory. For example, what makes it true that 2 C 2 D 4 is that
in Dedekind-Peano arithmetic, the entities 2 and 4 exist, and the function C and the relation D all
conspire to make the formula: ‘2 C 2 D 4’ true. There are ways of separating truth values from
ontology, but they will be ignored here. If we do separate them, then the above argument will work
for at least one of truth or ontology, but not necessarily both, in which case a second argument
would have to be given.
32The relationship between ontological pluralism and fictionalism is interesting, but will not be
developed in this book. Some things, even some obvious things, have to be omitted.
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mathematical ontology or methodology.33 It might seem surprising that, Maddy
(1997, 208) explicitly agrees with this, since her agreement is at odds with some
of the things she says elsewhere where she identifies realism as representative of
mathematician’s philosophical inclinations. Indeed, she uses this realism as one of
her motivations for developing the principle UNIFY. The tension can be resolved
if we are careful, and admit that realism can be identified as an aspiration of
some mathematicians. ‘Aspiration’, is being used as a technical term, so here is
the definition. Inspired by Maddy’s Maxims, or principles:

an aspiration is a general mathematical goal identified by some mathematicians.

An example might be to make all of mathematics constructive according to certain
parameters on what counts as constructive. This was an explicit goal of Bishop and
Bridges (1985). Another might be to unify all of mathematics under one foundation.
Another might be to develop as many incompatible extensions of ZFC as possible.
Perverse aspirations are possible! These are only examples. The pluralist thinks that
aspirations in mathematical practice are very important. Identifying them, giving
them an as precise as possible expression, maybe even formal representation, is an
aspiration of the pluralist. Identifying aspirations in mathematicians is good pluralist
and naturalist philosophy.

Moreover there is no reason Maddy should take too strict a view concerning
‘mathematics-first’. As we saw above, the pluralist detects an ironic problem with
the attitude. Maddy would be advised by the pluralist to take a feather from
Colyvan’s hat and take a more nuanced attitude towards the relationship between
mathematics and philosophy, namely, to consider the relationship to be mutually
informing and beneficial. In this way Maddy would widen the scope of ‘best inquiry’
to include not only mathematics, but also philosophy, and thereby admit her place
as an important philosopher of mathematics.

Colyvan’s view of a dialectical relationship between the philosopher and the
mathematician is well supported by the history of mathematics and philosophy,
especially if we consider mathematicians who are also philosophers such as
Brouwer, Gödel, Whitehead, Russell, Dedekind, Poincaré or Frege. Adding phi-
losophy (of mathematics) as a seamless part of mathematics to what counts as ‘best
enquiry’ restores philosophers to the place of positive contributors to knowledge
and understanding in mathematics. Whether or not this is too high a price to pay for
Maddy is up to her to decide. But it is not a mere matter of taste. It is a philosophical
matter of contention.

To summarize the discussion so far, if I am correct about the data, given her
avowed mathematics-first attitude, Maddy should be much more of a pluralist than
she concedes, on the grounds that mathematicians are pluralist.34 If she is willing
to consider more than the data she observes with some set theorists, then her

33The details about how this is done will be given in Part II of the book.
34I have not supplied evidence for this here, but there will be a lot surfacing in different parts of
the book.
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‘native’ contribution to mathematics supports pluralism in her trading of truth for
plausibility. Moreover, she is free to express, or even give formal representation
to, many aspirations, held by all sorts of different mathematicians. She can now
discuss, and give formal definitions of ‘plausibility’ as it would be received by,
say, constructivists, or category theorists, or people who study non-well-founded set
theories, and so on. That is, she, or her followers, should take up her challenge to
widen the mathematical naturalist programme to other theories of mathematics and
other philosophical attitudes held by mathematicians.

The residual concern, which the naturalist might have, is to ensure that the phi-
losophy of mathematics, and mathematics are tested against something independent
of them or that they predict something. The pluralist answer is that the test for
mathematics cannot lie in physical causation, and it is not based in a physical
ontology. Instead it is contained in the attitude and methodology of mathematics
and the philosophy of mathematics. ‘Testability’, in the sense of ‘physical-causal’
is replaced, by the pluralist, with rigour of argument, context of theory and math-
ematically established crosschecks between mathematical theories,35 and perhaps
some application in science. Safeguarding the rigour and plausibility of arguments,
proofs, contexts and crosschecks between theories is carried out by the community
of mathematicians, philosophers of mathematics and the institutions thereof.36 I
shall develop this in the second part of the book. As for prediction: mathematics
has very wide scope. We use mathematics all the time, and especially in predicting.
If I have eight eggs in the refrigerator, and I take two away, I can predict I’ll have
six left. This is based on a simple calculation. Is calculation prediction? No; not in
the sense of predicting an event in removed the future. But calculation does share
with prediction the feature that I could, of course, be wrong. Someone might come
in and take another two eggs from the refrigerator. We can think of calculation as a
limit sort of prediction. When the calculation is correct, then I have the surest sort
of prediction!
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Chapter 4
From Structuralism to Pluralism

Abstract The reader is introduced to pluralism from the starting point of
structuralism. The starting position is Shapiro’s structuralist position. The pluralist
is inspired by Shapiro’s position, especially by his anti-foundationalism and by his
self-avowed pluralism. The pluralist joins Shapiro in argument against a naı̈ve realist
position. Thus, in this chapter, the arguments of Chap. 2 are revisited and made
stronger and more precise. Similarly, the pluralist joins Shapiro in endorsing the
idea of there being several mathematical structures or theories each only compared
to others from a meta-perspective/theory/structure, which, in turn, can only be
judged, or compared, from a further meta-perspective/theory/structure. However,
the pluralist pushes Shapiro’s pluralism further. In particular, the pluralist will
not be confined to the perspective guided and blinkered by classical second-order
logic and model theory. What is in dispute, is both the classical conception of
logic, especially the idea that inconsistency necessarily leads to disaster in the form
of triviality, and the notion of success in mathematics. To make the last point, a
distinction is drawn between the optimal and the maximal pluralist. The pluralism
advocated in this book is a maximal pluralism.

4.1 Introduction

For purposes of definiteness, and precision of argument, I confine my attention
to Shapiro’s development of structuralism. This is because it is Shapiro’s anti-
foundationalism which is inspiring for the pluralist. Thus, henceforth, ‘structural-
ism’ refers to Shapiro’s structuralism, unless otherwise indicated. I leave to a future
project, the discussion of how other types of structuralism fit with, and differ from,
pluralism.

The end of this chapter is written in a more aggressive style than the previous ones. This is simply
for reasons of alleviating boredom.

M. Friend, Pluralism in Mathematics: A New Position in Philosophy of Mathematics,
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In this chapter I discuss in what respects Shapiro’s structuralism inspires
pluralism, and where the pluralist parts company with structuralism. I will not
present direct arguments that will necessarily convince the structuralist. Instead,
in clarifying the affinities and differences between structuralism and pluralism,
I present an indirect argument, where the reader can make an informed and justified
choice between the positions.1 We begin with definitions of structuralism and of
structure, and then turn to the sections on affinities, followed by the sections on
differences.

Definition Structuralism consists in the view that within the discipline of mathe-
matics, we find a number of theories. Theories can be thought of as structures or as
a set of formulas closed under some operations. All of the formulas of a theory are
then true in the theory. Objects are only ever objects in a structure. The truth of a
theory can only be judged from a meta-perspective: a meta-theory or meta-structure.
Whether a theory is true, depends on the choice of meta-structure.

The standard meta-perspective is provided by model theory, where we prove, for
example that the models which satisfy a structure will also satisfy another. But this is
not always the case. We can appeal to looser principles and partial theories to occupy
a meta-perspective. For example, Euclidean geometry is true, from the perspective
of hyperbolic geometry, it is just a special case. But, from a naı̈ve (object level)
Euclidean perspective, hyperbolic geometry is false, since the parallel postulate of
Euclidean geometry fails. The story is quite entangled since, following Beltrami,
we can model hyperbolic geometry within a Euclidean framework (or structure) at
a meta-level. Hyperbolic geometry becomes a special case of Euclidean geometry.
However, Lobachevsky’s view was that Euclidean geometry was a special case of
hyperbolic geometry.2 Thus, which meta-perspective one adopts makes a difference
to the truth-values of theorems of a theory. We shall be encountering this example
again in Chaps. 5, 9, and 14.

Definition What counts as a structure, and how structures relate to each other is
usually determined by model theory. Roughly, a structure is a domain of objects
(or class of domains unique up to isomorphism) with (maybe) some constant:
objects, predicates, relations, functions and operations. Parameters on interpreting
the constants, variables and other symbols in the structure are set by axioms or
definitions.

For example, ring theory has the integers as a standard domain, but we can form
rings using other domains. The structure also includes the ‘lesser than’ relation, <,
and two operations that behave much like addition and multiplication. The structure
of a ring is: <D, 0, �, <, C, �>, where, D is a domain of objects, 0 is a designated

1Taking this attitude is pluralistic. As we shall see from the temper of the writing, the pluralist
does not lack in combative spirit, rather, at the end of the day, what the pluralist hopes for is a
clarification of positions and a deepening of understanding of positions: a sense of why one holds
a particular position, and what some opponents have to say.
2Lobachevsky developed hyperbolic geometry. It was one of the first non-Euclidean geometries.
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element in the domain, � is an unary operator, not the operation of subtraction, but
rather, that of negation.3 A lot of interesting mathematics concerns the limitative
results of theories, and the relationship between theories. The results are generated
within model theory. For example, field theory can be thought of as ring theory with
the operations of subtraction and division added to the structure of ring theory.

In concert with structuralism, the pluralist makes four arguments against a
number of other philosophies of mathematics: all those that are foundationalist.
In Chap. 1 we saw skeletal versions of the first three of these arguments. Here I
give them more flesh. All the arguments rely on some sympathy for naturalism; a
sympathy which is shared by the structuralist and the pluralist. The arguments can
be numbered as follows.

1. Foundationalist philosophies make an illegitimate slide from a description of
mathematics (in terms of a global foundation) to a norm for success for future
mathematics.

2. Even if we did think that there was a unique theory, or structure, then our position
would be highly unstable, since, whatever founding theory one has today, ‘it’ will
grow – by adding new axioms or rules. Some new axioms are independent, and
therefore, there are no grounds for faith in there being one, fixed, absolutely true
foundation for mathematics.

3. De dicto and de re, mathematicians are very often pluralist.
4. Still in concert with structuralism, I argue that ‘truth in a structure’ is better

received by many mathematicians today, than ‘mathematical truth’ tout court,
such as might be proclaimed by a realist or Platonist. Not only are many
mathematicians pluralist, at least in this respect, but they are highly aware of
the context surrounding a theorem or proof, or the limitations of those theorems.
It is for this reason that they are attracted to structuralism.

The plan for the chapter runs as follows. The first section of this chapter sets
up the anti-foundationalist arguments, by giving the monist and dualist arguments
in favour of The Foundation. Each anti-foundationalist argument is then treated
as a separate section of this chapter. The fourth argument (Sect. 4.5) concerns
the structuralist and pluralist, and not so much the naturalist. It is the more
positive argument, in the sense of giving positive direction about how to think
of truth in mathematics. It is these four arguments, which show affinity between
the structuralist and the pluralist. After presenting these arguments the pluralist
further develops the implications in Sect. 4.6. In the development, we surpass the
structuralist and give more indication of the scope of pluralism – well beyond
what was said in the first chapter. In particular, we look at, what I shall call: ‘bad
mathematics’. In Sect. 4.7 I want to make the notion of ‘scope of interest for the
pluralist’ more precise. This will sharpen the difference between the structuralist
and the pluralist. I distinguish between an optimal pluralist (the structuralist) and
a maximal pluralist (the pluralist). Lastly, in Sect. 4.8, I address the concern that
pluralism is unstable and degenerates into a sort of sociology of mathematics.

3Subtraction is a binary operator. Negation is an unary operator, or connective.
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4.2 Setting Up the Arguments: The Monist and the Dualist
Arguments for the Foundation

Pluralist philosophies (such as structuralism) take issue with most of the standard
traditional philosophies of mathematics. To see this in detail, let me first give the
monist argument for The Foundation.4 This will be a presentation of a strong version
of monism, i.e., one that is properly revisionist of mathematics. The argument for
it is weak, so I could be accused, here, of setting up a straw man. I hope it is.
Regardless, it will be rhetorically useful to set it up. I shall then point out how this
differs from the dualist position, but I shall not give an argument for the dualist
position. The positions will be important since I shall refer back to them when I run
the arguments against foundationalism.

To fix an example, consider the proposal that ZFC5 is The Foundation for
mathematics. Presenting The Foundation has three parts: a technical part and two
philosophical parts. The technical part is a result achieved through a reduction of
all (or most) existing successful mathematics to The Foundation. We show, for most
areas of successful mathematics, that they can be translated into the language of
ZFC, and the theorems or results of the area of mathematics can be generated in
ZFC too. In other words, we show that the language and proof apparatus of the
reduced area of mathematics is strictly redundant with respect to ZFC.

This is not enough to convince mathematicians to cease to work in the language
of the reduced theories and to use only the proof apparatus of the reducing area.
For, the original language was designed to suit that area, and might be much more
workable, less awkward, more suggestive etcetera. Nevertheless, the technical result
has been achieved since all the philosopher needs to know is that it is in principle
possible (if a little awkward) to do all the work of the reduced disciplines in the
reducing discipline.

After we have the technical result, we make two philosophical moves. The first
is to state something to the effect that mathematics is ‘essentially’ the reducing

4Some readers might think that such revisionist arguments are absurd. In particular, they will think
so if they are not seeped in the tradition of the philosophy of mathematics. If the reader does think
that the arguments are absurd, then so much the better for the pluralist. This just makes his job
easier, and his position more easily accepted. I applaud the anti-revisionist attitude, and I think
that it is pretty plain and obvious in the contemporary climate. Pluralism is a thoroughly modern
position, in this respect. Note the reverse: pluralism is a radical position. It does break from past
philosophies. It would be irresponsible of me to not warn a reader of this if she has not been seeped
in the tradition.
5In the first chapter I use ZF as The Foundation. This is because there, I wanted to discuss certain
points about the axiom of choice. ZFC is a much more plausible foundation, since the axiom of
choice is rife in mathematical practice. The switch also illustrates the flexibility of the pluralist. I
could have also chosen category theory, or paraconsistent set theory, as The Foundation. I chose to
stay on relatively familiar territory.
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discipline.6 That is, we have captured almost all of mathematics in the reducing
discipline, and therefore, all other languages, symbols and supposed ontology of
reduced disciplines is strictly (philosophically/conceptually) redundant. Therefore,
all we strictly need for most of mathematics is the apparatus of the reducing
discipline. We have unified mathematics into one Foundation. This is quite a
philosophical coup! It is quite remarkable to do this, and the only, or best,
explanation for our success is that we have got it right. We really have identified
what is essential to mathematics.

The second philosophical move is to introduce a normative element; the essence
of mathematics becomes a norm for success in mathematics.7 Straying away from
The Foundation is dangerous. It could lead to inconsistency, falsehoods or nonsense.
When we make the slide to normativity, we judge future mathematics against
the backdrop of the essence capturing theory, i.e., The Foundation. If a proposed
mathematical theory is not reducible to ZFC, then it is not ‘properly’ or not
‘really’ mathematics. At the very least it is not (going to be endorsed as) successful
mathematics. This is because the purported mathematics does not enjoy the essence
of mathematics – as identified in The Foundation.

Meta-interlude: Both philosophical arguments are rather weak in themselves.
Stripped to its bear bones like this, I am giving a straw-man argument for monism.
I regret this, but I cannot think of a stronger argument. The monists I have known
tend either to insist that their philosophy is true by appealing to intuition or
phenomenology – but these cannot be the basis of an argument, since professional’s
intuitions and phenomenology differ from one another. Or they appeal to the miracle
of applications or to some form of convergence. But both are forced or question
begging. The further weaknesses to the arguments are these. The first philosophical
move relies on essentialism, or something like it, and presupposes that there has to
be one essence. This forces the monist to ignore or dismiss proffered alternative
foundations. The second philosophical move commits the naturalist fallacy and
begs the question. Thus the structure and presuppositions of the arguments weaken
them. Nevertheless, there is something to monism, if not the arguments for it.
The criticisms we look at later will partly indicate the strength (and weakness) of
the position. Despite appearances to the contrary, monism is taken seriously here,
otherwise there would be no point in giving detailed counter-arguments. As we shall
see, the counter-arguments also suffer from weakness – a reliance on naturalism. We
conclude that the pluralist is willing to trade monism against naturalism.

Dualists will run a similar argument, but it will include an added complication. The
technical reducing result will split mathematics into two: ‘the best part’ and ‘the
suspect part’. The ‘best’ part is so, in virtue of holding some desirable philosophical

6Many philosophers are leery of using the term ‘essence’, so euphemisms are used instead. Feel
free to substitute in your favourite circumlocution.
7Some philosophers would call this move ‘the naturalistic fallacy’: the fallacy of inferring a norm
from a description.
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properties such as finiteness, definiteness or analyticity. For an example, let us
consider Fregean logicism. The two parts are the arithmetic part, and the geometrical
part. Similarly, there will be two ‘essences’ in mathematics. In the Fregean case,
they will be the analytic essence and the synthetic essence, respectively. ‘Success’
in mathematics is judged relative to the different parts. There will be different norms,
according to which part of mathematics one is operating in. For example, a proof
in the analytic-arithmetic part has to be able to be turned into a gapless proof –
in the language and proof system of Frege’s Begriffsschrift and Grundgesetze. In
contrast, for Frege, a proof in geometry may invoke intuitive gaps (which draw
on our spatio-temporal intuitions).8 The normativity in the dualist philosophy can
surface in two ways: (1) we favour one part of mathematics over another, or (2)
we refuse to consider the purported mathematics that lie outside these two parts
(for example, modal intuitions, in the form of intentional attitudes, lie outside both
arithmetic and geometry). ‘Outlying parts of (purported) mathematics’ are either
not recognised as mathematics or simply not discussed. Dualists can be normative
in one or both senses. Frege was normative in both.

The technical reduction results (to the two parts of mathematics) are shown in
the usual way. The descriptive claim is now made, not in terms of essence, but in
terms of some other philosophical property. The philosophical property will have
been argued for in advance, for example, as sure ways of avoiding paradoxes, as
really demonstrating the foundation of arithmetic in logic etcetera. The suspect part
of mathematics then might either be thought of as maybe in principle reducible to
the best part, or not so reducible. If it is reducible, then we have a programme for
showing the reduction. If the suspect part is not thought to be reducible, then it has
other philosophical characteristics, which distinguish it, and set a different standard
for work with, or in, those areas of mathematics. For example, Cantor divided
mathematics into the part that is amenable to mathematical manipulation and the
metaphysical part. The metaphysical part does not admit of the same mathematical
treatment as the best part. But it is still worth thinking about: it is very beautiful and
brings us closer to God! (Hallett 1984, 13). Thus, for the dualist, the two parts have
different standards and different philosophical attributes.

4.3 The First Anti-foundationalist Argument: The Slide
from Description to Normativity

What is wrong with the monist and dualist foundationalist positions? Recall the
naturalist insight that the philosopher is not there to set norms for success in math-
ematics on purely philosophical grounds. As Maddy puts it “if our philosophical
account of mathematics comes into conflict with successful mathematical practice,

8I am ignoring Frege’s later work of 1914 where he tries to found mathematics on geometry. In the
above, read ‘Frege’ to mean the Frege of Begriffsschrift, Grundlagen and Grundgesetze.
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it is the philosophy that must give.” (Maddy 1997, 161). In contrast, implicitly, or
explicitly, and to different degrees, foundationalist philosophies endorse the general
idea that once the philosopher has developed a philosophy of mathematics, that
philosophy should, amongst other things, determine the limitations, and the future
development, of mathematics, and therefore, what counts as success in mathematics.

Illustrating the slide from description to setting the norm for success, VopMenka
discusses the development of set theory. When set theory was first introduced, and
because it is such a powerful theory, it led to all sorts of developments in mathe-
matics. For this reason, the proposed theory, and the reducing programme leads to
a lot of insights and results. Something which is often overlooked by philosophers
discussing the reduction, is that the reduction of existing mathematics to set theory
was not easy, and it was not smooth. This might be one of the reasons why the
reduction was surprising, remarkable and insightful. VopMenka cites calculus as an
example of a part of mathematics, which was very difficult to ‘fit’ into set theory.

Once the technical result was pretty much established, set theory changed its
aspect from contributing to mathematics, to setting limits on our interests within
mathematics. So, while set theory was proposed as a reducing discipline for giving
us further insights into mathematics; once this was done, set theory became a norm
for success in mathematics.

Set theory opened the way to the study of an immense number of various structures and to an
unprecedented growth of knowledge about them. This caused a scattering of mathematics.
[It is interesting that VopMenka does not say “unifying”!] Moreover, most results of this kind
derive their sense only from the existence of the respective structure in Cantor set theory.
Mathematics based on Cantor set theory changed to mathematics [only being recognised in
terms] of Cantor set theory. (VopMenka 1979, 9)

In other words, Cantorian set theory became the standard by which proposed
mathematics was judged to be ‘good’ mathematics.9 Today, ZFC has replaced
Cantor’s set theory as a point of reference.10 Under the ZFC norm for success,
much of category theory is not mathematics, nor is the ramified type theory, nor,
ironically, is all of Cantorian set theory. The details of which theory is taken to be
The Foundation are not important here. What is important is that VopMenka notices
a shift in the role we attribute to set theory: from description to norm for success,
and that the norm precludes some potential further developments in mathematics,
just because they are not recognised as bona fide mathematics. His development of
the theory of semi-sets is an example. “This book on the theory of semisets presents
an attempt to create a theory whose universe of discourse extends that of set theory;
thus the new theory admits the existence of certain objects which cannot exist from
the point of view of [standard] set theory.” (VopMenka and Hájek 1972, 7).

9VopMenka is highly revisionary of mathematics too. But he proposes a different founding theory.
This does not interest me here. What is important is that we should realise that the Platonist
or realist proposal to found mathematics in set theory is sometimes taken to be normative of
mathematics.
10Already this is interesting for the pluralist, since it instanciates the claim that what the
mathematical community “takes to be The Foundation” changes over time.
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Unfortunately for the monist, history has not born out her slide from description
to norm setting. Alternatives to ZFC have been developed. Some have been proved
to be equi-consistent to ZFC, (and this is much weaker than using ZFC as the norm
for success). Other areas of mathematics have not been shown to be equi-consistent,
but might be so in the future. Other areas might never be, and might in principle
never be able to be (such as, for example, a paraconsistent set theory, where a
proposed proof of equi-consistency would make no sense, since consistency is not
a characteristic of paraconsistent set theory, equi-non-triviality might be the better
option in this case). None of these would have been developed if set theory had
really taken on a strong normative role in mathematics.

A prioristic monists, that is, monists who will not hear of counter-evidence to
their position on grounds that, in principle, there can be no opposition; could ignore
these developments, and call them all ‘non-mathematics’. But then they would be
begging the question against themselves. Apart from begging the question, they run
the risk of rejection by the mathematical community which works in these areas
and they run against the naturalist insight that philosophers should (if they are
naturalists) want to observe and take seriously not only what mathematicians say
about their subject, but also observe what their behaviour reveals of their de facto
attitudes and observe what it is that they accept as part of mathematics.

Before dismissing the monist on socio-political or institutional grounds, we can
be a little more careful in our deliberations. The monist is not completely off-
track, since ZFC does play a very important role in mathematics. Maybe it is not
a foundational role in the traditional (essence-seeking) philosophical sense. But it
plays a central role. Therefore, it is worth while, as naturalists, to ask: How do
mathematicians think of set theory?

It is true that a lot of present day mathematicians take it as a good verification of
their work that it can be done in first-order set theory. But this does not weaken my
point, since there is a difference between using ZFC as one, amongst other, means
of verification, and recognising ZFC as the only means of verification.11 I think
that most mathematicians today use ZFC as a means of verification amongst others.
It’s not hard to use ZFC. It will, as a matter of fact (demonstrated by the famous
reduction) be sufficient for most mathematics. However, showing (or its already
being obvious) that an area of mathematics is reducible to ZFC is not necessary for
acceptance by mathematicians.

11Model theory is used also. But my point remains. To illustrate: model theorists sometimes
complain to Harizanov that she is drawing distinctions not recognised by model theory. For
example, she sometimes insists on more than ‘uniqueness up to isomorphism’. She insists on
including certain properties used to measure complexity when she is identifying structures or
patterns. Model theorists cannot recognise these properties. This illustrates that there are norms
which are not recognised by model theory, but are used in complexity theory. To illustrate the
second point, Harizanov’s reaction is not to stop doing her mathematical work, or to consider what
she is doing is not mathematics. Rather, she suggests to the model theorists that they should pay
attention to more than what they can ‘see’ from a model theorist’s perspective. The illustration
comes from conversation. There is no written reference. However, Rodin (2010, 25) gives a further
example.
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There is a further complication which should be addressed. When VopMenka
makes his anti-foundationalist complaint, the naturalist should note that it was
mathematicians, not philosophers,12 who set said norm. Given this observation,
it seems then, that, as naturalists, we should give a philosophy which advocates
ZFC or Cantorian set theory, as a foundation.13 This is, indeed, what Maddy does.
According to the naturalist, if mathematicians are setting norms in this way, then the
philosophers should take the norm setting seriously. But, even as naturalists, we can
be more careful.

First, there is a difference between taking seriously what mathematicians say
about mathematics and taking seriously what they say about the philosophy of
mathematics. As philosophers, with greater training in philosophy, maybe we should
be less conciliatory about mathematician’s views of philosophy. But even if we
want to give the mathematicians the benefit of the doubt, and try as best we can to
accommodate their philosophical views about their subject matter, there is a further
complication.

As we saw with the quotation from VopMenka, not all mathematicians agree to
follow the norm, immediately, since he is an example of a mathematician who does
not. So then what are the philosophers to do about the rival norms internally set
in mathematics? The pluralist has no difficulty with this.14 He observes that the
Cantorian set theory norm was temporary. This is why VopMenka’s alarm is short
lived. Contemporaneous with, and subsequent to, when VopMenka was writing the
quoted passage, many developments in set theory have taken place. Furthermore,
his own theory of semisets has enjoyed some success. It takes time for some
mathematical ideas to be accepted – and this is not only because there is a particular
foundation that is in the historical process of setting the norm for acceptance. Since
his writing, a much more significant number of higher-cardinal axioms have been
proposed as extensions of ZFC set theory, and the prevailing attitude (I think) is that,
in the light of the rival foundations, pluralism has succeeded set theoretic monism.
But what of dualism?

The dualist does not fare much better. For, he proposes a foundation for some
part of mathematics, and this part will suffer from the same criticisms. The part of
mathematics for which we provide a proper foundation: second-order logic for the
Fregean logicist, finististic (real) mathematics for the Hilbertian, all of mathematics
save ‘absolutely infinite magnitudes’ for the Cantorian; is good mathematics, the

12The distinction is, of course, somewhat artificial, and if we do not accept it, then we re-
phrase the structure of the foundationalist philosophy appropriately. Many mathematicians are also
philosophers, and the same person can play both roles. I follow Colyvan in not recognising a clear
distinction between philosophy and mathematics, either in terms of persons or in terms of roles.
Despite my agreement with Colyvan, it will be useful for the arguments here to adopt this artificial
distinction.
13It is exactly on these sorts of grounds that Maddy, in her earlier work forges a realist naturalist
philosophy of mathematics.
14Oddly, Maddy was reluctant to make this observation, or take it seriously. This is one of the
contentions between Maddy and the pluralist, which we saw in Chap. 3.
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rest is suspect. With Hilbert, we engage in a project of trying to widen, or determine
the limitations of, and the scope of, the good part of mathematics, to minimise the
suspect part.

The naturalist observer of mathematics will disagree with this nuanced normative
attitude. He will observe that mathematicians work in both ‘good’ and ‘suspect’
areas of mathematics, and do not always agree that the ‘suspect’ part of mathematics
really is suspect. Take, for example, all of the work on higher cardinal axioms.
A Hilbertian would find less value in this work than in ‘proper’ engagement in the
Hilbertian programme of reducing the existing suspect part of mathematics to the
good part, since, for Hilbert, mathematicians should not be extending the suspect
part!15 Sporting my naturalist hat, I am not sure that the mathematician working
on the higher-cardinals would agree to change the direction of his work! The very
notions of ‘good’ and ‘suspect’ mathematics are not happily applied to the practice
of mathematicians.16 So, here, since they all share a naturalist attitude, the naturalist,
structuralist and pluralist part company with the dualist. The slide, from developing
a very powerful theory and showing its scope, to having the powerful theory set the
norm for mathematics as a whole is illegitimate. It has not been born out by history.
Note that the strength of this argument depends on the philosopher having some
sympathies with naturalism.

4.4 The Second Anti-foundationalist Argument:
Growing Foundations

This argument is very much a repetition of the argument we saw in the first chapter
of this book. A few details are added. As was mentioned in the argument of the
foundationalist, the foundationalist begins with the technical result that most of
mathematics can be reduced to The Foundation. This is a twofold mis-description.
First, the reduction is sometimes too contrived, and therefore, not successful.
Second, any proposed foundation is only that: a foundation. That is, we can add
more to the foundation. Whatever the founding theory is, ‘it’ grows. As it grows we
understand the founding parts in a new light. So it is not a fixed foundation.17

15‘Bad’, of course, is an over-simplification, especially in light of Hilbert’s famously stating
that he was not willing to be expelled from the paradise Cantor had introduced to mathematics.
Nevertheless, there is a tension in Hilbert’s attitudes towards the finitistic and the ideal.
16Frege’s logicism (paradoxes aside) is a little more subtle, since we can take logicism in a fairly
neutral way. I don’t think that this is loyal to Frege, but I do think it is an interesting position.
Under the neutral reading, the analytic part of mathematics is not so much ‘best’, but just analytic.
We have a description, and no norm. Then it is just philosophically interesting to know what the
scope is of the analytic part. The pluralist argument against the neutral reading of Frege, concerns
much more the further part of this chapter, where we consider ‘bad’ mathematics.
17Brouwer agrees with this, so in this respect, he too, parts company with the monist. The issue
about where Brouwer fits in my account is quite subtle. Where Brouwer and I part company is
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VopMenka complains about the initial reduction: “Some [mathematical] disciplines
pursued in pre-set-mathematics [mathematics before the development of Cantorian
set theory] had to be considerably violated in order to include them in set theory.”
(VopMenka 1979, 9). VopMenka gives the calculus as an example of such a violation
(VopMenka 1979, 9). There are many other examples. Try proving that 7 C 92 D 99
in Frege’s logic (for the cheeky reader: even using the inconsistency generated from
Basic Law V, and then making an ex contradictione quodlibet argument would be
quite hard in Frege’s system) or in Russell and Whitehead’s type theory. It is in
principle possible to ‘do calculus’ in set theory, but it is so awkward that no one does
it. Why? This is because the proofs are too long and not explanatory, so we lose sight
of what we are trying to do, and much of the proof is very mechanical, and should
be skipped, since going through all of the mechanical steps is not informative,
and certainly not ‘doing calculus’.18 In this way, the reductions do not give the
‘essence’ of what mathematics is about, how it is practiced, what is interesting
about it. The phenomenology is wrong. Nevertheless, the reducing discipline does
give some philosophical insights. For example, we might learn, with Frege, that
arithmetic is really analytic, pace Kant. However, it is a much larger philosophical
step to take to say, with a fictional successful Frege, or a neo-Fregean, that all of
arithmetic and analysis are essentially second-order logic. These thoughts should
recall the argument from the second chapter concerning the two communities of
mathematician, one community working exclusively in set theory, and the other in
mathematics with a more traditional presentation. It is not at all clear that the set
theoretic community does make a net gain over the ‘plethora’ community, nor is it
clear when, or by what path, it could make such a gain.

Apart from the artificiality of the reduction, there is the second problem of
instability of the foundation. Even lovely, all-encompassing, legendary, great,
mathematical theories grow. New axioms and techniques are suggested and tried.
When we add new axioms, we shift the foundation, for, we change the implicit
definition of the primitive concepts or elements (such as the relation of membership,
or the empty set). If we endorse the naturalist attitude, then we can observe (rather
than resist) co-variance between ‘founding theories’ and ‘essences’: as the founding
theory changes, so the essence changes. What is worse is that it does not just grow in
one direction. Like the Hydra, it grows many heads, and they do not get along. For
the pluralist, this observation makes a mockery of foundationalism as essentialism.
This is not a logically necessary argument, since the foundationalist could insist on

in his emphasis on intuition. I think that mathematical intuition is interesting, but I disagree with
Brouwer that “mathematics takes place in the mind”, if we interpret the omitted quantifier at the
beginning of the quotation as ‘all’. I save this issue for a paper.
18Hrbacek et al. (2009), are all working on a way of doing calculus using ZF set theory, but they
add a notion of small and large relative to a frame of reference. There are many layers of ZF
sitting on top of each other, so a number is very small relative to where one is sitting. They have
tried teaching calculus in the classroom in this way, and found that it is much more intuitive for the
students than calculus as it is normally taught! The very fact that there are mathematicians working
on this shows us that the relationship between ZF and calculus is strained.



62 4 From Structuralism to Pluralism

fixing the foundation, and resist extensions, but then he would beg the question
against himself. Or the foundationalist could insist on a hope for convergence,
but this would be to rely too heavily on shared hopes. Neither insistence can be
supported.

The pluralist, however, does not fare much better. His argument relies on
naturalist sympathies and is inductive: based on the history of mathematics:
every successful proposed foundational theory has spawned new developments or
additions to the mother theory, and fostered the development of rival theories.
No sooner had Whitehead and Russell introduced their type theory, then they
developed the ramified type theory. Other type theories have sprung up since, some
more successful (studied more), than others. After Cantor developed his naı̈ve set
theory, rivals were forthcoming: Zermelo-Fraenkel set theory, Gödel-Bernays set
theory. Moreover, additions to these were made, such as the axiom of choice, the
development of class theory, higher cardinal axioms were added etcetera. Category
theory too has seen development.

Looking more closely, we extend the foundational theory with new axioms which
make a new theory (assuming we individuate theories by the language, plus axioms,
plus inference rules). For example, we can extend ZF set theory with the axiom of
choice, which gives us ZFC. Moreover, as is well documented, there is considerable
dispute over the admissibility of new axioms, which extend ZF set theory, none more
notorious than the axiom of choice (Martin-Löf 2006, 2). Admissibility (classically)
requires at least consistency with the original theory, but some proposed axioms are
consistent with, but independent from, the original theory; and therefore we can add
the independent axiom, or an axiom which is consistent with it, or several axioms.
The problem now is to arbitrate between the alternative proposed extensions, since
pairs of new axioms will lead to contradictions.

To arbitrate, we have to modify our original notion of the essence of mathe-
matics – since it no longer rests in the founding theory. The Foundation is strictly
broader since we think it can accommodate extensions. Moreover, we have to do this
in such a way as to accommodate only one proper subset of the proposed additional
axioms. Witness the debates about V D L. If we choose V D L, then we preclude a
number of other axioms. If we choose V ¤ L as a new axiom, then we preclude
other proposed axioms. Accommodation, in the face of choices which preclude
other additions, is no easy task, since the founding theory itself cannot arbitrate.
Here, ‘choice’ relies on some underlying sense of ‘the’ theory – not individuated
by a language, set of axioms and rules of inference – but by some (not yet formally
represented) intuitions which, one hopes, will become explicit through discovery
and formal representation. But these vague intuitions are not good philosophical
justifications for foundationalism, since these sorts of intuition vary from one
mathematician to the next. Moreover, history has shown us that mathematicians
have sometimes been badly mistaken.

We might dress up the intuitions by introducing considerations of fruitful-
ness, simplicity, elegance etcetera. But these considerations alone will not do,
since, remember, we are providing a foundation, not for generating ‘lots’ of
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mathematics,19 or aesthetically pleasing mathematics, but for correct mathematics.
If the foundationalist does go ahead, and opts for one extension over another, to
fix the ‘essence’ of mathematics, then he shows a weakness in the original monist
argument for his chosen foundation. For, arguing for one extension over another, is a
covert admission that he did not have the full essence properly formally represented
in the first place. Thus, if, as philosophers, we are going to take history seriously,
then the lesson we learn is that proposing a particular theory as The Foundation
for mathematics is a highly unstable position. At best, a particular theory will
represent something of the core of The Foundation, where The Foundation, is now
something which we attempt to represent formally, but eludes our attempts. Again,
relying on naturalist sympathies, we are better off making candid observations, and
accept that The Foundation is simply not in the offing. There is no convergence of
opinion.

4.5 The Third Anti-foundationalist Argument: de dicto
and de re Many Mathematicians Are Pluralist

An aspect of structuralism, which the pluralist adopts, is his naturalism. Shapiro
is a naturalist in the sense of paying attention to what it is that mathematicians
do and report about what they do (Shapiro 1997, 3). To some philosophers this
attitude is quite obvious. To others it is not. So, it should just be born in mind,
in reading the following, that, within the philosophy of mathematics, naturalism
is not a shared trait.20 This distinguishes the philosophy of mathematics from
other areas of philosophy, especially when naturalism is associated with favouring
scientific methodology etcetera, and where ‘science’ does not include mathematics,
except when mathematics is indispensable to science. Set aside these more usual
associations with the term ‘naturalism’. Here, we are interested in Maddy and
Shapiro’s sense of observer of mathematician’s activities, where the boundaries
of the discipline of ‘mathematics’ is determined by mathematicians themselves.
Structuralists and pluralists observe that mathematicians are rarely monist.

19We have to be very careful about quantifying over mathematical results, for, adding almost any
axiom will add an effectively enumerable number of new theorems, so then we might count only
‘important’ new results, but how these are determined/chosen is again a problem; at least at any
given time, since we might later discover that a theorem or result is important only many years
later.
20It might turn out to be a matter of emphasis. Obviously every philosopher of mathematics, has to
have been exposed to some existing mathematics, and taken that as a starting point. The difference
in emphasis is over the hesitation or reluctance with which a naturalist will think he can tell the
mathematician what counts as mathematics, once the technical result on his foundation has been
demonstrated.
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De dicto many mathematicians are anti-foundationalist. Or, more mildly, they
view foundations with suspicion.

Many working mathematicians (though by no means all) are suspicious of logicians’ [and
philosophers’] apparent attempt to take over their subject by stressing its foundations.
: : : [Moreover,] I have been persuaded by Edwin Coleman that foundationalism in mathe-
matics should be regarded with considerable suspicion; or at least that proper ‘foundations’,
: : : would be much more complex and semiotical than twentieth century mathematical logic
has attempted. In which case it would be arguable whether ‘foundations’ is an appropriate
term. (Mortensen 1995, 4)

In conversation, Andréka, Chubb, Enayat, Harizanov, Kauffman, McLarty, Miller,
Mourad, Németi, Székely and many other working mathematicians have all declared
themselves to be pluralist, in some sense of ‘pluralist’. I think that pluralism ‘is in
the air’, but it has not been worked out as a whole philosophical position, only as an
attitude within other positions.

Moreover, many mathematicians are not only de dicto pluralist, many are de re
pluralist. That is, their behaviour at conferences, and in their written work, displays
an open-mindedness and acceptance of alternative foundational theories – if not a
complete disregard for the (philosophical) notion of foundation. More than this,
in their proofs and methodology, mathematicians will often avail themselves of
whatever hypotheses are useful and can support the desired result.21 We shall see
this in detail in the next chapter on formalism.

Consider the idea of a proof in mathematics. If we are monists, then the best proof
will be one carried out in the foundational theory. Moreover, the proofs had better be
pretty explicit, and rigorously carried out in the foundational theory, but this picture
is distorted. According to Thurston, for mathematicians, the “reliability [of proof]
does not need to come from mathematicians formally checking formal arguments [so
working within one foundation]: it comes from mathematicians thinking carefully
and critically about mathematical ideas.” These ideas are not restricted to the ideas
found in one foundation. The choice of which method or result to use in a proof
is pragmatic, and there is a sense in which said method or result is considered to
be trustworthy because it is “quite good at producing reliable theorems that can be
solidly backed up.” (Thurston 1994, 171 (emphasis added)). Following Cellucci,
real ‘mathematical’ proofs are not carried out in a particular foundational theory.
Instead, they are derivations. The derivations are not formal proofs as we would
expect in a formal logic, such as a sequent calculus or a natural deduction system
of proof, as developed by Prawitz. The derivation will mix together meta-language
and object language. To make the point, I choose an arbitrary proof.

21There are even worse cases, from a foundationalist point of view. Kauffman showed me an
example of a knot. He then translated from the language of knot theory into the language of set
theory. The knot then seems to be an impossible object, since it is a knot where a 2 b and b 2 a,
and this is set theoretically impossible. Assuming that the translation from knot theory to set theory
is best possible, in some sense, then it is surprising that this makes no difference to the practice of
knot theory. They do not defer to set theory at all, except to use the language on occasion.
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METALEMMA. If ®, § are fully representable in T then ® & § is fully representable in T.

Demonstration. If T1 and T2 represent ® and § respectively w.r.t. x1, : : : : : : , xn then T1

\ T2 represents ® & § w.r.t. x1, : : : , xn. (VopMenka and Hájek 1972, 116)

The mixing of levels of languages, and the lack of formality in proof is part of the
story.

The other part, following Cellucci, is that what a mathematician derives is not a
conclusion, but a plausible hypothesis from problems. Problems are open questions
(Cellucci 2008, 12). In our chosen proof above22 the problem concerns the making
of conjunctions in the language. And, more important, a hypothesis is said to be
plausible if and only if it is compatible with existing data – which includes any
mathematical results and notions available at the time of inquiry (Goethe and Friend
2010). In the quoted demonstration, we assume an understanding of conjunction and
intersection. We are then simply told the relationship between symbols in the meta-
language and in the object language. The metalemma, or conclusion is plausible
because of our prior understanding. It remains a hypothesis, in the sense that it is
not absolutely true. It is true relative to our background knowledge and the theory
being developed.23

Especially this last point runs directly against the picture drawn by the monist
philosophies of mathematics, but maybe the dualists are more accommodating. We
might think that, as good dualists, mathematicians avail themselves of the better
part of mathematics, when they can, and use the more suspect part with an uneasy
conscience. For example, consider a constructive mathematician who first makes a
classical (and constructively unacceptable) proof. He will do this on the grounds
that the classical proof indicates ‘the truth’ of the conclusion. He will then, maybe
in his spare time, work on giving a constructively acceptable proof of the same
result. This is reported behaviour in some ‘constructive’ mathematicians. Of course,
some constructive mathematicians will not accept this behaviour at all. They are
monist constructivists. But those who do behave in the way described can be
called dualist constructivists. There are bona fide dualist constructivists amongst
mathematicians.

The problem for the monist and the dualist is that the monist or the dualist
stories (of constructivist or other stripe) are not the only stories to be told, and
many mathematicians completely disregard the advice of the monists and the
dualists. They do not recognise a favoured or privileged part of mathematics – or,
more carefully, what counts as favoured or privileged is thought of as a personal

22I really did choose this arbitrarily. The only constraint was to look for a short proof. I picked
up the closest technical mathematical textbook I had to hand, and opened it to a middle page, and
looked for a short proof. I do not think that it is important that the proof is of a meta-lemma, rather
than simply an object-level lemma. Even the point about meta-language and object language still
holds, since this lemma and proof mix meta-meta-level, meta-level and object-level languages.
23There is a lot more to be said about proof and the nature of proof. For a more thorough discussion,
see Chap. 12.

http://dx.doi.org/10.1007/978-94-007-7058-4_12
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choice, a matter of taste, or personal experience which will depend on one’s
particular education and temperament. We look at examples of mathematicians
who are neither monist nor dualist in the next chapter. In other words, for many
mathematicians, the purported distinction between good and suspect mathematics
is a distinction without a difference. In the light of the de dicto and de re
observations, the naturalist inclination shared by structuralism and pluralism make
such a philosopher anti-foundationalist.

We have some prima facie evidence for pluralism from the claims and behaviour
of mathematicians. However, this is simply an observation about the state of play
in mathematics today. As philosophers we have to decide whether or not to take the
observations seriously, or to think of them as a temporary glitch. We might excuse
the observations on the grounds that the working mathematician is simply ‘not a
very good philosopher of mathematics and has not thought through the implications
of his pluralism’,24 or is engaged in ‘cognitive dissonance’ or treats mathematical
theories as tools and therefore his pluralism is due to a proto-instrumentalism or a
complete a lack of philosophical thought about the matter. This might well be true
in some cases. But, as philosophers, we should at least say more.

Pluralism motivated by naturalism does not prevent a philosopher or math-
ematician from working within the strictures of a philosophy, but we want to
distinguish between being wedded to a theory for technical reasons, historical
reasons or reasons of personal taste, on the one hand, and being wedded to a
philosophical or mathematical theory for foundationalist reasons. Making use of
this distinction, the pluralist views the normative force of a philosophical position as
only exercised within the philosophy, or within the theory; the same will go for truth.
For the pluralist, normativity stays internal to a monist or dualist perspective, and is
limited to the scope of the foundational theory. This should not upset the traditional
philosopher of mathematics too much: they have, after all, the same material at their
disposal as they had before. But, at the end of the day, the pluralist asks them to
admit the parameters of The Foundation and the accompanying philosophy. In fact,
we should shift our vocabulary from discussing The Foundation to ‘a big theory’.
Here, ‘big theory’ just means a mathematical theory to which a lot of existing
mathematics can be reduced. There are alternative big theories and there are other
philosophies, and it simply is not clear that one is correct. In other words, according
to the pluralist, what the foundationalist may not do is claim to give a philosophy
for ‘all’ of mathematics.

24“ : : : what the mathematician says [about the philosophy of mathematics] is no more reliable as a
guide to the interpretation of their work than what artists say about their work, or musicians [about
theirs].” (Potter 2004, 4), Even if we do not quite have such a strong point of view, it remains that
mathematicians express very different philosophical attitudes. At the risk of being repetitive, my
personal observation is that most mathematicians are pluralists.
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4.6 The Fourth Anti-foundationalist Argument:
On Truth in a Theory

I should make two preliminary remarks. One is that we have not used any
distinctively structuralist ideas in our previous arguments against foundationalism.
Here we finally do. The second preliminary remark is that what is presented in this
section is not so much an argument against foundationalism as a presentation of an
alternative conception of truth. Thus, we might say that in this section we look at a
‘point of contention’ between the foundationalist on the one side and the structuralist
and the pluralist on the other side.

The contention is over truth. The monist identifies the truths of the foundation
with the truths of mathematics. The rest are falsehoods. The dualist identifies the
‘real’, ‘better’ truths with the truths of the foundation, and the rest are either
waiting to be reduced to the foundation or have some sort of lesser status. In
contrast, the structuralist and the pluralist have a quite different conception of truth
in mathematics.

“In physics, the same way as in mathematics, we do not address the question
whether the axioms are true or not, we just postulate them.” (Andréka et al. 2012).
Together, the structuralist and the pluralist do not think that there are absolute
truths in mathematics of the form: “2 C 8 D 10”. Instead, what is true is: “In Peano
Arithmetic, 2 C 8 D 10”.25 To explain further: first allow the simplifying assumption
that wffs are of the right category to be candidates for truth-bearers, as opposed to
states of affairs, propositions, or what it is that propositions refer to, or supervene
on etcetera.26 Note that I specified that it is wffs that are the right sort of thing to
qualify as candidates. This does not mean that all wffs are truth-bearers. Rather, it
is a wff, when a particular theory is specified or understood, which is a truth-bearer.
The reason for the qualification is that the pluralist takes an interest in mathematics
as a series of theories, where each contains truths relative to that theory. But the
wffs of the theory are not true, independent of the theory. Similarly a theory by
itself (thought of as a conjunction of wffs closed under some axioms and rules of
inference) is not true. This much is inspired by structuralism.

This is a more positive ‘argument’, in the sense of giving a positive proposal
about how to think of truth in mathematics, if we are pluralist. Structuralism is
a philosophy of mathematics where the notion of ‘truth’ is always qualified by
‘in-a-structure’. Shapiro uses the highly expressive language of second-order logic
to capture important mathematical concepts, such as ‘is Dedekind infinite’27 and

25This is because, for example, 2 C 8 D 10 is false in arithmetic mod 8, where 2 C 8 D 2.
26In later parts of the book, I shall revise the simplifying assumption. Not only can we revise the
assumption, but we must revise it when moving outside the model theoretic perspective. So the
assumption does not offend the structuralist, but it will, at some point, be revised by the pluralist.
27The definition of Dedekind infinite is that a set is Dedekind infinite iff it has a proper sub-set
with which it can be placed into one-to-one correspondence. The natural numbers are Dedekind
infinite, as are the integers, the rationals, the reals and so on. Finite sets have no proper sub-set
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model theory to pick out structures (which, for Shapiro, are what mathematicians are
interested in). For Shapiro, model theory is not a foundation, but an organisational
perspective allowing for the clear individuation of mathematical theories, and for
the comparison of various theories/structures from the point of view of chosen
further meta-structures.28 There is no ultimate structure, on pain of paradox.
There is no absolute perspective. No structure is ultimately favoured over others
(since model theory does not have one global structure). Model theory is not an
axiomatised theory, and therefore has the flexibility to allow future extensions,
without jeopardising stability. What is admitted as a structure will, undoubtedly,
change over time, since model theory is a developing theory.

There are two types of individuation of ‘theory’ taking place side-by side. We can
either individuate theories in terms of the language of the theory, the proof theory
and axioms, which is, roughly, how the model theorist thinks of a theory, i.e., as a
structure. A structure is just a set of objects together with some structure imposing
relations which bear on the objects. Equally, we can individuate theories, in terms
of an underlying idea which is not necessarily known to be fully captured by the
formal representation of the theory. For example, if we think of model theory, then
the formal representation is not yet fully achieved. In structuralism: model theory
itself should be individuated in the latter way, since it is a growing theory; whereas
particular structures should be individuated in the former way.29 This is a very
pluralist way of speaking, and not one that the structuralist will necessarily endorse.
For the pluralist, the model theorist is able to ‘see’ a lot of mathematics, make sense
of it, organise it within the strictures of his model theory and make contributions
and offer insights. He individuates structures up to isomorphism and recognises
all concepts expressible in a second-order language. Shapiro’s structuralist can
see quite a lot of mathematics, but not all of mathematics. As a result, Shapiro’s

which can be placed into one-to-one correspondence with them. To capture the notion of Dedekind
infinite, we need the expressive power of second-order logic. See Shapiro (1991, 100). The formula
for set X being infinite is: INF(X): 9f [8x8y(f x D f y ! x D y) & ! 8x(Xx ! Xf x) & 9y(Xy &
8x(Xx ! f x ¤ y))]. This is read: There is a function which is such that if (two) of its values are
identical, then the (two) arguments are equal. Moreover, the function operates on a proper subset
of the set X.
28The title of Shapiro’s first book on structuralism is: Foundations Without Foundationalism The
Case for Second-Order Logic. Note the “Without Foundationalism”. Foundationalism is identified
with what I have been calling monism and dualism. Shapiro is anti-foundationalist in the sense
that all mathematical theories which he recognizes are on a par. The ‘foundation’ is model theory.
Model theory allows him to individuate mathematical theories (as structures). The model theory
does not favour one structure as against another.
29This could be turned into a criticism of Shapiro’s structuralism, but it could equally be launched
against the pluralist. However, in the next part we shall see the pluralist defuse it. The criticism
is made indirectly in Potter and Sullivan (1997). The criticism is that Shapiro makes different
ontological and metaphysical claims concerning individual models, on the one hand, and model
theory itself, on the other.
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pluralism is restricted to what is recognized through the lens of model theory and
what can be expressed in second-order logic, and this lens then prescribes what is
to count as successful mathematics.

There are limitations to the arguments given against the foundationalist. All but
the last of the above arguments rely on naturalist sympathies. We conclude that the
pluralist trades with the monist and the dualist, truth for naturalism. There is no clear
outcome to this debate. However, once the trade has been made, the pluralist pushes
beyond structuralism.

4.7 Moving Beyond Shapiro’s Structuralism

Where I part company with Shapiro is over the very important issues of what is to
count as success in mathematics and what is of interest to the philosopher. The
structuralist picks out as successful mathematics all mathematics which can be
recognised by model theory. The rest is not.

In contrast, for the pluralist, success does not depend on being able to be
recognised by a particular theory, open ended and generous as it might be. Instead,
success is judged by reference to the community of mathematicians. Pluralism is
more naturalist than structuralism. Examples of parts of mathematics which are
not recognised by model theory, but that the pluralist deems perfectly successful
include: intensional logics, mathematical theories, which are still in a stage of
development and paraconsistent mathematics. Pluralism is more pluralist than
structuralism. Or, we can think of structuralism as a very conservative form of
pluralism.

To be fair, Shapiro acknowledges that model theory is a perspective, amongst
others. Therefore, in principle, he is open to the suggestion of adopting other
perspectives, and then becoming sensitive to notions in mathematics not recognised
by model theory. This is so in principle. Nevertheless, as he observes: “the prevailing
semantic theory today is a truth-value account, sometimes called “Tarskian”. Model
theory provides the framework.” (Shapiro 1997, 3, my emphasis). For this reason,
Shapiro develops his structuralism in accordance with model theory, adopting the
perspective it affords on mathematics. So, it should be noted, that the target in
this chapter, is not so much Shapiro, in his more conciliatory moments, but the
structuralism he actually develops, in order to be able to say definite things in the
philosophy of mathematics. But note, even with Shapiro’s conciliation, he cannot
recognise unsuccessful mathematics. To be dramatic, I shall use the term ‘bad’ to
designate theories or proto-theories, not recognised by model theory.

Definition Bad Mathematics is any ‘mathematics’ not recognised by model theory,
where ‘mathematics’ is not determined by model theory but by existing practice.
This includes both what we called in the first chapter ‘successful existing mathe-
matics’ and some unsuccessful mathematics!
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Bad mathematics might just be mathematics overlooked by the model theorist.
Or, bad mathematics might be quite unsuccessful, and for good reason – by
mathematician’s standards. But even in the unsuccessful cases, the bad mathematics
can inform the ‘good’ mathematics, and therefore, according to the pluralist, should
not be ignored in a philosophy of mathematics. Overlooked ‘bad’ mathematics
includes (amongst other things): some intensional theories,30 intentional theories,31

not yet completely formally represented theories, paraconsistent mathematics and
trivial theories of mathematics. It is in considering bad mathematics that the pluralist
distinguishes himself from the structuralist.

For the pluralist, unsuccessful mathematics comes in two forms, the mathematics
which no one (save the author) accepts, so, ‘the community of mathematicians’ or
even a ‘large enough part’ of ‘the community of mathematicians’ does not accept
the work. The other sort of unsuccessful mathematics are trivial mathematics. As
far as I know, everyone agrees that trivial mathematics is unsuccessful, and should
be avoided. We postpone discussion of trivialism and trivial mathematics to Chaps.
10 and 11. Here, let us discuss the part of mathematics deemed successful by the
pluralist, but unsuccessful by the structuralist.

The problem the pluralist sees with rejecting ‘bad’ mathematics is that this
offends against the naturalist insight and runs the risk of instability or of begging
the question. The pluralist philosophy developed here is more stable than Shapiro’s
pluralism and the more traditional philosophies as well. The instability is temporal.
That is, as judged by the community of mathematicians, what counts as successful
mathematics changes over time. Odd theories suddenly find an application; some
obscure result proves useful to a more central mathematical concern. Theories
which were viewed as highly suspect come to be accepted in more main-stream
mathematics, such as the study of non-standard arithmetic. More important, there
are revolutions in mathematics, such as the discovery on non-Euclidean geometries,
or of the incompleteness results. These revolutions radically alter our conception of
mathematics, and the altering of the conceptions can take considerable time. On the
reverse side, we see that some mathematics which were deemed highly successful
drop out of use, or are no longer studied. Briefly: success is not even cumulative (it
is not the case that once successful, always successful). Success in mathematics is
temporary. Success is judged by a community of mathematicians who change their
minds about what are the standards of success.

30It depends on how we single these out. If all it takes for a theory to be intensional is that it have
an intentional operator, then some intensional theories are extensional, and can be recognised by
model theory. An example is a modal logic where the modal operators have terms within their
scope. Such a logic will be extensional (models will be unique, and identified, up to isomorphism).
See Melia (2003, 2–4). In contrast, a modal logic with whole formulas within their scope will
suffer from ‘opacity of translation’, and are, therefore, not extensional theories. Model theory is
extensional, even if it has no axiom of extensionality (since model theory has no axioms at all, i.e.,
it is not presented axiomatically). An extensional theory cannot recognise the differences between
wffs with intentional operators because of the opacity of translation.
31We postpone discussion of these to Chap. 6.
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To remedy the instability, we can be more careful and qualify our account for our
judgment of success by means of a temporal index, and maybe even a community
index (such and such a theory was well accepted by Soviet mathematicians in
the 1950s but not by ‘Western mathematicians’ : : : ) then any ‘rejection’ is made
relative, stable and harmless – and more accurate. This is a good start, but the
pluralist is more ambitious than this. He wants to say something definite about the
nature of mathematical truth and importance.

The rejection of bad mathematical theories might also beg the question, as
when the reductionist foundationalist philosopher re-trenches and says that whatever
fails to conform to her conception of what counts as successful mathematics is,
by definition, unsuccessful. That is, she sets an a priori norm for success in
mathematics. But the force of such an argument is limited, for it begs the question
against the naturalist perspective. My diagnosis is that there is an inevitable tension
between the naturalist attitude and the desire to give a philosophical account of
(unqualified) ‘successful mathematics’. Since, for the pluralist, there is no one
foundation, and even the extension of the term ‘successful mathematics’ changes
over time (and across communities), it follows that there are no truths of the form
“the sum of the interior angles of a triangle add up to 180ı”. In contrast, “in
Euclidean geometry the sum of the interior angles of a triangle add up to 180ı”
is true, or at least much more enduring and stable.

We have an idea of what sort of sentence is a truth bearer, let us be more precise.
Truth can only be had within a known context (whether it be explicitly stated, or
implicitly understood). The context is usually a mathematical theory. Let ‘s’ be
a well formed formula within a language of a mathematical theory. Or, it can be
a sentence, which we know we can express in formal notation. “The sum of the
interior angles of a triangle add up to 180ı” is an example of an s. It is in English, but
can be expressed formally if we so wish. Let ‘T’ stand for a theory. This can be given
axiomatically, as in Euclidean geometry, or by setting rules, by setting principles, or
it might arise out of a practice. For example, model theory is a mathematical theory,
but it is not presented axiomatically or with a set of rules in the way that arithmetic
is. Nevertheless the theory T sets the context in sufficient detail that the truth of the
wff s can be verified within the theory (in easy cases of complete theories: by using
the proof theory which is accepted within the practice of the theory). So, we are
concerned with sentences of the form: Ts are candidates for truth bearers; i.e., any
‘s’ written in the language of the theory T are candidates for truth-valuation.

Note that there is some slippage in the notion of T. This is deliberate, and is
meant to reflect and encompass mathematical practice. The more precise we can be
about T the more obvious it will be that we can generate s in T as a theorem or,
given incompleteness, we can know it is true or unprovable. There might be some
Ts combinations of which we do not know if they have a truth-value, this will be
the case with ‘open problems’.32 We might not know what we have to put in to the

32Distinguish between not having a known truth value (now), not having a truth-value at all,
and having the ‘truth-value’ ‘unknown’, or ‘undetermined’. We sometimes use ‘U’ to indicate
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T to derive s, so the T will just be a guess, and might be an open theory (to which
we can add new material: axioms rules, methods, information). We might not know
if the proof theory of T will experience the halting problem with respect to s. Ts
might not get a truth-value because T is too ambiguous etcetera. In advance, we
cannot say, although we might be able to guess, that a sentence of the form Ts is
a truth-bearer. But we need to demonstrate its truth or its falsehood (or sometimes
both, if we follow the dialetheist),33 or demonstrate that it has to bear a truth-value
(say by reductio), in order to know that it is a truth-bearer.

There are two further complications. One is that how we determine the truth of
the sentence concerns what is ‘acceptable’, and this might come from somewhere
outside the theory, or come from the semantics of the theory such as in one of the
famous Gödel sentences which shows the incompleteness of a theory. The other
complication is that we also want to make no pre-suppositions about sentences Ts
being: true only, false only, neither or both. They can even change truth-value if we
are not sufficiently specific about T or what counts as an acceptable way of detecting
the truth of s in T. This will be the case when T is not a fully formalised theory. For
the above reasons, we cannot be more specific about truth in mathematics than to
say that sentences of the form: Ts are candidates for truth bearers, but not all of them
have a truth-value.

The structuralist wants to be much more strict about the nature of T in the above
statement. He also has classical inclinations with respect to truth-value assignment.
So in both of these respects, the pluralist has taken his leave of the structuralist.
We can sum up the difference this way: the structuralist wants to give a philosophy
of successful mathematics, and is willing to miss out on some mathematics; we
might say that he wants to give a philosophy of definitely accepted successful
mathematics. In contrast, the pluralist is interested in giving a philosophy of, or
bringing a philosophical approach to bear on, what it is that mathematicians do qua
mathematician. We can then call the structuralist an optimal pluralist, where the
pluralist is a maximal pluralist.

