Value of Information
in the Earth Sciences




VALUE OF INFORMATION IN THE EARTH SCIENCES
Integrating Spatial Modeling and Decision Analysis

Value of information (VOI) is a concept in decision theory for analyzing the value
of obtaining additional information to solve a problem. Gathering the right kind
and the right amount of information is crucial for any decision-making process.
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ables, including Bayesian networks, Markov random fields, Gaussian processes,
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applicability of VOI to topics such as energy, geophysics, geology, mining, and
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Preface

This book is a result of our collaboration over the past decade on addressing problems
related to the value of information (VOI) in Earth sciences applications by building links
between statistics, geosciences, and decision analysis. We believe that such an interdis-
ciplinary approach will become increasingly essential for the careful stewardship of our
natural resources.

Decisions related to the Earth’s natural resources are often consequential, and making
these decisions under uncertainty is a ubiquitous challenge. Since there is a lot at stake,
it may be worthwhile for the decision maker to obtain more information before the deci-
sion is actually made — i.e., before an irrevocable allocation of resources. When faced with
uncertainty, gathering the right kind and right amount of information is crucial. Today,
geo-coded data are commonly purchased, processed, and interpreted to provide infor-
mation about uncertain variables, such as the spatial distribution of trees in a forest, the
amount of oil or gas in the subsurface, the level of groundwater in an aquifer, or the mineral
content in a mine. A crucial question to answer is: how much information should one pur-
chase, and at what price? This question is related to the well-established concept of VOI.
Additional information may help to reduce the uncertainty, but if the information has no
impact on the decision, then purchasing it is not economic.

A key characteristic of applying the decision theoretic notion of VOI to the Earth sci-
ences that makes it different from other applications is the spatial aspect: spatial uncertainty,
spatially distributed information, and spatial decisions. The decision theoretic formalism
provides a consistent basis for relating statistical models of spatial phenomena to the deci-
sions. This connection facilitates decision making by providing clarity of action and also
fosters innovative approaches for designing spatial information-gathering schemes.

The book presents a unified framework for VOI analysis based on statistical concepts,
geological and geophysical modeling, and decision analysis. Often in the Earth sciences,
information is sensed remotely — for example, from geophysical surveys that provide indir-
ect and imperfect knowledge about the spatially varying surface. How valuable is this
imperfect information? We study the comparison of various kinds of practical schemes by
considering the value of imperfect versus perfect information and the value of total versus

xi
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xii Preface

partial information, where only subsets of the possible data are acquired — for example, a
sparse versus a spatially dense survey.

We focus on areas of our own expertise for the benefit and interest of others with simi-
lar scientific backgrounds. Throughout the book, we will discuss and reference the work
of others, but we do not aim to provide an exhaustive summary of what has been done on
applying VOI to other fields, such as in medicine. Applications from the Earth sciences
are highlighted, and we describe the practical use of our methods and tools via a number
of illustrative examples and hands-on exercises so that readers can learn the concepts by
applying them.

Even though this is a specialized book, we aim to reach a diverse group of readers. The
primary intended readers include scientists, engineers, graduate students, and professionals
who use applied statistics and decision theoretic models in the quantitative Earth sciences.
We believe that the topics will be of interest to researchers and industry professionals in
different fields of the Earth sciences: energy resources, mining, groundwater, and environ-
mental sciences. It will also be of interest to applied statisticians and decision analysts. We
hope that this book will be a practitioner’s guide.

The book requires some background in basic probability and statistics and mathematical
calculus, as well as an interest in Earth sciences applications. Although it is not essential,
it helps to know basic multivariate analysis and decision analysis or optimization. The
reader must be open to learning unfamiliar topics and be able to appreciate the added value
obtained from the multidisciplinary approach. If more background knowledge is needed for
a particular topic, readers can consult some of the references suggested in the bibliographic
notes at the end of each chapter. The chapters define the concepts using mathematics, but
without going into too much detail. Additional mathematical details about the most import-
ant models and methods used in the book are provided in the appendix. The last chapter
contains exercises and larger projects including data. On the website (srb.stanford.edu/
VOI), we provide more background for these examples, including data and computer code.

We hope that you find this book useful!


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.001
http:/www.cambridge.org/core

Acknowledgments

We would like to acknowledge the contribution of several friends, colleagues, and collabo-
rators who have helped us in our endeavors toward the preparation and completion of this
book. This includes our co-authors on various papers pertaining to value of information
(VOI) in the Earth sciences: Jef Caers, Geetartha Dutta, Maren Drange-Espeland, Steinar
Ellefmo, Evangelos Evangelou, Ragnar Hauge, Ketil Hokstad, Rosemary Knight, Marie
Lilleborge, Gabriele Martinelli, Sara Rekstad, Javad Rezaie, Richard Sinding-Larsen, and
Whitney Trainor-Guitton. We received valuable feedback on preliminary chapter drafts
from Lea Deleris, Jeffrey Keisler, Gabriele Martinelli, Sameer Parakh, Deepanshu Kumar,
Javad Rezaie, Ingelin Steinsland, and Ulrich Theune. We are very grateful to those who
helped design and prepare creative artwork for the book: Hessam Moussavinik, Ryan
Nilsen, Mamta Parakh, and Sachin Premasuthan. We are indebted to Henning Omre for lay-
ing the foundation for our NTNU-Stanford collaboration, as well as Gary Mavko and John
Weyant for their encouragement on these research topics, including supporting Debarun
Bhattacharjya for a few quarters during his graduate studies at Stanford University. Gary
and Henning in particular planted the seeds that grew into this collaboration. Ross Shachter
and Ron Howard played an important role in revealing the power of VOI. We acknowledge
the long-term support from the members of the Uncertainty in Reservoir Evaluation (URE)
at NTNU, the Stanford Center for Reservoir Forecasting (SCRF), and the Stanford Rock
Physics and Borehole Geophysics (SRB) consortia. The Department of Energy Resources
Engineering at Stanford University hosted Jo Eidsvik during his sabbatical, allowing us to
finally finish the manuscript. Finally, we thank our families for their unwavering support.

xiii


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785
http:/www.cambridge.org/core



http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785
http:/www.cambridge.org/core

1

Introduction

Figure 1.1 data crunching times
numbers pulsing ‘round the globe:
how much is enough?

Carl Sagan famously wrote about the “pale blue dot” that all of us share: “That’s home.
That’s us ... there is nowhere else, at least in the near future, to which our species could
migrate. Like it or not, for the moment the Earth is where we make our stand” (Sagan 1994,
p. 8). More than 20 years after Sagan’s famous book, there are plans for human settlement
on Mars. But Earth is still home, and on this rock revolving around a golden sun, people
everywhere constantly use information to make decisions about utilizing, managing, and
sustaining our valuable natural resources. How can we quantitatively analyze and evaluate
different information sources for supporting decisions in the Earth sciences?

1.1 What is the value of information?

Making decisions in the Earth sciences can be challenging. There is often significant uncer-
tainty pertinent to the decision — for instance, the availability and spatial distribution of
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2 Introduction

the resources under consideration. Moreover, there could be a lot at stake, as investments
may be considerable and there may be huge financial losses or adverse environmental
consequences. Petroleum exploration and production, mining, agriculture, and forestry are
examples of domains where large-scale efforts are typical. Similarly, endeavors in domains
such as conservation biology, ecology, groundwater management, and climate sciences
strive to sustain and better manage natural resources and affect several stakeholders.

A unique aspect of the complexity of decisions in the Earth sciences is the inherent
spatial variability. The subsurface formations have been forged through millions of years
of coupled geological, physical, chemical, and biological processes, resulting in spatial
trends and dependence between rock properties at different spatial locations. The subsur-
face properties have spatial dependence, but at the same time they are very heterogeneous,
variable, and uncertain. The decision maker’s characterization of uncertainties is then best
represented by spatial statistics, because properties at a particular geographic location can-
not be treated independently of those at other locations. Reliable information that resolves
some of the uncertain properties at one location could therefore go a long way toward
improving the overall quality of decisions.

The past few years have seen a tremendous surge of interest in “big data.” This has
largely been driven by the development in electronics, telecommunications, computer sci-
ence, online commerce, social media, and our ability to automatically acquire and store
data. While this may be a subject of great current interest in popular culture, the Earth sci-
ences have arguably been dealing with big data for a while now. The aspect of volume — the
first of the five “Vs” of big data — has certainly been well represented; examples include
large geophysical surveys, especially in exploration reflection seismology, and weather
and atmospheric data from remote sensing satellites. The utilization and sustenance of
the Earth’s resources involve multidisciplinary work that can entail acquiring, processing,
modeling, and interpreting copious amounts of a variety of data types — the second of the
five “Vs.” As an example, typical analysis of basin and petroleum systems includes geo-
physical seismic data, well logs, geochemical analysis, information from biostratigraphy
and paleoclimate studies, structural geology, the study of depositional environments, and
core analysis. The other “Vs” include velocity — data acquired at a rapid rate (e.g., con-
tinuous streams of data from remote sensing sensors) — and veracity — whether the data are
accurate and trustworthy. Eventually, the goal is to make better decisions. This is where the
last of the five “Vs” of big data becomes important: value.

What is the value of the data and how much data are enough? Information almost always
comes at a price, so when is the information worth its price? At the very core of this book
lies the decision theoretic notion of value of information (henceforth referred to as VOI),
which we use to evaluate and analyze various sources of data. The power of analyzing infor-
mation sources using VOI is that: (i) it allows the decision maker to perform a reasonable
evaluation before the information is purchased and therefore revealed and (ii) if the decision
maker can model value using monetary units, then VOI is also in monetary units. These cap-
abilities make VOI an extremely practical tool that addresses real problems in the real world.

Figure 1.2 demonstrates what we refer to as the “pyramid of conditions” that makes
information valuable. Although all technical details are postponed until later in the book,
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1.1 What is the value of information? 3

Does the value of the information
exceed its cost?

ECONOMIC

Can observing the information
change the decision?

RELEVANT Can observing the information
affect the value?

Figure 1.2 The pyramid of conditions specifies that information-gathering schemes should be
economic, material, and relevant.

we feel that the figure captures the essence of VOI. The condition at the bottom of the pyra-
mid specifies that information must be relevant to the value from the decision, so observ-
ing the information can impact the decision maker’s beliefs about the key uncertainties.
As an (extreme) example, while making a decision about whether you should take your
umbrella to work, information about what your friend ate for breakfast hardly seems rele-
vant to whether it will rain! The condition at the middle level of the pyramid specifies that
information must be material, in the sense that observing it should have the capability to
change your decision. If you enjoy both the rain and the sun and would rather not carry an
umbrella, then listening to a weather forecast hardly seems worthwhile — you will choose
to leave the umbrella at home, regardless of what the forecast has to say. Information must
have the potential to allow the decision maker to flexibly adapt and differ from what he or
she would have otherwise done. Finally, the condition at the very top of the pyramid is that
information must be economic — the price of the information must be less than its value.
The three requirements are shown as a pyramid because higher conditions cannot be satis-
fied unless those lower in the pyramid are satisfied. If an information source is not relevant,
it cannot be material; if it is not material, it cannot be economic.

The reader may well ask: what is the catch? What do I need to do to harness the wonder-
ful capabilities of VOI? The only catch is that the power of such a practical tool requires
some modeling sophistication — it requires understanding and characterizing how the vari-
ous pieces of the puzzle fit together, and for applications in the Earth sciences, this can
often require an interdisciplinary effort. In this book, we recommend a four-stage work-
flow for using VOI to support information-gathering decisions in the Earth Sciences, as
indicated in Figure 1.3:

1. To start with, the decision maker should frame the underlying decision situation to
understand how the potential information would be used. What are the questions the
decision maker is trying to address?
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Frame the
decision
situation

Study
information
gathering

Build a
spatial
model

Conduct
VOI
analysis

Figure 1.3 A workflow for value of information analysis consists of four steps.

2. Next,thedecisionmakershouldidentify and study the potentialinformation-gathering
schemes. How is the information relevant to the underlying decision situation? How
might the information affect the decision?

3. In the Earth sciences, spatial dependence is an important aspect of most problems.
Therefore, it is often essential to build a spatial model that is a reasonable approxima-
tion to the real-world domain. This model captures how the various uncertainties, such
as geological properties, are connected to each other and to the relevant data.

4. Finally, now that all the pieces are in place, VOI analysis can be conducted to address
various issues of interest. Information sources of varying reliability and price can be
compared, and the decision maker can proactively identify schemes that will increase
their value for the decision situation.

As we will later show, the VOI for a data-gathering scheme is computed from comparing the
values with and without the data. It is important to note that the underlying decision situation
informed by the data plays an explicit part in the calculations. VOI analysis is useful for com-
paring different schemes. Since the VOI is computed before the data are actually revealed, the
value with data must include some kind of averaging over the possible data sets. We highlight
how such VOI analysis can be conducted in spatial contexts in the following section.

1.2 Motivating examples from the Earth sciences

Figure 1.4 shows a map view of data from a proposed mining project. The spatial distribu-
tion of the oxide grade is highly variable and uncertain. The map displays locations where
oxide grade data have been acquired (black). Two types of data have been collected here,
at different levels of accuracy. The lower-accuracy data set is obtained with a handheld
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1.2 Motivating examples from the Earth sciences 5

Planned mining development units
(illustrated by grayscale squares)

Northing

Prospective drilling locations,
265 in total (grayscale circles)
Two types of current data,
perfect information (black crosses),
imperfect informtion (black dots)

Easting

Figure 1.4 Map view of borehole measurement locations and potential mining locations for an oxide
resource. The mining company can drill more boreholes before making the mining decision.

meter and requires almost no time for processing (marked with black dots in the display),
while the higher-accuracy data set is acquired by taking a core plug from the borehole to
the laboratory for careful scanning (marked with black crosses in the display). Based on
these observations and expert geological knowledge about the ore, the question is: would
mining be profitable? The company has made a careful plan for how the mining would be
done (illustrated by gray squared units in the display), but it is difficult to make a decision
under uncertainty due to the spatial distribution of oxide. Before making the decision,
would mining company can collect more data. Potential locations for additional measure-
ments are defined (marked with gray circles in the display). The data, of course, come at a
price for drilling and processing. Are these data worth gathering? And, if yes, which type
of data should we acquire — the low-accuracy data or high-accuracy data, or a combination
of both? VOI analysis can be used to answer these questions by embedding the decision
situation in a spatial modeling framework.

Figure 1.5 shows a network consisting of 38 nodes. The 13 nodes numbered with prefix
“P” represent petroleum prospects, and the 25 bottom nodes of the network (illustrated by
grayscale circles in the display) are segments of the prospects. This graph, a Bayesian net-
work, is constructed to capture the relationships arising from the geological mechanisms
within basin and petroleum systems, and the edges indicate physical connections between
geological attributes at the prospects and segments. There is uncertainty about the presence
of oil and gas, and the network has an associated probabilistic model that describes these
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Figure 1.5 Network illustrating 13 oil field prospects and 25 segments where a petroleum company
can drill exploration wells before making decisions about prospect development.

uncertainties. A petroleum company can use this model to evaluate their decisions about
petroleum field development. Before pursuing expensive development decisions, would it
be worthwhile to invest in some exploration wells? An exploration well landed at one seg-
ment would reveal the presence or absence of oil at that segment, resolving the uncertainty
at that node, and because of the common geological mechanisms indicated by the network
edges, the information at the exploration segment would also provide some information
about the other segments. If exploration wells will be drilled, where should the company
place them? VOI analysis is useful for evaluating such data-gathering schemes.

For the petroleum application, let us zoom in to a finer granularity. A common deci-
sion situation is whether to drill production wells at specified reservoir units or to avoid
drilling. Before going through with the expensive drilling operations, it could be useful
to do a careful subsurface characterization using geophysical data. Seismic and electro-
magnetic data can be useful in reservoir characterization, improving the prediction of
reservoir variables such as lithology, porosity, and saturation. The seismic data undergo
processing, which typically provides seismic amplitude information merged in a stack
over all angles of the data into one entity (post-stack amplitudes). Would it be worthwhile
to invert and interpret the pre-stack data to additionally obtain seismic amplitudes as a
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Figure 1.6 Seismic amplitude data are informative of the reservoir rock type and saturation. The
contours indicate non-parametric probability density functions (pdfs) of the likely response of the
seismic amplitude data for brine sands (black) and gas sands (thick, light gray curves). The marginal
pdfs are shown on the right and at the top. The dashed black lines indicate classification boundaries
for the two classes.

function of the incidence angle? And what processing accuracy is required for signifi-
cantly improving the prediction of reservoir rocks and saturations?

Figure 1.6 shows contours of the modeled seismic amplitude responses for two res-
ervoir facies classes (gas sands and brine sands). The contours are representative of
bivariate distribution of the expected response for the seismic zero-offset attribute (first
axis) and the amplitude-versus-angle attribute (second axis), given any of the two facies
classes. These distributions can be assessed from well logs and rock physics and seismic
models, but the uncertainty (or the spread and overlap of the distributions) depends on
the underlying rock and fluid properties, their natural variability, and the accuracy of the
seismic processing scheme. As shown by the marginal distribution on the top panel, the
gas sands in this particular reservoir have generally lower zero-offset amplitudes, while
the brine sands have somewhat higher amplitudes. However, there is a lot of overlap, and
the classification based only on zero-offset amplitudes has a high misclassification error
(~25%). If, on the other hand, the classification is based on both the zero-offset ampli-
tude as well as the amplitude-versus-angle attribute, the bivariate classification of the
two classes is much better, with a very small misclassification error (~1%). Is it worth
purchasing the pre-stack attribute? How would a better classification impact the deci-
sion? Perhaps it may be better to get more accurate post-stack amplitudes and reduce the
overlap in the marginal distributions of the post-stack amplitudes — or maybe purchase
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Figure 1.7 Three-dimensional view of one geostatistical realization of uncertain sand channel facies
in a groundwater reservoir.

electromagnetic data. Which of the different information-gathering options is most valu-
able for the decision maker?

VOI analysis can play an important role in better managing groundwater, a valuable
natural resource. Will purchasing geophysical electromagnetic measurements help a
groundwater manager make better decisions about recharge? As an example, consider
the case where groundwater is pumped out from a coastal fluvial aquifer and is used for
agriculture. Seawater from the coast starts intruding due to excessive groundwater pump-
ing, leading to increased water salinity and a decrease in usability for crops. Artificial
groundwater recharge by pumping freshwater into the subsurface is considered as a way
to mitigate salt water intrusion. Where should the recharge site be located? The subsurface
distributions of the high-permeability sand channels and low-permeability shales, which
impact the groundwater flow and the effectiveness of recharge in the aquifer, are uncer-
tain. Geophysical measurements may be valuable for better characterizing the subsurface
and thus help make informed decisions about the selection of possible recharge locations.
Assessing the value of the data before actually acquiring them requires modeling the uncer-
tain subsurface channel geometries, accounting for multiple possible scenarios, and con-
ducting flow simulations and geophysical simulations using Monte Carlo computations.

Figure 1.7 shows one realization of subsurface channel geometries generated using
multiple-point geostatistical methods. Many such realizations need to be generated to
model the subsurface facies uncertainties, and one must simulate their geophysical signa-
tures, as well as the effects of flow and recharge under different recharge alternatives avail-
able to the decision maker. The important question is whether the value of the geophysical
electromagnetic data is more than the price.
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We will return to these examples as well as others in the following chapters. They illus-
trate current-day applications in the Earth sciences where VOI analysis can be useful.

1.3 Contributions of this book

The main contribution of this book is the blending of decision analysis and spatial statistical
concepts to support decisions around information gathering in the Earth sciences. Compared
with the traditional use of VOI, we stress the spatial aspects of the statistical model, the alterna-
tives, and the potential information-gathering schemes; many applications of VOI analysis in
other disciplines do not need to contend with complexities arising from spatial dependence —a
feature that is pervasive in the Earth sciences. Furthermore, we go well beyond the traditional
and simplistic high-level models for VOI analysis that have been common for decades and
work toward building more realistic models at a finer granularity. We feel that decision mak-
ers in the Earth sciences can benefit greatly from our models and methods by deploying them
to analyze real-world information schemes. With burgeoning computational capabilities, effi-
cient algorithms, and the ever-increasing availability of data, we sense that more sophisticated
models will become increasingly popular and will greatly improve the quality of decisions.

In this book, we refer to decision situations that are typical in the Earth sciences as
spatial decision situations, building a taxonomy of models based on the decision flexi-
bility — i.e., whether there are a large or small number of alternatives and whether the
decision maker’s value function is coupled or decoupled, i.e. how complex it is to reason-
ably compute the decision maker’s value from his or her decision situation. We compare
various sorts of information-gathering schemes, categorizing them based on whether they
provide perfect or imperfect information and whether they are partial or total schemes.
We also categorize models based on assumptions around whether decision situations and
information-gathering schemes are static or sequential.

We advocate the use of VOI analysis for evaluating data for spatial decision situations.
There are several information measures, such as entropy, that are more popular in spatial
applications. Unlike VOI, however, these measures only address aspects of the relevancy
of the experiment without addressing the monetary gain in value and the ability to make
better decisions. VOI is most useful in situations where data are rather expensive. When
data come for free, there is not much point in evaluating them — but keep in mind that
there is often much effort spent in processing vast amounts of inexpensive data.

Every day, people make important decisions about the development of the Earth’s
resources. At least as often, decision makers contemplate whether gathering more informa-
tion will assist them in their difficult decision-making processes. In the future, our demands
may change; there may be a drive for recovering unconventional resources in petroleum,
we may explore subsea mining, or we may head toward renewable sources such as solar
or wind energy. Similarly, environmental challenges will change, and new sustainabil-
ity questions will arise. What will not change is the advantage of being able to frame
decision situations, build useful models for the spatial variables, and evaluate possible
information-gathering schemes for improved decision making.
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1.4 Organization

This book is organized into seven chapters, including this introduction, as well as an
appendix. Chapter 2 introduces basic probability and statistics while providing the funda-
mental notation for the book. We introduce some specific models, methods, and examples
that are used throughout the book. Chapter 3 introduces decision analysis. We focus
primarily on the concepts required to understand and appreciate the decision theoretic
notion of VOI. Chapter 4 describes spatial statistics models. We motivate spatial modeling
through several illustrative examples that are used for VOI analysis in subsequent chap-
ters. These three topics — probability and statistics, decision analysis, and spatial model-
ing — lay the foundation for the subsequent formulation of methods and tools for VOI in
Earth sciences applications. Each of these three topics is, of course, extensive with vast
amounts of dedicated literature. The aim is not to cover them comprehensively; rather,
the goal in Chapters 2, 3, and 4 is to provide an overview and lay the groundwork for the
following chapters.

Chapter 5 integrates concepts from previous chapters. We define spatial decision situ-
ations and demonstrate VOI analysis for information-gathering schemes for various cat-
egories of spatial decision situations. We describe a taxonomy based on the different
combinations of opportunities for spatial decision making and information gathering.
Several examples are used to illustrate the concepts.

Chapter 6 provides a number of real-world examples of VOI analysis. We demonstrate
applications using data from petroleum, mining, and groundwater applications. For pet-
roleum exploration and development, information-gathering schemes include exploration
wells, seismic data, or electromagnetic data. For mine development and safety, various kinds
of borehole information could provide valuable information. In the hydrology example, geo-
physical electromagnetic data could be used to better characterize the subsurface and thus
help make better decisions about groundwater recharge.

Chapter 7 contains a number of exercises and hands-on projects. On the book website
(srb.stanford.edu/voi), we provide further information about these examples, including vari-
ous data sets, Netica project examples, and a collection of MATLAB m-files to help readers
reproduce many of the results described in the book. The code will also be useful for the
hands-on projects.

In every chapter, we end with bibliographic notes, where we present our views on con-
nections with relevant literature as well as some references. Mathematical details about the
most important models used in the book are provided in the appendix.

A number of examples recur throughout the book. Table 1.1 summarizes these
examples in terms of key assumptions, application domains, and the relevant sections
of the book.

1.5 Intended audience and prerequisites

This book is primarily intended for practitioners, professionals, and graduate and advanced
undergraduate students in domains associated with the Earth sciences. It may be used as a
supplementary text for a class on spatial statistics or decision making in the Earth sciences
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Table 1.1. Summary of the main examples running throughout the book
Decision Information Model Sections

Treasure island — Dig for treasure Metal detector Binary variables  2.3,3.2,3.4
the pirate example or not experiment
Gotta get myself Develop petroleum  Exploration Bayesian 2.3,57,6.2,
connected — reservoir prospects ~ wells network model 7.2
Bayesian network or not
example
Never break the Develop prospects ~ Exploration Markov chain 2.3-4,54,
chain — Markov or not wells model 7.1
chain example
For whom the bell Invest in projects Reports of Bivariate 2.3,3.2-4,
tolls — Gaussian or not profits for Gaussian model 7.1
projects example projects
I'love rock and ore —  Start mining ornot  X-ray of cores in ~ Gaussian spatial ~ 2.4,4.4, 6.4,
mining oxide grade boreholes regression 74
example model
Risky business — Develop petroleum  Exploration Empirical 2.5,62,7.2
petroleum prospect  reservoir prospects  wells forward
risking example or not modeling
Time after time — Perform seismic (No VOI Graphical 3.3,7.1
time-lapse seismic monitoring or not  analysis) model
example
MacKenna’s (Lottery, not a (No VOI Graphical 3.3,7.1
gold - oil and gold decision situation)  analysis) model
example
Norwegian wood — Harvest forest Surveys of the Gaussian 4.4,5.3-4,
forestry example units or not forest random field 59,71
We will rock you - Add support in Rock joint data Spatial 4.5,64,74
rock hazard mining tunnels in boreholes generalized
example or not linear model
Black gold in a Drill at reservoir Seismic data Markov random 4.6, 6.3,7.3
white plight — units or not field
reservoir
characterization
example
Go with the Develop petroleum  Interpreted Multiple-point 47,5.5,71
flow — petroleum reservoir or not seismic data geostatistics and
simulation example flow simulator
The tree amigos — Establish Surveying of Markov random  54,5.7,5.9,
conservation conservation sites spatial domain field 7.1

biology example

or not
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Table 1.1 (cont.)

Decision Information Model Sections
Frozen — Optimal water Snow depth data ~ Transformed 5.6,7.1
hydropower level behind dam Gaussian
example random field
Basin street blues—  Develop reservoir Exploration Basin modeling  6.2,7.2
basin modeling prospects or not wells and Bayesian
example networks
Reservoir dogs — Drill at petroleum  Seismic and/or Hierarchical 6.3,7.3
seismic and reservoir units or electromagnetic Gaussian spatial
electromagnetic not data model
data example
Salt water wells Perform recharge Electromagnetic =~ Multiple 6.5,7.5
in my eyes — for groundwater data geological
groundwater management scenario models
management
example

or can be a main text for a course on the VOI in the Earth sciences. The exercises, hands-on
projects, and data sets should make it conducive for classroom use.

The book requires a background in basic statistics and probability, mathematical cal-
culus, and some understanding of multivariate concepts such as vectors and matrices.
Knowledge of multivariate statistics is a bonus, but not essential, as some of the basics are
presented here. Similarly, knowledge of basic optimization or decision theory is a bonus,
but not essential. Readers familiar with probability and statistics will find Chapter 2 rather
straightforward, but we recommend skimming this chapter anyway to get familiar with
the notation and the running examples. Similarly, readers with a background in decision
analysis would recognize most concepts from Chapter 3. Readers not trained in multivari-
ate statistics, decision analysis, or spatial statistics should be aware that Chapters 2—4 are
merely brief overviews. The interested reader should be willing to learn the unfamiliar
topics and to appreciate the benefits gained from taking a multidisciplinary approach. If
further background knowledge is required for any topic, the reader may wish to consult
some of the texts suggested in the bibliographic notes at the end of each chapter.

If you are a statistician, you will likely benefit from learning about decision analysis
concepts (Chapter 3) and possibly also spatial statistics concepts (Chapter 4) before going
on to integrate the concepts presented in the core of the book (Chapters 5-7). If your
expertise is decision analysis, you could use this book to learn about spatial statistics con-
cepts (Chapter 4) and bring this together with your decision analysis knowledge to study
VOI for the Earth sciences (Chapters 5-7). If your background pertains to the geosciences,
you will likely benefit from learning about some basic statistical tools (Chapter 2) and
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decision analysis (Chapter 3), but you may choose to go quicker through spatial statis-
tics (Chapter 4) before understanding spatial decision situations and information-gathering
schemes (Chapters 5-7). Our intent is that the book should be readable for people from
diverse backgrounds. The book builds on multidisciplinary ideas, and we try to appreciate
that in our presentation.

1.6 Bibliographic notes

At the end of each chapter in the book, we point to further reading material or discuss some
current trends pertaining to the topics that were presented. Here we discuss connections to
other books related to VOI in the Earth sciences.

The book by Newendorp and Schuyler (2013) is the third edition of a classic text that has
become a standard reference. It covers many important aspects of decision and risk ana-
lysis, with special attention paid to investment decisions in petroleum exploration. There
is an extensive section with examples on VOI analysis. Compared to our book, Newendorp
and Schulyer (2013) focus more on high-level decision analysis, economics, policy, and
risk and less on quantitative spatial models of the underlying geologic uncertainties. In
addition to petroleum exploration, we also cover a broader range of applications in the
Earth sciences.

Bratvold and Begg (2010) cover decision making for petroleum applications, but they
do not phrase the VOI in the context of spatial decision situations — i.e., where there is a
multivariate statistical model for probabilistically dependent variables and data. We argue
that the spatial and multivariate modeling aspect is crucial for Earth sciences problems.

The book by Caers (2011) has a good discussion on VOI applied to the Earth sciences
without going into extensive mathematics. Our presentation contains more advanced
VOI modeling techniques while trying to present the mathematical representations in a
friendly way.

There are, of course, several books on subtopics of our book such as spatial statistics,
graphical models, and decision analysis. Some books on information theory and experi-
mental design are also pertinent and will be discussed as appropriate in the following
chapters.


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.002
http:/www.cambridge.org/core

2

Statistical models and methods

\
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Figure 2.1 will you strike black gold?
or else be left high and dry?
do you feel lucky?

In this chapter, we provide a fit-for-purpose introduction to probability and statistics, with
an emphasis on models and concepts used later in the book. This chapter is not meant to
be a comprehensive review of statistical concepts. We focus instead on presenting selected
models and methods and setting the notation that will be used throughout this book.

We start with some background discussion on uncertainty quantification and informa-
tion gathering and motivating the use of data sets. Section 2.2 defines random variables
and probability distributions for univariate and multivariate settings. Section 2.3 covers
conditional probability and Bayes’ rule. Here we emphasize the applicability of graphs and
hierarchical models, which will be particularly important in the book. Selected statistical

14
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inference methods are discussed in Section 2.4, and Monte Carlo methods are reviewed in
Section 2.5. In Section 2.6, we provide bibliographic notes.

2.1 Uncertainty quantification, information gathering, and data examples

Data acquisition, modeling, interpretation, and analysis rely on qualitative and quantitative
assessments. In most Earth sciences applications, there is insufficient evidence to use deter-
ministic rules, and probabilistic assessments are more realistic. Decision making under
uncertainty requires a probabilistic representation of the distinction of interest and the
relevant data variables. The distinction of interest is an uncertainty that is fundamentally
important to the decision maker. (The rationale behind this specific term will be revealed
in the next chapter.) We motivate probabilistic modeling via data examples from the Earth
sciences. We will use many of these data sets later in the book for decision analysis, spatial
modeling, and value of information (VOI) analysis.

A useful first step in statistical model building and any kind of exploratory data analysis
is to create graphical displays and compute various summary statistics. However, it is even
more important to clearly define the question that needs to be addressed. Only then, along
with experience, can we start to study relevant displays and summary statistics and build
appropriate probabilistic models for uncertainty assessment and VOI calculations.

The most important summary statistics of data are the empirical mean, or sample aver-
age, and the empirical standard deviation. The average is representative of the “center” of
the data, while the empirical standard deviation is a measure of the “variability” in the data.
There are many other ways to quantify the central tendency and the variation. One can, for
instance, gain insight by sorting the data from smallest to largest. From this sorted list, we
can pick the median, defined as the data variable in the middle, and assess percentiles in the
data. An empirical percentile has a fraction o of the variables smaller than itself.

In the Earth sciences, attributes are often multivariate — for instance, the subsurface is
characterized by porosity, permeability, fluid saturations, rock or soil types, and so on.
Moreover, these variables vary across spatial coordinates, and some attributes also vary in
time. The statistical modeling assumptions should ideally incorporate multivariate trends.
As a result, the univariate summary statistics are only one particular aspect of understand-
ing components of the underlying phenomena and the probabilistic assessment. Bivariate
summaries such as the empirical correlation may also be insightful. Similarly, we can ana-
lyze the conditional properties of a variable by extracting its values only when another vari-
able is at a specified level. For instance, we may be interested in the variability of porosity
in a stratigraphic layer or in the distribution of elastic properties in the oil column.

In each discipline, certain standards for visualizing data have emerged, and experts are
familiar with interpreting and analyzing data in this form. Nevertheless, the use of histo-
grams or cross-plotting is common at various stages of model building. We illustrate com-
mon visualization methods for some of the data examples used in the book. This discussion
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motivates methods for combining data with physical knowledge to build probabilistic mod-
els for uncertainty assessments.

Consider the data in Figure 2.2 from a vertical well log in the North Sea. The well is
drilled from the sea bed to about 3000 m below sea level. The goal of such expensive wells
is to explore or produce hydrocarbons. To improve the reservoir-specific understanding,
several data are acquired every 15 cm (half foot) of the well path. We plot gamma-ray
(which is a measure of the radioactivity; units are in API) and P-wave velocity (measured
in m/s) versus depth (second axis). The data are displayed for two stratigraphic layers
(Sequence 1 (solid line) and Sequence 2 (dots)), which are clearly separated in depth.
There are 591 measurements in Sequence 1 and 722 measurements in Sequence 2. Such
plots of physical variables as a function of depth are useful for visualizing well logs.
A trained log analyst uses well log data (many others in addition to gamma ray and vel-
ocity) to interpret the properties of the subsurface at the location where the well has been
drilled. The analysis builds on experience from modeling and interpreting such plots. For
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Figure 2.2 Well log data of gamma ray (left) and P-wave velocity (right) from a North Sea reservoir.
The display shows two geological sequences separated in depth. The top stratigraphic layer is plotted
as a solid line, while the bottom one is plotted as dots. The well log measurements are provided
every 15 cm.
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instance, velocity would typically increase with depth, but deviations occur as a function
of rock types, saturation, porosity, and so on. The gamma-ray measurements are indica-
tive of shaliness in the rock, because sand tends to contain less radioactive material than
shale. This particular data set is from Eidsvik et al. (2004b). See also Avseth et al. (2005)
for further details.

Figure 2.3 shows histograms that are made by binning the well log data in groups, organ-
ized from smallest to largest. Such displays indicate the range of the data. The histogram
for the gamma-ray variable has a bimodal (or trimodal) shape in Sequence 1, while it
appears skewed in Sequence 2. The empirical mean value of the gamma ray is 73 API in
Sequence 1 and 67 API in Sequence 2. The empirical standard deviations are 9.5 and 9.8
in Sequences 1 and 2, respectively. The empirical means and standard deviations (in par-
entheses) for P-wave velocity are 2740 m/s (220) in Sequence 1 and 3150 m/s (140) in
Sequence 2. Findings from such histograms are useful for building realistic models based
on rock physics and statistical assessments.
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Figure 2.3 Histogram of well data. The top stratigraphic layer is in the upper row, while the deeper
stratigraphic layer is at the bottom. Gamma ray (left) and P-wave velocity (right).
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Figure 2.4 Oxide grade data observed along boreholes in a mine. Locations where only the handheld
data are collected (dots) and locations where both handheld and laboratory measurements are
collected (crosses).

In many spatial applications, we gain knowledge by plotting the data in map views.
Figure 2.4 shows the three dimensional locations (north, east, and altitude) of oxide grade
measurements in a mineral resource. We see the boreholes lining up in the map view. Most
of the data are acquired by a handheld device applied to the rock core samples (dots), while
some samples are transported to the laboratory for extracting more accurate data (crosses).
Note that this illustration tells us nothing about the actual grade measurements — it only
indicates the locations where they are made.

Figure 2.5 shows a smoothed and normalized histogram of the oxide grade data. The
top display shows the data acquired with the handheld device (1871 in total). The bottom
display shows the data acquired in the laboratory (103 in total). These data appear to have
multiple modes caused by the underlying geology of the resource. It is helpful to incor-
porate such additional explanatory variables, if available, since this would allow for more
realistic modeling and reliable prediction of the oxide grades. In this case, geologists have
classified the mining resource in three mineralization classes. The class varies spatially
across the resource. For the laboratory data, the averages in the three classes are 0.7, 2.4,
and 4.2. The data are analyzed further in Eidsvik and Ellefmo (2013).

Seismic data are often visualized as a function of the spatial acquisition locations.
Figure 2.6 shows the seismic amplitude response at the top of the reservoir horizon in
a North Sea oil field. The top display represents the zero-offset amplitude of P waves
reflected back at normal incidence (nominally vertical) from the subsurface horizon. The
bottom display is representative of the change in reflection amplitudes as a function of
incidence angle or source-receiver offset. It is often called the amplitude-versus-offset
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Figure 2.5 Smoothed histogram of the oxide grade observations made in a mine. X-ray fluorescence
(XRF) are the laboratory data; XRF meter (XMET) are the data acquired by the handheld meter.

(AVO) gradient in geophysical terminology. The crossline (first axis) and inline (second
axis) coordinates are defined by the acquisition geometry. Detailed processing of the seis-
mic reflectivity data gives the amplitudes at the top reservoir. In this display, the zero-offset
amplitudes and the AVO gradient are indicated by the grayscale color of the grid cells. The
data set is discussed in detail in Avseth et al. (2005).

In Figure 2.7, we cross-plot the two seismic attributes. There is clearly a negative correl-
ation. At locations where the intercept (zero-offset reflectivity) attribute is high, the AVO
attribute (gradient) tends to be small, and vice versa. This is also visible in the images shown
in Figure 2.6. For instance, near crossline 350 and inline 175, the zero-offset response is
rather high (0.05-0.1), while the AVO shows a large negative gradient (about —0.3). In fact,
these values of reflectivity could be the lucrative ones in this example, because they indi-
cate sandstones.

The oxide grade measurements and the seismic amplitude data examples consist of
observations made by instruments in the field. It has also become routine to generate data
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Figure 2.6 Seismic amplitude data at top reservoir level in a North Sea oil reservoir. The top
plot shows amplitudes for seismic waves going straight up and down (zero-offset or intercept),
while the bottom plot shows the amplitude-versus-offset (AVO) gradient. The offset refers to
the incidence angle of the seismic wave. The crossline and inline coordinates are given by the
sailing direction of seismic data acquisition. The arrow indicates amplitude attributes that may
indicate sands.
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Figure 2.7 Cross-plot of seismic amplitude data at top reservoir level in a North Sea oil reservoir.
Zero-offset amplitude is on the first axis. Amplitude versus offset (AVO) is on the second axis. There
is a negative correlation between these two seismic amplitude variables.

by computer experiments. These “data” are not acquired on location but rather through a
simulator that is set to run for various initial conditions or parameter settings. We present
one example of multiple basin modeling scenarios. The basin and petroleum system is
simulated using numerical finite-element computational software for the geological pro-
cesses over time, with different initial conditions and input forcing parameters. These may
include heat flow, rock properties such as total organic carbon content, degree of faulting,
etc. The simulated data are ensembles of accumulated hydrocarbon volumes at geological
prospects.

Figure 2.8 shows a diagram for propagating geological uncertainty in basin and petrol-
eum system modeling. Martinelli et al. (2013b) focused on some selected prospects and
varied the most important input parameters at the assumed high/low or high/medium/low
levels. For each design of the experiment, they used the output from the simulator to model
the uncertainty and interactions in the generation, expulsion, outflow, and accumulation of
oil and gas.

In this design of experiment, the porosity is set to low (0) and high (1) levels; the heat
flow to expected cold (0), medium (1), and high (2) values; a fault variable to closed (0) and
open (1); and the total organic carbon content to the expected high (0) and low (1) levels.
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Figure 2.8 Schematic view of a method for generating basin modeling scenarios or “data.” By varying
input parameters, we study the variability in important response variables or data outputs. The method
relies on numerical solutions of the mathematical equations for the migration of hydrocarbons over
geological time. Some inputs to this simulator may be fixed, while others are random.

We summarize the data or results of the experiments in the 24 rows of Table 2.1. The
table shows the accumulations of oil in the two biggest prospects denoted Top East (TE)
and Bottom East (BE) due to the geographical location of the prospects. The controlled
experiment could be exchanged by a random sampling strategy (risking) over variables in
the input space, in which case one would obtain a realization of the output variables for
each run.

In summary, the computation of some summary statistics, along with the visualization of
data, is helpful for preliminary exploratory data analysis, which is then typically followed
by modeling the important elements of the phenomenon to address specific questions. In
the next few sections, we present probability models that are useful for capturing trends,
variability, and the dependency structure in Earth sciences data.

2.2 Notation and probability models

A statistical model is defined by a sample space, random variables, and a probability distri-
bution. Here we introduce some basic assumptions and requirements for a valid statistical
model. Univariate probability distributions are presented first, but in most applications it
becomes important to work in the multivariate context.
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Table 2.1. Summary of inputs and outputs in a design of experiment used in basin and
petroleum systems modeling. TOC is total organic carbon. The outputs are o0il (in millions
barrels) in the Top East (TE) prospect and the Bottom East (BE) prospect

Run Porosity Heat Flow Fault TOC Oilin TE Oil in BE
1 0 0 0 0 580 340
2 1 0 0 0 247 90
3 0 1 0 0 776 172
4 1 1 0 0 220 35
5 0 2 0 0 736 2
6 1 2 0 0 212 1
7 0 0 1 0 537 343
8 1 0 1 0 247 91
9 0 1 1 0 773 167
10 1 1 1 0 218 35
11 0 2 1 0 731 5
12 1 2 1 0 207 7
13 0 0 0 1 265 213
14 1 0 0 1 218 95
15 0 1 0 1 659 106
16 1 1 0 1 218 38
17 0 2 0 1 528 1
18 1 2 0 1 206 5
19 0 0 1 1 265 213
20 1 0 1 1 218 95
21 0 1 1 1 661 84
22 1 1 1 1 218 37
23 0 2 1 1 527 3
24 1 2 1 1 206 8

2.2.1 Univariate probability distributions

We denote a univariate distinction of interest by x. This random variable x is defined on its
sample space — i.e., x €  — where the sample space (2 denotes all possible outcomes for
x. Note that some textbooks in statistics distinguish between the random variable using a
capital letter and the outcome or realization with a lowercase letter. We use lowercase for
both and try to clarify in the text whenever there may be ambiguity. The sample space Q2
is very important for the specification of the statistical model, and it plays a critical role in
framing the situation. Once the sample space is understood, we can start contemplating a
probability model for a phenomenon. The different sample spaces go hand in hand with the
common probability distribution models. In particular, there is a clear distinction between
discrete and continuous random variables.
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The discrete case entails a random variable taking outcomes on a finite or countable
domain. When the random variable must be either O or 1, we write x € {0,1}. This occurs
for binary experiments characterized by success or failure, such as a petroleum explora-
tion well that is either dry or contains hydrocarbons. In other experiments — for instance,
a Geiger counter for the number of radioactive events — the possible outcomes are integer
valued but may not have a natural upper bound on the sample space. For convenience, one
often uses the countable sample space defined on all non-negative integers: Q = {0,1,2,3,...}.

The continuous case entails a random variable taking outcomes on a part of the real line.
For instance, rock fall in a tunnel can occur somewhere between its beginning (set to 0) and
end (set to 1), so Q =(0,1). The annual profit of a company could be negative or positive,
with no natural bounds, and it is convenient to set Q = (—oo, o).

There is an endless discussion in the sciences about the use of discrete versus continuous
variables. The discussion typically relates to the underlying physical mechanisms and the
scale of a problem. For instance, the analyst may choose to model profits as discrete, since
money cannot be worth anything less than a cent. On the other hand, if one considers a lar-
ger and more interesting scale, one may model money as a continuous variable. A continu-
ous view often makes it easier to move between different scales. At the same time, history
indicates that scientists have been successful by categorizing and classifying phenomena.
This discrete view of the world has been important for communication and for focusing
attention. In the Earth sciences, soil or rock types are sometimes described by elementary
constituents, but it has also been useful to work at a larger-scale classification of discrete
lithofacies, depositional systems, and geological scenarios. No matter whether variables
are modeled as discrete or continuous, every task requires careful thought about the sample
space, and in every context this should relate to what one can practically evaluate and use
for decision making.

We denote the probability density function (pdf) of a continuous random variable x € Q
by p(x). For a discrete sample space, the probability specification p(x), x € Q, is sometimes
called a probability mass function. For short, we will use pdf for both the discrete and con-
tinuous case, but we will next clarify distinctions between the two.

In the discrete case, the pdf or probability mass function p(x) assigns a value to any
outcome x € € under the constraints that

p(x)ZO, xeQ, Zp(x)zl. 2.1
xeQ

To compute the probability of an event, defined as a subset of the sample space, we sum
over all relevant outcomes. Notably, the cumulative distribution function is defined by the

set of all smaller outcomes —i.e., F(x) = z p(y), which starts at 0 and increases monoton-
ically to 1. ysx

For a continuous random variable, the pdf or density function p(x) must satisfy

p(x)ZO, xeQ, jp(x)alle. 2.2)
Q
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The cumulative distribution function is defined by F(x) = qu p(y)dy.

Given a pdf defined as in Equation (2.1) or (2.2), we can derive any feature of the prob-
abilistic model. Two important concepts are the theoretical mean and variance, defined by

E(x) =u= ngg xp(x)dx,
Var(x) =0’ = jxeﬂ(x —,u)zp (x)dx.

They are the first and second (central) moments of p(x). With a discrete sample space,
the integrals become sums. The theoretical standard deviation is the square root of the
variance. As illustrated in Section 2.1, the theoretical mean and standard deviation have
empirical counterparts computed from data. The empirical situation can be interpreted as
a data-driven discrete pdf assigning equal weights to each observation. If one collects data
from a known probability model, the empirical mean and variance will converge to their
theoretical counterparts as the number of data increases. The problem, of course, is that we
observe some data and have to use that as a basis for finding a useful probability model.

Another important summary of a probability distribution is the entropy (or disorder)
given by

(2.3)

Ent(x) = —LEQ log(p(x))p(x)dx, (2.4)

where the integral is replaced by a sum over the sample space for the discrete setting. The
entropy is large when there is notable uncertainty.

We briefly present some common discrete univariate pdfs. A key element for many
discrete distributions is the indicator variable, which is 1 if an event occurs (success) and
0 otherwise (failure). We assign a probability p of success. If we perform a fixed number
of independent trials with this success probability p, the resulting random number of suc-
cesses x follows the binomial distribution. The number of trials until the first success
has a geometric distribution. The multinomial distribution is a natural extension of the
binomial, where the number of outcomes for every trial is larger than two. When the num-
ber of trials in the binomial experiment goes to infinity while the probability of success
goes to 0, the resulting random number of successes x is naturally described by the Poisson
distribution.

The most common continuous univariate pdf is the Gaussian or normal distribution.
A Gaussian pdf is characterized by a quadratic function of x in the exponent, resulting in
a bell-shaped form. The Gaussian distribution with theoretical mean u and variance 6°
has pdf

(x—p)

1
p(x):N(ﬂ,Gz)ZmeXp(—?], —oo <X < oo (25)

The quantiles of the Gaussian distribution are defined by symmetric distances from
the mean. Many distributions can be derived from the Gaussian pdf. For instance, the
chi-square distribution is defined by the squared Gaussian, and the log-normal is the
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exponential of a Gaussian variable. Various kinds of truncation or damping of Gaussian
variables impose skew distributions.

Another commonly used continuous distribution is the power law or Pareto pdf. It
has, for instance, been applied to describe the well-known Richter law for magnitudes of
earthquakes, prospect size (Kaufman 1993), fault size (Borgos et al. 2002), and many other
properties (Newman 2005). A characteristic of the power law pdf is that most outcomes
are very small, but some are very large, and it is thus skewed upward with a heavy tail. The
pdf is defined by

[0

B
p(x)zw(—),x>a> 0,B>1. (2.6)

(04 X

B-1

The cumulative distribution function is F(x)=1-(e/x)" ", and the probability of

exceeding a particular threshold c is given by p(x > c) = (a/ c)ﬁfl. The latter probability is
sometimes referred to as the exceedance or survival rate. To verify if available data follow
a power law, it is common to plot the sorted logarithms of data against the log empirical
exceedance probability. Such a display should show a linear decline.

Figure 2.9 shows percentiles and sorted data generated from a power law distribution
(top) and on the log-scale (bottom). In the bottom display, the log exceedance probability
on the second axis declines with slope 2. This is because we generated this data set using
B=3(oc=0.1), and we have

log(p (x> c))=(B-1)log(e)-(B-1)log(c). .7

Suppose we predict a new observation from this distribution — say, the volume of an ore
body. A very small outcome would be likely. The mean is 0.2, but more than 70% of the
data are below 0.2. There is only a 4% chance of obtaining data larger than 0.5.

The discrete and continuous pdfs discussed above are parametric. They are functional rep-
resentations of the stochastic variable x parameterized by a few model parameters, such as u,
G in the Gaussian distribution, or ¢ and [} in the power law model. A non-parametric model
avoids enforcing such parametric assumptions. Instead, it relies on the empirical representa-
tion through data. If we have B data or realizations of variables x',..., x®, a non-parametric

1< N . . .
model imposes a pdf p(x)= EZI (x=x') - i.e., a discrete pdf valid only at the sam-
i=1
ple values. It is common to impose smoothing via kernels around the samples. This gives
1< . , :
p(x) =— 2 K(x; X! ), where the non-negative kernel K(x; x’) is centered at x' and decays as
i=1
the variable x gets further away from x'. We require IK(X; xi )dx =1 to maintain a valid pdf.
An example is K(x; x") = N(x,7?%), which denotes a Gaussian distribution centered at each
realization with constant standard deviation T. One could further add flexibility to the sam-
ple weights, extending beyond uniform weighting, or one could use some sort of clustering

of the B realizations. The selection of kernels has been discussed a lot in the literature — see,
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Figure 2.9 Illustration of the power law distribution. Top: sorted samples (first axis) versus the
empirical cumulative distribution function (second axis). Bottom: logarithm of sorted samples
(first axis) versus the empirical exceedance probability. The data were generated from a power law
distribution with parameters § =3 and o. = 0.1.

e.g., Silverman (1988). Simply speaking, kernel representations can be viewed as smoothed
histograms. Figure 2.5 was constructed using a kernel for the oxide grade data.

2.2.2 Multivariate probability distributions

The random variable x = (x,,...,x, ) is a vector of size n in sample space Q =Q, X...XQ, .
We let p(x) denote the joint pdf of x. The discrete multivariate pdf p(x) naturally extends
the univariate version in Equation (2.1). We require

p(x)20, xeQ, Y .Y p(x)=1 (2.8)
neQ  x,eQ,
The joint probability p(x, =k,,...,x, = k,) indicates that the first variable equals k,, the
second k,, and so on until x, equals k,. This joint pdf defines simultaneous properties —i.e.,
the way the n variables interact in a probabilistic setting. There is a probability for every
joint outcome.
We similarly extend Equation (2.2) for a valid continuous multivariate pdf.
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p(x)20, xeQ, jﬂj o P .dx, = 1. 2.9)

The interpretation of this joint continuous pdf is that probabilities of simultaneous events
are volumes under the pdf surface for the specified subset of the sample space.
When the variables x;, i =1,...,n are independent, the joint pdf is defined by the product

i

of n univariate distributions —i.e., p(x) = ﬁpi (x;), where p; (x; ) is the pdf of the i-th vari-
i1

able. If, in addition, the univariate pdfs are equal, p, (xl-) = p(x,- ), we have the common —
though often misused — assumption of independent and identically distributed variables.
These assumptions simplify modeling and analysis, but more realistic situations usually
involve non-identical components and dependence between the elements of x.

From the joint distribution, we can retrieve the marginal pdf of single variables or
blocks of variables. The marginal pdf of x; is derived by integrating (or summing, in the
discrete case) out all other variables from the joint distribution:

pi(xi)=JQl...J‘QH '[Q

Let x_; denote all variables in x, except x;, then the marginal is p;(x;) = jp(x)dx where

—is

"'Jgnp(x)dxl'--dxi—ldxi+1-~-dxn- (2.10)

i+1

the integral is henceforth assumed to be computed over the defined sample space. When
there is no confusion, we will simply set p,(x;) = p(x,- ) The marginal for a subset of vari-
ables or block variable x;, where we have split x = (xx,x;), is p(xx ) = Ip(x)de.

The most common multivariate continuous distribution is the Gaussian distribution. This
model is discussed at length in textbooks — e.g., Anderson (2003) and Johnson and Wichern
(2007). (See Appendix A.1 for more details.) The multivariate Gaussian pdf is defined by

1
p(x)=Nu.X)= | X |12 exp(—z(x—ﬂ)’zl(x—ﬂ))- (2.11)

(2 7[)"/ 2
The formula clearly generalizes the univariate situation in Equation (2.5). In the multivari-
ate setting, the contours of the pdf are ellipsoids, centered at the parameter u, with axes
defined by the quadratic form including the n X n matrix X.

Given a joint pdf, we can compute any feature of the multivariate probabilistic model.
The theoretical mean and variance—covariance are extensions of Equation (2.3) defined by

E(x) == [ ep () .
t
Var(x)=2= j(x —u)(x—p) p(x)dr. (2.12)
The integrals become sums for a discrete sample space. In this multivariate situation, the
mean is a vector of size n, while the variance—covariance is an n X n matrix with marginal
variances 0? =X, i = 1,...,n along the diagonal and covariance terms Cov(x;, x j) = E,:, on

the off-diagonal. The theoretical correlation is Corr(x;,x;) = X; /(0,0,;). The Gaussian pdf
in Equation (2.11) is explicitly parameterized by the mean g and the covariance matrix X.
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The entropy is a scalar variable defined similar to Equation (2.4). For the multivariate
model,

Ent(x)= —j log(p(x))p(x)dx. (2.13)

For the Gaussian distribution, the entropy is Ent (x) = g(l + 10g(27t)) + %log |2‘.|

Figure 2.10 shows the Gaussian pdf in n =2 dimensions under different parameteriza-
tions. In all plots, the mean vector is fixed to g = (1,1), while the covariance matrix X varies
in the displays. The top left plot has an identity covariance matrix. The two variables x, and
x, are independent in this case; therefore, the joint pdf decouples to the product of marginal
pdfs for x; and x,. The other plots show variables with larger variance 1.5% and have depend-
ence between x; and x,. The top right (and bottom left) display illustrates positive (and

Independence Positive dependence
4 0.14 0.14
0.12 0.12
2 0.1 0.1
< 0.08 0.08
0 0.06 0.06
0.04 0.04
-2 0.02 0.02
-2 0 2 4
Xq
Negative dependence
0.14 1.4
0.12 1.2
0.1 1
0.08 0.8
0.06 0.6
0.04 0.4
0.02 0.2

Figure 2.10 Gaussian distribution in two dimensions. All displays have the mean set to 1 for both
variables. The variances are equal for the two variables but vary between the displays. The correlation
also varies. Top left: independent variables with identity covariance matrix. Top right: positive
dependence (correlation 0.74) in the two variables with variance 1.52. Bottom left: negative
dependence (correlation —0.74) in the two variables with variance 1.52. Bottom right: correlation is
set to 0.999 and variance is 1.5%.
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negative) correlation Corr(xl,xz) =0.74. This entails |E| =1, similar to the independent

case, and the entropy is Ent(x) =2.84 in all these cases. The positive off-diagonal entry
(top right display) gives a tendency for variables to interact — i.e., they are often simultan-
eously large or small. With negative correlation —0.74 in the bottom left display, the two
variables tend to occur as opposites. The fourth display (bottom right) has an extreme cor-
relation of 0.999, so the density contours appear almost like a line. Knowing one variable
then provides very precise information about the other.

In Figure 2.11, we show the bivariate Gaussian distribution fitted to the seismic reflec-
tion data discussed in Section 2.1. The white line superimposed on the data is the 95th
percentile ellipse based on the empirical mean and covariance matrix from the data (see
Section 2.4 for parameter estimation). There is some non-symmetry outside the indicated
ellipse, indicating that a Gaussian pdf may not be sufficient to capture the data distribution.

There are numerous applications with both discrete and continuous components. The
Gaussian mixture model combines d =2 Gaussian components. In the seismic example
discussed previously, three different facies classes were identified from well log analysis.
The facies classes span different rock types and saturation: oil sand, brine sand, and shale
(d =3). Let the bivariate seismic reflection attributes at one location be x = (xl,xz ) We
define pdf

Seismic reflection data
0.3 T T T T

0.1}

AVO gradient
S

-0.1 -0.05 0 0.05 0.1 0.15

Zero-offset reflectivity

Figure 2.11 Gaussian approximation for the seismic amplitude data example. The zero-offset
attribute is on the first axis, and the amplitude-versus-offset (AVO) attribute is on the second axis.
The Gaussian approximation is displayed in white, indicating the 95th percentile ellipse.
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d a, ~12 1 o
p(x)=2@|2_,-| exp| =5 (x =k, Y 27 (x—h)) | (2.14)

J=1

d

where Z o; =1and 0 < ¢; for all classes j =1,...,d. For each class j, the model allows for
j=1

a separate mean vector 4 ; and a positive definite covariance matrix X ;.

Figure 2.12 shows the three components of a bivariate Gaussian mixture distribution
fitted from well data and plotted with the seismic reflection data. The three mean levels for
oil sand, brine sand, and shale are different due to rock physics relations. In this illustra-
tion, the covariance matrix for each rock type is the same. The Gaussian mixture model is
likely more suitable than the Gaussian pdf in this example. The mixture model is based on
physical properties of various facies types and represents their tendency to have different
seismic responses.

The mixture model in Equation (2.14) is often used in classification and clustering
(Hastie et al. 2009). For instance, if an analyst wants to classify an observation x into the
underlying category (rock type in our example), one can compute distances to every class
center, scaled with the associated covariance:

distance; = (x —p;) Z7'(x—u;), j=1...d. (2.15)

Seismic reflection data
04 T T T T T T

0.1 r

AVO gradient
S

6 . . .
-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Zero-offset reflectivity

Figure 2.12 Gaussian mixture model for the seismic amplitude data example. The zero-offset
attribute is on the first axis, and the amplitude-versus-offset (AVO) attribute is on the second axis.
The Gaussian mixture is estimated from well log data and indicated by the 95th percentile ellipse for
three facies classes (oil sand, brine sand, and shale).
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The analyst classifies the observation by choosing the class index with the smallest distance.

We end this section with a discussion about the transformation of variables. Let y be
another random variable defined by y = Fx + b for fixed matrix F and vector b. Then, we
have mean E(y)= FE(x)+b= Fu+b and variance Var(y)= FVar(x)F' = FEF'. The
covariance of y and x is Cov(y,x) = Cov(Fx+b,x)= FXZ. A more complicated situation
occurs with a non-linear relationship y = f (x) If the non-linearity is not too severe, one

dj
where p is chosen as the linearization point, in which case E(y)= f(g). In general, the

can approximate the mean and variance of y by linearization, y = f (p)

mean of a non-linear function is not the same as the function of the mean. The pdf of a
general transformation is only rarely computable. To find the pdf, one must first find an
appropriate inverse transformation and then compute the Jacobian of this inverse. More
generally, one can apply Monte Carlo simulation to approximate the distribution of a trans-
formation (see Section 2.5 and Appendix B).

Like we discussed for the univariate case, the vector x could, in some cases, be repre-
sented by data or realizations x!,x2,...,x%. These could be replicated data or the results of
some mechanism (say, a transformation or a differential equation) over many input realiza-
tions, leading to an ensemble representation of propagated variables. Instead of assuming
a parametric model for this distinction of interest, one could use non-parametric methods.
The simplest such approach assumes equally likely realizations, with weights 1/B for each
outcome. The generalization to a continuous representation involves kernels centered at
each realization or obtained from clustering.

2.3 Conditional probability, graphical models, and Bayes’ rule

The notion of marginal pdfs and joint pdfs was defined in the previous section. We extend
these ideas to conditional probability models and Bayes’ rule. Conditional probabilities
are very important for VOI analysis, because conditioning on observations from informa-
tion could lead to improved decisions, and VOI lets the decision maker gauge the average
improvement.

2.3.1 Conditional probability

One can derive conditional pdfs from the joint distribution p (x) of variables x = (x,,...,x,).
We fix one or more variables in the vector x and study how this information about a subset
of variables affects beliefs about the other variables. In the situation with independence,
the conditioning has no effect on the others. When there is dependence, the outcome of
observed variables changes the pdf of the non-observed variables.

The conditional pdf of variables in block K given the variables in block L, where
x = (xg,x; ), is defined by
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p(x) _ p(x)

SR Y e

One can interpret this conditional probability as follows: the numerator defines the pro-
portion of joint occurrences of x and x;, while the denominator scales it with the pro-
portion of x; events alone. If block IL is very informative of variables in block K, joint
occurrences account for a large part of the times x; happens, and the conditional pdf should
be close to 1, possibly different from the unconditional pdf of x;.

To obtain marginal pdfs within the subset K, still given x;, the other variables must be
summed out from the conditional p(x]K I xp, ):

Pl lx )= Y Y plxg lxy), (2.17)

XK1 XK.i-1 XK+l XK,ng

(2.16)

where ny is the number of variables in subset K, and the sums become integrals in the
continuous situation.

Note that the definition of the conditional pdf holds for any subset K and IL.. For instance,
if we condition on one variable x;, we have

p(¥)
plx_ lx)= (2.18)
( ) p( xi)
The full conditional for x,—i.e., given all other variables x_; — is
plxix,)="L (x) (2.19)

14 (x—i )
One can also rearrange this conditional formula and write out the joint distribution for x as
a product of a marginal and a conditional:

p(x)= p(xL)p(xK Ix]L)= p(xJK)p(xJL IxK). (2.20)

With independence, the conditioning has no effect, and Equation (2.20) simplifies to
p(x) = p(x]K ) p (x]L ) which is rarely applicable in practice.

More generally, one can factorize the joint distribution in a stepwise manner as a prod-
uct of a marginal and conditionals with iterative conditioning:

p(x)= p()cl)p(x2 I)cl)p(x3 Ixz,xl)...p(xn Ixn_l,...,xl). (2.21)

In this equation, we started with the marginal for variable x, and ended with the full con-
ditional for x,, but we could just as well start with the marginal for x, and end up with the
full conditional for x,: any order is possible. We can arrange the variables (or blocks of vari-
ables) in the most convenient way, depending on the situation. In Earth sciences applica-
tions, there is often an important structure that can be used to frame the model and arrange
the variables: physical forward models, geological mechanisms, etc.
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The definition of properties such as expectation, variance, entropy, and so on can be
generalized to the conditional setting by plugging in the conditional pdf in expressions like
Equations (2.12) and (2.13). For instance, given the outcome of x;, the conditional mean
and covariance of the remaining variables become

E(x_ Ix,-)zjx,,-p(x,i Ix;)dx_;,

, (2.22)
Var(x_; 1x;)= J(x_,- —E(x Ixi))(x_,. —E(x_1x )) p(x_ 1x;)dx_,.
The conditional entropy is defined by
Ent(x_; 1x,) = =[log(p(x; 1x,)) p(x_; 1 x;)dx_,. (2.23)

Pitfalls: understanding marginals and conditionals

The bivariate Gaussian distribution in Section 2.2 was illustrated using various dependence
structures. There is an important difference between conditional and marginal expressions when
the model has positive or negative correlation. When the two variables are independent (top
left display in Figure 2.10), the conditional mean and variance of x, are the same as in the
marginal distribution, and p(x2 | xl) = p(xz) = N(1,1?). With dependence, the conditional mean
clearly depends on what we observe for x;: it is either pulled toward the observation (positive
correlation) or pushed away (negative correlation). The conditional variance is much smaller
than in the marginal (unconditional) distribution, but it does not depend on the observation itself
for the Gaussian distribution. Suppose we observe that x; = 3 and there is positive dependence,
Corr(xl,xz) =0.74 (as in the top right display in Figure 2.10). The conditional distribution is
p(x, 1%, =3)= N(2.79,0.67%), which is shifted and tighter than the marginal p(x,)= N(1,1.5%).
The formulas for the conditional mean and variance of the Gaussian distribution will be presented
in more detail later.

The conditional entropy is reduced the most in the dependent case, where the
uncertainty about x, is reduced by knowing the outcome of x,. By the factorizing formula,
p(x) = p(x,,- Ix,-) p(x,-), and by the definition of entropy via the log pdf in Equation (2.13),
Ent(x) = Ent(x,,- | x; ) 4 Ent(x,- ) For the independent case and the one with Corr(xl,xz) =0.74,
the joint entropy Ent(x) is the same, and this means that the reduction in entropy equals
Ent(xl). For the independent case, Ent(xl):1.42, while we have Ent(xl)z 1.82 for the
dependent case.

2.3.2 Graphical models

The modeling of dependent stochastic variables is often not straightforward. We have seen
how the Gaussian and Gaussian mixture models define joint distributions, but they may
not always provide the flexibility required for real-world phenomena. It turns out that it is
convenient to define a joint model via marginal pdfs and conditional pdfs as in the factor-
ization formula in Equation (2.21). In fact, the Gaussian mixture is a simple example of
such a model: first, there is a discrete rock type with its marginal probability (defined as o;


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.003
http:/www.cambridge.org/core

2.3 Conditional probability, graphical models, and Bayes’ rule 35

in Equation (2.14)); then, there is a Gaussian distribution for the seismic data, conditional
on the rock type (defined by u; and X ; in Equation (2.14)).

One popular way of building such models is via graphical formulations. This approach
uses a modular construction, where pieces of the model are connected locally. The
split-and-conquer formulation eases the modeling phase and incorporates sparseness in
the model formulation. Full conditioning is rarely necessary; instead, the conditioning is
only over a subset of variables. Of course, care is needed to study whether the sparseness
induced by the graph is justified for the problem at hand. An in-depth discussion of graph-
ical models is provided in textbooks such as Cowell et al. (2007) and Koller and Friedman
(2009).

Let us motivate the use of graphs to visualize conditional modeling formulations.
Figure 2.13 shows three possible graphical models for the joint probability distribution
of two variables of interest: pore fluid saturation and shale volume (VShale). They are
denoted by nodes named “Saturation” and “VShale,” respectively. The joint distribution
of the two nodes can be represented by any of the three diagrams. The first two diagrams
show two different ways of factoring the joint probability distribution. The third diagram
has no edge between the variables. This shows that the saturation and the volume of shale
are independent. Thus, in such graphs, the absence of arrows indicates conditional inde-
pendence. In this case, hardly any petrophysicist would claim that the saturation and the
VShale are independent, so the third model would generally be inaccurate. Of the other
two diagrams, the second diagram may be easier to assess. Given that we know VShale, it
is easier to assess the conditional probability distribution of the saturation. For instance,
we would expect a higher brine saturation if VShale were large, but not necessarily vice

Figure 2.13 Joint probability distribution of saturation and volume of shale represented as a graphical
model. The direction of the edge (or arc or arrow) indicates how the geophysical model is established.
The rightmost display without any edge indicates that the two variables are independent.
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versa. The second diagram may therefore be the most convenient representation for the
joint distribution.

Such graphical models are referred to by various names, such as Bayesian networks
(BNs) or Bayes nets or belief networks or relevance diagrams. They are useful models for
building a valid joint probability model and reasoning under uncertainty using conditional
statements. A probabilistic graphical model consists of nodes (representing random vari-
ables), such as VShale and saturation mentioned earlier, and edges that connect the nodes
together (conditional statements). BNs are directed graphs — i.e., there is a sense of direc-
tion on all edges in the graph. An edge that indicates direction from one node to another is
an arc or, synonymously, an arrow. If there is an arc emanating from a particular node i to
another node j, node i is known as a parent. Equivalently, j is a child of i. The parents for
node i are denoted pa(i).

In a BN, the arcs between nodes are conditional in the sense that every node is condi-
tioned on its parents. In other words, every node is associated with a conditional pdf, which
specifies the probability for each possible value of the node conditioned on each possible
value of its parents. For the case with discrete sample space, this is typically represented in
the form of a matrix known as a conditional probability table, but other representations
are also possible.

Figure 2.14 (top) illustrates a BN for reservoir variables in a North Sea reservoir. Here,
the reservoir variables of interest are rock type or facies, pore fluid filling, porosity, dens-
ity, and P- and S-wave velocity. There are different types of data or explanatory variables
available: well log data and seismic amplitude data. The edges illustrate the conditional
dependencies between the variables and the data, motivated from geophysical principles.
For instance, the saturation does not influence the porosity, and it affects the S-wave vel-
ocity only through the density variable. The rock density depends on the facies (mineral-
ogy), porosity, and pore fluid saturation. Similarly, once we know the elastic parameters
(density and P- and S-wave velocity), the seismic data are independent of the other res-
ervoir variables. Note that the graph shows the forward modeling of variables. When we
condition on the data, variables like porosity and saturation will no longer be independent.

In this example, the facies and saturation variables could be multivariate distinctions of
interest, and they could vary across spatial coordinates. (See Chapter 4.) Since the nodes
could represent vector variables, separate nodes could consist of their own sub-networks.
The split in nodes (and sub-nodes) is useful to communicate the model definitions to prac-
titioners. This modular feature of graphs makes it easy to expand on smaller parts of the
graph, possibly without changing the entire modeling framework.

Figure 2.14 (bottom) shows a BN for reservoir prospects in a region of the North Sea. The
root nodes represent the source rock variable at geological kitchens, while the leaf nodes
in the network represent potential drilling locations called prospects and segments. These
are connected via migration paths indicated by edges. In this example, the migration paths
are set by experts. This is the qualitative part of the network. The conditional independence
structure is clear: once the prospect nodes (indicated by “P”) are known, the bottom node
segments do not depend on any other variables. The conditional pdfs of nodes given the
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Observations

Seismic data

Elastic
properties

@ Reservoir variables

Figure 2.14 Top: Bayesian network for reservoir variables and observations. The data include
well observations and seismic data. The elastic properties are P and S velocity and density p.
Bottom: Bayesian network for 25 prospect segments in the North Sea. The segments are connected
by edges indicating hydrocarbon migration paths.
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outcome at parent nodes constitute the quantitative part of the model. For this case study,
the conditional pdfs were constructed based on geological assumptions of gas and oil expul-
sion. This particular BN was presented and analyzed in Martinelli et al. (2011).

To illustrate graphical models in further detail, let us consider the two small graphs dis-
played in Figure 2.15. We will use these two graphs in examples described later. In the top
display, Nodes 2 and 3 are prospects where we consider oil exploration. Node 1 represents
a geological feature, which we cannot observe directly. The edges going from Nodes 1 to
2 and Nodes 1 to 3 mimic a causal geological mechanism via conditional probability state-
ments. There are no direct edges between Nodes 2 and 3. Thus, the random variables x,
and x; are conditionally independent given the outcome of variable x,. We consider binary
variables x; €{0,1} and i = 1,2,3 and assume that outcome 1 corresponds to success (such
as from an exploration well discovering oil), while outcome 0 corresponds to failure (the
exploration well is dry).

The graph in Figure 2.15 (bottom) has edges only between the nearest adjacent nodes.
This graph illustrates a lag-1 or first-order Markov chain model. In the simplest setting,
the variables may be binary, x; € {0,1}, i=1,...,n, with stationary conditional probabil-
ities p(x;,; =!1x; = k) = P(k,l). These one-step probabilities can be organized as a Markov
transition matrix as shown next:

P:(P(O,O) P(O,I)J' ©.24)

Two examples of
graphical models

Figure 2.15 Bayesian networks are characterized by a set of nodes and directed edges between the
nodes. This figure shows two examples. Top: variables at Nodes 2 and 3 are conditionally independent
given the outcomes at Node 1. Below: the situation defines a first-order Markov chain model where
each node only connects with the nearest nodes.
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Naturally, the row sums must equal 1, so as to cover the sample space with a valid pdf.
The marginal pdf for x, must also be specified to complete the model formulation. Further
background on Markov chains is provided in Appendix A.3.

Conditional independence or sparsity makes graphs useful not only from a modeling per-
spective but also in the way probabilities are computed. A common practical task is to con-
dition on data variables in the graph, as the analyst may be interested in the effect that the
data have on the variables of interest. Due to dependence in the statistical model, the data
or evidence will propagate to other nodes. The main computations required for conditional
pdfs are marginalization over various subsets of node variables, as in Equation (2.16).

Darwiche (2009) gives an excellent description of the different types of algorithms used
for exact and approximate inference using BNs. Exact inference algorithms include the
variable elimination algorithm and the junction tree algorithm. These work by successively
removing variables or factors to compute the probabilities of interest. Many real-world net-
work models are complex, and exact inference may be very slow. This has led to the devel-
opment of many approximate inference methods. One widely used class of algorithms is
based on iterative belief propagation or loopy belief propagation. As described in Darwiche
(2009), iterative belief propagation can be conceptually described in two ways: (i) as an
optimization method searching for an approximate probability distribution that minimizes
an appropriate statistical distance (the Kullback-Leibler divergence) to the true distribu-
tion induced by the BN or, alternatively (ii) as casting the approximate inference problem
into a problem of exact inference but on an approximate, edge-deleted network. Another
large class of algorithms for approximate inference is based on stochastic sampling, which
simulates the network by drawing Monte Carlo samples according to the probability tables
for each variable. (See Section 2.5.) The network is simulated multiple times to gener-
ate a large set of realizations from which the desired probabilities of events are assessed
based on their frequency of occurrence in the simulated realizations. Stochastic sampling
algorithms are relatively simple compared to the other algorithms, but a large number of
samples need to be generated, especially for events of interest that have low probabilities.
(See also Appendices A.5 and B.)

2.3.3 Bayesian updating from data

Let x denote the distinction of interest. One can collect data y, which are informative of this
distinction of interest. In the Earth sciences, the distinction of interest might be the amount
and spatial distribution of oil or gas in a petroleum reservoir, the content of minerals in a
mine, the level of groundwater, and so on. Observations that can be acquired to improve
knowledge about these distinctions of interest include boreholes with cores or logging
measurement tools, seismic data, electromagnetic signals, etc. Some data can be consid-
ered perfect — i.e., they are directly informative of the distinction of interest. Other data
are measured with noise and are imperfect. Data can be partial, in the situation where only
a few of the multivariate variables are observed, or there could be a total test where each
variable is observed. Borehole data are an example of partial perfect testing, where certain
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variables are measured exactly, in which case y = x, where K indicates a subset of the
variables. We will return to categorizing the various types of information in Chapter 3.
The model for data y can be represented by a conditional pdf, known as the likelihood
function p(y|x). The pdf p(x) is a prior model for the distinction of interest, specified
before the data y are available. The posterior model for x is obtained by conditioning on
the data and is denoted p (x | y). From the laws of conditional probability in Equation (2.16)
plxly)= 28I px)p(y1x)

p(y)= p(y) < p(x)p(ylx). (2.25)

Here, the numerator consists of the prior model p(x) and the likelihood model p(y!x).
The denominator is the marginal pdf of the data p(y), which is not a function of x, and we
hence use the proportionality sign in Equation (2.25) to obtain the last expression. In some
situations, one may be interested in computing the marginal likelihood in the denominator,
which is also sometimes referred to as the pre-posterior model. This can be obtained by
marginalizing over x in the joint pdf

p(y)=[p(x.y)dx = [ p(x)p(y1x)dx, (2.26)

or using sums for the discrete situation.

Pitfalls: likelihood and marginal likelihood

Note that the marginal likelihood p(y) is usually more difficult to represent than the likelihood
p(y I x). The marginal likelihood is a result of averaging over all possible outcomes for the
distinction of interest, while the likelihood tells us the distribution of the response variable
given that the distinction of interest is at a specified level. Suppose the distinction of interest
is oil saturation in a rock and that the observations are physical laboratory experiments.
Geophysicists can use experience to predict the response given the oil content, since there is
a physical relation. This can be summarized in the likelihood p( yl x). The interpretation of
p(y) is based on marginalizing over all oil saturations.

The equation for posterior pdf p(x | y) in Equation (2.25) is often referred to as Bayes’
rule. One uses Bayes’ rule to construct the posterior from the prior and the likelihood.
Although the model specifies p(x) and p(y | x) —1i.e., goes forward — from x to y, Bayes’
rule allows for going the opposite way from y to x. This kind of analysis is tagged as
Bayesian inversion. The situation is summarized in Figure 2.16.

It is important to appreciate the broad applicability of merging a priori knowledge with
new observations. If there is momentous prior knowledge, the observations will not add
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MODEL VIEW INVERSE VIEW

Marginal
likelihood model

Observations

Likelihood model
Bayes' rule

Distinction of

interest

Prior model )
! Posterior model

Figure 2.16 Illustration of Bayesian modeling (left) and Bayesian inversion (right). The modeling
goes from the distinction of interest x to the data y. The inversion uses the data y to get a posterior
understanding of x.

much information. Also, if the likelihood is almost the same for every outcome of the
distinction of interest, there is not much difference between the prior and posterior. The
posterior can be viewed as defining a trade-off between prior knowledge and the informa-
tion content in the data.

The method of choice for the assessment of posterior pdf p(x I y) depends on the prior
pdf, the likelihood model, and how the two combine in the product. Some posterior models
can be analyzed analytically or by straightforward sums for marginalization, while others
require more complicated numerical or approximate sampling tools. (See Appendices A
and B.)

Discussion: Bayesian inversion and fully Bayesian modeling

The inverse probability interpretation of Bayes’ rule is commonly used in applications. This has
shown to be very useful for assimilating data to update a priori understanding of a distinction
of interest. Note, however, that some authors interpret “Bayesian statistics” as a competitor to
“frequentist statistics.” Fully Bayesian modeling principles entail priors on all statistical mod-
eling parameters. We will briefly discuss Bayesian versus frequentist issues in Section 2.4.



http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.003
http:/www.cambridge.org/core

42 Statistical models and methods

2.3.4 Examples
Treasure Island: The pirate example

Keywords: pirate example, binary outcomes, Bayes’ rule, false positives

Suppose that a pirate is uncertain about whether a treasure is present or not. This distinc-
tion of interest is a binary variable denoted x € {0,1}. Suppose further that “success” is a
rare event. The probability of success is p(x =1)=1/100 = 0.01. The pirate can carry out
some experiment y € {0,1}, which is informative of the distinction of interest. For instance,
the pirate may purchase a device such as a metal detector and conduct experiments to study
whether the treasure is present or absent. We assume that the likelihood model for the test
resultis p(y=01x=0)= p(y =11x=1)=0.95. Thus, the data are fairly accurate, failing
only 5 out of 100 times. Bayes’ rule can be used to compute the posterior probability of a
success given that the test result is positive:

p(y=1lx=Dp(x=1)

px=1ly=1)=
p(y=1lx=0)px=0)+p(y=11x=Dp(x=1) (227
0.95%0.01 :
= ~0.16=16/100.
0.05%0.99 +0.95x0.01

Perhaps surprisingly, the probability of success is still quite small even though the test
result is positive. The reason is the very small a priori probability of a success and the
chance of false positives (a successful test when the treasure is not present). The likelihood
is not accurate enough to compensate for the small a priori probability of success.

The example highlights the fact that an uncertain test indicating treasure may still not
yield a high chance of actually finding the treasure. For a petroleum company searching
for oil in areas with a small probability of oil, this means that even with quite accurate
measurement techniques, there is a high probability of failure. The result further explains
the problem with false positives in medicine, with frustration and disbelief among patients
erroneously diagnosed with a rare disease because of a positive test.

In Figure 2.17, we plot the success probability (second axis) given a positive test. Here,
the first axis indicates the probability of false positives. We see that the conditional prob-
ability of success increases with higher test accuracy, but the test must be very good to get
a conditional probability exceeding 0.5.

Gotta get myself connected: Bayesian network example

Keywords: Bayesian network, exploration wells, graph, conditional independence, Bayes’ rule,

evidence propagation

We use the graph in Figure 2.15 (top) to illustrate evidence propagation. As we described
earlier, suppose that the node variables in Figure 2.15 (top) represent the presence or absence
of hydrocarbons. We consider the situation of drilling an exploration well at Prospect Node
2. This information would result in posterior probabilities at Prospect Node 3.
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Figure 2.17 The conditional probability of a success given a positive test. The success probability is
plotted as a function of the false discovery probability on the first axis.

Let the marginal probability be p(x; =1)=0.2, while the conditional probabil-
ities are p(x,=1lx,=1)=0.5, px=11x,=1)=05, p(x,=1lx=0)=0, and
p(x; =11x, =0)=0. The model is now completely specified, because the top node is
assigned a marginal pdf, and all edges have a conditional pdf. The marginal distribution
of the two prospect nodes is available by summing out the outcome at Node 1. We have:

1
plx;=1)= Zp(x3 =1lx, =y)p(x,=y)=05-02+0-0.8 =0.1. (2.28)
y=0
By symmetry, the marginal pdf at Node 2 is the same.

Recall the restrictions imposed when the outcome at Node 1 is dry. The geological mech-
anism prevents oil from entering Nodes 2 and 3 if Node 1 is dry. The effect of conditioning
is notable in this situation: when the decision maker drills at Node 2, he or she hopes to
find oil and start exploiting this resource. But the evidence obtained by drilling Node 2 is
also valuable for learning the chances of finding oil at Node 3, since the two are dependent
through the common parent Node 1.

Assume that the decision maker drills at Node 2 and discovers oil (x, = 1). Therefore,
x, = 1; otherwise, Node 2 could not have contained oil. Then, the conditional probability
at Node 3 becomes

p(x;=1lx,=1)=p(x; =11x, =1)=0.5. (2.29)

This is a 5-fold increase in probability compared with the marginal pdf. The situation
with a dry outcome in Node 2 is a little harder to compute, because this can happen both
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when Node 1 is dry or has oil. We have to marginalize over both these outcomes for the
parent node:

p(x, =01x, =Dp(x, =1)

p(x1=1|x2=0)= 1 )
Zp(xz =0lx, =y)plx =y)
y=0 (2.30)
_ 0.5-0.2 —0.11.
0.5-0.2+1-0.8

1
p(x;=11x, =O)=2’p(x3 =1lx, =y)p(x, =ylx, =0),
y=0 (2.31)

=0-0.89+0.5-0.11=0.055,

which is a clear reduction of the marginal probability for Node 3.

For larger-size BNs, the marginalization operations are not that straightforward to per-
form, but there are several well-known algorithms for that purpose, such as the junction
tree algorithm discussed in Section 2.3.2 (and Appendix A.5).

Never break the chain: Markov chain example

Keywords: Markov chain, dependent binary variables, conditional independence, Bayes’ rule

For the Markov chain model in Figure 2.15 (bottom), assume that we can obtain informa-
tion for one of the variables — say, x; = k. We are interested in propagating this evidence
to the other variables. Of course, at Node i, we are now certain of the outcome since this
is perfect information. We can update the probabilities at the neighboring nodes given the
evidence x; = k based on the Markov transition probabilities in Equation (2.24). Unless
the transition probabilities P(k,l) = 0.5 for all k,/, corresponding to independence between
the variables, there will be a change from prior marginal probability p(x;) to posterior
marginal probability p(x; | x; = k). The computation of p(x; | x; = k) is an exercise in the
repeated use of Bayes’ formula. (See Appendix A.3.)

Figure 2.18 illustrates evidence propagation for a chain graph with n =50 nodes after
observing x,, = 1. The difference between the four displays is the transition probability
matrix. Figure 2.18 (top left) is the independent case with P(0,0) = P(1,1) = 0.5. Figure 2.18
(top right) is based on P(0,0)= P(1,1) = 0.9, imposing some continuity in the classes.
Figure 2.18 (bottom left) has a larger probability of staying in the successful state — i.e.,
P(0,0)=0.5 versus P(1,1) = 0.9. Figure 2.18 (bottom right) shows a non-stationary chain,
not dissimilar from the failure propagating network discussed previously, with P(0,0) =1
and P(1,1) = 0.9. Here, 0 is a state that is referred to as an absorbing state, because there is
no chance of moving to other states.

The displays show varying widths of evidence propagation away from the evidence
node. For the independent case, the observation at Node 20 carries no information about
the states at other nodes. In Figure 2.18 (bottom left), there is a short window of evidence
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Figure 2.18 Evidence propagation in the Markov chain model. The four displays show the conditional
probabilities when we obtain perfect information about a success at Node 20. The displays are for
various Markov transition matrices: Independence (top left), equal diagonal entries of 0.9 (top right),
larger diagonal for Class 1 (bottom left), and an absorbing failure state (bottom right).

propagation (about five indices), since the prior stationary probabilities are rather close to
Oand 1 (p(x,. = 1) = 0.83). For the absorbing situation, the success at Node 20 tells us that
all previous nodes must be successes too. The success probability for the subsequent states
dies out exponentially with factor P(1,1)=0.9.

For whom the bell tolls: Gaussian projects example
Keywords: Gaussian projects example, bivariate Gaussian distribution, correlation, linear
Gaussian model, perfect information, partial information, imperfect information, total information
The linear Gaussian model can be written as
y=Fx+£, £~N(0,T), (2 32)

where x = (x,,...,x,) is the unknown variable of interest, y =(y,,...,,,) is the response
variable or data, and the m X n matrix F has fixed entries. The structure in this matrix is
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defined by the data-gathering mechanism. It may consist of Os and 1s as in the factorial
design of experiments or known explanatory variables in usual linear regression analysis,
but note that variable x is random in Equation (2.32).

Suppose that the distinctions of interest are projects which are a priori Gaussian with
a known mean vector and covariance matrix — i.e., p(x) = N(u,X) . In the Earth sciences
setting, this distinction of interest can represent the profits from reservoirs or mining units.
Using Equation (2.32), the likelihood is p(y|x)~ N(Fx,T). The joint model for the dis-
tinction of interest and the data is Gaussian (see Appendix A.1):

p(x,y)=N([”H2 F D (2.33)
Ful||FX FXF +T

We get a Gaussian posterior solution defined by the conditional mean and covariance

2., =E-ZF (FIF' +T) FE,

| (2.39)
Ky, =M+ZF' (FZF' +T) (y-Fu).

The matrix—vector expressions in Equation (2.34) are derived in Appendix A.1.
Let us consider two projects (n =2) and set the prior mean profits of projects and the
prior covariance matrix as follows:

(0 |t p
u_(o), 2‘._[’) J. (2.35)

Suppose that the data are of size m =2 or m = I: with univariate data, we assume that
there is perfect information about one project, while the bivariate data provide imperfect
information acquired about both projects. The design matrix F determines which project(s)
are observed. For perfect information about the first project, we set F = [1 0] and no noise
in the univariate observation —i.e., T = 0. For imperfect information about both projects, we
set F =1, and T = 121,, assuming conditional independence between the two observations
and equal uncertainty or noise standard deviation 7. Graphically, this can be displayed by
edges from each project to its information source. The two distinctions of interest can be
connected in either direction because their dependence can be defined either way.

A perfect observation on Project 1 leaves no posterior uncertainty on this project. The
conditional variance of Project 2 is obtained by Equation (2.34), resulting in G)Zczly =1-p%
With imperfect information on both projects, the posterior covariance matrix is

(1+22)(1+p*)-2p? p_2p(1+1'2)—p(1+p2)_
(142 -p) (1+2) -p)
_2p(1+12)—p(1+p2) . (1+2)(1+p?)-2p°

2, =Z-Z(Z+21) ==

((1+T2)2 —pz) ((1+ Tz)z —Pz) ] (236)
and the integrated variance is the trace of this matrix.

The integrated variance reduction can now be studied for both information-gathering
schemes. Figure 2.19 illustrates this posterior uncertainty as a function of the correlation
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Figure 2.19 Conditional variances given imperfect and perfect information. The second axis is the
sum of the posterior variances at the two projects. The first axis is the correlation between the two
projects.

p between projects. For the case with imperfect total information, we set noise standard
deviation 7= 0.5. When the absolute correlation is very large, the scheme obtaining perfect
information at one project gives the smallest posterior uncertainty. The sum of conditional
variances is equal for a correlation parameter equal to about 0.8.

2.4 Inference of model parameters

Any statistical model has a number of parameters that must be specified in the context
of an application. These parameters may include the probabilities for discrete outcomes,
mean values, variances, or correlations in the prior distribution for the distinction of inter-
est or the noise level of data in the likelihood model. They are often referred to as nuisance
parameters because they are typically not of primary interest. Our main interest usually lies
in making predictions about the distinction of interest and then making decisions based on
those predictions. However, these higher-level activities usually require the analyst to spe-
cify the nuisance parameters.

With parametric modeling assumptions, the number of unknown parameters is usually
small — say, around 1-10. We estimate the small number of nuisance parameters from the
currently available data, either some perfect information x or imperfect information y. After
a general discussion, the focus in this section will be on maximum likelihood estimation
(MLE), which is widely applicable for parametric models and exhibits desirable statistical
properties.
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In some applications, the underlying phenomenon is well understood, and this can be
used to assign parameter values directly, without the need for complicated estimation tech-
niques. Model parameters may also be interpreted as a summary of the data, typically the
mean values, the uncertainty, the heterogeneity between groups, and so on. For instance,
for the power law example in Section 2.2, we created a log-log plot of data. Such empirical
summary statistics lead to moment estimators, and we can use moments to specify param-
eters in a model or as initial guesses for MLE.

Trial and error is also commonly used to specify statistical model parameters. One can
check parameter sensitivity by predicting over a hold-out set of data for different values of
input parameters. This approach can be formalized by cross-validation. Suppose that we
have B data or realizations y?, b =1,..., B. The leave-one-out distribution for the i-th com-
ponent of realization y”, given all other instances y=” = { y;c=1,..,B,c# b}, is denoted
p(y{’ ly®, y'j,-;O). Cross-validation uses some measure of misfit between this predictive
distribution and the actual data y?. A common measure is the prediction mean square
error. This kind of cross-validation is used substantially in model validation, especially for
non-parametric models such as tuning the kernel widths of Gaussian mixtures.

