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Value of information (VOI) is a concept in decision theory for analyzing the value 
of obtaining additional information to solve a problem. Gathering the right kind 
and the right amount of information is crucial for any decision-making process. 
Already commonly used in medicine, economics, and finance, VOI is becoming 
increasingly popular with Earth scientists.

This book presents a unified framework for assessing the value of potential 
data gathering schemes by integrating spatial modeling and decision analysis, with 
a focus on the Earth sciences. The authors discuss and compare the value of imper-
fect versus perfect information and the value of total versus partial information, 
where only subsets of the data are acquired. Concepts are illustrated using a suite 
of quantitative tools from decision analysis, such as decision trees and influence 
diagrams, as well as models for continuous and discrete dependent spatial vari-
ables, including Bayesian networks, Markov random fields, Gaussian processes, 
and multiple-point geostatistics. Numerous examples are used to illustrate the 
applicability of VOI to topics such as energy, geophysics, geology, mining, and 
environmental science. Real datasets and MATLAB codes are also provided as 
online supplementary material.

Unique in its scope, this book is of interest to students, researchers, and industry 
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Preface

This book is a result of our collaboration over the past decade on addressing problems 
related to the value of information (VOI) in Earth sciences applications by building links 
between statistics, geosciences, and decision analysis. We believe that such an interdis-
ciplinary approach will become increasingly essential for the careful stewardship of our 
natural resources.

Decisions related to the Earth’s natural resources are often consequential, and making 
these decisions under uncertainty is a ubiquitous challenge. Since there is a lot at stake, 
it may be worthwhile for the decision maker to obtain more information before the deci-
sion is actually made – i.e., before an irrevocable allocation of resources. When faced with 
uncertainty, gathering the right kind and right amount of information is crucial. Today, 
geo-coded data are commonly purchased, processed, and interpreted to provide infor-
mation about uncertain variables, such as the spatial distribution of trees in a forest, the 
amount of oil or gas in the subsurface, the level of groundwater in an aquifer, or the mineral 
content in a mine. A crucial question to answer is: how much information should one pur-
chase, and at what price? This question is related to the well-established concept of VOI. 
Additional information may help to reduce the uncertainty, but if the information has no 
impact on the decision, then purchasing it is not economic.

A key characteristic of applying the decision theoretic notion of VOI to the Earth sci-
ences that makes it different from other applications is the spatial aspect: spatial uncertainty, 
spatially distributed information, and spatial decisions. The decision theoretic formalism 
provides a consistent basis for relating statistical models of spatial phenomena to the deci-
sions. This connection facilitates decision making by providing clarity of action and also 
fosters innovative approaches for designing spatial information-gathering schemes.

The book presents a unified framework for VOI analysis based on statistical concepts, 
geological and geophysical modeling, and decision analysis. Often in the Earth sciences, 
information is sensed remotely – for example, from geophysical surveys that provide indir-
ect and imperfect knowledge about the spatially varying surface. How valuable is this 
imperfect information? We study the comparison of various kinds of practical schemes by 
considering the value of imperfect versus perfect information and the value of total versus 
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partial information, where only subsets of the possible data are acquired – for example, a 
sparse versus a spatially dense survey.

We focus on areas of our own expertise for the benefit and interest of others with simi-
lar scientific backgrounds. Throughout the book, we will discuss and reference the work 
of others, but we do not aim to provide an exhaustive summary of what has been done on 
applying VOI to other fields, such as in medicine. Applications from the Earth sciences 
are highlighted, and we describe the practical use of our methods and tools via a number 
of illustrative examples and hands-on exercises so that readers can learn the concepts by 
applying them.

Even though this is a specialized book, we aim to reach a diverse group of readers. The 
primary intended readers include scientists, engineers, graduate students, and professionals 
who use applied statistics and decision theoretic models in the quantitative Earth sciences. 
We believe that the topics will be of interest to researchers and industry professionals in 
different fields of the Earth sciences: energy resources, mining, groundwater, and environ-
mental sciences. It will also be of interest to applied statisticians and decision analysts. We 
hope that this book will be a practitioner’s guide.

The book requires some background in basic probability and statistics and mathematical 
calculus, as well as an interest in Earth sciences applications. Although it is not essential, 
it helps to know basic multivariate analysis and decision analysis or optimization. The 
reader must be open to learning unfamiliar topics and be able to appreciate the added value 
obtained from the multidisciplinary approach. If more background knowledge is needed for 
a particular topic, readers can consult some of the references suggested in the bibliographic 
notes at the end of each chapter. The chapters define the concepts using mathematics, but 
without going into too much detail. Additional mathematical details about the most import-
ant models and methods used in the book are provided in the appendix. The last chapter 
contains exercises and larger projects including data. On the website (srb.stanford.edu/
VOI), we provide more background for these examples, including data and computer code.

We hope that you find this book useful!
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1

Introduction

Carl Sagan famously wrote about the “pale blue dot” that all of us share: “That’s home. 
That’s us … there is nowhere else, at least in the near future, to which our species could 
migrate. Like it or not, for the moment the Earth is where we make our stand” (Sagan 1994, 
p. 8). More than 20 years after Sagan’s famous book, there are plans for human settlement 
on Mars. But Earth is still home, and on this rock revolving around a golden sun, people 
everywhere constantly use information to make decisions about utilizing, managing, and 
sustaining our valuable natural resources. How can we quantitatively analyze and evaluate 
different information sources for supporting decisions in the Earth sciences?

1.1  What is the value of information?

Making decisions in the Earth sciences can be challenging. There is often significant uncer-
tainty pertinent to the decision – for instance, the availability and spatial distribution of 

Figure 1.1  data crunching times
numbers pulsing ‘round the globe:
how much is enough?
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the resources under consideration. Moreover, there could be a lot at stake, as investments 
may be considerable and there may be huge financial losses or adverse environmental 
consequences. Petroleum exploration and production, mining, agriculture, and forestry are 
examples of domains where large-scale efforts are typical. Similarly, endeavors in domains 
such as conservation biology, ecology, groundwater management, and climate sciences 
strive to sustain and better manage natural resources and affect several stakeholders.

A unique aspect of the complexity of decisions in the Earth sciences is the inherent 
spatial variability. The subsurface formations have been forged through millions of years 
of coupled geological, physical, chemical, and biological processes, resulting in spatial 
trends and dependence between rock properties at different spatial locations. The subsur-
face properties have spatial dependence, but at the same time they are very heterogeneous, 
variable, and uncertain. The decision maker’s characterization of uncertainties is then best 
represented by spatial statistics, because properties at a particular geographic location can-
not be treated independently of those at other locations. Reliable information that resolves 
some of the uncertain properties at one location could therefore go a long way toward 
improving the overall quality of decisions.

The past few years have seen a tremendous surge of interest in “big data.” This has 
largely been driven by the development in electronics, telecommunications, computer sci-
ence, online commerce, social media, and our ability to automatically acquire and store 
data. While this may be a subject of great current interest in popular culture, the Earth sci-
ences have arguably been dealing with big data for a while now. The aspect of volume – the 
first of the five “Vs” of big data – has certainly been well represented; examples include 
large geophysical surveys, especially in exploration reflection seismology, and weather 
and atmospheric data from remote sensing satellites. The utilization and sustenance of 
the Earth’s resources involve multidisciplinary work that can entail acquiring, processing, 
modeling, and interpreting copious amounts of a variety of data types – the second of the 
five “Vs.” As an example, typical analysis of basin and petroleum systems includes geo-
physical seismic data, well logs, geochemical analysis, information from biostratigraphy 
and paleoclimate studies, structural geology, the study of depositional environments, and 
core analysis. The other “Vs” include velocity – data acquired at a rapid rate (e.g., con-
tinuous streams of data from remote sensing sensors) – and veracity – whether the data are 
accurate and trustworthy. Eventually, the goal is to make better decisions. This is where the 
last of the five “Vs” of big data becomes important: value.

What is the value of the data and how much data are enough? Information almost always 
comes at a price, so when is the information worth its price? At the very core of this book 
lies the decision theoretic notion of value of information (henceforth referred to as VOI), 
which we use to evaluate and analyze various sources of data. The power of analyzing infor-
mation sources using VOI is that: (i) it allows the decision maker to perform a reasonable 
evaluation before the information is purchased and therefore revealed and (ii) if the decision 
maker can model value using monetary units, then VOI is also in monetary units. These cap-
abilities make VOI an extremely practical tool that addresses real problems in the real world.

Figure 1.2 demonstrates what we refer to as the “pyramid of conditions” that makes 
information valuable. Although all technical details are postponed until later in the book, 
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1.1 What is the value of information? 3

we feel that the figure captures the essence of VOI. The condition at the bottom of the pyra-
mid specifies that information must be relevant to the value from the decision, so observ-
ing the information can impact the decision maker’s beliefs about the key uncertainties. 
As an (extreme) example, while making a decision about whether you should take your 
umbrella to work, information about what your friend ate for breakfast hardly seems rele-
vant to whether it will rain! The condition at the middle level of the pyramid specifies that 
information must be material, in the sense that observing it should have the capability to 
change your decision. If you enjoy both the rain and the sun and would rather not carry an 
umbrella, then listening to a weather forecast hardly seems worthwhile – you will choose 
to leave the umbrella at home, regardless of what the forecast has to say. Information must 
have the potential to allow the decision maker to flexibly adapt and differ from what he or 
she would have otherwise done. Finally, the condition at the very top of the pyramid is that 
information must be economic – the price of the information must be less than its value. 
The three requirements are shown as a pyramid because higher conditions cannot be satis-
fied unless those lower in the pyramid are satisfied. If an information source is not relevant, 
it cannot be material; if it is not material, it cannot be economic.

The reader may well ask: what is the catch? What do I need to do to harness the wonder-
ful capabilities of VOI? The only catch is that the power of such a practical tool requires 
some modeling sophistication – it requires understanding and characterizing how the vari-
ous pieces of the puzzle fit together, and for applications in the Earth sciences, this can 
often require an interdisciplinary effort. In this book, we recommend a four-stage work-
flow for using VOI to support information-gathering decisions in the Earth Sciences, as 
indicated in Figure 1.3:

1.	 To start with, the decision maker should frame the underlying decision situation to 
understand how the potential information would be used. What are the questions the 
decision maker is trying to address?

ECONOMIC

Does the value of the information
exceed its cost?

Can observing the information
change the decision?

Can observing the information
affect the value?

MATERIAL

RELEVANT

Figure  1.2  The pyramid of conditions specifies that information-gathering schemes should be 
economic, material, and relevant.
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Introduction4

2.	 Next, the decision maker should identify and study the potential information-gathering 
schemes. How is the information relevant to the underlying decision situation? How 
might the information affect the decision?

3.	 In the Earth sciences, spatial dependence is an important aspect of most problems. 
Therefore, it is often essential to build a spatial model that is a reasonable approxima-
tion to the real-world domain. This model captures how the various uncertainties, such 
as geological properties, are connected to each other and to the relevant data.

4.	 Finally, now that all the pieces are in place, VOI analysis can be conducted to address 
various issues of interest. Information sources of varying reliability and price can be 
compared, and the decision maker can proactively identify schemes that will increase 
their value for the decision situation.

As we will later show, the VOI for a data-gathering scheme is computed from comparing the 
values with and without the data. It is important to note that the underlying decision situation 
informed by the data plays an explicit part in the calculations. VOI analysis is useful for com-
paring different schemes. Since the VOI is computed before the data are actually revealed, the 
value with data must include some kind of averaging over the possible data sets. We highlight 
how such VOI analysis can be conducted in spatial contexts in the following section.

1.2  Motivating examples from the Earth sciences

Figure 1.4 shows a map view of data from a proposed mining project. The spatial distribu-
tion of the oxide grade is highly variable and uncertain. The map displays locations where 
oxide grade data have been acquired (black). Two types of data have been collected here, 
at different levels of accuracy. The lower-accuracy data set is obtained with a handheld 

Frame the
decision
situation

Study
information
gathering

Build a
spatial
model

Conduct
VOI

analysis

Figure 1.3  A workflow for value of information analysis consists of four steps.
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1.2 Motivating examples from the Earth sciences 5

meter and requires almost no time for processing (marked with black dots in the display), 
while the higher-accuracy data set is acquired by taking a core plug from the borehole to 
the laboratory for careful scanning (marked with black crosses in the display). Based on 
these observations and expert geological knowledge about the ore, the question is: would 
mining be profitable? The company has made a careful plan for how the mining would be 
done (illustrated by gray squared units in the display), but it is difficult to make a decision 
under uncertainty due to the spatial distribution of oxide. Before making the decision, 
would mining company can collect more data. Potential locations for additional measure-
ments are defined (marked with gray circles in the display). The data, of course, come at a 
price for drilling and processing. Are these data worth gathering? And, if yes, which type 
of data should we acquire – the low-accuracy data or high-accuracy data, or a combination 
of both? VOI analysis can be used to answer these questions by embedding the decision 
situation in a spatial modeling framework.

Figure 1.5 shows a network consisting of 38 nodes. The 13 nodes numbered with prefix 
“P” represent petroleum prospects, and the 25 bottom nodes of the network (illustrated by 
grayscale circles in the display) are segments of the prospects. This graph, a Bayesian net-
work, is constructed to capture the relationships arising from the geological mechanisms 
within basin and petroleum systems, and the edges indicate physical connections between 
geological attributes at the prospects and segments. There is uncertainty about the presence 
of oil and gas, and the network has an associated probabilistic model that describes these 
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Figure 1.4  Map view of borehole measurement locations and potential mining locations for an oxide 
resource. The mining company can drill more boreholes before making the mining decision.
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Introduction6

uncertainties. A petroleum company can use this model to evaluate their decisions about 
petroleum field development. Before pursuing expensive development decisions, would it 
be worthwhile to invest in some exploration wells? An exploration well landed at one seg-
ment would reveal the presence or absence of oil at that segment, resolving the uncertainty 
at that node, and because of the common geological mechanisms indicated by the network 
edges, the information at the exploration segment would also provide some information 
about the other segments. If exploration wells will be drilled, where should the company 
place them? VOI analysis is useful for evaluating such data-gathering schemes.

For the petroleum application, let us zoom in to a finer granularity. A common deci-
sion situation is whether to drill production wells at specified reservoir units or to avoid 
drilling. Before going through with the expensive drilling operations, it could be useful 
to do a careful subsurface characterization using geophysical data. Seismic and electro-
magnetic data can be useful in reservoir characterization, improving the prediction of 
reservoir variables such as lithology, porosity, and saturation. The seismic data undergo 
processing, which typically provides seismic amplitude information merged in a stack 
over all angles of the data into one entity (post-stack amplitudes). Would it be worthwhile 
to invert and interpret the pre-stack data to additionally obtain seismic amplitudes as a 
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Figure 1.5  Network illustrating 13 oil field prospects and 25 segments where a petroleum company 
can drill exploration wells before making decisions about prospect development.
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1.2 Motivating examples from the Earth sciences 7

function of the incidence angle? And what processing accuracy is required for signifi-
cantly improving the prediction of reservoir rocks and saturations?

Figure 1.6 shows contours of the modeled seismic amplitude responses for two res-
ervoir facies classes (gas sands and brine sands). The contours are representative of 
bivariate distribution of the expected response for the seismic zero-offset attribute (first 
axis) and the amplitude-versus-angle attribute (second axis), given any of the two facies 
classes. These distributions can be assessed from well logs and rock physics and seismic 
models, but the uncertainty (or the spread and overlap of the distributions) depends on 
the underlying rock and fluid properties, their natural variability, and the accuracy of the 
seismic processing scheme. As shown by the marginal distribution on the top panel, the 
gas sands in this particular reservoir have generally lower zero-offset amplitudes, while 
the brine sands have somewhat higher amplitudes. However, there is a lot of overlap, and 
the classification based only on zero-offset amplitudes has a high misclassification error 
(~25%). If, on the other hand, the classification is based on both the zero-offset ampli-
tude as well as the amplitude-versus-angle attribute, the bivariate classification of the 
two classes is much better, with a very small misclassification error (~1%). Is it worth 
purchasing the pre-stack attribute? How would a better classification impact the deci-
sion? Perhaps it may be better to get more accurate post-stack amplitudes and reduce the 
overlap in the marginal distributions of the post-stack amplitudes – or maybe purchase 
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Figure 1.6  Seismic amplitude data are informative of the reservoir rock type and saturation. The 
contours indicate non-parametric probability density functions (pdfs) of the likely response of the 
seismic amplitude data for brine sands (black) and gas sands (thick, light gray curves). The marginal 
pdfs are shown on the right and at the top. The dashed black lines indicate classification boundaries 
for the two classes.
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Introduction8

electromagnetic data. Which of the different information-gathering options is most valu-
able for the decision maker?

VOI analysis can play an important role in better managing groundwater, a valuable 
natural resource. Will purchasing geophysical electromagnetic measurements help a 
groundwater manager make better decisions about recharge? As an example, consider 
the case where groundwater is pumped out from a coastal fluvial aquifer and is used for 
agriculture. Seawater from the coast starts intruding due to excessive groundwater pump-
ing, leading to increased water salinity and a decrease in usability for crops. Artificial 
groundwater recharge by pumping freshwater into the subsurface is considered as a way 
to mitigate salt water intrusion. Where should the recharge site be located? The subsurface 
distributions of the high-permeability sand channels and low-permeability shales, which 
impact the groundwater flow and the effectiveness of recharge in the aquifer, are uncer-
tain. Geophysical measurements may be valuable for better characterizing the subsurface 
and thus help make informed decisions about the selection of possible recharge locations. 
Assessing the value of the data before actually acquiring them requires modeling the uncer-
tain subsurface channel geometries, accounting for multiple possible scenarios, and con-
ducting flow simulations and geophysical simulations using Monte Carlo computations.

Figure  1.7 shows one realization of subsurface channel geometries generated using 
multiple-point geostatistical methods. Many such realizations need to be generated to 
model the subsurface facies uncertainties, and one must simulate their geophysical signa-
tures, as well as the effects of flow and recharge under different recharge alternatives avail-
able to the decision maker. The important question is whether the value of the geophysical 
electromagnetic data is more than the price.

Figure 1.7  Three-dimensional view of one geostatistical realization of uncertain sand channel facies 
in a groundwater reservoir.
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1.3 Contributions of this book 9

We will return to these examples as well as others in the following chapters. They illus-
trate current-day applications in the Earth sciences where VOI analysis can be useful.

1.3  Contributions of this book

The main contribution of this book is the blending of decision analysis and spatial statistical 
concepts to support decisions around information gathering in the Earth sciences. Compared 
with the traditional use of VOI, we stress the spatial aspects of the statistical model, the alterna-
tives, and the potential information-gathering schemes; many applications of VOI analysis in 
other disciplines do not need to contend with complexities arising from spatial dependence – a 
feature that is pervasive in the Earth sciences. Furthermore, we go well beyond the traditional 
and simplistic high-level models for VOI analysis that have been common for decades and 
work toward building more realistic models at a finer granularity. We feel that decision mak-
ers in the Earth sciences can benefit greatly from our models and methods by deploying them 
to analyze real-world information schemes. With burgeoning computational capabilities, effi-
cient algorithms, and the ever-increasing availability of data, we sense that more sophisticated 
models will become increasingly popular and will greatly improve the quality of decisions.

In this book, we refer to decision situations that are typical in the Earth sciences as 
spatial decision situations, building a taxonomy of models based on the decision flexi-
bility  – i.e., whether there are a large or small number of alternatives and whether the 
decision maker’s value function is coupled or decoupled, i.e. how complex it is to reason-
ably compute the decision maker’s value from his or her decision situation. We compare 
various sorts of information-gathering schemes, categorizing them based on whether they 
provide perfect or imperfect information and whether they are partial or total schemes. 
We also categorize models based on assumptions around whether decision situations and 
information-gathering schemes are static or sequential.

We advocate the use of VOI analysis for evaluating data for spatial decision situations. 
There are several information measures, such as entropy, that are more popular in spatial 
applications. Unlike VOI, however, these measures only address aspects of the relevancy 
of the experiment without addressing the monetary gain in value and the ability to make 
better decisions. VOI is most useful in situations where data are rather expensive. When 
data come for free, there is not much point in evaluating them – but keep in mind that 
there is often much effort spent in processing vast amounts of inexpensive data.

Every day, people make important decisions about the development of the Earth’s 
resources. At least as often, decision makers contemplate whether gathering more informa-
tion will assist them in their difficult decision-making processes. In the future, our demands 
may change; there may be a drive for recovering unconventional resources in petroleum, 
we may explore subsea mining, or we may head toward renewable sources such as solar 
or wind energy. Similarly, environmental challenges will change, and new sustainabil-
ity questions will arise. What will not change is the advantage of being able to frame 
decision situations, build useful models for the spatial variables, and evaluate possible 
information-gathering schemes for improved decision making.
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1.4  Organization

This book is organized into seven chapters, including this introduction, as well as an 
appendix. Chapter 2 introduces basic probability and statistics while providing the funda-
mental notation for the book. We introduce some specific models, methods, and examples 
that are used throughout the book. Chapter  3 introduces decision analysis. We focus 
primarily on the concepts required to understand and appreciate the decision theoretic 
notion of VOI. Chapter 4 describes spatial statistics models. We motivate spatial modeling 
through several illustrative examples that are used for VOI analysis in subsequent chap-
ters. These three topics – probability and statistics, decision analysis, and spatial model-
ing – lay the foundation for the subsequent formulation of methods and tools for VOI in 
Earth sciences applications. Each of these three topics is, of course, extensive with vast 
amounts of dedicated literature. The aim is not to cover them comprehensively; rather, 
the goal in Chapters 2, 3, and 4 is to provide an overview and lay the groundwork for the 
following chapters.

Chapter 5 integrates concepts from previous chapters. We define spatial decision situ-
ations and demonstrate VOI analysis for information-gathering schemes for various cat-
egories of spatial decision situations. We describe a taxonomy based on the different 
combinations of opportunities for spatial decision making and information gathering. 
Several examples are used to illustrate the concepts.

Chapter 6 provides a number of real-world examples of VOI analysis. We demonstrate 
applications using data from petroleum, mining, and groundwater applications. For pet-
roleum exploration and development, information-gathering schemes include exploration 
wells, seismic data, or electromagnetic data. For mine development and safety, various kinds 
of borehole information could provide valuable information. In the hydrology example, geo-
physical electromagnetic data could be used to better characterize the subsurface and thus 
help make better decisions about groundwater recharge.

Chapter 7 contains a number of exercises and hands-on projects. On the book website 
(srb.stanford.edu/voi), we provide further information about these examples, including vari-
ous data sets, Netica project examples, and a collection of MATLAB m-files to help readers 
reproduce many of the results described in the book. The code will also be useful for the 
hands-on projects.

In every chapter, we end with bibliographic notes, where we present our views on con-
nections with relevant literature as well as some references. Mathematical details about the 
most important models used in the book are provided in the appendix.

A number of examples recur throughout the book. Table  1.1 summarizes these 
examples in terms of key assumptions, application domains, and the relevant sections 
of the book.

1.5  Intended audience and prerequisites

This book is primarily intended for practitioners, professionals, and graduate and advanced 
undergraduate students in domains associated with the Earth sciences. It may be used as a 
supplementary text for a class on spatial statistics or decision making in the Earth sciences 
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1.5 Intended audience and prerequisites 11

Table 1.1. Summary of the main examples running throughout the book

Decision Information Model Sections

Treasure island – 
the pirate example

Dig for treasure 
or not

Metal detector 
experiment

Binary variables 2.3, 3.2, 3.4

Gotta get myself 
connected – 
Bayesian network 
example

Develop petroleum 
reservoir prospects 
or not

Exploration 
wells

Bayesian 
network model

2.3, 5.7, 6.2, 
7.2

Never break the 
chain – Markov 
chain example

Develop prospects 
or not

Exploration 
wells

Markov chain 
model

2.3–4, 5.4, 
7.1

For whom the bell 
tolls – Gaussian 
projects example

Invest in projects 
or not

Reports of 
profits for 
projects

Bivariate 
Gaussian model

2.3, 3.2–4, 
7.1

I love rock and ore – 
mining oxide grade 
example

Start mining or not X-ray of cores in 
boreholes

Gaussian spatial 
regression 
model

2.4, 4.4, 6.4, 
7.4

Risky business – 
petroleum prospect 
risking example

Develop petroleum 
reservoir prospects 
or not

Exploration 
wells

Empirical 
forward 
modeling

2.5, 6.2, 7.2

Time after time – 
time-lapse seismic 
example

Perform seismic 
monitoring or not

(No VOI 
analysis)

Graphical 
model

3.3, 7.1

MacKenna’s 
gold – oil and gold 
example

(Lottery, not a 
decision situation)

(No VOI 
analysis)

Graphical 
model

3.3, 7.1

Norwegian wood – 
forestry example

Harvest forest 
units or not

Surveys of the 
forest

Gaussian 
random field

4.4, 5.3–4, 
5.9, 7.1

We will rock you – 
rock hazard  
example

Add support in 
mining tunnels 
or not

Rock joint data 
in boreholes

Spatial 
generalized 
linear model

4.5, 6.4, 7.4

Black gold in a 
white plight – 
reservoir 
characterization 
example

Drill at reservoir 
units or not

Seismic data Markov random 
field

4.6, 6.3, 7.3

Go with the 
flow – petroleum 
simulation example

Develop petroleum 
reservoir or not

Interpreted 
seismic data

Multiple-point 
geostatistics and 
flow simulator

4.7, 5.5, 7.1

The tree amigos – 
conservation 
biology example

Establish 
conservation sites 
or not

Surveying of 
spatial domain

Markov random 
field

5.4, 5.7, 5.9, 
7.1
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or can be a main text for a course on the VOI in the Earth sciences. The exercises, hands-on 
projects, and data sets should make it conducive for classroom use.

The book requires a background in basic statistics and probability, mathematical cal-
culus, and some understanding of multivariate concepts such as vectors and matrices. 
Knowledge of multivariate statistics is a bonus, but not essential, as some of the basics are 
presented here. Similarly, knowledge of basic optimization or decision theory is a bonus, 
but not essential. Readers familiar with probability and statistics will find Chapter 2 rather 
straightforward, but we recommend skimming this chapter anyway to get familiar with 
the notation and the running examples. Similarly, readers with a background in decision 
analysis would recognize most concepts from Chapter 3. Readers not trained in multivari-
ate statistics, decision analysis, or spatial statistics should be aware that Chapters 2–4 are 
merely brief overviews. The interested reader should be willing to learn the unfamiliar 
topics and to appreciate the benefits gained from taking a multidisciplinary approach. If 
further background knowledge is required for any topic, the reader may wish to consult 
some of the texts suggested in the bibliographic notes at the end of each chapter.

If you are a statistician, you will likely benefit from learning about decision analysis 
concepts (Chapter 3) and possibly also spatial statistics concepts (Chapter 4) before going 
on to integrate the concepts presented in the core of the book (Chapters  5–7). If your 
expertise is decision analysis, you could use this book to learn about spatial statistics con-
cepts (Chapter 4) and bring this together with your decision analysis knowledge to study 
VOI for the Earth sciences (Chapters 5–7). If your background pertains to the geosciences, 
you will likely benefit from learning about some basic statistical tools (Chapter  2) and 

Decision Information Model Sections

Frozen – 
hydropower 
example

Optimal water 
level behind dam

Snow depth data Transformed 
Gaussian 
random field

5.6, 7.1

Basin street blues – 
basin modeling 
example

Develop reservoir 
prospects or not

Exploration 
wells

Basin modeling 
and Bayesian 
networks

6.2, 7.2

Reservoir dogs – 
seismic and 
electromagnetic 
data example

Drill at petroleum 
reservoir units or 
not

Seismic and/or 
electromagnetic 
data

Hierarchical 
Gaussian spatial 
model

6.3, 7.3

Salt water wells 
in my eyes – 
groundwater 
management 
example

Perform recharge 
for groundwater 
management

Electromagnetic 
data

Multiple 
geological 
scenario models

6.5, 7.5

Table 1.1 (cont.)
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1.6 Bibliographic notes 13

decision analysis (Chapter 3), but you may choose to go quicker through spatial statis-
tics (Chapter 4) before understanding spatial decision situations and information-gathering 
schemes (Chapters 5–7). Our intent is that the book should be readable for people from 
diverse backgrounds. The book builds on multidisciplinary ideas, and we try to appreciate 
that in our presentation.

1.6  Bibliographic notes

At the end of each chapter in the book, we point to further reading material or discuss some 
current trends pertaining to the topics that were presented. Here we discuss connections to 
other books related to VOI in the Earth sciences.

The book by Newendorp and Schuyler (2013) is the third edition of a classic text that has 
become a standard reference. It covers many important aspects of decision and risk ana-
lysis, with special attention paid to investment decisions in petroleum exploration. There 
is an extensive section with examples on VOI analysis. Compared to our book, Newendorp 
and Schulyer (2013) focus more on high-level decision analysis, economics, policy, and 
risk and less on quantitative spatial models of the underlying geologic uncertainties. In 
addition to petroleum exploration, we also cover a broader range of applications in the 
Earth sciences.

Bratvold and Begg (2010) cover decision making for petroleum applications, but they 
do not phrase the VOI in the context of spatial decision situations – i.e., where there is a 
multivariate statistical model for probabilistically dependent variables and data. We argue 
that the spatial and multivariate modeling aspect is crucial for Earth sciences problems.

The book by Caers (2011) has a good discussion on VOI applied to the Earth sciences 
without going into extensive mathematics. Our presentation contains more advanced 
VOI modeling techniques while trying to present the mathematical representations in a 
friendly way.

There are, of course, several books on subtopics of our book such as spatial statistics, 
graphical models, and decision analysis. Some books on information theory and experi-
mental design are also pertinent and will be discussed as appropriate in the following 
chapters.
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2

Statistical models and methods

In this chapter, we provide a fit-for-purpose introduction to probability and statistics, with 
an emphasis on models and concepts used later in the book. This chapter is not meant to 
be a comprehensive review of statistical concepts. We focus instead on presenting selected 
models and methods and setting the notation that will be used throughout this book.

We start with some background discussion on uncertainty quantification and informa-
tion gathering and motivating the use of data sets. Section 2.2 defines random variables 
and probability distributions for univariate and multivariate settings. Section 2.3 covers 
conditional probability and Bayes’ rule. Here we emphasize the applicability of graphs and 
hierarchical models, which will be particularly important in the book. Selected statistical 

Figure 2.1  will you strike black gold?
or else be left high and dry?
do you feel lucky?
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2.1 Uncertainty quantification, information gathering, and data examples 15

inference methods are discussed in Section 2.4, and Monte Carlo methods are reviewed in 
Section 2.5. In Section 2.6, we provide bibliographic notes.

2.1  Uncertainty quantification, information gathering, and data examples

Data acquisition, modeling, interpretation, and analysis rely on qualitative and quantitative 
assessments. In most Earth sciences applications, there is insufficient evidence to use deter-
ministic rules, and probabilistic assessments are more realistic. Decision making under 
uncertainty requires a probabilistic representation of the distinction of interest and the 
relevant data variables. The distinction of interest is an uncertainty that is fundamentally 
important to the decision maker. (The rationale behind this specific term will be revealed 
in the next chapter.) We motivate probabilistic modeling via data examples from the Earth 
sciences. We will use many of these data sets later in the book for decision analysis, spatial 
modeling, and value of information (VOI) analysis.

A useful first step in statistical model building and any kind of exploratory data analysis 
is to create graphical displays and compute various summary statistics. However, it is even 
more important to clearly define the question that needs to be addressed. Only then, along 
with experience, can we start to study relevant displays and summary statistics and build 
appropriate probabilistic models for uncertainty assessment and VOI calculations.

The most important summary statistics of data are the empirical mean, or sample aver-
age, and the empirical standard deviation. The average is representative of the “center” of 
the data, while the empirical standard deviation is a measure of the “variability” in the data. 
There are many other ways to quantify the central tendency and the variation. One can, for 
instance, gain insight by sorting the data from smallest to largest. From this sorted list, we 
can pick the median, defined as the data variable in the middle, and assess percentiles in the 
data. An empirical percentile has a fraction α of the variables smaller than itself.

In the Earth sciences, attributes are often multivariate – for instance, the subsurface is 
characterized by porosity, permeability, fluid saturations, rock or soil types, and so on. 
Moreover, these variables vary across spatial coordinates, and some attributes also vary in 
time. The statistical modeling assumptions should ideally incorporate multivariate trends. 
As a result, the univariate summary statistics are only one particular aspect of understand-
ing components of the underlying phenomena and the probabilistic assessment. Bivariate 
summaries such as the empirical correlation may also be insightful. Similarly, we can ana-
lyze the conditional properties of a variable by extracting its values only when another vari-
able is at a specified level. For instance, we may be interested in the variability of porosity 
in a stratigraphic layer or in the distribution of elastic properties in the oil column.

In each discipline, certain standards for visualizing data have emerged, and experts are 
familiar with interpreting and analyzing data in this form. Nevertheless, the use of histo-
grams or cross-plotting is common at various stages of model building. We illustrate com-
mon visualization methods for some of the data examples used in the book. This discussion 
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Statistical models and methods16

motivates methods for combining data with physical knowledge to build probabilistic mod-
els for uncertainty assessments.

Consider the data in Figure 2.2 from a vertical well log in the North Sea. The well is 
drilled from the sea bed to about 3000 m below sea level. The goal of such expensive wells 
is to explore or produce hydrocarbons. To improve the reservoir-specific understanding, 
several data are acquired every 15 cm (half foot) of the well path. We plot gamma-ray 
(which is a measure of the radioactivity; units are in API) and P-wave velocity (measured 
in m/s) versus depth (second axis). The data are displayed for two stratigraphic layers 
(Sequence 1 (solid line) and Sequence 2 (dots)), which are clearly separated in depth. 
There are 591 measurements in Sequence 1 and 722 measurements in Sequence 2. Such 
plots of physical variables as a function of depth are useful for visualizing well logs. 
A trained log analyst uses well log data (many others in addition to gamma ray and vel-
ocity) to interpret the properties of the subsurface at the location where the well has been 
drilled. The analysis builds on experience from modeling and interpreting such plots. For 
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Figure 2.2  Well log data of gamma ray (left) and P-wave velocity (right) from a North Sea reservoir. 
The display shows two geological sequences separated in depth. The top stratigraphic layer is plotted 
as a solid line, while the bottom one is plotted as dots. The well log measurements are provided 
every 15 cm.
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2.1 Uncertainty quantification, information gathering, and data examples 17

instance, velocity would typically increase with depth, but deviations occur as a function 
of rock types, saturation, porosity, and so on. The gamma-ray measurements are indica-
tive of shaliness in the rock, because sand tends to contain less radioactive material than 
shale. This particular data set is from Eidsvik et al. (2004b). See also Avseth et al. (2005) 
for further details.

Figure 2.3 shows histograms that are made by binning the well log data in groups, organ-
ized from smallest to largest. Such displays indicate the range of the data. The histogram 
for the gamma-ray variable has a bimodal (or trimodal) shape in Sequence 1, while it 
appears skewed in Sequence 2. The empirical mean value of the gamma ray is 73 API in 
Sequence 1 and 67 API in Sequence 2. The empirical standard deviations are 9.5 and 9.8 
in Sequences 1 and 2, respectively. The empirical means and standard deviations (in par-
entheses) for P-wave velocity are 2740 m/s (220) in Sequence 1 and 3150 m/s (140) in 
Sequence 2. Findings from such histograms are useful for building realistic models based 
on rock physics and statistical assessments.
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Figure 2.3  Histogram of well data. The top stratigraphic layer is in the upper row, while the deeper 
stratigraphic layer is at the bottom. Gamma ray (left) and P-wave velocity (right).
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In many spatial applications, we gain knowledge by plotting the data in map views. 
Figure 2.4 shows the three dimensional locations (north, east, and altitude) of oxide grade 
measurements in a mineral resource. We see the boreholes lining up in the map view. Most 
of the data are acquired by a handheld device applied to the rock core samples (dots), while 
some samples are transported to the laboratory for extracting more accurate data (crosses). 
Note that this illustration tells us nothing about the actual grade measurements – it only 
indicates the locations where they are made.

Figure 2.5 shows a smoothed and normalized histogram of the oxide grade data. The 
top display shows the data acquired with the handheld device (1871 in total). The bottom 
display shows the data acquired in the laboratory (103 in total). These data appear to have 
multiple modes caused by the underlying geology of the resource. It is helpful to incor-
porate such additional explanatory variables, if available, since this would allow for more 
realistic modeling and reliable prediction of the oxide grades. In this case, geologists have 
classified the mining resource in three mineralization classes. The class varies spatially 
across the resource. For the laboratory data, the averages in the three classes are 0.7, 2.4, 
and 4.2. The data are analyzed further in Eidsvik and Ellefmo (2013).

Seismic data are often visualized as a function of the spatial acquisition locations. 
Figure  2.6 shows the seismic amplitude response at the top of the reservoir horizon in 
a North Sea oil field. The top display represents the zero-offset amplitude of P waves 
reflected back at normal incidence (nominally vertical) from the subsurface horizon. The 
bottom display is representative of the change in reflection amplitudes as a function of 
incidence angle or source-receiver offset. It is often called the amplitude-versus-offset 
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Figure 2.4  Oxide grade data observed along boreholes in a mine. Locations where only the handheld 
data are collected (dots) and locations where both handheld and laboratory measurements are 
collected (crosses).
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(AVO) gradient in geophysical terminology. The crossline (first axis) and inline (second 
axis) coordinates are defined by the acquisition geometry. Detailed processing of the seis-
mic reflectivity data gives the amplitudes at the top reservoir. In this display, the zero-offset 
amplitudes and the AVO gradient are indicated by the grayscale color of the grid cells. The 
data set is discussed in detail in Avseth et al. (2005).