‘unknown’ or ‘undecided’ and treat it as a truth-value, and make three-valued truth-tables with
T, F and U, each as admissible ‘truth-values’. Strictly speaking this is sloppy. ‘Unknown’ or
‘undetermined’ are not truth-values. They are indefinite place holders for a truth-value. They are
ambiguous between “there has to be a truth value T or F (not neither or both) but we have not
worked it out yet” and “we do not even know if there is a truth-value T or F”. Above, I am not
counting lack of truth-value as a truth-value. The parameters for what counts as knowable will
depend on the resources we think we are allowed and to some extent on our theory of knowledge.
33A dialetheist is someone who holds that some sentences (or well-formed formulas) are both true
and false. In particular they are true. We shall be introduced to the dialetheist more formally later.
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4.8 Making the Differences Clear: Optimal Versus
Maximal Pluralism

To distinguish ‘success’, from the ‘rest’ of mathematics, while remaining pluralist,
let us distinguish between an optimal pluralist philosophy and a maximal pluralist
philosophy. The optimal pluralist gives norms for philosophically well motivated
theories, i.e., for definitely accepted ‘successful’ mathematics. Shapiro is an
example of an optimal pluralist. There might be several competing norms. They
might include: consistency, constructive considerations, definitions of validity,
search for a robust ontology etcetera. The structuralist norm is ‘can be recognised
by model theory’, and then by transitivity, all the norms enjoyed by model
theory accrue. These include (presumed) consistency, extensionalism (models are
identified uniquely up to isomorphism), proximity to ZF, etcetera. In contrast, the
maximal pluralist is maximally descriptivist: tries to philosophically account for
the whole corpus of mathematical activity. The maximal pluralist is loath to set or
fix a norm for success in mathematics, and he will accommodate, account for, or
study ‘bad’ theories without, himself, slipping into triviality; see Chap. 11. Under
the maximalist attitude, the pluralist can, of course, observe the setting of norms
by the mathematical community; norms, as given in the professional practice of
mathematics. But the pluralist will not judge between competing norms (unlike
the optimal pluralist). For this reason, the pluralist has to entertain, what were
traditionally thought of as ‘bad’ mathematical theories.

Since, in this chapter I am advocating maximal pluralism, let us give the moti-
vations for considering ‘bad’ mathematics at all. Recall that the bad mathematics
include: some intensional theories, intentional theories, not yet completely formally
represented theories (call these ‘nascent theories’), paraconsistent mathematics
and trivial theories of mathematics. I shall not discuss intentional and intensional
mathematics here. We only need to discuss some of the items on the list in order
to show some of the differences between structualism pluralism, what I am calling
‘optimal pluralism’ here, and ‘maximal pluralism’. We skip to the nascent theories.

Nascent theories are theories that are still in progress. All theories go though a
stage of ‘construction’, ‘becoming’ or (more platonistically) ‘coming to be known’
or ‘coming to be formally represented’. Depending on how we individuate theories
in mathematics, we might even say, with the Gödelian optimist,34 that set theory
is nascent! More specifically: if we do not individuate theories in the standard
way in terms of a language, a set of axioms and rules of inference, but rather in
terms of ‘some theory to be discovered’ or as a ‘construction of the mind’, or as

34A Gödelian optimist is someone who has faith that we shall one day, or that it is (a priori) in
principle possible for us to find The Foundation, or the absolute truth about an axiom. In particular,
the Gödelian optimist thinks that we shall eventually determine, for example, whether or not the
continuum hypothesis is true. We shall do this by finding a new very powerful axiom which will
help us to derive the solution.

http://dx.doi.org/10.1007/978-94-007-7058-4_11
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having an ‘informative semantics’,35 then many mathematical theories are nascent.
A philosophy of mathematics that did not accommodate nascent theories would be
found wanting by the pluralist (and the structuralist cannot fit such theories into a
structure). Moreover, structuralism smells of paradox: model theory is also nascent,
and therefore cannot be recognised by model theory, as a structure. In Chap. 11 we
discuss this last point. Rest assured, the structuralist has some things to say about
this. But the pluralist does not have to try. He recognises model theory as a theory
amongst others and makes comparisons between that theory and others, and when
doing this, he does not have to do anything surreptitious. For the pluralist, there is
nothing remotely paradoxical here.

Let us move on to paraconsistent mathematics. There is now a corpus of literature
on paraconsistent logics and paraconsistent mathematics. These are taken seriously
by some mathematicians.36 A philosophy of mathematics which does not treat of
these is incomplete, and violates the naturalist attitude.37 There is nothing more
to say, except to stress that what we see with the pluralist is a more encompassing
philosophy than the alternatives, even those which declare themselves to be pluralist.

Having considered most of the ‘bad’ theories, and finding that they all run foul of
naturalism, it follows that, if we want to follow through with our naturalist attitude,
then we should try to adopt a maximal pluralism, and not only an optimal pluralism.
The virtue of maximal pluralism is greater inclusion, greater longevity, and in that
sense greater stability. We should turn to the criticisms of maximal pluralism before
giving a more detailed account of the maximal pluralist view in the next part of the

35For the distinction between an ‘informative’ and a merely ‘technical’ semantics see Priest (2006,
181). The distinction is not always clear, but roughly there are two parts to being informative: the
intention behind the development of the semantics, and the ‘sense’ we can make of the semantics
post facto. Intentions first: ‘technical’ semantics are developed with the intension of solving a
problem, to provide a model for the syntax. In contrast, ‘informative’ semantics are developed
in response to intuitions and ideas, which hold the formal theory responsible (we can judge the
success of the formal theory by comparing it to the original intentions. For example, if my intention
is to develop a temporal logic to reflect norms of reasoning over temporally indexed propositions,
then my formal theory is judged with reference to the supposed norms). The post facto sense
concerns what we make of the formal theory after is has been developed. For example, we might
find that a purely technically developed semantics turns out to have an application, which makes
‘sense’ of the semantics. An example is quantum logic. In contrast, a technical semantics has only
the intention, say, of proving consistency: if there is a model for a set of formulas, then that set is
consistent. In this case, we just mechanically ‘give a semantics’, but we do not do so as an act of
interpretation, which adds dimension to our understanding.
36There is plenty of sociological evidence for this. Witness publications by ‘major’ publishers, both
as books and in journals; numbers, sizes, and sections newly contained in conferences. One telling
example is the history of the world congress on paraconsistent logic.
37Shapiro’s pluralist structuralism cannot recognise paraconsistent logics and mathematics, since
they cannot have a structure, since the logic he uses is classical second-order logic, and only
consistent theories have a model.

http://dx.doi.org/10.1007/978-94-007-7058-4_11
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book.38 We reserve for part III of the book the criticism, which evokes the danger
of pluralism becoming trivial. A less pointed criticism, which we turn to now, is the
criticism ‘from the disdain for sociology’.

4.9 A Concern from the Right, or from a ‘Disdain
for Sociology’

It is quite normal, when confronted with a philosophical position which claims to
account for a lot of things, too many things, to think that the position is not tight,
is not rigorous, has degenerated into an ‘anything goes’ philosophy (which is no
philosophy at all). I call this ‘the critique from a disdain for sociology’. An imagined
interlocutor might object:

Michèle, if you give up on giving a philosophical account of successful mathematics, then
you let in all sorts of abominations: trivial theories, crankish scribbles, numerology : : :

Moreover with your moral-high-ground pluralism you are loath to judge, rate and rank
rubbish-posing-as-mathematics as quite inferior to very good and fruitful mathematics.
What sort of a philosophy are you hoping to give here? It might be ‘stable’, as you say,
but it will also be empty/uninteresting. Have you lost all philosophical ambition? Have
you turned Wittgenstinian (later, and only under some interpretations)? Are you not left
with only doing sociology, history or historiography of mathematics since your naturalist
attitude only allows description? Have you gone continental?39

There are a number of complaints included in the imagined quotation. The
interlocutor accuses the maximal pluralist of philosophical, or logical, degeneration
in the sense that whatever philosophy there was initially, threatens to ‘degenerate’ to
the rank of sociology. This can be countered. There is, in fact, a lot of philosophical
work to be done under a pluralist banner. We shall see some examples in part IV of
the book. However, very briefly, we can answer the complaint in a general way.

I have no complaint against the sociology, history or historiography of math-
ematics. I also think that the theories of communication and meaning developed
by the ‘continental’ philosophers are interesting and inform pluralism. I embrace
all of these studies and attitudes. However, it would be a mistake to reason that,
therefore, there is no philosophical work to be done, or that there is no philosophical

38I should like to thank Goethe and Sundholm for sustaining some of these criticisms against me in
conversation. Note that they were much more delicate and kind in their tone than what is reported
in the imagined quotations!
39The term ‘continental’ was used, and sometimes still is used, by some Anglo-Saxon philosophers
as a term of abuse, and it generally refers to the sort of work being done by some present day
French and German philosophers, for the most part. The use of the term here is meant as an ironic
joke. As we shall see, some of my leanings are distinctly ‘continental’ since having to do with the
notion of meaning, the politics of meaning and communication. My reason for not discussing the
‘continental’ theories in more detail is that I am not sufficiently familiar with them to feel ready to
discuss them in writing. While no names are mentioned, see the discussion of meaning earlier in
this chapter, for an instance of these sympathies.
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family of positions called pluralism, or that there is no philosophical judgment
in the philosophy of pluralism; on the contrary. Ad esse, ad posse. This is why
I have included the fourth part of this book – to give a taste of some of the things
the pluralist philosopher does when discussing mathematics. In general, the call
of the pluralist is for greater qualification of claims, of lucidity, clarity, lack of
ambiguity, a willingness to dig deeper into explanations, a willingness to face
the limitations of a position in philosophy, or the limitations of a mathematical
theory, and stresses that communication of mathematical ideas is important, and
the discipline, which makes for good communication, should always be cultivated.
Put plainly, the pluralist makes a call for communicating mathematics clearly, and
candidly, and the same holds for philosophy.40 For this reason, explicitness and
rigour of argument become very important to the pluralist, and so does explicitness
about what rigour consists in, since, as we shall see in the relevant chapter, rigour is
not one absolute measure – unfortunately! If we do not take all of the nuances into
account then we fool ourselves into thinking that that we are doing honest work, but
instead, we are doing blinkered work – within very small confines, and we forget
and ignore what we lack the courage to see. For the pluralist, this is dangerous and
ultimately, intellectually dishonest.

A full picture of maximal pluralism will be presented in the first chapter of Part II
of this book.
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Chapter 5
Formalism and Pluralism

Abstract This chapter introduces the reader to pluralism from the starting point
of formalism. Formalism is in some ways the closest position to pluralism. The
characterisation of formalism is taken from Detlefsen. Adding support to the
pluralist’s argument in Chap. 3 against Maddy, about the philosophical conceptions
of mathematicians not always being realist, we give support to the claim that many
mathematicians see themselves as formalist. We also find support for this claim
from the practice of mathematicians. We look at three test cases: the classification
of finite simple groups, renormalisation and Lobachevsky’s model for indefinite
integrals. With this de dicto and de re evidence, we then argue that pluralism reaches
beyond formalism, and better fits the de dicto and de re evidence. In particular, we
argue for a pluralism in methodology which is not permitted under the structures of
formalism, as we characterise it.

5.1 Introduction

Many mathematicians consider themselves to be formalists, and formalism has
had considerable influence on modern mathematics, both on how we conceive of
mathematics and how we present mathematical results. Moreover, formalism shares
a number of characteristics with pluralism. Therefore, it is useful to compare the
two positions. In particular, formalism is close to pluralism in methodology.

The content of this chapter is close to that of a paper co-written with Pedeferri (Pedeferri and
Friend 2012). The hard research work of finding and developing the test cases was carried out by
Pedeferri. We worked together on the conclusions we could draw from the cases. It is in this sense
that the chapter is co-written with Pedeferri. Therefore, throughout the chapter ‘we’ is preferred
to ‘I’.
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The theses of this chapter are that:

(I) While many mathematicians consider themselves to be formalists, pluralism
answers to the aspirations of mathematicians better than formalism. Moreover,

(II) the modern practice of many mathematicians is better accounted for by
pluralism than formalism.

In Sects. 5.1 and 5.2, we characterise formalism and give voice to the formalist
mathematicians. The quotations from mathematicians confirm the thesis that some
mathematicians characterise themselves as formalists, or fit the characterisation of
a formalist. Call these mathematicians ‘formalist mathematicians’, on the grounds
that they are attracted to the virtues of formalism.1 The virtues are: freedom,
creativity and the unwillingness to make commitments concerning truth or ontology
in mathematics. In Sect. 5.3, we characterise pluralism. The pluralist shares the
attraction towards the formalist virtues. However, he has a broader and more flexible
position.

To show (II), in Sect. 5.4, we shall look at three test cases from the practice
of mathematics: the classification of finite simple groups, renormalisation and
Lobachevsky’s model for indefinite integrals. In all of the test cases, it is clear that
pluralism in methodology is better than formalism in accounting for the practice of
mathematics. This is because pluralists are less restrictive in their notions of good
practice. However, pluralism is not a position where ‘anything goes’. The pluralist
is informed by formalism: when mathematicians stray outside the bounds of what
the formalists would consider to be good practice, the pluralist offers council in the
form of a protocol to ensure good pluralist mathematical practice. The protocol is
developed in Sect. 5.5, by reference to the test cases.

5.2 Characterisation of Formalism

Formalism is a philosophy of mathematics, which was developed in the late
nineteenth century and the beginning of the twentieth. To be more precise, it is
not simply one philosophy, and it is not identified only with Hilbert. Rather, we

1We could ask: why not call them pluralist outright? There are two reasons. One is that it would
be anachronistic, in the sense that pluralism is a new position, so the word was not used to
describe a position in the philosophy of mathematics, only an attitude amongst others, within a
larger philosophy. So, formalism is a better default name for their position. Of course, once the
mathematicians quoted learn about pluralism the hope is that they will then describe themselves as
pluralists. Or, counter-factually, since some are dead, if they had been exposed to the philosophy
of mathematics called ‘pluralism’, then they would have opted to call themselves pluralist rather
than formalist. The second reason is that we do not want to beg any questions. We want to compare
formalism to pluralism, in order to show the merits of pluralism over those of formalism. There
are some subtle differences.
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add Bourbaki, Curry and Robinson as good examples. We find that formalism has
permeated mathematical practice, and influenced both how mathematicians often
conceive of mathematics, and how they present their mathematical findings.

The characterisation of formalism presented here is based on the characterisation
in Detlefsen (2005, 236–237). For Detlefsen, formalism is a family of positions,
each member of which has the following five characteristics.2

1. The formalist reverses the Aristotelian tradition of favouring geometry over
arithmetic as the measure of rigour and reliability in mathematics.

2. The formalist rejects “the classical conception of mathematical proof and
knowledge” (Detlefsen 2005, 236).

The formalists replace this with a formal ‘ideal’ proof. The closest analogue
today is a syntactic proof. While this is fairly orthodox, this conception of proof
was not immediately accepted.

The contrasting ‘classical conception’ is also related to ‘the genetic conception’,
or the ‘synthetic conception’. Under this classical conception of proof, a proof
counts as a proof, by virtue of the origins of the ideas in the proof. For example,
Russell and Brouwer thought of proof synthetically, but in different ways. In
Principia Mathematica, Russell and Whitehead stated that all mathematics should
be accountable to logic. In this sense, the origin of mathematics is logic. Brouwer
had quite a different view, but it was still ‘synthetic’. For Brouwer, the only possible
foundation for mathematics is intuition: “to exist in mathematics means: to be
constructed by intuition.” (Brouwer 1975, 96). A written proof, for Brouwer, is
simply a poor attempt to communicate a mathematical intuition to someone else.
It follows that the idea of an ‘ideal proof’ as a written series of statements is quite
alien to Brouwer.

If we look at the history of geometry, and the development of non-Euclidean
geometry in the nineteenth century, we discover that there was a lot of resistance to
non-Euclidean geometry. The resistance testifies to the genetic conception, because
when mathematicians did develop models of geometry where the parallel postulate
was altered, these were treated, or dismissed, as mere games, or odd fantasies. They
had nothing to do with truth, rigour of argument notwithstanding!

3. The formalist attitude to proof follows from a particular conception of rigour. For
the formalist, rigour follows from an act of abstraction away from intuition.

The contrasting view is that rigour follows from an embedding of intuition
into, or onto, a previously accepted theory (which is what we find in the genetic
or synthetic conceptions, for example, in pre-Hilbert and Tarski presentations of
geometry).

2While we often gloss Hilbert as a formalist, we follow Hallett’s caution against calling him a
formalist. It was Brouwer who first called him a formalist! (Hallett 1995, 141). Nevertheless, as
we shall see, Hilbert’s position is one in the family of formalist philosophies.
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This is not to say that all formalists share the same conception of rigour. For
example, for Hilbert, rigour consisted in using a precise step-wise or finitistic proof
method based on the finite number of “strokes on a line”.3 Other formalists use
different bases for rigour. For example, they might use a particular syntactic system
of proofs.4 Gentzen’s work is a good example. Note that the conception of rigour
places a methodological constraint on what counts as ‘best practice’ in formalist
mathematics.

4. The fourth characteristic of formalism safeguards the idea that proof is a
purely formal exercise. The characteristic is to advocate “a nonrepresenta-
tional role for language in mathematical reasoning” (Detlefsen 2005, 237).
‘Non-representational’ means, here, ‘not tied to (or held responsible to) an
interpretation’.

One part of the idea is to move away from intuition because this is not trustworthy,
since ultimately subjective.5 It follows that, for the formalist, mathematics should
not be thought of as an art, passed on from teacher to student, where this is
necessarily geographically and linguistically parochial. Instead, mathematics should
be thought of as a universal and objective science. The other part is that mathematics
is essentially formal, i.e., what we would think of as ‘syntactic’, thanks to Tarski.
When we separate syntax from semantics (meaning or interpretation), the syntax
(symbols, proof theory) can be re-interpreted in other contexts, and transferred to
other areas of study. For Detlefsen, (4) is “perhaps [the] most distinctive component
of the formalist framework” (Detlefsen 2005, 237). The separation of semantics
and syntax results in our thinking of mathematics as a mere tool, applicable to any
semantics we choose and find appropriate.

The formalist conception of proof, together with the distinction between se-
mantics and syntax freed a lot of mathematical conceptions and led to a number
of interesting innovations and insights in mathematics. But we should be careful.
Added freedom comes with added responsibility. Like (2), (4) requires a method-
ological constraint to make the syntax properly responsible. One methodological
constraint, which was chosen by Hilbert, was consistency6 (in light of paraconsistent
mathematics, we might today prefer ‘non-triviality’) but there were other constraints
as well, such as ‘finiteness’, which today we can think of as roughly analogous to
effectiveness. This hails the fifth and final characteristic, which concerns the content
of mathematics for the formalist.

5. The formalist insists that her freedom in interpretation is what gives her genuine
knowledge of mathematics.

3See, for instance Hilbert (1923), which represents his mature work on proof theory.
4See, for instance, Troelstra and Schwichtenberg (2000).
5‘Intuition’, here, just means relying on a sort of ‘private mental feeling or insight’.
6This formalist proposal was controversial. Brower had strong objections to consistency playing
any important role in mathematics: “the question whether a certain language is consistent, is not
only unimportant in itself, it is also not a test for mathematical existence.” (Brouwer 1975, 101).
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The knowledge is genuine because it is unencumbered with history or intended
interpretations or applications. Instead, it is what we might call ‘pure’ knowledge.
The point is that mathematics becomes even more creative with this conception
of mathematical knowledge, than under the more traditional content-constrained
mathematics, not less creative, as many suspected; and it is creative of something:
genuine and pure mathematical knowledge. With this characteristic, the formalists
are defending their position against the claim that mathematics, under formalism,
would become purely mechanical (because syntactic). The formalist denies this. If
mathematics is free and creative, then it cannot be mechanical.

Detlefsen characterises a formalist as someone who adopts all five character-
istics. We ignore the first, since we think it is eclipsed by modern developments
in mathematics, see, for example, Tennant (Manuscript 2010). Formalists differ
from each other over the details, in particular, over their interpretations of ‘rigour’,
‘formal’, ‘proof’, ‘semantics’, ‘content’, ‘syntax’ and so on. This is what makes
formalism a family of positions.

Under this characterisation of formalism, we should play it out, and ask ourselves
what the practice of mathematics looks like for the formalist. A related question is:
what makes for ‘bad’ formalist mathematics?

At the time when formalism was being developed, the paradoxes were in the air,
and non-Euclidean geometry was much better accepted. So formalists knew that
intuition could lead us astray, either by leading us to paradox, or by restricting us
to unnecessary intended interpretations restricting our choice in theories. Therefore,
they proposed that inferential processes (proof procedures) used in mathematics
should be completely formal, i.e., there should be no natural language in the proof
itself. Proofs should be thorough. Each step should rigorously follow from the
previous steps. For example, for Hilbert and Bourbaki, a proof takes place within a
theory.7 The theory contains axioms and rules of inference. The rules account for
each step in a proof. Ideally, the proof is entirely carried out in a formal language,
and it is finite. Thus, we have the development of proof theories, and an investigation
into the logic of mathematics.

Hilbert, and others, knew very well that it was too much to demand that all
mathematical proofs be written out in this way, so they distinguished between an
‘ideal proof’ and a more heuristic proof. The thought was that, in principle, any
heuristic proof could be turned into an ideal proof. An ideal proof, then, consists
in stating some axioms, using only allowed rules of inference of the formal system
of proof of that theory, and coming to a conclusion. Natural deduction proofs, from
logic, are perfect examples.

7Hilbert (1996) claims that “the development of mathematical science as a whole takes place in
two ways that constantly alternate: on the one hand we drive new provable formulae from the
axioms by formal inferences; on the other, we adjoin new axioms and prove their consistency by
contentual inference”.
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We deviate from such a proof when we:

1. fail to specify which theory we are working in,
2. import foreign axioms,
3. use rules of inference not in the proof theory,
4. fail to completely formalize our proofs (or fail to show that we could do this in

principle) or
5. leave unexplained gaps in our reasoning.

The importance of sticking to the strict methodology (or proving that we could
generate such a proof) is that if we have proved the theory to be consistent (or
equi-consistent with another theory) then, by following the proof theory – the
given methodology – we ensure continued consistency. Losing consistency is a real
danger, because, as we know, rival8 formal mathematical theories contradict each
other.

5.3 The Voices of Formalism

Many mathematicians today call themselves formalists. A large number of working
mathematicians have endorsed (sometimes implicitly) formalism as their way of
thinking about mathematics.

Bourbaki (1991, 4) praises Aristotle for making it known to us that “it is possible
to reduce all correct reasoning to the systematic application of a small number of
immutable rules, which are independent of the particular nature of the objects in
question.”9 On the notion of truth in mathematics, Bourbaki (1991, 11) writes:

Mathematicians have always been sure that they prove “truths” or “true propositions”; such
a conviction can obviously only be sentimental or metaphysical, and it is not by getting on
to mathematical ground that it can be justified, nor even given a meaning that does not make
it a tautology. The history of the concept of truth in mathematics is the concern therefore of
the history of philosophy and not of that of mathematics.

Discussing Hilbert’s arithmetisation of geometry, where he treats all the geometries
as varieties, and where axioms are treated as hypotheses, Bourbaki writes:

Hilbert classifies these axioms [of the different geometries] into different groups of different
types, and sets himself to determine the exact area of influence of each of these groups of
axioms, not only in developing the logical consequences of each of them in isolation, but
also in discussing the different “geometries” obtained when one omits or modifies certain of

8We use here the word ‘rival’ in the sense Beall and Restall (2006, 36). For them, rivalry between
logics can only occur in our choices for applications.
9Bourbaki then regrets that Aristotle confines his attention to logic and rhetoric in this respect, and
does not extend it to mathematics. We might regret Bourbaki’s attributing this view to Aristotle.
But this is not the issue. Rather, we are simply concerned with Bourbaki identifying virtues in
Aristotle, and the fact that he considers these to be virtues, and not vices.
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these axioms : : : he thus puts clearly in the picture, in an area considered until then as one
of those nearest the reality of the senses, the freedom of which the mathematician disposes
in his choice of postulates. (Bourbaki 1991, 17)

Robinson held an unabashed formalist position. He wrote about the foundations of
mathematics that:

My position concerning the foundations of mathematics is based on the following two main
points or principles:

i) infinite totalities do not exist in any sense of the word (i.e., either really or ideally). More
precisely, any mention, or purported mention, of infinite totalities is, literally, meaningless.

ii) Nevertheless, we should continue the business of Mathematics “as usual”, i.e., we should
act as if infinite totalities really existed. (Robinson 1965, 232)

That is, in the practice of mathematics we disregard ‘reality’, or ‘meaningfulness’
in the sense of referring to reality or some Platonic ideal.

Along these lines Nelson gives a passionate ‘apology for formalism’:

What we devote our lives to is seeking for proofs; if a proof follows the formal rules, it is
correct; if it does not, it is not a proof and is worthless unless it suggests a way to find a
proof. No other field of human endeavour has maintained such a consensus over such a vast
extent of space and time.

[ : : : ]

Formalism denies the relevance of truth to mathematics. But, one might object, mathematics
works – the evidence is all around us. Does this not imply that there is truth in mathematics?
Not in the slightest.

[ : : : ]

In mathematics, reality lies in the symbolic expressions themselves, not in any abstract
entities they are thought to denote. The symbol 9 is simply a backwards E. If we conclude
that a certain entity exists just because we have derived in a certain formal system a formula
beginning with 9, we do so at our peril. The dwelling place of meaning is syntax; semantics
is the home of illusion. (Nelson 1997, 3)

In other words, formalism fits very well with many mathematician’s reported
conceptions of present day mathematics, where ‘present day’ means twentieth
and twenty-first century. But realism lingers, along with attachment to the genetic
conception of proof. Otherwise there would be no need for Nelson’s warnings.
Hilbert makes fun of the genetic conception (Hilbert 1923, 184).

: : : old objections which we supposed long abandoned still reappear in different forms.
For example, the following recently appeared: Although it may be possible to introduce a
concept without risk, i.e., without generating contradictions, and even though one can prove
that its introduction causes no contradictions to arise, still the introduction of the concept is
not thereby justified. [Hilbert comments:] Is not this exactly the same objection which was
brought against complex imaginary numbers when it was said: “True their use doesn’t lead
to contradictions. Nevertheless their introduction is unwarranted. For imaginary magnitudes
do not exist”?

We might still hear such objections more recently. This is not our concern here,
for, we only make the claim that formalism is an important trend in modern
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mathematical thinking. Nevertheless, the ‘old objections’, and old conceptions
still hold some sway. For example, some mathematicians hold a schizophrenic
position between traditional realism and formalism. The schizophrenia is described
by Moschovakis:

Nevertheless, most attempts to turn these strong [realist] feelings into a coherent foundation
of mathematics invariably lead to vague discussions of ’existence of abstract notions’ which
are quite repugnant to a mathematician. Contrast this with the relative ease with which
formalism can be explained in a precise, elegant and self-consistent manner and you will
have the main reason why most mathematicians claim to be formalists (when pressed) while
they spend their working hours behaving as if they were completely unabashed realists.
(Moschovakis 1980, 320)

To whom Dales replies with a reversed schizophrenia:

It seems to me that most mathematicians really are formalists for all the days of the week.
It is of course very useful when seeking proofs within the formal system to have a ’realistic
picture’ in one’s mind, and so it is temporarily convenient, during the week, to be a realist,
but it is the realism that the mathematician does not really believe in. (Dales 1998, 185)

Now that we have read some testimonies from mathematicians, we should turn to
the practice of mathematics.10 The mathematicians we quoted describe themselves
as formalists – with some realist leanings, but maybe the behaviour of their fellow
mathematicians tells another story. We shall turn to the test cases shortly.

The test cases we shall examine are not the work of the mathematicians quoted
above. So, one could object that we have no evidence that the test cases would be
accepted by the formalist. Indeed not, in fact this is the point. The test cases are
not good formalist projects. But for all that they are not good realist, intuitionist,
fictionalist, structuralist or naturalist projects either; nor do they fit well with any
other orthodox position in the philosophy of mathematics.

The structure of our argument is that, of the traditional philosophical positions,
formalism fits much of modern mathematics best. This is clear if we bear in mind
that the formalist cherishes creativity in mathematics and is seeking ‘genuine’
mathematical knowledge. He does not have a classical conception of proof, but a
formal one, and this is his key to the gate to freedom and knowledge. Moreover,
success is what ultimately sanctifies mathematical ideas. Hilbert cites ‘success’ as
the “supreme court to whose decisions everyone submits.” (Hilbert 1923, 184).
There is nothing else on which to hang one’s trust in a new mathematical notion.

10Of course, we could dismiss the mathematician’s avowals as philosophically naı̈ve, since they
seem to think that there are only two philosophical positions: formalism and realism. This
impression is artificially created and is a misimpression, since it is hostage to the particular
quotations we chose. But there is a deeper point. The mathematicians are not completely wrong to
think that there are only two positions, or better: to short circuit discussion of alternative positions,
since their point is to admonish claims which hail metaphysical enquiry. Such claims are most
obvious in realism, but can be found, in one form or other, in other traditional philosophies as well,
even if they are given a negative treatment, as is done in fictionalism.
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Nevertheless, our contention is that formalism short-changes the practice of
mathematics. We think that pluralism is a better description for the practice.
Therefore, in order for the reader to make a judicious judgment of our claims, we
characterise pluralism in methodology before turning to the test cases.

5.4 Characterisation of Methodological Pluralism

Let us now turn to the pluralist in methodology.

The pluralist in methodology shows a tolerance towards different methodologies in
mathematics.

We see this in the form of using techniques developed in one area of mathematics
in an area ‘otherwise foreign’ to it. We do this in order to prove a theorem. As we
would expect, methodological pluralism closely resembles formalism. In particular,
if we understand the idea of ‘areas of mathematics being foreign to one another’
in virtue of the content, intention in developing the area, application or in terms of
semantics (as separated from syntax), i.e., ‘classically’, then we have a version of
formalism.

Nevertheless, there are four differences between the pluralist and the formalist.
One is that the pluralist in methodology is not forced to understand ‘being foreign’
classically. An ‘area’ of mathematics might be ‘foreign’ to another in the sense
of ‘formally inconsistent with’. Of course, here we start to flirt with triviality, and
therefore we exercise caution.

The second difference is that, unlike Bourbaki, the pluralist does not insist on
uniformity in presentation of a mathematical theory (in terms of language, axioms,
and rules of inference), and this is a subtle point. On the one hand, the pluralist
agrees that uniformity in presentation (say, in terms of language, axioms, rules
etcetera) allows for easy comparison between theories, but it can also be distorting,
and obscure important points. This will be explored in more detail in the final
chapter of the book when we look at Lobachevsky’s development of hyperbolic
geometry. For now, it is enough to appreciate that the pluralist is sympathetic to the
idea of uniformity of presentation of mathematical theories, but he is not wedded to
it, in fact, he is a little suspicious of it.

A third difference is that the pluralist is not wedded to uniformity in syntax or
logic. Two proof theories might contradict each other, but it might still be possible to
‘borrow’ some aspects of a theory, in order to construct a proof. There are perfectly
rigorous ways of analysing a proof to ensure consistency, or non-triviality, such as
the method called ‘chunk and permeate’ (Brown and Priest 2004). We shall see this
deployed in Chap. 9.

So the pluralist is also willing to break with the proof-theory constraints of the
formalist, where these constraints are to use one unique proof theory in any one
proof, or series of proofs. Of course, when we break with this, the mixing and

http://dx.doi.org/10.1007/978-94-007-7058-4_9
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matching of proof theories, or syntax, has to be handled very carefully, and we
shall witness this in the test cases.11

The fourth difference between the pluralist and the formalist concerns the
conceptions of content or meaning or the ontology and truth of mathematics. Again,
the pluralist has a wider conception than the formalist. The pluralist is not wedded
to the orthodox schools of philosophy where content is identified with ontology,
and meaning with truth (or truth-conditions). These issues and the ways in which
they are discussed in the philosophical literature are hostage to the very long and
interesting debate between the realists and the anti-realists – in mathematics and
outside mathematics. The pluralist finds the debate interesting and recognises the
passions that drive it and the agility and beauty of the arguments which have been
mustered on both sides, but the pluralist is not, for all that, committed to one side
of the debate, or to thinking of meaning in terms of use, or in terms of truth-
conditions, which are then guaranteed by an ontology etcetera. Instead, the pluralist
recognises that not all mathematicians are driven by these considerations. Or rather,
that thinking of ‘content’ in terms of ontology or semantics is sometimes unhappy.
(Recall the quotation of Nelson, in the previous section). In these respects, the
pluralist is in complete agreement with the formalist.

However, the pluralist recognises the schizophrenia of some mathematicians,
and recognises the value of a ‘realist’ picture. The pluralist carves a third way
of thinking about meaning in mathematics. In some circumstances, and for some
practicing mathematicians, ‘meaning’, might better be thought of as embedded in
practice or as fluctuating with new discoveries. For example, as we learn more
about numbers, as we develop sub-systems of Peano arithmetic, as we develop the
number system in set theory, as we consider non-standard models, the meaning of
the very word ‘three’ changes. It deepens and alters. It is not fixed, except within
a formal system.12 Similar remarks can be made concerning ontology. It might
reflect the phenomenology of practicing mathematics, or be useful, to think of the
ontology of mathematics as fixed and ‘independent’ of us. Or, it might be useful
to think of the ontology as contained ‘in the mind’ and only existing when under
the consideration of a mind. For the pluralist, both approaches are legitimate, and
lead to developments in mathematics, or notation, or in interpretation, and neither
conception should be ruled out of court, unless there are definitive arguments. This
is an important point, and we shall have occasion to return to these themes several
times in the book. While these themes develop other types, or aspects of pluralism,
in this chapter we shall restrict ourselves to the pluralist in methodology. Here, we
shall focus on the second and third difference between the formalist and the pluralist:
the uniformity of presentation and the fixed syntax and semantics.

11We also have several models for doing this in the literature on paraconsistency. One is the
adaptive logic approach, another is the ‘chunk and permeate’ approach (Brown and Priest 2004).
We shall look at the later in more detail in Chap. 9.
12We leave this as a working hypothesis for now. This too will be revised later, but we can do only
one thing at a time!

http://dx.doi.org/10.1007/978-94-007-7058-4_9
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5.5 Three Test Cases

5.5.1 The Classification of Finite Simple Groups

The first case concerns ‘big projects’.13 In these, mathematicians divide the main
goal into different sub-goals each of which is again divided into other sub-
goals, or ‘cells’. The cell-structure allows mathematicians (and computers) to work
in parallel. Each cell works on specific problems (that are not always directly
connected with the main goal, but are necessary for its success). The success of the
project depends on the success of the cells. Therefore ‘success’ consists in finding
the solution to a problem, such as classifying a mathematical theory.

Roughly speaking, the task of people working in a cell is to prove theorems.
Because success is important, the mathematicians and computers working in a cell
avail themselves of whatever it takes to prove the theorem of that cell. Moreover,
they will have limited amounts of contact the other cells, since the group of cells is
simply too big to have contact with all of them, and it is not deemed to be important
to do so.

The classification of finite simple groups started more than a century ago and
ended in 1983. It has been a collective work, resulting in thousands of pages
in books, articles and manuscripts written by many different mathematicians. We
can think of the collection of work as one long ‘proof’, resulting in one long
‘theorem’: the table of classification (which could be written out as a conjunction of
characterisations of the classes of finite simple groups). The ‘proof’ is fragmented
into many sub-proofs. It is a collection of a very large number of different proofs
made with different techniques on different topics. The general proof is, therefore,
“unsurveyable by a single human being” (Otte 1990, 61).

Is there a problem with mixing methodologies or types of proof? There is some
controversy concerning the classification of the quasi-thin groups. Serre showed
how this could be regarded as a gap in the larger proof of ‘the classification
theorem’ (Raussen and Skau 2003). The ‘gap’ is due to the length and the
structural complexity of the proof of the characterisation of quasi-thin groups.
Serre’s criticism addresses the fact that the dishomogeneity of the general proof
for finite simple groups does not prevent further gaps arising that have not yet been
discovered and fixed.

This is not a side issue. The classification of quasi-thin groups is a key step for the
main goal of the classification of finite simple groups. The final stages in the history

13These are increasingly popular, and are fostered by some academic infrastructures. They are
‘fostered’ in the sense that mathematicians, who want to head such a project, apply for very
large grants of money. They involve large numbers of people: faculty members, post-doctoral
students and graduate students. Projects might span several universities, and take a number of
years to complete. And, attracting such grants is taken to be a measure of prestige for the academic
institution. The case we examine is not one which follows a large grant donation, but since such
projects are becoming increasingly popular, it behoves the philosopher to take account of this.
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of the project draw out the problem. The first announcement of the classification of
quasi-thin groups was made in the early 1980s by Mason. But there was a problem.
In Mason’s proof, critical gaps were left, due to the proliferation of unexpected
groups (which is the problem identified by Serre). Only in 2004 Ashbacher and
Smith gave a complete proof in two volumes, running to more than 1,200 pages.

What is surprising, if we remember the emphasis in Sect. 5.2 on rigour of proof
and working within a declared theory and using a unique proof theory is that
these gaps seem to have brought no discredit to the results of ‘the theorem’! This
runs directly against formalist constraints, while the project could not have been
envisaged without a sense of the freedom cherished by the formalist.

We might think that the break with formalism is due to the proof being
unsurveyable. But this is not the major problem, since ‘surveyable’, ‘finitist’ and
‘demonstrable’ can be flexibly interpreted to fit this case. In terms of surveyability,
we could fit the case to a liberal version of formalism, where each part is ‘surveyed’
separately.14 We need not insist that one person be able to survey a proof, or that the
person be able to survey a proof in a particular amount of time. The material is, after
all, gathered in a two-volume work. What is more damning is that, in the proof, we
see examples of mathematicians deviating from a strict and unique axiomatic system
or proof theory.

We claimed above that many mathematicians today consider themselves to
be formalists, and we also claimed that regardless of the self-perceptions of
mathematicians, formalism fits mathematical practice better than other orthodox
philosophies. Yet, we witness mathematicians disregarding some formalist pre-
scriptions. If mathematicians are formalists, then, at the very least, they are not
strong formalists, at worst they do not follow their own criteria for acceptable and
correct proof. They exercise their freedom and creativity in an irresponsible manner,
according to the formalist. In fact, even in this project, the mathematicians almost
never give what a formalist would count as a proof. This is not just a question of
shortening proofs to make them more perspicuous, but, here, the mathematicians use
‘illegitimate’ (by formalist lights) techniques in proof. In our test case (and in many
other instances as well) we can find what we shall call ‘deviant’ proofs. Careful.
Here we mean ‘deviant’ from the point of view of the formalist only.

Formalistically deviant proofs are ‘proofs’ where mathematicians use steps which
deviate from the rigorous set of rules, methodologies and axioms agreed to ‘in
advance’ and that fit formalist precepts.

14We have to be careful, since every part of every written proof is ‘surveyed’ in some sense, at
the very least by the author. In the case of computer generated proofs, there is a program, which a
human surveyed (by writing). In the case of computer generated proofs where the computer came
up with the proof procedure, then there is some program which was installed at some point by a
human, and that was surveyed. However, none of these will quite do. How to formulate the right
balance which gives enough attention to proofs is a delicate matter, but it need not prevent us for
continuing with the argument.
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Of course, shortcuts can be useful to speed up a proof without any danger of
inconsistency, or we can change our minds about the methodology or proof theory
we are using. So, ‘in advance’ is not taken in the temporal sense, but rather, in
a conceptual priority sense – at the meta-level we decide on the proof theory.
Here we are interested in something else. Deviant shortcuts or detours can help
to circumvent an impasse which could not be overridden with the standard steps
agreed upon ‘in advance’. We have to be using a different proof theory, one which
is inconsistent with the first. Nevertheless, many mathematicians consider that these
deviant methods provide ‘correct’ (enough) results. So they are successful! We
cannot help but conclude that either said mathematicians are not formalists or they
are formalists in bad faith (since the realist might be less concerned with the method
of proof since she is interested in the truth). Some practicing mathematicians insist
on the attractive aspects of formalism while ignoring the constraints.

There is a rebuttal against the above argument. One might think that the argument
has mis-fired. After all, the classification of all finite simple groups is hardly ‘a
theorem’. It is a classification. The project is not to prove a theorem, but to give
a meta-level result. It was never meant to be ‘carried out within a formal theory’,
with axioms and rules of inference given in advance. Thus, we have relied on a
metaphor for our argument to show that mathematicians are not really formalists,
but the metaphor does not carry.

Here is our counter-argument to the rebuttal. It is correct to say that we have
stretched the ideas of ‘proof’ and ‘theorem’ by saying that the classification is the
‘theorem’ we are trying to ‘prove’. It is also correct that no umbrella formal theory
was agreed upon ‘in advance’ for ‘proving’ the ‘theorem’. However, even if the
work is to seek a ‘meta-theoretic result’, this should not entail that all standards are
dropped! The classification does require careful definitions, it does require proofs –
that a particular group or class of groups falls under a particular classification.
The danger in mixing methodologies is that under one we might classify a group
a different way than under another methodology. These proofs – even if they are
carried out at the meta-level – are still proofs, which are checked for correctness
and so on. An incorrect table of results is useless. The results of these proofs are
gathered together as a unified result – about one subject: finite simple groups. If we
are to disregard the genesis of the idea of a finite simple group, and still think of
these as forming one concept, which can be classified, then we had better be using
the same means for proof in making our classification! Thus, the metaphor does
hold sufficiently for us to make our argument. So, the formalist is scandalised by
such practice. In contrast, the pluralist is untouched.

The pluralist would urge us to think very carefully about the standards of proof at
the meta-level, and whether or why they might be permitted to be different from the
standards at the object level. There are pluralist answers to this, but no convincing
formalist answers, since the formalist makes a strict trade between freedom of
interpretation against high standards of proof methodology united under one theory
with one type of (axiomatic) presentation. The pluralist judges the formalist to be
too conservative.
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If this counter-argument is not fully convincing, then it is up to us to find a better
example. There are several ‘big’ mathematical projects being carried out today, and
they show the features we are interested in – a lack of adherence to one ‘method’ of
proof, and therefore run the risk of inconsistency in methodologies. The conclusion
we wish to draw from the example is that the formalist theory is too strict in respect
of proof to reflect current mathematical practice, and what happens with proofs at
the meta-level is not sufficiently well worked out. The pluralist diagnosis is that the
phenomenon of ‘big projects’ in mathematics requires a more subtle treatment to
explain the success and the acceptance of the results of such projects, especially
when they use formalistically deviant proofs.

As we see from the above example, the mathematical practice displays pluralism
in methodology, which runs directly against the formalist conception. This is for the
very good reason that pluralism in methodology might generate an inconsistency.
The pluralist agrees that this is a possible danger in importing different methodolo-
gies. In light of these concerns, the pluralist believes that we should retain a sense of
ideal, formalistically acceptable proof within a mathematical theory; that deviation
should be flagged and carefully scrutinized; but not that it should be banned. The
scrutiny urged by the pluralist is systematic.

Here is an example of a protocol the pluralist could urge on the big projects.

First, declare the allowed methodologies, theories, proof procedures and so on for
the project. Call the latter ‘the methodology agreed upon in advance’.

If we find gaps, we prove (using the methodology agreed upon in advance) that they
can be filled with said methodology.

Second, if we are importing foreign methodologies, axioms, rules etcetera, then
we need to determine whether adding these to the methodology agreed upon in
advance will create an inconsistent theory.

There is no danger when the foreign and native methodologies all belong to a larger
theory. In this case, we ought to have agreed to the larger theory in advance, and we
simply revise what we declare as our ‘allowed methodologies, theories and proof
procedures’. Again, ‘in advance’ is not meant in the temporal sense, but in the sense
of ‘conceptually prior’. But this is not always possible, as we shall see in the next
two examples. The protocol will be further developed after we have looked at these.

5.5.2 Renormalisation

Another problematic case is the mathematical procedure of renormalisation.15

It is a procedure used in physics, especially in quantum electrodynamics, to

15Renormalisation has been picked up in the philosophical community as an interesting case of
applied mathematics. See for example Maddy (2007).
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eliminate infinite quantities during certain types of calculations. In these physical
theories, integrals represent observable physical quantities, which diverge towards
some specific limits. To avoid these divergences being infinite – and therefore
incalculable – renormalisation is used as an adjustment to the theory, which
allows us to eliminate these divergences. Basically, the procedure cuts off the
divergences at a calculated number and this allows us to obtain finite (rational)
values. The new values fit with our observations. So, renormalisation has a strong
practical justification, since the mathematical divergences do not seem to affect
the physical results. That is, after renormalisation we retain perfect accordance
with the measured data and predictions. Nonetheless, there is a problem with the
explanatory power of the procedure. The particular cut-off points decided upon by
the physicist are mathematically ad hoc, even if they are not physically ad hoc. For
this reason, they are mathematically unjustified. But the situation is worse than this.
Renormalisation leads to conceptual and mathematical inconsistency.

For example, strictly speaking, when we renormalize, we subtract infinities from
infinites in order to get a particular finite non-zero result. This is mathematically
inconsistent, we should either get zero, or an infinite number. Nevertheless, this
is the mathematical ‘process’ at the base of renormalisation. The procedure is
deviant, for a formalist, because there is a back-and-forth play between physics
and mathematical calculation, and physical data are foreign to formal mathematics.
We might say that renormalisation is a process that ‘launders’ the inconsistency
of the results from mathematics with the ‘magic soap’ of application provided by
physics. The physical data ‘tells us’ to fix the pure mathematical results so that we
never deal with infinite values. The infinite values have to be expunged since infinite
values are not permissible in observation statements, we can hardly report to have
observed an infinite number of something, at least in physics. Freedom and creativity
in interpretation are at play, but adherence to formalist constraints about consistency
are lacking. What we see is either a pluralist approach to methodology (allowing
constraints from physics to alter mathematical calculations), or we see very dubious
scientific practice, according to the formalist. Once again, the formalist is offended
by such practice.

The pluralist is not offended, but insists on vigilance and care in these situations.
It is quite right that the physical world, to which we apply the mathematical theory,
sets parameters on the possible mathematical theories we can effectively use, and the
sorts of results of calculations we are permitted. But reality only sets parameters. For
this reason we should be very careful in trusting our particular mathematical theory
to completely and closely model reality. For this reason, we have to be particularly
vigilant when letting the mathematics predict physical outcomes when these are
not verified by the application. However, in this case, they are so verified, and this
is what makes the practice acceptable to the pluralist. To return to the metaphor,
the soap is not magic, it is an independent check. Indeed, since in the case of
renormalisation, we are using a compromised mathematics, we should properly
modify the mathematics so it is not ad hoc. That is, the original mathematical
theory is not perturbed by the presence of infinite values. It is the application
that is perturbed. It ‘tells us’ that infinite values are impossible, and so we modify
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the mathematical results. These adjustments to the original mathematics are done
systematically (with respect to the physical theory): whenever a ‘physical’ value
is calculated to be infinite replace the value with an appropriate finite number
(by subtracting an infinite number form the mathematically calculated infinite
number). This sort of ‘adjustment’ is symptomatic of the systemic and pervasive
nature of problems in physics of dealing with infinite and infinitesimal quantities.
It is a problem that permeates mathematical applications. So, we should accept
the practice with caution. In this case, the caution is met by the correlation with
observation. But we could do better.

While we temporarily accept the gap between perfect mathematics and measured
physical quantities, we can also work to identify and overcome the problem. Here
the problem is not with inconsistency within the physical world, or within the
pure mathematical theory. Rather, the ‘inconsistency’ has to do with a mismatch
between the pure mathematical theory and what we metaphysically suppose, i.e.,
what we suppose we can measure of the physical reality. It is a problem of fit
between theory and application. Here, the methodological pluralist will not caution
against inconsistency, but will endorse more careful use of mathematics, and seek a
mathematical justification for what looks ad hoc. Moreover, we can do this quite
systematically. One suggestion is to look to the work of Hrbacek et al. (2009),
since they do away with the inconsistencies of applied calculus using a modified
set theory.16 The other reference work is that of VopMenka (forthcoming, Manuscript
2013). In this work, VopMenka uses the notion of a semiset.

A class is understood to mean any collection of given objects (its elements) that we interpret
as being an autonomous entity or a single object.

A set is understood to mean a class that is sharply defined.1 Moreover (in accordance with
our former decision), every set is finite from the classical point of view.

A semiset is understood to mean an unsharply defined class which is part (i.e. a subclass)
of a set. VopMenka (forthcoming, Manuscript 2013, 39)

We suspect that the quantities used and measured in electrodynamic quantum
theory much better fit the idea of measurement of a semiset than that of a regular
measurement on a set. But at this stage, this is only a suspicion. Other suggestions
as to what to do to philosophically tidy the renormalisation procedure come from
the literature on paraconsistency. Adaptive logics could play a role here, as could
the chunk and permeate method of analysis.17 We save this for a future project. The
pluralist is not passive. He does not simply accept the practice of renormalisation.
He accepts it temporarily, recognising that it ‘works’; but also he recognises that
there is something metaphysically and mathematically incorrect about the practice.
Because of the latter, he casts around for better methods, for a better practice.

16They actually use layers of ZF set theory, so that from one perspective, at a level, a quantity will
be infinite, but from another level, it will be finite. They report that their approach is quite intuitive
for engineers, and other students who are more inclined towards applied mathematics.
17In fact, in Brown and Priest (2004), they suggest applying chunk and permeate to renormalisation
(Brown and Priest 2004, 386).
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A formalist could object that the example or renormalisation is one of applica-
tions, and formalism concerns pure mathematics. This might well reflect the view
of some formalists. Here, the pluralist is more ambitious than the formalist. He tries
to account, not only for pure mathematics, but also for applications. This has the
added advantage that the distinction between pure and applied mathematics need
not be drawn. Nevertheless, since renormalisation is a problem of ‘application’, and
so, could be dismissed, let us turn to a last case, which is more in keeping with the
formalist paradigm.18

5.5.3 Lobachevsky’s Model for Indefinite Integrals

Another example, which is less modern, provides us with a similar case. In dealing
with the problem of finding the exact solutions for indefinite integrals, Lobachevsky
thought to apply to the calculus his imaginary (non Euclidean, hyperbolic) geome-
try.19 The method of Lobachesvky mirrored the usual technique of using geometry
as a model for this kind of operation. However he used a hyperbolic model instead
of a Euclidian model. In his “Application of the imaginary geometry to some
integrals”, he applied what we call today, Hyperbolic Trigonometry, to calculate
complex integrals. These are the only geometric equivalents of indefinite integrals.
He was then able to find a solution to the indefinite integrals.

This was possible because “ : : : the limiting surface sides and angles of triangles
hold the same relations as in the usual geometry.” (Lobachevsky 1914, 34). It is
therefore possible “to develop the Hyperbolic trigonometry on the basis of the usual
(Euclidean) trigonometry,” (Rodin 2008, 19). And this can, in turn, be used to solve
certain integrals “which earlier were not given any geometrical sense.” (Rodin 2008,
11). That is, Lobachevsky recognized how we can ‘translate’ from one world to
another, and then

As far as we are (sic!) found the equations which represent relations between sides
and angles of triangle (sic!) [ : : : ] Geometry turns into Analytics, where calculations are
necessarily coherent and one cannot discover anything what (sic!) is not already present in
the basic equations. It is then impossible to arrive at contradiction, which would oblige
us to refute first principles, unless this contradiction is hidden in those basic equations
themselves. But one observes that the replacement of sides a, b, c by ai, bi, ci [i is
the imaginary number: square root of negative 1] turn these equations into equations of

18We shall see later, in Chap. 9 and in the final chapter, that fitting Lobachevsky’s work into the
formalist framework is an artefact of our modern conception of mathematics, which is heavily
influenced by formalism. Rodin (2008) is sensitive to this, and alerts us to the dangers of giving a
formalist reading of Lobachevsky.
19‘Hyperbolic geometry’ is the modern name for the geometry developed by Lobachevsky.
‘Hyperbolic trigonometry’ is the trigonometric part of the theory. ‘Imaginary geometry’ is the
name Lobachevsky used, because of the imaginary numbers present in the trigonometry. I mention
all this to dispel confusion in reading the quotations.

http://dx.doi.org/10.1007/978-94-007-7058-4_9
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Spherical Trigonometry. Since relations between lines in the Usual and Spherical geometry
are always the same, the new geometry and Trigonometry will be always in accordance
with each other. (Lobachevsky 1914, 34) (Italics added)

Lobachevsky explains how he avoids inconsistency (or where to find inconsistency
if it is there). Thus, the mixing of methods does not necessarily lead to inconsistency.
This is just one danger.

The formalist is too restrictive when he insists that all proofs use only one
proof theory or methodology. The pluralist in methodology allows for together
inconsistent proof theories or axioms provided we are careful to avoid inconsistency,
and this is exactly what Lobachevsky does. As Kagan puts it:

He [Lobachevsky] considered the given integral as a value of length of a certain curve in
a hyperbolic plane, as the area of a certain figure in a plane or any other surface, as the
volume or mass of a certain solid, and since these were metrical values in hyperbolic space,
the consideration he deduced on the basis of imaginary geometry indicated how to find the
value of the considered integral. And when this value was found it was frequently possible
to find also analytical ways [mechanical calculations] which led to the same goal. The
congruency of the results obtained Lobachevsky regarded as confirmation of the correctness
of hyperbolic geometry. (Kagan 1957, 59)

Nevertheless, the formalist criteria have been violated. Moreover, the deviance
smacks of circularity: to use a new tool to produce ‘correct results’ which them-
selves are to be regarded as a proof of the correctness of the tool. Nonetheless, by
using this method we do actually find the ‘right results’ confirmed by congruence.
Therefore, we have what Hilbert calls ‘success’.

This test case seems to confirm the fact that the mathematical practice of proof
does not rigidly follow the rules of the logical system supposed to underlie it (the
axioms, in our case). As Corcoran points out, in mathematical practice it is common
to find

sentences beginning with “for purposes of reasoning suppose that”. Here suppositions other
than axioms are being introduced not as main premises but merely to begin a subsidiary
deduction. [ : : : ] The myth that a proof is simply a sequence of (declarative) formulas has
its usefulness but truth cannot be claimed for it.20 (Corcoran 1973, 32)

The supposition does not just introduce an idealization, but might introduce
something quite foreign to the theory. If we were to reconstruct Lobachevsky’s
proof using this language, we might introduce some of the suppositions of hyper-
bolic trigonometry into our calculations. Therefore, following these examples we
maintain that mathematicians are not as formalist as some declare, and it seems that
the actual mathematical practice is closer to pluralism than to formalism.

20The remark about truth is interesting and I deliberately left it in. It smacks of realism. However,
we could use a circumlocution which would be in better accord with the discussion here. For
example, we could paraphrase with: “The myth that a proof is simply a sequence of (declarative)
formulas made in one axiomatic theory has its usefulness but quite often we deviate from our
original theory when making a proof.”
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Developing to the protocol we started in Sect. 4.1:

If we cannot, or do not see how to, fit all proofs into one methodology, then we
should check the cases for non-triviality.

In the given case, Lobachevsky did check this. He ascertains that “since relations
between lines in the Usual and Spherical geometry are always the same, the
new geometry and Trigonometry will be always in accordance with each other.”
Therefore, not only is triviality avoided, but so is inconsistency. As Kagan writes,
after Lobochevsky had obtained these results: “when this value was found it was
frequently possible to find also analytical ways which led to the same goal.” Thus,
the next step in the protocol is to

try to find a third, independent (or seemingly independent) way to re-justify, or
independently justify the first set of calculations.

This re-confirming is the buttress the pluralist adds to ensure that we do not
prove nonsense, and is what allows freedom in mixing and matching formal proof
procedures. Rodin does this in his analysis of Lobachevsky, and does so with an eye
to preserving the insights of Lobachevsky’s original proof. We shall do something
similar in detail in Chap. 9, but we shall only be checking for consistency, not for
preserving Lobachevsky’s insights. Moreover, we shall do this in a way which is
neutral with respect to Euclidean or other geometries. The neutrality of the method-
ology I employ is what makes it a candidates for ‘independent’ re-justification. It
is a re-justification because, of course, we have accepted Lobachevsky’s proof ever
since Riemann and von Helmholtz introduced the general notion of a geometrical
manifold in 1854 and 1868 respectively (Katz 1998, 767) and Beltrami was able to
model hyperbolic geometry in Euclidean geometry in 1868 (Rodin 2008, 1). Thus,
the pluralist not only makes a recommendation, but discovers that mathematicians
and philosophers actually follow it, not because the pluralist told them about it, but
because they feel an unease about the mixing of proof procedures. According to the
pluralist, they are correct to feel unease, and they are correct not to abandon the
mathematical results for all that.

5.6 Diagnosis and Recommendation

So why did the formalist misfire? The reasons the mathematicians were attracted to
formalism were that it (1) allows for creativity in re-interpretation and freedom from
the classical conception of mathematics. (2) Formalism avoids heavy foundational
philosophical disputes about ontology and truth. These attractive ideas are what led
to deviance. But the deviance is deviant only to the formalist.

Whereas the formalist allows freedom only in interpretation, the pluralist also
allows freedom in methodology. However, the pluralist advocates vigilance when

http://dx.doi.org/10.1007/978-94-007-7058-4_4
http://dx.doi.org/10.1007/978-94-007-7058-4_9
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‘foreign’ elements are introduced, and can suggest a protocol to counter-check such
cases against triviality. When pluralism in methodology is being practiced, he makes
two recommendations:

1. Know what counts as a strict proof within a mathematical theory.

Axiomatisation is fine as a starting point, but axiomatisation is just about being
explicit as to one’s justification, it is not to provide an ultimate justification. This
is important because the gaps in an otherwise strict proof will signal deviation. The
pluralist does allow deviance in proof. The trick is that we have to know when we
are being deviant and when we are not. As explained in the last section, the vigilance
can be made quite systematic, it is not just a vague call to caution.

2. We should bear in mind that when revising, correcting or being critical of a result
we should look first to the deviant steps.

Then, as with Lobachevsky, we might be able to show that there is no inconsistency.
However, the analysis of the pluralist does not stop here. We might need to re-

evaluate the original theory. For example, if our mathematical model of some part
of physics (the application of mathematics to ‘reality’) predicted a certain outcome,
and we found that the outcome was not what was predicted by the mathematics, then
we look first for an error in calculation, second, we look at any deviant elements in
the making of the faulty prediction, but thirdly, we might look at revising the whole
theory – making a new one, adding axioms, adding rules of inference, modifying
or eliminating existing ones, etcetera. This is where the pluralist goes beyond the
formalist. This was the recommendation made in the second test case.

In conclusion, methodological pluralism better describes mathematicians’ prac-
tice than does formalism. We do not need a unified presentation of theories, and
we do not need methodological rigidity (to adhere to a particular proof theory)
to guarantee consistency when we can use ‘reality’, physical theory or another
mathematical theory such as hyperbolic geometry, to sanction the methodological
deviance in proof.21 But when we use deviant methods, we continue our search for
mathematical justification, holding the temporary ‘result’ (deviantly obtained) in
abeyance.

The pluralist shares with the formalist, the celebration of creativity in mathe-
matics, and agrees that the freedom can be enjoyed responsibly or irresponsibly.
Ideally, the symbols and their manipulation is held rigid, and to a high standard of
rigour. See the chapter on rigour for details. But whereas the formalist stops with
a unique proof system as a measure of good mathematical practice, the pluralist is
more liberal. Nevertheless, he offers council when we are deviant in our methods of
proof. Having an ideal standard is not binding, for the pluralist, but rather, it allows
us to recognise when we are deviant. We check if we are just making a short-cut, in

21A pluralist does not insist on consistency, since, e.g., he endorses paraconsistent theories.
However, he endorses and encourages crosschecking with other theories.
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which case we are convinced that we can fill the gap with a proof of a lemma, or
even refer directly to the proof of the lemma. If we are not certain we can fill the
gap, then we should check we are not flirting with triviality. In this case, again, we
have a protocol. In other words, rather than hold mathematicians to a rigid standard
of rigour, we use the standard of rigour to make us aware of deviance. This is simply
practical, and reflects current practice in mathematics.
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Chapter 6
Philosophical Presentation of Pluralism

Abstract In part I of the book I gave motivations for adopting pluralism, from the
starting point of several well-known philosophies of mathematics. I drew inspiration
from them and rejected some of their claims as unwarranted. But we still do not have
a clear picture of what pluralism is as a philosophical position in its own right. In this
part, I give an initial presentation of the position over the course of four chapters. In
this chapter I answer some pressing questions. I begin with the notion of tolerance.
This invites discussion on three issues. One is normativity, the second is general
organisation of the types of philosophical issues addressed by the pluralist, and the
third is restrictions. In particular, I open the issue of how it is that the pluralist will
cope with contradiction, and in what respect a paraconsistent logic can help the
pluralist.

6.1 Introduction

A pluralist in the philosophy of mathematics is someone who places pluralism as
the chief virtue in his philosophy of mathematics. He brings the attitude to bear
on mathematical theories and on different philosophies of mathematics. Pluralism
is founded on the conviction that we do not have the necessary evidence to think
that mathematics is one unified body of truths, or is reducible to one mathematical
theory (foundation).

The pluralist is simply agnostic on this issue, but, for all that, does not think that
we have to give up trying to do philosophy of mathematics. Au contraire, it is in
the light of this agnostic attitude that pluralism is developed. Thus, the position can
be characterised as a non-radical scepticism. By this light, the pluralist is free to
take an interest in mathematics as a series of theories, where each contains truths-
relative-to-that-theory. Or, the pluralist is free to think of mathematics as a process,
as opposed to concentrating on mathematics as a unified body of truths.

M. Friend, Pluralism in Mathematics: A New Position in Philosophy of Mathematics,
Logic, Epistemology, and the Unity of Science 32, DOI 10.1007/978-94-007-7058-4 6,
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104 6 Philosophical Presentation of Pluralism

Most of this has already been said in earlier chapters of this book. What I have
mentioned but not emphasized is the normative element in pluralism, and I have
only made a start on conveying the scope of the pluralist’s interests. I have also
said very little about how, or why, pluralism works. So, the topics of this chapter
are normativity, scope and the structure of the family of pluralisms. I use the plural
because pluralism is pluralist about pluralism, but we shall see this in more detail
only in Chap. 11.

This chapter will proceed as follows. In the first section, I discuss pluralism and
normativity. We shall see that the pluralist is normative, not only about mathematical
practice, but more importantly, about other philosophies of mathematics. We
discover that the pluralist is pretty liberal in his endorsing of mathematical practice,
and therefore we return to the idea of ‘bad’ mathematical theories in the interest of
exploring the scope of pluralism in the second section. Bad mathematical theories
were mentioned in Chap. 4. The discussion continues here. We look at intensional
theories and why these are important for the philosopher of mathematics. In Sect. 6.3
we then turn to the inner structure of the family of positions which are versions
of pluralism. We introduce a notion of levels of discussion in both mathematics
and philosophy. We discover that, for example, most traditional philosophies of
mathematics occupy the second level, whereas maximal pluralism – as introduced
in Chap. 4 – occupies the third level. This is why the pluralist is able to discuss
most other philosophies of mathematics without being directly threatened by their
positions; but more will be said on this matter in Chap. 10, when we address
the paradoxes of pluralism. In the last section we underpin maximal pluralism,
or what we can also call ‘third-level pluralism’, with a standard, and well-tested,
paraconsistent logic, LP.