Many Earth sciences applications involve physical or geological mechanisms that can
be framed within parametric assumptions. Optimization methods are used to find the
model parameters that best fit the data in some sense. Note, however, that this approach
requires a model, and we thus assume a known distribution or mechanism. Care should
be used when fitting a parametric model, and it is good practice to check if the distribu-
tion assumptions hold by studying if the empirical distribution of data looks similar to
the statistics expected from the assumed distribution. A common approach is to study
percentiles of the assumed distribution with fitted parameters versus the empirical per-
centiles of the data. This is often visualized and referred to as a quantile—quantile or

QQ plot.

2.4.1 Maximum likelihood estimation

This discussion of likelihood will be fairly general. We provide more background about
parameter estimation for the specific models used in this book in Appendix A.

The objective of MLE is to find the parameter that most likely generated the data
under the current modeling assumptions. MLE aims to optimize p(x;@) = L(B) as a
function of the unknown nuisance parameter 6 for the case of perfect information about
the distinction of interest x. If we have imperfect information, the marginal likelihood
is p(y)=p(y;0) = Jp(y, x;G) dx = L(G), where the joint distribution in the integrand
is constructed by a prior model for the distinction of interest and a likelihood model
for the data — i.e., p(y,x;0)= p(x;0)p(p|x;0). The case with imperfect information
is usually more difficult than the case with perfect information. The preferred situ-
ation is to have both perfect and imperfect information. In the Earth sciences, there are
often auxiliary data available (either x or y or both) for specifying important model
parameters.
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Discussion: fully Bayesian versus frequentist analysis

An alternative to the maximum likelihood principle is the fully Bayesian framework, which
assigns a prior p(0) on the nuisance parameters, and where parameter specification is based
on the posterior of the model parameters denoted p(6l y).

The MLE of the parameters is obtained by maximizing L(G) or, equivalently, the
log-likelihood function /(8) = log L(8), with respect to the parameter 6. We have

0= argmax, {1(9)}, 76

0, (2.37)

where the derivative dl/d@ is also known as the score.

Several optimization algorithms are used in practice to compute the MLE. In some situ-
ations, there are analytical solutions to Equation (2.37), but in others, complicated numerical
routines are required. One such numerical optimization algorithm is the Newton—Raphson
method defined by a starting value 8° and updates for b = 1,2... according to

-1
0°=0""1— dzl(eb l) . dl(eb 1). (2.38)
d6? dae
The final output 0= 0°, obtained after some iterations of Equation (2.38), is the MLE of 6.
Figure 2.20 illustrates the Newton—Raphson method in practice. In most cases, when the

Maximum likelihood
estimator

dl
de

drec

O -
d21(e™") de
a2 @b_gb-

Figure 2.20 Maximum likelihood estimation, illustrated by the Newton—Raphson method for
optimizing the likelihood function of a one-dimensional model parameter.
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starting value is not too far from the optimum value, convergence is achieved within 5-10
iterations. Note, however, that one can experience overshooting and divergence with this
method, and sometimes more robust optimization schemes are required.

Optimization of the likelihood requires derivatives with respect to the model parameters.
These derivatives can be computed analytically for several models. The second deriva-
tive (Hessian) can be quite unbalanced because of the randomness induced by the data.
A numerically more stable expression is obtained by taking the expected value of the ran-
dom observations —i.e., E (d2l/ de? )_l. The optimization method obtained from using this
in Equation (2.38) is known as Fisher scoring.

Asymptotically, as the size of the data approaches infinity, the MLE is unbiased — i.e.,
E(é) =0, where the expectation is taken over the data distribution. Moreover, the esti-
mator is Gaussian distributed with variance obtained from the negative inverse Hessian
-E (dZZ/ de? )4. These desirable properties have ensured that the MLE is popular in
statistics.

Inserting the MLE into the prior pdf, we get p(x) = p(x; é), and similarly for the likeli-
hood of data, p( yl x) = p( yl x;é . In this way, the frequentist view treats these nuisance
parameters as fixed but unknown. However, one might say that this expression underesti-
mates the variability since the estimate 0 is uncertain. There are methods to include some
of this uncertainty, such as bootstrapping (Efron and Tibshirani 1993).

2.4.2 Examples

I love rock and ore: mining oxide grade example

Keywords: oxide grade example, mining, X-ray data, linear Gaussian model, least-squares estima-

tion, maximum likelihood estimation

An oxide ore grade data set was shown in Section 2.1. Two data types are available at 103
of the locations in this mine. X-ray fluorescence (XRF) data consist of extensive X-ray
measurements of core samples in the laboratory. XRF meter (XMET) data consist of meas-
urements obtained with a handheld meter at the mining site. The XRF data are treated as
perfect information about the grade, whereas the XMET data are assumed to be noisy or
imperfect observations of the true grade. In addition, there is geological knowledge about
the mineralization level, which is used as a covariate.

We will use a subset of the data to illustrate the estimation of nuisance parameters. A more
thorough presentation is discussed in Chapter 4 for spatial modeling and in Chapter 6 for
the value of XRF and XMET information analysis. XMET data at the 103 locations with

both data types are denoted y = ( Viseers Y103 ), and XRF data are denoted x = (xl,...,xm3 ) We
assume a Gaussian likelihood for the XMET data, y, = x; + N (0,72),i = 1,...,103. Moreover,
the oxide grade depends on a known mineralization covariate h; € {1,2,3} in a regression

model x; = B, + B, + N(0,0?), where the regression parameters {3, and P, are fixed but
unknown. For short, we write this as: x= HB+ N (0, o1 ), where the 103 x 2 matrix H
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Figure 2.21 Parameter estimation in a regression model. The XMET data are assumed to provide
imperfect information about the oxide grade, while the XRF data provide perfect information about
the oxide grade. There are three geological classes used as covariates in the regression model for the
oxide grade.

contains the known covariate classes and where the 2 x 1 vector of regression parame-
ters is B= (B, )-

Since both data and the actual distinction of interest are available at the 103 locations,
we can separately estimate parameters in the likelihood p(y | x;7) and the prior p(x; 0, B).
Here, we analytically compute the MLE from the Gaussian expressions.

The MLE (and the least-squares estimate) for the regression parameter is

B=(HH)" H'x. (2.39)
The associated MLE for the variance in the grade is defined from the residuals in the
regression fit:

& :%(x—HB)t (x—HB)~ (2.40)

The likelihood variance is estimated from the differences in the XMET and XRF data:

1 103

~2 1 ‘ _ 1 oy
T —E(y—x) (y_x)_103§1‘(yi x) (2.41)

A cross-plot of the XRF and XMET oxide grade measurements is shown in Figure 2.21.
Note that the grade measurements get larger with the increased mineralization covariate.
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[ Hidden Markov model (HMM) ]

Imperfect observations.
Conditionally independent

p (yilxj=k)

p(xj=k, Xjp1=1)

Latent distinction of interest. Markov chain

Figure 2.22 Hidden Markov model where the latent variable is a first-order Markov chain model and
the data are conditionally independent given the latent variable.

The variability in the XMET measurements from the straight line is used to estimate the
likelihood noise. We obtain measurement noise variance 7° = 0.342 , considering only that
the XRF data give regression parameters f§ = (—1,1,1_8)[ and grade variance 6% =0.75%.

Never break the chain: Markov chain example

Keywords: Markov chain, dependent binary variables, conditional independence, hidden Markov

chain, maximum likelihood estimation

Let us now consider the hidden Markov model (HMM) — see, e.g., MacDonald and Zucchini
(1997) — which is an extension of the Markov chain model with conditionally independent
data (see Appendix A.3).

The graph for this model is illustrated in Figure 2.22. The (latent) distinction of inter-
est has stationary first-order transition probabilities P (k,l ) between subsequent dis-
crete states x; = k and x;,, =/. We assume two possible states and equal transition rates
P(0,0)= P(1,1) = p. The data are conditionally independent given the variable of interest,
and the Gaussian likelihood is defined by p(yl- | O) = N(—l, ‘L'z) and p(yl- I 1) = N(l, 72 )

Using the factorization in Equation (2.21), the marginal likelihood for the model param-
eters 0 = ( D, TZ) is the product of all sequential probabilities:

L(6)= p(yi>---3,:0) = [ PG 13150031430). (2:42)

The required probabilities can be evaluated by recursive marginalization of the discrete
latent distinction of interest (see Appendix A.3).
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Figure 2.23 Example of numerical calculation of maximum likelihood for a hidden Markov chain
model. Data (left) and log-likelihood surface (right) for the Markov transition probability (first axis)
and the likelihood noise standard deviation (second axis).

We generate data of size n = 100. The parameters are p = 0.95 and the noise variance is
72 =22, In the pdf of the initial state x,, the two states are equally likely. The data are shown
in Figure 2.23 (left). In Figure 2.23 (right), we display the likelihood surface, which shows
that these parameters are estimated reasonably well by the data.

2.5 Monte Carlo methods and other approximation techniques

Monte Carlo methods are widely used for various types of sampling, simulation, optimiza-
tion, and integration. In this section, we will focus on stochastic simulation and solving
integrals by sampling from the probability models and evaluating functional expressions.
The integration approximations will be relevant for the VOI analysis described in later sec-
tions. Recent books covering Monte Carlo simulation include Liu (2001), Gamerman and
Lopes (2006), and Rubinstein and Kroese (2007).

2.5.1 Analysis by simulation

In Section 2.2, we discussed the mean, variance, and pdf of a transformation. When the
function or transformation f (x) is non-linear, analytical solutions are rarely available.
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Linearization results in bias —i.e., E ( f (x)) £f ( u) —and a variance approximation would
over- or underestimate the uncertainty. The full distribution of the transformation is even
more difficult to represent. We can study the pdf of f (x) directly for only some special
situations. A useful solution technique is stochastic simulation.

Algorithm: a Monte Carlo method for uncertainty propagation

1. Sample x',...,x? from pdf p(x).
2. Evaluate or simulate f(x‘),...,f(xB).

The B outputs represent the distribution of the function f (x), and we can compute the sam-
ple mean, variances, or percentiles. Such statistics converge to the theoretical counterparts
when B — oo,

This approach is extremely useful for uncertainty quantification in complicated systems.
For instance, in the basin modeling example shown in Section 2.1, we can sample input
geological variables and use established software for basin and petroleum systems model-
ing to simulate the output accumulations, which are representative of the mean values and
the uncertainties in volumes. The random sampling approach is a viable alternative to the
controlled design of experiments in many cases. In a design of experiment setup, Step 1 in
the algorithm is performed in a deterministic way. One then sets the elements in the input
space in a structured way, typically defined by high and low levels, and then studies the
associated responses in Step 2.

Simulation is often used for preliminary sensitivity analysis. This can be helpful for
studying the effect of single variables or interactions of variables. Promising recent
approaches use efficient dimension reduction such as basis representations or multidimen-
sional scaling to effectively explore the input space. This has been very useful for experi-
ments where the function f (x) is very complicated and computationally demanding. It can
also be combined with clustering techniques or various adaptive designs of experiments.
Simulation is also used to falsify modeling assumptions in prior models p(x) or some
fixed input conditions involved in the function f (x) Falsification may include response
variables that are unphysical in some sense or responses that are totally inconsistent with
observations y. The latter aspect relates to Bayesian inversion.

2.5.2 Solving integrals

As we will discover in later chapters, several of the computations required for VOI ana-
lysis are integrals (continuous sample space) or sums (discrete sample space). For instance,
a decision situation would likely involve the expected value fxp(x)dx, or the decision
maker would perform some optimal choice under uncertainty, involving integral expres-
sions such as Jmax {O,x} p(x) dx. In this section, we discuss approaches for approximating
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such integrals or sums. Expressions that cannot be solved analytically or numerically can
be handled by Monte Carlo methods.
Consider a general integral expression

= £ (x) p(x)dx. (2.43)

where p(x) is a pdf on the domain of x and where f(x) is a function that we can evalu-
ate. If f (x) = x;, the integral in Equation (2.43) is the expectation of variable x;; if
f (x) =1 (xl- > 0), we compute the probability that variable x; is positive. Analytical or
numerical approximations depend heavily on the function f (x) If available, they can be
very fast and accurate, but for some situations they may yield poor approximations. Monte
Carlo methods are far less sensitive to the function f (x)

Analytical approximations of integrals are largely based on Gaussian approximations
or quadratic expansions. The Laplace approximation uses both of these tools. It can be
presented in various ways. Consider a rewritten version of Equation (2.43):

LG
Jp

We can fit a quadratic form to the exponent of b(x)=log f(x)+log p(x) at the mode
of this expression —i.e., ¥ = argmax {b } The same is done for the denominator, which
means fitting a Gaussian approximation to p( ) at the mode x = argmax, {p } The
quadratic expansions allow Gaussian completion of the integrals. Since the first derivatives
are 0 at the mode, we only need to account for the second derivatives in the (co)variance
part of the Gaussian pdf. The Laplace approximation of the integral in Equation (2.44)
becomes

(2.44)

d?log p(%)
. dx?
ILaplace =e&Xp (b(i))— (245)
7b(%)
dxz

This Laplace approximation can be very useful for models dominated by Gaussian compo-
nents and weakly non-linear functions f (x)

Numerical approximations of integrals define a grid of evaluation nodes in the support
of the integrand. Direct approaches assume a constant, linear, or quadratic form of the
integrand between the evaluation nodes. For lower-dimension integrals, these traditional
numerical approaches tend to be extremely accurate, but for high-dimension integrals,
the numerical approximations are difficult to compute because the number of evalu-
ation points gets very large. Useful guidelines for the placement of evaluation points in
related contexts have been worked out, such as central composite designs or more general
response surface methodologies, but it is not straightforward to achieve reliable results in
a high dimension.
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We now turn to Monte Carlo methods for solving integrals like Equation (2.43). As
mentioned earlier, Monte Carlo approximations are often the method of choice in difficult
problems (complex f (x) or p(x)) and in high dimensions (large n) because they are more
generally applicable than analytical and numerical methods.

The Monte Carlo approximation is based on generating samples from the pdf p(x)
and computing function averages.

Algorithm: the Monte Carlo approximation of an integral

1. Draw samples x',...,x? from p(x).

B
2. Evaluate the function for each sample and average ] = lz f( x?b )
b=1

Recall that the function f (x) represents whatever we would like to approximate. It could
be a linear function (mean value), a quadratic function (variance), an indicator (a percent-
ile), etc. Notably, we can approximate different integrals or statistics from the same samples.
The Monte Carlo approx1mation is easy to implement once we can sample from p (x) Here,

_[ f dx I for all samples b = 1,..., B, and the Monte Carlo approxima-
tlon is an unblased estlmator of the integral. The quality of the Monte Carlo approximation
of the integral I depends on the probability distribution p(x) relative to the function f (x)
In this way, the variability of the Monte Carlo estimator depends on the integral expression
that we wish to estimate. If we attempt to estimate a rare event such as a tail probability, we
often need several Monte Carlo samples B to get a sufficiently small relative Monte Carlo
error. When we estimate the mean, fewer samples are required for small error bounds.

We study various approximation methods for the evaluation of a logistic integral

2
—j exp(x exp BT (2.46)
1+exp 2ro 20°

This integral appears, for instance, when modeling the presence or absence of an asset,
success or failure of events, etc. The probability of success is p = exp(x) / (1+exp(x)),
and the integral computes the expected value of this probability. Generalized linear models
(GLMs) (McCullagh and Nelder 1989; Dobson and Barnett 2008) stress the modeling of
the logistic variable x, typically having a linear form depending on the explanatory vari-
ables (see Appendix A.2).

We solve this logistic integral by three methods:

1. Numerical approximation using a dense grid of evaluation points (Num).
2. Analytical expansion of the integrand around the mode (Laplace method: LA).
3. Monte Carlo approximation based on sampling from the Gaussian distribution (MC).

The numerical solution is done on a dense grid of 10 000 evaluation points for this
example, and this is considered the exact solution. For Monte Carlo sampling, we use
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Figure 2.24 Left: logistic integral for different approximations (numerical solution, Laplace
approximation, and Monte Carlo with B = 100 realizations) and for varying levels of the Gaussian
mean. Right: comparison of Laplace and Monte Carlo approximation against the numerical reference
solution.

B =100 samples from the Gaussian pdf and take the average of the logistic function over
the samples.

Figure 2.24 shows the results for a range of mean values u and standard deviation ¢ = 1/2.
All approximations deliver accurate results in this example, as we can hardly discriminate
the three curves in the left display. When we look at the errors compared with the dense
numerical approximation in the right display, we notice that the Monte Carlo approach
has the largest errors near zero, where the success probability is about 0.5. The Laplace
approximation performs well for most mean values.

Several tricks are possible for reducing the variability in the Monte Carlo approxima-
tion. For instance, one can apply importance sampling to reduce the Monte Carlo vari-
ability. This technique generates samples x!,...,x# from another pdf q(x), called the
proposal distribution, rather than the true model p(x). The Monte Carlo estimator is a
weighted sum
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P w(a) -2
| ;P(xc)/q(x‘)

This integral estimator is unbiased and will converge to the true value as the sample
size increases under mild regularity conditions on the proposal distribution q(x). The
importance sampling estimator in Equation (2.47) could have smaller variance than the
straightforward Monte Carlo approximation. The idea is that the proposal distribution
highlights the important variables for the particular case in which we are interested. In
this way, the best proposal distribution q(x) changes with the case-specific goals via the
function f (x)

A

= (2.47)

B
b=

2.5.3 Sampling methods

Appendix B presents a number of methods for generating random variables. This section
only provides a brief discussion of the main ideas.

There is a large variety of methods for generating random variables from known distri-
butions. Independent uniform variables U(0,1) play a critical role here. If we can generate
independent uniform variables, we can then apply transformations to get a sample from
the relevant pdf. For instance, a power law distributed variable can be generated by first
sampling a uniform variable and then using the inverse cumulative distribution function.
We can sample a Gaussian variable by first sampling uniform variables and transform-
ing these to independent standard Gaussian variables. To sample from N (u,):), we can
first Cholesky factorize the covariance matrix, % = LL', and set x = u+ L- N(0,1,). Similar
tricks are common for a wide range of distributions. For instance, independent variables
can be used in a stepwise propagation — say, by using conditional probabilities like that of
a graph or network. However, not all pdfs are straightforward to sample from, and we will
briefly discuss accept/reject methods and iterative methods.

Rejection sampling generates samples from the proposal distribution pdf q(x) which
is usually easier to sample from. Samples are subsequently either rejected or accepted as
samples from the true pdf p(x). The number of accepted samples depends on the similarity
between the proposal mechanism ¢ (x) and the target density p (x) Although rejection sam-
pling is an exact method, it is not always easily applicable, especially in high dimensions.

Approximate Bayesian computation relies on ideas similar to rejection sampling.
Here, many samples x!,...,x% are generated from the prior model p(x). Next, the samples
are forward-propogated to the data space, and we accept samples that are in some sense
close to the data y. Approximate Bayesian computing is looser in its acceptance criteria
than rejection sampling. In fact, it avoids the full specification of a likelihood model, which
would be required for correct rejection sampling. Instead, it relies on a similarity meas-
ure between the simulated data and the observations. This algorithm was popularized in
biological applications (Beaumont 2002) where the function model is very complex but
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amenable to evaluation or simulation. The same setting with a complicated forward model
holds in many Earth sciences applications.

Markov chain Monte Carlo sampling is a method for generating dependent samples from
a probability model p(x). Unlike rejection sampling, which proposes independent variables
in each trial, the Markov chain Monte Carlo algorithm uses the current sample to construct a
new sample. This iterative construction is based on a Markov transition matrix (or kernel in
continuous state spaces), depending on the current state. There are two famous Markov chain
Monte Carlo algorithms: the Metropolis—Hastings sampler and the Gibbs sampler.

2.5.4 Example
Risky business: petroleum prospect risking example

Keywords: risking, petroleum prospects, transformed Gaussian variables, Monte Carlo sampling,

approximate Bayesian computing

Let us consider a situation not dissimilar to the basin modeling setup described in Section
2.1. In Figure 2.8, we studied different variables affecting the volumes of hydrocarbons at
geologically defined prospects. A design of experiment was run to study the effect of pro-
spect volumes (Table 2.1). An alternative to the design of experiment in this case is Monte
Carlo risking, which entails sampling variables in the input space and evaluating the output
variables of interest for each Monte Carlo input sample.

In this example, we assume that the key uncertainties in prospect volumes are the thick-
ness and porosity of the reservoir zone in an oil field. The thickness is influenced by the
geological history of the basin (erosion events, sea level over geologic time, etc.). Similarly,
the porosity depends on the geological deposition environment over time. We assume a
simplified formulation where porosity is assumed to be a logistic Gaussian variable (simi-
lar to the probability in Equation (2.46)) but bounded within the interval (0. 15,0.4). We can
sample by first generating a Gaussian variable and then taking the logistic transform. The
thickness is assumed to be power law distributed. We can simulate a power law variable
by first simulating a Gaussian variable, then computing the cumulative distribution func-
tion, and finally taking the inverse power law. The volumes are obtained by multiplying the
uncertain thickness and porosity variables and a fixed scalar term.

Suppose further that there are n = 100 prospects with some common geological mecha-
nisms inducing correlation. This pairwise correlation is assumed to be the same for all
prospects, defined by a parameter p. In our formulation, it is straightforward to model
the correlation for the Gaussian variables. We can thus simulate Gaussian correlated vari-
ables, transform these to the correct logistic porosity variables and power law variables,
and multiply to get the volumes. This construction is similar to what is typically done for
copulas (Joe 2014). In addition to the pairwise correlation between prospects, the trans-
formed porosity and thickness variables at every prospect have a 2 x 2 covariance matrix
2,. The modeled covariance matrix for basic variables at the prospects is then
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Table 2.2. [llustration of porosity, thickness, and volumes from the prior (top) and
posterior (bottom) distribution. The prior and posterior pdfs are explored by sampling

5th Percentile ~ 25th Percentile ~Median 75th Percentile 95th Percentile
Prior,
porosity 0.17 0.22 0.27 0.33 0.38
Prior,
thickness 5.2 5.8 71 10.1 22.1
Prior,
total volume 15 18 20 24 43
Sth Percentile ~ 25th Percentile Median  75th Percentile 95th Percentile
Posterior,
porosity 0.18 0.21 0.24 0.27 0.32
Posterior,
thickness 74 8.6 99 11.6 14.4
Posterior,
total volume 19 22 25 27 32
I p . p
1 .
T=kion|z,.|P P ], (2.48)
p . 1 p
p . p1

where the Kronecker product enforces separability of the correlation between poros-
ity and thickness between prospects. The between-prospect correlation (p) is set very
high here, and there is some positive correlation between the porosity and thickness
variates (Z,).

The Monte Carlo representation of the volumes requires three steps: (i) generate random
samples from the specified Gaussian distribution, (ii) transform variables to obtain samples
from the logistic porosity and power law distribution for thickness, and (iii) compute the
volumes by multiplication.

Table 2.2 (top) shows the results of B = 10 000 prior samples of the porosity and thick-
ness. The table presents percentiles of porosity and thickness for Prospect 1, as well as
the total volume for all prospects (sum over all n =100 prospects). The percentiles are
obtained after sorting the samples from smallest to largest and picking the appropriate
fraction.

Assume that there is perfect information about the thickness of Prospect n. We know that
this is 10 m. Posterior samples can be obtained by approximate Bayesian computing, where
samples closer than a threshold to the observed 10-m thickness are selected. The results of
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posterior sampling, based on a quadratic loss criterion, are presented in the bottom rows of
Table 2.2. Information about the thickness at Prospect n propagates to all variables because
of the dependence in the model. Both the thickness and the porosity distribution at Prospect
1 are clearly narrower than for the prior, but the effect of conditioning is smaller for poros-
ity than for thickness. In the bottom row, we list the percentiles of the distribution for total
volume. The posterior for total volumes has smaller uncertainty than the prior. In particular,
very large volumes are less likely in the posterior.

Discussion: computing

Programming languages like MATLAB have built-in routines for generating samples from
known pdfs, such as the Gaussian in this example. It is much faster to draw many samples

in one operation than running through a for-loop. In MATLAB, we can sample B Gaussian
vectors with common mean g and covariance X as follows:

X =HFLG + chol(E)t & randn(n,B).

Itis also possible to use the mvnrnd function from the MATLAB statistics toolbox. Additional
speed-up can be gained through parallel implementation.

2.6 Bibliographic notes

It is not our intention to cover probability models and statistical methods comprehensively.
There are numerous textbooks on statistical models and methods — for instance, the book
by Jensen et al. (2000), which is widely referenced in the Earth sciences. The appendix
contains further details pertaining to the primary probability models and sampling methods
we focus on for VOI analysis in this book.

Models

There are plenty of well-known univariate probability distributions (Johnson et al. 1994).
Useful multivariate probability distributions are much harder to construct, but the books
by Johnson et al. (1997) and Kotz et al. (2000) cover commonly used multivariate discrete
and continuous distributions. The increase in data size and computing power means that
the t-distribution described in introductory statistics textbooks is perhaps not that relevant
anymore. The Gaussian distribution has remained extremely popular because of its ease of
applicability, its properties, and its ability to handle high-dimensional situations. If not dir-
ectly useful as a stand-alone model, the Gaussian distribution will continue to be a building
block in more complex settings.

As we have discussed, it has become popular to construct graphical models or networks
from generic and modular principles, including conditional independence. Several books on
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graphical models and Bayesian networks demonstrate modeling aspects, methods for infer-
ence, and a wealth of applications (Green et al. 2003; Cowell et al. 2007; Jensen and Nielsen
2007; Koller and Friedman 2009; Sucar et al. 2012). There is also plenty of software available
for computing Bayesian networks — we use the Bayesian Network Toolbox (BNT) in MATLAB
developed by K. Murphy (bnt.googlecode.com) and Netica (www.norsys.com/netica.html).

Estimation and sampling

The boundaries between fully Bayesian statistical approaches and frequentist methods are
not as clear in practice as they used to be. Practical solutions borrow the most appropriate
models and methods from different communities and a variety of tools are often required.
Approximations are often necessary, yet statisticians carefully study the properties of approxi-
mations under various conditions. An excellent book on likelihood principles and Bayesian
theory is the one written by Carlin and Louis (2000). Scoring rules have become popular for
fitting models to ensembles or scenario-based data, where the goal is to trade model complex-
ity for predictive power while maintaining robustness — see, e.g., Gneiting and Raftery (2007).

New types of data sets, which can be enormous in size, have encouraged new approaches
for summarizing data, inferring parameters, classification, and learning. Rasmussen and
Williams (2006) is a great introduction to machine learning. Hastie et al. (2009) provide
an excellent overview of recent tools and general techniques for learning from data. These
tools build on both parametric and non-parametric principles. We have focused mainly on
parametric models here because there tend to be several parametric, physical relations in
the Earth sciences. Moreover, in the Earth sciences, there are substantial auxiliary data that
should be used for learning. For instance, well logs, geological information, core samples,
basin modeling, etc., are used to specify model parameters at the seismic interpretation stage.

Markov chain Monte Carlo methods have been particularly popular in Bayesian statis-
tics — see, e.g., Gamerman and Lopes (2006). Expectation maximization (EM) algorithms
have similarly been very popular in frequentist statistics — see, e.g., McLachlan and Krishnan
(2008). Both these iterative computational techniques use the structure of the model to effi-
ciently sample or estimate subsets of the variables while keeping the other variables fixed. In
the Bayesian literature, recent alternative techniques construct faster approximations to the
posterior distributions — for instance, nested Laplace approximations (Rue et al. 2009), which
rely on Gaussian approximations for subsets of the variables of interest, or variational meth-
ods (Jaakkola 2000), which assume certain factorization forms of the joint posterior model.
The massive dimensions of current data sets have motivated the use of inference methods
using local properties such as pseudo-likelihoods or composite models (Varin et al. 2011).

Traditionally, approaches for the design of experiments popularized statistics in some
applications; these methods are still relevant. However, experimental design has become
more sophisticated within the realm of computers and new data sets. A great introduction
to the design of computer experiments is given in Santner et al. (2003). For the Earth sci-
ences, computer experiments and simulations are used extensively, and the domain is likely
to benefit from the recent advances in the literature.
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Recent years have seen the use of many tools of multivariate statistics to analyze
high-dimensional data, reduce dimensions, and visualize them in lower dimensions. These
tools include principal component analysis and kernel principal component analysis, cluster-
ing, and multidimensional scaling. The books by Izenman (2008) and Hastie et al. (2009)
describe many of these multivariate statistical techniques. Multidimensional scaling for dimen-
sion reduction and data visualization arose in the fields of psychology and behavioral sciences
but has now been used in many disciplines, including Earth sciences. In reservoir modeling,
multidimensional scaling has been used to visualize the uncertainty of very-high-dimensional
spatial Earth models by computing an appropriate distance between pairs of models in an
ensemble of model realizations and then using multidimensional scaling to project them to
a lower dimension space. Clustering, screening of multiple geologic scenarios, and model
selection can then be done in this lower dimension space. Cox and Cox (2001) and Borg and
Groenen (2005) give extensive coverage of general multidimensional scaling theory and tech-
niques. Caers (2011) and Scheidt and Caers (2009) provide applications of multidimensional
scaling for visualization and uncertainty quantification in reservoir modeling.

Parallel computing will no doubt make all these techniques more efficient in the
future — see, e.g., Kontoghiorghes (2005). The bottleneck at the current time appears to be
user-friendly interfaces for connecting desktop or internet code to parallel computing units,
but we expect such issues to be resolved in the near future.
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Decision analysis

Figure 3.1 scuffles in my mind
traversing waters unknown
how should I decide?

We all make decisions in our personal and professional lives. Many of these decisions are
trivial and fleeting, without profound significance in the broader scheme of things. Many
decisions we make, however, have a meaningful impact on our lives and on society at
large. Decision analysis is the study of applying the principles of decision theory to prac-
tical decision situations, providing guidance that can help us with important decisions that
deserve our attention through analysis.

We review the fundamental concepts of decision analysis in this chapter. We focus on
concepts that have a bearing on value of information (VOI) analysis, but the reader should

64
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hopefully be able to glean a general overview of the field. We start with a background
discussion in Section 3.1, outlining key principles that lie at the core of decision analysis.
Section 3.2 defines the notation and terminology for decision situations, providing lan-
guage that will be required for eventually integrating decision analysis with other subjects
such as spatial statistics. Section 3.3 reviews graphical models, focusing solely on the two
most popular models in decision analysis: decision trees and influence diagrams. VOI is
introduced in Section 3.4. Here, we highlight concepts that will be critical for understand-
ing the forthcoming chapters. Finally, we outline some bibliographic notes in Section 3.5.

3.1 Background

Decision analysis stands on the solid foundation built over hundreds of years of thought
regarding decision making under uncertainty — its fundamental notions can be traced back
to some of the pioneers of probability theory — for instance, Bernoulli, Bayes, and Laplace.
The term “decision analysis” was coined by Ronald Howard (1964) to define the field of
study that logically evaluates available alternatives in a decision situation once the uncer-
tainties involved and the preferences of the decision maker have been recognized. The first
book that used the phrase “decision analysis” in the title is by Raiffa (1968).

Figure 3.2 shows a fundamental distinction between various fields of study pertaining
to decision making, categorizing them into one of three types: (a) descriptive domains are
those that effectively describe behavior around how people make decisions, (b) norma-
tive ones are those that lay down a set of norms (or axioms), and (c) prescriptive fields of
study regarding decision making are concerned with methods and tools for helping people
make better decisions. Decision analysis is a prescriptive approach with the intent of guid-
ing a decision maker through a potentially opaque decision situation, leading him or her
to clarity of action through a process of assessing his or her beliefs and preferences. It is
based on the normative principles of decision theory. Prescriptive disciplines like decision
analysis attempt to address and rectify cognitive as well as motivational biases that creep
into a person’s decision-making process, and there is a rich history of active interaction
between researchers in prescriptive and descriptive domains (see von Winterfeldt and

Decision Making

Normative Grounded by a set of (reasonable) axioms
Descriptive Describes how people make decisions
Prescriptive Methods and tools to help decision makers

Figure 3.2 Decision making studies can be categorized into one of three types: normative, descriptive,
and prescriptive.
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Initial N
Situation Decision
— Formulation Evaluation Appraisal [——

Iteration

Figure 3.3 The decision analysis cycle contains three stages: formulation, evaluation, and appraisal.

Edwards 1986). We should note here that there are several authors who do not make a dis-
tinction between normative and prescriptive domains, treating them as one and the same.
For research on descriptive aspects such as biases during judgment and decision making,
we refer the reader to Tversky and Kahneman (1974) and Lichtenstein and Slovic (2006).

Figure 3.3 depicts the stages through which decision analysis is typically applied in
practical situations. The decision analysis cycle comprises three main stages, much like
other domains involving mathematical modeling: formulation, evaluation, and appraisal.
First, a model is formulated by the analyst in accordance with the beliefs of the decision
maker. It is then evaluated using the tools and techniques of decision analysis to arrive at a
formal recommendation. In the appraisal stage, further insights are developed by exploring
the implications of the formulation and evaluation stages. The model is often refined in an
iterative fashion until the decision maker is comfortable with the suggested recommenda-
tion and the reasoning on which this is based, and finally the decision maker is encouraged
to commit to action.

One of the key foundational takeaways in decision analysis is the distinction between
decisions and outcomes. The quality of a decision can and should be determined before
the outcome has been observed; sometimes, good decisions lead to bad outcomes and bad
decisions lead to good ones. This sort of reasoning dates back at least as early as the Greek
historian Herodotus, as can be gauged from his discussions about policy decisions made by
the Persian kings. He notes that a decision was deemed wise or foolish based on whether
the evidence at hand indicated that it was the best one to make, regardless of the conse-
quences. Decision analysis suggests that decisions should be deemed good or bad at the
time they are made.

If decisions should not be gauged by their outcomes, then how should one measure deci-
sion quality? Figure 3.4 presents a spider diagram that depicts six elements of decision
quality. A high-quality decision is one that is deemed to score high on as many of these
elements as possible:

1. Frame: Did the decision maker solve the right problem? Was the context of the deci-
sion situation understood at the appropriate level? Improper framing is a common error
in many practical decisions. A broadening of the frame is often required to address the
decision maker’s true concerns.

2. Alternatives: Did the decision maker consider a comprehensive set of alternatives that
were available? Was there an attempt to pursue and consider creative alternatives?
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Appropriate Reliable
frame information
Creative 0% 100% | Correct
alternatives Logic
Commitment Clear
to action preferences

Figure 3.4 Gauging decision quality with a spider diagram consisting of six elements.

3. Information: Did the decision maker try to obtain and incorporate meaningful and
reliable information that was available at the time of the decision?

4. Preferences: Did the decision maker deliberate about and incorporate all the important
attributes that truly reflect his or her preferences? Did he or she incorporate his or her
preferences?

5. Logic: Did the decision maker take a logical and reasonable approach consistent with
their alternatives, information, and preferences? In decision analysis, sound reasoning
occurs when the norms of decision theory are deployed.

6. Commitment to action: Did the decision maker commit to the alternative that was
recommended by the analysis? Often in organizations, the analysis suggests one
alternative, but another is chosen due to organizational issues such as motivational
biases. This results in a poor decision, regardless of the effort that was put into the
analysis.

Naturally, the goal of decision analysis — and in fact any prescriptive approach to
making decisions — is to help the decision maker choose alternatives that lead to better
outcomes than they would have otherwise attained; however, there are often uncer-
tainties prevalent in the world that do not guarantee achieving the best outcome for
any particular decision. For instance, a person who chooses to step out of the house
without an umbrella in the dry season may still end up getting drenched. If the person
knew about the downpour before leaving the house, he or she would have been able to
make an even better decision. Modeling the ramifications of resolving an uncertainty
before making a decision — and quantifying whether it is worthwhile to do so — is the
key idea behind VOI, making it a powerful decision analytic tool for decision makers
in any domain.
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3.2 Decision situations: terminology and notation

Decision analysis attempts to guide a decision maker to clarity of action in dealing with a
situation where one or more decisions are to be made, typically in the face of uncertainty.
Keeney (2007) makes a distinction between two kinds of decision situations. The first kind
is a decision problem, named thus because the decision is motivated by the decision maker’s
circumstances. Here, there is some sort of external trigger that causes the decision maker
to commit to action. The second kind is a decision opportunity, where the decision maker
recognizes an opportunity for making a change in their environment and thus perceives an
internal trigger. The latter type of situation is one where the decision maker proactively con-
siders making changes to their environment rather than reacting to extrinsic factors and is a
crucial way through which decision makers should create substantial value for themselves.

The kinds of situations that decision analysis tackles are also studied in other related
domains pertaining to prescriptive decision making; as a result, they are known by a var-
iety of names. When viewed as an optimization problem, they are also known as max-
imum expected utility problems, since the objective function involves maximization of
expected utility. These problems are often also referred to as sequential decision problems
when they involve several decisions made over time or simply as decision making under
uncertainty problems when there are random variables involved. In this book, we will use
the term decision situation (Keeney 2007) since this appears to be the most general and
encompassing term.

In this section, we introduce some basic terminology and notation around decision situ-
ations. We apply the notation to a simple decision situation, illustrating the ideas with
examples.

3.2.1 Decisions, uncertainties, and values

A decision maker’s decision situation involves distinctions (synonymously, variables) that
are of interest for that particular situation. A distinction defines possibilities that are mutu-
ally exclusive and collectively exhaustive —i.e., exactly one of these possibilities can occur.
We distinguish between two important types of distinctions — those that are directly under
the control of the decision maker are decisions, and those that are not are uncertainties
(or, more technically, random variables). We refer to the possibilities for decisions as alter-
natives or actions and the possibilities for uncertainties as states or realizations. Decisions
are denoted a, and the decision maker can choose an alternative from the set of available
alternatives, a € A. On the other hand, uncertainties are denoted x, and they can take on
any state in the sample space, x € Q, as described in greater detail in Chapter 2. In any dis-
cussion about a particular distinction, the possibilities should pass the clarity test —i.e., all
the parties involved should understand precisely how all possibilities for that distinction
are defined. Just as we did in Chapter 2, we will sometimes use the phrase “distinction of
interest” to refer to the primary uncertainty that is relevant in a decision situation; it should
be clear from the context that the distinction being referred to is an uncertainty. Also, recall
from Chapter 2 that the possibilities for a distinction may be discrete or continuous. To
avoid confusion between summation and integration operations, we describe variables in
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most of this chapter as if they are associated with a finite set of alternatives A and discrete
sample space €, but all the concepts extend naturally to when these sets are continuous.

Consider the pirate example from Chapter 2, where a pirate is informed about a potential
treasure on an island. We will treat this as a recurring example of a decision situation in this
chapter. The distinction of interest is whether the treasure is present or not, modeled as a
binary random variable x € {O, 1}. The pirate must decide whether it is worthwhile to make
the trip to the island and dig for treasure. The pirate believes that there is a 1% chance that
treasure is present — i.e., p(x = 1) =0.01. Using our notation, an alternative from the fol-
lowing set must be chosen: A = {0,1} = {do not dig, dig}.

It is important for the decision maker to identify the appropriate decisions in the con-
text of the situation, as well as those uncertainties that are most relevant. Once they have
been identified, the decision maker can consider the various scenarios. A scenario is the
set consisting of a possibility for each distinction or, equivalently, an instantiation of every
distinction in the decision situation. Our simple decision situation involves one uncertainty
x and one decision a; therefore, there are a total of | Q| ® | A | scenarios. Each scenario is
associated with a prospect, which is how the decision maker views the future given the
scenario. We prefer the word “prospect” rather than “outcome,” as it signifies a beginning
rather than an end of the decision maker’s future.

The decision maker can associate each prospect with measures that we refer to as values.
In this book, we assume that the value for each scenario is measured in terms of a single
numeraire; specifically, we assume that this numeraire is monetary units. The advantage
of using monetary units as a measure is that this permits the decision maker to consider
the implication of choices in terms of a value scale of common experience — most people
are very much acclimatized to using monetary units to think about value — and to use VOI
computations to help with information purchase decisions. VOI techniques can also be
deployed using units of value besides monetary units, but they lose the buying price inter-
pretation that we will describe later in this chapter.

The decision maker’s values for prospects in their decision situation are represented by
a value function, denoted v() For our simple decision situation, the value function would
be applied to the domain of |QI®1 Al - i.e., v(x,a). We will also use the notation v =1,
to refer to the value of an alternative a, with implicit dependence on x. Note that since x
is a random variable, so is its function v(x,a). Table 3.1 presents an example of a value
table for the pirate’s decision situation. There are four scenarios in this decision situation,
since there are two alternatives for the drilling decision and two states for the uncertainty
around the treasure. The value table specifies how the pirate values the prospect for each
scenario. In this case, the pirate believes that finding the treasure results in a profit of
$100 000, but if the treasure is absent, then it would result in a loss of $10 000 from travel
and drilling expenses. If the pirate does not dig for treasure, then there is no gain and no
loss, resulting in $0.

In our review of basic probability and statistics in Chapter 2, we discussed modeling the
relationships among uncertainties using joint probability distributions. We have seen in this
section thus far that decision analysis builds upon the framework of probabilistic modeling
of uncertainties by also incorporating decisions and values. Note that there may also be
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Table 3.1. Value table for the pirate example. The value depends on the alternative
(dig or do not dig) and the uncertain variable (presence or absence of treasure)

Digging Decision Presence of Treasure Uncertainty Value (Profit)
Dig Present $100 000
Dig Absent -$10 000

Do not dig Present $0

Do not dig Absent $0

situations where there is some notion of value from uncertain prospects without any deci-
sion to be made. We use the term lottery to refer to such situations; they are also known as
gambles or deals. As posed, the pirate example is a decision situation, of course — but if the
pirate were compelled to dig and did not have a choice in the matter, possibly under mutiny
from the crew (!), he would be faced with the following lottery:

vdig -

{$100 000 with probability 0.01 3.1

—-$10000 with probability 0.99

where v, denotes the pirate’s value if he digs for treasure, and the numbers are the same
as those presented previously.

Now that we have set up the terminology for the basic ideas, we can proceed to more
advanced concepts.

3.2.2 Utilities and certain equivalent

A decision maker’s risk preferences represent their preferences for lotteries that involve
uncertain value prospects. According to the principles of decision analysis, risk is very
much like beauty, in the sense that it lies in the eyes of the beholder. In other words, it is a
characteristic of the decision maker, not the decision situation. If the decision maker is risk
neutral, then there is no need to go beyond values. By definition, a risk-neutral decision
maker should make decisions by maximizing the expected value. Such a decision maker
would only be concerned with the means of random variables. To account for more gen-
eral risk preferences, values need to be extended to utilities. Incorporating risk preferences
requires assessing a utility function, denoted u() (von Neumann and Morgenstern 1947).
u() is a function that takes units of value as input and returns units of utility (sometimes
referred to as utiles).

The left side of Figure 3.5 presents examples of three utility functions that extend over
the domain of values from v° to v*. The utility functions are associated with different
decision makers. The figure indicates that a risk-neutral decision maker has a linear utility
function — i.e., of the form

u(v)= o+ P, (3.2)
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Figure 3.5 Utility function examples. Left: three utility functions: one each for a risk-neutral,
risk-averse, and risk-seeking decision maker. Right: certain equivalents for the three utility functions
for a lottery with an expected utility of 0.5.

where o and J are constants such that 8 > 0. Risk-averse and risk-seeking decision mak-
ers have concave and convex utility functions, respectively. For reasons that we will study
later in this subsection, we will also pay particular attention to another family of utility
functions, exponential utility functions, which are of the form

u(v)=o+Per, (3.3)

where o and J are constants such that if y > 0, then the decision maker is risk averse and
B <0, whereas if y <0, then the decision maker is risk seeking and 8> 0. In the limiting
condition where y =0, the decision maker is risk neutral and the linear utility function
should be used. 7 is the risk aversion coefficient — it is the only parameter of the exponential
utility function, which is sometimes parameterized by the risk tolerance 1/7y. The constants
o and f in the utility function do not matter as long as they satisfy the required conditions,
since utility functions are invariant to affine transformations (Keeney and Raiffa 1976).
Therefore, whenever we deploy the exponential utility function for numerical examples,
we will arbitrarily set & = 1 and B = —1 for risk-averse decision makers, which results in the
functional formu(v)=1-e7".

A utility function is a mathematical construct that is used merely to capture and incorp-
orate the decision maker’s risk preferences. It is therefore often inappropriate to use util-
ities for communicating the results of the decision analysis to decision makers who are
more concerned about the practical implications of their actions. The certain equivalent
is usually a more meaningful measure because it is in units of value. It is defined as the
price at which the decision maker would be indifferent between selling their situation ver-
sus retaining it, and it is therefore also referred to as the personal indifference selling price


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.004
http:/www.cambridge.org/core

72 Decision analysis

for a situation. The certain equivalent is a measure of how much a situation is worth to the
decision maker because they should not be willing to sell it for less than this price.

The notion of a certain equivalent applies to lotteries as well as decision situations. To
introduce the concept, let us first apply it to lotteries in this subsection. Consider a person
with wealth w who owns a lottery where the uncertainty is denoted x, and the value from
the prospects is v(x). The person’s beliefs about uncertainty x € € are represented by the
probability distribution p(x), and his or her risk preferences are characterized by the utility
function u() The expected utility of the lottery is

E(u)=2u(v(x)+w)p(x)=E(u(v(x)+w)). 3.4)

xeQ

Computing the certain equivalent for this lottery is straightforward. If the certain equiva-
lent is denoted CE, then the person is indifferent between selling the lottery, thereby receiv-
ing price CE for certain, as opposed to retaining the lottery with uncertain value prospects.
The utilities for these two situations are identical by definition, because the person is indif-
ferent, and therefore

u(w+CE) = E(u) = E(u(v(x)+ w))
(3.5)
= CE=u"! (E(u(v(x) + w))) —-w.

For a certain class of utility functions, the CE does not depend on the person’s wealth,
in which case assessments and computations are simpler because it is not necessary to
incorporate the wealth. These utility functions are referred to as constant risk aversion util-

”
. . . . . u” (v .
ity functions because the risk aversion coefficient, defined as y = — (% (V), 1s constant

and does not depend on the value. The linear and exponential utility functions are the
only constant risk aversion utility functions. It can be shown that these utility functions
(and only these) satisfy what is known as the delta property: if a constant value A were
added to all the prospects in a situation with uncertain value, then the certain equivalent
would increase by A. Formally, the utility function would have to satisfy the following

property:

u! (E(u(v(x)+A))) =u! (E(u(v(x))))+A (3.6)

for any uncertain value distribution v(x) and any constant value A. Using this property in
Equation (3.5), we observe that the certain equivalent in this lottery simplifies to

CE =™ (E(u(v(x))))- 3.7)

Consider the right side of Figure 3.5, which demonstrates how to graphically estimate
the certain equivalents for three utility functions for the following lottery:
{v * with probability 0.5

. - (3.8)
vo with probability 0.5
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In this lottery, there is a 50-50% chance of receiving the best prospect v* versus the
worst prospect v°. Since utilities can be scaled arbitrarily, we can normalize the utilities
such that the best and worst prospects have utility 1 and 0, respectively — i.e., u(v*) =1
and u(vo) =0. The expected utility for this lottery is E (u (v(x))) =0.5. From Equation
(3.7), the certain equivalent is computed by taking the utility inverse of the expected utility.
This can be done graphically by drawing a horizontal line from the expected utility of the
lottery — in this case, 0.5 — and then drawing a vertical line from the point where the
horizontal line meets the utility function. Note that when the decision maker is risk neu-
tral, he or she is indifferent between a lottery with uncertain prospects and having the
expected value of the lottery for certain. In this case, the expected value of the lottery is
(v*+v° ) / 2. The figure demonstrates that the certain equivalent for a risk-averse decision
maker is less than the expected value of the lottery. On the other hand, the certain equiva-
lent for a risk-seeking decision maker is more than the expected value of the lottery. Thus, a
risk-seeking decision maker would prefer a lottery with uncertain prospects over receiving
the expected value for certain, and vice versa for a risk-averse decision maker.

When utilities are scaled between 0 and 1, the utility of any intermediate prospect can be
elicited by identifying an equivalent lottery where the best prospect is obtained with prob-
ability p versus the worst prospect with probability 1 — p. If the decision maker is indiffer-
ent between the intermediate prospect and the lottery, the utility of the prospect equals the
expected utility of the lottery, which is p. When interpreted in this fashion, utilities are also
known as preference probabilities.

There are a variety of well-known elicitation schemes to elicit a utility function. An elicit-
ation scheme is composed of a sequence of questions. Standard gamble methods present
the decision maker with a lottery and a certain amount and pose questions of mainly two
types: a comparison (or choice) question is one where the decision maker is asked to com-
pare the lottery with the certain amount, indicating which one is preferred. In an equivalence
(or matching) question, the decision maker is asked to provide any one of the parameters
pertaining to either the lottery or the certain amount such that he or she is indifferent between
them. The utility curve is estimated from the decision maker’s responses to the elicitation
questions. Farquhar (1984) provides an excellent review of some elicitation schemes.

Discussion: multiattribute utility theory

We have described an approach to solving decision situations under uncertainty where a
one-dimensional utility function is assessed over a deterministic value function. This approach
makes no assumptions about utility independence (Keeney and Raiffa 1976) and is particularly
suitable for our purposes since the presence of a value function enables VOI computations. The
reader is referred to Matheson and Howard (1968) and Dyer and Sarin (1982) for further details
about the approach. There are other approaches where a utility function is assessed directly.
These techniques are often useful for multiattribute (or multicriteria) decision situations. Please
see Keeney and Raiffa (1976) for details.
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3.2.3 Maximizing expected utility

Consider the following simple decision situation, which is merely an abstraction of the
pirate example. Suppose that a decision maker with wealth w faces a decision a involving
unresponsive uncertainty x —i.e., uncertainty x is not affected by the decision. For instance,
whether the pirate digs for treasure has no effect on whether the treasure is present or not.
Furthermore, suppose that the decision maker will obtain value v, = v(x,a) from the deci-
sion situation if alternative a is chosen, where v() is the value function. The decision mak-
er’s beliefs about uncertainty x € Q are represented by the probability distribution p(x),
and his or her risk preferences are characterized by the utility function u () Again, note that
v, is a function of a random variable x; therefore, it is a random variable itself.

We now have all the necessary assumptions, terminology, and notation to determine
the decision maker’s optimal alternative. According to the principles of decision theory,
he or she should choose the alternative that maximizes the expected utility. If the decision
maker chooses alternative a, then he or she will obtain value v, + w, the sum of their uncer-
tain value from their decision situation, v, = v(x,a), and their prior wealth. The decision
maker’s uncertain utility is u(va + w) =u (v(x,a)+ w). According to the norms of decision
theory, the maximum expected utility is

MEU = max,_, {2 u(v, +w) p(x)}

xeQ

=max,, {E (u(v,, + w))} = E(u (vae + W)),

3.9)

where a * is the optimal alternative — i.e., the one that maximizes the expected utility
a* = argmax ,_, {E(u(va +w))}. (3.10)

Calculations for the certain equivalent for our simple decision situation are similar to
those for the lottery in the previous subsection. If the certain equivalent is denoted CE, then
the decision maker is indifferent between selling the situation, thereby receiving price CE
for certain, as opposed to retaining the decision situation with uncertain value prospects.
The utilities for these two situations are identical because the decision maker is indifferent,
and therefore

u(w+CE)=MEU = E (u(v,. +w))
= CE=u"! (E(M(va*-i-w)))—w, (3.11)

When the decision maker’s utility function satisfies the delta property, we can use
Equation (3.6) and simplify Equation (3.11) to

CE=u (E(u(v,.))). (3.12)

When the decision maker is risk neutral, u(v) = az+ Bv, > 0, the equations simplify fur-
ther such that the certain equivalent equals the maximum expected value:
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CE=E(v,.). (3.13)

Later, we will discuss how utility functions that satisfy the delta property make
VOI computations simpler and more tractable. In fact, the delta assumption is rou-
tinely made in the VOI literature as well as in practice. This is not as limiting as it
may appear because: (i) the assumption is often reasonable in practical situations,
particularly those where the certain equivalent is much less than the decision maker’s
wealth and (ii) even if this is not the case, the exponential utility function is versa-
tile and can effectively approximate many utility functions encountered in practice
(Kirkwood 2004).

The reader may well ask: why should I maximize expected utility? Edwards et al. (2007)
respond that “systematic and repeated violations of these principles will result in inferior
long-term consequences of actions and a diminished quality of life”” (p. 1). Decision analysis
is a normative subject and there are, of course, many ways to axiomatize a normative subject.
Howard and Abbas (2015) present the axioms of decision theory as the “five rules of actional
thought.” Any decision maker who agrees to these (rather reasonable) rules follows the norms
and should make their decisions by maximizing expected utility:

1.

. Choice rule: Given two lotteries with uncertainty around the best and worst

Discussion: the five rules of actional thought

Probability rule: The decision maker’s degree of belief about the possibilities for
uncertainties is represented using probabilities.

Order rule: The decision maker should be able to declare their preference order for
all prospects.

Equivalence rule: For any prospect, the decision maker should be able to construct
an equivalent lottery involving the best and worst prospects.

Substitution rule: The decision maker should be willing to substitute any prospect
with the lottery, as constructed above.

prospects, the decision maker should choose the lottery with the higher probability of
obtaining the best prospect.

3.2.4 Examples

Treasure island: the pirate example

Keywords: pirate example, binary outcomes, certain equivalent, risk-neutral decision maker

We return to the pirate example that was introduced in Chapter 2 and is referred to through-
out this section. As a reminder, a pirate must decide whether to make the trip to an island and
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dig for potential treasure or not. The pirate is uncertain about whether the treasure is present
or not. This distinction of interest is modeled as a binary random variable x € {0,1}. If the
treasure is indeed present and it is dug up, the pirate expects to make a profit of $100 000,
but if it is not present, he will incur a loss of $10 000. The pirate believes there is a 1%
chance that the treasure is present.

Suppose that the pirate is risk neutral — i.e., has a linear utility function for monetary
values. Since utility functions are invariant to affine transformations, we will use u(v) =v.
Furthermore, since the linear utility function satisfies the delta property, we do not need to
incorporate the pirate’s wealth into the calculations.

Let us apply the notation from this subsection. Decision a is the digging decision,
and uncertainty x is whether the treasure is present or not. There are two alternatives,
A= {dig, do not dig} . Similarly, there are two states Q = {O, 1} that denote the absence and
presence of the treasure, respectively. The distribution for x and the value function are as
follows:

1 with probability 0.01
X =
0  with probability 0.99

. e (3.14)
$100 000 with probability 0.01 $0
V, = A% iy — .
“ " 1-$10000  with probability 0.99  “"*
Using Equation (3.12), the certain equivalent is
CE=u" (max {E (u (Vdig ))E (u (vd0 not dig ))})
= CE=u"! (max {E(vdig),E(vdonOldig )}) 3.15)

=CE=u" (max {(100000-0.01)+(-10 000~0.99),o})
=CE=u"(0)=$0

We could also have used Equation (3.13) directly since the pirate is risk neutral. In this
case, it is optimal for the pirate not to dig for the treasure, and the pirate’s certain equivalent
for this decision situation is $0.

For whom the bell tolls: Gaussian projects example

Keywords: Gaussian projects example, bivariate Gaussian distribution, certain equivalent,

risk-averse decision maker

Suppose that the distinction of interest x = (xl,..., x,,) represents uncertain profits from pro-
jects that a decision maker is considering for investment purposes. We consider two projects
(n = 2) with random profits (Section 2.3). A bivariate Gaussian distribution p(x) =N ( [,L,E)
is used for the profits. We specify the prior mean and covariance as follows:
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100 302 300p]| . . .
u= , X= in units of $, millions. (3.16)
70 300p 107

The decision maker can choose exactly one of the projects. Note that in this problem,
the two projects are correlated, but the correlation p does not matter — only the marginal
distributions of the projects matter. Since x = (xl,xz) is bivariate Gaussian, the marginal
distributions are Gaussian with p(xl) = N(100,302) and p(xz) = N(7O,102) in units of $,
millions. Furthermore, assume that the decision maker has an exponential utility function
with risk aversion coefficient ¥y = 0.1 $, millions™".

Using Equation (3.12) with utility function u(x) = 1—e77%, the certain equivalent is

CE=u" [max{j(l—e-w )p(xl)dxl,.[(l—e‘m )p(xz)dsz. (3.17)
x| X2

We can use the following result from Howard (1971), showing that when x follows a
Gaussian distribution and the decision maker has an exponential utility function, the cer-
tain equivalent for x can be computed using a simple closed-form solution (Appendix A.1):

CE(x)=u—%y0'2, (3.18)

where y and o are the mean and standard deviation of x, respectively, and 7 is the risk
aversion coefficient.

Using the result in Equation (3.18),
302 102

,70
2-10 2-10 (3.19)

CE = max {,ul —%yoﬁ,yz —%7/022} = max{lOO—
= max {55,65} = $65 million.

It is therefore optimal for the decision maker to choose the second project, because its
certain equivalent is greater than that of the first ($65 million versus $55 million). Due to
the decision maker’s risk aversion and the greater uncertainty in profits for the first project
as measured by the variance, the decision maker should choose the second project even
though the first project has a higher mean. A risk-neutral decision maker would of course
have chosen the first project, and their certain equivalent would have been $100 million.

3.3 Graphical models

Graphical models that represent decision situations help structure the various elements.
The modular approach helps in studying the essential distinctions without getting bogged
down with unnecessary and less relevant details. Graphical models are extremely useful
for communication between the decision maker and the analyst, since they help identify
and discover relationships among the various key distinctions. In Section 2.3, we studied
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graphical models for uncertainties represented via Bayesian networks. In this section, we
briefly review some important graphical models that also explicitly include decisions and
values of prospects.

In decision analysis, the two most popular graphical models for representing and evalu-
ating decision situations are decision trees and influence diagrams. Decision trees are
simple graphical models that are typically taught in any first course in decision analysis.
In the early years of decision analysis, decision trees were so popular that they were
almost synonymous with the field of decision analysis. Influence diagrams have become
popular since their inception in the 1970s and 1980s, as they are excellent tools for both
communication and computation. In this section, we briefly review these two graphical
models.

3.3.1 Decision trees

Decision trees are graphical models that represent the conditional and informational
precedence relationships between distinctions. Square (or rectangular) nodes represent
decisions, and the emanating arcs (as viewed from left to right) represent the alterna-
tives along branches. Circular (or oval) nodes represent uncertainties, and the emanating
arcs are associated with the corresponding probabilities for the different possibilities.
Decision trees are indeed graphical models that are “trees,” in the sense that children do
not have more than one parent. The leaves of the decision tree represent the scenarios of
the decision situation; each scenario is associated with a value for each prospect. When
the decision maker has risk preferences — i.e., is not risk neutral — each scenario is also
associated with utilities that are computed from the values using the decision maker’s
utility function.

The solution procedure is termed “rolling back™ a decision tree, which is the standard
backward induction procedure in dynamic programming problems. At the circular nodes, a
sum—product operation is performed where probabilities are multiplied with the respective
expected utilities (or values, if risk neutral), and then they are added. At the rectangular
nodes, the expected utility is maximized, and the maximizing alternative is recorded as the
optimal choice for that particular situation.

Figure 3.6 presents the decision tree for the pirate example. The decision node represents
the pirate’s digging decision, and the only uncertainty is whether the treasure is present or
not. The values for each scenario are shown at the leaves of the decision tree. Since the pir-
ate is risk neutral, the optimal alternative is computed by maximizing the expected value.
The figure graphically depicts the very computations that were performed in the Examples
subsection of the previous section. It is optimal for the pirate not to dig since the expected
value of digging is negative.

Decision trees are extremely intuitive and easy to understand since they are structured in
a way in which decision makers naturally view their decision situation. A key advantage is
that they are able to capture the asymmetries that are typical in real-world decision prob-
lems. For instance, there is an asymmetry in the pirate example — when the pirate decides
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T
reasure $100 K
(0.01)
Dig
-$8.9 K
No treasure $10K
$OK (0.99)
Do not dig
$0 K

Figure 3.6 The decision tree for the pirate example. There are two alternatives: dig or do not dig. The
uncertain outcome is the presence or absence of the treasure.

not to dig, the uncertainty around the presence of treasure does not affect his value. Thus,
the decision tree in Figure 3.6 does not need to show all four scenarios and only shows
three instead; the uncertainty around the presence of the treasure has been “collapsed” in
the situation in which the pirate decides not to dig.

An important disadvantage is that decision trees become intractable for decision situations
involving a large number of distinctions, as they grow exponentially with the number of
distinctions. It is practically impossible to analyze decision situations with several decisions
and a large number of uncertainties using trees, as the large number of leaves makes prob-
lem representation difficult. Complex situations demand the use of more sophisticated deci-
sion analysis tools. They may be more amenable for representation and solution through
other graphical representations, such as influence diagrams, which we discuss in the next
subsection.

Discussion: probability trees

Decision trees that represent situations with only uncertainties and no decisions are known as
probability trees. They can be useful in a variety of ways. For instance, it is often easy and con-
venient to use them to perform probabilistic computations such as inference. For an example of
Bayes’ rule being performed using probability trees, the reader may look ahead to Figure 3.16.
As another application of a probability tree, see Figure 3.12, which depicts a lottery for a com-
pany that owns an oil field. Here, the probability tree also depicts the values of the prospects at
the leaves, just like in a decision tree.

3.3.2 Influence diagrams

An influence diagram captures a decision situation by depicting the relationships between
decisions, uncertainties, and preferences (Howard and Matheson 1984). They capture the
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conditional independencies in the model and are able to represent the model as conveni-
ently assessed by the decision maker. Influence diagrams have been particularly successful
in medical expert systems as an aid in encoding expert knowledge, and they have also been
applied successfully in several other domains. Influence diagrams can capture complex
modeling situations due to their succinct graphical form.

Recall from Section 2.3 that in a Bayesian network, the nodes represent uncertainties,
and the edges capture the conditional relationships between nodes. Every node is associ-
ated with a probability for each possible state of the node conditioned on each possible
state of its parents. For discrete uncertainties, this is typically represented in the form of a
conditional probability table. An influence diagram is a directed acyclic graph that can be
viewed as an extension or a generalization of a Bayesian network. It has a larger variety of
nodes as well as arcs, because it is intended to represent a decision maker’s entire decision
situation and not merely the uncertainties.

Influence diagrams have three kinds of nodes. Along with uncertain nodes, they also
include decision nodes and value nodes. Uncertain nodes are drawn as ovals, just like in
Bayesian networks, whereas decision nodes are rectangles. Different authors use different
symbols for value nodes; examples of symbols include diamonds, hexagons, and octagons.
We will use diamonds for value nodes in this book. A special case of an uncertain node is
a deterministic node, typically drawn as a concentric oval. A deterministic node is com-
pletely determined when its parents are known. Thus, one can think of a deterministic
node as an uncertain node where the conditional probability distribution for that node only
involves 1s and Os. When influence diagrams were initially conceived, they were meant to
contain, at most, one value node. Influence diagrams with multiple additive or multiplica-
tive value nodes were introduced by Tatman and Shachter (1990), and they can provide
additional computational savings. In this book, we will focus on influence diagrams with
a single value node.

The semantics of the edges or arcs are more involved in influence diagrams, and they
take on different meanings depending on the types of nodes toward which they are directed.
Conditional arcs are those arcs that lead into uncertain nodes, and they have the same
meaning as in Bayesian networks. Informational arcs are those arcs directed toward deci-
sion nodes. If any node has an arc leading into a decision node, that variable is observed at
the time the decision is made. Thus, the parents of a decision variable are those variables
that will be observed before the decision must be made. Informational arcs are added only
when these nodes are observed before the decision. Functional arcs are those directed
toward a value node. Some authors do not distinguish between conditional and functional
arcs, viewing a functional arc as a special case of a conditional arc.

Influence diagrams are not merely pictorial or graphical depictions of a decision situ-
ation. Their power lies in the fact that they have both qualitative and quantitative capabil-
ities. The model also involves numbers that can be used for computations. Every uncertain
node is associated with a conditional probability distribution, like in Bayesian networks.
Every value node is associated with a value table for the value function, indicating how
much the decision maker values every prospect. This might often be related to a monetary
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Conditional probability table

aorlrlwount Prob.
high low
0.35 0.65
Drill? o
Value table
Profit Value
(M$)
Drill? | Oil
amount

yes high 120

yes low -50

no high 0

no low 0

Figure 3.7 The influence diagram for the oil wildcatter example. There are two alternatives (drill or
not) and an uncertain amount of oil.

value of the prospect, though values might also be defined otherwise. In this book, we will
use monetary units of value, as our primary focus is on VOI computations.

Figure 3.7 presents an influence diagram for a classic decision situation known as the
oil wildcatter example (Raiffa 1968). It is a simple influence diagram, with one node of
each kind, representing the decision situation for someone who owns an oil field. In this
simple version of the example, the only decision is whether to drill a well or not. The main
uncertainty is the amount of oil in the field, modeled as a binary variable with the states
high and low. The decision maker’s value is the profit from the field, which is a function
of the amount of oil and the drilling decision. Often in an influence diagram, the missing
arcs reveal more than the arcs that are present. Note that there is no arc between the drill-
ing decision “Drill?” and the uncertainty “Oil.” There is no arc from the decision to the
uncertainty because the decision does not affect how much oil there is underground. There
is no arc in the reverse direction, from the uncertainty to the decision, because the deci-
sion maker must decide without observing the amount of oil. The figure also depicts the
numbers behind the influence diagram, along with the diagram itself. The uncertain node
is associated with a conditional probability table, indicating that there is a 35% chance that
there is a high amount of oil. The value node is associated with a value table, indicating that
drilling a well in a field with a high amount of oil returns a profit of $120 million, whereas
drilling a well in a field with a low amount of oil results in a loss of $50 million.
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Drill?

Revenue

Figure 3.8 The influence diagram for the oil wildcatter example, including deterministic nodes for
cost and revenue.

An influence diagram can be drawn in several ways. Consider Figure 3.8, which includes
two additional (deterministic) nodes that provide more detail to the model from Figure 3.7.
These nodes are depicted as concentric ovals. This influence diagram explicitly indicates
that the profit is a function of the cost of the well and revenue from the oil field. Revenue
is assumed to be a deterministic function of the amount of oil and the drilling decision.
The uncertainty about the amount of oil propagates to the revenue, and there is uncertainty
around the revenue. The cost of the well is fixed and known; therefore, cost is a determinis-
tic function of the drilling decision. Note that an influence diagram with only deterministic
nodes and no uncertain node is equivalent to a standard spreadsheet model.

As an illustration of a slightly more complex influence diagram, consider the diagram in
Figure 3.9. This is an extension of the oil wildcatter example and includes seismic testing.
This influence diagram has five nodes in total: two decision nodes, two uncertain nodes,
and one value node. The decision maker decides whether to perform a seismic test. If he or
she decides to test, a seismic report is observed before the drilling decision is made. The
seismic report is assumed to only convey whether the test is positive or negative. From the
conditional probability table for the report, we see that the seismic report is assumed to
be stuck at negative if the test is not performed — i.e., it is uninformative. The presence of
the arcs from the seismic test decision node and the report uncertainty node to the drill-
ing decision signify that they are observed before the decision maker chooses whether to
drill the well or not. The profit is a function of the cost of the test (if it is performed), the
cost of drilling (if the well is drilled), and the amount of oil in the field. The reader can
compare the numbers from Figures 3.7 and 3.9 and infer that the cost of the seismic test is
assumed to be $20 million. Although this influence diagram is more complicated than the
previous examples, it is still highly simplified. Later in the book we present more realistic
and finer-grained models for decisions involving petroleum exploration and production
and seismic testing, incorporating the spatial aspects of the uncertain distribution of oil, the
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Conditional probability table

Report_ Prob.
(seismic)
Qil - .
Test? positive | negative
amount
yes high 0.75 0.25 Conditional probability table
yes low 0.1 0.9 Srlrlmunt Prob.
no high 0 1 -
no low 0 1 high low
035 | 065
Value table
? ine
Test? Drill? Profit Value

(M$)

Test? | Drill? | Ol
amount

yes yes high 100

yes yes low -70

yes no high -20

yes no low -20

no yes high 120

no yes low -50

no no high 0

no no low 0

Figure 3.9 The influence diagram for the oil wildcatter example with seismic testing.

spatially distributed information from seismic tests, and the choice of different locations
to drill the well.

There are certain restrictions and conditions on formulating valid influence diagrams. An
inconsistency arises if information known before one decision is made is not known before
subsequent decisions. Therefore, to be a valid influence diagram for a rational individual,
there must exist at least one “no forgetting” ordering of the decisions such that all earlier
observations and decisions are observed before any later decisions are made. No forgetting
is a standard assumption for influence diagrams, and often the no forgetting arcs are not
explicitly represented in the diagram but are inferred implicitly. Also — of particular rele-
vance to VOI computations — it is inconsistent to make observations that tell the decision
maker anything about the decisions yet to be made, so it is required that uncertainties on
which observations are made not be responsive in any way to the decisions (Heckerman
and Shachter 1995). This is enforced by not allowing the nodes for such uncertainties
to be descendants of the decision node. We refer to such uncertainties as unresponsive
uncertainties.
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Pitfalls: use the correct semantics for arcs in influence diagrams

A common mistake while formulating influence diagrams is to add arrows because we feel
that the decision “depends” on certain variables. Influence diagrams have arcs with specific
semantics, as we have described earlier in this section, and care must be taken to formulate
the diagram correctly. Moreover, since people are usually familiar with other graphical mod-
els such as flowcharts, there is a tendency to use the arcs too casually. We have observed that
although influence diagrams are intuitive diagrams for representing decision situations, there
is a little bit of “unlearning” that may be required to use them correctly. Formulating influence
diagrams can be an art. The decision maker or analyst will need to learn the specific semantics
through examples and, once the concepts have been mastered, should be able to build influence
diagrams at will.

Influence diagrams are not merely tools for representation and communication — they are
also effective computational tools that evaluate and analyze decision situations. The gen-
eral problem that an influence diagram solves is to determine the decisions that maximize
the expected utility when the parents of each decision are observed before it is made. In
other words, the goal is to find the optimal strategy. Let us first define a strategy before we
discuss how the optimal one is determined.

A strategy is an assignment of an alternative to every scenario of observations that are
made at the time of a decision for every decision in the decision situation. In other words,
a strategy provides the decision maker with a plan that tells him or her what alternative to
choose at any possible stage in the decision situation. For instance, consider the decision
situation represented by the influence diagram in Figure 3.9. An example of a strategy
is as follows: the decision maker should perform the seismic test and drill if the report
is positive and refrain from drilling if the report is negative. An alternate strategy would
be: the decision maker should not test and should drill the well. Yet another strategy would
be: the decision maker should test and drill the well regardless of what the report declares.
Intuitively, this last strategy seems far from optimal — why should the decision maker test,
thereby presumably spending a non-trivial amount of money, and disregard the information
from the report?

An influence diagram solution algorithm determines the optimal strategy based on the
norms of decision theory. The optimal strategy is one that maximizes the expected util-
ity, and the expected utility of the optimal strategy is known as the maximum expected
utility. The certain equivalent of the decision situation can be obtained from the max-
imum expected utility, as described earlier. Therefore, the solution of an influence
diagram reveals both the optimal strategy and the certain equivalent of the decision situ-
ation, informing the decision maker about what to do in the decision situation and what
the decision situation is worth to him or her. Note that the maximum expected utility of
the decision situation is an internal result that any influence diagram solution algorithm
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will compute in order to find the optimal strategy. Influence diagrams are also useful for
performing efficient appraisal of decision situations, including sensitivity analysis and
VOI analysis.

When influence diagrams were initially conceived, the solution method involved
transforming them into decision trees (Howard and Matheson 1984). In the 1980s, sev-
eral techniques were introduced to directly evaluate the influence diagram through a
sequence of variable elimination steps without the need for converting the diagram
into a decision tree network (Shachter 1986). The popular algorithms in the literature
converted influence diagrams to a simpler form through a sequence of operations called
value-preserving reductions. These operations maintain the feasibility of the problem,
retaining the maximum expected utility at every iteration. The diagram is reduced until
all that remains is a single value node so that the decision situation can be valued.
The solution process takes expectation over the uncertainties and maximizes over the
decisions. The algorithm terminates when all nodes except the value node have been
absorbed into the graph. The optimal strategy and the maximum expected utility are
computed in the process.

There have been several subsequent algorithms proposed to solve influence diagrams.
Since the 1990s, various efforts have focused on converting an influence diagram into related
graphical structures, such as valuation networks (Shenoy 1992), junction trees (Shachter
and Peot 1992; Jensen et al. 1994; Shachter 1999), or decision circuits (Bhattacharjya and
Shachter 2007) for efficient solution and analysis.

3.3.3 Examples

For whom the bell tolls: Gaussian projects example

Keywords: Gaussian projects example, bivariate Gaussian distribution, decision tree, graphical

model, risk-averse decision maker

Decision trees are typically drawn for decision situations with distinctions of interest that
have discrete sample space. For instance, Figure 3.6 presents the decision tree for the pirate
example where there are two alternatives (dig or not) and where the only uncertainty has
two states (treasure present or not). In this example, we remind the reader of the Gaussian
projects example from Section 3.2, which includes a continuous uncertainty. Here, the
decision maker can choose at most one out of two projects. The marginal distributions for
the project profits are Gaussian with p(x;) = N(100,30%) and p(x, )= N(70,10?) in units
of $, millions. The decision maker has an exponential utility function with the risk aversion
coefficient y = 0.1 M$~".

Figure 3.10 shows the same computations that were performed earlier, but this time they
are depicted by a decision tree. The chance nodes in the tree explicitly display the con-
tinuous nature of the profits. The decision node makes a choice between the two projects
and indicates that it is optimal for the decision maker to choose the second project. The
certain equivalent of the second project and therefore the decision situation is $65 million.
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Figure 3.10 The decision tree for the Gaussian projects example. The decision maker can choose at
most one of two projects with uncertain Gaussian distributed profits.
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Figure 3.11 The influence diagram for the oil and gold example. Oil amount, price of oil, and price
of gold are uncertain binary variables.

MacKenna’s gold: oil and gold example
Keywords: oil and gold example, graphical model, lottery, influence diagram, probability tree,

risk-averse decision maker

Let us illustrate an example of a lottery — i.e., situations that do not incorporate decisions
but do include values for prospects. Consider a company that owns a producing oil field.
The company is assumed to have an exponential utility function with the risk aversion
coefficient ¥ = 0.002 M$-. For the moment, all decisions pertaining to field development
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Figure 3.12 The probability tree for the oil and gold example. There are no decisions in this tree.

have been made. The company may still wish to contemplate the uncertainties involved and
their implications on its profits. Figure 3.11 shows an influence diagram for the company’s
lottery from Bhattacharjya and Shachter (2010).

The three uncertainties are oil amount, price of oil, and price of gold — all modeled as
binary random variables. The conditional probabilities for the three uncertainties are shown
in the figure using conditional probability tables. What makes the diagram different from
a (typical) Bayesian network is the presence of a value node, which models the company’s
profits as a function of the amount of oil and the price of oil. These numbers are shown in
the value table associated with the node for profits, conditional on its parents.

Figure 3.12 shows the probability tree corresponding to the influence diagram in
Figure 3.11. This is a probability tree —i.e., a special case of a decision tree — because there
are no decision nodes in the tree. The conditional independence in this situation should be
clear from looking at the appropriate branches of the tree. For instance, the amount of oil
does not affect the conditional probability numbers for the price of gold in the probability
trees. The price of oil and the price of gold are clearly correlated though.

The company is risk averse, so every prospect is associated with utilities that are com-
puted from the values using the transformation u(x) =1—e77*. The probability tree is used
to compute the expected utility through the standard rollback procedure. Note that the
notion of maximum expected utility is no longer pertinent, as there is no decision node that


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.004
http:/www.cambridge.org/core

88 Decision analysis

performs maximization. The certain equivalent of the situation can be computed by apply-
ing the utility inverse function to the expected utility. It is calculated to be $38.9 million.

In the influence diagram in Figure 3.11, the price of gold clearly does not affect the com-
pany’s profits, as seen from the lack of an arc into the value node. What, then, is the point
of including it in the diagram? Even though this node does not currently contribute to the
company’s value, the company may want to include it in the model since it is relevant to the
price of oil. Bhattacharjya and Shachter (2010) show how the company may wish to hedge
its risk by considering lotteries that depend on the price of gold, such as through financial
instruments like futures. The company can use the correlation to improve its value by being
in a position to benefit from the price of gold even if the oil price becomes low and affects
its revenues from the oil field.

Time after time: time-lapse seismic example

Keywords: rime-lapse example, seismic data, graphical model, influence diagram

In the exploration and production of hydrocarbon reservoirs, decisions are complex due to
several uncertainties: uncertainty in the geological properties, seismic imaging, repeatabil-
ity, reservoir structure, rock and fluid properties, etc. Furthermore, several decisions need
to be made over the entire lifecycle, and often it is not clear how current decisions might
affect the future bottom line. In the exploration and characterization stage, more informa-
tion is acquired about the reservoir structure; the reservoir rock and fluid properties; and the
spatial distributions of lithology, porosity, and saturations, as well as other factors beyond
the scope of this book such as oil prices and even the political scenario. Later, decisions
have to be made about the technical and economic feasibility of seismically monitoring the
reservoir during production.

Although several case studies show that four-dimensional (4-D) seismic tests are
extremely useful — e.g., Lumley (2001) — in practice it may often be unclear whether they
will actually add value to the production process for a particular reservoir. In their paper
about assessing the technical risk of a 4-D project, Lumley et al. (1997) propose a score-
card method to score a particular reservoir based on reservoir and seismic properties. The
scorecard provides a quantitative framework that aids in answering the question — should
one perform a 4-D seismic survey? The following example, described in Bhattacharjya and
Mukerji (2006), builds on the paper by Lumley et al. (1997) to model the 4-D monitoring
decision problem using influence diagrams. We delve into this example in much greater
detail than other examples in this chapter because it is significantly closer to a real practical
application of the concepts. The reader should be aware, however, that it is still a toy prob-
lem in comparison to applications in forthcoming chapters.

Value from 4-D seismic monitoring

Economic value may be derived from 4-D seismic surveys in several ways. Time-lapse seis-
mic images, when properly interpreted using rock physics relations, can identify bypassed
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oil and thus add significant reserves, helping to rejuvenate and prolong the life of the field.
They may also spot potentially problematic changes like early breakthroughs and save
millions of dollars by ensuring timely corrective action and adjustment of depletion plans.
Other benefits include identifying inefficient sweep, optimizing injection programs and
design of production strategies by monitoring injected fluid fronts, mapping reservoir com-
partmentalization, and identifying faults (Lumley 2001). Time-lapse seismic data are used
as a tool for better management of the life of the field. The ultimate value comes from being
able to detect some behavior that deviates from what was expected (Blangy et al. 2014).

The value of a 4-D survey depends on the reliability, repeatability, and overall quality
of the survey, as well as on the reservoir conditions such as rock and fluid properties and
reservoir temperature and pressure. If the tests are unreliable, then it may not be valuable
to perform them because there is no confidence in the interpretation. However, even if the
tests are reliable but the reservoir is fairly homogenous or if it is clear that it is soon to
become uneconomical, then again it may not be worthwhile to spend money in trying to
monitor the fluid flow.

Lumley et al. (1997) use a scorecard method to gauge the value from a 4-D seismic sur-
vey. The scorecard is divided into two basic categories: reservoir and seismic. The reser-
voir scorecard shows the estimated score for reservoir-related properties like dry rock bulk
modulus, porosity, and fluid saturation change. A particular reservoir with a reservoir prop-
erty that brings about a favorable seismic response gets a high score for that property. For
instance, a typical reservoir in Indonesia with unconsolidated rocks and low bulk modulus
gets a high score. This is favorable, as unconsolidated rocks with low bulk modulus are
seismically more sensitive to fluid changes. The seismic scorecard indicates the score for
the estimated seismic response and includes factors like image quality, resolution, and
repeatability of the seismic tests. The value of the 4-D seismic data is the final score, which
is the sum of the scores for all the relevant properties. Tools like scorecards and decision
trees are popular and useful, but sometimes complex situations demand the use of more
sophisticated decision analysis tools. The scorecard can be thought of as a special case of
an influence diagram model with only deterministic nodes. Understanding the interrela-
tionship among the reservoir factors, the seismic factors, and the associated uncertainties
is a crucial element in seismic testing that may not be well captured in a scorecard. An
influence diagram uses these relationships and relates the observed phenomena with the
uncertain reservoir conditions to estimate the seismic response.

Influence diagrams for 4-D seismic monitoring

In our analysis for this example, we assume that an initial three-dimensional (3-D) seismic
characterization has been conducted before studying the feasibility of a 4-D seismic sur-
vey. We also assume that the future prospects for the field are promising. Other information
available includes well log and core data. There are certain properties that are observed
from the available information. For instance, we may roughly know the average depth
of the reservoir and the reservoir thickness. We may also know whether the acquisition
conditions will be favorable or not before we actually perform the 4-D seismic test. These
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Figure 3.13 The influence diagram for the time-lapse example (collapsed nodes).

properties will be labeled as the “observable properties.” Interrelationships among the
observable, reservoir, and seismic properties are very important.

Figure 3.13 gives a compact graphical representation of the relationship between all the
properties. In the following text we expand out all the groups to show the nodes within
them. The observable properties are known before the decision is made, and they are
related to the reservoir and seismic properties. The value derived from 4-D seismic testing
is through some of the reservoir properties, the seismic properties, and the decision that
is made. The complete influence diagram model (represented using the software Netica,
as well as in MATLAB) is available on the book website and can be opened up to look at
the details of the various conditional probability tables. We also use this influence diagram
model for some exercises in Chapter 7.

Figure 3.14 expands the nodes for the observable, reservoir, and seismic properties. We
describe each category of nodes next.

Observable property nodes
We have assumed that the shown observable properties are known from initial careful 3-D
seismic characterization. Some of these properties are related to the reservoir character-
istics, like the fluid and rock properties from well data. The node for spatial heterogen-
eity refers to our belief regarding the heterogeneity of the reservoir and has two discrete
states: high and low. Here, what is taken to be observable is not the actual spatial distribu-
tion of reservoir heterogeneity but whether the spatial heterogeneity is high or low. This
may be estimated from geological analysis of the depositional environment. This analysis
is at a coarse level of granularity where we consider overall geological properties (high
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Figure 3.14 The influence diagram for the time-lapse example (expanded nodes).

or low spatial heterogeneity) without explicit spatial modeling, such as the techniques
described in Chapter 4.

Reservoir property nodes

All reservoir property nodes are probabilistic. The node for unpredictable changes captures
the cases where a 4-D seismic survey would be useful to monitor bypassed oil or break-
throughs due to unpredicted changes in the fluid flow behavior. The reservoir properties
group also has a rock property node and a fluid property node. These depend on the well
data observations of rock and fluid properties along with the level of spatial heterogeneity
and depth. Observing favorable rock properties in the well makes it more likely (but not
certain) that the reservoir rock properties are also favorable, more so if the spatial hetero-
geneity is low. Greater depth makes it more likely for the rock properties to be unfavorable
for time-lapse monitoring, since at depth, rocks are usually more consolidated, elastically
stiff, and less sensitive to changes in pore fluid and pressure conditions.

Seismic property nodes
The overall seismic response is considered a function of the seismic signature change,
fluid contact visibility, image resolution, and repeatability of the seismic tests — again, all
probabilistic nodes.
The direct parents of the value node include the decision node “Perform_4D_Seismic”
(with the alternatives “true” and “false”) and uncertain nodes “Unpredictable changes”
(with the states “high,” “low,” and “none”) and “Overall_Seismic_Response” (with the

EEINT3

states “very low,” “low,” “medium,” and “high”). The conditional probability tables are
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Table 3.2. Comparison of influence diagram results for the time-lapse example

Example 1 Example 2 Example 3
Observables
Depth Shallow Deep Shallow
Reservoir thickness High Low Low
Rock and fluid properties Favorable Poor Favorable
Acquisition Favorable Poor Poor
Spatial heterogeneity High High High
Value (if performed)/value 68.6/47.6 46.6/66.8 53.3/60.7
(if not)
Decision Perform Do not/caution Do not/caution

based on plausible relationships among the uncertainties, and the value for every outcome
was assigned by comparing the relative benefit on a scale of 0 to 100. For instance, the joint
outcome of high unpredictable changes, good seismic response, and no 4-D seismic would
result in a value of 0 because of lost profits from bypassed oil. The joint outcome of high
unpredictable changes, good seismic response, and true for 4-D seismic is assigned a value
of 100, as is the joint outcome of no unpredictable changes, poor seismic response, and no
4-D seismic. All possible outcome combinations were enumerated in the value model of
the influence diagram.

Next, we show examples of evaluating the influence diagram model for three cases. (See
also Chapter 7 for hands-on exercises using this model.) Examples 1 and 2 are inspired
by the “Indonesia” type and the “North Sea” type, respectively, of Lumley et al. (1997).
Example 3 is a hypothetical case where the decision is not trivial because of conflicting
conditions. The state of the observable nodes for each example and the results in terms of
expected value are summarized in Table 3.2. The table also presents the ratio of expected
value if the seismic test is performed to the expected value if it is not performed. These
relative numbers are only for illustrating the methodology, and these would vary substan-
tially depending on the particular reservoir, actual survey costs, and economic prospects.
The assignments of value will also vary from one decision maker to another based on their
preferences. For a risk-neutral decision maker, the optimal decision is the one with higher
expected value. For the first two cases of observables listed, perhaps one may not require
an influence diagram to come to conclusions; they may be fairly obvious and therefore
serve as a test case for the influence diagram. The real value of the model is when there
are conflicting interrelated observables and the decision is not as straightforward, as in
Example 3. In this case, the rock and fluid properties are favorable, and the reservoir is not
very deep, favoring the performance of a monitoring survey. On the other hand, acquisition
conditions are not favorable, and the reservoir is thin — conditions that are not in favor of
monitoring. However, the reservoir is highly heterogeneous and fluid flow is less predict-
able, conditions where a monitoring survey could be useful. Decision analytic models like
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influence diagrams could provide clarity of action for such complex decision situations
with conflicting conditions.

Influence diagrams are useful tools for modeling, evaluating, and analyzing complex
decision problems in subsurface exploration and production. Perhaps their main advantage
here is that they capture the relationship between geological properties with the drivers of
value. In a spreadsheet, this relationship is not explicitly represented, although the correl-
ation between properties may be implicitly hidden in the values assigned to the properties.
The scorecard can be viewed as an influence diagram with only deterministic nodes, and
thus it is a special case. Influence diagrams are also useful for communicating information
to experts and decision makers. The example described here is a simple one and is of course
not the only way to construct an influence diagram to capture the relationships between
uncertainties contributing to the value of time-lapse seismic monitoring.

3.4 Value of information

When a decision maker is faced with a decision situation, he or she is also faced with cer-
tain auxiliary decisions — i.e., decisions pertaining to some underlying decision situation.
One of the most typical auxiliary decisions pertains to information gathering — it may be
worthwhile for the decision maker to expend resources to acquire more information about
specific uncertainties relevant to their decision situation. For instance, consider a medi-
cal decision where surgery is an alternative. Should the decision maker undergo further
diagnostic tests before making the surgery decision? Although such tests would provide
the medical team with a better understanding of the condition, they may come at a price,
possibly through adverse side effects. It is therefore of interest to understand if performing
the tests would be worthwhile. Information gathering is a crucial aspect of most decision
situations, including medical, personal, and business decisions.

Decision analysis addresses issues pertaining to information gathering using the popular
notion of value of information based on the construct of a clairvoyant, which was intro-
duced in the early decision analysis literature. In fact, VOI is also referred to as value of
clairvoyance (Howard 1966); in this book, we will only use the former term for the sake
of consistency.

A clairvoyant can tell the decision maker how any uncertainty, past, present, or future,
will be resolved, as long as: (i) the clairvoyant need not exercise any judgment in under-
standing what it means for the uncertainty to be resolved and (ii) the resolution does not
depend upon any future action of the decision maker unless that action is specified. As
far as we are aware and despite various claims by certain people, there is no evidence
that clairvoyants (in the common parlance sense) actually exist in the real world. Yet, this
construct is extremely useful in decision analysis. One major benefit is that it encourages
clarity, ensuring that all participants involved in the decision process understand whatever
is being discussed. The other benefit, which is of particular relevance to this book, is that
it helps the decision maker evaluate information sources, activities, and experiments that
do in fact exist. There are several potential ways for a decision maker to resolve some key
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uncertainties before making a decision — for instance, through weather forecasts, sensors,
medical diagnostics, surveys, seismic tests, satellite images, expert consultations ... the list
is endless. Whether it is worthwhile for the decision maker to gather information to resolve
some uncertainties is of concern in most practical decision situations.

This section is devoted entirely to explaining VOI. The reader will discover that the
VOI for a particular information-gathering scheme depends on several key aspects of the
decision situation, the “accuracy” of the information (we will subsequently make this
notion more precise), and the decision maker’s risk preferences. The literature on the
subject and its applications have burgeoned appreciably since its inception in the mid
twentieth century. It is now a well-known technique in the arsenal of decision analysis
and has been widely applied across numerous applications for the appraisal of decision
situations.

3.4.1 Definition

The VOI for an unresponsive uncertainty x and a decision a is the price at which the decision
maker is indifferent between purchasing the information, therefore observing the uncer-
tainty before making the decision, and the original decision situation without the informa-
tion. The VOI is therefore the personal indifference buying price for the information — i.e.,
the price at which the decision maker is indifferent between having and not having this
information. The word “personal” indicates that the price depends on the decision maker’s
preferences. The word “indifference” indicates that, at this price, the decision maker would
be indifferent between receiving the information and acting without it. Therefore, a lower
price should be acceptable, and the indifference price is the maximum amount of money
that the decision maker should be willing to pay for the information.