In Figure 2.7, we cross-plot the two seismic attributes. There is clearly a negative correl-
ation. At locations where the intercept (zero-offset reflectivity) attribute is high, the AVO 
attribute (gradient) tends to be small, and vice versa. This is also visible in the images shown 
in Figure 2.6. For instance, near crossline 350 and inline 175, the zero-offset response is 
rather high (0.05–0.1), while the AVO shows a large negative gradient (about −0.3). In fact, 
these values of reflectivity could be the lucrative ones in this example, because they indi-
cate sandstones.

The oxide grade measurements and the seismic amplitude data examples consist of 
observations made by instruments in the field. It has also become routine to generate data 
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Figure 2.5  Smoothed histogram of the oxide grade observations made in a mine. X-ray fluorescence 
(XRF) are the laboratory data; XRF meter (XMET) are the data acquired by the handheld meter.
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Figure 2.6  Seismic amplitude data at top reservoir level in a North Sea oil reservoir. The top 
plot shows amplitudes for seismic waves going straight up and down (zero-offset or intercept), 
while the bottom plot shows the amplitude-versus-offset (AVO) gradient. The offset refers to  
the incidence angle of the seismic wave. The crossline and inline coordinates are given by the 
sailing direction of seismic data acquisition. The arrow indicates amplitude attributes that may 
indicate sands.
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by computer experiments. These “data” are not acquired on location but rather through a 
simulator that is set to run for various initial conditions or parameter settings. We present 
one example of multiple basin modeling scenarios. The basin and petroleum system is 
simulated using numerical finite-element computational software for the geological pro-
cesses over time, with different initial conditions and input forcing parameters. These may 
include heat flow, rock properties such as total organic carbon content, degree of faulting, 
etc. The simulated data are ensembles of accumulated hydrocarbon volumes at geological 
prospects.

Figure 2.8 shows a diagram for propagating geological uncertainty in basin and petrol-
eum system modeling. Martinelli et al. (2013b) focused on some selected prospects and 
varied the most important input parameters at the assumed high/low or high/medium/low 
levels. For each design of the experiment, they used the output from the simulator to model 
the uncertainty and interactions in the generation, expulsion, outflow, and accumulation of 
oil and gas.

In this design of experiment, the porosity is set to low (0) and high (1) levels; the heat 
flow to expected cold (0), medium (1), and high (2) values; a fault variable to closed (0) and 
open (1); and the total organic carbon content to the expected high (0) and low (1) levels. 

0.3

0.2

0.1

0

A
V

O
 g

ra
di

en
t

–0.1

–0.2

–0.3

–0.4

–0.5
–0.1 –0.05

High zero-offset attribute,
low AVO gradient

0 0.05

Zero-offset reflectivity

Seismic reflection data

0.1 0.15

Figure 2.7  Cross-plot of seismic amplitude data at top reservoir level in a North Sea oil reservoir. 
Zero-offset amplitude is on the first axis. Amplitude versus offset (AVO) is on the second axis. There 
is a negative correlation between these two seismic amplitude variables.
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We summarize the data or results of the experiments in the 24 rows of Table  2.1. The 
table shows the accumulations of oil in the two biggest prospects denoted Top East (TE) 
and Bottom East (BE) due to the geographical location of the prospects. The controlled 
experiment could be exchanged by a random sampling strategy (risking) over variables in 
the input space, in which case one would obtain a realization of the output variables for 
each run.

In summary, the computation of some summary statistics, along with the visualization of 
data, is helpful for preliminary exploratory data analysis, which is then typically followed 
by modeling the important elements of the phenomenon to address specific questions. In 
the next few sections, we present probability models that are useful for capturing trends, 
variability, and the dependency structure in Earth sciences data.

2.2  Notation and probability models

A statistical model is defined by a sample space, random variables, and a probability distri-
bution. Here we introduce some basic assumptions and requirements for a valid statistical 
model. Univariate probability distributions are presented first, but in most applications it 
becomes important to work in the multivariate context.

Random effects Response variables at
prospects

Heat flow

Fault

Porosity

TOC Generations

Accumulations

Outflows

Expulsions
Basin

modeling
and

petroleum
systems
software

Deterministic
geologic
inputs

Figure 2.8  Schematic view of a method for generating basin modeling scenarios or “data.” By varying 
input parameters, we study the variability in important response variables or data outputs. The method 
relies on numerical solutions of the mathematical equations for the migration of hydrocarbons over 
geological time. Some inputs to this simulator may be fixed, while others are random.
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Table 2.1. Summary of inputs and outputs in a design of experiment used in basin and 
petroleum systems modeling. TOC is total organic carbon. The outputs are oil (in millions 
barrels) in the Top East (TE) prospect and the Bottom East (BE) prospect

Run Porosity Heat Flow Fault TOC Oil in TE Oil in BE

1 0 0 0 0 580 340
2 1 0 0 0 247 90
3 0 1 0 0 776 172
4 1 1 0 0 220 35
5 0 2 0 0 736 2
6 1 2 0 0 212 1
7 0 0 1 0 537 343
8 1 0 1 0 247 91
9 0 1 1 0 773 167
10 1 1 1 0 218 35
11 0 2 1 0 731 5
12 1 2 1 0 207 7
13 0 0 0 1 265 213
14 1 0 0 1 218 95
15 0 1 0 1 659 106
16 1 1 0 1 218 38
17 0 2 0 1 528 1
18 1 2 0 1 206 5
19 0 0 1 1 265 213
20 1 0 1 1 218 95
21 0 1 1 1 661 84
22 1 1 1 1 218 37
23 0 2 1 1 527 3
24 1 2 1 1 206 8

2.2.1  Univariate probability distributions

We denote a univariate distinction of interest by x. This random variable x is defined on its 
sample space – i.e., x ∈Ω – where the sample space Ω denotes all possible outcomes for 
x. Note that some textbooks in statistics distinguish between the random variable using a 
capital letter and the outcome or realization with a lowercase letter. We use lowercase for 
both and try to clarify in the text whenever there may be ambiguity. The sample space Ω 
is very important for the specification of the statistical model, and it plays a critical role in 
framing the situation. Once the sample space is understood, we can start contemplating a 
probability model for a phenomenon. The different sample spaces go hand in hand with the 
common probability distribution models. In particular, there is a clear distinction between 
discrete and continuous random variables.
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The discrete case entails a random variable taking outcomes on a finite or countable 
domain. When the random variable must be either 0 or 1, we write x ∈{ }0 1, . This occurs 
for binary experiments characterized by success or failure, such as a petroleum explora-
tion well that is either dry or contains hydrocarbons. In other experiments – for instance, 
a Geiger counter for the number of radioactive events – the possible outcomes are integer 
valued but may not have a natural upper bound on the sample space. For convenience, one 
often uses the countable sample space defined on all non-negative integers: Ω = …{ , , , , }0 1 2 3 .

The continuous case entails a random variable taking outcomes on a part of the real line. 
For instance, rock fall in a tunnel can occur somewhere between its beginning (set to 0) and 
end (set to 1), so Ω = ( , )0 1 . The annual profit of a company could be negative or positive, 
with no natural bounds, and it is convenient to set Ω = −∞ ∞( , ).

There is an endless discussion in the sciences about the use of discrete versus continuous 
variables. The discussion typically relates to the underlying physical mechanisms and the 
scale of a problem. For instance, the analyst may choose to model profits as discrete, since 
money cannot be worth anything less than a cent. On the other hand, if one considers a lar-
ger and more interesting scale, one may model money as a continuous variable. A continu-
ous view often makes it easier to move between different scales. At the same time, history 
indicates that scientists have been successful by categorizing and classifying phenomena. 
This discrete view of the world has been important for communication and for focusing 
attention. In the Earth sciences, soil or rock types are sometimes described by elementary 
constituents, but it has also been useful to work at a larger-scale classification of discrete 
lithofacies, depositional systems, and geological scenarios. No matter whether variables 
are modeled as discrete or continuous, every task requires careful thought about the sample 
space, and in every context this should relate to what one can practically evaluate and use 
for decision making.

We denote the probability density function (pdf) of a continuous random variable x ∈Ω 
by p(x). For a discrete sample space, the probability specification p(x), x ∈Ω, is sometimes 
called a probability mass function. For short, we will use pdf for both the discrete and con-
tinuous case, but we will next clarify distinctions between the two.

In the discrete case, the pdf or probability mass function p(x) assigns a value to any 
outcome x ∈Ω under the constraints that

	 p x x p x
x

( ) ≥ ∈ =
∈
∑0 1, , ( ) .Ω

Ω

	 (2.1)

To compute the probability of an event, defined as a subset of the sample space, we sum 
over all relevant outcomes. Notably, the cumulative distribution function is defined by the 

set of all smaller outcomes – i.e., F x p y
y x

( ) ( )=
≤
∑ , which starts at 0 and increases monoton-

ically to 1.

For a continuous random variable, the pdf or density function p(x) must satisfy

	 p x x p x dx( ) ≥ ∈ ( ) =∫0 1, , .Ω
Ω

	 (2.2)
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The cumulative distribution function is defined by F x p y dy
y x

( ) ( )=
<∫ .

Given a pdf defined as in Equation (2.1) or (2.2), we can derive any feature of the prob-
abilistic model. Two important concepts are the theoretical mean and variance, defined by

	
E x xp x dx

x x p dx

x

x

( ) = = ( )
( ) = = − ( )( )

∈

∈

∫
∫

µ

σ µ
Ω

Ω

,

.Var 2 2
x 	

(2.3)

They are the first and second (central) moments of p(x). With a discrete sample space, 
the integrals become sums. The theoretical standard deviation is the square root of the 
variance. As illustrated in Section 2.1, the theoretical mean and standard deviation have 
empirical counterparts computed from data. The empirical situation can be interpreted as 
a data-driven discrete pdf assigning equal weights to each observation. If one collects data 
from a known probability model, the empirical mean and variance will converge to their 
theoretical counterparts as the number of data increases. The problem, of course, is that we 
observe some data and have to use that as a basis for finding a useful probability model.

Another important summary of a probability distribution is the entropy (or disorder) 
given by

	 Ent( ) log ( ) ( ) ,x p x p x dx
x

= − ( )
∈∫ Ω

	 (2.4)

where the integral is replaced by a sum over the sample space for the discrete setting. The 
entropy is large when there is notable uncertainty.

We briefly present some common discrete univariate pdfs. A key element for many 
discrete distributions is the indicator variable, which is 1 if an event occurs (success) and 
0 otherwise (failure). We assign a probability p of success. If we perform a fixed number 
of independent trials with this success probability p, the resulting random number of suc-
cesses x follows the binomial distribution. The number of trials until the first success 
has a geometric distribution. The multinomial distribution is a natural extension of the 
binomial, where the number of outcomes for every trial is larger than two. When the num-
ber of trials in the binomial experiment goes to infinity while the probability of success 
goes to 0, the resulting random number of successes x is naturally described by the Poisson 
distribution.

The most common continuous univariate pdf is the Gaussian or normal distribution. 
A Gaussian pdf is characterized by a quadratic function of x in the exponent, resulting in 
a bell-shaped form. The Gaussian distribution with theoretical mean μ and variance σ2 
has pdf

	 p x N
x

x( ) = = −
−( )







 − ∞ < < ∞( , ) exp , .µ σ

πσ
µ

σ
2

2

2

2

1

2 2 	 (2.5)

The quantiles of the Gaussian distribution are defined by symmetric distances from 
the mean. Many distributions can be derived from the Gaussian pdf. For instance, the 
chi-square distribution is defined by the squared Gaussian, and the log-normal is the 
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exponential of a Gaussian variable. Various kinds of truncation or damping of Gaussian 
variables impose skew distributions.

Another commonly used continuous distribution is the power law or Pareto pdf. It 
has, for instance, been applied to describe the well-known Richter law for magnitudes of 
earthquakes, prospect size (Kaufman 1993), fault size (Borgos et al. 2002), and many other 
properties (Newman 2005). A characteristic of the power law pdf is that most outcomes 
are very small, but some are very large, and it is thus skewed upward with a heavy tail. The 
pdf is defined by

	 p x
x

x( ) =
−( ) 





> > >
β

α
α α β

β1
0 1, , .	 (2.6)

The cumulative distribution function is F x x( ) = − ( ) −
1

1α β
, and the probability of 

exceeding a particular threshold c is given by p x c c>( ) = ( ) −α β 1
. The latter probability is 

sometimes referred to as the exceedance or survival rate. To verify if available data follow 
a power law, it is common to plot the sorted logarithms of data against the log empirical 
exceedance probability. Such a display should show a linear decline.

Figure 2.9 shows percentiles and sorted data generated from a power law distribution 
(top) and on the log-scale (bottom). In the bottom display, the log exceedance probability 
on the second axis declines with slope 2. This is because we generated this data set using 
β = 3 (α = 0.1), and we have

	 log log log .p x c c>( )( ) = −( ) ( ) − −( ) ( )β α β1 1 	 (2.7)

Suppose we predict a new observation from this distribution – say, the volume of an ore 
body. A very small outcome would be likely. The mean is 0.2, but more than 70% of the 
data are below 0.2. There is only a 4% chance of obtaining data larger than 0.5.

The discrete and continuous pdfs discussed above are parametric. They are functional rep-
resentations of the stochastic variable x parameterized by a few model parameters, such as μ, 
σ in the Gaussian distribution, or α and β in the power law model. A non-parametric model 
avoids enforcing such parametric assumptions. Instead, it relies on the empirical representa-
tion through data. If we have B data or realizations of variables x xB1, ,… , a non-parametric 

model imposes a pdf p x
B

I x xi

i

B

( ) = =( )
=
∑1

1

  – i.e., a discrete pdf valid only at the sam-

ple values. It is common to impose smoothing via kernels around the samples. This gives 

p x
B

x xi

i

B

( ) = ( )
=
∑1

1

κ ; , where the non-negative kernel κ x xi;( ) is centered at xi and decays as 

the variable x gets further away from xi. We require κ x x dxi;( ) =∫ 1 to maintain a valid pdf. 
An example is κ τx x N xi i; ( , )( ) = 2 , which denotes a Gaussian distribution centered at each 
realization with constant standard deviation τ. One could further add flexibility to the sam-
ple weights, extending beyond uniform weighting, or one could use some sort of clustering 
of the B realizations. The selection of kernels has been discussed a lot in the literature – see, 
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e.g., Silverman (1988). Simply speaking, kernel representations can be viewed as smoothed 
histograms. Figure 2.5 was constructed using a kernel for the oxide grade data.

2.2.2  Multivariate probability distributions

The random variable x = …( , , )x xn1  is a vector of size n in sample space Ω Ω Ω= ×…×1 n. 
We let p(x) denote the joint pdf of x. The discrete multivariate pdf p(x) naturally extends 
the univariate version in Equation (2.1). We require

	 p p
x xn n

x x x( ) ≥ ∈ … ( ) =
∈ ∈
∑ ∑0 1
1 1

, , .Ω
Ω Ω

	 (2.8)

The joint probability p x k x kn n( , , )1 1= … =  indicates that the first variable equals k1, the 
second k2, and so on until xn equals kn. This joint pdf defines simultaneous properties – i.e., 
the way the n variables interact in a probabilistic setting. There is a probability for every 
joint outcome.

We similarly extend Equation (2.2) for a valid continuous multivariate pdf.
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Figure  2.9  Illustration of the power law distribution. Top:  sorted samples (first axis) versus the 
empirical cumulative distribution function (second axis). Bottom:  logarithm of sorted samples 
(first axis) versus the empirical exceedance probability. The data were generated from a power law 
distribution with parameters β = 3 and α = 0.1.
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	 p p dx dx
x x

n
n n

x x x( ) ≥ ∈ … … =
∈ ∈∫ ∫0 1

1 1
1, , ( ) .Ω

Ω Ω
	 (2.9)

The interpretation of this joint continuous pdf is that probabilities of simultaneous events 
are volumes under the pdf surface for the specified subset of the sample space.

When the variables xi, i n= …1, ,  are independent, the joint pdf is defined by the product 

of n univariate distributions – i.e., p p xi i
i

n

x( ) = ( )
=

∏
1

, where p xi i( ) is the pdf of the i-th vari-

able. If, in addition, the univariate pdfs are equal, p x p xi i i( ) = ( ), we have the common – 
though often misused – assumption of independent and identically distributed variables. 
These assumptions simplify modeling and analysis, but more realistic situations usually 
involve non-identical components and dependence between the elements of x.

From the joint distribution, we can retrieve the marginal pdf of single variables or 
blocks of variables. The marginal pdf of xi is derived by integrating (or summing, in the 
discrete case) out all other variables from the joint distribution:

	 p x p dx dx dx dxi i i i n
ii n

( ) ... ... .= … … ( )∫ ∫∫ ∫
+−

− +Ω ΩΩ Ω1 11
1 1 1x 	 (2.10)

Let x−i  denote all variables in x, except xi, then the marginal is p x p di i i( ) = ( ) −∫ x x , where 
the integral is henceforth assumed to be computed over the defined sample space. When 
there is no confusion, we will simply set p x p xi i i( ) = ( ). The marginal for a subset of vari-
ables or block variable x, where we have split x x x= ( , )K L , is p p dx x xK L( ) = ( )∫ .

The most common multivariate continuous distribution is the Gaussian distribution. This 
model is discussed at length in textbooks – e.g., Anderson (2003) and Johnson and Wichern 
(2007). (See Appendix A.1 for more details.) The multivariate Gaussian pdf is defined by

	
p N

n
tx x x( ) = = − − −





− −( , )
( )

| | exp ( ) ( ) .
/

/µ Σ µ µ
1

2

1

22
1 2 1

π
Σ Σ 	 (2.11)

The formula clearly generalizes the univariate situation in Equation (2.5). In the multivari-
ate setting, the contours of the pdf are ellipsoids, centered at the parameter µ, with axes 
defined by the quadratic form including the n n×  matrix Σ.

Given a joint pdf, we can compute any feature of the multivariate probabilistic model. 
The theoretical mean and variance–covariance are extensions of Equation (2.3) defined by

	

E d

p
t

x x x x

x x x x

( ) = = ( )
( ) = = −( ) −( ) ( )

∫
∫

µ

Σ µ µ

p

dx

,

Var .	 (2.12)

The integrals become sums for a discrete sample space. In this multivariate situation, the 
mean is a vector of size n, while the variance–covariance is an n n×  matrix with marginal 
variances σ i ii

2 = Σ , i n= …1, ,  along the diagonal and covariance terms Cov x xi j ij( , ) = Σ  on 
the off-diagonal. The theoretical correlation is Corr x xi j ij i j( , ) ( )= Σ σ σ . The Gaussian pdf 
in Equation (2.11) is explicitly parameterized by the mean µ  and the covariance matrix Σ.
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The entropy is a scalar variable defined similar to Equation (2.4). For the multivariate 
model,

	 Ent x x x( ) = − ( )( ) ( )∫ log .p p d x 	 (2.13)

For the Gaussian distribution, the entropy is Ent x( ) = + ( )( ) +
n

2
1 2

1

2
log logπ Σ .

Figure 2.10 shows the Gaussian pdf in n = 2 dimensions under different parameteriza-
tions. In all plots, the mean vector is fixed to µ = ( , )1 1 , while the covariance matrix Σ  varies 
in the displays. The top left plot has an identity covariance matrix. The two variables x1 and 
x2 are independent in this case; therefore, the joint pdf decouples to the product of marginal 
pdfs for x1 and x2. The other plots show variables with larger variance 1.52 and have depend-
ence between x1 and x2. The top right (and bottom left) display illustrates positive (and 
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also varies. Top left:  independent variables with identity covariance matrix. Top right:  positive 
dependence (correlation 0.74) in the two variables with variance 1.52. Bottom left:  negative 
dependence (correlation −0.74) in the two variables with variance 1.52. Bottom right: correlation is 
set to 0.999 and variance is 1.52.
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negative) correlation Corr x x1 2 0 74, .( ) = . This entails Σ = 1, similar to the independent  

case, and the entropy is Ent x( ) = 2 84.  in all these cases. The positive off-diagonal entry 
(top right display) gives a tendency for variables to interact – i.e., they are often simultan-
eously large or small. With negative correlation −0.74 in the bottom left display, the two 
variables tend to occur as opposites. The fourth display (bottom right) has an extreme cor-
relation of 0.999, so the density contours appear almost like a line. Knowing one variable 
then provides very precise information about the other.

In Figure 2.11, we show the bivariate Gaussian distribution fitted to the seismic reflec-
tion data discussed in Section 2.1. The white line superimposed on the data is the 95th 
percentile ellipse based on the empirical mean and covariance matrix from the data (see 
Section 2.4 for parameter estimation). There is some non-symmetry outside the indicated 
ellipse, indicating that a Gaussian pdf may not be sufficient to capture the data distribution.

There are numerous applications with both discrete and continuous components. The 
Gaussian mixture model combines d ≥ 2 Gaussian components. In the seismic example 
discussed previously, three different facies classes were identified from well log analysis. 
The facies classes span different rock types and saturation: oil sand, brine sand, and shale 
(d = 3). Let the bivariate seismic reflection attributes at one location be x = ( )x x1 2, . We 
define pdf
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Figure  2.11  Gaussian approximation for the seismic amplitude data example. The zero-offset 
attribute is on the first axis, and the amplitude-versus-offset (AVO) attribute is on the second axis. 
The Gaussian approximation is displayed in white, indicating the 95th percentile ellipse.
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p j

j j
t

j j
j

d

x x x( ) = ( ) − − −





− −

=
∑

α
π2

1

2

1 2
1

1

Σ Σ
/

exp ( ) ( ) ,µ µ 	 (2.14)

where α j
j

d

=
∑ =

1

1 and 0 < α j for all classes j d= …1, , . For each class j , the model allows for 

a separate mean vector µ j  and a positive definite covariance matrix Σ j.
Figure 2.12 shows the three components of a bivariate Gaussian mixture distribution 

fitted from well data and plotted with the seismic reflection data. The three mean levels for 
oil sand, brine sand, and shale are different due to rock physics relations. In this illustra-
tion, the covariance matrix for each rock type is the same. The Gaussian mixture model is 
likely more suitable than the Gaussian pdf in this example. The mixture model is based on 
physical properties of various facies types and represents their tendency to have different 
seismic responses.

The mixture model in Equation (2.14) is often used in classification and clustering 
(Hastie et al. 2009). For instance, if an analyst wants to classify an observation x into the 
underlying category (rock type in our example), one can compute distances to every class 
center, scaled with the associated covariance:

	 distance j jj
t

j j d= − − =−( ) ( ), ,..., .x xµ µΣ 1 1
	

(2.15)
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Figure  2.12  Gaussian mixture model for the seismic amplitude data example. The zero-offset 
attribute is on the first axis, and the amplitude-versus-offset (AVO) attribute is on the second axis. 
The Gaussian mixture is estimated from well log data and indicated by the 95th percentile ellipse for 
three facies classes (oil sand, brine sand, and shale).
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The analyst classifies the observation by choosing the class index with the smallest distance.
We end this section with a discussion about the transformation of variables. Let y be 

another random variable defined by y Fx b= +  for fixed matrix F  and vector b. Then, we 
have mean E y F x b F b( ) = ( ) + = +E µ  and variance Var y F x F F F( ) = ( ) =Var t Σ t . The 
covariance of y and x is Cov Cov( , ) ( )y x Fx b x F= + =, Σ. A more complicated situation 
occurs with a non-linear relationship y f x= ( ) . If the non-linearity is not too severe, one 

can approximate the mean and variance of y by linearization, y f
f

x
x≈ µ

µ
µ( ) +

( )
−( )d

d
,
  

where µ  is chosen as the linearization point, in which case E y f( ) ( )≈ µ . In general, the 

mean of a non-linear function is not the same as the function of the mean. The pdf of a 
general transformation is only rarely computable. To find the pdf, one must first find an 
appropriate inverse transformation and then compute the Jacobian of this inverse. More 
generally, one can apply Monte Carlo simulation to approximate the distribution of a trans-
formation (see Section 2.5 and Appendix B).

Like we discussed for the univariate case, the vector x could, in some cases, be repre-
sented by data or realizations x x x1 2, , ,

B . These could be replicated data or the results of 
some mechanism (say, a transformation or a differential equation) over many input realiza-
tions, leading to an ensemble representation of propagated variables. Instead of assuming 
a parametric model for this distinction of interest, one could use non-parametric methods. 
The simplest such approach assumes equally likely realizations, with weights 1 B for each 
outcome. The generalization to a continuous representation involves kernels centered at 
each realization or obtained from clustering.

2.3  Conditional probability, graphical models, and Bayes’ rule

The notion of marginal pdfs and joint pdfs was defined in the previous section. We extend 
these ideas to conditional probability models and Bayes’ rule. Conditional probabilities 
are very important for VOI analysis, because conditioning on observations from informa-
tion could lead to improved decisions, and VOI lets the decision maker gauge the average 
improvement.

2.3.1  Conditional probability

One can derive conditional pdfs from the joint distribution p x( ) of variables x = …( , , )x xn1 .  
We fix one or more variables in the vector x and study how this information about a subset 
of variables affects beliefs about the other variables. In the situation with independence, 
the conditioning has no effect on the others. When there is dependence, the outcome of 
observed variables changes the pdf of the non-observed variables.

The conditional pdf of variables in block  given the variables in block , where 
x x x= ( , )K L , is defined by
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K L
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K

| .( ) =
( )

( ) =
( )

( )∑ 	
(2.16)

One can interpret this conditional probability as follows: the numerator defines the pro-
portion of joint occurrences of x and x, while the denominator scales it with the pro-
portion of x events alone. If block  is very informative of variables in block , joint 
occurrences account for a large part of the times x happens, and the conditional pdf should 
be close to 1, possibly different from the unconditional pdf of x.

To obtain marginal pdfs within the subset , still given x, the other variables must be 
summed out from the conditional p x xK L|( ):

	 p x pi
x x x xi i n

K L K L
K K K K K

, | | ,
, , , ,

x x x( ) = … … ( )∑ ∑ ∑ ∑
− +1 1 1

	 (2.17)

where n is the number of variables in subset , and the sums become integrals in the 
continuous situation.

Note that the definition of the conditional pdf holds for any subset  and . For instance, 
if we condition on one variable xi, we have

	 p x
p

p x
i i

i

x
x

−( ) =
( )
( )| .	 (2.18)

The full conditional for xi– i.e., given all other variables x−i  – is

	 p x
p

p
i i

i

| .x
x

x−
−

( ) =
( )

( ) 	 (2.19)

One can also rearrange this conditional formula and write out the joint distribution for x as 
a product of a marginal and a conditional:

	 p p p p px x x x x x x( ) = ( ) ( ) = ( ) ( )L K L K L K| | .
	

(2.20)

With independence, the conditioning has no effect, and Equation (2.20) simplifies to 
p p px x x( ) = ( ) ( )K L , which is rarely applicable in practice.

More generally, one can factorize the joint distribution in a stepwise manner as a prod-
uct of a marginal and conditionals with iterative conditioning:

	 p p x p x x p x x x p x x xn nx( ) = ( ) ( ) ( )… …( )−1 2 1 3 2 1 1 1| | , | , , .
	

(2.21)

In this equation, we started with the marginal for variable x1 and ended with the full con-
ditional for xn, but we could just as well start with the marginal for xn and end up with the 
full conditional for x1: any order is possible. We can arrange the variables (or blocks of vari-
ables) in the most convenient way, depending on the situation. In Earth sciences applica-
tions, there is often an important structure that can be used to frame the model and arrange 
the variables: physical forward models, geological mechanisms, etc.
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The definition of properties such as expectation, variance, entropy, and so on can be 
generalized to the conditional setting by plugging in the conditional pdf in expressions like 
Equations (2.12) and (2.13). For instance, given the outcome of xi, the conditional mean 
and covariance of the remaining variables become

	
E x p x d

x E x

i i i i i i

i i i i i i

x x x x

x x x x

− − − −

− − − −

( ) = ( )
( ) = − ( )( )

∫| | ,

| |Var −− ( )( ) ( )− − −∫ E x p x di i

t

i i ix x x| | . 	
(2.22)

The conditional entropy is defined by

	 Ent x x x x− − − −( ) = − ( )( ) ( )∫i i i i i i ix p x p x d| log | | . 	 (2.23)

Pitfalls: understanding marginals and conditionals

The bivariate Gaussian distribution in Section 2.2 was illustrated using various dependence 
structures. There is an important difference between conditional and marginal expressions when 
the model has positive or negative correlation. When the two variables are independent (top 
left display in Figure  2.10), the conditional mean and variance of x2  are the same as in the 
marginal distribution, and p x x p x N2 1 2

21 1| ( , )( ) = ( ) = . With dependence, the conditional mean 
clearly depends on what we observe for x1: it is either pulled toward the observation (positive 
correlation) or pushed away (negative correlation). The conditional variance is much smaller 
than in the marginal (unconditional) distribution, but it does not depend on the observation itself 
for the Gaussian distribution. Suppose we observe that x1 3=  and there is positive dependence, 
Corr x x1 2 0 74, .( ) =  (as in the top right display in Figure 2.10). The conditional distribution is 
p x x N2 1

23 2 79 0 67| . , .=( ) = ( ), which is shifted and tighter than the marginal p x N2
21 1 5( ) = ( ), . .  

The formulas for the conditional mean and variance of the Gaussian distribution will be presented 
in more detail later.

The conditional entropy is reduced the most in the dependent case, where the 
uncertainty about x2 is reduced by knowing the outcome of x1. By the factorizing formula, 
p p x p xi i ix x( ) = ( ) ( )− | , and by the definition of entropy via the log pdf in Equation (2.13), 
Ent Ent Entx x( ) = ( ) + ( )−i i ix x| . For the independent case and the one with Corr x x1 2 0 74, .( ) = ,  
the joint entropy Ent x( ) is the same, and this means that the reduction in entropy equals 
Ent x1( ). For the independent case, Ent x1 1 42( ) = . , while we have Ent x1 1 82( ) = .  for the 
dependent case.

2.3.2  Graphical models

The modeling of dependent stochastic variables is often not straightforward. We have seen 
how the Gaussian and Gaussian mixture models define joint distributions, but they may 
not always provide the flexibility required for real-world phenomena. It turns out that it is 
convenient to define a joint model via marginal pdfs and conditional pdfs as in the factor-
ization formula in Equation (2.21). In fact, the Gaussian mixture is a simple example of 
such a model: first, there is a discrete rock type with its marginal probability (defined as α j 
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in Equation (2.14)); then, there is a Gaussian distribution for the seismic data, conditional 
on the rock type (defined by µ j  and Σ j in Equation (2.14)).

One popular way of building such models is via graphical formulations. This approach 
uses a modular construction, where pieces of the model are connected locally. The 
split-and-conquer formulation eases the modeling phase and incorporates sparseness in 
the model formulation. Full conditioning is rarely necessary; instead, the conditioning is 
only over a subset of variables. Of course, care is needed to study whether the sparseness 
induced by the graph is justified for the problem at hand. An in-depth discussion of graph-
ical models is provided in textbooks such as Cowell et al. (2007) and Koller and Friedman 
(2009).

Let us motivate the use of graphs to visualize conditional modeling formulations. 
Figure 2.13 shows three possible graphical models for the joint probability distribution 
of two variables of interest:  pore fluid saturation and shale volume (VShale). They are 
denoted by nodes named “Saturation” and “VShale,” respectively. The joint distribution 
of the two nodes can be represented by any of the three diagrams. The first two diagrams 
show two different ways of factoring the joint probability distribution. The third diagram 
has no edge between the variables. This shows that the saturation and the volume of shale 
are independent. Thus, in such graphs, the absence of arrows indicates conditional inde-
pendence. In this case, hardly any petrophysicist would claim that the saturation and the 
VShale are independent, so the third model would generally be inaccurate. Of the other 
two diagrams, the second diagram may be easier to assess. Given that we know VShale, it 
is easier to assess the conditional probability distribution of the saturation. For instance, 
we would expect a higher brine saturation if VShale were large, but not necessarily vice 

Saturation

VShale VShale VShale

Saturation Saturation

Figure 2.13  Joint probability distribution of saturation and volume of shale represented as a graphical 
model. The direction of the edge (or arc or arrow) indicates how the geophysical model is established. 
The rightmost display without any edge indicates that the two variables are independent.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.003
http:/www.cambridge.org/core


Statistical models and methods36

versa. The second diagram may therefore be the most convenient representation for the 
joint distribution.

Such graphical models are referred to by various names, such as Bayesian networks 
(BNs) or Bayes nets or belief networks or relevance diagrams. They are useful models for 
building a valid joint probability model and reasoning under uncertainty using conditional 
statements. A probabilistic graphical model consists of nodes (representing random vari-
ables), such as VShale and saturation mentioned earlier, and edges that connect the nodes 
together (conditional statements). BNs are directed graphs – i.e., there is a sense of direc-
tion on all edges in the graph. An edge that indicates direction from one node to another is 
an arc or, synonymously, an arrow. If there is an arc emanating from a particular node i to 
another node j , node i is known as a parent. Equivalently, j  is a child of i. The parents for 
node i are denoted pa(i).

In a BN, the arcs between nodes are conditional in the sense that every node is condi-
tioned on its parents. In other words, every node is associated with a conditional pdf, which 
specifies the probability for each possible value of the node conditioned on each possible 
value of its parents. For the case with discrete sample space, this is typically represented in 
the form of a matrix known as a conditional probability table, but other representations 
are also possible.

Figure 2.14 (top) illustrates a BN for reservoir variables in a North Sea reservoir. Here, 
the reservoir variables of interest are rock type or facies, pore fluid filling, porosity, dens-
ity, and P- and S-wave velocity. There are different types of data or explanatory variables 
available: well log data and seismic amplitude data. The edges illustrate the conditional 
dependencies between the variables and the data, motivated from geophysical principles. 
For instance, the saturation does not influence the porosity, and it affects the S-wave vel-
ocity only through the density variable. The rock density depends on the facies (mineral-
ogy), porosity, and pore fluid saturation. Similarly, once we know the elastic parameters 
(density and P- and S-wave velocity), the seismic data are independent of the other res-
ervoir variables. Note that the graph shows the forward modeling of variables. When we 
condition on the data, variables like porosity and saturation will no longer be independent.

In this example, the facies and saturation variables could be multivariate distinctions of 
interest, and they could vary across spatial coordinates. (See Chapter 4.) Since the nodes 
could represent vector variables, separate nodes could consist of their own sub-networks. 
The split in nodes (and sub-nodes) is useful to communicate the model definitions to prac-
titioners. This modular feature of graphs makes it easy to expand on smaller parts of the 
graph, possibly without changing the entire modeling framework.

Figure 2.14 (bottom) shows a BN for reservoir prospects in a region of the North Sea. The 
root nodes represent the source rock variable at geological kitchens, while the leaf nodes 
in the network represent potential drilling locations called prospects and segments. These 
are connected via migration paths indicated by edges. In this example, the migration paths 
are set by experts. This is the qualitative part of the network. The conditional independence 
structure is clear: once the prospect nodes (indicated by “P”) are known, the bottom node 
segments do not depend on any other variables. The conditional pdfs of nodes given the 
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Figure  2.14  Top:  Bayesian network for reservoir variables and observations. The data include 
well observations and seismic data. The elastic properties are P and S velocity and density ρ. 
Bottom: Bayesian network for 25 prospect segments in the North Sea. The segments are connected 
by edges indicating hydrocarbon migration paths.
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outcome at parent nodes constitute the quantitative part of the model. For this case study, 
the conditional pdfs were constructed based on geological assumptions of gas and oil expul-
sion. This particular BN was presented and analyzed in Martinelli et al. (2011).

To illustrate graphical models in further detail, let us consider the two small graphs dis-
played in Figure 2.15. We will use these two graphs in examples described later. In the top 
display, Nodes 2 and 3 are prospects where we consider oil exploration. Node 1 represents 
a geological feature, which we cannot observe directly. The edges going from Nodes 1 to 
2 and Nodes 1 to 3 mimic a causal geological mechanism via conditional probability state-
ments. There are no direct edges between Nodes 2 and 3. Thus, the random variables x2 
and x3 are conditionally independent given the outcome of variable x1. We consider binary 
variables xi ∈{ , }0 1  and i = 1 2 3, ,  and assume that outcome 1 corresponds to success (such 
as from an exploration well discovering oil), while outcome 0 corresponds to failure (the 
exploration well is dry).

The graph in Figure 2.15 (bottom) has edges only between the nearest adjacent nodes. 
This graph illustrates a lag-1 or first-order Markov chain model. In the simplest setting, 
the variables may be binary, xi ∈{ }0 1, , i n= …1, , , with stationary conditional probabil-
ities p x l x k P k li i( | ) ( , )+ = = =1 . These one-step probabilities can be organized as a Markov 
transition matrix as shown next:

	 P
P P

P P
=

( ) ( )
( ) ( )







0 0 0 1

1 0 1 1

, ,

, ,
.	 (2.24)

X1

Two examples of
graphical models

X1 X2 X3 X4

X3 X2

Figure 2.15  Bayesian networks are characterized by a set of nodes and directed edges between the 
nodes. This figure shows two examples. Top: variables at Nodes 2 and 3 are conditionally independent 
given the outcomes at Node 1. Below: the situation defines a first-order Markov chain model where 
each node only connects with the nearest nodes.
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Naturally, the row sums must equal 1, so as to cover the sample space with a valid pdf. 
The marginal pdf for x1 must also be specified to complete the model formulation. Further 
background on Markov chains is provided in Appendix A.3.