6.2 Normativity for the Pluralist

The pluralist is ‘softly’ normative about specification, precision and communication.

‘Soft’ normativity is simply encouragement, which comes from an aspiration (to
make statements as clear as possible); as opposed to setting a norm, and holding
oneself and others to that standard.

The pluralist is normative (tout court) about some truths within a theory1

The normativity of the pluralist affects the scope of his interest. Because the pluralist
is not normative in the sense of fastening on a particular mathematical theory
to set a norm, he widens the scope of interest beyond that of more traditional

1I write ‘some’ because we have to make room for undecidable statements. One way to do this, of
course, is to give such statements the truth-value ‘U’, for ‘undecidable’, however, if we are being
careful, ‘U’ is not a truth-value – it is not a ‘value’ at all. It is the absence of value.

http://dx.doi.org/10.1007/978-94-007-7058-4_11
http://dx.doi.org/10.1007/978-94-007-7058-4_4
http://dx.doi.org/10.1007/978-94-007-7058-4_4
http://dx.doi.org/10.1007/978-94-007-7058-4_10
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philosophies. He is not only interested in successful and what is considered to
be ‘good’ mathematics, but also in what is considered to be ‘bad’ mathematics,
and how the ‘bad’ parts inform the ‘good’ parts. Note that ‘good’ and ‘bad’ are in
quotation marks; this is because these value judgments are not made by the pluralist.
Rather, they are observed by the pluralist to be made by mathematicians and non-
pluralist philosophers.2 They will not be endorsed, except as technical abbreviations
for a quite precise qualification about how the judgment was arrived at. That is, for
the pluralist, there is no ‘good’ mathematical theory as such, there is only a theory,
which is good according to: the community of mathematicians or some qualitative
measure, which has been specified – or is in the process of being specified.

This attitude towards the use of the terms ‘good’ and ‘bad’ instanciates the
pluralist’s soft normativity. By calling for qualification of the terms ‘good’ and
‘bad’ we are forced to be more specific, and therefore, usually clearer. The act of
qualifying terms like ‘good’ defuse the normativity of such terms and turns them
into a description. Of course, there is a threshold beyond which specifying becomes
useless, since a reader or interlocutor cannot hold very much information, but this
is a practical problem about communication and its effective limits. We treat of this
issue in Chap. 8. Regardless of our limitations, if we avoid the labels ‘good’ and
‘bad’, or if we qualify them, then we are liberated from the psychological normative
effects of the labels. It can be philosophically useful to drop, or question, the
normative words, since this allows us to make calm observations. For example, we
can observe that it turns out that some mistakes in mathematics (errors in proof, in a
conception, falsehoods of a theory) are very fruitful! Even mathematical falsehoods
(which are usually dismissed as ‘bad’) can be fruitful, and this is acknowledged by
Byers.

Mathematics is so commonly identified with its formal structure that it seems peculiar to
assert that an idea [in mathematics] is neither true nor false. What I [Byers] mean by this is
similar to what David Bohm means when he says “theories are insights which are neither
true nor false, but, rather, clear in certain domains, and unclear when extended beyond those
domains.” [(Bohm 1980, 4)]. Classifying ideas as true or false [or as good or bad] is just
not the best way of thinking about them. Ideas may be fecund; they may be deep; they may
be subtle; they may be trivial. These are the kinds of attributes we should ascribe to ideas.
Prematurely characterising an idea as true or false rigidifies the mathematical environment.
Even a “false” idea can be valuable. For example, Goro Shimura once said of his late
colleague Yutaka Taniyama, “He was gifted with the special capability of making many
mistakes, mostly in the right direction. I envied him for this and tried in vain to imitate him,
but found it quite difficult to make good mistakes” [(Singh 1997, 174)]. A mistake is “good”
precisely because it carries within it a legitimate mathematical idea. (Byers 2007, 256–257)

2‘Observe’ is ambiguous between obeying, as in “Paolo observes the laws of his country” and
“make an observation”. I mean ‘observe’ in the latter sense.

http://dx.doi.org/10.1007/978-94-007-7058-4_8
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If fruitfulness is ‘good’,3 then some mistakes in mathematics are also ‘good’.4

For the pluralist ‘good’ and ‘bad’, as they are usually used, are empty terms, or
rather, they are place-holders. They cry out for further qualification or explanation.
In thinking this way about the terms, the pluralist is softly normative about the
use of ‘good’ and ‘bad’ in mathematical or philosophical writing. As a result:
‘faulty’ theories, errors or ‘wrong’ proofs, which have been ignored in the past by
philosophers,5 are not so easily brushed aside by the pluralist. Revisiting a value
judgment is always an option.

6.3 Scope: Intensional Mathematics

As we saw in the chapter on structuralism, in general, ‘bad’ mathematics include:
intensional theories. Exactly what these are is controversial. In order to avoid
the controversy, we shall simply stipulate that what we are considering here
to be intensional theories are6 formal (usually logical) systems with intentional
operators,7 where the operators have a whole wff in their scope, not just a term.
This makes the inter-substitutivity of terms in wffs of the theory ‘opaque’.8 Opacity
of this sort is an indicator of what we shall call an ‘intensional logic’.9

3This is not meant as a silly point. Quite often philosophers will defend a part of mathematics,
or science, on the ground that it is fruitful. In light of the fruitfulness of some mistakes, it
behoves philosophers who value fruitfulness as a property of a theory to study fruitful mistakes
in mathematics, as Lakatos suggested.
4Like ‘good’ and ‘bad’, ‘true’ and ‘false’ can hold normative sway. They do not when they
are treated mechanically, or ‘syntactically’, such as when we talk of assigning truth-values
exhaustively, or randomly to wffs. This artificial and mechanical use of ‘true’ is quite different from
the use of ‘true’ when we say, for example, “this foundation is the true foundation of mathematics”.
5Lakatos is a notable exception.
6Here, we shall restrict our discussion to these. The relationship between intensionality, intention-
ality and extensionality is complex and discussed with little consensus in the literature. I shall
not settle any disputes here. Instead, I shall just indicate that some logical theories ignored by
mainstream mathematical theories are still worthy of being thought of as mathematics. Moreover,
considering intensionality gives us the opportunity to say a little about one of the thresholds of
communication. This is important for the pluralist, since the communication of mathematical ideas
is part of mathematics.
7Model theory is extensionalist, and only individuates structures and objects in those structures ‘up
to isomorphism’, only recognizing certain properties (predicates, relations, functions) as ‘counting’
for mathematics. But we find, in mathematical practice, that considerations, not recognized by
model theory, are also pertinent to mathematics. See Rodin (2008, 25) for a carefully discussed
example.
8They are opaque in respect of reference to objects since terms refer to objects or sets of objects.
Whole sentences, or wffs represent states of affairs, which might or might not obtain.
9In the preface, I made it clear that the pluralist is not interested in drawing a firm distinction
between logic and mathematics. Here logical theories – formal theories (of logic) – are considered
to be mathematical theories just as a particular geometrical theory might be.
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Definition An intensional logic is one that includes intentional operators that take
a whole wff as their scope (as opposed to just a term).

Definition An intentional operator is a logical operator that is meant to express an
intention, or attitude, such as: doubt, belief, fear or de dicto possibility.10

Sometimes the last are called ‘propositional attitudes’ because they have a proposi-
tion in their scope (as opposed to a term).

Elaborating on this notion of the scope of an operator: in general, the scope of an
operator can be terms or wffs. Different formal systems of logic have the operators
range over different scopes. The differences will capture conceptual nuances. For
example, it is quite possible to fear the devil (in which case the intention is directed
towards a presumed object, referred to by the singular term ‘the devil’). It is also
quite possible to fear that the devil has possessed the dog. In the second example,
the intension has a proposition in its scope, rather than a term. The person fears
that the dog is possessed. She does not immediately fear the devil (according to
the sentence). The person might fear the devil also, but this is an inference from
the devil’s ability to possess the dog, and our ‘common sense knowledge’ about
devils, such as it might be. What is important is that intensional logics are not
always recognised as mathematical because they are not extensional – terms are
not identified with the isomorphism class of their extensions, because the term is
hidden inside the proposition and cannot be picked out and substituted for.11

An unreflective supposition that mathematics is essentially extensional, some-
times rests either on thinking that some set theory, which comes equipped with
an axiom of extensionality is the foundation for mathematics, or that model
theory, which is implicitly extensional, is the way to determine what counts as
mathematics. This type of extensionality precludes intensional logics, as defined
above. Thus, using an extensional theory as a ground for supposing that mathematics
is extensional just begs the question against including intensional theories in
mathematics, since we defer to an extensional theory to determine the scope of
‘mathematics’.12

A more sophisticated (non-question-begging) position is that of the more reflec-
tive extensionalist.

10‘Truth’ could also be thought of as such an operator, but to discuss this here would only muddy
the waters unnecessarily.
11Given our definitions, extensional theories and intensional theories are contradictories. If we had
a broader definition of intensional – to include intentional operators with whatever scope then
extensional would be the sub-contrary of intensional (all theories have to be one or the other, but
can also be both).
12This question-begging argument rests on two suppositions. One is that a theory with an axiom
of extensionality (or equivalently, a theory which is implicitly extensional) is an extensional
theory, and two, that extensional theories in this sense cannot also be intensional. More concisely:
‘extensional’ and ‘intensional’ are contraries. The definition I give of ‘intensional theory’ does
some simplifying work here. In Chap. 13, we revisit this issue, adding more nuances.

http://dx.doi.org/10.1007/978-94-007-7058-4_13
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An extensionalist is reluctant to include intensional theories in mathematics.13

A holder of this position thinks that mathematics or logic should be made as
extensional as possible, so extensionality is a regulative ideal.

This makes the extensionalist a dualist. There are the good extensional mathe-
matical theories, and the leftover intensional theories that we try to make clean by
re-representing them in an extensional theory. This view is supported by an idea of
historical progress being made in logic and mathematics. By surveying the history
of logic we notice that logic has become more ‘pure’, specific, clear and transparent
because newer theories are increasingly extensional. This supposition (Bar-Am
2008) rests on the idea that progress is identified with increasing clarity, which in
turn, is identified with formal representation, in aide of mechanical manipulation,
which in turn, depends on formal theories being extensional.14 As a general
regulative ideal, the pluralist has no qualms about this form of extensionalism.
Where the pluralist takes issue with the extensionalist is with the identifying clarity
with extensional formal theories.

The reason the pluralist takes issue is that he recognises that there is a
clarity/extensionality threshold, and both sides of the threshold are worth exploring.
There might well be circumstances where forcing extensionality is too artificial,
where a particular precisification is made at the expense of a more fruitful concept.
For example, implication, is, arguably, not an extensional notion (Priest 2006b,
73). But in classical, and other, presentations of formal systems ‘!’ is introduced
as the symbol for implication and is inter-substitutable with other symbols in the
language, and so is supposed to be extensional. It is not distinguished from the
conditional, and, thanks to the theorem of deduction, is also taken to be conceptually
equivalent to entailment (the difference is that they occupy a different level of
language and relate wffs, in the case of !, and relate premises to a conclusion in
the case of entailment). Arguably, this blurring of distinctions between implication,
the conditional and entailment, in the name of extensionalism,15 has led to a loss in
our understanding of logic and our misuse of logic (Sundholm 1998, 184). We shall
visit this issue specifically in Chap. 13.

What we should retain here, is that there are different ways of making clear what
we say, sometimes it is useful to given an extensional definition, and sometimes
it is not. Sometimes an extensional logic, or mathematical theory is clear, but
sometimes not. Sometimes we seem to have greater transparency, since we have
completely effective rules of manipulation; but sometimes this is just an illusion.
We have easy manipulation rules, and transparency, but not necessarily clarity or

13It is not really a whole philosophy. It is an attitude: a striving towards increased extensionality in
mathematics and logic. Quine, and more recently Bar-Am defend extensionalism. For reasons of
definiteness, I shall concentrate on Bar-Am’s defence of extensionalism.
14I should add that Bar-Am does concede that it is not at all clear, for him, that either mathematics
or logic can be made fully extensional. To discuss this further we would have to work the definitions
in much greater detail than we have here.
15Or so the extensionalist will claim.

http://dx.doi.org/10.1007/978-94-007-7058-4_13
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greater understanding of the original notions, which might have been irreducibly
intensional (especially if we loosen the constraints I place on the definition of an
intensional theory to include any theory with intensional operators, including the
relevant conditional). That is, there is a threshold we cross when we try too hard to
represent a notion formally in an extensional theory. The threshold is where we have
a trade of loyal representation of the original concept against transparency in the
form of a symbol, which we can easily understand and manipulate. For the pluralist,
the trade might good, if the original concept was hopelessly confused, and needed
disentangling. The trade might be bad if we have lost concepts and understanding.
How we evaluate, and weight the balance is not always an easy matter.

Not only are there different ways of clarifying, and thresholds beyond which no
more clarification can be had, but there are also different degrees of precision, or
explanation of background. Rav describes the following process:

If some reader wants or needs more details, as for instance concerning modular arithmetic
[in a proof to show that 1 C 1 D 0 (mod 2)] it can be provided by giving further
explanations, as is done in teaching unprepared students. In principle, though, one could
go through the whole development of Peano Arithmetic, develop modular arithmetic and
what not. How far one has to go back in one’s justification of an inference is a pragmatic
question; there is no theoretical upper bound on the number of interpolations necessary for
an absolute justification (whatever that would mean). (Rav 2007, 313–314)

Suffice it to say, here, that for the pluralist, the process of clarification is not just
one thing. The extensionalist is aware of this too, by the way. This is why he has
a sophisticated position. Where he and the pluralist part company is over whether
or not an extensional formal theory is always to be preferred to an intensional one.
We shall see similar subtleties with the notion of rigour. Moreover, it is frustrating,
but important to take note of the variability of the process of clarification, since,
if we ignore this subtlety we run the risk of making formal theories extensional to
the detriment of understanding. Why is this important for mathematics? If, as Priest
argues, the conditional, implication or entailment, or any one of these is intensional,
then the intensional is present in, and systemic throughout, mathematics. To not
include a proper treatment of intensionality in mathematics or in a philosophy of
mathematics, would be an oversight. How can the pluralist afford so much scope in
his philosophy? We now turn to the structure of the family of pluralist positions.

6.4 Maximal Pluralism, or, Third-Level Pluralism

In Chap. 4 we argued for maximal pluralism over optimal pluralism. Here, I fill out
the view of the maximal pluralist. In order to be a maximal pluralist, we should
distinguish three levels of philosophical activity and three corresponding levels of
mathematical activity. Collecting the philosophical and the mathematical, we shall
call these ‘levels of enquiry’. The first level of both mathematics and philosophy
concerns particular results in mathematics. Examples on the mathematical side
are particular theorems, lemmas, definitions and proofs. On the philosophical side

http://dx.doi.org/10.1007/978-94-007-7058-4_4
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Table 6.1 The levels of pluralism in mathematics and philosophy of mathematics

Level Mathematics Philosophy

1 Particular results: proofs, theorems,
definitions : : :

Particular claims made within a
philosophical position

2 Full mathematical theories, for example:
Euclidean geometry, modal logic S4,
ZF set theory, Topos theory : : :

Full traditional philosophical
positions, for example: naturalism,
logicism, constructivism

3 Meta-discussions about ‘mathematics’ Structuralism (as optimal pluralism),
maximal pluralism

we have discussions concerning particular results. For example, we might discuss:
theorems, definitions or the completeness of a theory, a compactness result or a proof
in a theory. These might include discussions about limitative results, since these
results are given within a particular mathematical theory. Thus, we might include
the proof of equi-consistency of two theories at this first level if we are looking at
the proof, since it occurs in a theory.

At the second level, we have full mathematical theories, such as: Euclidean
geometry, first-order arithmetic, modal logic S4, Zermelo-Fraenkel set theory and
topos theory. The larger of these mathematical theories are theories within which we
make mathematical comparisons between other (smaller) theories.16 For example,
we might show the reduction of one theory to another, we might give an equi-
consistency proof between two smaller theories, we might show embeddings,
we might show how one theory differs from another in virtue of one axiom
and so on. The larger whole theories are often thought of, by philosophers, as
‘foundational’ and are sometimes accompanied by a philosophy. For reasons stated
in Chap. 2, we call these ‘big’ theories. Accompanying big theories at this level, on
the philosophical side we have the more traditional philosophies of mathematics,
such as: set theoretic realism, Maddy’s set theoretic naturalism, the constructive
philosophies, logicism and so on. In fact, most positions in the philosophy of
mathematics are found at this level. We can make pluralist investigations at this
level, provided we bear in mind the third level.

In concreto, we can tell apart pluralist from non-pluralist investigations at this
level by remarks made about ‘truth’, ‘foundation’, ‘ontology’, ‘correctness’ and so
on. The non-pluralist makes no qualifying comment when using such terms. The
pluralist does. He entertains the ‘non-pluralist’ position temporarily, for the sake
of argument, or as a hypothesis. At the end of the day, he is a principled agnostic
about the sorts of terms listed – unless he has been convinced and abandoned his
pluralism. Structuralism is a separate case. The structuralist occupies the third level,
but only as an optimal pluralist. See Table 6.1.

The levels are not hard and fast. In order to allay misunderstanding, it
might be worth making a comparison of the pluralist ‘levels of enquiry’ with

16The terms ‘smaller’ and ‘larger’ refer to the expressive power of a theory. Roughly, the more
theories can be reduced to, or embedded in a theory, the more expressive power the theory has.

http://dx.doi.org/10.1007/978-94-007-7058-4_2
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Tarski’s semantic levels. Tarski’s levels of object language, meta-language,
meta-meta-language and up, were postulated partly as a result of observation –
we do talk about language, and when we do this we need the resources to refer to
everything in the object language talked about etcetera. The other reason, maybe the
principle reason, was to block a number of the semantic paradoxes. Tarski thought
it very important to avoid paradoxes, since they “force us to say falsehoods”.17 For
this reason, and since he was a classical logician, he needed a very rigid structure of
languages.18 Each level collects everything at the lower level, and might add more
material. All reference to linguistic or semantic entities is made downwards. It is
(supposed to be) always clear which level one is talking in, or writing in.

This is not so for the levels of enquiry of the pluralist. The notion of levels is
comparatively lax and flexible. There might be cases where we cannot decide if we
are at level one or two, for example. We also might not be able to decide, when we
are having a philosophical or a mathematical discussion, whether our problem, or
issue, can be resolved purely mathematically or will require some philosophy and
so on. The fuzziness of the level concept is not always important, and if need be,
we can make a decision, or tackle a problem at different levels and use different
approaches. Problems and answers are not always known to be of a particular level
or type, but we can fix one for convenience. Admittedly, the convenience will be
temporary, and we should bear in mind that we should revisit the parameters set, at
a future date. See Chap. 10 for more details.

It is also worth noticing that the potential for paradoxes arising from the lack
of strictness in regimentation of the levels is not to be thought of as a calamitous
drawback. This is because of our making reference to a paraconsistent logic, so, in
particular, we do not adhere to the dogma19 that contradiction entails triviality. The
pluralist is also not as disturbed as Tarski is, about uttering falsehoods. We do so all
the time, at the very least because of inaccuracy. Falsity might also be a driving force
behind development in both mathematics and in the philosophy of mathematics.
As pluralists, we usually want to avoid uttering and writing falsehoods, but we
accept that we do write them. In fact, as we saw in the passage quoted from Byers,
sometimes mistakes are very fruitful. That is why, what we claim is always thought
of as highly revisable. Put another way, we are softly normative about true and
false claims.20 We strive towards justified statements, we even strive towards very
stable justified statements: ones which it would take a lot of work to seriously
revise. In this way, proofs help us to stabilise a theorem. Proofs made in a stable

17I do not have the written reference for this. Wolenski mentioned it to me in conversation at the
Logica conference in 2005.
18While Tarski was a classical logician, he was well aware, and quite sensitive to constructivist
concerns.
19Priest argues for this at length in Priest (2006a, b).
20Here ‘true’ and ‘false’ are not meant in the sense of ‘theorem of a theory’ (ignoring incom-
pleteness) or ‘sentence inconsistent with a theory’, but rather, as a value judgment made by
philosophers of mathematics in general, at any level. That is, we are using the terms ‘true’ and
‘false’ loosely here.

http://dx.doi.org/10.1007/978-94-007-7058-4_10
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theory, such as Peano arithmetic, are about as stable as possible. But we admit, that
we cannot know in advance that any particular claim is completely stable or very
stable. At best, we might have our suspicions, and they might, in turn, be justified
or not.21

To summarise: the maximal pluralist occupies the third-level of enquiry. The
maximal pluralist looks at first and second-level normative and unqualified state-
ments as highly revisable, and aspires to make his statements as stable as possible
through careful rigorous justification and explicitness. The second-level pluralist
joins the foray competing against other philosophical positions. Insofar as he is
agnostic and sceptical about his own position he is also mindful of third-level
pluralism. Second level pluralism is unstable without third level pluralism.22 So, for
example, the claim that “ZF is the orthodoxy of present day mathematics” is made
with emphasis on the ‘present-day’ (so this might very well change in the future),
and ‘orthodoxy’ is taken to be socially, or institutionally indicated, and so varies,
across societies: different schools and associations, and varies more obviously if
we consider past institutional or social groups of mathematicians. The second-level
pluralist is agnostic about the future, and again, he holds his pluralism on account
of being aware of third level pluralism.23

6.5 Third-Level Pluralism and Paraconsistency

6.5.1 Third-Level Pluralism

At the third level, we have maximal pluralism: a philosophy that is pluralist
towards the activity which takes place at the first and second level. We also have
a corresponding mathematical activity at this level. The latter comes in two guises.
One is when we use mathematics from different areas to ‘solve a problem’ so we
help ourselves to tools and mathematical ideas from different mathematical theories.
There is discussion of this phenomenon in Chap. 5, and more in Chap. 9. The
other guise is when mathematicians identify transcendent (common to many big
theories) ideas, or when they compare big theories and have a discussion at the
meta-level about all mathematical theories. The discussion can be mathematically or
logically informed. Logic is sometimes thought of as the study of universal laws of

21This should be taken with a pinch of salt. In fact there is a lot of stability in mathematics –
probably more than in any other area of enquiry. However, the pluralist claims that the stability is
not ensured by truth or ontology. Rather it is ensured by the cross-checking nature and process of
mathematics. This is why proofs are so important!
22The instability is discussed in Part II.
23Naturalism and structuralism could arguably be thought of as pluralist at the second level. The
argument would engage such phrases as “model theory is the prevalent theory today for : : : ”. With
the right sort of emphasis, Maddy and Shapiro can both be construed as pluralists.
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http://dx.doi.org/10.1007/978-94-007-7058-4_9


6.5 Third-Level Pluralism and Paraconsistency 113

reasoning, so ones which would transcend all mathematics. Even if we do not insist
on the universality of logic, we can still identify notions which are common to many
mathematical theories. But logic is not the only sort of generalisation which allows
us to identify commonalities between theories. For example, a category theorist
might compare the category of the universe of the iterative hierarchy of sets with
the universe of Aczel’s non-well founded universe of sets.

Pluralism towards maximal, or third-level, pluralism is pluralism at the fourth
level, and is the subject of Chap. 11. In this chapter, we restrict ourselves to
pluralism towards the first and second levels. It is what we called maximal pluralism
in Chap. 4. But now, we can re-define it in terms of the levels.

Definition Third-level pluralism is pluralism towards at least:

(i) mathematical activity at the (first level) of working within a mathematical
theory, or working with several mathematical theories to prove or verify
purported theorems,

(ii) mathematical activity at the (second level) of developing whole mathematical
or logical theories, or working within a theory to compare ‘smaller’ theories to
each other,

(iii) philosophical work concerning particular results or notions in mathematics,
such as work on the notion of compactness, with, or without, having any
particular philosophical tradition informing the work, and

(iv) philosophical work at the (second) level of developing a foundational philoso-
phy of mathematics.

Third-level pluralism includes a set of attitudes, amongst which, we find an
avoidance of dogmatism, in favour of qualification and clarification. One by one,
dogmatic claims are replaced by careful explanation that justifies (and shows the
limitations of) what was stated as a dogmatic claim.24 Not any explanation will
do. These too, in turn, can be qualified and justified – as the need arises. This
is discussed in detail in Chaps. 8 and 9. Before turning to these, there is a more
immediate problem.

Clearly, in both mathematics and philosophy, conflicts will arise between claims.
Some are easily resolved by appeal to clarification. Others are not. Some conflicts
are just brute entrenchments. Or, more mildly, there is no reason to suppose in
advance, that through a process of clarification, disambiguation or qualification, that
we can always, even eventually reach an agreement. Since the pluralist is (publicly)
agnostic about the outcome of the process of debate, deliberation and clarification,
he has to make some sort of accommodation for sentences of the form ’ and not ’,
where ’ is a claim made at the first or second level. Let us call any sentence of the
form ‘’ and not ’’ a contradiction.

24The dogmatism of exactly this assertion will be discussed in Chap. 10.
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Definition A contradiction is a sentence of the form ‘’ and not ’’.25

Here, we are particularly interested in contradictions arising at second or third
level. Much to the chagrin of realists and other monists, mathematics has developed
piecemeal. Paraphrasing Priest:

: : : language [we paraphrase with ‘mathematics’] and the principles that govern it have
developed piecemeal and under no central direction. As logicians know, inconsistency is the
natural outcome of spontaneity. Consistency has to be fought for. Therefore prima facie, it
would be surprising if our [mathematical] concepts were internally and mutually consistent.
(Priest 2006b, 5)

Pluralists are aware of many contradictory remarks one can legitimately make in
mathematics and in the philosophy of mathematics.

Let us take an example. We have several times made the point that the
pluralist combines anti-foundationalism with an interest in foundations – as good
mathematical theories in their own right, and as accompanied by philosophies of
mathematics, which affect the development of mathematics. A pluralist who took
an interest in ‘foundations’ might look at, say, axioms that are independent of a
proposed particular big mathematical theory, such as the higher-cardinal axioms.
The pluralist observes the bifurcations of set theories with the addition of different
sets of axioms. The pluralist will not need to favour one extension over another. If
asked to pick one, or favour one, he demurs, unless he is given a clear criterion by
which he can favour one. Note that this demurring is not only due to a personal
or collective ‘lack of knowledge’, but, rather, it is due to an acceptance that at the
present state of play in mathematics, there simply is no definitive mathematical way
to arbitrate between theories. To varying degrees, the pluralist accepts that there is no
unique absolute perspective.26 Moreover, an exercise in clarifying and justifying will
not necessarily end in one side ‘winning’. There is no reason to think in advance,
that there will be such an outcome, even in the long run. We might, therefore, have
statements of the form: “(set theory is best extended by adding axioms X and Y)
and it is not the case that (set theory is best extended by adding axioms X and Y)” –
where ‘set theory’ and ‘best’ are the same in both conjuncts. To make sense of the
contradiction, ‘set theory’ and ‘best’ might not be specified sufficiently precisely to
determine which conjunct is correct, or, what is more interesting, it might not be
clear that we can just explain away the contradiction. Or, we might think that ‘best’
and ‘set theory’ are unstable over time. One theory might appear to be best at one
time, but that judgment might shift back to the other theory at another time. Settling

25Such claims made at third level will be discussed in Chap. 11.
26It might be instructive to compare this attitude to Gödelian optimism, which is the thought that
in the end, given an open problem, we shall discover a technique to make an absolute decision
about that problem. Tennant has several good discussions about the Gödelian optimist (Tennant
1997). In contrast, here, we have the agnostic, who demurs. This character is either a pessimist
(the demurring is then based on an inductive argument, and the pessimism might be reversed in a
particular instance), or the character is a principled agnostic. It is the principled agnostic position
that is explored in this chapter.

http://dx.doi.org/10.1007/978-94-007-7058-4_11
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on one conjunct over the other might be thought of as artificial, and not capturing
the ‘deep’ philosophical dilemma. All we need is the possibility of this persistent
contradictory situation for our appeal to a paraconsistent logic.

6.5.2 Paraconsistency

Since there might be persistent contradictions, pluralism requires a paraconsistent
logic at the third level.

Definition A logic is paraconsistent iff it is non-trivial and blocks ex contradictione
quodlibet inferences.

An example of a paraconsistent logic is a relevant logic, which insists that there
be some traceable ‘relevant’ connection between premises and conclusion. There
are many relevant logics, each deploying a different strategy for blocking ex
contradictione quodlibet. See Appendix 3 for two ex contradictione quodlibet
proofs and indications of where they would be formally blocked by relevant
logicians.

Definition A proof is an instance of ex contradictione quodlibet if, in it, from a
contradiction an unrelated conclusion is drawn. p & �p ` q, is a valid deduction in
a classical or intuitionist proof system. It is not valid in a relevant or paraconsistent
logic.

The reason we need to block ex contradictione quodlibet is that what it says
is: “from a contradiction, anything (grammatical in the language) follows”. The
pluralist has admitted that persistent contradictions are possible, of the form ‘’ and
not ’’ at first and second level. Referring back to the discussion in Chap. 4 on truth:
for the pluralist, ’ might be of the form s or Ts. (As a reminder: s is any wff in a
language, ‘Ts’ specifies the theory T, so s is true in T.) We shall have to consider the
candidate cases very carefully, since some are only apparent contradictions.

When the ’ is of the form s, then it is usually quite easy to resolve the conflict, and
we see that s is a theorem in one theory, but not in another. For example, 2 C 8 D 10
is true in Peano arithmetic, but it is not true in arithmetic mod 8. So in this case,
where ’ is of the form s and is: 2 C 8 D 10, we can fully form the contradiction:
(2 C 8 D 10) & not (2 C 8 D 10). Once we add the T: ‘Peano arithmetic’ to the
left side of the conjunction, and the T0 ‘arithmetic mod 8’ to the right side, the
contradiction is shown to be only apparent since we have Ts & T0s, and this is not
a contradiction since T ¤ T0. A little qualification and clarification is all we needed.
Consistency, where it can be had, should be striven towards, but this does not imply
that it should be striven towards come what may – to the point of dogmatism
or artificiality – in the form of disallowing contradictions to stand at all (even
temporarily).

Since the pluralist eschews the dogmatism concerning contradiction, he thinks
that it is not necessarily the case that all (apparent, or prima facie) contradictions

http://dx.doi.org/10.1007/978-94-007-7058-4_BM1
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can be so resolved, or resolved at all. He is agnostic on this issue. This is not only
for reasons of lack of knowledge. We might have available all possible information,
which bears on ’ and its negation or denial, but there might be other reasons why the
contradiction is persistent, or even permanent. We cannot appeal to logic forbidding
contradictions, since this would beg the question against the paraconsistent logician.
That is, in the light of rigorous non-trivial formal systems of logic where there are
contradictions from which we can deduce some formulas, but not all formulas,
appeal to the law of non-contradiction as governing formal systems of logic, is
simply false or question begging. Of course, it would be audacious in most or all
cases to claim that a contradiction were permanent, it is wiser to demure again.27

Instances of persistent contradictions are the semantic paradoxes or the set
theoretic paradoxes.28 In the case of paradoxes, we have a contradiction of the form
Ts & not Ts. If the theory is classical, then by ex contradictione quodlibet, the theory
is trivial. An example is Frege’s famous formal theory of logic. From Basic Law V
it is possible to derive a contradiction. Frege’s theory is classical, so does not block
ex contradictione quodlibet, and therefore, Frege’s formal theory is trivial.

Paradoxes do not always entail triviality. In particular, they do not in the
context of a paraconsistent theory. But they do not in philosophy either! When
we discuss, and entertain, paradoxes in the meta-language English we do not lapse
into triviality.29 Most of the time, such discussions are serious, rule governed and
statements are subject to correction – which would not be the case in a trivial

27This is definitely the case when we cite inductive reasons: “we have not solved the problem
yet, it has been around for a long time, therefore it cannot in principle be solved”. This is a poor
argument.
28These might, or might not, be usefully separated (Priest 2006b, 10).
29This is a delicate issue. I do not know why, but for some reason, this seems to be overlooked or
ignored by the great majority of philosophers who discuss the paradoxes. It seems that it is only the
paraconsistent logician or mathematician who can face the following fact, and accept it for what it
is: we discuss paradoxes as a part of our successful communication, and not only in the ‘mention’
position/mode in a phrase or sentence.

Slater (2010) would probably disagree with this, so it is worth investigating further, but it seems
prima facie, to me at least, that we use the paradoxes too. We use them to justify conclusions,
such as: “Frege’s formal system is trivial”. Moreover, when we deploy the paradoxes, we do not
then jump into triviality. Slater would probably say that we mention the use of them to justify
conclusions, say, about Frege’s formal theory. If Slater is right, then the question arises as to why it
is that, or is there a non-question begging explanation for, whenever we only mention paradoxical
sentence, we are in a classical setting and whenever we use paradoxes, or whenever they enter our
theory, we must per force be in a trivial situation. If we relax this last idea, and use his emphasis on
the use/mention distinction to dissolve many (apparent) and therefore sloppy uses of the paradoxes,
then I am all for following his careful advice in adhering to the use/mention distinction. But I do
not see a good argument (where an inductive argument is not good enough) for claiming in advance
that all possible purported uses of the paradoxes are mentions and all apparent uses can be cleared
away with careful respect of the use/mention distinction. Slater could counter-attack with a similar
question about trivialism. Do we use use trivialism to justify some sensible statements – and yet
not lapse into trivialism when we do so? How do we know we have not done so, and do we know
this is not a danger in advance, are we not just relying again on the use/mention distinction, this
time to save us from triviality? I think that the only answer to this is that we have to accept that we
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discussion – where all arbitrary sentences are allowed, and agreed upon, including
their negations. Anything (which is grammatical) is acceptable, and true, in a trivial
context.

Since the development of paraconsistent logic has separated the concepts of
contradiction from triviality (it is possible to have the first without the second)
we have licence to claim that we can sensibly discuss contradictions, without
degenerating into triviality.30 We know that there are many ways of sensibly
discussing contradictions, because there are many paraconsistent logics. Let us look
at one that has interesting implications for the pluralist. The logic is LP (the logic of
paraconsistency). We discuss alternatives in Chap. 11.

6.5.3 LP

I shall not give a full exposition of LP here for three reasons. One is that it is
amply presented in a number of sources, which are readily available. Two, we shall
be interested in some upshots of considering Priest’s LP, not in mounting a direct
defence of the formal logic and, three, we are interested in some comparisons of this
theory with other paraconsistent theories and approaches, but in a very general way.
For those who are interested in more details, I indicate the semantics of the system
in Appendix 1. As a result, it will be better to simply highlight details as necessary,
rather than present a number of details, to which we make no future reference.
Again, detailed expositions are amply available in the literature. See Priest (2006b,
74–81, 223–228).

LP is a paraconsistent logic.31 Since we accept the possibility, but prefer to avoid
inconsistency, LP is useful because it does not affect classical inferences.32 We
can assume that we are working in a ‘consistent setting’ until we learn otherwise
(Batens 1986). In other words, we can carry on with classical reasoning, provided
we have no reason to think that we are reasoning over a liar sentence, or other

might be in a trivial world! But it does not appear to be so. It might then be interesting to see if
we can jump in and out of such a world (and know that we are doing so, or attribute this to a third
party). See Chaps. 11 and 14.
30The argument structure is a bit odd. We observe phenomenon x as actual, we then show that
we have a model for x, and therefore that it is possible that x. The model gives us licence to
carry on with the actual phenomenon. It’s quicker to reason from actual to actual, than actual to
possible (modelled) to licence recognising what is actual, but this structure of argument has found
popularity with some recent work in the philosophy of mathematics. It does make more sense if
we consider that we doubt that we should continue in practice x.
31Priest presents the formal system in several places. I shall be using the presentation in chapters
five, six and sixteen of Priest (2006b).
32This idea is attributed to Batens. He has developed a number of other paraconsistent logics:
adaptive logics, which give strategies for coping with contradictions when they arise. Most of the
strategies are attempts to dissolve apparent contradictions.
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sort of contradiction-forming sentence, or that we are in a contradictory situation
(Priest 2006b, 223). Another way to put this is to say that what motivates the logic,
is the conviction that there are few33 inconsistencies in reality, so there should not be
many in the theory. Inconsistency is exceptional. The logic also has the advantage,
for those who are unfamiliar with paraconsistent logics, that all of the classical
reasoning remains in place, all classical reasoning is consistent. In semantic terms
we say that for any combination of wffs with only the truth value T or only the
truth-value F, the reasoning is just as in classical logic. Where we see a difference
is with wffs which carry both truth values (called ‘truth-value gluts’), i.e., such
wffs are both T and F. A wff p will take both values T and F, just in case it is
a liar sentence, such as the perfectly grammatically acceptable proposition: “this
proposition is false”.34 Since logic is supposed to help us reason over any situation,
or any non-metaphorical, disambiguated, grammatical sentence, it had better be able
to help us reason over liar sentences too. LP meets these considerations.

Let us look at a few more details, to get some feel for the logic. In LP, formulas
can have one of three truth-value assignments: T, F and both T and F. Use

^35 to
indicate both truth values. We should then look at the definitions of the connectives.
It will not be enough to define conjunction as “A conjunction is given the truth-
value T, just in case both conjuncts are true”. For, we do not know what to do if
one of the conjuncts is also false, i.e., is

^

. So we also have to say something about
when a conjunction is false. In LP, a conjunction is false if either conjunct is false.
It follows that if at least one of the conjuncts is

^

then the conjunction is also

^

. If
a proposition is both true and false, it is, in particular, true. So, a conjunction with
one true conjunct and a paradoxical sentence as the other conjunct, is true, since
both conjuncts are true. But the conjunction is also false, since one conjunct is false.
Mutatis mutandis if both conjuncts are paradoxical. Therefore, both: conjunctions
with one conjunct true, but the other true and false is itself both true and false;
and a conjunction with two conjuncts both true and false is both true and false.
“This sentence is false and number theorists study relations between numbers” is
a true conjunction. It is also a false conjunction, since one conjunct is false (and
true). Negation changes truth to falsity and falsity to truth. A negated contradictory
formula stays both true and false. The other connectives are defined in terms of
conjunction and negation in the classical way, thus ensuring classical inference in
classical settings, i.e., in setting where no formula, or sub-formula, is

^

. This gives
us a quick idea of the semantics for LP at the propositional level. LP is extended to
include quantifiers, but we need not visit these details here.

33Counting inconsistencies is not really what we are talking about. We use this to order theories
according to contradictions that can be proved in one theory but not the other (Priest 2006b, 224).
The ordering will only work if we are comparing like to like.
34‘Proposition’, as it is used here, just means a unit of the language which is truth-apt.
35This is a symbol independently and spontaneously invented by students filling in a truth-table,
and unsure whether to write T or F. They put both T and F together in the hopes that the professor
will assume that the student had in mind the correct answer, and their pen slipped. In their honour,
I have adopted the symbol, but make it signify a truth-value glut.
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What about the syntax? From a contradiction we can deduce its negation, or the
negation of the negation, or the negation of the negation of the negation, etcetera.
But we cannot deduce an unrelated proposition symbolised by the letter q. For cases
where p has both truth values, ex contradictione quodlibet fails. This is because it
is possible for the premises to be true (and false) and the conclusion to be false
(or both true and false). Since there are several ways of proving ex contradictione
quodlibet in a classical system, the strategy for blocking this will have to spread
across several rules, governing different connectives. Put better: our definitions of
the rules of inference have to be worked out in connection with each other. See
Appendix 3 for more details.

Why do we invoke such a logic? First note that we are not interested in a logic
of propositions per se. Nor are we interested in extending this to a first-order
theory with quantifiers, predicates etcetera. We are interested in the phenomenon
of understanding what to do with, and how best to cope with, contradictory theories
of mathematics, as well as contradictory statements in mathematics which belong
to quite different theories. It will not be enough to invoke a first-order version of
LP, since we are interested in being able to give the whole theory T as a qualifier
of a statement s where T might not be a wff, or term, it might not be given any
formal representation at all (except for our calling it T here). What LP tells us,
when we come across a persistent contradiction is that we can treat it as persistent
(it continues to enjoy both truth values, as does its negation) and that classical
reasoning no longer works. We also learn that there is some reasoning which does
work, that is, we are not immediately plunged into a trivial setting. Thus, if anything,
we are making reference to the existence of such a logic in order to support the
claim that contradictions, in speech, writing, or in a theory, or between theories, do
not necessarily entail triviality.

The very existence of formal paraconsistent logics that are not trivial, is enough
to support this claim. We know that they are not trivial because there is a wff in the
language of the theory which is only false.36 We can then refer to the logic as a guide
to our reasoning (especially in cases where T is not given formal representation).
Further exploration of this ‘metaphorical’ use of a logic is discussed in the next
chapter.
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Chapter 7
Using a Formal Theory of Logic Metaphorically

Abstract At the end of the last chapter I invoked the idea that a formal system
of logic, such as LP, is used metaphorically by the pluralist. It is essential to the
pluralist position, and possibly to many other positions, that we should be able
to make sense of this, and say something quite definite about it. Otherwise, our
claims about appealing to formal systems of logic are empty. I look at three ways
in which the pluralist makes use of a formal logical system. The first is in direct
appeal to a rule or axiom to justify a move in an argument. The second is when the
pluralist uses a formal theory in order to reconstruct another theory. This is done
to understand the theory from another perspective. The third use is dialectical. In
invoking or developing a formal theory to represent a form of reasoning, we bring
some features of that reasoning into relief, and we obscure other features. We can
evaluate the fit between the formal theory and the informal one. In the evaluation, we
might well consider alternative formal representations. Thus, we enter a dialectic.
Lastly, in order to remind us that pluralists are not the only ones who use
formal logic informally, I look at how it is that mathematicians use formal logical
theories.

7.1 Introduction: What Is a Metaphorical Use of Logic?

In this chapter, I am interested in how the third level pluralist makes metaphorical
use of formal logics. In particular, I am interested in his use of formal logics when
discussing trivial theories; or pairs of theories, which, when put together, result in
a trivial theory. In the pairing case: if at least one theory allows ex contradictione
quodlibet inferences, and the pair have rules or axioms which contradict each other,
then we have a simple case of triviality-generating pairings. For example, if I add
the axioms of Gödel-Bernays set theory to those of Zermelo-Fraenkel set theory,
then I will generate contradictions regarding numbers of subsets of ordinal numbers,
and since both are classical, I can then make proofs of any well-formed formula in
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the language (of the combined set theories). Therefore, it is particularly in such
cases that the metaphorical use by the philosopher is delicate. I shall also extend
the idea to mathematical contexts. In particular, in this section, I shall leave aside
paraconsistent logic, and discuss only the metaphorical use by mathematicians of
formal logic. We shall develop this theme in more detail in subsequent chapters,
where we work with examples. This is a first glimpse at the idea of a metaphorical
use of logic, not the final word.

Philosophers make ample metaphorical use of formal systems of logic, which I
shall henceforth abbreviate as ‘logics’. To appreciate this point, let us just pause to
think of the contrasting scenario, that is, what it would be for philosophers to make a
thorough and direct use of a formal logic in their arguments. If a philosopher were to
use logic directly, she would write out a natural deduction proof for the conclusion
she is trying to argue for, and then write it out effectively back in a natural language.
Philosophers almost never do this. Instead, they typically use logic metaphorically.
To fix the language, I shall stipulate that

philosophers use logics ‘metaphorically’ whenever they do not make formal logical
arguments for the whole of their philosophical arguments.1

Why not? Or, put it another way: why do philosophers make a metaphorical use,
as opposed to a direct use? After all, most of us are supposedly trained in formal
reasoning.

This is so for three reasons. The reasons are: background knowledge, degree of
sophistication of the argument and whether one is pluralist or monist about logic.
The first reason belongs to those with little background in formal logic. To my
chagrin, many philosophers are not aware that there are a number of different formal
logical systems, or, at best they are acquainted with two classical systems. They are
brought up on a diet of classical propositional and first-order logic, and that is all.
If they have heard mention of alternative formal systems, they will not have studied
them enough to make use of them in an argument. Thus, they are logical monists
in their practice, because of their education, not for deep philosophical reasons.
Or rather, the philosophical reasons are presumed to exist and be vindicated by
tradition and the cannon. But see, for example (Moore 1988). They could write
out their argument in propositional or first-order logic, but they find this tedious
and unnecessary. If they have given the matter any thought, they would also realise
that classical logics are inadequate for some arguments. This might tempt them to
re-consider their monism, but for practical reasons, since discussing logic would
make them digress too much from the issue they are concerned with, they are not

1Some of us tell our students that we do, but this is usually a cheap ruse. I have tried writing out the
formal version of an philosophical argument, but found that either my argument in English sounded
too trivial, or that I could not represent the ideas properly in a formal language. Of course small
inference moves are easy to represent, but more involved arguments are much harder. Nevertheless,
we have something like the logical structure of the argument in mind when we argue. So part of
what this chapter is about is the relationship between formal logic and philosophical reasoning.
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interested in pursuing this line of thought further. This reason is mentioned, to add
completeness to our list of reasons, but it is not interesting for us here, so we ignore
it, (the interest is, at best, historical and socio-political).

The second and third reasons assume that the philosopher in question knows
that there are several formal logics, and that these differ over what counts as a
valid argument. They are also sufficiently adept at some of these that they could,
in principle, translate an argument in philosophy into a formal argument. Why do
they not do this?

The second reason is that they suspect (rightly or wrongly) that their philo-
sophical argument is too sophisticated to be accurately represented in a formal
language, or ‘the’ formal language if they are monists. After all, formal languages,
sophisticated as they are today, are not sufficiently sophisticated to represent a whole
philosophical idea (of any interest), since such ideas often include several modes,
which we would represent by operators in a formal language,2 and are sensitive to
context or situation. Combining several different sorts of mode (belief, possibility
and morally good, for example), and contexts and situations in a logic is still a topic
of research. So, even if they took the trouble to represent their argument formally, it
would turn out to be formally invalid, for lack of sophistication in the representation.
If a philosopher makes an argument, presumably she thinks that it is valid. Since she
believes that her argument is valid, the problem lies with the translation (adequacy
of the formal language) and the formal apparatus (axioms and syntactical rules). Or
if the argument relies on induction, then it is valid modulo induction, but cannot be
represented accurately enough in a formal language to demonstrate the validity of
the argument, modulo induction.3

The third reason assumes logical pluralism. A logical pluralist might lack
certainty about which formal system best fits the argument she is trying to make.
She might not want to decide in advance which formal system best represents her
reasoning. For example, a philosopher might not know if she really wants disjunctive
syllogism to be allowed in a particular instance of reasoning. She might not be
sure whether her statement using ‘if : : : then : : : ’ is better represented as a strict
conditional, a material conditional, a causal conditional, and so on. “Hadn’t she
better find out?” You might ask. Not necessarily. She might prefer to defer making
a choice indefinitely, or until more of the argument has been fleshed out. That is, it
is in the process of arguing and exchange that we discover ambiguities, or discover
that a coherent reading of the argument requires that we, for example, must have
read the conditional in a particular statement to be strict conditional. Moreover, this

2There do exist some formal systems which combine several modal operators, (which are not duals
of each other), but there are not many, and they are often not satisfactory (in their axioms or rules of
inference). Occasionally, a philosophical argument can be elegantly expressed in a formal language
and the inferences can be accounted for. It is very satisfying when we can do this.
3What I mean by ‘valid modulo induction’ is that the non-inductive part of the argument is valid,
provided the induction move is carried out correctly, according to some axiom or rule of induction.
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deferring is not necessarily a preference due to laziness. Dialectically, she need not
choose a formal logic until an opponent takes issue with the logic of her argument.
That is, until an error is suspected (by herself, or someone else), there is no reason to
choose between formal systems, over continuing to elaborate her position.4 This is
a delicate matter, flirting with: the notion of burden of proof, laziness, consistency,
triviality and practical calculations about where to focus one’s energies.

These were three reasons for not translating a philosophical argument into a
formal logic. But, since philosophers do argue, they must do so metaphorically
(according to the stipulation above).

What more do I mean by the ‘metaphorical use of a formal logic’? I shall explore
three metaphorical uses here.

1. One is to justify particular moves in an argument written in a natural language,
such as when a philosopher writes: “ : : : and this just follows by modus ponens.”
We then understand that the conditional in the sentence is to be taken as material,
or as some other conditional which allows modus ponens as a rule of inference.5

This can be done well, or poorly. To do this well, we should remain consistent
(with respect to background logic) within an argument. To return to our example,
we had better not count modus ponens as invalid later on, at least, not without
a good explanation! Logical monists should remain consistent (with respect to
their logic) in this metaphorical use for all of their arguments. Logical pluralists
can change background logic from one argument to the next, since they find it
appropriate to switch logics with different subjects of argument. But when they
do this, they should be ready to explain or account for all switches.

The second two uses assume logical pluralism.

2. The second sort of metaphorical use is more interesting. It is when we appeal to
a formal logic as a possible model for a certain sort of reasoning, for example if
a philosopher appeals to a paraconsistent logic to justify continuing to reason in
the face of contradictions. It is not enough, in these cases, to simply mention
the existence of paraconsistent logics. Rather, we also use the logic in our
argument. Thus, the formal logic is a model for reasoning, or a type of ‘rational
reconstruction’. We shall see an example of this type of metaphorical use in
Chap. 9.

3. There is a third sense of ‘metaphorical’ we should address, and this is the
dialectical role played by formal logics. Once we have learned some formal
concepts, they are used in philosophical arguments, with the idea that the
arguments could be made more precise if we were to formally represent them.
Formal representation is then treated as an exercise in clarification and in

4The point is made in Sundholm (2012), but there, he makes the point for mathematical and logical
arguments, not for philosophical arguments. However, I think that the point applies to philosophical
arguments just as well. I shall return to this issue.
5There are formal logical theories where modus ponens does not hold. These are some of the
relevant logics.

http://dx.doi.org/10.1007/978-94-007-7058-4_9
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precision: to expose the structure of the argument so we can also question the
structure (or the representation). Since the added precision might involve re-
enforcing (by choosing and working with), or inventing new, formal techniques,
we have a dialogue between the formal logical systems and our philosophical
reasoning.

In this chapter, I shall discuss all three in turn. In the final section, I shall discuss
how the metaphorical use of a logic is also used in mathematical arguments, or
proofs. By the end of the chapter, we shall have a sharpened sensitivity to the
pluralist’s metaphorical use of logic.

7.2 Direct Appeal to Formal Rules or Axioms

In a philosophical argument, we sometimes appeal to logical rules.6 To give a
‘concrete’ example, take contraposition. To fix the example, let P D “we have free
will” and Q D “we genuinely make choices”. A philosopher would not be logically
at fault to write: “if we have free will then we genuinely make choices. Therefore,
contra-posing, if we do not make choices, then we lack free will.” When we
disagree with such an argument we first check that we agree with the premise,
and the translation into a formal language. In this case, the formal representation
is something like: P ! Q : �Q ! �P. P and Q are our propositional constants. !
is the conditional. � is negation.

Assuming we agree with the translation, then if we still disagree with the
conclusion, then our only recourse is to argue about the logic of the argument. We
check that the rules of the logic have been applied correctly. The correct use of the
rule of contraposition is determined by reference to a particular formal logic (and a
correct proof therein), or a class of logics (all those endorsing contra-position of the
conditional) (and the correct proofs therein).

A sustained argument can then take different turns depending on our background
assumptions, which are revealed through the process of argument. What are the
different turns?

1. If the proponent of the argument is a logical monist and believes that he
knows which formal theory represents best reasoning, then he defers to that.
An opponent who is monist and upholds the same logic is then defeated.

2. If the opponent is a monist, but holds another formal system as representing
logic, and his logic does not allow contraposition, then the argument shifts to

6We might think that this is a ‘border-line case’, that is, that in the case of appealing to formal rules
in mid-argument is hardly metaphorical. It is just direct use of a logic. However, it is not quite,
since we should distinguish between the formal system of logic and the informal use made of it.
The informal use is, arguably, a metaphorical use of the formal logic. I do not much mind where
we fall on this. Without compromising the thrust of the argument, we can ignore this stretch in the
term ‘metaphorical’ without great loss.
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one about which is the correct logic. More precisely, neither has to be a monist
at this stage, since what is being argued over is the validity of contraposition.7

3. The argument can become more interesting if we oppose a logical monist to a
logical pluralist, since now, the debate turns over logical monism and pluralism
(assuming everything else is agreed upon).

4. Logical pluralists have to address the issue on two fronts.
4a. one is to see if they agree on contraposition. For example, it might be common

to all of the formal systems endorsed by both, in this case the opponent looses.
4b. If one thinks that contraposition is valid in all legitimate formal logics, and

the opponent disagrees, then part of the debate can focus on contraposition or
can shift to the issue of fit in the application of a particular formal logic to
this instance. That is, they turn their attention to this particular case. They ask
the question: “Is the issue of free will and choice one where contraposition is
valid?” There will then be further permutations for the argument.

But we can see already that sophisticated arguments like this invite a dialectic
between the informal argument and the formal representation of the argument,
and the presumed characteristics of the formal systems supporting the formal
representation. We also see that even in a direct use of a logic in a philosophical
argument, we hide a number of assumptions, which can in turn be questioned.

Note that, in the mapping out of possible debates, we have already appealed to
logic metaphorically, in the senses of: not constructing an entire argument formally,
yet arguing rationally, and implicitly being willing to be guided by formal logic
(once we agree on the parameters for what counts as a legitimate formal system).
This sort of idealised and sophisticated argument is one form of using formal logic
metaphorically in a philosophical argument.

7.3 Using Logic for Rational Reconstruction

A second sort of metaphorical appeal to formal logical theories has two stages.

(I) One is to appeal to a formal theory to suggest that there is a possible8 coherent
move or series of moves.

(II) The other is to demonstrate that the move, or series of moves, is coherent by
giving a ‘rational reconstruction’. The ‘rational reconstruction’ in this case is a
formal model of the reasoning.

The difference between (I) and (II) is that the first has the mode of possibility,
the second calls for an instance of the possibility. For example, someone might

7This might even turn into an opportunity to revise one’s monism, but I leave this sort of possibility
aside, for the sake of simplicity.
8The possibility is an epistemic possibility – “for all I know”.
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remark: “there are contradictions in the UN resolutions”. More carefully: “There
are pairs of resolutions, or pairs of claims within single resolutions, which together,
can logically lead to a contradiction; assuming good translation, correct deployment
of the logical rules, and a legitimate class of formal theories.” A too casual retort
might be “but there are formal logics which deal with contradictions, so we should
not worry about these in the UN resolutions.” This would be an unfortunate, and
almost vacuous retort.9 But it is not entirely vacuous since it suggests the next move;
and this is to make a rational reconstruction of the reasoning we should engage in,
in the face of particular contradictions amongst the resolutions.

Developing this second stage, we settle on a translation of the resolutions
into a formal language. We settle on what the problem with contradiction is, in
this instance. For example, it might be a fear of triviality, or that the purported
contradiction leads to inaction due to a decision loop, etcetera. We then choose
a formal logical theory which we think will vindicate the better reasoning that
avoids the problem. We thereby use the formal reasoning to demonstrate that the
problem can be avoided. If this is not possible, or after a concerted effort, we
cannot reconstruct the reasoning using our chosen formal theory, then we might
try to develop, or ‘design’, a new formal theory which does.

If we do this we should exercise caution. For, we can even guarantee that we
can succeed, and this is worrying! We can ‘succeed’ quite perversely, by working
backwards. We design a formal system around the few sentences we are concerned
about and block the inference to whatever it is we are worried about. P & �P is
the contradictory pair of resolutions. Q is the consequence we do not like, so P
& �P ` �Q is a rule (or better, the only rule) in our logic. P and Q are constants.
They refer to particular UN resolutions. From the contradictory pair we may only
infer �Q (there are no other rules, so we cannot make an ex contradictione quodlibet
argument), which is what we wanted, since we wanted specifically to avoid Q!
But this is a trivial and vacuous reconstruction or recommendation. Indeed, it is
vacuous, unless the reconstruction or recommendation has wider scope than the
specific problem being addressed.

The wider scope is reached by avoiding constants as much as possible, and by
using rules or axioms which are familiar from other formal theories. It is an art
to make an interesting reconstruction, since it remains that there is no specific,
identifiable cut-off point between when a reconstruction is interesting or vacuous.
Ultimately, whether a reconstruction is interesting or vacuous will be a judgment,
exercised by a community, and the judgment can be revisited in the future.

9Batens appeal to something he calls a ‘zero logic’. This is a degenerate logic where there are no
rules of inference. As a result, no contradiction could be derived, since no derivations can be made.
This is a degenerate logic, and extreme enough that we might be carried to suppose that it is not
a logic at all. This is not important for the point here. If we can develop such a ‘logic’ then we
can develop formal logics with very few rules of inference, and we could develop one where a
contradiction in the form of a conjunction of two opposite formulas, could never be derived (just
because the formal theory lacks a rule for forming conjunctions, even though there is a symbol for
conjunction in the language (but then it is a ‘dummy’ connective)).
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The existence of some borderline cases does not preclude there being clear
cases. There are interesting reconstructions. What do we learn from them? Not
that the writers of the original construction were thinking in the way we formally
demonstrate, or reconstruct. We cannot even learn that this is how we should reason
in this, and similar instances, since, if there is one reconstruction, then there will be
alternative reconstructions, i.e., alternative formal theories to which we can appeal
in order to model the reasoning. One lesson we learn is that it is technically possible
to avoid the danger. If the ‘danger’ is triviality, then we have not learned much. But
this is not the end of the story. We can now, again, deepen our understanding and use
the reconstruction as an invitation to discuss the applications of the formal theories,
examine the breadth of application, and so on. This next turn in the investigation
involves the dialectic between formal logical theories and their applications; and we
now focus on this.

7.4 The Dialectical Use of a Formal Logic

Let us start with the easiest case. We start with an argument in a natural language.
We find it is controversial, so we choose a formal language to represent and check
the reasoning. To do this we translate the natural language sentences into formal
formulas. When we give a formal rendition of a natural language argument, we
obscure the non-logical content, and bring into relief the ‘logical’, or mathematical,
structure. We can flag contentious translations, as potential weaknesses. This
exercise is already quite sophisticated, and we learn from the very act of translation,
since, the act of translating requires that we distinguish logical structure from
content. We are then made to reflect upon the deductive moves we are modelling, or
representing. We would normally default to a formal logical theory with which we
are familiar, or better, with which many people are familiar. We then demonstrate
the reasoning in the formal setting, and disputes can be easily cleared up, since the
deductive moves are as transparent as possible. Not only is the natural language
argument brought out in all clarity, since the arguing is meant to be indifferent
to content, but the formal logic is given added confirmation in its own turn. This
two-way interaction is important in the light of alternative logics or alternative
mathematical theories.

Now turn to a more problematic case. We are not satisfied with the easy steps we
took. Either the conclusion does not follow according to the formal theory, or it does,
but there seems to be something fishy, or unsatisfying in the formally represented
reasoning. Where might things have gone wrong? They might have gone wrong in
the translation. We did have to make a choice of formal language. Maybe we need
a more sophisticated language, especially if the reasoning does not go through in
the formal setting, or can be shown to be invalid. So, we have to think carefully
about the choice of formal language. This is a question of ‘fit’ between a formal
language and an application. We then separately have to think about the axioms,
definitions and rules of inference of the formal theory, and discuss whether these
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are good axioms, definitions and rules. It stands as obvious that if we argue for
these by appeal to a formal theory, we can raise the same question again as to the
merit of the axioms, definitions and rules of that theory. We are then engaged in a
regress. Or, we can engage in a less formal discussion and use informal reasoning.
Either way, we are engaged in cross-checking our formal representation against,
what we take to be, independent ideas, notions or theories. We might even be pressed
to develop, or design a new formal logic, or develop a new rule, or operator, in
order to give formal expression to what we have in mind. This does not happen
often, but it does occasionally, and there is no bar on this sort of exploration.
Such a development could become interesting in its own right, as we know from
a number of mathematical developments. This will happen if the formal theory’s
scope is wide. We might find re-applications in areas we had not thought of when
we developed the new theory.

In this case, ‘dialectic’ is too narrow a term, since we do not just have a back-
and-forth exchange, but rather a blossoming forth, and spreading exchange. If they
do not reach a dead end, then these displaced, or unintended, applications can feed
back to the original problem to inform us as to the scope of the model of reasoning.
We have then learned a lot about our original reasoning. Such investigation takes a
community of thinkers spread over time and place. The exploration may take several
generations. We can see examples of such in the history of logic and in mathematics,
and this is the general lesson we can learn from that history. The dialectic is not
restricted to logics, but can also include mathematical theories. But mathematicians
also make metaphorical use of logic in their arguments. We shall see this later in
Sect. 7.4. First, let us pause and look at a toy example of the dialectical use of a
class of formal systems of logic.

7.4.1 An Example of the Dialectical Use of Logic

Let us look at a toy example. Consider the sentence, uttered by me in a state of
inebriation: “either all philosophers are liars or I’m not a philosopher!” Assume
I am in the company of charitable logicians or philosophers who want to make
sense of what I just said. It sounds plausible, after all, philosophers say a lot of
outrageous things, they all contradict each other, they might all be liars. Take the
second disjunct. It might well be the case that I am not a philosopher, but we
do a little investigation, and discover that there are institutional indicators that I
am. Therefore, the second disjunct is false (provided we agree that the institutional
indicators are sufficient to conclude that I am a philosopher).

We are then left with the second disjunct by disjunctive syllogism. The first
disjunct must be true (and only true) if we are classical logicians. But the disjunct is
uttered by a philosopher, i.e., by a liar, and therefore, is false (in classical reasoning).
But then it is true, in classical reasoning, and I find myself in the land of triviality.
Everything I say from now on is true, and I must agree to everything anyone says,
for, all grammatical sentences are true. This is what classical reasoning commits me
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to. Once I have entered the land of triviality, my interlocutors will soon discover that
they can attach no meaning to what I say, and I too will probably sense the same
thing, go mad, and cease to reason at all.

However, this cannot be right, since we utter contradictions (as professional
philosophers) and do not end up in the frightful mess described above. So let us
try to wriggle out. Let us start with the use/mention distinction. Did I use “all
philosophers are liars”, or did I just mention it? I seemed to use it, especially if
we are trying to make sense of it and reason from the sentence, after all, we used
disjunctive syllogism on the sentence to conclude that all philosophers are liars.
So, we are committed to the truth of that utterance. It closely resembles the Cretan
version of the liar paradox, and this was used by a Cretan, and more important, was
interpreted to qualify everything he said. Thus, we cannot wriggle out so easily here.