Let us compute the VOI for the only uncertainty x in the simple decision situation with
the only decision a from a previous section. Similar to the calculations for the certain
equivalent of the original decision situation, the utilities for the two situations (with and
without information) need to be equated. When the information is available, then the uncer-
tainty is observed before making the decision. If x is observed and alternative a is chosen,
then the decision maker retains wealth w and pays price P for certain and also acquires
value v(x,a) from the decision situation since E (v(x, a)l x) = v(x,a). The optimal alterna-
tive if x is observed is

a”‘(x):argmaxaEA {u(v(x,a)+w—P)}. (3.20)

Note that the decision maker will not know how the uncertainty will resolve itself before
the decision is to be made. Since x is observed with probability p(x), the expected utility
for the situation where information is available, denoted MEU’, is

MEU’ zg‘maxaEA {u(v(x,a)+w—P)}p(x). (3.21)
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The VOI is the price P at which the expected utilities from Equations (3.9) and (3.21)
are equal —i.e.,

gmaxam {u (v(x,a) +w-— P)}p(x) =max,, {E(u (v (x,a)+ w))} (3.22)

It can be computed by iteratively varying the price until Equation (3.22) is satisfied.

VOI computations are simpler for situations where the decision maker’s utility function
satisfies the delta property. The certain equivalent of the situation with information CE’ can
be computed from Equation (3.21) —i.e.,

u(CE’ +w) ZmaxaeA{ ( xa)+w—P)}p(x)

= CE’ =u"! (Z max ., {u(v(x.a)+w-P)} p(x)] —w.

Using the delta property from Equation (3.6), this simplifies to

CE’ =u~! (; max,,, {u(v(x,a))}p(x)) -P. (3.24)

Taking the utility inverse of both sides of the equivalence condition in Equation (3.22),
we note that when the delta property holds, the VOI is the difference between the certain
equivalent of the decision situation with information when it is available for free and the
certain equivalent of the decision situation without information:

VOI (x (z max,_, { (v(x ))}p(x)] —u! (maxaeA {E(u (v(x, a)))}) (3.25)

The notation VOI (x) is used to clearly specify that the VOI is being computed for uncer-
tainty x. If the delta property is satisfied, then the VOI can be computed without the need
for iterative calculations. This simplification can be extremely beneficial in practice. Since
we use this assumption so extensively in the book, we will often refer to the VOI as the
difference between the posterior value, which is the certain equivalent if the informa-
tion is available for free, and the prior value, which is the certain equivalent without the
information:

(3.23)

VOI (x) = PoV(x)-PV. (3.26)

The reader should be aware of the more general definition in Equation (3.22).

3.4.2  Perfect versus imperfect information

In many real-world problems, there is a key uncertainty or distinction of interest x that has
a direct impact on the decision maker’s value, but it may be very difficult (or perhaps even
impossible) to observe x directly. It is often possible, however, to observe a “noisy ver-
sion” y of this distinction of interest. For instance, it is difficult and expensive to observe
the amount of oil in a reservoir — in fact, the only way to do so is to drill many wells that
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can drain oil from the entire reservoir. It is more convenient and much cheaper to exam-
ine the physical properties of the reservoir through seismic tests. The distinction between
information about the key uncertainty and another relevant uncertainty that is easier and
cheaper to observe is referred to as that of perfect versus imperfect information. Other
common examples of perfect versus imperfect information include: the dimension of a
product versus gauge measurements, the condition of a patient versus his or her symptoms,
the demand for a product versus market survey results, the physical location of an object
versus its satellite image, etc.

In the previous subsection, we showed how to compute the value of perfect informa-
tion for the general case and also for the special case where the decision maker’s risk
preferences are captured by a utility function that satisfies the delta property. Let us now
approach computing the value of imperfect information for our simple decision situation.

To compute the value of imperfect information —i.e., the VOI for some uncertainty y, the
decision maker must assess the probabilistic relationship between x and y through a joint
probability distribution. A popular way to do this is to assess the prior distribution p(x)
and the likelihood p( yl x). Although there are other ways to assess the joint distribution,
it is often easier to assess the probabilities in the causal direction — i.e., from the cause to
the effect of the cause. For instance, in medical decisions, it is typical to assess the prior
distribution of the underlying disease condition and the likelihood of the symptoms given
the disease. As a result, these distributions are often referred to as being in assessed form.
Inference is typically done in the opposite direction — i.e., from effect to cause — with the
help of Bayes’ rule, as described in Section 2.3. As a reminder, the following equation
demonstrates Bayes’ rule, which manipulates the prior distribution and likelihood to com-
pute the marginal likelihood or pre-posterior distribution p(y) and the posterior distri-
bution p(x I y):

_p(x)p(yix) _ p(x)p(rylx)
pl¥1y)= p(y)  Yp(x)p(yix)

The numbers computed as above are those in inferred form, since they are inferred from
the numbers in assessed form; these are the numbers that are used for VOI computations.

In our decision situation, the approach to compute the VOI for an uncertainty y that is
relevant to x is similar to that of computing the value of perfect information. Now, y is
observed with pre-posterior probability p(y); therefore, the expected utility for the situ-
ation where information on y is available, denoted MEU”, is:

MEU”:ZmaxaeA {E(u(va +w—P)|y)}p(y), (3.28)

(3.27)

where the posterior distribution p(x [ y) in Equation (3.27) is used to compute the condi-
tional utility associated with value v, = v(x,a), given y. The VOI is the price P where the
expected utilities from Equations (3.9) and (3.28) are equal:

ZmaxaeA {E(u(va +w —P) | y)}p(y) =max,, {E (u(va + w))} (3.29)
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Again, this can be computed by iteratively varying the price until the equation is satisfied.

Just like in the case of perfect information from the previous subsection, VOI computa-
tions are simplified greatly for a delta property decision maker. We do not demonstrate the
equations for the simplification, as they are similar to the previous subsection. The result is
that the VOI is the difference between the certain equivalent of the decision situation with
the imperfect information when it is available for free and the certain equivalent of the
decision situation without information:

VOI (y)= PoV (y)-PV

=yl (; max,., {E(u(va) I y)}p(y)) —u! (maxaeA {E (u (va ))})

(3.30)

3.4.3 Relevant, material, and economic information

Now that we are armed with the terminology, notation, and necessary tools to perform VOI
computations, we can return to what we briefly discussed in Chapter 1. The reader can look
back at Figure 1.2, which displays what we refer to as the “pyramid of conditions.” These
are the necessary conditions that make an experiment valuable, as per the decision analysis
approach. An experiment should be:

1. Relevant to the distinction of interest — i.e., observing its results should affect the deci-
sion maker’s beliefs about their value.

2. Material to the decision — i.e., there should be some experimental result for which the
decision maker would change their decision.

3. Economic for the decision maker — i.e., the value should be greater than the cost.

The requirements are very much intertwined: an irrelevant experiment cannot be material,
and an immaterial test cannot be economic.

Let us demonstrate the layering of conditions using VOI computations for an imperfect
source of information y for our simple decision situation. Recall Equation (3.9) from earl-
ier. Suppose that the a priori optimal alternative is a *. Then, the prior value is

PV =E(u(v,. +w)). (3.31)
If y is not relevant, then
max,, {E(u(va +w—P) I y)}z max,, {E(u(va +w—P))}, Vy, (3.32)

because y does not affect the random variable v,. Since reducing all values by a constant
does not change the optimal alternative

max ., {E(u(va +w—P))} = E(u(va* +w—P)). (3.33)

Therefore, y is not material.
If y is not material, then the optimal decision for all outcomes of y is a *; therefore:
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ZmaxaEA {E(u(va +w—P)|y)}p(y)= ZE(M(VH* +w—P)|y)P()’)

) (3.34)
= E(u(va* +w— P))

The solution to Equation (3.29) must be P = 0. Since the VOI is 0, the information cannot
be economic at any cost.

The pyramid of conditions captures what lies at the core of the VOI approach. While
observing information can reduce uncertainties, which may well occur if the information is
relevant, it may not have an impact on the decision., and unless there are regulatory reasons
or the decision maker is otherwise compelled to obtain the information, there is no value
to purchasing immaterial information. Even if a quantitative approach to studying infor-
mation gathering through VOI analysis is not possible, at the very least the decision maker
would be well advised to qualitatively contemplate the pyramid of conditions as a guide to
information-gathering decisions.

3.4.4 Examples
Treasure island: the pirate example

Keywords: pirate example, binary outcomes, VOI, perfect information, imperfect information,
risk-neutral decision maker

Let us return to the pirate example, extending the problem as discussed in Section 3.2. The
numbers are as before:

1 with probability 0.01
X =
0 with probability 0.99

| $100 000 with probability 0.01
@7 1-$10000  with probability 0.99

(3.35)

vdo not dig = $O

The pirate is trying to decide whether to dig for the treasure, which he believes is present
with a 1% chance. Since he is risk neutral, all computations will be performed with the
linear utility function u(v)=v.

In Equation (3.15), we computed the value of the decision situation without any add-
itional information. We rewrite the result, using the notation PV for prior value:

PV =max,, {E(v(x.a))} = max,, {Ev(x,a) p(x)}.

X

(3.36)
= max {0,(100 000-0.01)+(~10 000-0.99)} = $0

The chance of success is so low that it is not worthwhile for the pirate to dig for the treas-
ure; hence, the prior value is $0.

Let us now compute the value of perfect information. Equation (3.26) indicates that the value
of perfect information can be obtained by subtracting the prior value from the posterior value.
The posterior value is the first term in Equation (3.25). Using the risk-neutral assumption:
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Do not dig $0 K
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Dig ~$10K
No treasure
D t di
0 not dig $0 K

Figure 3.15 The decision tree for the pirate example with perfect information.

PoV(x) = gmaxaeA {v(x,a)}p(x)

(3.37)
= (0.01-max {0,100 000} )+ (0.99 -max {0,~10 ooo}) = $1000.

We can perform the same computations using the decision tree in Figure 3.15, which
graphically illustrates that the decision maker gets to observe the uncertainty before the
decision is made in the value of the perfect information computation. In this case, if the pir-
ate knows that the treasure is present, he will dig for treasure, whereas if he knows that there
is no treasure, he will not incur the loss from digging. The value of perfect information is

VOI (x) = PoV(x)—PV =1000-0 = $1000. (3.38)

The value of perfect information is the maximum the decision maker should be willing
to pay to get more information about the presence of the treasure. It therefore acts as a use-
ful upper bound for immediately removing excessively expensive information-gathering
schemes from consideration.

Now suppose that a friend approaches the pirate and offers to sell him a metal detector
for $500. The pirate believes that the detector has an accuracy of 95%. Should the pirate
be willing to purchase the detector? The first check is that the cost is less than the value of
perfect information; therefore, it might be worthwhile. Let us compute the value of imper-
fect information to confirm.

The first step is to use Bayes’ rule from Equation (3.27) to compute the pre-posterior
and posterior from the prior and likelihood distributions. This is shown graphically using
the probability trees in Figure 3.16. On the left-hand side, we see the probability tree for
numbers in assessed form. The tree indicates the prior on whether treasure is present p(x)
and the detector response conditional on whether the treasure is present p( vl x). To obtain
the numbers in inferred form, this probability tree needs to be “flipped” — i.e., the order
of the two uncertainties should be flipped around, as shown on the right side. The flipped
tree shows the pre-posterior on the detector response p( y), and the posterior, whether the
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Figure 3.16 Applying Bayes’ rule for flipping the probability tree. Left: the prior and likelihood
model. Right: the pre-posterior and the posterior probabilities.

treasure is present conditional on the detector response, p(x | y). A priori, the chance of
success is only 1%, but if the detector suggests that the treasure is present, then the prob-
ability of finding the treasure increases to around 16%. However, if the detector does not
show signs that the treasure is present, the probability decreases to 0.05%.

The posterior value from observing imperfect information can now be computed by
replacing the inferred form numbers into the first term of Equation (3.26). Using the
risk-neutral assumption (and using value numbers in thousands):

Pov(3)= S . (E ) )]0

= (0.059~max {0,(100-0.161)+(~10- 0.839)})
(3.39)
+(O.941-max {0,(100-0.0005)+(—10~0.9995)})

= (0.059~max {0,7.71})+ (0.941 -max {0, —9.95}) = $0.455 thousand.

Figure 3.17 shows the posterior value computations using a decision tree. We see that
the pirate should dig if the detector response is positive but should refrain from digging
if the response is negative. Note that if the detector response is positive, the (conditional)
expected value is $7.71 thousand. However, the pirate has no way to know for certain what
the detector will declare before it is purchased. The VOI computation utilizes the pirate’s
beliefs and, through probabilistic inference, helps the pirate realize that there is only a
chance of around 5.9% that the detector response will be positive. That is why the posterior
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Figure 3.17 The decision tree for the pirate example with imperfect information.

Ea

Figure 3.18 The influence diagrams for the pirate example. Left: without information; middle: with
perfect information; right: with imperfect information.

value of the detector is as low as $0.455 thousand. In fact, the value of the imperfect infor-
mation from the detector is

VOI (y)= PoV (y)— PV = 0.455—0 = $0.455 thousand. (3.40)

Since the price of the detector ($500) is greater than its value to the pirate ($455), it is
not worthwhile as is. The pirate may wish to negotiate the price with his friend and now
has the necessary tools to do so. In addition, perhaps the pirate may wish to consider other
detectors or sources of information that could improve his value for his decision situation.

Figure 3.18 shows influence diagrams for the various situations that we have compared
for our VOI computations. On the left, we see the influence diagram for the pirate’s
prior decision situation. The uncertainties for the detector response and the presence
of treasure are dependent, and hence there is a conditioning arc. The pirate’s profit is a
function of whether the treasure is present and the digging decision. The middle figure
represents the case of perfect information, where there is an additional arc from the treas-
ure uncertainty to the drilling decision. The informational arc indicates that this uncer-
tainty is observed before the decision is made. On the right, we see the case of imperfect
information; there is an informational arc from the detector response uncertainty to the
drilling decision. These examples illustrate the influence diagram interpretation of VOI
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for an unresponsive uncertainty: the VOI can be computed by comparing the value of an
influence diagram of the prior decision situation with that of an influence diagram where
there is an additional informational arc from the uncertainty under consideration to the
appropriate decision node.

For whom the bell tolls: Gaussian projects example

Keywords: Gaussian projects example, bivariate Gaussian distribution, VOI, perfect information,

imperfect information, partial information, total information, risk-neutral decision maker

We return to the Gaussian projects example, this time using different numbers and assump-
tions. There are two projects that the decision maker can invest in; each project has uncer-
tain profits modeled jointly as a random variable with a bivariate Gaussian distribution
p(x) =N ( /.L,E). For this example, we specify the prior mean and covariance matrix as in

Section 2.3 —1i.e.,
0 1
u:( ) z=[ p}. (3.41)
0 p 1

We will study how the VOI varies as a function of the correlation parameter p.

Previously in this chapter, we had assumed that the decision maker could choose exactly
one project. Here, we change this assumption: instead, the decision maker is free to invest in as
many projects as are profitable. Another difference is that here the decision maker is assumed
to be risk neutral rather than risk averse. As a result of these assumptions, the prior value is

2 2
PV =Y max{0,E(x;)} = Y max{0,u,}=0. (3.42)
i=1 i=1

Before making the investments, the decision maker can purchase information about the
projects. Such information may become available at a price by asking experts to investi-
gate the projects, write a report, and eventually provide quantitative data that are directly
informative of the profits. Depending on the accuracy of this work, such information might
be either perfect or imperfect.

We consider the situation where the decision maker must select either perfect informa-
tion about the profit of one project or imperfect information about the profits of both pro-
jects. The possible data are then of size m =2 (imperfect information about both projects)
or m =1 (perfect information about one project). For bivariate imperfect information:

y=x+e, &~ N(0,2L,), (3.43)

where we assume equal accuracy or standard deviation 7 for both projects. The other infor-
mation gathering scheme is that of partial perfect information x,. Due to the symmetry of the
model, it does not matter whether we consider Project 1 or 2 for perfect information gathering.

Consider first the case with imperfect information about both projects. The marginal
distribution of the data is p(y)= N(0,Z+T). As shown in Section 2.3 and Appendix A.1,
the conditional expectation of projects given data y is f,, = u+Z(Z+ T) "' (y-p). The
posterior value in Equation (3.30) becomes
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Figure 3.19 Sensitivity of VOI to the correlation parameter in the Gaussian projects example. The
lines represent partial perfect testing (crosses) and total imperfect testing for various accuracies.

2
PoV(y)=ijax{o,uxily}p(y)dy. (3.44)
i=1
With perfect information at one project, the posterior value is
PoV(xl) = J‘malx{xl,O}p(xl)aix1 +jmax {E(x2 | xl),O}p(xl)aix1

= Jmax{xl,O}p(xl)dxl +J‘max{px1,0}p(x1)dxl.

For the Gaussian model, the integral expressions in Equations (3.44) and (3.45) are
available in closed form (Appendix A.1). Here, the closed-form expressions for the poste-
rior value are

(3.45)

Pov(y)= 2 \/(1+12)(1+p2)—2p2’ POV(x1)=(1+p)' 546

J2r (1+2) —p? J2r

Figure 3.19 shows the VOI as a function of the correlation parameter p for three different
levels of measurement accuracy: T=1,T=0.5, and T=0.1. The VOI is larger when there is
greater positive or negative dependence between the two projects. This increase with cor-
relation is largest for the case with perfect information at one project. It is smallest when
we have very accurate imperfect information about both projects.

The VOI must be compared with the price of the experiments. Assume first that the price
of perfect information about one project is the same as the price of imperfect information
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about both projects with accuracy 7 = 0.5. Then, partial perfect information would be the
preferred information-gathering scheme only if the correlation | p| > 0.8. If the price of per-
fect partial information is the same as that of imperfect information about both projects
with accuracy 7 =1 then the partial perfect information-gathering scheme would be pre-
ferred if |p| > 0.45.

3.5 Bibliographic notes

Decision analysis fundamentals

Miles (2007) provides an entertaining history of ideas that lead to the inception of the field
of decision analysis up until the 1960s. Readers who wish to become more familiar with
decision analysis fundamentals are referred to introductory textbooks such as Schlaiffer
(1959), Raiffa (1968), Clemen and Reilly (1999), and Howard and Abbas (2015). We
highly recommend the recent book by Howard and Abbas (2015).

Graphical models

Kirkwood (1993) discusses solving problems with large decision trees. Shachter (2007)
and Bielza et al. (2010) present perspectives on modeling decision situations with influ-
ence diagrams. Although we have only presented decision trees and influence diagrams in
this chapter, there are a variety of other graphical models that explicitly represent decisions
in decision situations. The reader is referred to Bielza and Shenoy (1999) and Jensen and
Nielsen (2007) to peruse a few of these other graphical models. As some specific examples,
see the literature on sequential decision diagrams (Covaliu and Oliver 1995), valuation
networks (Shenoy 1992), game trees (Shenoy 1998), and decision circuits (Bhattacharjya
and Shachter 2007).

VOI fundamentals

The literature on VOI is founded upon classic work such as that by Blackwell (1953),
Schlaiffer (1959), Howard (1966, 1967), and Raiffa (1968) and continues to gain popular-
ity. Also see earlier work on VOI and sequential decisions (Miller 1975; Merkhofer 1977),
properties of VOI (Hilton 1981), and value of control (Matheson 1990).

VOI for canonical problems

The hunt for analytical closed-form solutions for VOI has often led to more negative results
than positive ones (Hilton 1981); as a result, many researchers have studied canonical
problems — i.e., specific classes of decision problems — to understand the general effect
of the parameters on information value. Among these, the two-action linear loss prob-
lem, also known as the go/no-go problem, has received particular attention in the litera-
ture (Schlaiffer 1959; Keisler 2005; Bickel 2008). Other articles about VOI for canonical
problems include studies on the news vendor problem (Clemen and Winkler 1985), the
portfolio problem (Keisler 2004; Bhattacharjya et al. 2013; Zan and Bickel 2013), the
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stopping problem (Bhattacharjya and Deleris 2014), etc. Due to the favorable mathematical
properties of the Gaussian distribution, many of these decision problems involve Gaussian
models.

Computational issues and application reviews

Algorithms for computing VOI using graphical models are discussed in Shachter (1999),
Bhattacharjya and Shachter (2008), and Krause and Guestrin (2009). There are several
articles pertaining to VOI applications — here we only list selected review articles. VOI
analysis is a powerful tool for medical decision making and related domains (Yokota and
Thompson 2004a, 2004b). Keisler et al. (2014) present a comprehensive review of applica-
tions related to the environment. Grayson (1960) introduced VOI to the oil and gas indus-
try, focusing on drilling decisions. Bratvold et al. (2009) provide a perspective on the past,
present, and future use of VOI in the oil and gas industry. There is extensive literature
on VOI applications in the domain of artificial intelligence and expert systems — see, for
instance, the early work of Heckerman et al. (1989).
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Spatial modeling

Figure 4.1 rocks along the shore
like soldiers marching in step
patterns surround us

Geoscientists and engineers who have to quantitatively characterize and forecast subsur-
face properties understand that there is always uncertainty in any Earth model. Geological
heterogeneities contribute to interpretation uncertainty, and delineation of subsurface het-
erogeneity is a key factor in reliable characterization, forecasting, and decision making.
These heterogeneities occur at various scales and can include spatial variations in lithology,
pore fluids, clay content, porosity, permeability, etc. How do we quantitatively model these

106
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spatial uncertainties? It is important for us to discuss spatial models since our book is about
spatial decision situations, data gathering at spatial locations, and value of information
(VOI) analysis of such spatial data. Most of the data examples used in the current chapter
will also be used later in the book for VOI analysis.

In Section 4.1, we discuss the need for stochastic modeling and uncertainty quantifica-
tion in spatial modeling. We discuss random fields and spatial prediction in Sections 4.2-3.
This is followed by an overview of commonly used geostatistical techniques, accounting for
some of their advantages and disadvantages: Gaussian models in Section 4.4, extensions of
Gaussian models in Section 4.5, discrete spatial models in Section 4.6, and multiple-point
statistics in Section 4.7. The presentation is not intended to provide a complete description
of models or methodologies. The final section in this chapter is a bibliography pointing out
some important references in geostatistics. Further details on selected models and methods
are provided in the appendix.

4.1 Goals of stochastic modeling of spatial processes

Before discussing various spatial models, it is useful to consider some of the possible goals
of a modeling exercise, because the appropriateness of any particular method depends, in a
large part, on the goal of the study. Stochastic methods vary considerably in their require-
ments for time, money, human resources, and computer hardware and software. Not all
stochastic modeling studies need the latest multiple-point technique; some studies will do
fine with the traditional variogram-based simulation technique or even with a robust esti-
mation technique such as Kriging.

Some of the models and methods used in spatial process characterization are purely
statistical, based on multivariate techniques for stochastic spatial correlation, interaction,
templates, or patterns. Others are deterministic, based on physical models derived from
established theory as well as laboratory observations. Each group of techniques can have
some degree of success depending on the particular study. It is often beneficial to combine
the best of each method to generate results more powerful than would be possible from
purely statistical or purely deterministic techniques alone.

Spatial statistics is characterized by modeling or data analysis of variables associated
with geographic locations. In Chapter 2, we described some data sets acquired and organ-
ized according to location. To motivate the current discussion, consider the illustration in
Figure 4.2 with petroleum reservoir variables.

From the currently available data — say, seismic data and well log information — the pet-
roleum company predicts the spatial reservoir variables of interest, such as the porosity and
permeability variables in Figure 4.2 (top left) at any spatial location. This prediction step
includes spatial modeling, not very different from that described by a graphical model in
Section 2.3, but now the variables are spatially dependent. Note that the porosity variable
varies smoothly in the east and north directions. Furthermore, the spatial variables tend to
be interdependent; permeability typically increases with porosity, but there is often a lot of
scatter in the porosity—permeability relation.
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Figure 4.2 Illustration of spatial modeling. Reservoir variables such as porosity and permeability
determine the fluid flow in the reservoir and the recoverable production. Rather than using one “best
guess” model of the predicted reservoir variables, the uncertainty is best quantified by stochastic spatial
modeling and multiple realizations of reservoir variables and their resulting production profiles.

The associated fluid flow and petroleum production from this reservoir are shown in the
bottom left display of Figure 4.2. In this illustration, the petroleum company has drilled an
injection well in the southwest corner and a production well in the northeast corner. The
injected water assists the production, and the flow of oil and water is directed by the poros-
ity and permeability in the reservoir. The company needs to predict the recoverable oil pro-
duction, but this is not straightforward because the reservoir properties are uncertain. One
possible prediction is to compute the expected value of porosity and permeability, given the
currently available data, and then use these as inputs to the fluid flow calculation. Under a
least-squares loss criterion, the optimal prediction is often called the Kriging surface after
the famous geoscientist D. G. Krige. (The intuition and mathematical aspects of Kriging
are covered in Sections 4.3 and 4.4.) This is a very common way of smoothing and visual-
izing spatial data, and it will continue to be a very important technique in spatial statistics.
The Kriging surface or the associated variance does not, however, capture all the spatial
attributes of the variable of interest. Moreover, the Kriging predictor does not necessarily
result in the most reliable prediction of the production since the flow simulation (transfer
function) is non-linear.
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Rather than using just the expected value or some other summary of the spatial vari-
able x, it is common to generate multiple realizations x',...,x% of spatial variables. From
the realizations, one can use Monte Carlo approximation to estimate integral expressions,
as described in Chapter 2. For non-linear prediction, the forward-propagated realizations
f(x'),.... f(x?) represent the uncertainty of the prediction variable. A fluid flow forward
operator f involves complicated interactions in the spatial variables, and propagating an
ensemble of realizations through the flow simulator will provide the petroleum company
with a much more reliable prediction of the recoverable petroleum production (Figure 4.2,
right) than using just a single prediction.

Before discussing particular spatial models, we consider some of the goals of spatial
modeling in more detail following the discussion of Srivastava (1994).

Stochastic modeling for visualization of spatial features

Stochastic models can serve as qualitative visual tools to catalyze better technical work.
Stochastic spatial models entail random process constructions with fluctuations around a
smooth description capturing the large-scale trends. Thus, stochastic models help to chal-
lenge the familiar layer-cake stratigraphy, with smoothly varying heterogeneities that are
often the prevalent belief. For instance, in an application as in Figure 4.2, cross sections
through stochastic models reveal much more visual complexity in the interwell region than
traditional models can portray. The value of the stochastic model in this context is simply
to make the experts realize that there are many possible renditions that equally honor the
data; to focus the views and opinions of a wide variety of experts; and, in so doing, to point
to an improved reservoir model.

Stochastic techniques are attractive not only for their ability to generate many plausible
outcomes but also for their ability to produce outcomes that have a realistic level of spatial
heterogeneity. Reservoir performance predictions are more accurate when based on models
that reflect the actual heterogeneity of the reservoir instead of using overly simplistic mod-
els. Most traditional methods for subsurface modeling lead to models that are too smooth
and continuous rather than showing the variability known to exist. Such smoothness com-
monly leads to biased predictions and poor development plans — actual breakthrough times
of water in wells end up being much quicker than expected, for example, or sweep is not as
efficient as the smooth model predicted.

Stochastic spatial modeling for assessing uncertainty and risk analysis

Stochastic modeling offers the ability to do uncertainty assessment and Monte Carlo risk
analysis because the various realizations and scenarios it produces are all plausible in the
sense that they honor all of the information. In such studies, hundreds, if not thousands,
of alternate models are generated and processed to produce a probability distribution of
possible values for some critical engineering parameters — for example, net to gross, con-
nected pore volume, or net present value, etc. These distributions are then used to optimize
decisions by minimizing some appropriate objective function.

A critical aspect of this use of stochastic modeling is the belief in some “space of uncer-
tainty” and that the stochastic modeling technique can produce outcomes that are a fair
representation of the spectrum of possibilities.
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Stochastic modeling for integrating spatial information

A reason for the increasing popularity of stochastic models and methods is due to their
ability to incorporate a broad range of information from different spatial data types that
more conventional techniques do not accommodate. Stochastic models provide a natural
framework for incorporating different information in terms of conditional probabilities and
prior and posterior probabilities. Sometimes the goal of using a stochastic approach to spa-
tial analysis may be the integration of different data types — for instance, seismic data with
petrophysical data — while at the same time ensuring that the model follows some basic
geologic principles. These complicated links between spatial variables and data sources
can be treated consistently through a formalized stochastic model.

Spatial information gathering may carry nearly perfect information at some loca-
tions — say, well logs of reservoir variables. Due to the spatial statistical dependence, this
local or partial knowledge at well locations will carry information about the surround-
ing sites of interest. In other situations, one may conduct a test with extensive spatial
coverage, but the test only provides noisy (imperfect) information about the primary
variable of interest — for example, three-dimensional (3-D) seismic attributes that may
be interpreted in terms of reservoir lithologies. This results in total (spatially exhaust-
ive) but indirect information that is available at all the sites where we aim to predict the
distinction of interest. We may have variants of these situations when we collect multi-
variate data sets, some of which are perfect, imperfect, partial, or total and often are at
different resolution scales. Integrating these data sets in a consistent manner requires
spatial stochastic modeling.

4.2 Random fields, variograms, and covariance

In the broadest sense, geostatistics may be defined as a branch of statistical sciences that
studies spatial phenomena and capitalizes on spatial relationships to model possible values
of variables at unsampled locations (Caers 2005). In geostatistics, variables or data are
modeled as random fields y(s), where y denotes the attribute (e.g., porosity or seismic
impedance) at a location with vector coordinates s. Just as a random variable is character-
ized by its probability density function (pdf) (see Chapter 2), a random field is character-
ized by the set of all joint n-variate pdfs for any number » and any locations s,,...,s, —1i.e.,

PDseees Vs Spaeees8,) = P08, ¥(5,)). (4.1)

Recall that the random variables (or the pdf) can have a discrete valued sample space or
a continuous sample space. For generality, a stronger definition of random fields via the
cumulative distribution function for any n tuple is often used, but the notion of a joint pdf
in Equation (4.1) for any set of variables is sufficient in our setting.

The joint uncertainty about the n values is then represented by the multivariate pdf.
The random field y(s) is said to be stationary if its multivariate pdf is invariant under
translations of the vector s. Invariance of the multivariate pdf also implies invariance of
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all lower-order pdfs (obtained via marginalization) and moments (expectation and vari-
ance). Choosing stationarity in a model simplifies inference (parameter estimation and
prediction). However, stationarity is a property of the random field model and not of the
underlying physical or geological processes. In practice, stationarity rarely holds, at least
not at all scales. A common choice is to model the trends of a process and then assume a
stationary residual surface of some kind. Nevertheless, the choice of which data to pool
together into one stationary population is a subjective one that underlies all statistical mod-
eling (Isaaks and Srivastava 1989; Pyrcz and Deutsch 2014).

Assume that n data are available at locations s;, i =1,..,n. The mean and variance, as
described in Chapter 2, are estimated by

~ 1 ~ 1 R
== y(s), 02=;Z(y(si)—u)2- (4.2)
i=l i=1

The mean and variance are summary statistics of the data that involve one datum loca-
tion at a time.

The variogram and, equivalently, the covariance and correlogram, are two-point statis-
tics in that they involve two data locations at a time, s; +¢ and s;, separated by distance or
lag vector ¢. The empirical variogram is estimated by

25/(t)=LZ(y(s,.)—y(s,.+t))2, 4.3)
n(t) 4
where the sum goes over the n(t) pairs of locations separated approximately by the same
vector (modulus and direction) £. The variogram is thus a measure of variability or dissimi-
larity between two y variables at a distance of .
The covariance is a measure of similarity and is estimated from the data as follows:

~

C(r)= %Z(y(s,- +6)=R)(v(s)-41) = ﬁ;y(% +1)y(s,) A,

=C(0)-7(1)

where C (0) = 62 is the stationary variance. The latter equality in Equation (4.4) shows how
the spatial covariance is related to the variogram for a stationary random field.

The correlogram standardizes the covariance to be in (—l, 1). It measures the linear cor-
relation between two y variables at a spatial distance ¢ —i.e.,

(4.4)

A

« C(¢)
t)=—— 4.5)
plO)=2 )

Typically, the semivariogram f/(t) increases with the separation vector # until it stabilizes
around a sill value. Correspondingly, the covariance/correlogram decreases down to its
zero value C (oo) =0; very distant data values are not correlated anymore.
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Discussion: variogram or covariance

Geostatisticians have traditionally preferred the variogram over the covariance/correlogram because
(1) its inference does not call for prior inference of the mean and variance and (ii) there are theoretical
models such as fractals that have infinite variance; hence, no covariance is defined, and yet they may
have a finite variogram. However, in recent practice it is just as common to work with the covariance
and estimate the mean as a function of explanatory variables as in a regression model.

Spatial two-point correlation between two different attributes y, and y, (e.g., porosity
and permeability) is described by the cross-covariance function given by:

élz(t):L ()’1 (si+t)_;u1)(y2(si)_:u2)’ (4.6)
n(t) 5
where 4, and L, are the stationary means of the two attributes.

Unless data locations are on a regular grid, tolerance of lag value (and direction) is
needed to find enough pairs, n(t) of data approximately at distance ¢ apart to infer an
experimental value for the variogram in Equation (4.3), covariance in Equation (4.4), and
cross-covariance in Equation (4.6). The level of tolerance needed depends on the amount
and spatial layout of the available data. The tolerance setting is another modeling choice
that impacts the resulting experimental variograms and hence the analytical models used
to fit the experimental variogram. A full angle/direction tolerance pools together all data
pairs with the same distance modulus |t| irrespective of direction, and the result is then an
omni-directional experimental variogram often modeled as an isotropic model. Isotropy —
that is, invariance with direction — is then a consequence of the angle tolerance, not neces-
sarily a physical characteristic of the underlying phenomenon.

In practice, when we have data y(s,), y(s, ),.., (s, ) available, the empirical variogram is
constructed. Next, we fit a parametric model, such as those presented in Table 4.1 (or any
other legitimate model) to the data. The simplest way to do this is by visual inspection to
answer questions such as: does the decline with distance appear to follow an exponential
trend? And is there a nugget effect? More sophisticated ways of parameter estimation will
be treated in Section 4.4 in the context of Gaussian random fields.

Four common examples of spatial covariance functions are shown in Table 4.1.
Many other popular spatial covariance functions are described in standard books on geo-
statistics — e.g., Deutsch and Journel (1992), Goovaerts, (1997), Lantuejoul, (2002), and
Chiles and Delfiner (2012). In the equations in Table 4.1, 72 is the nugget effect, which
only affects the variance; o2 is the variance—covariance of the spatially dependent pro-
cess, so the overall variance equals 72 + 62; and 7] determines the decay of the covariance
function. If 7 is large, the covariance goes quickly to 0, while it decays more slowly for
small 1. For the exponential covariance function, one can parametrize the decay by the
effective spatial range 3/7, since exp(=3) = 0.05, indicating that the correlation is only
0.05 at spatial distance | t| = 3/1n. The four covariance functions are displayed as a function
of lag distance in Figure 4.3 (left) together with the associated variograms (Figure 4.3,
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Table 4.1. Four examples of spatial covariance functions. For all covariance
models, the first term represents a nugget effect tied to uncorrelated noise or
measurement noise. The latter terms include spatial correlation

Model Covariance
Exponential ol t|) =7I(t|= 0) + 02 exp(— n| t|)
Matern 3/2 C(|t])=21(¢[=0)+ o (1+ n|¢])exp(-nlt])
Cauchy type C(l tl) - Tzl(| {|= 0) + 0 —
(1 )

Gaussian c(|f)=71(f=0)+0 exp(—n2 | t|2)

—e— Cauchy

i Gaussian

Covariance
Variogram

0.2} Exponential
- ----Matern 3/2
—o6— Cauchy
—rmmeme Gaussian
0 1 1

0 02 04 06 08 1
Distance Distance

Figure 4.3 Three different covariance functions and variograms. Left: covariance functions plotted
as a function of distance (first axis). Right: variogram plotted as a function of distance (first axis). The
parameters are variance 62 = | for the random effect, t> = 0.5 for the nugget effect, and correlation
decay n = 10.

right). The model parameters were here set to 72 = 0.5%, 6% = 12, and 11 = 10. All these four
common parametric covariance functions give valid positive definite covariance matrices
for n response variables at any combination of spatial locations s,,...,s,, .

The connection between the covariance models and the related variogram model
is shown in Figure 4.3. The variogram model y(| t|) =C (O) -C (| t|) would approach
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7(0*)=1?as|#| - 0, and yet y(0) = 0. When the variogram exhibits this discontinuity for
very small distances, it indicates the presence of an additive white noise process. The vari-
ogram increases with larger distance |t| and levels out around the effective spatial range.
The asymptotic value, as |t| goes to infinity, is y(oo) =0’ +1%

Recall that the variogram is just a summary statistic, or a theoretical second moment of
a model description, but for the Gaussian distribution (Section 4.4), it plays a crucial role
in the parameterization and indicates our ability to borrow information and attain predic-
tive power in the spatial domain. For most geoapplications, we are interested in specifying
parameters for spatial dependence or interaction, but it may not be the variogram directly.
In Sections 4.5-7, we present a couple of non-Gaussian models in some detail.

4.3 Prediction and simulation

We now explain concepts underlying spatial prediction. As we have discussed in the previous
section, in many spatial models the location-wise prediction and prediction variance may not
realistically capture the spatially dependent distinctions of interest. For this reason, the simu-
lation of spatial processes has become important and, for completeness, we briefly describe
some useful ways of spatial simulation. In subsequent sections, we will focus on concepts
related to the prediction and simulation methods tailored to the models for VOI analysis.

4.3.1 Spatial prediction and Kriging

One of the most important goals of modeling, and ultimately of importance for decision
making, is the ability to predict an unknown response as well as assess its uncertainty.
Prediction is well known in regression analysis where the model is fit from the currently
available response variables and explanatory variables. When there are new explanatory
variables, the goal is to use the fitted model to predict the new response. This prediction
is obtained by plugging the explanatory variables into the fitted regression model. The
prediction uncertainty can be computed based on the amount of data used for fitting the
regression model and the noise in the model. Notably, the uncertainty also depends on the
new explanatory variables. If these are near the center of the formerly collected data, there
is little uncertainty, but if the explanatory variables are far from the currently available
ones, there is greater uncertainty. In fact, it is unclear whether the regression model would
fit well far outside the domain of former data and in general it is best to avoid extrapolation.

In the geosciences, prediction relies on explanatory variables but also relates to the
dependence in the spatial variables. Observations made near a prediction site are often
most valuable when predicting spatial attributes. Early applications of geostatistics in the
mining industry addressed this question of predicting ore grade at a location based on
measured grade values at surrounding locations. In modern applications, one includes
explanatory variables as well as spatial proximity, possibly represented by a hierarchical
modeling framework. Moreover, one might not only be interested in predicting the ore at
a location but perhaps may also be interested in predicting the block volume or a response
from a process integrated over a complicated domain, such as the fluid flow response in a
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reservoir. The tools we use for prediction rely very much on the situation, including both
the modeling aspects and the relevant prediction tasks.

Suppose we want to predict the response at a spatial location s,. Denote the unknown
response by y(s,), and let y = (y(s,)....y(s,)) be the data at  other sites. Under expected
square loss, the optimal spatial predictor of the response is the conditional expectation
E ( V() | y). To see why this holds, let us compare the conditional expectation with another
predictor g(y) for arbitrary function g. The mean square prediction error (MSPE) is

E(y(s)) = g()) = E(¥(s9)~ E(y($) 1 y)+ E((sp) | )~ g(»)’
= E(¥(s) = E((s) 1)) +E(E(y(s) 1 1) - g(»))°
+2E((3(5) — E(y(5,) 1 ) (E(50) 1 1) - 8(3)))
= E(¥(s))— EG(s) 1 ) +E(E((s) 1 ) —g(»)

4.7

where the expected value is taken over all data y as well as the random value y(s,). In
Equation (4.7), we first subtract and add the conditional mean and then expand the quad-
ratic form. The cross-term cancels by double expectation —i.e., E(E(y(s,) | ¥)) = E(¥(s,)) -
The last term in the bottom row of Equation (4.7) is O for g(y)=E ( ()| y), whereas it
is positive for any other g function. Thus, the mean square error is smallest for the condi-
tional expectation.

The Kriging predictor is the best linear unbiased predictor — i.e., g(¥) = 2 ay(s;).

where the weights ¢, i =1,...,n are derived from minimizing the MSPE am(;ffg all lin-
ear and unbiased predictors. When we assume a Gaussian model, the conditional mean
E ( V() | y) is linear in the data y and is hence identical to the Kriging predictor.

The Kriging equations will be derived in Section 4.4 assuming Gaussian data. They
require only the mean function and the variogram (or covariance). The predictor considers
not only the correlation between the unknown and each datum (taken one at a time) but
also the correlation between any two data. All such correlations are two-point statistics,
as provided by the variogram model. Kriging is quite versatile and lies at the origin of the
success of traditional geostatistics.

Pitfalls: interpretation of Kriging results

Kriging estimates are very useful when the goal is to get a local best estimate (e.g., porosity or ore
grade at a prediction site). However, maps of Kriging estimates should not be used to represent
spatial uncertainty, as they were never designed to reproduce any spatial statistics. Kriging
estimates at two different locations do not reflect the model covariance between these two locations.
Kriging maps deliver an incorrect sense of spatial continuity. Marginal variances or two-location
correlations can be derived from the conditional covariance in the Gaussian case. More generally,
simulation aims at reproducing spatial continuity when a global response to the joint spatial
heterogeneity is desired, such as in reservoir flow simulations. Recall that £ ( f ( y)) £f (E ( y)), SO
even in the Gaussian case, where Kriging is the optimal predictor, we require function evaluations
of f for samples of y rather than the function evaluated at the Kriging estimate.
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4.3.2 Common geostatistical stochastic simulation methods

For visualization purposes, the marginal distributions at different sites may be sufficient,
but for prediction and decision making, we often need to generate multiple alternative
realizations from the joint distribution. This allows using the set of simulated realizations
and their response (e.g., through a flow simulator) as a measure of uncertainty. There are a
wealth of tools available for the spatial simulation of random processes, and this discussion
only introduces some key concepts. More background can be found in references provided
in the bibliography at the end of this chapter.

We first discuss some methods for unconditional and conditional simulation. The former
aims to generate spatial simulations from (i) a priori distribution or (ii) a priori notions
based on a training image or propagating variables using physical models (typically, dif-
ferential equations).

Point (i) often requires assumptions about a parametric family of distributions. Once
this distribution p(x) is established, sampling can be done using the Monte Carlo
techniques described in Section 2.5. The conditional simulation is from the posterior
distribution p(x | y), which is available from the prior distribution and by assuming
a likelihood model p( y| x) for the data. Depending on the likelihood model, the
conditional simulation from the posterior distribution may be simpler or more
difficult than the unconditional simulation.

Point (ii) resembles that of non-parametric modeling, where we enforce less parametric
and distributional assumptions. Unconditional simulation relies on templates, objects,
or patterns one would like to reproduce in the simulations. Conditioning involves
comparing the simulations with data. This may be done directly or via propagating
the simulations to the natural data domain.

Recall that both (i) and (ii) try to output realizations that can be used for prediction.
Ultimately, prediction may involve complicated transforms of variables — say, basin mod-
eling, fluid flow, or seismic wave propagation. One may compare unconditional predictions
with conditional predictions under various data acquisition schemes. This will make it pos-
sible to evaluate the usefulness of data in our ability to predict reliably and to eventually
make better decisions. The method used for sampling or simulation is very dependent on
the situation; nevertheless, we will present some of the main concepts next.

Directly simulating a sample from the unconditional prior p(x) or from the conditional
situation with posterior p(x | y) is only possible in a few special and simple cases. In
(low-dimensional) Gaussian models, with linear conditioning to the data, this is straight-
forward. It is also easy to simulate Markov chain models. (Both models are treated in
depth in Appendix A.) In more complex settings, it may be possible to use rejection sam-
pling, described in Section 2.5, where we generate realizations from another distribution
q(x) and then accept the likely ones as exact samples from the target prior or posterior
distribution.
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Unconditional plus error for the conditional: The idea here is to sample unconditionally
from the prior and then perform an update step to get a conditional sample. Under Gaussian
modeling assumptions, where the mean is linear in the data, this idea tends to work very
well for conditional sampling. The conditional sample is obtained as a linear combination
of the unconditional sample and the data. Noise is added such that the posterior sample
has the correct covariance. Assume that p(x)= N (p,X) and p(y | x) = N(Fx,T); then, the
algorithm is

Xuncond ~ N(ﬂaz), &~ N(y, T)
Xeond = Xuncona FEF (FEF' +T) ' (=FXypeona )- (4.8)

In the case where the data provide perfect information about x (also known as hard data
in traditional geostatistics jargon) at specific locations (i.e., partial perfect information),
the conditional realization is updated from the unconditional using the Kriging estimate
as follows: X.oq = Xyncona T+ Xiae — Xpneond | where Xlaa is the Kriging estimate using the
data, while Xxsn is the Kriging estimate using the values from the unconditional simu-
lation at the same spatial locations as the actual data. Since the data locations remain the
same, the Kriging matrix can be factored once and used for multiple conditional realiza-
tions, leading to computational efficiency. The approach requires efficient generation of
samples from the unconditional distribution. This is usually done by a direct method such
as spectral methods based on fast Fourier transforms or Cholesky factorization (see also
Appendix A.1).

Iterative simulation algorithms like Markov chain Monte Carlo are certainly viable for
sampling from the prior p(x) and posterior p(x | y) (see Section 2.5). In this way, one can
obtain dependent samples x',...,x5. The dependency means that subsequent samples are
very similar, but each sample itself is from the right joint distribution. A challenge here is
the computer time: the transient phase (burn-in) may be long, and mixing of the Markov
chain may be slow.

Sequential simulation algorithms all make use of the same basic procedure that also holds
for many of the direct routines for simulation (such as the Cholesky matrix factorization
for Gaussian simulation). This procedure relies on the sequential way of writing a joint
probability distribution —i.e.,

p(x)=p(x)p(x,|x)...p(x, | X, 1.or;)  unconditional,
p(x | y)z p(x1 |y)p(x2 |x1,y)...p(x,l |xn,1,...,x,,y) conditional. 4.9)

In a spatial setting over a defined domain of sites, one would need to sample one vari-
able (or blocks of variables) at a time. Note that the sequential simulation algorithm must
condition on previous simulations and all data. Some implementations of the sequential
approach condition only locally. This may induce bias, underestimation, or other unwanted
effects in the realizations, the predictions, and the decisions. In some variations of the
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sequential simulation workflow, the sites are visited not along a random path but along
a raster path, working deterministically along columns or rows in the map. Sequential
simulation with a raster path can have some advantages for unconditional simulations
but can make it harder for conditioning to data ahead of the raster path (Mariethoz and
Caers 2015).

Thus, the main difference between various sequential procedures, in terms of practice,
is the way in which the local conditional probabilities are assessed. Under strict modeling
assumptions, we may know these conditionals exactly, and then this approach becomes a
direct method. Commonly, any technique that can approximate this conditional distribution
is used as the basis for sequential simulation. Under multi-Gaussian assumptions, Kriging
is used to assess the parameters of the conditional distribution (which is also Gaussian),
and the algorithm is then called sequential Gaussian simulation.

The conditional distribution could also be obtained from training images that can provide
not only two-point but also multiple-point statistics. With this approach, the conditioning to
data events extends to patterns of multiple data taken together. Multiple-point statistics can
simulate geologically realistic features as long as an appropriate training image is available
(which may not always be the case).

The fact that the sequential approach can accommodate any technique for assessing
the conditional distribution has made it a very flexible and popular technique, and many
methods use the sequential principle even though their names do not contain the word
“sequential.” Inputs to the sequential simulation include the conditioning data that has to
be honored as well as a description of the spatial continuity, either in terms of variograms
and cross-variograms or in terms of a training image for multiple-point statistics. Many
multiple-point simulation algorithms (see also Section 4.7) follow the sequential proce-
dure, but instead of estimating a local conditional distribution at each pixel on the sequen-
tial path, they directly sample multiple-point patterns from the training image.

Object-based simulations or Boolean models are a family of methods working with geo-
metric objects that have some genetic significance rather than being built up one elem-
entary node at a time. They have been useful to generate facies and fracture models in
reservoirs but have challenges in terms of conditioning. There are algorithms for condition-
ing object-based simulations, but they can become computationally intensive when condi-
tioning to a large number of point data (e.g., data in many wells). The idea in object-based
simulations is to realistically describe geometry such as sinuous channels, half-ellipses in
cross sections, triangular wedges, lobes, disks, etc. In addition, other required specifica-
tions include the overall proportions of each shape and the distributions of the parameters
describing the shape. These parameters typically include size, the anisotropy ratio, and the
orientation of the long axis and rules that describe how the various shapes can be positioned
relative to one another. These methods can also be considered as marked point processes,
as they are based on a point process with marks (objects) attached to the points of the pro-
cess. Many different Boolean simulation algorithms are described in Lantuejoul (2002) and
Chiles and Delfiner (2012).
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Process-based and process-mimicking methods try to capture the physics and chemistry
of the geological processes that created the subsurface environment under consideration.
They are motivated by the fact that it is very hard to capture all of the features of geology
using purely random function models. Geology has random as well as deterministic com-
ponents governed by the physics and chemistry of erosion, transportation, deposition,
heat and fluid flow, and diagenesis. Process-based models numerically solve the gov-
erning partial differential equations, computationally forward-simulating the processes
that gave rise to the geological architectures. Process-based models can also be run in
the physical laboratory rather than numerically on the computer using tank experiments
to physically forward-simulate the erosion, transportation, and deposition of sediments
giving rise to various geologic architectures. Computer simulations require inputs such
as initial and boundary conditions over geologic time (which could be millions of years
for basin models), as well as empirical parameters governing rock and fluid properties as
a function of temperature and stress. Very realistic geological models can be made with
process-based simulations. These models can be conditioned to global and large-scale
data but are much harder to condition to dense local point data. They are also computa-
tionally very intensive, and it can take days or weeks to run a single simulation. As an
alternative to “full physics” differential equation-based simulations, process-mimicking
methods attempt to create realistic geologic features using various algorithmic rules
without numerically solving any differential equations. Various process-mimicking algo-
rithms (some of them are also called event-based or surface-based methods) have been
developed for different types of geological environments. These are computationally
much faster to run than the full process-based models. Like the process-based simula-
tions, the process-mimicking simulations are harder to condition to dense point data, but
because they take much less time to simulate, iterative or “brute force” rejection methods
might be applicable for conditioning these simulations to point data. Further discussions
and references to the literature on these methods can be found in Pyrcz and Deutsch
(2014) and Mariethoz and Caers (2015).

A combination of different methods is usually implemented for practical spatial mod-
eling. The success of spatial modeling comes from the development of hybrid meth-
ods that borrow useful tools from all techniques, combining them for real-case analysis.
For example, multiple-point simulation from training images might be used to simu-
late the facies, which are then populated with petrophysical properties using Gaussian
simulation methods. The training image used in the multiple-point simulation might
come from a Boolean simulation or perhaps from a process-mimicking method. The
process-mimicking simulation might borrow statistics and rules from a physical labora-
tory simulation or from a “full physics” numerical simulation. Though all methods have
shortcomings, all of the methods have been successfully used in actual case studies. One
must be wary of the tendency to promote a single method as better than all others. There
is no stochastic modeling method that is universally best for all possible subsurface mod-
eling problems. As stochastic modeling becomes more accepted in the Earth sciences,
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and as more stochastic modeling techniques are developed, the most successful case
studies will be those that view the assortment of spatial modeling methods as a tool kit
rather than as a silver bullet.

4.4 Gaussian models

The Gaussian random field model is a key construction in geostatistics and is often used
as a self-standing model, especially for very-high-dimensional models or very large data
sizes. Moreover, it is common to apply the Gaussian model as a building block when
constructing hierarchical model formulations. In this section, we discuss traditional but
important aspects of the Gaussian model in spatial statistics.

4.4.1 The spatial regression model

The spatial regression model for continuous response data relies on Gaussian variables and
linear association. This is possibly the most commonly applied model in spatial statistics —
see, e.g., Cressie (1993), Stein (1999), and Banerjee et al. (2004). The model has historical
importance related to (universal) Kriging. Moreover, the model provides a natural exten-
sion of the usual linear regression model, as it also accounts for the spatially correlated
error terms. The attractive computational properties of the Gaussian model make it one of
the few applicable models for massive data sets. The Gaussian assumption can often be
justified by the central limit theorem, stating that sums and means of random variables con-
verge to Gaussian variables. Thus, even though the response is not really Gaussian, these
assumptions can provide useful results in many situations.

The response variable is assumed to be partially explained by (i) explanatory variables,
(i1) a smooth Gaussian noise process — a Gaussian random field, and (iii) independent
errors. The idea is to incorporate the spatial smoothness and, as a result, obtain more reli-
able estimates of the regression parameters for improved predictions. Ignoring a spatially
structured noise term could give biased estimates and erroneous uncertainty bounds. The
following exposition is based on a univariate response variable. At the end of the section,
a more general framework is presented. We assume that the process is defined at all loca-
tions s € D, where D denotes a continuous spatial domain in two or three dimensions. The
model for the response y(s) at an arbitrary site is

y(s)=h'(s)B+w(s)+e(s), (4.10)

where B =(B,..... ) is the vector of k regression parameters and h(s) = (i, (s),....7 (s))
is the vector of k covariates at site 5. The residual is split into two parts: w(s) and &(s). The
spatially structured residual w(s) provides dependence, Cov(w (s),w(s))=Z(s,s’), cap-
turing the effect of unobserved covariates with a spatial pattern. Statisticians often refer to
the regression parameters B as fixed effects, while the structured Gaussian field w(s) is the
random effects. The non-structured spatial residual e(s) is independent white noise with
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Var(s(s)) = 72, which can be interpreted as the measurement error. The spatial regression
model in Equation (4.10) can also be written as:

y($)=x()+N(0,7), E(x(s))=h'(s)B. Cov(x(s)x(s")=Z(s,s"). (4.11)

The latent process is often of key interest to the decision maker. In Equation (4.11), this
latent process x(s) is imperfectly observed by y(s).

Discussion: spatial model versus ordinary least squares

The basic linear regression model, which forms the starting point in many contexts of exploratory
data analysis, assumes independent non-structured error terms. Here, in the spatial context, the
noise process is modeled using the tools of variograms and covariance functions described
previously. The covariance structure of the spatial residual w(s) is thus typically characterized by
a few parameters describing the scale and correlation range. Customarily, the spatial covariance
Cov(w(s),w(s")) = X(s,s”) is modeled by a stationary, isotropic process — i.., it only depends on
the absolute distance between the locations s and s” (see Table 4.1). For the independent noise
process, we assume that 8(s) ~N (0,12) for all s. This was interpreted as the nugget effect in
Section 4.2.

Assume that we can observe the spatial process y(s) and associated covariates h’ (s)
at n locations s,,...,s,. Under the specified assumptions, we can now write the Gaussian
regression model as a hierarchical model. Let us denote the collection of data by length
nvector y= (y(sl),...,y(s,, )) ; the latent random effects by x = (x(sl),...,x(sn )) ; and the
covariates by a size n X k matrix H, where row i is h’ (s,- ) Then

p(x)=N(HB.Z), p(y|x)=N(x71,), (4.12)
and the marginal pdf of the response (integrating out the random effects) becomes
p(y)=NHB.C), C=CO)=E+7,, (4.13)

where C is a nXn covariance matrix, and 6 = (0'2, n, TZ) denotes the set of covariance
parameters.

The set of observation locations is called the spatial design. A regular design has obser-
vation sites s;,...,s, on a grid of the spatial domain D. Irregular sampling designs are,
however, more common in practice. For instance, in a situation with monitoring sites for
precipitation and wind or air pollution, one would tend to place the sites near roads or cit-
ies for logistical reasons. On the other hand, remotely sensed data such as satellite data or
seismic data are often processed to be represented on a regular grid.

Figure 4.4 shows a realization of a Gaussian random field on the unit square. This is
shown on a regular grid in the left display. An irregular sampling of the data of a much
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Figure 4.4 Realization of a Gaussian process in two spatial dimensions. Left: the spatial variable
represented on a dense regular grid. Right: the spatial variable is represented at only 100 irregular
locations.

smaller size is also illustrated in the right display. In Figure 4.4, the model is based on
using the east and north coordinates as covariates, and the regression parameters are set
to B= (—2,3,1), where the first entry corresponds to an intercept term at the origin and the
next two are the spatial covariates. The covariance function is a Matern type with smooth-
ness parameter (3/2), as in Table 4.1, and with parameters 62 = 0.5%, =9, and 72 = 0.052,
which corresponds to a correlation range of about a third of the unit square. Note that there
is only a small nugget effect here. In Figure 4.4, we see that the random field increases with
the east (and north) coordinate with smooth variability defined by the Gaussian residual
process.

We assume that the parameters  and 6 are fixed but unknown. These parameters must
be estimated based on the data and explanatory variables. A common way of specifying
the parameter values is by maximum likelihood estimation (MLE), described in Section
2.4 and Appendix A.l. The Gaussian distribution defines the log-likelihood as a function
of parameters f and 6 —i.e.,

n 1 1 t
1(6,8) = —Elog(Zn) —Elog 1CO)] —E(y - HB) Cc(0)(y- HB). (4.14)
The maximum likelihood estimates are defined by
(B.6) = argmax 1(6,B). (4.15)

An algorithm for locating the maximum is presented in Appendix A.1. For fixed covari-
ance parameters 0, the estimate for the regression parameters is
B=By6)=(H'C'H) H'Cy,

Var(ﬁ) = (H’C“H)_l. (4.16)
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4.4.2 Optimal spatial prediction: Kriging

We showed how Kriging is the method for optimal pointwise spatial prediction in the
Gaussian model. Suppose that we wish to predict responses y, = (y(8y,),...,yY(Sox)) at N
prediction sites s, ;, j =1,...,N, given data y = (y(s,),..., ¥(s,)) atn observation sites. The
joint distribution of y, and y is Gaussian with the following mean and covariance:

H).(C C,.
p(yo,y)=N£(HJﬁ{ . C)J (4.17)

The N x k matrix H,, contains the covariates at the prediction sites. Moreover, the N X N
matrix C, is the covariance matrix for the responses at all prediction sites, while the N X n
matrix C,. contains the covariances between the N variables at prediction sites and the
n variables at observation sites. The covariance matrices depend on the statistical model
parameters 0, but the cross-covariance matrix C,. does not depend on the measurement
error variance 72 since we assume independent nugget effects.

Recall from Chapter 2 that the conditional pdf of y, given y (and for fixed B and 6) is
also Gaussian. The length N vector of conditional means or Kriging predictions is

E(y,ly) =H,p+ Cy. C"'(y—HP), (4.18)
and the associated N X N conditional covariance is
Var(y, 1 y)=C, - C,. C' C.. (4.19)

The conditional variances are defined by the diagonal elements of this matrix. See
Appendix A.1 for further details about these properties of the Gaussian pdf.

Discussion: interpreting the Kriging prediction variance

For sites that are close to other data, there is high correlation in o and conditioning will
reduce the variances in C, substantially. Sites that are farther from the observation sites will
have larger prediction variances. The reduction of prediction variance also depends on the
clustering of the observation sites according to C~'. Two data at almost the same location
will not contribute twice the information, since the two observations will be correlated and
therefore somewhat redundant. It is quite remarkable that the Kriging variances do not depend
on the data — they only depend on the geographic locations of the data and the prediction site.
This holds for the Gaussian situation but may not hold in non-Gaussian settings where a large
(or small) observation may influence the prediction variance as well.

Based on the modeling assumptions, the prediction distribution is also Gaussian. The
5th and 95th percentiles of the standard Gaussian distribution are —1.64 and 1.64. A 90%
prediction interval for the response y(so’ j) at the prediction site s, ; is then

(EG50,)1 )~ 1.64Var(y(s, ) 13), E(y(s,)13)+1.64,[Var(y(s, )1y ). (4.20)
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4.4.3 Multivariate hierarchical spatial regression model

Recall that the spatial regression model can be written as a hierarchical model as in
Equation (4.12) or a random effects model, with the likelihood function p(y|x) condi-
tional on the latent process x, and a Gaussian random field prior model. One example is
a multivariate hierarchical model. Consider, for instance, the case with reservoir charac-
terization: the (multivariate) latent distinction of interest are the porosity, permeability,
and saturation variables at all reservoir grid cells. Seismic data, which provide imperfect
information about the reservoir properties, consist of (multivariate) angle gathers of reflec-
tion amplitudes at each spatial grid cell. There could also be well data providing perfect
information at some cells. These multivariate situations can be conveniently modeled using
a hierarchical framework.

Suppose we have K latent spatial processes denoted x = (x;,...,Xx), each of length
n, and L different response variables y =(y,,...,y,) of lengths m,,..,m;. The data can
be acquired at different locations for the various responses. Some may have large spatial
coverage with perhaps more uncertainty (say, seismic data), while others may be sparsely
sampled but carry accurate information where they are available (say, well data). The hier-
archical model can easily incorporate such varying dimensions in the data — i.e., m, # m,,
kle{l,..,L}.

Suppose that we assign a Gaussian prior model p(x) =N ( u,E) at the top of the hier-
archy, where u is a size nK vector containing the prior mean of the latent variables at the n
locations of interest, while X is a nK X nK covariance matrix for the K processes. The mean
may, of course, include covariates as in the usual regression setting. A convenient way of
modeling a multivariate spatial covariance matrix is Cov(x, (s),x,(s")) = R(s,s")Z, (k,I) ,
where we use a separable structure in the space and multiple variable dimensions. Spatial
correlation is defined by R(s,s”), while the K x K matrix X, defines the spatially invariant
covariance matrix between the K variables. The full covariance matrix is, in this way, con-
structed by a Kronecker product between the spatial correlation matrix and the intervari-
able covariance matrix.

Suppose that there is a linear Gaussian likelihood model for the multivariate spatial

L
data—i.e., p(ylx)= N(Fx,T), where F is a (z m, ] x nK matrix containing the design of
=1
experiments or forward models of the different data, conditional on x. If the forward model
is a result of a local operator, this matrix can be decomposed in blocks — say, F,, — which
is a L x K matrix that couples the x latent variables at a spatial location to the L response
variables at the same location (if all data types are available at that location). The matrix T
defines the covariance of the measurement noise. In the simplest case, the matrix is diag-
onal T = 721, but a more flexible structure would allow for different variances in the vari-
ous response variables — for instance, there could be different diagonal terms 72,73 ...,77
in the covariance matrix T'. There might also be correlation in the likelihood model for the
L response variables, resulting in a block diagonal structure, or some sort of smoothing in

the data acquisition scheme.
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As in the previous description, the marginal likelihood becomes
P =] ply 1 x)p(x)dx = N(F.FEF' +T). (4.21)

The model parameters can again be estimated by likelihood maximization. In general, it
can be hard to identify all parameters based on the marginal likelihood in Equation (4.21).
For instance, it may be difficult to separate out parameters in F and X. Alternatively, we
could specify parameters from auxiliary data sources. The estimation simplifies if one has
observed both x and y for similar conditions, because one can separate out the effects.
Prediction of the multivariate latent variable, given all the multivariate spatial data, can
again be conducted from the Gaussian posterior model:

p(x1y)= N(u+3F (FSF' +T) (y-Fp).2—XF (FIF' +T) F3). (4.22)

4.4.4 Examples

Norwegian wood: forestry example

Keywords: forestry example, Gaussian random field, spatial regression model, maximum likelihood

estimation, spatial prediction, Kriging, partial information

Let us illustrate parameter estimation and prediction for a Gaussian random field example.
Consider a regular grid of size 25 x 25, where the variable on this grid is observed only
imperfectly at irregular sites. The goal is to use the data to estimate regression parameters
and predict on the regular grid.

The example is motivated from forestry, where the grid of cells may represent forest units
that a farmer can choose to harvest. The profits of timber or wood at the cells are related to
the height and volume of the trees, as well as the cost of harvesting and processing timber,
and the selling price for products. For simplicity, we assume that the profits are Gaussian
distributed with spatial correlation. In the current section, the goal is to estimate model
parameters and predict the spatial distribution of forest profits (which depends on the spa-
tial distribution of the trees). We return to this example to study VOI analysis in Chapter 5.

In this example, the realization to the left in Figure 4.4 is treated as the “truth” or refer-
ence spatial distribution. Would it be possible to estimate the parameters of the Gaussian
model and predict the spatial profits at the 625 units, given data acquired at some sites?
Two different designs are evaluated and compared. These are representative of acquisition
designs a farmer could use for gathering information about the forest volumes and profits.
Both of these designs have 49 observation sites. A random design and a center design are
illustrated in Figure 4.5. The center design is based on acquiring measurements along the
center lines (north—south and east—west) in the grid —i.e., 49 data locations in total — while
the random measurement sites are simply generated by selecting 49 random data locations
among the 25 x 25 grid cells.

Table 4.2 shows the maximum likelihood estimates for the regression and covariance
parameters along with their asymptotic standard errors computed from the likelihood
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Figure 4.5 Random and center designs of spatial experiments. There are 49 data locations in both
designs. The distinction of interest is represented on a regular grid of size 25 x 25.

Table 4.2. Parameter estimates and standard errors (in parentheses) for the Gaussian
regression model with center line and random acquisition design

B, B, By o’ n 72
Center -2.1(0.6) 3.4(0.7) 0.4 (0.7) 0.3(0.14) 7.2 (2.0) 0.002 (0.001)
Random -2.0(0.5) 3.4(0.6) 0.8 (0.5) 0.3 (0.12) 79 (2.0) 0.005 (0.007)
Truth -2 3 1 0.25 9 0.0025

expression. These are shown for the particular realization and for both center and random
designs. We note that the regression parameters are estimated quite well from the data, and
there is little difference in the variability of estimates. For traditional regression analysis,
it is beneficial to acquire data at the edges of the domain, because that makes it easier to
estimate the slope of the regression curve. The situation is a little different with spatial cor-
relation because the data at common edges tend to be highly correlated.

In Figure 4.6, we show the pointwise prediction and prediction standard error based on
the 49 measurements of the Gaussian process and using the parameter estimates in Table 4.2.
The displays are represented on the 25 x 25 grid. They show the prediction surface (left) for
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Figure 4.6 Prediction results for the random design (top) and the center design (bottom). The Kriging
predictor is in the left display with the associated standard deviations in the right display.

both the random and center designs and the associated prediction standard errors (right). Note
how the predictions are smoother than the realization in Figure 4.4. The Kriging predictions
in Figure 4.6 are based on linear interpolation of the data y, and in this case these predictions
become very smooth with little data. The random design has a better spatial coverage of the
domain, and the prediction results appear more realistic than for the center design. The pre-
diction results for the center design reflect more details in the central parts but just return the
effect of the east and north covariate trends in the corners of the grid. The prediction standard
errors are very small near the observation sites. These increase to the level of the process
noise at a distance indicated by the correlation range of the random field. For both designs,
we see the clear imprint of the acquisition pattern along the acquisition lines or points.

Table 4.3 shows a summary of the prediction results for the center and random design
data acquisition. This is summarized by the empirical MSPE and the 90% prediction inter-
val in Equation (4.20) at two sites: s, = (0.5,0.5) and s, = (0.1,0.1). The empirical MSPE
for this particular realization is defined by

625

1
MSPE = @E()’ (so,i ) —E(y(s,,) 1 y))

2

(4.23)
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Table 4.3. Summary of prediction results for the center data acquisition and the random
data acquisition design for a Gaussian process

Prediction Prediction
Interval (90%) Truth Interval (90%) Truth
MSPE  5,=(0.505) s,=(050.5) s,=(0.10.1) s,=(0.1,0.1)
Center 0.24 (-0.48,-0.27) -0.24 (-2.47,-0.89) -1.64
Random 0.03 (-0.52, -0.06) -0.24 (-2.28,-0.99) -1.64

The MSPE is much larger for the center design because of its poor data coverage away
from the central domains. Naturally, the interval based on the center design is narrower at
the central site. The prediction interval for the random design is narrower than the center
design for site s, = (O. 1,0. 1). Note that these prediction intervals only cover the truth 9 out
of 10 times by construction. For the central prediction site, using a center design, the truth
is just outside the interval.

I love rock and ore: mining oxide grade example

Keywords: oxide grade example, mining, X-ray data, Gaussian random field, spatial regression

model, maximum likelihood estimation, spatial prediction, Kriging

This data set consists of oxide grade measurements made along boreholes in a mine (Eidsvik
and Ellefmo 2013). It was discussed briefly for parameter estimation in Chapter 2. The goal
of the mining company is to use data from the current boreholes to predict the spatial distri-
bution of the oxide grade. The data set consists of bivariate response variables as follows:

XMET data: Core samples measured with a handheld X-ray fluorescence meter
(XMET). These XMET data are relatively fast to collect on the mining location. They are
considered to be imperfect measurements of the true oxide grade of the samples. There are
m, = 1871 locations with XMET data.

XRF data: Lab experiments of the cores using careful X-ray fluorescence (XRF) ana-
lysis. These XRF data are rather time consuming to analyze. They are considered to pro-
vide perfect information about the oxide grade at the location where they are acquired.
There are m, =103 locations with XRF data.

At the 103 locations where there are XRF data, there are also XMET data. Figure 4.7
shows a map view of the mine with the data locations indicated. All 1871 XMET data and
103 XRF data are used to predict the oxide along the vertical plane illustrated in the display.

A spatial regression model is used for the spatial oxide grade — i.e., p(x) =N (H ﬁ,Z),
where the regression part is based on an intercept term and a categorical mineralization
covariate. There are three mineralization classes (I, II, and III), where Class III is most
likely to have high grades of oxide. Representing this situation into the mathematical
framework outlined earlier, we have K =1 variable of interest: the oxide grade at location
sy, denoted by x(so). The observations are either XMET or XRF —i.e., L =2. We have
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Figure 4.7 Map view of the oxide grade data in a mine. Two kinds of data are acquired from the
boreholes: there are 103 XRF data (perfect information, illustrated by cross) and 1871 XMET data
(imperfect information, illustrated by circles). The oxide grades are predicted on the grayscale
vertical plane.

XRF data at m; =103 locations: y, = (y(sl’l),...,y(slym)) and XMET data at m, =1871
locations: y, = (y(sz,l),...,y(s2,1871)), where 103 of the locations in XRF and XMET are
identical.

Even though the main goal is prediction, the mining company must first specify the
statistical model parameters and study whether the Gaussian modeling assumptions seem
appropriate. Similar to Eidsvik and Ellefmo (2013), the current description relies on using
probability quantile plots to justify a Gaussian model for the oxide grade data and the meas-
urements. The first step in this analysis is to fit a least-squares model to the XMET data
and compare the residuals of the fit with the theoretical counterparts of the Gaussian pdf.

Figure 4.8 shows the histogram of the residuals (left) and a quantile—quantile plot of
sorted empirical residuals against the theoretical percentiles. The fit is acceptable, possibly
with some differences in the tail of the distribution.

Figure 4.9 shows the empirical variogram of the residuals after the least-squares
estimation of the mean (regression) parameters. The empirical computation is done by
binning the data into 5-m interval zones for the distance between measurement loca-
tions. Based on the variogram plot, it appears as if the nugget effect is about 0.3, the
effective correlation range is between 50 and 100 m, and the structured variance term is
about 6> =0.7-0.3=0.4.
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Figure 4.8 Histogram (left) and quantile—quantile plot of the residual of XMET data after a
least-squares fit. The purpose of this exercise is to see whether the Gaussian regression model is
appropriate for this data set. The fit looks reasonable, possibly with some missing skewness in the tails.

A Matern (3/2) spatial covariance model is used to describe the Gaussian random field
for the oxide. The XMET data are assumed to be conditionally independent, given the
grades at the measurement locations. We compute the maximum likelihood estimates of
all the statistical model parameters using the Fisher scoring algorithm (Appendix A.1)
with the least-squares regression estimates and variogram parameters as starting values.
The regression parameters are BO = —0.18 for the regression intercept and B] =1.32 for the
slope with mineralization class. The covariance parameters are 62 = 0.622 for the spatially
varying oxide grade, with an effective range of about 50 m and a measurement noise vari-
ance of 72 = 0.45? for the XMET data.

One can predict the oxide grade at selected locations from the parameter estimates. As
we discussed earlier, the basis for prediction is to form a joint Gaussian model for the vari-
able of interest and all available data, which in this case involves the oxide grade at predic-
tion sites as well as the XRF and the XMET data. In the prediction, we must incorporate
how the mean value depends on the location through the mineralization covariate (Class I,
I1, or III). Moreover, we must account for the correlation in the oxide grade and the bivari-
ate data (XRF and XMET).
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Figure 4.9 Empirical variogram estimate for the oxide grade data set. The variogram appears to meet
the second axis above the origin (indicating a nugget effect). It increases to its sill at around a range

of 50-100 m.
300 4 300 0.6
L]

£ 200 £ 200f 0.5

(0] 3 (0]

S 100 5 S 100|" ¥ 0.4

= = - |

5 0 1 g 0 fw= 1 g 0.3
-100 0 -100 0.2

100 300 500
Line Distance (m)

100 300 500
Line Distance (m)

Figure 4.10 Predictions (left) and prediction standard error (right) of the oxide grade along the
vertical grayscale profile in Figure 4.7.

In Figure 4.10, we show the prediction and the prediction standard error of oxide grade
at the vertical cross section illustrated in Figure 4.7. The prediction clearly illustrates the
ore body with higher grades but also shows spatial variability. In the standard error display,
we recognize the nearby boreholes where there is low uncertainty. The prediction variance
is much higher at prediction locations far away from the boreholes.

Chapter 6 describes VOI analysis for this case. The question there is whether the mining
company should collect additional data (XRF or XMET) to improve the predictability of
the oxide grade and to make better decisions about the development of the mine.
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4.5 Non-Gaussian response models and hierarchical spatial models

The Gaussian model is possibly overused (and abused) in statistical applications, and
it should be applied with care. Residual plots, cross-validation, and other techniques
should be used to check whether the Gaussian modeling assumptions are appropriate.
These approaches may also indicate which other models may be reasonable. Are there
non-linearities in the data? Are the data skewed? Is there a clear increase in variance with
increased response? Are the data discrete, and is a Gaussian assumption not suitable?

In some of these situations, one may benefit by working with models inspired by the
Gaussian pdf or models using the Gaussian distribution as an important building block. In
this section, we present some spatial models that incorporate skewness and count data. We
focus on extending the analytical closed-form solution of the Gaussian distribution. Some
other popular approaches for non-Gaussian response and hierarchical models are discussed
in the bibliography.

4.5.1 Skew-normal models

Scientists use the Gaussian model extensively, largely due to the computational advantages
gained from having closed-form solutions. For instance: the sum of two Gaussian variables
is also Gaussian; when the joint pdf is Gaussian, the marginal pdfs are also Gaussian; when
we have linear conditioning on data, the conditional pdf is Gaussian. We present and motiv-
ate a skew pdf that has a closed-form pdf under sums, marginalization, and conditioning.

The skew-normal distribution extends the Gaussian distribution by enforcing skewness
in a selected direction. Define the pdf of the variable of interest x = (xl,..., xn) by

p(x)= 2N(u,Z)(I)(A’Z_; (x —y)). (4.24)

Here, ®(;) is the cumulative distribution function of the standard normal; i.e.,

o()=] (-5 i

Thus, if the variable of interest x is in the dimension penalized by the skewness weights
A= (/1l s Ay ) then the cumulative distribution is close to 0 and the Gaussian pdf N (u,Z)
is dampened. If the variable is in the dimension not penalized by the skewness weights,
then the cumulative is close to 1. This leads to a skewed pdf that increases slower than the
Gaussian pdf on one side and dies out like a Gaussian at the other side.

We motivate the use of skew-normal models with an example of saturation and porosity
variables in a petroleum reservoir and seismic amplitude-versus-offset (AVO) response
variables at the subsurface horizon representing the top of the reservoir. In the example,
we consider porosity and saturation variables obtained from the Society of Petroleum
Engineers (SPE) 10 data set, which has been used substantially as a test study in petroleum
reservoir characterization (Christie and Blunt 2001). We use forward models for predicting
the seismic responses from saturation and porosity variables. In our case, this entails rock
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Figure 4.11 Gaussian and skew-normal fit to reservoir variable porosity (top left) and saturation (top
right), as well as synthetic seismic amplitude data for zero offset (bottom left) and amplitude versus
offset (AVO) gradient (bottom right). The modeling is based on the Society of Petroleum Engineers
(SPE) 10 data set.

physics modeling to create elastic moduli from which synthetic seismic reflection data are
computed at the top reservoir as a function of the incidence angle, resulting in two seismic
amplitude attributes (the (AVO) attributes): the zero-offset reflectivity and the AVO gradi-
ent describing the amplitude variation with source-receiver offset.

The applicability of Gaussian or skew-normal pdfs may be seen by plotting the par-
ametric modeling fit with the empirical distribution of saturation, porosity, and seismic
reflection data. Figure 4.11 shows the Gaussian fit, the skew-normal fit, and the empirical
histogram for this SPE 10 data set. The skew-normal pdfs give notably better fit than the
Gaussian for the brine saturation and the seismic attributes. This indicates that the reservoir
variables and data are skewed, possibly driven by lithologic changes in the reservoir. There
is not much difference between the Gaussian and the skew-normal pdf for the porosity
variable (Rezaie et al. 2014).
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These skew models have been used in the spatial domain as straightforward extensions
of the Gaussian pdfs — see, e.g., Kim and Mallick (2004) and Allard and Naveau (2007).
In its simplest construction, the spatial skew-normal model borrows from the Gaussian
regression model described in Section 4.4. First, the spatial variables x = (x(s, ),..., x(s,))
have mean vector g = HPB, which includes regression parameters. Note, however, that
this is no longer the mean, because the first moment or expectation would also depend on
the other model parameters in this non-Gaussian situation. Second, a spatial covariance
function is built into the matrix X. Note similarly that this is no longer the covariance
matrix, because the second moment of the skew-normal distribution is defined via the
skewness weights as well. Nevertheless, the matrix entries are indicative of the smooth-
ness in the spatial variable. A particular low-dimensional form is often used for the skew-
ness weights A . For instance, A = 4,1 is only one additional model parameter, A,, on top
of the Gaussian formulation, or A= A,1X"2 canceling the effect of the covariance in the
cumulative function in the pdf for the skew normal. There are several ways of incorpor-
ating skewness.

A challenge of the usual skew-normal pdf is that skewness is only imposed in one dir-
ection: the direction defined by the length n vector A’Z_E(x - u). To overcome this, the
closed skew-normal formulation additionally allows multivariate (size ¢) skewness direc-
tions and a non-standardized cumulative distribution function. Let us denote the multivari-
ate Gaussian pdf by ¢, (x;4,Z) = N(1,Z), and let the multivariate Gaussian cumulative
distribution function be @_(x)= H ¢, (z:p,2)dz. Then, the closed skew-normal pdf is
defined by z<x

(1) (. Z)®, (A(x-p):L,4)
PY=T"g (0, a+A3A) (4.25)

The skewness matrix A is of size ¢ Xn, enabling much more flexibility than in the
skew-normal pdf. Moreover, the size g X1 center point of the skewness dimension { and
the g X g scale matrix A allow closed-form distributions under marginalization and condi-
tioning. Suppose that we have a prior pdf p(x) and a likelihood model p( yl x) that is also
closed skew normal and with a linear relation for the center parameter of the likelihood
model. Then, the posterior pdf p(x | y) will also be closed skew normal, as will the mar-
ginal likelihood p( y) (see, e.g., Dominguez-Molina et al. (2003) and Rezaie et al. (2014)
and a related exercise in Chapter 7).

It is useful to have a skew distribution with analytic, closed-form marginal and condi-
tional pdfs. The closed skew normal is thus a pdf with added flexibility compared with
the usual Gaussian assumptions, and it still allows for fast computation. However, it
can be hard to identify the model parameters in the closed skew model from data — say,
using MLE. Moreover, interpreting the results of the model may be demanding because
of interactions between model parameters. For instance, the mean and variance are no
longer defined directly by p and 2. Finally, it is not trivial to evaluate the multivariate
cumulative distribution function in large dimensions, but useful approximations exist
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(Genz and Bretz 2009). Thus, even though the model extends the Gaussian, the add-
itional flexibility comes at a cost.

4.5.2 Spatial generalized linear models

Generalized linear models (GLMs) have become very popular in statistics to model
non-Gaussian responses (see Appendix A.2.) When one has acquired or considers
acquiring spatial count or absence/presence data, the spatial versions of the GLM
become relevant. Examples include the number of joints in a mine (see example later),
the counts or presence or absence of a plant at a possible biological conservation site,
and so on.

If the data are non-Gaussian, the assumptions of the Gaussian regression model cannot
be justified, but one can either transform the data or build a hierarchical model. The former
approach transforms the data to responses that appear Gaussian. Commonly, a log or
square root transform is used in applications. This approach is more difficult for response
variables with a discrete sample space. The hierarchical models are then more attractive,
using the Gaussian random field as a latent process incorporating spatial smoothness. For
spatial GLMs, this approach was pioneered by Breslow and Clayton (1993) and Diggle
et al. (1998).

The spatial GLM likelihood is based on the exponential family model, which includes
the binomial and Poisson distributions. The parameters of the distributions are now spa-
tially varying and typically incorporate spatial correlation according to a log or logistic
Gaussian random field. The likelihood model is commonly assumed to be conditionally
independent, given the latent Gaussian process. The usual statistical tasks of parameter
estimation and prediction can then be done borrowing ideas from standard GLM analysis.
In mathematical notation, p(x)= N(p,X) for latent variable x = (x(sl),..,x(sn)) repre-
sented at n locations, with mean g = H 8 incorporating the effect of covariates and the spa-
tial covariance matrix = = 2(6). The likelihood is denoted p(y(si) Lx(s; )) fori=1,..,m,
where we assume that m of the n sites of interest are observed. For the Poisson distribution,
the spatially varying mean in the Poisson likelihood is V, exp (x(si )) for a fixed time win-
dow or spatial volume V.

The main goals are estimation of statistical model parameters and predicting spatial
variables. The specification of model parameters cannot be done from the empirical vari-
ogram because the data are counts and not intensity. MLE is also complicated because
there is no closed-form expression for p( y), y= (y(sl ),.., y(sm )) Similarly, the posterior
pdf p (x I y) o< p (x) p( yl x) is not analytically available. However, approximate computa-
tion techniques are often useful for specifying model parameters and for spatial prediction
in GLMs.

Consider first the prediction of the latent intensity x(s) at location s, given data y, which
can be summarized by the posterior pdf p(x I y). Since there is no closed-form expression,
this pdf must be approximated, and one possibility is to fit a Gaussian approximation at
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the posterior mode. This approach requires solving an optimization problem to identify
the mode of the posterior ﬁx,yz argmax, { p(x) p ( vl x)} and assessing the curvature at the

mode of the posterior via the Hessian d*log (p (x )p (y | x )) , evaluated at the mode —i.e.,
2

x= [ftxly. The mode can be detected by an iterativf: search that, at each step, expands the
exponent of the GLM likelihood in a quadratic form. With a Gaussian prior, this results in
a quadratic form for the posterior expression — i.e., a Gaussian approximation. Its mean is
used to expand the GLM likelihood for the next iteration, and so on.

Consider next the estimation of parameters. An approximation to the marginal is pro-
vided by the Laplace approximation (see Chapter 2 and Appendix A.2):

p(ﬁxly;ﬂ,e)ﬁp(y,- L)
i1

P(fay 1 y:B.6)

p(¥:B.8)= , (4.26)

where the numerator is defined by the model, and the denominator is the Gaussian approxi-
mation at the posterior mode. The evaluation of the marginal likelihood approximation in
Equation (4.26) requires an optimization step for the latent variable x for the fixed param-
eter values ( BO)

The Laplace approximation tends to perform rather well for spatial GLMs since like-
lihood models such as the Poisson are a part of the exponential family of distributions,
which does not impose any severe non-linearities or non-Gaussianity. The approximation
may not be done so easily for more complex likelihood models outside the GLM class.
For instance, some likelihood models impose a multimodal posterior distribution for the
variables of interest. In that case, it may be possible to use analytical solutions as proposal
distributions in a Monte Carlo sampling scheme for parameter estimation or the prediction
of spatial effects.

4.5.3 Example

We will rock you: rock hazard example

Keywords: rock hazard example, mining, joint frequency data, spatial generalized linear model,

Laplace approximation, maximum likelihood estimation, spatial prediction

The data consist of joint counts acquired to study the stability of the rock mass in a
Norwegian mine. The count data y = (y(sl ), y(sm )) are collected at m = 1615 locations
of the operating mine. Zones with large counts may require further analysis due to the dan-
ger of rock fall, and the mining company has interest in predicting the spatial joint intensity
and the number of joints.

Figure 4.12 shows the locations of the count data in a three-dimensional (3-D) view and
a histogram of the m = 1615 data. Most joint counts are between 10 and 40. The smallest
count is 0, while the largest count is 93.
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Figure 4.12 Top: map view of the joint count data acquired along boreholes in a Norwegian mine.
The dot sizes are indicative of the number of joints at the location. The two open circles are locations
for prediction. Bottom: histogram of the joint count data. There are 1615 measurements in total.

The data are modeled by a hierarchical model with a conditionally independent Poisson
likelihood p (y (s:)1x(s; )) = Poisson (4 exp (x (s ))), i = 1,...,m, where the factor 4 is needed
because the joint frequency data have been aggregated over 4-m intervals. We model the log
joint intensities x = (x(sl),...,x(sn )) by a Gaussian random field — i.e., p(x) = N([.l,Z),
where we use n = 1617 here. The first 1615 entries coincide with data locations, while the
last two are the prediction sites marked as open circles in Figure 4.12. This allows efficient
parameter estimation from the 1615 data as well as prediction at the two sites. The mean
is constant, so u = U, 1. The spatial covariance is of a Matern type (see Table 4.1), with
unknown variances and the range denoted by parameter 6.

The Laplace approximation of the marginal likelihood is

p(x;,uO,O)Hp(yi | xi)
i=1

p(x1y:10.8)

P(y:iy.0) = (4.27)
which is evaluated at the posterior mode as in Equation (4.26). In Equation (4.27), the
denominator is the Gaussian approximation for the joint intensity, while the numerator
is defined by the prior for log intensity and the likelihood model for the joint counts.
Numerical optimization is used to maximize the marginal likelihood in Equation (4.27).
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Figure 4.13 Prediction of joint frequency at the selected east and west locations in the mine. The top
displays show the predicted intensity of the joint frequencies, while the bottom displays show the
predicted joint count distribution.

The procedure results in a mean of 1.55 and covariance parameters in the Matern model as
follows: a partial sill of 0.13, a nugget of 0.04, and an in-strike correlation range of 300 m.

The Gaussian approximation f?(x ly; ﬁoé) is used to predict the joint frequency y (so) at
unobserved locations ;. In the hierarchical modeling framework, this involves a marginal-
ization over the latent intensity —i.e.,

H(y(50)1) = p(v(s0)1x(50)) B ((50)1 30,8 x (5. (4.28)

A

In this case, i)(x(so) ly; ,ﬁo,é) =N (ﬂx(m)ly,of(%)ly) is the approximation obtained
by picking entries 1616 or 1617 in the mean and covariance matrix of the Gaussian
approximation f)(xlx; ,[to,é) for the joint log intensities, given the data. The integral
in Equation (4.28) can be solved numerically, and it must be evaluated for all discrete
values of y(s,) €{0,1,2,..}.

Figure 4.13 shows the predictive distributions at the two selected locations marked with
open circles in Figure 4.12. The western site is predicted to have much higher joint intensity
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(top), and the Gaussian approximation is narrower than at the eastern site. The predicted
pdfs for the joint count distributions (bottom) show that large joint counts are more likely
at the western site. Note that the pdf at the western site is now more dispersed than for the
eastern site. This results from a characteristic of the Poisson distribution, where the vari-
ance increases with the expectation.

We will use this example in Chapter 6 for VOI analysis for the rock hazard situation in
the mine. The question there is whether additional joint observations are worthwhile in
helping the mining company make better decisions about adding rock support in the min-
ing tunnels.

4.6 Categorical spatial models

If the distinction of interest is categorical, one can build a model by transforming or trun-
cating Gaussian variables. It is also possible to explicitly model a categorical process over
the spatial domain. The joint model for the process is then represented on a huge sample
space d", where d is the number of categories (colors), and n is the number of locations
(cells) used to represent the domain.

4.6.1 Indicator random variables

A natural way to model categorical random variables is through an indicator variable that
can only assume values of 0 or 1 — e.g., indicating the absence or presence of a distinc-
tion such as lithofacies at every location. Sequential indicator simulation is the method
applied to indicator variables. The spatial structure of the indicator random field is speci-
fied by the traditional two-point variogram or covariance function. The local conditional
distribution at each simulation node is approximated by the indicator Kriging estimate at
that node conditioned to previously simulated nodes and any hard data. This makes use of
the property that the stationary mean of a binary indicator is its distribution function itself.
Thus, the problem of evaluating the local conditional distribution is mapped to evaluating
the conditional expectation, which is done by Kriging. Using this local conditional distri-
bution preserves the mean and the covariance structure.

The sequential indicator algorithm allows for flexible handling of auxiliary data (e.g.,
facies probabilities derived from seismic interpretation) and inequality or interval con-
straints. As noted in the literature, there are theoretical problems with this method since
the Kriging estimate may not lie in the interval [0, 1] and hence would not be a valid
conditional distribution. Corrections have to be applied, which then does not preserve
the covariance exactly. Moreover, the two-point covariance can be a very poor descrip-
tor of the spatial properties of indicator random functions. The covariance function for
an indicator and its complement (e.g., sand channels in mud background or pores and
grains) is the same, but in terms of connectivity and flow response, an indicator set
and its complement can have very different properties. Though a flexible and popu-
lar method available in many geostatistical softwares, sequential indicator simulations
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produce “blob”-like geometries unable to capture geological shapes and connectivity
(Daly and Caers 2010).