Conditional independence or sparsity makes graphs useful not only from a modeling per-
spective but also in the way probabilities are computed. A common practical task is to con-
dition on data variables in the graph, as the analyst may be interested in the effect that the 
data have on the variables of interest. Due to dependence in the statistical model, the data 
or evidence will propagate to other nodes. The main computations required for conditional 
pdfs are marginalization over various subsets of node variables, as in Equation (2.16).

Darwiche (2009) gives an excellent description of the different types of algorithms used 
for exact and approximate inference using BNs. Exact inference algorithms include the 
variable elimination algorithm and the junction tree algorithm. These work by successively 
removing variables or factors to compute the probabilities of interest. Many real-world net-
work models are complex, and exact inference may be very slow. This has led to the devel-
opment of many approximate inference methods. One widely used class of algorithms is 
based on iterative belief propagation or loopy belief propagation. As described in Darwiche 
(2009), iterative belief propagation can be conceptually described in two ways: (i) as an 
optimization method searching for an approximate probability distribution that minimizes 
an appropriate statistical distance (the Kullback–Leibler divergence) to the true distribu-
tion induced by the BN or, alternatively (ii) as casting the approximate inference problem 
into a problem of exact inference but on an approximate, edge-deleted network. Another 
large class of algorithms for approximate inference is based on stochastic sampling, which 
simulates the network by drawing Monte Carlo samples according to the probability tables 
for each variable. (See Section 2.5.) The network is simulated multiple times to gener-
ate a large set of realizations from which the desired probabilities of events are assessed 
based on their frequency of occurrence in the simulated realizations. Stochastic sampling 
algorithms are relatively simple compared to the other algorithms, but a large number of 
samples need to be generated, especially for events of interest that have low probabilities. 
(See also Appendices A.5 and B.)

2.3.3  Bayesian updating from data

Let x denote the distinction of interest. One can collect data y, which are informative of this 
distinction of interest. In the Earth sciences, the distinction of interest might be the amount 
and spatial distribution of oil or gas in a petroleum reservoir, the content of minerals in a 
mine, the level of groundwater, and so on. Observations that can be acquired to improve 
knowledge about these distinctions of interest include boreholes with cores or logging 
measurement tools, seismic data, electromagnetic signals, etc. Some data can be consid-
ered perfect – i.e., they are directly informative of the distinction of interest. Other data 
are measured with noise and are imperfect. Data can be partial, in the situation where only 
a few of the multivariate variables are observed, or there could be a total test where each 
variable is observed. Borehole data are an example of partial perfect testing, where certain 
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variables are measured exactly, in which case y x=  , where  indicates a subset of the 
variables. We will return to categorizing the various types of information in Chapter 3.

The model for data y can be represented by a conditional pdf, known as the likelihood 
function p y x|( ). The pdf p x( ) is a prior model for the distinction of interest, specified 
before the data y are available. The posterior model for x is obtained by conditioning on 
the data and is denoted p x y|( ). From the laws of conditional probability in Equation (2.16)

	 p
p

p

p p

p
p px y

x, y

y

x y x

y
x y x|

|
| .( ) =

( )
( ) =

( ) ( )
( ) ( ) ( )∝ 	 (2.25)

Here, the numerator consists of the prior model p x( ) and the likelihood model p y x|( ).  
The denominator is the marginal pdf of the data p y( ), which is not a function of x, and we 
hence use the proportionality sign in Equation (2.25) to obtain the last expression. In some 
situations, one may be interested in computing the marginal likelihood in the denominator, 
which is also sometimes referred to as the pre-posterior model. This can be obtained by 
marginalizing over x in the joint pdf

	 p p d p p dy x y x x y x x( ) = ( ) = ( ) ( )∫∫ , | , 	 (2.26)

or using sums for the discrete situation.

Pitfalls: likelihood and marginal likelihood

Note that the marginal likelihood p( )y  is usually more difficult to represent than the likelihood 
p y x|( ). The marginal likelihood is a result of averaging over all possible outcomes for the 
distinction of interest, while the likelihood tells us the distribution of the response variable 
given that the distinction of interest is at a specified level. Suppose the distinction of interest 
is oil saturation in a rock and that the observations are physical laboratory experiments. 
Geophysicists can use experience to predict the response given the oil content, since there is 
a physical relation. This can be summarized in the likelihood p y x|( ). The interpretation of 
p( )y  is based on marginalizing over all oil saturations.

The equation for posterior pdf p x y|( ) in Equation (2.25) is often referred to as Bayes’ 
rule. One uses Bayes’ rule to construct the posterior from the prior and the likelihood. 
Although the model specifies p x( ) and p y x|( ) – i.e., goes forward – from x to y, Bayes’ 
rule allows for going the opposite way from y to x. This kind of analysis is tagged as 
Bayesian inversion. The situation is summarized in Figure 2.16.

It is important to appreciate the broad applicability of merging a priori knowledge with 
new observations. If there is momentous prior knowledge, the observations will not add 

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.003
http:/www.cambridge.org/core


2.3 Conditional probability, graphical models, and Bayes’ rule 41

much information. Also, if the likelihood is almost the same for every outcome of the  
distinction of interest, there is not much difference between the prior and posterior. The 
posterior can be viewed as defining a trade-off between prior knowledge and the informa-
tion content in the data.

The method of choice for the assessment of posterior pdf p x y|( ) depends on the prior 
pdf, the likelihood model, and how the two combine in the product. Some posterior models 
can be analyzed analytically or by straightforward sums for marginalization, while others 
require more complicated numerical or approximate sampling tools. (See Appendices A 
and B.)

y Observations

Likelihood model

Marginal
likelihood model

Prior model
Posterior model

Bayes’ rule

Distinction of
interest

y

MODEL VIEW INVERSE VIEW

x x

Figure 2.16  Illustration of Bayesian modeling (left) and Bayesian inversion (right). The modeling 
goes from the distinction of interest x to the data y. The inversion uses the data y to get a posterior 
understanding of x.

Discussion: Bayesian inversion and fully Bayesian modeling

The inverse probability interpretation of Bayes’ rule is commonly used in applications. This has 
shown to be very useful for assimilating data to update a priori understanding of a distinction 
of interest. Note, however, that some authors interpret “Bayesian statistics” as a competitor to 
“frequentist statistics.” Fully Bayesian modeling principles entail priors on all statistical mod-
eling parameters. We will briefly discuss Bayesian versus frequentist issues in Section 2.4.
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2.3.4  Examples

Treasure Island: The pirate example

Keywords: pirate example, binary outcomes, Bayes’ rule, false positives

Suppose that a pirate is uncertain about whether a treasure is present or not. This distinc-
tion of interest is a binary variable denoted x ∈{ }0 1, . Suppose further that “success” is a 
rare event. The probability of success is p x( ) / .= = =1 1 100 0 01. The pirate can carry out 
some experiment y ∈{ , }0 1 , which is informative of the distinction of interest. For instance, 
the pirate may purchase a device such as a metal detector and conduct experiments to study 
whether the treasure is present or absent. We assume that the likelihood model for the test 
result is p y x p y x( | ) ( | ) .= = = = = =0 0 1 1 0 95. Thus, the data are fairly accurate, failing 
only 5 out of 100 times. Bayes’ rule can be used to compute the posterior probability of a 
success given that the test result is positive:

	

p x y
p y x p x

p y x p x p y x p x
( | )

( | ) ( )

( | ) ( ) ( | ) (
= = =

= = =
= = = + = = =

1 1
1 1 1

1 0 0 1 1 11

0 95 0 01

0 05 0 99 0 95 0 01
0 16 16 100

)

. .

. . . .
. / .=

+
=

×
× ×

≈ 	
(2.27)

Perhaps surprisingly, the probability of success is still quite small even though the test 
result is positive. The reason is the very small a priori probability of a success and the 
chance of false positives (a successful test when the treasure is not present). The likelihood 
is not accurate enough to compensate for the small a priori probability of success.

The example highlights the fact that an uncertain test indicating treasure may still not 
yield a high chance of actually finding the treasure. For a petroleum company searching 
for oil in areas with a small probability of oil, this means that even with quite accurate 
measurement techniques, there is a high probability of failure. The result further explains 
the problem with false positives in medicine, with frustration and disbelief among patients 
erroneously diagnosed with a rare disease because of a positive test.

In Figure 2.17, we plot the success probability (second axis) given a positive test. Here, 
the first axis indicates the probability of false positives. We see that the conditional prob-
ability of success increases with higher test accuracy, but the test must be very good to get 
a conditional probability exceeding 0.5.

Gotta get myself connected: Bayesian network example

Keywords:  Bayesian network, exploration wells, graph, conditional independence, Bayes’ rule, 

evidence propagation

We use the graph in Figure 2.15 (top) to illustrate evidence propagation. As we described 
earlier, suppose that the node variables in Figure 2.15 (top) represent the presence or absence 
of hydrocarbons. We consider the situation of drilling an exploration well at Prospect Node 
2. This information would result in posterior probabilities at Prospect Node 3.
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Let the marginal probability be p x( ) .1 1 0 2= = , while the conditional probabil-
ities are p x x( | ) .2 11 1 0 5= = = , p x x( | ) .3 11 1 0 5= = = , p x x( | )2 11 0 0= = = , and 
p x x( | )3 11 0 0= = = . The model is now completely specified, because the top node is 
assigned a marginal pdf, and all edges have a conditional pdf. The marginal distribution 
of the two prospect nodes is available by summing out the outcome at Node 1. We have:

	 p x p x x y p x y
y

( ) ( | ) ( ) . . . . .3 3 1
0

1

11 1 0 5 0 2 0 0 8 0 1= = = = = = + =
=
∑ ⋅ ⋅ 	 (2.28)

By symmetry, the marginal pdf at Node 2 is the same.
Recall the restrictions imposed when the outcome at Node 1 is dry. The geological mech-

anism prevents oil from entering Nodes 2 and 3 if Node 1 is dry. The effect of conditioning 
is notable in this situation: when the decision maker drills at Node 2, he or she hopes to 
find oil and start exploiting this resource. But the evidence obtained by drilling Node 2 is 
also valuable for learning the chances of finding oil at Node 3, since the two are dependent 
through the common parent Node 1.

Assume that the decision maker drills at Node 2 and discovers oil (x2 1= ). Therefore, 
x1 = 1; otherwise, Node 2 could not have contained oil. Then, the conditional probability 
at Node 3 becomes

	 p x x p x x( | ) ( | ) . .3 2 3 11 1 1 1 0 5= = = = = =
	

(2.29)

This is a 5-fold increase in probability compared with the marginal pdf. The situation 
with a dry outcome in Node 2 is a little harder to compute, because this can happen both 
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Figure 2.17  The conditional probability of a success given a positive test. The success probability is 
plotted as a function of the false discovery probability on the first axis.
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when Node 1 is dry or has oil. We have to marginalize over both these outcomes for the 
parent node:

	

p x x
p x x p x

x x y p x yp
y

( | )
( | ) ( )

( | ) ( )

,1 2
2 1 1

2 1 1
0

1
1 0

0 1 1

0

= = =
= = =

= = =

=

=
∑

00 5 0 2

0 5 0 2 1 0 8
0 11

. .

. . .
. ,

⋅
⋅ ⋅+

= 	

(2.30)

	
p x x p x x y p x y x

y

( | ) ( | ) ( | ),

. . .

3 2
0

1

3 1 1 21 0 1 0

0 0 89 0 5 0 1

= = = = = = =

= +
=
∑

⋅ ⋅ 11 0 055= . , 	
(2.31)

which is a clear reduction of the marginal probability for Node 3.
For larger-size BNs, the marginalization operations are not that straightforward to per-

form, but there are several well-known algorithms for that purpose, such as the junction 
tree algorithm discussed in Section 2.3.2 (and Appendix A.5).

Never break the chain: Markov chain example

Keywords: Markov chain, dependent binary variables, conditional independence, Bayes’ rule

For the Markov chain model in Figure 2.15 (bottom), assume that we can obtain informa-
tion for one of the variables – say, x ki = . We are interested in propagating this evidence 
to the other variables. Of course, at Node i, we are now certain of the outcome since this 
is perfect information. We can update the probabilities at the neighboring nodes given the 
evidence x ki =  based on the Markov transition probabilities in Equation (2.24). Unless 
the transition probabilities P k l( , ) .= 0 5 for all k l, , corresponding to independence between 
the variables, there will be a change from prior marginal probability p x j( ) to posterior 
marginal probability p x x kj i( | )= . The computation of p x x kj i( | )=  is an exercise in the 
repeated use of Bayes’ formula. (See Appendix A.3.)

Figure 2.18 illustrates evidence propagation for a chain graph with n = 50 nodes after 
observing x20 1= . The difference between the four displays is the transition probability 
matrix. Figure 2.18 (top left) is the independent case with P P( , ) ( , ) .0 0 1 1 0 5= = . Figure 2.18 
(top right) is based on P P( , ) ( , ) .0 0 1 1 0 9= = , imposing some continuity in the classes. 
Figure 2.18 (bottom left) has a larger probability of staying in the successful state – i.e., 
P( , ) .0 0 0 5=  versus P( , ) .1 1 0 9= . Figure 2.18 (bottom right) shows a non-stationary chain, 
not dissimilar from the failure propagating network discussed previously, with P( , )0 0 1=  
and P( , ) .1 1 0 9= . Here, 0 is a state that is referred to as an absorbing state, because there is 
no chance of moving to other states.

The displays show varying widths of evidence propagation away from the evidence 
node. For the independent case, the observation at Node 20 carries no information about 
the states at other nodes. In Figure 2.18 (bottom left), there is a short window of evidence 
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propagation (about five indices), since the prior stationary probabilities are rather close to 
0 and 1 (p xi =( ) =1 0 83. ). For the absorbing situation, the success at Node 20 tells us that 
all previous nodes must be successes too. The success probability for the subsequent states 
dies out exponentially with factor P( , ) .1 1 0 9= .

For whom the bell tolls: Gaussian projects example

Keywords:  Gaussian projects example, bivariate Gaussian distribution, correlation, linear 

Gaussian model, perfect information, partial information, imperfect information, total information

The linear Gaussian model can be written as

	 y Fx T= + ( )ε ε, ~ , ,N 0
	

(2.32)

where x = …( , , )x xn1  is the unknown variable of interest, y = …( , , )y ym1  is the response 
variable or data, and the m n×  matrix F  has fixed entries. The structure in this matrix is 
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Figure 2.18  Evidence propagation in the Markov chain model. The four displays show the conditional 
probabilities when we obtain perfect information about a success at Node 20. The displays are for 
various Markov transition matrices: Independence (top left), equal diagonal entries of 0.9 (top right), 
larger diagonal for Class 1 (bottom left), and an absorbing failure state (bottom right).
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defined by the data-gathering mechanism. It may consist of 0s and 1s as in the factorial 
design of experiments or known explanatory variables in usual linear regression analysis, 
but note that variable x is random in Equation (2.32).

Suppose that the distinctions of interest are projects which are a priori Gaussian with 
a known mean vector and covariance matrix – i.e., p Nx( ) = ( , )µ Σ . In the Earth sciences 
setting, this distinction of interest can represent the profits from reservoirs or mining units. 
Using Equation (2.32), the likelihood is p Ny x Fx T| ~ ,( ) ( ) . The joint model for the dis-
tinction of interest and the data is Gaussian (see Appendix A.1):

	 p N
t

t
x

F
F

F F F T
y, , .( ) =









 +

















µ
µ

Σ Σ
Σ Σ 	 (2.33)

We get a Gaussian posterior solution defined by the conditional mean and covariance

	
Σ Σ Σ Σ Σ

Σ Σ
x y

x y

|

.

= − +( )
= + +( ) −( )

−

−

F F F T F

F F F T y F

t t

t t

1

1

,

µ µ µ|
	 (2.34)

The matrix–vector expressions in Equation (2.34) are derived in Appendix A.1.
Let us consider two projects (n = 2) and set the prior mean profits of projects and the 

prior covariance matrix as follows:

	 µ =






=










0

0

1

1
, Σ

ρ
ρ

. 	 (2.35)

Suppose that the data are of size m = 2 or m = 1: with univariate data, we assume that 
there is perfect information about one project, while the bivariate data provide imperfect 
information acquired about both projects. The design matrix F  determines which project(s) 
are observed. For perfect information about the first project, we set F = 1 0[ ] and no noise 
in the univariate observation – i.e., T = 0. For imperfect information about both projects, we 
set F I= 2  and T I= τ2

2, assuming conditional independence between the two observations 
and equal uncertainty or noise standard deviation τ . Graphically, this can be displayed by 
edges from each project to its information source. The two distinctions of interest can be 
connected in either direction because their dependence can be defined either way.

A perfect observation on Project 1 leaves no posterior uncertainty on this project. The 
conditional variance of Project 2 is obtained by Equation (2.34), resulting in σ ρx y2

2 2
| = 1− . 

With imperfect information on both projects, the posterior covariance matrix is

Σ Σ Σ Σ Σx y I| = =− +( )
−

+( ) +( ) −

+( ) −( ) −
+(

−τ

τ ρ ρ

τ ρ
ρ

ρ τ

2 1

2 2 2

2 2 2

2

1
1 1 2

1

2 1 )) − +( )
+( ) −( )

−
+( ) − +( )
+( ) −( ) −

+

ρ ρ

τ ρ

ρ
ρ τ ρ ρ

τ ρ

τ

1

1

2 1 1

1
1

1

2

2 2 2

2 2

2 2 2

2(( ) +( ) −

+( ) −( )























1 2

1

2 2

2 2 2

ρ ρ

τ ρ

,

�
(2.36)

and the integrated variance is the trace of this matrix.
The integrated variance reduction can now be studied for both information-gathering 

schemes. Figure 2.19 illustrates this posterior uncertainty as a function of the correlation 
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ρ between projects. For the case with imperfect total information, we set noise standard 
deviation τ = 0.5. When the absolute correlation is very large, the scheme obtaining perfect 
information at one project gives the smallest posterior uncertainty. The sum of conditional 
variances is equal for a correlation parameter equal to about 0.8.

2.4  Inference of model parameters

Any statistical model has a number of parameters that must be specified in the context 
of an application. These parameters may include the probabilities for discrete outcomes, 
mean values, variances, or correlations in the prior distribution for the distinction of inter-
est or the noise level of data in the likelihood model. They are often referred to as nuisance 
parameters because they are typically not of primary interest. Our main interest usually lies 
in making predictions about the distinction of interest and then making decisions based on 
those predictions. However, these higher-level activities usually require the analyst to spe-
cify the nuisance parameters.

With parametric modeling assumptions, the number of unknown parameters is usually 
small – say, around 1–10. We estimate the small number of nuisance parameters from the 
currently available data, either some perfect information x or imperfect information y. After 
a general discussion, the focus in this section will be on maximum likelihood estimation 
(MLE), which is widely applicable for parametric models and exhibits desirable statistical 
properties.
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Figure 2.19  Conditional variances given imperfect and perfect information. The second axis is the 
sum of the posterior variances at the two projects. The first axis is the correlation between the two 
projects.
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In some applications, the underlying phenomenon is well understood, and this can be 
used to assign parameter values directly, without the need for complicated estimation tech-
niques. Model parameters may also be interpreted as a summary of the data, typically the 
mean values, the uncertainty, the heterogeneity between groups, and so on. For instance, 
for the power law example in Section 2.2, we created a log-log plot of data. Such empirical 
summary statistics lead to moment estimators, and we can use moments to specify param-
eters in a model or as initial guesses for MLE.

Trial and error is also commonly used to specify statistical model parameters. One can 
check parameter sensitivity by predicting over a hold-out set of data for different values of 
input parameters. This approach can be formalized by cross-validation. Suppose that we 
have B data or realizations yb, b B= 1,..., . The leave-one-out distribution for the i-th com-
ponent of realization yb, given all other instances y y− = = ≠{ }b c c B c b; ,..., ,1 , is denoted 
p yi

b b
i

b| , ;y y−
−( )θ . Cross-validation uses some measure of misfit between this predictive 

distribution and the actual data yi
b. A  common measure is the prediction mean square 

error. This kind of cross-validation is used substantially in model validation, especially for 
non-parametric models such as tuning the kernel widths of Gaussian mixtures.

Many Earth sciences applications involve physical or geological mechanisms that can 
be framed within parametric assumptions. Optimization methods are used to find the 
model parameters that best fit the data in some sense. Note, however, that this approach 
requires a model, and we thus assume a known distribution or mechanism. Care should 
be used when fitting a parametric model, and it is good practice to check if the distribu-
tion assumptions hold by studying if the empirical distribution of data looks similar to 
the statistics expected from the assumed distribution. A common approach is to study 
percentiles of the assumed distribution with fitted parameters versus the empirical per-
centiles of the data. This is often visualized and referred to as a quantile–quantile or 
QQ plot.

2.4.1  Maximum likelihood estimation

This discussion of likelihood will be fairly general. We provide more background about 
parameter estimation for the specific models used in this book in Appendix A.

The objective of MLE is to find the parameter that most likely generated the data 
under the current modeling assumptions. MLE aims to optimize p Lx;θ θ( ) = ( ) as a 
function of the unknown nuisance parameter θ for the case of perfect information about 
the distinction of interest x. If we have imperfect information, the marginal likelihood 
is p p p d L( ) ( ; ) , ;y y y x x= = ( ) = ( )∫θ θ θ , where the joint distribution in the integrand 
is constructed by a prior model for the distinction of interest and a likelihood model 
for the data – i.e., p p py x x y x, ; ; | ;θ θ θ( ) = ( ) ( ). The case with imperfect information 
is usually more difficult than the case with perfect information. The preferred situ-
ation is to have both perfect and imperfect information. In the Earth sciences, there are 
often auxiliary data available (either x or y  or both) for specifying important model 
parameters.
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The MLE of the parameters is obtained by maximizing L θ( ) or, equivalently, the 
log-likelihood function l Lθ θ( ) = ( )log , with respect to the parameter θ. We have

	 θ θ
θθ





= ={ }argmax l
dl

d
( ) ,

( )
,

θ
0 	 (2.37)

where the derivative dl dθ is also known as the score.
Several optimization algorithms are used in practice to compute the MLE. In some situ-

ations, there are analytical solutions to Equation (2.37), but in others, complicated numerical 
routines are required. One such numerical optimization algorithm is the Newton–Raphson 
method defined by a starting value θ0 and updates for b = 1 2, ... according to

	 θ θ
θ
θ

θ
θ

b b
b bl l

= −
( ) ( )−

− − −
1

2 1

2

1 1d

d

d

d
⋅ .	 (2.38)

The final output θ θ = b, obtained after some iterations of Equation (2.38), is the MLE of θ.  
Figure 2.20 illustrates the Newton–Raphson method in practice. In most cases, when the 

Maximum likelihood
estimator

0

≈
–

dl

d 2l (θ b–1 )

θ b– θ b–1

d l (θ b–1 )

dθ
dθ 2

dθ

θ 2

θ 1
θ

θ 3 θ

ˆ

Figure  2.20  Maximum likelihood estimation, illustrated by the Newton–Raphson method for 
optimizing the likelihood function of a one-dimensional model parameter.

Discussion: fully Bayesian versus frequentist analysis

An alternative to the maximum likelihood principle is the fully Bayesian framework, which 
assigns a prior p( )θ  on the nuisance parameters, and where parameter specification is based 
on the posterior of the model parameters denoted p( | )θ y .
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starting value is not too far from the optimum value, convergence is achieved within 5–10 
iterations. Note, however, that one can experience overshooting and divergence with this 
method, and sometimes more robust optimization schemes are required.

Optimization of the likelihood requires derivatives with respect to the model parameters. 
These derivatives can be computed analytically for several models. The second deriva-
tive (Hessian) can be quite unbalanced because of the randomness induced by the data. 
A numerically more stable expression is obtained by taking the expected value of the ran-
dom observations – i.e., E d l d2 2 1θ( )−

. The optimization method obtained from using this 
in Equation (2.38) is known as Fisher scoring.

Asymptotically, as the size of the data approaches infinity, the MLE is unbiased – i.e., 

E θ θ( ) = , where the expectation is taken over the data distribution. Moreover, the esti-

mator is Gaussian distributed with variance obtained from the negative inverse Hessian 

− ( )−
E d l d2 2 1θ . These desirable properties have ensured that the MLE is popular in 

statistics.
Inserting the MLE into the prior pdf, we get p px x( ) = ( );θ , and similarly for the likeli-

hood of data, p py y x;| |x( ) = ( )θ . In this way, the frequentist view treats these nuisance 
parameters as fixed but unknown. However, one might say that this expression underesti-
mates the variability since the estimate θ is uncertain. There are methods to include some 
of this uncertainty, such as bootstrapping (Efron and Tibshirani 1993).

2.4.2  Examples

I love rock and ore: mining oxide grade example

Keywords: oxide grade example, mining, X-ray data, linear Gaussian model, least-squares estima-

tion, maximum likelihood estimation

An oxide ore grade data set was shown in Section 2.1. Two data types are available at 103 
of the locations in this mine. X-ray fluorescence (XRF) data consist of extensive X-ray 
measurements of core samples in the laboratory. XRF meter (XMET) data consist of meas-
urements obtained with a handheld meter at the mining site. The XRF data are treated as 
perfect information about the grade, whereas the XMET data are assumed to be noisy or 
imperfect observations of the true grade. In addition, there is geological knowledge about 
the mineralization level, which is used as a covariate.

We will use a subset of the data to illustrate the estimation of nuisance parameters. A more 
thorough presentation is discussed in Chapter 4 for spatial modeling and in Chapter 6 for 
the value of XRF and XMET information analysis. XMET data at the 103 locations with 

both data types are denoted y = ( )y y1 103,..., , and XRF data are denoted x = ( )x x1 103,..., . We 

assume a Gaussian likelihood for the XMET data, y x Ni i= + ( )0 2,τ , i = 1 103,..., . Moreover, 

the oxide grade depends on a known mineralization covariate hi ∈{ }1 2 3, ,  in a regression 

model x h Ni i= + + ( )β β σ0 1
20, , where the regression parameters β0 and β1 are fixed but 

unknown. For short, we write this as: x H I= + ( )β N 0,σ2 , where the 103 × 2 matrix H  
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contains the known covariate classes and where the 2  × 1 vector of regression parame-
ters is β= β β0 1,( ).

Since both data and the actual distinction of interest are available at the 103 locations, 
we can separately estimate parameters in the likelihood p y | ;x τ( ) and the prior p x; ,σ β( ) . 
Here, we analytically compute the MLE from the Gaussian expressions.

The MLE (and the least-squares estimate) for the regression parameter is

	 β = ( )−
H H H xt t1

.
	

(2.39)

The associated MLE for the variance in the grade is defined from the residuals in the 
regression fit:

	
ˆ .σ2 1

103
= −( ) −( )x H x Hβ β 

t
	

(2.40)

The likelihood variance is estimated from the differences in the XMET and XRF data:

	 τ 2 2

1

1031

103

1

103
= −( ) −( ) = −( )

=
∑y x y x

t
i i

i

y x .	 (2.41)

A cross-plot of the XRF and XMET oxide grade measurements is shown in Figure 2.21. 
Note that the grade measurements get larger with the increased mineralization covariate. 
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Figure 2.21  Parameter estimation in a regression model. The XMET data are assumed to provide 
imperfect information about the oxide grade, while the XRF data provide perfect information about 
the oxide grade. There are three geological classes used as covariates in the regression model for the 
oxide grade.
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The variability in the XMET measurements from the straight line is used to estimate the 
likelihood noise. We obtain measurement noise variance τ 2 2= 0.34 , considering only that 
the XRF data give regression parameters β = −( )1 1 1 8. , .

t and grade variance  ˆ .σ2 20 75= .

Never break the chain: Markov chain example

Keywords: Markov chain, dependent binary variables, conditional independence, hidden Markov 

chain, maximum likelihood estimation

Let us now consider the hidden Markov model (HMM) – see, e.g., MacDonald and Zucchini 
(1997) – which is an extension of the Markov chain model with conditionally independent 
data (see Appendix A.3).

The graph for this model is illustrated in Figure 2.22. The (latent) distinction of inter-
est has stationary first-order transition probabilities P k l,( ) between subsequent dis-
crete states x ki =  and x li+ =1 . We assume two possible states and equal transition rates 
P P p0 0 1 1, ,( ) = ( ) = . The data are conditionally independent given the variable of interest, 
and the Gaussian likelihood is defined by p y Ni | ,0 1 2( ) = −( )τ  and p y Ni | ,1 1 2( ) = ( )τ . 

Using the factorization in Equation (2.21), the marginal likelihood for the model param-
eters θ = ( )p,τ2  is the product of all sequential probabilities:

L p y y p y y yn
i

i iθ θ θ( ) = … = …∏ −( , , ) ( | , , ).; ;1 1 1 	 (2.42)

The required probabilities can be evaluated by recursive marginalization of the discrete 
latent distinction of interest (see Appendix A.3).

y1 y2
yn–1 yn

xn–1 xn

p (yi | xi = k )

p (xi = k, xi+1 = l )

Hidden Markov model (HMM)

Latent distinction of interest. Markov chain

Imperfect observations.
Conditionally independent

x1 x2

Figure 2.22  Hidden Markov model where the latent variable is a first-order Markov chain model and 
the data are conditionally independent given the latent variable.
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We generate data of size n = 100. The parameters are p = 0 95.  and the noise variance is 
τ2 22= . In the pdf of the initial state x1, the two states are equally likely. The data are shown 
in Figure 2.23 (left). In Figure 2.23 (right), we display the likelihood surface, which shows 
that these parameters are estimated reasonably well by the data.

2.5  Monte Carlo methods and other approximation techniques

Monte Carlo methods are widely used for various types of sampling, simulation, optimiza-
tion, and integration. In this section, we will focus on stochastic simulation and solving 
integrals by sampling from the probability models and evaluating functional expressions. 
The integration approximations will be relevant for the VOI analysis described in later sec-
tions. Recent books covering Monte Carlo simulation include Liu (2001), Gamerman and 
Lopes (2006), and Rubinstein and Kroese (2007).

2.5.1  Analysis by simulation

In Section 2.2, we discussed the mean, variance, and pdf of a transformation. When the 
function or transformation f x( ) is non-linear, analytical solutions are rarely available. 
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Figure 2.23  Example of numerical calculation of maximum likelihood for a hidden Markov chain 
model. Data (left) and log-likelihood surface (right) for the Markov transition probability (first axis) 
and the likelihood noise standard deviation (second axis).
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Linearization results in bias – i.e., E f fx( )( ) ( )≠ µ  – and a variance approximation would 
over- or underestimate the uncertainty. The full distribution of the transformation is even 
more difficult to represent. We can study the pdf of f x( ) directly for only some special 
situations. A useful solution technique is stochastic simulation.

Algorithm: a Monte Carlo method for uncertainty propagation

1.	 Sample x x1, ,… B  from pdf p x( ).
2.	 Evaluate or simulate  f fx x1( ) ( )…, , B .

The B outputs represent the distribution of the function f x( ), and we can compute the sam-
ple mean, variances, or percentiles. Such statistics converge to the theoretical counterparts 
when B → ∞.

This approach is extremely useful for uncertainty quantification in complicated systems. 
For instance, in the basin modeling example shown in Section 2.1, we can sample input 
geological variables and use established software for basin and petroleum systems model-
ing to simulate the output accumulations, which are representative of the mean values and 
the uncertainties in volumes. The random sampling approach is a viable alternative to the 
controlled design of experiments in many cases. In a design of experiment setup, Step 1 in 
the algorithm is performed in a deterministic way. One then sets the elements in the input 
space in a structured way, typically defined by high and low levels, and then studies the 
associated responses in Step 2.

Simulation is often used for preliminary sensitivity analysis. This can be helpful for 
studying the effect of single variables or interactions of variables. Promising recent 
approaches use efficient dimension reduction such as basis representations or multidimen-
sional scaling to effectively explore the input space. This has been very useful for experi-
ments where the function f x( ) is very complicated and computationally demanding. It can 
also be combined with clustering techniques or various adaptive designs of experiments. 
Simulation is also used to falsify modeling assumptions in prior models p x( ) or some 
fixed input conditions involved in the function f x( ). Falsification may include response 
variables that are unphysical in some sense or responses that are totally inconsistent with 
observations y. The latter aspect relates to Bayesian inversion.

2.5.2  Solving integrals

As we will discover in later chapters, several of the computations required for VOI ana-
lysis are integrals (continuous sample space) or sums (discrete sample space). For instance, 
a decision situation would likely involve the expected value xp x dx( )∫ , or the decision 
maker would perform some optimal choice under uncertainty, involving integral expres-
sions such as max ,0 x p x dx{ } ( )∫ . In this section, we discuss approaches for approximating 
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such integrals or sums. Expressions that cannot be solved analytically or numerically can 
be handled by Monte Carlo methods.

Consider a general integral expression

	 I E f f p d= ( )( ) = ( ) ( )∫x x x x, 	 (2.43)

where p x( ) is a pdf on the domain of x and where f x( ) is a function that we can evalu-
ate. If f xix( ) = , the integral in Equation (2.43) is the expectation of variable xi; if 
f I xix( ) = >( )0 , we compute the probability that variable xi is positive. Analytical or 
numerical approximations depend heavily on the function f x( ). If available, they can be 
very fast and accurate, but for some situations they may yield poor approximations. Monte 
Carlo methods are far less sensitive to the function  f x( ).

Analytical approximations of integrals are largely based on Gaussian approximations 
or quadratic expansions. The Laplace approximation uses both of these tools. It can be 
presented in various ways. Consider a rewritten version of Equation (2.43):

	 I E f
f p d

p d
= ( )( ) =

( ) ( )
( )

∫
∫

x
x x x

x x
. 	 (2.44)

We can fit a quadratic form to the exponent of b f px x x( ) = ( ) + ( )log log  at the mode 
of this expression – i.e., x x= ( ){ }argmax x b . The same is done for the denominator, which 
means fitting a Gaussian approximation to p x( ) at the mode ˆ argmaxx x= ( ){ }x p . The 
quadratic expansions allow Gaussian completion of the integrals. Since the first derivatives 
are 0 at the mode, we only need to account for the second derivatives in the (co)variance 
part of the Gaussian pdf. The Laplace approximation of the integral in Equation (2.44) 
becomes

	 ˆ exp

log

.

ˆ

I b

d p

d

d b

d

Laplace
= ( )( )

( )

( )




x
x

x

x

x2

2

2

2 	

(2.45)

This Laplace approximation can be very useful for models dominated by Gaussian compo-
nents and weakly non-linear functions  f x( ).

Numerical approximations of integrals define a grid of evaluation nodes in the support 
of the integrand. Direct approaches assume a constant, linear, or quadratic form of the 
integrand between the evaluation nodes. For lower-dimension integrals, these traditional 
numerical approaches tend to be extremely accurate, but for high-dimension integrals, 
the numerical approximations are difficult to compute because the number of evalu-
ation points gets very large. Useful guidelines for the placement of evaluation points in 
related contexts have been worked out, such as central composite designs or more general 
response surface methodologies, but it is not straightforward to achieve reliable results in 
a high dimension.
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We now turn to Monte Carlo methods for solving integrals like Equation (2.43). As 
mentioned earlier, Monte Carlo approximations are often the method of choice in difficult 
problems (complex f x( ) or p x( )) and in high dimensions (large n) because they are more 
generally applicable than analytical and numerical methods.

The Monte Carlo approximation is based on generating samples from the pdf p x( ) 
and computing function averages.

Algorithm: the Monte Carlo approximation of an integral

1.	 Draw samples x x1, ,… B from p x( ).
2.	 Evaluate the function for each sample and average Î

B
f b

b

B

= ( )
=

∑1

1

x .

Recall that the function f x( ) represents whatever we would like to approximate. It could 
be a linear function (mean value), a quadratic function (variance), an indicator (a percent-
ile), etc. Notably, we can approximate different integrals or statistics from the same samples. 
The Monte Carlo approximation is easy to implement once we can sample from p x( ). Here, 
E f p d If bx x x x( )( ) = ( ) ( ) =∫  for all samples b B= 1,..., , and the Monte Carlo approxima-
tion is an unbiased estimator of the integral. The quality of the Monte Carlo approximation 
of the integral I depends on the probability distribution p x( ) relative to the function f x( ). 
In this way, the variability of the Monte Carlo estimator depends on the integral expression 
that we wish to estimate. If we attempt to estimate a rare event such as a tail probability, we 
often need several Monte Carlo samples B to get a sufficiently small relative Monte Carlo 
error. When we estimate the mean, fewer samples are required for small error bounds.

We study various approximation methods for the evaluation of a logistic integral

	 I
x

x

x
dx=

( )
+ ( ) −

−( )









−
∫

exp

exp
exp .

1

1

2 2

2

2πσ
µ

σ∞

∞

	 (2.46)

This integral appears, for instance, when modeling the presence or absence of an asset, 
success or failure of events, etc. The probability of success is p x x= ( ) + ( )( )exp exp1 , 
and the integral computes the expected value of this probability. Generalized linear models 
(GLMs) (McCullagh and Nelder 1989; Dobson and Barnett 2008) stress the modeling of 
the logistic variable x, typically having a linear form depending on the explanatory vari-
ables (see Appendix A.2).