We could, for example, appeal to a distinction drawn by DaCosta between
apparent and classical contradictions. Classical contradictions are of the sort
described above, they are contradictions in a classical setting and so lead to triviality.
Apparent contradictions are ones that look like a contradiction, but can be dissolved
with the right sorts of qualifiers. For example, we might say that in the phrase “all
philosophers are liars” there is a quantifier ambiguity over lies. Did I mean that
philosophers only utter lies, or that some of their utterances are lies. The second
is more plausible, and it just might be the case that in this particular utterance I
was telling the truth! We might be convinced by this. Notice what I did to wriggle
out. I appealed metaphorically to a class of paraconsistent logics (those developed
by DaCosta and his followers), or more specifically to a distinction common to that
class, and since they are formal rigorous systems of reasoning I have rescued myself
from the fate of the trivialist.

But hold on! Maybe we are not convinced that we can wriggle out so easily.
After all, in this particular context I might have been telling the truth, but I was
lying about the second disjunct. So maybe I was lying in both disjuncts! That is,
we cannot know that I was telling the truth, or, therefore, how to interpret the
quantifier ambiguity over this possible lie. Therefore, by classical reasoning, we
have a classical contradiction, and we step through the gates into the land of triviality
again.

Not so fast. How could I possibly be sure that I can separate off the disjuncts
so neatly using disjunctive syllogism. The two disjuncts are joined (in content or
intent), and so a classical treatment will not do them justice. Maybe we do not
have a classical contradiction (through classical disjunctive syllogism) but rather a
disjunction with a contradiction as one disjunct. Maybe it is a true contradiction, and
we appeal to LP. In the logic of LP, disjunctive syllogism is invalid. Here is why:
one of the disjuncts in the syllogism could be both true and false, symbolised

^

.
This is enough to make the disjunction true. The other disjunct could be just false.
The disjunction is still true, because one of the disjuncts is (in particular) true (and
also false). But the conclusion is false (but also true). So the reasoning is invalid.
Here is the relevant part of the LP truth table for the disjunctive syllogism reasoning
(Table 7.1):
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Table 7.1 Relevant line in
the table for disjunctive
syllogism in LP

p q p V q �p q

^

F T

^

F

So what can we conclude in LP from P V �Q, and Q? Not much. The reasoning
is invalid. But we cannot conclude that I am a trivialist or that I have lost my mind
either. If we opt for the truth-value glut hypothesis, then we can engage in the
philosophical work of the dialetheist. (I will leave out those details here, but we shall
see them later.) However, if we take the dialetheic option as a reductio argument,
then it turns out that the first disjunct is not a dialetheia. If we also agree that I am
a philosopher then we should accept disjunctive syllogism and return to DaCosta’s
distinction, and the dis-ambiguation we used before. Anyhow, we enter a dialectic
between our natural language statement and the different formal representations in
order to understand what we can understand in this toy situation. This was an easy
example. If I am the only philosopher, and I am not lying, it is not a paradox. Let us
now turn to the more mathematical case of the metaphorical use of logic.

7.5 When Mathematicians Use Formal Logic Metaphorically

Some of this material anticipates Chap. 12, but let me give a foretaste. A casual look
at a modern mathematics journal, book or Ph.D. thesis will reveal that not all of the
proofs are done in the form of a natural deduction proof. In fact, only some moves
in the proof are made explicit.10 This is because, it is only in the face of anticipated
doubt, or in the spirit of ‘proof as explanation’ that we write out explicit steps in a
proof.

The relationship between doubt and explanation is tight. We call for explanation
when we are in doubt, not otherwise. The doubt might be mild, and take the form
of curiosity. We are only curious about things which interest us, or intrigue us, and
doubt accompanies that interest. No proofs are needed for obvious truths, or what are
taken to be obvious truths. The norm is to not require formal proof! It is unusual, or
only in particular instances, that we are called upon to give a formal proof. We give
a proof if we think someone might reasonably suspect we are wrong. “Being wrong
is a concrete, particular issue, whereas being right is universal freedom from that
concrete particularity.” (Sundholm 2012, 3). We are usually right, or close enough
not to elicit doubt. So we are called upon to fill in gaps in our reasoning, or to offer

10In fact, in journal articles we have a lot of proofs, and this is because we are meant to be on
the forefront of knowledge. The finding and conclusion should be surprising, curious or dubious
(otherwise we would not publish the finding). It is for this reason that we see so much formal proof
in advanced texts and journals. In less advanced material proofs are less necessary. They are given
in textbooks in order to convince the student to whom the material is new, and to accustom the
student to the language of proof.

http://dx.doi.org/10.1007/978-94-007-7058-4_12
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explanation and justification for conclusions. We do this only inasmuch as we need
to. How much will depend on our interlocutors, or imagined interlocutors. What is
appropriate: whether to fill in the gaps, or give a proof that the gaps can be filled, is
also sensitive to the context, mix of interlocutors or particular circumstance.

When we fill in those gaps, we might do so by appeal to a formal theory, we
might appeal to a proof in a meta-theory which shows that we could fill in the
gaps if called upon to do so. Or more casually, we might appeal to the formal theory
metaphorically. Again, particular circumstances will dictate11 which is possible and
which is appropriate. In sophisticated, delicate, subtle contexts, a dialectic will start
between the formal representation and the original ideas being represented. That
is, there are cases where we formally represent an argument, but discover that the
formal representation reveals something surprising, or that we cannot understand
it fully. An example is the discussion of Lobachevsky’s argument in Chap. 5,
Sect. 5.5, and we shall see more of the dialectic being meted out in Chap. 9. The
development of a formal theory can lead to surprises. The dialectic, or blossoming
forth, constitutes the development of the content of mathematics. It is a cross-
referring process, an incomplete process, and as I mentioned earlier, there is some
re-enforcing of a logic when we deploy a logic, or engage with it. We confirm its
use in another application. We confirm it in our own minds, and it becomes better
accepted by more people in the community.

7.6 Conclusion

In conclusion, we anticipate the next chapters. These are on the notion of rigour and
the notion of fixtures in mathematics. Starting with rigour: to anchor confirmation,
acceptance and understanding we use proofs. We communicate across time, culture,
education and traditions with proofs. Nevertheless, how they are written out in
a particular instance of intended communication is sensitive to the background
suppositions of the intended audience. We try to overcome these boundaries by
developing a notion of rigorous proof. The notion is an ideal, or rather, it is several
ideals. The ideals have parameters. The difference between ideals depends on
philosophical inclinations. A completely rigorous proof should be accepted by all
the mathematicians who share the philosophical inclinations relevant to the proof.

Since the notion of rigorous proof does not have a unique extension, we should
account for this and fend off the concern that ‘anything goes’ in mathematics. This
is not at all the case, as we all know. The philosophical task is to account for this, in
light of the variability of the ideal of rigorous proof. Remember that prima facie the
pluralist wants to recognise and accommodate different orientations and different

11Circumstances are individuated by the people receiving the information, and their knowledge
and background. The people might include people in the distant future, as when historians of
mathematics interact with an historical text, or when a mathematician revisits an old text.
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idealisations on proofs. In Chap. 9 we fill out the story by introducing a notion
which I call ‘fixtures’ in mathematics. These are points of cross-communication and
of checking one theory against another. They buttress the ideal notion of rigorous
proof, and accommodate the variability.

Acknowledgements I should like to thank Batens and Primiero for each separately suggesting
to me that I wanted to use adaptive, or another paraconsistent logic, metaphorically rather than
directly.
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Chapter 8
Rigour in Proof

Abstract Rigour in proof is of utmost importance for the pluralist, since he has no
solid ontology to ground his theory, and his conception of ‘truth’ is also relative (to
a theory). In the first section we look at the pluralist’s motivation for rigour. In the
second section, we develop a characterisation of rigorous proof. There are several
characterisations varying over the account of meaning we attach to mathematical
claims and axioms. In the third section, we evaluate the characterisation with
reference to our motivation. Lastly, we draw some general conclusions for the
pluralist. With the analysis we discover that rigour is a regulative ideal, sensitive
to philosophical inclinations.

8.1 Introduction

We shall begin by looking at the pluralist’s motivation for increasing the rigour of a
mathematical proof. Rigour is of utmost importance for the pluralist, since he has no
solid ontology to ground his theory, and his conception of ‘truth’ is also relative (to a
theory). Nevertheless, it would show a complete misunderstanding of mathematics,
were the pluralist to say that ‘anything goes’ and ‘it’s all relative’ in mathematics.

Mathematics distinguishes itself from other forms of enquiry by its precision and
abstractness. The abstractness of the thinking, of the objects, relations, functions
and functors is controlled, and validated, by proof. It is through proof that
mathematical ideas are disseminated, accepted and understood by the community
of mathematicians. But what is to be counted as a proof is itself a subject of study

This chapter is co-written with Pedeferri. A less pluralist oriented version of the chapter is in the
form of a paper also co-written with him (Friend and Pedeferri 2012).
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in mathematics.1 Standards of rigour of proof vary with conceptions of rigour. The
pluralist has to be able to say something quite firm about those standards, while
accepting that there is some variation. This is what we do in this chapter.

In the first section we shall look at the pluralist’s motivation for rigour.2 Here
‘pluralist’ is meant in the sense of maximal pluralist, or pluralist of third level, as
characterised in Chap. 6. In the second section, we develop a characterisation of
rigorous proof. In the third section, we evaluate the characterisation with reference
to our motivation. Lastly, we draw some general conclusions for the pluralist. With
the analysis we discover that rigour is a regulative ideal, sensitive to philosophical
inclinations.

However, we also observe the lack of rigorous proofs in the literature. Our
diagnosis is that this is because there can be too much rigour in a proof! That is, what
level of rigour is appropriate will depend on context and readership. This explains
why, in practice the ideal standards are almost never met, and that this is accepted
practice. It is a further question to what extent we should be complacent about the
standards of rigour met in practice. A warning note was already sounded in Chap. 5,
and we shall return to the matter of rigour in Chap. 12.

8.2 The Pluralist’s Motivation for Rigour

The pluralist’s motivation for increasing rigour in proof is explicitness and honesty.
This motivation is not to be thought of as emotional but scientific, since it courts
possible objections to given proofs. Explicitness and honesty are scientific virtues.3

Before we characterise ‘rigour’ let us explore how proofs are used and under-
stood. We start with a working hypothesis.

A rigorous proof has no mysteries or shadows. There is a maximal, or optimal,
display of the reasoning.

When we give a rigorous proof, and if there is doubt or a dispute, then it can be
more easily checked than a non-rigorous proof. Consider Fermat’s last theorem.
On many occasions purported proofs of Fermat’s last theorem were subjected to
scrutiny. On every occasion, lacunae were found, and the purported proofs were
deemed unsatisfactory. Wiles’s proof uses results and techniques from several,
quite disparate and new areas of mathematics.4 His first proof was unsuccessful.

1There is an impredicativity in the account of the pluralist. This is also a subject for future study.
2For a discussion of motivations for rigour which are not necessarily pluralist see Friend and
Pedeferri (2012).
3‘Science’, as used here, is not confined to physics, chemistry and biology. Rather, it means any
form of rigorous, earnest and open enquiry.
4For example, the proof uses Eilenberg-MacLane-Steenrod axiomatization of homology and
cohomology in topology, yet it is a problem “in number theory”. Nor is the proof restricted to

http://dx.doi.org/10.1007/978-94-007-7058-4_6
http://dx.doi.org/10.1007/978-94-007-7058-4_5
http://dx.doi.org/10.1007/978-94-007-7058-4_12
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It was only once every move was made sufficiently explicit, that some members
of the community of mathematicians were able to scrutinise the proof and judge it
satisfactory. But the story did not end there.

Since few mathematicians were sufficiently familiar with all of the techniques
employed by Wiles, few felt qualified to review the entire proof. So, there was a
deferring to the expertise of the few; and this leaves, not so much doubt in the
truth of the conclusion, but more a dissatisfaction because of lack of understanding.
A simpler proof was sought. A simpler proof is a type of confirmation of judgment
of ‘success’. A proof might be simpler because it uses better understood techniques
or because it is shorter. Many ideas in mathematics are represented as theorems, and
enjoy several correct proofs. Each proof tells us something new about the idea. So,
proof is not only there to tell us that a theorem is true in a theory, but also to explain
something of the genesis or implications, or ‘spread’ of the proof.

Elaborating on genesis, implications and spread: genesis can be thought of as
historical or conceptual. The first proof of a particular result is historical. We
can learn from it the context within which the mathematician was thinking about
the problem. The situation of the mathematician tells us something of how the
mathematician found the truth of the theorem in question.5 But we can have another
type of genetic proof that shows ‘conceptual origin’. These conceptual genetic
proofs give a justification for the theorem in terms of some more primitive, or
‘foundational’ theory. That is, the proof fits the result into a different context, and
that context is meant to hold some philosophical virtues, such as sparse ontology,
logical primitiveness, intuitive appeal and so on. Arguably, Frege had this sort
of idea in mind when he set up his logical theory, and proved already accepted
truths. He was not confirming that they were true, rather he was giving an ultimate
justification for our theory of arithmetic in terms of logical notions. His ultimate
justification had the philosophical virtues of universality, analyticity and logical
validity (Friend 1997). These were genetic proofs in the conceptual sense.

Since the pluralist is pluralist about foundations, he cannot remain silent in the
face of such philosophical claims about ‘ultimate justifications’. He will temper
them by removing claims about absolute truth or essence, and replace these with
implication and spread. The implications of a theorem concerns the spread ‘internal
to the theory’, how the theorem affects our understanding of the ontology of the
theory, or connects ideas in a theory together, demonstrating their relationship to
each other.6

these areas of mathematics. In 2009, Mark Kisin simplified Wiles’s proof “so it does not really
use algebraic geometry, but is still all about the ‘cohomology’ that Grothendieck invented and
which descends through Cartan and Serre from Eilenberg-MacLane-Steenrod.” (McLarty, personal
correspondence, 2010).
5There are exceptions. Under a formalist influence, a mathematician will try to hide the genesis of
a proof or idea. Thus, he presents the proof as standing on its own.
6As a side note, it is interesting to think of reductio proofs as giving us the limitations of internal
implications. Think about reductio proofs as telling us that if we introduce notion x (expressed as a
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Spread, concerns the implications for other theories.7 Spread to other theories
becomes transparent if we make a proof in a theory which has wide scope, such as
set theory or category theory. So, the rigour of a proof is not only conducive to our
accepting the result as true, but also in understanding the result in its implications.
Rigour is the first step towards such understanding.

How does this work? When we make the inferential steps in a proof explicit,
we expose the reasoning to careful scrutiny. In mathematical proofs, it is not
enough (except in some applications) that an inference is probably correct, it has
to be definitely correct.8 The notion of correctness used by the pluralist is not
an absolute notion, transcending all of mathematics, since we have no absolute
judge of correctness in the form of a foundation. Rather, we judge correctness, or
evaluate a proof, by reference to background knowledge. This accords with reports
on the practice of some mathematicians. The background knowledge might include
a number of theories, some quite abstruse. For example, some proofs require the
existence of some remote large cardinals, embedded in a big theory. Oddly, the
big theory is “much shakier than the mathematics that we do” (Thurston 1994,
171). This is because of the presence of, for example, large cardinals, which many
mathematicians do not feel they fully understand. Nevertheless, the appeal to the
large cardinals in a proof of “less shaky mathematical ideas” helps us to better
understand those large cardinals. In these cases, the confirmation of the theorem
is only as strong as the most abstruse or ‘shaky’ notions in the proof. But seen
the other way around, the proof acts as a re-confirmation, through a link with, the
abstruse mathematics. It helps the abstruse part to come closer to the ‘main stream’,
and be accepted, known and understood.

The importance of explicitness lies not in communication of true mathematical
facts, but rather, in its acting as an invitation to judgment and further exploration of
limitations. Under this motivation for rigour, there are three aspects to a proof and
what it communicates.

(a) There is the conjectural aspect of the theorem, which is purportedly proved.
(b) There is the exposure of the reasoning, so that this can be scrutinised – leading

to a judgment, not only about truth, but also about spread.
(c) There is the invitation to explore the limitations of the results: the limitations of

the theorem and the justifications for the theorem.

Working backwards: exploring the limitations (c) is done by looking to the class of
meta-theories. If we know something of the class of meta-theories within which the

wff), then the theory becomes absurd. Here, since we are sensitive to the paraconsistent logicians,
‘absurdity’ can mean non-triviality, rather than non-contradiction.
7Wright refers to this as the width of cognitive command, and the greater the width, the greater
the objectivity of the notion (Wright 1992). Squaring the pluralist account with Wright’s sensitive
treatment of objectivity is the subject of future research.
8This is because the ‘probability’ being evoked here is subjective probability, and depends on
knowledge and experience.
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proof is acceptable, we know a lot about the scope of the proved theorem. Of course,
the relation is not tight or complete in practice, since we might not know what the
maximal meta-theory is, so what the maximal scope of the theorem is. Also, we
might not know what the minimal meta-theory is, so the minimum needed to justify
a theorem. Reverse mathematics only goes some way to helping us to be precise.9

Worse still, we might not have a particular meta-theory in mind at all, and might
just help ourselves to ‘whatever it takes’ or ‘whatever seems appropriate’ to verify
a proof, and defer learning about some relevant meta-theories. We saw an example
of this in Chap. 5, when we discussed the classification of finite simple groups. So
the ‘theory’ in ‘meta-theory’ might not be an explicit theory at all, but more the
background knowledge, and general context, which we assume can be made more
explicit if necessary.

What we do know is that if the proof of a theorem is acceptable in a meta-
theory (or a class of meta-theories), then we know it will be true along with every
theorem of theories verifiable by that meta-theory or that class of meta-theories. The
exploration of the limitations, constraints of a theorem or idea is where a lot of the
interesting work is done in mathematics. Referring to (b), what is nice about giving a
very transparent and meticulous proof is that the justification is exposed. It can then
be scrutinised, questioned, corrected, developed etcetera. Sometimes we confirm,
and sometimes we innovate, as a result of scrutinising our justification. In this
sense, scrutiny is a means of understanding or making links between mathematical
theories. The scrutiny exposes (a) the conjectural aspect of the idea, or theorem. We
shall not say more about this here. Discussion is deferred to Chap. 12.

Before moving to the next section, it might be worth distinguishing justification
from explicitness. ‘Justification’, as it is used here, is a term we take from the
constructivists, such as Martin-Löf and Sundholm (Sundholm 2000, 6–7). They
believe that judgments are made of theorems known. For a constructivist, knowledge
does not come in degrees. Justification is a wholly epistemic notion; and while a
particular justification, (or set of justifications) could be in error, if we are assured
that no error has been made, then we have certain knowledge.

The notion of ‘explicitness’ is looser. The pluralist ‘rigour as explicitness’ view is
not just comprised of the twins: justification and error in proof. For, the justification
can itself be questioned and scrutinised. For the pluralist, knowledge rests on
justification, and justification is not absolute. While justification and knowledge are
mirrors of each other, they both vary together. There are degrees of knowledge,
as there are degrees of justification, and these degrees depend on degrees of
explicitness. Unlike for the constructivist, for the pluralist, there is no presumption

9To complicate matters, we should also recall that the minima of one person is not the minima of
another: so, for example, we might show that we only need three axioms and one rule of inference
to generate a proof of a certain conclusion. Someone else might say that this is not minimal in
an interesting sense, since some of the axioms are very powerful. It would therefore be better,
according to that person, to show that the same conclusion can be deduced, maybe using more
axioms or rules, each of which is less powerful. Reverse mathematics, as it is practiced, makes
particular assumptions about what counts as ‘minimum’. The choice can be questioned.

http://dx.doi.org/10.1007/978-94-007-7058-4_5
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that there is a ‘bottom’ or end to our investigations. There is no atomic, or most
primitive unit of knowledge. There are only relatively stable units; ones where we
cannot imagine calling them into question. Knowledge, justification and explicitness
are revisable, not only in virtue of the possibility of error, but also in virtue of other
concerns as well, such as goal or increased understanding in another field. We might
know everything we need to know about a theorem, for now, but we might well
discover later that we did not know everything, that the justification can be, or even
needs to be, deepened, to be re-secured in light of new concepts, theories or ideas.
For example, we might learn that a term, axiom or constant, is ambiguous. If said
term, axiom etcetera, is used in a justification, then that justification is not so much
in error, but rather, it needs to be re-examined with disambiguations in mind. For
example, take the word ‘set’. ‘Set’ might mean ‘set’ as implicitly defined by ZF,
by ZFC, by Gödel Bernays set theory, by Cantor, when he used the term and so
on. Moreover the set theory we use to ‘define’ ‘set’ makes its own assumptions,
concerning the law of non-contradiction, for example. ‘Set’ is ambiguous, and a
new meaning is added with every new ‘set’ theory.

Having said this, it might seem mysterious that rigour is a virtue of mathematical
proofs, since it rests on shaky ground.10 However, it is exactly rigour which gives
us stability, albeit momentarily. Rigour is something we can, and do, come to
agree upon. Moreover, under our motivation of explicitness, there will be (ordinal)
degrees of rigour displayed by particular proofs. It is the general agreement about
these degrees of rigour that lends stability to our notions of truth and objectivity in
mathematics. Now that we have our motivation, let us characterise the virtue: rigour.

8.3 A Characterisation of Rigour

The notion of rigorous proof we shall develop is inspired by Frege’s notion of a
gapless proof. Frege’s gapless proofs start with axioms of logic (Basic Laws), which
are presented to us as indubitable. Each step in the proof is either a substitution
of one term for another, or is an instance of modus ponens. Frege’s notion of
gapless proof was very strict, in fact, too strict as a standard for mathematical
practice. Thus, the idea of ‘gapless proof’ has been loosened by logicians after
Frege, and can be recognised in its modern cousin: ‘logical deduction’. But since
the notion of logical deduction is usually made in reference to a particular formal
theory, pluralists broaden this notion further, to more optimally reflect mathematical
practice. Our notion is optimal in the sense of setting an ideal standard of proof while
accommodating logical pluralism. We shall introduce the term ‘rigorous proof’ as a
new technical term. Here is the definition.

10It can also be a disadvantage (Goethe and Friend 2010, 285).
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Definition An rigorous proof is a proof that proceeds from axioms or premises,
and in which every line of proof is accounted for by reference to a rule of deduction
or by appeal to what is presented as an axiom of a theory, a premise or a definition.
Each of these has to be of the right sort to qualify.

The rules, axioms, premises and definitions have to meet certain criteria. The criteria
are the same for axioms and rules since an axiom can be expressed as a rule, and a
rule can be expressed as an axiom.11 The difference is that rules have the connotation
of an action, whereas axioms have the connotation of a fixed eternal truth. Since we
can inter-translate axioms and rules, the connotations can be taken quite separately
from the mode of expression, and we can ignore them here. Henceforth, most of
the time, we shall simply use the term ‘axiom’ as standing for ‘axiom and/or its
corresponding rule’. The criterion for a formula to qualify as an axiom is that it be an
immediate judgment, in the sense of self-justifying. Self-justification is justification
in terms of meaning.

Slogan A self-justifying axiom is an axiom that is true in virtue of the meaning of
the symbols used in the wff.

The ‘meaning’ can be located in one, of at least four places, giving at least four
interpretations of the slogan. We elaborate on the four, in order to fend from
misinterpretation. The pluralist will favour the last.

(i) The meaning might be quite independent of the formal representation.

The account of meaning then proceeds: we have a prior (to formal representation)
understanding of a concept (say that of conjunction). We then represent the concept
with a symbol, and write out an axiom, or several axioms, which reflect, or represent,
the meaning of the symbol. The axiom captures and gives formal expression to the
prior understanding. This account suits the realist conception of formal system. In
this case, our slogan with this interpretation can be made more precise:

Slogan (i) An axiom is self-justified just in case it represents the real meaning of
the symbols in the axiom, where ‘real’ is independent of the formal representation,
and independent of us or our abilities to know it.

For an alternative account of meaning, we shall switch the language back to rules
rather than axioms, since this account of meaning is better suited to a constructivist
rule, in the style of Martin-Löf’s constructive type theory, and is not far from, in this
respect, Gentzen’s system of sequent calculus or Dummett’s intuitionist system or
Heyting’s intuitionist formal system.

11There are some delicate exceptions. For example, the rule of induction is not as strong as the
second-order axiom of induction. There are some theorems we can prove using the axiom which we
cannot prove using the corresponding rule. The difference has to do with the universal quantifiers
in the axiom, since this is different from the implicit ‘quantifier’ of when we can apply a rule.
Tait pointed this out to me in conversation at the AMS (American Mathematical Society) meeting
March 2012. These subtleties need not concern us here.
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(ii) The meaning of the connectives is constituted by the rules governing them. The
rules are a type of logical action.

Notice that when we say this, we have more than a mere stipulation. The rule
is meant to capture a type of act of reasoning which is natural to humans and
is knowledge preserving and knowledge conducive. In its formal guise, the rule
is developed in order to bring reasoning about all of the logical symbols of the
language in harmony. Formally this is easier to verify if there are very few logical
connectives, or symbols to define.12 Each stipulated rule, governing one symbol as
main connective in a wff, is made with the idea of what distinguishes that type of
logical inference from inferences associated with the other symbols in the language.
Part of the meaning is given by the introduction and elimination rules by themselves,
but part of the meaning is also given by way of contrast to the other rules.13 So part
of the meaning (what the symbol could have meant, but does not mean) is given by
the system of rules in which the rule is imbedded.14 That is, the rule has to make
sense in the context of the whole of the formal system, and it has to make sense with
respect to the acts of reasoning of humans. In particular, the whole system should
not be trivial, and should resemble our natural reasoning. We shall call deploying
such a rule, ‘making an immediate judgment’. The new version of our slogan is:

Slogan (ii) A rule is self-justified when it is the result of an immediate judgment.

Note that ‘immediate’ is not meant in the temporal sense, but in the sense of ‘un-
mediated’. It might take us quite some time to come to an immediate judgment!
This happens just in case it takes some time for us to appreciate that it is true and
to appreciate that there is nothing more we can say to justify the rule. Thus, for the
constructivist, there is a last thing we can reasonably say in a justification, and the
justification is entirely strong. There is no regret that we cannot say more. There is
no search for more to say.

12There is a limit. Because of the ‘naturalness to humans’ clause, a logic with the Sheffer stroke
as the only connective is technically nice, but is not very natural because of the awkward match
with natural language. Moreover, different linguistic communities will have very different notions
of what counts as natural, for example concerning negation.
13This second part is not explicitly acknowledged by Dummett et. al. because they wanted meaning
to be strictly additive. That is, it should be possible to understand one rule in isolation of the others,
in order to respond to the manifestation requirement, dear to Dummettian anti-realists. We think
that put starkly, this is naı̈ve. Context does a lot of work in helping us to understand a term or
concept. Put another way: while it is quite right that we can take a formal set of rules, and modify
them one at a time, it does not follow that the meaning of, say, conjunction is necessarily unaffected
if we ‘only’ explicitly modified our rule for conditional introduction.
14Constructivist mathematicians and logicians try to give an elimination and introduction rule to
one connective symbol at a time. This is in order to separate the meaning of, say, conjunction from
that of, say, disjunction. One motivation for this is that if we find that we have problems with the
system – it generates unwanted conclusions, we can make minimal re-adjustments. All of this is
correct, however, I do not think we can escape the idea that part of the meaning is implicit in the
other rules in the formal system. See Appendix 2, where we discuss Prior’s rules for the Tonk
connective.

http://dx.doi.org/10.1007/978-94-007-7058-4_BM1


8.3 A Characterisation of Rigour 143

For the pluralist, in contrast, this sort of immediate judgement can only indicate
temporary stability. The pluralist regrets not being able to justify a claim further,
and assumes that this is a temporary state of affaires, and that we shall later find
further justification.

(iii) The meaning of an axiom is all and only stipulated by the axiom.

This is more of a formalist take on axioms. The notion of ‘meaning’ here is very
light. It is unrecognisable to the realist or the constructivist. At most (formal)
‘meaning’ is ‘use’ here, and the ‘use’ is all and only governed by a rule or
axiom. A rule or axiom can be arbitrarily stipulated provided, in principle, it could
be used. It follows that the collection of axioms or rules is subject to very few
restrictions. One traditional restriction, thanks to Hilbert, is that any combination
of axioms should not allow contradictions to be derived (or be self-contradictory).
As we saw in Chap. 6, ‘avoiding triviality’ might be a better limitation, since
we can have perfectly effective and non trivial formal systems which do allow
some contradictions. Effectiveness is also often used as virtue of a formal system,
since effectiveness is one way of specifying what we mean by ‘possible use’.
‘Effectiveness’ is conceptually related to Hilbert’s notion of ‘finiteness’, and could
be thought of as the modern counterpart. As we saw in Chap. 6, the idea, then, is that
a person could be introduced to a formal system without any appeal to applications
or intuitive underlying ideas. Better: we could set up a computer to deploy the formal
system. We can manipulate the symbols blindly, or mindlessly. Our slogan then
becomes:

Slogan (iii) An axiom can only be self-justified in a particular formal context. It is
justified in virtue of being a wff in the language, and when added to a given effective
formal system does not turn the formal system into a trivial system or ineffective
one.

Lastly,

(iv) Meaning is not a fixed entity.15

It changes and evolves. It is dynamic. Under this thinking, we might draw up the
following account: we start with a concept, which is not completely precise. We
might find that we are dissatisfied with the imprecision, or that we are encountering
conflicts or difficulties. We could detect this phenomenologically, in attempting to
communicate or justify an idea. As a bid for clarity we try the strategy of giving
the concept a formal representation. We give axioms that are supposed to capture
the essential aspects of the concept. What the formal representation does is to give
a very rigid and precise temporary (or formal) meaning to the concept. We then
become familiar with the rigid concept. We can then re-check it: does the rigid
version represent the informal version? The answer might not even be a ‘yes’ or

15I am aware that some readers will start to feel distinctly nauseous at this suggestion. If you feel
this way, then please, rest a while, have a wee dram, and when you feel a little stronger, consult the
section on nausea in Chap. 11.

http://dx.doi.org/10.1007/978-94-007-7058-4_6
http://dx.doi.org/10.1007/978-94-007-7058-4_6
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‘no’ answer. It might be a discovery that there were subtle nuances, which we were
not aware of before we introduced the formal concept.16 It might be that we have
discovered that the informal concept was hopeless in some sense: say leading to
other problems, so we let the rigid version take over the meaning,17 or we might say
that our informal understanding has been modified in light of the formal concept.18

Here the meaning emerges as a result of the interplay between the initial concept, the
formal version of the concept, our language (formal or informal) and other concepts.
The meaning grows and dwindles and shifts with use and spread of connections. The
mathematical idea or concept is shared through communication by means of formal
representation, and the meaning changes. This is a complex, nuanced and dialectical
notion of meaning. It is both ‘meaning’ in the first person, and in the third person.
Our slogan now becomes:

Slogan (iv) An axiom is self-justified iff after an honest search, we have found no
further justification, and it makes better sense of the concepts in the axiom than the
alternatives we have looked at. Self-justification of an axiom indicates a temporary
and relative stability. The stability is relative to the whole theory and greater context.

In other words, the axiom is accepted when it has been carefully scrutinised for
fit with our other conceptions, axioms etcetera. However, ultimately, it can be re-
examined.

Under the first three notions of meaning canvassed above, the axiom or rule
governs the symbols used in stating the axiom. There is nothing to say to someone
who doubts the rule, since the rule cannot be justified by appeal to other rules,
to facts or to other logical systems. One simply accepts the rule or one does not.
Acceptance is a pre-condition for using the formal system (correctly). However,
for case (iv) we have to say a little more. Since, under the last conception of
meaning, meaning is dynamic, adjustments are sometimes made, and are at least
thought to be possible. In the last case, we might ‘justify’ a self-justifying axiom
negatively by looking at failed axioms, or axioms which look very similar and are
found lacking. We do this by changing the symbols one by one, or several at a
time. We ask the questions: do we really mean to use a biconditional here, and not
just a single conditional? Do we want the universal or the existential quantifier?
Do we need to introduce/develop more symbols, rules or axioms? In some sense,
this is the sort of scrutiny we will have used to come up with the axiom in the
first place. The only difference here is that coming up with the axiom does not
close discussion, since the terms we used to introduce the symbols, which make

16The view is that the exercise of giving a formal representation of an idea, or group of ideas, is
an exercise in deepening understanding, since it gives us something relatively precise and fixed to
measure our original concepts against.
17In this respect the pluralist distinguishes himself from a Brouwerian intuitionist who locates
all meaning and real mathematics in the mind and never on the written/typed, page. For the
Brouwerian, formal representation fixes and therefore necessarily distorts real mathematics.
18For interesting conjectures of how metaphor and symbol influence mathematical development
see Johansen (2010, 193–194).
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up the axiom are also, potentially, changing meaning. For example, we can ask
the further question: how are we understanding the quantifiers in this axiom? Are
they substitutional, objectual, does the universal quantifier imply the existential
(are domains non-empty)? So re-checking (albeit negatively) that an axiom is self-
justifying; re-checking that there really is no more to say, is always an option.
Following Cellucci (2008, 12), we can say that an ‘axiom’, as the term is used in
mathematics, is, philosophically, a hypothesis.

We discussed these four notions of meaning as qualifiers to the idea that an
axiom or rule in a proof has to be of the right sort. It has to be self-justifying,
and this can be understood in many different ways. To finish filling out this notion
of rigorous proof, the last comments we owe concern definitions and premises. We
shall make life easy for ourselves, and say that definitions, in a rigorous proof, are
simply shorthand expressions.19 So nothing new is introduced when we appeal to a
definition. Premises are simple too. They have to be truth-apt wffs.

We made all of these qualifications concerning criteria for being an axiom, a rule,
a premise or a definition in order to understand the definition of a rigorous proof,
which we repeat is:

A rigorous proof is a proof that proceeds from axioms or premises, and in which
every line of proof is accounted for by reference to a rule of deduction or by
appeal to a self-evident axiom, a premise or a definition.

What is to be counted as a rigorous proof varies with what counts as a self-evident
axiom or rule, and this varies with one’s philosophical inclinations. Thus, what is
recognised as a rigorous proof for one person does not so count for another. We can
now appreciate that there will not be uniform consensus over whether a particular
proof is rigorous or not. The pluralist favours the fourth notion of meaning, but
recognises that the others are used. The fourth variation will also admit of degrees
of rigour in a proof. Degree of rigour is measured by reference to degree of scrutiny.

8.4 Evaluating the Characterisation

Rigorous proofs, as they are defined above, seem to set a good and high standard
of rigour. We are now in a position to evaluate the characterisation with respect to
the motivation of explicitness and honesty. Rigorous proofs are certainly explicit.
The justification for the conclusion of a rigorous proof can be traced without
ambiguity. However, there will be practical limitations which interfere with our
always writing out rigorous proofs. For example, some proofs are too long to follow.
Consider the four colour map problem: that any map on a two dimensional surface

19We could make the notion of proof more complex by allowing impredicative definitions or
contextual definitions, where a contextual definition is one where the biconditional of definition
is within the context set by quantifiers, and where one side of the biconditional of definition is an
equivalence relation.
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can be coloured-in using four colours in such a way as to never have the same
colour adjacent. A computer has worked through all of the possibilities, and has
confirmed that, indeed all we need are four colours. The proof is too long for any
one person to check. However, one person can check the program, which generated
the proof. That is, we can check that there is a rigorous proof, where an effective
algorithm is thought to count as a type of rigorous proof. Checking that there is
an acceptable proof is often what we do in mathematics. As Bostock writes: “one
does not actually construct such [axiomatic] proofs; rather one proves that there is
a proof, as originally defined” (Bostock 1997, 239). If we have a proof that there is
an underlying proof of a proof of a certain sort (our favoured version of a rigorous
proof) what does this indicate?

If the meta-proof is a rigorous proof, then we have met the motivation of
explicitness and honesty, even if we have accounted for this only at the meta-level,
and not directly. The meta-proof is explicit and honest concerning the object-level
proof because all there is to following the underlying rigorous proof is to use
rules, which are approved of in advance, and these are revisable, if there is further
difficulty. But, as we mentioned, rigorous proofs are seldom found in mathematics
at the object level or at the meta-level. There are limitations to the concept. In
particular, what is indicated when a meta-proof, itself, is not a rigorous proof?

8.5 The Limitations of Rigour for the Pluralist

We have characterised rigour, for the pluralist, and, in general, it is a virtue. But
it has limitations. In particular, in practice, we do not write out rigorous proofs in
mathematics. So the notion does not reflect practice. But should we not take rigour
to be normative and therefore, bring practice in line with the notion? There are
practical reasons of time, space, resources and so on which weigh against writing
out rigorous proofs. We skip some steps if they have been accounted for in advance,
in the form of lemmas. We also refer to proved theorems and lemmas from the
work of others. There is no need to reproduce these every time. But all of this meta-
accounting implies that we could make a full rigorous proof, if called upon to do so.
The question then remains, what happens when a meta-proof is not itself a rigorous
proof, and we do not have sufficient evidence that the proof really can be turned into
a rigorous proof? Is this adequate?

A rigorous proof forms the core of, underlies, or is an idealised version of a
proof. For this reason, the pluralist thinks of rigorous proofs as regulatory ideals.
The motivations for rigour reach beyond the proof itself. They reach to the context:
once we have as much as is practicable of the proof displayed in full rigour, we need
to be explicit about the context of proof. This requires us to say something about the
proof in a meta-language. Moreover, the meta-language has to include justification
for the axioms and rules. We can set up a protocol, but again, as a regulatory ideal.
That is, the ideal is there to regulate disputes or assuage doubt. If no doubt is present,
then there is no need to follow the protocol.
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Say we come across a dodgy proof, moreover, the theorem proved raises doubt.
Here ‘doubt’ is a trained professional reaction, not just a subjective feeling. What
sort of protocol might we follow in this instance?

1. Re-read the purported proof.
2. Think about the conclusion independently of the proof.
3. Fill in doubtful moves in the proof, as per the notion of a rigorous proof. Failing

this, rigorously prove that there is a rigorous proof.
4. Look to the context, or class of meta-theories. Check the proof that proves that

there is a rigorous proof. Go to (1), but this time you are looking at the proof of
a rigorous proof. When you get back to (4), if you are still in doubt, move to (5).

5. Think more widely about the class of meta-theories or the general mathematical
context of the proofs. Maybe the underlying logic should be re-examined.

In practice, mathematicians do not follow this protocol, although it is a description
of what one could do, in order to be rigorous. As Thurston observes:

Mathematicians apparently don’t generally rely on the formal rules of deduction as they are
thinking. Rather, they hold a fair bit of logical structure of a proof in their heads, breaking
proofs into intermediate results so that they don’t have to hold too much logic at once.
(Thurston 1994, 164)

Worse, they might find very little value in a formal proof.

Fabio Conforto described his colleague and co-author’s [Enriques’] “powerful intuitive
spirit” and unalterable belief in “an algebraic world that exists in, and of itself, independent
and outside of us” – a world in which “seeing” was the most important implement in
a mathematician’s toolbox: Enriques did not feel the need of a logical demonstration of
some property, because he ‘saw’; and that provided the assurance about the truth of the
proposition in question, and satisfied him completely. (Babbitt and Goodstein 2011, 242)20

(Italics mine)

So, generating rigorous proofs is rarely done. ‘Seeing’ is one way of meeting
steps 2 and 5 of the protocol. However, we want some idea of rigour in order to
check on reliability of proofs and results, especially if there is a dispute.21 Again,
however, the protocol is not followed in practice. It is only a regulatory ideal.
Thurston again: “reliability [of results] does not need to come from mathematicians
formally checking arguments: it comes from mathematicians thinking carefully
and critically about mathematical ideas”. This is presumably justified because the
mathematician’s working system is trustworthy in general. We think this because

20Enriques’ most important proof was that the “characteristic series of a “good” complete
continuous system of curves on a smooth algebraic surface F is complete. (Here “good” in the
old Italian terminology means not superabundant, or, in modern terms, the first cohomology group
of a divisor class should be zero).” (Babbitt and Goodstein 2011, 244.) The proof had a gap. This
was not ‘filled’ until the appropriate algebraic tools were developed much later. This is one of the
many interesting cases of mathematicians feeling that they are right, and being proved right much
later.
21There was a rather heated dispute between Enriques’ and Severi who criticised his proof in print.
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it is “quite good at producing reliable theorems that can be solidly backed up”
(Thurston 1994, 170). Sometimes, the ‘solid back up’ is a promissory note, and
the truth of the theorem is an article of faith.

A sceptical attitude [because of gaps in the proof] towards these ideas [of infinitely close
points and curves] is easy to have but it is not very productive. Instead, those who are more
trusting of what these concepts can yield, will, I am sure, discover new results in other
fields. Quoted in Babbitt and Goodstein (2011, 246), from Enriques (1938)

This is why we do not think we need to follow the protocol in most or any instances.
But we have to be careful about what ‘solidly backed up’ means here. It either
means with reference to a rigorous proof, or something like it, or it means that
we have found application – so we have an ‘independent’ check. The application
might, however, turn out to not be very independent. For example, we might find an
implementation for a result in computer theory, but the computer theory shares some
preconceptions, and at least an underlying logic, with the result, so the ‘backing
up’ is not so independent after all. Similarly, the idea of ‘solidness’ is not very
convincing. All we have is a spread of results over a number of independent theories,
but they are independent for reasons of evolving in different traditions, or having
other goals, not for reasons of mathematical independence. In fact, they could
not be mathematically wholly independent, because if they were they would be
incommensurable, and therefore incomparable, and not reassuring at all! To be more
careful, we would say that they are epistemically independent, or “we are not aware
of the connections at present”.

Nevertheless, were we to make rigorous proofs, we would find that they are
maximally rigorous within a given axiomatic theory. Within that theory, we cannot
be more rigorous. Every step in the proof is accounted for. Where the notion
loses its stability is when we step out of the theory and question the axioms or
rules of inference, where we question the definitions or licence for substitution
(Cellucci 2008, 165). In fact, we can think of a rigorous proof as a way of exposing
every move to invite greater scrutiny. The scrutiny has to come from an external
perspective – usually from a meta-theory, meta-perspective, or transcendental
perspective, possibly from intuition, or the mathematical world we ‘see’. The
external perspective, the notion of crosschecking in mathematics, is the subject of
the next chapter. There I say something quite precise about the nature of the external
perspective. Nevertheless, what this discussion of rigour has taught us is that we can
think of a gap in a proof in this way too: as an invitation to either fill in the gap,
or to seek an independent outside perspective. One way of anchoring the outside
perspective is through invariance; another is through parameters. Since invariance
and parameters can be used to better anchor our judgement of rigour, we turn to this
in the next chapter. The next chapter, and Chap. 12 are both close companions to
this one.

http://dx.doi.org/10.1007/978-94-007-7058-4_12
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(Eds.), PhiMSAMP philosophy of mathematics: Aspects and mathematical practice (Texts in
philosophy 11, pp. 179–196). London: Individual Author and College Publications.

Sundholm, G. (2000). A plea for logical atavism (Manuscript of lecture presented at LOGICA
2000).

Thurston, W. P. (1994). On proofs and progress in mathematics. Bulletin of the American
Mathematical Society, 30(2), 161–177.

Wright, C. (1992). Truth and objectivity. Cambridge, MA: Harvard University Press.

http://www2.units.it/episteme/


Chapter 9
Mathematical Fixtures

Abstract The pluralist sheds the more traditional ideas of truth and ontology. This
is dangerous, because it threatens instability of the theory. To lend stability to his
philosophy, the pluralist trades truth and ontology for rigour and other ‘fixtures’.
Fixtures are the steady goal posts. They are the parts of a theory that stay fixed
across a pair of theories, and allow us to make translations and comparisons. They
can ultimately be moved, but we tend to keep them fixed temporarily. Apart from
considering rigour of proof as a fixture, I discuss fixed models, invariant notions
and fixed information about objects across theories. There are other fixtures, but it
is enough to start with these.

9.1 Introduction

In the last chapter we ended with the need to buttress the notion of rigorous proof.
I propose as a buttress, the notion of a fixture. A formal logic is an obvious
‘fixture’, since it fixes the reasoning allowed in a mathematical proof. It upholds
the mathematical theory. We discussed this in Chap. 5 and in the last chapter, so I
shall not discuss it here. Instead, we shall look at other sorts of fixture.

‘Fixtures’ are notions which stay fixed across mathematical theories.1 They are
preconditions for crosschecking in mathematics.

The ideas for this chapter came from discussions with Pedeferri and Mourad. I should like to thank
Priest for checking the material on the collapsing lemma and on chunk and permeate.
1The word ‘fixtures’ is supposed to be suggestive of the notion of a fixed point in mathematics, but
it is a little looser than that of fixed point.

M. Friend, Pluralism in Mathematics: A New Position in Philosophy of Mathematics,
Logic, Epistemology, and the Unity of Science 32, DOI 10.1007/978-94-007-7058-4 9,
© Springer ScienceCBusiness Media Dordrecht 2014

151

http://dx.doi.org/10.1007/978-94-007-7058-4_5


152 9 Mathematical Fixtures

Mathematics, more than any other discipline, involves crosschecking.2 We check
one theory against another.

In this chapter, I discuss three sorts of fixture other than that of rigorous proof. I
discuss: fixed models, invariant notions and fixed information about objects across
theories. There are many more. But even in looking at three we can form an
impression of the breadth and variety of crosschecking in mathematics.

I advance the thesis that the crosschecking supplants the need for absolute truth,
absolute and independent ontology, a foundation or for a single orientation.

This thesis overhauls many preconceptions in the philosophy of mathematics, and I
think that it offers a better account of the practice of mathematics.

The first fixture comes from structuralism, and is given general expression in
model theory. It follows on the heels of the chapters on structuralism and formalism
in Part I of this book. The second fixture comes from the Erlangen programme.
The work of Klein inspired Lindenbaum and Tarski to generalise on his methods
and apply them to questions in logic. They developed an idea of invariant, or fixed
notions in logic. This is different from developing a fixed formal logic, since the
logical notions are common to several different formal systems. The third comes
from Lobachevsky. In Chap. 5, we witnessed Lobachevsky importing hyperbolic
geometry into a ‘foreign’ context (Euclidean geometry), for the purposes of a
proof.

There are other ideas we could develop along these lines. In general, the idea of
‘fixtures’ testifies to mathematicians applying one part of mathematics to another.
Contemporary mathematicians do this all the time; they analyse a mathematical
theory with reference to, or with the tools of, another theory. Moreover, the theory
giving the analysis, interpretation or insight is not always consistent with the theory
being analysed, and this sets off alarm bells, especially for philosophers.

More traditional philosophers are inclined to think that the only explanation
for the presence of together inconsistent theories (such as spherical and plane
geometry) is in terms of embedding one theory into a foundational theory or into
one orientation, which they then identify with a foundation for ‘mathematics’.
They aspire to show that we can reduce mathematics to a (unique) foundation, or
capture all of mathematics by means of an orientation; so all of mathematics is
‘consistent’ (or coheres) in the end. What look like together inconsistent theories,
are simply sub-theories of the bigger theory. The sub-theories might contradict each
other in some respects, for example, commutativity might hold for ‘addition’ in
one sub-theory but not in another. But the foundational theory compartmentalises

2This was less the case in the past, especially when geometry and arithmetic were kept quite
separate, but not completely. The interaction between the two makes for fascinating history. Today,
we do not so much use arithmetic to check geometry and geometry to check arithmetic, but rather,
we use set theory, and the ultimate tool: model theory to do this. However, as we saw in Chap. 4,
and as we shall see more precisely, model theory has its limitations.
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the sub-theories so that there is no explosion through ex contradictione quodlibet.
The compartmentalisation is what allows the definitions and axioms of the particular
sub-theory to also conflict with those of the foundational theory, or orientation.

However, as we have seen in the first chapter, the foundational project, as it is
philosophically conceived, should be reconsidered. The evidence is simply lacking
for the sort of foundations philosophers have been looking for: one providing an
essence, ontology or absolute truth for all of mathematics. Similarly, the idea of a
unique orientation is limited. We saw this in Chaps. 4 and 5. If we are ambitious
to overcome the limitations, then we need a new idea, which can account for
the otherwise seemingly casual borrowing between theories, the lack of rigour in
accepted proofs, the variation in what is to count as a rigorous proof or the applying
of one mathematical theory to another. The pluralist replaces the idea of foundation
with fixtures. There are many of these, and there will be more developed in the
future. As long as there are some, mathematics, as a discipline, is cohesive.

Of all the orthodox philosophical positions, the formalist and the structuralist
come closest to suggesting this idea, but both positions are more restrictive than
necessary, and than is desirable, if we want to account for present day mathematical
practice. Because the formalist and the structuralist come the closest, we shall start
with the formalist and structuralist philosophies, and develop the idea of fixtures
from these. We end up with a more fluid, accurate and tighter conception of
mathematics. The conception is more fluid because it allows for different types of
fixture. The view is more accurate because it highlights what mathematicians are
in fact doing, and the conception is tight because it accounts for the different ways
in which mathematics re-enforces other mathematics, and that this can be done in
several quite different ways.

More specifically, the formalist project is limited, and it is in overcoming the
limitations that the pluralist replaces the notion of finitistic, or effective, rigorous
proof and consistency of theory, with the notion of fixture. The pluralist can then
account for the practice of using together inconsistent theories in a much more direct
way, although he also endorses the formalist strategy of fixing an underlying logic
when this will work, and he endorses the structuralist strategy of finding a meta-
structure, when this will work. The formalist and structuralist strategies are possible
strategies amongst others, and we need more than those two strategies to develop an
accurate account of mathematics as it is practiced.

In the third section of this chapter, the pluralist will look the structuralist’s
broadly formalist approach. But in the following ones, I shall take an increas-
ingly piecemeal approach. I shall appeal to: invariance under transformations of
the domain of objects onto itself, and finally, to some recent developments of
paraconsistent formal logics, where I shall also appeal to the idea of using logic
metaphorically, as discussed in Chap. 7. This chapter thus follows the chapters on
formalism, structuralism, rigour and the metaphorical use of logic. The chapter also
anticipates remarks concerning the discourse of mathematics and communication,
such as we find in Chaps. 11, 12, and 13.

In the conclusion, I discuss the philosophical lesson we can learn from the
discussion in this chapter. The pluralist turns the traditional philosophical analysis
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of mathematics on its head. Rather than think of the fixtures as evidence for
convergence due to an underlying ontology, truth or one foundational mathematical
theory, or one orientation; the pluralist takes the fixtures as evidence for fixtures,
and nothing else. Fixtures tell of the coherence, cohesion and soundness of the
discourse. More important, they supplant the urgency to look for a unified ontology,
absolute truth or foundational theory.3 They play the role that consistency plays for
the formalist, by sanctifying a mathematical theory, proof or methodology; but even
this sanctifying is not done once and for all. As the sainthood of a person is revisited
on occasion by the Catholic Church, so the endorsed mathematical theories and
proofs are always up for scrutiny. It is in the multiplicity of ways of crosschecking
mathematics that we find stability and security in the discourse – security against
nonsense.

This is not to say that the pluralist denies the possibility of finding such
philosophical prizes as a unified foundation. Rather, the pluralist does not feel that
the time is right to favour such a search, for lack of evidence. But for all that, the
pluralist does not despair. He does not turn to nihilism, and he does not become a
quietist. In fact, as we shall see, he has a lot of work ahead.

9.2 The Path from Formalism, Structuralism
and Constructivism to Pluralism

Here is one route to the general idea of this chapter. Start with a formalist conception
of mathematics. For the formalist, the guarantee that one is doing mathematics is
twofold. (i) A formal mathematical theory must be consistent (which we now think
of as interpretability in a model) and this gives us freedom (from genesis, history and
metaphysical baggage). The freedom comes with (ii) a stringent conception of proof
in mathematics (the ‘idealised conception’). The idealised conception is discussed
in more detail in Chap. 12. For now, it suffices to have in mind a rigorous proof, as
defined in the last chapter, or the sort of natural deduction proof we ask our students
to produce in a first logic course.

This idealised formal proof is almost never found in published papers in
mathematics, and holding mathematicians to that standard is unrealistic. Moreover,
the pluralist is ambitious to reflect mathematical practice in his philosophical
position. As a result, as pluralists, we need to revise our ideas and go beyond the
formalist philosophy.4

The pluralist suggests that rather than hold mathematics hostage to the concep-
tion of an idealised proof, we hold it hostage to an open disjunction of ‘fixtures’,
one of which is the idealised notion of proof; another, is to use model theory as

3This thought is perfectly reflected in Wright’s discussion of convergence and cognitive command
(Wright 1992, 88–93).
4More detailed evidence for this is left to Chap. 12.
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our vehicle for finding fixtures. So, here, we leave the formalist behind and turn
to the structuralist strategy. Using model theory, we can individuate theories as
structures, and then compare them in a common language (of second-order logic).
But as we saw in Chap. 4, structuralism, so conceived, is limited, since there are
aspects of mathematics (as practiced) which cannot be recognised in a classical
model theory framework. Pluralists want to reach beyond structuralism too. They
aspire to maximal, not optimal, pluralism. Model theory with the identification of
meta-structures is another fixture. But it is one amongst many more.

There are many fixtures used now, and there will be more developed in the
future. To give an extensional definition of fixture would be premature, and might
fix ideas too rigidly for us to properly recognise future mathematical developments,
so instead of giving an extensional definition, let me give a schematic one5:

A ‘fixture’ is some mathematical idea, expressed as a constant across theories. It is
used as a basis for comparison between theories. In particular, it is a necessary
condition for the comparison of theories – ensuring some commonality.

Further justification for the use of one theory, technique, methodology etcetera for
analysing, or proving, a result in another theory, involves demonstrating that the
borrowing is not dangerous. ‘Danger’, here, means a number of things, ranging
from triviality at one extreme, to departing from some goals or criteria, which are
independently determined, by philosophy or practical considerations. Examples of
these less extreme goals are: to only use constructively acceptable proof techniques,
to be useful in an application in computer science, to remain within what is
conceivable or within what we can ‘picture’ or imagine. Infinite dimensional
space counts as ‘unimaginable’. The pluralist is pluralist about these dangers, but
recognises them within the context of an outlook or philosophy, since he is pluralist
about philosophies too. This makes the pluralist sensitive enough to investigate
which fixtures are appropriate for what purposes and inappropriate for others.

For example, constructivists could require that we only use ‘constructive meth-
ods’, where this is philosophically determined, so the ‘danger’ lies in departing from
methods which are constructively acceptable. For all that, they might still allow a
range of methods, or constants, which disagree with each other, prima facie. More
specifically, a constructivist might use a rule of inference which is only allowed in
certain contexts. For example, the law of excluded middle, or the axiom of choice,
are allowed in very restricted contexts, where we can tell for any particular instance
whether it or its negation holds, or where we give a choice function, respectively.
The formalist is not a constructivist. A formalistically acceptable proof might not
be constructively acceptable. A structuralist can accommodate the formal work
of the constructivist, but does not fully share, or recognise, the constructivist’s

5The definition is not extensional in the sense of determining its extension. It is not intensional, in
the sense of ‘depending on the mode of presentation’. It is not intentional, in the sense of being
sensitive to an attitude. It is more of a scheme. The extension will depend on what we count as an
idea, a theory, a comparison, and what we can recognise as common to two theories.
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motivation. The structuralist thinks of constructive mathematics as a subset of
classical mathematics. Thus, he can identify constructively acceptable mathematics,
but cannot recognise the philosophical motivation because his philosophy is not
philosophically pluralist in this sense.

The constructivist’s practice is not well accounted for by the formalist or the
structuralist. Nevertheless, constructivists are doing ‘good’ mathematics, at least
prima facie. Since formalism and structuralism are too restrictive in the fixtures
they consider, the pluralist widens the field. We shall begin with a familiar fixture,
since it is recognisable by both the formalist and the structuralist. However, we shall
then explore less familiar territory in the section on Lobachevsky.

9.3 Model Theory and Structures

The invoking of model theory concerns the structuralist thread in this book. Thus,
this section re-enforces the work of Chap. 4. For, here I show more technically, and
more precisely how structuralism has inspired pluralism, and how it can be thought
of as a complement to pluralism. Since model theory is not central to the thesis of
pluralism, I shall not give a summary introductory course on model theory. I refer
the reader to Hodges (1997, 1–69) for this. Suffice it to say that we use model theory
in order to compare theories, models or structures. It should also become clear how
pluralism goes beyond structuralism in techniques, sensitivity and scope.

For the modern mathematician, a popular way of comparing mathematical
theories is to organise them in terms of structures, and then to see what mappings
hold between the structures. This way of comparing theories comes with a warning.
The whole model theory approach assumes the language of set theory and is
wedded to classical logic. These are the limitations of the model theoretic approach.
Nevertheless, it is useful, provided we bear these limitations in mind.

A structure is an n-tuple consisting in a set of object constants, a set of objects
over which variables range, a set of predicate, relation and function constants
and variable predicates, relations and functions varying over the powerset of the
domain of objects. With Shapiro, we are assuming a second-order language. To
our n-tuple, we add an assignment function which maps object constants to objects
in a domain, first-order predicates to sets of objects in the domain, binary first-
order relations to ordered pairs of objects in the domain, and so on. A theory is a
set of formulas closed under some operations. The interpretation, or application
of a theory is quite separate. The interpretation is the semantics of the theory.
The semantics is thought of in terms of models. Models satisfy, or fail to satisfy
sets of sentences. We attribute properties to theories by investigating the relations
(mappings), which bear between models which satisfy the axioms and, therefore,
theorems (assuming the syntax is sound with respect to the intended semantics). We
compare theories, by comparing their models. The comparison is made formally,
using functions defined in the language of set theory. Using model theory, we
learn the limitations of theories: we prove limitative results about a theory or

http://dx.doi.org/10.1007/978-94-007-7058-4_4
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Table 9.1 Truth table for
paraconsistent disjunction
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language. For example, we use model theory to study: embeddings, consistency,
equi-consistency, completeness, compactness, soundness, the Löwenheim-Skolem
properties, categoricity, decidability and so on.

Let us start with a simple example. A model theorist will think of a group as a
structure. The structure contains an identity element, 1, two binary function sym-
bols, C, �, naming a group product operation and one unary function symbol, �1,
naming the inverse operation (Hodges 1997, 3). The theory (the set of formulas that
are true in the theory) is closed under some version of addition and multiplication.
This structure can be embedded in a larger structure which includes everything in a
group plus the operation of division.

Take a slightly more interesting example. Propositional LP, the propositional
logic of paraconsistency, includes truth-value gluts in its semantics. That is,
propositional variables vary over true, false and both true and false sentences, or
propositions. An example of an English sentence, which is plausibly both true and
false is: ‘This sentence is false’. LP was conceived to be able to cope with reasoning
over such sentences, without engendering triviality. The motivation for developing a
logic which can help us reason over such sentences at all, is that logic should be able
to reason over any sort of truth-apt sentence, not just ones with one truth-value.6 The
formal system leaves in place all of the reasoning of classical logic. That is, if we
look at the truth-tables, which define, say, ‘_’, in LP then the classical part of it will
have the same results as in regular classical logic. See Table 9.1.

Here, we have defined V as follows: p _ q is true iff either p is true or q is true,
and, p _ q is false if p is false and q is false.

^

is used to indicate both true and false.
Notice that if we blot out all rows with p or q

^

, we get the classical table. We do
the same for the other connectives. The peculiarities of minimal LP only show up in
the presence of inconsistencies, in the rows with

^

. This is what minimal means in

6This invites a second question: whether logic should be able to help us reason over sentences with
no truth value (a truth-value gap), but this is a separate question, since, arguably, no truth-value is
not a truth-value.

So the question is really should logic help us to reason over something other than truth-apt
sentences.
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Table 9.2 Truth table for LP
negation

p �p

T F^ ^

F T

Table 9.3 Truth table for a
classical tautology in LP

p p _ �p

^ ^

F T

this context. It is a minimal disruption to classical reasoning. Nevertheless, LP is a
bit peculiar beyond the immediate presence of contradictions. It has no tautologies
in the sense of formulas that are always and only true. If we loosen the definition of
tautology to be a formula that is always true, then tautologies, can contain falsehoods
(which are also true). So we can have two sorts of LP, one with tautologies and one
without. The one with will be minimal since it together with classical logic will
share in the tautologies. For example, p _ �p is a tautology in classical logic (it is
all (and only) ever true); it is also a tautology in minimal LP, because it is always
true. But it could also be false. The reason is that if we consider the case when p
is a sentence with both truth-values, then p _ �p is true, but it is also false, since
negation changes a true sentence to a false one, and a false one to a true one, so one
that is both true and false, remains both true and false. See Tables 9.2 and 9.3.

Notice that I have been a little tricky here, since I am discussing a paraconsistent
logic, and I am supposed to be using classical model theory. This is acceptable since
the meta-language, the one I am using to analyse and compare the two theories is
classical. The odd issue about truth-values is considered, from this meta-perspective,
to be an unusual artefact of LP, but it does not infect the meta-language. Notice, that
there is still something odd going on, since meta-languages are usually thought of
as being as strong as, or stronger than, the object language, and to show this they
are thought of as containing all the elements of the object language, and might have
some extra symbols added on. This cannot be the case here, since in a classical meta-
language, we do not have the resources to say that a formula in the meta-language
has two truth-values (without thereby committing our theory to triviality). So, we
actually have to do a little fancy footwork to account for the added richness of the
object language over the meta-language.

We have two notions of truth-value. One is the classical one of the meta-
language, the other is partitioned off as the ‘mentioned’ truth-value, which belongs
to a theory. To alleviate confusion, we might replace ‘truth’ (of the object language)
with ‘1’ in the used meta-language, and ‘false’ with ‘0’; or we could be more
elaborate and make up a new symbol altogether, so it becomes a technical term,
and we think of LP as only a formal theory; and ignore the genesis of LP (to allow
us to reason formally over contradictory formulas). Having done this, we can use
our model-theory to tell us that the set of tautologies in classical logic is the same as
that in LP. This will be enough to show that the theorem of deduction, for example,
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holds in LP;7 and we will have learned something. Our understanding of LP will
have increased, and our understanding of classical propositional logic will have
increased.