4.6.2 Truncated Gaussian and pluri-Gaussian models

A class of models for categorical variables closely related to Gaussian random field models
are the truncated Gaussian and pluri-Gaussian models. Here, the categorical random vari-
able arises by applying one or more thresholds to a standard Gaussian random field. The
underlying continuous variable could have physical meaning — e.g., ore grade or contamin-
ation level — and the associated categorical variable could be a certain cut-off grade or con-
tamination warning threshold. In other cases, the underlying continuous variable might just
be a mathematical construction of convenience for the model. The thresholds are chosen
according to the proportions of each category. The correlogram of the standard Gaussian
random field in Equation (4.5) is not the same as that of the indicator field obtained by
truncating the Gaussian variable, but they are related to each other. If the standard Gaussian
field with correlogram p(l#l) is truncated at level A, then the covariance of the indicator is
given by

pav A2 du
Cl(ltl)=5 ! exp(—lw)m, (4.29)
which for the median threshold of A = 0 simplifies to C, (I t I) = (1/2 n)arc sin p(l t I). The
derivations and other properties of truncated Gaussian models are discussed in Chiles and
Delfiner (2012). Lantuejoul (2002) presents expressions relating the variograms of the two
fields.

The truncated Gaussian model is generalized to the truncated pluri-Gaussian model by using
thresholding rules on two Gaussian random fields, which can be independent or correlated.
Complex spatial associations between different categories can be modeled by pluri-Gaussian
simulations using appropriate thresholding rules. These methods have been applied to model
petroleum reservoirs (turbidites and carbonates) as well as ore deposits. Armstrong et al.
(2011) give a detailed presentation of the pluri-Gaussian method and its applications.

4.6.3 Categorical Markov random field models

Suppose that the spatial domain of interest has been split into n disjoint subdomains,
units, or cells. A random field is represented on the resulting grid of these disjoint cells.
In Section 2.3, we studied categorical Markov chains, where the Markov property was
phrased in the sequence of time or some other ordering — i.e., the distribution today, given
the past, depends only on yesterday. Here, for a spatial process, there is no natural order-
ing in time, and the Markov property is instead described in terms of the full conditional
distributions breaking down to the conditional distribution given only the values in a neigh-
borhood. The notion of a neighborhood makes sense in the spatial context, since variables
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Figure 4.14 Schematic of a Markov random field model. The grayscale cells are the neighborhood of
the center cell for a first-order Markov random field.

that are close in space tend to propagate information going from one geographical domain
to another. Here we provide a brief background on Markov random fields (MRFs) (see
Appendix A.4 for further details).

Let x =(x,,...,x,) be the distinction of interest represented at the n cells covering the
spatial domain of interest. We assume a set of possible categories: x; € {1,...,d},i =1,...,n.
The number of classes is most commonly d = 2 — i.e., the random field can be regarded as
black and white. In some applications, more categories are natural, and d = 3,4,5 add some

grayscale to the field. Furthermore, let x_;, = (xl,. s X1 X e - .,xn) be all variables except
the one at cell i. A conditional MRF definition is
p(x1x,)=p(x1x;:j€N,), (4.30)

where N, is the neighborhood of cell i. This equation tells us that once we know the out-
comes within the neighborhood, there is no additional information in knowing the variables
outside this neighborhood.

Consider the case shown in Figure 4.14, and suppose that one is interested in the full
conditional distribution of cell i defined by p(x,- Ix_,-). The display shows the situation
with a first-order neighborhood, where the full conditional only depends on the outcome
at the four nearest neighbors (north, east, south, and west). When the discrete field has two
possible outcomes at each location, this model with a first-order neighborhood is called the
Ising model.

An MRF model, defined in terms of neighborhoods, can be shown to have a one-to-one
correspondence with a joint probability model represented over subsets of variables called
cliques (Besag 1974). The joint probability for the Ising model is

exp[ﬂZl(xi = xj))
p(x)= = o exp(ﬁz I(x; = x; )], (4.31)

z

i~j
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Figure 4.15 Four realizations of a Markov random field model with a first-order neighborhood and
two colors (Ising model). The grid size is 75 x 75 and the spatial interaction parameter is B = 0.75.

where the sum (i ~ j) is over all the north—south or east-west variable pairs — cliques —
on the grid, and 7 is the indicator function. The clique potentials are  for equal colors
in the neighbors, while they are 0 for different colors. A larger interaction parameter 3
implies more spatial continuity in the colors across the lattice. The normalization constant
Z ensures that the expression is a valid pdf.

Figure 4.15 shows four realizations of an Ising model on a 75 x 75 lattice with inter-
action parameter 8= 0.75. By using a larger neighborhood of the MRF, with added flexi-
bility in the clique potentials, one can obtain more realistic realizations from the associated
MRF models — for instance, channel structures, lobes, and so on. By using more than two
colors, it is possible to represent additional geological classes — for instance, sand, shale,

coal, chalk, etc.
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Discussion: full conditionals for the Ising model

For the typical Ising model, the marginal probability of white (0) or black (1) at any cell is
0.5. The full conditional distributions depend on the number of equal colored variables in the
neighborhood:

exp(ﬁ%[(xj = 1))
exp(ﬁ;j](xj = 1))+exp([3§l(xj - 0))

This can be split into five situations, depending on the number of equal neighbors:

p(x,. =1Ixj;jeN,.)=

If all neighbors with x; = 1: P(x,- =1lx;j GNI.): _exp(4p)
/ exp(4f)+1
If three neighbors with x; = 1: p(x[ =1lx;je Ni) = ﬂ
! exp(3B) +exp(B)

If two neighbors with x; =1: p(x, =11x;;j EN,-) =0.5.

If one neighbor with x; =1: p(x, =11x;j€ N, =%
! p( i ) exp(3B) + exp(f)
. . 1
If no neighbors with x; =1: p(x. =1lx.;jeN.)=———
1=k plx sieN) exp(4f)+1

The MRF model can be extended from the basic formulation by introducing an external
field, given as single site potentials. The joint pdf for the Ising model is then

) exp[ﬂgl(x,- = xj)+§i“a,. (x,.)J

p(x)= il ~ , (4.32)

where ¢;(1),i =1,...,n, is a potential for each color/ =1,...,d. This external field can either
be specified a priori, or it can depend on data or covariates. The latter situation is common
when there are conditionally independent data at the nodes.

Extending the idea of the hidden Markov model from the time domain leads to a hid-
den Markov random field model. Let us denote the likelihood by p(yl- |x,-) for all cells
i =1,...,n. The posterior pdf of interest, conditional on the data, becomes

p(x]y)e exp(ﬁZl(xi = x;))+ Y, 04(x;)+ Y log p(y, |x,->J. (4.33)
i~j i i

We demonstrate this with an example later, where there are seismic reflection data y,
available at each cell.

MRF models of moderate size can be evaluated and sampled from with exact
forward—backward algorithms for efficient marginalization — see, e.g., Reeves and Pettitt
(2004) and Appendix A.4. For large grids, Markov chain Monte Carlo sampling may be
useful (see Appendix B).
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The interaction parameter S or other parameters in the MRF model must be inferred
from the data. The data can be either perfect information x or imperfect information y.
MLE is one way to specify parameters, but this task is not straightforward for large grids
(see Appendix A.4).

Even though categorical MRF models have been helpful in applications with two spatial
dimensions, it has been cumbersome to apply them in full three-dimensional (north, east,
depth) spatial models. One challenge is that Markov chain Monte Carlo sampling conver-
gence can be very slow. Rather than following the strictest mathematical formulations of
MREFs, there have been promising approaches trying to modify the MRF formulation.

One idea is to separate the depth dimension from the lateral directions. This can be
reasonable in some settings, since special geological rules apply in the depth dimension.
The Markov chain Monte Carlo sampler can now solve for the depth direction by a direct
solver (like forward—backward recursions for Markov chains), while the Markov chain
Monte Carlo scheme loops over the two-dimensional lateral space. The convergence of the
Markov chain Monte Carlo sampler becomes much faster than doing a full loop in three
dimensions. Recent applications for seismic reservoir prediction include Ulvmoen et al.
(2010) and Rimstad et al. (2012).

Another idea for making the MRFs more applicable is to introduce ordering in the grid.
Markov mesh models are a type of partially ordered Markov models, which consider the
conditional distribution for a cell given the cells with a lower order and not the entire neigh-
borhood. This view speeds up the computations, but care must be taken to parameterize the
dependency realistically. Stien and Kolbjgrnsen (2011) apply techniques from generalized
linear models to specify parameters in Markov mesh models. See also Tjelmeland and
Austad (2012), who follow ideas more similar to the exact forward—backward schemes but
apply a truncation, where the higher-order interactions in the (forward) computation of the
MREF are ignored.

4.6.4 Example

Black gold in a white plight: reservoir characterization example

Keywords: reservoir characterization, Markov random fields, seismic data, petroleum, Monte

Carlo sampling

Seismic data are useful for reservoir characterization. By careful processing and inter-
pretation of seismic amplitude data at the top of the reservoir, a petroleum company can
predict (imperfectly) the spatial distribution of, for instance, sands or shales, or brine and
oil saturation. The quality of the prediction, of course, depends on the prior knowledge of
the reservoir and rock and fluid properties, as well as the quality of the seismic amplitude
data. A similar example was discussed in Chapter 2 and will also be used for VOI analysis
in Chapter 6.

In this example, the data and the rock-type (facies) variables are represented on a grid
of size 75 x 75 at the top reservoir. Here, the petroleum company is working toward the
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Figure 4.16 Seismic reflection data (zero-offset amplitudes) at the top reservoir horizon. The top
reservoir is represented on a grid of size 75 x 75.

prediction of the discrete facies variable x. The facies at a reservoir unit is either oil sand
(black) or shales (white) — i.e., x; € {O,l} and i =1,...,5625. We consider only the stacked
zero-offset attribute y, of the seismic amplitude data for all cells at the top reservoir. The
goal is to demonstrate the applicability of an Ising model prior for the facies in this predic-
tion exercise. This can be phrased as a Bayesian inference problem, where the likelihood
builds on the established geophysical knowledge via a forward model, while the prior model
incorporates smoothness or spatial interaction between the facies variables at different cells.

Figure 4.16 shows the seismic amplitude data at the top reservoir. The data are informative
of the facies because sands and shales tend to give different seismic responses. Given the
facies variables, the seismic data are modeled as conditionally independent. The likelihood
p( y; | xi) is a Gaussian pdf, where the mean value depends on the facies variable, while the
variance is the same for both classes. Figure 4.17 shows the likelihood model for both classes.

Let us define an Ising model prior with the interaction parameter set to 8= 0.75, simi-
lar to the model used in the realizations shown in Figure 4.15. For the posterior analysis,
we run a Markov chain Monte Carlo algorithm for 500 000 updates. Specifically, we use a
Metropolis—Hastings scheme, which updates the facies variable at one randomly selected
cell at each iteration of the algorithm. The updating is easily done because of the neigh-
borhood of the MRF model and the conditionally independent likelihood model. At each
update, only the four nearest neighbors must be considered, as well as the seismic ampli-
tudes at the selected cell (see Appendix B).
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Figure 4.18 Classification of discrete variable (oil sand is black and shales is white) from the
seismic data and the prior model. Left: pointwise prediction using no prior assumptions about spatial
interaction. Right: Markov random field prediction with interaction 8 = 0.75.
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Figure 4.18 (right) shows the maximum a posteriori solution of the facies variable using
the Markov chain Monte Carlo algorithm. We compare the MRF solution with the results
of a pointwise classifier based on the likelihood model alone (Figure 4.18, left). For the
pointwise classifier, the algorithm simply picks the most likely class depending on the data
at that cell —i.e., the highest likelihood value for the data is read directly out of Figure 4.17.
If the data are larger than 0.05, a cell is classified as oil sands; otherwise, it is classified as
shales. The pointwise result has many more black cells within regions dominated by white
and vice versa. The MRF solution borrows spatial information from neighboring cells, and
this entails that all data are involved in making a classification at a cell. The prediction
becomes smoother than the pointwise classification.

4.7 Multiple-point geostatistics

Although Markov random field models are based on a solid statistical foundation and only
require a few parameters, it is challenging to construct MRF models that produce realiza-
tions that visually appear like geological images. For instance, a large neighborhood is
required to reproduce channel structures often seen in reservoirs. Careful computing is
required to obtain reliable inference and prediction for MRFs with large neighborhoods.
Markov chain Monte Carlo algorithms tend to be very slow here. An alternative approach
to Markov random fields is that of multiple-point geostatistics.

4.7.1 Algorithms

The ideas of training images and multiple-point (MP) geostatistics were originally presented
to overcome the limitations of two-point (Gaussian) models (Guardiano and Srivastava
1993). Although they were initially developed to construct discrete valued realizations of
geology from training images, current MP algorithms can also construct realizations of
continuous variables and handle non-stationarity. The original MP algorithms for categor-
ical variables (e.g., single normal equation simulation (SNESIM) (Strebelle 2000, 2002))
extract the MP statistics — i.e., the probability of a state at a given position given the state
of multiple neighbors — from a training image. The patterns seen in the training image
are then reproduced (at random) according to the database of conditional distributions.
This means that no new patterns can occur unless we assign a very small probability for
non-existing patterns. The MP idea is very empirical, as it is constructed directly from
the training image, different from Markov random fields, which are built from paramet-
ric assumptions of neighborhood configurations. MP simulations are certainly rich (given
a rich training image) in the sense that realizations offer close resemblance to geology.
However, when the patterns grow larger and the training image is not large enough, MP
algorithms may be prone to overfitting since they basically reproduce what is available in
the training image, and this may lack predictive power.

In many of the MP algorithms, the simulations using a training image follow the sequen-
tial simulation paradigm. Each node is visited sequentially, and the local conditional dis-
tribution (non-parametric) is obtained from the training image. In this sense, it can be
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classified as a sequential algorithm, as is common for Gaussian simulation of spatial pro-
cesses. However, the difference is that it is conditioned to data events consisting of patterns
of multiple data taken together. Some of the more recent MP algorithms are based more on
computer graphics and do not rely much on probability theory. Instead of assessing para-
metric or non-parametric conditional distributions from the training image, these algorithms
directly lift from the training image realizations of single nodes or multiple sets of nodes
in a template (pattern simulation) (Mariethoz and Caers 2015). As an example, the direct
sampling (DS) MP algorithm (Mariethoz et al. 2010) directly samples the training image
conditioned to the MP data event surrounding the node to be simulated instead of building
a conditional distribution from the training image. The algorithm randomly scans the train-
ing image, and as soon as a match (within a certain tolerance threshold) is found to the MP
data event, the value from the training image is lifted and pasted at the simulation node. The
match is defined in terms of some similarity distance — e.g., whether the facies categories
at the nodes in the data event match the corresponding nodes from the training image scan.
The threshold needs to be selected carefully, of course. Requiring a perfect match leads to an
exact copy of the training image. A small fraction (<0.1) of mismatching nodes is taken to be
acceptable. Pattern-based algorithms also compare similarities between the data event and
the patterns from the training image, but instead of lifting one pixel at a time, they patch a
finite-sized region of the training image into the simulation grid. Patch-based algorithms are
generally faster than pixel-based algorithms. The DS algorithm can be used as a patch-based
algorithm. In addition, some other patch- (or pattern-) based MP algorithms in the litera-
ture include image quilting (Efros and Freeman 2001), FILTERSIM (Zhang et al. 2006),
SIMPAT (Arpat and Caers 2007), and CCSIM (also Tahmasebi et al. 2012). Mariethoz and
Caers (2015) provide a detailed overview of all of these algorithms and many others.

As we mentioned earlier, MP statistics can simulate geologically realistic patterns.
Note that this relies on an appropriate training image, which may not always be available.
Coming up with a rich enough training image (or sets of training images) that characterize
the prior uncertainty of the subsurface heterogeneity is challenging, often requiring close
interaction with geologists familiar with the depositional setting of the area under study.
Based on the geologists’ inputs, the training image may be built using unconditional sim-
ulations such as object-based methods or process-based or process-mimicking methods.
Though challenging, once an appropriate training image is available, modern MP simula-
tion algorithms offer very effective ways of modeling realistic geologic heterogeneity that
no traditional two-point geostatistical method can match.

We discuss more references to MP statistics in the bibliography that follows and finish
this section with an example.

4.7.2 Example

Go with the flow: petroleum simulation example

Keywords: petroleum simulation, petroleum development, petroleum production, reservoir charac-

terization, multiple-point statistics
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Figure 4.19 Training image for a subsurface meandering channel system with two classes (channel
sands and floodplain). One can create multiple-point statistics (MPS) realizations of discrete spatial
variables based on such training images.

Decisions regarding drilling and future production of reservoirs are based on several
aspects of reservoir characterization. One important aspect is the ability to produce the res-
ervoir from a relatively small number of wells, which is related to the connectivity and the
permeability of the reservoir. These variables direct the flow of hydrocarbons to the pro-
ducing wells. Petroleum engineers use fluid flow simulators to make production forecasts,
to detect reservoir zones of bypassed oil, and to develop and manage the reservoir. As we
discussed for Figure 4.2 at the beginning of this chapter, it has been shown to be beneficial
to run flow simulations over multiple realizations of stochastic reservoir models. Along
with the suite of other tools for spatial uncertainty modeling, MP geostatistics have played
an important role in the modeling of geologic facies as inputs for reservoir simulation.

In Figure 4.19, we show a training image for a meandering river system. The display
shows spatially dependent patterns of white and black in a three-dimensional (north, east,
depth) view. It is common practice to use a training image like this one to realistically
describe the spatial features and alternation styles of the rock types (facies) in the reservoir,
which is a critical reservoir variable that determines much of the variations in the saturation
(oil or gas content), porosity (tied to the pore volumes in the reservoir rock), permeability
(tied to the flow properties in the reservoir), and elastic properties (tied to the seismic data).

There are two facies classes in this training image: channel sands and floodplain (shown
as black and white, respectively, in the display). The training image is constructed from an
object-based unconditional simulation. Multiple realizations are then simulated using the
SNESIM MP algorithm by visiting each node in a sequential routine. When the algorithm
visits a cell, it samples a color. The color is generated conditional on the colors at the pre-
viously visited cells. The events or patterns around the current node jointly influence the
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Figure 4.20 Production profiles calculated by multiphase flow simulation over many realizations of
facies, porosity, and permeability fields.

conditional probability — i.e., there is conditioning on the outcome at multiple points. The
computation is done in a straightforward manner: counting the number of times the config-
uration of the history occurred in the training image (database), with a white or black color
at the selected configuration. This is Bayes’ rule by counting.

We generate B = 1000 realizations of the discrete random process. At each cell, the sto-
chastic facies variable is either channel or floodplain. The next step in petroleum reservoir
simulation is to generate other important reservoir variables like porosity or permeability,
conditional on the facies classes. We use sequential Gaussian simulation for the porosity
and permeability in the reservoir, conditional on the facies.

If the goal of this exercise were to predict the recoverable petroleum resources, then the
reservoir engineer would feed the deterministic numerical reservoir flow simulation model
with the multiple stochastic porosity and permeability inputs. The output is production
profiles in production wells over time. Of course, other geological and petrophysical inputs
are also required here, such as well controls, boundary conditions, rock and pore fluid prop-
erties, relative permeability curves, capillary pressure curves, wettability, etc.

Figure 4.20 shows 1000 realizations of the total oil production from six producing wells.
Each curve is representative of the production obtained by flow simulating one of the sto-
chastic reservoir realizations for facies, porosity, and permeability. The variability in the
production profiles is inherited from the stochastic elements of the reservoir variables.

Since the reservoir simulator is based on highly non-linear multiphase flow in porous
media, one cannot rely on linearization and Gaussian assumptions for the output variables.
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The realization-driven approach described earlier is necessary to quantify uncertainties;
this method is popular in a number of Earth sciences applications. Rather than having a
closed-form pdf for the output variable (petroleum production in this case), an approach
like this would result in a discrete, empirical representation of the pdf, as determined by
the samples.

4.8 Bibliographic notes

Traditional geostatistics books describing variogram methods, Kriging,
and simulation

Books describing variogram-based geostatistics and Kriging in various forms are abundant.
Excellent reference books include Journel and Huijbregts (1978), Isaaks and Srivastava
(1989), Kelkar and Perez (2002), and Wackernagel (2003).

Deutsch and Journel (1992), in the Geostatistical Software Library (GSLIB), provide a
terse yet useful recall of the theory underlying the algorithms coded in the corresponding
public domain software. The list covers most traditional two-point geostatistical algorithms
commonly used in practice, from variograms to Kriging to simulations and their many fla-
vors. GSLIB has been the source of many commercial geostatistics softwares. Goovaerts
(1997) focuses only on traditional two-point methods and is remarkable for its careful and
complete derivations and the continuity offered by the sequence of applications performed
on the same multivariate soil data set. Through that data set, readers can readily appreciate
the typical flow of a geostatistical study. Lantuejoul (2002) provides theory and algorithms
for unconditional and conditional simulations of a wide variety of spatial models. Besides
the classical Gaussian and pluri-Gaussian random functions, theory and algorithms for
other spatial stochastic models such as point processes, Boolean models, tessellations, and
substitution random function are described. Chiles and Delfiner (2012) is perhaps one of
the best current graduate-level books on the theory and applications of geostatistical meth-
ods based on covariances and random function theory. The authors cover a breadth of top-
ics, including not only the traditional Kriging-based technniques but also spatiotemporal
models, multivariate methods, change of support, and pluri-Gaussian models, along with
many examples from petroleum geosciences, mining, and hydrogeology. There are concise
but useful sections on geostatistical inversion and multiple-point simulations from train-
ing images. Though the mathematics is at an advanced level, it is presented in a readable
manner. Pyrcz and Deutsch (2014) review geostatistical modeling tools, paying attention
to careful quantification of geological concepts. They also describe process-mimicking
models and event-based models used in geostatistical modeling.

Sequential simulation techniques and related topics

Borgault (1997) introduced the direct sequential simulation algorithm, where there is no
need to perform a normal score transform and back-transform of the data. The advantage of
this approach is that it can handle conditioning to linear averages of the original data. The
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disadvantage is that there is no guarantee that the simulated realizations reproduce the data
histogram. Indicator Kriging is a technique that could be used to estimate the conditionals
at a site. A common reference paper for this technique is Journel (1983). In this case, no
assumption is made about the shape of the distribution, which is assessed by directly esti-
mating the probability of being below a series of thresholds (for continuous variables) or
by estimating the probability of being within a set of discrete categories. When this method
is used for sequential simulation, the algorithm is usually called sequential indicator simu-
lation. In the probability field simulation (P-field) algorithm, conditionals are estimated
based only on the hard data and not on indirect noisy observations. A common reference
paper is Froidevaux (1992).

Spatial statistics

There are several excellent books treating spatial data analysis from a more statistical per-
spective. For instance, Cressie (1993) covers a wide range of spatial statistics topics not
only limited to Gaussian- and Kriging-type techniques. Over the years, it has served as an
excellent reference book for spatial statistics topics. Stein (1999) provides a solid back-
ground on the more theoretical aspects underlying parameter estimation and prediction
(Kriging) in spatial Gaussian processes. Banerjee et al. (2004) provide an overview of
more recent methodologies for analyzing spatial processes. For instance, they include a
description of areal-based models, a number of novel tools for non-stationary processes,
and the use of Markov chain Monte Carlo simulation for inference. The focus of the book
is on hierarchical modeling in a fully Bayesian perspective. Le and Zidek (2006) take an
information theory-based approach, paying attention to the design of spatial experiments
to improve predictions with a focus on the entropy measure. The main applications studied
involve environmental data about air quality, ozone, and temperature. Schabenberger and
Gotway (2009) and Gaetan and Guyon (2010) are other great books covering diverse topics
in spatial statistics.

There has lately been a large focus in the statistical community on methods for large data
sets. Topics such as predictive processes (Banerjee et al. 2008), fixed-rank Kriging (Cressie
and Johannesson 2008), and localized models (Stein et al. 2004) are promising modeling
approaches.

Non-Gaussian response models

In our presentation, we focused on the skew-normal model and the generalized linear
models, as we will later use them in models for VOI analysis. There are of course sev-
eral non-Gaussian response models that we did not cover here. Perhaps the most com-
mon technique is to transform response variables to achieve Gaussian distributions for
the empirical marginal. This has been referred to as anamorphosis (Cressie 1993). This
approach seemed to die out with the advent of hierarchical models in statistics but has
lately garnered some interest again in another similar form known as copulas (Joe 2014).


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.005
http:/www.cambridge.org/core

4.8 Bibliographic notes 153

The Gaussian copula has been used in geostatistics — see, e.g., Bardossy and Li (2008) and
Kazianka and Pilz (2011).

Non-parametric models such as spatial Dirichlet processes — e.g., Gelfand et al. (2005) —
or stick-breaking mixture formulations — e.g., Reich and Fuentes (2007) — have also gained
popularity recently.

There is a large body of literature on point-process models in spatial statistics. These are
somewhat different from other spatial models because they focus on modeling the random
location of spatial events rather than the random variable at a fixed location. A popular
modeling approach is the log-Gaussian Cox process, which can be regarded as a hierarchi-
cal Gaussian model — see, e.g., Illian et al. (2008).

Markov random fields

The most influential publications in Markov random fields are Besag (1974) and Besag
(1986). These papers sparked a lot of interest in the statistical community — not limited to
spatial statistics but also in graphical modeling and image processing. Markov chain Monte
Carlo (MCMC) has been a popular approach for sampling Markov random fields, as we
have described, and the original paper on Gibbs sampling studied the Ising model (Geman
and Geman 1984). See also the discussion of multiple-point geostatistics mentioned earlier,
which in a similar vein provides very useful discrete valued spatial models.

Gaussian Markov random fields are very useful for fast computations of Gaussian pro-
cesses. An overview is provided in the book by Rue and Held (2005). Connections between
Gaussian Markov random fields on tessellations and continuously described Gaussian ran-
dom fields are drawn in Lindgren et al. (2011).

Multiple-point geostatistics

Guardiano and Srivastava (1993) initially proposed multiple-point geostatistics. Strebelle
(2000) and Strebelle and Journel (2001) were among the first to describe and use
multiple-point geostatistics formally. Caers (2005) focuses on reservoir characterization
techniques. The book includes applications of multiple-point geostatistics to stochastic res-
ervoir modeling and uncertainty assessment. Caers’ (2005) book can be considered the
first book of the multiple-point generation. Remy et al. (2008) were the first to deliver both
theory and software related to multiple-point geostatistics. Although this book is a users’
guide to the Stanford Geostatistical Modeling Software (SGeMS), its presentation focuses
not on the modeling of covariance and Kriging but on the representation of a general ran-
dom function. That representation takes the form of equiprobably sampled simulated reali-
zations mimicking the actual spatial distribution of the variable(s) under study. The spatial
law (MP statistics) of that random function is retrieved from a training image that can carry
prior knowledge about the physics controlling the phenomenon under study.

Mariethoz and Caers (2015) is a recent comprehensive book on spatial modeling using
training images and multiple-point statistics. The authors provide a detailed overview of
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the various algorithms for spatial modeling based on training images. Inverse modeling
using training images is also covered. Example applications include reservoir modeling,
mineral resources, and climate modeling. This is an excellent modern reference for sto-
chastic spatial modeling in the physical sciences.

Spatiotemporal models

The recent book by Cressie and Wikle (2011) provides a great overview of recent
approaches for spatiotemporal statistical modeling. The focus is on low-dimensional basis
representations in combination with differential equations modeling. There is currently
significant interest in the dynamic updating of spatial models. For linear Gaussian models,
the celebrated Kalman filter yields the optimal solution, but this updating becomes very
complicated for non-linear time-varying models, and there is no single solution. Ensemble
Kalman filtering (Evensen 2009) has become a popular tool for approximating the dis-
tribution over many time steps with data. A more generally applicable technique for data
assimilation over time, with its own computational drawbacks, is that of particle filtering
or sequential Monte Carlo updating (Doucet et al. 2001).
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Value of information in spatial decision situations

Figure 5.1 harvesting these woods
means felling our leafy friends
so let’s choose wisely

In this chapter, we integrate concepts from decision analysis (Chapter 3) and spatial sta-
tistics (Chapter 4) to model decision situations that are typical of applications in the Earth
sciences. These models are then developed to support decisions pertaining to information
gathering in the Earth sciences.

We start by introducing the concepts of spatial decision situations and
information-gathering schemes and frame the various models introduced in the chapter in
Section 5.1. In Section 5.2, we present a fairly general formulation for the value of infor-
mation (VOI) for a class of problems that is studied most comprehensively in the book.

155
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We elaborate on a number of special cases in Sections 5.3—6 by categorizing decision situ-
ations based on the number of available alternatives as well as the value function model.
Sections 5.7-8 describe more complex decision situations: more general risk preferences,
explicit constraints in the decision situation, and sequential decisions or sequential infor-
mation gathering. Section 5.9 discusses some other information measures that are popular
for evaluating information-gathering schemes in Earth sciences applications. We demon-
strate the concepts using several examples throughout the chapter. Our focus here is on
using the examples to illustrate the assumptions of the various models; later in Chapter 6,
we describe case studies where the emphasis lies more on the applications themselves.

5.1 Introduction

Decision situations in the Earth sciences involve the exploration, utilization, management,
retrieval, restoration, and sustenance of the Earth’s resources. Decisions are often complex
due to uncertainties related to the Earth’s subsurface. Furthermore, decisions may have a
lot at stake, and therefore it may be worthwhile to obtain more information before the deci-
sion is actually made —i.e., before an irrevocable allocation of resources. A crucial question
to answer is: how much information should one purchase? Gathering the right kind and
the right amount of information is crucial for the decision maker so as to obtain as much
value from the Earth’s resources as possible. In this section, we first present a formulation
of decision situations that are typical of applications in the Earth sciences, referring to
them as spatial decision situations. Then, we show how VOI analysis can support various
information-gathering questions that are relevant for such applications.

5.1.1 Spatial decision situations

Applications in the Earth sciences often inherently involve spatial variables — i.e., vari-
ables that are defined over several locations in space, as well as alternatives that are associ-
ated with these spatial locations. Consider a spatial random variable x = {x,- = 1,2,...,n}
and an alternative (or, synonymously, action) a = {aj :j=12,...,N;, where indices i and
J are associated with spatial locations —i.e., x; = x(s,.) anda; =af(s j) using the notation
of Chapter 4. Alternatives are chosen from an available set @ € A. Let v(x,a) be the value
derived by the decision maker from the decision situation; note that this is a function of
both the spatial variable x as well as the chosen alternative a. As in the previous chapters,
we refer to the spatial variable as the distinction of interest when it is a variable that is
fundamental to the decision maker’s value.

Consider the illustrative example shown in Figure 5.2, where a farmer’s forest has been
segmented into several irregular units. The farmer must decide which units to utilize —
which entails cutting the timber and then transporting, producing, and selling the wood —
and which units to leave as is for the forthcoming season to maintain a sustainable resource.
In this example, x; is the spatial variable that denotes the volume of timber at unit i, and
a; is chosen from a binary alternative set at unit j. The two alternatives are: should the
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Figure 5.2 Illustration of a spatial domain: a farmland that is segmented into units. The decision
maker must decide which units to harvest.

farmer harvest the wood at this unit or not? There is uncertainty around the actual volume
of timber available at each unit. The farmer’s value for the season v(x,a) is a function of
the volume of timber as well as the choice of utilized units.

Recall that both the spatial variable x = {x,- =1, 2,...,n} as well as the set of alternatives
a= {aj j= 1,2,...,N} are associated with spatial locations. The number of units n and the
number of available alternatives N need not necessarily be the same; they depend on the
spatial resolution and the assumptions of the model. For binary alternatives (harvest/do not
harvest) at each unit i =1,2,..., N, the set A consists of 2V possible alternatives. Decision
situations may, of course, have more than two alternatives at each unit — e.g., harvest, do
not harvest, or sell the unit.

As another example, consider Figure 5.3, which depicts a heterogeneous oil reservoir.
The decision maker must choose where to place injection and production wells to recover
oil. Here, x; is the spatial variable that denotes oil reserves at unit i of a three-dimensional
(3-D) reservoir model representing the subsurface. The recoverable oil reserves are typi-
cally complex functions of spatially heterogeneous variables such as rock types, porosity,
and permeability.

In practice, the set of possible alternatives could potentially be complex; it could involve
tuning production well rates and injection rates of water or gas, as well as the placement and
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Figure 5.3 Illustration of a spatial domain: a heterogeneous oil reservoir. The decision maker must
decide where to place injection and production wells so as to recover oil. Here, an injection well is
positioned in one corner, and a production well is positioned diagonal from the injection corner. The
water replaces the oil, and the displays show the fluid flow at four stages during the first 150 days of
production.

spatial configuration of these wells. The alternative set may be discrete (well type: injector or
producer) or continuous (well rates) or a combination of both. The figure depicts one possible
reservoir model for one particular alternative a, where an injection well and a single produc-
tion well are placed at corners diagonal from each other. The decision maker’s value from the
reservoir v(x,a) depends on the oil that is recovered, which is a function of the oil reserves
x as well as the chosen production strategy a. The value can be computed from a subsurface
flow scenario that depends on the underlying heterogeneous porosity and permeability.

Both examples highlight common themes around the spatial aspects of decisions in the
Earth sciences. We refer to such decision situations as spatial decision situations, identi-
fying three primary characteristics that are common:

1. Spatial variables typically exhibit spatial dependence.

2. There is typically high decision flexibility since alternatives are associated with spatial
locations.

3. The decision maker’s value is typically highly coupled and can be a complex function
of properties of spatial locations.

Property 1 is inherently present in most Earth sciences applications due to physical
processes that explain the formation and changes of geographic features. Spatial variables
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are often best described using models that incorporate spatial dependence, because a loca-
tion that is closer to another may have more similar properties than a location that is farther
away. In Chapter 4, we reviewed a host of models that may be appropriate for capturing
such effects, such as Markov random fields, multivariate Gaussian models, multiple-point
statistics, and training image-based models.

Property 2 is concerned with the alternatives that are available to the decision maker.
Typically, Earth sciences applications involve selecting locations and subsequently utiliz-
ing and managing resources at these location(s). In the forestry example from Figure 5.2,
the farmer must choose the set of units to cultivate — this leads to a combinatorial (2¥) num-
ber of alternatives. We refer to this property as that of high decision flexibility, because the
decision maker has many alternatives to choose from.

Property 3 involves the decision maker’s value from the decision situation. Due to
physical processes, the value in Earth sciences applications is often best described as a
complex function of the properties and the chosen alternative. In the oil reservoir example
from Figure 5.3, the decision maker’s profit is a function of the oil that is recovered at the
production well, which might be best described by complex reservoir simulations com-
puted by numerically solving multiphase fluid flow differential equations in a heterogene-
ous Earth model. We refer to this property as that of coupled value, because the value can
be a non-trivial function of properties at various locations.

From the perspective of the field of operations research, spatial decision situations can
be viewed as a type of dependent portfolio problem where dependence is of a spatial nature
(Bhattacharjya et al. 2013). We stress the generality of these decisions in the Earth sciences
and suggest models for their analysis.

Discussion: cogency versus verisimilitude in models

Howard (2007) notes two major desiderata of models for decision situations (and in general):
cogency — the extent to which the model satisfies its functions — and verisimilitude — the extent
to which the model reflects reality. It is important to formulate models such that they capture
the most important features of the application being served without being overly complex. This
is a common trade-off that modelers face, and it is no different in Earth sciences applications.
In this book, we attempt to frame problems in a realistic fashion using models at granular
levels of spatial resolution, but we recognize the need for reasonable, problem-dependent
simplifications. Property 1 of spatial decision situations is retained for most of the book, as we
believe that this is a crucial aspect of Earth sciences applications. However, incorporating both
Properties 2 and 3 in addition can result in models with significant computational complexity —
which can affect the cogency of these models. In Section 5.2, we discuss various formulations
resulting from relaxing Properties 2 or 3 or both.

5.1.2 Information gathering in spatial decision situations

Decision situations in general, including those that we refer to as spatial decision situations,
are associated with auxiliary decisions pertaining to information gathering. For instance, in
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the forestry example from Figure 5.2, the farmer can perform certain tests to study the vol-
ume of timber before deciding which units to utilize. Similarly, in the oil reservoir example
from Figure 5.3, the decision maker can conduct seismic or electromagnetic geophysical
surveys to further study the geology of the reservoir before choosing a production strategy
to recover oil. When there is a lot at stake in a decision situation, it may be worthwhile to
obtain more information to better understand the critical uncertainties that have a bearing
on the decision.

Since spatial variables play an important role in decisions in the Earth sciences, there is a
spatial aspect to information gathering as well, resulting in numerous practical complexities
and opportunities. Just like the underlying decision situation itself, information gathering
may include a combinatorial number of alternatives. Consider, for instance, the alternatives
that might be available to the farmer with the forest shown in Figure 5.2 with regard to infer-
ring the volume of timber at the various units by carrying out a few sampling tests. To make
matters more interesting, the decision maker often must choose from among various types
of data sources, sometimes at varying spatial resolutions and varying reliability. Moreover,
the information is available only at some expense and effort: consider the attempts at sur-
veying by trekking through thick, dense forests or the extensive infrastructure and compu-
tation required for acquiring, processing, and interpreting seismic information to study the
geology of reservoirs. When does the information then become worth its cost?

The complexities surrounding information-gathering decisions create opportunities for
decision makers in the Earth sciences. Since there are so many possibilities, the decision
maker might be able to tune the spatial coverage of the test or the accuracy of the measure-
ments. In addition, due to spatial dependence that is typical in spatial decision situations
(Property 1), information about only a select few locations may be sufficient for learning
enough about the entire spatial domain. The decision maker can therefore be creative in
designing high-value information-gathering experiments.

Our main focus in this book is on describing techniques for evaluating and compar-
ing different information-gathering schemes, providing the decision maker with powerful
tools for analysis. These techniques are formal and are based on foundations of probability
and decision theory, as well as practical considerations, in that they try to address actual
concerns of decision makers in real-world situations. Integrating decision theoretic notions
with those from spatial statistics ensures that the connection between the information itself
and how it will be useful is always maintained.

5.1.3 Overview of models

VOI analysis is performed for information-gathering schemes that provide the decision
maker the opportunity to observe uncertainties in their underlying decision situation before
making their decision(s). The remaining sections of this chapter, up to and including
Section 5.8, are devoted to describing models for VOI analysis in spatial decision situ-
ations. Here, we provide a framework for these models by making a high-level distinction
between types of decision situations and information-gathering schemes.
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First, we distinguish between static and sequential (or dynamic) decision situations. In
sequential decision situations, the decision maker makes several decisions over time; it
is typical for the decision maker to choose an alternative for a particular decision, observe
some uncertainties, and make subsequent decisions by possibly adapting to whatever out-
comes have been observed thus far. The notion of a strategy, which specifies a plan for the
decision maker for various decisions given the information that is available at the time of
the decisions, is central to sequential decision situations. The reader is referred to Section
3.3, where we discuss strategies in the context of influence diagrams. Static decision
situations, on the other hand, are decision situations where the decision maker makes a
one-shot decision. For instance, in the static model of the decision situation for the oil res-
ervoir example from Figure 5.3, the decision maker is assumed to choose the production
plan, including well locations, control rates, etc., all in one go. In the sequential version, the
decision maker would have the capability to adapt the plan based on the information from
production data.

In a similar fashion, we also distinguish between static and sequential
information-gathering schemes. In a sequential information-gathering scheme,
the decision maker can acquire data in a sequential fashion — i.e., they can observe an
uncertainty and then decide whether to pursue further information based on whatever
has been observed. In a static information-gathering scheme, the decision maker
is assumed to obtain all the information together. In the oil reservoir example, a static
information-gathering model would assume that the decision maker selects all exploration
wells up front.

In this book, we predominantly focus on static models for both the decision situation and
information gathering. Although sequential models are more realistic in general, such mod-
els can involve serious modeling and computational challenges, and often a static model is
a reasonable and sufficient model for the application under consideration. Since our focus
is on performing analysis for practical problems, the efficiency of the proposed approach
is an important consideration, and as we will see, there are plenty of interesting insights to
be gleaned from VOI analysis using static models.

Table 5.1 categorizes the models as per the static versus sequential framework and also
specifies various sections of the chapter that deal with various models. The literature on

Table 5.1. Categorizing models: static versus sequential decision situations and
information-gathering schemes

Static Decision Situation Sequential Decision Situation
Static Information Section 5.2 provides a fairly general Section 5.7.3 discusses these
Gathering formulation. Sections 5.3-6 are models briefly.

special cases.
Sequential Information  Section 5.8 discusses these models This case is not discussed in

Gathering briefly. the book.
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sequential models for VOI analysis for Earth sciences applications is currently fairly lim-
ited; we refer to a few relevant articles in the appropriate sections. We suspect that the lit-
erature in these areas will continue to grow.

Even for the static models that are explored extensively in the book, we make some sim-
plifying assumptions about the decision situation and the information-gathering schemes.
Specifically:

* The decision maker is assumed to be risk neutral, therefore the optimal alternative is computed
by maximizing the expected value. Implications of relaxing this assumption are examined in
Section 5.7.1.

e It is assumed that there are no additional constraints in the decision situation (beyond those that
have already been explicitly modeled through the available set A) — i.e., the decision maker can
select any alternative from the available set of alternatives. We explore the effect of additional
constraints for a special case in Section 5.7.2.

5.2 Value of information: a formulation for static models

We assume that the reader is familiar with the VOI-related concepts that were explained in
Chapter 3. Recall that the VOI is computed by comparing the situations with and without
information; we therefore first study the prior value of the decision situation, proceeding
subsequently to a posterior value that incorporates additional information.

5.2.1 Priorvalue

A priori, the decision maker is faced with the following spatial decision. He or she must
choose an alternative from the available set, a € A, and his or her beliefs about the uncertain
spatial variable x are captured by the prior probability distribution p(x). The value derived
from the decision situation is denoted v(x, a).

Assuming that the decision maker is risk neutral, it is optimal to choose the alternative
that maximizes the expected value. Therefore, the prior value of the decision situation,
before any additional information has been observed, is:

PV =max,., {E(v(x,a))} = max,., {_[ v(x,a)p(x) dx}. 5.1
Computing the expected value in this fashion may be computationally challenging
for problems in the Earth sciences. The high decision flexibility in the decision situ-
ation (Property 2) may result in a combinatorial set of alternatives A to maximize over.
Moreover, the coupled value arising from a complex value function (Property 3) may
require time-consuming numerical simulations for assessing v(x,a). Equation (5.1) pro-
vides a general formulation; more specific simplifications are provided in subsequent
sections.
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5.2.2 Posterior value

How does the value of the decision situation change when the decision maker can observe
some information related to the uncertainties before making the decision? We make a dis-
tinction between perfect and imperfect information based on whether the actual distinc-
tion of interest, or merely a noisy measurement related to the distinction of interest, is
observed. In the case of the oil reservoir example in Figure 5.3, the perfect information case
for one location occurs when the oil accumulation, porosity, and permeability in that loca-
tion are observed before the drilling strategy is determined. This sort of information might
be provided by an exploration well. Imperfect sources of information include seismic and
electromagnetic data and interpretations, since they are noisy measurements that provide
indirect, remotely sensed information about the pore fluid saturations and rock types. Note
that perfect information can be viewed as a special case of imperfect information — it is the
case when there is no measurement inaccuracy.

We also make a distinction between total and partial information, depending on the
spatial coverage of the information. The case of partial information occurs when informa-
tion is provided for a strict subset of the spatial locations, as opposed to total information,
where information for all spatial locations is observed before the decision is made. In the
oil reservoir example, exploration wells are typically partial sources of information, as they
are only drilled at certain locations in the reservoir. Three-dimensional reflection seismic
surveys, on the other hand, typically cover the entire spatial domain of the reservoir and are
therefore sources of total information.

Most information sources in the Earth sciences are arguably imperfect or partial sources
of information. Common data-gathering schemes include surveys by humans that involve
visual observations (such as counting species of plants or animals) or recovering samples
(such as cores of minerals) that are brought back to the laboratory for testing. Such tests
are often noisy measurements of the distinction of interest due to human errors in meas-
urement, instrument inaccuracy, challenges associated with the spatial scale of the domain,
etc. Surveys could also be performed remotely, where instruments automatically measure
features that are relevant to the distinction of interest. Examples include seismic, electro-
magnetic, radar, and satellite data. Table 5.2 summarizes the various cases in the form of a
matrix, providing a few examples. Although the case of total perfect information is rare, it
can often be an efficient theoretical construct because it provides an upper bound that can
be useful for evaluating information sources. Other, more general information-gathering
schemes are also possible. For instance, the decision maker could perform experiments
that provide information about averages or sums of properties over many spatial units.
Replicated sampling at locations may also be possible, perhaps with varying data qualities.
We explore each case in Table 5.2 individually.

Perfect information

When there is total perfect information, the decision maker has the opportunity to
observe the distinction of interest x before making the decision. When the instantiation x is
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Table 5.2. The matrix of information-gathering cases: perfect versus imperfect and total
versus partial information

Perfect Imperfect

Total Exact observations are gathered for all Noisy observations are gathered for all
locations. This is rare, occurring when there  locations. This is common in situations
is extensive coverage and highly accurate with remote sensors with extensive
data gathering. coverage — e.g., seismic, radar, or

satellite data.

Partial Exact observations are gathered at some Noisy observations are gathered
locations. This might occur, for instance, at some locations. Examples
when there is careful analysis of rock include handheld (noisy) meters to
samples along boreholes in a reservoir or a observe grades in mine boreholes,
mine. electromagnetic testing along a line,

biological surveys of species, etc.

observed, the decision maker should choose the alternative to maximize v(x,a). However,
there is uncertainty around what will eventually be observed before the information is
acquired, and the expected value is computed by integrating over the various outcomes of
the test. The posterior value, for a risk-neutral decision maker, is therefore:

PoV(x)= J-maxae,, {v(x,a)} p(x)dx. (5.2)

Since the decision maker is risk neutral, the VOI is computed as the difference between
the posterior and prior values. The value of the total perfect information is:

VOI (x)= PoV (x)—PV. (5.3)

The argument in the parentheses for posterior value and VOI indicates the uncertainty
for which VOI is being computed. (The same notation was used in Chapter 3.)

Consider next the case of partial perfect information, where the distinction of interest
at a subset of the locations is observed. As was done in Chapter 2, suppose that the loca-
tions at which the observations are made is denoted by K, where K {1, 2,...,n}, and that
the decision maker observes xy before making the decision. Denote the complementary
set K€ by L. When the instantiation xj is observed, the decision maker should choose
the alternative to maximize the conditional expected value E (v(x,a) | xx ) With total per-
fect information in Equations (5.2) and (5.3), this conditional expectation was the value
itself, E (v(x,a) I x) = v(x,a). Again, there is uncertainty around what will eventually be
observed, and the expected value is computed by integrating over the various outcomes of
the test. The posterior value is:

PoV (xz)= JmaxaeA {E(v(x,a) | Xy )}p(x]K )dx. (5.4)
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The value of the partial perfect information is:
VOI (xy ) = PoV (xy )— PV. (5.5)

Note that this case requires computing the distribution p(xK) by marginalizing out the
distinction of interest at locations where the information is not observed. Additionally,
the computation for the conditional expected value E (v(x,a)IxK) is not necessarily
straightforward.

Imperfect information

Suppose that there is another uncertain variable y = {yi = 1,2,...,11} that is relevant to
the distinction of interest x. The probabilistic dependence between these variables is rep-
resented through the likelihood p(y | x). When there is total imperfect information, the
decision maker can potentially observe y at all locations before making the decision. The
posterior value can be obtained by integrating over the outcomes of y:

PoV(y)=J‘maxaeA {E(v(x,a)ly)}p(y)dy. (5.6)

The computation for the posterior value in this case requires finding the conditional
expected value E (v(x,a) I y) as well as the pre-posterior marginal probability density func-
tion (pdf) p ( y), which can be obtained from the prior p (x) and the likelihood p ( yl x) using
Bayes’ rule. This likelihood that is required for formulating the case of imperfect informa-
tion introduces complexities that we will return to when we discuss the special cases.

The value of the total imperfect information is:

VOI(y)=PoV(y)—PV. (5.7)

The posterior value and the VOI for the case of partial imperfect information can be
computed in a fashion similar to that of partial perfect information in Equations (5.4) and
(5.5) after replacing yy for xi. For completeness, we write the equations below:

PoV(yK) = JmaxaeA {E(v(x,a) | yx )}p(yK)dyK, (5.8)

VOI (yy )= PoV (yy)-PV. (5.9

5.2.3 Special cases: an overview

The formulation described in the previous section applies generally to all situations.
However, simplifications may be required for computational tractability, thereby enabling
tools for efficient VOI analysis. In Section 5.1, we described three distinctive properties of
spatial decision situations. In the following four sections, we present special cases that are
obtained by relaxing and enforcing these properties. Property 1 is never relaxed (spatial
dependence); relaxing and enforcing the other two properties provides the various combin-
ations presented in Table 5.3.
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Table 5.3. Categorization of different spatial decision situations

Assumption: Decision

Assumption: Value

Section  Special Case Flexibility Function Main Example
53 Low decision Alternatives are easily ~ Total value is a Norwegian
flexibility; enumerated sum of value at wood — forestry
decoupled value every unit example
54 High decision None Total value is a The tree
flexibility; sum of value at amigos —
decoupled value every unit conservation
biology example
5.5 Low decision Alternatives are easily =~ None Go with the
flexibility; enumerated flow — reservoir
coupled value simulation
example
5.6 High decision None None Frozen —
flexibility; hydropower
coupled value example

5.3 Special case: low decision flexibility and decoupled value

A potential way to enable computational tractability for VOI analysis is to relax both
Properties 2 and 3.

Relaxing Property 2 leads to a decision situation where there are a small set of alter-
natives — i.e., set A has a low cardinality. As a result, computations are easier because
maximizations are performed over small and manageable sets. Such an assumption may be
reasonable in a host of real-world applications for a variety of reasons. For instance, there
may be factors that have not been explicitly modeled, enforcing constraints that only make
a small set of alternatives feasible, or it may be that previous analysis has filtered out most
of the alternatives. Or it may be the case that only a few alternatives are considered for the
sake of simplicity of analysis and computational tractability.

Relaxing Property 3 leads to a decision situation where the value function can be easily
“decoupled,” in the sense that the total value can be decomposed using a separable function
of the value from each individual spatial unit. In the simplest case, the total value is the sum
of the value from all units in the spatial domain. This assumption allows computations to
be performed at the local level of individual units and then combined in a convenient mat-
ter. Again, this assumption may either be natural for a particular application, or it may be a
simplification that is not necessarily entirely realistic but still a reasonable approximation
for computational reasons.

Applications where these assumptions have been made include domains such as agricul-
ture (Wiles 2004), fisheries (Forsberg and Guttormsen 2006), mining (Eidsvik and Ellefmo
2013), and forestry (Kangas 2010). In this book, we focus on the explicitly modeled spatial
uncertainties.
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Our example at the end of this section is motivated by what has been the running example
in this chapter from the domain of forestry. As a reminder to the reader, the situation is as
follows: a farmer owns several units of a forest. In this special case, the farmer only has two
available alternatives: to harvest the forest at all units or to leave the forest as is. The value
obtained from the wood, if the farmer decides to harvest, would depend on the volume of
timber, as well as the selling price of wood and paper and the operational and processing
costs. Before making the decision, the farmer considers purchasing information pertain-
ing to the volume of timber. We use VOI analysis to study various information-gathering
schemes.

5.3.1 Prior value

We choose the alternative a € A that optimizes the overall value. Since the value function
decouples for the n spatial locations,

n

v(x,a)zZvi (xl-,a). (5.10)

i=1

In the forestry example, the value is assumed to be proportional to the volume of timber,
and the total volume is a sum of volumes from the n units — hence the sum in Equation
(5.10). Note that the value function v, (x,-,a) can vary from unit to unit because there may
be important differences from site to site. For instance, the spatial units of a forest could be
at varying altitudes, slopes, distances from infrastructure, etc., and may therefore require
different local costs to develop.

With the decoupling of value in Equation (5.10), the prior value for this special case
becomes

PV =max,, {E(v(a,x))} =
max,., {zn: E (vi (xl- ,a))} =max,, {ijv,- (xi ,a)p(x,- )dx; },

where the final equation holds if the distinction of interest is a continuous random variable
with marginal pdf at site i denoted p(x;). Note that the spatial dependence between vari-
ables is not relevant for the prior value in Equation (5.11) because the decoupling of the
value function leads to n univariate integrals.

(5.11)

5.3.2 Posterior value

Suppose that we can purchase further information about the distinction of interest. The
information may take any of the forms discussed previously: total versus partial, perfect
versus imperfect. Note that it is possible for the information to be at a less granular level
than the spatial units. For instance, in the forestry example, a surveyor could collect infor-
mation about the average tree height or timber volume along a chosen path in the forest,
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and not necessarily about the height or timber volume at particular locations along this
path. Such average properties may be valuable, and they might be less expensive to acquire.

The posterior value is now an integral over the data, assuming continuous sample space.
For the case of total perfect information:

PoV(x)= jmaxagA {2 v, (x,-,a)}p(x)dx. (5.12)

i=1

The associated VOI is the difference between the posterior and the prior value,
as expressed in Equation (5.3), which represents the upper bound on the value of any
information-gathering scheme in this situation. In the forestry example, perfect and total
information occurs when the decision maker observes the timber volume at every unit
before making the decision. In practice, forest surveys would likely be partial sources of
information because only selected units are observed, and they would be imperfect sources
due to inaccuracies in measurements.

Instead of repeating the expression for the posterior value for the various cases, here we
only present the case with partial and imperfect information —i.e., when the data is y; with
marginal likelihood p( Yk ), as it can be viewed as a generalization. The posterior value is

PoV (y,) = [ max,., {ZE(v (x-a)] yK)}p(yK)dyK, (5.13)

and the VOI is the difference between the posterior and prior value, as in Equation (5.9).

5.3.3 Computational notes

Computations for the prior and posterior value depend on the local value functions v; (x,- , a) ,
i=1,...,n, and the statistical model. This special case is typically simpler than the more
complex cases described in Sections 5.4—6.

For the forestry example that follows, there are analytical solutions for the VOI. This is
possible because the example assumes a Gaussian distribution for the wood volumes as
well as an additive value function. With a more complex statistical model formulation or
value function, one may need to approximate the value in one way or another. A general
approach to computing the prior and posterior values is Monte Carlo sampling. We will
discuss Monte Carlo methods further for the more complex situations later in this chapter.

Pitfalls: expected value of a non-linear function

The expected value of a non-linear function is not necessarily the same as the non-linear
function of the expectation. We cannot interchange the function and the expectation in general —
this only holds for linear functions. The value calculations are based on the expectation of the
value function: E(v(x, a)l y) - jv(x,a)p(x ly)dx#v (E(x I y),a).
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5.3.4 Example

We present a synthetic example to gain insight about the VOI for this special case. The
statistical model is identical to an example from Section 4.4. In Chapter 7, we present a
hands-on project based on the same example.

Norwegian wood: forestry example

Keywords: forestry example, Gaussian random field, total information, partial information, low

decision flexibility, decoupled value function

Let us study the forestry example in greater detail, with numbers.

Framing the decision situation

Suppose that a farmer owns a forest, which is modeled as a set of spatial units, shown as
a spatial grid of size 25 x 25 in Figure 5.4. There are thus a total of n = 625 units in this
example. The uncertain distinctions of interest are the profits x;, i = 1,...,n from the spatial
forest units. The farmer must make a decision about whether to harvest all the trees or to
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Figure 5.4 Forestry example: illustration of a size 25 x 25 grid of forest units. The crossed vertical
and horizontal lines indicate locations for partial testing.
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leave the forest as is. This means that the farmer has only two alternatives a € {O, 1} defined
as follows: to utilize all units (a = 1) or to do nothing (a = 0). The value function decouples
to the sum over the spatial units. The total value if all units are utilized — i.e., a=1—is

v(x,a = 1) = z X;, whereas the value v(x,a = 0) = 0 if the farmer leaves the forest as is.

i=1

Information gathering

Before making the decision, the farmer can pay for tests that are informative of the timber
volume and therefore the profits. Potential tests one could imagine in this case entail send-
ing a surveyor to selected units and carefully measuring trees and the timber volume in
selected spatial units. The surveyor would likely walk along a chosen path through the field
with a device, observing the light or canopy variables that are relevant to the volume of tim-
ber. There are also other possibilities for imperfect measurements about the timber volume
at all units, such as processed satellite data or other inventory data (Bergseng et al. 2015).

We consider three testing options outlined in detail in the following text. They are all
considered imperfect information experiments and include a total test, a partial test with
data at spatial units along two paths in the domain, and a partial test with average timber
volumes or profits along the paths.

Modeling

We assume that the farmer has a reasonably good idea about the selling price of wood and
the operational costs, but there is uncertainty about the timber volume. This volume deter-
mines the uncertain profit, which can be positive or negative. These profits at the n spa-
tial units are the distinction of interest x = (x] yeres Xy ) As discussed earlier, the total value
decouples as a sum over the units. The total profit the farmer receives is simply the sum of
the profits from all units.

We assume that the profits are Gaussian distributed a priori —i.e., p(x)=N(g.Z). The
prior mean is set to be the same for all units, i, = i, i = 1,...,n, and the covariance is defined

t..
via an exponential-type correlation function, ¥; = 6> exp (—3 i), where #; is the Euclidean

5

distance between two units i and j, the prior marginal variance is 6 at every cell, and the

3
spatial correlation range is &. Recall that we use 7 :E for the spatial correlation decay

parameter; it may be easier to interpret the effect of the correlation range & directly since
the correlation decreases to only exp(—3) = 0.05 for distance 7; = &. We perform sensitivity
analysis for VOI with respect to all these model parameters.

The tests are imperfect observations of timber volume providing imperfect information
about the profits, and the results of the observations are distributed according to a Gaussian
pdf. The type of test (denoted 1-3 later) and the number or size of measurements (denoted
m) vary as follows:
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1. Total test of forest timber volume and hence profits at every unit. This is denoted using
the likelihood y; = x; + N (0,7%) for j=1,...m = n.

2. Partial test of the forest along the north—south and east—west center transects of the
forest domain. We denote these by C, and C,, respectively. This is denoted using the
likelihood y; = x; + N(0,72), j € C, UC,, and m = 49.

3. Partial test of aggregated forest timber volume (and hence aggregated profits) along the
north—south and east—west center lines of the forest domain. This is denoted using the like-

lihood y, = ZLS Z x; +N(0,72) for the north-south line and y, = ZLS Z x; +N(0,72)

JjeCy JECy
for the east—west line, and m = 2.

The partial testing options in Tests 2 and 3 are illustrated in Figure 5.4. These tests would
be representative of a surveyor walking along the north—south and east—west lines in the for-
est carrying a surveying device to measure the accumulated timber volume via, for instance,
the light coming from the canopy. For Test 3, the instrument only gauges the average over a
certain interval, and the surveyor does not want to reset this all the time. Such situations are
also common in tomography where only the aggregated response along lines or ray paths is
measured. Note that Test 2 is similar to the one considered in Section 4.4. An experiment such
as the other random design studied in that section would likely be more expensive to acquire
in practice.

VOI analysis

The prior value of this two-action utilization decision for the forest is

PV = max{E(v(x,a = O)),E(v(x,a = 1))} = max{O,gui}. (5.14)

The posterior value depends on the testing scheme. Using generic notation, we define a
likelihood model by y = Fx+ N (0,T), where the matrix F of size m x n defines the acqui-
sition design of the test, with measurement noise covariance matrix T =121, assuming
conditionally independent tests defined by Tests 1-3 mentioned earlier. For the total test,
this design matrix F is the identity matrix. For the partial test, it picks the entries which
identify the center cells of the grid. For Test 3, the entries are %S at the selected units. The
marginal likelihood model is p(y)= N (Fu,FEF' +T).

The conditional mean profits are

w=w(y)=E(x1y)=p+XF (FEF' +T) " (y—Fp). (5.15)

For the posterior value in Equation (5.13), we use the sum of terms from Equation (5.15)
in the decision. We then obtain the following posterior value:

PoV(y)= Jmax{O,E(izn}xi Iy)}p(y)dy = jmax{O,zn:w,- (y)}p(y)dy. (5.16)

i=1
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Note that the profit variables are Gaussian distributed because of the Gaussian linear

modeling functions and the decoupling — i.e., for variable w = 2 w; ( y), we have
i=1

pOw)=N(1,.12), , = Dty 12=33n; (5.17)
i=1

i=1 j=1

where r; is element (i, j) in the matrix R given by

R=3F' (FXF' +T) FX. (5.18)

Based on a result for Gaussian variables (see Appendix A.l), the posterior value in
Equation (5.16) becomes

PoV(y)= jmax {O,E(ixi | y)}p(y)dy =, ®, /r,) +r,o(w, /). (5.19)
i=1

where the mean parameter W, and the standard deviation parameter s, are defined in
Equation (5.17). Note that the mean [, only depends on the prior mean values, while the
standard deviation s,, depends on the sampling design of the data, as well as on the prior
and likelihood covariance matrices. Here the symbols @ and ¢ denote the cumulative dis-
tribution function and the pdf of a standard Gaussian variable, respectively.

Let us compare the VOI for the three forest measurement designs 1-3 mentioned earlier.
The comparison is done over a range of prior and likelihood parameters. For the baseline
model, we use a constant prior mean [ = O for all sites, a constant prior marginal variance
62 =1, a spatial correlation range & = 0.3, and a measurement noise variance of 72 = 0.52.

Figure 5.5 shows the VOI for Tests 1-3, as we change the different parameters of the
statistical model. The main trends are the same for all test schemes: the VOI is largest for
the zero prior mean value. At this prior mean, we are indifferent about the decision and
information is likely to change our decision. The VOI increases as a function of the prior
standard deviation parameter ¢ since data become more valuable when there is more prior
uncertainty. The VOI decreases with larger measurement uncertainty as the data become
less informative about the profits, and the VOI increases with more spatial dependence as
the data become more informative about other nearby sites. Note that the spatial correlation
in the timber volumes has a clear marked influence on the VOI. Ignoring the spatial correl-
ation would lead to an erroneous assessment of the VOL.

Among the different test schemes, the aggregated test (partial, 3) has the smallest VOI,
but this is reasonable given that the aggregated test consists of just two measurements com-
pared with 49 (partial, 2) or 625 (total, 1). Presumably, the aggregated test would be much
cheaper compared to the other two information-gathering schemes, and the decision maker
could then make a decision based on comparing the VOI versus the cost for each scheme.
With increasing spatial correlation, the VOI for even the aggregated scheme becomes rela-
tively large because this partial information of sums along the center lines is informative
of the sum from the entire domain due to spatial dependence. However, when there is more
measurement noise (upper right), this scheme loses its value faster than the other schemes.


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.006
http:/www.cambridge.org/core

5.4 Special case: high decision flexibility and decoupled value 173

Total g 0.12 Total
- --- Partial 04 ---— Partial
e Aggregated partial : —————— Aggregated partial
0.08 0.08
g 0.06 O 0.06 "-------.:_:_:_:.:. ------------
0.04 004} el
0.02 0.02 ~
0 < - ,/ "\‘_\ ~ — O
-06 -04 -02 0 02 04 0.2 04 06 0.8
Mean u Measurement st.dev. 7
c AN r\ 4N
Total Total
---- Partial / ---- Partial /
S Aggregated partial e Aggregated partial | -
08 P 08 L7
g 0.06 "_,,—' ______________ g 0.06 /,' /,/‘
004 _.--77 17 ] 0.04} T
0.02 . 0.02 et
0 0 bolememT
0.6 0.8 1 1.2 0.1 0.2 0.3 0.4
Prior st.dev. o Range &

Figure 5.5 Forestry example: the VOI as a function of model parameters. Upper left: VOI as a function
of the prior mean. Bottom left: VOI as a function of the prior standard deviation. Upper right: VOI as
a function of the measurement noise standard deviation. Bottom right: VOI as a function of the spatial
correlation range. The baseline case is shown by vertical lines.

5.4 Special case: high decision flexibility and decoupled value

We now turn to a spatial decision situation where we only relax Property 3. The total value
is therefore a separable function of value from the individual spatial units. There may be
initial costs related to equipment or man-hours that are common for some or all units, but
these may be considered to be negligible. We sometimes refer to this decision situation as
a “free selection of sites” because as per the assumptions of the model, the decision maker
can choose to utilize as many sites as is profitable.

Examples of this case include a conservation biology situation where a park is modeled
as a set of units and the decision is: which units should the decision maker maintain? See
Polasky and Solow (2001) and Bhattacharjya et al. (2010) for applications. It is also rele-
vant for the selection of large-scale prospects in petroleum development and exploration
(Martinelli et al. 2011). One may also encounter this situation in the forestry example dis-
cussed in Section 5.3 if the farmer has the opportunity to harvest trees in selected units and
this action does not influence the value at other forest units. We present a few illustrative
examples in detail at the end of this section.
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5.4.1 Priorvalue

Without loss of generality, we assume that the decision maker can make a decision at any
site where the distinction of interest x = (x1 yeers x,l) is represented. This implies that we can
denote alternatives at spatial locations by a; € A; for i =1,..,N = n. More generally, we
could have alternatives at blocks of spatial variables. These blocks may be defined based
on the geography and infrastructure — we discuss such examples at the end of this section.

The value from each site is denoted by v, (x,-,a,), or simply v(x,-,a). Because the value
decouples, the decision maker can optimize the decision locally, and the prior value equals

PV = imaxa,-m,- {E(vi (x.q))} (5.20)
i=1

We assume two alternatives in the following presentation —i.e., |Ai| =2, but the analysis
can be easily extended to incorporate several alternatives. Like we discussed, two alterna-
tives at every site results in 2” alternatives in total. If we further assume that x; is the profit
at site i = 1,..,n and that the value function is v, (xi) = x; when a; = 1 and zero otherwise, the
prior value becomes

PV = imax {0.E(x,)}. (5.21)

i=1

5.4.2 Posterior value

Total perfect information at all sites means that we can make optimal decisions before
observing the outcome of the uncertain variable. This allows us to switch the integral and
the max term in the prior value, and therefore the posterior value is

PoV(x)= iE(maxal_eAi {v(x.a,)}) (5.22)

The VOI is computed as in Equation (5.3). As discussed earlier, this situation with total
perfect information represents an upper bound for the value of any experiment. In the con-
servation biology example, this situation arises if we know the presence or absence of all
trees at every unit.

Consider next the case of partial perfect information, with information only at a subset
of the sites. When we calculate the posterior value for this case, we can split the expression
into two parts: one associated with the information set K and one with the unobserved units
L. The posterior value of partial perfect information is then

PoV (xy )= ijaxaimi {V(xi’ai)}l?(xi)dxi
- 5.23
+§L‘Jmax@efxi {E(v(xi,ai)lxK)}p(xK)de, (5-23)

assuming continuous sample space.


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.006
http:/www.cambridge.org/core

5.4 Special case: high decision flexibility and decoupled value 175
We make a few comments about the posterior value:

1. Note that just like for total perfect information in Equation (5.22), the posterior
value in Equation (5.23) depends only on the prior pdf. We use the joint prior pdf
to determine marginal pdfs p(x;) and p(xy) and to get the expected conditional
value E (v (xl- ,ai) [ xx )

2. The latter part of the posterior value in Equation (5.23), the sum over the sites in the
L set, contains a multivariate integral over the information set x. Together with the
conditional expectation inside the decision rule, this integral over p(xK) tells us how
the observations x can have a bearing on our decisions and hence our posterior value
at unobserved sites, arising from the possible spatial dependence between observed
and unobserved sites.

3. If a variable x;, i € L, is independent of xy, the observations have no bearing on the
variable, and we gain no value from the prior information. This can be seen mathemati-
cally as follows:

a. The conditional expectation is not a function of the observation set when we have
independence — i.e., B(v(x;,4;)1 X )= E(v(x;,a,)), and the max term can go out-
side the integral.

b. The integral over the pdf is J. p(x]K )de =1. We are only left with the
max,, .4 {E (v(x,-,a, ))} term, which equals the part from site i in the prior value in
Equation (5.20).

4. If we have a more realistic spatial statistical model, a variable x; is dependent on the
observation set xi, and we would on average make better decisions and increase the
value compared to the prior value without the observation set.

In models with complex spatial dependencies, it is common to study what-if scenarios,
which entails conditioning on various outcomes of selected variables and studying what
happens to the model outputs. What if we have a particular outcome of x? In the current
setting, with perfect information at a subset of the variables, the VOI calculation can be
regarded as revealing the what-if results for optimal decisions under the outcome. This is
done for all possible outcomes and averaged over the marginal probabilities of the experi-
mental results.

Consider next imperfect information about the distinction of interest. We refer to imper-
fect data (partial or total) as y. For the conservation biology example, this might entail a
biologist surveying the sites and checking for the presence or absence of a plant or animal.
The observer may see nothing and this indicates absence, but some plants or animals may
go unnoticed, and this would lead to a false negative test. On the other hand, the observer
would notice presence, but this may be the result of misclassification, and the test may lead
to a false positive. Imperfect information accounts for such errors in the likelihood model
p( yl x). When the imperfect information depends only on the local value of the distinc-
tion of interest, conditional independence may be realistic — i.e., p(y 1 x)=[]p(y %)
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In other words, the observation at location i depends only on the value of x at location i and
not at other locations.

The mathematical expressions for the posterior value of imperfect partial and total infor-
mation are similar. We have

PoV(y) = i'[maxai% {E (v(xl.,ai) I y)} p(y)dy. (5.24)
i=1

The complexity of computing this posterior value with total or partial imperfect infor-
mation depends on the likelihood model p( yl x) and the prior pdf p(x). Both are needed
to find the marginal distribution of the data p( y) and for computing the conditional expect-
ation of profits at all sites E(v(xi,a,-) | y), i=1,..,n.

Unlike the situation with total and partial perfect information, there is no point in split-
ting the sum in Equation (5.24) into observed and unobserved sites as was done in Equation
(5.23). With imperfect information, the conditional expectation is required inside the deci-
sion rule regardless of whether it is an observation site or a non-observed site.

5.4.3 Computational notes

The posterior value and VOI calculations are more involved than in the situation described
in Section 5.3. For some prior and likelihood models, the posterior value expressions are
still analytically tractable, but in many situations one must use Monte Carlo solutions or
a combination of analytical, numerical, and Monte Carlo approximations.

The prior value computation is usually not a significant challenge in the free selection
case because only the marginal probabilities are used for computations. In some situations,
these marginal probabilities may be hard to extract from a joint probability model, but it
is more common that the marginal expectations are directly available from the definition
of the pdf p(x). Even when the value function v(xi,ai) has a complex form, the required
integrals (or sums) for the prior value are univariate,

PV =Y max,., Jv(xi,ai)p(xi)dxi , (5.25)
i=1 %
and numerical solutions are possible.
Similarly, for free selection, the posterior value with total perfect information is based
on a series of univariate integrals:

PoV (x)= ZJ‘maxaieAI, {v(x..a)}p(x,)dx,. (5.26)
i=1
These integrals are usually more challenging to compute than the prior value because
the maximum is now inside the integral. Nevertheless, it is still a univariate integral, which
means that numerical approaches can be efficient.
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The posterior value for partial perfect information or for imperfect information can be
much harder to calculate, but in general the complexity depends on the computational
efficiency of marginalization and conditioning for the particular statistical model. Note
that the conditional expected value is the key here; with imperfect information y (which
could be partial or total), the decision is based onw; (y) = E(v(x;,q;)| y), i=1,...,n. These
conditional expectations have a univariate function output with a multivariate input as an
argument. If one can compute the pdf of w; = w, ( y), the multivariate integral reduces to a
univariate integral. Analytical or numerical solutions are likely available for this univariate
integral. However, finding the pdf of w; may be difficult, except for very special prior pdfs
and likelihoods and simple value functions.

When the prior pdf or likelihood models are more complicated, Monte Carlo methods
are useful for approximating the posterior value.

Algorithm: Monte Carlo approximation of the posterior value
under free selection

1. Draw realizations of the data y',...,y? from p(y). This can be done by first sampling
x” from p(x), then y* from p(ylx*),b=1...,B.

2. Compute the conditional expectation E (v(x,-, ai) | yb) forb=1,...,B.

3. Approximate the posterior value by the average

PoV = %imaxale& {E(v(x,.,ai) | yb)} .
b=1

This Monte Carlo solution is generally applicable, and it could potentially run in
parallel computations. In Step 1, which solves the outer integral over the data, efficient
sampling is needed. In Step 2, the posterior expectation E (v(xi,ai) I yl’) is calculated.
Step 3 is a simple average over the Monte Carlo samples. Step 2 is the most difficult
step; it may be possible to perform this analytically for some models, or one could
explore analytical approximations. If the conditional expectation in Step 2 requires
Monte Carlo sampling, a Monte Carlo loop is inside another, and this can become
demanding from a computational point of view. One could instead try to re-use prior
samples in the approximation of E (v(x,-,ai) | y”). We will discuss this in more detail in
later sections.

5.4.4 Examples

We present a number of illustrative examples to gain insights about VOI analysis for
this special case. In Chapter 7, we present hands-on projects as extensions of these
examples.
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Never break the chain: Markov chain example

Keywords: Markov chain, dependent binary variables, perfect information, partial information,

high decision flexibility, free selection of sites, decoupled value function, design of experiments

In this example, we explore a situation where the decision maker owns multiple dependent
oil prospects that are modeled as a Markov chain.

Framing the decision situation

Consider a situation where the decision maker can choose to develop prospects and as a
result encounters binary (uncertain) outcomes: success or failure. We consider the case
with N =n =100 hydrocarbon prospects. The decision to utilize a prospect is based on
whether the expected profits are positive or not. There are known costs associated with fail-
ure and revenues associated with success. The oil and gas company will choose a prospect
if its expected a priori profit is positive. Let outcome x; = 0 represent a failure at location
i, while x; =1 indicates success.

The decision maker is free to select as many prospects as are profitable, so the alterna-
tives are given by a;, i =1,...,n. Here, a; = 0 indicates the alternative associated with not
developing a prospect, while @, = 1 indicates developing a prospect. There are 2" possible
alternatives the decision maker can choose from, making this a situation with high decision
flexibility. The decision maker has the flexibility to select any k of the n sites with k = 0,...,n.

The value function decouples between prospects. Under the development alternative, the
uncertain value of a prospect is v (x,-,a,- = 1). The expected profits at prospects i = 1,...,n are

(Rev—Cost)- p(x; =1)—Cost- p(x; = 0) = Rev- p(x, =1)—Cost, (5.27)

for a fixed revenue (Rev) and cost of development (Cost).

Information gathering

Before making decisions at prospects, should the company purchase information about
the prospects? If so, which site should it select for testing? In the petroleum industry,
such information may be acquired through an exploration well at a selected prospect.
The exploration well informs the company whether hydrocarbon is present at the location
where the well is drilled. Here, we will assume that the company selects one location for
drilling and that this provides perfect information at that site. Since there is dependence
among hydrocarbon prospects, this partial information may also be valuable in informing
the company about other sites. VOI analysis is useful for designing such experiments —i.e.,
for prioritizing one testing site over others.

Modeling

The hydrocarbon prospect outcomes are dependent and modeled as a Markov chain.
We used Markov chains and hidden Markov models to illustrate evidence propagation
in Section 2.3 and for parameter estimation in Section 2.4. (See Appendix A.3 for more
background on Markov chains and hidden Markov models.) In this example, we study
a Markov chain with non-stationarity incorporated via an external field. We consider a
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situation where some currently available data govern this external field. Let us denote this
data by y,,...,¥,. We use the data from the hidden Markov model example in Section 2.4.
The probability model is proportional to

p(x)= p[l_jp(xi l)}nf (x) (528)
(5, +1) (5. -1)

and the local function f; (0) = exp| — and £ (1) = exp| —~= . If the current
i ( ) p 252 fi ( ) p 2652

data y, at some location i are very large, the prior probability of success at this location is
also large because the external field favors Class 1 in this situation.

Figure 5.6 shows the marginal prior probabilities of success p(xi = 1) at the prospects
i =1,...,n and 10 realizations of the Markov chain from the prior pdf.

VOI analysis

The prior value for the free site selection situation at individual prospects is the expected
profit of development in Equation (5.27). We have

PV = max{0,Rev- p(x; =1)—Cost}. (5.29)
i=1
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Figure 5.6 Markovian prospects example — top: the plot shows the prior probability of success at each
prospect. Center: the plot shows 10 realizations of the Markov chain, each row being one realization.
White indicates success. Bottom: VOI as a function of the test sites along the prospect chain.
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For this example, we use Rev = 3 and Cost = 1.
We consider collecting perfect information (an exploration well) at one of the prospects,
indexed j. The posterior value of a test at Prospect j is

n 1
PoV(x;)= > Y max{0.Rev- p(x; =11x; = y)~Cost} p(x; = ). (5.30)
i=1 y=0

The VOI is equal to the difference in the posterior and prior values as defined in
Equation (5.23).

Let us compare the VOI of observing different prospects j = 1,...,n. For a Markov chain,
the conditional probabilities can be computed efficiently (Appendix A.3), and all evalua-
tions are exact.

The VOI results of testing at a single prospect are shown in Figure 5.6 (bottom). We note
a tendency of higher VOI when we collect perfect information at prospects where we are a
priori most indifferent —i.e., p(x; = 1) close to Cost/Rev = 0.33 — while the VOI is very low
when a priori we are either fairly sure of a success or a failure at a prospect. Since there is
dependence between the prospects, the VOI is highest when we are unsure about several
prospects near one another, like the prospects around indices 30 and 75.

The tree amigos: conservation biology example

Keywords: conservation biology, Markov random field, total information, imperfect information,

[ree selection of sites, high decision flexibility, decoupled value function

This example is inspired from situations in conservation biology that were discussed briefly
previously. The distinction of interest is the presence or absence of a species such as a type
of tree. The decision maker has the flexibility of selecting individual sites for conservation,
if it is indeed beneficial to do so.

Framing the decision situation

We study a small spatial domain split into a 3 x 3 grid —i.e., n = N = 9 spatial sites or cells
that can be selected for conservation. At each cell, the distinction of interest (presence or
absence of species) is a binary variable. Figure 5.7 illustrates the model, showing a graph
of the grid. Let x = (x1 yer .,xg) denote the uncertain presence or absence of the species at
all cells in the grid. The binary outcome x; is 1 if the species is present at cell i and O if the
species is absent.

If the decision maker selects a cell, he or she must pay a cost for the construction of
the natural reserve. The decision maker will not know for sure whether the species is pre-
sent or not until the cell has been selected. If the species is present at a cell that is chosen,
the decision maker obtains revenue. Both costs and revenues are assumed to be the same
across cells. Here, revenue represents the value or benefits to society due to conservation
of the species. Since the sites can be freely selected for conservation, the alternatives
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Figure 5.7 Conservation biology example: illustration of a spatial model for the distinction of interest
on a3 x 3 grid and a likelihood model with conditional independence for a total imperfect test.

are defined a;, i = 1,...,n. Here, a; = 0 indicates leaving a site as is, while a; =1 indicates
conservation.

The value function is defined in a fashion similar to the previous example, assum-
ing known costs and revenues. Under the alternative of conserving a unit, the value is
v(x;,a;, =1) = Rev-I(x; =1)— Cost, where the indicator function 7(x; =1)=1 in the event
of presence and zero otherwise. There is neither cost nor revenue associated with the other
alternative. The costs of conservation are set to Cost = 1, while we compare VOI for dif-
ferent revenues.

Information gathering

Biologists may perform surveys at some units (partial testing) or all units (total testing) to
check whether the species of interest is present or absent. We will consider a survey where
a team explores every cell and indicates whether they believe that the species is present
or not for each cell. This results in a scheme with total information y = (yl,...,yg). At
each cell, this survey result may be falsely positive or falsely negative (imperfect testing).

Modeling

The binary spatial variables are modeled using a Markov random field (Section 4.6 and
Appendix A.4). We have a prior pdf defined by
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p(x)=%exp([3§l(xi =xj)J, (5.31)

where the denominator Z ensures that this is a valid pdf summing to 1. Note that this
defines an uninformative prior —i.e., there is no prior pointwise information on the field and
thus there is an equal chance of species presence or absence in every cell. There is some
spatial correlation for x determined by the interaction parameter 3. When this interaction
parameter is zero, the cell variables are independent. When it gets larger, there is more
dependence in the spatial random field. We will study the sensitivity of this spatial inter-
action parameter on the VOI result.

The experiments are assumed to have binary outcomes. The survey result y, =1
implies that the team believes that the species is present at cell i, and y, =0 suggests
otherwise. The experimental results need not be accurate. The cellwise likelihood
ply; = ki x; = k), k=0,1, for j=1,...,9, might be different conditioned on whether the
latent variable is 1 or 0. We set the specificity to p(yj =01lx; = O) = v and the sensitiv-
ity to p(yj =1lx; = 1) =7v —i.e., the test has the same proportion of false positives as
false negatives. We further assume that this parameter is constant for all spatial locations.
A value of y close to 1 indicates a test with high accuracy. We will study the sensitivity of
VOI to this likelihood parameter.

VOI analysis

The formula for the prior value is identical to that of the previous example in Equation
(5.29). The posterior value with total imperfect information is defined by

PoV (y) = 2 2 max {O, Rev- p(x,- =11 y) - Cost} p(y) dy. (5.32)
i=l y

We compute this posterior value directly by first calculating the marginal probabilities
p( y) for all 2° =512 possible data outcomes and evaluating the posterior probabilities
inside the max term for each data set. The marginal probability p( y) and the conditional
probabilities p(xl- =11 y) are computed from the forward—backward recursions useful for
Markov random fields (see Appendix A.4). Note that this approach would, however, not
scale well. For larger grids, one would need to use Monte Carlo approaches, first for the
outer loop over data y. See Chapter 7 for a hands-on example.

We vary the spatial interaction and test accuracy for sensitivity analysis. Figure 5.8 shows
VOI as a function of these parameters for revenue Rev = 2 and Rev = 5 monetary units and
for different accuracies of the test. As expected, the test accuracy is a critical parameter.
The curve for ¥ = 0.9 shows higher VOI than ¥ = 0.7. The VOI with perfect information is
ahorizontal line and has the same value (4.5 units in this case) for all 8 and for both revenue
levels. This occurs because we have probability p(x,- = 1) =0.5foralli=1,...,9, and with
Rev >2 > Cost = 1, the prior value ismax {0, Rev- p(x; = 1)— Cost} = Rev- p(x, = 1)— Cost.
For computing VOI (x), the revenue terms cancel each other, and only the difference in the
cost terms remains:
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Figure 5.8 Conservation biology example: the VOI for total information on the 3 x 3 grid, plotted
as a function of the spatial coupling in the distinction of interest (first axes). The three tests that are
compared vary in the accuracy of the measurements.

9
VOI(x)= p(x; =1)(Rev—Cost) Z(Rev p(x )—Cost)
, ; (5.33)
Z ost p( )+9 ost = 5

Cost.

The VOI increases as the spatial interaction 8 increases. VOI is not very sensitive to
for lower values, which is useful to know if one is unsure about the interaction parameter
or cannot spare much effort estimating it. However, for larger interaction levels, the VOI
increases rapidly. This is because the chance that the entire grid will either contain the spe-
cies at all cells or in no cells becomes higher as 8 increases. The experiment becomes more
valuable as 8 increases because it can tell you about a possible jackpot (all cells favorable)
or prevent a huge loss (all cells unfavorable). As there are no constraints on the number
of cells that can be selected, the decision maker is free to choose all the cells or none; for
large values of f3, this all-or-nothing policy is optimal. The experiment can really make a
difference in the decision for large 3.
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Note that when Rev =2, p(xl- = 1) = 0.5, and Cost = 1, the decision maker is indifferent
about the choice a priori. The experimental result could change the decision, and in this
way the experiment is more valuable than for Rev = 35, as it is able to have an impact on the
decision. When the accuracy of the measurement is small ¥ = 0.7, and the spatial interac-
tion is small, VOI ( y) = 0 for the case with Rev =5 (right display). In comparison, the VOI
has its smallest value around 1.8 money units for the independent case when Rev = 2.

Norwegian wood: forestry example

Keywords: forestry example, Gaussian random field, total information, partial information, high

decision flexibility, decoupled value function

We return to the forestry example with a spatial domain split into 25 x 25 units (see Section
5.3). This example will now be studied from the perspective of free site selection — hence,
high decision flexibility. We will compare these results with the previous results that
assumed low decision flexibility.

Framing the decision situation

There are n = N = 625 units, with uncertain profits x;, i = 1,...,625. Unlike the situation in
Section 5.3, the decision maker is now free to harvest individual forest units. The alterna-
tives at spatial forest units are denoted a;, i = 1,...,n, and at each unit i the alternative q; is
either O (not harvest) or 1 (harvest).

Information gathering

The data-gathering options are the same as those in Section 5.3, where we defined three
testing options denoted 1-3.

Modeling

We use exactly the same statistical modeling assumptions as in Section 5.3, with a multi-
variate Gaussian model for the profits of timber volumes for forest units.

VOI analysis

The prior value is

PV = imax {0.E(x,)}. (5.34)

i=1
The information-gathering schemes are as 1-3 in Section 5.3. Again, using generic nota-
tion with data y, the posterior value is

PoV(y) = ijmax {O,E(xi I y)}p(y)dy = gjmax{O,wi}p(wi)dwi, (5.35)

i=1
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where the variable w;, = w, ( y) =E (x,- I y). Recall from the example in Section 5.3 that
the posterior value calculation could be calculated analytically since the value function
is linear and the Gaussian modeling assumptions result in a Gaussian distribution for w;,
i =1,...,n. Using the analytical results (Appendix A.1), the posterior value is:

PoV (y)= 2(u,-d>(u,~/ Ti )+ \/r_q’(”/‘/’_))

i=

(5.36)

where r;,
cumulative distribution function @ and the pdf ¢ of the standard Gaussian distribution are
as in Equation (5.19). The difference is that we now have a free selection of forest units to
harvest or not, and Equation (5.36) contains a sum over all sites.

Figure 5.9 shows the VOI as a function of the input parameters. Clearly the VOI is much
larger for the free selection problem than for the decision situation described in Section 5.3
with less spatial decision flexibility. With free selection, the decision maker has the flexibil-
ity to make decisions at each unit. The information may show that some units are profitable
while others are not, and the decision maker can now select only the profitable ones. With

less spatial decision flexibility in Section 5.3, the decision maker would have to consider all

i =1,...,n are the diagonal elements of the matrix R in Equation (5.18), and the

Total
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Figure 5.9 Forestry example: VOI with a free selection of sites. The VOI is plotted as a function of
the various input parameters for the Gaussian spatial model (first axes).
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units as one entity and would be compelled to choose the entire domain when the expected
sum over all units is positive.

The spatial units to model the distinction of interest are determined by the finest gran-
ularity required for realistically modeling the heterogeneity of the spatial process. The
spatial granularity required for the spatial alternatives is determined by demographic
units or environmental conditions or constraints imposed by the infrastructure. There
is always added value in having the flexibility to select smaller units if there is not a
proportionally higher cost per area of the unit. However, this additional value induced
by free selection of sites will also depend on the spatial nature of the phenomena being
studied.

We perform a sensitivity analysis to bridge the differences between decision situations
with less and high spatial flexibility. Suppose that the decision maker is now only free to
harvest blocks of size 5 x 5, so it is no longer possible to make decisions at every spatial
unit. The alternatives are then a; € {0,1}, J=1..,N, where N =25, and a; =1 signifies
harvesting block b;. The prior value in this situation with block decisions becomes

N

PV =) max {0, Y E(x, )}, (5.37)
j=1 ieb

where the notation i € b; means the forest units i within block b,.

Note the combination of a sum both inside the maximum as for the situation with less
spatial flexibility in Equation (5.14) as well as outside the maximum for selecting blocks
[as for units in Equation (5.34)]. The posterior value with information y acquired by one
of the 1-3 designs is

N
PoV(y)= ijax{O,ZE(xi Iy)}p(y)dy. (5.38)
j=1 ieh ;

The VOl is plotted in Figure 5.10 as a function of the various statistical model parameters.

As anticipated, the VOI is between that achieved by the decision situation with low spa-
tial flexibility (Figure 5.5) and free selection of forest units (Figure 5.9). For a very large
spatial correlation (bottom right displays), the VOI is close to the VOI with flexibility to
harvest individual units because there is little to lose by making the decision on the block
level instead of the unit levels. The profits for units within the block are similar, and the
same alternative tends to be optimal for all these units.

5.5 Special case: low decision flexibility and coupled value

In this section, we describe the special case with low decision flexibility in spatial decision
situations. This resembles Section 5.3, but here the value function no longer decouples.
A more complex value function results in more computationally demanding expressions
for the prior and posterior values.
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Figure 5.10 Forestry example: VOI with a free selection of blocks of size 5 x 5. The VOI is plotted
as a function of the various input parameters for the Gaussian spatial model (first axes).

This case is applicable when there are only a few alternatives, but the value from choosing
any of the different alternatives involves a complex coupling of the spatial variables. This
setting is, for instance, appropriate in petroleum reservoir development decisions (Bratvold
et al. 2009) and for decisions concerning the recharge and management of groundwater
resources (Trainor-Guitton et al. 2011). In such applications, the value is often related to
the result of fluid flow in the porous subsurface. The fluid flow depends on complex inter-
actions of subsurface variables such as the heterogeneous rock porosity and permeability,
flow connectivity between different lithologic units, and presence or absence of faults that
can act as either barriers or conduits to flow. The flow response at one site depends on the
unobserved uncertain variables at many (potentially all) other sites. Subsurface flow mod-
eling requires the numerical solution of partial differential equations in a heterogeneous
porous media. Modeling the flow (and hence value) at one site cannot be decoupled from
other sites. There is low decision flexibility when there are limited alternatives, possibly
due to infrastructural, logistical, legal, or other practical issues.

The petroleum reservoir simulation example will be used for illustration in this section.
A petroleum company must evaluate whether to develop the reservoir. There is uncertainty
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around the reservoir variables (spatially dependent facies, porosity, and permeability), and
hence the profits from production are uncertain. In our example, we assume that the main
uncertainty is the geological scenario that dictates the nature of spatial distribution of the
high-permeability channel facies. A priori, the geologists believe that the spatial charac-
teristics of the reservoir are governed by two possible depositional scenarios: a river delta
geological system or a meandering river channel geological system. We consider the sim-
plest situation with only two alternatives: (i) no development and (ii) development with a
particular drilling strategy.