We solve this logistic integral by three methods:

1.	 Numerical approximation using a dense grid of evaluation points (Num).
2.	 Analytical expansion of the integrand around the mode (Laplace method: LA).
3.	 Monte Carlo approximation based on sampling from the Gaussian distribution (MC).

The numerical solution is done on a dense grid of 10 000 evaluation points for this 
example, and this is considered the exact solution. For Monte Carlo sampling, we use 
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B = 100 samples from the Gaussian pdf and take the average of the logistic function over 
the samples.

Figure 2.24 shows the results for a range of mean values μ and standard deviation σ = 1 2.  
All approximations deliver accurate results in this example, as we can hardly discriminate 
the three curves in the left display. When we look at the errors compared with the dense 
numerical approximation in the right display, we notice that the Monte Carlo approach 
has the largest errors near zero, where the success probability is about 0.5. The Laplace 
approximation performs well for most mean values.

Several tricks are possible for reducing the variability in the Monte Carlo approxima-
tion. For instance, one can apply importance sampling to reduce the Monte Carlo vari-
ability. This technique generates samples x x1, ,… B  from another pdf q x( ), called the 

proposal distribution, rather than the true model p x( ). The Monte Carlo estimator is a  

weighted sum
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Figure  2.24  Left:  logistic integral for different approximations (numerical solution, Laplace 
approximation, and Monte Carlo with B = 100 realizations) and for varying levels of the Gaussian 
mean. Right: comparison of Laplace and Monte Carlo approximation against the numerical reference 
solution.
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(2.47)

This integral estimator is unbiased and will converge to the true value as the sample 
size increases under mild regularity conditions on the proposal distribution q x( ). The 
importance sampling estimator in Equation (2.47) could have smaller variance than the 
straightforward Monte Carlo approximation. The idea is that the proposal distribution 
highlights the important variables for the particular case in which we are interested. In 
this way, the best proposal distribution q x( ) changes with the case-specific goals via the  
function  f x( ).

2.5.3  Sampling methods

Appendix B presents a number of methods for generating random variables. This section 
only provides a brief discussion of the main ideas.

There is a large variety of methods for generating random variables from known distri-
butions. Independent uniform variables U( , )0 1  play a critical role here. If we can generate 
independent uniform variables, we can then apply transformations to get a sample from 
the relevant pdf. For instance, a power law distributed variable can be generated by first 
sampling a uniform variable and then using the inverse cumulative distribution function. 
We can sample a Gaussian variable by first sampling uniform variables and transform-
ing these to independent standard Gaussian variables. To sample from N µ, Σ( ), we can 
first Cholesky factorize the covariance matrix, Σ = LLt, and set x L I= +µ ⋅ N n( , )0 . Similar 
tricks are common for a wide range of distributions. For instance, independent variables 
can be used in a stepwise propagation – say, by using conditional probabilities like that of 
a graph or network. However, not all pdfs are straightforward to sample from, and we will 
briefly discuss accept/reject methods and iterative methods.

Rejection sampling generates samples from the proposal distribution pdf q x( ) which 
is usually easier to sample from. Samples are subsequently either rejected or accepted as 
samples from the true pdf p x( ). The number of accepted samples depends on the similarity 
between the proposal mechanism q x( ) and the target density p x( ). Although rejection sam-
pling is an exact method, it is not always easily applicable, especially in high dimensions.

Approximate Bayesian computation relies on ideas similar to rejection sampling. 
Here, many samples x x1, ,

B  are generated from the prior model p x( ). Next, the samples 
are forward-propogated to the data space, and we accept samples that are in some sense 
close to the data y. Approximate Bayesian computing is looser in its acceptance criteria 
than rejection sampling. In fact, it avoids the full specification of a likelihood model, which 
would be required for correct rejection sampling. Instead, it relies on a similarity meas-
ure between the simulated data and the observations. This algorithm was popularized in 
biological applications (Beaumont 2002) where the function model is very complex but 
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amenable to evaluation or simulation. The same setting with a complicated forward model 
holds in many Earth sciences applications.

Markov chain Monte Carlo sampling is a method for generating dependent samples from 
a probability model p x( ). Unlike rejection sampling, which proposes independent variables 
in each trial, the Markov chain Monte Carlo algorithm uses the current sample to construct a 
new sample. This iterative construction is based on a Markov transition matrix (or kernel in 
continuous state spaces), depending on the current state. There are two famous Markov chain 
Monte Carlo algorithms: the Metropolis–Hastings sampler and the Gibbs sampler.

2.5.4  Example

Risky business: petroleum prospect risking example

Keywords: risking, petroleum prospects, transformed Gaussian variables, Monte Carlo sampling, 

approximate Bayesian computing

Let us consider a situation not dissimilar to the basin modeling setup described in Section 
2.1. In Figure 2.8, we studied different variables affecting the volumes of hydrocarbons at 
geologically defined prospects. A design of experiment was run to study the effect of pro-
spect volumes (Table 2.1). An alternative to the design of experiment in this case is Monte 
Carlo risking, which entails sampling variables in the input space and evaluating the output 
variables of interest for each Monte Carlo input sample.

In this example, we assume that the key uncertainties in prospect volumes are the thick-
ness and porosity of the reservoir zone in an oil field. The thickness is influenced by the 
geological history of the basin (erosion events, sea level over geologic time, etc.). Similarly, 
the porosity depends on the geological deposition environment over time. We assume a 
simplified formulation where porosity is assumed to be a logistic Gaussian variable (simi-
lar to the probability in Equation (2.46)) but bounded within the interval 0 15 0 4. , .( ). We can 
sample by first generating a Gaussian variable and then taking the logistic transform. The 
thickness is assumed to be power law distributed. We can simulate a power law variable 
by first simulating a Gaussian variable, then computing the cumulative distribution func-
tion, and finally taking the inverse power law. The volumes are obtained by multiplying the 
uncertain thickness and porosity variables and a fixed scalar term.

Suppose further that there are n = 100 prospects with some common geological mecha-
nisms inducing correlation. This pairwise correlation is assumed to be the same for all 
prospects, defined by a parameter ρ. In our formulation, it is straightforward to model 
the correlation for the Gaussian variables. We can thus simulate Gaussian correlated vari-
ables, transform these to the correct logistic porosity variables and power law variables, 
and multiply to get the volumes. This construction is similar to what is typically done for 
copulas (Joe 2014). In addition to the pairwise correlation between prospects, the trans-
formed porosity and thickness variables at every prospect have a 2 × 2 covariance matrix 
Σ0. The modeled covariance matrix for basic variables at the prospects is then

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.003
http:/www.cambridge.org/core


Statistical models and methods60

	 Σ Σ=





































kron 0

1

1

1

1

,

..

..

..

..

,

ρ ρ
ρ ρ
ρ ρ
ρ ρ 	

(2.48)

where the Kronecker product enforces separability of the correlation between poros-
ity and thickness between prospects. The between-prospect correlation (ρ) is set very 
high here, and there is some positive correlation between the porosity and thickness 
variates (Σ0).

The Monte Carlo representation of the volumes requires three steps: (i) generate random 
samples from the specified Gaussian distribution, (ii) transform variables to obtain samples 
from the logistic porosity and power law distribution for thickness, and (iii) compute the 
volumes by multiplication.

Table 2.2 (top) shows the results of B = 10 000 prior samples of the porosity and thick-
ness. The table presents percentiles of porosity and thickness for Prospect 1, as well as 
the total volume for all prospects (sum over all n = 100 prospects). The percentiles are 
obtained after sorting the samples from smallest to largest and picking the appropriate 
fraction.

Assume that there is perfect information about the thickness of Prospect n. We know that 
this is 10 m. Posterior samples can be obtained by approximate Bayesian computing, where 
samples closer than a threshold to the observed 10-m thickness are selected. The results of 

Table 2.2. Illustration of porosity, thickness, and volumes from the prior (top) and 
posterior (bottom) distribution. The prior and posterior pdfs are explored by sampling

5th Percentile 25th Percentile Median 75th Percentile 95th Percentile

Prior, 
porosity 0.17 0.22 0.27 0.33 0.38
Prior, 
thickness 5.2 5.8 7.1 10.1 22.1
Prior,
total volume 15 18 20 24 43

5th Percentile 25th Percentile Median 75th Percentile 95th Percentile
Posterior, 
porosity 0.18 0.21 0.24 0.27 0.32
Posterior, 
thickness 7.4 8.6 9.9 11.6 14.4
Posterior,
total volume 19 22 25 27 32
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posterior sampling, based on a quadratic loss criterion, are presented in the bottom rows of 
Table 2.2. Information about the thickness at Prospect n propagates to all variables because 
of the dependence in the model. Both the thickness and the porosity distribution at Prospect 
1 are clearly narrower than for the prior, but the effect of conditioning is smaller for poros-
ity than for thickness. In the bottom row, we list the percentiles of the distribution for total 
volume. The posterior for total volumes has smaller uncertainty than the prior. In particular, 
very large volumes are less likely in the posterior.

Discussion: computing

Programming languages like MATLAB have built-in routines for generating samples from 
known pdfs, such as the Gaussian in this example. It is much faster to draw many samples 
in one operation than running through a for-loop. In MATLAB, we can sample B Gaussian 
vectors with common mean µ and covariance Σ  as follows:

x *
mat

= + ( ) ( )µ 1B
t t

n Bchol randnΣ * , .

It is also possible to use the mvnrnd function from the MATLAB statistics toolbox. Additional 
speed-up can be gained through parallel implementation.

2.6  Bibliographic notes

It is not our intention to cover probability models and statistical methods comprehensively. 
There are numerous textbooks on statistical models and methods – for instance, the book 
by Jensen et al. (2000), which is widely referenced in the Earth sciences. The appendix 
contains further details pertaining to the primary probability models and sampling methods 
we focus on for VOI analysis in this book.

Models

There are plenty of well-known univariate probability distributions (Johnson et al. 1994). 
Useful multivariate probability distributions are much harder to construct, but the books 
by Johnson et al. (1997) and Kotz et al. (2000) cover commonly used multivariate discrete 
and continuous distributions. The increase in data size and computing power means that 
the t-distribution described in introductory statistics textbooks is perhaps not that relevant 
anymore. The Gaussian distribution has remained extremely popular because of its ease of 
applicability, its properties, and its ability to handle high-dimensional situations. If not dir-
ectly useful as a stand-alone model, the Gaussian distribution will continue to be a building 
block in more complex settings.

As we have discussed, it has become popular to construct graphical models or networks 
from generic and modular principles, including conditional independence. Several books on 
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graphical models and Bayesian networks demonstrate modeling aspects, methods for infer-
ence, and a wealth of applications (Green et al. 2003; Cowell et al. 2007; Jensen and Nielsen 
2007; Koller and Friedman 2009; Sucar et al. 2012). There is also plenty of software available 
for computing Bayesian networks – we use the Bayesian Network Toolbox (BNT) in MATLAB 
developed by K. Murphy (bnt.googlecode.com) and Netica (www.norsys.com/netica.html).

Estimation and sampling

The boundaries between fully Bayesian statistical approaches and frequentist methods are 
not as clear in practice as they used to be. Practical solutions borrow the most appropriate 
models and methods from different communities and a variety of tools are often required. 
Approximations are often necessary, yet statisticians carefully study the properties of approxi-
mations under various conditions. An excellent book on likelihood principles and Bayesian 
theory is the one written by Carlin and Louis (2000). Scoring rules have become popular for 
fitting models to ensembles or scenario-based data, where the goal is to trade model complex-
ity for predictive power while maintaining robustness – see, e.g., Gneiting and Raftery (2007).

New types of data sets, which can be enormous in size, have encouraged new approaches 
for summarizing data, inferring parameters, classification, and learning. Rasmussen and 
Williams (2006) is a great introduction to machine learning. Hastie et al. (2009) provide 
an excellent overview of recent tools and general techniques for learning from data. These 
tools build on both parametric and non-parametric principles. We have focused mainly on 
parametric models here because there tend to be several parametric, physical relations in 
the Earth sciences. Moreover, in the Earth sciences, there are substantial auxiliary data that 
should be used for learning. For instance, well logs, geological information, core samples, 
basin modeling, etc., are used to specify model parameters at the seismic interpretation stage.

Markov chain Monte Carlo methods have been particularly popular in Bayesian statis-
tics – see, e.g., Gamerman and Lopes (2006). Expectation maximization (EM) algorithms 
have similarly been very popular in frequentist statistics – see, e.g., McLachlan and Krishnan 
(2008). Both these iterative computational techniques use the structure of the model to effi-
ciently sample or estimate subsets of the variables while keeping the other variables fixed. In 
the Bayesian literature, recent alternative techniques construct faster approximations to the 
posterior distributions – for instance, nested Laplace approximations (Rue et al. 2009), which 
rely on Gaussian approximations for subsets of the variables of interest, or variational meth-
ods (Jaakkola 2000), which assume certain factorization forms of the joint posterior model. 
The massive dimensions of current data sets have motivated the use of inference methods 
using local properties such as pseudo-likelihoods or composite models (Varin et al. 2011).

Traditionally, approaches for the design of experiments popularized statistics in some 
applications; these methods are still relevant. However, experimental design has become 
more sophisticated within the realm of computers and new data sets. A great introduction 
to the design of computer experiments is given in Santner et al. (2003). For the Earth sci-
ences, computer experiments and simulations are used extensively, and the domain is likely 
to benefit from the recent advances in the literature.
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Recent years have seen the use of many tools of multivariate statistics to analyze 
high-dimensional data, reduce dimensions, and visualize them in lower dimensions. These 
tools include principal component analysis and kernel principal component analysis, cluster-
ing, and multidimensional scaling. The books by Izenman (2008) and Hastie et al. (2009) 
describe many of these multivariate statistical techniques. Multidimensional scaling for dimen-
sion reduction and data visualization arose in the fields of psychology and behavioral sciences 
but has now been used in many disciplines, including Earth sciences. In reservoir modeling, 
multidimensional scaling has been used to visualize the uncertainty of very-high-dimensional 
spatial Earth models by computing an appropriate distance between pairs of models in an 
ensemble of model realizations and then using multidimensional scaling to project them to 
a lower dimension space. Clustering, screening of multiple geologic scenarios, and model 
selection can then be done in this lower dimension space. Cox and Cox (2001) and Borg and 
Groenen (2005) give extensive coverage of general multidimensional scaling theory and tech-
niques. Caers (2011) and Scheidt and Caers (2009) provide applications of multidimensional 
scaling for visualization and uncertainty quantification in reservoir modeling.

Parallel computing will no doubt make all these techniques more efficient in the 
future – see, e.g., Kontoghiorghes (2005). The bottleneck at the current time appears to be 
user-friendly interfaces for connecting desktop or internet code to parallel computing units, 
but we expect such issues to be resolved in the near future.
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3

Decision analysis

We all make decisions in our personal and professional lives. Many of these decisions are 
trivial and fleeting, without profound significance in the broader scheme of things. Many 
decisions we make, however, have a meaningful impact on our lives and on society at 
large. Decision analysis is the study of applying the principles of decision theory to prac-
tical decision situations, providing guidance that can help us with important decisions that 
deserve our attention through analysis.

We review the fundamental concepts of decision analysis in this chapter. We focus on 
concepts that have a bearing on value of information (VOI) analysis, but the reader should 

Figure 3.1  scuffles in my mind
traversing waters unknown
how should I decide?
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hopefully be able to glean a general overview of the field. We start with a background 
discussion in Section 3.1, outlining key principles that lie at the core of decision analysis. 
Section 3.2 defines the notation and terminology for decision situations, providing lan-
guage that will be required for eventually integrating decision analysis with other subjects 
such as spatial statistics. Section 3.3 reviews graphical models, focusing solely on the two 
most popular models in decision analysis: decision trees and influence diagrams. VOI is 
introduced in Section 3.4. Here, we highlight concepts that will be critical for understand-
ing the forthcoming chapters. Finally, we outline some bibliographic notes in Section 3.5.

3.1  Background

Decision analysis stands on the solid foundation built over hundreds of years of thought 
regarding decision making under uncertainty – its fundamental notions can be traced back 
to some of the pioneers of probability theory – for instance, Bernoulli, Bayes, and Laplace. 
The term “decision analysis” was coined by Ronald Howard (1964) to define the field of 
study that logically evaluates available alternatives in a decision situation once the uncer-
tainties involved and the preferences of the decision maker have been recognized. The first 
book that used the phrase “decision analysis” in the title is by Raiffa (1968).

Figure 3.2 shows a fundamental distinction between various fields of study pertaining 
to decision making, categorizing them into one of three types: (a) descriptive domains are 
those that effectively describe behavior around how people make decisions, (b) norma-
tive ones are those that lay down a set of norms (or axioms), and (c) prescriptive fields of 
study regarding decision making are concerned with methods and tools for helping people 
make better decisions. Decision analysis is a prescriptive approach with the intent of guid-
ing a decision maker through a potentially opaque decision situation, leading him or her 
to clarity of action through a process of assessing his or her beliefs and preferences. It is 
based on the normative principles of decision theory. Prescriptive disciplines like decision 
analysis attempt to address and rectify cognitive as well as motivational biases that creep 
into a person’s decision-making process, and there is a rich history of active interaction 
between researchers in prescriptive and descriptive domains (see von Winterfeldt and 

Decision Making

Normative Grounded by a set of (reasonable) axioms

Describes how people make decisions

Methods and tools to help decision makers

Descriptive

Prescriptive

Figure 3.2  Decision making studies can be categorized into one of three types: normative, descriptive, 
and prescriptive.
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Edwards 1986). We should note here that there are several authors who do not make a dis-
tinction between normative and prescriptive domains, treating them as one and the same. 
For research on descriptive aspects such as biases during judgment and decision making, 
we refer the reader to Tversky and Kahneman (1974) and Lichtenstein and Slovic (2006).

Figure  3.3 depicts the stages through which decision analysis is typically applied in 
practical situations. The decision analysis cycle comprises three main stages, much like 
other domains involving mathematical modeling: formulation, evaluation, and appraisal. 
First, a model is formulated by the analyst in accordance with the beliefs of the decision 
maker. It is then evaluated using the tools and techniques of decision analysis to arrive at a 
formal recommendation. In the appraisal stage, further insights are developed by exploring 
the implications of the formulation and evaluation stages. The model is often refined in an 
iterative fashion until the decision maker is comfortable with the suggested recommenda-
tion and the reasoning on which this is based, and finally the decision maker is encouraged 
to commit to action.

One of the key foundational takeaways in decision analysis is the distinction between 
decisions and outcomes. The quality of a decision can and should be determined before 
the outcome has been observed; sometimes, good decisions lead to bad outcomes and bad 
decisions lead to good ones. This sort of reasoning dates back at least as early as the Greek 
historian Herodotus, as can be gauged from his discussions about policy decisions made by 
the Persian kings. He notes that a decision was deemed wise or foolish based on whether 
the evidence at hand indicated that it was the best one to make, regardless of the conse-
quences. Decision analysis suggests that decisions should be deemed good or bad at the 
time they are made.

If decisions should not be gauged by their outcomes, then how should one measure deci-
sion quality? Figure 3.4 presents a spider diagram that depicts six elements of decision 
quality. A high-quality decision is one that is deemed to score high on as many of these 
elements as possible:

1.	 Frame: Did the decision maker solve the right problem? Was the context of the deci-
sion situation understood at the appropriate level? Improper framing is a common error 
in many practical decisions. A broadening of the frame is often required to address the 
decision maker’s true concerns.

2.	 Alternatives: Did the decision maker consider a comprehensive set of alternatives that 
were available? Was there an attempt to pursue and consider creative alternatives?

Initial
Situation Decision

Iteration

Formulation Evaluation Appraisal

Figure 3.3  The decision analysis cycle contains three stages: formulation, evaluation, and appraisal.
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3.	 Information: Did the decision maker try to obtain and incorporate meaningful and 
reliable information that was available at the time of the decision?

4.	 Preferences: Did the decision maker deliberate about and incorporate all the important 
attributes that truly reflect his or her preferences? Did he or she incorporate his or her 
preferences?

5.	 Logic: Did the decision maker take a logical and reasonable approach consistent with 
their alternatives, information, and preferences? In decision analysis, sound reasoning 
occurs when the norms of decision theory are deployed.

6.	 Commitment to action: Did the decision maker commit to the alternative that was 
recommended by the analysis? Often in organizations, the analysis suggests one 
alternative, but another is chosen due to organizational issues such as motivational 
biases. This results in a poor decision, regardless of the effort that was put into the 
analysis.

Naturally, the goal of decision analysis – and in fact any prescriptive approach to 
making decisions – is to help the decision maker choose alternatives that lead to better 
outcomes than they would have otherwise attained; however, there are often uncer-
tainties prevalent in the world that do not guarantee achieving the best outcome for 
any particular decision. For instance, a person who chooses to step out of the house 
without an umbrella in the dry season may still end up getting drenched. If the person 
knew about the downpour before leaving the house, he or she would have been able to 
make an even better decision. Modeling the ramifications of resolving an uncertainty 
before making a decision – and quantifying whether it is worthwhile to do so – is the 
key idea behind VOI, making it a powerful decision analytic tool for decision makers 
in any domain.

Appropriate
frame

Creative
alternatives

Commitment
to action

Clear
preferences

Correct
Logic

Reliable
information

0% 100%

Figure 3.4  Gauging decision quality with a spider diagram consisting of six elements.
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3.2  Decision situations: terminology and notation

Decision analysis attempts to guide a decision maker to clarity of action in dealing with a 
situation where one or more decisions are to be made, typically in the face of uncertainty. 
Keeney (2007) makes a distinction between two kinds of decision situations. The first kind 
is a decision problem, named thus because the decision is motivated by the decision maker’s 
circumstances. Here, there is some sort of external trigger that causes the decision maker 
to commit to action. The second kind is a decision opportunity, where the decision maker 
recognizes an opportunity for making a change in their environment and thus perceives an 
internal trigger. The latter type of situation is one where the decision maker proactively con-
siders making changes to their environment rather than reacting to extrinsic factors and is a 
crucial way through which decision makers should create substantial value for themselves.

The kinds of situations that decision analysis tackles are also studied in other related 
domains pertaining to prescriptive decision making; as a result, they are known by a var-
iety of names. When viewed as an optimization problem, they are also known as max-
imum expected utility problems, since the objective function involves maximization of 
expected utility. These problems are often also referred to as sequential decision problems 
when they involve several decisions made over time or simply as decision making under 
uncertainty problems when there are random variables involved. In this book, we will use 
the term decision situation (Keeney 2007) since this appears to be the most general and 
encompassing term.

In this section, we introduce some basic terminology and notation around decision situ-
ations. We apply the notation to a simple decision situation, illustrating the ideas with 
examples.

3.2.1  Decisions, uncertainties, and values

A decision maker’s decision situation involves distinctions (synonymously, variables) that 
are of interest for that particular situation. A distinction defines possibilities that are mutu-
ally exclusive and collectively exhaustive – i.e., exactly one of these possibilities can occur. 
We distinguish between two important types of distinctions – those that are directly under 
the control of the decision maker are decisions, and those that are not are uncertainties 
(or, more technically, random variables). We refer to the possibilities for decisions as alter-
natives or actions and the possibilities for uncertainties as states or realizations. Decisions 
are denoted a, and the decision maker can choose an alternative from the set of available 
alternatives, a A∈ . On the other hand, uncertainties are denoted x, and they can take on 
any state in the sample space, x ∈Ω, as described in greater detail in Chapter 2. In any dis-
cussion about a particular distinction, the possibilities should pass the clarity test – i.e., all 
the parties involved should understand precisely how all possibilities for that distinction 
are defined. Just as we did in Chapter 2, we will sometimes use the phrase “distinction of 
interest” to refer to the primary uncertainty that is relevant in a decision situation; it should 
be clear from the context that the distinction being referred to is an uncertainty. Also, recall 
from Chapter 2 that the possibilities for a distinction may be discrete or continuous. To 
avoid confusion between summation and integration operations, we describe variables in 
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most of this chapter as if they are associated with a finite set of alternatives A and discrete 
sample space Ω, but all the concepts extend naturally to when these sets are continuous.

Consider the pirate example from Chapter 2, where a pirate is informed about a potential 
treasure on an island. We will treat this as a recurring example of a decision situation in this 
chapter. The distinction of interest is whether the treasure is present or not, modeled as a 
binary random variable x ∈{ }0 1, . The pirate must decide whether it is worthwhile to make 
the trip to the island and dig for treasure. The pirate believes that there is a 1% chance that 
treasure is present – i.e., p x =( ) =1 0 01. . Using our notation, an alternative from the fol-
lowing set must be chosen: A = { } { }=0 1,  do not dig, dig .

It is important for the decision maker to identify the appropriate decisions in the con-
text of the situation, as well as those uncertainties that are most relevant. Once they have 
been identified, the decision maker can consider the various scenarios. A scenario is the 
set consisting of a possibility for each distinction or, equivalently, an instantiation of every 
distinction in the decision situation. Our simple decision situation involves one uncertainty 
x and one decision a; therefore, there are a total of | | | |Ω ⊗ A  scenarios. Each scenario is 
associated with a prospect, which is how the decision maker views the future given the 
scenario. We prefer the word “prospect” rather than “outcome,” as it signifies a beginning 
rather than an end of the decision maker’s future.

The decision maker can associate each prospect with measures that we refer to as values. 
In this book, we assume that the value for each scenario is measured in terms of a single 
numeraire; specifically, we assume that this numeraire is monetary units. The advantage 
of using monetary units as a measure is that this permits the decision maker to consider 
the implication of choices in terms of a value scale of common experience – most people 
are very much acclimatized to using monetary units to think about value – and to use VOI 
computations to help with information purchase decisions. VOI techniques can also be 
deployed using units of value besides monetary units, but they lose the buying price inter-
pretation that we will describe later in this chapter.

The decision maker’s values for prospects in their decision situation are represented by 
a value function, denoted v .( ). For our simple decision situation, the value function would 
be applied to the domain of | | | |Ω ⊗ A  – i.e., v x a,( ). We will also use the notation v va=  
to refer to the value of an alternative a, with implicit dependence on x. Note that since x 
is a random variable, so is its function v x a,( ). Table 3.1 presents an example of a value 
table for the pirate’s decision situation. There are four scenarios in this decision situation, 
since there are two alternatives for the drilling decision and two states for the uncertainty 
around the treasure. The value table specifies how the pirate values the prospect for each 
scenario. In this case, the pirate believes that finding the treasure results in a profit of 
$100 000, but if the treasure is absent, then it would result in a loss of $10 000 from travel 
and drilling expenses. If the pirate does not dig for treasure, then there is no gain and no 
loss, resulting in $0.

In our review of basic probability and statistics in Chapter 2, we discussed modeling the 
relationships among uncertainties using joint probability distributions. We have seen in this 
section thus far that decision analysis builds upon the framework of probabilistic modeling 
of uncertainties by also incorporating decisions and values. Note that there may also be 
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situations where there is some notion of value from uncertain prospects without any deci-
sion to be made. We use the term lottery to refer to such situations; they are also known as 
gambles or deals. As posed, the pirate example is a decision situation, of course – but if the 
pirate were compelled to dig and did not have a choice in the matter, possibly under mutiny 
from the crew (!), he would be faced with the following lottery:

	 v
dig

=
−
$

$

100000

10000

  0.01

 

with probability

with probability  0.99





� (3.1)

where v
dig

 denotes the pirate’s value if he digs for treasure, and the numbers are the same 
as those presented previously.

Now that we have set up the terminology for the basic ideas, we can proceed to more 
advanced concepts.

3.2.2  Utilities and certain equivalent

A decision maker’s risk preferences represent their preferences for lotteries that involve 
uncertain value prospects. According to the principles of decision analysis, risk is very 
much like beauty, in the sense that it lies in the eyes of the beholder. In other words, it is a 
characteristic of the decision maker, not the decision situation. If the decision maker is risk 
neutral, then there is no need to go beyond values. By definition, a risk-neutral decision 
maker should make decisions by maximizing the expected value. Such a decision maker 
would only be concerned with the means of random variables. To account for more gen-
eral risk preferences, values need to be extended to utilities. Incorporating risk preferences 
requires assessing a utility function, denoted u .( ) (von Neumann and Morgenstern 1947). 
u .( ) is a function that takes units of value as input and returns units of utility (sometimes 
referred to as utiles).

The left side of Figure 3.5 presents examples of three utility functions that extend over 
the domain of values from v0 to v*. The utility functions are associated with different 
decision makers. The figure indicates that a risk-neutral decision maker has a linear utility 
function – i.e., of the form

	 u v v( ) = +α β ,	 (3.2)

Table 3.1. Value table for the pirate example. The value depends on the alternative 
(dig or do not dig) and the uncertain variable (presence or absence of treasure)

Digging Decision Presence of Treasure Uncertainty Value (Profit)

Dig Present $100 000
Dig Absent −$10 000
Do not dig Present $0
Do not dig Absent $0
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where α  and β  are constants such that β > 0. Risk-averse and risk-seeking decision mak-
ers have concave and convex utility functions, respectively. For reasons that we will study 
later in this subsection, we will also pay particular attention to another family of utility 
functions, exponential utility functions, which are of the form

	 u v e v( ) = + −α β γ ,	 (3.3)

where α  and β  are constants such that if γ > 0, then the decision maker is risk averse and 
β < 0, whereas if γ < 0, then the decision maker is risk seeking and β > 0. In the limiting 
condition where γ = 0, the decision maker is risk neutral and the linear utility function 
should be used. γ  is the risk aversion coefficient – it is the only parameter of the exponential 
utility function, which is sometimes parameterized by the risk tolerance 1 γ . The constants 
α  and β  in the utility function do not matter as long as they satisfy the required conditions, 
since utility functions are invariant to affine transformations (Keeney and Raiffa 1976). 
Therefore, whenever we deploy the exponential utility function for numerical examples, 
we will arbitrarily set α = 1 and β = −1 for risk-averse decision makers, which results in the 
functional form u v e v( ) = − −1 γ .

A utility function is a mathematical construct that is used merely to capture and incorp-
orate the decision maker’s risk preferences. It is therefore often inappropriate to use util-
ities for communicating the results of the decision analysis to decision makers who are 
more concerned about the practical implications of their actions. The certain equivalent 
is usually a more meaningful measure because it is in units of value. It is defined as the 
price at which the decision maker would be indifferent between selling their situation ver-
sus retaining it, and it is therefore also referred to as the personal indifference selling price 

Risk averse

Risk neutral

Risk seeking

Value

CErisk-averse

CErisk-neutral

CErisk-seeking

v 0 v 0 v *

0

1 1

0.5
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U
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U
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Figure  3.5  Utility function examples. Left:  three utility functions:  one each for a risk-neutral, 
risk-averse, and risk-seeking decision maker. Right: certain equivalents for the three utility functions 
for a lottery with an expected utility of 0.5.
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for a situation. The certain equivalent is a measure of how much a situation is worth to the 
decision maker because they should not be willing to sell it for less than this price.

The notion of a certain equivalent applies to lotteries as well as decision situations. To 
introduce the concept, let us first apply it to lotteries in this subsection. Consider a person 
with wealth w who owns a lottery where the uncertainty is denoted x, and the value from 
the prospects is v x( ). The person’s beliefs about uncertainty x ∈Ω are represented by the 
probability distribution p x( ), and his or her risk preferences are characterized by the utility 
function u ⋅( ). The expected utility of the lottery is

	 E u u v x w p x E u v x w
x

( ) = ( ) +( ) ( ) = ( ) +( )( )
∈
∑

Ω

.	 (3.4)

Computing the certain equivalent for this lottery is straightforward. If the certain equiva-
lent is denoted CE, then the person is indifferent between selling the lottery, thereby receiv-
ing price CE for certain, as opposed to retaining the lottery with uncertain value prospects. 
The utilities for these two situations are identical by definition, because the person is indif-
ferent, and therefore

	
u w CE E u E u v x w

CE u E u v x w w

+( ) = ( ) = ( ) +( )( )
⇒ = ( ) +( )( )( ) −−

.

.1
	 (3.5)

For a certain class of utility functions, the CE  does not depend on the person’s wealth, 
in which case assessments and computations are simpler because it is not necessary to 
incorporate the wealth. These utility functions are referred to as constant risk aversion util-

ity functions because the risk aversion coefficient, defined as γ = − ′′ ( )
′ ( )

u v
u v

, is constant 

and does not depend on the value. The linear and exponential utility functions are the 
only constant risk aversion utility functions. It can be shown that these utility functions 
(and only these) satisfy what is known as the delta property: if a constant value ∆  were 
added to all the prospects in a situation with uncertain value, then the certain equivalent 
would increase by ∆ . Formally, the utility function would have to satisfy the following 
property:

	 u E u v x u E u v x− −( ) +( )( )( ) = ( )( )( )( ) +1 1∆ ∆	 (3.6)

for any uncertain value distribution v x( ) and any constant value ∆ . Using this property in 
Equation (3.5), we observe that the certain equivalent in this lottery simplifies to

	 CE u E u v x= ( )( )( )( )−1 .	 (3.7)

Consider the right side of Figure 3.5, which demonstrates how to graphically estimate 
the certain equivalents for three utility functions for the following lottery:

	 v x
v

v
( ) =





* with probability 0.5

with probability 0.50
	 (3.8)
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In this lottery, there is a 50–50% chance of receiving the best prospect v* versus the 
worst prospect v0. Since utilities can be scaled arbitrarily, we can normalize the utilities 
such that the best and worst prospects have utility 1 and 0, respectively – i.e., u v*( ) = 1 
and u v0 0( ) = . The expected utility for this lottery is E u v x( )( )( ) = 0 5. . From Equation 
(3.7), the certain equivalent is computed by taking the utility inverse of the expected utility. 
This can be done graphically by drawing a horizontal line from the expected utility of the  
lottery  – in this case, 0.5  – and then drawing a vertical line from the point where the 
horizontal line meets the utility function. Note that when the decision maker is risk neu-
tral, he or she is indifferent between a lottery with uncertain prospects and having the 
expected value of the lottery for certain. In this case, the expected value of the lottery is 
v v* +( )0 2. The figure demonstrates that the certain equivalent for a risk-averse decision 

maker is less than the expected value of the lottery. On the other hand, the certain equiva-
lent for a risk-seeking decision maker is more than the expected value of the lottery. Thus, a 
risk-seeking decision maker would prefer a lottery with uncertain prospects over receiving 
the expected value for certain, and vice versa for a risk-averse decision maker.

When utilities are scaled between 0 and 1, the utility of any intermediate prospect can be 
elicited by identifying an equivalent lottery where the best prospect is obtained with prob-
ability p versus the worst prospect with probability 1− p. If the decision maker is indiffer-
ent between the intermediate prospect and the lottery, the utility of the prospect equals the 
expected utility of the lottery, which is p. When interpreted in this fashion, utilities are also 
known as preference probabilities.

There are a variety of well-known elicitation schemes to elicit a utility function. An elicit-
ation scheme is composed of a sequence of questions. Standard gamble methods present 
the decision maker with a lottery and a certain amount and pose questions of mainly two 
types: a comparison (or choice) question is one where the decision maker is asked to com-
pare the lottery with the certain amount, indicating which one is preferred. In an equivalence 
(or matching) question, the decision maker is asked to provide any one of the parameters 
pertaining to either the lottery or the certain amount such that he or she is indifferent between 
them. The utility curve is estimated from the decision maker’s responses to the elicitation 
questions. Farquhar (1984) provides an excellent review of some elicitation schemes.

Discussion: multiattribute utility theory

We have described an approach to solving decision situations under uncertainty where a 
one-dimensional utility function is assessed over a deterministic value function. This approach 
makes no assumptions about utility independence (Keeney and Raiffa 1976) and is particularly 
suitable for our purposes since the presence of a value function enables VOI computations. The 
reader is referred to Matheson and Howard (1968) and Dyer and Sarin (1982) for further details 
about the approach. There are other approaches where a utility function is assessed directly. 
These techniques are often useful for multiattribute (or multicriteria) decision situations. Please 
see Keeney and Raiffa (1976) for details.
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3.2.3  Maximizing expected utility

Consider the following simple decision situation, which is merely an abstraction of the 
pirate example. Suppose that a decision maker with wealth w faces a decision a involving 
unresponsive uncertainty x – i.e., uncertainty x is not affected by the decision. For instance, 
whether the pirate digs for treasure has no effect on whether the treasure is present or not. 
Furthermore, suppose that the decision maker will obtain value v v x aa = ( ),  from the deci-
sion situation if alternative a is chosen, where v .( ) is the value function. The decision mak-
er’s beliefs about uncertainty x ∈Ω are represented by the probability distribution p x( ),  
and his or her risk preferences are characterized by the utility function u .( ). Again, note that 
va is a function of a random variable x; therefore, it is a random variable itself.