What we have learned from our foray into model theory is that it is a well-crafted
tool for comparing theories. We use it often, and it is very adaptable. But it does have
its limitations, for example, having to ignore (or fail to be convinced by) the genesis
of LP, in order to work with it, and compare it to classical propositional logic. The
ignoring of such issues is also an advantage of model theory, for, it is that which
allows us to make our comparison. We can then return to the more philosophical
and intuitive ideas, but better informed as to some of the costs of, say, adopting LP.
Note again, that the ‘costs’ will only be those recognised by model theory, i.e., that
we cannot understand truth in quite the same way as we do in the meta-language,
or in a classical language. A structuralist, qua structuralist, will not be able to do
justice to the genesis of LP, since she cannot properly recognise truth-value gluts,
since they cannot belong to the classical meta-language.

9.4 ‘Logical Notions’ and Invariance

Tarski gives a very practical and interesting answer to the question: what are logical
notions? The answer is ambiguous; and I shall return to this. To answer the question,
Tarski extends Klein’s technique to logic, saying that the technique can be further
generalised to other sciences, in particular, logic (Tarski 1986, 146). First, I give
some of Tarski’s discoveries. It is evident that this technique and conception can be
applied more or less widely, and encounters some interesting limitations even within
the application Tarski made. I then address Tarski’s conclusions and the pluralist’s
conclusions.

Klein aimed to find a unified approach to geometry by means of the study of
space invariances with respect to a group of transformations. This idea was pressing
because of the new non-Euclidean geometries. Not only did these force us to
revise our compliance and faith in our geometrical intuitions, but the non-Euclidean
geometries introduced new considerations on groups (therefore, introducing new
algebraic ideas). The algebraic ideas then fed back to the geometries by way
of finding invariances across geometries. The ‘finding of the invariances’ was
essentially an analysis of the logical structure of geometry. Following Klein’s
insight, Tarski used the notion of invariance under a permutation of a domain of
objects (on to itself) to identify logical notions (within the foundational theories
of Whitehead and Russell’s type theory and von Neumann set theory and Gödel-
Bernays set theory).

7The theorem of deduction just states the relationship between the conditional and provability in a
theory. If † is a set of wffs and ’ and “ are particular wffs, the theorem of deduction is: †, ’ ` “

” † ` ’ ! “.
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We treat the domain over which we reason as a set, and we may transform it on
to itself with any function, which we can define in the language. We discover that
with some transformations the objects of the domain remain the same, such as with
the identity transformation, some notions remain stable under some transformations
and not others, such as the ‘lesser than’ relation. The notions (properties, relations
between objects) which remain the same under any (recognised) transformation of
the domain on to itself are invariant. These are the logical notions, for Tarski. In this
very precise sense, we say that the ‘meaning’ of these notions is invariant. It turns
out that these are the logical connectives, negation, identity and the quantifiers. Or
rather, subsequently, we have worked out that the invariant notions can be reduced
to these. Tarski himself did not make this discovery directly. Instead, he found
that there are only two invariant notions of class: the notion of a universal class,
the notion of the empty class (Tarski 1986, 150). There are four invariant binary
relations: “the universal relation which always holds between two objects, the empty
relation which never holds, the identity relation which holds only between ‘two’
objects when they are identical, and its opposite the diversity relation.” (Tarski 1986,
150). Ternary, quaternary relations, and so on, also have a small, finite number of
invariant notions under transformations, similar to the invariant notions over binary
relations. The last notion which shows invariance is that of the cardinality of the
domain.

Tarski had the Whitehead and Russell project very much in mind when he
presented this material, so he went on to speculate whether this shows us that math-
ematics is really logic, and logical notions (so defined) are what tie mathematics
together. For Tarski, such a conclusion is too hasty. These results should be taken
with a pinch of salt. I shall discuss two reasons for this. One is that the methodology
will not determine for every notion whether it is invariant, or ‘logical’. Tarski is
quite frank about this, for he asks the question: is the (set theoretic) membership
relation a logical notion or not. It turns out that it is if we consider the membership
relation in Whitehead and Russell’s type theory. But it is not if we consider the
membership relation in von Neumann set theory (Tarski 1986, 152–153). As Shapiro
puts it: “ : : : on this [model theoretic] account, the logical-non-logical distinction
would be an artefact of the logic [of the meta-theory].” (Shapiro 1991, 7). Tarski
concludes that the technique cannot answer the question whether membership is
a logical notion. He then, a little quickly, concludes that “The answer is ‘As you
wish’!” (Tarski 1986, 152). The conclusion would be justified, if we had both an
accompanying proof that there is no alternative formal theory (such as a super
set theory) by which to decide the matter, and if we are convinced that ‘logical
notion’ means precisely ‘invariant in this super theory’. Not everyone would agree
to these assumptions. Tarski discusses this problem, and the reader is referred to
Tarski (1986) for details.

Instead, let us turn to the second problem with Tarski’s approach, since it is more
serious; it affects the notions Tarski identified as invariant, and the limitations of
his technique. The technique is dependent on several assumptions to which Tarski is
not entitled, since these are assumptions about logic (or meta-logic), and presumably
this is what is at issue when we ask the question: “What are the logical notions?”
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Here is one assumption which, if modified, changes what is counted as an
invariant notion. Tarski assumes that every wff in the language is either true, false,
never both and never neither. If we allow wffs with two truth values, (wffs which are
both true and false) as we find in some paraconsistent logics, and we consider only
theories without functions,8 then the cardinality property will no longer be invariant!
Consider the collapsing lemma as a permutation of a domain of objects on to itself.

Let be any interpretation with domain D, and let � be any equivalence relation on D.
If d 2 D, let [d] be the equivalence class of d under �. Define a new interpretation �,
whose domain is f[d]; d 2 Dg. If c is a constant that denotes d in , it denotes [d] in �.
If P is an n-place predicate, then <X1 : : : Xn> is in its positive [negative] extension in �

iff 9x12X1 : : : 9xn2Xn such that <x1 : : : xn> is in the positive [negative] extension of
P in . What � does, in effect, is simply identify all the members of D in any one
equivalence class, forming a composite individual with all the properties of its components.
I [Priest] can now state the:

Collapsing Lemma:

Let ® be any formula; let v be 1 or 0 [T or F]. Then if v is in the value of ® in , it
is in its value in �.

In other words, when is collapsed into �, formulas never loose truth values they
can only gain them. The Collapsing Lemma is the ultimate downward Löwenheim-Skolem
Theorem. (Priest 2002, 172)

The Löwenheim-Skolem theorem is:

If T is a countable theory9 having a model, then T has a countable model (Shoenfield
2000, 79).

The downward Löwenhem-Skolem theorem is:

If T is a theory of cardinality k and having a model, then it has a model of cardinality
less than k.

If we are operating in a logic where some wffs enjoy two truth values, such as
liar sentences, then, with the collapsing lemma, these can be collapsed into the
equivalence class with the true sentences. The transformation exercised by � will
not always change the cardinality of the domain, but sometimes it will, and quite
dramatically. In fact, it turns out that, under some circumstances, there will be
domains of every cardinality that is lower than the cardinality of the original domain
and is greater than zero!

8This is stipulated for technical reasons we need not explore here. It turns out that the collapsing
lemma no longer works in the presence of some functions (Priest 2002, 172).
9A ‘countable theory’ is a theory expressed in a countable language: with only countably many
constants, variables and predicates. If a theory is expressed in a countable language, then there
are only countably many wffs. If we say that a theory just is the set of wffs which follows from
the axioms by means of countably many rules of deduction (usually a small finite number), then
we can see that the theory will only contain a countable number of wffs (Read and Wright 1991,
231–232).
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Identity and universality will remain invariant in these logics, but emptiness will
not. Under some transformations the empty relation will soon pick out a plethora
of inconsistent objects. So, while in a classical setting the “empty relation never
holds”, it will hold in a Meinongian setting which is more indulgent towards the
notion of an impossible object.10

What the pluralist learns from this is that invariance is subject to certain
assumptions, and is therefore a useful concept in some contexts. It is not universal,
and the idea of calling all of the invariant notions, under certain meta-logical
assumptions ‘logical’, begs the question about what to count as ‘logical notions’.
Invariance, is not, for all that, useless as a concept. It can, as Klein discovered, be
used to classify notions across theories. The method is a technique for identifying
which notions stay fixed; but we have to be careful about the assumptions under
which they stay fixed. Change the assumptions, and the classification changes.

9.5 Lobachevsky, Constrained Contexts, Chunk
and Permeate

Recall the example we looked at in Chap. 5, Sect. 5.5, sub-section three. There we
discussed Lobachevsky’s importing a model of hyperbolic geometry to solve the
problem of finding exact solutions for indefinite integrals. Hyperbolic geometry is
non-Euclidean, but the problem of finding solutions for indefinite integrals arose
in a Euclidean context. Therefore, Lobachevsky was using a piece of mathematics,
which is inconsistent with the context of the problem; and, therefore, his proposed
solution warrants scrutiny.

Indulging in an anachronistic exercise, where we forget all of the confirma-
tion of Lobachevsky’s results, we might suppose that the purported ‘solution’
to the problem is inconsistent, or arises directly from an inconsistency. We are
working in a classical context, so from a contradiction anything follows, so it
is easy to derive an ‘exact solution’ in a trivial context! The problem is that
any course of values counts as a solution to any indefinite integral. In a trivial
theory, we suffer the embarrassment of riches.11 But recall that Lobachevsky
claims to be careful about this. He gives two assurances of consistency. One is

10I should like to thank Priest for looking over both the material on the collapsing lemma and on
chunk and permeate, later on in the chapter.
11Trivialism is the position that every grammatical, categorically correct, sentence is true. A
sentence is categorically correct if it makes no ‘category mistakes’: where we confuse what type
of object we are talking about. For example, it makes no sense to talk of water dreaming, angry
chairs, kilograms travelling etcetera, unless, of course, we are in a fantastical/super-natural setting
or using a metaphor. Trivialism does not treat of this sort of incoherent discourse. Rather it is
about a discourse. Rather it treats of a truth-apt discourse. It is the dual of scepticism. Under global
scepticism every grammatical, categorically correct sentence is subject to doubt. While trivialism
is the dual of scepticism, it is logically much worse. Unlike the sceptic, the trivialist position does

http://dx.doi.org/10.1007/978-94-007-7058-4_5
http://dx.doi.org/10.1007/978-94-007-7058-4_5
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that the problem involves triangles, and the relevant properties being exploited
(the relations between angles and sides) behave ‘in the same way’ in the two
geometrical theories. The other assurance is that he turns the geometry into what
he calls “analytics”. The problems are then straightforward calculations, and with
this, the “calculations are necessarily coherent and one cannot discover anything
what (sic!) is not already present in the basic equations. It is then impossible
to arrive at contradiction,” (Lobachevsky 1914, 34), unless it is to be found in
the basic equations. “Analytics” is an oblique reference to the (pre)-formalist-
type of presentation of a theory, where enough ground work is laid out, so
that all that remains are mechanical calculations (Rodin 2008, 12). If, to repeat,
we ignore subsequent developments by, for example, Beltrami (1868), which
confirm Lobachevsky’s solutions,12 we could be forgiven for remaining doubtful
of Lobachevsky’s assurances, in light of the philosophically received view that we
ought always to work consistently within a consistent theory to avoid triviality.
So, what do Lobachevsky’s assurances amount to, especially at the time of his
writing?

First we should be clear about how Lobachevsky thought about his own
assurances and compare this to the received view. The received view, today, is that
Lobachevsky’s hyperbolic geometry was developed as a rival to Euclidean geometry
(Rodin 2008, 1). But as Rodin argues, this is not at all how Lobachevsky himself
conceived of the situation. Lobachevsky thought that hyperbolic geometry is the
more fundamental geometry, and that Euclidean geometry is a special case (Rodin
2008, 10).13 With this sort of thinking it becomes clearer why Lobachevsky felt
quite justified in ‘importing’ the ‘foreign elements’ of hyperbolic geometry ‘into’
the context of Euclidean geometry. He thought he was still working within his own
more general theory. The problem Lobachevsky was trying to solve, concerning
indefinite integrals, was easy to solve in hyperbolic geometry.

The received view sees things quite differently. Readers of Lobachevsky missed,
or did not accept, the point that hyperbolic geometry is more fundamental, or more
general. Therefore, under the received view, we have two rival theories, which,
if put together, produce an inconsistency, and therefore, Lobachevsky’s solution
was highly suspicious. This is also why it was important to receive independent

not ‘implode’ since its own very trivialism is true, by its own lights. It is an entirely robust and
stable position. However, it is highly uninteresting to maintain it.
12There were several confirmations of Lobachevsky’s results. We could turn the tables, and ask why
several? Well, the pluralist answers, because there was still some doubt remaining, the doubt that
accompanies not full understanding, or ‘unsatisfying’ explanation. This theme will be developed.
13Kagan (1957) is more ambivalent about this, tracing the doubt and fluctuations in Lobachevsky’s
remarks. The doubt was quite normal, if one considers the intellectual setting for Lobachevsky’s
new geometry; it was challenging the doxa of more than 2,000 years. Nevertheless, Kagan’s
description of Lobachevsky’s mature view accords perfectly with Rodin. For the context here,
it will make sense to work with the mature view.
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confirmation of the solutions.14 Why did the ‘received view’ prevail? This is
probably because, in the wider community of mathematicians studying geometry,
Euclidean geometry was still considered to be fundamental. When ‘other’ types of
geometry were developed, they had to show their connection to Euclidean geometry.
Geometry on a sphere could be justified, because the sphere was conceived of
as occupying Euclidean 3-dimensional space. That is, the sphere was placed in
the context of Euclidean geometry. Hyperbolic geometry was different. It was not
thought of, by Lobachevsky, as contained in Euclidean space; but the other way
around.15 Taking both the received view and Lobachevsky’s own view into account
what we learn is that the two geometries are not rivals, what we have are rival
perspective on geometry: one where hyperbolic geometry is more primitive, the
other where Euclidean geometry is more primitive. These perspectives were then
later replaced with the more Hilbertian formalist view, where the interpretation and
genesis of a formally presented theory is considered to be quite independent of the
formal theory. Once we couch geometries in arithmetic, we see hyperbolic geometry
as an equal rival to Euclidean geometry. Neither is the more fundamental.16

Whose view prevailed, and why, is historically interesting, however, there is also
a philosophical point.

It is not immediately clear how to compare two theories, (especially if we are
not agreed as to how to present them: axiomatically, genetically, etcetera). Today,
we are accustomed to axiomatic presentations, or rule-based presentations, and
this uniformity of protocol of presentation invites comparison. This is one of the
main reasons the Bourbaki approach was so important and interesting, it allows
for easy comparison. The form of presentation of pairs of theories determines, but
also prejudices, our judgment as to which is the more general. This was one of the
goals of the uniformity of presentation: to determine such judgments! If we present
hyperbolic geometry and Euclidean geometry, both axiomatically, then, the two
geometrical theories differ over the parallel postulate. With this presentation, the two
theories are simply rivals, and we can pin-point exactly where they differ. However,
we should be aware that the determination is not absolute and independent.

For, if we have a more genetic, synthetic or conceptual presentation of the two
geometrical theories, then we might well come to the judgment that hyperbolic
geometry is more fundamental than Euclidean geometry, or the other way around,
since Euclidean geometry is quite intuitive. Rodin remarks, for example, that
Lobachevsky did not at all give an axiomatic presentation of hyperbolic geometry,
but mixed up (what we would now distinguish as) definitions, axioms and theorems

14The independent confirmation came from Riemann who gave a model for both the Euclidean and
the hyperbolic geometries (Katz 1998, 781).
15Beltrami’s modelling of hyperbolic geometry in Euclidean geometry, does give us a sense
of hyperbolic curved space (couched in Euclidean 3-dimentional space), but this was a later
development.
16For an interesting comment comparing Lie’s presentation of geometry in terms of groups, to
Hilbert’s approach see Hilbert (1971, 150–152).
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(Rodin 2008, 3, 4). They were all presented on a par, to give a feel for the content
of geometry. As a result of this different presentation style, due to a different
conception of mathematics, we would determine that Euclidean geometry works
only under some special circumstances; ‘special’ relative to hyperbolic geometry.
More precisely, the postulates of Euclidean geometry hold in the horosphere of
hyperbolic geometry, where the horosphere is a limit area of the geometry.

Killing two birds with one stone, we return to the axiomatic or analytic
presentation, and show that, regardless of this, Lobachevsky was entitled to bring
in the ‘foreign’ hyperbolic geometry to solve a problem in Euclidean geometry.
I shall show this, not in the traditional way of modelling one in another, because
this presupposes the received analytic view. Rather, I shall model the reasoning
of Lobachevsky using a method of analysis called: ‘chunk and permeate’ – a
model of reasoning which is useful for rational reconstructions of this kind. If the
rational reconstruction works, then we do not need to decide whether the genetic
presentation is ‘better’ than the axiomatic presentation, because, either way, by ‘or-
elimination’,17 Lobachevsky’s solution stands, and there is nothing suspect about
it.18 In fact, the question is not whether Lobachevsky did find a solution or not, since
this has not been in doubt since Beltrami. Rather, the strength of the independent
analysis lies in its generality. We can use ‘chunk and permeate’ to scrutinise any
manner of proof independently of the overall theory in which they are couched, and
independent of whether we have fixed an overall theory at all! We saw in Chap. 5, the
very extensive mathematical projects, where problems are divided into cells, which
each prove a theorem, by independent means of one another. Chunk and permeate
might be a good tool for reconciling and scrutinising the proofs in these projects.

Again, let us be quite clear about the structure and strength of this part of
the argument. What I shall do in the following paragraphs is give a rational
reconstruction of what Lobachevsky was up to in solving his problem about
finding exact solutions for indefinite integrals. The rational reconstruction gives us
justification for Lobachevsky’s results, independent of Lobachevsky’s justification,
or of a more modern ‘formalist’ justification. In Chap. 14 we shall look at Rodin’s
own justification of Lobachevsky’s method, and discuss what each contributes to
our understanding.

17‘Or-elimination’ is an inference rule in some systems of natural deduction. It is for reasoning
from a disjunction (in our case: either the genetic presentation is better or the axiomatic
presentation is better) to a conclusion (in our case: Lobachevsky’s solution stands up to scrutiny,
and was perfectly good reasoning). The rule is that you should arrive at the conclusion separately
from each disjunct, you can then claim on the strength of the disjunction alone that the conclusion
follows regardless of which one is true or whether both disjuncts are true.
18There was independent confirmation of Lobachevky’s solutions developed after Lobachevsky, by
Riemann, Klein, Helmholtz and finally Beltrami (Katz 1998, 767, 779, 783). However, because of
the mode of presentation of the solutions, these results would not help for the argument here,
since their presentation of geometry sits between the Hilbert-style presentation and the more
synthetic style of Lobachevsky (Rodin 2008, 23). Therefore, the confirmation is not completely
‘independent’. To what extent, or rather, when, this is a problem is a deep and interesting question
concerning types and degrees of objectivity. I shall address this in a future paper.

http://dx.doi.org/10.1007/978-94-007-7058-4_5
http://dx.doi.org/10.1007/978-94-007-7058-4_14
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Fig. 9.1 Rodin’s diagram of the structure of Lobachevsky’s argument

9.5.1 Chunk and Permeate

The rational reconstruction concerns splitting up a mathematical problem into
chunks, but letting some information flow between pairs of chunks, and this flowing
is called permeating. Thus the chunks are not hermetically sealed, rather it is as
though there is a screen, or filter, on some information. Moreover, what information
flows between one pair of chunks might be quite different from the information
which flows between another pair of chunks (otherwise we would have something
like an underlying logic, theory, or set of assumptions). The trick then is to reassure
ourselves that the particular mix of chunking and permeating, does not lead to
triviality. Lobachevsky assures us of consistency, and consistency implies non-
triviality, so we shall work with consistency rather than non-triviality.

I follow Rodin’s analysis of Lobachevsky’s argument (Rodin 2008, 20), where
he is careful to distinguish the synthetic (intuitive, content based) presentation from
the analytic presentation, of three geometrical theories: Euclidean, spherical and
hyperbolic. See Fig. 9.1.

There are five chunks used in the reasoning to find the solution: (1) the chunk
in synthetic Euclidean geometry, where we recognise and formulate the problem.
We move from that to (2) where we see the problems translated into a synthetic
presentation in spherical geometry. We then go to (3), where we have an analytic
presentation of spherical geometry, followed by (4), where the results are translated
into the analytic presentation of hyperbolic geometry. In the last two, all we have
are straightforward calculations, which is why Lobachevsky calls this “analytics”.
Indeed, the chunk and permeate technique will apply rigorously to the analytic
chunks only. For the synthetic chunks, we have to rely on our geometrical intuitions;
I shall have to use the chunk and permeate method metaphorically, as in Chap. 7. We
end with (5) the synthetic presentation of hyperbolic geometry, since this is the more
fundamental for Lobachevsky. The solution, can then be transferred directly back
to Euclidean geometry, since, as we noted, at least seen synthetically, Euclidean
geometry is a special case of hyperbolic geometry, not a rival.

http://dx.doi.org/10.1007/978-94-007-7058-4_7
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The area under the curve is infinite, if there are no bounds

Fig. 9.2 An indeterminate integral

We begin with the permeating from the first to the second chunk. In Euclidean
geometry, the calculation of indefinite integrals made no sense (Rodin 2008, 19).
We have a continuous function, but the area underneath could not be calculated in
general. It would be infinite regardless of the shape of the function line. That is,
without a lower and upper bound on the arguments, the space under the curve is
infinite. See Fig. 9.2.

Note that ideas of ‘sense’, or ‘making sense of a calculation’ belong to the
synthetic presentation of a theory, not to its calculation. To make ‘sense’ of
the calculations, Lobachevsky invites us to think about spherical geometry.19 We
transform the sides of triangles, a, b and c into their analogues in spherical geometry:
ai, bi, ci, where ‘i’ is the square root of �1. In respect of the relations between angles
and sides of triangles, the analogy holds. So the information that permeated from
the first to the second chunk concerns only the relations between sides and angles
of triangles. This is perfectly all right, since we think of spherical geometry as a
proper part of Euclidean geometry; spheres are shapes in Euclidean space (Rodin
2008, 21).

The analytic presentation of spherical geometry was developed with the synthetic
part in mind. Stronger than that, the analytic, calculating, part is directly responsible
to the synthetic presentation. That is, if the analytic part were to give us a result
outwith20 the synthetic presentation, then the analytic presentation would be altered,
not the other way around. In this sense, the analytic presentation is a perfect image
of the synthetic presentation of the geometry. So we are now in analytic spherical
geometry, and want to go to analytic hyperbolic geometry.

19Strictly speaking this is incorrect. Lobachevsky’s understanding of the analogy between spherical
and hyperbolic geometry is not in terms of the curvature of space. He took the analogy to be formal.
It was Lambert who helped us to understand the analogy more clearly (Rodin 2008, 19).
20‘Outwith’ is a word preserved by the Scots, but forgotten by the rest of the Anglo-Saxon speakers.
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For the analytic chunks, I follow Brown and Priest (2004) closely. The following
quotations are all from Brown and Priest (2004, 380). Chunk (3): the language
L is that of spherical geometry. ` is the consequence relation. † is the set of
axioms, which govern angles and the relations between sides of triangles in spherical
geometry. †` is the closure of † under `. “A covering of † is a set f†i ; i 2 Ig,
such that † DS

i2I †i, and for all i 2 I, †i is classically consistent.” Each I is a
Gödel code for a formula, so we presuppose some sort of standard normal form, and
Gödel coding for sentences in the language. We can then make inductive arguments
over the set of sentences which follow from †i. The covering is all such formulas.
We have well established and independent confirmation of the classical consistency
of trigonometry on a sphere, and therefore, any subset of sentences in spherical
geometry will also be classically consistent, by straightforward induction on the set
of sentences. “If C D f†i ; i 2 Ig is a covering on †, call � a permeability relation
on C if � is a map I X I to subsets of the formulas of L.” In other words we allow all
of the formulas, from spherical geometry, which concern the relationship between
angles of triangles and their sides to permeate into the next chunk: that of hyperbolic
geometry. What does not permeate through is information about parallel lines. The
other axioms are common to Euclidean, spherical and hyperbolic geometry. This is
a clear and easy case for the chunk and permeate analysis. We work out the solution
to integrals in hyperbolic geometry, again only using information common to both
spherical and hyperbolic geometry.

Moving from chunk 4 to 5, we make a move from the analytic presentation of a
geometry to the synthetic presentation. Again, we remind ourselves of the genesis
of the analytic presentation of hyperbolic geometry (chunk 4). This was developed
by Lobachevsky, and he was no friend of the formalist approach to mathematics.
He did, however, recognise the benefits of developing a mechanical calculus within
a theory. Assuming he did this responsibly, i.e., the calculations are sound, then
the move from the outcome of the calculations to the sense of what they mean,
i.e., the move from the analytic to the synthetic part of hyperbolic geometry, is
straightforward, since they mirror each other (Rodin 2008, 19).

What have we learned from this? We have not learned that Lobachevsky’s
practice was legitimate. We have known that since 1868, thanks to Beltrami,
since it was Beltrami’s demonstration which convinced the wider community of
mathematicians. What we have with the chunk and permeate analysis (at least in the
analytic case of moving from chunks 3 to 4) is a new type of confirmation, and one
with wide scope.21 It has wider scope than model theory because we can suppose
different chunks to have different underlying logics, including paraconsistent ones
(Brown and Priest 2004, 386). This is also why the technique is more amenable
than formalism to analyse a lot of modern proof techniques. After all, if we are

21In respect of scope, it is similar to model theory methods of choosing a meta-structure which
shows the relationship between to object-level structures (up to isomorphism); more of this in the
next section.
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interested in proofs, and organising these into chunks, then we should not be
restricted to thinking in terms of structures, with the structuralist; and we should
not be restricted to thinking in terms of an idealised conception of proof, with the
formalist.

If we accept the more metaphorical version of chunk and permeate, then it
becomes an easy tool for verifying chunking-type reasoning. Chunk and permeate
gives us an orientation from which to check reasoning which uses together
inconsistent theories. If we are careful with our individuation of a chunk, and
with the permeability relation, then we can verify that the reasoning is in fact
legitimate, and we can accept the results. Or, more carefully in the metaphorical
case, chunk and permeate will tell us where to look for dodgy chunk-type reasoning.
This is immediately useful, since, modern mathematics more often engages in ‘big’
mathematical projects, where problems are too long and difficult for one person to
solve. Thus, the large problem is sectioned off into cells (which might constitute a
chunk, or might be divided into further chunks) where independent mathematicians
‘solve’ particular problems, using whatever means they are trained in, and are
familiar with. Often the means used in one cell, or chunk, is inconsistent with
the means used in another. To ensure against triviality, chunk and permeate then
becomes a useful, and natural, tool for analysing flow of information (permeability)
between cells, or chunks.

9.6 Analysis by Way of a Conclusion

For philosophers who are looking for a ‘unified account’ of mathematics, there are
many mysteries left unexplained in existing attempts to provide such an account.
The mysteries concern mathematical practice.

For example, we might ask why there are so many proofs for the some theorems.
There are well over 100 proofs for Pythagoras’ theorem which are non-equivalent,
except in the conclusion. They are not all ‘suspect’ proofs, made in some obscure
part of mathematics equi-consistent with some other obscure part. In other words,
new proofs are not developed to assuage doubt as to the truth, or robustness, of the
result: the square of the hypotenuse is equal to the sum of the squares on the other
two sides. Put another way, they are not meant to be part of some inductive argument
for Pythagoras’ theorem. Each is a deductive proof. Even in the case of theorems
we judge less certain, some proofs are useful for assuaging doubt, but some are not;
and yet, the body mathematical accepts them as valuable contributions to the field
of mathematics. So what is the surplus information we gain from a proof, over the
truth of the theorem proved?

The pluralist thinks of this question as indicative of a wider phenomenon.
There is something unique and interesting about mathematics. Mathematics ‘hangs
together’; it seems to be objective and non-circular. It is not like a Popperian
pseudo-science, but neither is it checked against physical phenomena, and our
observations. Moreover, we do not have the evidence to attribute the hanging
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together to: absolute truth, consistency, embedding in a unique foundational theory
or ontology. Ultimately, these are the wrong places to look, although they might
be useful locally, at the first or second levels of pluralism. Instead, what is salient
at the third level is that mathematical theories can so often be applied to other
mathematical theories. In fact, the claim is stronger than this. It is not that they can
be so applied, it is that modern mathematics largely consists in such applications.
Moreover the wealth of crosschecking is exactly what leads to our producing several
proofs of the same theorem; but more important, crosschecking, applications and
fixtures is sufficient to warrant our confidence in mathematics in the absence of a
unique foundation, and all that that entails philosophically.

In this chapter we merely introduced the notion of ‘fixtures’. Once we see some
of these, others will suggest themselves to the reader when he, or she, revisits
mathematical texts or articles. I propose the exercise of looking at the table of
contents of a recent journal in logic or mathematics, and count how may articles
are about limitative results, connections between theorems in different theories, in
applications of one methodology to a ‘foreign’ area of mathematics and so on. There
will be a significant percentage of such articles. It turns out that a lot of cutting edge
contemporary mathematics is of this nature. Moreover, the crosschecking is not all
part of a unified outlook. The previous section of this chapter testifies to this. There,
I used the paraconsistent method of analysis: chunk and permeate, to make a rational
reconstruction of Lobachevky’s thinking.

Even by examining only three sorts of crosscheck (which pre-suppose ‘fixtures’),
and imagining that there are others, we learn two lessons.

One is that mathematics does ‘hang-together’ and forms a distinctive discourse (at
least distinctive in character, and not necessarily because of a realist ontology).

The second lesson is that we do not need to rely on an ontology, a notion of absolute
truth or a unique theory to play the role of foundation, or place undue emphasis
on an idealised conception of proof in order to justify pluralist mathematical
practice, and recognise its importance.

Fixtures show that we do not need to appeal to the philosophical triumvirate:
ontology, knowledge or truth. Instead we explain the triumvirate in other terms. The
pluralist offers a rich account of the ‘hanging together’ of mathematics. No other
discipline has developed a web of crosschecks as keenly as mathematics, and it is
these crosschecks which allow us to loosen the stringent constraints of formalism or
of foundationalism.

The pluralist diagnoses that traditional philosophical approaches, inclinations
and tools sometimes misfire, when brought to bear on the subject of mathematics
because they take the triumvirate as primitive, or already understood, when this
is not at all the case. Why have traditional approaches in philosophy misfired?
It is partly a matter of (philosophical) temperament. Philosophers tend towards a
certain temperament (towards monism). Such philosophers think of crosschecking
as evidence for the fact that there is a deep underlying truth or that there is an
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underlying mathematical ontology, or logic, or major umbrella theory, or something
to explain the miracle of application. As Tarski writes:

The conclusion [that there are different answers to the question whether 2 is a logical
notion] is interesting, it seems to me, because the two possible answers correspond to
two different types of mind. A monistic conception of logic, set theory and mathematics,
where the whole of mathematics would be a part of logic [or some umbrella theory, in
our case], appeals, I think, to a fundamental tendency of modern philosophers. [Tarski was
giving this talk in 1936]. Mathematicians, on the other hand, would be disappointed to
hear that mathematics, which they consider the highest discipline in the world, is a part of
something so trivial as logic; and they therefore prefer a development of set theory in which
set-theoretical notions are not logical notions. (Tarski 1986, 153)

Mathematicians would be disappointed, not so much because logic is thought of
as trivial, since it is not so judged today, but by the constraints on their creativ-
ity. Nevertheless, present day mathematicians do share Tarski’s mathematician’s
concern about being held to a foundational standard, and that is because so
much of the development of mathematics has no explicit roots in set theory. That
is, mathematicians have, for the most part, quite disregarded the foundationalist
aspirations. Instead, they rely on the crosschecks as confirmation of their results.

Moreover, the crosschecking is robust since it is rigorous. There are plenty
of contexts where attempts at cross application do not work. It is not the case
that everything in mathematics fits together in any way we choose, and it is the
failure of cross-application which is evidence for the objectivity and non-triviality
of mathematics. This sort of objectivity is not grounded in an ontology. Rather,
some successful instances of fit, or convergence, are evidence for some successful
instances of fit and convergence, nothing more.

I can hear the honourable opposition saying that there is much more successful fit
and convergence than we might have thought prima facie. But, this is just to admit
that we are not good predictors. The pluralist replies that the fit occurs where the fit
occurs, and often it is not perfect, as in the case of renormalisation, or in the case of
reducing calculus to set theory.

What we do have evidence for is that there is a crosschecking, and a conversation
in mathematics; that the crosschecks are as rigorous and thorough as we choose.
Sometimes we are slack, for example when we try to apply mathematics to physics,
and find that we have to gerrymander the mathematics to fit the physical theory –
see renormalisation. In fact, mathematics is the discipline where the crosschecks are
the most rigorous of any area of research. This accounts for the phenomenology of
objectivity, absolute truth and independence of mathematics. But phenomenology is
not evidence for objectivity, truth or independence! Our phenomenology sometimes
misleads us.

Moreover, returning to the quotation from Tarski, the mathematician might well
(depending on temperament, again) feel either unconcerned by metaphysical notions
underlying her subject matter, or she might feel that raising such questions is alien
to her, or, as we saw in the chapter on formalism, she might adopt a schizophrenic
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attitude. All of these possible attitudes point to the variety of attitudes held by
practicing mathematicians, and that there is such a variety testifies to the confusion,
or lack of good and coherent traditional answer to the philosophical questions.
The pluralist philosopher has a different temperament, better aligned with Tarski’s
modern mathematician.
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Part III
Transcendental Presentation of Pluralism



Chapter 10
The Paradoxes of Tolerance and Transcendental
Pluralist Paradoxes

Abstract In this chapter, I look at three types of paradox which attend pluralism:
the external paradox, the internal paradox and the transcendental paradox. The
external paradox is generated from the following question: if we are tolerant towards
other positions than our own, then what if the other position is intolerant of our
own? In the name of tolerance, if we accept that the other position is, in some sense
correct, then the intolerance towards us is correct, and we should give up our original
position. If we decide that the position is incorrect, then we have failed to show
tolerance.

The second, internal paradox, is generated within pluralism. The pluralist wants
to show tolerance and interest in other positions, to learn from other positions, to
entertain them seriously. But he is also insistent on certain issues of protocol or
attitude. Is this not itself, dogmatic, and therefore intolerant? The external and the
internal paradoxes are solved in a relatively benign way.

The transcendental paradox is generated by deploying the ‘inclosure schema’.
(Priest, Beyond the limits of thought. Clarendon Press, Oxford, 129, 134, 2002)
This is a paradox at the limit of thought, and it is by deploying this paradox that the
pluralist transcends his own position. The solution to this paradox is non-standard.

10.1 Introduction

Definition Paradoxes are thoughts or ideas, represented by sentences, or wffs,
which, upon initial analysis, appear to be both true and false.

In this chapter, I shall work on the notions of ‘analysis’, and ‘appear to be’, as they
are used in the above definition of paradox. As I have defined them, paradoxes are
not necessarily insoluble. Sometimes we use the word ‘antinomy’ for a solvable
paradox, but I shall use the word ‘paradox’ as ambiguous between having a simple,
classical solution and not having such a solution.

M. Friend, Pluralism in Mathematics: A New Position in Philosophy of Mathematics,
Logic, Epistemology, and the Unity of Science 32, DOI 10.1007/978-94-007-7058-4 10,
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The reason for leaving the ambiguity is to reflect sensitivity to several ideas as
to what can be counted as a solution. If we leave the field open, then ‘solutions’
might not be quite as we expect. Sometimes, we can discover, on further analysis,
that a paradox was only apparent and it is true and not false, or it is false and
not true.1 At other times, such as in the set theoretic paradoxes or some of the
semantic paradoxes, we end up in a constant tension between two pulls or attitudes.
Our finest logical analysis and reasoning bring us to the conclusion that such
paradoxes are both true and false. In these cases, if we also assume the validity of
ex contradictione quodlibet, we think of the paradoxes as bringing disaster, which
is hardly a ‘solution’. Therefore, in these cases we are motivated to shift to another
context or theory.

For example, we re-adjust the naı̈ve comprehension axiom of set theory, or
introduce a notion of proper class (for the set theoretic paradoxes), or we adjust our
theory of truth and language (for semantic paradoxes).2 In the semantic case, we
restructure our language(s) so that certain interpretations of paradoxical sentences
are forbidden – such as when, following Tarski, we organise our languages into
a hierarchy, and stipulate that we may only attribute truth (or other semantic
properties) to a sentence at a ‘lower’ level in the hierarchy.

However, there is a third possibility. Instead of adjusting or modifying the theory,
there is a more radical ‘solution’. We can reject ex contradictione quodlibet and
accept the paradox, since (without ex contradictione quodlibet) contradiction does
not bring disaster. In this case, we do not treat paradox as a disaster, but as a feature,
as a dialetheia: an idea that is both true and false, a true contradiction. In the last
section of this chapter I shall discuss this more radical solution to paradoxes.

In Sects. 10.2 and 10.3, I discuss the two paradoxes of tolerance. One paradox of
tolerance, I shall call ‘external’ and the other, I shall call ‘internal’. The motivation
for the name ‘external paradox’ is that the paradox is generated by looking at a non-
pluralist theory. In contrast, the internal paradox is generated by looking at pluralism
itself.

The external paradox is generated from the following question: if we are tolerant
towards other positions than our own, then what if the other position is intolerant of
our own? In the name of tolerance, if we accept that the other position is, in some
sense correct, then the intolerance towards us is correct, and we should give up our
original position. If we decide that the position is incorrect, then we have failed to
show tolerance. I address this external paradox in Sect. 10.2.

The second, internal paradox, is generated within pluralism. The pluralist wants
to show tolerance and interest in other positions, to learn from other positions, to
entertain them seriously. But he is also insistent on certain issues of protocol or

1The implication, in these cases, is that the analysis which led to a paradox was not very thorough.
Of course, from a certain epistemic situation, it might be almost impossible to give a more thorough
analysis.
2Priest (2002, 142–155) argues that there is no substantial difference between the set theoretic and
the semantic paradoxes. I agree with this, but the distinction is a well accepted one. The distinction
plays no role here, so my drawing it is sans importance.
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attitude. Is this not itself, dogmatic, and therefore intolerant? This paradox will be
addressed in the third section. Both paradoxes are solved in a relatively benign way.

However, there is a third paradox, and this is of a different type. I call it
a ‘transcendental paradox’. This one, we generate by deploying the ‘inclosure
schema’. A version of it (Priest 2002, 129) was devised by Russell as a diagnosis
of what is common to (at least) the set theoretic paradoxes. Priest (2002, 134)
generalises Russell’s schema, and uses it to demonstrate many more paradoxes:
paradoxes at the limits of thought. The general idea is that in any attempt to give
a theory of all and every: description, number or conception, we approach a limit
threshold, which we at once respect, and also transcend.

Limits of this kind [of expressibility, conception, iteration, knowledge : : : ] provide bound-
aries beyond which certain conceptual processes (describing, knowing, iterating etc.) cannot
go; a sort of conceptual ne plus ultra. : : : [S]uch limits are dialetheic; that is they are the
subject or locus of true contradictions. The contradiction, in each case, is simply to the effect
that the conceptual processes in question do cross these boundaries. Thus, the limits of
thought are boundaries which cannot be crossed, but yet which are crossed. (Priest 2002, 3)

It is in the fourth section that I treat of this more radical dialetheic solution to
paradox in pluralism. I generate a transcendental paradox of pluralism, using the
inclosure schema, thus demonstrating the existence of at least one (not so easily
‘solved’) paradox of pluralism. I then treat the paradox as a dialetheia, thereby
giving a type of solution, or reconciliation. Thus, in the fourth section, we learn to
treat some paradoxes as a ‘transcendental’ feature of pluralism. Moreover, there is
not just one such paradox of pluralism. There are many. But since similar paradoxes
can be generated for any large ‘all encompassing’ theory or philosophy, it is not
only pluralists who are motivated to look closely at the dialetheic solution. For
those who feel queasy, I refer you to the section on nausea at the end of the next
chapter.

10.2 The External Paradox and the Argument from Modesty

In the introduction I wrote: “in the name of tolerance, if we accept that the other
position [which is intolerant towards pluralism] is, in some sense, correct, then the
intolerance towards us is correct, and we should give up our original position.”
Pluralism is therefore unstable in the presence of any position that is intolerant
towards pluralism. From the standpoint of pluralism we end up having to shift
position, and completely betray our pluralism and tolerance, and adopt the other
position, just in virtue of its being intolerant towards ours.

This cannot be right. Intolerance is no guarantee of correctness! The evidence
is that there are several intolerant positions that all make conflicting claims about
the same subject matter. In fact, very often, intolerance, which leads to dogmatism,
hides a lack of further argument or resources to defend a position. If one cannot
defend a position through convincing argument one either shifts to a more defensible
position, or one becomes dogmatic; one starts posturing and insisting, maybe
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resorting to force (although this is rare in mathematics or philosophy). This is not
to say that dogmatism is always wrong. It can be justified for practical reasons. One
might resort to dogmatism because one’s interlocutor is simply not bright enough,
within some time constraints, to appreciate the point one is trying to communicate.
If we set aside concerns about: time constraints, lack of resources and level of
mathematical and philosophical sophistication of an interlocutor, then dogmatism
indicates, not correctness, but lack of rational persuasive resources.

Let us move to the specific case of dogmatic philosophies of mathematics: the
monist and dualist philosophies. Echoing Chap. 4: by adopting a philosophical
position, or a foundational mathematical theory, we have the resources to make
claims at different levels. Rehearsing the levels: at the lowest level we have claims
strictly internal to the theory. For example, we have theorems of a mathematical
theory or principles that characterise the philosophy. “2 C 2 D 4”, or “addition is
commutative” are examples on the mathematical side. “Since numbers are objects
of (our foundational theory of) mathematics, their existence is independent of our
conceiving of them” is an example of claim that could be made by a realist in
ontology. The paradox of tolerance will not arise at this level.

It will arise at the next level where we meet claims to the effect that this
mathematical theory or philosophical position is the only correct, or true, one. That
is, the ‘dogmatism’ is internal to the theory, and so directly depends on our first
accepting the theory, at least temporarily, for the sake of argument. At the second
level, or at a meta-level, we have claims of the form: “first-order arithmetic has non-
standard models” on the mathematical side, or “realism is the correct philosophy” or
“logicism is an unstable position” on the philosophical side. It is at this level that we
find the intolerant claims, such as “ZF set theory is the (only possible/admissible)
foundation for mathematics”. Such statements preclude other positions, in particular
they preclude pluralism, and the pluralist faces the external paradox. Move up to the
third level.

At the third level, we either re-trench our dogmatism and continue to maintain
that our own theory is the only acceptable one. We are dogmatic ‘all the way up’. Or
we are pluralist and refuse the dogmatism of the lower levels. The refusal blocks the
dogmatism ‘all the way up’, but only from the pluralist perspective. That is, it will
not convince the dogmatist, only the pluralist. Nevertheless, the threat of paradox
is mitigated. Under this third-level pluralism, each mathematical and philosophical
theory at lower level is tolerated up to the point of dogmatism, that is, up to the
point where the dogmatic claim is made. It is a third-level pluralist claim that the
pluralist (occupying this third level) is intolerant towards intolerant claims of others
at second level. By refusing to recognise as legitimate, particular dogmatic claims,
the pluralist solves the external paradox of tolerance for the pluralist.

The solution has an added subtlety, not only is it a solution only for the pluralist,
but the pluralist does not even have to insist on the dogmatism (of rival positions)
being incorrect. It is enough to remain agnostic, and insist on scientific honesty: that
unless we have further evidence for the truth of the dogmatic position, we remain
pluralist. Should such evidence present itself, then it is, of course, correct to give up
pluralism. Remember that pluralism includes a principled agnosticism, not fanatical
agnosticism.

http://dx.doi.org/10.1007/978-94-007-7058-4_4
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One argument for pluralism is the ‘argument from modesty’. It runs: there are
several different, conflicting mathematical theories and philosophies of mathemat-
ics. None has succeeded in persuading everyone, or even every ‘rational’ person
(unless one defines ‘rationality’ very narrowly and cleverly).3 There does not seem
to be an immanent convergence in positions either. Depending on how finely we
want to distinguish positions, we might even think that there are an increasing
number of plausible positions.4

They are not equally plausible; even if we consider ‘plausibility’ to be a
subjective term where what is plausible to one person is not to another. Why
not? Plausibility also depends on background knowledge, so this is one way of
resolving disputes about plausibility: we can supply the necessary information. The
knowledge will include knowledge of arguments put forward in defence of various
positions. Plausibility is an educated judgment, not a mere judgment of taste. So,
we can partially rank theories or philosophies, one as more plausible than another
through argumentation and by increasing our knowledge and considerations. But
even amongst the most educated, we do not have convergence concerning the
ranking. Future arguments and future information might lead to convergence,
divergence, or convergence followed by divergence, divergence followed by con-
vergence; we simply do not know. Therefore, we have no rational basis, nor
authoritative basis (based on amount of education)5 upon which to make a final
choice for one dogmatic philosophy. The pluralist is aware that he located in time.
Right now, while he is a pluralist, he is not convinced by one dogmatic theory.
Otherwise he ceases to be a pluralist. Thus, one can change from one position to
pluralism and back again. Taking into account this possibly temporary aspect of
pluralism, the pluralist is someone who, right now, demurs from making a choice,
and accepts all of the plausible theories – mathematical and philosophical, as
plausible theories.6 The pluralist may then rank them according to comparative
degrees of plausibility, but better, we also work on the measure of plausibility.
We work to be explicit about the respects and measures by which one theory is

3The definition would have to be quite clever to avoid the charge of begging the question.
4We have to be careful about judgments about “recently increasing numbers of positions”.
Population increase accompanied by a little mathematical education, together would suggest an
ever increasing number. However, such claims should be moderated, by looking at numbers of
people in a position to develop and publish on a position, publishing ethos etcetera. In other words,
it might seem as though there are an increasing number of positions just in virtue of our ignoring
the past positions, which were not published, or have become less available, and seeing only the
published and publicized positions in an age where the university ethos is to ‘publish or perish’
which acts as strong incentive to publish. But the point remains that one should be alert when faced
with naı̈ve claims about quantities of positions.
5‘Amount of education’ is, of course, not to be confused with number of degrees or prestige of
award granting institutions. Here ‘education’ is meant in the basic sense of pursued, sustained and
critical enquiry. University degrees are a rough indicator of education.
6This is reminiscent of Hellman’s notion of ‘possible mathematical theory’, but the pluralist is
less constrained about the parameters on possibility (Hellman 1989). The pluralist is also more
sensitive about measures for ranking, and rating those.
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more plausible than another, and then work to come to determinations about those
respects and measures through critical argument. The upshot, once one has adopted
the pluralist position at third level is to accept a position at second or first level in
the philosophy of mathematics, but excuse the dogmatic second-level claim about
correctness or absolute truth of the non-pluralist theory. For, such a claim is thought
to be premature. The pluralist counters dogmatic claims of a theory by pointing out
the existence of alternative theories, and running the argument from modesty.

Note that pluralism is not dogmatic; instead it is ‘principled’. That is, upon
examination of a position, and in light of serious and open critique, one might well
decide that one position is more plausible than all the rest, and that the measure
of ‘plausibility’ is a perfectly good one! In this case, the pluralist should adopt the
position, and give up pluralism. However, he will do so in an open minded way,
that is: he will always be willing to change position, change his mind, in light of
countervailing evidence. Even the judgment that X is the most plausible philosophy
of mathematics is revisable. The judgment is indexed to (or ultimately depends
upon) knowledge and a set of arguments.

10.3 The Internal Paradox

The internal paradox of tolerance comes from the idea that the pluralist wants
to show tolerance and interest in other positions, to learn from other positions,
to entertain them seriously. But he also insists on certain issues of protocol or
attitude, he insists on a fair, honest and rational open-mindedness. Is this not, itself,
dogmatic, and therefore intolerant? It seems that pluralism is dogmatic. Oh, oh!

In Chap. 6 I made the following claim, which I said I would address in this
chapter. The claim is:

Third-level pluralism includes a set of attitudes, amongst which, we find an avoidance of
dogmatism, in favour of qualification and clarification. One by one, dogmatic claims are
replaced by careful explanation that justifies (and shows the limitations of) what was stated
as a dogmatic claim. (Friend 2014, 113)

If we insist on this, then, surely, we are dogmatic. We are dogmatic about attitudes
of enquiry and protocol. We witnessed this in the preceding section too when we
insisted that if, from a pluralist position, one comes across an overwhelmingly
plausible non-pluralist position, then one should adopt that position. Moreover, one
should adopt it in an open-minded way, that is, in the spirit of revisability. Almost
any philosopher of mathematics will agree to such a claim. However, usually they
are also convinced of a particular position. Their behaviour is not contradictory,
they are simply convinced of their position, but are willing, at least in principle, to
change their minds. The very fact that they go to conferences where other positions
are represented is testimony to the open-minded attitude of philosophers. Put so
mildly, one might suspect that I count almost everyone as a pluralist! Maybe I do –
provided they leave off the dogmatic claims!

http://dx.doi.org/10.1007/978-94-007-7058-4_6
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How can a pluralist defend a theory or philosophy? A pluralist can do this
because he thinks of the protocol and ‘should’ claims as normative, not as dogmatic
or absolute. The difference between normativity and dogmatism is this. A norm
sets a standard of behaviour or of attitude. In contrast, a doxa is not merely a
standard but is an absolute set of rules. They have to be obeyed blindly, whereas
normative claims are ideals of behaviour to which we aspire, or which we seek to
follow. Both adhering to them and following them requires judgment. The particular
norms advanced here are common to philosophical practice. This is why so many
philosophers will agree to them (and are quite pluralist unbeknownst to them!) They
will agree to the protocol as norms and not as doxa, and it is in this spirit that
the pluralist urges the philosopher to consider these protocols and attitudes. These
norms fit well within philosophical practice, and should be familiar. Looked at this
way, our threatening internal paradoxical tolerance dissolves into a banality. When
debating a theory or a philosophy, we have to keep some goal posts steady. We may
revise these one by one, or even several at a time. In principle, we can question
anything, even axioms of a mathematical theory, or protocol, but not everything can
be questioned all at once and all of the time, such would count as unruly behaviour,
and would be impracticable.

Thus, by appeal to the distinction between normativity and dogmatism, the plu-
ralist avoids the accusation of inviting an unsolvable internal paradox. Nevertheless,
there are more serious paradoxes, which cannot be so easily resolved. For their
solution, we turn to the dialetheist. A dialetheist pluralist is a pluralist at third level
with a paraconsistent logic underlying his pluralism. He does not consider himself
to be in a trivial setting, and he has a dialetheist attitude towards some paradoxes.
The paradoxes in question are ones that we do not seem to be able to resolve into one
truth-value.7 Examples are the liar paradox or some of the set theoretic paradoxes.
These are then considered to be true contradictions, and are called ‘dialetheias’.
We can generate these liberally by using the inclosure schema. Thus, we turn our
attention to the generation of dialetheias, and the dialetheist’s attitude towards them.

10.4 Dialetheism: Paradox as a Feature, Not a Disaster

We might have found some resolutions to the paradoxes of tolerance, but we
suspect that there might be other paradoxes facing the pluralist, not least because he
entertains, discusses and takes seriously, not only pairs of theories which contradict

7It follows that, faced with an arbitrary paradox, the dialetheist may try to resolve it classically, i.e.,
into one, and only one, truth value. Whether she takes this option or not will depend on her attitude
towards classical solutions and dialetheias. It is a question of weighting the options. It is when
the price is ‘too high’ (too much distortion of the original theory), or when no devices are present
or even on the horizon, that the dialetheist will consider the paradox to be a dialetheia. Thus,
ultimately, identifying a dialetheia is an inductive process. We give up trying to give a classical
solution at some point, and decide that it will be more advantageous to accept the paradox as a
dialetheia.
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each other but also quite disastrous theories, such as trivial theories. We might be
afraid that the trivialism and contradictions infect the rest of the discourse, and so
there is logical risk in ‘being tolerant’. The risk is that our very own discourse
collapses into trivialism. We have already seen, in Chap. 9 that there is a perfectly
robust distinction between a theory containing contradictions and a trivial theory.
The distinction is preserved simply by displaying a formula or sentence which is
only false. We shall call this ‘Post-non-triviality’. The reason I call it this is a little
involved, but not uninteresting. Here is the reasoning.

Post gave us the following definition of completeness of a theory:

A theory is Post complete iff “every time we add to it [the theory] a sentence
unprovable in it, we obtain an inconsistent system.” (Mancosu et al. 2009, 426)

In other words, there is something maximal about the theory, we cannot squeeze
anything more into it without generating inconsistency. Of course, Post was
assuming that ex contradictione quodlibet holds in the theory. Post then defines
a formal system to be inconsistent “if it yields the assertion of the variable p”
where p allows us to derive any sentence, as a sentence in the theory (Mancosu
et al. 2009, 426). Again the theory has as many sentences in it as possible without
collapsing into triviality. We can modify the definition a little, to make it serve our
purposes.

A theory is Post non-trivial iff there is at least one formula in the language of the
theory which we can display and is only false.8

Of course, it will not be a very useful theory if there is only one falsehood, which
is not also true. What we want for workable theories is that there is a substantial
set of only true sentences, a substantial set of only false sentences, and ‘very few’
sentences which have two truth values, at least on present thinking.9 Even the notion
of ‘very few’ is only metaphorical. What we really want is to be able to distinguish
the class of only true, only false, and dialetheic sentences. The formal system LP
presupposes that there is such a distinction. It is a separate issue whether or not
we can detect the difference in an application of LP. We can go some way towards
the detection, by specifying that the dialetheias are constructed using the inclosure
schema. But we have to be careful even here, since some paradoxes generated by
the inclosure schema are less interesting and less important than others.10

8We have to say something about ‘displaying’ because the trivialist will admit that there is a
formula, or sentence in its language which is only false, but it will not be able to generate or
display the sentence since it thinks every sentence in the language is true.
9This could change. However, even in a book such as Mortensen’s Inconsistent Geometry, where
he is interested in exploring the structure of inconsistent geometrical shapes, lines, spaces, etcetera,
he is still assuming that what he says (in the meta-language) is largely only true (Mortensen 2010).
10What I am really concerned about is that we cannot distinguish between different sorts of
paradox: the dialetheic ones and the ones we should continue to work to ‘solve’ in a more
conventional way. We shall return to this issue in Chap. 13. To foreshadow: there is no easy answer,
but there are partial answers.
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Modifying our definition:

a Post consistent theory is consistent, if it is decidable and counts ex contradictione
quodlibet as valid, and non-trivial otherwise.

In the latter case, we use the term ‘Post non-trivial’. Not every theory containing
contradictions is trivial, especially in the light of a relevant logic. A dialetheist adds
to relevance the idea that some contradictions are true (as well as false). Also, as we
have said in Chap. 6, depending on which underlying logic a pluralist adopts, he will
bring a different philosophical stamp. The dialetheist stamp includes the inclosure
schema. This is a formal schema for generating paradoxes. The inclosure schema
can be used in the presence of any large or ‘all encompassing’ theory. All we need
is a little ingenuity in interpreting the schematic letters.

I shall give the full definition of the schema in a moment. Let me first make a
few general remarks. The inclosure schema is a way of generating paradoxes, some
of which are also dialetheias.11 The schema was originally developed by Russell
as a diagnosis of what is common to the set theoretic paradoxes. Priest (2002)
generalises Russell’s schema, and uses the inclosure schema to expose paradoxes
implicit in many philosophical positions. Some of these paradoxes are then thought
of as dialetheias: conceptual limits to the philosophy. Here, I shall use the inclosure
schema to produce a dialetheia about pluralism.

There are three conditions that have to be met to produce a contradiction (which
might then be susceptible to dialetheic treatment). The first (1) is existence. (2) (i) is
transcendence, and (2) (ii) is closure. For those unfamiliar with the inclosure
schema, I’ll quote it verbatim, and then discuss it.

A contradiction fits the inclosure schema iff it has two characteristics. [Existence is
not a characteristic, so it is a separate pre-condition.]

1. � D fx; ®(x)g exists and §(�).
2. For all x � � such that §(x):

(i) • .x/ … x;

(ii) • .x/ 2 �. (Priest 2002, 276)

Deciphering (1): this is the existence clause and sets out the terms for the next
clauses. � is the set of all sets x which have the property ®, and some other
property, §, can be attributed, in turn, to �. In our case, the property ® will
be ‘is a characteristic or combination of characteristics found in philosophies of
mathematics’. The set � exists. It is the set of all collections of characteristics
found in philosophies of mathematics to date. At any one time, there are only
finitely many of these. We can think of this global set as giving us the materials

11I am not certain about the quantifier. Some dialetheists might even say that all inclosure schema
generated paradoxes are dialetheias, or even all and only inclosure schema generated paradoxes are
dialetheias. The more conservative ‘some’ is used here. It is enough for our points about pluralism
that we generate one dialetheic paradox using the inclosure schema.

http://dx.doi.org/10.1007/978-94-007-7058-4_6
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for a global pluralism.12 In our case, the property § will be ‘could be made into a
philosophical position’. So, if we took all of the philosophies of mathematics, we
could have a new philosophy of mathematics, i.e., a global pluralism. § is a modal
property, since ‘could’ is modal. There is no guarantee in advance that whatever
could be made into a philosophy will be an interesting, strong or stable position.
Some possible philosophies will be weak, unstable, boring, trivial or nonsensical.
So the claim §(�) is that it is possible to make a global pluralism out of all of
the philosophies of mathematics; success or interest is a separate matter. Maybe
‘candidate philosophical position’ is better, but we omit ‘candidate’ as a distracting
complication.

Deciphering (2): we start with the subsets, x of �, i.e., all of the (second-
level) philosophies of mathematics, and all their combinations plus third level
pluralism and so on up to global. The subsets x are potential philosophies. These
can be scrutinised in the light of pluralism, since many of these are made up of
combinations of other philosophies, monist, dualist and ‘sub-optimal’, ‘optimal’ and
‘maximal’ philosophies. Some combinations of these will lead to nonsense, such as
a fictionalist theory which is ‘combined’ with a philosophy which is realist in truth
value. Such a combination is nonsense because both fictionalism and realist in truth
values philosophies are classical, and therefore endorse ex contradictione quodlibet,
and therefore the combination results in a trivial theory.

‘Optimal’, here, refers back to Chap. 4, Sect. 4.8, and the distinction between
optimal and maximal pluralism. An optimal pluralist is a pluralist towards suc-
cessful mathematical theories, and ‘success’ is measured in a certain way – as
being accepted by the mathematical community, or being describable as a structure
of model theory, for example. A sub-optimal pluralist will develop a pluralist
philosophy (not monist or dualist), in the sense of including several mathematical
theories but is neither interested in ‘success’ nor in maximal pluralism. For example,
we might think of a geometrical pluralist: someone who accepts all of the received
geometrical theories on a par. There are many sub-optimal pluralist philosophies,
and I suspect that some mathematicians who call themselves ‘pluralist’ are pluralist
in this sub-optimal sense.

Thus, the first part of (2) says that for all subsets of a global theory which are
possible philosophies, we can transcend the subset theory (i) while staying within
the global theory, clause (ii). More specifically, we start with the transcendental
part, (i). • is our diagonaliser.13 In our case it will read: ‘re-organise the philosophy
by adopting a different underlying logic’ at the third (meta-level) of discourse, for

12Note that we have said nothing on how to individuate philosophies or theories, thus some might
be unsuccessful, or even disastrous. Global pluralism was found uninteresting philosophically in
Chap. 6.
13The term ‘diagonaliser’ is meant to be suggestive of Cantor’s diagonal number: the one that
proves that the list of reals, which we originally tried to make, is incomplete. It is constructed from
the existing listed numbers, but is not a member of what was supposed to be (per impossible) a
complete list of members. So, ‘diagonalisers’ use what falls under a concept in order to take us
beyond that concept. This is the transcendence part of the inclosure schema.
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example, we might use a relevant logic to underpin our fictionalism, rather than use
the more common classical logic. By diagonalising we step out of x. We transcend
our sub-theory.14 Moreover (ii) the diagonalised x is a member of the notion of
global pluralism, �. This makes sense since � is a global theory.

We can now use the inclosure schema to create a paradox. Diagonalise �, by
switching underlying logic. The diagonalised � transcends � itself, but it could
not have since •(�) 2 � according to (ii); contradiction. If we consider global
pluralism, then we can generate many pluralist philosophies, and we can generate
a paradox. The idea of a ‘position’ suggests a finished entity, the global pluralist
position. But it is not fixed, because by its very nature, because of its pluralism,
it grows. Call this the transcendental paradox. What are we to make of it? First,
is it a dialetheia? I.e., is it a true contradiction? We found global pluralism to be
unsavoury in Chap. 6, but here we know why. This is why we opted, instead, for
maximal pluralism as being much more reasonable and workable as a position. The
paradox we have generated using the inclosure schema gives us a reason to find
global pluralism unsavoury because dialetheic. Nevertheless, unsavouriness is not a
principled reason for ignoring the theory – by our own pluralist precepts. Therefore,
we should (normative ‘should’) consider it if we have the time and energy. So it is a
true contradiction. The next problem is how to cope with true contradictions of this
type.

The reaction of finding global pluralism ‘unsavoury’ is a conditioned reaction.15

It is conditioned by our upbringing in classical logic. In the literature, there are
enough arguments supporting the thesis that this particular aspect of our upbringing
is not defensible, and I refer the reader to these. See especially (Priest 2002,
2006a, b; Mortensen 2010). Overcoming our upbringing, or turning to other
traditions, we can think of global pluralism as an extensionally growing philosophy.
It is not, for all that, intensionally growing. The intension is fixed. That is, global
pluralism is an intention to entertain, and evaluate any proposed philosophy of
mathematics, including ones made from a combination of others. The task cannot
be completed, and we can never reach a final decision. The ‘best’ we could hope for
is relative stability. For this reason, global pluralism is not as chaotic as appears at
first glance, since we take time to develop and evaluate philosophies, and there are

14Note that the subset is not a proper subset, so we can diagonalise on �. In fact this is what we
shall do to generate the contradiction.
15Note that it is not conditioned in every upbringing of every person who ever lived. There are
people who never receive the necessary level of education to be conditioned. They are only
conditioned, insofar as they are, by ‘luck’ because Aristotle’s law of excluded middle is followed
by enough influential people in society, again, this reaches only as far as it reaches, not every
‘uneducated’ or ‘socially removed’ person is affected, partly because the ‘influential people’
are so for socio-political reasons, and therefore might not themselves fully adhere to the law
of non-contradiction. But there are also sophisticated examples of alternative upbringings. See,
for example, the writings of Nāgārjuna, (Priest 2002, 249–270). Moreover, the non-standard
upbringing is not restricted to the far and exotic East. When Aristotle argues for the Law of non-
Contradiction, he is making an argument, and this suggests that he has a worthy opponent. In
particular, Aristotle was addressing Heraclitus and Protagoras (Priest 2002, 11).
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only a small number of people who do this. So at any one time, we have relative
stability. It is not the case that ‘anything goes’.