Note that in most of these complex coupled value function settings, the decision maker
would clearly benefit from more decision flexibility (Section 5.6), but this is not always
possible, perhaps because of limitations in the way the existing infrastructure must be
used. It could also be conceptually easier for management to reflect upon and discuss only
a select few alternatives. Finally, the added computational requirements would, of course,
be greater when there is more spatial decision flexibility.

5.5.1 Priorvalue

The decision maker chooses the alternative a € A that maximizes expected value. In the
petroleum reservoir example, the decision maker could either develop the reservoir or
avoid development. The prior value over set A is

PV =max,_, { | v(x,a)p(x)dx}. (5.39)

The value function v(x,a) of the reservoir simulation example signifies the revenues
obtained from the oil production, minus the cost of development and production. Since
v(x,a) involves the solution of partial differential equations governing the flow in porous
media, it cannot be decoupled. Hence, it is not possible to simplify the expression for the
prior value in Equation (5.39) any further. We must evaluate the expected value within the
parentheses for all alternatives ]A| We return to computational methods later.

5.5.2 Posterior value

Suppose that the decision maker can gather information. The posterior value of perfect
total information is computed by switching the integral and the maximization from the
prior value in Equation (5.39). We have

PoV(x) = J‘rnaxaEA {v(x,a)}p(x)dx, (5.39)

because the decision maker can choose the best alternative upon observing every pos-
sible outcome of the spatial variables x. For the petroleum reservoir simulation example,
this entails knowing the spatial reservoir variables at all locations. This kind of informa-
tion scheme is unrealistic for the petroleum reservoir application, but the resulting VOI,
which like before is the difference between the posterior value in Equation (5.40) and
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the prior value in Equation (5.39), would be an upper bound on the value of any kind of
information-gathering scheme. Thus, if we get to know the VOI of perfect total infor-
mation, and we know that some experiment is more expensive than this upper bound, it
would surely not be worthwhile collecting this data. This upper bound obtained from the
VOI of perfect total information is easier to compute than the VOI of imperfect or partial
information.

The posterior value expressions of partial perfect information x,, partial imperfect infor-
mation yy, or total imperfect information y are similar to each other for this case. We will
simply denote data by y. Like before, the posterior value involves the conditional expected
value function for every data outcome:

PoV(y):J.maxaeA {E(v(x,a)ly)}p(y)dy. (5.41)

For the petroleum reservoir simulation example, relevant data include reservoir monitor-
ing in wells, geologic information, seismic data acquisition and processing, electromagnetic
surveys, etc. Such data would be informative of the reservoir variables and hence the value
obtained from development. The VOI is the difference between the posterior and prior values.

One challenge in Equation (5.41) is finding the conditional expectation of the values.
Unlike the case of total perfect information, this expression now involves an inversion step to
get the conditional pdf p (x I y), and one must compute the expectation of the complex value
function with respect to this pdf. We discuss computational approaches in the next section.

5.5.3 Computational notes

The coupled value function means that one must use some sort of approximation to assess
the VOI for this case. There are many ways to approximate this; we will discuss a couple
of approaches (see also the discussion in Section 5.6).

Monte Carlo sampling can be used to approximate the prior and posterior values. As the
number of Monte Carlo samples goes toward infinity, the approximation converges to the
true theoretical integral. In practice, trial and error is used to tune the number of samples
required for accurate approximation.

The prior value in Equation (5.39) is approximated as follows:

Algorithm: Monte Carlo approximation of the prior value

1. Draw samples x!,...,x? from the prior model p(x).
2. Compute the value v(xb,a) for each sample and every action a € A.
3. Approximate the expected value for each alternative:

E(v ZV(xb,a)

E(v(x,a)) = 2

4. Approximate the prior value PV = max,., {E (v(x,a))} .

| =
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The posterior value in Equation (5.40) with total perfect information can be approxi-
mated using a similar algorithm:

Algorithm: Monte Carlo approximation of the posterior value
with total perfect information

1. Draw samples x!,...,x? from the prior model p(x).
2. Compute the value v(x” ,a) for each sample and every actiona € A.

1 B
3. Approximate the posterior value PoV (x)= EzmaxaeA {v(xb,a)} .
b=1

The samples and value calculations could be re-used from the prior value approximation.
The only difference with the algorithm for the prior value is in Step 3, where we switch
the sum and the max. If resources permit, the value computation v(x”,a) could be done in
parallel, thereby making these computations much faster.

It is more difficult to approximate the posterior value of total or partial imperfect infor-
mation in Equation (5.41). This calculation requires realizations of data and the posterior
expectation of the value function given the data. The core algorithm is as follows:

Algorithm: Monte Carlo sampling for approximating the posterior value with
imperfect or partial information

1. Draw samples Y., yE fromp(y).

B
2. Approximate the posterior value PoV(y) = %2 max ., {E (v(x,a) % )}
b=1

In Step 1, it is common to first sample x from p(x), then y from the likelihood p(y | x),
which provides a sample from the marginal model for the data. The main challenge lies in
assessing the posterior conditional mean in Step 2, which may not be easy for a complex
value function. If this were done only once, it would amount to inferring the value for the
single data set y”. This could involve, for example, inverting for realizations of reservoir
variables given the data (stochastic inversion for facies) and then running a flow simulator
on the realizations. This is computationally demanding because it must be done for all data
outcomes y?, b =1,..., B. The direct approach would then be to perform another round of
Monte Carlo sampling to approximate the conditional expectation. This results in a double
Monte Carlo loop, which is of computational complexity B> |A|, assuming that we use B
samples for the inner loop as well. We argue that a double Monte Carlo loop may be too
slow to approximate the posterior value here. On the other hand, the number of alternatives
is not very large (since there is low decision flexibility), so it may be possible to use the
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direct Monte Carlo approximation method, especially if parallel computing is possible.
(Another Monte Carlo approach will be discussed in Section 5.6 for the more flexible deci-
sion situation.)

A promising approach for approximating the VOI is to embed the spatial variables in a
low-rank spatial representation. We will use such an approach in the reservoir simulation
example in the following text. Instead of working with the full spatial description of the
distinction of interest, we focus on a few discrete underlying geological scenarios. The
approach could be practical for decision situations with few spatial alternatives, especially
when the geological scenario has a large influence on the spatial variables, the coupled
value function, and the downstream decision. Trainor-Guitton et al. (2011) use channel
directions as the geologic scenario in a groundwater application, reasoning that this geo-
logic attribute is an important variable for decisions regarding recharge. Petroleum res-
ervoir simulation studies have considered scenarios with open or closed faults (Bratvold
et al. 2009).

The idea is to define a set of discrete geographic or geologic scenarios x € 2, where
denotes the sample space of the scenario. Based on the scenario or geological features, one
can generate multiple realizations of a random spatial process fc(x), inheriting properties
defined by the scenario, but at a full spatial resolution. This would typically involve one
of the spatial modeling methods described in Chapter 4. Note that we use x to denote the
low-rank discrete scenario and x to denote the full spatial process under a specific scen-
ario. We approximate the expected value function for all actions a under every scenario via
Monte Carlo sampling of the many spatial realizations.

This approach requires B|A||Q| computations of the value function, where |Q| denotes
the number of geologic scenarios.

Algorithm: Monte Carlo procedure for prior value for scenario-based methods

1. Draw Monte Carlo realizations of spatial process X! (x),. .,XE (x), xeQ.
B

2. Approximate values 9(x,a) = %ZV(E" (x),a), acA, xeQ.

b=1
3. The prior value is PV ~ max,,, {z ﬁ(x,a)p(x)}

xeQ

The posterior value with total and perfect information is again approximated by re-using
the values computed from the sampling procedure for the prior value. For the posterior
value, the decision maker chooses after knowing the scenario, given the total and perfect
information.

FoT/(x) = 2 max ., {\A/(x,a)}p(x). (5.42)

xeQ
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Since there are only a few geological scenarios and alternatives, the expected value and
prior and posterior values can be reasonably approximated even with moderate evaluations
of the value function. As before, the VOI is the difference between the posterior and prior
values.

Trainor-Guitton et al. (2011) suggested a method for the approximate inversion of fea-
tures, which makes it applicable to partial information or total and imperfect information.
It is based on the construction of a reliability measure.

Algorithm: approximation of the reliability measure

1. Simulate spatial processes ¥ (x),. Lxt (x) for each class of geologic scenario x € Q.

2. Simulate data sets y?, b =1,..., B conditional on the realizations from Step 1.

3. Construct a low-rank inversion or interpretation of every data set, possibly based on
some summary statistics. The output of this interpretation is a classification, y*> € Q
for all data sets, into one of the defined classes of geologic scenarios.

4. Based on the simulation scenario and the classification, form a reliability measure:

B
21(x=k,y*”=l)
p(y*=llx=k)=2—— 2

The reliability measure represents a classification confusion (or transition) matrix,
p( yi=llx= k) = P,,, where large entries on the diagonal imply that the data are correctly
classified to belong to the scenario from which they were derived. Off-diagonal terms
provide the misclassification errors. When we study the petroleum reservoir simulation
example in more detail in the next section, we will use a reliability measure that is a func-
tion of the accuracy of interpreted seismic attributes y *, given geological environments x.

The discrete sample spaces of both the input geologic scenario and the interpreted
inversion results ensure that the posterior value and VOI with imperfect information are
straightforward to calculate using a sum over the sample space for the interpretation. Let
y denote data acquired with a generic information-gathering scheme. The associated inter-
pretation result is denoted y *. The posterior value is

POV()’*)= 2 max .4 {E(v(x,a)ly*)}p(y*). (5.43)
y*eQ
The marginal distribution for the interpretation is computed by marginalization —i.e.,
p(y*)=2 p(x)p(y*1x) (5.44)
xeQ

The expected values given the data are computed using Bayes’ rule for the conditional
probabilities and the approximated values for each scenario. We have
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E(v(x,a) I y*)z Zﬁ(x,a)p(x | y*), p(x I y*): M (5.45)

@ p(y¥)

In summary, the posterior value in Equation (5.43) is computed using the same samples
and value evaluations as those for the computation of the prior value and the posterior value
with total perfect information in Equation (5.42). The computation now weights the values
with the posterior probabilities given the interpreted data.

Recall that there is a large reduction of spatial dimension here. The interpretation is a
scalar variable, as is the geologic scenario. However, full-scale spatial modeling is used
as an intermediate step to model the value function and to model the full-scale seismic
data y. If we want to compute the VOI of total testing, the data variable is obtained at
all sites, and we perform the interpretation based on this full spatial coverage test. For a
partial test, the data are only represented at a subset of the sites, which would provide a
less accurate interpretation — i.e., smaller diagonal entries in the reliability measure tran-
sition matrix.

5.5.4 Example

Go with the flow: petroleum simulation example

Keywords: perroleum simulation, petroleum development, petroleum production, reservoir charac-

terization, multiple-point statistics, geologic scenario, low decision flexibility, coupled value function

Let us consider an example about the development and production of a petroleum reservoir.
The spatial setting is similar to the case described in Section 4.7. The decision has a lot at
stake, and it may be worthwhile to collect geophysical data before making the decision. We
will perform VOI analysis for seismic data.

Framing the decision situation

A company considers developing a hydrocarbon reservoir. The development decision
entails large investments in infrastructure: platforms, wells, pipelines, etc. If the company
is fortunate, extensive production of oil or gas results in profits. On the other hand, the
petroleum company could end up with a lower production rate, and this may lead to a large
loss. There is significant uncertainty around the spatial reservoir variables. We assume that
most of the uncertainty is driven by the geological scenario, which is classified as either
x = 0: a delta system, or x = 1: a meandering river system.

There are a number of decisions regarding the development of a petroleum reservoir.
We will consider a simplified decision situation where the decision maker can either
(i) develop the reservoir by drilling a fixed configuration of wells or (ii) avoid develop-
ment. Thus, there is low flexibility, with only two alternatives. Development is represented
by alternative a = 1, while the alternative to avoid development is denoted a = 0. The only
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spatial aspect of the decision situation is the known well configuration under the devel-
opment decision. If the decision about drilling production wells is made, a fixed design
of the production wells is used. The decision situation is not nearly as flexible as that of
optimizing the well configuration or tuning the production and injection rates by well
controls. It describes a much simpler decision situation. However, a petroleum company
could have limited decision flexibility for various reasons: there could be existing infra-
structure, making a few well configuration alternatives much less expensive than others,
or there could be limited availability in well equipment and the ability to perform compli-
cated well controls.

The petroleum reservoir we consider here is modeled with the geologic scenario as the
main uncertain variable. Given the geological scenario, we generate the three-dimensional
spatial distribution of facies classes, porosity, and permeability. The value function is
highly coupled, and described in more detail after the spatial modeling.

Information gathering

The decision maker may obtain valuable information about the reservoir variables by
collecting seismic data. For instance, seismic interpretation could be useful for identify-
ing large-scale geological structures such as key reflectors representative of major geo-
logical events, subsurface horizons, and faults. At a finer granularity, quantitative rock
physics interpretations of seismic amplitude data are also useful for characterizing the
spatial distribution of facies and pore fluid in the reservoir. In this example, we will look
at the information content in seismic amplitude data using a reliability measure. Thus,
the interpreted seismic attributes will be considered as the data, and we are interested in
studying how informative the interpreted seismic data might be about certain geologic
scenarios.

Modeling

The two uncertain geologic scenarios are considered equally likely a priori — i.e.,
p(x = O) = p(x = 1) =1/2. The geologic scenario governs a lot of the heterogeneous vari-
ability in the reservoir. Given the geological scenario, the decision maker knows the statis-
tics of the spatial facies distribution, the porosity, and the permeability. Along with the well
design, these variables describe the flow and production of petroleum. The value function
is the total production until a stopping time, minus the cost of development. We will study
sensitivity to the costs, but the main part of the task is to compute the production profiles
for various reservoir variables for both scenarios x € {O,l}.

The spatially varying distinctions of interest X (x) are facies, porosity, and permeabil-
ity. First, we use multiple-point statistics (see Section 4.7) to generate B = 1000 realiza-
tions of facies for each geologic scenario. Next, for each realization, we populate the
geo-model with porosity and permeability values, given the facies realizations, using
appropriate rock physics relations for the channel sands and the shale facies. The perme-
ability is related to the porosity via a standard Kozeny—Carman-type relation — see, e.g.,
Mavko et al. (2009).
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Figure 5.11 Petroleum simulation example: the base case porosity maps derived from a training
image of the reservoir facies. Top: display represents a delta system. Bottom: display represents a
meandering river system.
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Figure 5.11 shows an example of porosity realizations for the two geological scenarios.
The delta system (top) clearly has less of a channel structure than the meandering river system
(bottom). Also, the delta system has more trends in the facies in the eastern parts. The subsur-
face fluid flow and production profiles would be different under the two geologic scenarios.

The value of developing the reservoir v(x,a = 1) is based on the uncertain production
of oil under each geologic scenario, with the costs subtracted. The amount of oil being
produced is obtained by established software for fluid flow simulation in porous media.
Among other variables, they take the porosity and permeability fields as inputs. For each
geological scenario, the value is approximated from the 1000 realizations of spatial facies,
porosity, and permeability. We used the well-known Eclipse software to compute the pro-
duction profiles of each realization. In the hands-on exercises in Chapter 7, the reader can
either use Eclipse or the MATLAB reservoir simulation toolbox to try out similar situations.

Seismic data y are informative of the reservoir parameters. It may be worthwhile to pur-
chase seismic data to learn more about the reservoir properties. Rock physics relations and
seismic wave propagation equations can be used for modeling the expected response of seis-
mic amplitudes. We may write y = f(¥), where the function f represents the forward model —
rock physics and wave propagation. The seismic data must be inverted or interpreted before
they can be used for the prediction of reservoir variables. This interpretation is commonly
done by looking at smooth attributes valid at the seismic resolution scale. The interpretation is
imperfect for many reasons, including challenges of seismic imaging, non-uniqueness in rock
physics relations between seismic attributes and reservoir properties, and the presence of res-
ervoir heterogeneities below the scale of seismic resolution. Here, we will consider a variety
of simple reliability measures for the interpreted seismic data, denoted by y *. We set the reli-
ability measure to be equal for the two scenarios — i.e., p(y* =0lx= O) = p(y* =1lx= 1).
Combined with the equal marginal probabilities of the two geological scenarios, this implies
that the marginal for the interpreted data is p(y* = 0)= p(y*=1)=1/2.

VOI analysis

Figure 5.12 shows the total oil production over time for the delta system (top) and the
meandering river system (bottom) computed for the 1000 realizations for each scenario.

We see that the delta system produces more oil than the meandering system, with some
uncertainty, largely driven by the facies realizations. The meandering system has a larger
variation in the production, whereas for the delta system, the production curves cluster
into three groups. After 10 years of simulated production, the delta system has an average
production of 113,000 standard barrels, whereas it is only 60,000 for the meandering river
system. Note that the actual value may depend on other factors besides oil production. For
instance, if the wells get early water breakthrough, the costs of processing may become so
large that it is not profitable to continue production for long.

If the cost (in units of a thousand barrels) of development and production is less than 60
(assuming that the revenue per barrel is one unit), then the decision maker would develop
the reservoir in any case. If the cost is larger than 113, then the decision maker would
avoid development. For intermediate costs, the deal is profitable only if it turns out that the
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Figure 5.12 Petroleum simulation example: realizations of the production profiles for the delta
system (top) and the meandering river system (bottom).

underlying geologic system is a delta system. Of course, the decision maker does not know
the geologic scenario a priori.
The prior value is the average profit taken over the geologic scenarios. It is

PV = max {0,%(1 13 —Cost)+%(60—Cost)} =max{0,86.5—Cost},  (5.46)
where we have subtracted the cost of development and production. We will assume three
development cost levels, high: Cost = 100, medium: Cost = 85, and low: Cost = 70. The
prior value is slightly positive for the medium development and production level and is
clearly positive for the low level. For the high level, the decision is to avoid development.

The posterior value with perfect information about the geologic scenario is defined by
Equation (5.42), and for all the specified values of the cost of development we have

PoV (x) = %max {0, 113— Cost} + %max {O, 60— Cost} = %max {0,1 13— Cost}. (5.47)
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Table 5.4. VOI results for perfect information and imperfect information in the
reservoir simulation example with different reliability measures for the seismic
data and for different costs of production and development

Perfect

Information Reliability of 0.9 Reliability of 0.7
VOI - Low Cost 5 2.4 0
VOI - Medium Cost 12.5 9.9 4.6
VOI - High Cost 6.5 39 0

The posterior value is positive for all levels of development and production cost. The
VOI is the difference between the posterior and prior values. We compare the VOI with
perfect information versus imperfect information in the following text.

For the posterior value with imperfect information in Equation (5.43), the reliability
measure is needed in addition to the prior probabilities. We compute the posterior value of
imperfect information and the associated VOI for different reliabilities.

The VOI results for perfect information and imperfect information are sum-
marized in Table 5.4. As expected, we see that the VOI is lower for less reli-
ability in the seismic interpretation. If the accuracy of the interpretation is only
70% — i.e.,p(y*=01x=0)=p(y*=11x=1)=0.7, the development cost must be near
medium for VOI to be positive. At this medium cost, the expected profits are near 0, and
the data are valuable since they could influence the decision maker either toward or away
from developing.

5.6 Special case: high decision flexibility and coupled value

This case entails a much larger set of alternatives than in Section 5.5. The decision maker
can choose among alternatives at various locations. However, unlike the case in Section
5.4, the value can no longer be decoupled into a sum over sites. The value function is com-
plex and jointly involves the alternatives chosen at different sites. This situation occurs,
for instance, in hydropower production from several dams that are connected in a river
system. Decisions must be made about the water level in all dams. If water flows over one
dam, it will continue downstream to the next dam and influence the value from the alter-
natives chosen there. See, e.g., Alemu et al. (2011) for a more general discussion of this
hydropower production problem. This case is also applicable for the petroleum simulation
example in Section 5.5 when there is more flexibility in the spatial decision situation. Such
flexibility could include optimization of well locations or tuning the well production rates
at different locations. See, e.g., Barros et al. (2014) for a promising VOI approach for this
application.

A hydropower production example is used throughout this section, where we analyze the
VOI of snow measurements before the melting period. The underlying decision situation is
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how should the decision maker set the levels of several reservoirs (dams) before the snow
melts? The goal is to fill up all dams during the melting season and then sell the energy
later at a higher selling price. However, if water runs over dams, the hydropower company
loses income. By collecting snow measurements at selected locations, the decision maker
obtains more information about the water that could flow to the dams during the melting
period, and this information could potentially be worthwhile.

5.6.1 Prior value

We denote alternatives by a €A, for j=1,..,N, and the total set of alternatives by a € A.
As in Section 5.4, alternatives are associated with spatial locations and may or may not
be of the same dimension as the distinction of interest x = (x,,...,x,). In the hydropower
example, n > N. Unlike the decoupled value situation in Section 5.4, the value calculation
now depends on the alternatives at many locations.

The prior value is the same as in the most general formulation:

PV = max,, , {E(v(x,a))} = max,., {j V(x,a) p(x)dx}. (5.48)

Only in special cases can the expression be simplified further — the structure of the

optimization problem depends very much on the situation. For instance, in the hydropower

example, the value function decouples a little based on the design of dams in the river
basin, where water running over one dam flows downstream to the next.

5.6.2 Posterior value

The posterior value is also the same as in the most general formulation:

PoV(x)= J-maxaeA{v(x,a)}p(x)dx (5.49)

for total and perfect information. Again, this provides an upper bound for any sort of
information-gathering scheme.
For partial perfect or imperfect information (denoted y),

PoV(y)=JmaxaeA {E(v(x,a)ly)}p(y)dy. (5.50)

The associated VOI is the difference between the posterior and prior values as in
Section 5.2.

In the context of hydropower production, weather models and precipitation measure-
ments acquired during the winter season provide a priori knowledge about the snow levels
and therefore about how much water will run into the dams. However, there is still some
uncertainty about the spatial distribution of snow. It may be useful to measure the snow
depth at selected locations (partial testing).
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5.6.3 Computational notes

The case of coupled value function and high flexibility in the spatial alternatives is extremely
computationally demanding in general. Methods similar to those in Section 5.5 could be
useful for approximating the VOI, but since there is high decision flexibility, it may not be
that appropriate to study large-scale discrete spatial characteristics as was done with the
geologic scenarios. It seems more useful to consider approximations that fully incorporate
the spatial distinction of interest.

Suppose that we have a sample-based representation of the prior. This is represented
as x',...,x% realizations of spatial variables sampled from p(x). The prior value can be
approximated over the samples:

B
PV = max,, 1 vixt,a)y. (5.51)
B
b=1

This prior value approximation requires B|A| evaluations of the value function v(x”,a).
The number of alternatives can be large in this setting with high decision flexibility, and
it may be necessary to limit the number of Monte Carlo runs required in some way. For
instance, one may realize that some combinations of spatial alternatives will surely result
in less value than some another combination, in which case it is not necessary to perform
the value calculation for alternatives with lower value.

As usual, the posterior value of perfect information is computed by switching the inte-
gral and the max term from the prior value:

PoV(x)= jmaxaeA {v(x.a)} p(x)dx = %bﬁ}maxaef, {v(xb,a)}. (5.52)

The calculation requires no additional value calculations if we have computed it for all
samples and all alternatives for the prior value approximation in Equation (5.51).

For other kinds of information y, the posterior value calculation is more challenging.
As we discussed in Section 5.5, one must first find the conditional pdf p(x I y) given data
outcomes y and then compute the expectation of the value function under this conditional
pdf for all alternatives. Finally, this is averaged over all data outcomes. Instead of running
a double Monte Carlo scheme for this posterior value approximation, we outline a compu-
tational method that aims to re-use the Monte Carlo samples generated from the prior value
approximation. The approach we use here is inspired by approximate Bayesian computing
(ABC) - see Chapter 2 and Appendix B.

Suppose that the data y are related to the spatial variables of interest by y = f (x) The
function f could involve (non-linear) physical relations like in a total imperfect test (say,
seismic data), or it could pick a subset of variables (partial testing) like we assume in the
setting with snow measurements at some selected sites. The relation f between the data
and spatial distinctions of interest could, of course, include random noise elements associ-
ated with the experimentation.
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For each realization from the prior, one can obtain simulated data y',..., %, where
yY=f (x”). This sample is representative of the marginal distribution of the data p( y).
The posterior value of imperfect information is therefore

PoV(y) = jmaxaeA {E(v(x,a) | y)}p(y)dy = %gmaxa“ {E(v(x,a) | y? )} (5.53)

We now present an approach for the inner expectation that re-uses samples from the
prior. This approximation is based on the nearest neighbors to each data realization accord-
ing to some loss function or metric.

We define a mismatch, score, or loss / ( », y") to represent the “distance” between a
data set y* computed from prior sample x” and data set y© based on the prior sample x¢, b,
¢ =1,...,B. This defines a B x B loss or dissimilarity matrix. We generate posterior samples
by picking the prior samples that satisfy a small loss [ ( », y”) < €. We can tune the thresh-
old € so that we have at least a fraction — say, B/ 10, of the original prior samples.

The diagonal is ignored in the analysis. The focus is on the remaining samples that are
independent of the realization for the data. We use these losses to approximate the con-
ditional expectation of value. Samples within the specified threshold are thus uniformly
weighted, not unlike in rejection sampling (see Section 2.5).

The associated VOI for imperfect information is the difference between the posterior
value and the prior value in Equation (5.48):

VOI(y)=PoV(y)-PV

1< ~ 1<
zE;maxﬁA {E(v(x,a)ly”)}—maxaeA {EZV(x”,a)

b=1

} (5.54)

Algorithm: Monte Carlo approximation of posterior value using approximate
Bayesian computing for the conditioning

1. Sample x',...,x% from prior p(x).
2. Compute the value v(xb, a) for each sample b =1,..., B and all alternatives @ € A.
3. Generate synthetic data variables y” = f (x” ), b=1,...,B.
4. Compute the loss, l(yb,yf), b,c =1,..., B, between all data pairs.
5. Approximate the conditional expectation as follows:
E(v(x, a)l yb) = BL ( Z) v(x<,a), B,.= ZI(l(yb,y‘) < s).
b.e c:d(yb,ye)<e c#b

6. Approximate the posterior value as follows:

PoV(y)= %bzimaxaeA {E(v(x,a) I yb)}.
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This procedure is computationally efficient because we re-use samples from the prior
value computation. Steps 1 and 2 are identical to those for the prior value in Equation
(5.51). The number of value computations is B|A|. In some situations, the forward mod-
eling in Step 3 can be quite demanding as well, depending on the complexity of the
data-gathering scheme. For instance, seismic data could require complex modeling in the
relation y = f (x) The snow measurements, on the other hand, simply provide the snow
level at the locations they are made, with noise.

Even though this approximate conditioning scheme based on loss or dissimilarity saves
plenty of computer time, one must be careful because the statistical properties of such an
approach are not fully understood. Moreover, these properties are difficult to check because
the approximate Bayesian computing procedure enforces no statistical modeling assump-
tions on the likelihood. Instead, we simply use samples that are close to the data in some
sense. There are several ways to select the loss function (see Chapter 2).

Barros et al. (2014) use a related computational approach, trying to learn from one set
of realizations in creative ways, for VOI analysis in reservoir management. The approach
evaluates the effect of data assimilation (information) for closed-loop reservoir optimiza-
tion, which includes the locations and tuning or recovery factors of wells. They use an
ensemble of models and a workflow that loops over the realizations or ensemble members
as the truth while finding the optimal strategy on all the other ensemble members.

5.6.4 Example

Frozen: hydropower example

Keywords: hydropower, snow measurements, transformed Gaussian variables, Monte Carlo
sampling, approximate Bayesian computing, partial information, high decision flexibility, coupled

value function

We study the VOI of snow measurements for decisions about water levels in a system of
dams for hydropower production. For more background on the subject of snow meas-
urements for hydrology scheduling, see, e.g., Lundberg et al. (2010) and Bruland et al.
(2015).

Framing the decision situation

Hydropower production benefits from advanced planning of water levels in dams. In our
example, as well as in many real hydropower systems, dams are connected such that when
water from one dam is used or lost due to flooding, it flows into the next dam downstream.
The connection of dams makes the optimal scheduling (control) of the system challenging.
The situation is further complicated by uncertainties around snow storage, groundwater
levels, future precipitation, and energy prices. Note also that value may be a function of
factors other than hydropower production — for instance, flood protection and water storage
for agricultural purposes.
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We will consider a simplified problem of short-term decisions about the water level in
dams right before the snow melting period. At the time of snow melting, selling prices of
energy are very low, while they get much higher later in the year. The goal for the hydro-
power company is thus to fill up all the dams and sell later. If the water levels before melt-
ing season are high, then the dams will likely exceed their maximum water level, and water
will be lost for hydropower production. Hence, the hydropower company could actually
have made more money previous to the melting period by selling, even though this would
have been at a lower price. If the water levels before the melting season are too low, the
dams are unlikely to fill, and future revenue is lost.

The example studied here consists of nine dams in a river basin (Figure 5.13). The alter-
natives pertain to the water levels of the dams. We assume that the decision maker is free
to lower the water level at each dam before the snow melting starts (Figure 5.13, right).
The high and low levels of the dams are denoted alternatives a ;€ {0,1}, j=1...,9. Alow
level implies that the dam can handle an additional volume vol(1) before it runs over, while
a high level means that the dam can handle a smaller additional volume vol(0). The units
are in million cubic meters. We assume that the current dam level corresponds to the high
alternative. By choosing the alternative of reducing the dam level to the lower level, the
hydropower company receives income Rev, (vol(l)—vol(O)), where Rev, is the selling
price per volume unit during this time of year. However, going through with this low alter-
native implies that there would be a smaller chance of filling up the dam later. The future
selling price per unit volume is Rev,. We set Rev, > Rev, because there is plenty of energy
production and relatively little demand during the snow melting season. We assume that the
production of energy during the rest of the year will bring the water level down to the high
level again (vol(O)) at a constant selling price Rev,. Note that in practice, the prices would
be set by the market. Moreover, the energy per unit could also depend on the water level in
the dam and the production profiles of dams, etc.

The map in Figure 5.13 (left) displays the river basin — i.e., the water outside this region
will not run off to the dams. The catchments define the water that accumulates to the dam.
In addition, the run-off from the dams above will flow along the river to the next dam. The
profit made from hydropower production depends on the price of energy and the water
volumes. The uncertain distinction of interest is the water volume equivalents of snow at
spatial cells in the river basin. We split the spatial domain defining the river basin into a grid
composed of 50 x 50 regular cells. Each cell is of size 1 x 1 km?. The optimal decisions for
dam levels are based on the uncertain water volume equivalents denoted x;, i = 1,...,2500.

The value function is spatially coupled through the connection between the various
dams. We define it in further detail as we present expressions for the prior value in the
following text.

Information gathering

It is common to acquire measurements of snow depth and density before the snow melts.
A team would travel with snow scooters to measure the snow depth and properties of the
snow at select locations.
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Figure 5.13 Hydropower example: a map view of nine dams with catchments. The acquisition line
(north, center) indicates where the decision maker can collect snow measurements to better predict
the water that will run into the catchments. The decision maker chooses the water level of the dams
before the snow melts.

Figure 5.13 (left) illustrates the acquisition sites (circles) in this example. They are at the
northernmost part of the basin at high altitude. The snow measurements acquired at these
locations could influence the decisions about water levels at the dams. If it has a large effect
on the decisions, the snow data acquisition may perhaps be worth its price.

Note that the snow measurements include the depth of the snow column as well as certain
properties of the snow such as the snow water equivalent. For simplicity, we assume that
the snow water equivalent is 0.5 and focus on the snow depth measurements that are related
to the water volume equivalents at the spatial cells where the measurements are made.

Modeling

The water volume equivalent x; of snow at cells i =1,...,2500 is estimated by multiplying
the snow column depth at that cell, the area of the cell, and the snow water equivalent (set
to 0.5). In practice, the prior knowledge of the uncertain snow depth relies on numerical
weather modeling, as well as precipitation and temperature observations at a few monitor-
ing sites. We model the snow depth as a random field with a spatial correlation and a spa-
tial trend. Spatial correlation is incorporated by an exponential covariance function for a
Gaussian random field. These Gaussian variables at all sites are transformed to truncated
power law variables (see Section 2.2) that represent the snow depth. The power law distri-
butions have location-specific parameters, making large snow depths more likely at high
altitudes and in the eastern part of the domain.
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Figure 5.14 shows two realizations of the snow depth distribution (in meters). As mod-
eled, there is a tendency to find deeper snow at higher altitudes and in the eastern parts.
The cells with deep snow are seen to be spatially correlated. This correlation means that the
aggregated snow in a catchment could vary significantly from one realization to another.

We denote the spatial cells for different catchments (basins of flow attraction) by C,...,C,
and the accumulated water volumes at the dams by RN o For Dams 1 and 2, which
are at the highest altitude, the accumulated snow melt contribution from the catchments is

Xe, = D Xy Xgy = DX (5.55)
ieCy ieCy

For the dams farther down the river system, the accumulation from snow melting is more
complicated. For catchments j = 3,...,8,

Xc, = 2 X; +max {O,xcpu(j) - Vol(apa(j) )}, (5.56)
ieC;
where pa ( j ) denotes the nearest upstream (or “parent”) dam. Note that the melting contri-
bution here depends on the alternatives chosen at the upstream dams. If the water volume
equivalents are larger than the volume the parent dam can handle, the run-off flows to the
next dam.
For the dam at lowest altitude, the sum over its catchment and the contribution from
water flowing over dams 7 and 8 is

X, = D X, +max {O,xc7 —vol(a, )} +max {0, x¢, —vol(ag )} (5.57)
ieCq

The decision maker’s monetary value depends on these uncertain water volumes in the
dams, as described by Equation (5.55)—(5.57) after snow melting, as well as the alternatives
chosen at the dam. It is also a function of the selling price Rev, before melting and Rev,

in the future.
Data are acquired at 82 cells in the northern parts of the river basin (Figure 5.13). For
these snow measurements, we assume that the depth measured at a cell is representative

Snow depth. Realization 1. Snow depth. Realization 2.
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Figure 5.14 Hydropower example: two realizations sampled from the model for snow thickness.
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of that spatial 1 x 1 km? cell. We also assume that the measurements provide perfect infor-
mation at the cells where they are made — i.e., the data consist of x, where K denotes the
subset of partial testing locations among the total of 2500 cells.

VOI analysis

The value is a function of the sum of water volumes sold prior to snow melting (if alterna-
tives include lowering the water level) and the selling price of volume capacity after snow
melting. This can be summarized by
9
v(x,a)= v;(x.a), (5.58)

=1

-

where the contributions at dams j = 1,...,9 are defined by
v;(x,a)=Rev, (Vol(l)—vol 0))I(aj = 1)+

Rev, min{xc, —1(a; =1)(vol(1)-vol (0)),vol (0)}. (5:59)

Note that the value from a dam in Equation (5.59) depends on the uncertain snow amount
in its catchment and the chosen dam level, as well as the uncertain snow contribution at
higher altitudes and the chosen levels at these upstream dams.

In this example with high flexibility in the spatial alternatives as well as a coupled value
function, the calculation of the prior value is rather demanding. For calculating the prior
value approximation, we use Equation (5.51) with B = 5000 samples, where each value
calculation v(xb,a) is based on Equation (5.58). Thus, we generate B realizations of snow
depths using the random field model with power law marginal distributions for the depth.
For each of these realizations, we run the dams for all possible combinations of alterna-
tives —i.e., |4, | . |A9 | With the two alternatives at each dam, there are 2° = 512 alternatives.
The optimal alternative is the configuration of alternatives that provides the largest value,
on average, over the realizations.

Assuming an average snow depth of 1.2 m, there is a volume of 1000% -1.2-0.5-250 = 150
million m? from the 250 cells in a catchment. Obviously, if the higher level corresponds
to smaller volumes than this, it is likely best to lower the dams. On the other hand, when
the higher level corresponds to larger volumes than this, the decision maker is better off by
not lowering the dam levels. Aside from these extreme situations, it is not straightforward
to tell the effects of the various alternatives because of the complicated interactions, and it
also depends on the price levels before melting and in the future.

For calculating the posterior value, we use the approximate Bayesian computing-type
algorithm presented earlier. We condition on the data at the 82 acquisition points by choos-
ing a subset of realizations that have snow depths close to what is observed in the data real-
ization. The similarity measure between realizations is calculated from the average depth
at the acquisition cells. The specified threshold of the approximate Bayesian computing
algorithm picks about B /10 realizations for posterior assessment.
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Table 5.5. VOI for the snow measurements for hydropower planning. The results are over
various prices per water unit of current water and that of future water

vol (0) = 140, vol (0) = 120, vol (0) = 150, vol (0) = 120, vol(0) =100,

Prior Value vol(1) =160 vol(1)=180 vol(1)=180 vol(1)=150 vol(1)=200
Rev. — LRev. =] 1320 1340 1340 1300 1350
1= 5 2=

Rev, =1Rev, =2 2520 2350 2600 2340 2160

Rev, =2,Rev, =5 6290 5750 6480 5740 5210
vol(0) =140 vol(0) =120, vol(0) = 150, vol(0) = 120, vol(0) =100,

VoI vol(1) =160 vol(1)=180 vol(1)=180 vol(1)=150 vol(1)=200

Rev, =1,Rev, =1 0 0 0 0 0

Rev, =1,Rev, =2 20 28 18 14 27

Rev, =2,Rev, =5 50 64 36 35 53

We compute the prior and posterior values and the VOI for a variety of parameters,
as indicated in Table 5.5. The prior values clearly increase with larger revenues, and
the same trend is seen for the VOI. The largest VOI is achieved when the energy prices
per unit are Rev, =2 and Rev, =5 and for high and low water levels around the typical
water volume in a catchment of 150. When high and low volumes are Vol(O) =120 and
Vol(l) =180, the best a priori combination of alternatives is to lower the level in the east
and south parts of the basin, in which case the prior value is 5750. If all dams are lowered,
the average value is only 5100, because the decision maker will likely not be able to fill
up the dams, thereby losing high-revenue water. The large VOI noted here indicates that
the snow depth information is clearly useful for decisions pertaining to the dam level.
When the prices are the same, Rev, = Rev, =1, it is optimal to lower the dams in most
situations. When water levels are too high, vol (0) =120 and Vol(l) =150, lowering the
dams is prudential.

Figure 5.15 shows the prior and posterior values and the VOI as a function of the diffe-
rence in the low and high water levels — i.e., vol (1) — vol (0), symmetric around the typical
volume of 150. The two curves represent different sets of revenues. The displays show
that the prior and posterior values decrease as the high and low levels become farther
apart. Having extreme alternatives prevents the decision maker from tuning the levels. On
the other hand, when the high and low water levels are almost the same, there is little to
gain by collecting the snow depth information because it does not have enough coverage
to affect the decisions. The highest value of the snow measurements appears to occur for
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Figure 5.15 Hydropower example: prior value, posterior value, and VOI as a function of the
difference in high and low values around the typical volumes in catchments. The plots are shown for
two different sets of current revenue Rev, and future revenue Rev,.

intermediate high and low differences when the decision maker gains sufficient flexibility
of lowering dams at the right level after observing the snow depth information.

5.7 More complex decision situations

In Section 5.1.3, we described a high-level framework for a suite of models, and in Section
5.2, we presented a fairly general formulation for static models. We then proceeded to dis-
cuss various special cases in Sections 5.3—6. Here, we relax some of the previous assump-
tions: specifically, we consider more general risk preferences (beyond risk neutrality),
constraints in the decision situation, and sequential decision situations. The reader should
note that our discussion in this section and the next is fairly cursory, since research on
models for VOI analysis in the Earth sciences for more complex decision situations is at a
nascent stage.

More complex decision situations are very much relevant for real applications. However,
they should be used wisely, because the price of generality in the formulation is often a sig-
nificant increase in the computations required. We focus on the essential ideas to provide
a flavor of some of the modeling and computational complexities using examples that are
essentially special cases of more general formulations.
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5.7.1 Generalized risk preferences

We previously assumed a risk-neutral decision maker —i.e., someone who makes decisions
by maximizing expected value. For prior value calculations, we computed the expectation
of the value function, and for posterior value calculations, we computed the conditional
expectation of the value function. The VOI was obtained by subtracting the prior value
from the posterior value. When the decision maker has a more general utility function, the
expected value is no longer the only statistic that is pertinent. Moreover, the VOI compu-
tation is not necessarily the difference between the prior and posterior values. Here, we
return to aspects from Chapter 3 regarding general utility functions and discuss these in the
context of spatial decision situations.

In Chapter 3, we presented a general approach for computing VOI for a general utility
function. Let us return to first principles and apply these techniques to equations from
Section 5.2. Suppose that the decision maker has wealth w and utility function u() and
faces a spatial decision situation where the distinction of interest is x and any alternative
from the available set, @ € A, can be chosen.

Prior to receiving any information, the decision maker chooses the alternative that maxi-
mizes the expected utility. Incorporating the initial wealth and of course the utility func-
tion, the maximum expected utility is

MEU = max,_, {E (u(v(x,a)+ w))} =max,_, {Iu(v(x,a) + w)p(x)dx}. (5.60)
Suppose that the decision maker is offered total perfect information about the distinc-
tion of interest at a price P. The decision maker will lose this price for all prospects, since
this price will be paid for certain. Again, as usual, the integral and the maximization are
switched, and the maximum expected utility of this new situation is

MEU’:JmaxaeA{u(v(x,a)-i-w—P)}p(x)dx. (5.61)

The value of perfect information is the price at which the maximum expected utilities for
the situations from the preceding two equations are equal. A similar approach can be taken
for computing the value of partial perfect or imperfect information.

As we described in Chapter 3, when the decision maker has an exponential utility func-
tion, then the VOI can indeed be computed as a difference between the prior and posterior
values (see Appendix A.1). Only the linear and exponential utility functions have this con-
venient property.

5.7.2 Additional constraints

Recall that the decision maker can choose alternatives from the available set a € A. This
notation captures the effect of constraints to a degree — if some alternatives are no longer
feasible for whatever reason, they will no longer be in set A, and the analysis can be repli-
cated without making further changes to the model. However, what if there are additional
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constraints that enforce further restrictions on the alternatives that are available to the deci-
sion maker by necessitating underlying changes to the model? We will explore this aspect
by extending an example from a previous subsection.

Consider the special case from Section 5.4 — a decision situation where there is high
decision flexibility and a decoupled value function. We also referred to this case as that of
the “free selection of sites,” because the decision maker was free to select as many sites
as profitable. Now suppose that there is a budget that puts limitations on the number of
selections that can be made. Suppose that the decision maker is only allowed to selectk < n

sites. The possible way to select subsets of size k out of # sites is ( ) We denote the set

of such subsets by W(n) An element of this set, @ =(@,,...,®, ) € W(n), indicates which of
k k

the k cells are selected. Here, @, {1,...,n} and @; # @, 1,j=1,...,k. For the chosen set, the
decision maker can choose among alternatives a; € A .

If the value function can be decoupled, like in Section 5.4, the prior value is the max-
imum over all subsets of size k among the n sites —i.e.,

k
PV(n) = maxmew(n) {z max, . ca, {E(v(xmi ,dg, ))}} (5.64)
k k) Li=1

Due to the decoupling of value, the computation of Equation (5.64) is simply done by
ranking the n sites and picking the best k. If the value function is coupled, the calculation
would be much more difficult.

The posterior value with imperfect information y is

POV(Z) (y) = Jmaxmew(z) {12:‘ max,, s, {E (v(xm’_ ,Ag, ) | y)}} p(y)dy. (5.65)

The critical difference with the prior value computation in Equation (5.64) is that the
selection of sites now depends on the data — the decision maker can choose different sites
depending on the data. The VOI is the difference between the posterior and prior values, as
the decision maker is risk neutral.

The tree amigos: conservation biology example

Keywords: conservation biology, Markov random field, constraints, total information, imperfect

information

We revisit the example inspired by a situation in conservation biology in Section 5.4. The
spatial domain is represented as a 3 x 3 grid, and the presence (xi = 1) or absence (x,- = O)
of a species of tree at the cells is modeled as a binary Markov random field model.

Now we allow for constraints on the number of reserve sites that can be selected. Let
k denote the maximum number of cells that can be selected (based on a budget). The
prior value computation is Equation (5.64), while the posterior value is computed in
Equation (5.65). The value function for the two alternatives is as in Section 5.4 — i.e.,
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v(x;,a; =1)=Rev-1(x, =1)—Cost and v(x;,a;, =0)=0, i = 1,...,9. From the prior or pos-
terior probability at all cells, the profits from the field are maximized by choosing the best
k prospects.

Suppose that the decision maker considers purchasing a total test. Furthermore, sup-
pose that the outcome of this experiment is a discrete variable at each cell, y, € {0,1},
i=1,...,9, which is indicative of the true absence or presence of the species of tree. As in
Section 5.4, the accuracy of the experiment is defined by the likelihood model. Here, we
set this accuracy to y =0.9.

The VOI for the different parameter settings is calculated using forward—backward
recursions for the marginal likelihood p( y) evaluation and the marginal probability
p(x, =11y),i=1..09.

Figure 5.16 shows the VOI as a function of the spatial interaction parameter 3. The dis-
play has three curves, valid for different values of k (the maximum number of cells that
can be selected): k =1, k=5, and k = 9. The revenues are set to Rev = 2 (left) and Rev =5
(right), while Cost =1, as in Section 5.4. The case with k =9 corresponds to the uncon-
strained case in Figure 5.8, since there are n =9 cells in the field.

Previously, we noted that the VOI tends to increase with spatial interaction in the uncon-
strained situation. However, for k = 5 and k = 1, the VOI seems to decrease as 3 increases.
This is most prominent in the graph for large revenues on the right. We explain this ten-
dency as follows: the experiment conducted over the entire field has a certain facet that
can be relatively more valuable when there is both low spatial dependence and a limit on
the number of cells that can be selected. It tells you which cells are likely to be favorable,
thereby guiding the decision maker about the choice of site location. There is a little more
leeway for the decision maker regarding the selection of an appropriate location when there
is high spatial dependence. Thus, VOI can be relatively smaller when f is high.

VOI is not always highest when k& =9 and lowest when k = 1. The prior value is larger
without constraints, but as we see in Figure 5.16 (right), the VOI need not follow such a
trend. It is indeed possible for the experiment to be more valuable in the situation when
there are constraints, as opposed to when there are none. In our experience, it is often com-
plicated to interpret the VOI in situations with constraints, even in this simple example with
a decoupled value function and a grid of relatively small size.

5.7.3 Sequential decision situations

In Section 5.1.3, we laid down a high-level framework for the various models by making a
distinction between static and sequential decision situations as well as static and sequential
information-gathering schemes. In this section, we briefly consider models of sequential
decision situations. Our intention is not to be general, but only to provide the reader a sense
of the complexities involved. We focus largely on the special case of high decision flexibil-
ity and decoupled value from Section 5.4.

In static spatial decision situations (for a risk-neutral decision maker with binary alter-
natives), the selection of sites is a one-time decision where the decision maker chooses
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Figure 5.16 Conservation biology example: constrained selection of conservation biology units. VOI
for total information on the 3 x 3 grid as a function of the spatial coupling in the distinction of interest
(first axes). The three curves represent the number of cells that can be selected in the constrained
decision situation. Revenues are 2 (left) and 5 (right) while cost is 1.

alternatives from q; € {0,1}, indicating no selection and selection, to maximize the total
expected profits. Instead, suppose that the decision maker is now allowed to make sequen-
tial decisions; in this way, they can adapt to outcomes as they are observed. Sequential
decisions therefore provide additional flexibility in making the decision. However, the cor-
responding model dramatically increases computational tasks. This increase is partly due
to the need for evaluating many (sequential) conditional probabilities, given the results, but
it is also caused by a large increase in the number of alternatives in each strategy of the
sequential decision situation.

Figure 5.17 illustrates a decision tree for this sequential decision situation when there
are only two uncertain variables x, and x,. At the first stage, the decision maker can select
one of these projects or none. If Project 1 or 2 is selected, they get to observe the result of
the chosen one. Given the observation, the decision maker can now either select the other
project as well or stop. The optimal selection strategy depends on the profits associated
with the projects as well as the conditional probabilities of random variables x, and x,. If
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Figure 5.17 Illustration of sequential decisions for a two-variable situation: at the first branch, the
decision maker selects 1, 2, or neither. After seeing the result of the first decision, the decision maker
can go on selecting or stop.

observing the variable x, has an impact on the decision about Project 2, the decision maker
would benefit from making the decision sequentially.

Assume a situation with n sites and two alternatives, select or not, for all projects.
Selecting project number i is denoted a; = 1. The prior value is

PV, =max, E(v(x,.l a4 = 1))+ j max;, . {O,ContVali2 (x,.l )}p(xi] )dx,.] ,0r, (5.66)

seq

X,‘l

where the continuation value is defined by

L

ContVal, (x,-l ) = E(v(x. a, = 1) I x; )+ J max;, ; ; {O,ContVal,-3 (xil 5 X )}p(x,-2 I x; )dx,-z.
xy

(5.67)

We have assumed a continuous sample space for these equations. For a discrete sample
space, the integrals would become sums.

This prior value is computed by a dynamic program, which can be solved using
Bellman’s equations. These equations are nested, and their solution requires going through
all possible sequences of selections. The optimal sequence depends on the outcome of
selected sites at earlier stages. At the final stage, the continuation value is

t i °? ip-)

ContVal, (x,.l,. X, )=max{O,E(v(xin,ain =1)Ixil,.. X )} (5.68)

The prior value in Equation (5.66) is always at least as large as the prior value for the
associated static decision situation. When there is dependence, it is always helpful to see the
outcome of another variable before making a selection. Bickel and Smith (2006) describe
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an example where the static decision situation has PV =0, while the sequential decision
situation has a value that is clearly positive.

The computations depend on the probabilistic model in general. The integrals are often not
solvable using analytical methods. For a discrete sample space or for a discretized numer-
ical approach, it is possible to sum out the entire multivariate sample space when there are
relatively few sites — see, e.g., Bickel and Smith (2006) for an example with prior value cal-
culation on a size n = 6 problem inspired from the petroleum industry. (A similar example is
provided as an exercise in Chapter 7.) When there are many spatial sites, solving the integrals
or sums can be very computationally demanding, and one may need to turn to approximate
solutions. The method of choice depends very much on the situation and the probabilistic
model. There is a large body of literature on dynamic programs and approximate dynamic
programs — see, e.g., Powell (2011). A myopic (or greedy) solution is often used in practice,
where the algorithm looks one step ahead, then updates, then looks one step further, updates,
and so on. An alternative is to consider multiple steps into the future. This is often better than
the myopic approach but is more computationally demanding — see, e.g., Martinelli et al.
(2013a).

For imperfect information y, one can compute the posterior value using a similar recur-
sion, but this time conditional on the information. Data could be partial, total, imperfect, or
perfect. The posterior value becomes

O,E(v(x,-l,ail = 1) | y)+
1 J‘maxiz,ﬁil {O,ContVali2 (x,-l ,y)}p(xil Iy)a')c,-l p(y)

Xil

PoV, (y) = Jmaxi

seq

dy, (5.69)

y

where the continuation value must again be computed in a nested manner, and now includes
the information provided by the data y. The VOI for a risk-neutral decision maker is the
difference between the posterior and prior values. Computations for obtaining the poster-
ior value and the VOI are much harder than those for the prior value, and simplifications
inspired by approximate dynamic programming will likely be required.

Gotta get myself connected: Bayesian network example

Keywords: Bayesian network, exploration wells, binary outcomes, Bayes’rule, sequential decisions

This example revisits the two-node network example in Section 2.3. Two prospects are
assumed to be dependent via a common parent node in a Bayesian network. The marginal
success probability at both nodes is p(xi = 1) = 0.1. The conditional probability, given a
success at the other, is p()c,-2 =llx, = 1) = 0.5, while p()cl-2 =llx, = O) =(0.055. The rev-
enues and costs associated with success and failure are specified to be the same for both
prospects. The revenues are set to Rev = 3, while we vary the costs to study sensitiv-
ity. For static selection, the prior value is PV = 2max(3~0.1 —Cost,O). This is plotted in
Figure 5.18 (dashed line). It decreases as a straight line with a slope of 2 until it reaches the
first axis at Cost = 0.3.
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Figure 5.18 Prior and posterior values and VOI for the situation with two dependent prospects for
a sequential decision situation. The dashed lines are for the situation with static decisions; the solid
lines are for the situation with sequential decisions.

When the decision maker has the ability to make sequential decisions, there is a greater
prior value, as given by Equation (5.66). When we plug in the probabilities for this case,
we obtain:

(5.70)

seq

max {0,3-0.055—Cost}-0.9+
PV__ =max40,3-0.1—Cost+

max{0,3-0.5—Cost}-0.1

The prior value with sequential decisions in Equation (5.70) is piecewise linear, and it
goes slower toward 0O than for the static case. At Cost =3-0.055=0.17, the slope changes
because one enters a range of costs where the second project will not be selected if the first
was a failure. Figure 5.18 (top display) shows how the prior value of the sequential deci-
sions is clearly larger in the cost range where the decision maker is most indifferent.

Suppose that the decision maker considers gathering imperfect information at both projects.
The test has a discrete result, but it may yield a false positive or false negative. The accuracy
is assumed to be the same for the two and is denoted by y = 0.9, as we have done in previous
examples. Following Equation (5.69), the posterior value of the total imperfect information is
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0,Rev- p(x; | y)—Cost+

PoV.

- , i dy, (5.71
i (9) { M%ier2 > max {0.ContVal ,; (k. y)} p(x, =k 1 y) P(y)dy, .70
k=0

where ContVal, (k, y) = Rev- p(xj =1lx, =k, y)—Cost. Note that one must now account
for the order in which the decisions are made. For some observations, the decision maker
may select one prospect before the other and vice versa. When the prior value was computed,
this order was not considered due to the symmetry in this specific situation. Conditional on
the data y, this symmetry is broken.

The posterior values and the associated VOIs are plotted in Figure 5.18. The poster-
ior value of the sequential strategy is only slightly more than that for the static decision
situation, and it is larger for different cost ranges than for the prior value (top display).
Therefore, the VOI could either be lower or higher for sequential decisions as compared to
the VOI for static decisions.

5.8 Sequential information gathering

We briefly discuss models related to sequential information gathering — i.e., when infor-
mation need not be collected in one go, and therefore the decision maker can use the infor-
mation obtained from one test to evaluate whether subsequent tests should be performed.
Sequential information schemes provide additional value due to the additional flexibility
around planning information gathering. Miller (1975) is an early reference on this subject.

We consider the case of a static spatial decision situation —i.e., where the decision maker
must make a one-shot selection of sites — but with sequential information gathering, so the
decision maker can perform experiments sequentially. Furthermore, we consider the spe-
cial case of high decision flexibility and decoupled value from Section 5.4. The prior value
is the same as in Section 5.4 —i.e.,

PV = imaxaieAi {E(v(xi,ai ))} (5.72)

The posterior value is evaluated for all possible strategies of sequential testing. Let the
possible tests be y;, j =1,...,m. This is generic notation that represents all sorts of tests — for
instance, the tests could be univariate, aggregated, or made site by site. They could be total,
partial, perfect, imperfect, etc. In any event, we assume a price P;, j = 1,...,m of tests. For cal-
culating the VOI of sequential tests, one must know the prices of these experiments up front,
since they are needed to evaluate whether future tests are worthwhile. Miller (1975) clearly
states some assumptions about these prices P; of experiments, which we will also use. First,
we assume that the prices are fixed — i.e., they are not random variables. Second, we assume
that they are additive, implying that the price of shared elements in the acquisition, process-
ing, or some initial common price is negligible compared with the prices of each experiment.

For now, consider two tests y, and y,. Suppose that the decision maker acquires the first
test, with the ability to follow up with the other. For some outcomes of the first test, he
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or she may not acquire the second. For other outcomes, he or she may indeed acquire the
second test. Thus, the value of a sequential information-gathering scheme cannot be less
than doing both tests at once — i.e., a static testing scheme. A risk-neutral decision maker
can determine the best test sequence by maximizing the expected value. With two tests,
the decision maker has the following four alternatives: Test 1 and stop, Test 1 and continue
with Test 2, Test 2 and stop, or Test 2 and continue with Test 1.

Assume that Test y, has been performed. The posterior value of this static test is

PoV ()= [ S max, ey {E(v(xa,)1 ) Ip(r ). (5.73)
i1

With sequential testing, there is a more complicated integrand for the solution because
one must consider all possible sequences of information gathering. The decision maker
will only acquire the test if the additional value minus the price of the second experiment
P, is larger than the value of the first test alone — i.e., we require

Jimaxaief\,- {E(v(xi’ai) | yn.)’z)}P(.Vz |.V1)dyz -P> imaxaieAi {E(V(xi’ai) | 7 )}

» =1 i=1

(5.74)

We refer to the left side of Equation (5.74) as continued testing, while the right side is
associated with the decision maker stopping testing. The posterior value of the first test
having the option of continuing with Test 2 becomes

Jimaxa[ {E(v(x.a)1y.3,)}p (32 13))dy, = .

Po‘/seqtest (yZ |yl)=_[max p(yl)dyl’

(5.75)

and, since the decision maker is risk neutral, the VOI is the difference between the posterior
and prior values. This VOI should now be compared to the price P, of Test y,. If the VOI
is larger than this price of the experiment, it is worthwhile doing a sequential test starting
with y,. The optimal sequential testing scheme may be to perform Test 2 first and then Test
1. The posterior values of all strategies must be evaluated and compared after incorporating
the prices of the experiments.

More generally, for sequential tests y ni=L..,m, the VOI can be written as a sequence
of interchanging integrals and maximizations, not dissimilar to the expression for the prior
value for sequential decisions in Equation (5.66). The integrals (or sums for the discrete
sample space) are assumed to be over the outcomes of the tests. The maximizations are
assumed to be over the alternatives of continued testing or stopping testing. The situation
is illustrated as a partially drawn decision tree in Figure 5.19.

The posterior value of sequential information starting with Test y; is
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Yo
Test 2
Test 3
Y1 [:l
Test 1
Test m
V1
Test 1
1Z]
[ Test 2 Test 3
Test m
Test m
No testing

Figure 5.19 TIllustration of sequential testing: at each branch, the decision maker can continue testing
or stop. When he or she stops, the decision is made at all sites.

max, ,; {ContValj2 (yjl )},

PoV, test \*1 Yj, | = n d - .
OV, (+1 3, ) = [ max S max, {E(v(x.a)1y, )} p(y; )dy;, (5.76)

i=1
where the continued value when doing more sequential testing is as follows:

Max i j {ContValB (yfl Vi )}’
ContVal,, (y; )= | max{ p(v, 1y, )dy, =P, (5.77)

i ;maxa,» {E(V(xi’“i) Y.y, )}

Due to the nesting with continued values, the computational solution to the posterior
value and the VOI is extremely demanding in general. The solution to the general setup is
provided by dynamic programming. For small models and toy problems, this can be solved
exactly, but for larger models, heuristic strategies are required in practice. There are numer-
ous approximate solutions that can be leveraged for different cases — see, e.g., Powell (2011).

For whom the bell tolls: Gaussian projects example

Keywords: Gaussian projects example, bivariate Gaussian distribution, correlation, linear
Gaussian model, perfect information, partial information, total information, sequential information

gathering
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We return to the bivariate Gaussian pdf, which was also used in Sections 2.3 and 3.4. Two
projects have Gaussian profits with mean g, = 0, variance 6? =1, and correlation p. We
study imperfect information-gathering schemes with a conditionally independent likeli-
hood model p(y; | x;)= N(x;,7%), T >= 0.5% We consider a static decision situation where
we can freely select a project if it is profitable.

This example has been constructed specifically for comparing the cases of static and
sequential information gathering. We plot the VOI minus the price of the experiments.
When the decision maker can pursue sequential information gathering, the price of the
second test is subtracted wherever testing is continued. Figure 5.20 shows the results as
a function of the correlation parameter p. We compare the VOI of the sequential testing
model with that of static testing at both prospects as well as static testing at one prospect.

The figure indicates that sequential testing is always of greater value than the results of
static testing at one or both sites. For small correlations, the results of sequential testing
seem to follow that of static testing in the sense that for most data outcomes of the first test,
the sequential scheme will continue testing. For very high correlations, the sequential test-
ing curve follows the static test at one of the sites. In this case, there is so much dependence
that performing one test is sufficient — i.e., the sequential scheme will stop testing for most
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Figure 5.20 Gaussian projects example: VOI minus the price of the experiment for different testing
options plotted versus the correlation between the projects (first axis). The plot compares the results
of static and sequential information gathering.
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outcomes of the first test. Intuitively, the added value obtained from sequential testing is
largest for intermediate correlations, where it is worthwhile for the decision maker to have
the additional flexibility of determining whether to continue testing.

5.9 Other information measures

We have described VOI analysis for the comparison and evaluation of various
information-gathering schemes. In this section, we take a diversion and discuss some alter-
native approaches for measuring information content. We advocate the use of VOI analysis
when faced with a clear decision situation involving uncertain distinctions of interest that
can be modeled reasonably. However, when there is ambiguity around the decision situa-
tion or situations that the information might be useful for, alternative information measures
such as the ones discussed in this section may be useful.

Our discussion focuses on three information measures that are commonly used for select-
ing and designing spatial experiments: entropy, prediction variance, and prediction error.
Other measures are also used in practice, and we mention these briefly. Dobbie et al. (2008)
review the different types of spatial monitoring designs. Geometric designs are routinely
used in practice (Royle and Nychka 1998). They are also denoted as the space-filling design
of experiments since they do not rely on any aspects of the spatial statistical model or spatial
correlation. Other designs attempt to have a degree of space filling while maintaining some
design locations close together (Diggle and Lophaven 2006). This is useful when the goal is
to estimate spatial correlation parameters and at the same time maintain good spatial cover-
age for prediction purposes. We only treat the situation with fixed statistical model parameters
here, assuming that auxiliary data exist that allow us to specify unknown nuisance param-
eters. Most of the literature on spatial experimental design relies on a Gaussian model for
the distinction of interest and the data. Under this assumption, both the entropy and variance
criteria are easily computed in a prospective sense — i.e., before the data are actually collected.
For other probability models and for high-dimensional spatial variables, the computations
required to evaluate a suggested design may be very demanding. Approximate solutions are
available for some models, like spatial generalized linear models (GLMs) (Evangelou and
Zhu 2012), but in general the computations involve an outer loop drawing realizations of data
and an inner loop evaluating the information measure for each data realization. The search for
the best design in a large set of spatial candidate sites becomes a combinatorial problem, and
various heuristics have been applied. One of these is the exchange algorithm (Royle 2002),
which iteratively picks candidate sites and tries to replace the selected site with another.

There is a gulf of difference between the philosophies of the information measures pre-
sented in this section and VOI. For instance, the information-theoretic notion of entropy pro-
vides a sense of how much uncertainty can be reduced by performing an experiment, but it
cannot directly indicate how much the decision maker should pay for it. The decision-analytic
notion of VOI is tied inexorably with decisions and the preferences of the decision maker,
and can inform the decision maker about how much he or she should pay. VOI is a more com-
plete measure for valuing information and therefore is also more difficult to obtain. Recall
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from Chapters 1 and 3 that from a decision analysis perspective, an experiment should be
conducted when it is: (1) relevant to the distinction of interest, (ii) material to the decision that
brings value, and (iii) economic for the decision maker. A material experiment is one that can
affect the decision —i.e., the action chosen by the decision maker is not identical for different
outcomes of the experiment. By the decision-analytic philosophy, information from experi-
mentation may reduce uncertainty but is not valuable until it can change the decision. The
information measures we present in this section only address aspects of the relevancy of the
experiment without addressing the other two requirements. Entropy measures may be used
as a guide in designing the most relevant experiment (e.g., Mukerji et al. 2001), but it cannot
be used to say anything about the experiment being material or economic.

5.9.1 Entropy

Information entropy was originally introduced by Shannon (1948) as a measure of uncer-
tainty in problems related to signal communication across noisy channels. Later, the con-
cepts of entropy and mutual information were applied in other fields, including statistics,
physics, biology, engineering, and computation (Cover and Thomas 2006). The notion of
entropy, introduced from information theory (e.g., Ash 1965) is useful for measuring the
reduction in uncertainty of x = (x1 yenes Xy ) on observing the outcome of an experiment. It is
a commonly used information measure to gauge the relevancy of experiments and has been
used for constructing useful designs of spatial experiments — see, e.g., Shewry and Wynn
(1987), Zimmerman (2006), or Fuentes et al. (2007). For a fixed-size design, one selects
the spatial experiment sites which, when combined, result in the smallest overall entropy
for the distinction of interest.

Recall the definition of entropy, which was briefly discussed in Section 2. For a con-
tinuous sample space, Ent(x) = —I p(x)log p(x)dx, where p(x) is the pdf of x. Consider
experimental observations y = ( VisewesVm ), which are informative of the distinction of inter-
est x. The data could represent perfect or imperfect information and partial or total test-
ing. Without loss of generality, we assume a likelihood model p( y| x), with the marginal
distribution p( y) = J p(x) p( yl x) dx. The conditional entropy, given the experiment y, is
given by Eni(x | )= ~[ p(x| y)log p(x | y)dx.

The expected reduction in entropy is obtained by subtracting the expected conditional
entropy from the original (marginal) entropy. We have

EMI(y) = Ent(x) - [ Ent(x | y) p(y)dy, (5.78)

where EMI denotes the expected mutual information between x and y.

Entropy can be used to compare various information-gathering schemes. For instance,
EMI can be used to study if one test reduces entropy more than another test of similar size
or complexity. One can also compute the sequential reduction in entropy — for instance, by
augmenting the current design with one experiment or site at a time. In the beginning, one
may choose to pick the sites that are expected to reduce entropy the most, but as more sites
are sequentially selected, the entropy reduction becomes smaller. One could potentially stop
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selecting sites after a fixed number m is reached. Note, however, that a forward selection of
m spatial sites chosen in this fashion may not be identical to the optimal size m set of sites.

The entropy information criterion has been popular in spatial statistics — see, e.g., Le
and Zidek (2006). Entropy has close ties with likelihood theory, and this makes it a natural
measure for a statistician when there is no extrastatistical knowledge. The criterion relies
solely on the joint probability models. Entropy has been particularly popular for Gaussian
geostatistical models, where a common assumption is that of stationarity. When the spatial
model is non-stationary, there may be other criteria that are more intuitive. For instance,
Lilleborge et al. (2015) suggest using sums of marginal entropy rather than the EMI in
Equation (5.78) for a petroleum exploration example. Lindberg and Lee (2015) argue for
an asymmetric entropy measure to guide the selection of experiments. In their applications,
the experiments are very computationally demanding, and the traditional entropy measure
appears to select a lot of wasteful experiments.

The goal of Lilleborge et al. (2015) is to select a subset of petroleum fields for explor-
ation drilling. A Bayesian network (BN) model is used to model the outcome of n petrol-
eum fields. An exploration well provides perfect information about the presence or absence
of hydrocarbons at the location where it is drilled. Suppose that the decision maker can
perform one experiment here — i.e., drill one exploration well to learn as much as possible
about the petroleum resources. We will denote the perfect information at the testing node
by xg, while the uncertain outcomes at other nodes are x;. By conditional probability,
p(x)=p(xx) p(xy 1 x¢ ); therefore, log p(x) = log p(xyx ) +log p(x, | xy ). Using this for-
mula in Equation (5.78)

EMI(xK) = Elftt(x)—.[Er'Lt(x]L | xK)p(xK)de,

= Ent(xK)+J‘Ent(x]L IxK)p(xK)de —J.Ent(x]L IxK)p(xK)de = Ent(xK).

The largest reduction in entropy is achieved by selecting the node with the highest marginal
entropy. Since the marginal entropy is largest at success probability of 0.5, the EMI criterion
focuses experimentation on the prospects where the decision maker is most indifferent. In some
situations, this is natural, but it does not necessarily value learning about the outcomes at other
nodes. Consider a network consisting of 7 —1 very dependent prospects, where the n-th node is
independent of the rest. If this last node has marginal probability closer to 0.5 than any of the
other nodes, the algorithm based solely on EMI would select this node. This seems counter-
intuitive since the information acquired at this single node is completely uninformative about
the rest of the nodes. In comparison, an observation at another node could be very informative
about the entire network except the one independent node.

(5.79)

5.9.2 Prediction variance

Another commonly used measure for comparing experimental designs is prediction vari-
ance. The goal is to construct spatial designs that provide the smallest possible overall (inte-
grated) variance for the distinction of interest. It is most commonly used for the Gaussian
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model or hierarchical models with GLM likelihood — see, e.g., Diggle and Lophaven (2006)
and Evangelou and Zhu (2012).

As before, let us represent the distinction of interest at n sites as x = (x, yenes X, ) We denote
the covariance matrix of x by Z. The sum of marginal prior variances at the sites is:

SV =Y Var(x) =Y ¥,=trace(Z). (5.80)
i=1 i=1
An experiment yields data y, and we can compute the posterior variances. The expected
reduction in variance is used to compare various experimental designs. To construct a cri-
terion, we must therefore compute the expected variance reduction (EVR):

EVR(y) = ZVar(xl-)—E(z Var(x, | y)) = Var(x,)- j Y Var(x; 1 y)p(y)dy. (5.81)
i=1 i=1 i=1 i=1
When we compare designs of equal size, the one with the largest EVR( y) would be
preferred. Again, one could use this criterion in a sequential manner, as discussed for the
entropy criterion.

Pitfalls: reduction of uncertainty by data

It is a misconception that data always reduce uncertainty. Consider, for instance, the
binary univariate model, x € {0,1}, with success probability p = p(x = 1). We can easily
construct likelihood models and data realizations y such that p(x =1l y) is closer to 0.5
than the prior probability. For instance, in the pirate example in Section 2.3, p=0.01,
but when we get a positive test, p(x= 1ly= 1)= 0.16. This means that the variance
Var(x | y) > Var(x) = p(l — p). However, notably, this will not hold when we average over
all possible data realizations y. On average, of course, data will reduce the uncertainty.
Using the formula of conditional variance:

Var(x) = E(Var(x | y)) + Var(E(x | y)) > E(Var(x | y))

Similar arguments hold for the other information criteria.

Norwegian wood: forestry example

Keywords: forestry example, Gaussian random field, prediction variance, entropy, design of experi-

ments, spatial design

Let us compare the prediction variance for different spatial designs of experiment for the
forestry example discussed in Sections 5.3 and 5.4. We maintain the same discretization of
the spatial domain: the sites are the 252 = 625 cells covering the unit square.

The a priori Gaussian distribution of the forest profits is denoted p(x) =N (u,):). We
assume a homogeneous structure with no trend (mean 0), but as we will see, this is not rele-
vant for the prediction variance since it is a function of the variance—covariance alone and not
the mean.


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.006
http:/www.cambridge.org/core

224 Value of information in spatial decision situations

When the decision maker collects data y, which are acquired according to one of the
three test designs described in Section 5.3, the conditional covariance matrix matters.
Using generic notation, data are obtained via y = Fx + N (0,T ) for some design matrix F
defined by the spatial experiment.

The posterior covariance matrix, conditional on the data, is given by

%, =2-XF (FLF +T) FX. (5.82)

Note that for the Gaussian distribution, the conditional variance does not depend on the
data, nor does it depend on the prior mean. It only depends on the prior variance, the accur-
acy of the experiment, and the design of data acquisition via the matrix F. The variance
reduction criterion includes the expected trace of the matrix in Equation (5.82), where the
expectation is taken over by the data y. However, since the data are not directly involved,
the EVR is simply given by the trace of the prior covariance minus the trace of the posterior
covariance. We have

EVR(y) = trace(E)- trace(E,,, ) = trace (2F' (FEF' +T) ' FE).  (583)
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Figure 5.21 Forestry example: the expected reduction in variance for three different spatial designs
of experiment. The results are plotted as a function of the various input parameters for the Gaussian
spatial model (first axes).
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In Figure 5.21, we plot the variance reduction for the three acquisition schemes as a
function of the model parameters. As expected, we see that the variance reduction does not
depend on the mean (top left), while it decreases as a function of the measurement noise
(top right) since more accurate measurements would tend to pin down the distinctions of
interest more than an inaccurate test. We also see that the EVR increases as a function of the
prior noise level (bottom left) and the spatial correlation range parameter (bottom right).
When there is more prior noise, the data are more informative, and it is relatively easier to
make a large reduction. For a univariate model, the reduction in variance is c* /(0'2 + 72 ),
where the increasing trend with o2 is apparent. The large spatial correlation means that
the variables are more connected, and the data would have more ability to reduce overall
uncertainty. The increase of EVR with the spatial range parameter is very pronounced for
the partial tests compared with the decrease or increase as a function of the mean, measure-
ment noise, or prior noise parameters. A partial test becomes relatively more informative
when there is a stronger correlation. There is not much point in testing cells adjacent to
each other with high correlation, as the two cells have very similar properties.

5.9.3 Prediction error

The prediction error is commonly studied for discrete models — see, e.g., Peyrard et al.
(2013) and Lilleborge et al. (2015). The intent is that data collection on average should pull
predictive probabilities closer to 1 or 0.

Consider again a distinction of interest x = (xl,...,xn) represented at n sites. The vari-
ables are represented on a finite discrete sample space. The prediction error is defined
via classification based on the most likely outcome — i.e., for each i =1,...,n, a class
k* = argmax, { p(x,- = k)} is selected. If the complement occurs, there is an error. A priori,
before collecting any data, the prediction error is:

PE = 2(1 —max, {p(x, =k)}). (5.84)

i=1
Conditional on observing data y, the expected prediction error is:

n

PE(y)= E(Z(l—maxk {p(x =k y)})] = n—E(gmaxk {p(x =k y)}), (5.85)

i=l1

where the expectation is over the data pdf p( y). Within the expectation, for each data out-
come, the largest posterior probability is computed at all cells. For some data outcomes, the
largest probability may be Class 1 at a particular cell; for other data outcomes, the largest
may be for Class 2 at the same cell, and so on. In this way, the data would allow a change
in the classification at cells, and this would be more likely if the data were collected at that
cell or at a cell in its vicinity. Since the probability at a cell is constant in the prior but can
change depending on data in the posterior, PE( y) < PE. The improvement made by data
collection can be compared over various experimental designs, and according to this criter-
ion, one should select the design with the smallest expected prediction error.
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The tree amigos: conservation biology example

Keywords: conservation biology, Markov random field, prediction error

This example revisits the conservation biology case with the selection of reserve sites for
trees; see Sections 5.4 and 5.7. A Markov random field model is used for the binary distinc-
tions of interest x; on a 3 x 3 grid —i.e.,i =1,...,9.

We evaluate the expected prediction error for various interaction parameters 3 in the binary
Markov random model for two different likelihood accuracies: ¥ = 0.7 and y = 0.9. This is a
case of total imperfect information — the decision maker collects binary data at all nine cells
in the grid, but there is a chance that the data at a cell will give the wrong interpretation of the
latent distinction of interest (in this case, whether a particular species of tree is present or not).

The prior probability is assumed to be p(xi = 1) =0.5ateachcelli=1,...,9, so the pre-

9

diction error without data is PE = 2(1 - 0.5) =4.5.
i=1

We compute the expected posterior prediction error in Equation (5.85) by the
forward-backward algorithm (Appendix A.4) for the marginal likelihood p( y) and the
conditional probabilities p(xl. =kl y), k=0,1,andi=1,...,9.

Figure 5.22 shows the expected prediction error as a function of the spatial interaction on the
first axis. Both tests reduce the prior prediction error of 4.5 by a substantial amount. The predic-
tion error is smaller for the more accurate experiment. The difference between the more accur-
ate tests (y =0.9) and the less accurate tests (y = 0.7) is largest for small spatial interaction.
Both curves decrease when the spatial interaction gets larger. When there is larger dependence,
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Figure 5.22 Conservation biology example: prediction error plotted as a function of the spatial
interaction parameter in the Markov random field.
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the latent variables are more coupled, and a test has greater impact. The decrease is more pro-
nounced for the less accurate test, since this test gains relatively more from the dependence in
the latent field. Similar tendencies were seen for the VOI analysis of this example in Section 5.4.
The challenge with the prediction error criterion, just like other criteria that only explore rele-
vance, is that it does not relate directly to the ultimate impact of the experiment on the decision.

5.10 Bibliographic notes

We present real-world applications of VOI analysis in the next chapter, so in this section,
we will focus on a bibliography related to conceptual and methodological attempts at quan-
tifying VOI in spatial decision situations.

Low decision flexibility and decoupled value

VOI analysis for spatial applications is commonly done for the simplified decision situation,
which we have here referred to as low decision flexibility — i.e., few alternatives. Most of
these describe a situation of “all” or “nothing” or “utilize now” or “wait.” Analytical results
for the Gaussian distribution were shown by Schlaiffer (1959) and Bickel (2008). Eidsvik
and Ellefmo (2013) place such models in the spatial context.

Low decision flexibility and coupled value

Trainor-Guitton et al. (2011) and Trainor-Guitton et al. (2013) describe a spatial decision
situation with few spatial alternatives for groundwater recharge. They carefully incorpor-
ate spatial heterogeneity to model a complex value function. Their approach requires the
inversion of transient electromagnetic data, and Trainor-Guitton et al. (2011) introduce the
reliability measure for interpreted geologic scenarios to simplify the inversion step.

High decision flexibility and decoupled value

For the situation with high decision flexibility, Polasky and Solow (2001) suggest a measure
similar to VOI for the selection of reserve sites. The approach assumes a decoupled value
giving a sum over the sites considered, but the criterion pertains more to a coverage measure
rather than decisions. Eidsvik et al. (2008) and Bhattacharjya et al. (2010) describe the free
selection problem as a spatial decision situation; their value computation includes no coup-
ling. Bhattacharjya et al. (2013) outline closed-form expressions for this high decision flexi-
bility situation under Gaussian modeling assumptions. The context is not dissimilar to that of
portfolio management, where VOI has been studied, for instance, by Zan and Bickel (2013).

High decision flexibility and coupled value

When there is high spatial decision flexibility and coupling in the value function, new
approaches and reliable approximations are required. In Section 5.6, we presented an
approach that re-used Monte Carlo samples. Barros et al. (2014) apply a similar strategy of
re-using Monte Carlo samples in a closed-loop reservoir management setting. They com-
pute the VOI for production data using samples and treat one of these samples as the truth,
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while the others were used to find an optimal strategy. We believe that there is likely to be a
large growth of tools and methods for high decision flexibility and coupled value decision
situations in the future. We envisage that clustering techniques or sophisticated designs of
experiments could be useful. For instance, multidimensional scaling — see, e.g., Scheidt
and Caers (2009) for a geostatistical application — is useful for the subset selection of real-
istic models or realizations or clustering the sample space of high-dimensional situations.
Approximate computer models — i.e., proxy models or surrogate models (Ginsbourger
et al. 2013) — and multiscale models (Ferreira and Lee 2007) may also be important. New
ideas around analyzing or emulating computer experiments — see, e.g., Santner et al. (2003)
and Gramacy and Apley (2015) — could be applied for approximating the prior and poster-
ior values. VOI computations lend themselves well to parallel computing, and we suspect
that there will be future research along that direction.

More complex decision situations

Bickel (2008) outlines solutions to VOI analysis for a two-action situation for a decision
maker with an exponential utility function. Bickel et al. (2008a) present VOI analysis for
seismic data when there are multiple (spatial) drilling targets and constraints on the number
of wells that can be drilled. There is a large body of literature on dynamic programing for
sequential decision problems such as Markov decision processes and the policy iteration
algorithm — see, e.g., Puterman (2005) and Bertsekas (2012) for extensive coverage of these
topics. Even though these are very powerful tools, there has been limited use in spatial
applications. Bickel and Smith (2006), Bickel et al. (2008b), and Martinelli et al. (2013a,
2014) present cases for optimal exploration among dependent prospects. Their cases were
limited to rather small sizes. For problems of larger dimensions, approximate dynamic pro-
gramming methods are available — see, e.g., Powell (2011) and Bertsekas (2012). At this
larger scale, creative approaches for special cases are required. For instance, Brown and
Smith (2013) use bounds for efficient sequential strategies for a Bayesian network model,
and Martinelli and Eidsvik (2014) apply this approach for networks and Markov random
field models. Frazier and Powell (2010) study VOI based on ranking of projects and sequen-
tial strategies. Krause and Guestrin (2007) present a non-myopic strategy based on entropy
gain for Gaussian models, with an application to river monitoring. Alkhatib and King (2014)
use a technique called least-squares Monte Carlo to approximate and solve a dynamic pro-
gram around decision flexibility in reservoir production. Most of these approaches attempt
to find the optimal strategy to optimize value rather than studying the VOI of experiments.
Another new direction of important VOI research might be spatiotemporal models. This
would require new methodologies that would likely be associated with sequential models.

Other information measures

There are several good books describing the challenges related to spatial design of experi-
ments — see, e.g., Muller (2007) and Le and Zidek (2006). Dobbie et al. (2008) is an
excellent tutorial paper on the subject. The book by Cressie and Wikle (2011) has some
exposition around the use of information measures other than VOI for decision making and
management in spatiotemporal models.
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Earth sciences applications
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The examples presented in this chapter are based on real cases from the Earth sciences.
In each case, we describe the spatial decision situation, discuss possible data-gathering
schemes, present the spatial statistical modeling, and highlight the applicability of value
of information (VOI) analysis. Some aspects of the examples have been introduced earlier
in the book to motivate spatial decision making and for illustrating multivariate and spatial
statistical modeling. Now we consider these examples from the perspective of performing
a comprehensive VOI analysis. We consider these real-world data sets from across domains
and apply the models and concepts of previous chapters to analyze their value to a deci-
sion maker. Projects based on these examples and corresponding data sets are presented
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in Chapter 7. Before presenting the cases, we start by describing a common workflow
template.

6.1 Workflow

According to decision-theoretic principles, information is valuable to the decision maker
only if it can influence the decision(s). Therefore, in any VOI analysis, the first step is to
frame the underlying decision situation with clarity, because it is important to understand
what the decision maker can do with the potential information. This is followed by assess-
ing the different types of potential information that might be relevant. Spatial decision
situations will typically involve some aspects of spatial modeling incorporating spatial
dependencies due to geology and geography. Finally, all of these come together for VOI
calculations and analysis. The key ingredients of this workflow are:

1. Framing the decision situation: For each case, one must define the underlying deci-
sion situation. It is crucial to understand the domain of application and how potential
data might help in making better decisions. This process typically entails identifying
the critical distinctions — i.e., the most relevant uncertainties involved and the deci-
sions. The next stage is to understand which distinctions affect the decision maker’s
value. Typical questions to consider in spatial decision situations are related to the
complexity of the decision situation, as we discussed in Chapter 5: what is the deci-
sion flexibility? Is the value function coupled, or can it be decoupled from one spatial
site to another? Are there shared costs? Are there constraints? What are the decision
maker’s risk preferences, as represented by a utility function? Are sequential decisions
possible? There are often several input parameters that are either known to be constant
or are assumed to be fixed for convenience, as revealed in the initial discussions, such
as costs and revenues. It is good practice to make a note of these and later check the
sensitivity of these various input parameters on the VOI calculations.

2. Studying the potential information-gathering schemes: One should consider the
various types of data that could be acquired and that may be relevant to the uncertain
distinctions of interest. There are usually already some data or prior knowledge about
the distinctions of interest. The question is which additional data to gather, if any. As
was outlined in Chapter 5, the spatial data could be partial or total and could entail
perfect or imperfect information. It may also be possible to perform sequential testing.
One should conduct the VOI analysis for the different feasible data-gathering options.

3. Building the spatial model: One should specify the sample space of the uncertain
distinctions of interest and the prior probability distribution. Spatial modeling typic-
ally involves statistical dependence, as discussed in Chapter 4. One must also specify
the sample space of the potential data variables and a likelihood model linking the
uncertain distinctions of interest to the data. When forming these models, we suggest
using existing data from similar settings as well as expert knowledge. Techniques from
Chapters 2 and 4 can often be applied when tuning the model parameters.
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4. Conducting VOI analysis: At this stage, one has all the required inputs for performing
VOI computations. The computations for prior and posterior values can sometimes be
done exactly, or one may have to rely on approximations, as discussed in Chapter 5.
The posterior values are obtained for the different data-gathering schemes, while the
prior value is the same for a given decision situation, as it does not incorporate the
additional data being evaluated. The VOI for the case of perfect total information is
often useful as a limiting upper bound. This case is often easier to compute than the
more realistic case of imperfect partial information. Sometimes the easier upper-bound
calculation can short-circuit the workflow, bypassing the more difficult VOI analysis
with imperfect information, by showing that even perfect complete information does
not increase the posterior value sufficiently to make it worthwhile.

The VOI should be compared with the potential price of the experiment in the final
analysis. A test is worthwhile if the VOI is greater than the price of the experiment.
With various alternatives for data-gathering schemes, one can compare them and iden-
tify schemes that are more valuable to purchase. This may be done by plotting the VOI
under various information-gathering schemes or by displaying decision regions for
various price ranges of the experiments. To better explore the possible solutions, VOI
analysis should include sensitivity to a variety of input parameters or models. Rather
than viewing this VOI analysis as a final conclusion, we believe that this should be used
as a basis for discussion to guide decisions about information gathering. In fact, the
main benefit of VOI analysis is that the decision maker can start considering various
information-gathering schemes before the prices are known with any clarity to pro-
actively consider how to improve the value from the situation.

The applications presented in this chapter are from basin-scale exploration of petrol-
eum prospects (Section 6.2), geophysical reservoir characterization (Section 6.3), mine
planning and safety (Section 6.4), and groundwater management (Section 6.5). We use a
variety of spatial models in the applications. The aim is not to stress the particular models
but rather to illustrate a range of possibilities. The chosen models and applications are in no
way exhaustive. Using these case studies, together with the tutorial examples in Chapter 5
and the hands-on material in Chapter 7, we aim to provide motivating insights about VOI
analysis for spatial situations, enabling practitioners to integrate more decision analysis
and spatial modeling in their own applications.

6.2 Exploration of petroleum prospects

The examples in this section pertain to basin-scale petroleum exploration. A petroleum
company is interested in selecting promising petroleum fields, which can be explored fur-
ther and eventually developed to produce oil and gas. The goal is to drill successful wells
at the petroleum prospects and to develop and produce the recoverable oil and gas at min-
imum cost. The company has established quite some knowledge about the regional geol-
ogy, but there is still uncertainty about the geological properties. Since decisions about
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drilling wells and building infrastructure for petroleum production can be extremely expen-
sive, it may be worthwhile to find creative ways to gather more information, potentially
leading to better decisions.

At this stage of hydrocarbon exploration, the company considers gathering information
through exploration drilling campaigns. The company must choose where to target their
exploration wells. An offshore exploration well costs $10-$100 million, along with large
planning costs. Then again, future revenues could be huge if an exploration well discovers
hydrocarbons.

The main goal of an exploration well is, of course, to discover hydrocarbons at the
drilling location. Another goal is to get information about the geological variables at the
selected drilling target, and to use the results from an exploration well at one prospect to
learn about the other petroleum prospects geologically related to the drilling location. This
learning is possible because of common large-scale geological mechanisms that induce
statistical dependence between petroleum prospects and segments. Therefore, the decision
about one prospect should depend on whatever is known at other prospects. For instance,
if we observe oil in an exploration well associated with Prospect A, this can boost the
chances of finding oil at nearby Prospect B, because they have similar geological settings
and are perhaps charged from the same source rock. The observation at A does not, how-
ever, completely remove all the uncertainty at B. Here, we will use VOI analysis to assist
in the selection of exploration drilling locations. In all examples, we assume a risk-neutral
decision maker and no constraints for the decision situation, and we consider the static situ-
ation instead of sequential decision making.

Next we discuss some common background aspects of the spatial modeling in the
forthcoming examples. Petroleum geologists study the geological history of regions
to understand the mechanisms forming the basin and petroleum systems. An import-
ant step is to use advanced computer models for numerically simulating the geological
events over time. Several dynamic processes are modeled together, including sediment
deposition, burial, compaction, erosion, faulting, kerogen maturation kinetics, heat flow,
and multiphase fluid flow. The comprehensive text by Hantschel and Kauerauf (2009)
describes the theories and workflows used in basin and petroleum system modeling.
The models allow us to vary geological input parameters such as heat flow, total organic
carbon content, lithology, porosity, and others and then study the associated output vari-
ables such as the generated hydrocarbons, hydrocarbon accumulations, and their spatial
distributions. The motivating illustrations in Chapter 2 examined basin modeling using
a simple flowchart.

An important goal of basin and petroleum system modeling is to study whether the
required geological elements for a petroleum prospect are present and whether the tim-
ing of geologic processes is favorable for trapping and accumulating hydrocarbons.
These elements are often summarized by a few categories. Some companies operate with
three geological attributes: source, trap, and reservoir. In addition, sufficient overburden
is necessary to facilitate the burial and preservation of the other elements. The source
variable is related to the presence of organic-rich source rocks, their burial, and heating,
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causing the organic matter to be chemically transformed, ultimately generating hydrocar-
bons. Once generated, the oil and gas start to flow and migrate through the porous sub-
surface formations. It is essential to have a trap or seal to prevent the hydrocarbons from
leaking out. The reservoir variable represents the reservoir facies, with good porosity and
permeability to facilitate accumulation and ultimate production. All attributes — source,
trap, and reservoir (along with overburden) — must be present to have a petroleum pro-
spect “play.” If an element or process is missing or a process occurs out of the required
timing, the prospect is no longer viable. Since there is uncertainty, spatial and geological
modeling is used to assign probabilities for the uncertainties of interest. In addition to
the presence or absence of geological attributes, this modeling also includes the volume
of hydrocarbons in prospects or segments of prospects under different configurations.
Decision makers must use these geologic models and combine them with probabilistic
models for the planning of future investments. We present various models and demon-
strate VOI analysis for each example.