We now have all the necessary assumptions, terminology, and notation to determine 
the decision maker’s optimal alternative. According to the principles of decision theory, 
he or she should choose the alternative that maximizes the expected utility. If the decision 
maker chooses alternative a, then he or she will obtain value v wa + , the sum of their uncer-
tain value from their decision situation, v v x aa = ( ), , and their prior wealth. The decision 
maker’s uncertain utility is u v w u v x a wa +( ) = ( ) +( ), . According to the norms of decision 
theory, the maximum expected utility is

	
MEU u v w p x

E u v w E u v w

a A a

a A a a

x

= +( ) ( )







= +( )( ){ } = +

∈

∈

∈
∑max

max *

Ω

( )( ),

	 (3.9)

where a * is the optimal alternative – i.e., the one that maximizes the expected utility

	 a E u v wa A a* argmax .= +( )( ){ }∈ 	 (3.10)

Calculations for the certain equivalent for our simple decision situation are similar to 
those for the lottery in the previous subsection. If the certain equivalent is denoted CE, then 
the decision maker is indifferent between selling the situation, thereby receiving price CE 
for certain, as opposed to retaining the decision situation with uncertain value prospects. 
The utilities for these two situations are identical because the decision maker is indifferent, 
and therefore

	
u w CE MEU E u v w

CE u E u v w w

a

a

+( ) = = +( )( )
⇒ = +( )( )( ) −−

*

* .1
	 (3.11)

When the decision maker’s utility function satisfies the delta property, we can use 
Equation (3.6) and simplify Equation (3.11) to

	 CE u E u va= ( )( )( )−1
* .	 (3.12)

When the decision maker is risk neutral, u v v( ) = +α β , β > 0, the equations simplify fur-
ther such that the certain equivalent equals the maximum expected value:
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	 CE E va= ( )* .	 (3.13)

Later, we will discuss how utility functions that satisfy the delta property make 
VOI computations simpler and more tractable. In fact, the delta assumption is rou-
tinely made in the VOI literature as well as in practice. This is not as limiting as it 
may appear because:  (i)  the assumption is often reasonable in practical situations, 
particularly those where the certain equivalent is much less than the decision maker’s 
wealth and (ii) even if this is not the case, the exponential utility function is versa-
tile and can effectively approximate many utility functions encountered in practice 
(Kirkwood 2004).

Discussion: the five rules of actional thought

The reader may well ask:  why should I  maximize expected utility? Edwards et  al. (2007) 
respond that “systematic and repeated violations of these principles will result in inferior 
long-term consequences of actions and a diminished quality of life” (p. 1). Decision analysis 
is a normative subject and there are, of course, many ways to axiomatize a normative subject. 
Howard and Abbas (2015) present the axioms of decision theory as the “five rules of actional 
thought.” Any decision maker who agrees to these (rather reasonable) rules follows the norms 
and should make their decisions by maximizing expected utility:

1.	 Probability rule: The decision maker’s degree of belief about the possibilities for 
uncertainties is represented using probabilities.

2.	 Order rule: The decision maker should be able to declare their preference order for 
all prospects.

3.	 Equivalence rule: For any prospect, the decision maker should be able to construct 
an equivalent lottery involving the best and worst prospects.

4.	 Substitution rule: The decision maker should be willing to substitute any prospect 
with the lottery, as constructed above.

5.	 Choice rule: Given two lotteries with uncertainty around the best and worst 
prospects, the decision maker should choose the lottery with the higher probability of 
obtaining the best prospect.

3.2.4  Examples

Treasure island: the pirate example

Keywords: pirate example, binary outcomes, certain equivalent, risk-neutral decision maker

We return to the pirate example that was introduced in Chapter 2 and is referred to through-
out this section. As a reminder, a pirate must decide whether to make the trip to an island and 
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dig for potential treasure or not. The pirate is uncertain about whether the treasure is present 
or not. This distinction of interest is modeled as a binary random variable x ∈{ }0 1, . If the 
treasure is indeed present and it is dug up, the pirate expects to make a profit of $100 000, 
but if it is not present, he will incur a loss of $10 000. The pirate believes there is a 1% 
chance that the treasure is present.

Suppose that the pirate is risk neutral – i.e., has a linear utility function for monetary 
values. Since utility functions are invariant to affine transformations, we will use u v v( ) = . 
Furthermore, since the linear utility function satisfies the delta property, we do not need to 
incorporate the pirate’s wealth into the calculations.

Let us apply the notation from this subsection. Decision a is the digging decision, 
and uncertainty x is whether the treasure is present or not. There are two alternatives, 
A = { }dig, do not dig . Similarly, there are two states Ω = { }0 1,  that denote the absence and 
presence of the treasure, respectively. The distribution for x and the value function are as 
follows:

	

x

v

=




=

1  0.01

0  0.99

with probability

with probability

dig

$100 000

10 000

  0.01

  0.99

with probability

with probability−


$



=vdo not dig $ .0

	 (3.14)

Using Equation (3.12), the certain equivalent is

	

CE u E u v E u v

CE u E v

= ( )( ) ( )( ){ }( )
⇒ = ( )

−

−

1

1

max ,

max

dig do not dig

dig ,

max . . ,

E v

CE u

do not dig( ){ }( )
⇒ = ⋅( ) + − ⋅( )−1 100 000 0 01 10 000 0 99 0

0 01

{ }( )
⇒ = ( ) =−CE u $

	 (3.15)

We could also have used Equation (3.13) directly since the pirate is risk neutral. In this 
case, it is optimal for the pirate not to dig for the treasure, and the pirate’s certain equivalent 
for this decision situation is $0.

For whom the bell tolls: Gaussian projects example

Keywords:  Gaussian projects example, bivariate Gaussian distribution, certain equivalent, 

risk-averse decision maker

Suppose that the distinction of interest x = ( )x xn1,...,  represents uncertain profits from pro-
jects that a decision maker is considering for investment purposes. We consider two projects 
(n = 2) with random profits (Section 2.3). A bivariate Gaussian distribution p Nx( ) = ( )µ,Σ  
is used for the profits. We specify the prior mean and covariance as follows:
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	 µ Σ=


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





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30 300
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2
,

ρ
ρ

 in units of $, millions.	 (3.16)

The decision maker can choose exactly one of the projects. Note that in this problem, 
the two projects are correlated, but the correlation ρ does not matter – only the marginal 
distributions of the projects matter. Since x = ( )x x1 2,  is bivariate Gaussian, the marginal 
distributions are Gaussian with p x N1

2100 30( ) = ( ),  and p x N2
270 10( ) = ( ),  in units of $, 

millions. Furthermore, assume that the decision maker has an exponential utility function 
with risk aversion coefficient γ = −0 1 1.  $, millions .

Using Equation (3.12) with utility function u x e x( ) = − −1 γ , the certain equivalent is

	 CE u e p x dx e p x dxx

x

x

x

= −( ) ( ) −( ) ( )








− − −∫ ∫1

1 1 2 21 11

1

2

2

max ,γ γ











 .	 (3.17)

We can use the following result from Howard (1971), showing that when x follows a 
Gaussian distribution and the decision maker has an exponential utility function, the cer-
tain equivalent for x can be computed using a simple closed-form solution (Appendix A.1):

	 CE x( ) = −µ γ σ1

2
2 ,	 (3.18)

where µ and σ  are the mean and standard deviation of x, respectively, and γ  is the risk 
aversion coefficient.

Using the result in Equation (3.18), 

	
CE = − −








= −
⋅

−
⋅


max , max ,µ γ σ µ γσ1 1

2
2 2

2
2 21

2
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2
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2 10
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2 10







= { } =max , $ .55 65 65 million

	 (3.19)

It is therefore optimal for the decision maker to choose the second project, because its 
certain equivalent is greater than that of the first ($65 million versus $55 million). Due to 
the decision maker’s risk aversion and the greater uncertainty in profits for the first project 
as measured by the variance, the decision maker should choose the second project even 
though the first project has a higher mean. A risk-neutral decision maker would of course 
have chosen the first project, and their certain equivalent would have been $100 million.

3.3  Graphical models

Graphical models that represent decision situations help structure the various elements. 
The modular approach helps in studying the essential distinctions without getting bogged 
down with unnecessary and less relevant details. Graphical models are extremely useful 
for communication between the decision maker and the analyst, since they help identify 
and discover relationships among the various key distinctions. In Section 2.3, we studied 
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graphical models for uncertainties represented via Bayesian networks. In this section, we 
briefly review some important graphical models that also explicitly include decisions and 
values of prospects.

In decision analysis, the two most popular graphical models for representing and evalu-
ating decision situations are decision trees and influence diagrams. Decision trees are 
simple graphical models that are typically taught in any first course in decision analysis. 
In the early years of decision analysis, decision trees were so popular that they were 
almost synonymous with the field of decision analysis. Influence diagrams have become 
popular since their inception in the 1970s and 1980s, as they are excellent tools for both 
communication and computation. In this section, we briefly review these two graphical 
models.

3.3.1  Decision trees

Decision trees are graphical models that represent the conditional and informational 
precedence relationships between distinctions. Square (or rectangular) nodes represent 
decisions, and the emanating arcs (as viewed from left to right) represent the alterna-
tives along branches. Circular (or oval) nodes represent uncertainties, and the emanating 
arcs are associated with the corresponding probabilities for the different possibilities. 
Decision trees are indeed graphical models that are “trees,” in the sense that children do 
not have more than one parent. The leaves of the decision tree represent the scenarios of 
the decision situation; each scenario is associated with a value for each prospect. When 
the decision maker has risk preferences – i.e., is not risk neutral – each scenario is also 
associated with utilities that are computed from the values using the decision maker’s 
utility function.

The solution procedure is termed “rolling back” a decision tree, which is the standard 
backward induction procedure in dynamic programming problems. At the circular nodes, a 
sum–product operation is performed where probabilities are multiplied with the respective 
expected utilities (or values, if risk neutral), and then they are added. At the rectangular 
nodes, the expected utility is maximized, and the maximizing alternative is recorded as the 
optimal choice for that particular situation.

Figure 3.6 presents the decision tree for the pirate example. The decision node represents 
the pirate’s digging decision, and the only uncertainty is whether the treasure is present or 
not. The values for each scenario are shown at the leaves of the decision tree. Since the pir-
ate is risk neutral, the optimal alternative is computed by maximizing the expected value. 
The figure graphically depicts the very computations that were performed in the Examples 
subsection of the previous section. It is optimal for the pirate not to dig since the expected 
value of digging is negative.

Decision trees are extremely intuitive and easy to understand since they are structured in 
a way in which decision makers naturally view their decision situation. A key advantage is 
that they are able to capture the asymmetries that are typical in real-world decision prob-
lems. For instance, there is an asymmetry in the pirate example – when the pirate decides 
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not to dig, the uncertainty around the presence of treasure does not affect his value. Thus, 
the decision tree in Figure 3.6 does not need to show all four scenarios and only shows 
three instead; the uncertainty around the presence of the treasure has been “collapsed” in 
the situation in which the pirate decides not to dig.

An important disadvantage is that decision trees become intractable for decision situations 
involving a large number of distinctions, as they grow exponentially with the number of 
distinctions. It is practically impossible to analyze decision situations with several decisions 
and a large number of uncertainties using trees, as the large number of leaves makes prob-
lem representation difficult. Complex situations demand the use of more sophisticated deci-
sion analysis tools. They may be more amenable for representation and solution through 
other graphical representations, such as influence diagrams, which we discuss in the next 
subsection.

Discussion: probability trees

Decision trees that represent situations with only uncertainties and no decisions are known as 
probability trees. They can be useful in a variety of ways. For instance, it is often easy and con-
venient to use them to perform probabilistic computations such as inference. For an example of 
Bayes’ rule being performed using probability trees, the reader may look ahead to Figure 3.16. 
As another application of a probability tree, see Figure 3.12, which depicts a lottery for a com-
pany that owns an oil field. Here, the probability tree also depicts the values of the prospects at 
the leaves, just like in a decision tree.

3.3.2  Influence diagrams

An influence diagram captures a decision situation by depicting the relationships between 
decisions, uncertainties, and preferences (Howard and Matheson 1984). They capture the 

Treasure
$100 K

–$10 K

–$8.9 K

$0 K

$0 K

(0.99)

(0.01)

No treasure

Dig

Do not dig

Figure 3.6  The decision tree for the pirate example. There are two alternatives: dig or do not dig. The 
uncertain outcome is the presence or absence of the treasure.
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conditional independencies in the model and are able to represent the model as conveni-
ently assessed by the decision maker. Influence diagrams have been particularly successful 
in medical expert systems as an aid in encoding expert knowledge, and they have also been 
applied successfully in several other domains. Influence diagrams can capture complex 
modeling situations due to their succinct graphical form.

Recall from Section 2.3 that in a Bayesian network, the nodes represent uncertainties, 
and the edges capture the conditional relationships between nodes. Every node is associ-
ated with a probability for each possible state of the node conditioned on each possible 
state of its parents. For discrete uncertainties, this is typically represented in the form of a 
conditional probability table. An influence diagram is a directed acyclic graph that can be 
viewed as an extension or a generalization of a Bayesian network. It has a larger variety of 
nodes as well as arcs, because it is intended to represent a decision maker’s entire decision 
situation and not merely the uncertainties.

Influence diagrams have three kinds of nodes. Along with uncertain nodes, they also 
include decision nodes and value nodes. Uncertain nodes are drawn as ovals, just like in 
Bayesian networks, whereas decision nodes are rectangles. Different authors use different 
symbols for value nodes; examples of symbols include diamonds, hexagons, and octagons. 
We will use diamonds for value nodes in this book. A special case of an uncertain node is 
a deterministic node, typically drawn as a concentric oval. A deterministic node is com-
pletely determined when its parents are known. Thus, one can think of a deterministic 
node as an uncertain node where the conditional probability distribution for that node only 
involves 1s and 0s.  When influence diagrams were initially conceived, they were meant to 
contain, at most, one value node. Influence diagrams with multiple additive or multiplica-
tive value nodes were introduced by Tatman and Shachter (1990), and they can provide 
additional computational savings. In this book, we will focus on influence diagrams with 
a single value node.

The semantics of the edges or arcs are more involved in influence diagrams, and they 
take on different meanings depending on the types of nodes toward which they are directed. 
Conditional arcs are those arcs that lead into uncertain nodes, and they have the same 
meaning as in Bayesian networks. Informational arcs are those arcs directed toward deci-
sion nodes. If any node has an arc leading into a decision node, that variable is observed at 
the time the decision is made. Thus, the parents of a decision variable are those variables 
that will be observed before the decision must be made. Informational arcs are added only 
when these nodes are observed before the decision. Functional arcs are those directed 
toward a value node. Some authors do not distinguish between conditional and functional 
arcs, viewing a functional arc as a special case of a conditional arc.

Influence diagrams are not merely pictorial or graphical depictions of a decision situ-
ation. Their power lies in the fact that they have both qualitative and quantitative capabil-
ities. The model also involves numbers that can be used for computations. Every uncertain 
node is associated with a conditional probability distribution, like in Bayesian networks. 
Every value node is associated with a value table for the value function, indicating how 
much the decision maker values every prospect. This might often be related to a monetary 
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value of the prospect, though values might also be defined otherwise. In this book, we will 
use monetary units of value, as our primary focus is on VOI computations.

Figure 3.7 presents an influence diagram for a classic decision situation known as the 
oil wildcatter example (Raiffa 1968). It is a simple influence diagram, with one node of 
each kind, representing the decision situation for someone who owns an oil field. In this 
simple version of the example, the only decision is whether to drill a well or not. The main 
uncertainty is the amount of oil in the field, modeled as a binary variable with the states 
high and low. The decision maker’s value is the profit from the field, which is a function 
of the amount of oil and the drilling decision. Often in an influence diagram, the missing 
arcs reveal more than the arcs that are present. Note that there is no arc between the drill-
ing decision “Drill?” and the uncertainty “Oil.” There is no arc from the decision to the 
uncertainty because the decision does not affect how much oil there is underground. There 
is no arc in the reverse direction, from the uncertainty to the decision, because the deci-
sion maker must decide without observing the amount of oil. The figure also depicts the 
numbers behind the influence diagram, along with the diagram itself. The uncertain node 
is associated with a conditional probability table, indicating that there is a 35% chance that 
there is a high amount of oil. The value node is associated with a value table, indicating that 
drilling a well in a field with a high amount of oil returns a profit of $120 million, whereas 
drilling a well in a field with a low amount of oil results in a loss of $50 million.

Conditional probability table

Oil
amount

Prob.

high

Drill? Oil

Value table

Profit

Drill?

yes

yes

no

no

high

low

high

low

120

–50

0

0

Oil
amount

Value
(M $)Profit

low

0.35 0.65

Figure 3.7  The influence diagram for the oil wildcatter example. There are two alternatives (drill or 
not) and an uncertain amount of oil.
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An influence diagram can be drawn in several ways. Consider Figure 3.8, which includes 
two additional (deterministic) nodes that provide more detail to the model from Figure 3.7. 
These nodes are depicted as concentric ovals. This influence diagram explicitly indicates 
that the profit is a function of the cost of the well and revenue from the oil field. Revenue 
is assumed to be a deterministic function of the amount of oil and the drilling decision. 
The uncertainty about the amount of oil propagates to the revenue, and there is uncertainty 
around the revenue. The cost of the well is fixed and known; therefore, cost is a determinis-
tic function of the drilling decision. Note that an influence diagram with only deterministic 
nodes and no uncertain node is equivalent to a standard spreadsheet model.

As an illustration of a slightly more complex influence diagram, consider the diagram in 
Figure 3.9. This is an extension of the oil wildcatter example and includes seismic testing. 
This influence diagram has five nodes in total: two decision nodes, two uncertain nodes, 
and one value node. The decision maker decides whether to perform a seismic test. If he or 
she decides to test, a seismic report is observed before the drilling decision is made. The 
seismic report is assumed to only convey whether the test is positive or negative. From the 
conditional probability table for the report, we see that the seismic report is assumed to 
be stuck at negative if the test is not performed – i.e., it is uninformative. The presence of 
the arcs from the seismic test decision node and the report uncertainty node to the drill-
ing decision signify that they are observed before the decision maker chooses whether to 
drill the well or not. The profit is a function of the cost of the test (if it is performed), the 
cost of drilling (if the well is drilled), and the amount of oil in the field. The reader can 
compare the numbers from Figures 3.7 and 3.9 and infer that the cost of the seismic test is 
assumed to be $20 million. Although this influence diagram is more complicated than the 
previous examples, it is still highly simplified. Later in the book we present more realistic 
and finer-grained models for decisions involving petroleum exploration and production 
and seismic testing, incorporating the spatial aspects of the uncertain distribution of oil, the 

Drill? Oil

Cost Revenue

Profit

Figure 3.8  The influence diagram for the oil wildcatter example, including deterministic nodes for 
cost and revenue.
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spatially distributed information from seismic tests, and the choice of different locations 
to drill the well.

There are certain restrictions and conditions on formulating valid influence diagrams. An 
inconsistency arises if information known before one decision is made is not known before 
subsequent decisions. Therefore, to be a valid influence diagram for a rational individual, 
there must exist at least one “no forgetting” ordering of the decisions such that all earlier 
observations and decisions are observed before any later decisions are made. No forgetting 
is a standard assumption for influence diagrams, and often the no forgetting arcs are not 
explicitly represented in the diagram but are inferred implicitly. Also – of particular rele-
vance to VOI computations – it is inconsistent to make observations that tell the decision 
maker anything about the decisions yet to be made, so it is required that uncertainties on 
which observations are made not be responsive in any way to the decisions (Heckerman 
and Shachter 1995). This is enforced by not allowing the nodes for such uncertainties 
to be descendants of the decision node. We refer to such uncertainties as unresponsive 
uncertainties.

Conditional probability table

Conditional probability table

Value table
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Test? Drill? Oil
amount

yes

yes

yes

yes

yes
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no

no

no
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high
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Test? positive negative
Oil
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0.35 0.65

high
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0.75

0.1

0

0

0.25

0.9

1

1

Report

Test? Drill?
Oil

Profit

Prob.

Prob.

Figure 3.9  The influence diagram for the oil wildcatter example with seismic testing.
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Pitfalls: use the correct semantics for arcs in influence diagrams

A common mistake while formulating influence diagrams is to add arrows because we feel 
that the decision “depends” on certain variables. Influence diagrams have arcs with specific 
semantics, as we have described earlier in this section, and care must be taken to formulate 
the diagram correctly. Moreover, since people are usually familiar with other graphical mod-
els such as flowcharts, there is a tendency to use the arcs too casually. We have observed that 
although influence diagrams are intuitive diagrams for representing decision situations, there 
is a little bit of “unlearning” that may be required to use them correctly. Formulating influence 
diagrams can be an art. The decision maker or analyst will need to learn the specific semantics 
through examples and, once the concepts have been mastered, should be able to build influence 
diagrams at will.

Influence diagrams are not merely tools for representation and communication – they are 
also effective computational tools that evaluate and analyze decision situations. The gen-
eral problem that an influence diagram solves is to determine the decisions that maximize 
the expected utility when the parents of each decision are observed before it is made. In 
other words, the goal is to find the optimal strategy. Let us first define a strategy before we 
discuss how the optimal one is determined.

A strategy is an assignment of an alternative to every scenario of observations that are 
made at the time of a decision for every decision in the decision situation. In other words, 
a strategy provides the decision maker with a plan that tells him or her what alternative to 
choose at any possible stage in the decision situation. For instance, consider the decision 
situation represented by the influence diagram in Figure  3.9. An example of a strategy 
is as follows:  the decision maker should perform the seismic test and drill if the report 
is positive and refrain from drilling if the report is negative. An alternate strategy would 
be: the decision maker should not test and should drill the well. Yet another strategy would 
be: the decision maker should test and drill the well regardless of what the report declares. 
Intuitively, this last strategy seems far from optimal – why should the decision maker test, 
thereby presumably spending a non-trivial amount of money, and disregard the information 
from the report?

An influence diagram solution algorithm determines the optimal strategy based on the 
norms of decision theory. The optimal strategy is one that maximizes the expected util-
ity, and the expected utility of the optimal strategy is known as the maximum expected 
utility. The certain equivalent of the decision situation can be obtained from the max-
imum expected utility, as described earlier. Therefore, the solution of an influence 
diagram reveals both the optimal strategy and the certain equivalent of the decision situ-
ation, informing the decision maker about what to do in the decision situation and what 
the decision situation is worth to him or her. Note that the maximum expected utility of 
the decision situation is an internal result that any influence diagram solution algorithm 
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will compute in order to find the optimal strategy. Influence diagrams are also useful for 
performing efficient appraisal of decision situations, including sensitivity analysis and 
VOI analysis.

When influence diagrams were initially conceived, the solution method involved 
transforming them into decision trees (Howard and Matheson 1984). In the 1980s, sev-
eral techniques were introduced to directly evaluate the influence diagram through a 
sequence of variable elimination steps without the need for converting the diagram 
into a decision tree network (Shachter 1986). The popular algorithms in the literature 
converted influence diagrams to a simpler form through a sequence of operations called 
value-preserving reductions. These operations maintain the feasibility of the problem, 
retaining the maximum expected utility at every iteration. The diagram is reduced until 
all that remains is a single value node so that the decision situation can be valued. 
The solution process takes expectation over the uncertainties and maximizes over the 
decisions. The algorithm terminates when all nodes except the value node have been 
absorbed into the graph. The optimal strategy and the maximum expected utility are 
computed in the process.

There have been several subsequent algorithms proposed to solve influence diagrams. 
Since the 1990s, various efforts have focused on converting an influence diagram into related 
graphical structures, such as valuation networks (Shenoy 1992), junction trees (Shachter 
and Peot 1992; Jensen et al. 1994; Shachter 1999), or decision circuits (Bhattacharjya and 
Shachter 2007) for efficient solution and analysis.

3.3.3  Examples

For whom the bell tolls: Gaussian projects example

Keywords: Gaussian projects example, bivariate Gaussian distribution, decision tree, graphical 

model, risk-averse decision maker

Decision trees are typically drawn for decision situations with distinctions of interest that 
have discrete sample space. For instance, Figure 3.6 presents the decision tree for the pirate 
example where there are two alternatives (dig or not) and where the only uncertainty has 
two states (treasure present or not). In this example, we remind the reader of the Gaussian 
projects example from Section 3.2, which includes a continuous uncertainty. Here, the 
decision maker can choose at most one out of two projects. The marginal distributions for 
the project profits are Gaussian with p x N1

2100 30( ) = ( ),  and p x N2
270 10( ) = ( ),  in units 

of $, millions. The decision maker has an exponential utility function with the risk aversion 
coefficient γ = −0 1 1.  M$ .

Figure 3.10 shows the same computations that were performed earlier, but this time they 
are depicted by a decision tree. The chance nodes in the tree explicitly display the con-
tinuous nature of the profits. The decision node makes a choice between the two projects 
and indicates that it is optimal for the decision maker to choose the second project. The 
certain equivalent of the second project and therefore the decision situation is $65 million.
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MacKenna’s gold: oil and gold example
Keywords:  oil and gold example, graphical model, lottery, influence diagram, probability tree, 

risk-averse decision maker

Let us illustrate an example of a lottery – i.e., situations that do not incorporate decisions 
but do include values for prospects. Consider a company that owns a producing oil field. 
The company is assumed to have an exponential utility function with the risk aversion 
coefficient γ = −0 002 1.  M$ . For the moment, all decisions pertaining to field development 

$65 M

1st project

2nd project

Profit

N(100,302)M$

N(70,102)M$

Profit

CE1 =
$55 M

CE2 =
$65 M

Figure 3.10  The decision tree for the Gaussian projects example. The decision maker can choose at 
most one of two projects with uncertain Gaussian distributed profits.
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300
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–50
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Figure 3.11  The influence diagram for the oil and gold example. Oil amount, price of oil, and price 
of gold are uncertain binary variables.
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have been made. The company may still wish to contemplate the uncertainties involved and 
their implications on its profits. Figure 3.11 shows an influence diagram for the company’s 
lottery from Bhattacharjya and Shachter (2010).

The three uncertainties are oil amount, price of oil, and price of gold – all modeled as 
binary random variables. The conditional probabilities for the three uncertainties are shown 
in the figure using conditional probability tables. What makes the diagram different from 
a (typical) Bayesian network is the presence of a value node, which models the company’s 
profits as a function of the amount of oil and the price of oil. These numbers are shown in 
the value table associated with the node for profits, conditional on its parents.

Figure  3.12 shows the probability tree corresponding to the influence diagram in 
Figure 3.11. This is a probability tree – i.e., a special case of a decision tree – because there 
are no decision nodes in the tree. The conditional independence in this situation should be 
clear from looking at the appropriate branches of the tree. For instance, the amount of oil 
does not affect the conditional probability numbers for the price of gold in the probability 
trees. The price of oil and the price of gold are clearly correlated though.

The company is risk averse, so every prospect is associated with utilities that are com-
puted from the values using the transformation u x e x( ) = − −1 γ . The probability tree is used 
to compute the expected utility through the standard rollback procedure. Note that the 
notion of maximum expected utility is no longer pertinent, as there is no decision node that 

EU =
0.075

High oil
amount (0.3)

Low oil
amount (0.7)

Low oil
price (0.6)

Low oil
price (0.6)

High oil
price (0.4)

High oil
price (0.4)

High gold
price (0.8)

High gold
price (0.1)

High gold
price (0.8)

High gold
price (0.1)

Low gold
price (0.2)

Low gold
price (0.9)

Low gold
price (0.2)

Low gold
price (0.9)

0.095

0.451
$300M

$300M

$120M

$120M

$50M

$50M

–$50M

–$50M

0.451

0.451

0.213

0.213

0.095

0.095

–0.105

–0.105

Values Utilities

0.213

–0.105

–0.025

0.308

CE =
$38.9 M

Figure 3.12  The probability tree for the oil and gold example. There are no decisions in this tree.
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performs maximization. The certain equivalent of the situation can be computed by apply-
ing the utility inverse function to the expected utility. It is calculated to be $38.9 million.

In the influence diagram in Figure 3.11, the price of gold clearly does not affect the com-
pany’s profits, as seen from the lack of an arc into the value node. What, then, is the point 
of including it in the diagram? Even though this node does not currently contribute to the 
company’s value, the company may want to include it in the model since it is relevant to the 
price of oil. Bhattacharjya and Shachter (2010) show how the company may wish to hedge 
its risk by considering lotteries that depend on the price of gold, such as through financial 
instruments like futures. The company can use the correlation to improve its value by being 
in a position to benefit from the price of gold even if the oil price becomes low and affects 
its revenues from the oil field.

Time after time: time-lapse seismic example

Keywords: time-lapse example, seismic data, graphical model, influence diagram

In the exploration and production of hydrocarbon reservoirs, decisions are complex due to 
several uncertainties: uncertainty in the geological properties, seismic imaging, repeatabil-
ity, reservoir structure, rock and fluid properties, etc. Furthermore, several decisions need 
to be made over the entire lifecycle, and often it is not clear how current decisions might 
affect the future bottom line. In the exploration and characterization stage, more informa-
tion is acquired about the reservoir structure; the reservoir rock and fluid properties; and the 
spatial distributions of lithology, porosity, and saturations, as well as other factors beyond 
the scope of this book such as oil prices and even the political scenario. Later, decisions 
have to be made about the technical and economic feasibility of seismically monitoring the 
reservoir during production.

Although several case studies show that four-dimensional (4-D) seismic tests are 
extremely useful – e.g., Lumley (2001) – in practice it may often be unclear whether they 
will actually add value to the production process for a particular reservoir. In their paper 
about assessing the technical risk of a 4-D project, Lumley et al. (1997) propose a score-
card method to score a particular reservoir based on reservoir and seismic properties. The 
scorecard provides a quantitative framework that aids in answering the question – should 
one perform a 4-D seismic survey? The following example, described in Bhattacharjya and 
Mukerji (2006), builds on the paper by Lumley et al. (1997) to model the 4-D monitoring 
decision problem using influence diagrams. We delve into this example in much greater 
detail than other examples in this chapter because it is significantly closer to a real practical 
application of the concepts. The reader should be aware, however, that it is still a toy prob-
lem in comparison to applications in forthcoming chapters.

Value from 4-D seismic monitoring

Economic value may be derived from 4-D seismic surveys in several ways. Time-lapse seis-
mic images, when properly interpreted using rock physics relations, can identify bypassed 
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oil and thus add significant reserves, helping to rejuvenate and prolong the life of the field. 
They may also spot potentially problematic changes like early breakthroughs and save 
millions of dollars by ensuring timely corrective action and adjustment of depletion plans. 
Other benefits include identifying inefficient sweep, optimizing injection programs and 
design of production strategies by monitoring injected fluid fronts, mapping reservoir com-
partmentalization, and identifying faults (Lumley 2001). Time-lapse seismic data are used 
as a tool for better management of the life of the field. The ultimate value comes from being 
able to detect some behavior that deviates from what was expected (Blangy et al. 2014).

The value of a 4-D survey depends on the reliability, repeatability, and overall quality 
of the survey, as well as on the reservoir conditions such as rock and fluid properties and 
reservoir temperature and pressure. If the tests are unreliable, then it may not be valuable 
to perform them because there is no confidence in the interpretation. However, even if the 
tests are reliable but the reservoir is fairly homogenous or if it is clear that it is soon to 
become uneconomical, then again it may not be worthwhile to spend money in trying to 
monitor the fluid flow.

Lumley et al. (1997) use a scorecard method to gauge the value from a 4-D seismic sur-
vey. The scorecard is divided into two basic categories: reservoir and seismic. The reser-
voir scorecard shows the estimated score for reservoir-related properties like dry rock bulk 
modulus, porosity, and fluid saturation change. A particular reservoir with a reservoir prop-
erty that brings about a favorable seismic response gets a high score for that property. For 
instance, a typical reservoir in Indonesia with unconsolidated rocks and low bulk modulus 
gets a high score. This is favorable, as unconsolidated rocks with low bulk modulus are 
seismically more sensitive to fluid changes. The seismic scorecard indicates the score for 
the estimated seismic response and includes factors like image quality, resolution, and 
repeatability of the seismic tests. The value of the 4-D seismic data is the final score, which 
is the sum of the scores for all the relevant properties. Tools like scorecards and decision 
trees are popular and useful, but sometimes complex situations demand the use of more 
sophisticated decision analysis tools. The scorecard can be thought of as a special case of 
an influence diagram model with only deterministic nodes. Understanding the interrela-
tionship among the reservoir factors, the seismic factors, and the associated uncertainties 
is a crucial element in seismic testing that may not be well captured in a scorecard. An 
influence diagram uses these relationships and relates the observed phenomena with the 
uncertain reservoir conditions to estimate the seismic response.

Influence diagrams for 4-D seismic monitoring

In our analysis for this example, we assume that an initial three-dimensional (3-D) seismic 
characterization has been conducted before studying the feasibility of a 4-D seismic sur-
vey. We also assume that the future prospects for the field are promising. Other information 
available includes well log and core data. There are certain properties that are observed 
from the available information. For instance, we may roughly know the average depth 
of the reservoir and the reservoir thickness. We may also know whether the acquisition 
conditions will be favorable or not before we actually perform the 4-D seismic test. These 
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properties will be labeled as the “observable properties.” Interrelationships among the 
observable, reservoir, and seismic properties are very important.

Figure 3.13 gives a compact graphical representation of the relationship between all the 
properties. In the following text we expand out all the groups to show the nodes within 
them. The observable properties are known before the decision is made, and they are 
related to the reservoir and seismic properties. The value derived from 4-D seismic testing 
is through some of the reservoir properties, the seismic properties, and the decision that 
is made. The complete influence diagram model (represented using the software Netica, 
as well as in MATLAB) is available on the book website and can be opened up to look at 
the details of the various conditional probability tables. We also use this influence diagram 
model for some exercises in Chapter 7.

Figure 3.14 expands the nodes for the observable, reservoir, and seismic properties. We 
describe each category of nodes next.

Observable property nodes
We have assumed that the shown observable properties are known from initial careful 3-D 
seismic characterization. Some of these properties are related to the reservoir character-
istics, like the fluid and rock properties from well data. The node for spatial heterogen-
eity refers to our belief regarding the heterogeneity of the reservoir and has two discrete 
states: high and low. Here, what is taken to be observable is not the actual spatial distribu-
tion of reservoir heterogeneity but whether the spatial heterogeneity is high or low. This 
may be estimated from geological analysis of the depositional environment. This analysis 
is at a coarse level of granularity where we consider overall geological properties (high 

Reservoir
properties

Observables
Seismic

properties

Perform
time-lapse
seismic?

Value

Figure 3.13  The influence diagram for the time-lapse example (collapsed nodes).
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or low spatial heterogeneity) without explicit spatial modeling, such as the techniques 
described in Chapter 4.

Reservoir property nodes
All reservoir property nodes are probabilistic. The node for unpredictable changes captures 
the cases where a 4-D seismic survey would be useful to monitor bypassed oil or break-
throughs due to unpredicted changes in the fluid flow behavior. The reservoir properties 
group also has a rock property node and a fluid property node. These depend on the well 
data observations of rock and fluid properties along with the level of spatial heterogeneity 
and depth. Observing favorable rock properties in the well makes it more likely (but not 
certain) that the reservoir rock properties are also favorable, more so if the spatial hetero-
geneity is low. Greater depth makes it more likely for the rock properties to be unfavorable 
for time-lapse monitoring, since at depth, rocks are usually more consolidated, elastically 
stiff, and less sensitive to changes in pore fluid and pressure conditions.

Seismic property nodes
The overall seismic response is considered a function of the seismic signature change, 
fluid contact visibility, image resolution, and repeatability of the seismic tests – again, all 
probabilistic nodes.

The direct parents of the value node include the decision node “Perform_4D_Seismic” 
(with the alternatives “true” and “false”) and uncertain nodes “Unpredictable changes” 
(with the states “high,” “low,” and “none”) and “Overall_Seismic_Response” (with the 
states “very low,” “low,” “medium,” and “high”). The conditional probability tables are 

Reservoir properties

Fluid_properties

Rock_properties

Depth

Reservoir_Thickness

Welldata_Rockproperties

Welldata_Fluidproperties

Spatial_Heterogeneity

Acquisition_Conditions

Repeatability

Image_Resolution

Fluid_Contact_Visibility

Seismic_Signature_Change

Unpredictable_Changes

Bypassed_oil

Breakthrough

Seismic properties

Perform_4D_Seismic

Overall_Seismic_Response Value

Observable properties

Saturation_Change

Figure 3.14  The influence diagram for the time-lapse example (expanded nodes).
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based on plausible relationships among the uncertainties, and the value for every outcome 
was assigned by comparing the relative benefit on a scale of 0 to 100. For instance, the joint 
outcome of high unpredictable changes, good seismic response, and no 4-D seismic would 
result in a value of 0 because of lost profits from bypassed oil. The joint outcome of high 
unpredictable changes, good seismic response, and true for 4-D seismic is assigned a value 
of 100, as is the joint outcome of no unpredictable changes, poor seismic response, and no 
4-D seismic. All possible outcome combinations were enumerated in the value model of 
the influence diagram.