We build and consider positions which have some pedigree, positions which have
been received by the community of philosophers of mathematics. We build on each
other’s shoulders, not in the void. Construction and evaluation take place within a
community, and therefore, to develop the metaphor of chaos, we do not have chaos,
but anarchism, that is, a self-regulating community. We, therefore, have the option,
nay constraint, to confine our research. Our historical situation, our finiteness, and
the small number of people in the community, together bridle global pluralism, so it
should not be thought of as threatening.

10.5 Conclusion

To sum up: if we take a paraconsistent logic to underpin our pluralism, and we think
that pluralist philosophies of mathematics (taken globally) contain dialetheias, then
we think that pluralism commits us to recognising some contradictions as true. The
dialetheic response is to think of pluralism as a transcendental position. It is a family
of positions, and as soon as it is taken as a whole it is then transcended. The global
theory grows. The situation is not as bad as it might seem. For one, we are in good
company: the company of almost every leading world philosopher: Plato, Aristotle,
Aquinas, Leibniz, Sextus Empiricus, Berkeley, Kant, Hegel, Russell, Frege, Quine,
Davidson, Wittgenstein and Heidegger to name a few (Priest 2002). Apart from the
good (or bad) company argument, we can think of the dialetheias this way: moving
up a level from third-level dialetheic pluralism, we take seriously the idea that there
might be rival logical underpinnings, each meriting its own take on the lower levels
of analysis. After all, we could just choose a different paraconsistent logic, since
the term ‘paraconsistent’ is adopted in quite different philosophical and logical
traditions. Each has its own motivations, and will bring its own philosophical stamp
to bear on its version of pluralism. For this reason we can, and cannot, really discuss
global pluralism as a fixed entity, and this might not be so difficult to concede.

However, we should be careful. The paradoxical situation is worse than I have
let on. There are not just three paradoxes. There are more. We can use the inclosure
schema to generate other paradoxes of pluralism. It is simply a matter of choosing
good combinations of properties and a diagonaliser, instances of the schematic
letters: �, ®, § and •! There might, for example, be a way of using the inclosure
schema to generate a paradox about maximal pluralism too, and maybe the same
applies for some of the optimal pluralisms. For, each professes to set some sort of
limit to what is being considered, and that limit invites transcendence. Under the
desperate prospect of generating ever more paradoxes, dialetheism becomes more
attractive (and maybe also less)!

Why more attractive? When we say that ‘a pluralist is pluralist about pluralism’
we are expressing the closure of pluralism. But pluralism transcends pluralism too.
How do we interpret this? Pluralists are well aware that philosophy and mathematics
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are historically (conceptually) situated. That is, they are developing with reference
to each other, what looks like a good philosophy of present day mathematics,
might not look so good of future mathematics, mutatis mutandis for applying
present philosophies of mathematics to past mathematics. Our interpretation, or
rational reconstruction of past mathematics in terms of present mathematics is
a delicate issue.16 More important dialethically, as pluralists at the third level,
we take seriously the possibility that there could be significant improvement to
the logic or class theory underpinning our philosophy, in which case we would
revise the underlying logic. In saying this we show how we can transcend our
maximal pluralism. We shall not transcend everything all at once, but rather stage
by stage. It is piecemeal development situated in history. Paradoxically, change
and transcendence are what save us from particular paradoxes being completely
unsolvable. There is a dialetheic ‘solution’, or if one prefers, ‘resolution’.
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Chapter 11
Pluralism Towards Pluralism

Abstract In this chapter we visit the subtle question of whether the pluralist
is pluralist towards himself. We answer this question in two ways. The first is
technical, and we develop this answer in Sects. 11.2 and 11.3. The second answer is
general, and we develop this answer in Sect. 11.4. A reader could skip Sects. 11.2
and 11.3 without loss of coherence, especially if said reader is not wedded to a
particular formal paraconsistent logic. The final two sections are for those who feel
queasy from following the conceptual gymnastics of pluralism.

11.1 Introduction

We mount to the fourth level. In this chapter we visit the subtle question of whether
the pluralist is pluralist towards himself. We answer this question in two ways. The
first is technical, and we develop this answer in Sects. 11.2 and 11.3. The second
answer is general, and we develop this answer in Sect. 11.4. A reader could skip
Sects. 11.2 and 11.3 without loss of coherence, especially if said reader is not
wedded to a particular formal paraconsistent logic.

To give a technical answer to our question. I assume LP, as a well-established,
tried and tested paraconsistent logic. LP bears witness to the following claims:
(1) contradiction does not have to entail triviality, and (2) when well managed,
paradox does not lead to incomprehension in the long run, although it might
lead to a period of puzzlement. Both claims rest on the fact that we can work
in a paraconsistent setting. For example, there are more and less interesting
non-standard, paraconsistent, models of arithmetic, geometry and set theory. See
Mortensen (1995) for arithmetic, (Priest 2002, 174) for set theory and Mortensen
(2010) for geometry.1 Nevertheless, those working in this area admit that it’s hard

1One complaint I have heard against this sort of work is that the ‘interesting models’ are not so
interesting since they have not been used to tell us anything about other parts of mathematics. To
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to think in contradictory situations. But, this should not dissuade us. That ‘it is hard’,
is simply a subjective, psychological report, and certainly does not mean that it is
impossible. I doubt it is impossible, since, to all appearances, some people seem
to manage. The people in question are, at least, all paraconsistent logicians.2 To
accustom oneself to such thinking, it is not a bad exercise to work through some
of the technical parts of this chapter, as a way of introducing work in inconsistent
settings, but strictly speaking, these sections can be skipped. To introduce work
in paraconsistent settings, Mortensen and Priest use the collapsing lemma to show
that what we think are ‘consistent formal systems’ have inconsistent and non-trivial
interpretations. Priest calls these coherent interpretations. I shall do something else
with the collapsing lemma, since we were already introduced to it in Chap. 9.

I shall use the collapsing lemma on LP. This will tell us not that LP is coherent –
we suppose this.3 Rather, it tells us that there are several coherent interpretations,
or models, of LP. Therefore, if someone is wedded to LP as the logic to underpin
pluralism and provided the reasoning goes through, then one has to acknowledge
the existence of several LP interpretations. This is enough to show that a pluralist (at
third level) who uses LP will have to be pluralist towards interpretations. That is, he
will be semantically pluralist towards third-level pluralism. The models generated
by the collapsing lemma will tell us different things about the pluralist deployment
of LP. Here, we only look at one non-standard interpretation generated using the
collapsing lemma and the inclosure schema. The result of the technical work is
modest. Nevertheless, it bears witness to the possibility that similar results can be
had with different paraconsistent logics underpinning pluralism.

In the fifth section, we step back. That there should be several versions of
pluralism should not be surprising since there are other candidate formal systems.
Using others will give a different flavour to pluralism. The pluralist has to be

answer this criticism, first: when Priest et al. claim that the models are interesting, they mean
this in a specific sense. The uninteresting models are those that are trivial everywhere except
for a small consistent part. The interesting models are ones that recover consistency after a
certain inconsistent limit. The inconsistent limit might re-surface again later. The inconsistency
is a fixed point (Priest 2002, 173). Therefore it is correct that this is not enough to interest
other mathematicians. It is a completely legitimate demand, since acceptance and inclusion of
new mathematical areas is only achieved through crosschecking. As things stand at present,
paraconsistent logics and mathematical theories are generally treated as a mathematical curiosity.
Regardless, it is philosophically important for distinguishing trivial from inconsistent mathematics.
But there is a second answer: working out links with other areas of mathematics takes time and
resources. There happen to be very few people working in this area. I am certain that as soon as
one of them finds something interesting for others in the mathematical community, he, or she, will
let us know. The time it takes is a feature of communication in the mathematical community, and
how that works.
2On explaining something about paraconsistent logic to a Romanian ecological economist, he
assured me that all Rumanians think this way. So the group might well include much more than
only the paraconsistent logicians. In fact, this is one of the motivations for studying paraconsistent
logic: paraconsistent reasoning is empirically observed, especially in philosophy classrooms, but
also on the street in Romania.
3LP is Post non-trivial, and this is enough for coherence.
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pluralist towards himself just in virtue of admitting alternative logical formal
systems to underpin a version of pluralism. Again, qua programme, here we see
that we can make different versions of pluralism by adopting different underlying
formal logical systems. Even the indulgent reader might by this stage have renewed
her doubts. So we re-discuss trivialism and the difference between paraconsistency
and trivialism. We include a final section called ‘nausea’, for those who feel queasy.

11.2 The Collapsing Lemma

Priest and others call it the ‘collapsing lemma’. Meyers preferred the name the
‘bubbling lemma’. Both are suggestive. The lemma collapses a domain into a
smaller domain to give a new model or interpretation. But once we do this, it bubbles
up, to produce all sorts of weird and wonderful paraconsistent models.4

Re-stating the collapsing lemma (familiar from Chap. 9):

Collapsing Lemma
Let ® be any formula; let v be 1 or 0. Then if v is in the value of ® in , it is in its value

in �.
In other words, when is collapsed into �, formulas never loose truth values they

can only gain them [they can become both true and false]. (Priest 2002, 172)

I’ll explain each symbol by way of re-expressing the lemma for those who would
like to refresh their memory. If you have understood it either here or in Chap. 9, then
skip the rest of this section.

An interpretation is a model <D, I>. Interpretations are usually used to
‘satisfy’ sets of formulas, i.e., theorems. Classically, they make all the theorems only
true, here we have them make all the theorems true, but they could also be true and
false. The interpretation makes a proposition or wff, true, or false, or both. An inter-
pretation satisfies a set of formulas iff it makes them all (at least) true. If the formulas
are first-order formulas, then the interpretation will include a domain of objects, over
which variables range. Object constants pick out particular objects in the domain.
There might also be predicate or relation constants in the interpretation. These pick
out subsets, or ordered subsets of the domain. These subsets of D are the extensions
of the constants. We leave out functions from the language being interpreted because
the collapsing lemma cannot be proved if both: there are functions in the language
and � is not a congruence relation on the functions in the language (Priest 2002, 173
n. 6). We can think of an interpretation as a pair: <D, I>, where D is the domain
and I is a (meta-level) function which maps individual constants in the language into
D and maps predicates into their positive and negative extensions in D. Elaborating
on the notion of ‘negative extension’: a positive extension is the set of objects in D

4I was torn about what to call it myself. On the one hand, the ‘collapsing lemma’ is more current,
so it would be less confusing to use that name. On the other hand, the ‘bubbling’ lemma is more
fun.

http://dx.doi.org/10.1007/978-94-007-7058-4_9
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which have the property in question; the negative extension is the set of objects in D
that do not have the property. We have to specify both separately, since there could
be (inconsistent) objects, which are in both extensions, and this is how we can tell
that they are inconsistent. Now, � is an equivalence relation on D. � will partition D,
lumping some objects together because they are interchangeable (equivalent) under
�. � will look exactly the same as if � partitions the domain by identifying
every member with itself. � will make a different domain, D�, if it has some
properties which have more than one object in their extension. It will be smaller, if
D is finite. If D is infinite, then D� will be a proper subset of D. For example, let D be
comprised of the natural numbers. If � says: “take every number greater than 10000,
and stick them together (because they are too big, and I do not care about them) leave
all of the other numbers alone” then � will be quite small and finite, with 10000
members, or if 0 is in D, then 10001 members. Our new � domain D� will be the
set: f[1], [2], [3], [4], : : : [f10000 : : : g]g. Priest uses square brackets around d: [d],
to indicate that each member of D� is an equivalence class made from D.

The mapping �, has to preserve a lot of the original structure of D. All constants
are preserved as such under �. They are just repeated in, and are each separate
members of D�; similarly for predicates which preserve both their positive and
negative extensions. We add a valuation function ‘v’. This assigns 0, 1, 0 and 1, to
formulas in the language based on the interpretation.

The lemma says:

all formulas which are true, given , are still true under �.

So, for example, if 2 C 2 D 4 is in , it will still be true (given value 1) in �.
It might, of course, be contradictory in the new �, in which case it will also
have the truth-value 0. The collapsing lemma without an accompanying result about
Post consistency is not interesting, since we then have no guarantee that we have
not collapsed into triviality, placing all objects in the domain into both the positive
and negative extension of individual constants, predicates and relations. The trivial
model is made by collapsing the domain into one object, by stipulating that every
object is identical to every object: 8x 8y(x D y).

11.3 The Collapsing Lemma and LP

Consider LP as a formal theory of mathematics, with: formulas that are true,
formulas which are false, and formulas which are both true and false under given
interpretations. See Appendix 1 for more details. We shall show that while LP has a
standard interpretation, we can use the collapsing lemma to make a new (collapsed)
interpretation of LP.

We take the first-order version of LP, since we want domains. The language of
LP has the logical connectives, a quantifier, variables, a finite number of predicate
letters, identity and no functions. The finite number of predicate letters, and the
absence of functions is needed for technical reasons, the details of which are not

http://dx.doi.org/10.1007/978-94-007-7058-4_BM_1
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important here.5 First, LP has its interpretations D <D, I>. The interpretation
is made in a language. This is not something normally mentioned, but it will be
important for us. The language of includes all of the connectives, the universal
quantifier, the constant ‘D’ and so on, just as in LP. The semantics of LP is the
standard of LP. We shall change two things. In the domain of members are
also names, and each name will be given a Gödel number. The names can thus be
ordered: d1, d2, d3, and so on. This should be harmless, since we think of a language
as something deployed and therefore essentially finite, so it is enough if there are
fewer than ¨ names in a given formal language. The second change is that in the
valuation function is a relation between formulas and members of the set of possible
truth values: ff0g, f1g, f0, 1gg. The valuation relation relates a formula to 0 or to 1,
the ‘or’ is inclusive.

Moreover, in concert with the usual interpretation, has it that every formula
which is valid in classical logic (i.e., true under all interpretations where formulas
are only related to 1) is 1 (only) in LP. There are, however, formulas with both
truth values, and these are the contradictory formulas; ones whose valuation relation
relates the formula to 0 and 1. The standard or intended domain of interpretation of
LP is all objects which can be characterised.

The characterisation principle tells us that an object just is the bearer of characteris-
tics (expressible in a language).

Of course, there will be contradictory objects, namely those characterised by
contradictory properties, pairs of properties which preclude each other.

Collapse the standard domain in the following way. Put together, into one class
all of the contradictory objects and all of the objects never experienced. We do not
need to know what these are (in fact we cannot) they are just the bearers of the
characteristic ‘has not been encountered’. Provided we are not strict constructivists,
we can make sense of the idea that we know that this new interpretation � is a
proper subset of .6 We also know that the resulting interpretation is not trivial.
This is so for two reasons. If you block ex contradictione quodlibet proofs in your
system, then you have non-triviality because there will be some formulas that are
not provable. That is, we have Post non-triviality. We can show this by induction
on proofs. Secondly, what we have done is to give a type of interpretation to LP
where we have put all of the impossible and unencountered objects together. There
are some quite standard encountered objects, and there are predicates under which
they fall. Moreover, since they are standard encountered objects, there are predicates

5The finite number of predicates is important for ordering minimally inconsistent LPs (Priest
2006b, 227). The lack of functions is needed for the proof of the collapsing lemma to go through.
Of course, we can re-express functions as relations (Priest 2002, 173). ‘Predicates’, here, are
predicates or relations. That is, a relation is a two-or-more place relation.
6There are more careful ways of saying this that are acceptable to a constructivist, but they are
elaborate, and therefore, using them (since there are different versions of constructivism) would
risk increasing confusion.
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under which they do not fall. So, again, with a little philosophical indulgence, we
have a non-empty class of formulas which are only true, a non-empty class which
are only false, and a non-empty class which are both true and false.

By this re-interpretation, we have shown that we can give a second interpretation
of LP, a non-standard one, and it has some philosophical interest. This is because
what it amounts to is a way that the realist can make some sense of some versions
of constructivism. It is not a sense the constructivist will recognise. Our exercise
is also a demonstration of pluralism at work. The cheeky conclusion is that the LP
monist has to acknowledge that it is coherent to give an alternative interpretation
of LP. Maybe this is no surprise, since there is at least some sense in which
dialetheists can ‘understand’ constructivists, by, for example, discussing the fact
that intuitionist logic allows ex contradictione quodlibet proofs. The understanding
is partial and concerns the common territory, the objects of which are both possible
and encountered. Meyer however, see Chap. 13 for a further twist to the story.

I should add a last note on what has transpired in this section. Meyer developed
the collapsing lemma. Mortensen uses it to produce paraconsistent models of
arithmetic. Priest uses it, in a similar fashion to Mortensen to produce a paracon-
sistent model of first-order set theory. They do this for the following reason: “one
way to show a notion to be coherent is to produce models of it,” (Priest 2002,
170). Of course, the models for a paraconsistent arithmetic or set theory will be
paraconsistent, and not trivial. They will not be classical, consistent models.

My purpose is quite different. I am not starting with a supposed consistent formal
system and then showing that the paraconsistent version of it has a paraconsistent
model, and therefore the paraconsistent version is coherent. I am starting with a
paraconsistent logic, so the standard model is already paraconsistent. Nevertheless,
the logic too, has several interpretations. Therefore, what I show is that the notion of
‘several interpretations of paraconsistent logics’ is coherent. It is therefore coherent
to be pluralist about a pluralism (of third level) underpinned by LP. The reason this
matters is the subject of the next section.

11.4 Who Cares? Widening the Picture, Other
Paraconsistent Logics

We showed in the last section that LP has more than one non-trivial interpretation. In
some ways this should not be too surprising. The world could be many ways and still
LP would be a logic we could deploy in that world. But the point is that this thought
is coherent, unless one shows that the reasoning in Sect. 11.3 is irredeemably
wrong or that the technical modifications made in order set up the demonstration of
Sect. 11.3, are too distorting of LP. Assuming that the demonstration is accepted,
then a fan of LP would have to be pluralist about the different interpretations,
since LP does not determine one interpretation. There is no way to decide between
them without stepping outside the reasoning, and bringing some extra-logical

http://dx.doi.org/10.1007/978-94-007-7058-4_13
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considerations to bear on our choice of interpretation. I do not deny that this can
be done. Given the example above, it would be obvious to argue against collecting
together the unencountered and impossible objects since this is metaphysically
unsatisfactory. Nevertheless, it might serve some purpose. It makes some sense for
the realist (as an attempt to understand the constructivist), and makes no sense at all
for the constructivist qua constructivist. It can only make sense to the constructivist
as an attempt to try to meet the realist part-way to explain constructivism to the
realist. So, it is not a philosophically satisfying, or stable interpretation of LP.

Nevertheless, it is enough for me here to acknowledge that there are two coherent
interpretations.7 We could demure from making a choice of one interpretation over
the other, on strength of coherence. That is, it is coherent to be agnostic about (at
least some of) the different interpretations, i.e., be pluralist towards the different
interpretations.

If one is not a convinced fan of LP, but of another formal system, it would be
interesting to see if we could run the reasoning using the collapsing lemma, or some
other means of generating different interpretations for that formal system. This,
again, hails future projects. Note that, these would not show that we can reason
coherently (non-trivially). We know that already. Or, we assume it when we accept
or deploy a paraconsistent logic, even if we do so metaphorically. What comparable
results would show is that once we accept a given paraconsistent logic, it is coherent,
at least in some cases, to be pluralist about more than one interpretation of that
logic. Indeed, the fourth-level pluralist thinks we do this implicitly whenever we are
engaged in comparing discourses of together contradictory theories.

If we do not naturally fasten on one paraconsistent logic, to the exclusion of
other paraconsistent logics, then we do not even need to go through all of the
reasoning of Sects. 11.2 and 11.3, to reach this conclusion. We are already pluralist
about pluralism. For we accept, implicitly, that we could underpin our third-level
pluralism with any acceptable paraconsistent logic, together with all of its coherent
interpretations.

Regardless of whether we arrived at this conclusion starting from a logically
monist position, or from an already logically pluralist position, we are still faced
with a choice about our degree of pluralism towards pluralism. If we default to the
more radical position, of not favouring any paraconsistent logic over others, then
it is worthwhile working through what sorts of differences we might see, and what
will be common to all of the pluralist philosophies. These differences will determine
our degree of pluralism, this time, regardless of our starting point. Let us begin with
the similarities.

7It is plausible to ignore these if we realise a few facts. First, there are several interpretations of
LP which we can make using the collapsing lemma. Second, philosophical considerations might
not decide between all pairs of interpretations to favour one over the other. Moreover, third, there
might not (yet) be any, non-ad hoc, philosophical or otherwise, means of making a determinate
choice.
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Similarities

1. All paraconsistent logics are motivated by the idea that we do encounter
contradictions, or at least seeming contradictions. Moreover,

2. we seem to be able to behave quite rationally in such situations. We do not lapse
into trivialism.

3. All successful paraconsistent logics avoid trivialism.

The differences between the systems concerns their diagnosis of:

Differences

1. what an inconsistency is, before it is given formal representation,
2. which formal representation of contradictions is best and
3. whether all apparent inconsistencies are only that, so they can all be dissolved.

An example of an apparent contradiction might be an inconsistent data set, where
there was an error in entering some of the data. The error can be easily corrected,
making the data set consistent again. The differences in diagnosis are usually
manifested in the interpretation of the conditional in a natural language, the notion
of implication and the notion of entailment. Some formal systems also target
other connectives or logical notions such as conjunction or disjunction. Many
include truth-value gluts or gaps in their semantics. Attending these differences,
the reasoning will differ when we are confronted by a contradiction.

By now, some readers who have followed this far will have re-kindled their
doubts about pluralism. In order to remind them of one of the crucial points, we
revisit trivialism, and how the pluralist avoids it.

11.5 Trivialism, Relativism and Inconsistency

What is wrong with trivialism? And why might we think that pluralism is not trivial?
After all the following criticism is quite general, and reminds us about the norms in
the pluralist philosophy and how a lack of norms can degenerate into trivialism,
which is a close cousin to rampant relativism.

Criticism 1 If the maximal pluralist is so loath to set norms or arbitrate between
exiting norms, then everything goes, and the position is actually trivialist. For any
theory, we can find a meta-theory or an attitude, which endorses the theory, so there
is no real philosophical judgment, there are just relative judgments or descriptions.
No one wants a trivial philosophy because it is the same as a rampant relativism.

There is a technical and direct threat to pluralism when the pluralist even just
entertains or discusses trivialism.

Criticism 2 The pluralist might end up with a trivial philosophy because the
pluralist takes seriously some trivial mathematical theories. Call this ‘the argument
from infection/ explosion’. After all, the language of these theories is a proper sub-
part of the philosophy, so the triviality spreads through the philosophy.
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This has not in fact occurred.8 In practice we observe a clean break between
trivial mathematical theories and philosophical positions which entertain them. The
infection does not spread to the philosophy. But we need to say more. We need to
explain why this is, especially in this case.9

Before we answer the criticisms, we should appreciate the danger. A trivial
philosophy of mathematics holds that every well-formed mathematical formula, in
any language of mathematics is true (and its negation is true), and any philosophical
sentence about mathematics is also true.10 Anything goes, and all judgments are as
good or correct as the next.11 Trivialism is pretty hopeless as a philosophy, although
it is very easy to defend or maintain verbally or in writing (although a trivial piece
might never be accepted for publication)! The strongest criticism against it, which
is pertinent to this project is well expounded in Priest, and it is an argument from
meaning (Priest 2006a, 68–69).12 It is not clear that a trivialist can mean anything by
his utterance or written statement, since there is no recognisable judgment attending
sentences. They are all true. So there is no meaningful intentionality, since there
is no distinction between a belief, a known fact, a subject of fear, desire or what
have you. Since there is neither judgment nor intentionality attending the use of
language, the philosophy of mathematics being presented is degenerate. According
to someone who is not a trivialist, the trivialist theory renders13 mathematics

8In know of no discussion of trivialism which has degenerated into trivialism, except in moments
of jest.
9One might think that I am being somewhat unfair, and ignoring a lot of philosophical activity.
For example one might point out that Russell was much aggrieved by the paradoxes, and theorised
a lot about them; and I should not ignore this since Russell’s investigation into the paradoxes
shaped his philosophy and formal system. Moreover, some very important philosophical work
has been done in looking very closely at Frege’s trivial theory – such as the work of Dummett,
Wright, Boolos and Heck. I appropriate such activity, and call it pluralist! What is anti-pluralist is
any accompanying revisionism. So, we should be careful about our interpretation of the intention
behind the excellent work cited above, we might say that these philosophers engage in pluralist
work despite themselves.
10We might come to this position by supposing, say, that ZF contains a contradiction. More
precisely, we need a theory which is considered to be foundational to mathematics, we need for it
to be a classical theory: allowing ex contradictione quodlibet inferences, and we need to be able to
derive a contradiction from the axioms using the rules of inference.
11For a good discussion of trivialism see (Priest 2006a, 56–71).
12In (Priest 2006a), Priest writes that he is not completely satisfied with the argument from
meaning, and thinks that his argument from physical survival is stronger. Note that in (Priest
2006a), Priest is arguing about trivialism in general, not about trivialism as a philosophy of
mathematics. For the purposes here, the argument from meaning is both satisfactory, and the
stronger argument.
13The trivialist will ‘hold’, in the sense of ‘assert’, any position. This is not the point. Trivialism
in mathematics arises from the idea that mathematics is classical and there is a contradiction in
mathematics, and therefore (under our old classical reasoning) all of mathematics is true, we then
get to the meaninglessness of any particular mathematical statement, and wallow in our degenerate
theory. There is a sequence to the reasoning, which gets us to the degenerate position. Once there,
reasoning, as such, is impossible.
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meaningless, and the philosophy itself is meaningless. Provided that we hold that
some wffs are false (and not true), we do not have a trivial theory; this is Post-
non-triviality. An example of a wff, which the maximal pluralist holds false (and
not true) is: `PA 2 C 9 D 34.14 We read this: “in Peano Arithmetic, two plus nine
equals thirty-four”. These are the Ts (sentences, s, of a theory, T). This is enough
to distinguish the maximal pluralist from trivialist philosophy of mathematics. Note
that we have not defeated the trivialist with our argument. Rather, we have simply
distanced maximal pluralism from trivialism, and this is enough to fend from the
first criticism that maximal pluralism is a trivial philosophy.

However, the second criticism has not been answered. How can we entertain, and
discuss trivial theories seriously without our own talk degenerating into trivialism?
Trivial mathematical theories are the most controversial of the ‘bad’ theories the
pluralist will discuss. A trivial mathematical theory is one where every well formed
formula in the language of the theory is true. Different trivial mathematical theories
are distinguished from each other by their language.15 To distinguish between
different trivial theories, we look to the differences in vocabulary, which are part
of the characterisation of the theory. This is enough to clearly distinguish between,
say, Frege’s theory and Cantorian set theory. For a trivial mathematical theory two
factors have to be in place. The underlying logic of the theory has to be classical (has
to allow ex contradictione quodlibet inferences) and there has to be a contradiction
derivable from the axioms using the rules of inference of the theory. Not all trivial
theories are the same. They differ in language, and in structure. Paraphrasing
Mortensen (2010, 4): “the inconsistent has structure”.16 This is literally the case
for geometrical inconsistencies and arithmetic inconsistencies. We use inconsistent
non-trivial models to give sense to that structure. The inconsistent has structure, but
what of the trivial?

Historically, there are three (to my knowledge) mathematical theories that were
trivial and had a profound impact on mathematics or logic. These are: Cantor’s
naı̈ve set theory, Frege’s formal theory of logic and the first version of Church’s
formal theory of mathematical logic. All three had repercussions on subsequent
mathematics. None led to the collapse of ‘all of mathematics’. None led even to

14The trivialist will, of course, agree that ‘`PA 2 C 9 D 34 is false’, since the trivialist will agree to
everything. The maximal pluralist will disagree that ‘`PA 2 C 9 D 34’ is true. The quotation marks
are important. The trivialist has to agree, and cannot disagree, except in quotation marks. This is
all we need to distinguish the positions.
15If (what we suppose to be) two trivial theories have different languages, then they can be
distinguished from each other, not otherwise. Some sentences will be true in one, but not
recognizable in the other. I thank Priest for pressing me on this point at the Logica conference
2005.
16This is a paraphrase. What Mortensen (2010, 4) actually writes is: “The importance of
inconsistent images is enormous, I think. Even sceptics who disbelieve in paraconsistency have
difficulty in insisting that the inconsistent has no structure, when confronted with these examples
[of images of inconsistent objects].” I do not think I have misrepresented him in my paraphrase.
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the collapse of ‘that part of mathematics infected by the theory’.17 The important
proofs contained in the exposition of the above trivial theories do not proceed as
ex contradictione quodlibet inferences, which is why the theories are considered to
be important despite their being (technically) trivial.18 Thus, further paraphrasing
Mortensen, for the pluralist who is indulgent towards trivial theories, ‘trivialism has
structure’ too!

Moreover, this is recognised implicitly. The good trivial theories are studied and
trawled for good ideas and insights. Witness the work of Dummett, Wright and Heck
on Frege’s trivial theory. In general, after spotting an inconsistency, mathematicians
try to fix the theory with minimal changes. This is what Church successfully did, and
what Frege tried to do. Why do mathematicians do this? It is partly due to the fact
that there is a sense of ‘correctness’ of the theory independent of the inconsistency.
That is, there is a difference between, say, a proof in Fregean notation where there is
a mistake in the application of modus ponens, and the mistake in the whole theory:
that we can derive a contradiction in it. With the first sort of error we correct it by
changing the proof. With the second sort of error, we correct it by changing the
axioms, or some other fundamental part of the theory.

To ignore the mathematical and philosophical influence of such theories, again,
would be to provide a philosophy of mathematics that lacks in scope. Byers remarks:
“No description of mathematics would be complete without a discussion of its subtle
relationship to the contradictory (my emphasis).” (Byers 2007, 81). Our only hope
of engaging in a subtle discussion is through reference to a paraconsistent logic,
since other logics are anything but subtle in this respect! Byers remarks later:

Moreover, paradox has great value. Thus (sic!) paradox should be seen as a generating
force within the domain of mathematical practice. : : : Where do that power and dynamism
come from? Well, they come from ambiguity, contradiction and paradox. These things are
therefore of great value. They need to be unravelled, explored, developed, and not excised.19

(Byers 2007, 112)

Ambiguity, paradox and contradiction need to be unravelled if one wants to give an
account of the practice and development of mathematics. This is partly a socio-
psychological task, but it is also philosophical, since it raises epistemological
questions largely ignored by traditional philosophies of mathematics. For, if Byers

17For example, we did not stop doing arithmetic when Russell discovered paradox in Frege’s
reduction of arithmetic to logic. This is also evidence against trivialism.
18Azzouni (2007, 599) says something similar about the triviality of natural language. Accepting
that the semantic paradoxes make natural language trivial, it is then clear that “no one actually
makes any inferences on their basis [the basis of inconsistencies arising from the papradoxes], and
so the body of purported knowledge that speakers (collectively) are building up, is not : : : tainted
by such.”
19Note that Byers makes no mention of paraconsistent or relevant logics. I therefore assume
that he is not advocating a paraconsistent point of view or anything of the sort. Nevertheless,
in the quotations I cite here, and in many other places in the book, I found support for the
position advocated in this book. I do not know what Byers reaction would be to the mention of
paraconsistent logics.



200 11 Pluralism Towards Pluralism

is correct, then it is through awareness of, and in confrontation with: ambiguity,
paradox and contradiction that we develop mathematics. Of course, when we use
established mathematical theories we can comfortably ignore ambiguity, paradox
and contradiction. The latter are epistemological tools for developing new mathe-
matical ideas. They are not strict limitations or parameters on reasoning or on the
corpus of mathematics.

We can draw further distinctions. We have discussed some good trivial theories.
There are also interesting but bad trivial theories. Consider Prior’s “Tonk theory”
(Prior 1960–1). It is interesting because it teaches us something about the limitations
on choices of pairs of rules for connectives. So, even this trivial theory has some
merit. In contrast, a hopeless and bad trivial theory is one where all of the proofs
have to use ex contradictione quodlibet.

11.6 Nausea

Things are bad! Things are very bad: I have it, the filth, the Nausea. And this time it is new:
it caught me in the café. Until now, cafés were my only refuge because they were full of
people and were well lit: now there won’t even be that anymore : : : (Sartre 1964, 18)

Some philosophers, when reading about, or hearing about, pluralism experience
a sense of nausea. This is professional nausea, not a subjective symptom. Here is
the pluralist diagnosis. The diagnosis is partly psychological, and the psychology is
almost ingrained in the profession. The psychology is that we hanker for certainty
and definiteness. This is just part of the human condition. We particularly like
definite answers to questions in the form of ‘yes’ or ‘no’. We tend not to like ‘it
depends’, and ‘it might seem this way, but consider again’, especially when these
further considerations end with no resolution in the form ‘yes’ or ‘no’, but are just
open-ended conditionals. But this only describes our feelings. Such feelings are
allowed to determine our ambitions and to dictate what we accept as a solution in
philosophy. However, the contention of the pluralist is that the feeling is a prejudice
and should not be allowed to determine anything but our direction. It should not be
allowed to determine what is to count as an acceptable outcome.

It does not follow from these open-ended situations that no resolution will, or
can be had, or that no resolution has been reached! Provided an open-ended enquiry
includes parameters, a protocol, a sense of correcting an enquirer who strays off the
path, then there is a sense in which a resolution has been reached. Here, ‘resolution’
is to be contrasted to a ‘yes’/‘no’ type of solution. If we have a resolution, then
we have a direction, and a way of marshalling our thoughts. That is, ‘resolution’ is
not to be considered to be a lesser (with a negative connotation) type of ‘solution’.
Instead, ‘resolution’ is just one form of solution, amongst others. In fact, it is quite
common. We might even want to go further and distinguish between different sorts
of resolution. As pluralists, we can note that resolution is a psychologically more
demanding type of solution, but it is an exciting one too.
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The pluralist urges a distinction between the philosopher’s private feelings,
reactions and motivations and the public philosopher. As a public philosopher, one’s
feelings are irrelevant. Moreover, assuming some form of free will, they can be
brought under some control (of the will). Ultimately, we can choose whether to feel
nauseous or excited. Either way, professionally, philosophy just is the sort of subject
where there are many more resolutions than solutions. Therefore, professionally
and publicly, philosophers had better just get used to it. In other words, the nausea
or excitement is a professional hazard, and cannot be used as a refutation or
endorsement of a position. Pluralist philosophers are committed to going where
the argument takes us. This is our meta-dogmatism. Since we have a choice in the
matter, it is professionally healthier to foster excitement than feelings of nausea.
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Part IV
Putting Pluralism to Work: Applications



Chapter 12
A Pluralist Approach to Proof in Mathematics

Abstract We further explore the pluralist’s conception of proof. In particular we
contrast it to the so-called axiomatic conception of proof. The pluralist adopts an
analytic conception of proof. Two claims are defended. One is that all proofs can
be viewed as analytic. The second is that it is preferable to do so. The reason it
is preferable is that proofs open our eyes to exploration not only towards further
proofs in the same formal system, but analytic proofs also invite us to question the
axioms and the contexts of proof. We exercise our sceptical caution, to lead us to
much more fundamental types of exploration than we would have engaged in had
we viewed proofs as axiomatic.

12.1 Introduction

In this part of the book, we set the pluralist to work. In this chapter, I revisit the
notion of proof in mathematics. I develop further what happens conceptually when
we accept that there is not one standard of rigour. I start by discussing two notions
of proof due to Cellucci. They might be thought to capture competing conceptions
of proof, but we shall see that this is not the case. The same proof could be seen
as both. The two conceptions are the ‘axiomatic’ and the ‘analytic’ conceptions of
proof. The first is more foundationalist, the second is pluralist, and it is so in an
interesting way, which is connected to several ideas in this book.

It is valuable for any philosophy of mathematics to form a conception of proof be-
cause proof is one of the characteristics which sometimes distinguishes mathematics
from other disciplines. Proof permeates modern mathematics. However, we should
be aware that it has not always been so. See the web site for the International Study
Group on Ethnomathematics. The history and geography of proof in mathematics
is an interesting subject, but not one I am plumbing here.1 Instead, I restrict my

1The notion of what counts as mathematics, can be geographically and historically extended if
we ignore our modern, rigid, conception of proof. A suggestion, made by Bishop is to think
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attention to that part of mathematics that distinguishes itself from other areas of
research because of the emphasis on proof (François and Van Bendegem 2010, 116).
That is, I am not so concerned with the notion of proof for all of mathematics, but
rather, for that part of mathematics where proof is considered to be inseparable from
mathematics. This is, at least, all of modern academic mathematics, but reaches far
into the past since proof has its roots at least in Euclid.

In this chapter, the dialogue will run as follows. In the second section, I elicit the
distinction, between axiomatic and analytic proofs. In the third section I argue that
all proofs can be seen as analytic. In the fourth section I argue that they should be
seen as analytic, and that some mathematicians agree with this. Finally, in the fifth
section, I shall confirm the view by citing Rav’s remarks concerning proofs, and
discuss how these add richness to the pluralist notion of proof.

12.2 The Axiomatic View and the Analytic View

Cellucci introduces some useful terminology. Proofs can be thought of as analytic
or as axiomatic.

Definition An axiomatic proof is one that begins with some axioms, or in its
sequent calculus guise, rules of inference,2 and proceeds using only sanctioned rules
of inference to lead to a conclusion. Under the axiomatic proof view the axioms
(alternatively: rules) are to be taken as absolutely true and completely basic and
obvious.

For this reason, they are not to be questioned. (The formalist version of this is
that the axioms are just stipulated, and it is for this reason that they are not to be
questioned). Since the axioms should not be questioned, and the reasoning proves
the theorem, the theorem is accepted as final.

The notion of axiomatic proof is reminiscent of Frege’s gapless proofs and
Gentzen’s sequent calculus proofs. The former were based on basic laws, and these
were presented as indubitable. The latter were presented as the natural way in which
mathematicians reason. Hilbert’s view is also, in some sense, axiomatic. We do not
question the axioms because they are self-justified by being finitist and together non-
contradictory. There is no further purely mathematical justification owed, although,
of course, we could add further justifications in terms of applications. As we can
see, the axiomatic proof view is both prevalent in, and common to, several otherwise
quite different philosophical approaches.

of mathematics as an essential tool for coping with the environment. Coping includes: counting
measuring, locating, designing, playing and explaining. If explaining is short of proving, then
proving is not central to mathematics as practiced in many cultures, and most of the time by most
of us. This point comes from François and van Kerkhove (2010, 129).
2It is understood that rules of inference and axioms are usually inter-definable, and therefore a
natural deduction proof or sequent calculation are also axiomatic proofs.
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The pluralist joins Cellucci, Manin and Poincaré in taking exception to the
axiomatic view. Manin comments on Poincaré: “when Poincaré said that there are
no solved problems, there are only problems which are more or less solved, he
was implying that any question formulated in a yes/no fashion is an expression of
narrow-mindedness.” (Manin 2007, 13). That is, if we think that by giving a rigorous
proof we have established the truth of a theorem for once and for all, then we are
mistaken. Instead, we should broaden our gaze after a proof. What we have done
in giving a proof is expose the justification internal to a theory for the theorem
with maximal clarity, and we invite scrutiny and further intellectual probing. Manin
quotes Samuelson with approval: “I will conclude with a penetrating comment
of Paul Samuelson : : : One of the advantages of : : : the canons of exposition of
proof : : : is that we are forced to lay our cards on the table so that all can see our
premises.” (Manin 2007, 5), quoted from (Calzi and Basile 2004, 95–107).3 The
sentiment the quotation conveys is exactly the pluralist one concerning proof; that
proof is about exposing reasoning and justification in order to communicate an idea
and invite further scrutiny, not to close the original question. The further scrutiny,
if successful, will lead to a deeper understanding. The pluralist sees proofs, not as
axiomatic but as analytic.

Definition An analytic proof solves a problem by making hypotheses and usually
using a mixture of deductive moves and induction (loosely construed to include
diagrams etcetera) to present a solution to a problem (Cellucci 2008, 3).

It follows that analytic proofs usually contain an informal or gap-like element. Let
me distinguish between internal and external gaps.

Internal gaps in analytic proofs are indicated by the presence of a diagram, an
inductive argument, a genetic argument or some use of metaphor.

Mathematical writing at all levels is rife with such proofs – proofs with internal
gaps.4 But, even in a very rigorous looking proof, there are gaps. In this case they
are ‘external’. The ‘gaps’ are in the context, and the acceptance of axioms or rules.

External gaps in proofs concern context, they are gaps in the justification for an
axiom or rule of inference.

Hypotheses (which are the counterpart of ‘axioms’ in axiomatic proofs) are always
subject to revision, by definition. The existence of external gaps amounts to nothing
more than a denial that the concept of self-evidence of an axiom or rule can be
maintained indefinitely.

3The page number for the quotation is not given, nor is it very important.
4As (François and van Bendegem 2010, 117) remark, “We all know : : : that “real” mathematical
proofs hardly reach this high quality level [of an axiomatic proof]. (The usual claim (sic)
[observation?] is that the first chapters of any introductory book in whatever area of mathematics
satisfy this standard, but from the third chapter onward the standard is left behind).”



208 12 A Pluralist Approach to Proof in Mathematics

12.3 All Proofs Can Be Viewed as Analytic

I challenge the impression that rigorous proofs are axiomatic and claim that:

Claim all proofs can be thought of as analytic, including rigorous proofs.
There are three cases to consider:

(i) Informal and non-rigorous proofs with no meta-proof to assure us that there is
an axiomatic proof.

This is just a proof with gaps which stands on its own, although it is in a context,
and has a genesis. We shall look at the history of Enriques’ proof as an example.

(ii) The second case is when there is a meta-proof assuring us that there is an
axiomatic proof.

(iii) The third case is where we are presented with an axiomatic proof.

12.3.1 Informal and Non-rigorous Proofs
Can Be Seen as Analytic

Addressing (i): not all informal and non-rigorous proofs have an underlying rigorous
proof. We are sometimes proved wrong, but then we did not have a proof in the first
place, we simply had a purported proof, and subsequent investigation demonstrates
the mistake. However, we might well suspect that if the purported proof is of some
mathematical truth, then there must be an underlying rigorous proof. Sometimes it
cannot be given immediately.

Consider the following example. Enriques’ completeness proof for the theory of
algebraic surfaces could not be made completely rigorous at the time that he wrote
up the proof. Nevertheless, according to Mumford (2011, 250) Enriques “certainly
had the correct ideas about infinitesimal geometry, though he had no idea at all
how to make [the required] precise definitions.” It was not until Mumford became
aware of “Grothendiek’s theory of schemes and his strong existence theorems for the
Picard scheme [that he was able to see that] a purely algebro-geometric5 proof was
indeed possible.” (Mumford 2011, 250). The ‘filling in of gaps’ in Enriques’ original
proof, done by Mumford, is a nice illustration of giving a much more rigorous and
satisfying proof much later. We were fairly convinced it could be done, since we
used Enriques’ results in other proofs. Mumford’s proof is of type (iii). So, all we
did when confronted with a proof of type (i) was to look for the underlying proof, a
proof of type (iii). We do this because we are not fully assured of the correctness of
the result until we have an underlying proof or the proof that there is an underlying
proof (a proof of type (ii)).

5An algebro-geometric proof uses algebraic tools which were ‘alien to the intuitions’ of the Italian
geometers at the time. The algebraic tools were developed by Zariski, Weil and later by Serre and
Grothendieck, after the death of Enriques (Mumford 2011, 250).
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With such examples, we feel confident that there is an underlying axiomatic proof
to any correct (in some sense of ‘correct’) result in mathematics. A meticulous proof
is what allows us to check a result thoroughly and completely. So the notion of
axiomatic proof stands solidly in the case of (i), since, if the result is ‘correct’,
then we can find a corresponding proof of type (ii) or (iii). It might just be a long
time in coming, but ultimately, for all correct mathematics there exists some sort of
axiomatic proof. So far, modulo ‘correctness’, the axiomatic view holds.

Nevertheless, an inductive argument based on examples is no guarantor of
underlying axiomatic proofs for an arbitrary analytic proof, nor is it a guarantor that
there is a rigorous underlying proof that the result is incorrect. We can but search for
either sort of proof, and have faith that we can find one. But until we actually find
such a proof, we should view such proofs as analytic, and certainly not as axiomatic.
So proofs of type (i) are prima facie analytic proofs, and this is why we look for a
corresponding proof of type (ii) or (iii). The harder task for defending my claim is
that proofs of type (ii) and (iii) can also be viewed as analytic.

12.3.2 When There Is a Meta-proof Assuring Us
That There Is a Rigorous Axiomatic Underlying
Proof, We Can Still See These as Analytic

The claim of the pluralist is that it is not certain that the first sort of proof can be
given an axiomatic proof; that is why we feel it is necessary to give a meta-proof of
this fact! So, until such an axiomatic proof, or meta-axiomatic proof is forthcoming,
the pluralist remains agnostic as to whether or not it can be turned into a rigorous
proof. Until an axiomatic proof is given, the proof can obviously be seen as analytic.
But we might decide that it is enough to give a proof that there is an underlying
proof.

Here is the argument in its favour. The idea is that we give a proof that we could
fill in the gaps if asked. Just because, in print, or in a lecture, many proofs are not
axiomatic proofs, it does not follow that there is no underlying axiomatic proof. In
fact many proofs are proofs that there is an axiomatic proof. Moreover, we are well
motivated to not make explicit axiomatic proofs at the object language level. The
practical considerations are not made from a sense of laziness; although this is part
of the motivation (it is no small matter to change a proof into an axiomatic proof).
Repeating what was said in Chap. 6, even logicians (whose truck and trade is in
logical, or axiomatic proofs) tell us that axiomatic proofs are hard to construct, and
are often so lengthy that “one does not actually construct such proofs; rather one
proves that there is a proof, as originally defined.” (Bostock 1997, 239). That is,
instead of giving an analytic proof of an informal proof, we construct a proof that
our original proof with gaps can be turned into an axiomatic proof if we so choose.6

6Miller defended such a view in unofficial conversation at the Logic Colloquium meeting in Sophia
in 2009.

http://dx.doi.org/10.1007/978-94-007-7058-4_6
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Meta-proofs might be formal and rigorous, and so good candidates for being
thought of as axiomatic themselves or they might be informal. In the first case,
we have a proof of type (iii). In the second we have two proofs of type (i), and
therefore, we are entitled to view the pair of proofs as analytic. They are still based
on hypotheses, and can be revised. Proofs of type (ii), with a supporting meta-proof
are only as strong as the meta-proof, and usually this is not an axiomatic proof. If it
is not, then we are still owed an axiomatic proof. If it is already axiomatic, then we
turn to the final case.

12.3.3 Rigorous Proofs Presented as Axiomatic

It is instructive to distinguish axiomatic, analytic and rigorous proofs. Rigorous
proofs could be either axiomatic or analytic; although, prima facie, we might well
think that all rigorous proofs are axiomatic.

A rigorous proof is a proof that proceeds from axioms or premises, and in which
every line of proof is accounted for by reference to a rule of deduction or by
appeal to an axiom, premise or definition. Each of these has to be of the right sort
to qualify.

The criteria for ‘right sort’ are listed in Chap. 8. Summarising the discussion there,
‘of the right sort’ means self-justifying or self-evident; and what counts as self-
justifying or self-evident is that it is in virtue of the meaning of the axiom or rule
that we suppose it to be true, and there is no further justification. There is something
self-explanatory, so our explanation comes to an end. This is the respect in which
an axiomatic proof is final. However, as we discovered in Chap. 8, what counts
as self-evident varies with our account of meaning. Therefore, what is self-evident
to one person is not so to everyone. Thus, let us consider two cases. The first is
when there is an internal gap in a rigorous proof. The internal gap will be there only
according to someone who holds a different account of meaning than someone who
sees the proof as axiomatic. The second case is when we are all agreed that we have
a perfectly rigorous proof. The second is the harder case against the pluralist claim,
so let us start with the first.

Consider a proof with a line which is justified by appeal to a diagram. A Eu-
clidean proof might appeal to a diagram which indicates the idea of extending a line
indefinitely in one direction. It corresponds to a rule of inference ‘of the right sort’ to
some: provided the diagram is understood, and carries enough meaning that it is con-
sidered to be ‘self-evident’, then it is fine to include a diagram in a rigorous proof!
But, since ‘self-evidence’ can be thought of as suspicious, as per Chap. 8, such a
rigorous proof is analytic since we can question the self-evident steps. Of course,
every step of the proof can be questioned. The appeal to a diagram is an easy case.
But if we survey a sufficiently wide sample of formal ‘logical’ systems, then we will
be struck by the fact that there is no axiom or rule of inference that is common to
all of them. Even modus ponens is not universally accepted in its classical guise.

http://dx.doi.org/10.1007/978-94-007-7058-4_8
http://dx.doi.org/10.1007/978-94-007-7058-4_8
http://dx.doi.org/10.1007/978-94-007-7058-4_8
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We could then retort that some of these formal systems are ‘unreasonable’, they
do not conform to our deep intuitions about logic. The counter-retort is that calling
an intuition ‘deep’ is hardly a good rational move in this argument, since it is exactly
these intuitions which are at issue. Thus, all proofs, including the ‘gapless’, rigorous
ones can be thought of as analytic, since self-evidence is not final. However, there
will be harder cases for the pluralist, where intuitions and conceptions of self-
evidence are shared, so it is quite obscure to see where we might question the proof.

Ultimately, all proofs have external gaps. Consider a rigorous proof that is
presented as an axiomatic proof, and we are loath to question the internal steps
because they accord with our deep intuitions about reasoning.

There exist some proofs which we can see as axiomatic and as analytic, and all
proofs can be seen as analytic. Returning to our three cases, the axiomatic proof
might be the promised ‘underlying proof’. It might be a meta-proof, of the existence
of the underlying axiomatic meta-proof or it might be presented as a nice axiomatic
proof in its own right. If such proofs can be seen as analytic, then this covers all
three cases.

To make the point, consider a particular rigorous proof scheme. Take X and Y to
be wffs, ‘:’ means ‘you may infer’, commas between wffs, indicates that they are
found on separate lines of proof.

Axiomatic proof:
Rule 1: X & Y : Y.
Rule 2: X, Y : X & Y
Rule 3: X, X ! Y : Y

From the premises: P ! (Q & R), P, S, prove: R & S.

Proof:
1. P ! (Q & R) Premise
2. P Premise
3. S Premise
4. Q & R Rule 3 (lines 1, 2)
5. R Rule 1 (line 4)
6. R & S Rule 2 (lines 3, 5).

QED

The above six-line proof is a perfect (rule-based version of an) axiomatic proof
scheme. Particular proofs are had by specifying wffs for the proposition letters.
With such a proof scheme, we seem to be left in no doubt as to its validity. The
rules are all perfectly good classical rules. Every line of proof is accounted for in
an appropriate way. The constant symbols are all logical constants, so we do not
even need to appeal to mathematical induction for this proof. The proof scheme is
perfect. It, or its instances, could be entered in The Book of Proofs. Therefore, we
could see it as an axiomatic proof. Is it? Or, rather, if it is, does this preclude us from
viewing it as an analytic proof?
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Consider the proof again. I re-write the proof to make this explicit, and then
explain why it made sense to do this.

Analytic proof:
We want to solve the following problem: if in a given context, where hypotheses
4, 5 and 6, are plausible, does R & S hold? The hypotheses in bold are generally
plausible (because logical). The hypotheses in ‘light’, are plausible in a particular
context.

Hypothesis 1: X & Y: Y
Hypothesis 2: X, Y: X & Y
Hypothesis 3: X, X ! Y: Y
Hypothesis 4: P ! (Q & R),
Hypothesis 5: P,
Hypothesis 6: S.

Proof:
1. P Hypothesis 5
2. P ! (Q & R) Hypothesis 4
3. Q & R Hypothesis 3
4. R Hypothesis 1
5. S Hypothesis 6
6. R & S Hypothesis 2.

Note that the new version makes it plain that the account proof is highly
contextualised, relying on a number of hypotheses! The hypotheses have different
status, some belong to a specific context, others to a general context. When we have
such a proof, the informal element is not directly present in the lines of proof, but
belongs to the context, or setting, of the proof. The informal element belongs to
the hypotheses. If we do not believe R & S, then we can question the particular
context, hypotheses 4, 5 and 6. That is, we might allow that the argument is valid,
but unsound because, for example, hypothesis 6, i.e., S is clearly false.

Or, more interesting still, we might question the more general hypotheses. In
particular, it might be explained to us that Hypothesis 1 is plausible because ‘&’
means ‘intersection’, where this is familiar from set theory. It is usual (set by logical
context) to interpret ! in hypothesis 3 as material conditional. Hypotheses 1 and 2
interpret ‘&’ as classical conjunction. In all classical formal systems of logic, these
are the rules that govern these symbols. This is why we call these symbols ‘logical
constants’ (maybe this is no more than an act of insistence). But we can question
the rules of inference without inviting nonsense.

Here is an example of how we do this.7 If, on an unusual day we were tempted,
for whatever reason, to interpret ‘&’ as relevant conjunction then the original

7It is probably more customary to question the material conditional, since it receives a lot of
attention in the literature. Instead, here I choose to question classical conjunction, in order to stretch
the point, and show that nothing I sacred.
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argument is not valid and there is something wrong with the proof. In particular, a
certain sort of relevant logician, such as (Mares 2004, 48) will reject hypothesis 2.
He will insist that in order to conjoin two wffs, there has to be something in
common between them (in the proof system we would show this using dependency
numbers, or indices marking a situation). The rejection only makes sense on the
presupposition that we are using hypotheses in proofs, not rules or unquestionable
axioms. Ad esse, ad posse, actual therefore possible, as the Mediaevals taught us;
so we can view an account proof as analytic, if we so choose. We simply have to
suspend our deep intuitions, and we have plenty of tools for doing this in the form
of formal systems of logic. These can be used formally or metaphorically to view
any proof as analytic. In the next section we support the claim that it is preferable
to think of all proofs as analytic.

12.4 All Proofs Are Better Viewed as Analytic

Why is the analytic view preferable? If we are faced with an axiomatic proof, and
we are not convinced by it, then we are stuck. We have to modify our understanding
of ‘&’ and fall in line with the reasoning as it is presented. For, the rules define
the use of the symbols, and we are not to question the rules or axioms. Under the
axiomatic view, the first proof we have above is final and complete.8,9 This makes
the axiomatic view the poorer view. We would miss out on the development of
relevant logic, and be poorer for it.

However, there is something deeper going on than just developing arbitrary
logical systems. On our relevant days, we can use the proof to diagnose that our
discomfort with the proof lies with hypothesis 2, rather than, say, the implausibility
of hypothesis 6. Hypothesis 2 is not a rule for relevant conjunction. To even advance
this relevant criticism, we have to appeal to the meaning of the proof, and of the
symbols. The meaning has to precede the axioms. Meaning is not (pace Hilbert, and
the Dummetian intuitionist) wholly determined by the axioms and rules of inference.
One of the problems with the axiomatic view is that it does not reflect the modus

8The conventionalist version of this runs: if we insist that the symbol ‘&’ together with the rules
implicitly defining it are a convention, then we are free to change said convention. Think of Hilbert:
the symbols are essentially arbitrary, and are implicitly defined completely, and only, by the axioms
and rules which mention them. Hilbert had an axiomatic view of proof. Regardless of what fuels
one’s axiomatic view, under it we would be stuck with the proof and could make no further moves.
9For a long time, in books on the history of mathematics, there was the view that mathematics
was to be identified with what was developed in Europe. Other remarkable developments made
“outside” were recognised only if they fed in to European mathematics. Moreover, mathematics
is cumulative, and once something is proved it is forever true – in fact, it always was true. This
view is being questioned by present ethnomathematics (François and Van Kerkhove 2010) and by
revisions in, and new views towards, mathematics (François and Van Bendegem 2010). The new
views are pluralist.
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operandi of the working mathematician in search of proofs. The axiomatic view puts
things backwards. Instead, mathematicians look for plausible hypotheses which will
support, ‘prove’, an already plausible theorem.

If the Pythagorean theorem were found to not follow from the postulates, we would again
search for a way to alter the postulates until it was true. Euclid’s postulates came from the
Pythagorean theorem, not the other way” (Hamming 1980). In mathematics you “start with
some of the things you want and try to find postulates to support them” (Hamming, 1998,
645). The idea that you simply lay down some arbitrary postulates [or even ones you are
convinced are true] and then make deductions from them “does not correspond to simple
observation” (Hamming 1980). (Cellucci 2008, 5)

Or as Byers (2007, p. 337) says: “One couldn’t get started on a proof if one had no
idea if or why the theorem in question is true.” This concurs with Rav, who also
stresses the prior understanding necessary for executing a proof:

: : : the structure of a proof does not depend even implicitly on a deductive calculus; : : :

[rather, the reverse,] it depends on an understanding of the terminology, i.e., of the meaning
of the terms used in that claim and on the background knowledge. (Rav 2007, 313)

It is the background knowledge that will justify the axioms/ hypotheses. Moreover,
the background knowledge can change. It is not absolute, unique and fixed for once
and for all. It is the background knowledge that allows us to attribute meaning and
purpose to the theorem. The quotation from Manin in the last section continues:
“Moreover, since formal deduction strives to be freed of any remnant of meaning
(otherwise it is not formal enough) it ends by losing meaning itself.” (Manin 2007,
39). So, in some cases, we do not even want to realise the ideal of making axiomatic
proofs. Why not?

The point of analytic proofs is to communicate something, to convey an idea, and
to open a discussion. This makes proofs intensional and intentional. Intensionality:
too much information is sometimes obscuring. Proofs written in textbooks for
human readers, are there to communicate, not so much to get to the absolute truth or
write up a proof for The Book of Proofs. Proofs with clearly inductive moves or gaps
or diagrams are intensional. They are especially designed to present material to an
audience. They are crafted. Some are better, some are worse, and whether they are
better or worse, depends on the background knowledge of the reader. Intentionality:
we choose which theorems to prove and to present. We do not indiscriminately
prove theorems. Computers can do that. The proof is there to make a point, to supply
background information and convey an idea. This makes analytic proofs intensional
and intentional. It is better to view proofs as analytic because under this view we
look for much more in a proof than truth and rigour.

12.5 Proof as an Invitation to Interpolative Enquiry

Most of the time, proofs establish a theorem, and we move on from the theorem
to further enquiry in the form of further theorems. Together the theorems give us a
sense of the theory, what we can assert in it, what its structure is. Going on to prove
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further theorems is what I shall call ‘extrapolative enquiry’. What is less appreciated,
is that we can also engage in interpolative enquiry. The term is borrowed from Rav.
We shall see the quotation shortly. Because interpolative enquiry is less appreciated,
I concentrate on it in this section.

Continuing in the company of Cellucci we observe that the questioning of axioms
is made on the basis of background information. This information is imperfect, and
therefore there is no absolute standpoint from which to accept axioms and a fortiori
the conclusions which follow from them. Cellucci concludes from this: “the fact
that generally there is no rational way of knowing whether primitive premises [or
axioms] are true : : : entails that primitive premises of axiomatic proofs are simply
accepted opinions, : : : or rather, that they are plausible propositions : : : Thus they
have the same status as hypotheses in analytical proofs.” (Cellucci 2008, 12).

It gets worse. When we question axioms, or other parts of a proof, when we
are not convinced of a proof (however formal or informal), we dig deeper into the
reasons for accepting a given theorem. For example, we might not be familiar with
enough of a background theory, so we need to be given further explanations. Rav
describes the process:

If some reader wants or needs more details, as for instance concerning modular arithmetic
[in a proof to show that 1 C 1 D 0 (mod 2)] it can be provided by giving further
explanations, as is done in teaching unprepared students. In principle, though, one could
go through the whole development of Peano Arithmetic, develop modular arithmetic and
what not. How far one has to go back in one’s justification of an inference is a pragmatic
question; there is no theoretical upper bound on the number of interpolations necessary for
an absolute justification (whatever that would mean).” (Rav 2007, 313–314)

The explanations can run quite deep. Contrary to what we often tell our students, it
does not stop with logical proofs, rigorous proofs or axiomatic proofs either. This
applies not only to abstruse axioms of set theory, say postulating the existence of
an inaccessible cardinal, but also to very fundamental axioms or rules. If a student
claims to be unable to grasp modus ponens, for example (and I have had the pleasure
of this experience), we might ‘prove’ it by appeal to truth-tables. But professional
logicians’ take on truth tables is not uniform! Joining the company of well-respected
logicians, the student might legitimately ask why the truth tables are as they are. For
example, we might ask why a wff can only have one truth value (as opposed to both:
a truth-value glut) or why we can only choose between two (as opposed to having
a third, or having none at all: a truth-value gap), or why we cannot have degrees of
truth pertaining to a wff. So appeal to truth-tables as a definition of a connective is
not the final word.10 We might, instead ‘prove’ modus ponens by a definition and
proof through disjunctive syllogism. But not everyone accepts disjunctive syllogism:
classical logicians and intuitionists do, but not relevant logicians. So both depth and

10If we take the truth-table definition to be a stipulation, then that delimits the context when the
rule may be deployed. This is fine temporarily, but sooner or later, it will be possible to go beyond
the stipulation and ask what alternatives there might be and to what extent they make sense in
particular contexts.
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breadth of explanation is a pragmatic matter. It depends on what the student, or
professional logician, will find convincing. But we can turn this around, and rather
than find the student annoying and cast about for a reason, ‘proof’ or explanation
which will satisfy, we can delight in the further exploration demanded by the
student. Such delight is inconceivable under the axiomatic view of proof. But the
further exploration is a net gain for the mathematician and is encouraged by the
pluralist.