In Sections 6.2.1 and 6.2.2, we discuss Bayesian network (BN) models for the hydrocar-
bon at multiple prospects. The first case (6.2.1) is an application from the North Sea, with
uncertain charge (source) attributes at several prospects. The charge variables are discrete
random variables, and the data obtained from exploration wells are assumed to provide per-
fect information about this source attribute. We compare the VOI for different partial tests
using single or multiple exploration wells. The second example (6.2.2) is based on a case
used for teaching at Norwegian University of Science and Technology (NTNU), Norway.
There are four geological petroleum prospects. The uncertain variables of interest are the
source, reservoir, and trap elements. We use basin and petroleum system modeling runs
to build and train (or learn) the BN model for all three attributes at the four prospects and
to approximate the volumes associated with different outcomes. We compare the VOI of
one or two exploration wells and use VOI for sequential data gathering. In Section 6.2.3,
we present scenario-based models for prospect evaluation. The data set consists of 524
equally likely scenarios with revenues at 27 prospects in a region of the North Sea. Here,
we take an empirical approach and work directly with the volumes or revenues derived
from Monte Carlo runs (risking) of basin modeling scenarios. We compare the VOI results
of this empirical model with the VOI obtained using a Gaussian approximation for the
probability distribution of prospect revenues.

6.2.1 Gotta get myself connected: Bayesian network example

Keywords: Bayesian networks, exploration wells, petroleum prospects, high decision flexibility, perfect

information, partial information, decoupled value function

Let us consider a part of the North Sea where a petroleum company has identified a num-
ber of candidate prospects. In Section 2.3, we showed a graphical representation for this
situation. Here, we describe the case in detail and perform VOI analysis for exploration
wells. This case has been studied for many purposes — see, e.g., Martinelli et al. (2011)
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and Lilleborge et al. (2015). The idea of using BNs for the modeling of petroleum pro-
spect dependencies is presented in van Wees et al. (2008). We assume that the risk-neutral
decision maker is free to select as many prospects as are profitable — i.e., there are no
constraints. Moreover, we consider the static decision situation, where the selection of
prospects is done once up front without any sequential learning. The situation is similar to
that described in Martinelli et al. (2011). Finding an optimal dynamic strategy is a sequen-
tial optimization problem, studied for this example in Brown and Smith (2013), Martinelli
et al. (2013a), and Martinelli and Eidsvik (2014).

We view the highlights of this example in the context of the framework outlined in
Chapter 5:

* The exploration wells are assumed to provide perfect information about the hydrocarbons at the
location where they are drilled. Only one or two exploration wells are drilled — the company will
not drill at every location of interest. This means that the exploration information gathering gives
partial perfect information. We focus on static information gathering.

* Regarding the three properties of spatial decision situations:

1. The spatial modeling is done using a Bayesian network model built from expert knowledge
about the geology of the basin. The focus is on the uncertain geological charge variable.

2. We assume that the decision maker is free to select profitable prospects for development, so
there is high decision flexibility. The prospect consists of several subunits called segments,
which cannot be selected independently, and this means that there are some restrictions on
the flexibility in development decisions.

3. Decisions are made at the prospect level, while exploration is done for segments associated
with prospects. The value function is thus a sum of segment results for the prospect.

Framing the decision situation

The geologists have prior qualitative and quantitative knowledge about this region in the
North Sea. There are wells in the vicinity of this region, the subsurface geometry of forma-
tions is known from seismic surveys, and the petroleum company has a reasonable under-
standing of the geological mechanisms involved in the petroleum system. Based on all this
background information, the petroleum company has identified 13 geological prospects
that are development candidates. The petroleum company would like to develop the pros-
pects that are profitable, but there is uncertainty around the outcome (oil, gas, or dry) at
the prospects.

The background knowledge has led to the geological prospect regions being split into
subunits called segments. Each prospect has between one and three associated segments,
and in total there are 25 segments. These segments are the actual oil reservoirs at known
geographic coordinates, and the segments corresponding to the same prospect are close to
each other. If a prospect is selected for development, the company will build infrastructure
to produce from all segments for the prospect. The development decision must consider the
uncertainty in the outcome at each segment.
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Figure 6.2 shows a graph (BN) where the 13 prospect and 25 segment variables are rep-
resented as nodes. This graph summarizes the qualitative geological knowledge relevant
for this decision situation, which is encoded in a network of nodes.

There is uncertainty around the geological outcomes at each node in the graph. In this
region, the geologists are sure about the existence of a trap. They are also convinced that
there are sufficiently good reservoir properties. This information about the trap and reser-
voir attributes is based on the regional knowledge about the geology obtained from wells
and seismic data. The key remaining uncertainty is the charge variable — i.e., whether
migration of generated hydrocarbons from the source rock kitchens have been effective
enough to reach and fill the reservoir segments. The states are binary: are the segments dry
(brine filled) or filled with oil or gas? This uncertain variable is the distinction of interest,
denoted x = (x1 yeees X, ) where n = 25 is the number of unknown segment variables.

Decisions are made at the prospect level —i.e., at nodes denoted P1,...,P13. Since develop-
ment would occur at the prospect regions, the alternatives are defined a; € {0, 1}, j=1...,13,
where the two alternatives per prospect j are whether to develop (a; =1) or not (a; = 0).
If a prospect is developed, there is a large known initial cost, and uncertain revenues
result from production at the selected segments attached to each prospect. There is a fixed
segment-specific cost associated with this production from a segment. The value function
decouples to depend only on the segment variables associated with the selected prospects.

We use a value function that depends on the known revenues associated with finding
oil and gas at the prospects and the costs of drilling and production of petroleum. We will
discuss the value function in greater detail later.

Information gathering

In order to make better decisions about the possible development at prospects, an oil and
gas company drills exploration wells at selected segments. Although this is not nearly as
expensive as a development plan, an exploration well has a high price: about $300 million
in this area when the planning and segment or prospect evaluation is included. It is there-
fore important for a company to find a valuable information-gathering scheme —i.e., decide
where to place the exploration wells. The evaluation includes several aspects, but here we
will focus on a generic exploration well giving perfect information about the uncertainty
at the segment where it is drilled. The well is assumed to perfectly discover whether that
particular segment is brine, oil, or gas filled.

The company considers drilling one or two exploration wells, which corresponds to a
partial testing scheme that selects only a subset of the segments. Using the subset nota-
tion from previous chapters, the information is denoted by x; when we have one explor-
ation well at segment K, while we have information xj = (xK],sz) when we drill two
exploration wells.

We will assume static information gathering — i.e., when two exploration wells are
drilled, the decision maker is not in a position to stop testing once the outcome of the first
exploration well has been observed. The information-gathering alternatives are to drill one
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exploration well, two exploration wells, or none. VOI is used to compare the sets of two
exploration wells. Note that one could also consider other data-gathering schemes in prac-
tice. In some exploration situations, it could be useful to purchase detailed seismic process-
ing at a prospect. In other situations, it could be useful to pay to learn the outcome of some
key underlying geological variables (such as source, reservoir, or trap).

Modeling

The probabilistic model is based on the BN shown in Figure 6.2. This display shows a
number of edges between the nodes in the BN that describe the dependence structure in
the model. The network edges probabilistically mimic the geological mechanisms associ-
ated with the migration of the hydrocarbons from the source to charge the reservoirs. We
describe this in some detail using the notion of kitchens, prospects, and segments for the
nodes. Each node is assumed to have a discrete sample space with three possible states
(dry, gas, or oil), representing the actual state of the charge in that node. Our network
includes three possible kinds of nodes:

1. Kitchen nodes: We define the kitchens as areas where source rock has reached appro-
priate conditions of pressure and temperature to generate hydrocarbons; in our model,
the kitchens are nodes that with probability 1 assume the state “gas.” Kitchens are
denoted by K in Figure 6.2.

2. Prospect nodes: We define prospects as larger-scale geological structures that may
contain hydrocarbons that have been fully evaluated. The prospects are the key nodes
of the network, because they define the spatial relationships and the dependence set-
ting, which is easier to elicit from experts. Prospects are denoted by P in Figure 6.2.

3. Segment nodes: We define the bottom or leaf nodes as segments representing the
potential exploration drilling sites associated with a certain prospect. For each pro-
spect, there can be one or more segments that share part of the infrastructure needed
for development drilling and production. In Figure 6.2, segments inherit the number of
their prospect with an alphabetical listing.

The edges define a dependence structure for the nodes in a BN formulation. The edge
structure and conditional probabilities are defined by expert geologists together with stat-
isticians. Experience in the complex basin modeling of this area is the foundation for the
edge structure. For instance, in Figure 6.2, the prospect {P4} has just one directed edge
from the kitchen {K2}, because there is a strong prior belief indicative of a unique kitchen
for this prospect. On the other hand, prospect {P1} has directed edges from two kitchens
({K1} and {K3}). The experts in the local geology assume that there is the possibility of
migration pathways from any of these kitchens to provide hydrocarbons in prospect { P1}.
A BN model makes it relatively easy to ask conditional “what if?” questions, which helps
in the elicitation of conditional probabilities, along with the expert knowledge about the
geology. We make a few assumptions about the geological mechanisms. For instance, dry
nodes are assumed to propagate dry outcomes to the children nodes. This occurs because
the kitchens generated the hydrocarbons, which then migrate to prospect areas and finally
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Figure 6.2 Bayesian network example: Bayesian network model for 4 kitchens (marked K1-K4), 13
prospects (marked P1-P13), and 25 segments (marked 1A—13C) in the North Sea.

to segments. If there are no traces of oil in the parents, the children nodes will for sure be
dry. In the opposite situation, when a parent node contains oil or gas, there is still a chance
that the child node may be dry because the migration failed.

The distinction of interest is x = (xl,...,xzs), which is the uncertain charge variables at
the segment nodes. These are the variables at nodes numbered 1A,...,13C in Figure 6.2.
The nodes can have three discrete states, x; € {1,2,3}, j =1,...,25, where the three discrete
states are dry (x; =1), gas, (x; =2), or oil (x; = 3) at segment j. The prospect nodes are
also uncertain, but they are only included to realistically describe the probability density
function (pdf) of the real distinctions of interest, which are the segment nodes. The kitchen
nodes are assumed to be fixed in the subsequent analysis.

We show the marginal probabilities of all segments in Figure 6.3. Note that there is a
large variability in the probabilities for the states “oil,” “gas,” and “dry” for the different
segments. This holds true even for the segments tied to the same prospects because of the
local failure rates between prospects and segments. Nevertheless, there is some similarity
in the marginal probabilities at the prospect level — for instance, at Segments SA—C tied to
Prospect P5 and Segments 12A-B tied to Prospect P12.
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Figure 6.3 Bayesian network example: marginal probabilities of states at the 25 segments.

In Figure 6.4, we plot the conditional probabilities, having observed different outcomes
at Segment 13B. In this display, the identical markers sum to 1 for each segment. For
instance, the cross markers represent probabilities when Segment 13B is dry. For Segment
10C in the top display, the cross marker is at 0.57, while the cross marker for Segment 10C
in the middle display is 0.01 and the cross marker for Segment 10C in the bottom display
equals 0.42. These probabilities sum to 1, and they indicate that dry (probability of 0.57)
is the most likely outcome for the state of 10C when Segment 13B is dry. The marginal
probability of Segment 10C being dry, when one does not know the outcome at Segment
13B, is only 0.37. This means that the observation at Segment 13B has an effect on the
probabilities at 10C. This effect of conditioning at 13B is most visible at segments tied to
P10, P6, P4, P3, P2, and P1. This comes as no surprise since Prospect P13 is rather con-
nected to these prospects in the network edge structure. For some other prospects, the effect
on conditioning is very small. When we observe 13B to be dry, the chance of having a dry
P13 node is increased, and this results in increased probabilities of 13A and 13C being dry.
When we observe oil or gas at 13B, we know that P13 for sure contains hydrocarbons, and
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Figure 6.4 Bayesian network example: conditional probabilities of dry (top), gas (middle), and oil
(bottom) at the 25 segments, conditional on different information at Node 13B.

this increases the gas and oil probability. The distinction between gas and oil at 13A and
13C appears to be largely influenced by the local failure probability. The computations of
marginal and conditional probabilities are done through the junction tree algorithm (see
Appendix A.S5).

VOI analysis

The decision maker’s value depends, of course, on the development decision at the pros-
pects. We refer to the prospect-related cost of establishing infrastructure and production as
the development fixed cost (DFC), which is assumed to be the same for all prospects. The
prior value is

13
PV = Zmax{O,ZIV(xi)—DFC}, 6.1)
r=1 iePr

where the sum inside the maximum is over all segments belonging to prospect Pr. The
intrinsic values are defined mathematically as
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3
v (x,-) = Z(Rev,—,k p(x,- = k) - Cost,-’kp(x,- = k)) —Cost;, (6.2)

k=1
where the fixed expected revenues of oil Rev, ; and gas Rev,, are associated with the vol-
ume, recovery rates, and market price of oil and gas, while the revenue of the dry case
Rev;, = 0. Here, Cost,, and Cost, ; represent proportionality factors of the produced oil
and gas, while again Cost;; = 0. The fixed segment cost denoted Cost,, is that of drilling
and production at the segment level.

Figure 6.5 shows the intrinsic values in Equation (6.2) for each segment. These are the
expected profits at the segment level, ignoring the shared costs at the prospect level.

From the display, we see a large variability in the intrinsic value. The largest intrinsic
value is at Segment 10B. Segments for Prospects P2, P3, P4, P8, and P9 have negative or
very small intrinsic values. They are not likely to be development targets, unless there is a
clear indication that a neighboring prospect or segment contains hydrocarbons.

The posterior value for single-segment exploration wells is shown next. Assume that the
company considers drilling an exploration well at any one of the 25 segments. The poste-
rior value of perfect information at a single segment K =1,...,25 is

PoV (xy )= iimax {o,sz(x,. |y = l)—DFC}p(xK =1), (6.3)

=1 r=1 iePr

where the conditional intrinsic values are defined as in Equation (6.2), but now using the
conditional probabilities p(x,. =klxg =1 ) rather than the marginal p(x,- = k).
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Figure 6.5 Bayesian network example: intrinsic values are the marginal expected values for the
25 segments.
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For the case when two exploration wells can be drilled, the posterior value is

13

PoV (xy )= max {O,ZIV(x,- | xK)—DFC}p(xK ), (6.4)
xg r=I iePr

where the intrinsic values inside the maximization are now based on the conditional prob-

abilities given the outcome of two exploration wells —i.e., p(x,- =kl xK).

The VOl is the difference between the posterior values in Equations (6.3) or (6.4) and the
prior value in Equation (6.1). Let us compare the VOI for perfect information at the differ-
ent segment nodes for a range of costs.

In Figure 6.6, we show the VOI of perfect information at a single segment when the DFC
is fixed at $1000 million. The VOI is plotted as a function of the 25 segments.

The most valuable node is 12B, followed by 12A and 10B. Therefore, the petroleum com-
pany should drill the exploration well at 12B if it is going to drill one well during a cam-
paign. The VOI is rather large (about $700 million), which is clearly higher than the cost of
an exploration well, so this information is worth the price. We see little association between
the intrinsic values and the VOI results. The largest intrinsic value was for 10B, which also
has a large VOI, but not as high as for the segments associated with P12. The tendency is
that information is most valuable at prospects of great prior uncertainty, and the data can
influence the decision toward or away from development. For the P12 segments, we see that
the intrinsic values are near $1000 million, which is the DFC here. Similarly, for P1, P6, and
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Figure 6.6 Bayesian network example: VOI of a single exploration well at a segment. The segments
with perfect information gathering are plotted on the first axis.
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Figure 6.7 Bayesian network example: VOI of a single exploration well at a segment. The VOI is
displayed on a grid of DFC costs and for the 25 segments.

P13, we observe positive VOI because the segment (and prospect) values are close to the DFC
level, and a local exploration well will have impact. The VOI is not always easy to interpret,
because there is dependence in the BN model and there are shared costs at the prospects.

Figure 6.7 shows the VOI of perfect information at single segments as a function of the
segment number and as a function of increasing DFC. The VOI clearly depends on the DFC.
A very small DFC means that most prospects are lucrative, and they can be developed with-
out exploring any further. As a result, the VOI is small. Similarly, a very large DFC means that
most prospects are too expensive and that development should be avoided. Data are unlikely
to affect this decision, so the VOI is again small. For intermediate DFC levels, the VOI can be
large because data have a large impact. The VOI plots further display similarities in segments
belonging to the same prospect. For instance, the segments for P9 are very aligned in terms of
VOI, and so are the ones tied to P13. When there is information at one segment, this binds up
the probabilities for that prospect. Moreover, there are the shared prospect costs. We further
note that the VOI is multimodal — it has local maxima when the information at that segment is
likely to influence the decision not only at its own prospect but also at other prospects because
of the dependence in the BN model. This effect kicks in at different DFCs — hence the mul-
tiple modes. For Segment 1A, there are three clear modes: one for DFC near $200 million,
another for $4000 million, and one for $10 000 million. The largest VOI by far shown in this
display is for Segment 10B, which was also seen to have the largest intrinsic value. When the
DEC is at a level where the decision maker is indifferent about P10, it will be very valuable
to acquire the single-segment information at Segment 10B.
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Let us now consider VOI for two exploration wells drilled at different segments. This
is done by computing the value conditional on the perfect information at two wells and
then marginalizing over this information in an outer loop. Figure 6.8 shows the VOI for
perfect information at two segments for fixed DFC equal to $1000 million. We assume that
Segment 12B is always explored, since it was the most valuable in the single well assess-
ment, and check which of the other wells to include with Segment 12B.

The largest VOI result in Figure 6.8 is for Prospects 12B and 10B. Therefore, Segment
12A, which had the second-largest VOI in Figure 6.6, should not be explored together with
12B. This is not surprising, as they are both for Prospect P12, and hence 12A provides very
limited additional information over 12B.

The solid horizontal line in Figure 6.8 represents the VOI of a single exploration well
at 12B. The VOI of an additional exploration well (together with 12B) must be larger than
or equal to this level. In this example, the VOI results of perfect information at two wells
are almost the same as the sum of the VOI at two single wells. For instance, the VOI of
Segment 6A was around $200 million in Figure 6.6, and when we compute the VOI of 6A
and 12B together, we see that it is about $200 million larger than that of 12B alone (two
dashed horizontal lines up from the solid horizontal line in Figure 6.8). This additional
effect could be useful to study in practice. Here, it holds since 12B is isolated from most of
the other segments. The segments attached to the neighboring Prospects P7, P8, and P11
are too small to be developed for this level of DFC with or without information at 12B.
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Figure 6.8 Bayesian network example: VOI of two exploration wells where one of the wells is at
Segment 12B.
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Figure 6.9 Bayesian network example: VOI of two exploration wells where one of the wells is at
Segment 13B.

In Figure 6.9, we show the VOI of perfect information at two exploration wells when
13B is always included in the pair. We have included this segment just to relate the VOI
results to the conditional probability illustrations in Figure 6.4 earlier.

This figure highlights the fact that the VOI results do not necessarily add up from the
single exploration results in Figure 6.6. For instance, Segments 6B and 10C had zero
VOI for single well exploration in Figure 6.6, but when explored together with 13B,
they result in a VOI larger than 13B alone. Figure 6.4 shows how the conditional prob-
abilities at Segments 6B and 10C are influenced by the information at Segment 13B.
Considering the network structure in Figure 6.2, note that P13 is directly connected to
P10 and P6. Figure 6.9 shows how this dependence between prospects and segments
propagates to VOI.

6.2.2 Basin street blues: basin modeling example

Keywords: Bayesian networks, basin and petroleum systems modeling, exploration wells, petrol-

eum prospects, perfect information, partial information, sequential information

This case study also pertains to prospect evaluation and valuing the information that can be
obtained from exploration wells. The example consists of fewer prospects than in the previ-
ous one, but the modeling involves complex geological model assessment, including that of
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trap and reservoir properties. The baseline geological model is used for teaching purposes
at NTNU, Norway. More background is provided in Tviberg (2011) and Martinelli et al.
(2013b). Here, we will focus on the applicability of BNs to capture the key geological
elements and on the VOI analysis.

We view the highlights of this example in the context of the framework outlined in
Chapter 5:

¢ The exploration wells will be assumed to provide perfect information about the hydrocarbon
properties at the location where they are drilled. Only one or two exploration wells are drilled;
thus, there is partial perfect information. We mainly study static information gathering but also
briefly mention sequential information gathering in this example.

* Regarding the three properties of spatial decision situations:

1. The spatial modeling uses outputs from basin modeling that are subsequently encoded as
a probabilistic model by a Bayesian network for the key geological attributes source, trap,
and reservoir at the prospects.

2. We assume that the decision maker is free to select profitable prospects for development, so
there is high decision flexibility.

3. The total value is the sum of the individual values from the prospects. The value at each pro-
spect only depends on the geological attributes, volumes, revenues, and costs at that prospect
alone. Thus, we have a situation where the value function decouples.

Framing the decision situation

The case is a controlled basin environment where there are four identified petroleum pros-
pects. Two of the prospects are at the eastern parts of the basin, while the other two are at
the western parts. The eastern prospects are called anticlinal prospects. One of the pros-
pects (called Top East (TE)) is at a shallower depth than the other (Bottom East (BE)). The
western prospects are called fault prospects. Again, one of the prospects (called Top West
(TW)) is at a shallower depth than the other (Bottom West (BW)).

The distinction of interest x is represented in an augmented space, including model-
ing elements for all three geological attributes — source, trap, and reservoir — at all four
prospects. We will use terms such as success, partial success, partial failure, and failure
for the prospect variables. The basin modeling simulations used to learn the inputs for
a probabilistic representation of these attributes are discussed in the spatial modeling
subsection.

Figure 6.10 illustrates the geographical locations of the prospect in a three-dimensional
(3-D) numerical basin model. The names of the geological layers (Eek, M1f, Mmd, and Ou)
are consistent with the ones used in a course at NTNU, Norway (Tviberg 2011).

As in Section 6.2.1, the question is whether the prospects are valuable enough to jus-
tify expensive investments in planning and development. We consider the situation with a
free selection of prospects. The petroleum company has alternatives a; € {0,1}, i=1...,4,
where the two alternatives are to develop (a; =1) or not (a; =0) at a prospect i. The
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BE=Bottom
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Figure 6.10 Basin modeling example: illustration of the basin under consideration and the four
prospects (Top East (TE), Bottom East (BE), Top West (TW), and Bottom West (BW)).

decision maker will select individual prospects if they are profitable, and this selection is
done once and for all, without opportunities for sequential decisions. We assume that the
value function depends on fixed revenues or cost that vary with the uncertain discrete dis-
tinction of interest. The value function decouples to depend only on the outcome at every
prospect v(x;,a; ).

Information gathering

Again, the information the petroleum company considers acquiring is that obtained from
drilling exploration wells. This will provide partial perfect information about the presence
of oil (“success”) at the prospect where the well is drilled. In the established notation, the
result of one exploration well at selected prospect K e {1,..,4} is denoted x;, while two
exploration wells that result in perfect information are denoted xy = ()CK,1 XKoo )

We will consider both static and sequential information gathering. Sequential infor-
mation gathering means that the decision maker can first drill an exploration well at
Prospect TE, with the capability of drilling a new exploration well at Prospect BE later.
Since there is a depth ordering here, this is relevant — the exploration team could drill a
second exploration well nearby without too many logistic costs. Through sequential test-
ing, the company can choose to drill or not drill the second exploration well based on what
is seen at the first well. Note that even though information gathering is sequential here, the
underlying decision situation is assumed to be static — i.e., the decision maker must still
make a one-shot decision regarding developing the prospects.
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Modeling

We build a BN consisting of source, reservoir, and trap variables with conditional prob-
abilities learned from multiple scenarios of basin modeling runs. Our focus will be on
ways to encode this geo-modeling in a framework useful for decision making. One of
the critical points in the network described in Section 6.2.1 was the substantial use of
expert opinion when designing the BN. By running basin and petroleum system mod-
eling (BPSM) — numerical simulations over a set of initial conditions and forcing condi-
tions — we can integrate quantitative geology into the network construction. We train the
probabilistic structure of the BN from multiple BPSM runs, and the resulting BN model
incorporates the geological processes and their responses. The compression of a complex
basin modeling setup into a BN allows fast computation of what-if scenarios and VOI
analysis.

The resulting qualitative network is shown in Figure 6.11. Notice the three arms: one
for source, one for reservoir, and one for trap. The attributes of trap, source, and reservoir
that are used in the BN are not identical to the factors involved in the experimental setup
for the basin modeling runs, even though there are usually connections. A variable like the
heat flow interacts at both the source and trap levels. The outer (root) nodes in the BN are
needed to build the probabilistic model, but we do not consider gathering information at
these nodes; they are only considered to be latent variables. The BPSM simulations are
used to understand the geological mechanisms underlying the structure of the BN.

BPSM is useful in exploration risk assessment. As mentioned earlier, BPSM numerically
simulates the geological, physical, and chemical processes in a basin through geological
time and helps to identify the critical aspects of the hydrocarbon generation, migration,
and accumulation. The critical factor for sufficient hydrocarbon accumulation is the geo-
logical timing of events. BPSM allows one to quantitatively study the impact of different
conditions on the accumulations of petroleum. We use established software (Petromod) to
construct the BPSM simulations.

In this basin, there are two main source rocks producing hydrocarbons, the deepest being
the coal bed layer denominated “Eek” and the shallowest being a shale rich in organic con-
tent denoted “MIf.” The layers above these are the reservoirs: “Ou” (bottom) and “Mmd”
(top), which may contain sufficient hydrocarbons when the geological conditions are suit-
able. Since we have identified the anticlinal zone and the fault zone, we have the four
prospects: BE, TE, BW, and TW.

The basin modeling runs are chosen based on various scenarios:

* We use three levels for the heat flow: cool, normal, or hot. It is expected that a cool basin will stay
mainly in the oil window, consequently generating mostly oil, while a warm basin will reach the
gas window at an earlier stage and will therefore generate more gas.

* We use two levels for the porosity of the reservoir rock: high or low.

* We use two levels for the total organic carbon (TOC) content of both source rocks, with TOC ran-
ging from 8% (high) to 4% (low) for the MIf black shale and from 20% (high) to 10% (low) for
the Eek coal.

* We use two levels, open or close, for the presence of a main fault.
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Figure 6.11 Basin modeling example: network of trap, reservoir, and source attributes. The
distinctions of interest are the bottom nodes in the network. Their joint probability distribution is
represented by the Bayesian network model, including more source, trap, and reservoir variables. The
Bayesian network model is learned from basin and petroleum systems modeling.

Altogether, this yields 24 BPSM simulations. Figures 6.12 and 6.13 summarize the
results for oil generation and accumulation.

In addition to these results, the simulations keep track of the contributions of each source
rock to the hydrocarbon accumulations and the amounts of hydrocarbon that have leaked.
Based on the totality of these outputs, we fit the edge structure and the conditional prob-
ability tables for the trap, source, and reservoir network (Figure 6.11).

The BN has one sub-network for each attribute (trap, source, reservoir), and we associate
them to the bottom level nodes, which will be the prospect oil presence. The trap nodes are
binary (on/off), and the structure is divided in two: the anticlinal zone and the fault zone.
The reservoir nodes are binary (on/off), and the structure of the reservoir sub-network is
tied to the Ou and Mmd reservoirs. For the source network (high/medium/low outcomes),
the sub-network is based on the Eek and MIf source rock layers, which are common for the
bottom and top prospects, respectively.

The quantitative learning of the BN is partly based on the categorization of the output
data and counting the number of successes/failures to estimate the conditional probability
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Figure 6.12 Basin modeling example: generation of hydrocarbons over many basin modeling runs.
The horizontal lines indicate cluster boundaries used when building the Bayesian network model for
the source attribute.

structure. We learn the probabilities at each edge in the network using various outputs
from the BPSM runs. Since the nodes have discrete states, we also cluster the outputs
into discrete groups. The categorization of the data clusters the 24 outputs for different
variables. The horizontal lines shown in Figures 6.12 and 6.13 indicate splitting points of
clusters. We use a k-means clustering algorithm with £ = 2 (accumulation low or high) or
k =3 (generation low/medium/high) for categorizing the data. The reservoir network is
learned from the categorized accumulation outputs. For example, we assign the probabil-
ity that the reservoir root node Res is “on” = 9/24 since we see that 9 out of the 24 accu-
mulation outputs fell in the “high accumulation” category (Figure 6.13). The conditional
probabilities of success are based on the categorization of the partial accumulations in the
Mmd and Ou units, as well as the ones at the total level. Similarly, the source network is
learned from the generation data. For example, the marginal probability that the source
MIf is in the state “low” is assigned to be 12/24, while the source Eek is in state “low” with
a probability of 4/24 (Figure 6.12). For the trap network, the anticlinal trap is always on,
while the marginal probabilities are {0.5, 0.5} for the fault trap. The conditional probability
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Figure 6.13 Basin modeling example: accumulation of hydrocarbons over many basin modeling
runs. The horizontal lines indicate cluster boundaries used when building the Bayesian network
model for the reservoir attribute.

for the children nodes includes the possibility of a local failure, quantified in the success
probability of 0.9. A failure at the parent trap node will for sure result in a failure at the
child node.

Finally, for the bottom nodes that are of primary interest, we summarize the possibil-
ities for hydrocarbon accumulations broadly by assigning four categories: success, par-
tial success, partial failure, and failure. These categories are defined depending on the
different configurations of the discrete states for the reservoir, source, and trap nodes. We
define a failure when any two of the variables fail. A partial failure occurs when the source
is medium and either the reservoir or trap is on. A partial success occurs when the source
is high and either the reservoir or trap is off or when the source is medium and both the
reservoir and trap are on. Here, we have approximately modeled the situation that when
the source is very prolific — even if there is some seal leakage or poor reservoir rock —
there might still be some small accumulation available. A full success occurs when the
source is high and the reservoir and trap are both on. The working assumption here is that
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Figure 6.14 Basin modeling example: marginal probabilities of failure, partial failure, partial success,
and success at the four prospects.

partial success and partial failure allow more flexibility than the simplest on/off configura-
tions. A partial success is rarely lucrative at the exploration site but could carry very use-
ful information about the source or trap of other prospects. These bottom-level nodes are
the distinctions of interest. We will denote the outcomes at Prospects TE, TW, BE, and
BW by x =(x,,x,,%;,x, ), where each x; € {1,2,3,4}, i = 1,...,4. Martinelli et al. (2013b)
used a more sophisticated approach with a Gaussian distribution for these bottom-level
leaf nodes.

We describe the model by showing the marginal and conditional distributions computed
using the junction tree algorithm (Appendix A.5). The marginal distribution for the four
configurations at the bottom level is shown in Figure 6.14.

Next, we condition on Prospect BE being a failure or a success. In Figure 6.15, we see
that there is a large dependence between the prospects in the event of failures. Of course,
the probability is now 1 that BE is a failure, but the probability of failure is also much lar-
ger at the other three prospects. The information about the trap for the bottom unit and the
migration from the Eek source rock are critical, particularly for Prospect BW.

Figure 6.16 shows the conditional probability when BE is a success. In this case, the
chance of success is boosted in the other three prospects. There is now a chance of 0.7 for
a full success at TE.
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Figure 6.15 Basin modeling example: conditional probabilities of failure, partial failure, partial
success, and success at the four prospects given a failure at Prospect BE.

VOI analysis

The value function under the selection of a prospect depends on the total accumulation
values under the partial failure, partial success, and success configurations. We further take
into account the recovery factor, which is estimated to be 0.45 for oil accumulations. The
resulting revenues are summarized in Table 6.1 along with the marginal probabilities.

The VOI of exploration wells is computed by using the established BN model that has been
trained with the BPSM results. We first compute the VOI for the static information-gathering
scheme with one exploration well. VOI analysis can be used to guide the location of that
exploration well.

From the BN model and given the revenue inputs, the prior value is

PV = z max {O,i Rev; p(xj = x) - Cost}, (6.5)
}

Jje{TE,TW,BE.BW x=1

where Rev; | are the revenues associated with outcome x at prospect j, shown in Table 6.1,
and Cost is that of the development and production at a prospect.
The posterior value of perfect partial information at Prospect K e {TE,TW,BE,BW} is

4 4
PoV (xy )= D Y max {O,Z Rev;, p(x;=xlxg =e)— Cost} plxg =e), (6.6)

j€{TE,TW,BE.BW} =1 x=1
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where the decision maker may now change his or her decision depending on the evidence e
at node K. Note that when K = j, the innermost probability becomes 0 or 1, because there
is perfect information at this prospect. For the other prospects, K # j, information is only
obtained indirectly. Partial testing allows learning because of the statistical dependence
(arising from the underlying geological dependence) between the prospects.

The conditional probability displays in Figures 6.15 and 6.16 show that information has
a large effect for this network and that the petroleum company may hope to gain value by
exploration — i.e., achieve large VOIs. In addition to changes in probability, the monetary
values also play a role. If the cost is much smaller than the revenues, the prior value is
large, and the data are unlikely to change the development decision. This is also the case
when the cost is very large compared with the revenues, resulting in O prior value. The four
prospects differ a lot in the revenues, and information at each prospect will be valuable for
different cost ranges.

In Figure 6.17, we show the VOI for an exploration well acquired at each prospect
for cost ranging from 0 to 200 MMBOE. The VOI varies a lot depending on the cost.
Recall from Table 6.1 that the expected values of the two biggest prospects are about 33
and 160. We see that the VOI plots peak near these cost levels. For some of the curves,
we also observe a small spike around Cost = 10, which is close to the expected value for
Prospect TW. The peaks occur here because at these costs, both alternatives (develop or
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Figure 6.16 Basin modeling example: conditional probabilities of failure, partial failure, partial
success, and success at the four prospects given a success at Prospect BE.
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Figure 6.17 Basin modeling example: VOI for single exploration wells at the prospects.

not) have similar values; therefore, perfect information from an exploration well would
be more likely to help the petroleum company make better decisions. The largest VOI
is obtained when information is acquired at Prospect TE and the cost is 160. At a cost
around 30, the VOI when the information is acquired at Prospect BE is smaller because
the possible revenues associated with Prospect BE are smaller than for Prospect TE.

It is interesting to study the conditioning effect via Figure 6.17. When the cost is
around 160, the VOI is large for observing TE, but it is also large for TW because there is
a strong dependence between the two Mmd prospects. In particular, TW carries informa-
tion about the source rock in MIf and the reservoir properties in Mmd. There is less of a
conditioning effect when BE or BW is observed, but an effect is still noticeable because
the observation at BE would be informative about the anticlinal trap at the eastern pros-
pects, and this is valuable for the TE prospect. Similarly, when the cost is around 30, the
VOl is largest for BE but is also very large for the other Ou prospect (BW). An interpret-
ation of the VOI results of this sort can be useful in situations with strong dependence
imposed by geological processes. The processes are captured through the basin modeling
simulations, while the interaction of information at different locations is captured via the
BN model. Inferring the interaction effects of different observations directly from the
basin modeling results would be hard. BNs are very useful for information propagation,
while the BPSM simulations are very useful to learn the conditional probabilities needed
by the BN model.

The VOI for any test should be compared with its price. Suppose that we express
the price of an exploration well in MMBOE units. If the exploration well has a cost
of 10 MMBOE and the development cost is equal to 30 MMBOE, it is optimal (more
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informative) to focus on Prospect BE. In this case, TE is not as informative since its
high accumulation and expected revenue make it profitable anyway. If the development
cost is equal to 150, it is most informative to explore TE. If the development cost is 50
MMBOE, the VOI is smaller than the price of the exploration well, and the decision
maker should stick with the original choices without acquiring any additional informa-
tion. Note, however, that we do not view the VOI results as a final output. Rather, plots
of the VOI as a function of cost, or as a function of other input parameters, should be
used as a basis for discussion. It can guide the decision maker toward looking for new
and creative alternatives.

Let us now study the VOI of two exploration wells and only consider Prospects TE and
BE. When gathering information at TE and BE, the petroleum company knows the bivari-
ate outcome at these nodes. The posterior value calculation sums over all possible bivariate
outcomes of the two exploration wells, denoted x; = (x1 , X3 ) The VOI will again vary as a
function of the development cost.

Figure 6.18 shows the VOI of bivariate (two-well) information gathering displayed as
a solid line along with curves for the VOI of univariate (single-well) information gather-
ing at TE or BE alone. Bivariate information seems to have no added value over uni-
variate information gathering at TE when Cost is large. For very high development costs,
Prospect TE is the only one that may be profitable, while the other prospects are too
expensive. Indirect information about TE, via BE in this case, does not add anything to
the information already obtained by knowing TE. This causes the overlap of VOI for TE

50 . r . .

—a—VOI(BE
45 —VOI§TE,)BE) 1

40

30+

VOI
N
o1
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15+
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Figure 6.18 Basin modeling example: VOI for a single exploration well at Prospects TE or BE versus
exploration wells at both TE and BE prospects.
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and VOI for (TE, BE) for large costs. For moderate to small costs, there is added value in
knowing both TE and BE since we now get valuable perfect information about two pos-
sibly lucrative prospects.

Finally, let us study sequential information gathering for this example. The assump-
tion of the free selection of prospects for development remains, but with sequential testing,
the petroleum company can drill the second exploration well, if it so desires, after seeing
the outcome of the first exploration well. We study this situation only for the two big-
gest prospects — i.e., (TE, BE). Sequential information gathering was discussed earlier in
Section 5.8.

The prior value is the same as in Equation (6.5), while the posterior value calculations
are different. As described in Section 5.8, one now performs the first test and only then con-
tinues with the second test if its added value is larger than the price of the second experi-
ment. In the situation with perfect information, the posterior value is

4
PoV, e (x]K’2 | X, ) = z max {Stop(xK’] ),ContVal (xK’, )— Py, }p(xKl = el) , (6.7)
e =1
where the two terms within the max term indicate two alternatives: (i) no further testing
before making the decision and (ii) continue testing at the other prospect before making the
decision. These are given by

4
Stop (xy, ) = Y, max {O,ZRev P =X X, =€) —Cost}, (6.8)
}

je{TE,TW,BE.BW x=1

x=1

4
ContVal (xKl ) _ i max {O,ZRGVM P(xj =xlxg, =e, X, = ez) - Cost} .
e =1

je{TE,TW,} _ _
BEBW 'P(XJK,z =e lxg, = 31)

(6.9)

The idea behind sequential testing is that one can choose to stop testing — i.e., Equation
(6.8) — for some outcomes of the evidence xi; =e,, while continuing testing — i.e.,
Equation (6.9) — for other outcomes. In Equation (6.7), the petroleum company can stop
testing if the added value of the second experiment is less than its price, denoted Py ,.
This flexibility results in a larger VOI than static testing at one or both prospects (the
static information-gathering case was outlined in Figure 6.18). The final posterior value
of sequential testing is obtained by maximizing over the experimentation sequence — i.e.,
whether we should start testing at x,; = TE or xi; = BE in our case. Note that this VOI
analysis cannot be done without knowing the price of testing. The price B, must now
take part explicitly. When static testing is done, we can first compute the VOI and then
compare it with the price of the experiment. The VOI computation can therefore be done
without knowing the price — this is no longer possible when studying the VOI of sequential
experimentation.
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Figure 6.19 Basin modeling example: VOI for exploration well(s) at one or two prospect(s) versus
the VOI of sequential testing where the decision maker can drill the second exploration well after
observing the result of the first.

Figure 6.19 shows the VOI results of sequential testing where the petroleum company
starts exploring at the BE or TE prospects and then can drill a second exploration well after
observing the outcome of the first well.

The prices of the experiments (20 MMBOE/well) have been subtracted from the VOI
results in all cases to make the plots comparable. Note that there is something to gain
by sequential exploration drilling when the costs are quite small. In this case, the deci-
sion maker can sometimes avoid drilling the second exploration well because sufficient
information is gained from the first well. When the costs are large, it is optimal to drill
the exploration well at the large Prospect TE, and the petroleum company need not drill a
subsequent exploration well at BE.

6.2.3 Risky business: petroleum prospect risking example

Keywords: risking, basin and petroleum systems modeling, petroleum prospects, exploration wells,
empirical modeling, Gaussian model, perfect information, partial information, high decision flexibil-

ity, decoupled value function

Let us analyze hydrocarbon resource data from another part of the North Sea. The deci-
sions are again about petroleum development and production of hydrocarbon prospects,
and we study the information obtained from exploration wells. The prospect volumes are
generated using computer models for hydrocarbon migration for a number of uncertain
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geological input variables. The software we build on here was developed by Sylta (2004);
see also Sylta (2008) and Manoharan (2014).
In the context of the framework outlined in Chapter 5, the highlights of this example are:

e The exploration wells will be assumed to provide perfect information about the hydrocarbon
profits at the location where they are drilled. Only one exploration well is drilled. Thus, the infor-
mation gathering gives partial perfect information.

* Regarding the three properties of spatial decision situations:

1. The spatial modeling contains a combination of geological and statistical modeling to
describe the volumes of hydrocarbons. The geological understanding is largely based on
basin modeling with uncertain input parameters.

2. We assume that the decision maker is free to select profitable prospects for development, so
there is high decision flexibility.

3. When we choose to develop prospects, the total value is the sum of the values of the pros-
pects. The value at one prospect only depends on the revenues and costs at that prospect
alone; therefore, the value function decouples.

Framing the decision situation

We consider 27 petroleum prospects from offshore Norway. The 27 prospects are a subset
of a larger geological interpretation of the North Viking Graben. A prospect is profitable if
its volume of hydrocarbon and the associated revenue exceeds the expected cost of estab-
lishing infrastructure and producing and processing the hydrocarbons. The distinctions of
interest are the profits x = (xl yeees X ) defined as the difference between uncertain revenues
(derived from uncertain geological risking variables and resulting uncertain hydrocarbon
volumes) and fixed costs. Potential development would take place at the individual pros-
pects, and we assume that the petroleum company has a free selection problem, where the
decision maker has alternatives a; € {0,1}, i=1,...,27, representing development or not.
There is no coupling in value between prospects, and the value function for the alternative
of development is v(x,-,al-) =X;.

i

Information gathering

The information again involves an exploration well made at a single prospect. An explor-
ation well provides perfect information about the distinctions of interest (volumes or profits
in this case) at the prospect where it is drilled. As we have previously discussed, informa-
tion at one location will also be informative of other prospects when there is statistical
dependence. VOI analysis is useful for selecting the exploration site.

Modeling

The main uncertainties in this part of the North Sea are believed to be fault seal parameters,
source rock parameters, geothermal gradients, and rock flow parameters. The local fault
model was built specifically for this area by Sylta (2008).
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We perform risking over these geological variables using Gaussian distributions with
mean and variance based on the currently available geological knowledge. The risking
results in 524 realizations of geological parameters, which are inputs to the basin modeling
(migration) software. The outputs studied here are volumes at the 27 prospects for the
524 realizations. Given our focus on the prospect volumes alone, this can be considered a
non-parametric approach. The empirical approach uses the “data” by themselves with-
out enforcing parametric assumptions. The “data” are not field experiments but rather the
volume outputs of computer experiments using geological concepts from basin modeling.

The profits are defined by the revenues with costs subtracted. We assume a cost of 1
billion to establish infrastructure and produce the hydrocarbons in the reservoir. This is
subtracted from revenues corresponding to every realization of hydrocarbon volumes.

We denote these realizations of profits by x?, where the subscript is an index for the
prospect number i = 1,...,27, while the superscript is the scenario b =1,...,524. We con-
sider each of the 524 risking scenarios to be equally likely. Figure 6.20 shows the mean as
well as the approximate 10th and 90th percentiles of profits at all prospects. Prospect 26 is
clearly the most lucrative, while Prospects 1-18 and 22 have very small oil accumulations
in these basin modeling runs, leading to negative expected profits. Prospects 19-21, 23-25,
and 27 are near 0 profits and could potentially benefit from more information.

Figure 6.21 shows a cross-plot of the 524 realizations for Prospects 20 and 25. In
Figure 6.21 (left), we show the fitted 70% Gaussian ellipse for the bivariate distribution of
these two prospects. This ellipse does not seem to capture the data very well, as it focuses

2000 | T T T T T

Mean
- --- 10 percentile
1500 - --- 90 percentile

1000

500

Profit (million $)

=500

-1000

—~1500 | | . 1 1
0 5 10 15 20 25 30

Prospect number

Figure 6.20 Petroleum prospect risking example: mean, 10th, and 90th percentile for profits at the
27 prospects. The volumes and profits are obtained by risking over 524 realizations of geological

input parameters.
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Figure 6.21 Petroleum prospect risking example: realizations of the 524 profits for Prospects 20
(first axis) and 25 (second axis). The left display shows a Gaussian approximation to the bivariate
distribution. The right display illustrates the k-nearest neighbors of an observation for Prospect 20.

on the central parts of the data, ignoring a tail to the lower left with low profits. Some other
distribution may be more appropriate.

Figure 6.21 (right) shows the 50 nearest neighbors of a data point for Prospect 20. This
approach of k-nearest neighbors is used to approximate the conditional distributions in the
VOI expression.

VOI analysis

The prior value is determined by making the development decision at every prospect with-
out additional information. We simply use the empirical data to approximate the prior mean
for each prospect. We get prior value

524

27
PV = Zmax {O,ﬁz“x{’ }
b=1

i=1

(6.10)

For approximating the posterior value and to perform the VOI analysis, we need to
condition on the outcomes of possible exploration wells. Within the completely empiri-
cal approach, an exploration well would pinpoint one of the 524 scenarios. We apply a
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k-nearest neighbor approach to smooth across a few scenarios and use the outcome of
profits at the neighboring scenarios to approximate the conditioning.
The posterior value of information at x; is then computed as follows:

27 524

PoV(xj)=§ab:lmax{O,E(xiIxﬁ?)}, E(xilxj?)=% z x¢, (6.11)

CENp . j

where the N, , ; notation means the k-nearest neighbors of realization number b, computed
in the dimension defined by prospect j. For instance, Figure 6.21 (right) shows the nearest
neighbor of a realization for Prospect j = 20 with i = 25. The dashed lines define the neigh-
borhood region for realization number b. It is not symmetric; it depends on the configur-
ation of the neighbors. The separation between the lines depends on the choice of k. If the
true model was a continuous parametric pdf, a conditioning on Prospect 20 like this would
cut the pdf along the vertical line defined by the conditioning profit at Prospect 20. Instead,
with the non-parametric approach, we first find the k-nearest realizations of the condition-
ing profit (x, in Figure 6.21 right) and then average the prospect’s profits over the realiza-
tions identified by the neighborhood. From Figure 6.21 (right), this average is E (255 1 X5).
The maximum of this approximation of the conditional expectation and 0 is then averaged
over all 524 realizations (inner sum over b in Equation (6.11)). Finally, we sum over all 27
prospects (outer sum over i in Equation (6.11)) because the value is decoupled. If the com-
pany considered drilling two exploration wells, we would condition on the realizations in
a similar way but now perform the k-nearest neighbor calculation in the space defined by
the two exploration prospects in the conditioning statement. Through double expectation,
we could apply the same procedure for the prior value before making the average over j
instead of the straightforward sum in Equation (6.10). The suggested approximation of the
conditional expectation in Equation (6.11) is just one possible approach here — the approxi-
mation can be done in other ways, including kernels and clustering approaches (see the
hands-on projects in Section 7.2).

Figure 6.22 (top) shows the VOI approximation (the posterior value minus the prior
value) obtained using this k-nearest neighbor approach to conditioning on the realizations
from the basin modeling runs, with k = 50. The VOI is large for Prospects 23-26 and quite
small for the rest. A large part of the VOI is perfect information at the selected prospect, but
some value is also due to information propagating to the dependent prospects.

Let us compare this non-parametric VOI result with those based on a parametric Gaussian
model. This Gaussian model is simply based on taking the empirical mean and covariance
of the 27 prospects from the 524 realizations. As we saw in the bivariate display earlier,
this approximation did not capture all details of the distribution, but then again it may not
matter since we are interested in making decisions, not in the details of the probability
distributions. The highest VOIs are again achieved for Prospects 23-26, with some differ-
ences in the actual VOI values. An exploration well at Prospect 26 is now less valuable,
while information at Prospect 24 is more valuable compared to the non-parametric calcula-
tions. For the prospects with expected profits below 0, the VOI is smaller for the Gaussian
approximation. These effects are caused by the approximations imposed by the k-nearest
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Figure 6.22 Petroleum prospect risking example: the VOI comparison of the k-nearest neighbor
approach (top) and the results obtained by the Gaussian approximation (bottom).

neighbor method as well as the Gaussian model. For the Gaussian approximation, one may
lose important information in the tail, and this is reflected in smaller (or sometimes larger)
VOI. This effect holds for both the marginal effects at the prospect where we get perfect
information as well as at the other dependent prospects where this information propagates.

6.3 Reservoir characterization from geophysical data

In this section, we zoom in and scrutinize a finer spatial resolution than the large basin-scale
examples in the previous section. The scale is now that of a reservoir. A petroleum com-
pany must decide whether to drill wells or not at defined reservoir units. There is prior
knowledge about the reservoir from previous geological and geophysical data, but there
is still uncertainty in the spatial distribution of oil (and other reservoir variables), and this
makes it hard to make the drilling decisions. It may be worthwhile to purchase additional
geophysical information to better characterize the subsurface before making the decisions.
When is it worth acquiring this additional geophysical information? Geophysical data may
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include seismic travel time and amplitude information, electromagnetic resistivity data,
ground-penetrating radar, and other remotely sensed data.

Reflection seismic data are acquired by emitting sound waves at the surface and then
recording reflected echoes from the subsurface formations to create a 3-D seismic image of
the subsurface. The processing, imaging, interpretation, and inversion of reflection seismic
data is a big industry. The reflected amplitudes depend on many factors, including the lith-
ology and pore fluids. Interpretation of seismic amplitudes requires rock physics models to
understand the links between the observed seismic data and the reservoir properties (lith-
ology, fluids) of interest. This interpretation is non-unique and uncertain. Often in addition
to reflections at normal incidence to the subsurface horizons, it is also useful to get infor-
mation from reflection at a range of reflection angles, obtained by recording reflections at
increasing distances (offset) between the source and the receivers in the seismic experi-
ment. The additional information in amplitude variation with the reflection angle (or offset)
can help to reduce the ambiguity of the rock physics interpretations for reservoir character-
ization. The text by Avseth et al. (2005), among others, describes the use of rock physics
models for quantitative seismic interpretation. Many different attributes can be extracted
from seismic data and used for reservoir characterization. For the purpose of the examples
that we consider here, the decision maker is considering whether it is valuable to integrate
seismic amplitude-versus-offset (AVO) data to inform the reservoir well placement deci-
sions. The extraction of seismic AVO information entails the interpretation of amplitudes
at different reflection angles from what is called pre-stack seismic data, which are much
larger data sets than the post-stack (or partial-stack) data sets used for the interpretation
of normal-incidence amplitudes. Seismic AVO analysis is typically more costly than just
getting the reflection amplitude data at zero incidence angles (stacked seismic data). In the
second example, in addition to seismic AVO data we also consider acquiring information
from electromagnetic (EM) surveys. EM geophysical methods use EM waves to image the
resistivity of the subsurface, usually at a much lower spatial resolution than reflection seis-
mic imaging. An advantage of EM data is that they are quite sensitive to the presence of
oil or gas accumulations since hydrocarbon-saturated rocks are much more resistive than
brine-saturated rocks. However, there are uncertainties associated with the EM interpret-
ations, just as there are uncertainties associated with the seismic interpretations. Should we
acquire EM data instead of seismic AVO analysis? Perhaps we should acquire only seismic
AVO and no EM data? When is it valuable to acquire both?

In both examples, we assume a risk-neutral decision maker, no constraints for the deci-
sion situation, and a static decision situation without opportunities for sequential decision
making. The spatial modeling involves geostatistical models for discrete and continuous
variables, using some of the methods discussed in Chapter 4. Seismic AVO data were
discussed and illustrated in Chapters 2 and 4. In Section 6.3.1, the distinction of inter-
est is the presence or absence of oil at the reservoir units, modeled by a discrete Markov
random field. We compare the VOI of partial and total seismic tests. In Section 6.3.2,
the modeling involves transformed Gaussian random field models for oil saturation and
reservoir porosity, but then we approximate the model to work directly on reservoir unit
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revenues. We conduct VOI analysis for seismic and EM geophysical data used for reser-
voir characterization.

6.3.1 Black gold in a white plight: reservoir characterization example

Keywords: reservoir characterization, drilling decisions, Markov random fields, seismic data,
imperfect information, partial information, total information, high decision flexibility, decoupled

value function

Let us consider a reservoir where the top reservoir horizon has been identified. This is
a two-dimensional domain in the east—north plane, but with varying depth since the top
reservoir is not flat but instead follows an interpreted horizon in the subsurface. The spa-
tial distribution of reservoir variables in this domain is relevant for drilling decisions at
selected units. As relevant background material, we illustrated the Gaussian mixture model
for seismic AVO data in Chapter 2 and inversion of seismic AVO data to facies classes
for a similar two-dimensional spatial model in Section 4.6. The case is inspired by an oil
reservoir in the North Sea, the Glitne field — see, e.g., Avseth et al. (2001), Mukerji et al.
(2001), and Eidsvik et al. (2004b). We are interested in analyzing the VOI for two attributes
of seismic AVO data processed along the top reservoir. This example was also discussed in
Bhattacharjya et al. (2010).

We view the highlights of this example in the context of the framework outlined in
Chapter 5:

¢ The seismic data provide imperfect information about the reservoir variables. The spatial cover-
age is usually large but could focus on selected spatial regions. Thus, there could be partial or
total imperfect information. We consider static information gathering.

¢ Regarding the three properties of spatial decision situations:

1.  We use a discrete Markov random field model to represent the reservoir facies. The focus
is on defining the prior pdf for spatial reservoir variables and relating these to the seismic
amplitude data through a likelihood model based on rock physics and wave physics rela-
tions between reservoir properties and seismic amplitudes.

2. We assume that the decision maker freely selects profitable reservoir units — i.e., there is
high decision flexibility. The decision is whether to drill a well at a reservoir unit or not.

3. When reservoir units are selected, the total value is the sum of the values of individual reser-
voir units. Again, this situation is one where the value function decouples. The value at each
unit depends only on the oil content at that unit, the volume of the unit, the oil price, and the
costs of producing the unit.

Framing the decision situation

We assume that the geometry of the reservoir has been mapped out to a sufficient extent,
including the cap rock formation and the depth of different reservoir units. In the follow-
ing, we split the top reservoir into 100 units or cells, allocated on a regular grid of size
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20 x 5. The distinction of interest is the reservoir litho-fluid facies at the site, denoted
X; € {1, 2,3}, i=1,...,100. The three classes are oil sand, brine sand, or shale. The lucrative
outcome is an oil-filled sand unit (x; = 1). At each reservoir unit, the decision is whether
to drill a production well or not. Thus, we have alternatives a; € {0,1}, i=1,...,N, where
N =100 and the alternative a; = 1 indicates the decision to drill. We assume that the decision
maker can drill as many units as are profitable. The value of the drilling decision depends
on the uncertain facies outcome. There is a large cost of drilling (set to 2 monetary units),
but a large revenue (set to 5 monetary units) if the well discovers oil sand. When there is no
oil sand at the drilling location, the petroleum company receives no revenues but must still
pay the cost of drilling. The decision is based on expected profits, assuming a risk-neutral
decision maker. We assume that the value function decouples between sites. As for several
examples in Section 5.4 and in Section 6.2, we assume the known cost of production and
revenue associated with the lucrative outcome — i.e., v(x,-,a,- = 1) =Rev-/ (x,- = 1) —Cost.

Information gathering

Potential information-gathering schemes include a partial or total seismic test, with two dif-
ferent seismic attributes. Seismic tests provide imperfect information about the reservoir facies
variables of interest. In this case, the information gathering does not necessarily mean acquiring
a new seismic survey; here, the two attributes require different processing and analysis of the
seismic data: post-stack versus pre-stack. We will compare the use of just normal-incidence
reflectivity (from post-stack seismic data) or both normal-incidence reflectivity and amplitude
change with angle (the AVO gradient) for providing information that might help with the deci-
sion. If AVO attributes are purchased, the decision maker will have to pay for pre-stack seismic
AVO processing, inversion, and analysis. VOI analysis can reveal if it is worth the price. We
will further study the value of partial testing or processing only a part of the domain and com-
pare this with the total information of the AVO attributes over the entire field.

Figure 6.23 shows the situation with a 20 x 5 grid and the location of partial tests. The
grid coordinates are determined by the sailing directions and the resolution of the seismic
survey, but for simplicity these coordinates may be interpreted as (east, north).
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Figure 6.23 Reservoir characterization example: illustration of a grid with 20 x 5 reservoir cells
where the decision maker can drill for oil. The gray and black subsets of cells indicate areas where
the decision maker is considering purchasing partial seismic amplitude data.
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Modeling

The seismic AVO attributes are informative of the facies classes of interest. The seismic
AVO data ata cell j=1,...,m is denoted y; = (y;,,¥;,). Note that the data at each cell can
be univariate: when the processing provides only the zero-offset attributes of seismic data,
the measurement at site j is y;,. With pre-stack processing of seismic data, both attributes
(AVO intercept and gradient) are available at the cell, and we get the bivariate response y;.

To integrate the seismic AVO data for facies prediction, we must define a likelihood
model. We considered a particular likelihood model for seismic AVO data in Chapter 2
(and Section 4.6) when we presented Gaussian mixtures. In general, the modeling of seis-
mic amplitudes from facies classes can be complicated and uses elastic wave propagation
theory. Reflection amplitudes depend on several aspects of the reservoir, including rock
types and pore fluids, and the appropriate rock physics models connecting reservoir vari-
ables to the seismic signatures would vary from case to case. In this specific example, we
first assume conditional independence, implying that we can model the likelihood unit by
unit and that the reflection amplitudes only depend on the facies and fluids at that location.
Second, we build the likelihood model using a graphical representation (see Section 2.3)
involving porosity, density, and velocity variables in addition to the facies and the seis-
mic AVO data. We note that the seismic amplitudes are directly related to the velocities
and density (elastic properties) and only indirectly to the facies variable. However, once
we have a graphical relation of variables, we can propagate deterministic physics-based
relations (along with uncertainty) in the graph to get a connection between the facies and
seismic AVO. Our approach is to build a likelihood model using this graphical representa-
tion of reservoir variable connections, established rock physics relations for the North Sea
region, and well data in the vicinity of the reservoir.

The likelihood model for seismic AVO given only the facies variable is approximated by
a Gaussian distribution where the mean value depends on the facies class and the variance
is constant between classes —i.e.,

p(y lx =k)=N(p,T),
1 =(0.03,-0.21),  p, =(0.08,—0.15),  p; =(0.02,0). (6.12)

The covariance matrix T has diagonal elements 0.06% and 0.17% and an off-diagonal term
including negative correlation at —0.7. Seismic AVO attributes typically have a negative
correlation.

In Figure 6.24, we visualize the marginal pdfs for the zero-offset data y;, (left) and the
angle-dependent y; , (right). Based on the mean values and the likelihood variances, there
is much overlap between the classes, and a seismic AVO measurement cannot discriminate
very well between the classes. The pdf for brine sand is a little different from the other two
pdfs for the zero-offset seismic attribute. The response distributions for shale and oil sand
are very similar for zero-offset data but differ somewhat for the AVO gradient. The oil sand
shows a more negative AVO gradient. It appears that when both attributes are available,
the data should clearly be more valuable because they can improve the prediction of facies
classes. The underlying spatial dependence in the oil saturation will also help discriminate
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Figure 6.24 Reservoir characterization example: likelihood model for seismic AVO data. The
zero-offset reflectivity (left) represents the amplitude at the top reservoir for zero incidence angles.
The seismic AVO gradient (right) represents the change of amplitude as a function of the incidence
angle. The likelihood model is conditional on three different facies classes (oil sand, brine sand,
and shale).

between the classes, because the dependence means that data at one location contain some
information of the saturation at all locations, as the facies have spatial dependency. This
aspect could make partial spatial information-gathering schemes rather attractive.

The reservoir is heterogeneous, and its interpretation and facies characterization bene-
fit from spatial modeling. Spatial dependence in the facies variable at the top reservoir
is incorporated through the use of a first-order Markov random field (MRF) formula-
tion: the Ising model as described in Chapter 4. This implies that the probability for oil in
a given cell, given the outcome in the entire field, depends only on the outcome in the four
neighboring cells. The joint prior pdf for the spatial facies variable is then represented by

N
exp(ﬁZl(x,- = xj)-i-Zai (x,-)J
~J

i=1

p(x)= ~ - , 6.13)
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where B is the interaction parameter, while I(A) is an indicator function that equals 1 if A
is true and 0 otherwise. The first summation is over all pairs x; and x;, which are the nearest
neighbors in the grid, and Z is a normalizing constant. The external field or pointwise prior
function ¢; (x,.) is a function of the outcome at every cell. Without this external field, each
class would be equally likely in the prior model. With the external field, we can incorporate
some of the geological knowledge about the reservoir. As an example, in this case, oil sands
are more likely to occur at the shallower parts of the reservoir zones, as oil is lighter than
brine. We achieve this by specifying larger o, (x;) potentials for x; = 1 than for x;, =2 and
x; =3 when i represents a spatial location at shallow depth.

We specify 8 based on an analogue seismic AVO data set. Thus, we assume that the spa-
tial interaction is about the same for similar reservoir settings. The maximum likelihood
estimate (MLE) of 3 is computed by evaluating the marginal likelihood p( y; ﬁ) for a set of
B values. This marginal likelihood requires that we sum out all dependent uncertain vari-
ables x;,i = 1,...,100. This is possible by using the forward—backward algorithm (Appendix
A.4) for the moderate-sized MRF model. The marginal likelihood is shown in Figure 6.25.
The plot shows that the MLE for the interaction parameter is about 0.9.

Only the marginal probabilities are needed for making decisions at the reservoir
units. We compute the prior marginal probabilities by the forward—backward algorithm
(Appendix A.4) for MRFs, taking the interaction parameter 8 and the pointwise parameters

Log likelihood, log p(y;B)
|
n
N

—25.5F MLE is near 0.9 B

0 0.5 1 1.5
Interaction parameter 3

Figure 6.25 Reservoir characterization example: maximum likelihood estimation for the spatial
interaction parameter in the Markov random field. The plot shows the marginal likelihood of
a currently available seismic amplitude data set as a function of the interaction parameter on the
first axis.
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Figure 6.26 Reservoir characterization example: marginal probability of the oil sand facies at all
reservoir units on the 20 x 5 grid.

a; (xi) as inputs. The prior probability of the oil sand facies is shown in Figure 6.26. We see
that the northernmost central part has a high probability of oil but that there is large hetero-
geneity in the spatial facies classes in the grid cells.

VOI analysis

Let us now evaluate the VOI for various data attributes and test schemes. We assume fixed
revenues, Rev = 5, monetary units in the event of oil and fixed drilling costs, Cost = 2, mon-
etary units no matter the outcome. The value under the drilling alternative is the expected
value based on the marginal probability of oil sands. The prior value then becomes

N
PV =Y max{0,Rev- p(x, =1)— Cost}. (6.14)
i=1

The marginal probabilities are computed by one run of a forward—backward algorithm
(Appendix A.4).

If the petroleum company purchases seismic AVO data, it can make informed decisions
based on the conditional probability of success at each reservoir unit. This decision may
change depending on the observation. The posterior value calculation integrates over all
possible data, and we have

N
PoV = ZJmaX {O, Rev-p(x, =11y)- Cost}p(y)dy. (6.15)
i1

We use Monte Carlo sampling to approximate the multidimensional integral over the
data. One data set is sampled by first generating a realization x? of the discrete facies from
the MRF model p(x) in Equation (6.13); next, a data set y” is sampled from the likelihood
model p( yl xb) in Equation (6.12) given the facies realization. For the inner calculation,
p (x,. =11 y), we use forward—backward computations. The forward—backward algorithm is
also used when we sample a realization from the MRF model (Appendix A.4).
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Table 6.2. VOI results of total and partial testing as well as post-stack (zero-offset data)
versus pre-stack (both zero-offset data and AVO gradient) seismic amplitude processing

Total Test Partial Test 1 Partial Test 2
Zero-Offset Data 49 0.5 2.1
AVO Data 359 1.9 10.6

Table 6.2 shows the Monte Carlo approximations of VOI for total and partial tests for
seismic attributes. The partial test regions are shown in Figure 6.23.

The results indicate that total testing is more valuable than partial testing but that the sec-
ond partial test does surprisingly well considering that it only explores 15 out of 100 grid
units. Partial Test 1 does not do so well because the test is done in an area with high chances
of oil a priori; thus, the prior value is high, and the decision maker would most likely drill
here in any event. The area of Partial Test 2 is more uncertain, and the expected profits at
cells in that area are close to 0, indicating that seismic processing in this southeastern area
could likely help in making better drilling decisions.

The value with seismic AVO attributes is much larger than that of only the zero-offset
attributes. Together, the two attributes will discriminate between the facies classes much bet-
ter than only one of the attributes. The VOI of a total test with both attributes is 36 monetary
units. In comparison, total perfect information yields a VOI of 70. This could be important in
a case where the company wishes to compare two processing schemes known to have differ-
ent accuracies of the seismic likelihood. The case of perfect information is representative of
seismic processing that is extremely accurate and in which there is no interpretation uncer-
tainty. This is not possible in practice, but one could imagine spending substantial labor and
money (expensive processing) to obtain better-quality data, and the VOI analysis could then
be used to check whether this extensive processing work is worth the price.

6.3.2 Reservoir dogs: seismic and electromagnetic data example

Keywords: reservoir characterization, drilling decisions, transformed Gaussian variables, seismic
data, electromagnetic data, imperfect information, total information, high decision flexibility, decou-

pled value function, decision regions

Let us again study drilling decisions at defined reservoir units at a grid of the top reservoir
horizon. We are interested in comparing the VOI of seismic AVO data processed along
the top reservoir with the VOI of an EM survey. Unlike the previous subsection, we will
now model reservoir variables using a continuous sample space. The spatial model is for
the saturation and porosity in the reservoir units, and the profits result from producing oil
at the reservoir units. The modeling of spatially correlated continuous reservoir variables
and VOI analysis of seismic and EM data was studied by Eidsvik et al. (2008) and Rezaie
et al. (2014).
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In the context of the framework outlined in Chapter 5, the highlights for this example are:

* The seismic or electromagnetic data provide imperfect information about the reservoir vari-
ables. The spatial coverage is usually large, and in this example we have total imperfect informa-
tion. We focus on static information gathering.

* Regarding the three properties of spatial decision situations:

1. The reservoir heterogeneity is modeled by a continuous random field. The focus is on defin-
ing the prior pdf for spatial reservoir variables and relating these to the geophysical data
by a likelihood model using rock physics and wave physics relations.

2. We assume that the decision maker freely selects profitable reservoir units — i.e., there is
high decision flexibility. The decision is whether to drill a well at a reservoir unit or not.

3. When reservoir units are selected, the total value is the sum of the values of individual reser-
voir units. We thus have a situation where the value function decouples. The value at each
unit depends only on the oil content at that unit, the volume of the unit, the oil price, and the
costs of producing the unit.

Framing the decision situation

We assume that the geometry of the reservoir has been mapped out from seismic travel time
information. A grid of reservoir units or cells is defined at the top reservoir zone. This grid
is of size n, X n,, where n; = 25 and n, = 25, and the total number of cells is n = n;n, = 625.
The decision maker can freely select drilling sites. At every reservoir unit, the petroleum
company decides whether to drill a well or not —i.e., alternatives are a; € {0, 1}, i=1,...,N,
with N = n = 625. The distinctions of interest, x = (xl,...,xn ), are the profits from a reser-
voir unit. These profits are related to porosity and oil saturation, as we describe in detail
in the spatial modeling later. The value function decouples to the sum of individual values
obtained from the reservoir units. At cell 7, the value v (x,-,a,-) only depends on the alterna-
tive taken at that reservoir unit and the uncertain distinction of interest at that cell.

Information gathering

We will study the value of reprocessing seismic AVO data and that of acquiring and pro-
cessing EM resistivity data. It is possible to purchase either AVO data, EM data, or both.
We will consider total testing here, but it could be possible for a petroleum company to pur-
chase partial tests as well — for instance, EM data only along one east—west or north—south
line in the grid.

We assume that prior knowledge about the reservoir includes initial post-stack seis-
mic interpretation. The question is whether to process the angle-dependent information
in the seismic amplitude data — i.e., perform pre-stack seismic AVO analysis. These
amplitude-versus-angle data are informative of the reservoir saturation and could help in
making better drilling decisions. The petroleum company can also consider purchasing
an EM survey. The EM resistivity information is obtained by processing and inversion
of the phase and amplitude data measured by sea bed logging sensors along with depth
information and overburden resistivity properties. The integration of seismic data and
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EM resistivity data is important for reservoir characterization. While interpretation of
zero-offset seismic data can be ambiguous because of saturation or porosity effects, the
combination of elastic and resistivity data may help resolve this ambiguity in the inter-
pretation of saturation and porosity (Gomez et al. 2008). Adding these sources of informa-
tion will reduce the uncertainty in the predicted profits. However, as we have mentioned
several times now, reducing uncertainty alone does not necessarily make the data valuable
to the decision maker.

Modeling

Our approach is based on a Bayesian model for the porosity and saturation along the top
reservoir horizon and for the seismic AVO data and EM resistivity data. The saturation
is two-phase brine or oil dominated. Brine saturation at a reservoir unit is denoted by
S; e(smin,smax ), where s,;, =0.1 is the irreducible water saturation, while s,,, =0.9 is
associated with the residual oil saturation. The oil saturation is 1 —s;, and the porosity is
o, € (¢min’¢max) = (0.15,0.4). Both saturation and porosity are spatial variables with a het-
erogeneous spatial distribution along the reservoir horizon. The minimum and maximum
values are defined by the reservoir situation. Typically, they are calibrated from geological
conditions and well and core data. The saturation and porosity variables are represented at
every grid cell i = 1,...,mn,. The prior knowledge and the available seismic interpretation
are used to build the current reservoir model before considering the inclusion of the seismic
AVO information or EM resistivity data.

In Figure 6.27, we summarize the current knowledge of the porosity and saturation res-
ervoir variables, as well as the data that have been used to get to this description. The data
include zero-offset seismic amplitudes (top left) and seismic travel time data (top right).
The porosity and oil saturation estimates (middle row) come from a quantitative seismic
reservoir characterization workflow. They are obtained by Bayesian inversion, applying a
logistic Gaussian prior model for the saturation and porosity (Eidsvik et al. 2008), and a
rock physics model, similar to the soft sand model used by Bachrach (2006) for relating
the reservoir variables to the zero-offset seismic data at the top of the reservoir. In the prior
model, the seismic travel time is used to interpret the depth of the horizon. Shorter travel
times indicate shallower depths where high oil saturation is a priori more likely since oil
is lighter than brine.

The displays show that the zero-offset seismic amplitudes are informative of the poros-
ity in this case. Relatively stronger positive reflections correspond to lower porosity in this
reservoir. Uncertainty levels for porosity (bottom left) are rather low as compared with
the ones for oil saturation (bottom right). In the following, when we consider the value
of purchasing the seismic AVO gradient attribute or EM resistivity data, we will fix the
porosity in the reservoir and assume that only the saturation is uncertain. We will further
assume that the saturation is directly related to the reservoir profits defined as the difference
between the revenues and drilling costs.

The distinctions of interest x = (xl,...,xn) are the profits associated with drilling wells
and producing oil from the n reservoir units. At unit i, profit x; = Rev,—Cost, where Reyv;
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Figure 6.27 Seismic and electromagnetic data example: a summary of prior knowledge about the
reservoir variables. The zero-offset seismic data and the seismic travel time data (top) are used to
construct the current estimate of porosity and saturation (middle) with associated uncertainties
(bottom).

is the uncertain revenue from the reservoir unit and where the subtracted cost of drilling is
assumed to be fixed and constant for all units. The revenues are linearly related to the uncer-
tain saturation variable: Rev; = Rev, ¢, (1 —; ), where the constant Rev, incorporates fac-
tors such as the cell area, the assumed reservoir thickness, the recovery factor, and the oil
price. We assume that the profits are Gaussian in the prior model — i.e., p(x)=N(p,X).
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The mean p of profits depends on several physical parameters of the model, such as the
expected saturation, porosity, and reservoir depth and thickness, as well as on the price of
oil and the cost of drilling wells.

Figure 6.28 shows the prior mean used for profits. This is largely based on the predic-
tions of saturation and porosity from the currently available zero-offset seismic data and
the seismic travel time information. Note how the saturation influences the profits, making
higher profits more likely at some of the central units. The prior variance—covariance X
of profits is defined by the variance terms specified from propagating the uncertainty in the
saturation to profits, while the spatial correlation is modeled by an exponential correlation
function with a range of 5 or 10 grid cells. We compare the effect of different correlation
ranges for the VOI analysis in the following text.

At this stage of building the reservoir model, there is still uncertainty around the spa-
tial distribution of saturation and hence profits. The decision maker has to decide whether
to purchase pre-stack seismic AVO attributes, EM resistivity data, or both. Purchasing
these sources of information could reduce the uncertainty in the predicted profits. The
seismic AVO data and EM resistivity are related to the reservoir saturation by rock and
fluid properties described by rock physics relations and by the physics of elastic and
electromagnetic waves. These relations, along with the uncertainty in the acquisition and
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Figure 6.28 Seismic and electromagnetic data example: expected value for profits at all reservoir
units. The top reservoir domain is split into 625 reservoir units on a regular grid. The prior model for
profits is based on post-stack seismic data.
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processing of data, define the likelihood model p( yl x). In the likelihood model, poros-
ity is used as a fixed explanatory variable, and profits are modeled via saturation.

In Figure 6.29, model curves for the two geophysical attributes as a function of satur-
ation and porosity (dots) are plotted with associated revenues (first axis). The modeling
uses well-known rock physics relations and theories described in texts such as Mavko
et al. (2009) and Schon (2011). The elastic moduli of the rocks with different porosi-
ties and saturations are first computed using a soft sand model (Dvorkin and Nur 1996;
Bachrach 2006) tuned to a North Sea well log, along with Gassmann’s fluid substitu-
tion equations. This is followed by the Aki and Richards approximations for the seismic
P-wave reflectivity and AVO gradient. The cap rock shale was assigned fixed elastic prop-
erties. Archie’s law, with parameters tuned to a North Sea well log, is used to compute the
resistivity as a function of porosity and saturation. The seismic AVO gradient (left) varies
strongly with porosity but has a weaker trend with saturation, especially for high porosity.
Logarithmic resistivity (right) has a clear trend as a function of saturation but is a weaker
function of porosity.

Non-spatial inputs include the fixed reservoir thickness, the cell area, the recovery fac-
tor, and the oil price, which when multiplied together result in revenue Rev, = 18 monet-
ary units. The profits are obtained by subtracting the cost of development, which is set to
Cost = 2 monetary units. As expected, Figure 6.29 shows that profits increase with higher
porosity and decrease with increasing water saturation.
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Figure 6.29 Seismic and electromagnetic data example: the geophysical response variables (second
axis) depend on the saturation and porosity through rock physics models.
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In the likelihood model for the seismic AVO data and the electromagnetic data, we assume
conditional independence. This holds for the seismic AVO data, the EM data, and between
seismic AVO and EM data. Thus, the likelihood factors into products between the data and
between the reservoir units. Let y, = ()’1,1,---’)’1,m1) denote the seismic AVO data, where
m, = n = 625 since the seismic AVO attribute is available over the entire domain (total but
imperfect information). The individual terms comprising the likelihood are modeled in a
linear fashion, resulting in p(yu | x,-) = N(fu +F; (xi + Cost),‘L’l2 ), where the expectation
term (the mean of the distribution) is plotted in Figure 6.29. Critically, this model assumes
a linear relationship between the revenues x;+Cost and the expected seismic pre-stack
attribute E (yl’,- Ixi). In this model for the likelihood mean value, we fit the intercept f;;
and slope F;; using a linearized version of the rock physics modeling described earlier. The
fixed terms f;; and F;; depend on the spatial porosity as covariates, which are now assumed
to be fixed based on the prior post-stack reservoir characterization. The variance 77 can be
estimated from well logs of saturation, porosity, and elastic properties, as well as seismic
AVO data. This accuracy of the data would depend on the rock and fluid properties, data
quality, and processing; in this example, we have set the noise to 77 = 0.0352. A very elab-
orate processing scheme could have higher accuracy, but of course at a higher price.

Lety, = (yz’l,..., Yoy = m ) denote the EM data (being the logarithm of electromagnetic
resistivity). Note that m, here, but does not have to equal m,. The EM data may have dif-
ferent coverage than the seismic attributes. The individual terms of the EM likelihood are
defined by p(yzy,- Ix,-) =N ( it F, (x,. +Cost),1§ ), where the expectation term is based
on a linearization of Archie’s law with parameters tuned to a North Sea well log. This is
plotted in Figure 6.29. Again, the fixed terms f,; and F,; depend on porosity. The variance
77 can be estimated from well logs of saturation, porosity, and resistivity, but the accuracy
of the EM data would generally also depend on the processing and inversion. We have set
this noise to 73 = 22 in this example.

We group both sets of data together in a vector of length m, +m, such that y = ( i yz)
and similarly group the other terms, f =(f;, f,) and F = (F,,F,) for the forward models
and T = diag (le 1,.%51, ) for the covariance matrix of the seismic AVO and EM data.

Under the Gaussian and linear modeling assumptions connecting revenues to the data,
the posterior mean of profits becomes

E(x|y)=p+2F' (FEF' +T) " (y—f - Fp)-Cost-1, (6.16)
where Cost-1is a length n vector of the drilling costs. The marginal likelihood of the seis-

mic AVO and EM data is a Gaussian given by p(y)=N(f+Fu,FEF' +T).

VOI analysis

The decision about whether to drill or not at a reservoir unit is determined by the expected
profit x; at the reservoir units. Thus, the VOI is defined by
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VoI (y) = g“[max {0, E(x,- | y)} p(y)dy - é‘ max {O,E(x,- )} (6.17)

Here, the data y could be seismic AVO data, EM resistivity data, or both.

The prior value, the second term in Equation (6.17), is obtained from the sum of profits
from all units that have a positive prior mean based on the assumed Gaussian prior model
for profits. For the posterior value, the first term in Equation (6.17), we use the closed-form
analytical solution to this integral, which is valid under Gaussian linear modeling assump-
tions (see Sections 5.3—4 and Appendix A.1).

In Figure 6.30, we plot the VOI of seismic AVO data (SD), the EM resistivity data (ED),
and both of these geophysical data (SD + ED) as a function of the cost of drilling. This cost
is assumed to be constant for all cells in the grid. Obtaining both data (SD + ED) obviously
results in the highest VOI. The VOI for the seismic AVO data is a little less than that of the
EM data for our parameter settings. Notably, the VOI of both SD and ED is not the sum of
the VOI of SD and the VOI of ED; the additional value of collecting both data types instead
of just one is low. All curves peak around Cost = 2.5 monetary units, at which level added
information is most valuable. For a very low drilling cost, the drilling decisions are easy
to make without further information and the VOI is small. Similarly, at very large drilling
costs, it is not necessary to acquire more data before making the decision to avoid drilling
and, again, the VOI is small.

Next, we compare these VOI results with the price of the different geophysical experi-
ments. As an example, say the processing required for pre-stack seismic data has a price of
10 monetary units. Figure 6.30 shows that the VOI of the seismic AVO gradient is greater
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Figure 6.30 Seismic and electromagnetic data example: the VOI of seismic AVO gradient data (SD)
and electromagnetic resistivity data (ED) as a function of the fixed drilling cost at the reservoir units.
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than this processing price for drilling costs between 1 and 4 monetary units. In this cost
range, it would be valuable for the petroleum company to purchase the AVO gradient infor-
mation. As another example, say that obtaining EM resistivity data at our accuracy has a
price equal to 40 monetary units. The VOI of EM resistivity data is greater than this price
for drilling costs between 2 and 3.5 monetary units.

By constructing decision regions, one can figure out which data are most valu-
able to purchase. Decision regions are obtained by plotting the optimal choice of the
information-gathering scheme with the price of the seismic AVO gradient (P,) on one axis
and the price of the EM resistivity data (Pg,) on the other axis. For various price levels, the
decision regions are defined by picking the most valuable information relative to its price
of the experiment —i.e.,

argmax {VOly,, ;;, — (P + Py ), VOI g, — Py, , VOI, — Py, 0} (6.18)

The decision maker should purchase the data with the largest difference between the
VOI and the associated price, if any of these are positive. For these calculations, the drilling
cost is set to Cost = 2.

The decision regions are shown in Figure 6.31. We display the case of a short spatial
correlation range (five cells, left) and a long correlation range (10 cells, right). If the price
of seismic AVO and EM data is very low, the company benefits from purchasing both.
This is shown in the lower left corners in the display. If the price of one or both data types
is too high, the value of this information cannot justify purchasing this data. The deci-
sion boundaries are computed by equating the values for the different types of data. For
instance, the boundary between ED or SD is defined by the line P, = VOI,,-VOlIg, + P,.
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Figure 6.31 Seismic and electromagnetic data example: decision regions for geophysical testing
schemes. The left display is indicative of small spatial correlation in the reservoir profits, while the
results of the right display are based on large spatial dependence.
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For the parameters used here, there is no boundary between purchasing both or neither.
Both data are informative about the underlying uncertainty related to saturation and are
thus related to the profits, and for a large range of prices it is valuable to obtain at least
one of the geophysical data. The spatial dependence in the model clearly matters since the
decision regions are different in the left and right displays. When there is high correlation
in the profit variables (right display), the regions of only SD and only ED are dominant for
a larger range of prices.

6.4 Mine planning and safety

In this section, we study information-gathering options for making improved mining deci-
sions. The evaluation of information criteria in the mining industry has been studied exten-
sively — see, e.g., Rivoirard (1987) and Chiles and Delfiner (2012). There are often large
costs involved with the planning and development of mines. Profits are a function of the
uncertain ore grade. Mining also involves issues related to the safety and prevention of
mine hazards. In this case, the decision maker’s value is created from the avoidance of a
disastrous event with potential loss of life. In both situations, there are uncertainties, and
the decision maker must choose whether it is worthwhile to acquire additional information
to aid in decision making under uncertainty.

6.4.1 I love rock and ore: mining oxide grade example

Keywords: oxide grade example, mining, X-ray data, Gaussian random field, perfect information,
imperfect information, partial information, low decision flexibility, decoupled value function, deci-

sion regions

In the mining oxide project considered here, there is a lot of prior geological knowledge
and some borehole data that are highly informative about the oxide grade at the locations
where they have been drilled. We studied some of the aspects of the currently available data
in Chapter 2 and used them for spatial modeling in Section 4.4. Even though current data
provide extensive knowledge about the resource, there is still uncertainty about the spatial dis-
tribution of the oxide. We study whether it will be worthwhile for the mining company to drill
additional boreholes to improve the spatial predictions about the oxide grades and thus make
a better decision.

We view the highlights of this section in the context of the framework outlined in
Chapter 5:

e The borehole data are of two types. One provides perfect information about the oxide grade
at the locations where they are acquired, while the other provides imperfect information about
the oxide grade at the locations where they are acquired. We will compare the two measurement
types. Data are acquired in boreholes, while our interest is in the entire spatial domain, so this is an
example of partial information gathering. We focus on static information gathering.
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* Regarding the three properties of spatial decision situations:

1. We use a Gaussian random field model for the spatial distribution of the oxide grade.

2. We assume that the decision maker either selects the whole mining project or not — i.e.,
there is low decision flexibility.

3. If the decision maker decides to start mining, the total value is the sum of individual values
from mining blocks. We thus have a situation where the value function decouples to a sum.
The value at each unit depends on the oxide grade at that unit and the recovery factors and
costs of producing the unit.

As in Eidsvik and Ellefmo (2013), we assume a risk-neutral decision maker and no con-
straints for the decision situation, and we consider the static situation without opportunities
for sequential decision making.

Framing the decision situation

The distinction of interest, x(s,-) = x;, is the oxide grade at locations s; in the mine. It will
be profitable to start mining if the aggregated oxide resources are abundant and if the total
revenue exceeds the total operational costs. We consider a simple decision situation with
two alternatives: mining or not. Going ahead with the mining would involve building
infrastructure and extracting the resources in the entire region of interest. We denote the
mining alternatives by a € {0, 1}, where a = 1 denotes mining and a = 0 denotes not mining.
The value function decouples to the sum over all defined blocks or composites in the mine.
A preliminary analysis has defined around 8000 blocks in total, each of a fixed volume. The
discretization into blocks entails an assumption about the equal oxide grade levels inside
every block. The development decision, a = 1, involves the company mining all the blocks.
Some blocks are, however, known to be largely waste rock, and these would only incur a
cost without generating revenues. For the central part of the ore, all blocks are taken to the
plant and processed for mineral production. Note that the company could probably gain
value by choosing a more complex development strategy with more decision flexibility,
such as through sequential decisions, because of the way mining is done from the top (open
pit) or via tunneling operations.

Information gathering

It is useful to evaluate different schemes for collecting more exploratory borehole data
about the spatial distribution of the oxide grade. Several exploration boreholes have already
been drilled, and oxide grade measurements of two types are available from 1871 locations.
One data type is obtained from X-ray fluorescence (XRF) spectrometry in the laboratory,
which is assumed to provide perfect information about the oxide grade sample. Another
type of data is obtained by portable X-ray meter (XMET) acquisition; this kind of infor-
mation gathering is made on the location with a handheld meter, and it provides imperfect
information about the oxide grade. The XMET data (imperfect information) are available
at 1871 locations. The XRF data (perfect information) are observed at 103 of the 1871 cur-
rent observation locations. The VOI question is whether more borehole data are needed at
this stage, and should the additional measurements be of the XMET type or the XRF type?
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Figure 6.32 Mining oxide grade example: map views of current data locations (black), planned
data-gathering sites (gray circles), and mining development block sites (gray squares).

The mining company plans to drill at 265 additional locations to collect oxide grade meas-
urements. However, going through the actual drilling operation has a price, and it may not
be worthwhile to do so. VOI analysis is useful for checking if the value from the scheme is
greater than the price of data acquisition.

We assume that boreholes, once drilled, are sampled every meter. A core sample of the
rock formation is then analyzed and results in a measured value of the oxide grade at the
location where the sample was acquired. As in the currently available data, we may collect
data of two different accuracies and price: XMET or XRF. Figure 6.32 illustrates the cur-
rently available data (XRF as crosses and XMET as small black dots), as well as blocks
where mining development will be done and the locations where the mining company
could collect more measurements.

The mining development will focus on the spatial blocks at a high altitude and in the
eastern zone (gray squares in the display). The planned boreholes (indicated by gray circles
in the display) are in the center of this development domain.

Modeling

The example in Section 4.4 illustrates parameter estimation and spatial prediction based on
the currently available oxide grade data from this deposit. We recall the modeling aspects
briefly here.

We use a Gaussian regression model for the oxide grade and estimate parameters in this
model from available geological knowledge about the mining ore formation in addition to
the available XRF data and XMET data at the observation sites. The preliminary geological
analysis has revealed three dominant rock classes. We use this rock class as a covariate in a
Gaussian regression model for the oxide grade. Thus, the marginal distribution for the oxide
grade at location s; is defined by p(x(s,. )) = N(B0 +[31h(s,-),($2 ), where the mean of the
oxide grade varies in the spatial coordinate along with the variations of the geological class
covariate h(s,-) IS {1,2,3}. The class represents the mineralization grade that has been con-
structed from a smooth interpretation of the preliminary data by experts in the local geology.

Spatial correlation is modeled by Cov(x(s,. ),x(s J )) = G2exp(—ntij ), where #;; is the
Euclidean distance between the two sites s, and s; and 7) is the correlation decay param-
eter. The imperfect XMET data are assumed to be unbiased estimates of the oxide grade
at the locations where the data are acquired, with an independent Gaussian noise term
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with variance 12. Model parameters are estimated by maximum likelihood, as described
in Section 4.4. The regression parameter 3, = 1.32 for the slope with a mineralization class
clearly indicates a significant trend of an increased oxide grade from Class 1 to Classes
2 and 3.

The suggested model for oxide grade may seem implausible because grade is positive
and bounded upward. Nevertheless, the Gaussian modeling approach appears to provide a
reasonable description when accounting for the mineralization covariate. This is indicated
by the quantile—quantile (QQ) plot in Section 4.4 as well as the analysis by Eidsvik and
Ellefmo (2013).

VOI analysis

The VOI is computed using the expected revenues and costs from the mine. For computing
the prior and posterior values, we make certain assumptions about the mining processes that
will be executed if the mine is developed. (Various extensions are possible here.) First, the
block values have been calculated assuming that the blocks have already been uncovered
and that they will be mined. Second, we assume known costs for mining 1 tonne of oxide
ore. In addition, the blocks with a currently predicted grade above cut-off are processed
after mining, whereas the waste rock (with a predicted grade below cut-off) is not pro-
cessed any further. This entails that only a fraction of the blocks contain possible revenues
but that there are costs associated with all blocks. The cut-off is fixed in our application.
Let Rev, be the revenue factor associated with resource block / =1,...,7936, which pro-
vides the revenue once it is multiplied with the expected grade. We set Rev, to 0 outside the
ore, since these blocks are not processed further. The revenue factor is a product of several
elements: the price of the commodity extracted from the oxide, block volume, density,
and certain processing parameters. Let Rev = (Rev,,...,Rev,y;,) be the (column) vector of
revenue levels and Cost = (Cost,,. . .,Cost7936) the costs in the set of resource blocks. The
cost includes both the cost of mining and processing a block, except if a block is waste
rock, then the cost of processing is not included in the cost for that block. The prior value
is calculated from the expected profits (Prof) based on the currently available data —i.e.,

PV = max {O,E(Prof)}, E(Prof) =Rev’' u. —Cost’ 1, (6.19)

where p- is the vector of the mean oxide block grades given the current data. This is
computed from the Gaussian regression model, similar to Kriging (see Chapter 4 and
Appendix A.1).