Next, we show examples of evaluating the influence diagram model for three cases. (See 
also Chapter 7 for hands-on exercises using this model.) Examples 1 and 2 are inspired 
by the “Indonesia” type and the “North Sea” type, respectively, of Lumley et al. (1997). 
Example 3 is a hypothetical case where the decision is not trivial because of conflicting 
conditions. The state of the observable nodes for each example and the results in terms of 
expected value are summarized in Table 3.2. The table also presents the ratio of expected 
value if the seismic test is performed to the expected value if it is not performed. These 
relative numbers are only for illustrating the methodology, and these would vary substan-
tially depending on the particular reservoir, actual survey costs, and economic prospects. 
The assignments of value will also vary from one decision maker to another based on their 
preferences. For a risk-neutral decision maker, the optimal decision is the one with higher 
expected value. For the first two cases of observables listed, perhaps one may not require 
an influence diagram to come to conclusions; they may be fairly obvious and therefore 
serve as a test case for the influence diagram. The real value of the model is when there 
are conflicting interrelated observables and the decision is not as straightforward, as in 
Example 3. In this case, the rock and fluid properties are favorable, and the reservoir is not 
very deep, favoring the performance of a monitoring survey. On the other hand, acquisition 
conditions are not favorable, and the reservoir is thin – conditions that are not in favor of 
monitoring. However, the reservoir is highly heterogeneous and fluid flow is less predict-
able, conditions where a monitoring survey could be useful. Decision analytic models like 

Table 3.2. Comparison of influence diagram results for the time-lapse example

Example 1 Example 2 Example 3

Observables
Depth Shallow Deep Shallow
Reservoir thickness High Low Low
Rock and fluid properties Favorable Poor Favorable
Acquisition Favorable Poor Poor
Spatial heterogeneity High High High
Value (if performed)/value  
(if not)

68.6/47.6 46.6/66.8 53.3/60.7

Decision Perform Do not/caution Do not/caution
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influence diagrams could provide clarity of action for such complex decision situations 
with conflicting conditions.

Influence diagrams are useful tools for modeling, evaluating, and analyzing complex 
decision problems in subsurface exploration and production. Perhaps their main advantage 
here is that they capture the relationship between geological properties with the drivers of 
value. In a spreadsheet, this relationship is not explicitly represented, although the correl-
ation between properties may be implicitly hidden in the values assigned to the properties. 
The scorecard can be viewed as an influence diagram with only deterministic nodes, and 
thus it is a special case. Influence diagrams are also useful for communicating information 
to experts and decision makers. The example described here is a simple one and is of course 
not the only way to construct an influence diagram to capture the relationships between 
uncertainties contributing to the value of time-lapse seismic monitoring.

3.4  Value of information

When a decision maker is faced with a decision situation, he or she is also faced with cer-
tain auxiliary decisions – i.e., decisions pertaining to some underlying decision situation. 
One of the most typical auxiliary decisions pertains to information gathering – it may be 
worthwhile for the decision maker to expend resources to acquire more information about 
specific uncertainties relevant to their decision situation. For instance, consider a medi-
cal decision where surgery is an alternative. Should the decision maker undergo further 
diagnostic tests before making the surgery decision? Although such tests would provide 
the medical team with a better understanding of the condition, they may come at a price, 
possibly through adverse side effects. It is therefore of interest to understand if performing 
the tests would be worthwhile. Information gathering is a crucial aspect of most decision 
situations, including medical, personal, and business decisions.

Decision analysis addresses issues pertaining to information gathering using the popular 
notion of value of information based on the construct of a clairvoyant, which was intro-
duced in the early decision analysis literature. In fact, VOI is also referred to as value of 
clairvoyance (Howard 1966); in this book, we will only use the former term for the sake 
of consistency.

A clairvoyant can tell the decision maker how any uncertainty, past, present, or future, 
will be resolved, as long as: (i) the clairvoyant need not exercise any judgment in under-
standing what it means for the uncertainty to be resolved and (ii) the resolution does not 
depend upon any future action of the decision maker unless that action is specified. As 
far as we are aware and despite various claims by certain people, there is no evidence 
that clairvoyants (in the common parlance sense) actually exist in the real world. Yet, this 
construct is extremely useful in decision analysis. One major benefit is that it encourages 
clarity, ensuring that all participants involved in the decision process understand whatever 
is being discussed. The other benefit, which is of particular relevance to this book, is that 
it helps the decision maker evaluate information sources, activities, and experiments that 
do in fact exist. There are several potential ways for a decision maker to resolve some key 
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uncertainties before making a decision – for instance, through weather forecasts, sensors, 
medical diagnostics, surveys, seismic tests, satellite images, expert consultations … the list 
is endless. Whether it is worthwhile for the decision maker to gather information to resolve 
some uncertainties is of concern in most practical decision situations.

This section is devoted entirely to explaining VOI. The reader will discover that the 
VOI for a particular information-gathering scheme depends on several key aspects of the 
decision situation, the “accuracy” of the information (we will subsequently make this 
notion more precise), and the decision maker’s risk preferences. The literature on the 
subject and its applications have burgeoned appreciably since its inception in the mid 
twentieth century. It is now a well-known technique in the arsenal of decision analysis 
and has been widely applied across numerous applications for the appraisal of decision 
situations.

3.4.1  Definition

The VOI for an unresponsive uncertainty x and a decision a is the price at which the decision 
maker is indifferent between purchasing the information, therefore observing the uncer-
tainty before making the decision, and the original decision situation without the informa-
tion. The VOI is therefore the personal indifference buying price for the information – i.e., 
the price at which the decision maker is indifferent between having and not having this 
information. The word “personal” indicates that the price depends on the decision maker’s 
preferences. The word “indifference” indicates that, at this price, the decision maker would 
be indifferent between receiving the information and acting without it. Therefore, a lower 
price should be acceptable, and the indifference price is the maximum amount of money 
that the decision maker should be willing to pay for the information.

Let us compute the VOI for the only uncertainty x in the simple decision situation with 
the only decision a from a previous section. Similar to the calculations for the certain 
equivalent of the original decision situation, the utilities for the two situations (with and 
without information) need to be equated. When the information is available, then the uncer-
tainty is observed before making the decision. If x is observed and alternative a is chosen, 
then the decision maker retains wealth w and pays price P  for certain and also acquires 
value v x a,( ) from the decision situation since E v x a x v x a, | ,( )( ) = ( ). The optimal alterna-
tive if x is observed is

	 a x u v x a w Pa A* argmax , .( ) = ( ) + −( ){ }∈ 	 (3.20)

Note that the decision maker will not know how the uncertainty will resolve itself before 
the decision is to be made. Since x is observed with probability p x( ), the expected utility 
for the situation where information is available, denoted MEU ′, is

	 MEU u v x a w P p xa A
x

′ = ( ) + −( ){ } ( )∈∑max , .	 (3.21)
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The VOI is the price P  at which the expected utilities from Equations (3.9) and (3.21) 
are equal – i.e.,

	 max , max , .a A
x

a Au v x a w P p x E u v x a w∈ ∈( ) + −( ){ } ( ) = ( ) +( )( ){ }∑ 	 (3.22)

It can be computed by iteratively varying the price until Equation (3.22) is satisfied.
VOI computations are simpler for situations where the decision maker’s utility function 

satisfies the delta property. The certain equivalent of the situation with information CE ′ can 
be computed from Equation (3.21) – i.e.,

	

u CE w u v x a w P p x

CE u u v x a

a A
x

a A

′ +( ) = ( ) + −( ){ } ( )

⇒ ′ = ( ) +

∈

−
∈

∑max ,

max ,1 w P p x w
x

−( ){ } ( )





−∑ .
	 (3.23)

Using the delta property from Equation (3.6), this simplifies to

	 CE u u v x a p x Pa A
x

′ = ( )( ){ } ( )





−−
∈∑1 max , .	 (3.24)

Taking the utility inverse of both sides of the equivalence condition in Equation (3.22), 
we note that when the delta property holds, the VOI is the difference between the certain 
equivalent of the decision situation with information when it is available for free and the 
certain equivalent of the decision situation without information:

	 VOI x u u v x a p x u E u v x aa A
x

a A( ) = ( )( ){ } ( )





− ( )(−
∈

−
∈∑1 1max , max , )( ){ }( ).	(3.25)

The notation VOI x( ) is used to clearly specify that the VOI is being computed for uncer-
tainty x. If the delta property is satisfied, then the VOI can be computed without the need 
for iterative calculations. This simplification can be extremely beneficial in practice. Since 
we use this assumption so extensively in the book, we will often refer to the VOI as the 
difference between the posterior value, which is the certain equivalent if the informa-
tion is available for free, and the prior value, which is the certain equivalent without the 
information:
	 VOI x PoV x PV( ) = ( ) − .	 (3.26)

The reader should be aware of the more general definition in Equation (3.22).

3.4.2  Perfect versus imperfect information

In many real-world problems, there is a key uncertainty or distinction of interest x that has 
a direct impact on the decision maker’s value, but it may be very difficult (or perhaps even 
impossible) to observe x directly. It is often possible, however, to observe a “noisy ver-
sion” y of this distinction of interest. For instance, it is difficult and expensive to observe 
the amount of oil in a reservoir – in fact, the only way to do so is to drill many wells that 
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can drain oil from the entire reservoir. It is more convenient and much cheaper to exam-
ine the physical properties of the reservoir through seismic tests. The distinction between 
information about the key uncertainty and another relevant uncertainty that is easier and 
cheaper to observe is referred to as that of perfect versus imperfect information. Other 
common examples of perfect versus imperfect information include:  the dimension of a 
product versus gauge measurements, the condition of a patient versus his or her symptoms, 
the demand for a product versus market survey results, the physical location of an object 
versus its satellite image, etc.

In the previous subsection, we showed how to compute the value of perfect informa-
tion for the general case and also for the special case where the decision maker’s risk 
preferences are captured by a utility function that satisfies the delta property. Let us now 
approach computing the value of imperfect information for our simple decision situation.

To compute the value of imperfect information – i.e., the VOI for some uncertainty y, the 
decision maker must assess the probabilistic relationship between x and y through a joint 
probability distribution. A popular way to do this is to assess the prior distribution p x( ) 
and the likelihood p y x|( ). Although there are other ways to assess the joint distribution, 
it is often easier to assess the probabilities in the causal direction – i.e., from the cause to 
the effect of the cause. For instance, in medical decisions, it is typical to assess the prior 
distribution of the underlying disease condition and the likelihood of the symptoms given 
the disease. As a result, these distributions are often referred to as being in assessed form. 
Inference is typically done in the opposite direction – i.e., from effect to cause – with the 
help of Bayes’ rule, as described in Section 2.3. As a reminder, the following equation 
demonstrates Bayes’ rule, which manipulates the prior distribution and likelihood to com-
pute the marginal likelihood or pre-posterior distribution p y( ) and the posterior distri-
bution p x y|( ):

	 p x y
p x p y x

p y

p x p y x

p x p y x
x

|
| |

|
.( ) =

( ) ( )
( ) =

( ) ( )
( ) ( )∑

	 (3.27)

The numbers computed as above are those in inferred form, since they are inferred from 
the numbers in assessed form; these are the numbers that are used for VOI computations.

In our decision situation, the approach to compute the VOI for an uncertainty y that is 
relevant to x is similar to that of computing the value of perfect information. Now, y is 
observed with pre-posterior probability p y( ); therefore, the expected utility for the situ-
ation where information on y is available, denoted MEU ′′, is:

	 MEU E u v w P y p ya A a
y

′′ = + −( )( ){ } ( )∈∑max | ,	 (3.28)

where the posterior distribution p x y|( ) in Equation (3.27) is used to compute the condi-
tional utility associated with value v v x aa = ( ), , given y. The VOI is the price P  where the 
expected utilities from Equations (3.9) and (3.28) are equal:

	 max | max .a A a
y

a A aE u v w P y p y E u v w∈ ∈+ −( )( ){ } ( ) = +( )( ){ }∑ 	 (3.29)
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Again, this can be computed by iteratively varying the price until the equation is satisfied.
Just like in the case of perfect information from the previous subsection, VOI computa-

tions are simplified greatly for a delta property decision maker. We do not demonstrate the 
equations for the simplification, as they are similar to the previous subsection. The result is 
that the VOI is the difference between the certain equivalent of the decision situation with 
the imperfect information when it is available for free and the certain equivalent of the 
decision situation without information:

	

VOI y PoV y PV

u E u v y p y ua A a
y

a

( ) = ( ) −

= ( )( ){ } ( )





−−

∈
−∑1 1max | max ∈ ( )( ){ }( )A aE u v .

	 (3.30)

3.4.3  Relevant, material, and economic information

Now that we are armed with the terminology, notation, and necessary tools to perform VOI 
computations, we can return to what we briefly discussed in Chapter 1. The reader can look 
back at Figure 1.2, which displays what we refer to as the “pyramid of conditions.” These 
are the necessary conditions that make an experiment valuable, as per the decision analysis 
approach. An experiment should be:

1.	 Relevant to the distinction of interest – i.e., observing its results should affect the deci-
sion maker’s beliefs about their value.

2.	 Material to the decision – i.e., there should be some experimental result for which the 
decision maker would change their decision.

3.	 Economic for the decision maker – i.e., the value should be greater than the cost.

The requirements are very much intertwined: an irrelevant experiment cannot be material, 
and an immaterial test cannot be economic.

Let us demonstrate the layering of conditions using VOI computations for an imperfect 
source of information y for our simple decision situation. Recall Equation (3.9) from earl-
ier. Suppose that the a priori optimal alternative is a *. Then, the prior value is

	 PV E u v wa= +( )( )* .	 (3.31)

If y is not relevant, then

	 max | max ,a A a a A aE u v w P y E u v w P y∈ ∈+ −( )( ){ } = + −( )( ){ } ∀,  	 (3.32)

because y does not affect the random variable va. Since reducing all values by a constant 
does not change the optimal alternative

	 max .*a A a aE u v w P E u v w P∈ + −( )( ){ } = + −( )( ) 	 (3.33)

Therefore, y is not material.
If y is not material, then the optimal decision for all outcomes of y is a *; therefore:
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max | |*

*

a A a
y

a
y

a

E u v w P y p y E u v w P y p y

E u v w

∈ + −( )( ){ } ( ) = + −( )( ) ( )

= +

∑ ∑
−( )( )P .

	 (3.34)

The solution to Equation (3.29) must be P = 0. Since the VOI is 0, the information cannot 
be economic at any cost.

The pyramid of conditions captures what lies at the core of the VOI approach. While 
observing information can reduce uncertainties, which may well occur if the information is 
relevant, it may not have an impact on the decision., and unless there are regulatory reasons 
or the decision maker is otherwise compelled to obtain the information, there is no value 
to purchasing immaterial information. Even if a quantitative approach to studying infor-
mation gathering through VOI analysis is not possible, at the very least the decision maker 
would be well advised to qualitatively contemplate the pyramid of conditions as a guide to 
information-gathering decisions.

3.4.4  Examples

Treasure island: the pirate example

Keywords:  pirate example, binary outcomes, VOI, perfect information, imperfect information, 

risk-neutral decision maker

Let us return to the pirate example, extending the problem as discussed in Section 3.2. The 
numbers are as before:

	

x

v

=




=

1  0.01

0  0.99

with probability

with probability

dig

$100 000

10 000

  0.01

  0.99

with probability

with probability−


$



=vdo not dig $ .0

	 (3.35)

The pirate is trying to decide whether to dig for the treasure, which he believes is present 
with a 1% chance. Since he is risk neutral, all computations will be performed with the 
linear utility function u v v( ) = .

In Equation (3.15), we computed the value of the decision situation without any add-
itional information. We rewrite the result, using the notation PV  for prior value:

	
PV E v x a v x a p xa A a A

x

= ( )( ){ } = ( ) ( )







=

∈ ∈ ∑max , max , .

max ,0 100 000 ⋅( ) + − ⋅( ){ } =0 01 10 000 0 99 0. . $

	 (3.36)

The chance of success is so low that it is not worthwhile for the pirate to dig for the treas-
ure; hence, the prior value is $0.

Let us now compute the value of perfect information. Equation (3.26) indicates that the value 
of perfect information can be obtained by subtracting the prior value from the posterior value. 
The posterior value is the first term in Equation (3.25). Using the risk-neutral assumption:
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PoV x v x a p xa A
x

( ) = ( ){ } ( )

= ⋅ { }( ) + ⋅

∈∑max ,

. max , . max0 01 0 100 000 0 99 0, $ .−{ }





=10 000 1 000
	 (3.37)

We can perform the same computations using the decision tree in Figure 3.15, which 
graphically illustrates that the decision maker gets to observe the uncertainty before the 
decision is made in the value of the perfect information computation. In this case, if the pir-
ate knows that the treasure is present, he will dig for treasure, whereas if he knows that there 
is no treasure, he will not incur the loss from digging. The value of perfect information is

	 V I x PoV x PVO ( ) = ( ) − = − =1 000 0 1 000$ . 	 (3.38)

The value of perfect information is the maximum the decision maker should be willing 
to pay to get more information about the presence of the treasure. It therefore acts as a use-
ful upper bound for immediately removing excessively expensive information-gathering 
schemes from consideration.

Now suppose that a friend approaches the pirate and offers to sell him a metal detector 
for $500. The pirate believes that the detector has an accuracy of 95%. Should the pirate 
be willing to purchase the detector? The first check is that the cost is less than the value of 
perfect information; therefore, it might be worthwhile. Let us compute the value of imper-
fect information to confirm.

The first step is to use Bayes’ rule from Equation (3.27) to compute the pre-posterior 
and posterior from the prior and likelihood distributions. This is shown graphically using 
the probability trees in Figure 3.16. On the left-hand side, we see the probability tree for 
numbers in assessed form. The tree indicates the prior on whether treasure is present p x( ) 
and the detector response conditional on whether the treasure is present p y x|( ). To obtain 
the numbers in inferred form, this probability tree needs to be “flipped” – i.e., the order 
of the two uncertainties should be flipped around, as shown on the right side. The flipped 
tree shows the pre-posterior on the detector response p y( ), and the posterior, whether the 

$1 K

0 K

$100 K
Treasure

(0.01)

(0.99)

No treasure

Dig

Do not dig

Dig

Do not dig

$100 K

$0 K

–$10 K

$0 K

Figure 3.15  The decision tree for the pirate example with perfect information.
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treasure is present conditional on the detector response, p x y|( ). A priori, the chance of 
success is only 1%, but if the detector suggests that the treasure is present, then the prob-
ability of finding the treasure increases to around 16%. However, if the detector does not 
show signs that the treasure is present, the probability decreases to 0.05%.

The posterior value from observing imperfect information can now be computed by 
replacing the inferred form numbers into the first term of Equation (3.26). Using the 
risk-neutral assumption (and using value numbers in thousands):

	

PoV y E v x a y p ya A
y

( ) = ( )( ){ } ( )

= ⋅ ⋅( ) + −

∈∑max , |

. max , .0 059 0 100 0 161 10 0 839

0 941 0 100 0 0005 10 0 9995

0

⋅( ){ }( )
+ ⋅ ⋅( ) + − ⋅( ){ }( )
=

.

. max , . .

.059 0 7 71 0 941 0 9 95⋅ { }( ) + ⋅ −{ }( ) =max , . . max , . $0.455 thousand.

	 (3.39)

Figure 3.17 shows the posterior value computations using a decision tree. We see that 
the pirate should dig if the detector response is positive but should refrain from digging 
if the response is negative. Note that if the detector response is positive, the (conditional) 
expected value is $7.71 thousand. However, the pirate has no way to know for certain what 
the detector will declare before it is purchased. The VOI computation utilizes the pirate’s 
beliefs and, through probabilistic inference, helps the pirate realize that there is only a 
chance of around 5.9% that the detector response will be positive. That is why the posterior 

Treasure?
(Prior)

Detector Response
(Likelihood)

Detector Response
(Pre-posterior)

Treasure?
(Posterior)

Treasure

Treasure

No treasure

No treasure

“Positive”

“Positive”

“Positive”

“Negative”

“Negative”

“Negative”

Treasure

No treasure

0.01

0.95

0.059

0.161

0.839

0.0005

0.9995

0.941

Flipping the tree
using Bayes’ rule

0.95

0.05

0.05

0.99

Figure 3.16  Applying Bayes’ rule for flipping the probability tree. Left:  the prior and likelihood 
model. Right: the pre-posterior and the posterior probabilities.
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value of the detector is as low as $0.455 thousand. In fact, the value of the imperfect infor-
mation from the detector is

	 V I y PoV y PVO ( ) = ( ) − = − =0 455 0 0 455. $ .  thousand. 	 (3.40)

Since the price of the detector ($500) is greater than its value to the pirate ($455), it is 
not worthwhile as is. The pirate may wish to negotiate the price with his friend and now 
has the necessary tools to do so. In addition, perhaps the pirate may wish to consider other 
detectors or sources of information that could improve his value for his decision situation.

Figure 3.18 shows influence diagrams for the various situations that we have compared 
for our VOI computations. On the left, we see the influence diagram for the pirate’s 
prior decision situation. The uncertainties for the detector response and the presence 
of treasure are dependent, and hence there is a conditioning arc. The pirate’s profit is a 
function of whether the treasure is present and the digging decision. The middle figure 
represents the case of perfect information, where there is an additional arc from the treas-
ure uncertainty to the drilling decision. The informational arc indicates that this uncer-
tainty is observed before the decision is made. On the right, we see the case of imperfect 
information; there is an informational arc from the detector response uncertainty to the 
drilling decision. These examples illustrate the influence diagram interpretation of VOI 

Detector Detector

Dig? Treasure Dig? Treasure

Profit Profit

Detector

Dig? Treasure

Profit

Figure 3.18  The influence diagrams for the pirate example. Left: without information; middle: with 
perfect information; right: with imperfect information.
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Dig

Do not dig

Dig

Do not dig

(0.059)

$0.455 K

$0 K

$7.71 K $7.71 K

$100 K

–$10 K

–$10 K

$100 K

$0 K

$0 K

–$9.95 K
“Negative”

(0.941)

Treasure
(0.161)

(0.0005)

(0.9995)

(0.839)
No treasure

Treasure
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Figure 3.17  The decision tree for the pirate example with imperfect information.
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for an unresponsive uncertainty: the VOI can be computed by comparing the value of an 
influence diagram of the prior decision situation with that of an influence diagram where 
there is an additional informational arc from the uncertainty under consideration to the 
appropriate decision node.

For whom the bell tolls: Gaussian projects example

Keywords:  Gaussian projects example, bivariate Gaussian distribution, VOI, perfect information, 

imperfect information, partial information, total information, risk-neutral decision maker

We return to the Gaussian projects example, this time using different numbers and assump-
tions. There are two projects that the decision maker can invest in; each project has uncer-
tain profits modeled jointly as a random variable with a bivariate Gaussian distribution 
p Nx( ) = ( )µ Σ, . For this example, we specify the prior mean and covariance matrix as in 
Section 2.3 – i.e.,

	 µ Σ=






=










0

0

1

1
, .

ρ
ρ

	 (3.41)

We will study how the VOI varies as a function of the correlation parameter ρ.
Previously in this chapter, we had assumed that the decision maker could choose exactly 

one project. Here, we change this assumption: instead, the decision maker is free to invest in as 
many projects as are profitable. Another difference is that here the decision maker is assumed 
to be risk neutral rather than risk averse. As a result of these assumptions, the prior value is

	 PV E xi
i

i
i

= ( ){ } = { } =
= =
∑ ∑max , max , .0 0 0

1

2

1

2

µ 	 (3.42)

Before making the investments, the decision maker can purchase information about the 
projects. Such information may become available at a price by asking experts to investi-
gate the projects, write a report, and eventually provide quantitative data that are directly 
informative of the profits. Depending on the accuracy of this work, such information might 
be either perfect or imperfect.

We consider the situation where the decision maker must select either perfect informa-
tion about the profit of one project or imperfect information about the profits of both pro-
jects. The possible data are then of size m = 2 (imperfect information about both projects) 
or m = 1 (perfect information about one project). For bivariate imperfect information:

	 y x I= + ( )ε ε, ~ , ,N 0 τ2
2 	 (3.43)

where we assume equal accuracy or standard deviation τ  for both projects. The other infor-
mation gathering scheme is that of  partial perfect information x1. Due to the symmetry of the 
model, it does not matter whether we consider Project 1 or 2 for perfect information gathering.

Consider first the case with imperfect information about both projects. The marginal 
distribution of the data is p Ny T( ) = ( )+0,Σ . As shown in Section 2.3 and Appendix A.1, 
the conditional expectation of projects given data y is µ µ Σ Σ µx y T y| = + +( ) −( )−1

. The 
posterior value in Equation (3.30) becomes
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	 PoV p dx
i

i
y y y( ) = { } ( )∫∑

=

max .,0
1

2

µ | y 	 (3.44)

With perfect information at one project, the posterior value is

	
PoV x x p x dx E x x p x dx

x

1 1 1 1 2 1 1 1

1

0 0( ) = { } ( ) + ( ){ } ( )
=

∫ ∫max , max | ,

max ,0 01 1 1 1 1{ } ( ) + { } ( )∫ ∫p x dx x p x dxmax , .ρ
	 (3.45)

For the Gaussian model, the integral expressions in Equations (3.44) and (3.45) are 
available in closed form (Appendix A.1). Here, the closed-form expressions for the poste-
rior value are

	 PoV PoV xy( ) =
+( ) +( ) −

+( ) −
( ) =

+( )2

2

1 1 2

1

1

2

2 2 2

2 2 2
1π

τ ρ ρ

τ ρ

ρ
π

, .	 (3.46)

Figure 3.19 shows the VOI as a function of the correlation parameter ρ for three different 
levels of measurement accuracy: τ = 1, τ = 0.5, and τ = 0.1. The VOI is larger when there is 
greater positive or negative dependence between the two projects. This increase with cor-
relation is largest for the case with perfect information at one project. It is smallest when 
we have very accurate imperfect information about both projects.

The VOI must be compared with the price of the experiments. Assume first that the price 
of perfect information about one project is the same as the price of imperfect information 

0.9

0.8

0.7

0.6

0.5

0.4

V
O

I

0.3

0.2

0.1

–1 –0.8 –0.6 –0.4 –0.2 0
Correlation parameter

0.2

Perfect partial
Total Imperfect, τ=0.1
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Total Imperfect, τ=1

0.4 0.6 0.8 1
0

Figure 3.19  Sensitivity of VOI to the correlation parameter in the Gaussian projects example. The 
lines represent partial perfect testing (crosses) and total imperfect testing for various accuracies.
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about both projects with accuracy τ = 0 5. . Then, partial perfect information would be the 
preferred information-gathering scheme only if the correlation ρ > 0 8. . If the price of per-
fect partial information is the same as that of imperfect information about both projects 
with accuracy τ = 1 then the partial perfect information-gathering scheme would be pre-
ferred if  ρ > 0 45. .

3.5  Bibliographic notes

Decision analysis fundamentals

Miles (2007) provides an entertaining history of ideas that lead to the inception of the field 
of decision analysis up until the 1960s. Readers who wish to become more familiar with 
decision analysis fundamentals are referred to introductory textbooks such as Schlaiffer 
(1959), Raiffa (1968), Clemen and Reilly (1999), and Howard and Abbas (2015). We 
highly recommend the recent book by Howard and Abbas (2015).

Graphical models

Kirkwood (1993) discusses solving problems with large decision trees. Shachter (2007) 
and Bielza et al. (2010) present perspectives on modeling decision situations with influ-
ence diagrams. Although we have only presented decision trees and influence diagrams in 
this chapter, there are a variety of other graphical models that explicitly represent decisions 
in decision situations. The reader is referred to Bielza and Shenoy (1999) and Jensen and 
Nielsen (2007) to peruse a few of these other graphical models. As some specific examples, 
see the literature on sequential decision diagrams (Covaliu and Oliver 1995), valuation 
networks (Shenoy 1992), game trees (Shenoy 1998), and decision circuits (Bhattacharjya 
and Shachter 2007).

VOI fundamentals

The literature on VOI is founded upon classic work such as that by Blackwell (1953), 
Schlaiffer (1959), Howard (1966, 1967), and Raiffa (1968) and continues to gain popular-
ity. Also see earlier work on VOI and sequential decisions (Miller 1975; Merkhofer 1977), 
properties of VOI (Hilton 1981), and value of control (Matheson 1990).

VOI for canonical problems

The hunt for analytical closed-form solutions for VOI has often led to more negative results 
than positive ones (Hilton 1981); as a result, many researchers have studied canonical 
problems – i.e., specific classes of decision problems – to understand the general effect 
of the parameters on information value. Among these, the two-action linear loss prob-
lem, also known as the go/no-go problem, has received particular attention in the litera-
ture (Schlaiffer 1959; Keisler 2005; Bickel 2008). Other articles about VOI for canonical 
problems include studies on the news vendor problem (Clemen and Winkler 1985), the 
portfolio problem (Keisler 2004; Bhattacharjya et  al. 2013; Zan and Bickel 2013), the 
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stopping problem (Bhattacharjya and Deleris 2014), etc. Due to the favorable mathematical 
properties of the Gaussian distribution, many of these decision problems involve Gaussian 
models.

Computational issues and application reviews

Algorithms for computing VOI using graphical models are discussed in Shachter (1999), 
Bhattacharjya and Shachter (2008), and Krause and Guestrin (2009). There are several 
articles pertaining to VOI applications – here we only list selected review articles. VOI 
analysis is a powerful tool for medical decision making and related domains (Yokota and 
Thompson 2004a, 2004b). Keisler et al. (2014) present a comprehensive review of applica-
tions related to the environment. Grayson (1960) introduced VOI to the oil and gas indus-
try, focusing on drilling decisions. Bratvold et al. (2009) provide a perspective on the past, 
present, and future use of VOI in the oil and gas industry. There is extensive literature 
on VOI applications in the domain of artificial intelligence and expert systems – see, for 
instance, the early work of Heckerman et al. (1989).
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4

Spatial modeling

Figure 4.1  rocks along the shore
like soldiers marching in step
patterns surround us

Geoscientists and engineers who have to quantitatively characterize and forecast subsur-
face properties understand that there is always uncertainty in any Earth model. Geological 
heterogeneities contribute to interpretation uncertainty, and delineation of subsurface het-
erogeneity is a key factor in reliable characterization, forecasting, and decision making. 
These heterogeneities occur at various scales and can include spatial variations in lithology, 
pore fluids, clay content, porosity, permeability, etc. How do we quantitatively model these 

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.005
http:/www.cambridge.org/core


4.1 Goals of stochastic modeling of spatial processes 107

spatial uncertainties? It is important for us to discuss spatial models since our book is about 
spatial decision situations, data gathering at spatial locations, and value of information 
(VOI) analysis of such spatial data. Most of the data examples used in the current chapter 
will also be used later in the book for VOI analysis.

In Section 4.1, we discuss the need for stochastic modeling and uncertainty quantifica-
tion in spatial modeling. We discuss random fields and spatial prediction in Sections 4.2–3. 
This is followed by an overview of commonly used geostatistical techniques, accounting for 
some of their advantages and disadvantages: Gaussian models in Section 4.4, extensions of 
Gaussian models in Section 4.5, discrete spatial models in Section 4.6, and multiple-point 
statistics in Section 4.7. The presentation is not intended to provide a complete description 
of models or methodologies. The final section in this chapter is a bibliography pointing out 
some important references in geostatistics. Further details on selected models and methods 
are provided in the appendix.

4.1  Goals of stochastic modeling of spatial processes

Before discussing various spatial models, it is useful to consider some of the possible goals 
of a modeling exercise, because the appropriateness of any particular method depends, in a 
large part, on the goal of the study. Stochastic methods vary considerably in their require-
ments for time, money, human resources, and computer hardware and software. Not all 
stochastic modeling studies need the latest multiple-point technique; some studies will do 
fine with the traditional variogram-based simulation technique or even with a robust esti-
mation technique such as Kriging.

Some of the models and methods used in spatial process characterization are purely 
statistical, based on multivariate techniques for stochastic spatial correlation, interaction, 
templates, or patterns. Others are deterministic, based on physical models derived from 
established theory as well as laboratory observations. Each group of techniques can have 
some degree of success depending on the particular study. It is often beneficial to combine 
the best of each method to generate results more powerful than would be possible from 
purely statistical or purely deterministic techniques alone.

Spatial statistics is characterized by modeling or data analysis of variables associated 
with geographic locations. In Chapter 2, we described some data sets acquired and organ-
ized according to location. To motivate the current discussion, consider the illustration in 
Figure 4.2 with petroleum reservoir variables.

From the currently available data – say, seismic data and well log information – the pet-
roleum company predicts the spatial reservoir variables of interest, such as the porosity and 
permeability variables in Figure 4.2 (top left) at any spatial location. This prediction step 
includes spatial modeling, not very different from that described by a graphical model in 
Section 2.3, but now the variables are spatially dependent. Note that the porosity variable 
varies smoothly in the east and north directions. Furthermore, the spatial variables tend to 
be interdependent; permeability typically increases with porosity, but there is often a lot of 
scatter in the porosity–permeability relation.
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The associated fluid flow and petroleum production from this reservoir are shown in the 
bottom left display of Figure 4.2. In this illustration, the petroleum company has drilled an 
injection well in the southwest corner and a production well in the northeast corner. The 
injected water assists the production, and the flow of oil and water is directed by the poros-
ity and permeability in the reservoir. The company needs to predict the recoverable oil pro-
duction, but this is not straightforward because the reservoir properties are uncertain. One 
possible prediction is to compute the expected value of porosity and permeability, given the 
currently available data, and then use these as inputs to the fluid flow calculation. Under a 
least-squares loss criterion, the optimal prediction is often called the Kriging surface after 
the famous geoscientist D. G. Krige. (The intuition and mathematical aspects of Kriging 
are covered in Sections 4.3 and 4.4.) This is a very common way of smoothing and visual-
izing spatial data, and it will continue to be a very important technique in spatial statistics. 
The Kriging surface or the associated variance does not, however, capture all the spatial 
attributes of the variable of interest. Moreover, the Kriging predictor does not necessarily 
result in the most reliable prediction of the production since the flow simulation (transfer 
function) is non-linear.
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Figure  4.2  Illustration of spatial modeling. Reservoir variables such as porosity and permeability 
determine the fluid flow in the reservoir and the recoverable production. Rather than using one “best 
guess” model of the predicted reservoir variables, the uncertainty is best quantified by stochastic spatial 
modeling and multiple realizations of reservoir variables and their resulting production profiles.
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Rather than using just the expected value or some other summary of the spatial vari-
able x, it is common to generate multiple realizations x x1,..., B of spatial variables. From 
the realizations, one can use Monte Carlo approximation to estimate integral expressions, 
as described in Chapter 2. For non-linear prediction, the forward-propagated realizations 
f f Bx x1( ) ( ),...,  represent the uncertainty of the prediction variable. A fluid flow forward 
operator f  involves complicated interactions in the spatial variables, and propagating an 
ensemble of realizations through the flow simulator will provide the petroleum company 
with a much more reliable prediction of the recoverable petroleum production (Figure 4.2, 
right) than using just a single prediction.

Before discussing particular spatial models, we consider some of the goals of spatial 
modeling in more detail following the discussion of Srivastava (1994).

Stochastic modeling for visualization of spatial features
Stochastic models can serve as qualitative visual tools to catalyze better technical work. 

Stochastic spatial models entail random process constructions with fluctuations around a 
smooth description capturing the large-scale trends. Thus, stochastic models help to chal-
lenge the familiar layer-cake stratigraphy, with smoothly varying heterogeneities that are 
often the prevalent belief. For instance, in an application as in Figure 4.2, cross sections 
through stochastic models reveal much more visual complexity in the interwell region than 
traditional models can portray. The value of the stochastic model in this context is simply 
to make the experts realize that there are many possible renditions that equally honor the 
data; to focus the views and opinions of a wide variety of experts; and, in so doing, to point 
to an improved reservoir model.

Stochastic techniques are attractive not only for their ability to generate many plausible 
outcomes but also for their ability to produce outcomes that have a realistic level of spatial 
heterogeneity. Reservoir performance predictions are more accurate when based on models 
that reflect the actual heterogeneity of the reservoir instead of using overly simplistic mod-
els. Most traditional methods for subsurface modeling lead to models that are too smooth 
and continuous rather than showing the variability known to exist. Such smoothness com-
monly leads to biased predictions and poor development plans – actual breakthrough times 
of water in wells end up being much quicker than expected, for example, or sweep is not as 
efficient as the smooth model predicted.

Stochastic spatial modeling for assessing uncertainty and risk analysis
Stochastic modeling offers the ability to do uncertainty assessment and Monte Carlo risk 

analysis because the various realizations and scenarios it produces are all plausible in the 
sense that they honor all of the information. In such studies, hundreds, if not thousands, 
of alternate models are generated and processed to produce a probability distribution of 
possible values for some critical engineering parameters – for example, net to gross, con-
nected pore volume, or net present value, etc. These distributions are then used to optimize 
decisions by minimizing some appropriate objective function.

A critical aspect of this use of stochastic modeling is the belief in some “space of uncer-
tainty” and that the stochastic modeling technique can produce outcomes that are a fair 
representation of the spectrum of possibilities.
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Stochastic modeling for integrating spatial information
A reason for the increasing popularity of stochastic models and methods is due to their 

ability to incorporate a broad range of information from different spatial data types that 
more conventional techniques do not accommodate. Stochastic models provide a natural 
framework for incorporating different information in terms of conditional probabilities and 
prior and posterior probabilities. Sometimes the goal of using a stochastic approach to spa-
tial analysis may be the integration of different data types – for instance, seismic data with 
petrophysical data – while at the same time ensuring that the model follows some basic 
geologic principles. These complicated links between spatial variables and data sources 
can be treated consistently through a formalized stochastic model.