12.6 Conclusion

To sum up, the pluralist takes the analytic view of proof. A proof is not the final
word, but a communicative act directed towards the community of mathematicians,
what François and Van Bendegem (2010, 117) call “a proof community”. The
communicative acts form a discourse. The discourse is grounded in application
(to areas independent of mathematics – independent in their ontology), a meaning
context (which has to be thought of holistically, and made explicit, but includes the
rest of mathematics) and rigour of argument: a distinguishing mark of mathematics.
This is how the pluralist sees mathematical proof. In the pluralist view there no
sense of absolute truth got at through proof (although this might be thought to be
one (mistaken) aims of a proof).

Acknowledgement I should like to thank Aberdein for useful comments on an early version of
this chapter.
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Chapter 13
Pluralism and Together Incompatible
Philosophies of Mathematics

Abstract In this chapter, the pluralist arbitrates between two philosophical
positions: the extensionalist and the constructivist. Both are anti-realists of a
sort. The extensionalist position is that of Quine, and is represented by Bar-Am.
The constructivist position is that of Sunholm and Martin-Löf. The two merit
comparison because they both give a sensitive account of the history of logic,
moreover, they give much the same account. The two positions differ on their
final judgment of the modern trend. The extensionalist sees progress where the
constructivist sees emptiness. To draw out the differences, we shall also meet the
formalist and the realist. We shall see the accord and disaccord between these
positions, especially in respect of their attitude towards logic.

13.1 Introduction

So far in this book, not much has been said about anti-realists as such. No
chapter was written with the intention of taking the reader from constructivism, or
intuitionism, to pluralism. The lacuna is filled here, but not in the form of a journey,
but in the form of the mature pluralist engaging two anti-realist positions. One is the
extensionalist represented by Bar-Am who follows Quine. The other is Sundholm,
who represents Martin-Löf’s constructivism. We shall see that while they largely
agree, there are interesting points of disagreement that characterise their respective
philosophies.

Stepping back: the pluralist is not only tolerant towards different mathematical
theories and ‘bad’ mathematics, he is also tolerant towards different philosophical
views of mathematics. This is in keeping with his understanding of the relationship
between mathematics and philosophy. The relationship is not one of dominance.
Philosophy does not trump mathematics. Mathematics does not trump philosophy.
Nor is the relationship preclusive. For the pluralist, one can quite easily do both
philosophy and mathematics, separately or together. As we saw in Chap. 3, the
pluralist believes that philosophy and mathematics intersect in an interesting way,
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especially around logic and big theories. It is often in these areas that mathematics
and philosophy inform each other. Since the pluralist understands the relationship
between mathematics and philosophy as fuzzy or vague or overlapping and mutually
supporting and critical, the pluralist had better extend his tolerance to philosophies
of logic and to philosophies of mathematics. In the level schema of Chap. 6, we
situate the pluralist at level three. Such a pluralist is a pluralist towards philosophies
of mathematics located at level two. In this chapter we put the level three pluralist
to work on a particular case of level two philosophies.

The case we investigate is that of two philosophers and historians of logic: Bar-
Am and Sundholm. They trace the history of the changes in our conception of
‘logic’. They agree that with Aristotle, logic was a tool for reasoning and gaining
scientific knowledge. Logic was only semi-formal and was highly intensional. What
was for Aristotle a system for making inferences and coming to judgments, has be-
come today a completely formal theory of the relationship of logical consequence1

between a set of wffs, called ‘premises’ and a particular wff called ‘conclusion’.2

Our modern conception is of a fully formal extensional system. Both philosophers
agree on the history. They even cite many of the same references, and use many of
the same quotations, and they did this unaware of each other’s work in this area.

This is all the more surprising, since what they recount is not the standard history.
The more standard history would look at past logic through the eyes of the modern
conception of logic, and simply neglect, or mis-understand, the intended use of
logic. In particular, the standard history obscures the role of judgment in logic. If we
look at Aristotle with modern eyes we are simply puzzled by a lot of what he says.
In contrast, in the less-standard, more sensitive and careful history, we witness the
deep conceptual changes that took place.

I shall only recount the history insofar as it is useful for the points being made
here, since it is well presented by both authors. I shall focus on the fact that given
this co-incidence, they have quite different reactions. This makes an interesting case
for the pluralist, since he cannot have recourse to the history to arbitrate between
them. Their differences are deeply philosophical and inform their reading of history.

There are two noticeable differences. One is in emphasis. Where Bar-Am writes
of the ridding of logic of epistemology and metaphysics, Sundholm writes of the
shift in vocabulary and concepts from the activity of making logical inferences to
that of the fixed and a-temporal relation of logical consequence. Their respective
emphases are described in the second and third sections, where I discuss Bar-Am

1The exception to this is what Batens has called a ‘zero logic’. This is limit case logic where there
are no rules of inference or manipulation of symbols. In such a logic, no conclusions can be drawn.
It is still a logic in virtue of the other characteristics: a formal language, a grammar, maybe some
axioms. We ignore the case of zero logics for the rest of this chapter.
2We are assuming only single conclusion logic. For multiple conclusion logics, substitute
conjunction for the comma between the conclusions. Provided the conjunction introduction rule
is classical, the proof for the single conclusion will be longer, but the consequence relation will
remain, essentially, unaffected.
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and Sundholm in turn. The two emphases are similar in respect of their recognising
the historical disengaging of judgment and epistemology from logic. The upshot is a
realist or a formalist conception of logic. Both are typical of the modern conception
of logic. The other difference is in their evaluation of the modern trends. Bar-
Am applauds the modern trend and embraces extensionalism. Sundholm regrets the
modern trend precisely because it indicates the loss of the epistemic role of logic.
The pluralist discusses the evaluative reaction in the final section.

13.2 Bar-Am: Intensionalism Versus Extensionalism

Extensionalism is an attitude towards logic (Bar-Am 2008, 123), where one seeks to
disentangle logic from science (Bar-Am 2008, xi). More precisely, an extensionalist
tries to rid logic of induction, epistemology and metaphysics, (Bar-Am 2008, xi).
Extensionalism is a prevalent view. Its chief modern proponent is Quine, but as
Bar-Am shows, it is a trend with a long history. The conflation of methodology,
epistemology and metaphysics is traced back to Aristotle’s essentialism.

Aristotle was the first to give us a relatively formal system of logical reasoning by
presenting us with syllogisms. The system was formal in the sense of giving general
schemes or patterns of reasoning which contained schematic letters. Aristotle was
the first to use schematic letters in logic (Bar-Am 2008, 23). They stand for
terms. Despite the advance in formal representation for the purposes of reasoning,
Aristotle’s system was suffused with epistemology, metaphysics, taxonomic and
other metaphysical and scientific concerns and required significant subtlety and
philosophical finesse to deploy it successfully. This is why we thought of logical
reasoning as an art.

As an example of the artistry of syllogistic reasoning, consider the deployment
of terms in a syllogism. These had to be of the correct type, and this was not
determined by grammar; rather, it was determined by metaphysics. The premises
of a syllogism used in scientific demonstrations had to be ‘real’ definitions, or
we might say ‘immediate judgments’. That is, the definiendum was a term from
science (something in nature we want to learn truths about, the name of a genera
or a species). The definiens was to give the essence of the definiendum (Bar-Am
2008, 40). “Man is a rational animal” is an example of a legitimate premise using
the right sorts of term, since we want to find scientific truths about men, and he is
a rational animal. Moreover, no other animal is rational (according to the Ancient
Greeks). So, rationality is essentially human. “Man is a featherless biped” will not
do, because it is accidental of man that he is a featherless biped. The second term
of a major premise had to provide the essence of the first term and “we do not have
strict Aristotelian rules for determining whether or not a term depicts an essence and
whether or not it is admitted into his province of logic,” (Bar-Am 2008, 42). Once
the two premises were of the approved type, the syllogistic form could be deployed,
and the conclusion would then follow. By deploying the syllogism we would gain
scientific knowledge. The art lies in getting the terms in the premises right.
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Since Aristotle supplied no determining rules for evaluating whether or not a
term could figure in a syllogism, the logic is only semi-formal, and suffers from
an inexplicitness, lack of clarity or lack of transparency. Aristotle used syllogisms,
not only to learn scientific truths, as we would recognise them today, but also,
seemingly, in other contexts. Scientific contexts were not well separated from others.
Logic was an integral part of metaphysics and scientific epistemology. So, he had
no reason to separate logic from epistemology and metaphysics. We could also say
that Aristotelian logic is largely intensional.

We can contrast this to our modern extensionalist conception. Brought up on
a steady diet of axiomatic systems, classical natural deduction or tree proofs, we
find the Aristotelian conception of logic quite foreign, hardly recognising it as logic
at all. Today, there is a separation of epistemology and metaphysics from formal
logic. For us, ‘pure’ logic is a formal discipline, with formal axioms and rules of
manipulation. The formal system is often presented as normative of reasoning. It is
only in the presentation of the formal systems as normative of reasoning that we can
recognise something from Aristotle. It is only in the meta-language that we refer to
the beginning wffs of a deduction as premises and the last wff as a conclusion. We
could change the meta-language and refer to sequents, for example, and the formal
system would remain intact. Once we leave the presentation behind, we study a
completely formal extensional theory. It is from this view that the modern reader
will recognise Aristotle’s syllogisms. From this quite formalist viewpoint, much of
what Aristotle writes is mysterious. We regret the ‘art’ of logic, and only find merit
in the nascent formalism. In using a formalist’s eyes to read Aristotle, we miss a lot.

This is not entirely fair. Modern texts on logic are not all formalist in their pre-
sentation. Philosophical presentations are more tempered. If we visit a philosophical
presentation of logic, we see both a completely formal system, and some more
‘motivating’ parts of the presentation, where logical deduction is said to preserve
truth, or certain knowledge. We are told, for example, that given the truth of the
premises, logical deduction guarantees (and therefore perfectly justifies) the truth
of the conclusion. Moreover, deduction is presented as more reliable than scientific
induction, which is inferior ‘ampliative’ reasoning. Typically, the formal system
is meant to hone our reasoning, and our reasoning is meant to justify the formal
system, so there is no further context needed. Reasoning can be applied anywhere.
This might motivate beginning philosophy students to study logic, but even this
misses some of what Aristotle has to say. The scientific and metaphysical enterprise
of Aristotle have been excised.

Moreover, for an extensionalist, this modern view is to be applauded. For an
extensionalist, none of the wider ‘motivational’ residue from Aristotle should be
left. Aristotle’s motivations mislead us. Extensionalists think that logic is only
for honing our reasoning skills, and we are entitled to ignore: the application to
computers, the mathematics of formal systems of logic and the variety of formal
systems of logic. The extensionalist story goes: separation of the formal system
from science was necessary for progress in logic in the form of greater rigour, which
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accompanied the increased formalisation of logic. We needed to make the separation
in order to progress because the entanglement with metaphysics and epistemology
brought hopeless problems.

For example, working out what is essential and what is accidental about man
is now considered to be a hopeless metaphysical problem, and one that lies outside
logic. Bar-Am’s diagnosis is that we can now think of problems concerning essences
or knowledge as lying outside logic thanks to our making our formal systems
increasingly extensional. Once disentangled, ‘logic’ is simply a methodology. It is
a tool for generating wffs as conclusions from premises, which are also expressed
as wffs. It would be more honest, today, to refer to them simply as sequents, or
strings of symbols, and mention that one application of the formal system is to
carrying out some reasoning. Summarising, under the extensionalist conception of
logic, epistemology and metaphysics are considered to be separate concerns from
logic (Bar-Am 2008, 124). The separation marks progress.

There are several indicators of progress in logic for the extensionalist. If we
follow Aristotle, Boole, De Morgan, Quine, Bar-Am and others, then we think
of intensionality as inversely proportional to extensionality.3 The more a notion is
intensional, the less it is extensional. For extensionalists, it is then obvious to target
intensional notions as they appear in logical systems, and excise these.4 Before we
see what the extensionalist does with such formal systems, we should sound a note
of caution. The (moderate) extensionalist is not anti-intensionality altogether. He
just does not think that logic should truck in intensional notions.5 Or, more mildly,
logic should have as few intensional notions attending it as possible. Once we spot
one, we should do what we can to make it extensional.

This is because logic – as understood by the extensionalist – should answer
to a more general goal, which is clarity of thought, and correct inference. Clarity
depends on transparent reasoning, which, in turn, is identified with extensionality.6

3Intensional notions are those whose meaning is not merely the referent of ‘states of affaires’,
terms or names. That is, getting the referent is insufficient for the meaning. And the meaning in a
logical context will bear upon what can be deduced from a wff. The meaning of intensional notions
is partly captured by Fregean sense, context or implicit understanding. It is discerned through the
mode of presentation; how we express the notion, or the context in which we embed the notion.
4There are many non-equivalent ways of distinguishing and defining extension, intension and
intention. I shelve discussion of these for another occasion. What is relevant here, is Bar-Am’s
definitions and use of the notions, and how they relate to Sundholm’s concerns about logic.
5Arguably, Quine is quite extreme, and in places, thinks that philosophy should rid itself of
intensional notions too (Quine 2008). A less extreme reading would interpret Quine to be asking
philosophers to successively address intensional notions, in order to make them clearer, only when
and if they can, so it is quite possible that some will remain in the discourse. The moderate
extensionalist would accept that total purging of intensionality is not the goal. Rather, the goal
is to rid ourselves of intensional notions in order to promote clarity in communication (Bar-Am
2010). Henceforth, we shall assume that the extensionalist occupies the more moderate position.
6There are some obvious weaknesses in the argument, as presented here since I have not given any
support for the steps. There is support, and the strength or weakness of the argument is not our
immediate concern.
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The extensionalist has a programme: to successively rid (any formal system which
is presented as) logic of intensionality. To illustrate how the programme works, we
can think of our generating a number of new formal systems that deploy operators
such as the modal operators, temporal operators, belief operators and so on. As
per the discussion in Chap. 6, when we make such a formal system, we should
seek to have the operators govern terms, not wffs. This makes objects in the domain
intersubstitutable, and therefore, according to various well-rehearsed arguments, we
have transparency of translation (Melia 2003, 76). If we look at this from the point
of view of an extensionalist what we conclude is that what was hitherto thought of
as an intensional notion, has been made extensional in the formal system, and this
is progress.

The extensionalist programme is not without its critics. The critic will point out
that there is some artificiality introduced when we give formal, term governing
representation, to hitherto intensional notions. It works sometimes, but at other times
we cannot have the intentional operator have scope over terms. A de dicto modal
operator has to have scope over a wff, if it is to be at all loyal to a propositional
attitude. It has to remain intensional if we are to represent the meaning at all.
The artificiality of forcing the operator to be extensional (and so allowing formal
transparency of substitution) is also present when intentional operators have scope
over terms. Witness the fact that there are several formal systems of belief operators,
modal operators, temporal operators etcetera. Consensus over formal representation
is rare. Nevertheless, attempts to give formal expression to intensional notions and
place them in an extensional system7 are part of the extensionalist programme.
In following the programme, the critic will say that we trade loyalty towards our
hitherto vague and ambiguous notions for (somewhat contrived) clarity (in the
form of extensionality). Extensionalism is the idea Bar-Am fastens on to recount
the history of logic, to indicate progress and make coherent sense of the history.
Note, however, that this makes sense only if we think of intensionality as inversely
proportional to extensionality. This assumption is also a point of criticism. I shall
not treat of this criticism directly, but it will be implicit in the concluding remarks of
the chapter when the pluralist view of logic is made more explicit. We leave Bar-Am
behind, and turn to Sundholm, who fastens on a different idea, while citing many of
the same historical sources.8

7An extensional system is not just a formal system with an axiom of extensionality, or any formal
system with no intensional operators, or some such. Extensionality, intensionality and intensions
bear careful treatment. We saw a hint of this in Chap. 6. Here we are interested in extensional
formal systems in the sense of formal system where epistemology and metaphysics is no longer a
part of the logic or the language.
8One of the main differences in their historical treatment, is that Bar-Am lends close attention to
Boole whereas Sundholm places more emphasis on Bolzano than Bar-Am.
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13.3 Sundholm: Making Inferences Versus Defining
the Relation of Logical Consequence

The change in our thinking about logic from Aristotle to the present day is described
by Sundholm as a shift in our concept of logic or the role conferred on logic.
With Aristotle, we started with the action of drawing inferences and demonstrating
to others and to ourselves. In this action, we use logic to make judgments from
judgments already made (in the premises). The premises of a syllogism were
to be immediate judgments, that is, judgments requiring no justification, since
patent, obvious and defining essences (for which there can be no further scientific9

justification). The conclusions were then mediate judgments, since it requires some
reasoning to arrive at these judgments and they are justified by reference to the
premises and the validity of the inference. The purpose of making inferences is
to lead us from judgments known to more judgments, to increase our knowledge.
Moreover, logical inference is a sure way to obtain knowledge. The rival is the
sceptic, and it is she that we are trying to convince beyond reasonable doubt. Or, if
she is an unreasonable sceptic, then we convince ourselves in light of our arguments
against her. We use logic for these purposes. As noted above, early logic was far
from mechanical and transparent. For this reason, it required considerable skill to
deploy logic to arrive at new knowledge.10

Our successive ridding logic of its informal and intuitive elements required deep
and long philosophical discussion and exchange.11 Around the turn of the twentieth
century, the conceptions of logic (not completely clearly or cleanly) trifurcated.
Oversimplifying the history: some logicians resonate with Hilbert, and seek to
develop a formalistic view of logic. Others resonate with Bolzano, are more realist
and treat logic as static and eternal. Still others resonate more with Brouwer and
insist on emphasising: the epistemic role of logic, the human appropriation and use
of logic and proving as an action of demonstration.12 If we insist on the epistemic
role played by logic, then the culmination of this development of logic can be found

9There might be a metaphysical or semantic justification. Today we would separate these from
scientific justification, but such separation is foreign to Aristotle. Hence the embarrassment
concerning the immediate judgment: man is a rational animal. Today we do not consider man
to be essentially rational, since we consider other creatures to be rational, and some of us think that
man is often irrational.
10Lull was one of the first to try to make the syllogism mechanical. He designed a physical method
of constructing syllogisms by rotating concentric disks. This was in the fourteenth century.
11A proof, seen as an object, is simply a blueprint for making inferences, for coming to judgments
(Sundholm 1998, 180).
12I am being quite careful, even in my oversimplification. Hilbert and Brouwer did not start their
respective views ex nihilo. These ideas were usually confounded in the same system. However,
they were starkly separated by both Hilbert and Brouwer.
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in the formal intuitionistic, or constructivist, systems, the most sophisticated of
which is Martin-Löf’s type theory.13

While current, Martin-Löf’s type theory is not the received, modern, formalist
or realist, view of logic. This is not because Martin-Löf’s system is not transparent
or effective. We might even consider the language of type theory to be extensional,
depending on our definition of ‘extensional’. If our criterion for a language to count
as extensional is that it include identity conditions or clear substitutivity conditions,
then the language of Martin-Löf’s type theory is extensional. But the language
of Martin-Löf’s type theory is not extensional in the sense of separated from
epistemological concerns. The very motivation for Martin-Löf’s type theory is to
marry epistemology with methodology. Nor is this feature peculiar to Martin-Löf’s
type theory. It is a feature of any philosophically informed constructive logic. In
these, it is knowledge and judgment that are preserved from premises to conclusion,
in the sense of justified truths, as opposed to realist truth.14

These points are not always made plain. They are subtle since the formal system
is extensional, so, those of us who are not initiated in constructive logics might
not recognise, might dismiss or might simply overlook the epistemic aspect of the
logic. There are enough familiar features of type theory to be able to deploy it
without reference to the motivation, and to recognise it in a familiar formalist or
realist way. For example, while it is correct to say that in a constructivist proof
“truth is preserved from premises to conclusion”, it is deceptive. For, we miss out
saying that it is justification and knowledge which are preserved, which makes the
conclusions judgments rather than wffs, which are (also) true. The deception can
run quite deep. Rather than think of premises as wffs, we should think of them
as knowledge claims – justified, true beliefs.15 If a judgment, j, is justified, and
from j we have a constructive proof that k, then k is a judgment based on the
proof and the justification of j. What is important is that we can directly trace
back the justification. In limit cases, of purely logical judgments, premises are self-
justifying, for example j D j, is self-justifying, or j � j (read: ‘if j then j’, where ‘j’
is a schematic letter holding the place of a candidate for judgment). Self-justifying
formulas are immediate judgments – in the sense that they cannot admit of further
justification. In non-limit cases, our proof of k will rest on premises that are not

13Martin-Löf shares with Brouwer the emphasis on epistemology and judgment in logic. However,
he is not a Brouwerian intuitionist in that he distances himself from Brouwer’s idea that
mathematical ontology is only mental construction. For this reason, he prefers to be called a
constructivist rather than an intuitionist.
14We can be in error as to whether or not we are really justified in our judgment. The notion of
validity is still in terms of a conditional: if we know the premises, then we know the conclusion.
Moreover, the conditional is intuitionistic: a proof of the premises can be extended into a proof of
the conclusion.
15We need not worry here about Gettier-type counter-examples since the justifications are always
in the form of constructive proofs, and they can be put in normal form. As a result, under a
constructivist conception of proof, there is no such thing as getting the truth in a justified way,
but with the wrong sort of justification.
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self-justified. In these cases we do not have knowledge, we only have belief resting
on the supposed justification of the premises. In this case, k is a judgment candidate
and not a judgment. How do I know a conclusion k? I look to the proof of k. I can
only know k if the premises are all immediate judgments.16 When I reason from
premises to conclusion, I make inferences. The reasoning is made transparent by the
proof method.

This view of proof is starkly different from that of the realist, formalist and
extensionalist. To make the difference plain, let us consider the realist concept of
proof. In a realist presentation of a formal logic, we add as a separate feature
‘a semantics’, a set of models, which satisfy premises and conclusions of valid
proofs. Instead of thinking of logic as a tool, guide or blueprint, for acting (drawing
inferences, resulting in judgments), the realist thinks of logic as a set of objects,
namely proofs. The set of valid proofs define the relation of logical consequence
for the theory. For the realist, it is not we who generate said proof-objects, rather
they are all there ready. We discover the proofs and they are truth-preserving, not,
necessarily, meaning, justification or knowledge preserving. In talking about logic,
the realist minimises and regrets the human use of the proof objects. It is simply
a pity that it takes a human some time to work through a proof. This is something
subjective and personal, and does not belong to logic. Logic is impersonal, perfect
and a-temporal, recorded in The Book of Proofs. It exists quite independent of any
use we make of it.

To further indicate the difference in conceptions between the realist and the
constructivist, we can focus on vocabulary. On the realist side we have the
vocabulary of the model theorist, which lies in contrast to that of the anti-realist
proof theorist. The realist thinks of proofs as objects that bear the consequence
relation between the premises and the conclusion. The consequence relation is a
higher-order object.17 Proofs start with well-formed formulas and end in a well-
formed formula. The formulas are strings of symbols that can later be interpreted as
propositions. What is important is that the formal grammatical structure ensures that
their natural language interpretation is a truth-bearer. In the case of contingent wffs,
reality determines which truth-value a proposition has. The truth is independent
of us. The syntax and the semantics are quite separate from each other. With
the separation, knowledge, justification, and therefore judgment, have dropped out
of logic.

In terms of vocabulary, at least for the purposes of syntax, the realist is in bed
with the formalist. They part company over the meta-semantics. As we saw in
Chap. 5, the formalist presentation of a formal system involves giving a formal

16Of course, since the deduction theorem holds for the type theory, we can turn a conclusion resting
on something other than immediate judgments into a bona fide judgment by proposing the premises
as assumptions that are discarded at the end of the proof by the familiar conditional introduction
rule. The form of our conclusion is then that of a conditional statement.
17This is meant in the following sense: in a second-order language we can quantify over a predicate
or relation, and when we do this we treat the predicate or relation as an object.
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language, axioms and manipulation rules. In a formalist vein, we need not visit
natural language interpretations at all to do the technical work of a logician. Formal
logic is pure methodology. Interpretation, or semantics, is quite separate. More
carefully, we have methods of making semantics pretty formal. Tarski led the way.18

If we insist on adding semantics to a formal system of logical syntax, then we simply
have a valuation function which assigns truth and falsity to said propositions (as
such, even truth-valuation becomes syntactic, in the sense of a mechanical operation
(not a judgment)).

The ‘received modern view’ of logic is formalist or realist.19 The extensionalist
applauds it for reasons of clarity and transparency. For the realist, content is found
independent of logic, and in reality (whatever that is). For the formalist, there is
no content, or at least, it is not the business of the formal logician or of logic.20

Both are friends of the extensionalist, but not of the constructivist. Friendship is
not transitive. The extensionalist is a friend of the constructivist – in that his formal
system is extensional in the sense of having very clear rules for substitution. But the
constructivist, as represented here by Sundholm, deplores the realist and formalist
separation of epistemology from logic. In this respect, Sundholm also deplores the
extensionalist emphasis in separating logic from epistemology. For Sundholm, the
term ‘logic’ should apply to systems that help us come to judgments, and guide our
reasoning. Logic is an epistemic tool par excellence. Divorced of epistemia, all we
have are formal systems, not logic! Sundholm paraphrases Fichte’s summary of the
difference between the intuitionist (anti-realist/constructivist/idealist) and the realist
view as follows: “A realist—Fichte’s pejorative term was dogmatist—determines
the human act of knowledge in terms of the (prior) object towards which it is
directed. The idealist, on the other hand, determines the object in terms of the act.”
(Sundholm 1998, 178). The idealist, and the constructivist who follows him, cannot
divorce epistemology from logic except to make it empty. Formal logical systems
seen as games are literally meaningless formal toys. The relationship between the
constructivist and the realist or formalist is somewhat clear, but we shall make it
more explicit in the next section. The relationship between the extensionalist, the
constructivist and the pluralist is more delicate.

18While, arguably, Tarski was a realist, he was sensitive to anti-realist concerns.
19The origins of this view reach back to Plato, so are more ancient than Aristotle. Nevertheless,
we see a resurgence of realist vocabulary in presentations of logic. We shall see that these are
interspersed with formalist elements as well. What is common to the realist and the formalist is
that logic loses its epistemic role.
20This view of formalism is sometimes referred to as game-theoretic formalism, as opposed to
a more philosophical Hilbertian formalism. As a formal logician, when the formalist builds his
formal systems, content is disregarded or thought to be an empirical matter, and therefore, is
separated from the technical aspects of logic. Henceforth, we shall reserve the term ‘formalist’
for the formal logician who develops formal systems, which today we call ‘logical systems’.
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13.4 Evaluation: The Extensionalist, the Formalist
and the Constructivist

Following Bar-Am, clarification, in the form of disambiguation and giving precise
expression is to be applauded, since this sharpens, and thereby increases our under-
standing. Extensionalism, in the form of encouraging divorce between epistemology
and logic is a means of achieving this broader goal. In fact, for the extensionalist, we
measure progress in logic in terms of extensionalism. The more our formal systems
are separated from metaphysics or epistemology, the more we have progressed in
that area of logic. Put another way, the more extensional a formal system is, the
more modern and developed. The recent progress has been very rapid, especially in
the hands of the realist or the formalist.

To see this consider what happens once we have the artefact of a formal system.
From this we can develop new ones. After developing an extensional formal system
of symbol manipulation, we are free to ignore our first intended interpretations.
We make new formal systems from old by adding or subtracting rules or axioms.
We then make a new ‘sister’ formal system. The point of the exercise is to extend
our understanding through syntactic changes, since this allows us to see more
precisely the limitations of our original notions. Does the exercise really lead to
understanding? Clearly we understand more about the manipulation of symbols
and the differences between formal theories. But does the exercise improve our
reasoning?

Unfortunately, the answer is not in the form of a ‘yes’ or ‘no’. It is in the form
of ‘it depends on the philosophical significance we attribute to the developments
mentioned above’. To see this, let us, in this section, take our three philosophical
characters: the formalist, the realist and the constructivist. Later we add the
extensionalist and the pluralist. The formalist and the realist are in agreement with
the extensionalist over the divorce between syntax and semantics, on the one hand,
and logic and epistemology on the other hand.

The formalist is well aware that while the initial development of a formal system
might have had some motivation extraneous to formal logical concerns, once the
development has been achieved, we are free to make adjustments to the formal
system. The formalist does this in the name of creative freedom. The application
of a formal system is an empirical matter, and the question of fit of a formal system
to an application, can only be resolved by experiment, by trial and error. Moreover,
there is no guarantee that there will be a nice match between the original, or the sister
formal systems, and our natural language conceptions. Witness some of the modal
systems made by adding or subtracting axioms of modal logic. Making sense of all
of these in terms of our natural language conceptions, and even quite sophisticated
metaphysics is no easy task.

For example, in some intensional formal modal logics ‘it is necessary that it is
possible that p’ is equivalent to ‘is it possible that p’. The left to right inference is
easy, but the right to left, is not so obvious. The only modal operator that counts is
the one immediate to the wff. Those who object to the above rule think we should
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distinguish between possible possibilities and necessary possibilities. Similarly, in
some formal systems we are free to add necessity operators on the left. So from ‘it
is necessary that p’, we can derive ‘it is necessary that it is necessary that p’ and
‘it is necessary that it is necessary that it is necessary that p’. Some of these new
symbols (implicitly defined by the formal system) fall on sterile ground when we
try to re-interpret them using terms in natural language, or even quite sophisticated
metaphysics. Does ˙ as implicitly defined in S5, say, really represent our natural
language conception of possibility? Does � really represent necessity? Does it
represent metaphysical necessity or scientific necessity? Some formal systems find
fertile ground. Many sit on the shelf and await application. Since the application
of a formal theory is an empirical matter, it does not belong to the remit of
formal logic. Note that this evaluation of the formal system cannot be made by
a formalist, because his enquiry ends with the formal play of giving axioms for
the operators. Their interpretation is a quite separate matter extraneous to formal,
and formalistic logic. Cellucci calls this attitude towards the relationship of formal
theory to application a ‘top-down’ approach to logic. (Cellucci manuscript 2011,
Introduction, p. 18) Strictly speaking, use, or application, of formal logic is not the
concern of the logician at all. It is an interesting question only for the scientist,
computer software designer or the philosopher. The formalist is unconcerned about
re-application, at least qua strict formal logician. What we learn by making new
formal systems is neither how to reason better as such, nor when or how to deploy
the reasoning, nor do we learn more about the original conception. Rather, we learn
about formal constraints, thresholds and limitations. A la limite we might learn how
to reason better about the construction of formal systems, when we work with,
and develop these; this in the sense of being able to predict more accurately which
limitative results will apply to a new sister formal system. But we have left behind
the idea of learning to reason from premises to a conclusion.

The constructivist is critical of formalist developments of sister theories. For the
constructivist, at best, the developments come at the price of no longer guaranteeing
the preservation of knowledge and judgment from premises to conclusion. At worst,
such developments do not increase understanding at all. Under the exercise of
changing, adding or subtracting axioms or rules from existing formal systems,
‘reasoning’ is relegated to the syntactic part of the formal system, or to the meta-
theory where we discuss (and do not deploy) the formal system. ‘Reasoning’, as
represented by syntax, is thought of entirely as deployment of manipulation rules,
and invocation of axioms and definitions. We have a mechanical calculation. But this
bears no resemblance to the phenomenology of reasoning. It is fine for computers
but not for us. With the formalist, the content of reasoning is quite orthogonal,
independent or accidental with respect to formal logic. Yet, the constructivist will
remind us that, with humans, the content is integral to our reasoning, and not just
the reasoning of the ‘laymen’ but also of professional mathematicians.

Confronting the plethora of formal systems produced by the formalist, the
optimistic constructivist might try to do the best he can. He will be interested in
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finding a formal system, which is a good guide to reasoning. First, the optimistic
constructivist is faced with a bewildering choice (this is a good thing, since one of
them might even be a judicious choice). The constructivist will have to justify his
choice and then wrestle the theory from the grips of the formalist, and re-appropriate
it. That is, he will have to explain why this formal system preserves judgment from
immediate judgments to a mediate judgment. This modus operandi is possible. It
is impossible to evaluate the chances of success in advance, but the constructivist
might find a good reason-reflecting formal system, and if he does, he will recognise
it to be such. The constructivist will thereby have salvaged and vindicated the
formalist’s activity, and according to the constructivist, the formalist can now
stop generating new formal systems. The formalist has given the constructivist an
appropriate formal system, despite his lack of motivation to do so.

However, this optimistic strategy seems rather roundabout, since the most natural
and direct way in which the constructivist will make a choice is by comparison
to the formal systems already developed by constructivists. Paying heed to the
genesis increases the chances of success. Moreover, the re-appropriation will be
a cumbersome task in some cases, since the formal system was not developed as
a tool for human reasoning and justified knowledge preservation. Of course, this
does not mean that he will have learned nothing from the exercise. By examining
arbitrary formal systems, the constructivist might well learn some valuable lessons
and techniques. The complaint is not that there is nothing to learn, but rather that
there are more direct ways of learning, by engaging in informed play (informed
by epistemological scruples) rather than free play. Nevertheless, the roundabout re-
appropriation is the best the constructivist can make of the formalist’s technical
work.

Notice that the constructivist who engages in this exercise will have fastened on
one formal system, or maybe a small number of specialised systems, to represent
justified inference. He is no pluralist. In the case of all of the rejected choices,
the constructivist views them as meaningless, since they are not knowledge and
judgment preserving. There is no justification for re-appropriating them. In contrast
to the optimistic constructivist, the pessimistic constructivist ignores the work of the
formalist, and directly develops existing constructive formal systems.

In summary, what the formalist celebrates as creativity, deepening and increasing
of pure understanding through the free development of formal systems, the construc-
tivist views as possibly indirectly useful, but largely meaningless formal spinning.
The formalist developer of formal theories is ‘free’ to implicitly redefine symbols by
altering axioms and rules in a formal system. The formalist celebrates the freedom.
The constructivist regrets it, since the formalist is not only free, but has gone feral,
i.e., the formalist is too far removed from the epistemic constraints imposed by
the act of making a judgment. The extensionalist does not share the conception
of the constructivist. He agrees with the formalist that all of the formal systems
add to our understanding, in fact, they could not do otherwise because clarity and
understanding are identified with the formalist’s free play.
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13.5 Evaluation: The Realist and the Constructivist

The realist is disappointed by the formalist too, since she wants to move beyond
this free spinning to discover reality through the formal tool. That is, for the realist,
formal systems of logic are intended towards a particular purpose, to lead us to new
truths. With the realist we shall say that the content of the wffs, or the meaning or
interpretation of the wffs, is independent of the logic, and to be found in ‘reality’,
independent of the person reasoning. The realist is interested in finding “the formal
system” which will help her to track reality, to really know. She expects the right
and chosen formal system to play the epistemological role of helping her discover
the objective truth.

The constructivist reminds the realist that there will never be a guarantee that
we have made the correct choice in epistemic tool.21 A formal system is chosen
and interpreted or re-interpreted by the realist in order to help us track reality. But
we cannot know that a given formal system will really help us track reality. What
the realist is warranted to say is that in deploying a chosen formal system, there
is a deepening of our understanding of the premises and the formal relationships
between the concepts reasoned over. We are not warranted in asserting realist truth
of the conclusion. While the realist might hope that she has finally found the right
logic, the best tool for epistemology, she is not strictly entitled to believe of any
one formal system that it is the correct one. If we think about it, there are an infinite
number of such formal systems, and interpretation/application pairs. The probability
of finding the correct one can only be narrowed by conviction or intuition, and this
is not trustworthy. See the battles over S4 and S5 as giving ‘the’ correct universe for
possible worlds. The realist ultimately cannot trust his epistemological tool.

The point is closely related to the following complaint, made by Sundholm.
Under the realist conception there is divorce between interpretation (semantics)
and judgment.22 For the realist, it is quite possible for us to make a true statement
without having a good (or even any) justification for the judgment. This is just a
happy co-incidence. There is nothing objectionable about the coincidence as such,

21There is some discrepancy between how the term ‘realist’ is used in the USA and how it is used
in the U.K. I take Wright’s definition (Wright 1986, 1). “Realism is a mixture of modesty and
presumption. It modestly allow that humankind confronts an objective world, something almost
entirely not of our making : : : . However, it presumes that we are, by and large and in favourable
circumstances, capable of acquiring knowledge of the world and of understanding it.” I follow
Wright in then thinking that there are two sorts of anti-realist, the sceptic and the Kantian idealist.
The constructivist, in the chapter, is modeled after Martin-Löf and Sundholm, but also shares
features with the Dummettian intuitionist. He cannot share all features, since some aspects of
Martin-Löf’s constructivism are in conflict with Dummett’s intuitionism. I do not think that the
differences matter for the purposes of this chapter.
22We do not have to go this far to begin the reverse process. We can skip the computers and
computer languages. The divorce claim rests on two uncontroversial ideas. One is that computers
(or computer programs) do not have knowledge, do not deal with the objects of a domain of
interpretation, they perform no intentional action (of demonstrating). The second idea is that
computer programs can be thought of as formal logical systems.
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but we cannot even recognise that we have managed to utter a truth! What is
objectionable, for the constructivist is the use of this true, but not justified, statement
in our reasoning. Sundholm calls this “blind inference” (Sundholm 1997, 211).

We have two Bolzanian reductions, namely (i) that of the correctness of the judgement to
that of the truth of the propositional content and (ii) that of the validity of an inference
between judgements to a corresponding logical consequence among suitable propositions.
From an epistemological point of view, we get the problem that the reduced notions may
obtain blindly. This happy term was coined by Brentano for the case when an assertion
without ground happens to agree with an evidenceable judgement (Sundholm 2007, 624).

Remember the classical definition of validity: if the premises (happen to be) are
true, so is the conclusion. The realist cannot distinguish the happy co-incidence of
truth from the judgment that a premise is true, because he stops his logical analysis
at (blind) “truth of a proposition”, as opposed to known or justified truth. How the
realist happens upon the truth is irrelevant for the relation of logical consequence.

The constructivist shares the misgivings of the realist towards the formalist, but
reverses the order of the realist story. For the constructivist, how we get the truths
is all important. A truth is such because it is justified. The justification is either
immediate – in the case of self-justifying truths, or mediate – in the case of truths
requiring further justification. The constructivist will insist on making formal logic
into a good epistemological tool from the outset. The epistemology (and semantics)
is contained in the (syntactic) rules of inference. The constructivist will not wait for
a re-interpretation, which happens to (miraculously) bring us knowledge.

13.6 Evaluation: The Constructivist, the Extensionalist
and the Pluralist

What does the pluralist make of all this? All of the characters in the above story:
the realist, the formalist and the constructivist, make good points, and it is useful
to compare them, because we learn the limitations of their positions through the
comparison. We shall re-introduce the extensionalist to sharpen the comparison.

The formalist enjoys freedom, and does learn something in the exercise of
making formal systems. What she learns is not the conclusions of arguments. She
learns about formal system design. This might be interesting in itself, and it might be
a fulfilling activity, but it is not one the realist or the constructivist recognise as part
of the remit of logic; it belongs more to meta-logic. The extensionalist applauds the
formalist’s development of formal systems for the purposes of logic, not meta-logic,
provided they are transparent, and for this they should be extensional. Many of them
are, so their development marks progress in logic. But, now we can use the realist
and constructivist misgivings to remind the extensionalist of the greater goals he
had in mind: clarity of thought, transparency and communication. It is not clear that
these are being fulfilled by the development of uninterpreted formal systems. The
formalist is no longer communicating with the realist or the constructivist. She might
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have sharpened her conceptions about something (highly formal), but this does not
help her find truths or in giving her knowledge of the conclusions of arguments,
unless the arguments have formal constructions as content. This shows us the limits
in the attempts at communication of the formalist. On this point, the constructivist
wins over the extensionalist, the realist and the formalist. The extensionalist has lost
track of his original goals and is mistaking meta-logic for logic (where logic is a
guide to clear reasoning). The realist is after truths not knowledge. The formalist
has jumped to a meta-level, and is not longer serving logic.

The constructivist has not won tout court. The constructivist’s claims about
judgments and knowledge also rest on some assumptions. These concern the nature
of knowledge and the mechanisms for acquiring it. Remember the claim that there
are immediate judgments. The pluralist can help himself to the material given to him
by the formalist and confront the constructivist with the following problem. There
exist formal systems, namely some relevant systems, where there are no logical
truths: no axioms, no tautologies. That is, there will be no immediate judgments
from which to make mediate judgments in such a logic.23 Recall the argument we
witnessed in Chap. 11. The structure is as follows. Start with the conditional: if
we can give a model for a theory, then it is coherent. We give a model. Then by
modus ponens, we detach and conclude the consequent of the conditional statement.
Deploying the argument in this context:

1. If we can give a model for reasoning then that form of reasoning is coherent.
2. There exist relevant formal systems with no logical truths/axioms/immediate

judgments.
3. We can think of these as models for reasoning.
4. By modus ponens it is ‘coherent’ to maintain that there are no immediate

judgments.

If we accept this pluralist argument, then the constructivist claim that there is any
knowledge at all requires additional support, since it is coherent to think otherwise.
This is because if we entertain these formal systems as models for reasoning,
then there are no immediate judgments, only mediate ones based on other mediate
judgments (which take the premise position in the arguments). Since the premises
are not based on immediate judgments, on pain of contradiction, there can be no
proper concluding knowledge either, except in the form of an implication: if the
premises could ever be known, then the consequent could not be known. This should
be familiar from the previous chapter. The pluralist thinks of proof as analytic.
From the pluralist standpoint, the constructivist claim that we can use logic to gain
new mediate knowledge requires support. Martin-Löf draws a distinction between

23The constructivist could block the argument here and say that such a proposed logic does not
count as a logic. This might convince the constructivist, but such a block will not convince the
pluralist. Therefore, the proposed block begs the question against the pluralist. There will be
several points of departure like this in what follows. Grosso modo, the strategy is to declare that the
conditions of the argument are unacceptable – since they are not constructively acceptable. This is
legitimate but limiting. It is limiting because it will not convince an opponent.

http://dx.doi.org/10.1007/978-94-007-7058-4_11
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a judgment candidate and a judgment (Primiero 2011, 1). A judgment candidate is
not known to be true, because it still rests on unfounded assumptions. Given this
distinction, we conclude from the argument that it is coherent to think that there are
no judgments, only judgment candidates.

The argument from the pluralist has its weaknesses. There are several assump-
tions, which we should question.

Assumption (i): It is all right (coherent?) to present a formal system as a type of
model for ‘coherence’. By challenging the assumption, we challenge step 1. Step
2 in the argument is not an assumption, it is just a brute fact.

Assumption (ii) concerns step 3. Any coherent formal system is a candidate for
forming judgments, and gaining new knowledge.

Lastly, assumption (iii) is that modus ponens is acceptable. If we challenge this
assumption, we can challenge step 4. Modus ponens is not accepted in the
presently developed logics recruited in 2.

I address the weaknesses in turn. Start with assumption (i): the notion of
‘coherent’ is rather vague. The pluralist reply is that, here, we use the term
‘coherent’ as an adjustment to ‘consistent’, in light of the development of para-
consistent formal systems, so it is not as vague and hopeless as we might think.
Technically, ‘coherent’ means non-trivial. Nevertheless, coherence is also a virtue
of reasoning, so it is playing two roles. Assumption (i) can also be criticised because
it contains the idea of a formal system being a model for reasoning, and this is not
technically correct. We could challenge this, and say: “first, this is an abuse of the
term ‘model’ and, second, terminological abuses aside, this is exactly what is at
issue, so it begs the question”. So let us be more precise and say that ‘model’ in 1 is
not being used in the model-theoretic sense of the term.24 Rather, a formal system in
logic or mathematics is a candidate for representing good reasoning. Candidates are
not always successful, so it should not be too controversial to claim that formal
systems are candidates for good reasoning. Referring to the second point, it is
not obvious that step 1 begs the question. ‘Coherent’ is a carefully chosen word,
and not merely a technical term denoting a non-trivial formal system. Rather, the
admittedly vague notion of coherence opens our horizon of possibilities. So step 1
of the argument should be thought of as a hypothesis, and not as a statement of truth.
As a hypothesis, it will be assessed under different disambiguations and according to
various criteria. This is in accordance with what we saw in Chaps. 8 and 12 and the
pluralist’s endorsement of Cellucci’s ideas and vocabulary concerning proofs. The
problem of begging the question is more blatant in the third step of the argument.

The second weakness concerns the assumption in step 3. Assumption (ii) is
exactly the issue in question. But again, this is not so if we think of step 3 as
a hypothesis. The constructivist should challenge the argument here. He will not
accept these relevant logics as candidates for modelling good reasoning, expressly

24Priest (2002) uses the term model in the model theory sense. So I am deviating from his use here.

http://dx.doi.org/10.1007/978-94-007-7058-4_8
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because they contain no immediate judgments, and have a different interpretation
of logic and the meaning of the connectives. The problem with this constructivist
challenge is that it too begs the question. If we are honestly interested in what
‘logic’ means, and what the relationship is between formal systems, presented as
logical systems, and the acts of reasoning, then we should be willing to entertain the
possibility that the relevant, relevant systems are models for coherent reasoning.

The last weakness cannot be recognised by the pluralist. Mentioning a logic,
introducing it as an artefact, is not the same as deploying it in an argument. So the
argument 1–4 is coherent. But this is not enough to make it convincing.

Weaknesses aside, the pluralist sees that the argument confronts the constructivist
right at the assumption that his logic is the one (or even that the class of constructive
logics are the only admissible logics). Constructive logics or type theories are the
only ones really intended to preserve knowledge and judgment from premises to
conclusion. The pluralist and the constructivist are aware that coherent thinking is
not all there is to knowing and judging. Knowing and judging are not just a matter
of private conviction. They are also not a matter of consensus. They are supposed to
be more, but they cannot be grounded in a ‘reality independent of us’ since that is
the realist position.

13.7 Conclusion

For the conclusion I should like to make two sorts of remark. One concerns
the philosophical conclusions, the substantial part of this chapter, the other is to
say something about what makes the approach here distinctively pluralist. The
substantial part of the conclusion is that there are merits on all sides of the debate.
The formalist, the realist and the extensionalist agree that progress has been made
in our development of logic by cleanly separating syntax and semantics. We have a
clear and mechanical syntax, we apply this, and the application is the semantics.
The syntax is a tool; the semantics is an interpretation. The formalist and the
extensionalist are also in agreement that we have progressed in our development
of logic by separating logic from epistemology. Epistemology is intentional. The
realist disagrees with the separation because he would like to think of logic as a tool
for gaining knowledge. Moreover the correct logic is reliable. The constructivist
criticises the realist for thinking he can combine logic and epistemology, but
separate syntax from semantics, because this leads to blind inference. For the
constructivist, there is no point in hitting on the truth by chance, especially since
we cannot then know that we have done so. The pluralist recognises this point. He
recognises the intentionality of epistemology, and that it cannot be separated from
logic. But he is not in full agreement with the constructivist. There is some merit
in entertaining the separations, as aspects of logic. The merit lies in our being able
to study these aspects cleanly. However, at the end of the day, we have to re-unite
semantics and syntax in logic, and epistemology and metaphysics in logic.
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The distinctively pluralist stamp on this debate lies in the attitude brought to the
comparison of the different philosophical positions. There are two elements to this
attitude. One is an open-mindedness about which position is better and in which
respects. The other is in not having a need to close the debate and settle for one
position as ‘best’ overall, whatever that would mean.

Learning is blinkered by prejudice. Prejudice can take several forms, one is to
come to a debate with a particular point of view one wants to defend, come what
may. Another is to think that for any debate, one side has to win. First, it is not clear
that one side has to win now, second, it is not clear that one side has to win at all,
even in the long run. It is in reconciling oneself to the last idea that one becomes
really pluralist, or transcendentally pluralist.
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Chapter 14
Suggestions for Further Pluralist Research

Abstract In this chapter I do three quite different things. One is to give some
indication of how to extend Maddy’s idea of making mathematician’s aspirations
explicit, thereby marrying philosophy and mathematics. The second is to elabo-
rate on the discussion of Lobachevsky by comparing intentional perspectives on
Lobachevsky’s work. This is best done by a pluralist, since he has no agenda. The
third is to demonstrate working in a trivial setting, in particular the work concerns
Frege’s formal trivial system. A speculation is made about how we can learn more
about the notion of cardinality. This is important since only the pluralist can see how
to do this explicitly, consciously and seriously. Each of these developments suggests
further directions for pluralist research.

14.1 Introduction

The pluralist embraces certain virtues; the virtues of observation, curiosity, respect
for other points of view and tolerance towards several positions. Exercising these
virtues, the pluralist can engage in many projects. In this chapter, I shall suggest
four sorts of project.

One is to compare pluralism with other philosophies of mathematics. In the first
part of the book, I compare pluralism to realism, naturalism, structuralism and
formalism. My treatment of these is not as careful as possible, since that part of
the book is meant to motivate a reader to consider pluralism. Those chapters are
not meant to be giving definitive arguments. Doing so is a future task. Moreover, at
best, only passing remarks are made about: fictionalism, Wittgenstein’s philosophy
of mathematics, Husserlian phenomenology, Carnapian conventionalism, psycholo-
gism, Fregean or Russellian logicism, Lakatos’s project and so on. All of these can
be given place in the pluralist world, but they are given a place amongst the other
positions. The differences between pluralism and each of these is quite interesting,
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and will lead to a deeper understanding of both pluralism and the other positions.
This is quite an obvious sort of philosophical project, and one with examples in the
first part of the book, therefore, I shall not devote a section to it in this chapter.

A second sort of project is to take a feather from Maddy’s cap, and identify
aspirations held by some mathematicians, give the aspirations formal representation,
and offer these as ‘regulatory principles’. This is an interesting thing to do, and
is not common in mathematics. Regulatory principles are rarely made explicit,
except sometimes in the informal meta-language. I shall discuss not only the nature
of ‘regulatory principles’, but indicate how to generate others. This is really a
philosopher’s task.

In the third section, I shall treat of a third sort of project, which is to compare
proofs for the ‘same’ mathematical result, or compare approaches to questions.
I shall suggest a very specific project along these lines: to compare Beltrami,
Rodin and Friend’s meta-support of Lobachevsky’s work combining hyperbolic
with Euclidean geometry. It will be clear that there are many projects along these
lines. I shall discuss this in the third section.

A fourth sort of project worth developing is to go beyond the metaphysical use
of a paraconsistent logic, and look at work in a, strictly speaking, trivial setting. I
have suggested elsewhere that there is a structure to trivialism, and indeed it is worth
seeing if we can better understand this idea.

14.2 Mathematical Aspirations and Principles

This sort of project is inspired by work done by Maddy where she observes math-
ematicians, identifies goals they have, and provides general principles (formally
expressed in one case) which help the mathematician to realise these goals, and
understand the limitations of these goals. Here, I look at her project, and make some
general remarks about similar projects.

Maddy begins with her set theoretic realist inclinations, which she takes from
Gödel. This is quite natural, since Gödel was a great mathematician, and he made a
number of philosophical remarks, wrote philosophical papers and other mathemati-
cians take his philosophical remarks seriously. For these reasons it is inviting for the
philosopher to engage with Gödel.1 Gödel is a realist about the mathematical entities
of set theory and the mathematical truths of set theory. Maddy’s data suggests that
most mathematicians are realists in their philosophy – she has discussed the matter
with a number of famous and well-respected mathematicians. Moreover, they are
realists about the whole of set theory, where this is thought of as some extended
version of ZFC and they take the attitude that we (the body of mathematicians) have
not yet worked out which extension is the correct one. That is, she is developing her

1In the last chapter, we saw an example of why we should be very careful about engaging with
early twentieth century philosophy of mathematics, and exporting those view back in history.
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philosophy to accommodate a Gödelian optimist. As noted in the second chapter, the
pluralist does not accept that these aspirations represent those of all mathematicians,
only a small number of them.2 Nevertheless, it is interesting to explore these
aspirations, as a local exercise.

Following Gödel and his fellow optimists, the goals she focuses on are to
determine the truth or plausibility of some axioms which are independent of ZFC,
and are candidates for extending the theory. Such axioms include the higher cardinal
axioms, V D L and the generalised continuum hypothesis (henceforth: GCH).3

She, very cleverly, develops a formal mathematical definition of ‘plausible’ in
two parts: ‘MAXIMIZE’ and ‘UNIFY’.4 MAXIMIZE concerns a conception of
fruitfulness and UNIFY concerns foundationalist or realist inclinations to have a
unique theory. She then thinks that the axioms which fall under the intersection of
the two principles captures what the mathematicians find plausible in mathematics.
For example, under her guiding principles, it becomes clear that V D L is not
(pace Quine!) set theoretically ‘plausible’. This is very satisfying, since it is in
keeping with recent developments in set theory and with the opinions of many
contemporary set theorists. Moreover, hers is not an ad hoc approach, and does
not beg the question, provided we remember that this is a local exercise. That is,
we flag the fact that we identify the Gödelian optimist as representing aspirations in
some mathematicians. That is, the principles and result cannot, and should not, be
imposed on mathematicians who are not Gödelian optimists.

14.2.1 MAXIMIZE

Let us look at the details. ‘MAXIMIZE’ is the antithesis of Occam’s razor. It states
that “the set theorist should posit as may entities as she can short of inconsistency.”
(Maddy 1997, 131) More fully:

: : : if set theory is to play the hoped-for foundational role, then set theory should not
impose any limitations of its own. The set theoretic arena in which mathematics is to be
modelled is to be as generous as possible; the set theoretic axioms from which mathematical
theorems are to be proved should be as powerful and as fruitful as possible. Thus, the goal
of founding mathematics without encumbering it generates the methodological admonition
to MAXIMIZE. (Maddy 1997, 211)

2Maddy does make some conciliatory remarks towards this point, but she proceeds as though this
is not such a local project. Indeed, if it is realised in full, then it would be a global mathematical
project.
3GHC is a hypothesis to the effect that the infinite cardinal numbers @0, @1, @2 : : : increase at the
rate of 2@n where n is the index of the previous cardinal. The operation performed for ‘getting to
the next cardinal’ is to take the powerset of the previous cardinal. A denial of the GCH would have
it that there are cardinal numbers between an arbitrary @n and 2@n.
4The capitalising comes from Maddy (1997).
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MAXIMIZE is a principle (Maddy calls it a maxim) identified with one of the goals
of set theorists. I like to call the motivation for it ‘the argument from fruit’, since the
idea is to ensure that the path we take will yield a lot of fruitful discoveries, and we
do not want to discard the fruit we have already harvested.5 To determine that one
path is more fruitful than another we need some sort of measure on our harvest. How
to find such a measure is not obvious, since we cannot anticipate future axioms and
discoveries. Furthermore, we want fruit in the long term, not just in the short term.
In fact, MAXIMIZE will end up being a negative measure. MAXIMIZE will help
us determine which paths would immediately cut off potential fruit (Maddy 1997,
218). Under MAXIMIZE we only set parameters on possible paths. So, MAXIMIZE
leaves open several extensions of ZFC.

To leave the metaphorical talk behind, and use the principle rigorously, we have
to give it formal expression so that we can compare rival extension of ZFC. In
particular, we have to be able to determine, given two candidate extending axioms
(or conjunctions of axioms) if one is more maximizing than the other, or if they are
the same in their maximizing power. For example, she uses MAXIMIZE to argue
for allowing C to be added to ZF. We would loose too much fruit if we were to
give it up. Here we are interested in using MAXIMIZE to extend ZFC with new set
theoretic axioms.

Here are the details of how she does this. Start with determining that a theory
gives a ‘fair interpretation’ of another theory. This comes in two stages. We first
have to give a definition of ‘inner model’ to give a sense of an interpretation which
stays loyal to the core of ZFC. We then add the necessary elements to make it a
‘fair’ interpretation. I shall quote Maddy’s technical definitions and then explain
them.

Definition ‘T shows ¥ is an inner model’ iff

(i) for all ¢ in ZFC, T proves ¢ ¥, and
(ii) T proves 8’¥(’) or T proves 9›(Inacc(›) ^ 8’(’ < › ! ¥(’))), and

(iii) T proves 8x8y((x 2 y ^ ¥(y)) ! ¥(x)). (Maddy 1997, 220- 221)

T is an extension of ZFC, made by adding some axiom, or several axioms, to ZFC. ¢

is a sentence true in ZFC. So, the first clause of the definition assures us that nothing
we are familiar with in ZFC is changed or missing. Moreover this is provable.

5Such a path will not necessarily lead us to the truth, supposing there is such. If we have a further
metaphysical principle, for example, that the world is ‘rich’, and we think that, therefore, there
are a lot of truths to discover, then we might be inclined to think that we increase the probability
of finding the truth if we go down a fruitful path. This in itself is not enough, we also have to be
convinced that we will recognise the truth when we find it. Of course, many people are convinced
of this. Unfortunately, they disagree on what that truth is! So unless one shares their convictions,
there is no way to determine the truth. Phenomenological truth is not the same as realist truth.
Nevertheless, I suspect that it is these sorts of consideration that led Maddy to develop the principle
MAXIMIZE. Making the motivation plain exposes the argumentative weakness of the position, and
it is this weakness that motivates the pluralist to treat Maddy’s work as a local exercise.
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The second clause concerns the ordinals. ¥ is a set of sentences being proved
by T. Technically, “¥ is a formula with one free variable”, (Maddy 1997, 220) so it
is a property defined using the language of ZFC. The properties we are interested
in here are those concerning ordinals. T proves the existence of all of the ordinals
of ZFC. Or, if there is an inaccessible cardinal ›, then T proves the existence of
› and for every ordinal of cardinality less than ›. This ensures that our semantics
retains all of the familiar properties of the ordinals. The third clause assures us of
transitivity through membership. That is, if a property holds of a set, then it holds
of every member of the set, and so on down through the membership relation to the
empty set.

Definition ¥ is a fair interpretation of T in T 0 (where T extends ZFC) iff

(i) T 0 shows ¥ is an inner model, and
(ii) For all ¢ member of T, T 0 proves ¢¥. (Maddy 1997, 220)

The first clause tells us that ¥ is an inner model of the theory T 0 which extends
ZFC by adding a general axiom such as GCH or by adding a higher cardinal axiom.
Moreover, we can use T0 to show this, or we can demonstrate this through proof. The
second clause ensures that we have access, through proof, to all of the ontology and
properties we had in T. These two clauses secure our loyalty to the original inner
models of ZFC and carry on this idea into the extensions of ZFC. This is the best we
can do in terms of ensuring future yields of fruit. It’s a sort of inductive prudential
consideration, what has been good farming practice in the past, should continue to
be in the future. The fruit metaphor runs deep, and does a lot of work! We are now
in a position to introduce the principle MAXIMIZE:

Definition T 0 maximizes over T iff there is a ¥ such that:

(i) ¥ is a fair interpretation of T in T 0, and
(ii) T 0 proves 9x9R � x2 8y8S � y2 ((¥(y) ^ ¥(S)) ! (x, R) © (y, S)). (Maddy

1997, 220)

Here we have our fair interpretation which goes strictly beyond the original
theory. Since we can count the units R which go strictly beyond the original theory
which just contained the Ss, we can compare two theories extending ZFC and see if
one maximizes more than another over T. This is enough to rule out some potential
extensions, but there could still be several which are equally maximizing.

14.2.2 The Intersection Between MAXIMIZE and UNIFY;
Maxims, Principles, Axioms and Aspirations

For the naturalist, the philosophical importance of MAXIMIZE is that it more-or-
less gives formal expression to an identifiable goal of set theorists. Giving formal
expression is important for the considerations of rigour. It turns out that MAXIMIZE
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is in some tension with another goal of (realist) set theorists which is to UNIFY
mathematics in set theory, or make set theory foundational (Maddy 1997, 211).
UNIFY reflects a striving for choosing a unique extension of ZFC, as opposed to
being pluralist and allowing several, which is a possibility with MAXIMIZE alone,
since there could be several extensions which seem, for now, to MAXIMIZE ‘the
same amount’. To find a unique extension of ZFC, we invoke the second principle.
UNIFY is the principle that we should settle questions in favour of one of each pair:
GCH or not GCH, V D L or V ¤ L, some inaccessible cardinal exists or does not
exist. Maddy does not give a formal definition of UNIFY. Her informal definition is
as follows.

Definition UNIFY is the “aim to provide a single system in which all objects and
structures of mathematics can be modelled or instanciated. [To achieve this] you
must aim for a single, fundamental theory of sets.” (Maddy 1997, 208).

It is not necessary to give a formal definition since it amounts to saying that for
any proposed new axiom, choose it or its negation. We make choices between
a proposed axiom and its negation by invoking other considerations, such as
simplicity, usefulness, naturalness or ‘importance’ (however we measure that). For
example, we might choose between two extensions of ZFC on the basis that the
argument in favour of one extension is more direct than the argument for another
(Maddy 1997, 214).6

Congratulations to Maddy are in order. Choosing between extensions of ZFC is
a problem set theorists struggled with for years. Maddy has made this aspiration
explicit. Gödel himself was interested in the truth of the sentence ‘V D L’, since it
was being considered as a possible new axiom to add to the existing ZFC set theory.
Gödel was interested in it because it would decide the continuum hypothesis. His
hope was that the generalised continuum hypothesis could either be proved from the
other axioms of set theory, or we could work out that it is true (or false) given other,
more plausible assumptions or axioms.7

Maddy’s principles are principles, and therefore, do not decide the truth of an
answer. They only guide us to what is plausible, and help us to rule out implausible
extensions. The principles make explicit an aspiration that underlies the choices
made by mathematicians and the concerns of mathematicians. To see the difference
between principles and axioms, let us hone in on the distinction between truth and

6Arrigoni calls this the ‘inner model programme’ (Arrigoni 2007, 19, n. 8). Calling it a programme
is suggestive of the idea that this is one direction we choose to pursue.
7Gödel was cautious about exposing his philosophical views in print. Now that his complete
works have been translated into English, and are therefore available to the non-German, English
reading scholars, we should have a more (limitations of translation aside) sensitive and detailed
interpretation of his philosophical views. Notwithstanding, what I gloss as his view is plausible in
light only of his most hitherto public philosophical pronouncements, through his own writing and
through Wang’s reports.
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plausibility. A little historical background will help to fill the tale. Cohen proved
to us the philosophically sub-optimal (if you are a realist) result that that V D L is
independent of ZFC set theory.8

The result is sub-optimal to the realist because it requires some philosophical
adaptation to account for the result. It would have been optimal if ZFC decided on
all extensions. If ZFC did rule on (a unique set of together consistent (and consistent
with ZFC)) extensions, then we would know that we had the definitive real account
of mathematics, since the extensions of ZFC would be determined (by consistency),
in fact, they would not be extensions at all, but simply logical consequences of ZFC!