Consider what happens when more data y are collected. The new data are either XMET
or XRF in the planned boreholes. The posterior value is

PoV (y)= j max {0, E (Prof | y)} p(y)dy, 620,
E(Prof | y)=Rev'p;, — Cost'l,

where Ly, is the prediction of the block grades given the current data and planned data y.
We need to integrate over all possible prospective data outcomes for the posterior value
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computation. The pdf of the planned data is Gaussian and denoted p(y)=N(u,,Z,).
The conditional mean of the oxide grade at resource blocks given the planned data y,
is computed from the Gaussian regression model, similar to Kriging. The mean g, and
covariance X, of the planned data are also computed from the known equations for
Gaussian variables (see Chapter 4 and Appendix A.1). As discussed in Sections 5.3—4,
the Gaussian linear formulation enjoys closed-form analytical solutions for the posterior
value and the VOI (see also Appendix A.1). We can hence compute the VOI analytically
in this situation.

The mining company should decide to purchase the data if the VOI is larger than the
price of data acquisition. The XRF data is perfect information, and the VOI of the XRF
data is always larger than the VOI of the imperfect XMET data. However, the XRF data
are more expensive than the imperfect XMET data. Figure 6.33 shows the decision regions
for the XMET data and XRF data. The company should choose to purchase XRF data for a
rather small window of XRF and XMET prices. When the price of XRF exceeds $0.75 mil-
lion and the XMET price exceeds $0.5 million, the VOI results show that neither data type
should be acquired.

VOI analysis can also help the mining company design the data-gathering scheme —i.e.,
choose which boreholes to drill. We can compare the VOI of the XMET data at all bore-
holes with the VOI of the XRF data at a subset of boreholes. Figure 6.34 shows the decision
regions for the XRF data in a subset consisting of the two longest boreholes, versus the
XMET data in all boreholes, or nothing. The decision regions are computed as a function
of the drilling price and the price of laboratory experiments. When the price of laboratory
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Figure 6.33 Mining oxide grade example: decision regions for full sampling of XMET and XRF
data. The price of drilling is the same, but the processing of the XRF data is more expensive.


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.007
http:/www.cambridge.org/core

6.4 Mine planning and safety 285

1500 : . . ; .
2
£
o
1)
o
o 1000 ]
(]
o
s Full XMET
X
8) .
% Nothing
8 500F .
o
Q.
s
3
S Partial XRF
0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Price of drilling per 10 m ($)

Figure 6.34 Mining oxide grade example: decision regions for partial sampling of XRF data or full
sampling of XMET data. The axes represent the price of drilling per 10 m and the price of acquiring
and processing XRF data in the laboratory.

experiments is low and the price of drilling is not too high, the partial XRF testing is pre-
ferred. When laboratory prices get higher, one should acquire total tests of XMET unless
the price of drilling gets too high.

The decision theoretic notion of VOI is useful because it evaluates the information con-
tent in the context of a decision situation and is in monetary units. However, as we discussed
in Chapter 5, many other measures can be applied to evaluate designs for data acquisition. In
the following analysis, we will compare the VOI results with the integrated prediction vari-
ance and the entropy. Other measures used in the mining industry are discussed in Rivoirard
(1987), Vann et al. (2003), Chiles and Delfiner (2012), and Eidsvik and Ellefmo (2013).

In Table 6.3, we summarize the relative VOI, prediction variance, and entropy of the par-
tial sampling schemes. It is not always appropriate to compare these measures in general,
as they are based on fundamentally different principles, but we note that the entropy crite-
rion tends to prefer perfect information more than the others. For the entropy measure, it is
more informative to collect perfect information in the 10 longest boreholes than to collect
imperfect information in all boreholes.

6.4.2 We will rock you: rock hazard example

Keywords: rock hazard example, mining, joint frequency data, spatial generalized linear model,
Laplace approximation, imperfect information, partial information, high decision flexibility, decou-

pled value function, decision regions
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Table 6.3. Relative comparison of partial or total XRF testing with total XMET

VOI Kriging Variance Entropy
XREF Partial (5)/XMET Total 0.39 0.76 0.69
XRF Partial (10)/XMET Total 0.94 0.92 1.21
XRF Total/XMET Total 1.45 1.06 1.68

In this example, we consider decisions for rock support in mining and tunneling operations. It is
necessary to make assessments of the rock strength to avoid rock fall. The decision is whether
to increase support at selected tunnel locations to avoid uncertain future rock falls. One may
acquire data from boreholes to improve the prediction of variables for rock fall analysis, such as
the spatial intensity of joints within the rock mass. Joints are opening mode fractures in rocks,
and zones that are heavily fractured might be weaker and more prone to rock falls.

We view the highlights of this section in the context of the framework outlined in
Chapter 5:

* Borehole data are informative of joint frequencies, which are uncertain and considered imper-
fect information. Data are acquired in boreholes, while the key areas of interest are the selected
tunnel locations where support may be increased, so this is an example of partial information
gathering. We focus on static information gathering.

* Regarding the three properties of spatial decision situations:

1.  We use a Gaussian random field model with a Poisson likelihood for the spatial distribu-
tion of joint frequencies.

2. The decision maker chooses to increase the rock support at a selected site if this is expected
to be the best alternative. The decision maker is free to select as many sites as are profitable —
i.e., there is high decision flexibility. Here, the notion of “profit” is essentially avoiding
losses arising from the hazard and associated damages.

3. The decision maker’s choice (increasing the rock support or not at a site) only depends on
that particular location in the mine. We thus have a situation where the value function decou-
ples. The value at any unit depends on the cost of rock fall and the cost of adding support to
increase stability.

We assume a risk-neutral decision maker and no constraints for the decision situation,
and we consider the static situation without opportunities for sequential decision making.
We studied a joint frequency data set in Section 4.5. In this section, we conduct VOI ana-
lysis for joint frequency data (see also Evangelou and Eidsvik 2015).

Framing the decision situation

The distinction of interest is the intensity of joints, denoted x(s,-) = x;, at locations s; in the
mine. A couple of mining tunnel locations at a depth of 250 m have experienced rock fall,
and the underlying decision is whether the mining company should increase the support
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along the tunnels at this depth. A set of N = 52 critical tunneling locations near a depth of
250 m has been selected. The decision to add support at any of these locations comes at the
cost of bolting equipment and labor.

If the decision is to add support (at a cost), we assume that there will be no future rock
fall. We denote this alternative by a; =1, j =1,..., N. When no added support is provided
(a; =0), rock fall may occur, and the cost of this event depends on the uncertain size of
the fall via the joint intensity at the locations. This decision is slightly different from the
previously considered decision situations in the sense that here we consider a minimization
problem where the decision maker is interested in minimizing costs rather than maximiz-
ing profits.

Information gathering

Information about the predicted joint intensity at spatial locations could help the engineers
make better decisions about stability. By acquiring joint frequency data in boreholes, one
obtains information about the spatial intensity of joints. We consider a baseline set of pos-
sible boreholes to drill. This data set has size m =1615, where data are sampled every 4
m in boreholes. This baseline setup is next split into subsets for various partial tests. The
first partial testing scheme is to acquire and analyze only half of the boreholes, resulting in
m =768 measurement locations. Another potential scheme is to analyze only every second
location (i.e., every 8 m) in half of the boreholes, with m = 383. The last scheme is to acquire
data only in a quarter of the boreholes, with m = 383. Note that the data size in the last two
data-gathering options is the same, but the price of experimentation may be different. VOI is
used to compare the different information-gathering schemes for different price ranges.

This analysis will be done retrospectively, meaning that for this mining location, we have
all m =1615 data from all boreholes, but now we study this case in hindsight, evaluating
whether other information-gathering schemes would have been just as good. Figure 6.35
shows the situation with the boreholes and the 52 sites identified for adding rock support.
The 52 sites are plotted along the plane at a depth of 250 m.

Modeling

The hierarchical model formulation has a Poisson likelihood model for the joint counts
at each core sample location and a Gaussian spatial process for the latent logarith-
mic intensity of joints. This model is hence a spatial generalized linear model (GLM),
as was discussed in Section 4.5. The data are denoted y = (yl,...,ym) at the m observa-
tion sites. Conditional on the spatially varying intensity, the Poisson likelihood is
p(y(s,-) | x(si)): Poisson(Vi exp(x(si))), i=1,...,m, for fixed volume V; (fixed diameter
and 4-m cores). We assume a Gaussian distribution for the log intensity x(s,-) with a con-
stant mean (u) and variance structure defined by a nugget effect (72) and a correlated effect
with an exponential anisotropic covariance function with variance 2. There is more spatial
correlation along the geological strike of the formations and less correlation perpendicular
to the strike. When we discretize the spatial process x(si) on a grid of spatial locations,
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Figure 6.35 Rock hazard example: illustration of joint frequency data and the 52 alternative locations
concerning rock stability. The 52 sites are at an altitude of 250 m, and their locations are indicated
across the shaded plane.

we can write p(x) =N ( [.L,E), where =l and the covariance matrix has entries
2, =12 (i=j)+oexp(-nt,, — N1, ) Here, the lag distances 7;;, and #;; ,, as well as the
spatial correlation parameters n=(17,,1, ), are defined in the strike direction (subscript s)
and the direction perpendicular to the geological strike (subscript p).

We specify the statistical modeling parameters from the available data in this mine.
The estimation procedure is based on optimizing an approximation of the marginal like-
lihood p(y)= p(y;0,7.n,u) of the joint count data. For details, please see Section 4.5 and
Appendix A.2. The maximum MLEs of the parameter values are as follows (with standard
errors in parentheses): mean 1.55 (0.06), partial sill 0.13 (0.014), and nugget 0.04 (0.003),
and the in-strike correlation range, 3/ 1,, is about 300 (41) m. Thus, the marginal variance
in the latent intensity process is 62 +72 = 0.17 at all sites. The correlation range perpen-
dicular to the strike is set to a quarter of the in-strike correlation range — i.e., 75 m. For the
initial analysis, we fix the parameters, but we later analyze the parameter values accord-
ing to the uncertainty ranges to study the effect of the mean, variance, and correlation
range on the VOI. The conditional pdf of joint frequencies given the data is p(x | y). This
posterior does not have a closed-form solution, but we can approximate it by a Gaussian
approximation, and this will be useful for performing analytical approximations for the
VOI expressions.

VOI analysis

The prior value for this decision situation is

PV = imax {—Cost,—ReV~E(exp(§x(sj )))}, (6.21)

J=1
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where Cost is the cost of added support at a location s;, while Rev- E (exp (Z;x(s ; ))) is the
expected cost associated with rock fall at that location, with x s_,) being the logarithm of
the joint intensity at that location. The decision maker should choose the alternative that
minimizes the expected costs at each of the locations. Note that in general, Cost, Rev, and
¢ (a scale factor) depend on rock mechanics, fluid composition, geometric considerations,
cost of rock mass transport, and other engineering inputs. Here, the input variables have
been set to Cost = 20000, { = 3, and Rev = 100 monetary units.

Let y denote a generic joint count data set acquired according to a specific spatial design.
The posterior value is

52
PoV (y) = 2 max {—Cost, —Rev-E (exp (Z;x (sj )) | y)} p (y) (6.22)
J=1
The VOI is defined as the difference between the posterior and prior values (for a
risk-neutral decision maker). The computation of the prior value in Equation (6.21) is ana-
lytically available under the Gaussian modeling assumptions for x(s j) (see Appendix A.2).
The posterior value is not straightforward in this case: first, the conditional distribution of
the joint intensity has no closed-form expression. Second, the marginal distribution of the
data is unknown. We briefly outline an analytical approximation to the VOI for this setting.
This analytical solution relies on a Gaussian approximation and the Laplace approximation
for integral expressions. The details for the approximate GLM calculations are provided in
Appendix A.2.
The idea is to first construct a Gaussian approximation to the posterior. Let

X = argmax, {p(ylx)p(x)}, (6.23)

and let ' + D be the negative inverse Hessian of log p(x I y) evaluated at &. The matrix D
is diagonal with the i-th element given by V.exp (fc(s ; )), where V, again equals the volume
of the 4-m cores. Then, an approximation to the conditional mean and variance is

E(x1y)=%, Var(x1y)=(z"+ i))_l . (6.24)

Critically, the posterior mean and variance depend on y only through X. We can approxi-
mate the distribution of X by a multivariate normal with mean g and known covariance.
The integral expressions required in Equation (6.22) can then be approximated in a similar
manner to the method for the Gaussian model in Sections 5.3 and 5.4.

Let us now interpret the results. First, we note that the prior mean for the joint intensity
is quite high in this case, and the prior decision is to add support at all locations. Additional
data will either push the decision more clearly toward added support or toward avoiding
support when the observations indicate that this is not necessary. The VOI depends, of
course, on the spatial acquisition design. When data are acquired near one of the 52 pre-
diction sites, the information gain is large for that location. If data are far from a prediction
site, there is hardly any added value at this location. In addition to evaluating the full design
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(entire set of 1615 data), we split the data into various subsets and compute the VOI for
each acquisition design. The results are as follows:

 All boreholes (data size m = 1615): VOI is 216 000 monetary units.

* Half of the boreholes (data size m = 768): VOI is 165 000 monetary units.

* Every second observation in half of the boreholes (data size m =383): VOI is 159 000
monetary units.

* Quarter of the boreholes (data size m = 383): VOI is 96 000 monetary units.

The VOI clearly decreases when we collect less data. However, the decrease is slower
than one would expect from a fractional splitting of the data. Moreover, the reduction
depends a lot on the borehole design, since there is spatial correlation in the model. In
particular, we note that the data size is the same for the last two options, but the strat-
egy with more boreholes and coarser core samples of joint counts has a much higher
VOI. The mining company benefits from such VOI evaluation when planning the data
acquisition.

These VOI results must be compared with the price levels of the different data acquisi-
tion schemes. Based on the various fractions of the borehole samples and the associated
price of data acquisition, we next construct decision regions. Here, we compare the scheme
defined by a quarter of the boreholes (Quarter) with the analysis of every second observa-
tion in half of the boreholes (Half-Half). Note that the total number of data is the same.
Thus, the processing of joint count data is assumed to be equal for the two schemes, but the
cost of drilling is larger for the Half-Half option. Like in the previous sections, the notion
of decision regions for data collection relies on selecting the best data-gathering scheme
as follows:

argmax {VOIHalf—Half - PHalf—Half ’ VOIQuarler - PQuarler ’ 0} ’ (625)

where the price of the data gathering is denoted P., with the subscripts denoting the acquisi-
tion scheme. Figure 6.36 shows the decision regions as a function of the price of the drilling
parameter (first axis) and the price of processing per sample (second axis).

The Quarter scheme drills about 383 -4 = 1500 m, while the Half-Half option drills about
383-8 = 3000 m. When the drilling cost is small, the more valuable Half—Half scheme is
only a little more expensive than drilling a quarter of the boreholes. The mining company
should then decide to drill half of the boreholes and analyze samples every 8 m. The price
of processing per sample — i.e., counting the joints in a core sample — is the same for both
data acquisition schemes. If the prices are too high, the “Nothing” region indicates that the
optimal alternative is to purchase no data.

Next, we study sensitivity to the statistical model parameters. This analysis is done by
varying each parameter at a time from its reference level. The low and high cases are deter-
mined by +2 standard deviations from the reference levels, which are set from the joint
count data described earlier in this section.

The results of the sensitivity analysis are shown in Table 6.4 for the full spatial design,
with a reference VOI of 216 000 monetary units. The VOI is much lower in both the low
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Figure 6.36 Rock hazard example: decision regions for Half-Half or Quarter data-gathering
schemes. The price of drilling (per meter) is on the first axis, while the price of processing a borehole
data sample is on the second axis.

Table 6.4. VOI results for different configurations of statistical model parameters

VOI Mean Correlation Partial Sill Nugget
Low 131 000 164 000 218 000 228 000
High 113 000 252 000 202 000 205 000

and high cases for the mean, indicating large sensitivity to the prior mean value. In fact,
the VOI is highest for values near the prior mean in this case, at which the decision maker
is most indifferent about the alternatives a priori, and therefore the data become very valu-
able. When the mean value is low, there tends to be few joints, and the company should
decide not to provide extra support. Additional data are unlikely to change this decision,
and the VOI is low. Similarly, for a large mean, data are unlikely to change the decisions
about adding support, and the VOI is low.

The VOI increases with longer spatial correlation because the spatial data carry more
information to the 52 prediction sites with stronger dependence. The VOI decreases with a
higher partial sill and nugget. This comes as a surprise since large prior uncertainty tends to
make data more valuable. This counterintuitive result occurs because the nugget and partial
sill also impact the expected number of joint counts in the Poisson distribution, not just the
variability of the joint intensity.
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We believe that the Poisson distribution with a Gaussian process model for the intensity
is a suitable model for such data (see also Ellefmo and Eidsvik 2009). The approximate
analytical results make it possible to perform VOI analysis routinely for different input
conditions.

6.5 Groundwater management

In this section, we study an example concerning groundwater management. There are
important decisions to be made in this domain regarding maintaining the quality of water.
This has an impact on the quality of life through its effects on agriculture, availability of
drinking water, etc. Geophysical measurements such as those conducted by electromag-
netic methods may provide information about properties such as the salinity of the water,
and this information may help in making better decisions.

6.5.1 Salt water wells in my eyes: groundwater management example

Keywords: groundwater characterization, geological scenario, multiple-point statistics, electro-
magnetic data, perfect information, imperfect information, low spatial decision flexibility, complex

value function

This example concerns decisions about potentially recharging groundwater with fresh-
water. The subsurface distribution of the sand and shales, which impact the groundwater
flow and recharge in the aquifer, is uncertain. Geophysical measurements conducted by a
transient or time-domain electromagnetic method (TEM) may be valuable for better char-
acterizing the subsurface and thus helping to make informed decisions about the recharge
and selection of possible recharge locations. This example, inspired by a real situation on
the California coast, is related to groundwater use for agriculture and the decision to miti-
gate salt water intrusion. The example is described in Trainor-Guitton et al. (2011) as well
as in the chapter on VOI in Caers (2011).
In the context of the framework outlined in Chapter 5, the highlights are:

e The electromagnetic data provide imperfect information about the spatial variables and the
geologic scenario. Data cover the entire spatial domain of interest, and this is an example of total
imperfect information. We focus on static information gathering.

* Regarding the three properties of spatial decision situations:

1.  We use a model with geological scenarios defined by channel directions and then propa-
gate spatial uncertainty given the scenario.

2. The decision maker chooses either no recharge or recharge from the center, north, or
south locations. The four alternatives can easily be enumerated, and this is a setting with low
decision flexibility.

3. The value function associated with the different alternatives involves complex spatial mod-
eling and subsurface fluid flow to give a scalar response. We thus have a situation with a
coupled value function.
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We assume a risk-neutral decision maker and no constraints for the decision situation,
and we consider the static situation without opportunities for making sequential decisions.

Framing the decision situation

Groundwater is pumped out from a coastal fluvial aquifer and is used for agriculture.
Excessive groundwater pumping causes seawater intrusion, leading to increased water sal-
inity and decrease in usability for crops. Artificial groundwater recharge by pumping fresh-
water into the subsurface is considered a way to mitigate salt water intrusion.

We assume that the main uncertainty pertains to the geological scenarios denoted x,
where x e {1,2, 3} represents three geological scenarios to be defined in the spatial
modeling later.

The four alternatives a € {1,2,3,4} considered are: (i) no recharge, (ii) recharge at a cen-
tral location, (iii) recharge at a northern location, and (iv) recharge at a southern location.
Figure 6.37 illustrates the situation. Value comes from the use of fresh groundwater to grow
cash crops sold at profit. The value function is highly nonlinear — it cannot be decoupled to
a sum over some spatial variables represented at geographical units.

Information gathering

Geophysical surveying by the time domain TEM provides information about the sub-
surface geological uncertainty. TEM can be a land-based or airborne method. In this
example, we consider the airborne TEM (see Chapter 7 for further hands-on projects
with land-based data). Pulsed electrical currents from a transmitter coil induce electrical
currents and fields in the subsurface. The time-varying induced electrical field gives rise

Possible recharge locations

-~
LY

|

Coast
Salt water intrusion

Fresh groundwater

Pumping wells

|

Agricultural land

Figure 6.37 Groundwater management example: locations for performing groundwater recharge.
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to a magnetic field that is recorded by a receiver coil. The basic data are the magnetic field
response as a function of time. The basic data are inverted for the subsurface resistivity
that can then be interpreted in terms of subsurface lithology patterns, since different lith-
ologies have different resistivities.

Modeling

The spatial modeling relies on embedding the groundwater reservoir variables in a few
discrete classes or geological scenarios. The heterogeneous subsurface consists of
high-porosity, high-permeability sand channels within low-permeability background
shales. The spatial distributions and orientations of these channels are uncertain. As a
result, the subsurface flow and the impact of recharge are uncertain. The prior geological
uncertainty is modeled as being one of three different scenarios of sand channel orienta-
tions: dominantly northeast, dominantly southeast, and a mix of both. A priori, the geo-
logical scenarios have equal probabilities —i.e., 1/3 for each.

The spatial modeling starts with these geological scenarios. Given a scenario, we can
generate multiple realizations of the spatial variables of interest using Monte Carlo sam-
pling. Using a multiple-point geostatistical technique (see Section 4.7), 50 facies realiza-
tions were generated for each geological scenario. All of these facies realizations were
populated with porosities and permeabilities appropriate for sand and shales. The value
function is computed from these realizations as inputs.

VOI analysis

To assess the expected value under the three uncertain geological scenarios and the four
alternatives, we rely on the Monte Carlo simulations of spatial variables. Flow simulations
are run for each of the simulations from every geologic scenario and for all four alter-
natives. This simulates 10 years of groundwater flow. The volume of fresh groundwater
(salinity less than 150 ppm of chloride) available after 10 years is converted to a monetary
value using fixed numbers for the amount of crops grown per unit volume of fresh water
and profit per ton of crop. The expected values are obtained by averaging over the 50
realizations for each geological scenario under each alternative. For the alternatives where
recharge is performed, the cost of recharge is subtracted. Thus, this requires a total of
50-3-4 =600 computational flow simulations.

The values (in units of million $) are as shown in Table 6.5. Again, we denote the values
by v(x,a), where the first index denotes the geologic scenario and the second index denotes
the alternative. The prior value is then

PV =max _{E(v(x.a))}=max - {2 v(x,a) p(x)},

x

= max {zv(x,l)p(x),zv(x,2)p(x),zv(x,3)p(x),2v(x,4)p(x)}

(6.26)

x x X x
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Table 6.5. Expected values for all geological scenarios under all alternatives for
groundwater recharge

Channels Recharge Value
Northeast channels No recharge 13.66
Northeast channels Central recharge 13.8
Northeast channels North recharge 13.9
Northeast channels South recharge 12.8
Mixed channels No recharge 12.15
Mixed channels Central recharge 11.1
Mixed channels North recharge 12.9
Mixed channels South recharge 11.3
Southeast channels No recharge 11.6
Southeast channels Central recharge 9.89
Southeast channels North recharge 9.66
Southeast channels South recharge 9.44

Filling in the values v(x,a) from the table, and using equal prior probability of 1/3 for
each geological scenario, we get

l(12.15+ 13.66+1 1.6),1(1 1.1+13.8+9.89),
3
PV =max 1 1 6.7
5(12.9+13.9+9.66),§(11.3+12.8+9.44) 6.27)
=max{12.47,11.59,12.15,11.18} = 12.47
The optimal decision is not to recharge. A decision tree representation of the problem is
shown in Figure 6.38.
The value with perfect information is calculated by interchanging the expectation and
the max operation in the equation for prior value to give

PoV(x) = E(max s {v(x,a)}) = gmax e {v(x,a)}p(x). (6.28)

Using the numbers for v(x, a) in this example,
P0V(x)=%(12.9)+%(13.9)+%(11.6)= 12.8. (6.29)

The situation with perfect information (clairvoyance) is represented by the flipped tree in
Figure 6.39.

The value of perfect information is the difference between the posterior value with per-
fect information and the prior value:

VOI (x) = PoV (x)— PV =12.8-12.47=0.33. (6.30)
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Figure 6.38 Groundwater management example: decision tree representing the prior situation
showing the alternatives, the geological scenario uncertainty, and the associated values.

No recharge 13.66
North recharge
13.9
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L
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Figure 6.39 Groundwater management example: flipped decision tree representing perfect infor-
mation about the geological scenario uncertainty before the alternatives and the associated values.
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This represents an upper bound on how much a risk-neutral decision maker should be
willing to pay to get relevant information about the uncertainty — in this case, about the
subsurface conditions.

We will continue this example using influence diagrams. While this is a fairly simple
example that can be solved using either decision trees or influence diagrams, the use of
influence diagrams allows us to potentially handle more complex VOI problems than can
be handled by decision trees.

We illustrate how this situation can be solved by influence diagrams using Netica as the
software. Chapter 7 has a hands-on example. First, represent chance nodes for the geologic
uncertainty with the three states (“MixedChannels,” “NEChannels,” and “SEChannels”). Next,
add a decision node with four states (“NoRecharge,” ”CentralRecharge,” “NorthRecharge,”
and “SouthRecharge”). Finally, define a value node. Figure 6.40 shows the setup.

Next, we fill in the tables in this display with the probabilities and values defined in
Table 6.5. The prior value (or expected utility) can then be obtained by selecting “compile”
or similar from a menu bar. Netica solves the network by internally creating a junction tree
for efficient inference. The expected utility is reported to be 12.47, and the optimal deci-
sion is “NoRecharge.” The value with perfect information can be calculated by first adding
an arc from the “Channels” node to the decision node. This arc indicates that the uncertain
factor will be known before the decision. As we have shown, compiling will give 12.8 as
the expected utility, and the value of perfect information is 12.8 —12.47 = 0.33. Note that
the optimal decision (from the “optimize decisions” menu) is to recharge at the north for
both the mixed or northeast channel orientations and no recharge for the southeast channel
orientation.

The value of perfect information is an upper bound. The value of imperfect information
about the subsurface geological uncertainty obtained from geophysical surveys such as
TEM cannot exceed this bound. The basic TEM data are the magnetic field response as a

Channels
MixedChannels 33.3

NEChannels B3%3
SEChannels 33.3

0.33£0 \

Recharge /
NoRecharge E E i
CentralRecharge i 08
NorthRecharge E E E
SouthRecharge o ad

Figure 6.40 Groundwater management example: basic influence diagram for the groundwater
recharge example.
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function of time. These data have to be inverted for the subsurface resistivity that can be an
indicator of subsurface lithologies. Clay-rich shales typically have lower resistivity (less
than 30 ohm-m) compared to water-saturated sands (~80 omh-m).

Thus, TEM data after inversion and interpretation can help identify the subsurface
channel heterogeneity (e.g., Auken et al. 2008). In order to compute the VOI for this
geophysical data, we use the data reliability given by the conditional probability p(data
interpretation|true geological scenario). Note that this involves not just how reliably the
receiver coil records the magnetic field (instrumental error) but also the inversion and the
interpretation of the inversion in terms of the underlying geologic scenario. In other engin-
eering applications, it is possible to get numbers for the reliability of tests by conducting
repeated experiments under well-controlled laboratory conditions. However, in geoscience
applications it is much more challenging, as geology is much more varied from site to site
and less well controlled; in addition, here the value is derived not just from the test result
itself but from the geological interpretation of the test. Assessments from experts who
have worked with these kinds of data in similar geological environments provide one way
of obtaining the required conditional probabilities. Another potential approach is that of
Monte Carlo simulations, as described in Trainor-Guitton et al. (2011).

As mentioned earlier, using a multiple-point geostatistical technique, 50 facies realiza-
tions were generated for each geological scenario. All of these facies realizations were popu-
lated with resistivity appropriate for sand and shales, and TEM data were forward simulated.
These were then inverted, and finally the inverted resistivity images were interpreted in
terms of channel orientations. The interpretation was done by a local spatial autocorrelation
to find the direction of maximum spatial correlation, which was taken to be the interpreted
orientation of the subsurface channels. The interpretations were compared with the true
channel orientations, and the counts of correct versus incorrect interpretations were used to
obtain the conditional probability table, as shown in Table 6.6.

The posterior value of TEM must be computed as an average over all TEM interpreta-
tions, in each case making the optimal decision from Bayes’ rule for the conditional prob-
abilities and conditional expected values. We illustrate how this situation can be solved by
influence diagrams. Let us add a chance or uncertainty node for TEM data to our original
influence diagram. This network is shown in Figure 6.41.

Table 6.6. The reliability measures represented as a conditional probability table for
TEM interpretation (columns) given the true geological scenario (rows)

Interpretation of Interpretation of Interpretation of
Channels Northeast Mixed Southeast
Northeast channels 0.98 0 0.02
Mixed channels 0 0.96 0.04

Southeast channels 0 0 1
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Figure 6.41 Groundwater management example: influence diagram for the groundwater recharge
example with a node for geophysical (TEM) data.

To solve the influence diagram, we select “compile” from the menu bar in Netica for
solving the influence diagram by the junction tree algorithm. The expected utility given
in the messages window (12.78) is close to the value with perfect information (12.8). This
is not surprising, since the data are very reliable, though not perfect. Perfect information
would be represented by “1” on the diagonal and “0” elsewhere. The value of this imper-
fect TEM information is 12.78 — 12.47 = 0.31. The TEM survey should then be acquired
and interpreted if the price of the data is less than this value. The optimal decisions (from
the “optimize decisions” menu) show that the optimal decision is to recharge at the north
for both cases of TEM data interpreted as mixed or northeast channel orientations and no
recharge when the TEM interpretation is southeast channel orientation. This is similar to
the case with perfect information.

6.6 Bibliographic notes

VOI analysis is popular in several domains of applications. For instance, there are abun-
dant health and medical applications — see, e.g., Yokota and Thompson (2004b), Willan and
Pinto (2005), and Welton et al. (2008) for a partial overview of this vast field or Braithwaite
and Scotch (2013) for a recent paper advocating the use of VOI in clinical management and
testing. Another domain is that of product engineering — see, e.g., Keisler and Brodfuehrer
(2009), who apply VOI analysis to automobile manufacturing, or Panchal et al. (2009),
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who apply VOI analysis to improved product design for data center cooling systems. Please
see the bibliographic notes in Chapter 3 for further references on VOI applications in gen-
eral. Our focus in this section is on literature specifically related to VOI in the Earth sci-
ences. Several relevant articles have been grouped into the following categories. Interested
readers may pursue the mentioned papers or references therein to find more literature on
the particular Earth sciences topic.

Petroleum

The petroleum industry has a long history of VOI analysis dating back to at least Grayson
(1960). See Bratvold et al. (2009) for a recent overview of VOI in the industry. Despite
the interest in VOI analysis, most efforts have been at a high level without fully integrat-
ing spatial modeling and spatial decision making. Bickel and Smith (2006) and Bickel
et al. (2008b) study decision making for reservoir development, with dependent petro-
leum prospects. Their focus is on the best sequential strategy and not on VOI analysis.
Martinelli et al. (2011) calculate the VOI of perfect information from exploration wells at
segments, modeled by a Bayesian network, as in Section 6.2.1. Martinelli et al. (2013b) use
basin modeling to learn a network and then conduct VOI analysis, similar to Section 6.2.2.
Manoharan (2014) conducts VOI analysis for petroleum prospect risking, not unlike what
we described in Section 6.2.3.

We list a number of papers that value geophysical data and, to some extent, contain
elements of spatial or multivariate modeling: Houck and Pavlov (2006) calculate the VOI
of electromagnetic data using a threshold method and a sensitivity map for spatially distrib-
uted anomalies. Kolbjgrnsen et al. (2012) evaluate the VOI of electromagnetic data using a
linear fluid factor model. Bickel et al. (2008a) consider a multivariate reservoir model and
conduct VOI analysis for seismic data with constraints on the well budget. Houck (2007)
and Pinto et al. (2011) study the VOI of time-lapse seismic data. Blangy et al. (2014)
evaluate the value of time-lapse seismic data at a more qualitative level. Bhattacharjya
et al. (2010) present VOI analysis for seismic amplitude data for making improved spatial
decisions about drilling at units where discrete facies variables are the distinctions of inter-
est using a MRF model as in Section 6.3.1. Eidsvik et al. (2008) apply a logistic model to
saturation and porosity and analyze the VOI of seismic amplitude data and EM data for
reservoir drilling decisions, similar to Section 6.3.2. Rezaie et al. (2014) extend this to a
spatial closed-skew Gaussian representation. Barros et al. (2014) describe a VOI workflow
for history matching in closed-loop reservoir management using creative computational
techniques (see Section 5.10).

A topic related to VOI of geophysical data is that of constructing spatial acquisition
designs for surveys in the petroleum industry. Examples include Vermeer (2012), who out-
lines the many aspects of seismic survey design; Curtis (2004), who provides a tutorial on
traditional statistical design of experiments for geophysical data acquisition; and Horesh
et al. (2010), who look at inverse problems, design, and uncertainty quantification. Unlike
VOI analysis, these approaches for constructing useful experiments are not based on deci-
sion theoretic principles.
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Mining planning and safety

The mining industry has a long history of evaluating various kinds of spatial informa-
tion — see, e.g., the book by Chiles and Delfiner (2012) or the various methods presented
by Rivoirard (1987) for measuring the information content, such as the Kriging variance,
slope, correlation, or weight of the mean. These measures are, however, not directly based
on any decision situation. Froyland et al. (2004) compute the VOI of infill drilling deci-
sions (scheduling). Phillips et al. (2009) apply VOI analysis for the selection of ore grade
scanning data, which is applied to an iron ore mine in Sweden where there is uncertainty
regarding categorical ore types at spatial sections. Eidsvik and Ellefmo (2013) conduct
VOI analysis of perfect and imperfect oxide grade measurements, assuming a Gaussian
spatial regression model for the oxide grade in a mining project, as shown in Section 6.4.1.

Karam et al. (2007) outline principles for decision situations and information-gathering
schemes in mining and tunneling operations. Zetterlund et al. (2011) conduct VOI analy-
sis of rock measurements for decisions about tunneling projects. They model classes of
deformation as spatial variables along with a beta distribution for the probability of sealing
fractures. The case has low decision flexibility with only two alternatives. Evangelou and
Eidsvik (2015) use the Poisson regression model for joints and study a decision situation
of high decision flexibility, similar to Section 6.4.2.

Groundwater, hydrology, and geothermal resources

Wagner et al. (1992) introduce VOI analysis for groundwater management in their sto-
chastic optimization for pumping and recharge costs. Their approach is simulation and
optimization based but includes spatial correlation in the model for hydraulic conductivity.
Borisova et al. (2005) present VOI analysis for the management and control of agricultural
nitrogen pollution in the Susquehanna River Basin. They model the economic uncertain-
ties as well as the uncertainties of pollutant transport in the watershed. Nowak et al. (2012)
use measures related to VOI for studying the value of hydrological field campaigns in the
situation of a contaminant source in an aquifer. Trainor-Guitton et al. (2011, 2013) study
the VOI of EM data for groundwater sustainability decisions in an aquifer. They use exten-
sive spatial modeling to estimate the value function of the different spatial alternatives
for recharge, similar to our example in Section 6.5. Trainor-Guitton et al. (2014) study an
example of a hidden geothermal resource where magnetotelluric data could be useful for
guiding the spatial drilling alternatives.

Environmental applications

Borsuk et al. (2001) describe VOI analysis for management decisions regarding the water
quality of a river estuary. They use a Bayesian network for the various model components,
where edges and conditional probabilities are guided by (spatial) physical processes. De
Bruin et al. (2001) apply VOI for evaluating geographical information related to the vol-
umes of sand at a port in the Netherlands. Bouma et al. (2009) present an application
of VOI analysis of satellite observations for monitoring algal bloom in the North Sea.
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Bates et al. (2014) conduct VOI analysis for a spatial decision situation with several alterna-
tives regarding contaminant management in a fjord. The value calculation builds on several
factors, including the environmental (spatial) impact. Ballari et al. (2012) present VOI for
mobile wireless sensor networks for environmentally connected decisions. The mobility of
sensors offers substantial opportunities for spatial or spatiotemporal information gathering.

Biological conservation, forestry, and fishing

Polasky and Solow (2001) study information measures for the problem of selecting bio-
logical conservation sites. Williams et al. (2011) study the VOI of monitoring exercises
for management alternatives about the conservation of a rare bird species. Kangas (2010)
describes a situation with a forest owner who can harvest immediately or after 10 years and
studies the VOI in this context. Several data-gathering options are discussed in the paper,
such as small test area sampling and remote sensing. Mantyniemi et al. (2009) study the
VOI of control measurements for fish management, applied to a herring population with
uncertain dynamic models. Hansen and Jones (2008) review VOI approaches in fisheries.

Agriculture and climate forecasting

Byerlee and Anderson (1982) present VOI analysis for agricultural applications. Adams
et al. (1995) discuss the VOI for weather information for agricultural management, in par-
ticular the value of El Nifio Southern Oscillation forecasts for an enterprise. An example
with farming policies, with or without climate information, is shown in Cabrera et al.
(2006). Meza et al. (2008) review evidence for the economic value of seasonal climate
forecasts for agriculture.
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Problems and projects

-

Figure 7.1 concepts, equations
seep in and stay for good, if
you do it yourself

Our aim in this chapter is to make it easier for the reader to get started with value of infor-
mation (VOI) analysis. The problems and projects provide some training in statistics, deci-
sion analysis, and spatial modeling, but the main goal is to allow the reader to learn VOI
analysis by solving problems and completing projects. We have included a variety of ques-
tions — there are smaller constructed examples as well as more real-world cases. Some of
the problems can be solved by pen and paper, while larger projects require more hands-on
computer implementation that comes with models or data sets available for download from
the book website (srb.stanford.edu/voi). This website also provides MATLAB and Netica

303
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files and other auxiliary informational documents that we hope will be useful for the prob-
lems and projects.

Section 7.1 mainly contains problem or project versions of examples used in the book,
such as those used to illustrate VOI analysis for spatial decision making in Chapter 5. The
real data examples in Sections 7.2-5 follow the same section structure as in Chapter 6.
Readers can modify various parameters of the examples and study the effect on the
VOI. Note that the model descriptions in Sections 7.2-5 are very short. Before starting a
hands-on project, we advise the reader to review the associated example(s) with much more
explanation and discussion in Sections 6.2-5 and to consult the book website. If the deci-
sion maker’s utility function is not explicitly specified for a problem or a project, the reader
should assume that the decision maker is risk neutral — i.e., has a linear utility function.

7.1 Problems and tutorial hands-on projects

The first few problems cover concepts from Chapters 2 and 3. They typically start with
some modeling assumptions and methodological aspects, and then progress to VOI ana-
lysis. For each exercise, we indicate the most relevant chapter in parentheses, where the
topic of the exercise is discussed. Some exercises are necessarily more complex — for
instance, those involving spatial modeling and spatial decision situations (Chapters 4 and 5),
and we present these as hands-on projects. Note that several models are described in some
detail in the appendix.

7.1.1 Problem sets

B
-1
1. Consider the power law pdf, p(x) = ﬁ—(gJ ,forx>0a>0and f>1.
o X

B-1

a. (2) Show that the cumulative distribution function is F' (x) =1 —(%) .

B-1,

B-2

c. (2) One can generate a random variable x from this power law distribution by
inversion. Set B =3, o =1. Generate a uniform random variable u = U (O,l). Set
u=1-F (x), and solve for the sampling variable x. Repeat the sampling B = 1000
times, display the realizations in various ways, and calculate the mean to compare
with the result from b.

d. (3) Suppose that the power law distribution mentioned earlier describes the distri-
bution of revenue from a project that a decision maker is considering investing in.
He or she either invests or does not invest. The decision maker invests only if the
expected revenue is larger than Cost. Calculate the prior value as a function of Cost
and the statistical model parameters. Assume that 3 > 2.

b. (2) Show that the expected value is E (x) =
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(3) Assume that one can purchase perfect information about the project revenue.
Calculate the posterior value and the VOI. Compute and plot the VOI for a variety
of input parameters: Cost, B > 2, o..

(3) Use the sampling scheme in c. to compute a Monte Carlo approximation of the
VOI. Compare this with the analytical result in e.

2. Assume that the profit of a project has a univariate Gaussian pdf

_ 11 (x—p)°
p(x)—\/ﬁo_exp( o | <X < oo,

A decision maker will invest in a project that has a positive expected value.

a.

(2) Use symmetry arguments to show that the mean p of the Gaussian satis-

fies I(x—u)p(x)dx =E(x)-u=0.

(2) Use a transformation of variables: z = g(x) = x—u’ x=g"(z)=n+o0z, and
c
) dg™! ~ . .
the transformation formula p(z) = 5 p(g ! (z)) to show that the variable z is
Z

standard normal distributed.
(2) Use mtegratlon by parts - i.e., (Ju-v’=u~v|—ju’~v) to show that

J-ZQ) )dz = J-l 20(z)dz = ¢(a)— ¢(b), where the standard normal pdf is ¢(z)=

1 72
oz =—ﬁexp(——).
(3) Suppose that a decision maker is considering getting perfect infor-
mation about the profit. The posterior value of perfect information is

PoV (x jmax {0,x} p(x)dx = J p(x)dx. Use the results from b. and c. along

with the symmetry properties of the standard normal pdf ¢(Z) and its cumulative
distribution ®(z) to show that PoV (x)=0¢ % + I.LCD(% .
(3) Plot the analytical VOI solution as a function of the mean in the range (1 € (—2, 2)

and standard deviation o € (0.1,2). Draw realizations from the Gaussian, and use
Monte Carlo integration to check the analytical solution for the VOL.

3. Consider a univariate skew-normal model, as described in Section 4.5, with pdf
p(x)=2@ (l(x— ,u))N (1,0?), with standard normal cumulative distribution ®(z).
This is a special case of a closed skew normal with parameters g =1,6=0,and A =1.

a.

(2) Plot this skew-normal pdf for a grid of x values and for different values of the
location y1 € (~2,2), scale o € (0.1,1), and skewness A € (—10,10) parameters.
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(2) Draw samples from this skew-normal distribution by rejection sampling using
proposal density g (x) =N ( u,o? ) Study the acceptance rate.

(3) Assume that x represents an uncertain profit of a project. Compute the prior
value and the value of perfect information using Monte Carlo sampling (rejection)
from the skew normal.

(3) Assume instead that the decision maker can purchase imperfect information
according to the Gaussian likelihood p(y | x) =N (x, (= ) This is a special case of
the closed skew-normal model, and there is a closed-form solution for the poster-
ior mean E (x [ y); see Dominguez-Molina et al. (2003). Use this result and Monte
Carlo sampling over data y to compute the VOI for this decision situation. Study
the VOI for different measurement standard deviations 72 € (0.1,1) and compare
with the result in c.

4. Consider the bivariate Gaussian pdf p(x) =N (0,2) for profits x = (x1 ,xz) at two pro-
jects, just like the “For whom the bell tolls” examples in Chapters 2 and 3. Assume
variance 1 for both projects and correlation —1 < p < 1. The decision maker selects a
project (alternative a; = 1,7 = 1,2) if its expected profit is positive and otherwise avoids
investment (alternative a; =0, i =1,2). We consider a decision situation with a free
selection of projects without constraints (see the example in Section 3.4). Assume
that the decision maker can purchase total imperfect information, y;=x;+N (0, T2 ),
j=12-1ie., likelihood p(y|x)=N(x,T), T =11I.

a.

(2) Show that the conditional distribution of profits, given the imperfect informa-
tion, is Gaussian with covariance X, = (= + T )" and mean By =Z,T'y.
Here, use the relation p(x1y)e< p(x)p(y!x), and complete the quadratic forms
for x in the exponent of the Gaussian pdfs.

(2) Use the formula for linear combinations of Gaussian variables to show that
p(»)=N(0,Z+T) and p(p,,)=N(0.Z,, T (Z+T)T'Z,,).

(3) Use the result from b. and from Exercise 2 to compute the posterior value of total

2

imperfect information: PoV( y) = z Jmax {0, 1Ny } p( y)d ». (Hint: note that the
j=1

only part of the data that is informative of the decision is ,,,, so the expression

2
simplifies to: PoV (y) = ZImax{O, Hyy }P (.Ux|y,j )d:uxly,j )
j=1

(3) Cross-plot the VOI results as a function of the correlation p and for different
test accuracies 7 of the imperfect test.

(3) Assume next that the decision maker can gather information about only one of the
projects (partial testing) say, y, = x, + N(0,7>) = Fx+ N (0,7?), where F =(1,0).
Calculate the posterior value of this partial test.

(3) Let the price of a test be P; for Project j =1,2. The decision maker should pur-
chase the test that has the largest VOI compared with the test price if it is positive.
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Table 7.1. The joint pdf for the two petroleum prospects and their marginal probabilities

Failure Prospect2  Success Prospect 2 Marginal Probability

Failure Prospect 1 0.85 0.05 0.9
Success Prospect 1 0.05 0.05 0.1
Marginal Probability 0.9 0.1 1

The price of testing both projects is P, + P,. Make a diagram of the decision regions
as a function of price P, on the first axis and P, on the second axis. Draw this dia-
gram for a couple of correlation parameters p and test accuracies 7.

5. Consider a binary bivariate example concerning the selection of petroleum Prospects
1 and/or 2 for development. The joint probability density function (pdf) is defined by
Table 7.1. The petroleum company aims to develop infrastructure and produce hydro-
carbons. The decision about selecting prospects for development depends on the prob-
abilities of failure and success as well as the revenues associated with the successful
outcome and the cost of selection. In the event of a success at Prospect 1, the company
receives revenue Rev, = Rev = 3, and the same at Prospect 2, Rev, = Rev = 3. The fixed
cost of selection, no matter the outcome of the prospect, is set to Cost, = Cost, = Cost.

a.

(2) Suppose that the company can obtain perfect information at one of the pros-
pects. Use Bayes’ rule to show that the conditional probabilities are:

p(x,=1lx,=1)=p(x, =11x, =1)=0.5,

px; =11x, =0)= p(x, =11x =0)=0.055.

(3) Assume that the company can freely select prospects when they are expected to
be profitable. Show that the prior value is PV =2 max {0,0.3 - Cost}.

(3) Show that the posterior value of total perfect information at both Prospects 1
and 2 is PoV(x)=0.2max{0,3—Cost}. Plot the posterior value, with the prior
value in b., as a function of Cost. Interpret the results.

(3) Compute the posterior value of perfect partial information at Prospect 1:

PoV (x;)=max{0,3—Cost} p(x, =1)+
1
Zmax{0,3-p(x2 =1lx, =z)—Cost}p(x1 =7)
z=0

(3) Plot the posterior value in d. with the one from c. and the prior value in b. as a
function of Cost. Interpret the results.
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Let us expand the same binary bivariate example, concerning the selection of petrol-
eum Prospects 1 and/or 2 for development, with imperfect information. We denote the
imperfect test(s) by y, and/or y, at the two prospects. This could, for instance, be seis-
mic test(s) at the petroleum prospect(s). We assume that these are binary: positive or
negative — i.e., y; € {O,l} for j =1,2. In the likelihood model, we assume conditional
independence and symmetry —i.e., p(yj =klx; = k) =7 for k = 0,1 and for j =1,2.

a. (2) Compute the marginal bivariate distribution for the test results by marginaliz-
ing over x.
b. (3) The posterior value of imperfect information at Prospect 1 is

1 [Inax{O,3~p(x1 =1ly =z)—Cost} ]p y —z)
L =2)

PoV(y,)=
ovin) +max{0,3 p(x, =11y, = z)—Cost}

z=0

Set likelihood reliability Y = 0.9 and compute this posterior value as a function of
Cost. Plot the results for various Cost with the prior value and the posterior values
of perfect information in the previous exercise. Interpret the results.

c. (3) Compute the posterior value of total imperfect information PoV ( VisYs ), assum-
ing reliability y = 0.9. Plot the result as a function of Cost and compare with the
other information-gathering schemes.

The following game motivated Bernoulli to introduce the logarithmic utility function
in 1738. This is known as the St. Petersburg’s paradox. Consider a lottery where a coin
is tossed repeatedly until it lands heads, and the owner of the lottery is rewarded $ 2",
where n,,;,, is the total number of coin tosses. Assume that heads and tails are equally
likely outcomes and that the coin tosses are independent.

a. (2) What is the pdf for the number of tosses until the coin lands heads? What is the
pdf for the reward?

b. (3) How much would you be willing to pay to own this lottery? (Thinking about
this carefully may make the following parts more enjoyable.)

c. (3) What would a risk-neutral person be willing to pay to own the lottery? Consider
the solution obtained and list some reasons why you think that this game is referred
to as a paradox.

d. (3) Suppose that the lottery terminates after a maximum of rn,;, coin tosses. Plot
the expected value of the lottery as a function of n,;, from 1 to 50.

e. (3) Consider a person with an initial wealth of $1000 and a logarithmic utility
function u (x) = log(x), where x is the person’s total wealth. How much would this
person be willing to pay to own the lottery for maximum coin tosses n,;, = 10?
(Hint: Use the same approach that was used for the general definition of VOI as
a personal indifference price — i.e., by equating the expected utilities for the situ-
ations with and without the lottery.) Plot this amount as a function of n,;, from 1
to 50. Then, plot this amount as a function of initial wealth $100 to $100 000.
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f.  (3) Draw an influence diagram for someone who is deciding whether to play this
lottery or not. Try this first with a small n,,, initially — say, n,;, = 3 —and then try to
generalize the diagram for a larger n,;, . For n,;, = 3, also construct the conditional
probability tables and the value table for the influence diagram.

In this problem, we will build decision trees for a situation related to CO, sequestration,
where there is a risk of leakage (Konishi, 2014). The decision maker can proceed with
CO, injection or suspend sequestration. The latter incurs a tax of 80 monetary units.
The former only has a cost of injection equal to 30 monetary units, but the injected CO,
may leak. If leakage occurs, there will be a fine of 60 monetary units (i.e., a cost of 90
in total). The probability of leakage is p (x = 1) = (.3, while a safe or sealing formation
has probability p(x = O) =0.7.

a. (3) Draw a decision tree for this situation. What alternative does the maximum
expected value (or minimum expected cost) have?

b. (3) What if the decision maker could get perfect information about the leaking or
sealing formation? Draw a decision tree for this situation with perfect information.
What is the maximum expected value (or minimum expected cost)?

c. (3) Assume next that the decision maker can purchase a geophysical experiment
with a binary outcome, indicating whether the formation is leaking or not. The
reliability of the test is defined by p(y=11x=1)=0.9 and p(y =01x=0) = 0.95.
Draw the decision tree for this situation with imperfect information and compute
the maximum expected value.

. Consider the oil wildcatter example described in Chapter 3. Figure 3.9 shows the

influence diagram for the oil wildcatter’s decision situation where he or she is con-
sidering whether to purchase a seismic test for more information about the amount
of oil.

a. (2) Compute the pre-posterior probability for the seismic test result and the poster-
ior probability of the amount of oil given a seismic test result using Bayes’ rule.

b. (3) Draw the decision tree corresponding to the influence diagram.

c.  (3) Solve the decision tree for a risk-neutral decision maker —i.e., find the optimal
strategy and the expected value.

d. (3) Solve the decision tree for a decision maker with an exponential utility func-
tion, with risk aversion coefficient y = 0.002 (M$)A(-1) — i.e., find the optimal
strategy and the certain equivalent.

Consider the “MacKenna’s gold” example described in Chapter 3, where a person
owns an oil field. Figure 3.11 shows the influence diagram, and Figure 3.12 shows
the probability tree that was used to compute the certain equivalent. Make the same
assumptions about the person’s utility function as was made earlier. Suppose that the
person’s financial advisor suggests a lottery/deal through a futures contract where the
payoff is —$50 million when the price of gold is high and $100 million when the price
of gold is low.
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(3) Suppose that the person does not own the oil field and only owns the futures
contract (as determined by the price of gold). Update the influence diagram in
Figure 3.11 and the probability tree in Figure 3.12 with this new situation. Find the
certain equivalent for this new situation.

(3) Now suppose that the person owns both lotteries (the oil field and the futures
contract). Update the influence diagram in Figure 3.11 to also include the new lot-
tery (along with the older lottery of the oil field) by adding another value node and
a corresponding value table.

(3) Edit the influence diagram mentioned earlier by merging the value nodes
together into one node. What are the parents of this value node? Form the value
table corresponding to this new value node by merging the previous two value
tables. (Hint: the new value table will grow in size.)

(3) Using the formulation in c. mentioned earlier, update the probability tree in
Figure 3.12 and compute the new certain equivalent.

(3) Compare the certain equivalents of the three situations where the person
(i) owns only the oil field, (ii) owns only the futures contract, and (iii) owns both.

This problem is similar to the “Never break the chain” examples. We consider the fol-
lowing Markov chain models, differing in Markov transition probabilities P (k,l ):

(i) Independent case: P(0,0)= P(1,1)=0.5, p(x1 = 1) =0.5.
(ii) Equal dependence: P(0,0) = P(1,1)=0.9, p(x, =1)=0.5.
(iii) Absorbing: P(0,0)=1, P(1,1) = 0.9, p(x1 = 1) =0.5.

a.

(2) Simulate Markov chains realizations of length n =100 from each of these
models and compare the results. (The simulation is done by simulating uniform
random variables U (0,1). If the number is larger than 0.5, the initial state x; =1;
otherwise, it is x; = 0. At the subsequent step, we draw new independent uniform
variables and set the correct state according to the conditional probability defined
by the Markov transition rule.)

(2) Compute the marginal probabilities for x;, i = 1,...,n, for the Markov chain with
an absorbing state. Compare with realizations.

(2) Assume that we know that x,, = 1 and compute the conditional probabilities for
all states x;, i = 1,...,n. (Note that the computation is straightforward for the subse-
quent states but more difficult for the states prior to the observation site.)

(2) Compute similarly the probabilities when we know that x,, = 0.

(3) Assume that the nodes represent petroleum prospects. The decision situation
is that of free selection of sites. Let us compare the VOI of information at single
nodes and for the different Markov chain models. We assign costs associated with
the selection of petroleum prospects and revenues associated with successful pros-
pects. In this example, assume fixed revenues and costs: Rev = 3 and Cost =1,
identical for all sites. Compute and plot the VOI of the single observation nodes.
Discuss and interpret the results. For which node is it better to collect data, and
what should the price of the experiment be to make it worthwhile?


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.008
http:/www.cambridge.org/core

7.1 Problems and tutorial hands-on projects 311

12. Let us consider the hidden Markov model version of the “Never break the chain”

13.

examples, which adds a hierarchical level of uncertainty at every node in the Markov
chain model.

a. (2) Simulate a Markov chain of length n=250 with equal depend-
ence: P(0,0)=P(,1)=p, p()c1 = l) =0.5. We set p =0.9. For each node or time
step, generate conditionally independent data y; = x; + N (0,1:2 ), j=1L..,n. We set
12 = 0.42. Plot the data y =(y,,...,y, ) and interpret.

b. (2) Describe the forward recursion for evaluating the marginal likelihood p(y). (This is
based on marginalizing over one of the x; variables at a time to get PO Yigses 1))
Compute the marginal likelihood model for a grid of values for p and 12, given the data
from a., and find the maximum likelihood estimate (MLE). Compare with the values
used in the simulation.

c. (2) Use the forward-backward recursions to find the marginal probabilities
p(x ;=11 y) for all j=1,...,n. Use similarly the forward—backward recursions to
sample realizations x* from p(x [ y), b=1,...,100.

d. (3) Suppose that the nodes represent petroleum prospects. The decision situation
is that of free selection of nodes or sites. In addition to the current data y, the deci-
sion maker considers purchasing perfect information at a single node. Like in the
previous exercise, there are costs associated with the selection of prospects and
revenues associated with successful prospects: Rev = 3 and Cost = 1, identical for
all sites. Compute and plot the VOI of the single observation nodes. Discuss the
results. (Note that you will get different results every time because the current data
y vary from simulation to simulation.)

e. (3) Suppose instead that the decision maker can only select disjoint blocks of size
10 —1i.e., 25 blocks in total. A block is selected if the sum of expected revenues for
that block is larger than the sum of costs for the block. Compute the prior value of
this decision situation. Compute the VOI of observations at a single node for this
decision situation.

Consider the logistic integral that is common for modeling success probabilities in
generalized linear models (GLM):

j exp ) ! exp _(x—,u)z dx
1+exp X \/21'5(52 20? '

Set parameter 62 = 0.12, and let u vary around +4G.

a. (2) Approximate the integral by Monte Carlo sampling from the Gaussian with
mean [l and variance 62. Plot the results as a function of .

b. (2) Approximate the integral by the Laplace approximation. This entails
expanding the exponent in the integrand to a quadratic form. We have

1 i);i)(i)x()x) = " exi) (—x) =exp (— log (1 +exp (—x))) The method further relies on
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maximizing the exponent and finding the curvature at the mode from the second
derivative of the exponent. Plot the approximation as a function of .
(2) Approximate the integral using an alternative function in the integrand
(Demidenko 2004). This approach relies on the fact that the logistic expression is
rather similar to the cumulative distribution of the standard Gaussian:

2
exp J' exp( Jd O{=£~17
1+exp ' J2n 157

where the seemingly arbitrary number for « fits the logistic function for a wide
range of parameters (Demidenko 2004). The expected value of the cumulative
Gaussian is now analytically tractable as another cumulative, and we get the
estimate:

>

aun
\/_n exp( 5 )dz CI)( e )
Plot this integral approximation as a function of .
(3) Assume that the logistic model represents the probability of success, awarded
with arevenue defined by Rev = 3, while there is Cost = 1 in either outcome (success
and failure). For this decision situation, the prior value is max {Rev-l —Cost,O},
while the posterior value with perfect information is

2
ex 1 -
I,,,= J. max 1 0,Rev- p—(x) —Cost p———exp _(x 1) di.
o 1+exp(x) N 20°
Approximate the posterior value by Monte Carlo sampling from N ( U,0? )

Cost /Rev

——— |, the posterior value equals
1-Cost/Rev

By introducing a = log(

1= Revz[li):(s;)x)J \/2717 exp{—%]dx—Cost(l—Cb(a)).

The first term can again be approximated by the cumulative normal approximation
to the first part of the integrand. This method results in

I, = Rev( (%)—sz(u R —0 J]—Cost(l—d)(a)),

o \/1 + o2o? \/1 + o2o?

where @, (zl,zz;p) is the cumulative distribution function of bivariate standard
Gaussian variables with correlation p (function “mvncdf” in MATLAB).
Compare this approximate posterior value and the VOI solution with the Monte
Carlo approximation.
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7.1.2 Hands-on projects

We now present some larger-sized projects from Chapters 3-5.

Time after time: time-lapse seismic example

This example is related to time-lapse seismic monitoring of producing reservoirs and was
used in Chapter 3 to illustrate concepts from decision analysis, influence diagrams, and
VOI analysis. Readers not familiar with the software Netica or Kevin Murphy’s MATLAB
Bayes Net Toolbox (BNT) might want to start with a simpler influence diagram project, as
described in Section 7.5, before proceeding to this one.

1.

(3) The influence diagram model shown in Figure 3.14 is available on the website as a
Netica project. Open the influence diagram and see how the different conditional prob-
ability distribution (CPD) tables and the value function tables are assigned.

(3) Recreate the results for the three scenarios described in Table 3.2.

(3) Explore the sensitivity of the results to changes in various reservoir factors such as
depth, rock and fluid properties, and spatial heterogeneity.

(3) If you are familiar with Kevin Murphy’s BNT toolbox (see also Sections 7.2 and
7.5), you can construct the influence diagram in MATLAB and test the various sce-
narios. A MATLAB file is provided on the website to build and run the model.

(3) The value of time-lapse seismic monitoring comes from being able to monitor
unexpected changes. In this influence diagram model, unexpected changes come from
unexpected breakthroughs (with states “true” or “false”) or bypassed oil (with states
“high,” “medium,” or “low”). These in turn depend on the level of spatial heterogen-
eity, “high,” or “low.” In general, high spatial heterogeneity will lead to more chances
of high bypassed oil and unexpected breakthrough behavior. The CPD tables for the
nodes “bypassed oil” and “breakthrough’ have been elicited from experts, but the num-
bers are quite uncertain. Let & and 8 denote the probability of bypassed oil being
“high” and the probability of breakthrough being “true” when spatial heterogeneity is
high, nominally set to 20% each. These probabilities are lower when spatial heterogen-
eity is low — say, ot/ 2 and f3/2, respectively. Explore the sensitivity of the outputs to
these parameters. How sensitive is the ratio of the value if time-lapse seismic monitor-
ing is performed to the value if it is not performed —i.e., value(perform_seismic = true)/
value(perform_seismic = false), to o and 3? Vary & and f from 0.02 to 0.4, and make
a contour plot of the value ratio as a function of & and . You will probably find the
MATLAB model using the BNT toolbox useful for this exercise, as you can run it in a
for-loop with a range of inputs.

Norwegian wood: forestry example

This project builds on the forestry example that was presented in Sections 4.4 and 5.3—4.
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Part I: parameter estimation and Kriging

Here we will study the simulation of Gaussian processes or random fields. We simulate
spatial data and perform parameter estimation and prediction (Kriging). Consider an expo-
nential covariance model for the spatial distinction of interest x(s).

Cov (x(s,-),x(sj)) =3, (|t,-j ) =02 exp(—n|t,.j|),
y(sj)zx(sj)+N(O,1:2), j=1..,m.
where |tl-j| is the Euclidean distance between the two sites s, and s;, and the measure-
ments y; = y(s j) are assumed to be conditionally independent. The unit square is the

domain of interest. We assume a mean increasing with east and north coordinates as fol-
lows: y; = Oc((s,-l - 0.5) + (s,-2 —0.5)) for site s; = (Smsiz) on the unit square.

1. (4) Simulate m = 100 random data sites within the unit square. This is done by simulat-
ing uniform numbers along each axis. Plot the data sites. Set parameter values 62 =1,
1 =10, and 12 = 0.12. Form the spatial covariance entries from the exponential covari-
ance function to build a m X m covariance matrix for the data Vi j=1..,m. Take its
Cholesky factorization and simulate dependent zero-mean Gaussian data variables,
then add the mean using o = 1.

2. (4) Use the data to estimate the model parameters o, 6%,72,7. Do this by maximum
likelihood, iterating between an update for the mean parameter, and updating the
covariance parameters. Monitor the likelihood function at each step of the algorithm to
check for convergence.

3. (4) Use the Gaussian model with the estimated parameters to perform Kriging — i.e.,
predict variables x(s), where sites are on a regular grid of size 25 x 25 for the unit
square. Visualize the Kriging surface and the prediction standard error.

4. (4) Generate conditional realizations at the grid nodes given the data. This can be
done in different ways. One alternative is to simulate unconditional realizations of the
regular lattice variables, simulate a perturbed version of the data set at the m =100
observation sites, and then add together the unconditional simulation and the spatially
weighted (Kriged) perturbed data variable. Compare the simulations with the Kriged
surface in Step 3.

Part II: VOI analysis and spatial design

Let us use variance, entropy, and VOI to compare three spatial designs of size m = 49. The
goal is to make better decisions at all sites in the 25 x 25 regular grid for the unit square
(n =625 sites in total). The mean and covariance are the same as those in Part I of this
project.

1. (5) Construct design a. based on random sampling — i.e., picking m random cells (the
MATLAB command is randsample(n,m)). Construct design b. along the center lines
(as in Section 4.4). Construct design c. by focused sampling near the northwest and
southeast diagonal: 25 samples on the diagonal, and four series of six sites every three
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Figure 7.2 Illustration of the spatial designs of experiment. The center design has survey locations
along the middle north—south column and the middle east—west row in the grid (crosses). The
northwest—southeast design has survey lines near this diagonal (diamonds).

columns and rows away from this diagonal (this is a total of m sampling sites). Plot the
three designs. Designs b. and c. are shown in Figure 7.2.

2. (5) Compute the total (sum over all prediction cells) reduction in the variance for vari-
ables x(s) on the regular grid. Compare the reduction obtained by the three designs.
Similarly, compute the reduction in the entropy obtained by the three designs. (The
result should not depend on the mean parameter ¢.)

3. (5) Assume that the Gaussian variables x(s) represent uncertain profits at the cells
on the regular grid. The decision maker would select all the cells if the total profit
(sum over all prediction cells) is positive. This is a decision situation with low deci-
sion flexibility. Compute the prior value and the VOI for designs a.—c. Does the result
depend on ¢¢?

4. (5) Assume instead that the decision maker is free to select individual cells that are
profitable. This is a decision situation with high decision flexibility. What is the prior
value and the VOI of all three designs? How does the result depend on «? Compare
with the situation with less decision flexibility.

The tree amigos: conservation biology example

We study the fitting of parameters in a Markov random field (MRF) (Section 4.6) and
compare designs for information gathering with the goal of making better decisions about
biological conservation, similar to the example in Section 5.4. We consider a regular grid
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of size n, Xn, and two possible classes (presence or absence) at every cell. We will use
the forward—backward algorithm for grids for computations (see the code on the book
website).

Part I: parameter specification

1. (4) Generate a realization on a size 10 x 10 grid from an Ising model with interaction
parameter 3 = 0.75.

2. (4) Fit a neighborhood probability model based on this realization. The fitting will be
of increasing complexity, cell-by-cell, center cell given nearest neighbors (northeast,
south, and west), given 8 nearest neighbors and given 12 nearest neighbors. We refer to
these as zero-, first-, second-, and third-order neighborhoods on the lattice. The condi-
tional probabilities are obtained by counting the number of Os and 1s at the center node
for various configurations of neighbors. In the situation with the third-order neighbor-
hood, there are a total of 4096 possible configurations for the neighbors.

3. (4) Generate 10 new realizations from the Ising model. For each realization, evaluate the
probability p of success at the center nodes, given the neighboring configurations for
all zero-, first-, second-, and third-order neighborhoods. Compare this prediction with
the actual realization at the center node. Use a score function to favor observations x at
the center node that are consistent with high Probability p. The Brier score is defined by
Score = (I(x=0)—(1- p))2 +(I(x=1)-p) . Study how the score varies with increas-
ing neighborhood order. Relate what you see to overfitting the model to the data.

Part II: value of information

For the VOI analysis, the setting is as in Section 5.4 with a grid of size 3 x 3.

1. (5) Assume that the decision maker can freely select cells on the grid for conservation.
If the species is present at a cell, a reward of Rev = 2 is obtained. A site selection has
Cost = 1. Compute the VOI for total imperfect data gathering. Assume imperfect test-
ing with accuracy y = 0.9 in the likelihood model, as in Section 5.4. Computing can be
done exactly with the forward algorithm for the likelihood p( y) and backward calcu-
lation of p(x,- =1 y); see Appendix A.3.

2. (5) Consider now partial tests along the various vertical lines (data size m = 3) and a
diamond-like design (data size m = 4). Compare the VOI of these partial tests with the
VOI for total testing from 1. (Note that the marginal probability of the partial test can
be computed by marginalizing over the p ( y). A trick for the forward—backward recur-
sion is to model the data at unobserved sites as completely uninformative data — i.e.,
Set ¥, unobservea = 0-3 at the unobserved sites.)

Go with the flow: petroleum simulation example
This hands-on project builds on the petroleum reservoir simulation example that was
described in Section 5.5. The VOI is computed for seismic amplitude data, which is inform-
ative of the subsurface geology.
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You can complete most of the exercise by downloading geostatistical realizations of the

reservoir and flow response values from the website, or you may create your own realiza-
tions and flow simulations. For the latter, you will need to run software for flow in porous
media. Commercial software for this purpose includes Eclipse, which is commonly used in
the petroleum industry. The website contains code based on the freely available MATLAB
reservoir simulation toolbox (MRST) developed by Lie et al. (2012), which can be down-
loaded from www.sintef.no/Projectweb/MRST.

Part I: downloading realization outputs

Consider the two geological scenarios and their associated production realizations in
Section 5.5. For this exercise, you need to download the production profiles.

1.

(5) Compute the prior value and posterior value of the drill or do not drill decision
situation. Assume a range of reliability parameters for the scenario interpretation and
compare the VOL.

Part II: generate realizations from geologic scenario

(4) Define a spatial grid model and a drilling strategy. (You may use what was
described in Section 5.5 and available on the website, or you may define your own.
A corner design is commonly used for illustration.) Using geostatistical algorithms,
generate multiple realizations of facies, porosity, and permeability for two (or more)
geologic scenarios. Training images of facies for the two geological scenarios used in
Section 5.5 are provided on the website. (Alternatively, you can download the multiple
realizations for porosity and permeability from the website.)

(5) Run the reservoir simulator for all realizations of porosity and permeability (for
each geologic scenario) to create realizations of the production profile over the future
years. (The simulator requires more input variables such as initial saturation, produc-
tion rates, rock compositions, type of flow, etc. You can check the website for these
inputs.) Use the output production profiles and profits to approximate the prior value,
assuming a cost of development.

(5) Assume a rock physics model for seismic acoustic impedance, which takes porosity
as input and returns the expected seismic impedance conditional on a realization of the
porosity field. (Check the website for the modeling codes.) Create synthetic seismic
acoustic impedance for all realizations and visualize the result.

(5) Compute a summary statistic of the data for each realization. The variogram of
impedance data is one possibility. Classify the realizations into the two (or more) geo-
logic scenario classes according to this summary statistic. This defines the reliability
measure represented as a confusion matrix. Use the reliability measure to approximate
the VOI of an imperfect seismic interpretation.

(5) Form the reliability measure for the seismic data based on clustering techniques.
For instance, you may use multidimensional scaling (Scheidt and Caers 2009). Use the
results to approximate the VOI of an imperfect seismic interpretation.
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Part I11: VOI analysis using approximate Bayesian computing

1. (4) Define a spatial grid model and a drilling strategy. (You may use what was described
in Section 5.5 and available on the website, or you may define your own. A corner
design is commonly used for illustration.) Using geostatistical algorithms, gener-
ate multiple realizations of facies, porosity, and permeability from the prior model.
Training images for facies for the two geological scenarios used in Section 5.5 are
provided on the website. (Alternatively, you can download the multiple realizations for
porosity and permeability from the website.)

2. (5) Run the reservoir simulator for all realizations of porosity and permeability to cre-
ate realizations of the production profile over the future years. (The simulator requires
more input variables such as initial saturation, production rates, rock compositions,
type of flow, etc. You can check the website for these inputs.) Use the output production
profiles and profits to approximate the prior value, assuming a cost of development.

3. (5) Assume a rock physics model for seismic acoustic impedance, which takes poros-
ity as input and returns the expected seismic impedance conditional on a realization of
the porosity field. (Check the website for the modeling code.) Create synthetic seismic
acoustic impedance for all realizations and visualize the result.

4. (5) Define a summary statistic from the seismic data and generate the loss matrix for
each of the realizations. You may, for instance, choose loss as the sum of square distance
between synthetic seismic impedances, variogram properties of the synthetic seismic
impedances, or some other low-dimensional summary statistic. Use the approximate
Bayesian computing algorithm presented in Section 5.6 to approximate the VOI. Use
different values of the threshold parameter and discuss the results.

Frozen: hydropower example

The project builds on the hydropower example presented in Section 5.6. The goal is to
evaluate snow depth data-gathering schemes for optimization of dam levels.

1. (4) Define a spatial grid model and a system of dams with their catchments in a river
basin. Also define high and low (or more) water levels for each dam. (You may use
what was described in Section 5.6 and available on the website or define your own.)
Generate multiple realizations of snow depth for each grid cell. You can define your
own spatial stochastic model or generate a transformed Gaussian random field of some
kind (Section 5.6). See the code on the website for one candidate model.

2. (5) Use the geometry of catchments to calculate the value (water) running into the
dams for the realizations mentioned earlier. Use the aggregated water in catchments to
study what the situation will be for all low-high alternatives for all realizations. Study
in particular the situation for the all-low and all-high situations. What is the mean
value, and what is the variance over the realizations? Approximate the prior value.
Note: you will get different answers every time because of the random snow depths in
Step 1.
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3. (5) Define an acquisition design for snow measurements. (You may use the one in
Section 5.6 or on the website, or you may create your own.) Define further a sum-
mary statistic for the snow data at the acquisition sites and compute the loss matrix
for each of the realizations. You may choose any summary statistic and corresponding
loss function, such as the squared difference in the mean snow thickness at the acquisi-
tion sites. Use the approximate Bayesian computing-based algorithm in Section 5.6 to
compute the posterior value and conduct VOI analysis when there is an opportunity to
perform snow measurements at the indicated locations.

4. (5) Suppose that the decision situation has less decision flexibility: the decision maker
is only allowed to adjust the uppermost dams in the river system, while the bottom ones
have to be lowered at this time (say, due to flood avoidance systems or for agricultural
use). Compute the prior value and the VOI of this decision situation.

7.2 Hands on: exploration of petroleum prospects

The reader is advised to go through Section 6.2 before starting on these hands-on projects,
as most exercises are extensions of what was discussed in that section.

7.2.1 Gotta get myself connected: Bayesian network example

For this project, you will need to download Kevin Murphy’s Bayesian Network Toolbox
(BNT) for MATLAB. This is available at http://code.google.com/p/bnt/. Additional code using
BNT is provided on the book website. Readers not familiar with BNT may wish to start with
a simpler BNT network project described in Section 7.5 before proceeding to this project.

Part I: small network

Consider the small network shown in Figure 7.3 with 12 nodes, of which 6 are segment
nodes, where a petroleum company is considering development. This network is used in
Martinelli et al. (2013a). The probability model is provided on the book website. The mar-
ginal probabilities for the three discrete classes (dry, gas, and oil) are displayed in Table 7.2,
along with the revenues (costs) for the dry, gas, and oil outcomes.

1. Use the code to compute the marginal probabilities and the expected values (intrinsic
values) shown in Table 7.2.

2. Assume that the decision maker drills the most profitable Segment 3 and finds oil.
Compute the conditional probabilities at all Segments 1, 2, 4, 5, and 6. What is now the
(second) most profitable segment? A myopic drilling strategy is based on sequential
alternatives using forward updating of conditional probabilities in this way. Assume
that the second well at the (conditional) second-best segment is dry. What is the next
alternative? Should the decision maker continue drilling?

3. Assume free selection of segments, and compute VOI (xK) for a single exploration
well. Which segment is most valuable?
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Table 7.2. Marginal probabilities and expected revenues for the six segments in the small
Bayesian network

Segment1 Segment2 Segment3 Segment4 Segment5 Segment 6

p(Dry) 0.2 0.1 0.8 0.3 0.15 0.34
p(Gas) 0.52 0.72 0.01 0.02 0.68 0.52
p(Oil) 0.28 0.18 0.19 0.68 0.17 0.14
Rev(Dry) =20 -25 -1 -15 =22 -8
Rev(Gas) 6 3 9 0 4 5
Rev(Oil) 3 1 6 7 2 1
E(Value) -0.04 -0.16 0.43 0.15 -0.25 0.05

Figure 7.3 A Bayesian network model with 12 nodes. The nodes marked 1-6 (gray) are the observable
nodes. They may represent petroleum fields.

Part II: North Sea network with 25 segments

1. Download and run the North Sea network. Compute the VOI of perfect information
at single-segment exploration wells and verify the results displayed in Figures 6.3-0,
Section 6.2.1.

2. Repeat the same exercise as in Step 1, but this time with uncertainty in the kitchen
variables. Assume that the kitchens generate gas with a probability of 0.8 and are

otherwise dry.
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3. Assume that one can only acquire imperfect information about the charge variable —

for example, from seismic data or analysis by basin and petroleum systems modeling.
Let the accuracy of the imperfect test be p(y i =klx; = k) =0.7. Compute the VOI of
partial imperfect information at single segments and compare with the results in Steps
1 and 2.

7.2.2 Basin street blues: basin modeling example

The petroleum exploration example with four Prospects TE, BE, TW, and BW in the
North Sea is presented in Section 6.2.2. It relies on basin and petroleum systems modeling
(BPSM) outputs to obtain the parameters of the network. If you have your own case with
BPSM runs, you can analyze that instead.

For most of this project, you will need to download Kevin Murphy’s BNT for MATLAB.

This is available at http://code.google.com/p/bnt/.

1.

Study the simulated 24 runs of BPSM with the different input conditions and accumu-
lations in Prospects TE and BE (Chapter 2, Table 2.1, or download this from the web-
site). Plot the results as a function of the various input parameters and use the design of
experiment and analysis of variance to study the effects of the input variables on each
output.

The learning of the network is based on clustering. Run the code (on the website) for
this model specification. You may try to modify and change the conditional probability
tables of the network and study the effect on the subsequent VOI analysis.

Use the established BN to reproduce the marginal and conditional probabilities, as well
as the VOI of perfect information at single prospects (Figures 6.14—17).

Assume that only imperfect information will be available at single prospects. Compare
the VOI of exploration at single wells when the accuracy of the imperfect test is
p(yj =klx; = k) =0.7 for a test. Compare with the VOI of perfect information.
Assume instead that the accuracy depends on the expected prospect size — i.e., the
volumes for the success outcomes displayed in Table 6.1. Larger accumulations are
easier to detect geophysically than smaller accumulations. One way to model this is to

Vol ;
exp 100
1+exp (VOI%O)

Compute the VOI of such imperfect tests at single prospects for different cost ranges.
Suppose that an exploration well provides perfect information about the reservoir, trap,

set accuracy to p(yj =klx; = k) =

and source attributes at single prospects. This will be more informative than just know-
ing the success, partial success, partial failure, or failure outcome at the leaf nodes.
Compute the VOI of this sort of perfect information at the reservoir, trap, and source
parent nodes to the leaf prospect variable. Compare the results.
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7.2.3 Risky business: petroleum prospect risking example

This exercise builds on the 524 volume scenarios at 27 prospects in the Viking Graben,
presented in Section 6.2.3. The data are based on basin modeling runs kindly provided to
us by @yvind Sylta and Migris (www.migris.no). For this project, you must download the
results from risking. If you have your own risked volumes over multiple prospects, you
may of course try a similar analysis for that case.

1. Consider Prospects 20 and 25, which were analyzed in Figure 6.21. Construct a kernel
density estimate for these bivariate data. (See the m-files for this example.) The ker-
nel density estimate can be represented on the grid of prospect volumes (or profits).
Visualize the density estimate.

2. Compute the VOI of single-prospect exploration as was done in Figure 6.22. Vary the
number of neighbors k and study the effect on the VOI.

3. Compute the VOI of single-prospect exploration wells using the kernel density esti-
mate for all pairs of variables. This approach builds on the results in Step 1, where
it is possible to approximate the conditional distributions by summing over the dis-
crete grid of profits at two prospects. Hence, each conditional expectation required for
the posterior value is now computed from the discretized conditional pdf on the cells
used for the kernel density estimate. Compare the results with that of the k-nearest
neighbors.

4. Compute the VOI of two exploration wells using the k-nearest neighbors for the two
prospects in the conditioning statement. Compare the VOI of the two exploration wells
with the VOI of single exploration wells.

7.3 Hands on: reservoir characterization from geophysical data

The hands-on projects in this section build on the examples in Section 6.3. The reader is
advised to go through that section before starting on these hands-on projects.

7.3.1 Black gold in a white plight: reservoir characterization example

The petroleum example with a MRF model and seismic amplitude—versus-offset (AVO)
data information was presented in Section 6.3.1. We start by modeling the seismic attrib-
utes from facies and predicting lithofacies from the current seismic data. Next, we conduct
VOI analysis for processed seismic AVO data. You will need to download the data set and
the MATLAB files from the website. If you have your own example, you may try this work-
flow for that case instead.

Part I: modeling and prediction from seismic amplitude versus offset data

1. Download the rock physics modeling associated with the hierarchical model in
Figure 7.4. Fix the lithofacies variable (facies and saturation variables) at the three
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Seismic AVO data Cap rock

- properties
e

Figure 7.4 A graphical model for reservoir variables and seismic reflection data. The facies and
saturation variables of main interest are connected to the seismic reflectivity data via rock physics
models represented by edges in the graph.

Reservoir variables

classes (oil sand, brine sand, and shale); generate realizations of porosity conditional
on the facies; generate elastic properties (P-wave velocity, S-wave velocity, and den-
sity) given the facies, saturation, and porosity; and finally generate seismic AVO data
given the elastic properties. Study the propagated uncertainty for the seismic AVO data
within each facies class. Plot the fitted Gaussian pdf from the multiple realizations.
Cross-plot the propagated synthetic seismic with the observed seismic AVO data (see
data file on website).

2. Consider the available seismic AVO data on the size 75 x 75 grid. (A part of this was
shown in Section 4.6.) Implement a Markov chain Monte Carlo sampler for posterior
assessment of the model for lithofacies, given the seismic AVO data. Use the like-
lihood model established from Step 1, as presented in Section 6.3.1. Use further a
MREF prior model for the lithofacies with spatial interaction 8= 0.75 for equal colors
(oil sand, brine sand, or shale). Study the convergence of the Markov chain Monte
Carlo sampler by plotting the fraction of different colors (x; =1,2,3) in the realiza-
tions. Classify the lithofacies at every cell based on the color that occurs most often
at that cell.

3. Repeat the exercise in Step 2, but this time condition only on the zero-offset attribute
of the seismic amplitude data. Compare this classification with both data.

4. Linear discriminant analysis: arg max, {(yi —p) 2 (y, - [.l,k)} is used to construct

the pointwise classifier at a site i into one of the classes k =1,2,3. Calculate and
draw the classification boundaries in the data space y; :(yilvyiz) of zero-offset
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reflectivity and AVO gradient. Apply this method to construct a pointwise classi-
fier that only integrates the data at that particular cell. This is equal to a model with
B =0. Compare classifications using both seismic AVO attributes.

Part I1: VOI analysis for seismic amplitude versus offset data

Consider the grid of size 20 x 5 that was studied in Section 6.3.1. The MRF prior model
is an Ising model with spatial interaction parameter §= 0.9 and an external field o, (x,-),
i=1..,100, x; =1,2,3. Use the forward—backward algorithm for Monte Carlo sampling
for the outer loop over data y as well as for analytical calculation of the marginal success
probability given data p(x,- =11 y). The code is available at the website. (Note that this VOI
analysis takes some time to run on the computer.)

1. Reproduce the marginal prior probabilities in Figure 6.26 and the VOI results in
Table 6.2 with a total seismic AVO test with both attributes. Compare the VOI results
with the one assuming independence —i.e., = 0 in the MRF prior.

2. Assume that the accuracy of the seismic data is much better so that the standard devia-
tions of the likelihood are half. Compute the VOI of this situation, with = 0.9 and
B = 0. Discuss the results.

7.3.2 Reservoir dogs: seismic and electromagnetic data example

The example with a Gaussian model for profits and seismic AVO data or electromagnetic
(EM) resistivity data was presented in Section 6.3.2. We start by rock physics modeling
for the seismic attributes and the EM resistivity given the saturation and porosity variables.
We then turn to VOI analysis. The project requires MATLAB and data files that are down-
loadable from the website. If you have your own example, you may try a similar workflow
for that case.

Part I: rock physics modeling

1. The rock physics model for the seismic data is based on a soft sand rock physics
model with parameters tuned from well logs and Gassmann’s fluid substitution. The
EM resistivity model is based on Archie’s law. Run the MATLAB forward models
provided on the website to study the expected data response as a function of saturation.
Make plots for different porosities.

2. Suppose that the porosity is fixed from seismic post-stack data, as in Section 6.3.2. Run
the code available online for this example to plot the expected seismic and resistivity
response as a function of the reservoir unit revenues (and profits). One version of this
plot is shown in Figure 6.29. Study the associated derivatives numerically and compare
the linearized model with the assumed nonlinear rock physics models.
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Fart II: VOI analysis for seismic and electromagnetic data

Compute the VOI of seismic AVO and EM resistivity data for fixed parameter settings
as indicated in the example and the associated code. Plot the VOI as a function of drill-
ing cost, but also vary the accuracy of the AVO data and the EM resistivity data and
study the effects.

Suppose that the EM resistivity data are only collected along the two center lines.
Compute the VOI of this partial information-gathering scheme and compare with total
testing.

What if it is not possible to freely select units in the grid? Instead, the decision maker
can only select blocks of variables. The grid is split into 25 disjoint blocks of size 5 x
5. The decision maker will select a block if the sum of expected revenues from the 25
cells in a block is larger than the sum of the costs. We first assume additive revenues
and costs. Compute the VOI of total seismic AVO and EM testing.

Decisions are made at blocks, as in Step 3, but now there are shared costs. If the block
is selected, there is only one common cost. Decrease this cost from 25 Cost to 0. Plot
the VOI results of total seismic AVO and EM testing.

7.4 Hands on: mine planning and safety

These projects pertain to the decision situations for mining and tunneling presented in
Section 6.4. The reader is advised to go through that section before starting on the exercises.

7.4.1 I love rock and ore: mining oxide grade example

These exercises require downloading a data set from the website and running and modify-
ing MATLAB files. Note that the data set has aspects similar to the real data but has been
modified for confidentiality reasons. Of course, if you have similar data of your own, you
may try the same exercises.

1.

Part I: data analysis

Cross-plot the available X-ray fluorescence (XRF) and X-ray meter (XMET) data and
plot each XRF and XMET along with the mineralization covariate. Tune model param-
eters for the regression parameter and the nugget effect from the XMET and XRF data.
(Note that the numbers here are different from the ones in Section 6.4.1 because we
have modified the original data set.)

Estimate the variogram from the XMET data. Assume an isotropic covariance model.
Use your established model from Steps 1 and 2, as well as the locations of data, to pre-
dict (by Kriging) the oxide grade at the selected blocks (download from the website).
Predict also the sum of oxide grades at these blocks and the associated variance.
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Fart II: VOI analysis

All blocks will be utilized if the aggregated value from all blocks exceeds the cost of
development. Use the Gaussian model to compute the analytical posterior value of
XMET data in all boreholes. Compute the VOI.

The planned data consist of 10 boreholes (of equal length and sampling intensity).
Suppose that we can collect XMET data in only one borehole. Which one is most valu-
able from a VOI perspective?

Do Exercises 1 and 2 with XRF data instead of XMET data and compare the results.

7.4.2 We will rock you: rock hazard example

The exercises are done in MATLAB, with the code available at the website. Note that the
data have been slightly modified for confidentiality reasons.

Part I: data analysis

Make a histogram of the joint frequency data. Compute the average of the data.
Compare the empirical results with the fitted Poisson distribution. without any hierarch-

ical spatial modeling. The Poisson distribution is p(y, = k)= %exp(—l), k=0,1,..,
and parameter A= y is the sample mean. '

The marginal likelihood for covariance parameters 6 can be written as fol-
p(x;0)p(y1x)
p(x1y:8)
form and show how an iterative optimization of the posterior would proceed. Use the

MATLAB code to optimize the Laplace approximation of the marginal likelihood.

lows: p( y;G) = . Expand the numerator in an exponential quadratic

Part II: VOI analysis

Use the analytic forms for the prior and posterior values to conduct VOI analysis for
full samples and subsample the joint frequency borehole data to only every second or
fourth sample. Discuss the results.

Perform VOI analysis for individual boreholes. Assume a fixed price for drilling per
meter. Study which borehole is the most valuable for acquiring joint frequency data.
Instead of the joint counts, one can imagine getting direct measurements of the log
joint intensity x(s) at selected sites, possibly through geophysical testing. Assume
imperfect measurements of the log intensity at all rock hazard sites of interest,
y(sj) = x(sj)+N(0, 72), j=1,...,N. Study the effect of accuracy 7 and compare with
the joint counts in Steps 1 and 2.

7.5 Hands on: groundwater management

This example considers decisions about groundwater recharge and was described in
Section 6.5. The reader is advised to go through that section before starting on these
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exercises. We split the hands-on project into two parts: the first uses Netica software; the
second uses the BNT.

7.5.1 Part I: salt water wells in my eyes — groundwater monitoring in Netica

We will describe how to use the software Netica (obtainable from www.norsys.com) to
build and solve the influence diagrams. The free download version running in the limited
mode will suffice for this example. After downloading and extracting, double-click on the
Netica icon to start. From the File menu, start a new network. (Alternatively, you can
download the pre-built network from the website for the book.) In Netica, nodes represent-
ing uncertainty or chance nodes are called “nature” nodes. In addition, there are decision
nodes, utility (or value) nodes, and deterministic or constant nodes. Add a nature node to
the new network representing the geological uncertainty.

By right-clicking and going to the properties of this nature node, fill out the
name (“Channels,” say) and the three states (“MixedChannels,” “NEChannels,” and
“SEChannels”). Do not assign any numeric vales to the three discrete states. In the table
for this node (right-click), assign the prior probabilities for each geological scenario.
Add a decision node (“Recharge”) with four states (“NoRecharge,” “CentralRecharge,”
“NorthRecharge,” and “SouthRecharge”) and finally a utility (“Value”) node. Connect
the “Channels” node and “Recharge” node to the “Value” node by arrows as shown in
Figure 6.40. Fill in the table for the “Value” node as shown in Table 6.5.

1. The prior value or expected utility is obtained by selecting “compile” and “optimize
decisions” from the “Network™ menu at the top. If “compile” is grayed out, it indicates
that the network has already been compiled. Netica solves the network by internally
building a junction tree for fast inference. The expected utility is reported in the mes-
sages window to be 12.47, and the optimal decision is “NoRecharge.” You may need
to bring up the message window to see the computed expected utility. The value with
perfect information can be calculated by first adding a link from the “Channels” node
to the decision node. This link indicates that the uncertain factor will be known before
the decision. Optimizing the decision will result in 12.8 as the expected utility, repre-
senting the posterior value with perfect information.

2. Letus add a node (chance or “nature” node in Netica language) for the transient elec-
tromagnetic method (TEM) data to our original influence diagram. This network is
shown in Figure 6.41. Fill in the reliabilities. Select “optimize decisions” from the
“Network” menu at the top. The expected utility (12.78) is close to the value with
perfect information (12.8) obtained earlier. If we change the table to represent perfect
information (“1” on the diagonal and “0” elsewhere), we get back 12.8 as the expected
utility. The value with imperfect information is 12.78, so the value of this imperfect
information is 12.78 — 12.47 = 0.31.

3. A different mode of electromagnetic survey, a land-based survey, has coarser spacing
and hence lower resolution. The reliability is as shown in Table 7.3.
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Table 7.3. Reliability measure for the land-based electromagnetic survey

Interpretation of Interpretation of Interpretation of
Channels Northeast Mixed Southeast
Northeast Channels 0.6 0.35 0.05
Mixed Channels 0.2 0.6 0.2
Southeast Channels 0.05 0.35 0.6

On average, the three different channel scenarios are correctly identified about 60% of
the time. The northeast channels are not very likely to be misinterpreted as southeast
channels (only 5% of the time), and vice versa, but the northeast and southeast chan-
nels can be misinterpreted as mixed channels 35% of the time. This survey is somewhat
cheaper, but is this any good? How much should the decision maker be willing to pay
to purchase this information?