Spatial information gathering may carry nearly perfect information at some loca-
tions – say, well logs of reservoir variables. Due to the spatial statistical dependence, this 
local or partial knowledge at well locations will carry information about the surround-
ing sites of interest. In other situations, one may conduct a test with extensive spatial 
coverage, but the test only provides noisy (imperfect) information about the primary 
variable of interest – for example, three-dimensional (3-D) seismic attributes that may 
be interpreted in terms of reservoir lithologies. This results in total (spatially exhaust-
ive) but indirect information that is available at all the sites where we aim to predict the 
distinction of interest. We may have variants of these situations when we collect multi-
variate data sets, some of which are perfect, imperfect, partial, or total and often are at 
different resolution scales. Integrating these data sets in a consistent manner requires 
spatial stochastic modeling.

4.2  Random fields, variograms, and covariance

In the broadest sense, geostatistics may be defined as a branch of statistical sciences that 
studies spatial phenomena and capitalizes on spatial relationships to model possible values 
of variables at unsampled locations (Caers 2005). In geostatistics, variables or data are 
modeled as random fields y s( ), where y denotes the attribute (e.g., porosity or seismic 
impedance) at a location with vector coordinates s. Just as a random variable is character-
ized by its probability density function (pdf) (see Chapter 2), a random field is character-
ized by the set of all joint n-variate pdfs for any number n and any locations s s1,..., n  – i.e.,

	 p y y p y yn n n( ,..., ; ,..., ) ( ),..., ( ) .1 1 1s s s s= ( ) 	
(4.1)

Recall that the random variables (or the pdf) can have a discrete valued sample space or 
a continuous sample space. For generality, a stronger definition of random fields via the 
cumulative distribution function for any n tuple is often used, but the notion of a joint pdf 
in Equation (4.1) for any set of variables is sufficient in our setting.

The joint uncertainty about the n values is then represented by the multivariate pdf. 
The random field y s( ) is said to be stationary if its multivariate pdf is invariant under 
translations of the vector s. Invariance of the multivariate pdf also implies invariance of 
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all lower-order pdfs (obtained via marginalization) and moments (expectation and vari-
ance). Choosing stationarity in a model simplifies inference (parameter estimation and 
prediction). However, stationarity is a property of the random field model and not of the 
underlying physical or geological processes. In practice, stationarity rarely holds, at least 
not at all scales. A common choice is to model the trends of a process and then assume a 
stationary residual surface of some kind. Nevertheless, the choice of which data to pool 
together into one stationary population is a subjective one that underlies all statistical mod-
eling (Isaaks and Srivastava 1989; Pyrcz and Deutsch 2014).

Assume that n data are available at locations si , i n= 1,.., . The mean and variance, as 
described in Chapter 2, are estimated by

	 µ σ µ  = ( ) = ( ) −( )
= =
∑ ∑1 12

1

2

1n
y

n
yi

i

n

i
i

n

s s, .	 (4.2)

The mean and variance are summary statistics of the data that involve one datum loca-
tion at a time.

The variogram and, equivalently, the covariance and correlogram, are two-point statis-
tics in that they involve two data locations at a time, s ti +  and si , separated by distance or 
lag vector t. The empirical variogram is estimated by

	 2
1 2

γ t
t

ts s( ) = ( ) ( ) − +( )( )∑n
y yi i

i

,	 (4.3)

where the sum goes over the n t( ) pairs of locations separated approximately by the same 
vector (modulus and direction) t. The variogram is thus a measure of variability or dissimi-
larity between two y variables at a distance of t.

The covariance is a measure of similarity and is estimated from the data as follows:

	
Ĉ

n
y y

n
y yi

i
i i i

i

t
t

t( ) = ( ) +( ) −( ) ( ) −( ) = ( ) +( ) ( ) −∑ ∑1 1
s s

t
s t sµ µ µ  

22

0

,

ˆ= ( ) − ( )C γ t
	

(4.4)

where ˆ ˆC 0 2( ) = σ  is the stationary variance. The latter equality in Equation (4.4) shows how 
the spatial covariance is related to the variogram for a stationary random field.

The correlogram standardizes the covariance to be in −( )1 1, . It measures the linear cor-
relation between two y variables at a spatial distance t – i.e.,

	 ρ t
t( ) =

( )
( )

ˆ

ˆ
C

C 0
	 (4.5)

Typically, the semivariogram γ t( ) increases with the separation vector t until it stabilizes 
around a sill value. Correspondingly, the covariance/correlogram decreases down to its 
zero value Ĉ ∞( ) = 0; very distant data values are not correlated anymore.
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Spatial two-point correlation between two different attributes y1 and y2 (e.g., porosity 
and permeability) is described by the cross-covariance function given by:

	 ˆ ( )
( )

( ) ( ) ,C
n

y yi i
i

12 1 1 2 2

1
t

t
ts s= + −( ) −( )∑ µ µ 	 (4.6)

where µ1 and µ2 are the stationary means of the two attributes.
Unless data locations are on a regular grid, tolerance of lag value (and direction) is 

needed to find enough pairs, n t( ), of data approximately at distance t apart to infer an 
experimental value for the variogram in Equation (4.3), covariance in Equation (4.4), and 
cross-covariance in Equation (4.6). The level of tolerance needed depends on the amount 
and spatial layout of the available data. The tolerance setting is another modeling choice 
that impacts the resulting experimental variograms and hence the analytical models used 
to fit the experimental variogram. A full angle/direction tolerance pools together all data 
pairs with the same distance modulus t  irrespective of direction, and the result is then an 
omni-directional experimental variogram often modeled as an isotropic model. Isotropy – 
that is, invariance with direction – is then a consequence of the angle tolerance, not neces-
sarily a physical characteristic of the underlying phenomenon.

In practice, when we have data y y y n( ), ( ),.., ( )s s s1 2  available, the empirical variogram is 
constructed. Next, we fit a parametric model, such as those presented in Table 4.1 (or any 
other legitimate model) to the data. The simplest way to do this is by visual inspection to 
answer questions such as: does the decline with distance appear to follow an exponential 
trend? And is there a nugget effect? More sophisticated ways of parameter estimation will 
be treated in Section 4.4 in the context of Gaussian random fields.

Four common examples of spatial covariance functions are shown in Table  4.1.  
Many other popular spatial covariance functions are described in standard books on geo-
statistics – e.g., Deutsch and Journel (1992), Goovaerts, (1997), Lantuejoul, (2002), and 
Chiles and Delfiner (2012). In the equations in Table 4.1, τ 2 is the nugget effect, which 
only affects the variance; σ 2 is the variance–covariance of the spatially dependent pro-
cess, so the overall variance equals τ σ2 2+ ; and η determines the decay of the covariance 
function. If η is large, the covariance goes quickly to 0, while it decays more slowly for 
small η. For the exponential covariance function, one can parametrize the decay by the 
effective spatial range 3 η, since exp( ) .− ≈3 0 05, indicating that the correlation is only 
0.05 at spatial distance t = 3 η. The four covariance functions are displayed as a function 
of lag distance in Figure 4.3 (left) together with the associated variograms (Figure 4.3, 

Discussion: variogram or covariance

Geostatisticians have traditionally preferred the variogram over the covariance/correlogram because 
(i) its inference does not call for prior inference of the mean and variance and (ii) there are theoretical 
models such as fractals that have infinite variance; hence, no covariance is defined, and yet they may 
have a finite variogram. However, in recent practice it is just as common to work with the covariance 
and estimate the mean as a function of explanatory variables as in a regression model.
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4.2 Random fields, variograms, and covariance 113

right). The model parameters were here set to τ 2 20 5= . , σ 2 21= , and η = 10. All these four 
common parametric covariance functions give valid positive definite covariance matrices 
for n response variables at any combination of spatial locations s s1,..., n .

The connection between the covariance models and the related variogram model 
is shown in Figure  4.3. The variogram model γ t t( ) = ( ) − ( )C C0  would approach 

Table 4.1.  Four examples of spatial covariance functions. For all covariance 
models, the first term represents a nugget effect tied to uncorrelated noise or 
measurement noise. The latter terms include spatial correlation

Model Covariance

Exponential C I expt t t( ) = =( ) + −( )τ2 20 σ η

Matern 3/2 C I expt t t t( ) = =( ) + + −( )( )τ2 20 1σ η η

Cauchy type C It t
t

( ) = =( ) +
+( )

τ2 2
30

1

1σ
η

Gaussian C I expt t t( ) = =( ) + −( )τ2 2 2 2
0 σ η

1.2
Exponential
Matern 3/2
Cauchy
Gaussian

Exponential
Matern 3/2
Cauchy
Gaussian

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Distance

0 0.2 0.4 0.6 0.8 1

Distance

C
ov

ar
ia

nc
e

1.2

1

0.8

0.6

0.4

0.2

0

V
ar

io
gr

am

Figure 4.3  Three different covariance functions and variograms. Left: covariance functions plotted 
as a function of distance (first axis). Right: variogram plotted as a function of distance (first axis). The 
parameters are variance σ2 = 1 for the random effect, τ2 = 0.52 for the nugget effect, and correlation 
decay η = 10.
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γ τ0 2+( ) =  as t → 0, and yet γ 0( ) = 0. When the variogram exhibits this discontinuity for 
very small distances, it indicates the presence of an additive white noise process. The vari-
ogram increases with larger distance t  and levels out around the effective spatial range. 
The asymptotic value, as t  goes to infinity, is γ σ τ∞( ) = +2 2.

Recall that the variogram is just a summary statistic, or a theoretical second moment of 
a model description, but for the Gaussian distribution (Section 4.4), it plays a crucial role 
in the parameterization and indicates our ability to borrow information and attain predic-
tive power in the spatial domain. For most geoapplications, we are interested in specifying 
parameters for spatial dependence or interaction, but it may not be the variogram directly. 
In Sections 4.5–7, we present a couple of non-Gaussian models in some detail.

4.3  Prediction and simulation

We now explain concepts underlying spatial prediction. As we have discussed in the previous 
section, in many spatial models the location-wise prediction and prediction variance may not 
realistically capture the spatially dependent distinctions of interest. For this reason, the simu-
lation of spatial processes has become important and, for completeness, we briefly describe 
some useful ways of spatial simulation. In subsequent sections, we will focus on concepts 
related to the prediction and simulation methods tailored to the models for VOI analysis.

4.3.1  Spatial prediction and Kriging

One of the most important goals of modeling, and ultimately of importance for decision 
making, is the ability to predict an unknown response as well as assess its uncertainty. 
Prediction is well known in regression analysis where the model is fit from the currently 
available response variables and explanatory variables. When there are new explanatory 
variables, the goal is to use the fitted model to predict the new response. This prediction 
is obtained by plugging the explanatory variables into the fitted regression model. The 
prediction uncertainty can be computed based on the amount of data used for fitting the 
regression model and the noise in the model. Notably, the uncertainty also depends on the 
new explanatory variables. If these are near the center of the formerly collected data, there 
is little uncertainty, but if the explanatory variables are far from the currently available 
ones, there is greater uncertainty. In fact, it is unclear whether the regression model would 
fit well far outside the domain of former data and in general it is best to avoid extrapolation.

In the geosciences, prediction relies on explanatory variables but also relates to the 
dependence in the spatial variables. Observations made near a prediction site are often 
most valuable when predicting spatial attributes. Early applications of geostatistics in the 
mining industry addressed this question of predicting ore grade at a location based on 
measured grade values at surrounding locations. In modern applications, one includes 
explanatory variables as well as spatial proximity, possibly represented by a hierarchical 
modeling framework. Moreover, one might not only be interested in predicting the ore at 
a location but perhaps may also be interested in predicting the block volume or a response 
from a process integrated over a complicated domain, such as the fluid flow response in a 
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reservoir. The tools we use for prediction rely very much on the situation, including both 
the modeling aspects and the relevant prediction tasks.

Suppose we want to predict the response at a spatial location s0. Denote the unknown 
response by y( )s0 , and let y = ( ) ( )( )y y ns s1 ,..,  be the data at n other sites. Under expected 
square loss, the optimal spatial predictor of the response is the conditional expectation 
E y( ) |s y0( ). To see why this holds, let us compare the conditional expectation with another 
predictor g( )y  for arbitrary function g. The mean square prediction error (MSPE) is
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, 	

(4.7)

where the expected value is taken over all data y as well as the random value y( )s0 . In 
Equation (4.7), we first subtract and add the conditional mean and then expand the quad-
ratic form. The cross-term cancels by double expectation – i.e., E E y E y( ( ( ) | )) ( ( ))s sy0 0= .  
The last term in the bottom row of Equation (4.7) is 0 for g E y( ) ( ) |y ys= ( )0 , whereas it 
is positive for any other g function. Thus, the mean square error is smallest for the condi-
tional expectation.

The Kriging predictor is the best linear unbiased predictor – i.e., g yi i
i

n

( )y s= ( )
=
∑α

1

, 

where the weights α i, i n= 1,...,  are derived from minimizing the MSPE among all lin-
ear and unbiased predictors. When we assume a Gaussian model, the conditional mean 
E y( ) |s y0( ) is linear in the data y and is hence identical to the Kriging predictor.

The Kriging equations will be derived in Section 4.4 assuming Gaussian data. They 
require only the mean function and the variogram (or covariance). The predictor considers 
not only the correlation between the unknown and each datum (taken one at a time) but 
also the correlation between any two data. All such correlations are two-point statistics, 
as provided by the variogram model. Kriging is quite versatile and lies at the origin of the 
success of traditional geostatistics.

Pitfalls: interpretation of Kriging results

Kriging estimates are very useful when the goal is to get a local best estimate (e.g., porosity or ore 
grade at a prediction site). However, maps of Kriging estimates should not be used to represent 
spatial uncertainty, as they were never designed to reproduce any spatial statistics. Kriging 
estimates at two different locations do not reflect the model covariance between these two locations. 
Kriging maps deliver an incorrect sense of spatial continuity. Marginal variances or two-location 
correlations can be derived from the conditional covariance in the Gaussian case. More generally, 
simulation aims at reproducing spatial continuity when a global response to the joint spatial 
heterogeneity is desired, such as in reservoir flow simulations. Recall that E f f Ey y( )( ) ≠ ( )( ) , so 
even in the Gaussian case, where Kriging is the optimal predictor, we require function evaluations 
of f  for samples of y rather than the function evaluated at the Kriging estimate.
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4.3.2  Common geostatistical stochastic simulation methods

For visualization purposes, the marginal distributions at different sites may be sufficient, 
but for prediction and decision making, we often need to generate multiple alternative 
realizations from the joint distribution. This allows using the set of simulated realizations 
and their response (e.g., through a flow simulator) as a measure of uncertainty. There are a 
wealth of tools available for the spatial simulation of random processes, and this discussion 
only introduces some key concepts. More background can be found in references provided 
in the bibliography at the end of this chapter.

We first discuss some methods for unconditional and conditional simulation. The former 
aims to generate spatial simulations from (i) a priori distribution or (ii) a priori notions 
based on a training image or propagating variables using physical models (typically, dif-
ferential equations).

Point (i) often requires assumptions about a parametric family of distributions. Once 
this distribution p x( ) is established, sampling can be done using the Monte Carlo 
techniques described in Section 2.5. The conditional simulation is from the posterior 
distribution p x y|( ), which is available from the prior distribution and by assuming 
a likelihood model p y x|( ) for the data. Depending on the likelihood model, the 
conditional simulation from the posterior distribution may be simpler or more 
difficult than the unconditional simulation.

Point (ii) resembles that of non-parametric modeling, where we enforce less parametric 
and distributional assumptions. Unconditional simulation relies on templates, objects, 
or patterns one would like to reproduce in the simulations. Conditioning involves 
comparing the simulations with data. This may be done directly or via propagating 
the simulations to the natural data domain.

Recall that both (i) and (ii) try to output realizations that can be used for prediction. 
Ultimately, prediction may involve complicated transforms of variables – say, basin mod-
eling, fluid flow, or seismic wave propagation. One may compare unconditional predictions 
with conditional predictions under various data acquisition schemes. This will make it pos-
sible to evaluate the usefulness of data in our ability to predict reliably and to eventually 
make better decisions. The method used for sampling or simulation is very dependent on 
the situation; nevertheless, we will present some of the main concepts next.

Directly simulating a sample from the unconditional prior p x( ) or from the conditional 
situation with posterior p x y|( ) is only possible in a few special and simple cases. In 
(low-dimensional) Gaussian models, with linear conditioning to the data, this is straight-
forward. It is also easy to simulate Markov chain models. (Both models are treated in 
depth in Appendix A.) In more complex settings, it may be possible to use rejection sam-
pling, described in Section 2.5, where we generate realizations from another distribution 
q x( ) and then accept the likely ones as exact samples from the target prior or posterior 
distribution.
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Unconditional plus error for the conditional: The idea here is to sample unconditionally 
from the prior and then perform an update step to get a conditional sample. Under Gaussian 
modeling assumptions, where the mean is linear in the data, this idea tends to work very 
well for conditional sampling. The conditional sample is obtained as a linear combination 
of the unconditional sample and the data. Noise is added such that the posterior sample 
has the correct covariance. Assume that p Nx( ) = ( )µ,Σ  and p Ny x Fx T|( ) = ( ), ; then, the 
algorithm is

	

x y T

x x F F F T Fx

uncond

cond uncond unco

∼ ∼N N

t t

µ Σ ε

Σ ε

, , ,( ) ( )
= + +( ) −−Σ 1

nnd( ).
	

(4.8)

In the case where the data provide perfect information about x (also known as hard data 
in traditional geostatistics jargon) at specific locations (i.e., partial perfect information), 
the conditional realization is updated from the unconditional using the Kriging estimate 
as follows:  x xcond uncond krig

data
krig
uncond= + −ˆ ˆx x , where x̂krig

data  is the Kriging estimate using the 
data, while x̂krig

uncond  is the Kriging estimate using the values from the unconditional simu-
lation at the same spatial locations as the actual data. Since the data locations remain the 
same, the Kriging matrix can be factored once and used for multiple conditional realiza-
tions, leading to computational efficiency. The approach requires efficient generation of 
samples from the unconditional distribution. This is usually done by a direct method such 
as spectral methods based on fast Fourier transforms or Cholesky factorization (see also 
Appendix A.1).

Iterative simulation algorithms like Markov chain Monte Carlo are certainly viable for 
sampling from the prior p x( ) and posterior p x y|( ) (see Section 2.5). In this way, one can 
obtain dependent samples x x1,..., B . The dependency means that subsequent samples are 
very similar, but each sample itself is from the right joint distribution. A challenge here is 
the computer time: the transient phase (burn-in) may be long, and mixing of the Markov 
chain may be slow.

Sequential simulation algorithms all make use of the same basic procedure that also holds 
for many of the direct routines for simulation (such as the Cholesky matrix factorization 
for Gaussian simulation). This procedure relies on the sequential way of writing a joint 
probability distribution – i.e.,

p p x p x x p x x xn nx( ) = ( ) ( ) ( )−1 2 1 1 1| |... ,..., unconditional,

	 p p x p x x p x x xn nx y y y y| | | |( ) = ( ) ( ) ( )−1 2 1 1 1, ... ,..., , conditional.
	

(4.9)

In a spatial setting over a defined domain of sites, one would need to sample one vari-
able (or blocks of variables) at a time. Note that the sequential simulation algorithm must 
condition on previous simulations and all data. Some implementations of the sequential 
approach condition only locally. This may induce bias, underestimation, or other unwanted 
effects in the realizations, the predictions, and the decisions. In some variations of the 
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sequential simulation workflow, the sites are visited not along a random path but along 
a raster path, working deterministically along columns or rows in the map. Sequential 
simulation with a raster path can have some advantages for unconditional simulations 
but can make it harder for conditioning to data ahead of the raster path (Mariethoz and 
Caers 2015).

Thus, the main difference between various sequential procedures, in terms of practice, 
is the way in which the local conditional probabilities are assessed. Under strict modeling 
assumptions, we may know these conditionals exactly, and then this approach becomes a 
direct method. Commonly, any technique that can approximate this conditional distribution 
is used as the basis for sequential simulation. Under multi-Gaussian assumptions, Kriging 
is used to assess the parameters of the conditional distribution (which is also Gaussian), 
and the algorithm is then called sequential Gaussian simulation.

The conditional distribution could also be obtained from training images that can provide 
not only two-point but also multiple-point statistics. With this approach, the conditioning to 
data events extends to patterns of multiple data taken together. Multiple-point statistics can 
simulate geologically realistic features as long as an appropriate training image is available 
(which may not always be the case).

The fact that the sequential approach can accommodate any technique for assessing 
the conditional distribution has made it a very flexible and popular technique, and many 
methods use the sequential principle even though their names do not contain the word 
“sequential.” Inputs to the sequential simulation include the conditioning data that has to 
be honored as well as a description of the spatial continuity, either in terms of variograms 
and cross-variograms or in terms of a training image for multiple-point statistics. Many 
multiple-point simulation algorithms (see also Section 4.7) follow the sequential proce-
dure, but instead of estimating a local conditional distribution at each pixel on the sequen-
tial path, they directly sample multiple-point patterns from the training image.

Object-based simulations or Boolean models are a family of methods working with geo-
metric objects that have some genetic significance rather than being built up one elem-
entary node at a time. They have been useful to generate facies and fracture models in 
reservoirs but have challenges in terms of conditioning. There are algorithms for condition-
ing object-based simulations, but they can become computationally intensive when condi-
tioning to a large number of point data (e.g., data in many wells). The idea in object-based 
simulations is to realistically describe geometry such as sinuous channels, half-ellipses in 
cross sections, triangular wedges, lobes, disks, etc. In addition, other required specifica-
tions include the overall proportions of each shape and the distributions of the parameters 
describing the shape. These parameters typically include size, the anisotropy ratio, and the 
orientation of the long axis and rules that describe how the various shapes can be positioned 
relative to one another. These methods can also be considered as marked point processes, 
as they are based on a point process with marks (objects) attached to the points of the pro-
cess. Many different Boolean simulation algorithms are described in Lantuejoul (2002) and 
Chiles and Delfiner (2012).
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Process-based and process-mimicking methods try to capture the physics and chemistry 
of the geological processes that created the subsurface environment under consideration. 
They are motivated by the fact that it is very hard to capture all of the features of geology 
using purely random function models. Geology has random as well as deterministic com-
ponents governed by the physics and chemistry of erosion, transportation, deposition, 
heat and fluid flow, and diagenesis. Process-based models numerically solve the gov-
erning partial differential equations, computationally forward-simulating the processes 
that gave rise to the geological architectures. Process-based models can also be run in 
the physical laboratory rather than numerically on the computer using tank experiments 
to physically forward-simulate the erosion, transportation, and deposition of sediments 
giving rise to various geologic architectures. Computer simulations require inputs such 
as initial and boundary conditions over geologic time (which could be millions of years 
for basin models), as well as empirical parameters governing rock and fluid properties as 
a function of temperature and stress. Very realistic geological models can be made with 
process-based simulations. These models can be conditioned to global and large-scale 
data but are much harder to condition to dense local point data. They are also computa-
tionally very intensive, and it can take days or weeks to run a single simulation. As an 
alternative to “full physics” differential equation-based simulations, process-mimicking 
methods attempt to create realistic geologic features using various algorithmic rules 
without numerically solving any differential equations. Various process-mimicking algo-
rithms (some of them are also called event-based or surface-based methods) have been 
developed for different types of geological environments. These are computationally 
much faster to run than the full process-based models. Like the process-based simula-
tions, the process-mimicking simulations are harder to condition to dense point data, but 
because they take much less time to simulate, iterative or “brute force” rejection methods 
might be applicable for conditioning these simulations to point data. Further discussions 
and references to the literature on these methods can be found in Pyrcz and Deutsch 
(2014) and Mariethoz and Caers (2015).

A combination of different methods is usually implemented for practical spatial mod-
eling. The success of spatial modeling comes from the development of hybrid meth-
ods that borrow useful tools from all techniques, combining them for real-case analysis. 
For example, multiple-point simulation from training images might be used to simu-
late the facies, which are then populated with petrophysical properties using Gaussian 
simulation methods. The training image used in the multiple-point simulation might 
come from a Boolean simulation or perhaps from a process-mimicking method. The 
process-mimicking simulation might borrow statistics and rules from a physical labora-
tory simulation or from a “full physics” numerical simulation. Though all methods have 
shortcomings, all of the methods have been successfully used in actual case studies. One 
must be wary of the tendency to promote a single method as better than all others. There 
is no stochastic modeling method that is universally best for all possible subsurface mod-
eling problems. As stochastic modeling becomes more accepted in the Earth sciences, 
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and as more stochastic modeling techniques are developed, the most successful case 
studies will be those that view the assortment of spatial modeling methods as a tool kit 
rather than as a silver bullet.

4.4  Gaussian models

The Gaussian random field model is a key construction in geostatistics and is often used 
as a self-standing model, especially for very-high-dimensional models or very large data 
sizes. Moreover, it is common to apply the Gaussian model as a building block when 
constructing hierarchical model formulations. In this section, we discuss traditional but 
important aspects of the Gaussian model in spatial statistics.

4.4.1  The spatial regression model

The spatial regression model for continuous response data relies on Gaussian variables and 
linear association. This is possibly the most commonly applied model in spatial statistics – 
see, e.g., Cressie (1993), Stein (1999), and Banerjee et al. (2004). The model has historical 
importance related to (universal) Kriging. Moreover, the model provides a natural exten-
sion of the usual linear regression model, as it also accounts for the spatially correlated 
error terms. The attractive computational properties of the Gaussian model make it one of 
the few applicable models for massive data sets. The Gaussian assumption can often be 
justified by the central limit theorem, stating that sums and means of random variables con-
verge to Gaussian variables. Thus, even though the response is not really Gaussian, these 
assumptions can provide useful results in many situations.

The response variable is assumed to be partially explained by (i) explanatory variables, 
(ii) a smooth Gaussian noise process  – a Gaussian random field, and (iii) independent 
errors. The idea is to incorporate the spatial smoothness and, as a result, obtain more reli-
able estimates of the regression parameters for improved predictions. Ignoring a spatially 
structured noise term could give biased estimates and erroneous uncertainty bounds. The 
following exposition is based on a univariate response variable. At the end of the section, 
a more general framework is presented. We assume that the process is defined at all loca-
tions s ∈ , where  denotes a continuous spatial domain in two or three dimensions. The 
model for the response y( )s  at an arbitrary site is

	 y wts h s s s( ) = ( ) + ( ) + ( )β ε ,
	

(4.10)

where β = …( )β β1, , k  is the vector of k regression parameters and h s s s( ) ( ) ( )= …( )h hk1 , ,  
is the vector of k covariates at site s. The residual is split into two parts: w s( ) and ε s( ). The 
spatially structured residual w s( )  provides dependence, Cov w ws s s s,( ) ( )( ) = ( )′ ′, Σ , cap-
turing the effect of unobserved covariates with a spatial pattern. Statisticians often refer to 
the regression parameters β as fixed effects, while the structured Gaussian field w s( ) is the 
random effects. The non-structured spatial residual ε s( ) is independent white noise with 
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Discussion: spatial model versus ordinary least squares

The basic linear regression model, which forms the starting point in many contexts of exploratory 
data analysis, assumes independent non-structured error terms. Here, in the spatial context, the 
noise process is modeled using the tools of variograms and covariance functions described 
previously. The covariance structure of the spatial residual w( )s  is thus typically characterized by 
a few parameters describing the scale and correlation range. Customarily, the spatial covariance 
Cov(w w( ), (s s s s′)) Σ( ′)= ,  is modeled by a stationary, isotropic process – i.e., it only depends on 
the absolute distance between the locations s and s′ (see Table 4.1). For the independent noise 
process, we assume that ε s( ) ( )~ ,N 0 2τ  for all s. This was interpreted as the nugget effect in 
Section 4.2.

Var ε τs( )( ) = 2 , which can be interpreted as the measurement error. The spatial regression 
model in Equation (4.10) can also be written as:

	 y x N E x x xt( ) ( ) , , ( ) , , .s s s h s s s s,s= + ( ) ( )( ) = ( ) ′( )( ) = ′( )0 2τ β Cov Σ 	 (4.11)

The latent process is often of key interest to the decision maker. In Equation (4.11), this 
latent process x( )s  is imperfectly observed by y( )s .

Assume that we can observe the spatial process y s( ) and associated covariates ht s( ) 
at n locations s s1,..., n . Under the specified assumptions, we can now write the Gaussian 
regression model as a hierarchical model. Let us denote the collection of data by length 
n vector y = ( ) … ( )( )y y ns s1 , , ; the latent random effects by x = ( ) … ( )( )x x ns s1 , , ; and the 
covariates by a size n k×  matrix H , where row i is ht

is( ). Then

	 p N p N nx x xH y I( ) = ( ) ( ) = ( )β Σ τ, , , ,| 2 	
(4.12)

and the marginal pdf of the response (integrating out the random effects) becomes

	 p N ny H C C C I( ) = = = +( , ), ( ) ,β θ Σ τ2 	
(4.13)

where C is a n n×  covariance matrix, and θ = ( )σ η τ2 2, ,  denotes the set of covariance 
parameters.

The set of observation locations is called the spatial design. A regular design has obser-
vation sites s s1, , n  on a grid of the spatial domain . Irregular sampling designs are, 
however, more common in practice. For instance, in a situation with monitoring sites for 
precipitation and wind or air pollution, one would tend to place the sites near roads or cit-
ies for logistical reasons. On the other hand, remotely sensed data such as satellite data or 
seismic data are often processed to be represented on a regular grid.

Figure 4.4 shows a realization of a Gaussian random field on the unit square. This is 
shown on a regular grid in the left display. An irregular sampling of the data of a much 
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smaller size is also illustrated in the right display. In Figure 4.4, the model is based on 
using the east and north coordinates as covariates, and the regression parameters are set 
to β= −( )2 3 1, , , where the first entry corresponds to an intercept term at the origin and the 
next two are the spatial covariates. The covariance function is a Matern type with smooth-
ness parameter (3/2), as in Table 4.1, and with parameters σ 2 20 5= . , η = 9, and τ 2 20 05= . , 
which corresponds to a correlation range of about a third of the unit square. Note that there 
is only a small nugget effect here. In Figure 4.4, we see that the random field increases with 
the east (and north) coordinate with smooth variability defined by the Gaussian residual 
process.

We assume that the parameters β and θ are fixed but unknown. These parameters must 
be estimated based on the data and explanatory variables. A common way of specifying 
the parameter values is by maximum likelihood estimation (MLE), described in Section 
2.4 and Appendix A.1. The Gaussian distribution defines the log-likelihood as a function 
of parameters β and θ – i.e.,

	 l
n t

( , ) log( ) log | ( ) | ( ) .θ β θ β θ β= − − − −( ) −( )−

2
2

1

2

1

2
1π C H C Hy y 	 (4.14)

The maximum likelihood estimates are defined by

	 ( , ) ( , ).β θ θ β  = argmax l
	

(4.15)

An algorithm for locating the maximum is presented in Appendix A.1. For fixed covari-
ance parameters θ, the estimate for the regression parameters is

	 β β θ β  = = ( ) ( ) = ( )− − − − −
( ; ) .,y H C H H C H C Hyt t t1 1 1 1 1

Var 	 (4.16)
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Figure 4.4  Realization of a Gaussian process in two spatial dimensions. Left:  the spatial variable 
represented on a dense regular grid. Right: the spatial variable is represented at only 100 irregular 
locations.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.005
http:/www.cambridge.org/core


4.4 Gaussian models 123

Based on the modeling assumptions, the prediction distribution is also Gaussian. The 
5th and 95th percentiles of the standard Gaussian distribution are −1.64 and 1.64. A 90% 
prediction interval for the response y js0,( ) at the prediction site s0, j  is then

	 E y y E y yj j j( ( ) | ) . ( ( ) | ), ( ( ) | ) . ( (, , , ,s s y s y s0 0 0 01 64 1 64y − +Var Var jj ) | ) .y( ) 	 (4.20)

4.4.2  Optimal spatial prediction: Kriging

We showed how Kriging is the method for optimal pointwise spatial prediction in the 
Gaussian model. Suppose that we wish to predict responses y s s0 0 1 0= …( ( ), , ( )), ,y y N  at N  
prediction sites s0, j , j N= …1, , , given data y s s= …( ( ), , ( ))y y n1  at n observation sites. The 
joint distribution of y0  and y is Gaussian with the following mean and covariance:

	 p N
t

y y
H

H

C

C C0
0 0

0

0, , .,*

,*

( ) =


















β

C  

 	 (4.17)

The N k×  matrix H0 contains the covariates at the prediction sites. Moreover, the N N×  
matrix C0 is the covariance matrix for the responses at all prediction sites, while the N n×  
matrix C0,* contains the covariances between the N  variables at prediction sites and the 
n variables at observation sites. The covariance matrices depend on the statistical model 
parameters θ, but the cross-covariance matrix C0,* does not depend on the measurement 
error variance τ 2 since we assume independent nugget effects.

Recall from Chapter 2 that the conditional pdf of y0  given y (and for fixed β  and θ) is 
also Gaussian. The length N  vector of conditional means or Kriging predictions is

	 E( | ) ( ),,*y y H y HC C0 0 0
1   = + −−β β 	

(4.18)

and the associated N N×  conditional covariance is

	 Var( | ) .,* ,*y y C C C C0 0
1

00= − −  t 	
(4.19)

The conditional variances are defined by the diagonal elements of this matrix. See 
Appendix A.1 for further details about these properties of the Gaussian pdf.

Discussion: interpreting the Kriging prediction variance

For sites that are close to other data, there is high correlation in C0,*, and conditioning will 
reduce the variances in C0  substantially. Sites that are farther from the observation sites will 
have larger prediction variances. The reduction of prediction variance also depends on the 
clustering of the observation sites according to C−1. Two data at almost the same location 
will not contribute twice the information, since the two observations will be correlated and 
therefore somewhat redundant. It is quite remarkable that the Kriging variances do not depend 
on the data – they only depend on the geographic locations of the data and the prediction site. 
This holds for the Gaussian situation but may not hold in non-Gaussian settings where a large 
(or small) observation may influence the prediction variance as well.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.005
http:/www.cambridge.org/core


Spatial modeling124

4.4.3  Multivariate hierarchical spatial regression model

Recall that the spatial regression model can be written as a hierarchical model as in 
Equation (4.12) or a random effects model, with the likelihood function p( | )y x  condi-
tional on the latent process x, and a Gaussian random field prior model. One example is 
a multivariate hierarchical model. Consider, for instance, the case with reservoir charac-
terization:  the (multivariate) latent distinction of interest are the porosity, permeability, 
and saturation variables at all reservoir grid cells. Seismic data, which provide imperfect 
information about the reservoir properties, consist of (multivariate) angle gathers of reflec-
tion amplitudes at each spatial grid cell. There could also be well data providing perfect 
information at some cells. These multivariate situations can be conveniently modeled using 
a hierarchical framework.

Suppose we have K  latent spatial processes denoted x x x= …( , , )1 K , each of length 
n, and L different response variables y y y= …( , , )1 L  of lengths m mL1,.., . The data can 
be acquired at different locations for the various responses. Some may have large spatial 
coverage with perhaps more uncertainty (say, seismic data), while others may be sparsely 
sampled but carry accurate information where they are available (say, well data). The hier-
archical model can easily incorporate such varying dimensions in the data – i.e., m mk l≠ , 
k l L, ,...,∈{ }1 .

Suppose that we assign a Gaussian prior model p N( ) ,x = ( )µ Σ  at the top of the hier-
archy, where µ  is a size nK  vector containing the prior mean of the latent variables at the n 
locations of interest, while Σ  is a nK nK×  covariance matrix for the K  processes. The mean 
may, of course, include covariates as in the usual regression setting. A convenient way of 
modeling a multivariate spatial covariance matrix is Cov( ( ), ( )) ( ) ( , )x x R k lk ls s s,s′ = ′ Σ0 , 
where we use a separable structure in the space and multiple variable dimensions. Spatial 
correlation is defined by R( )s,s′ , while the K K×  matrix Σ0 defines the spatially invariant 
covariance matrix between the K  variables. The full covariance matrix is, in this way, con-
structed by a Kronecker product between the spatial correlation matrix and the intervari-
able covariance matrix.

Suppose that there is a linear Gaussian likelihood model for the multivariate spatial 

data – i.e., p N( | ) ( , )y x Fx T= , where F  is a m nKl
l

L

=
∑





×
1

 matrix containing the design of 

experiments or forward models of the different data, conditional on x. If the forward model 
is a result of a local operator, this matrix can be decomposed in blocks – say, F0 – which 
is a L K×  matrix that couples the x latent variables at a spatial location to the L response 
variables at the same location (if all data types are available at that location). The matrix T  
defines the covariance of the measurement noise. In the simplest case, the matrix is diag-
onal T I= τ2 , but a more flexible structure would allow for different variances in the vari-
ous response variables – for instance, there could be different diagonal terms τ τ τ1

2
2
2 2, ,… L 

in the covariance matrix T . There might also be correlation in the likelihood model for the 
L response variables, resulting in a block diagonal structure, or some sort of smoothing in 
the data acquisition scheme.
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As in the previous description, the marginal likelihood becomes

	 p p p d N t( ) ( | ) ( ) ( , ).y y x x x F F F T= = +∫ µ Σ 	 (4.21)

The model parameters can again be estimated by likelihood maximization. In general, it 
can be hard to identify all parameters based on the marginal likelihood in Equation (4.21). 
For instance, it may be difficult to separate out parameters in F  and Σ . Alternatively, we 
could specify parameters from auxiliary data sources. The estimation simplifies if one has 
observed both x and y for similar conditions, because one can separate out the effects. 
Prediction of the multivariate latent variable, given all the multivariate spatial data, can 
again be conducted from the Gaussian posterior model:

	 p N t t t t( | ) ( ( ), ).x y F F F T y F F F F T F= + + − − +( ) ( )− −µ µΣ Σ Σ Σ Σ Σ1 1 	
(4.22)

4.4.4  Examples

Norwegian wood: forestry example

Keywords: forestry example, Gaussian random field, spatial regression model, maximum likelihood 

estimation, spatial prediction, Kriging, partial information

Let us illustrate parameter estimation and prediction for a Gaussian random field example. 
Consider a regular grid of size 25 × 25, where the variable on this grid is observed only 
imperfectly at irregular sites. The goal is to use the data to estimate regression parameters 
and predict on the regular grid.