The independence results are sub-optimal because they show that existing
mathematics cannot, even in principle, say one way or the other whether or not
V D L is true. In fact we can prove (that is what an independence proof is) that V D L
and V ¤ L are both possible in the sense that they are both consistent with ZFC
set theory. The work of many serious and good mathematicians today presupposes
that V ¤ L, and Maddy argues in favour of this by invoking considerations which
allow her to follow the principle of UNIFY. So Maddy’s work sits well with her
naturalism.

What we needed was exactly what Maddy suggested: a mathematical definition
of plausibility which took in wider considerations about fruitfulness, preservation of
core principles, etcetera, and which decided that V ¤ L is plausible whereas V D L
is not plausible (since this accords with practice). This is not to say that V ¤ L is
true. To show this, we would add the principles MAXIMIZE and UNIFY as axioms
together with the considerations that help us to follow UNIFY, (or we would derive
them from ZFC) and then make a proof that V ¤ L.

To labour the point, because the principles MAXIMIZE and UNIFY are just
that: principles, it follows that the axioms which fall in their intersection are not
necessarily absolute truths of mathematics. Adopting principles is a choice, and, by
adopting and following a principle, we take on a responsibility. The responsibility
concerns our precluding some directions of research, in this case. The responsibility
is light if we think of the adoption of a principle in terms of a choice, made for
reasons which do not have much (well thought through metaphysical) bearing on
mathematics, for example, if we are aware that the principle just follows in a
tradition we have been taught and which is always up for revision. The adoption
is light, in this case, in the sense of highly revisable and local. We treat it as an
exercise. We should have no great objection to adopting an alternative principle or
to mathematicians adopting other principles and working under those.

8V D L, is also sometimes called the “axiom of constructability”. V is the cumulative hierarchy
determined combinatorially (allowing all true grammatical formulas from levels lower down). That
is, at a level ’ C 1 we accumulate all of combinatorially-determined subsets of ’. In contrast,
L looks more ‘constructive’. The content of each level is determined by predicative propositional
functions: at stage ’ C 1, we accumulate all and only the subsets of ’ that are definable by first-
order formulas whose quantifiers range over, and whose parameters are drawn from ’ (Maddy
1997, 65).
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In contrast, the adoption of principles carries more responsibility if we defend
the choice by appeal to some deeper metaphysical, or mathematical, scruples about
plausibility, or ultimately, realist truth. That is, we attribute metaphysical importance
to the adoption of the principles. The responsibility should only be as strong as the
argument. Returning to Maddy’s principles, she cites supporting data for the set
theoretic realism she identifies with mathematics. She then concludes that: “the view
of set theory as a foundation for mathematics : : : is now a pillar of contemporary
orthodoxy.” (Maddy 1997, 22). But we have to be careful about the data she cites.
She tends to cite set theorists working on extensions of ZFC. Other set theorists,
such as Enayat and Mourad have a much more pluralist attitude towards alternative
foundations of mathematics and towards extensions of ZFC.9 Thus, in the interests
of accuracy, it is amongst a few set theorists that “set theory as a foundation is a
pillar of orthodoxy.”10 While she pays lip service to competing ideas, for example,
she mentions Aczel’s non-well-founded set theory, (Maddy 1997, 61), she does not
engage any competitors.

However, Maddy herself recognises the limitations of the view and does not
embrace it wholeheartedly. For, she writes later: “As my focus here is on set theory,
: : : I won’t attempt a full naturalistic account : : : of mathematics as a whole, but
I don’t doubt that such an account could be given : : : ” (Maddy 1997, 210). If Maddy
were to take up her own challenge, she would be a pluralist. It is “mathematics
as a whole”11 and also various small parts of mathematics, which the pluralist
takes to be of interest. The pluralist is impressed by the idea that the practice of
mathematics should inform philosophy. However, before we embrace and engage
alternative foundations, let us be a little more careful about the limitations of our
argument.

We might think that we are mistaken in our reading Maddy.12 It might be quite
wrong to think that Maddy is close to being a pluralist in our sense, since we might
say that she intends to be pluralist only within set theory.13 Set theory is, after all,

9Private conversation.
10To support the point further, when one says that “set theory is a foundation”, one can mean
very different things. The term ‘foundation’ no longer means, as it did in the past, giving the
truth, essence and ontology of mathematics. So while a number of set theorists might agree to the
statement: “set theory is the foundation of mathematics”, fewer will agree that “set theory gives us
the truth, essence and ontology of mathematics”, or that “there are no alternative foundations”.
11Note the contrast of this remark with the definition of UNIFY above, where she discusses ‘all
of mathematics’. I conclude that ‘mathematics as a whole’ is all of mathematics as it is practiced
before we deploy UNIFY. If her universal quantifier in UNIFY is descriptive then it only has force
after a choice is made, and even then it is a bit odd since it turns the choice into a norm. As a result,
we retrospectively have to deny that what we cut off is, or was, mathematics.
12Note that I am less concerned with Maddy exegesis than with possible position close to Maddy’s
or between Maddy’s and pluralism. Because of this concern, reference to Maddy, here, can be taken
as a sort of literary device (of giving a proper name to a proponent of a philosophical position). As
such a device, Maddy’s name suits better than any other.
13We brushed elbows with this position in the second chapter.
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‘the orthodoxy’, and we can do a lot of mathematics within set theory. We can do
enough to satisfy most mathematicians. But pluralism within set theory will not do
for the maximal pluralist.

Let us look at a specific example, that of finitist mathematics. Maddy might
argue that we can ‘do’ finitist mathematics ‘within’ set theory, since there is a
sense in which finitist mathematics is reducible to set theory. But Maddy’s supposed
pluralism would then have missed the point. One of the motivations for, and the
tenets of, finitist mathematics is that there are only a finite number of objects,
not as part of a bigger whole, but as implicit in the finitist mathematical theory.
Finitism, of this sort,14 denies the axiom of infinity of set theory which explicitly
states that there is a set with an infinite number of members. So, while we can
reproduce all of the results of finitist mathematics within set theory, we deny
finitist mathematics when doing so! This is because we deny the metaphysical
underpinnings of finitist mathematics, and this is philosophically insensitive. Al-
ternative foundations, here means alternative ontological commitments. So if we
are pluralist about foundations, we cannot be so within set theory, mutatis mutandis
for philosophical presuppositions underlying, even ‘small’ mathematical theories.
The pluralist concludes that ontological, and other metaphysical commitments, per
force, rest internal to a theory. Moreover, the naturalist should be sensitive to this
point.

Let us simply remark that ontology of, and truth within, a theory are reasonably
well-defined and understood concepts. Absolute truth in mathematics is not;
mutatis mutandis for ontology.15 It might be for this reason, or for others, that
mathematicians often show indifference to questions about absolute truth. The
indifference might be shown by lack of mentioning the concept. For example, taking
an arbitrary textbook on model theory off the shelf, such as Marker (2000) and
looking at the index, ‘truth’ is mentioned only on one page of a 328 page text.16

The indifference shown by mathematicians concerning absolute mathematical truth
or absolute and unique ontology is accounted for in a properly pluralist setting
by confining discussion of truth or ontology to a theory. In this way we practice
pluralism in truth and pluralism in ontology.

While Maddy’s work fails on the particular philosophical significance of sup-
porting realism in mathematics, it carries significant philosophical import, and this

14The term ‘finitism’ is ambiguous, and some mathematicians who call themselves finitist will
entertain higher cardinals, albeit in a ‘finitistic way’ – as symbols being manipulated according to
determinate, effective, rules, for example. Here, I just mean the very simple notion that there exist
only a finite number of entities in mathematics.
15I expand on this in the next section.
16Of course, this is not proper statistical evidence for the claim of indifference on two points.
One is that it is just one reference, and the sample is too small and might be un-representative.
Two, one has to be careful not to read too much into silence. Silence does not always indicate
indifference. Nevertheless, methodological indifference (displayed by willingness to use method-
ologies imported from quite different areas of mathematics) cannot be completely divorced from
indifference to truth or ontology.
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has to do with a more pluralist approach to mathematics. Her approach leads to
more sensitive and nuanced discussion concerning the nature of our commitments
in mathematics. For the pluralist, only a light responsibility accrues to the adoption
of principles since he will not underpin them with realist concerns, or any other
traditional global philosophical concerns. Nevertheless, with Maddy, in the practice
of mathematics, we can observe revisable principles identified with the aspirations
of some mathematicians. This is exactly the work of the pluralist. Instead of calling
them ‘maxims’ or ‘principles’, the pluralist calls them ‘aspirations’, where it is
understood that not all mathematicians hold such.

Definition an aspiration is a general hope held by a mathematician (and concerns
the future of mathematics). It can be identified as a goal she has or some sort of meta-
attitude which guides her work. It is not something which has received a definitive
philosophical defence. Therefore, it is revisable. It is also understood that it is shared
by some, but not all, mathematicians. An aspiration can be given formal expression,
but it is not, for all that, testable or provable, without begging the question.

What actual aspirations do mathematicians have? Examples include: to be able
to effectively treat increasingly complex data, to show the relationships between
theories, to vindicate a theory by showing how it gives important results in another
theory, to find an application of a theory to a problem in the physical world. Once
we have identified an aspiration, then the pluralist trick, due to Maddy, is to give as
sensitive, precise, identifying and formal expression as possible to the aspirations.
For example, we could turn the first into a formal expression in the following way.

Definition treatment of data is effective iff all recognised answers to recognised
questions are computable.

The principle accompanying the aspiration then is:

Principle to start with questions with computable answers, and extend the set of
questions using new effective techniques or methods.17

Once we have turned some of these aspirations into formal expressions, we can ask
if pairs, triples etcetera of these are naturally held in conjunction. Similarly, we
can see if pairs, triples etcetera preclude being conjoined, i.e., together they result
in some conflict. But here, we have to be careful about what ‘conflict’ means. For
example, if we have an outright contradiction, and we are committed to a classical
logic, then holding the contradicting aspirations will result in triviality, and this is
to be avoided. However, if n-tuples of aspirations are in tension with one another,
then as we saw with Maddy’s pair (MAXIMIZE and UNIFY) we can look to the
optimisation of the n-tuple. Maddy looked at the intersection for optimisation. The

17This is exactly what we do in algorithmic learning theory. For example, we discover that given
an algorithm of a certain complexity, it makes all the difference to the solvability of the problem
(which might be finding an algorithm which produces the same data) if we add an oracle, or if
we allow hypothesis testing. Technically, we call these mind-switches (of the learning computer)
(Friend et al. 2007, 5).
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exercise of optimising aspirations in tension with one another, might turn out to
be quite interesting. Moreover, they will vindicate, confirm, or correct paths of
research. There is nothing wrong with the mathematician becoming aware of her
aspirations in this way, and making an easy analysis of them. Ultimately, the exercise
can only deepen her justification for pursuing the path of research she has chosen.
Moreover, her justification will be honest and explicit. This is an elegant type of
project for the philosopher, since the identification and expression of aspirations
is not a purely mathematical matter, and it is not a psychological matter. It is also
philosophical. It is best done by a pluralist because of his metaphysical indifference.

14.3 Lobachevsky, Beltrami, Rodin and Friend; Proofs,
Reconstructions and the Paths of Mathematical Enquiry

We have a puzzle. Like many geometers, Lobachevsky was dissatisfied with
Euclid’s Elements. In particular, he was dissatisfied with the parallel postulate.
He developed his own ideas about what ‘parallel’ means, and developed his own
‘non-Euclidean’ geometry. He believed that his geometry was more general and
fundamental than Euclid’s. This is because a Euclidean sphere is the same as the
limit of hyperbolic space, where the limit is called the ‘horosphere’. But Euclidian
flat space can be interpreted on the Euclidean sphere. Therefore, by transitivity,
Euclidean space is a limit case of hyperbolic geometry.

When he had developed his ideas, and found some important results,
Lobachevsky sent them to Gauss, who liked them very much. However, he would
not support them publicly, because he (rightly) feared that they would not be
well understood, or well received (Kagan 1957, 25); and this, despite the fact that
Lobachevsky’s arguments are good ones. It was not until Beltrami was able to give a
model of Lobachevsky’s geometry in Euclidean space that Lobachevsky’s geometry
could be understood, and accepted, by the greater body of mathematicians. The
following ‘picture’ is now common, but note that it is drawn in Euclidean space.
That is why we can ‘recognise’ it (Fig. 14.1).

Lobachevsky had no such model or picture. Hyperbolic space was the back-
ground space, since it was more basic.

Rodin does not fully accept Beltrami’s reconstruction, not because the reasoning
is faulty, but because it is not loyal to Lobachevsky’s understanding of geometry.
Beltrami couches hyperbolic geometry in a Euclidean setting, whereas Lobachevsky
thinks of hyperbolic geometry as more fundamental, and therefore, that Euclidean
geometry should be couched in a hyperbolic setting. Neither Lobachevsky nor
Rodin can draw a picture of Euclidean space within hyperbolc space since the flat
sheet of paper is suggestive of Euclidean space, so the best we would have is a
picture of Euclidean space within Hyperbolic space within Euclidean space. Rodin,
therefore, suggests a rational reconstruction by way of appealing to a larger meta-
theory: topos theory. He then restores the priority of hyperbolic geometry in a topos
theory setting, by making the embedding of a geometry into a type of space explicit.
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Fig. 14.1 Beltrami’s reconstruction/interpretation of hyperbolic geometry

As a pluralist, I think of the contradiction between the geometries in a third way.
I see them as contradicting each other over the notion of ‘parallel’, and not as one
being prior to the other. Therefore, it is important for me alleviate my concern
to avoid triviality, or inconsistency in this case, by modelling the reasoning of
Lobachevsky’s proof, independently of geometrical concerns.

The question is not that one approach is correct and the other incorrect. The
question is also not: is one reconstruction better than another. For, it depends
on what one is trying to do. Beltrami’s reconstruction is good for conveying the
legitimacy of hyperbolic geometry to geometers stuck in Euclidean geometry. In
the context of time he was writing, it was crucial. Today, Beltrami’s model is
more important for learning about non-Euclidean geometries, after we have learned
Euclidean geometry. But, now we could learn the geometries independently.

In contrast, Rodin’s reconstruction is historically more important, since it
restores the spirit in which Lobachevsky thought of his geometry, but when Rodin
does this, he is not perfectly loyal to Lobachevsky, since Lobachevsky was in
no way thinking in terms of topos theory. Nevertheless, topos theory helps us to
see the difference between Beltrami’s approach to understanding Lobachevsky,
and Lobachevsky’s understanding of his own geometry. Moreover, topos theory is
independent of both hyperbolic geometry and Euclidean geometry. It is one of the
grand meta-theories. As such, it gives us a perspective, or an orientation, and this
helps us to see, from a relatively neutral, independent, standpoint, that Lobachevsky
legitimately sees his geometry as more general than Euclidean geometry. My
pluralist reconstruction is useful if we are concerned about triviality, contradiction,
and using one theory to prove something in another which is in contradiction with
the first.

We learn different lessons from the reconstructions, just as we learn different
lessons from different proofs for the ‘same’ theorem. Who is ready to see or
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read what proofs depends on educational background, time, interest and open-
mindedness. All of the latter are influenced by our teachers and our peers. For
this reason, mathematics is partly a social enterprise, and the process of learning
mathematics, and the conduits for dissemination of mathematics cannot be divorced
from the subject of mathematics, at least not by the pluralist philosopher. This
is something we come to appreciate more in learning some of the history of
mathematics, and less from a class on algebra, calculus, topology and so on.
Philosophers who have studied some history of mathematics shed the “Euclid
myth : : : the belief that the books of Euclid contain truths about the universe which
are clear and indubitable. Starting from self-evident truths, and proceeding by
rigorous proof, Euclid arrives at knowledge which is certain, objective and eternal.”
(Davis and Hersh 1998, 325). The contention of the pluralist is that not only the
Euclid myth, but also a more general myth should be shed by philosophers. This is
the myth that all of mathematics are true, certain, universal, objective and timeless.

Buldt and Schlimm shed both myths. With the pluralist, they hold a non-standard
view. They show a sensitivity about the rate and direction of the development of
mathematics: “ : : : we do not claim that the mathematical community as a whole
moves (or has ever moved) like one solid block in just one direction: nothing could
be further from the truth. We would rather compare the historical development of
the mathematical community with the movement of a body that various people try
to pull in different directions.” (Buldt and Schlimm 2010, 45). The pluralist goes
further. For the pluralist, it is misleading to write of ‘a body’, if ‘a body’ suggests a
contiguous entity. It might be quite fragmented, over: content, geography, language,
culture, traditions, preferences, philosophies and so on. This is why in Chap. 6 I
embraced the study of the history of mathematics, the sociology of mathematics
and the psychology of mathematics as informative for the philosopher.

We might think that the historical development of mathematics was very
fragmented in the past because of lack of communication between mathematicians.
They simply did not enjoy the same technological means of communication we
have at our disposal today. Now, because of the sheer quantity of communication,
mathematics can become more unified. But think again. There is a trend today
towards fragmentation. We see this in the specialisation of mathematicians. We
also see an increasing number of specialised meetings and conferences. There has
been a dramatic increase in the number of specialisations within mathematics, and
mathematics, as a discipline, becomes radically unsurveyable. Davis and Hersh
(1998, 29) compare the “classification of mathematics in the years 1868 and 1979”.
In the 1886 there were 12 sub-disciplines, in 1979 there were 36. If we use a
comparable source now, there are between 80 and 100.18

18Go to the American Mathematical Society web page. Pretend you are looking for a book or
article. Pull down the menu of ‘classifications’ (of topics), and there are 97, at least in May 2012.
Now, we should be careful, since the sources used for comparison of numbers of specialisations
are not the same, nevertheless, even as approximate figures they indicate a marked growth in the
number of specialisations.

http://dx.doi.org/10.1007/978-94-007-7058-4_6
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Of course, there are general mathematical conferences, and general introductions
to the discipline, and this suggests unification. But if we observe who goes to
which papers, we see that even in these general conference contexts, quite often
mathematicians confirm familiar territory. They attend papers they think they will
understand. The growth in quantity of modern communication is a double-edged
sword: allowing for both unification and fragmentation. Furthermore which edge
will cut in the future is not predictable from here, and that too could change; we
could see a unification in mathematics followed by a fragmentation followed by a
new unification and so on. Nothing now can help us predict. The pluralist looks at
this with disinterest, and simply observes. But the point remains that, in the face of
fragmentation – whether restricted to the past or whether we find it in the present
or whether we experience it in the future – it is not surprising that there should be
conflicting developments in mathematics.

Moreover, it is not even this simple. Both fragmentation and unification can hap-
pen at the same time, but maybe not over the same concept in mathematics. Thinking
again about ‘mathematics as a whole’ maybe in the neutral (for these purposes)
sense of successful existing recognised mathematics, we might think of some areas
of mathematics as being increasingly unified, while others are being fragmented.
There might be exciting trends and changes which we can identify by looking at the
history of mathematics, such as the movement in the rigorisation of mathematics
in the late nineteenth century, or the development of foundational theories around
the same time. With the development of computers we witness a movement towards
extensionalism, but this does not encompass all of mathematics by any means.

In light of this picture of the development of mathematics, we can easily recog-
nise the need for separate proofs, models and reconstructions. Each communicates
something important to some mathematicians, each is situated in a tradition and as
part of a proof community. The acts of communication through proof, modelling and
reconstruction connect or confirm mathematical results. Without these we would not
have a recognisable mathematics. The mathematical proofs and theorems in The
Book of Proofs is not only an idealisation born of the Euclid myth, it makes sense
of only a very small part of mathematics – the ‘final’ results. It cannot be used to
make sense of mathematics as a whole.

The pluralist is well placed to work on rational reconstructions because of
his agnosticism towards truth, certainty, universality, objectivity and timeless of
mathematics. He is also not wedded to finding a ‘yes’, ‘no’ solution. The pluralist is
patient, and will not trade impatience against sophistication, accuracy and precision.
The obvious places to start on the task of re-constructing is with controversial math-
ematical ideas: the first non-Euclidean geometries, irrational numbers, imaginary
numbers, infinitesimals, non-standard models, the paradoxes and so on. With any
pluralist enquiry, the pluralist will bring a stamp of principled scepticism, made
sharper by a metaphorical use of logic to work with conflicting mathematical and
philosophical situations. There is a sense in which the pluralist brings a type of
objectivity to the discourse, and the investigation as to what this objectivity consists
in is the subject of future investigation.
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14.4 Working in a Trivial Setting

We turn to a wholly different project. Consider the following. Frege’s formal system
of logic is classical, in the sense that ex contradictione quodlibet inferences are
valid in it. Given Basic Law V, it is possible to derive a contradiction in the formal
theory. Therefore, Frege’s formal system is trivial. Therefore, every wff in the
formal language of the Begriffsschrift is derivable, if nothing else, by excursion
through the contradiction and ex contradictione quodlibet. This is supposed to be
disastrous, so, rationally we should have thrown out Frege’s formal system and
never looked at it again; as Frege himself did. But this is not what happened.
Dummett, Wright, Boolos, Heck, Sluga and Macbeth, amongst others, have done
significant work refining and mining Frege’s formal system. Heck has shown us that
the only essential use Frege makes of Basic Law V is to derive Hume’s Principle
(Heck 1993). Boolos launches a bad company argument about Basic Law V and
any formula with that structure (Boolos 1986–7). Thus, he thinks that the rest of
Frege’s formal system is worth saving. Dummett takes Frege’s philosophical views
very seriously, as do the other Frege scholars. Wright develops alternatives to Basic
Law V, and resurrects the Fregean logicist project. All this work takes place in and
around a trivial theory.

Meyer once opened a talk by presenting a formal system with the following
one rule of inference: from a well-formed formula you may infer any well-formed
formula. He then asserted, correctly, that this theory is formally equivalent to Frege’s
formal theory (provided the formulas are written in the same language). This is
amusing because it is quite correct, and yet, it makes a mockery of all the work
done by all the Frege scholars. How can the Frege scholars pretend to do serious
work in and about a trivial system?

One lesson we can learn from the chunk and permeate method is that it is possible
to work consistently locally (within a chunk) while in a trivial theory. Frege himself
proves none of his theorems by making an excursus through contradiction followed
by ex contradictione quodlibet, nor do any of the scholars who work on his material.
Russell himself derived one contradiction and left it at that, as did Frege (1903,
appendix). The contradiction was treated as a dead-end. Of course they thought
it was much worse than a dead end. But, again, once armed not only with the
methodology of chunk and permeate, but also with the lessons we learn from it,
we can think of Frege’s actual elegant and gapless proofs as proving something
worth proving, and we make sense of the Frege scholarship.

I venture a speculation since this chapter is about future work. Using Basic Law
V, the collapsing lemma and the rest of Frege’s formal theory, and avoiding inferring
a contradiction in the proof we should be able to derive the negation of Hume’s
Principle! This would show that Basic Law V and Hume’s Principle are independent
of each other, and each is independent of the rest of Frege’s formal theory. Cardinal
numbers are not logical objects.
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Filling in the background: Basic Law V is that two sets are identical if they are
co-extensional.

8F8G ŒF D G $ E W F � E W G� :

Hume’s principle is that for all concepts F and for all concepts G, the sets of F
and G are of the same (cardinal) number iff the sets can be placed into one-to-one
correspondence.

8F8G ŒN W F D N W G $ F � G�

One denial of this is:

9F9G ŒN W F ¤ N W G $ F � G�

The claim then is that there is a pair of concepts which have a different cardinality,
but which are isomorphic.

How do we make the proof? Recall the collapsing lemma.19 The collapsing
lemma tells us that under the right circumstances there are models of lesser
cardinality (which contain contradictory objects). Wffs about them will be both
true and false. The proof will be non-classical in the sense that we are deliberately
avoiding ex contradictione quodlibet. We can use chunk and permeate to insure
this. Furthermore, the proof will exploit some ideas about cardinality particular to
second-order logic. We might make an excursus employing concepts which involve
a dialetheia concerning the relativity of cardinality in a second-order set theory.20

We would be wise to use the technique of chunk and permeate to verify that we do
not invite further mischief. This is enough speculation about possible proofs.

What would we learn from such an exercise? Assume it is successful. We make
such a proof, or we make a proof to show that a proof is possible. In this case we
learn that we can locally prove both Hume’s Principle and its negation. Therefore,
Basic Law V and Hume’s Principle are strictly independent of the rest of the formal
theory, and independent of each other. We have partial evidence for this through
other means by virtue of the work done by Wright and the philosophers who worked
on the neo-Fregean project. What they do is remove Basic Law V from the formal
system, and add various, independently motivated principles with a formal structure
similar to Hume’s Principle. The evidence is partial because they did not work on

19Remember that the collapsing lemma does not hold in the presence of functions. We can use
chunk and permeate to insure that we do not invite them in. There is little danger of this since
the all there is in Hume’s principle and Basic Law V are (identity and equivalence) relations and
predicates.
20This last, is from Shapiro (1991, 253–4). There Shapiro writes: “To say that a structure P is
characterised up to isomorphism by the language of set theory as interpreted is only to say that P is
characterised in terms of m, or ‘up to m’. : : : The problem as to how m itself is grasped, understood
or communicated is left mysterious.” Here ‘m’ is a limit rank Vœ or V itself. (Shapiro 1991, 253).



14.5 Conclusion 255

the negation of Hume’s Principle specifically. Nor would they have wanted to, since
the negation is philosophically unsavoury to a neo-Fregean, since it would show that
the notion of cardinal number is not a logical notion, provided we define ‘logic’ as
invariant, or absolute, relative to second-order set theory.

Assume we are unsuccessful in our exercise. There are two ways of being
unsuccessful. One is to prove that it is not possible to derive the negation of Hume’s
Principle from Basic Law V without an excursus through contradiction. This tells
us that there is a close conceptual link between them, since proved non-derivability
is the mirror of derivability, and the proof was not an ex contradictione quodlibet
proof. The other way of being unsuccessful is that we never manage to make a proof.
From this we can draw no conclusions.

Such work is important in clarifying our notion of cardinal number. From
Skolem’s paradox (that the set of reals has different sizes depending on context),
we know that in first-order set theory we are deceived in our notion of cardinality.
Remember Tarski’s logical notions. One was supposed to be cardinality. We showed
with the collapsing lemma that it is not invariant. If my speculation is correct, then
we also know that in second-order ZF cardinality is not an absolute notion either,
and we can give an explanation for this.

Thus, while cardinality is presented to us as a simple notion, as one of the
cornerstones of modern mathematics, it bears further scrutiny. Moreover, we
admit outright that the scrutiny takes place in a trivial setting. In light of all the
elegant work done in paraconsistent logic we have learned not to be so wary of
contradiction, we can now learn to be less wary of trivialism. The pluralist challenge
is to find careful, studied and principled methodologies for studying in a trivial
setting.

14.5 Conclusion

As we can see there is plenty of work to be done, and it is philosophical work,
not to be left in the hands of people who are only: mathematicians, sociologists,
psychologists or historians. They will not ask the same questions, and they will
not give philosophically satisfying answers, unless they are also philosophically
inclined. Similarly, the philosopher can ask very few pertinent questions isolated
in philosophy. Not only should he look to mathematics, but also to sociology,
psychology and history. This is a new trend in the philosophy of mathematics.
The historical was started by Lakatos, but was not pursued. The historians,
sociologists and psychologists of mathematics tend not to use the history, sociology
or psychology of mathematics to support philosophical conclusions. But bringing
these considerations to bear on our philosophical conclusions does give us a new
take on, for example, the notion of ‘foundation’ in mathematics. “ : : : by a striking
shift in the meaning of words, the fact that foundationalism was at a certain critical
period the dominant trend in the philosophy of mathematics has led to the virtual
identification of the philosophy of mathematics with the study of foundations.”
(Davis and Hersh 1998, 323).
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The pluralist will study foundations, not as metaphysically informative, but
rather, as mathematically limiting. Engagement with the issue of foundations is an
option, not a philosophical obligation. It is far more interesting to identify aspira-
tions and explore these accurately, and without pretention to giving ultimate truth.
It is more interesting to investigate different proofs, models and reconstructions to
discover or re-discover our mathematical history. It is also more honest to face our
existing work in trivial settings and explore this area further. Given the options,
and the lack of obligations, the pluralist has a wide field of study when looking at
mathematics, and the enquiry is only beginning.
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Chapter 15
Conclusion

Abstract I make some concluding remarks about the goals of this book: to give
a clearer and more precise sense to what pluralism means in the philosophy of
mathematics. A reader might adopt none, some or all of the pluralist view. There
are stopping points.

15.1 Conclusion

This book introduces a family of philosophical positions. One can be pluralist
in different respects, at different levels and one’s pluralism can be governed by
different logical inclinations or hypotheses. In general, the pluralist aspires to the
following virtues: unprejudiced observation of mathematical practice and a desire
to encompass and accommodate as wide a variety of practices as is coherently
possible. The inverse of these virtues are manifested when we insist on unique,
simple, teleologically satisfying answers,1 beyond what the evidence will support.

We might think that almost everyone will agree to this. But think of the arguments
from simplicity, naturalness or elegance of a theory. In these, aesthetic qualities are
not only aesthetic qualities; they are assumed to be a guide to truth, correctness
or objectivity. There are no grounds for such an assumption unless we are already
convinced of some master plan or telos. Thus, such arguments beg the question.
What the non-pluralist will insist upon is that we seek such answers. At the highest
levels, the pluralist denies that we should seek such answers. At best, seeking such
answers is an exercise. At worst, it blinds us and leads us astray. Such seeking flirts
with intolerance and dogmatism; where dogmatism is identified with an inability,
or unwillingness, to offer well supported philosophical explanations, or admit that
we simply do not know. That is, where argument fails, posturing, authority and
dogmatism take over.

1‘Teleologically satisfying answers’ are ones that reveal a sense of purpose of overall, unique goal
or plan.
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The pluralist virtues liberate the thinking of the philosopher, but the liberation
comes with responsibility. The pluralist is willing to change his mind in light
of counter-evidence, and he accepts (at least in public) that some philosophical
questions might never be resolved in a simple and ‘satisfying’ way. Of course,
what counts as ‘satisfying’ is culturally informed. For example, western analytic
philosophers expect unique answers to questions. Since he is aware of this, the
pluralist can correct for this prejudice and be careful about which conclusions
evidence can support. He corrects for his culturally enforced philosophical desires
in the interests of evidential honesty and accuracy. This too, might be a prejudice,
especially if we are restricted in what we count as ‘evidence’.

The pluralist position is meant to give a philosophical theory to support what is
already happening in the philosophy of mathematics. Thus, the position is ‘new’
in the sense of not having yet been expressed this way in print, but it is ‘old’ in
the sense of being already implemented and understood, at some level, by some
mathematicians and philosophers of mathematics. This book fills in some details and
pushes the position further than most philosophers are willing to go. For this reason,
the position is controversial. However, as noted, there are degrees of pluralism. It
not necessary to follow me in embracing the entire transcendental position. There
are many stopping points. There is also no reason to embrace it all at once. One can
gradually become increasingly pluralist. The important point is to start the voyage.
I hope I have provided a specific enough framework, and enough details, that we
can engage in a clearer discussion of pluralism, mathematics and the philosophy of
mathematics.
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Appendix 1

The Semantics of LP

In this presentation, I assume a solid familiarity with first-order formal classical
systems. I therefore take the liberty to miss out on some familiar details, such as
specifying that there is a list of names in the language, and so on. The semantics
we present here are heavily cribbed from (Priest 2002, 171–172). LP is a first-
order logic. Because of the inter-definability of the logical connectives, we only
need negation, , and conjunction,

V
. Disjunction and the conditional are defined

in the familiar way from a classical propositional logic. We also need only one
quantifier, 8, since 8 and 9 are duals. Identity is in the language, as are predicates
and relations. We omit functions for reasons of never needing them in this text, so
they only pose an unnecessary complication to the exposition. For those who are
interested in further paraconsistent formal theories, I refer them to (Priest et al.
1989). However, the reader should be aware that there are other quite different
traditions of developing paraconsistent formal systems, such as those of Da Costa,
Batens or Béziau.

An interpretation is a pair <D, I>. D is the non-empty domain of quantification.
I is the interpretation. It is a function that maps names to individuals in the domain.
I maps each predicate P into a pair <IC(P), I�(P)>, where IC(P) [ I�(P) D D.
IC(P) is the positive extension of P (objects which have the property P). I�(P) is
the negative extension of P, all objects lacking the property P. I maps each n-place
relation R into a pair <IC(R), I�(R)>, where IC(R) [ I�(R) D Dn. IC(R), is the
positive extension of R, all n-tuples which bear R. I�(R) is the negative extension of
R, all n-tuples which fail to bear R. Note that IC(P) \ I�(P) or IC(R) \ I�(R) could
be non-empty. Objects falling in the intersection are contradictory objects. Identity
is a special relation defined: IC(D) D f<x, x>; x 2 Dg.
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© Springer ScienceCBusiness Media Dordrecht 2014

259



260 Appendices

Every wff, ®, is assigned a truth-value �(®) in the set: ff1g, f0g, f1, 0gg by the
following recursive clauses:

1 2 �(Pt) ” I(t) 2 IC(P)
0 2 �(Pt) ” I(t) 2 I�(P)

1 2 �(Rt1 : : : tn) ” <I(t1) : : : I(tn)> 2 IC(R)
0 2 �(Rt1 : : : tn) ” <I(t1) : : : I(tn)> 2 I�(R)

1 2 �( ®) ” 0 2 (�)
0 2 �( ®) ” 1 2 (�)

1 2 �(®
V

§) ” 1 2 �(®) and 1 2 �(§)
0 2 �(®

V
§) ” 0 2 �(®) or 0 2 �(§)

1 2 �(8x®) ” for all d 2 D, 1 2 �(®(x/d))
0 2 �(8x®) ” some d 2 D, 0 2 �(®(x/d)).

In the last, ®(x/d) means a formula ® where every occurrence of x is replaced
by d. Models for a set of sentences makes all the sentences true. Note that some
formulas might also be false (Priest 2002, 171). In the absence of any paradoxical
formulas, LP interpretations are just the same as classical interpretations. That is,
in the absence of contradiction, the logic behaves classically. It follows that we can
think of classical logic as a special case of LP, and if we are assured that there are no
contradictions, then we may reason according to rules presented to us in a classical
presentation. See also Priest (2006b, 117–118).

Appendix 2

Prior’s Tonk

There is a problem about choosing, or designing, rules of inference. The problem
was illustrated by Prior in 1960. Not any rule of deduction will do, or rather not any
pair (introduction and elimination) of rules for a connective will do, for a formal
system. Prior was targeting a Dummetian intuitionist; someone who endorses a pair
of claims: (i) we have no separation between syntax and semantics (meaning is use).
(ii) When we have a pair: introduction and elimination rule for a logical connective,
then their being ‘in harmony’ is sufficient to warrant our formal system.

In our case, we are not so interested in harmony, but just in showing that not any
rules will do.1 Prior’s Tonk connective is enough to show this. Consider the pair of

1In Chap. 14, Sect. 14.4 I mention Meyer’s joke formal system where the only rule is: from a
formula in the language infer any formula you like. This immediately gives us a trivial system.
So we already know that not any rule will do. However, we might rule Meyer’s system out on the
grounds that it obviously leads to triviality. Similarly, we might rule out a purported formal logical
system that depended on some empirical facts to make inferences such as including the rule: if
my grandmother says x then infer x. The Tonk case is more interesting since each of the two rules

http://dx.doi.org/10.1007/978-94-007-7058-4_14
http://dx.doi.org/10.1007/978-94-007-7058-4_14
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rules for the new connective Tonk, *. Where P and Q are propositions, or wffs: the
Tonk (elimination) rule is: P * Q ` P. The introduction rule is: P ` P * Q. In other
words, the elimination rule works like ‘and elimination’ (from a conjunction, write a
conjunct on the next line of proof). The introduction rule works like ‘or introduction’
from a proposition disjoin it with any proposition you like. The combination of Tonk
elimination and Tonk introduction make a purportedly logical system trivial. Every
wff is derivable (Prior 1960–1961, 38–39).

There have been several suggestions about general rules of thumb that help us
to preclude pairs of the Tonk variety. To this day, there is no consensus on how
to do this. Note, however, that this question is only important to those who both:
do not want to divorce syntax from semantics and who endorse ex contradictione
quodlibet.

Appendix 3

Ex Contradictione Quodlibet

The following are two classical proofs of ex contradictione quodlibet. The numbers
to the left of the line numbers are dependency numbers – marking which premises
or assumptions the formula ultimately depends on. & is conjunction, � is negation,
P and Q are proposition variables.

f1g 1. P & �P Premise
f2g 2. �Q Assumption for reductio ad absurdum
f1, 2g 3. (P & �P) & �Q 1, 2 & introduction
f1, 2g 4. P & �P 3 & elimination (simplification)
f1g 5. Q 2, 4 reductio ad absurdum

There are two places where the non-classical logician might block the proof. One
is to not allow reductio ad absurdum, the other is to disallow the fiddle of lines 3 and
4, so we constrain the & introduction rule. The new & introduction rule would say
that only formulas which have a dependency number in common may be conjoined
to form a conjunction. But these restrictions will not block the following proof.

f1g 1. P & �P Premise
f1g 2. P 1 & elimination
f1g 3. P _ Q 2 _ introduction (weakening)
f1g 4. �P 1 & elimination
f1g 5. Q 3, 4 disjunctive syllogism

is already found in perfectly respectable formal systems. What we learn is that there are pair of
otherwise perfectly good rules which cannot be combined over one connective.
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The dodgy move in this proof is disjunctive syllogism. The reason some relevant
logicians give for disallowing disjunctive syllogism is that, say one of the disjuncts
in the disjunction is both true and false, but the other disjunct is true. This is enough
to make the disjunction true (since one disjunct is true and we look no further). The
negation of the disjunct which is both true and false will certainly not make the
negation of the true disjunct true! This would be invalid reasoning from two true
premises to a false conclusion.



Glossary

Meta-note on the glossary: The reason for a glossary in such a book is not to aid the
beginner, but to set straight any terms which are used idiosyncratically, or which
are ambiguous in the literature.

The anti-realist is either a sceptic or a Kantian idealist. It is someone who
epistemically constrains truth.

Aspirations: Inspired by Maddy’s maxims, or principles, an aspiration is a general
goal identified with some mathematicians. An example might be to make all
of mathematics constructive according to certain parameters on what counts as
constructive. Another might be to unify all of mathematics under one foundation.
Another might be to develop as many incompatible extension of ZFC as possible.
These are only examples. The pluralist thinks that aspirations in mathematical
practice are very important. Identifying them, giving them as precise as possible
expression, maybe even formal expression, is an aspiration of the pluralist.

Axiom: Basic law of a theory. Theorems of a theory are proved from axioms, using
a proof theory.

Axiom of Choice: There are several axioms, or several versions, of choice. In
general, the axiom stipulates the existence of a set made from (a choice function)
taking one member of each of a number of sets. Constructive versions give the
choice function, or some way to construct a choice function.

An axiomatic proof is one that begins with some axioms, or in its sequent calculus
guise, rules of inference, and proceeds using only sanctioned rules of inference
to lead to a conclusion. The axioms are absolute truths.

Bad Mathematics: bad mathematics are to be found in areas of mathematics, not
recognised by model theory, where ‘mathematics’ is not determined by model
theory but by existing practice. This includes both what we called in the second
chapter ‘successful existing mathematics’ and some unsuccessful mathematics.
‘Bad’ mathematics include: some intensional theories, intentional theories, not
yet completely formally represented theories, paraconsistent mathematics and
trivial theories of mathematics.

M. Friend, Pluralism in Mathematics: A New Position in Philosophy of Mathematics,
Logic, Epistemology, and the Unity of Science 32, DOI 10.1007/978-94-007-7058-4,
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Basic Law V: is an axiom in Frege’s formal system. It is: 8f8g[ext:f D ext:g $ f
� g]. That is, for all pairs of concepts f and g, their extensions are identical just
in case their extension are equivalent up to isomorphism. It looks like a harmless
idea, and Frege at first thought that it was a logical principle, although, he was
not entirely certain. He concluded it was not a logical principle when Russell
pointed out to him that a contradiction could be derived from it.

The Book of Proofs is a unique ideal book which records all of the proofs of
mathematics made in the foundational theory of mathematics. The proofs are
written in normal form.

Bubbling lemma, see the collapsing lemma.
CH: The continuum hypothesis is a hypothesis about the size of the continuum. The

hypothesis states that the size is 2@0 . We know that 2@0 is strictly greater than
@0. We know that there are more real numbers (the numbers which make the
continuum) than natural numbers. What we do not know, and what would make
us reject the hypothesis would be to find that there is a set of numbers (they do
not have to be the real numbers) between @0 and 2@0 .

Choice Function: The function which makes a choice set from other sets. It chooses
one member of each set, to make up a new (choice) set.

A coherent interpretation is an interpretation of a logic that is not trivial.
Collapsing lemma, Let be any interpretation with domain D, and let � be any

equivalence relation on D. If d 2 D, let [d] be the equivalence class of d under �.
Define a new interpretation �, whose domain is f[d]; d 2 Dg. If c is a constant
that demotes d in , it denotes [d] in �. If P is an n-place predicate, then <X1

: : : Xn> is in its positive [negative] extension in � iff 9x12X1 : : : 9xn2Xn

such that <x1 : : : xn> is in the positive [negative] extension of P in . What
� does, in effect, is simply identify all the members of D in any one equivalence
class, forming a composite individual with all the properties of its components. I
can now state the:

Collapsing Lemma
Let ® be any formula; let v be 1 or 0. Then if v is in the value of ® in , it is in its

value in �.
In other words, when is collapsed into �, formulas never loose truth values

they can only gain them. The Collapsing Lemma is the ultimate downward Löwenheim-
Skolem Theorem. (Priest 2002, 172)

A contextual definition is one where the biconditional of the definition is within
the context set by quantifiers. Usually on the left hand side of the defining bicon-
ditional we have an identity, and on the right hand side we have an equivalence
relation. Thus it has the form: Qx : : : Qz( : : : D : : : ”df : : : � : : : ) where
Q is a quantifier and � is an equivalence relation. The quantifiers are usually
second-order.

A contradiction is a formula of the form “’ and not ’”, where ’ is a wff.
Dialetheism is the position that there are true contradictions, and that this is a

coherent idea, i.e., it does not lapse into triviality.
Dualism: A dualist is someone who believes that not all of mathematical activity is,

or should, be restricted to the founding theory. There is a founding theory which
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gives all of the ‘good’ or ‘best’ mathematics, and there is all the rest. Often
dualists have a programme: to convert as much of ‘all the rest’ into the ‘good’ or
best part of mathematics.

An ex contradictione quodlibet inference is a formal proof from inconsistent
premises to a conclusion which is unrelated to the premises. A proof: p & �p
q, is an example. Such inferences are valid in classical and intuitionist logics.

An Extensionalist is someone who prefers an extensional theory to an intensional
one. More specifically, he sees logic as extensional. Therefore, any formal system
of logic that is not extensional is lacking, or sub-standard. The reason he prefers
extensional theories is because of a gain in clarity.

Extensional theory: A theory is extensional iff terms in the theory are identified
by their isomorphism class, and no particular interpretation or member of the
class is favoured. For example, arithmetic is extensional because two term
expressions are considered to be identical just in case they pick out the same
isomorphism class – the number to which they refer. 2 C 8 D 10. ‘2 C 8’ is a
term. The extension of the term ‘2 C 8’ is identical (in arithmetic) to the term
‘10’ because they both refer to the number 10. There are an infinite number
of terms which refer to the number 10, and arithmetic does not recognize any
distinction between them. We can therefore think of these as constituting the
isomorphism class of ‘10’. In contrast, a child learning arithmetic might well
distinguish between a very long string which refers to 10 and a short string. This
is why the child will be asked to make a proof that the two strings co-refer.
Theories in mathematics are extensional either by having an explicit axiom of
extensionality or by implicitly understanding this, such as in model theory (where
we have the notion of uniqueness up to isomorphism). The extensionalism of
a theory is supposed by many philosophers to be inversely proportional to the
intensionality of the theory. It is not clear that this inverse proportionality makes
sense, and it makes less sense in the presence of an axiom of extensionality.

Fixtures are parts of mathematics which stay fixed while we ‘import’ foreign
elements into a theory, to interpret it, give it a model, help us solve a problem
by suggesting another way of looking at an issue and so on. The various fixtures
might be very contained, or might cross a number of theories. For example, a
constant such as an identity element could be a fixture, logic is a fixture, an
‘invariant’ notion (under permutations of the domain) could also be a fixture, or a
relation could be a fixture. The relationship between angles and sides of a triangle
stays fixed between hyperbolic geometry and Euclidean geometry. The fixtures
are a necessary condition for crosschecking one theory against another. Because
they are not uniform, mathematics (as a whole discipline) is inconsistent, but
not, for all that, trivial. It is the fixtures which ensure the objectivity of the
discourse of mathematics, and justifies the agnosticism of the pluralist vis-à-vis
the traditional goals of the philosopher of mathematics: to find a foundation,
ontology or absolute truths of mathematics.

Formalistically deviant proofs are ‘proofs’ where mathematicians use steps which
deviate from the rigorous set of rules, methodologies and axioms agreed to ‘in
advance’ and that fit formalist precepts.
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The foundation is an axiomatically presented mathematical theory to which all
or most of successful existing mathematics can be reduced. It can be used
normatively to exclude from bona fide mathematics any purported mathematics
which cannot be reduced to the axiomatic theory.

Foundationalist: A foundationalist is someone who believes in a particular foun-
dation for a discipline. In particular she believes that what is presented indepen-
dently of the foundation, and is considered to be part of that discipline had better
be reducible to the foundation on pain of exile from the discipline.

GCH: the general continuum hypothesis states that the infinite cardinal numbers
@0, @1, @2 : : : increase at the rate of 2@n where n is the previous index of the
cardinal. The operation performed for ‘getting to the next cardinal’ is to take the
powerset of the previous cardinal. A denial of the GCH would have it that there
are cardinal numbers between an arbitrary @n and 2@n. See CH.

Gödelian optimist: Someone who believes that all of mathematics can be reformu-
lated in set theory, and set theory gives the essence of mathematics. Moreover,
in light of the Gödel incompleteness results, the prospect looks bleak. But the
optimistic trait is that it is simply a matter of time before we find the powerful
unifying axioms which will enable us to prove completeness, in some new
sense of ‘completeness’. The Gödelian optimist believes that the mathematical
community will reach agreement over which is the correct extension of ZF,
since they will be swayed by reasoned argument. Reasoned argument will bring
convergence on a unique extension. In addition, the Gödelian optimist believes
that the mathematical community will be correct in their judgment.

Hume’s Principle is derived from Basic Law V in Frege’s formal system of logic.
Hume’s principle is: 8f8g[N:f D N:g $ f � g]. That is, for all predicates or
properties f and g, the number of fs is identical to the number of gs if and only if
the concepts can be placed into one-to-one correspondence.

The idealised conception of proof comes from the formalists: Gentzen and Hilbert.
The conception has two elements. (1) All proofs in mathematics can in principle
be converted into a formal logical proof, in the form of a Gentzen-type sequent.
(2) All ideal proofs are axiomatic. They begin with axioms and follow rules of
inference.

An impredicative definition is a definition where the definiens is included in the
definiendum. There is a conceptual circularity in the definition.

Inclosure schema: A contradiction fits the inclosure schema iff it has two charac-
teristics.

(1) � D fx; ¥(x)g exists and §(�).
(2) For all x � � such that ¥(x):

(i) •(x) 62 x,
(ii) •(x) 2 �.” (Priest 2002, 276).

Deciphering (1): � is the set of all x which have the property ¥. The
set � exists, and � itself has the property §. Once we have, supposedly
gathered the sets which have ¥, and put them into �, we find that we
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should include that set, i.e., the first � into �. The set � formed by
collecting all sets with the property ¥ belongs to itself. This is what
Priest calls ‘closure’. Deciphering (2): For all subsets of �, x, which
have the property ¥, (i) the set picked out by the diagonaliser • is not
a member of x. ‘Diagonalisers’ use what falls under a concept in order
to create a new set, or object, which is outside the original, but ought to
be inside. This is the transcendence part of the inclosure schema. The
inclosure schema can be used to create paradoxes.

Intensional logic: An intensional logic is one that includes intentional operators
which take a whole wff as their scope. This makes the logic intensional. See
extensionality.

Intentional operator: An intentional operator is a logical operator that is meant
to express an intention, or attitude, such as: doubt, belief, fear or de dicto
possibility. Sometimes these are called ‘propositional attitudes’ because they
have a proposition in their scope. But an intentional operator can also have a
term within its scope. In this case, the logic could be extensional.

L: L was developed by Gödel. It is a semantic conception of the set theoretic
hierarchy. The hierarchy is formed in the following way. At the bottom of the
hierarchy, we begin with the empty set. At stage ’ C 1 we gather all of the subsets
of objects at the previous stage ’ which we can define. In constructing the next
stage up, we are thus restricted by the language. Our definitions are first-order
formulas, where the quantifiers range only over objects at stage ’. Sometimes
this is referred to as the ‘constructive hierarchy’. See also the entry for ‘V’ below.

Logical operator: A logical operator is a symbol which takes a term or a wff
in its scope. Examples include: possibility, knowledge, œ, quantifiers, negation.
Logical connectives can be thought of as operators. Logical binary connectives
take two terms or wffs in their scope, so can also be thought of as (two-
place) operators. Terms themselves and wffs are not operators. Brackets are not
operators – since they simply indicate the scope of an operator.

Logical priority view: The ‘logical priority view’ is a sort of realist view. From
this view we would say that formal systems try to represent our pre-theoretic, or
intuitive, or primitive, logical notions. The meaning of a connective lies not in
its use in a formal system, but outside, and prior to the formal system. A formal
system is then judged ‘good’ or ‘bad’ according to the degree to which the formal
representation answers to the pre-theoretic intuition about the logical connective.

Mathematics-First: is the meta-attitude (meta – to a philosophical position) that
mathematical practice should be what delineates what the philosopher should
take to constitute ‘mathematics’. This might simply include which mathematical
subjects are found in mathematics textbooks and journal articles, or it might
include mathematician’s philosophical remarks or inclinations. If the latter,
then, under a mathematics-first attitude the philosopher’s role is to develop a
philosophical position which accommodates the mathematician’s philosophical
statements. See the entries for: philosophy-first, science-first and philosophy-
second.
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MAXIMIZE is a principle developed by Maddy. It is the antithesis of Occam’s
razor. The general spirit behind it is supposed to be that “the set theorist should
posit as may entities as she can short of inconsistency.” (Maddy 1997, 131). Its
formal expression is: definition: T 0 maximizes over T iff there is a ¥ such that:
(i) ¥ is a fair interpretation of T in T 0, and (ii) T 0 proves 9x9R � x2 8y8S � y2

((¥(y) ^ ¥(S)) ! (x, R) ¨ (y, S)) (Maddy 1997, 220). T and T 0 are theories. ¥

is an inner model, S of T 0 strictly extends R of T. The model R is into but not
isomorphic to S.

Monist: A monist is someone who believes that there is a unique theory which
characterises a practice or discipline or body of knowledge.

A monist foundationalist believes that there is a unique correct, or true, foundation
for mathematics, and uses the foundation normatively.

Soft normativity is simply encouragement, which comes from an aspiration (to
make statements as clear as possible); as opposed to setting a norm, and holding
oneself and others to that standard.

A paraconsistent logic is a formal language together with some rules of inference
and maybe some axioms which allow us to formally ‘cope’ with contradictions.
‘Coping’, here, means that the formal system does not become trivial in the
face of contradiction. In some cases there are mechanisms for explaining
contradictions away. In other cases, ex contradictione quodlibet inferences are
not considered valid. They are blocked in some way.

Paradoxes are thoughts or ideas, represented by sentences, or wffs, which appear
to be both true and false.

Philosophy-first is an attitude a philosopher might have towards the subject she
is developing a philosophy about. Under this attitude, she would, if she is, for
example developing a philosophy of mathematics, tell the mathematician what
counts as mathematics, or what constitutes good practice or methodology in
mathematics. She would pay little heed to what mathematicians say concerning
their own practice on the grounds that they are not so well trained in philosophy,
and are often philosophically quite naı̈ve.

Philosophy-second is the opposite attitude to that of philosophy-first. Sometimes it
is called ‘second philosophy’.

Pluralism: A philosophical position where the trumping characteristic is a tolerance
towards other points of view, theories, methodologies, values and so on. The
tolerance is not an act of kindness. It is motivated by scepticism and honesty.

Pluralism in epistemology: The pluralist in epistemology believes that there are
different methods of knowing a truth of mathematics (but see pluralism in
truth) and that it is far from obvious, given the present state of play, that there
is anything like ultimate justifications in mathematics, or best justifications in
mathematics. See the entry on the Book of Proofs.

Pluralism in foundations: A tolerance towards the idea that there might be different
foundations in mathematics. More moderately: an agnosticism concerning which
foundation is ‘the correct one’. Less moderately: the conviction that there is
no reason to believe, on present evidence, that there is a unique foundation,
together with agnosticism as to whether or not this situation might ever change.
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The pluralism can be epistemic: as far as we know there is no unique foundation,
or it could be ontological: there is no unique foundation. See the entries on
pluralism in epistemology and pluralism in methodology. Or it can be alethic:
there is no truth of the matter whether this is the foundation for mathematics.

Pluralism in methodology: A tolerance towards different methodologies. In math-
ematics, we might see this in the form of using techniques developed in one area
of mathematics in an area otherwise foreign to it. We might do this in order to
generate a proof of a theorem.

Pluralism in ontology: The pluralist in ontology does not believe that there
is a unique absolute well-defined ontology which counts for the whole of
mathematics as it is practiced.

Pluralism in truth: The pluralist in truth believes that truth in mathematics is not
an absolute term, or at least is not a well-defined concept. Truth-in-a-theory is
perfectly understood (except maybe in some nascent theories).

Third-level pluralism is pluralism towards: (i) mathematical activity at the (first
level) of working within a mathematical theory, or working with several mathe-
matical theories to prove or verify purported theorems, (ii) mathematical activity
at the (second level) of developing whole mathematical or logical theories,
or working within a theory to compare ‘smaller’ theories to each other, (iii)
philosophical work concerning particular results or notions in mathematics,
such as work on the notion of compactness, without having any particular
philosophical tradition informing the work, and (iv) philosophical work at the
(second) level of developing a foundational philosophy of mathematics.

Post-non-triviality comes from Post’s suggestion for a definition of completeness
of a theory. A theory is Post-non-trivial iff there exists a sentence in the language
of the theory which can be displayed and is false and not true.

Principles: The principles MAXIMIZE and UNIFY are proposed by Maddy qua
naturalist philosopher. The pluralist prefers ‘aspirations’. These are general
goals which we can identify with some mathematicians. There is no strictly
mathematical reason for them to be shared by all mathematicians.

Proof theory of a theory: The proof theory of a theory is the set of inference rules
allowed in the theory.

Realism in mathematics has two conceptually distinct versions: realism in ontology
and realism in truth-value.

Realism in ontology is the position that the ontology of the subject we are realists
about is independent of our investigations or knowledge.

Realism in truth-value of the sentences of a theory holds that the truth-values of
sentences of the theory are independent of our ability to judge or establish or
discover them.

The reformation is a movement to reduce existing mathematics to the foundation,
and keep mathematical practice confined to work within the foundation.

A relevant logic is a paraconsistent logic where we insist (and ensure by some
mechanism in the rules or axioms) that there be some connection between
premises and conclusion of a valid argument.
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A rigorous proof is a proof that proceeds from axioms or premises, and in which
every line of proof is accounted for by reference to a rule of deduction or by
appeal to an axiom, premise or definition. Each of these has to be of the right sort
to qualify. The criteria for ‘right sort’ are listed in Chap. 8.

Science-first is the attitude that the scientific disciplines (usually physics, chemistry
and biology) are the ones with the most trust-worthy methodology, truths, facts,
data and so on. Under this attitude, it is recommended to practitioners of any
other discipline that they adopt proper scientific methodology and only trust the
facts so obtained. In particular, a philosopher should let scientists determine the
scope of science. The philosopher’s methodology should approach the scientist’s
as much as possible. The position is associated with Quine and naturalism. See
the entries for philosophy-first, philosophy-second and mathematics-first.

Structuralism. Most of the time in the book the term ‘structuralism’ refers to
the philosophical position developed by Shapiro. In general, structuralism is the
position which thinks of mathematical theories each as structures.

A structure is comprised of a domain, together with some predicate, relation and
function constants and variables. The language we use to prove theorems about
structures is a logic, which can be either first or second-order.

Successful existing mathematics is the body of mathematical theories and results
about those theories which are currently judged by the mathematical community
to be ‘good mathematics’ (as indicated by publication, reference in discussion,
use in classrooms and study groups, airing at conferences and so on). This will
include past mathematics not presently under mathematical investigation, but not
for all that, dismissed as bad mathematics.

Theory: mathematical ‘theory’, as it is used in the text, is a fairly loose notion.
However, as a default, one should have in mind a number of axioms, written in a
formal language, with a proof theory for proving theorems.

Topological argument for the truth of ZFC: this is the argument that ZFC plays
such a central role (as reference point) in mathematics, it is equi-consistent with
so many mathematical theories, and it is so fruitful to the practice of mathematics,
that this cannot be accidental. Therefore, ZFC has to be true, and the ontology
has to be real (in a realist sense).

Triumvirate: the ‘philosophical triumvirate’ are: ontology, knowledge and truth. I
call them this because for any philosophical position, one wants to answer three
questions neatly. What are we talking about? How do we know? What are the
truths of the discourse (we are philosophising about)? The easiest way to answer
the questions neatly and simply is to take one or more of the notions as primitive
(or ‘obvious’) or to define each in terms of the other. Sometimes, in doing this, we
beg the question. Pluralism answers none of the questions neatly or simply. Thus,
pluralism forces an aesthetic compromise of ‘neatness’ and ‘simplicity’. The
pluralist justifies trading in the aesthetic virtues against honesty and explicitness.
The trade is a good one if we think that neatness and simplicity often bring with
them over-simplicity and insensitivity. It is the contention of this book that the
pluralist gains in honesty and depth of analysis from the trade, and is the better
for it.

http://dx.doi.org/10.1007/978-94-007-7058-4_8
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A trivial theory in mathematics is one where every well-formed formula written in
the language of the theory is true, so in particular, the negation of every formula
is also true. Prima facie, this make the theory quite useless. One way to make
a trivial theory, is to consider ex contradictione quodlibet inferences to be valid,
and to think that there is a contradiction in the theory. We could then prove any
formula using ex contradictione quodlibet arguments. Secunda facie, we notice
that people (knowingly) work with, and in, trivial theories. This suggests that
trivial theories have some uses and some structure.

UNIFY: UNIFY is a principle, developed by Maddy, as reflecting a goal of set
theorists. The goal is to UNIFY mathematics in set theory, or make set theory
foundational (Maddy 1997, 211). There should be only one extension of set
theory.

V: V is the set theoretic hierarchy as it is determined combinatorially. To form a
stage ’ C 1, we gather together all subsets of the objects at stage ’. There are no
constraints on naming these or referring to these. It is an ontological conception.
The set theoretic hierarchy so formed is sometimes referred to as the ‘iterative’
or the ‘cumulative’ conception of the hierarchy of sets.

V D L: This is a proposed axiom which would extend ZF set theory. Its addition to
ZF is consistent. However, V ¤ L is also consistent with ZF. For more details,
see the entries for V and L above.

ZF: stands for Zermelo-Fraenkel set theory. This is an axiomatic theory of sets
developed largely by Zermelo. Fraenkel added the axiom of reducibility to
Zermelo’s theory in order to explicitly make the theory coherent.

ZF1: ‘ZF1’ stands for first-order Zermelo-Fraenkel set theory, where the ‘first-
order’ refers to the quantifiers being restricted to quantifying over objects of the
theory.

ZF2: ‘ZF2’ stands for second-order Zermelo-Fraenkel set theory. The ‘second-
order’ refers to the language allowing the quantifiers to quantify over second-
order variables: predicates, relations and functions.

ZFC: ‘ZFC’ stands for Zermelo-Fraenkel set theory with the axiom of choice.
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philosophy of mathematics: Aspects and mathematical practice (Texts in philosophy 11,
pp. 29–37). London: Individual Author and College Publications.

Brouwer, L. E. J. (1975). In A. Heyting (Ed.), Collected works. Vol. 1: Philosophy and foundations
of mathematics. Amsterdam: North-Holland/American Elsevier.

Brouwer, L. E. J. (1976). In H. Freudenthal (Ed.), Collected works. Vol. 2: Geometry, analysis,
topology and mechanics. Amsterdam: North-Holland/American Elsevier.

Brown, B., & Priest, G. (2004). Chunk and permeate, a paraconsistent inference strategy. Part I:
The infinitesimal calculus. Journal of Philosophical Logic, 33(4), 379–388.

Bueno, O. (2007). Incommensurability in mathematics. In B. van Kerkhove & J. P. van Bendegem
(Eds.), Perspectives on mathematical practices (pp. 83–105). Dordrecht: Springer.

Bueno, O. (2011). Relativism in set theory and mathematics. In S. D. Hales (Ed.), A companion to
relativism (pp. 553–568). Oxford: Wiley-Blackwell.

Buldt, B., & Schlimm, D. (2010). Loss of vision: How mathematics turned blind while it learned
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Enriques, F. (1938). Sulla proprietà caratteristica delle superficie algebriche irregolari. Rend R Acc

Lincei, 6(27), 493–498.
Euclid. (2006). Elements. Books I–XIII. New York: Barnes and Noble.
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(education). In B. Löwe & T. Müller (Eds.), PhiMSAMP philosophy of mathematics: Sociologi-
cal aspects and mathematical practice (Texts in philosophy 11, pp. 121–154). London: College
Publications.

Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen
Denkens. Halle: Nebert. Partly translated in van Heijenoort, J. (Ed.). (1976). From Frege to
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