Compute the VOI for the groundwater example when the three different channel sce-
narios have unequal prior probabilities: [0.15, 0.15, 0.70]. Compute both the value of
perfect information and the value of imperfect EM data with different reliability.

7.5.2  Part II: salt water wells in my eyes — groundwater monitoring in BNT

In this example, we will use influence diagrams in MATLAB to solve the same ground-
water recharge case as in Section 7.5.1. You will need to download the BNT for MATLAB
written by Kevin Murphy. This is available at http://code.google.com/p/bnt/.

1.

After installing BNT, use the help documentation and familiarize yourself with the
basic BNT functions for creating simple Bayes’ nets and influence diagrams.

Create a three-node graph with nodes “geology,” “recharge” and “value,” where both
“geology” and “recharge” are parents of “value.” Define the number of states for each
node: three states for “geology,” four for “recharge,” and one for “value.” Use the
description from the previous exercise or from Section 6.5 to name the states. You can
also follow along with the associated m-file on the book website. Using this graph as
an input to the “mk_limid” BNT function, create an influence diagram with “geology”
as a “chance” node, “recharge” as a “decision” node, and “value” as a “utility”’ node.
Assign the probability tables for the geology node using “tabular_CPD.” Start with
equal probabilities for all three geological scenarios. Assign the table for the value
node using “tabular_utility_node.” Be careful about the ordering of the value num-
bers from Table 6.5. The values for node numbered 1 (“geology”) cycles uncertain
outcomes first, followed by the different recharge alternatives. Thus, the ordering of
the values in the table correspond to: (geology_scenario_1, recharge_1), (geology_
scenario_2, recharge_1), ... ,(geology_scenario_n, recharge_1), (geology_scenario_1,
recharge_2), and so on. Assign uniform initial policies using “tabular_decision_node.”
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Next, set up the junction tree inference engine (“jtree_limid_inf_engine”), and solve
the influence diagram (“solve_limid”) to get the prior value (maximum expected util-
ity) and the optimal strategy (“strategy” function). Is this consistent with the calcula-
tions using the Netica influence diagram and the decision tree in Section 6.5?
Compute the value with perfect information. Add an arc from “geology” to “recharge,”
and re-solve the influence diagram.

Compute the value with imperfect EM information. Add another “chance” node, “tem,”
to the graph. (In the MATLAB m-file, the “tem” node is numbered 2). This represents
the imperfect EM data and will have three states (“interpMixed,” “interpNE,” and
“interpSE”). Add arcs from “geology” to “tem” and from “tem” to “recharge.” Assign
the CPD tables for the “tem” node using information given in Section 6.5. Solve the
influence diagram for the posterior value and, finally, get the value of imperfect infor-
mation. Compute the VOI for both high-resolution and low-resolution (land-based)
EM data.

Assign unequal prior probabilities to the geological scenarios with more probability
for the “SEchannels” scenario, and study the trade-offs between these prior geological
probabilities and the reliability of the EM data.
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Appendix: selected statistical models and
sampling methods

The first five sections (Appendices A.1-5) provide further mathematical descriptions of
statistical models that are used in the book. The final section (Appendix B) presents a var-
iety of sampling methods.

Appendix A.1: Gaussian distribution

The multivariate Gaussian model is fundamental in statistics. We present some proper-
ties of the Gaussian distribution; consult, e.g., Mardia et al. (1980), Anderson (2003), or
Johnson and Wichern (2012) for more detailed discussions.

A.1.1 Definition and properties

The Gaussian pdf for random variable x = (xl,...,xn ), viewed as an n X 1 vector, with model
parameters i and X is

— — 1 -1/2 _l Y1y —
p(x)—N(/,L,Z’.)—(271_)n/2 Izl exp( 2(x p) = (x /.t)), (A.1)

with continuous sample space —eo < x; < oo, i = 1,...,n. The distribution is recognized by
the exponent of a quadratic form in x. The normalizing constant in front of the exponent
ensures that _[p(x)dx =1

Joint and marginal probabilities

For the Gaussian distribution:

ul 2‘1] 212 1n
2, X . X

E(x)=p=|""|. var(x)=z=|"" = . (A.2)
/J'n an ZnZ Z:nn

The marginal pdf p(x,)= N(y;,%;) and Cov(xi,xj) =3

331
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Conditioning

Let K be a subset of the indices {1,...,n}. The marginal pdf of block variable xj is
p(xK) =N (/.LK,ZK ), where we pick entries identified by K in the mean vector and in the
rows and columns of the covariance matrix.

X
If we split the random vector into two blocks, x :( H‘J, with mean g = (”LJ and
X My

Z]L 2]L]K

covariance structure X = ( ) the conditional pdf of x; given xy is also Gaussian

KL K
and has the mean and covariance matrix

M=y +Zp Zf! (-’CK —Hg )’

. (A.3)
T =2 —Z T gy

The conditional covariance structure can be recognized from the inverse covariance
matrix @ = Z!, sometimes called the precision matrix. Assuming the same block structure

0= (QQ]:]L QQL]: ), then

pto 1) plx) = exp 3 (x ) 0(x- )
(A.4)

wexp( 4 =) 0 (5 =) (3 =) Qo))

From the quadratic form in the exponent, p(x; | xx)=N ([.l]L -00'0.x (x]K - Uk ),Q]g1 )
The block entries in the precision matrix are defined via Q% = I-1i.e.,

0.2 +0, 2y =1, 0. Z X =0,
0 Zx+0xZx =0, O (Z]L _ZLKEEEKL) =1,

and we can identify terms in Equation (A.3).
For a single variable, this means that the full conditional mean and variance equal

E(x, X)) =, — iz 0 (x;—1;)  Var(x1x,)= = (A.6)
Oy j#i O

These full conditional calculations can sometimes be simplified by imposing conditional
independence. This is represented by O entries in the precision matrix @, giving a sparse
structure. Instead of summing over all j # i, only the modeled non-zero entries take part
in Equation (A.6). This sparse structure of the precision matrix relies on conditional inde-
pendencies modeled by the Markov property. This is critical for graphical representations,
where sparseness facilitates modeling and interpretation — see, e.g., Whittaker (1990) and
Meinshausen and Buhlmann (2006). Special cases include time series models (Brockwell
and Davis 2009) and Gaussian Markov random fields (MRFs) (Rue and Held 2005). The
literature on sparse matrix computation is enormous because it plays a prominent role in
numerical analysis. For instance, a finite difference approximation to a differential equa-
tion involves solving sparse linear systems Qx = g. Having a sparse structure is also key

(A5)
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to the success of iterative solvers of large linear systems such as conjugate gradients — see,
e.g., Golub and van Loan (1996).

Linear transformations

A transformation y = Fx + b, for a size m X n fixed matrix F and known length m vector b,
has Gaussian pdf p( y) =N (F u+b,FXF' ) In particular, a Gaussian variable can always
be transformed to independent zero-mean and unit-variance variables z = (z1 ,...,zn) by set-
ting F = L''and b= —L'u as follows:

z=y=L"(x-p), x=p+Llz LL=X. (A7)

The result can be derived from the transformation formula of random variables:

1/2

r=x(@)=urle. J(x(z)=ILl=[5",

1 1 o 2\ (AS8)
p(z)=lJ (x(z)) lp.(x(2)= Wexp(—gztz) = [1[ om exp(—%).

The matrix L is called the Cholesky factorization of the covariance matrix X. It is a lower
triangular matrix —i.e., it has O entries in the upper right triangle.

This important transformation in Equation (A.7) ensures that many computations for
dependent normal distributed random variables can build on known results about independ-
ent univariate variables. As an example, consider the probability that the random vector
falls within distance unit 1 from the mean, as defined by the covariance ellipsoid —i.e.,

P(‘(x - p) = (x-p) < 1) = [ px)d~ (A9)

‘(xfu)’ = (x—u)‘d
The computation is straightforward once we transform to independent variables. It trans-

lates to the sum of squared independent standard normal variables 2 z? <1, and this is dir-
i=1
ectly available from the chi-square distribution since sz is chi-square distributed with
i=1
n degrees of freedom. Note that the probability of outcomes within the circle decreases
quickly as a function of the dimension n (Table A.1). The chance of a sample close to the

Table A.1. Probability of having standard normal samples within the unit circle and the
unit square displayed as a function of the variable dimension

Dimension of Variable 1 2 3 4 5 10 20

p(‘(x—u)’):-l(x—u)‘g) 068 039 020 009 004 00002 2e-10

Hp(—1<z,,.<1) 068 046 031 021 0.14 002  4de4
i=1
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mean gets extremely small in high dimensions as it is always in the tail of the distribution.
The probability of all independent variables occurring within the unit square is also dis-
played in Table A.1.

Consider also the linear transformation y = Fx +e, where p(e)=N(0,T) and x and e
are independent. The pdf of y is p(y) = N (Fp,FZF" +T). The joint distribution of x and

. S H . z IF"
y is Gaussian with mean and covariance
Fp FX FXFT"+T

bution of x given y is also Gaussian with mean and variance:

]. The conditional distri-

L, =H+EFT (FEFT +T) (y-Fp),

B (A.10)
2,,=X-XF7(FXF"+T) FX.

Parameter estimation
For multiple data sets of x!,..., x5, the empirical mean and covariance estimates are
B

be, 3=

b=1

L= N (x - ) (x -4 (A.11)
b=1

|-
S

Suppose instead that the mean is modeled by u= HP, where the size nx k matrix H
consists of known explanatory variables and that B is a length k vector of fixed but unknown
regression parameters. If the data contain total perfect information y = x and the prior
covariance X is known, the maximum likelihood estimator (MLE) of the regression param-
eter B equals that of the weighted least-squares estimate:

B=(H'Z'H) H'Ex. (A.12)

If the covariance matrix is X = 0?1, this simplifies to the ordinary least-squares
B= (H’H)_1 H'x . An estimate of the noise level is 6% = %(x—Hﬁ)’ (x—Hﬁ). This esti-
mate is asymptotically unbiased, but for a finite sample we may use n — k in the denomin-

ator instead to achieve an unbiased variance estimate.
Assume that we have imperfect information y = ( Viseors ym) and the model is

p(x)=N(HB.Z),  p(ylx)=N(FxT). (A.13)

The marginal likelihood of the data is p(y) = N(Gﬁ,C) forG=FH andC=FZF" +T.
The log-likelihood as a function of § and unknown fixed nuisance parameters 6 in the prior
covariance matrix X = X (9), and/or the likelihood noise matrix T =T (9), becomes

1(6,B) = —%log(Zn') —%log ICI —%(y— Gp) C' (y-Gp). (A.14)
The MLEs of B and 6 are obtained by

(B,é) = argmax {1(6,8)}. (A.15)
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For fixed 0, the MLE of B is analytically available. We have
dl A -
d_,B =G'Cly-G'C'GB= 0, B=P(y0)= (G’C*‘G) 1 G'Cy. (A.16)

A direct calculation shows that Var([i') = (G’C‘IG)_I.

Treating the regression parameter B as fixed, the MLE of nuisance parameters 6 can be
obtained by numerical maximization. Set z = y — G, and let Q = C~'. Denote a component
of 8 by 8,, r=1,...,d. (In our setting of Chapter 4, the components are prior variance 62,
correlation decay 1, nugget 72, and d = 3.) The first derivative (score) of the log-likelihood
in Equation (A.14) with respect to element 8, becomes

di 1 dC 1 dC
d_ 1, 41109 o A7
262 race(Q d@,] 57 Qa’@, Qz (A.17)
dlog | Cl dC ) dz'C'z dC
h h d— = { —, — - .
where we have use 40, race(Q dG,J 20, /4 (Q 70 Q)z
The expected Hessian is
d?l 1 dC _dC
E =——t —Q—, A.18
(de,de,,) 2 race(Q 46, Qd@,] (A8

where we used E(z’Ez) = trace (EVar(z)), assuming E(z’) =0.

Algorithm: the iterative Fisher scoring algorithm for obtaining
the MLE of 8 and 6

Initiate °, 8° by least-squares estimation and empirical variograms or other approaches.
Iterate for b = 0,1,..., until convergence:

c=cC(6”)

ﬁb+l = Bb+1(y;e) = [GtC—lG]—thC—ly,

z= y _ Gﬂb+l

Q = C_I’Ct S

=4 == ace(QC)+ 5 2QCQ 1= led

r

d’l 1 B -
Vit = E(de,de,,] = —Etrace(Qc,Qc,,), rr’=1,...d.

6" = 6"+ V-u.

b=b+1.
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It is convenient to parameterize the model such that 8, is on the real line. Asymptotically,
as the number of data n — o, the MLEs are unbiased and Gaussian distributed with vari-

27\! 27\
ance obtained from the inverse Hessian £ (%) and E (j—ﬁi) = (G’ C“G)_l. The speed
of convergence to this asymptotic result also depends on the design of experiment as well
as the true model parameters.

Note that these derivations are for fixed parametric covariance structure such as in spa-
tial covariance models. In a graphical model with an unknown conditional independence
structure, there have been several attempts trying to specify the conditional independence
structure from data. This is more difficult than estimating the parametric covariance matrix.
If the non-zero structure cannot be specified by auxiliary data or expert opinion, it is pos-
sible to try novel techniques for sparse estimation — see, e.g., Meinshausen and Buhlmann
(2006), Friedman et al. (2009), and Khare et al. (2015).

Sampling
There are several ways to sample random Gaussian vectors. The preferred approach

depends on the situation, especially on the structure of the covariance matrix. We present a
common method based on Cholesky factorization of the covariance matrix.

Algorithm: sampling from p(x) = N(u, %)

1. Find the Cholesky factorization £= LL' of the variance—covariance matrix.
2. Sample independent standard Gaussian variables z; from N (0,1), i=1,..,n.
3. Setx=pu+Lz.

The method relies on sampling independent standard Gaussian variables, which is a
built-in routine in most software (see Appendix B).

Alternative approaches rely on different decompositions of the covariance structure — for
instance, the eigendecomposition of £ — see, e.g., Gray (2006). If the covariance matrix
can be embedded in a circulant matrix, methods from the spectral domain are immediately
applicable. In spatial applications, this can often be achieved by using a regular grid and
wrapping the grid around to form a torus. Under stationarity assumptions, the covariance
matrix is then fully defined by the covariance from one point to all the others (length n, not
n(n - 1) /2) . The discrete Fourier transform of the resulting matrix and the inverse Fourier
transform of the equal size matrix of independent variables give a realization of the random
field with the specified covariance structure in X — see, e.g., Chan and Wood (1997). The
posterior is likely not stationary, but it may be possible to re-use unconditional samples.

If the precision matrix is sparse, it is more efficient to use the Cholesky factorization of
Q = X-'instead of the covariance matrix X. The Cholesky factor of the precision matrix is
not as sparse as the precision matrix, but the fill-in is rather small for many models (Rue
and Held 2005).
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Assume again the Gaussian hierarchical model for imperfect information — i.e., a prior
pdf p(x)=N(u.Z) and a likelihood model p(y | x) = N (Fx,T). Conditional samples can
be drawn directly based on the Cholesky factor of the conditional covariance matrix in
Equation (A.10). Alternatively, samples can be generated as follows, re-using the uncondi-
tional samples as in the following algorithm.

Algorithm: sampling conditional Gaussian samples given linear Gaussian data y

1. Draw an unconditional sample x from p(x) =N (/,L,E).
2. Sample a noise term e from p(e) = N(0,T).
3. Set a conditional sample x = x +ZF’ (FEF’ W T)_1 (y +e— Fx).

A direct calculation shows that the mean and covariance of the expression in Step 3
match those in Equation (A.10). This conditional sampling method is particularly useful if
the dimension of the data m is small relative to the dimension n of the distinction of interest.
If the size of data is large, the inverse in Step 3 may be time consuming. Again, it is possible
to factorize the matrices in different ways.

In the context of geostatistical simulations, drawing from a multivariate Gaussian dis-
tribution can be done sequentially using the chain rule of probability distributions. This is
the so-called sequential Gaussian simulation (SGSIM) algorithm described in Chapter 4.

A.1.2 Decision analysis and VOI results

We show analytic results for computing the posterior value for Gaussian linear models. The
following result is a known property of the Gaussian distribution, see e.g. Schlaiffer (1959)
and Bickel (2008). For a Gaussian variable w with mean m and variance r:

E(max {O,W}) = jmax{w,O} p(w)dw = pr(w)dw = I/(m +rz)9(z)dz

=m [ o(z)dztr | z¢(z)dz=m(l—cb(—'%))Hq)(—'%) (A.19)

2

1 =
e 2 dx,and its

V2n

Z
where the cumulative distribution of the standard Gaussian is ®(z) = J

72

| - . . . w—m
om e 2. The solution uses a transformation of variables z = )
2n r

2 2
standard normal integral expressions. It further uses I zexp (— %) dz = —exp (— %) + const

pdf is (b(z) = to get

as well as symmetry properties of ¢(z) and @(z).
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Similar results hold for an exponential utility function — see, e.g., Bickel (2008). Consider
utility function u(w) = 1—exp(—yw). Then

J.exp(—yw)p(w)dw = Jexp(—yw) \/21_7tr exp(—%] dw

2
_J‘ exp(_ 2 +M_m_2]dw
2mr ?

22 r 2r? (A.20)
2 2 2 2 a2\ '
~exp (m—yr2)’ _m J 1 exp _W_+w(m yr )_(m yr) "
2r? 2r? \/ﬁr 2r? r? 2r?
242
= exp(—m)/-f- yzr ),

where we expanded the Gaussian quadratic form to get the integral over the N (m —yr? ,rz)
pdf. The certain equivalents in Section 3.2 are computed by the inverse utility function of

. . . -1 y2r? yr?
this integral solution — i.e., CE = —Ilog| | —1+exp| —ym+ 2 =m — 5 For VOI
Y

computations, related expressions exist, but the integrals are incomplete —i.e.,

(w)dw = exp( my+%)(l—¢(MD. (A.21)

See Bickel (2008) for details regarding VOI calculations for exponential utility
functions.

Assuming again a risk-neutral decision maker, we next show analytical expressions for
the two-action decision situation and decoupling of the value function. We assume that
the distinction of interest x are profits with prior pdf p(x)=N(p,%) and that informa-
tion is obtained by a linear model y = Fx +e, p(e) =N (0, T ) The marginal distribution of
datais p(y)=N(Fu,FZF" +T).

The conditional mean E(x I y) =U,, =U+IFT (FEFT + T)_1 (y —Fu) depends lin-
early on the random data. The distribution of u,,, is thus Gaussian with

Q‘—'X

E (I"'xly ) =N’

. (A22)
Var(p,,)=XF" (FEF" +T) FZ=R.

In the situation with low decision flexibility (select all sites or none), we have the
posterior value

PoV(y)= jmax {O,E(gx,. | y]}p(y)dy = jmax{o,w(y)}p(y)dy, (A.23)

where the expected profitsw = w ( y) =F (Z x; | y) has a pdf derived from Equation (A.22):

i=1
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n n

pw) =N (1,.72), M= Wi 12 Ry. (A.24)
i=1

k=1 I=1
The integral in Equation (A.23) is multivariate, but the only variable that matters is
the linear combination of the data — i.e., w= E(z x; | y), which takes part within the
i=1
maximum. As a consequence, we can integrate over the univariate distribution of w.
Mathematically, we do a transformation of variables and integrate over (w, w,) instead of y.
The second component w_ contains m — 1 dimensions of the data that are independent of w.
Since the variable w_ is not involved in the maximization, it integrates out. We get

PV (y)= | max{O,E(izn}xi | yJ} p(y)dy = [max {0.w} p(w)dw,  (A25)

and the solution is similar to that in Equation (A.19). From Equation (A.24) we get

PoV(y)= j max {OE(Z x| y)} p(y)dy = qu>(“/rw )+ w(“w " ) (A.26)

For the case with high spatial flexibility (select any site) and a decoupled value function,

PoV(y) = gjmax {O,E(x,- | y)}p(y)dy = gjmax{o,w,- (y)}p(y)dy, (A.27)

where the expected profits are E(x; | y) =w, () = w,, with Gaussian pdf p(w,) = N (u,,7?),
where r? = R, are the diagonal elements of matrix R in Equation (A.22). Again, the integrals
are multivariate over the entire sample space of data y, but in each integral only the linear
combination of data is relevant for the maximization. We get

PoV(y)= gjmax{O,E(x,- Iy)}p(y)dy= gj.max{o,wi}p(w,-)dwi, (A.28)

and using the closed-form solution in Equation (A.19) and the parameters in Equation (A.22):

PoV (y)= ZI max {0, (x; 1 y)} p(v)dy = z(m(ﬁ% )+ r¢(’% )) (A.29)

Appendix A.2: Generalized linear models

A.2.1 Definition and properties

Generalized linear models (GLMs) are very popular in statistics, and we list some proper-
ties of GLMs that are directly useful for this book. Excellent textbooks on GLMs include
McCullagh and Nelder (1989) and Dobson and Barnett (2008). Extensive content related
to these models is available in Demidenko (2004).
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Table A.2. The pdf of the binomial with n,,, trials and success probability p and the
Poisson distribution with intensity . For the binomial distribution, the probability
of success depends on the latent variable via a logistic transform. For the Poisson
distribution, the intensity depends on the latent variable via a log transform

Probability Mass Function (pdf) Link
_— Myt ! — exp(x)
Binomial =k)=—"___ pk(]- ", k=01, tria =—
py=4) (s —K)1K1 T (1-7) Tt P Y exp(x)
k
Poisson p(y:k):%exp(—/l), k=0,1,.. A =exp(x)

Table A.2 gives the univariate pdfs of the Poisson and binomial distributions. They are
the two most common distributions for discrete response GLMs. The rightmost column
shows the link functions, where the variable x is on the real line. Here, the inverse link
functions are logistic and log variables.

Joint model

Assume that we have data y = (yl,...,yn) and possibly some known covariates, organ-
ized in matrix H, as in Appendix A.l. In a hierarchical framework, we regress the
latent variable x = (x;,...,x,) on the covariates. We set p(x)=N(u,Z), where p = Hp
and X = 2(9) as in Appendix A.l1. We assume that the data are conditionally independ-
ent p(y; ly_,x)=p(y; 1 x;),i=1...,n.

A GLM is straightforward to simulate based on the Gaussian model and the
likelihood.

Algorithm: sampling from a GLM

1. Draw a random Gaussian sample x from pdf p(x) =N (u,E).
2. Foreachi=1,...,n, sample y; using the conditional independence
likelihood p(y; 1 x;) .

Conditioning

The posterior pdf p (x I y) is not available in closed form but can be approximated in vari-
ous ways. Maximization of the posterior is identical to

X = argmax, {p(y I x)p(x)}. (A.30)
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Denote by Z-! +D the negative Hessian (second derivatives) of log(p( ylx) p(x))
evaluated at the posterior mode x. Because of the conditional independence, the matrix
D is diagonal. Straightforward differentiation of the form in Table A.2 gives the i-th
element ﬁ = exp( ) for the Poisson model. The binomial exponent is available from

Table A.2; log ((Lalk‘)'k') + kx —n,,;, log (1 +exp (x)), and differentiation results
Nyt — s
trlalexp( )

1+ exp( ,.) '
A Gaussian approximation to the posterior has the mean and covariance matrix

inD,;; =

E(x1y)=%, Var(x1y)= (2,1+I3)-" (A31)

Assume that the goal is to predict x; = x(soyj) at a site s, ;. We let E(xj)z U;.and
Var(xj) =07, and X, . denotes the covariance between x; and x. By the Gaussian proper-
ties from Equation (A.3),

K; = E(xj Ix)=,uj +2,. 27 (x—p),

A.32
&= Var(xj Ix) =0; X, Z7'Z}.. ¢ )

Moreover, we can approximate the conditional distribution given data y by the Laplace
approximation — see, e.g., Evangelou and Zhu (2012):

v, = E(xj Iy)z,uj+2j,*2‘1(f—u),

I (A33)
= Var(xj Iy)z o’ —Ejy*(2+D 1) D

Note the similarity with the Gaussian case in Equation (A.10) and the differences in the
matrix inverse expressions.

Parameter estimation

The estimation of unknown regression parameters B and covariance parameters 6 can be
done via the Laplace approximation of the marginal likelihood. From Bayes’ formula and
the Gaussian approximation, this is defined by

. . p(yix)p JAC p(ylx)p
R 7 J
where the denominator is the Gaussian approximation to the posterior defined by

Equation (A.31), while the numerator is defined by the model.
The maximum likelihood estimate (MLE) must be computed numerically.
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Algorithm: maximum likelihood estimation by the Laplace approximation

Initiate °, 6° by least-squares estimation and empirical variograms or other approaches.
Iterate for b = 0,1,... until convergence:

Compute log p(yB*.0").

Approximate the derivatives U and the Hessian V of the approximate log-likelihood.
. (ﬁbﬂ’ebﬂ) — (Bb,eb) +V-u.

. b=b+1.

B

The algorithm may overshoot, and it could be wise to apply more robust updating meth-
ods, especially in the beginning of the iterative optimization scheme.

A.2.2 Decision analysis and VOI results

We derive the approximate VOI computations for the spatial GLM with Poisson likelihood.
Suppose that we have the situation with a free selection of sites j = 1,..., N with two alterna-
tives at each site. Using generic notation with a log intensity x;, revenues denoted Rev per
random event at a site, and fixed costs denoted Cost, the prior value can be written

PV = i max{O, Rev- E(exp(xj )) — Cost}. (A.35)
j=1

The setting is the same for minimizing expenses (maximizing negative expenses) and
maximizing profits. For the situation described in Section 6.4.2, the value of Rev is tied to
expenses associated with random rock fall when we choose the alternative of not adding
rock support. Rock fall is again connected with the random number of joints with log inten-
sity x ;- (Here, we assume that unit volume v, = 1; otherwise, the expected counts become
V,E(exp(x;)).) The value of Cost is the expenses associated with the alternative of adding
support with a non-random outcome. If we subtract the fixed Cost for both alternatives, we
get the formula in Equation (A.35).

From the Gaussian modeling assumptions,

2
E(exp(x,))= | L_exp o) + 3599 | g

270> 203 o}

, (A.36)
=e +O-—J2 J ! e ——(Xj_(ﬂj+o-jz)) de. =e +O——’2
“EPE T ) e 207 Sl AN

which can be inserted in Equation (A.35).
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For the posterior value, we can have partial or total sampling given data y, which are
Poisson distributed, given the intensity of counts x. Recall that the mean and variance
in Equation (A.33) depend on y only through x. The asymptotic distribution of X is the
Gaussian with mean g and variance

R=ZE (s+D) = (A37)

The diagonal entries of this matrix are denoted r/, j=1,...,N. Notice the similarity
between this result and that for the Gaussian models in Equation (A.22). For the Poisson
model bﬁl =¢7Y, s0 E;Cﬁ.;,l =Mt "2 which depends on R itself. We can use iterative
updates to get R (Evangelou and Eidsvik 2015).

The posterior value is

PoV(y)= i max{O, Rev- E(exp(xj) I y) - Cost}p (y)dy

Jj=1
2

ijmax 0,Rev-ex £-+é —Cost (JAc)dfc
, ) P X/ > P\Xj J

Jj=1

U

~ le exp(%)Rev ]i exp(fcj)p(fcj )d)?,- - COStI p(fcj )d)%,« (A.38)

j

I I

e. —.—r? e. —Uu.
~Rev-exp(u; +& /247 /2)¢(L)—CW~¢[’—”'),
where e; = (log(Cost /Rev) — &2 /2), with §; defined in Equation (A.32).
The VOI is the difference between the posterior and prior values. Because of the approx-
imations done, this is not necessarily always positive. To ensure positive VOI, we can apply

double expectation E (E (exp(x) I y)) and use the Laplace approximation on the expression
for the prior value as well. This gives

N g
PV = Zmax 0,Rev- exp(ﬂj +7’+é)—C0st . (A.39)
=1

With these established analytical results, it is possible to conduct VOI analysis without
Monte Carlo approximations.

Appendix A.3: Markov chains and hidden Markov models

A.3.1 Definition and properties

There is an enormous body of literature on Markov chains and stochastic processes — see,
e.g., Taylor and Karlin (1994) or Lawler (2006) — and on hidden Markov models - see, e.g.,
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MacDonald and Zucchini (1997). Again, our focus is on providing more background for
the results used in this book.

Denote the random variable by x; € {1,...,d}, i=1,...,n. In the simplest case, there are
only two discrete states: d = 2. The modeling is based on an ordering in the variables so
that x;_, is before x; in some sense. Sometimes this might be an obvious temporal ordering.
A Markov chain is defined by conditional probabilities and by reducing the conditioning
from all previous variables to only a subset of the nearest or most recent variables. A lag r,
or order r, Markov chain is defined by

p(x,=11x_,x)=p(x, =lx_x,), [=1..4d. (A.40)
For a first-order Markov chain
p(x,- =l|xi_1,...,x1)=p(xi =l|xi_l), l=1,..,d. (A41)

We focus on this first-order Markov chain, but the models and methods easily generalize
to the r-th order.

Joint and marginal probabilities

The joint pdf for all variables x = (xl,xz,. . .,xn) in a first-order Markov chain is

=p(x)[Tp(x1x). (A42)

where the initial state has pdf p(x, ).
Marginal probabilities are obtained by recursively summing out the previous variables
d
a=1)= Zp k) p(xyy =11x;,=k), [=l..d, i=l.,n—1. (A43)
k=1
Time invariance or time homogeneity entails that the conditional probabilities do not
depend on the location or time step i —i.e., p(x;,; =/ | x; = k) = P(k,l). These one-step con-
ditional probabilities can be organized in a size d X d Markov transition matrix

P(L1) P(L2) .. P(Ld)
P(21) P(22) .. P(z’d)’ (A.44)
P Pldd)

d
where ZP(k,l) =1 for all k =1,...,d. Time-invariant transition probabilities are conveni-
=1
ent because of easy interpretation and the parsimonious structure with just a few unknown
parameters to specify.
In this situation, the conditional distribution over many time steps is defined by multiply-
ing the transition matrix many times — i.e., P~/ = P-...- P holds the i — j step conditional
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probabilities p(xi =klx; = l), k,l=1,...,d. Regular Markov chains are characterized by
the possibility to reach every state, so all entries in P~/ are strictly positive. This is not
obvious in general since some states may be absorbing states. For a formal discussion, see,
e.g., Taylor and Karlin (1994) or one of the other textbooks.

If the distribution for the initial state p (xl ) is defined directly from the distribution asso-
ciated with the transition matrix P, the marginal probabilities in Equation (A.43) are the

same for every location or time step — i.e., p(x,,, =1)= p(x; =) for all [ =1,...,d. This
d

stationary distribution satisfies p(x,,, =)= z p(x; = k)P(k,l) for any /. In vector matrix
k=1

d

form p=pP, p= (p(x,- =1),....,plx; = d)), and Zp(x,- = k) =1. The stationary distribu-
k=1

tion is an eigenvector of the transition matrix P with an eigenvalue of 1. The stationary dis-

tribution will coincide with the limiting distribution defined from lim,_,_ P’ under certain

regularity conditions (see, e.g., Gamerman and Lopes (2006)). This means that no matter

where we initiate the Markov chain, it will converge to the stationary distribution.

Sampling from a Markov chain

To sample a realization x from a first-order Markov chain, we directly use the model.

Algorithm: sampling a first-order Markov chain

1. Draw an initial state x; from (stationary distribution) p()cl )
2. Fori=1,..,n—1, sample x;,, fromp()ci+1 [ x; )

The class is picked by drawing uniform numbers and comparing the uniform random
variables with the transition probabilities (see Appendix B).

Conditioning

As we indicated earlier, the forward conditioning over multiple time steps is defined by
Pi=J = P-...- P, which equals the following recursive calculation fori = j+1,...,n:

Ma.

p(xi=k|xj=l)=ip(xi=k,x,._1=qlxj=l)=

q=1

P(g.k)p(x =qlx;=1).  (A45)

1

)
I

The full conditional distribution of x; is
plx, =klx_)=p(x; =klx_, =q,x,, =)< P(q.k)P(k,1), (A.46)

and normalization gives
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w. (A.47)

(
3 Plg.k

k=1

p(x, =klx_, =q,x, =)=

The backward transition probability of a first-order Markov chain is defined by
=k, v =] k,l =k

('xl xl 1 ) ( ) ( ) (A 48)
p(xi+1 = l) p(xl+l - l)

The backward computation over multiple time steps can be computed recursively,
i=j-1,..,1,and

p(xi:k|xi+l,...,xn) p(x _k|x1+l_l)

d
pla=klx;=1)=Y p(x, =klx, =q)p(x, =qlx;=1) (A.49)
q=1
Conditional backward sampling proceeds by recursively drawing variables x;,
i=j—1..,1, from the backward transition probabilities in Equation (A.48) rather than
summing over the subsequent state x;,, as in Equation (A.49).

Hidden Markov model

The hidden Markov model (HMM) represents a latent distinction of interest x = (x1 ,...,x,l)
by a Markov chain, while the measurements y = (y,,...,y,,) provide imperfect information
about x. Here we assume data size m = n. The most common setting is that of a parsimo-
nious model with a first-order Markov chain with time-invariant transition probabilities
p(xHl =llx; = k) = P(k,l) and a likelihood model involving conditional independence
p(y; Ly, x)= p(y,- Ixi). The data could be either discrete or continuous. For the discrete
data situation, the likelihood model p(y; = k | x; = k) indicates the accuracy of the meas-
urement. With a continuous model for the data, some of the parameters of the likelihood
p(y; | x; = k) depend on the latent class k € {l,...,d}. The joint distribution is

p(x )(]‘! p(x 1x, )J(H Py 1x )). (A.50)

Sampling data y from the marginal distribution p ( y) of an HMM is done by first sampling
a Markov chain p(x) as shown earlier and then sampling y, from p(y; | x;) foralli = 1,...,n

The most common goals of analyzing an HMM are (i) marginal likelihood calculation
p( y;e) = p( y) for parameter estimation, (ii) evaluation of posterior marginal probabil-
ities p(x,- I y), i=1,...,n, and (iii) sampling a realization from the posterior p(x | y). We
illustrate the forward—backward algorithm for these tasks. For more background, see Scott
(2002). The algorithm is based on recursively summing out one latent variable at a time.
The first step is a forward calculation that defines the marginal likelihood. Some expres-
sions from this forward recursion must be stored in memory, as they will be useful in the
backward recursion.
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Algorithm: the forward recursion involves prediction, updating, and
marginalization

P(xi = klyl"“’yi—l)= Zp(xi—l =Jj,x = klyl""’yi—l)

) = (A.51)
:zp(xi =klx_, :j)p(xi—l ZJIY1"'-’)’1—1)7

Jj=1

P(Xi =k,y, |y1,..~,y,'—1)

p(xizkly],...,y,-)=

P 1 Vi Yict) (A.52)
_ P(yx' | x; =k)P(xi = klyl""’yi—l)
P 1 Y- 0r¥im1) ’
d
p(yi Iyl,...,y,-,l) = Zp(yi | x; = k)p(x,- =kl yl,...,yi,l). (A.53)

k=1

Initiate by i = 1 and a predictive distribution p(xl); proceed using Equations (A.52) and
(A.53); set i = 2; calculate Equations (A.51), (A.52), and (A.53): seti =3, etc., until the last
time step i = n.

Note how the conditional independence assumptions simplify the expressions, i.e. p(xl- =kl
Xio1 = j’y"""yifl): p(x,- =klx_, = J) andp()’i lx; = k,y.,---,yH)= P(y,- lx; = k).

The product of all normalizing constants p( Vil Viseeos Vi ) in Equation (A.53) is the mar-
ginal likelihood

p(») =TT yiyis): (A.54)
i=1

Algorithm: the backward recursion for posterior marginal probabilities

1. Start at n with p(x,, [ yeees y,,) —i.e., the result of the final forward step.
2. Step backward fori=n—1,...,1 using

P(xi =kl }’1’-~-,yn)= zp(xi =klYi s Yier X = I)P(xm = llyl""’yn)‘ (A.55)

=1
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The backward steps use p(x; =kl y,x.,1)=p(x; =kly,..yi X )= p(x =kl ...,
v; +1,xl-+l) from the conditional independence assumptions. The additional conditioning on
v;,; allows more efficient re-use of the computations from the forward recursion. The first
term in Equation (A.55) can be derived from the forward recursion by noticing that

P(% =k X5 Yo 1 1500
P (Vi 1 Xesrs Voo 20 P (Xt 19150005 1)
_ p(xm | x; =k)p(x,- =k|y1,...,yi)
P(xi+1 lyl""’yi)

p(xl- =kl y1’~--,yi+l’xi+l):
(A.56)

All components are given either from the Markov transition model, or the forward cal-
culation. The resulting p(xi =kl y) is the posterior given all data, which is also called the
smoothing distribution in this context of the (dynamic) HMM.

Sampling from an HMM is done by backwards sampling.

Algorithm: sampling from the posterior of a hidden Markov model

1. Draw x, from p(xn [ yise.s yn) derived in the forward recursion in Equation (A.52).
2. Fori=n—1,...,1, draw x; from p(x,- [ Visenes VioXip ) using Equation (A.56).

A.3.2 Decision analysis and VOI results

The decision situation we have used in association with such discrete distinctions of inter-
est involves revenues in the success outcome and costs in the failure outcome(s). This
means that the prior value is

N
PV =Y max {o, Rev- p(x; =1)- C()St}, (A.57)
j=1
when we have a high decision flexibility — i.e., a free selection of sites, N = n, and two
alternatives at each site. Note that the prior may include current data — for instance, mod-
eled by an HMM.
For the posterior value, we can have total or partial imperfect or perfect data y. If data
(perfect or imperfect) are discrete and only at a few sites, we can directly compute the pos-
terior value as a sum over the data variables —i.e.,

PoV(y)= ZimaX{O,ReV-p(xj =1l y)—Cost}p(y). (A.58)

v j=l
The forward-backward algorithm is used for the inner probabilities in Equation (A.58).
The VOl is the difference between this posterior value and the prior value in Equation (A.57).
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If the data are located at many sites, the outer sum involves a lot of terms. Moreover, the
probabilities for partial tests y, where K ¢ {1,...,n}, may require specific marginalization
techniques similar to Equation (A.53). It might then be easier to use Monte Carlo sam-
pling for the outer sum while maintaining the forward—backward recursion to solve for the
inner probabilities. For partial testing, we can sample the entire vector y and discard the
non-observed parts to get y. The same holds for continuous data when the outer integral
cannot be solved numerically.

Algorithm: Monte Carlo approximation of the posterior value for
a Markov chain model or HMM

1. Sample data variables y?, b = 1,..., B from p( y).
2. Compute the posterior probability p(xj =11yt ), j=1..,N,and b =1,..., B by the
forward—backward algorithm.

ﬁmax {O,Rev- p(xj =1 yb)—Cost}.

1 j=1

3. Average the values POV

>
I

Ud|’—‘
M-

Appendix A.4: Categorical Markov random fields

The categorical Markov random field (MRF) model extends the one-dimensional Markov
chains and hidden Markov models to the two- and three-dimensional spatial domains.
There is no longer a natural ordering of the variables, and dependence is modeled either by
the conditional structure or by potentials over subsets of variables.

A.4.1 Definition and properties

The most common setting represents variables on a regular grid. In two dimensions, the
grid size could be n, X n,, where the total number of cells is n = n,n,. Let the random vari-
able x; € {1,...,d}, i=1,...,n, and in the simplest case there are only two discrete states
d = 2. Similar to the Markov chain, the MRF model reduces the conditioning to the nearest
neighbors, but in the spatial model there is no natural ordering of the variables of interest
X = (xl yeees Xy ) One variable does not naturally come before another.

Conditional model formulation

The Markov assumption means that the full conditional distribution reduces to the condi-
tional distribution given variables in the neighborhood —i.e.,

p(x1x,)=p(x1x;:j€N,), (A.59)
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where the neighborhood N; can be of various orders. The MRF on a regular grid has the
following neighborhoods:
First order: N, consists of grid cells to the north, east, south, and west of the current cell;
Second order: N, is north, northeast, east, southeast, south, southwest, west, and northwest.
And so on.
The Ising model is the most popular MRF model. The conditional probabilities are then

p(x,- Ixj;jeNi)ocexp(ﬁz I(xi =xj)J. (A.60)
JeN;

forx; € {1, 2} and where f is the spatial interaction parameter to first order neighbors. If this
interaction parameter is zero, the variables are independent. It is usually set to a positive
value, imposing similarity in neighborhood colors.

The model in Equation (A.60) does not favor one color over the other. We can increase
the chance of colors at selected cells by adding an external field in the form of single-node
potentials in the exponent as follows:

p(x,- Ixj;jeNi)ocexp(ﬁz I(x,- = xj)+oc,. (x,-)]. (A.61)

JEN;
Note, however, that the potentials ¢; (xi) do not have a one-to-one relation with the mar-
ginal probability p, (x;) = p(x;)at cell i on the grid.
The extension of the Ising model to more than two colors is sometimes called the
Potts model.

Joint model formulation for Markov random fields

The associated joint distribution of the MRF, called the Gibbs formulation, is given by

o) exp(—gc, v (%, )) _ exp(—z v (s )J A6

z keC

where x, is a subset of the variable x, and C is the set of all cliques. The normalizing
constant Z results from summing over the entire sample space of x,, ..., x,, and it does
not depend on x. The cliques are representative of the interaction or dependence structure
of the MRF, and the clique potentials v, (xk) assign a penalty (or reward) to configura-
tions x, within a clique type k. The potentials can be specified to make it more likely to
get patches of similar color in the grid. For a first order neighborhood on the regular grid,
there are just two types of cliques: single-cell cliques and vertical and horizontal cell-pair
cliques. For the Ising model, the positive clique potentials are 8 for equal colored cell
pairs (north—south) and (east—west) on the grid. The zero potential for cliques with black
and white cells then penalize differences in colors. For a second-order neighborhood, the
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cliques are of size 2 x 2. When the cliques get larger, there is additional flexibility for
incorporating spatial patterns via low or high clique potentials for various configurations of
x, — see, e.g., Tjelmeland and Besag (1996).

It is not obvious that the definition of the MRF by conditional probabilities in Equation
(A.59) results in a unique joint statistical model. However, the Hammersley—Clifford the-
orem (Besag 1974) states that there is such a one-to-one correspondence between the condi-
tional model formulation over neighborhoods in Equation (A.59) and the joint formulation
over cliques in Equation (A.62). It is relatively easy to show that this holds one way, while
the other is harder. For the easier approach, given a joint distribution over cliques, we show
that the full conditional depends only on the neighboring variables. We have

p(x, Ixi)ocp(x)ocexp(—z v, (xk))ocexp(— Sy v (xk)]=p(x,. Ix;5j€N,). (A63)

keC keCni

since the cliques where x; is involved are the ones with x; and its interactions with the
neighbors of cell i. None of the variables outside the neighborhood interact with x; in the
joint distribution, since there are no cliques associated with such pairs.

Hidden Markov random fields
Assume an MRF for the latent variable x. Imperfect data y = (y,,....y,,) can be gathered,
and the likelihood is p( yl x). The joint distribution for latent variables and data is

p(x.y)=p(x)p(y!x). (A.64)

Again, we impose the customary assumption of conditionally independent data — i.e.,
p(y,- | x; ), i=1,...,m. For location i = 1,..., n, the full conditional distribution then becomes

p('xilx—i7y)=p(xilyi7xj;jeNi)' (A.05)

Assuming an Ising model, we have full conditional distribution

P(xi lx—i9y) = P(xi lyix;5) € Ni) o exp[ﬁz I(xi = xj)+10gp(yi lxi)j' (A.00)
JEN;
Note that the structure of the full conditional in Equation (A.66) is the same as for the

Ising model with an external prior field in Equation (A.61).

Calculations for Markov random fields and hidden Markov random fields

We discuss marginalization and conditioning for prior and posterior pdfs together. If the
data are conditionally independent, the calculations for the posterior model (with data) fol-
low the same steps as those in the prior (without data) because the likelihood terms enter as
an external field; see Equation (A.66).

For small-sized grids and moderate-sized neighborhoods, it is possible to perform exact
marginalization and conditioning for MRFs. The idea is similar to the forward—backward
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algorithm used for the hidden Markov model in Appendix A.3. For large-sized MRFs,
the solution requires approximations. The most popular approach has been Markov chain
Monte Carlo (MCMC) sampling.

Consider the Ising model with an external field (which could be a conditionally inde-
pendent likelihood term as in Equation (A.66)). The model can be written

exp(ﬁzl(xi = xj)+2ai(x,-)J
) i~j i _

p(x)=

= (x) (A.67)
z zZ’
where the short notation i ~ j denotes a clique — i.e., all pairs of north—south or east—west
nodes on the grid. The normalizing constant Z is given by

Z= 2 Zh (A.68)

x=l  x,=

This normalizing constant is very hard to compute because it is a sum over all variables.
The evaluation of the joint, marginal, and conditional distributions is then computationally
demanding.

Suppose that the grid nodes are numbered sequentially from northwest to southeast.
Then, x, is the categorical value in the northwest corner, X, the one in the southwest corner,
X, (ny—1)+1 1N the northeast corner, and x, in the southeast corner. For the Ising model, with
d =2, the neighbors of an interior node i are defined by i+1,i—1, i —n,, and i + n,. If node
i is on the edge or a corner node, some of these neighbors vanish. Assume n, < n,, and n,
is quite small (say, 10 or 20). It is then possible to explore the probability model analytic-
ally using the forward—backward algorithm. If the dimensions are larger, the combinatorial
increase in d™"(2) becomes too demanding.

To understand the forward-backward algorithm in this context, write the probability
function for x in a sequential manner as follows:

p(x)= p(x1 Ixz,...,xn)p(x2 Ix3,...,xn). . ( X, ,1)p(xn)
=p()c1 Ixz,...,xlﬂ“)p(x2 | x5,... x2+nl).. ( i lx, )p(x,,) (A.69)
h(xl I)cz,...,)cprnl)h(x2 Ixs,...,xzﬂl)... ( )h(xn)

zZ

where we use the Markov property but choose to condition on all buffer variables in the
sequential lineup. The bufferis of length n, in this case, indicating the length of the north—south
column in the grid. It gets shorter for the last (easternmost) column. The terms in this
expression are defined by h(x, [EOROUE ) = exp(ﬂ(l(x1 = Jc2)+1(x1 = Xi,, ))+ o, (x, ))
for the first location, then goes on like this for x,, x;, and so on until A(x,_, |x,)=
exp (ﬂl('xn—l =x,)+0, (X, )), h(xn) = exp(an (x, ))
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Algorithm: forward calculation for small-sized MRFs

1. Start with
d

Z (%X )= 2 (3 1 1y ), (A.70)
x=1

2. For generali < n—n,

Zi (xi+l9' l+n1 ) z h(x I Xitls- l+n1 )Zi—l (XH' . "xi+nl—1 ) (A71)

3. At the final step n, calculate

d
z=2,=Y h(x,)Z,,(x,), (A.72)

X, =1

which is the normalizing constant in Equation (A.67).

Here, for the intermediate step, (x;,,,...,X;,,, ) has d™ possible values of buffer configura-
tions. As the buffer length gradually decreases in the last (easternmost) column, the number
of possible configurations gets smaller.

Algorithm: backward recursion scheme for the marginal probabilities

1. Start with the marginal for x,,:

>3 hx)
p(x,)="" z] = (x")ZZ"_l(x"),x,,e{l,...,d}. (A.73)

2. Forx,_, €{l,...,d}, first arrange the joint density p(x,_,,x,) and then sum out x,;:

d d d d
pI 2 Zh(x) D 6 16,02, (X, %)
()= BEL masluel _ T=l . (A.74)
P (X,21) Z 7
3. For a general node Z, construct the joint probability for the buffer of length n,, and then
the marginal p;(x;) for node i is obtained by summing over all buffer configurations

for each possible value x; € {1,...,d}.

Kit1se s Kiwn
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The conditional situation given data y is not dissimilar. The likelihood term can be
regarded as an external field, where ¢; (x,-) =log p(y,- | x; ), x; €{L,...,d}. The marginal pdf
of main interest is then the posterior marginal p(xi | y). The normalizing constant depends
on both the model parameters and the data.

Note that for numerical stability, it is preferred to work on the logarithmic scale and to
perform robust summing operations. This entails

2:1‘ h (x) = zd: exp (log h (x)) =exp (lhmax ) zd: exp (log h (x) —lh,,, ), (A.75)

x=1 x=1

where Ih,,,, =max {logh(x)}.

Sampling
We demonstrate a recursive backward sampling algorithm for drawing a variable x from
the joint pdf p(x). A similar approach would work for conditional sampling.

Algorithm: sampling for small-sized MRF's

1. Run the forward recursion for sequential normalizing constants in Equation (A.71).
2. Sample the value of x, from probability vector

1 d d 1
p”(x"): Ez‘tl Z h(x): Eh(xn)zn—l ('xn)’ X, € {1,,d} (A76)

=l x =1
where the sequential normalizing constants in the forward recursion are re-used.
3. Continue backward, generating x,_, conditional on the sample of x, from
probability vector
h (xn—l I Xy )Zn—Z ('xn > Xp-1 )
anl ('xn )

and soon foralli=n-2,...,1.

p(x,,,1 Ix,,) = s X, €{1,...,d}, (A.77)

Parameter estimation

There are unknown interaction parameters in the MRF that must be specified. The MRF
parameters are the clique potentials that reduce to the pairwise interaction term 3 for the
Ising model. We may also have unknown parameters in the likelihood model, but we focus
on the interaction parameter in this discussion.

In many models, it is easier to maximize the likelihood with perfect information x. But in
this MRF case it is still complicated to compute p (x) because of the normalization constant.
By the forward—backward recursion it is possible to compute the likelihood and perform
maximum likelihood estimation (MLE) for small grids. For larger grids, one often maximizes
the pseudo-likelihood to specify the parameters. The pseudo-likelihood for general clique
potentials y is defined via the full conditionals, c/ (l//) = H p(x; 1 x;;j € N;). Since we have
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the Markovian structure, each term is computed by counting the number of different neigh-
borhood clique configurations (Besag 1986).

If the latent variable is not directly observed but only imperfectly informed by data y,
we can estimate parameters from the marginal likelihood model p( y) = p( ¥ [3) For a
large-sized grid, MCMC algorithms are the preferred approximation. For small-sized grids,
we can use the forward—backward algorithm. The marginal likelihood is the ratio of nor-
malizing constants:

_p(®)p(y1x) _h(x)p(y1X)Zy, _Zy,
p(y)— = =—, (A.78)
p(xly) Zchy, (x1) Z;
because the functions in A, (x | y) are defined by the function in the prior model A, (x) and
the terms in the likelihood model p(y | x).

Algorithm: likelihood evaluation for small-sized MRFs

1. Run the forward recursion without data to get the normalizing constant Z . in the prior
model p(x).

2. Run the forward recursion with data to get the normalizing constant Z,, in the
posterior model p(x | y).

ley

3. Compute the ratio of the normalizing constants p ( y) = as in Equation (A.78).

X

A.4.2 Decision analysis and VOI results

The decision situation we have used in association with MRFs is similar to that for the
Markov chain in Appendix A.3. For the prior value,

PV = EN:max {0.Rev- p(x; =1)-Cost}, (A.79)
j=1

when we have a free selection of sites, N = n, and two alternatives at each site. The mar-
ginal pdf in the prior must now be computed by forward—backward recursions or by sophis-
ticated MCMC sampling.

For the posterior value,

N
PoV(y)= Y max {O,Rev p(xj =1l y)—Cost}p(y). (A.80)

y Jj=l
For small-sized grids, the forward—backward algorithm solves for the inner probabilities
in Equation (A.80). The outer loop can be summed out exactly for partial testing at only
a small set of sites. Alternatively, for larger data sizes, samples from p( y) can be used to
get a Monte Carlo approximation like we described in Appendix A.3.2. Samples of y?,
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b=1,...,B can be obtained by first sampling from p(x) and then drawing conditionally
independent samples for y from p ( v x,-) given the realization for the latent field.

Appendix A.5: Discrete graphs and Bayesian networks

We show the main modeling and computational elements for discrete graphical models. In
some sense, Markov chains and Markov random fields are special cases of this situation.
For details regarding a more formal description, please consult a reference such as Pearl
(1988), Shachter (1988), Jensen (1996), Jensen and Nielsen (2007), Darwiche (2009), or
Koller and Friedman (2009).

A.5.1 Definition and properties

Bayesian networks (BNs), also called belief networks, are graphical models consisting of
nodes and edges. We assume n nodes. The edges connect the nodes together, and they are
directed. An edge that indicates direction from one node to another is an arc or, equiva-
lently, an arrow. The arrows indicate the (causal) conditional dependence structure of the
model. The graph is acyclic, meaning that there are no directed paths leading back to a
node. These graphs are termed directed acyclic graphs (DAGS).

The variables of interest are x = (xl,...,x,, ) Data y could either be included in some of
these nodes or be represented by additional nodes. The BN model for x is defined from
conditional statements,

n

p(x)= Hp(xl. lx;5) € pa(i)), (A.81)
i=1
where pa (i) indicates the parent nodes of i. Top nodes (root nodes) in the network have
empty parent sets. For the discrete situation that we consider here, the probabilities in
Equation (A.81) can be collected in conditional probability tables.
If there is a directed path from node i to node j, we say thati is an ancestor of j and that
Jj is a descendent of i.

Marginal and conditional probabilities

Several independence properties can be proven from the semantics of the network. The
local Markov independence property of a belief network is the property that any node in
the network is independent of its non-descendents given its parents. Other global independ-
ence properties can also be derived based on a graphical analysis of the network.

The full conditional probability of x; is

p(x1x;)= p(xi lx;5) € pa(i),jech(i),jeop(ch(i))), (A.82)

where the child nodes are denoted ch(i ) and the other parents of such a child node j are
denoted op( j). The latter nodes, sometimes called wife or husband nodes, are required
because all parents are needed in the modeled probability of the child. This set of
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conditioning nodes in Equation (A.82), which makes a variable conditionally independent
of the rest, is sometimes called the Markov blanket. A related concept is d-separation: if
two nodes i and j are separated by a node (or a collection of nodes) s, then the conditional
probability p(x,. Ixj,xs) = p(x,- [ x, ) This kind of d-separation can be useful for condi-
tional independence statements not directly enforced by the model.

The marginal probability at a node i € {1,...,n} is obtained by marginalization over the
parents, as follows:

p(x)=Y p(x,. lx;:j€ pa(i))p(xpa(i)). (A.83)
*pai)
Note that this requires the joint pdf of the parent nodes, which is not always straightforward
to obtain.
Assume that we can get perfect or imperfect data denoted by y. The conditional prob-
ability of a node given information y is given by Bayes’ formula:

pl 1y)= PLd) _ pliy) (A.84)

p(y) ;p(xi,y)

which in this general form requires the joint distribution over the information (denomina-
tor) and the joint distribution of the variable of interest and the data (numerator).

Unlike Equations (A.81) and (A.82), the computations in Equations (A.83) and (A.84)
are not directly defined from the model. We need to marginalize over variables for these
computations. There are many ways of computing these marginal (and conditional) prob-
abilities, and the method of choice depends on the situation.

Parameter estimation

Suppose that the edge structure of the BN is known; the specification of unknown param-
eters @ is typically done by maximum likelihood estimation (MLE) or fully Bayesian
methods. If we have total perfect information in the form of data replicates x',..., x%, the
conditional probability tables can be computed by counting. All conditional probabilities
are then estimated directly by

il(xlb Lxh =k ,jepa(i))

P =11x;=k;1j € pa(i)) =22 . (A.85)

B

Z[(x = j,jEP(l( ))
b=1

If there are few replicates, it is possible to borrow structure within the network structure.
It is also possible to assign Dirichlet prior pdfs to the network probabilities 8 in a fully
Bayesian procedure. If the data y are partial or imperfect, we can estimate parameters 6
using the marginal likelihood p(y;8), again possibly with a Dirichlet prior model p(6).

In many applications, the graph structure is assigned from expert opinion. If the graph
structure is unknown, we must specify the edge structure as well as the parameters 6. This
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is more difficult than the parameter estimation (or learning) problem for a fixed structure —
see, e.g., Chickering (1996).

Junction tree algorithm

There are several algorithms for efficient computation of BNs (see the discussions in
Chapters 2.3 and 3.3).

A very successful approach for efficient marginalization in BN is the junction tree algo-
rithm (JTA). We present the idea only briefly since the full explanation of the JTA requires
a great deal of set notation. The original presentation of the algorithm was provided by
Lauritzen and Spiegelhalter (1988); see also Cowell et al. (2007) for a complete descrip-
tion. Rather than knowing all the computational aspects of this famous algorithm, one can
of course just run it using numerously available software. In our analysis in this book, we
used the Bayesian Network Toolbox (BNT) software implemented by K. Murphy.

A core idea of the JTA algorithm is to reform the BN to another network of clusters of
nodes, sometimes called supernodes. The resulting graph consists of clusters that are formed
in a special way that simplifies marginalization. This graph is built from the structure of
the BN, but unlike the shape of a BN model, it is singly connected — i.e., it does not have
branches that meet. The graph is also undirected. This is achieved by creating a triangulated
graph —i.e., by adding edges between parent nodes that are not already connected —i.e., the
so-called “moralizing” operation. A triangulated graph has no cycles of size larger than 3.

The junction graph has cluster nodes that define the cliques of the model, and the junc-
tion tree is built by utilizing the role of separators in the triangulated structure. There is no
unique junction tree for a given BN model, and the optimal junction tree depends on the
situation. There are a number of heuristic methods for constructing junction trees.

Once the junction tree is established, it is relatively straightforward to compute marginal
and conditional probabilities using recursive computations (belief or evidence propagation)
along the tree. These use operations on the conditional probability tables for the clique
configurations. The procedure is often called query or message passing in the BN literature.

To compute several probabilities at the same time, the JTA may utilize the clustering
nodes and then use a local message passing algorithm (Pearl 1988) on the established tree.
This avoids repeated variable elimination and redundant computation. Message passing on
the junction tree can be thought of as a generalization of the forward—backward algorithm
for a hidden Markov model to BNs (Murphy 2012).

A.5.2  Decision analysis and VOI results

The decision situation we have used for BNs is similar to that for the Markov chain and
Markov random fields in Appendices A.3—4. The prior value is

PV = imax {0.Rev- p(x; =1)-Cost}, (A.86)
j=1

when we have a free selection of sites, N = n, and two alternatives at each site. The mar-
ginal pdf in the prior must now be computed by efficient marginalization.
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For the posterior value,

N
PoV(y)=Y Y max {O, Rev- p(xj =11 y) - Cost}p(y). (A.87)
y j=1
The JTA is useful for computing both p( y) and p(xj =11 y) for various kinds of informa-
tion y. If the information set is small, the outer sum can be solved exactly. Otherwise, it can
be approximated by Monte Carlo sampling, as presented in Appendices A.3—4. Re-using
samples or computations may be possible.

Appendix B: Sampling methods

The starting point of random number generation on the computer is the generation of
independent uniform variables. These algorithms generate numbers that mimic (uni-
form) randomness and independence. Consider a simple algorithm that specifies a seed
(start value, 10 here) and continues for b = 0,1,... as follows:

Lo.ybl
10,u° =1%,ub _mod(a-c-u ’C%, a=5, c=2I. (A.88)

This gives the following sequence of uniform numbers u’: 0.47, 0.38,0.91, 0.52, 0.62, 0.09,
which may appear to be a random and independent sequence at first sight. We can perform
tests to check whether a sequence gives independent uniform numbers. Obviously, some
more inspection shows that the choice in Equation (A.88) is not very intelligent. In fact,
the next number in the sequence is mod (0.09'21 . 5,21) /21=0.47 —1i.e., exactly the same
as the first number, and the process will just repeat itself. The very basic-level research on
Monte Carlo sampling is in constructing deterministic sequences of “uniformly distrib-
uted” numbers. For a long time, MATLAB used a congruential simulator algorithm simi-
lar to the one mentioned earlier with a = 7° =16,807 and ¢ = 23' —1=2,147,483,647. The
resulting sequence repeats itself after ¢ periods and covers the uniform domain very well.

Given the uniform variables, two direct methods for simulation are readily available.
They are called inversion and transformation. We illustrate them by examples. Inversion
works as follows: (i) draw a uniform random number u between 0 and 1, denoted by U(0,1),
and (ii) set x = F! (u), where F~! is the inverse cumulative distribution function of x.
Note that F is a monotone increasing function, and the inverse then exists. We can prove
correctness by

p(F (u)<x)= p(u< F(x)) = F(x). (A.89)

As an example, suppose we want to sample a binomial variable with n,,,,, = 5 trials and

trial

|
success probability p = 0.4. The pdf is p(x) = Pt i (L= p)rria =, x = 0,..., i,
x!

(ntrial -X ) .

and the associated cumulative distribution function F(x) = 2 p(y)isdisplayedin Table B.1.
y=0

Suppose that we generate a uniform random number u = 0.05, then F(0) > u, and the

inverse function sets x = 0. Naturally, the chance of ending up in x = 0 is the same as that
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Table B.1. Probability distribution for the binomial with success probability p = 0.4 and
five trials

x=0 x=1 x=2 x=3 x=4 x=5

p(0)=0.08 p(1)=0.26 p(2)=034 p(3)=023 p(4)=0.08 p(5)=0.01
F(0)=0.08 F(1)=034 F(2)=068 F(3)=091 F(4)=099 F(5)=1

of a uniform random number being smaller than 0.08, which is the same as F'(0). Similarly,
we get x = 1 if the generated uniform random number is between 0.08 and 0.34, and so on.
Outcome x =5 only happens if u > 0.99.

Inversion is efficient in many situations, but the cumulative (or its inverse) function is
not always available in a closed form. For instance, the Gaussian cumulative distribution
is defined by an integral expression, and one has to store the cumulative distribution for a
dense set of values in the interval (0, 1) to use inversion. Using such a look-up table is not
always achievable.

The common way of generating a Gaussian variable, and many other distributions, is
to use transformations. We illustrate an algorithm for simulating independent bivariate
Gaussians from two uniform variables. Suppose that we have generated two independent
U (0,1) variables , and u,. Then the outputs x, and x, from the following algorithm

6=2mu,, r=-2logu,, x, = rcos(6), x, = rsin(6), (A.90)

are two independent standard Gaussian variables. Here, the idea is to use polar coordi-
nates — i.e., simulate a random angle 8 and a random positive distance r, and then take the
sine and cosine part of the (distance, angle) vector. By the transformation formula, we have

. L arctan (x, / x,)
p(x;,x,) =l J | p(u;) p(u,) =l J |. The inverse transformation is given by u, = —r
T

24 x2
Xi

u, = exp( ) and the Jacobian of this inverse transformation is

+2\| T ]
darctan dex xl 2 _ xz/
( ) p 2 ) ¢ (_x+n
—x T
dx, 2r X} +x3 1EXP 2
J = =
+ 2
darctan( ) dex P = 2x2) (%1) x; X} +x3
dx, ] [ J
:L xl2 exp X +x x_§+1 :Lexp Xt ,
2w x +x3 2 x} 2r 2
darctan x 1 . L .
where we use the kernel rule and P = i This Jabobian is recognized as the pdf
by +x

of the bivariate Gaussian distribution.
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Correlated Gaussian can be generated in various ways, such as the Cholesky factoriza-
tion described in Appendix A.1. Most computational softwares such as MATLAB and R
have algorithms for generating random numbers from many different distributions.

Rejection sampling

. . . Po\X . ..
In many situations, we can write p(x) = OZ( ), where Z is a normahzlng constant, not

depending on x, while p, (x) is a function that can be evaluated. As an example, this is typ-
ically the case in posterior models in the Bayesian context, where p(x) is the prior model
and the likelihood of data y is defined by p ( i x). The posterior distribution is

p(xly)e< p(ylx)p(x). (A91)

Here, the proportionality sign is used instead of the normalizing constant, which is (the
often intractable) p(y)=Y p(x,y). For several modeling assumptions, we can evalu-

X

ate p,(x1y)=p(plx)p(x), but we cannot sample directly from p(x|y). We present

x
a reject/accept method for generating realizations from such p(x) = % This method

relies on an alternative pdf q(x) that is easy to draw from.

Algorithm: rejection sampling

1. Draw a sample x from q(x).

2. Evaluate > max, [’;0 ((xx))}
po(x)

3. Accept sample x if ——=>U(0,1).

rq(x)

The factor r defines an envelope rg (x) that is always larger or equal to p, (x) We see that
the normalizing constant is not needed since it cancels from the acceptance rate in Step 3.

1 . . .
The mean number of accepted samples becomes —. Thus, if the maximum ratio of the
r

two densities is close to 1, we accept most proposals. If the maximum ratio is high, the
acceptance rate goes down. Typically, we must make the tails of the proposal distribu-
tion q(x) at least as heavy as that of p(x); otherwise, r — oo in the tails, and we would
accept no samples. If we can find a natural proposal distribution that makes » computable,
this method performs very well. However, in high dimensions, it seems very hard to find
attractive proposal distributions that give small r, and the acceptance rate tends to decline
with increasing variable dimensions.
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Approximate Bayesian computing

Approximate Bayesian computing (ABC) is similar to rejection sampling in its accept/
reject step. It has been limited to posterior sampling in Bayesian contexts. Notably, for
this approach, the expected relation or forward model E ( yl x) =f (x) between the dis-
tinction of interest and the data is known, but no further assumptions are made about the
likelihood model. For this reason, ABC is often referred to as likelihood-free sampling.
Instead of a formal likelihood description, a similarity measure is used in the conditioning
to the data.

Algorithm: approximate Bayesian computing
Repeat for samples b=1,..., B.

1. Sample x* from p(x).
2. Evaluate the forward model f (x” )
3. Accept within a tolerance of data — i.e., if the sample has dissimilarity: d ( »f (xb )) <E

In Step 3 of the algorithm, a summary statistic and distance measure must be selected,
as well as a threshold for acceptance €. The approach has become popular in several
application domains, and it has been intensely studied in the statistics literature (Marin
et al. 2012).

Markov chain Monte Carlo algorithms

The basis of Markov chain Monte Carlo (MCMC) sampling is to simulate a Markov chain
over the state space of the variable x. The Markov chain converges to its limiting distribu-
tion under mild regularity conditions. And by construction of the MCMC algorithm, this
limiting distribution is equal to the distribution p(x), which we aim to sample from.

The Markov chain must be irreducible so that it is possible to reach every state from any
other in a number of Markov chain iterations. If this is not the case, one risks sampling
only a subset of the sample space. Naturally, Markov chains with absorbing states are not
allowed. The sampler is initiated in x° and then each transition b = 0,1,... moves accord-
ing to a transition distribution or kernel P(x”,x). After a transient phase, often called the
burn-in, samples are assumed to be from the desired pdf. Note that if the initial sample is
from the correct pdf, the Markov chain will stay within that (stationary) distribution, and
any random sample is an exact sample from the correct distribution.

Subsequent MCMC samples will be dependent, but the sample average will still con-
verge to the right value under mild regularity assumptions. The key to successful imple-
mentation is to construct a Markov chain that mixes well — i.e., produces samples that
are not too dependent. Such a Markov chain will traverse the probability space in fewer
iterations than a poorly mixing Markov chain, and one can run the chain for a shorter time
before extracting relevant statistics.


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.009
http:/www.cambridge.org/core

Sampling methods 363

The Gibbs sampler is an MCMC method using the full conditional pdfs in the Markov
chain transitions. Considering a single-site updating scheme, the Gibbs sampler changes
only one variable per iteration:

Algorithm: Gibbs sampling (single site)

Initiate x° = (x,...,x?). Iterate as follows for b=1,...,B:
1. Pick a componenti €{1,...,n}. Sample x/ from the full conditional distribution:

p(xi | x{’*',...,x{’j‘,x}’gl,...,x}f*‘) o< p(xt7!,x;) (A.92)

2. Setxt=xt',  j#i

The approach relies on the ability to sample from full conditionals. This is straight-
forward for many hierarchical models, where the full conditionals only depend on some
neighboring variables. Gibbs sampling is then an efficient way to divide and conquer. For
the MRF model, this Gibbs sampler would update the color of one cell at a time from the
conditional distribution at the selected cell, given the current state of the neighboring cells.

The Gibbs sampler can also update block variables at every time step. The full condi-
tional distributions for blocks are often more complicated to derive, but the sampler gets
better mixing properties in the Markov chain, and the block sampler does not have to run
as long as a single-site sampler.

Metropolis—Hastings (MH) sampling is based on accepting or rejecting a proposed sam-
ple at every iteration:

Algorithm: Metropolis—Hastings sampling
Initiate x° = (x{),. X0 ) Iterate as follows for b =1,...,B:

1. Draw a proposal from g(x" | x*™").
2. Set x? = x" if the acceptance probability

s b—1 *
min l,w > U(0,1), otherwise setx” = xb~!. (A.93)
p(x")g(x 1x7)

There are a multitude of MH algorithm variants. They all evaluate the acceptance rate
in Step 2, which includes the proposal distribution and the target pdf p(x* ), but they dif-
fer in the proposal distribution q(x* | xb-1 ) The flexibility in choosing the proposal gives
opportunities for creating efficient MH samplers, and there are only few regularity condi-
tions on the proposal distribution q(x* [ xb-! ) On the other hand, selecting a useful pro-
posal distribution could be a difficult task since some choices induce much poorer mixing
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properties than others. We discuss some proposal mechanisms that have been common in
applications.

For the MRF model, a single-site MH sampler attempts to randomly change the color at
p(x)

p(xb—l)

J # 1, and the acceptance ratio simplifies to M = exp(— Z (l//k (x:)+ W, (x,’j*1 ))J,
p\x""

keCn{i}

site i and accepts the change with probability min [1, J Then, x; = x?~! for all sites

which only contains cliques where cell i is involved.

The random walk MH sampling defines proposal q(x* Ix”*l)z N(x”*‘,hzl) - e,
symmetric around the current state x*~!. This approach is easy to implement and has
shown to be useful for several continuous models. For this random walk MH algorithm,
the mixing properties are (asymptotically) optimal with an average acceptance rate of
about 0.25. More sophisticated MH proposals can be constructed by using derivative
information at the current state. The Langevin—Metropolis algorithm defines proposal
q(x* [ xb-! ) = N(x”*l +hV logp(x’H ),hzl). Since the proposal uses more of the specific
model in the proposal, it tends to traverse the distribution function more quickly. The sam-
ples are less dependent, and the mixing properties are usually very good. The mixing prop-
erties are (asymptotically) optimal under an average acceptance rate of about 0.5. Note that
the faster mixing comes at the cost of evaluating the gradient.

Slice sampling is one of many MCMC methods that generate variables by augmentation.
The idea is to sample an auxiliary variable u in addition to x and in this way improve the
mixing properties of the Markov chain. The slice sampler generates the auxiliary variable
by cutting or slicing the pdf horizontally and then moving to an updated variable with a pdf
above this slice. The rationale behind cutting is not dissimilar to that of inversion.

Algorithm: slice sampling
Initiate x° = (x{),. . .,x,?). Iterate as follows forb=1,...,B:

1. Draw an augmented variable u from U (0, p(xb’l)).
2. Sample x* from uniform pdf U (C (x | u)), with constrained region C (x | u) = { p(x) > u}

The constraint in the second step may be hard to calculate in practice —i.e., the region of
valid proposals is not easily identified. Suggested solutions construct a valid region using
gradual stepping-out schemes.
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acquisition design, 171, 285, 289, 319; see also
design of experiments

agriculture, 292

Aki-Richards approximations, 276

alternatives, 66

optimal alternative, 74; see also decision analysis
amplitude-versus-offset (AVO) seismic data, 19, 265;

see also seismic data
anisotropy, 287

approximate Bayesian computation (ABC), 58, 200,

362
approximate dynamic programming, 214, 218
Archie’s law, 277, 324
assessed form, 96
axioms of decision theory, 75

basin modeling, 21, 59, 247, 260, 321, 322
basin modeling example, 244
project, 321
value of information (VOI), 244-258
basin street blues, see basin modeling example
Bayes’ rule, 40, 96
Bayesian modeling, 39
fully Bayesian, 41
marginal likelihood and posterior, 40, 96
prior and likelihood, 40, 96
Bayesian network example, 233
Bayes’ rule, 42-44
North Sea model, 233-244
project, 319-321
sequential decisions, 214-216
Bayesian network toolbox (BNT), 313, 319, 328
Bayesian networks, 36, 44, 236-239, 356-359
child node, 36, 356
cliques, 358
conditional probability table, 36
directed acyclic graph (DAG), 80, 356
edges, 36
full conditional distribution, 356
Markov property, 356

Index

nodes, 36
parent node, 36, 356; see also influence diagram
belief networks, 36
belief propagation, 358
big data, 2
binary variables, 24, 38, 42
project, 307-308
binomial distribution, 135, 340
black gold in a white plight, see reservoir
characterization example
Boolean models, 118
borehole data, 280
cores, 282, 289
joint counts data, 287
XRF or XMET, 280; see also mining oxide grade
example; rock hazard example
Brier score, 316

catchment, 205, 318

categorical process, 139

certain equivalent, 71, 77, 95; see also decision

analysis

charge variable, 235

child node, 36, 356

choice rule, 75

Cholesky matrix, 58, 333, 336

circulant matrix, 336

clairvoyance, 93

classification, 31, 147, 225

clique tree, 358

cliques, 350
Bayesian networks, 358
Markov random fields, 141, 350
potentials, 142

closed skew-normal model, 134, 305

clustering, 249

CO, sequestration, 309

cogency, 159

commitment to action, 67

conditional independence, 34-39
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conditional probability density function (pdf), 32;

see also Bayesian modeling; probability density

function

conditional probability table, 36, 248
conservation biology example, 180

prediction error, 226-227

project, 315-316

VOI, constraints, 210-211

VOI, high flexibility, 180-184
constraints, 162, 209-211
continuous pdf, 25
controlled source electromagnetic data, 264, 272
copula, 59
correlation, 28

spatial correlation, 111
correlogram, 111
coupled value, 159

high decision flexibility, 198-208

low decision flexibility, 186—198
covariance, 28, 34, 46, 102, 111

spatial covariance, 111

spatial covariance function, 112, 122, 314; see also

spatial models; spatial simulation
crops, 293
cross-covariance, 112
cross-validation, 48
cumulative distribution function, 25
cut-off in grade, 283

dams, hydropower scheduling, 202, 318
decision analysis, 65-70
certain equivalent, 71, 77, 95
clairvoyance, 93
delta property, 72, 95
lottery, 70
maximum expected utility, 74
optimal alternative, 74
risk preferences, 70
strategy, 84
utility function, 70
value function, 69
VOI, definition, 95
wealth, 72, 74, 94
decision quality, 66
decision regions, 279, 284, 290
decision situations, 68
sequential decision situations, 161, 211-216
spatial decision situations, 158
static decision situations, 161
decision theory, 65-70
decision tree, 78-79
CO, example, 309
decoupled value, 165
high decision flexibility, 173-186
low decision flexibility, 166—172
delta property, 72, 95
deposit, mining, 282

Index

descriptive, decision making, 65

design of experiments, 21, 54
acquisition design, 171, 285, 289, 319
space-filling design, 220
spatial design, 121, 125, 220

detector experiment, 99

development, petroleum reservoir, 193

digging decision, 76

dimension reduction, 193

direct sampling (DS), 148

direct simulation, 116

directed acyclic graph (DAG), 80, 356

discrete probability function, 25

dissimilarity, 201

distinction of interest, 15, 68, 156

double Monte Carlo, 190, 200

drilling decisions, 263

d-separation, 357

dynamic programming, 78, 213, 218
approximate dynamic programs, 214, 218

economic, 3, 97, 221
edges, 36
electromagnetic data, 264, 272; see also resistivity
data; geophysical data
elicitation schemes, 73
entropy, 25, 29, 34
spatial design, 221-222
equivalence rule, 75
evidence propagation, 358
exploration well, 232, 235, 246, 259
exploratory data analysis, 15
exponential utility function, 71
external field, Markov random field, 143, 269

facies, 148, 194, 268, 317, 322
factorization formula, 33, 34
failure or success, 44, 178, 214, 223, 250
fault, 259
five ‘Vs” of big data, 2
five rules of actional thought, 75
flow simulation, 196, 294, 317
for whom the bell tolls, see Gaussian projects
example
forestry example, 169
prediction variance, 223-225
project, 313-315
spatial modeling, 125-128
VOI, high flexibility, 184-186
VOI, low flexibility, 172
forward-backward algorithm, 346
hidden Markov model (HMM) example, 52
Markov models, 346
Markov random field, 143, 352
project, 311, 316
frame, 66
free selection of sites, 173
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frozen, see hydropower example

full conditional distribution, 33
Bayesian networks, 356
Markov random fields, 141

gamma ray, 16, 17
Gassmann’s fluid substitution, 276, 324
Gaussian, 25, 28, 305, 331
Gaussian approximation, 55, 137
Gaussian mixture distribution, 30
Gaussian projects example, 102
certain equivalents, 7677
decision trees, 85
modeling, 4547
project, 306, 307
VOI, 102-104
generalized linear model (GLM), 339-343
spatial GLM, 135
geologic scenarios, 191, 294
channel orientation, 294
delta system, 193
meandering system, 149, 193
geophysical data, 263, 266-270, 272-277; see also
seismic data; electromagnetic data
geostatistical simulation, 116-120; see also spatial
simulation
geostatistics, 110
Gibbs formulation, 350
go with the flow, see petroleum simulation example
gotta get myself connected, see Bayesian network
example
graphical models, 35, 42, 78, 236-239, 332, 356—
359; see also Bayesian networks; influence
diagram
groundwater management example
project, 326-329
VOI, 292-299

Hammersley—Clifford theorem, 351
harvesting decisions, 169, 184
heat flow, 247
Herodotus, 66
Hessian, 136, 341
likelihood, 335
hidden Markov random field, 143
hierarchical model, 121, 124, 340; see also Bayesian
networks; influence diagram
high decision flexibility, 159
coupled value, 198-208
decoupled value, 173-186
HMM, 52, 179, 346-348
hydropower example, 202
project, 318-319
VOI, 202-208

I love rock and ore, see mining oxide example
importance sampling, 57
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independence, 28
indifference, 71, 74, 94
inferred form, 96
influence diagram, 79-85, 309, 313
algorithms, 85
arcs, 80
nodes, 80
oil and gold example, 86—-88
time-lapse seismic example, 88-93; see also
Bayesian networks
information gathering, 104
decision quality, 67
sequential information gathering, 161, 216-220,
257
spatial decision situations, 159
static information gathering, 161
information theory, 25, 29, 220-221
information measures, 220-221
interaction parameter, Ising model, 142
interpretation, 192, 298
intrinsic values, 239
inversion, Bayesian inversion, 40
inversion, sampling method, 58, 359
investment decision, 76
Gaussian projects example, 306
Ising model, 141, 350
isotropy, 112
iterative simulation, 117

join tree algorithm, 358
joint counts, 136
project, 326
joint pdf, 27; see also probability density function
junction tree algorithm, 39, 251, 358

kernel density, 27, 322
k-nearest neighbors, 261
Kriging, 108, 115, 120
Kronecker product, 124

Laplace approximation, 55, 57, 136, 137, 289, 311
latent variable, 121, 135
least squares, 51, 108, 334
likelihood, 40
Bayesian modeling, 40, 96
Hessian, 335
marginal likelihood, 40
parameter estimation, 48
pre-posterior, 96
pseudo-likelihood, 354
score, 335
linear utility function, 70
logic, 67
lottery, 70, 308, 309
low decision flexibility, 165
coupled value, 186-198
decoupled value, 166—172
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MacKenna’s gold, see oil and gold example
marginal likelihood, 40
marginal pdf, 28
Markov chain, 38, 344
absorbing state, 310
backward chain, 346
forward—backward algorithm, 346
Markov chain example, 178
modeling, 4445
parameter estimation, 52-53
project, 310-311
VOI, 178-180

Markov chain Monte Carlo (MCMC), 59, 145, 323, 362

Gibbs sampler, 363
Metropolis—Hastings, 363
Slice sampling, 364
Markov mesh models, 144
Markov property, 38
Bayesian networks, 356
Markov chains, 38, 344
Markov random fields, 140, 349
Markov random field, 140-147, 268, 315
cliques, 141
external field, 269
forward-backward algorithm, 143, 352
Ising interaction parameter, 142
Ising model, 141, 350
neighborhood, 140, 350
seismic data project, 323
material, 3, 97, 221
Matlab Bayesian network toolbox, 313, 319, 328
Matlab files, 303
Matlab reservoir simulation toolbox (MRST), 317
maximum expected utility, 74, 209
maximum likelihood estimation, 48
Bayesian networks, 357
Fisher scoring, 130, 335
Gaussian, 341
Markov models, 346
Markov random fields, 354
Newton—Raphson method, 49
spatial regression model, 125, 335
mean, 25, 28, 34, 46, 111
mean square prediction error, 127; see also spatial
prediction
message passing, 358
migration, 235, 247, 260
mineralization classes, 50, 128, 282
mining decisions, 280, 281
mining oxide grade example, 280
project, 325-326
regression, 50-52
spatial modeling, 128-131
VOI, 280-285
mismatch, 201
Monte Carlo simulation, 32, 53-61, 359-364
multiattribute criteria, 73

Index

multidimensional scaling, 54, 317
multiple-point geostatistics, 118, 147-151, 294

DS algorithm, 148

patch-based algorithms, 148

pattern simulation, 148

pixel-based algorithms, 148

SNESIM algorithm, 147

template, 148

neighborhood, Markov random fields, 140, 350
Netica, 297, 313, 327

never break the chain, see Markov chain example
nodes, 36

non-parametric models, 26, 32, 260

normative, decision making, 65

Norwegian wood, see forestry example

nugget effect, 112, 288

object-based simulation, 118

oil and gold example, 86
influence diagram, 86—88
project, 309-310

oil wildcatter, 81
project, 309

order rule, 75

oxide grade, 18, 50, 128, 280, 325

parent node, 36, 356
Pareto pdf, 26
partial imperfect information, 165
partial perfect information, 164
perfect versus imperfect information, 39, 96, 163
binary variables project, 308
conservation biology example, 182
Gaussian projects example, 46
mining oxide grade example, 128, 282
permeability, 194, 294, 317
petroleum development decisions, 231
petroleum prospect play, 233
petroleum prospect risking example, 258
project, 322
sampling, 59-61
VOI, 258-263
petroleum prospects, 233
anticlinal, 245
faults, 245
geological, 36, 232, 234, 259
petroleum simulation example, 193
project, 316-318
spatial modeling, 149-151
VOIL 193-198
pirate example, 98
Bayes’ rule, 42-43
digging decision, 75-76
VOI, 98-102
pluri-Gaussian models, 140
Poisson distribution, 135, 287, 326, 340
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porosity, 194,247,273, 294, 317
posterior value, 95
spatial decision situations, 163—-165
posterior value computation, 97
approximate Bayesian computation, 201
interpretation, reliability measure, 192
Monte Carlo, 177, 190
Potts model, 350
power law distribution, 26, 304
precision matrix, 332
prediction error, 227
prediction variance, 123
information measure, 222-225
Kriging, 123
preference, 67
preference probabilities, 73
pre-posterior distribution, 96
prescriptive, decision making, 65
prior and posterior, 39—41; see also Bayesian
modeling; probability density function
prior value, 95
definition spatial decision situations, 162
high decision flexibility and coupled value, 199
high decision flexibility and decoupled value, 174
low decision flexibility and coupled value, 188
low decision flexibility and decoupled value, 167
probability density function, 24
conditional pdf, 32
continuous pdfs, 25
discrete pdfs, 25
independence, 28
joint pdf, 27
marginal pdf, 28; see also statistical models
probability rule, 75
probability tree, 79
process-based and process-mimicking, 119
production, petroleum reservoir, 193
prospect, decision making, 69
prospects, geological, 36, 232, 234, 259
P-wave velocity, 16, 323
pyramid of conditions, 2, 97, 221

QQ plot, 48, 129, 283

random field, 110; see also spatial models; spatial
simulation
random variable, 22
range, 112
recharge decisions, 293, 326
regression, 46, 50, 334
generalized linear model, 341
spatial regression model, 120
rejection sampling, 58, 361
relevance diagrams, 36
relevant, 3, 97, 221
reliability measure, 192, 194, 298, 327
reservoir attribute, 233, 247, 321

Index
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reservoir characterization example, 265
project, 322-324
spatial modeling, 144—147
VOI, 265-271
reservoir dogs, see seismic and electromagnetic data
example
reservoir simulation, 317
resistivity data, 264, 272
Archie’s law, 277, 324
resource block, mining, 283
risk averse, 71
risk neutral, 70, 162
risk preferences, 70
risk seeking, 71
risking, 22, 59, 259
risky business, see petroleum prospect risking
example
rock hazard example, 286
project, 326
spatial modeling, 136-139
VOI, 286-292
rock physics, 264
Gassmann’s fluid substitution, 276, 324
seismic and electromagnetic data, 324
seismic modeling, 267, 317
soft sand model, 273, 324
rock support, mining, 286
rules of actional thought, 75

salinity, 292
salt water wells in my eyes, see groundwater
management example
sample space, 22, 27
saturation, 267, 273, 322
scenario, 69
scenario, geologic, 191, 294
segment, geologic, 234
seismic and electromagnetic data example, 271
project, 324-325
VOI, 271-280
seismic data, 18, 30, 144, 263-280, 322-325
Aki—Richards approximations, 276
AVO data project, 322
AVO gradient, 267
post-stack versus pre-stack data, 266, 272
time lapse, 88, 313
zero-offset attributes, 267
sensitivity, 182
sensitivity analysis, 54
separable covariance, 124
sequential decision situations, 161, 211-216
sequential Gaussian simulation, 118
sequential indicator simulation, 139
sequential information gathering, 161, 216-220, 257
sequential simulation, 117
sequential testing, 161, 216-220, 257
sill, 111, 288
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simulation, 53-61; see also Monte Carlo simulation;
spatial simulation
skew-normal distribution, 132, 305
SNESIM algorithm, 149
snow measurements, 202, 318
soft sand model, 273, 324
source attribute, 233, 247, 321
space-filling design, 220
sparse matrix, 332
spatial alternatives, 156
spatial correlation, 111
spatial correlation range, 112
spatial covariance, 111
spatial covariance function, 112, 122, 314
spatial decision situations, 158
spatial design, 121, 125, 220; see also design of
experiments
spatial generalized linear model, 135
spatial models, 107-110
Gaussian random field, 120
Markov random field, 140-147
multiple-point geostatistics, 147-151
pluri-Gaussian models, 140
process-based and process mimicking, 119
skew-normal distribution, 132
spatial generalized linear model, 135
truncated Gaussian models, 140
spatial prediction, 114-115
best linear unbiased predictor, 115
Kriging, 115, 123, 127
mean square prediction error, 115
optimal spatial predictor, 115
spatial regression model, 120
spatial simulation, 116-120
Boolean, 118
direct simulation, 116
iterative simulation, 117
object-based, 118
process-based and process-mimicking, 119
sequential Gaussian simulation, 118
sequential indicator simulation, 139
sequential simulation, 117
SNESIM, 149
unconditional and conditional simulation, 116, 117
SPE 10 dataset, 132
specificity, 182
St. Petersburg’s paradox, 308
standard deviation, 25
static decision situations, 161
static information gathering, 161
stationary, 38, 121
Markov chain, 345
random field, 110
statistical models, 22
Bayesian networks, 36, 44, 236-239, 356-359
binary variables, 24, 38, 42

binomial, 135, 340
Gaussian, 25, 28, 305, 331
Gaussian mixtures, 30
generalized linear models, 339-343
HMMs, 52, 179, 346-348
Markov chain, 38, 344
Poisson, 135, 287, 326, 340
power law, 26, 304
skew normal, 305; see also probability density
function
stochastic simulation, 53-61; see also Monte Carlo
simulation; spatial simulation
strategy, 84
subset selection, 210, 222, 284
substitution rule, 75
success or failure, 44, 178, 214, 223, 250
survey, 167
conservation biology example, 181
forestry example, 170
groundwater management example, 293
seismic and electromagnetic data example, 272
S-wave velocity, 323

test sequence, 217
the tree amigos, see conservation biology example
time after time, see time-lapse seismic example
time-lapse seismic example, 88
influence diagram, 88-93
project, 313
time—domain electromagnetic method, 292
airborne, 293
land-based, 327, 329
total imperfect information, 165
total organic carbon (TOC) content, 247
total perfect information, 163
total versus partial information, 39, 163
forestry example, 170, 184
Gaussian projects example, 46
reservoir characterization example, 266
training image, 118, 147, 149
transformation formula, 333
transformation of variables, 32, 58, 360
transient electromagnetic data, 292
airborne, 293
land-based, 327, 329
trap attribute, 233, 247, 321
treasure island, see pirate example
truncated Gaussian models, 140
tunnel, rock hazard, 286

uncertainties, 22, 68
unconditional and conditional simulation, 116, 117
uniform random numbers, 359
utility function, 70, 209
exponential utility, 71
linear utility, 70
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logarithmic utility function, 308; see also decision variance, 25, 28, 34, 111
analysis variogram, 107, 111, 129, 325
versimultitude, 159
value function, 69

coupled, 188, 199 waste rock, 283
decoupled, 166, 174; see also decision analysis we will rock you, see rock hazard example
value of clairvoyance, 93 wealth, 72, 74, 94, 209, 308
value of imperfect information, 97 workflow, 3, 230-231
partial, 165 framing the decision situation, 230
total, 165 information-gathering schemes, 230
value of information, 95 spatial model, 230
spatial decision situations, 163—165 VOI analysis, 231
value of perfect information, 95
partial, 165 XMET data, 50, 128, 281
total, 164 project, 325
value table, 69, 80, 294, 309, 310 XRF data, 50, 128, 281

variable elimination, 39, 358 project, 325
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