The example is motivated from forestry, where the grid of cells may represent forest units 
that a farmer can choose to harvest. The profits of timber or wood at the cells are related to 
the height and volume of the trees, as well as the cost of harvesting and processing timber, 
and the selling price for products. For simplicity, we assume that the profits are Gaussian 
distributed with spatial correlation. In the current section, the goal is to estimate model 
parameters and predict the spatial distribution of forest profits (which depends on the spa-
tial distribution of the trees). We return to this example to study VOI analysis in Chapter 5.

In this example, the realization to the left in Figure 4.4 is treated as the “truth” or refer-
ence spatial distribution. Would it be possible to estimate the parameters of the Gaussian 
model and predict the spatial profits at the 625 units, given data acquired at some sites? 
Two different designs are evaluated and compared. These are representative of acquisition 
designs a farmer could use for gathering information about the forest volumes and profits. 
Both of these designs have 49 observation sites. A random design and a center design are 
illustrated in Figure 4.5. The center design is based on acquiring measurements along the 
center lines (north–south and east–west) in the grid – i.e., 49 data locations in total – while 
the random measurement sites are simply generated by selecting 49 random data locations 
among the 25 × 25 grid cells.

Table 4.2 shows the maximum likelihood estimates for the regression and covariance 
parameters along with their asymptotic standard errors computed from the likelihood 
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expression. These are shown for the particular realization and for both center and random 
designs. We note that the regression parameters are estimated quite well from the data, and 
there is little difference in the variability of estimates. For traditional regression analysis, 
it is beneficial to acquire data at the edges of the domain, because that makes it easier to 
estimate the slope of the regression curve. The situation is a little different with spatial cor-
relation because the data at common edges tend to be highly correlated.

In Figure 4.6, we show the pointwise prediction and prediction standard error based on 
the 49 measurements of the Gaussian process and using the parameter estimates in Table 4.2. 
The displays are represented on the 25 × 25 grid. They show the prediction surface (left) for 
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Figure 4.5    Random and center designs of spatial experiments. There are 49 data locations in both 
designs. The distinction of interest is represented on a regular grid of size 25 × 25.

Table 4.2.  Parameter estimates and standard errors (in parentheses) for the Gaussian 
regression model with center line and random acquisition design

β1 β2 β3 σ 2 η τ 2

Center −2.1 (0.6) 3.4 (0.7) 0.4 (0.7) 0.3 (0.14) 7.2 (2.0) 0.002 (0.001)
Random −2.0 (0.5) 3.4 (0.6) 0.8 (0.5) 0.3 (0.12) 7.9 (2.0) 0.005 (0.007)
Truth −2 3 1 0.25 9 0.0025

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.005
http:/www.cambridge.org/core


4.4 Gaussian models 127

both the random and center designs and the associated prediction standard errors (right). Note 
how the predictions are smoother than the realization in Figure 4.4. The Kriging predictions 
in Figure 4.6 are based on linear interpolation of the data y, and in this case these predictions 
become very smooth with little data. The random design has a better spatial coverage of the 
domain, and the prediction results appear more realistic than for the center design. The pre-
diction results for the center design reflect more details in the central parts but just return the 
effect of the east and north covariate trends in the corners of the grid. The prediction standard 
errors are very small near the observation sites. These increase to the level of the process 
noise at a distance indicated by the correlation range of the random field. For both designs, 
we see the clear imprint of the acquisition pattern along the acquisition lines or points.

Table 4.3 shows a summary of the prediction results for the center and random design 
data acquisition. This is summarized by the empirical MSPE and the 90% prediction inter-
val in Equation (4.20) at two sites: s0 0 5 0 5= ( ). , .  and s0 0 1 0 1= ( ). , . . The empirical MSPE 
for this particular realization is defined by

	 MSPE = ( ) −( )
=
∑1

625 0 0

2

1

625

y E yi i
i

s s y, ,( ( ) | ) . 	 (4.23)
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Figure 4.6  Prediction results for the random design (top) and the center design (bottom). The Kriging 
predictor is in the left display with the associated standard deviations in the right display.
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The MSPE is much larger for the center design because of its poor data coverage away 
from the central domains. Naturally, the interval based on the center design is narrower at 
the central site. The prediction interval for the random design is narrower than the center 
design for site s0 0 1 0 1= ( ). , . . Note that these prediction intervals only cover the truth 9 out 
of 10 times by construction. For the central prediction site, using a center design, the truth 
is just outside the interval.

I love rock and ore: mining oxide grade example

Keywords: oxide grade example, mining, X-ray data, Gaussian random field, spatial regression 

model, maximum likelihood estimation, spatial prediction, Kriging

This data set consists of oxide grade measurements made along boreholes in a mine (Eidsvik 
and Ellefmo 2013). It was discussed briefly for parameter estimation in Chapter 2. The goal 
of the mining company is to use data from the current boreholes to predict the spatial distri-
bution of the oxide grade. The data set consists of bivariate response variables as follows:

XMET data: Core samples measured with a handheld X-ray fluorescence meter 
(XMET). These XMET data are relatively fast to collect on the mining location. They are 
considered to be imperfect measurements of the true oxide grade of the samples. There are 
m1 = 1871 locations with XMET data.

XRF data: Lab experiments of the cores using careful X-ray fluorescence (XRF) ana-
lysis. These XRF data are rather time consuming to analyze. They are considered to pro-
vide perfect information about the oxide grade at the location where they are acquired. 
There are m2 = 103 locations with XRF data.

At the 103 locations where there are XRF data, there are also XMET data. Figure 4.7 
shows a map view of the mine with the data locations indicated. All 1871 XMET data and 
103 XRF data are used to predict the oxide along the vertical plane illustrated in the display.

A spatial regression model is used for the spatial oxide grade – i.e., p Nx H( ) = ( )β, ,Σ  
where the regression part is based on an intercept term and a categorical mineralization 
covariate. There are three mineralization classes (I, II, and III), where Class  III is most 
likely to have high grades of oxide. Representing this situation into the mathematical 
framework outlined earlier, we have K = 1 variable of interest: the oxide grade at location 
s0, denoted by x s0( ). The observations are either XMET or XRF – i.e., L = 2. We have 

Table 4.3.  Summary of prediction results for the center data acquisition and the random 
data acquisition design for a Gaussian process

MSPE

Prediction 
Interval (90%)
s0 0 5 0 5= ( ). , .

Truth
s0 0 5 0 5= ( ). , .

Prediction 
Interval (90%)
s0 0 1 0 1= ( ). , .

Truth
s0 0 1 0 1= ( ). , .

Center 0.24 (−0.48, −0.27) −0.24 (−2.47, −0.89) −1.64
Random 0.03 (−0.52, −0.06) −0.24 (−2.28, −0.99) −1.64
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XRF data at m1 103=  locations:  y s s1 1 1 1 103= ( ) ( )( )y y, ,,...,  and XMET data at m2 1871=  
locations:  y s s2 2 1 2 1871= ( ) ( )( )y y, ,,..., , where 103 of the locations in XRF and XMET are 
identical.

Even though the main goal is prediction, the mining company must first specify the 
statistical model parameters and study whether the Gaussian modeling assumptions seem 
appropriate. Similar to Eidsvik and Ellefmo (2013), the current description relies on using 
probability quantile plots to justify a Gaussian model for the oxide grade data and the meas-
urements. The first step in this analysis is to fit a least-squares model to the XMET data 
and compare the residuals of the fit with the theoretical counterparts of the Gaussian pdf.

Figure 4.8 shows the histogram of the residuals (left) and a quantile–quantile plot of 
sorted empirical residuals against the theoretical percentiles. The fit is acceptable, possibly 
with some differences in the tail of the distribution.

Figure  4.9 shows the empirical variogram of the residuals after the least-squares 
estimation of the mean (regression) parameters. The empirical computation is done by 
binning the data into 5-m interval zones for the distance between measurement loca-
tions. Based on the variogram plot, it appears as if the nugget effect is about 0.3, the 
effective correlation range is between 50 and 100 m, and the structured variance term is 
about σ 2 0 7 0 3 0 4= − =. . . .
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Figure 4.7  Map view of the oxide grade data in a mine. Two kinds of data are acquired from the 
boreholes: there are 103 XRF data (perfect information, illustrated by cross) and 1871 XMET data 
(imperfect information, illustrated by circles). The oxide grades are predicted on the grayscale 
vertical plane.
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A Matern (3/2) spatial covariance model is used to describe the Gaussian random field 
for the oxide. The XMET data are assumed to be conditionally independent, given the 
grades at the measurement locations. We compute the maximum likelihood estimates of 
all the statistical model parameters using the Fisher scoring algorithm (Appendix A.1) 
with the least-squares regression estimates and variogram parameters as starting values. 
The regression parameters are ˆ .β0 0 18= −  for the regression intercept and ˆ .β1 1 32=  for the 
slope with mineralization class. The covariance parameters are ˆ .σ 2 20 62=  for the spatially 
varying oxide grade, with an effective range of about 50 m and a measurement noise vari-
ance of ˆ .τ 2 20 45=  for the XMET data.

One can predict the oxide grade at selected locations from the parameter estimates. As 
we discussed earlier, the basis for prediction is to form a joint Gaussian model for the vari-
able of interest and all available data, which in this case involves the oxide grade at predic-
tion sites as well as the XRF and the XMET data. In the prediction, we must incorporate 
how the mean value depends on the location through the mineralization covariate (Class I, 
II, or III). Moreover, we must account for the correlation in the oxide grade and the bivari-
ate data (XRF and XMET).
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Figure  4.8  Histogram (left) and quantile–quantile plot of the residual of XMET data after a 
least-squares fit. The purpose of this exercise is to see whether the Gaussian regression model is 
appropriate for this data set. The fit looks reasonable, possibly with some missing skewness in the tails.
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In Figure 4.10, we show the prediction and the prediction standard error of oxide grade 
at the vertical cross section illustrated in Figure 4.7. The prediction clearly illustrates the 
ore body with higher grades but also shows spatial variability. In the standard error display, 
we recognize the nearby boreholes where there is low uncertainty. The prediction variance 
is much higher at prediction locations far away from the boreholes.

Chapter 6 describes VOI analysis for this case. The question there is whether the mining 
company should collect additional data (XRF or XMET) to improve the predictability of 
the oxide grade and to make better decisions about the development of the mine.
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Figure 4.9  Empirical variogram estimate for the oxide grade data set. The variogram appears to meet 
the second axis above the origin (indicating a nugget effect). It increases to its sill at around a range 
of 50–100 m.
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Figure  4.10  Predictions (left) and prediction standard error (right) of the oxide grade along the 
vertical grayscale profile in Figure 4.7.
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4.5  Non-Gaussian response models and hierarchical spatial models

The Gaussian model is possibly overused (and abused) in statistical applications, and 
it should be applied with care. Residual plots, cross-validation, and other techniques 
should be used to check whether the Gaussian modeling assumptions are appropriate. 
These approaches may also indicate which other models may be reasonable. Are there 
non-linearities in the data? Are the data skewed? Is there a clear increase in variance with 
increased response? Are the data discrete, and is a Gaussian assumption not suitable?

In some of these situations, one may benefit by working with models inspired by the 
Gaussian pdf or models using the Gaussian distribution as an important building block. In 
this section, we present some spatial models that incorporate skewness and count data. We 
focus on extending the analytical closed-form solution of the Gaussian distribution. Some 
other popular approaches for non-Gaussian response and hierarchical models are discussed 
in the bibliography.

4.5.1  Skew-normal models

Scientists use the Gaussian model extensively, largely due to the computational advantages 
gained from having closed-form solutions. For instance: the sum of two Gaussian variables 
is also Gaussian; when the joint pdf is Gaussian, the marginal pdfs are also Gaussian; when 
we have linear conditioning on data, the conditional pdf is Gaussian. We present and motiv-
ate a skew pdf that has a closed-form pdf under sums, marginalization, and conditioning.

The skew-normal distribution extends the Gaussian distribution by enforcing skewness 
in a selected direction. Define the pdf of the variable of interest x = ( )x xn1,...,  by

	 p N tx x( ) = 





( ) −( )−
2

1

2µ λ µ, .Σ ΣΦ 	 (4.24)

Here, Φ( )⋅  is the cumulative distribution function of the standard normal; i.e., 

Φ x
z

dz
x( ) = −



−∞∫

1

2 2

2

π
exp

  
.

Thus, if the variable of interest x is in the dimension penalized by the skewness weights 
λ = ( )λ λ1,.., n , then the cumulative distribution is close to 0 and the Gaussian pdf N µ,Σ( ) 
is dampened. If the variable is in the dimension not penalized by the skewness weights, 
then the cumulative is close to 1. This leads to a skewed pdf that increases slower than the 
Gaussian pdf on one side and dies out like a Gaussian at the other side.

We motivate the use of skew-normal models with an example of saturation and porosity 
variables in a petroleum reservoir and seismic amplitude-versus-offset (AVO) response 
variables at the subsurface horizon representing the top of the reservoir. In the example, 
we consider porosity and saturation variables obtained from the Society of Petroleum 
Engineers (SPE) 10 data set, which has been used substantially as a test study in petroleum 
reservoir characterization (Christie and Blunt 2001). We use forward models for predicting 
the seismic responses from saturation and porosity variables. In our case, this entails rock 
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physics modeling to create elastic moduli from which synthetic seismic reflection data are 
computed at the top reservoir as a function of the incidence angle, resulting in two seismic 
amplitude attributes (the (AVO) attributes): the zero-offset reflectivity and the AVO gradi-
ent describing the amplitude variation with source-receiver offset.

The applicability of Gaussian or skew-normal pdfs may be seen by plotting the par-
ametric modeling fit with the empirical distribution of saturation, porosity, and seismic 
reflection data. Figure 4.11 shows the Gaussian fit, the skew-normal fit, and the empirical 
histogram for this SPE 10 data set. The skew-normal pdfs give notably better fit than the 
Gaussian for the brine saturation and the seismic attributes. This indicates that the reservoir 
variables and data are skewed, possibly driven by lithologic changes in the reservoir. There 
is not much difference between the Gaussian and the skew-normal pdf for the porosity 
variable (Rezaie et al. 2014).
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Figure 4.11  Gaussian and skew-normal fit to reservoir variable porosity (top left) and saturation (top 
right), as well as synthetic seismic amplitude data for zero offset (bottom left) and amplitude versus 
offset (AVO) gradient (bottom right). The modeling is based on the Society of Petroleum Engineers 
(SPE) 10 data set.
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These skew models have been used in the spatial domain as straightforward extensions 
of the Gaussian pdfs – see, e.g., Kim and Mallick (2004) and Allard and Naveau (2007). 
In its simplest construction, the spatial skew-normal model borrows from the Gaussian 
regression model described in Section 4.4. First, the spatial variables x s s= …( ( ), , ( ))x x n1  
have mean vector µ β= H , which includes regression parameters. Note, however, that 
this is no longer the mean, because the first moment or expectation would also depend on 
the other model parameters in this non-Gaussian situation. Second, a spatial covariance 
function is built into the matrix Σ . Note similarly that this is no longer the covariance 
matrix, because the second moment of the skew-normal distribution is defined via the 
skewness weights as well. Nevertheless, the matrix entries are indicative of the smooth-
ness in the spatial variable. A particular low-dimensional form is often used for the skew-
ness weights λ . For instance, λ = λ11  is only one additional model parameter, λ1, on top 
of the Gaussian formulation, or λ= Σλ1

1 21 /  canceling the effect of the covariance in the 
cumulative function in the pdf for the skew normal. There are several ways of incorpor-
ating skewness.

A challenge of the usual skew-normal pdf is that skewness is only imposed in one dir-
ection: the direction defined by the length n vector λ µt Σ− −( )

1

2 x . To overcome this, the 
closed skew-normal formulation additionally allows multivariate (size q) skewness direc-
tions and a non-standardized cumulative distribution function. Let us denote the multivari-
ate Gaussian pdf by φn Nx; , ,µ µΣ Σ( ) = ( ), and let the multivariate Gaussian cumulative 
distribution function be Φq q dx z z

z x

( ) = ( )
<
∫∫ φ ; ,µ Σ . Then, the closed skew-normal pdf is 

defined by

	 p
n q

q
t

x
x x

, 
( ) =

−( )( )
( )

( )φ ; , ;
.

µ µ ζ
ζ

Σ Λ ∆
∆ ΛΣΛ

Φ
Φ

,
0 +;

	
(4.25)

The skewness matrix Λ is of size q n× , enabling much more flexibility than in the 
skew-normal pdf. Moreover, the size q ×1 center point of the skewness dimension ζ  and 
the q q×  scale matrix ∆  allow closed-form distributions under marginalization and condi-
tioning. Suppose that we have a prior pdf p x( ) and a likelihood model p y x|( ) that is also 
closed skew normal and with a linear relation for the center parameter of the likelihood 
model. Then, the posterior pdf p x y|( ) will also be closed skew normal, as will the mar-
ginal likelihood p y( ) (see, e.g., Dominguez-Molina et al. (2003) and Rezaie et al. (2014) 
and a related exercise in Chapter 7).

It is useful to have a skew distribution with analytic, closed-form marginal and condi-
tional pdfs. The closed skew normal is thus a pdf with added flexibility compared with 
the usual Gaussian assumptions, and it still allows for fast computation. However, it 
can be hard to identify the model parameters in the closed skew model from data – say, 
using MLE. Moreover, interpreting the results of the model may be demanding because 
of interactions between model parameters. For instance, the mean and variance are no 
longer defined directly by µ and Σ . Finally, it is not trivial to evaluate the multivariate 
cumulative distribution function in large dimensions, but useful approximations exist 
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(Genz and Bretz 2009). Thus, even though the model extends the Gaussian, the add-
itional flexibility comes at a cost.

4.5.2  Spatial generalized linear models

Generalized linear models (GLMs) have become very popular in statistics to model 
non-Gaussian responses (see Appendix A.2.) When one has acquired or considers 
acquiring spatial count or absence/presence data, the spatial versions of the GLM 
become relevant. Examples include the number of joints in a mine (see example later), 
the counts or presence or absence of a plant at a possible biological conservation site, 
and so on.

If the data are non-Gaussian, the assumptions of the Gaussian regression model cannot 
be justified, but one can either transform the data or build a hierarchical model. The former 
approach transforms the data to responses that appear Gaussian. Commonly, a log or 
square root transform is used in applications. This approach is more difficult for response 
variables with a discrete sample space. The hierarchical models are then more attractive, 
using the Gaussian random field as a latent process incorporating spatial smoothness. For 
spatial GLMs, this approach was pioneered by Breslow and Clayton (1993) and Diggle 
et al. (1998).

The spatial GLM likelihood is based on the exponential family model, which includes 
the binomial and Poisson distributions. The parameters of the distributions are now spa-
tially varying and typically incorporate spatial correlation according to a log or logistic 
Gaussian random field. The likelihood model is commonly assumed to be conditionally 
independent, given the latent Gaussian process. The usual statistical tasks of parameter 
estimation and prediction can then be done borrowing ideas from standard GLM analysis. 
In mathematical notation, p Nx( ) = ( )µ,Σ  for latent variable x s s= ( ) ( )( )x x n1 ,..,  repre-
sented at n locations, with mean µ β= H  incorporating the effect of covariates and the spa-
tial covariance matrix Σ Σ= θ( ). The likelihood is denoted p y xi is s( ) ( )( )|  for i m= 1,..., ,  
where we assume that m of the n sites of interest are observed. For the Poisson distribution, 
the spatially varying mean in the Poisson likelihood is V xi iexp s( )( ) for a fixed time win-
dow or spatial volume Vi.

The main goals are estimation of statistical model parameters and predicting spatial 
variables. The specification of model parameters cannot be done from the empirical vari-
ogram because the data are counts and not intensity. MLE is also complicated because 
there is no closed-form expression for p y( ), y s s= ( ) ( )( )y y m1 ,.., . Similarly, the posterior 
pdf p p px y x y x| |( ) ( ) ( )∝  is not analytically available. However, approximate computa-
tion techniques are often useful for specifying model parameters and for spatial prediction 
in GLMs.

Consider first the prediction of the latent intensity x s( ) at location s, given data y, which 
can be summarized by the posterior pdf p x y|( ). Since there is no closed-form expression, 
this pdf must be approximated, and one possibility is to fit a Gaussian approximation at 
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the posterior mode. This approach requires solving an optimization problem to identify 
the mode of the posterior ˆ argmax|µ x y x x y | x= ( ) ( ){ }p p  and assessing the curvature at the 

mode of the posterior via the Hessian d p p

d

2

2

log x y x

x

( ) ( )( )| , evaluated at the mode – i.e.,
 

x x y= ˆ
|µ . The mode can be detected by an iterative search that, at each step, expands the 

exponent of the GLM likelihood in a quadratic form. With a Gaussian prior, this results in 
a quadratic form for the posterior expression – i.e., a Gaussian approximation. Its mean is 
used to expand the GLM likelihood for the next iteration, and so on.

Consider next the estimation of parameters. An approximation to the marginal is pro-
vided by the Laplace approximation (see Chapter 2 and Appendix A.2):

	 ˆ ; ,

ˆ ; , | ˆ

ˆ ˆ | ; ,
,

| |

|

p

p p y

p
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i

m

i

y
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x y

β θ
µ β θ

µ β θ
( ) =

( ) ( )
( )

=
∏ µ

1
	 (4.26)

where the numerator is defined by the model, and the denominator is the Gaussian approxi-
mation at the posterior mode. The evaluation of the marginal likelihood approximation in 
Equation (4.26) requires an optimization step for the latent variable x for the fixed param-
eter values  β θ,( ).

The Laplace approximation tends to perform rather well for spatial GLMs since like-
lihood models such as the Poisson are a part of the exponential family of distributions, 
which does not impose any severe non-linearities or non-Gaussianity. The approximation 
may not be done so easily for more complex likelihood models outside the GLM class. 
For instance, some likelihood models impose a multimodal posterior distribution for the 
variables of interest. In that case, it may be possible to use analytical solutions as proposal 
distributions in a Monte Carlo sampling scheme for parameter estimation or the prediction 
of spatial effects.

4.5.3  Example

We will rock you: rock hazard example

Keywords: rock hazard example, mining, joint frequency data, spatial generalized linear model, 

Laplace approximation, maximum likelihood estimation, spatial prediction

The data consist of joint counts acquired to study the stability of the rock mass in a 
Norwegian mine. The count data y s s= ( ) ( )( )y y m1 ,...,  are collected at m = 1615 locations 
of the operating mine. Zones with large counts may require further analysis due to the dan-
ger of rock fall, and the mining company has interest in predicting the spatial joint intensity 
and the number of joints.

Figure 4.12 shows the locations of the count data in a three-dimensional (3-D) view and 
a histogram of the m = 1615 data. Most joint counts are between 10 and 40. The smallest 
count is 0, while the largest count is 93.
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The data are modeled by a hierarchical model with a conditionally independent Poisson 
likelihood p y x xi i is s s( ) ( )( ) = ( )( )( )| expPoisson 4 , i m= 1,..., , where the factor 4 is needed 
because the joint frequency data have been aggregated over 4-m intervals. We model the log 
joint intensities x s s= ( ) ( )( )x x n1 , ,  by a Gaussian random field – i.e., p Nx( ) = ( )µ, ,Σ  
where we use n = 1617 here. The first 1615 entries coincide with data locations, while the 
last two are the prediction sites marked as open circles in Figure 4.12. This allows efficient 
parameter estimation from the 1615 data as well as prediction at the two sites. The mean 
is constant, so µ = µ0 1. The spatial covariance is of a Matern type (see Table 4.1), with 
unknown variances and the range denoted by parameter θ.

The Laplace approximation of the marginal likelihood is

	 ˆ ; ,
; , |

ˆ | ; ,
,p

p p y x

p

i i
i
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y
x

x y
µ0

0
1

0

θ
θ

θ
( ) =

( ) ( )
( )

=
∏µ

µ
	 (4.27)

which is evaluated at the posterior mode as in Equation (4.26). In Equation (4.27), the 
denominator is the Gaussian approximation for the joint intensity, while the numerator 
is defined by the prior for log intensity and the likelihood model for the joint counts. 
Numerical optimization is used to maximize the marginal likelihood in Equation (4.27). 
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Figure 4.12  Top: map view of the joint count data acquired along boreholes in a Norwegian mine. 
The dot sizes are indicative of the number of joints at the location. The two open circles are locations 
for prediction. Bottom: histogram of the joint count data. There are 1615 measurements in total.
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The procedure results in a mean of 1.55 and covariance parameters in the Matern model as 
follows: a partial sill of 0.13, a nugget of 0.04, and an in-strike correlation range of 300 m.

The Gaussian approximation ˆ | ; ˆ ,ˆp x y µ0 θ( )  is used to predict the joint frequency y s0( ) at 
unobserved locations s0. In the hierarchical modeling framework, this involves a marginal-
ization over the latent intensity – i.e.,

	 ˆ | | ˆ | ; ˆ , ˆ .p y p y x p x dxs y s s s y s0 0 0 0 0 0( )( ) = ( ) ( )( ) ( )( ) ( )∫ µ θ 	 (4.28)

In this case, ˆ | ; ˆ , ˆ ˆ , ˆ
| |p x N x xs y s y s y0 0

2
0 0

( )( ) = ( )( ) ( )µ µ σθ  is the approximation obtained 

by picking entries 1616 or 1617 in the mean and covariance matrix of the Gaussian 
approximation ˆ | ; ˆ ,ˆp x x µ0 θ( ) for the joint log intensities, given the data. The integral 
in Equation (4.28) can be solved numerically, and it must be evaluated for all discrete 
values of y s0 0 1 2( ) ∈{ }, , ,... .

Figure 4.13 shows the predictive distributions at the two selected locations marked with 
open circles in Figure 4.12. The western site is predicted to have much higher joint intensity 
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Figure 4.13  Prediction of joint frequency at the selected east and west locations in the mine. The top 
displays show the predicted intensity of the joint frequencies, while the bottom displays show the 
predicted joint count distribution.
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(top), and the Gaussian approximation is narrower than at the eastern site. The predicted 
pdfs for the joint count distributions (bottom) show that large joint counts are more likely 
at the western site. Note that the pdf at the western site is now more dispersed than for the 
eastern site. This results from a characteristic of the Poisson distribution, where the vari-
ance increases with the expectation.

We will use this example in Chapter 6 for VOI analysis for the rock hazard situation in 
the mine. The question there is whether additional joint observations are worthwhile in 
helping the mining company make better decisions about adding rock support in the min-
ing tunnels.

4.6  Categorical spatial models

If the distinction of interest is categorical, one can build a model by transforming or trun-
cating Gaussian variables. It is also possible to explicitly model a categorical process over 
the spatial domain. The joint model for the process is then represented on a huge sample 
space dn, where d is the number of categories (colors), and n is the number of locations 
(cells) used to represent the domain.

4.6.1  Indicator random variables

A natural way to model categorical random variables is through an indicator variable that 
can only assume values of 0 or 1 – e.g., indicating the absence or presence of a distinc-
tion such as lithofacies at every location. Sequential indicator simulation is the method 
applied to indicator variables. The spatial structure of the indicator random field is speci-
fied by the traditional two-point variogram or covariance function. The local conditional 
distribution at each simulation node is approximated by the indicator Kriging estimate at 
that node conditioned to previously simulated nodes and any hard data. This makes use of 
the property that the stationary mean of a binary indicator is its distribution function itself. 
Thus, the problem of evaluating the local conditional distribution is mapped to evaluating 
the conditional expectation, which is done by Kriging. Using this local conditional distri-
bution preserves the mean and the covariance structure.

The sequential indicator algorithm allows for flexible handling of auxiliary data (e.g., 
facies probabilities derived from seismic interpretation) and inequality or interval con-
straints. As noted in the literature, there are theoretical problems with this method since 
the Kriging estimate may not lie in the interval [0, 1] and hence would not be a valid 
conditional distribution. Corrections have to be applied, which then does not preserve 
the covariance exactly. Moreover, the two-point covariance can be a very poor descrip-
tor of the spatial properties of indicator random functions. The covariance function for 
an indicator and its complement (e.g., sand channels in mud background or pores and 
grains) is the same, but in terms of connectivity and flow response, an indicator set 
and its complement can have very different properties. Though a flexible and popu-
lar method available in many geostatistical softwares, sequential indicator simulations 
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produce “blob”-like geometries unable to capture geological shapes and connectivity 
(Daly and Caers 2010).

4.6.2  Truncated Gaussian and pluri-Gaussian models

A class of models for categorical variables closely related to Gaussian random field models 
are the truncated Gaussian and pluri-Gaussian models. Here, the categorical random vari-
able arises by applying one or more thresholds to a standard Gaussian random field. The 
underlying continuous variable could have physical meaning – e.g., ore grade or contamin-
ation level – and the associated categorical variable could be a certain cut-off grade or con-
tamination warning threshold. In other cases, the underlying continuous variable might just 
be a mathematical construction of convenience for the model. The thresholds are chosen 
according to the proportions of each category. The correlogram of the standard Gaussian 
random field in Equation (4.5) is not the same as that of the indicator field obtained by 
truncating the Gaussian variable, but they are related to each other. If the standard Gaussian 
field with correlogram ρ(|t|) is truncated at level λ, then the covariance of the indicator is 
given by

	 C
u

du

u

t

λ

ρ

π
λ

| | exp ,
(| |)

t( ) = −
+





 −∫

1

2 1 1

2

0
2

	 (4.29)

which for the median threshold of λ = 0 simplifies to C0 1 2| | arc sin | |t t( ) = ( ) ( )π ρ . The 
derivations and other properties of truncated Gaussian models are discussed in Chiles and 
Delfiner (2012). Lantuejoul (2002) presents expressions relating the variograms of the two 
fields.

The truncated Gaussian model is generalized to the truncated pluri-Gaussian model by using 
thresholding rules on two Gaussian random fields, which can be independent or correlated. 
Complex spatial associations between different categories can be modeled by pluri-Gaussian 
simulations using appropriate thresholding rules. These methods have been applied to model 
petroleum reservoirs (turbidites and carbonates) as well as ore deposits. Armstrong et  al. 
(2011) give a detailed presentation of the pluri-Gaussian method and its applications.

4.6.3  Categorical Markov random field models

Suppose that the spatial domain of interest has been split into n disjoint subdomains, 
units, or cells. A random field is represented on the resulting grid of these disjoint cells. 
In Section 2.3, we studied categorical Markov chains, where the Markov property was 
phrased in the sequence of time or some other ordering – i.e., the distribution today, given 
the past, depends only on yesterday. Here, for a spatial process, there is no natural order-
ing in time, and the Markov property is instead described in terms of the full conditional 
distributions breaking down to the conditional distribution given only the values in a neigh-
borhood. The notion of a neighborhood makes sense in the spatial context, since variables 
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that are close in space tend to propagate information going from one geographical domain 
to another. Here we provide a brief background on Markov random fields (MRFs) (see 
Appendix A.4 for further details).

Let x = …( , , )x xn1  be the distinction of interest represented at the n cells covering the 
spatial domain of interest. We assume a set of possible categories: x di ∈ …{ , , }1 , i n= 1,..., . 
The number of classes is most commonly d = 2 – i.e., the random field can be regarded as 
black and white. In some applications, more categories are natural, and d = 3 4 5, ,  add some 
grayscale to the field. Furthermore, let x− − += … …( )i i i nx x x x1 1 1, , , , ,  be all variables except 
the one at cell i. A conditional MRF definition is

	 p x p x x j Ni i i j i| | ; ,x−( ) = ∈( ) 	 (4.30)

where Ni is the neighborhood of cell i. This equation tells us that once we know the out-
comes within the neighborhood, there is no additional information in knowing the variables 
outside this neighborhood.

Consider the case shown in Figure 4.14, and suppose that one is interested in the full 
conditional distribution of cell i defined by p xi i| x−( ). The display shows the situation 
with a first-order neighborhood, where the full conditional only depends on the outcome 
at the four nearest neighbors (north, east, south, and west). When the discrete field has two 
possible outcomes at each location, this model with a first-order neighborhood is called the 
Ising model.

An MRF model, defined in terms of neighborhoods, can be shown to have a one-to-one 
correspondence with a joint probability model represented over subsets of variables called 
cliques (Besag 1974). The joint probability for the Ising model is

	 p
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Neighborhood
cells; j

p(xi |x–i) = p(xi |x j, j ∈Ni)

Shaded neighborhood ; Ni

Center
cells; i

Figure 4.14  Schematic of a Markov random field model. The grayscale cells are the neighborhood of 
the center cell for a first-order Markov random field.
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Figure 4.15  Four realizations of a Markov random field model with a first-order neighborhood and 
two colors (Ising model). The grid size is 75 × 75 and the spatial interaction parameter is β = 0.75.

where the sum (i j~ ) is over all the north–south or east–west variable pairs – cliques – 
on the grid, and I is the indicator function. The clique potentials are β  for equal colors 
in the neighbors, while they are 0 for different colors. A  larger interaction parameter β  
implies more spatial continuity in the colors across the lattice. The normalization constant 
Z  ensures that the expression is a valid pdf.

Figure 4.15 shows four realizations of an Ising model on a 75 × 75 lattice with inter-
action parameter β = 0 75. . By using a larger neighborhood of the MRF, with added flexi-
bility in the clique potentials, one can obtain more realistic realizations from the associated 
MRF models – for instance, channel structures, lobes, and so on. By using more than two 
colors, it is possible to represent additional geological classes – for instance, sand, shale, 
coal, chalk, etc.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.005
http:/www.cambridge.org/core


4.6 Categorical spatial models 143

The MRF model can be extended from the basic formulation by introducing an external 
field, given as single site potentials. The joint pdf for the Ising model is then

	 p

I x x x

Z

i j
i j i

i
i

x( ) =
= +







( ) ( )∑ ∑exp

,
~

β α
	 (4.32)

where α i l( ), i n= …1, , , is a potential for each color l d= …1, , . This external field can either 
be specified a priori, or it can depend on data or covariates. The latter situation is common 
when there are conditionally independent data at the nodes.

Extending the idea of the hidden Markov model from the time domain leads to a hid-
den Markov random field model. Let us denote the likelihood by p y xi i|( ) for all cells 
i n= 1,..., . The posterior pdf of interest, conditional on the data, becomes

	 p I x x x y xp
i j

i j i
i

i
i

i ix y| ∝ |( ) = + +






∑ ∑ ∑exp ( ) ( ) ( ) .log

~

β α 	 (4.33)

We demonstrate this with an example later, where there are seismic reflection data yi  
available at each cell.

MRF models of moderate size can be evaluated and sampled from with exact 
forward–backward algorithms for efficient marginalization – see, e.g., Reeves and Pettitt 
(2004) and Appendix A.4. For large grids, Markov chain Monte Carlo sampling may be 
useful (see Appendix B).

Discussion: full conditionals for the Ising model

For the typical Ising model, the marginal probability of white (0) or black (1)  at any cell is 
0.5. The full conditional distributions depend on the number of equal colored variables in the 
neighborhood:
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The interaction parameter β  or other parameters in the MRF model must be inferred 
from the data. The data can be either perfect information x or imperfect information y. 
MLE is one way to specify parameters, but this task is not straightforward for large grids 
(see Appendix A.4).

Even though categorical MRF models have been helpful in applications with two spatial 
dimensions, it has been cumbersome to apply them in full three-dimensional (north, east, 
depth) spatial models. One challenge is that Markov chain Monte Carlo sampling conver-
gence can be very slow. Rather than following the strictest mathematical formulations of 
MRFs, there have been promising approaches trying to modify the MRF formulation.

One idea is to separate the depth dimension from the lateral directions. This can be 
reasonable in some settings, since special geological rules apply in the depth dimension. 
The Markov chain Monte Carlo sampler can now solve for the depth direction by a direct 
solver (like forward–backward recursions for Markov chains), while the Markov chain 
Monte Carlo scheme loops over the two-dimensional lateral space. The convergence of the 
Markov chain Monte Carlo sampler becomes much faster than doing a full loop in three 
dimensions. Recent applications for seismic reservoir prediction include Ulvmoen et al. 
(2010) and Rimstad et al. (2012).

Another idea for making the MRFs more applicable is to introduce ordering in the grid. 
Markov mesh models are a type of partially ordered Markov models, which consider the 
conditional distribution for a cell given the cells with a lower order and not the entire neigh-
borhood. This view speeds up the computations, but care must be taken to parameterize the 
dependency realistically. Stien and Kolbjørnsen (2011) apply techniques from generalized 
linear models to specify parameters in Markov mesh models. See also Tjelmeland and 
Austad (2012), who follow ideas more similar to the exact forward–backward schemes but 
apply a truncation, where the higher-order interactions in the (forward) computation of the 
MRF are ignored.

4.6.4  Example

Black gold in a white plight: reservoir characterization example

Keywords:  reservoir characterization, Markov random fields, seismic data, petroleum, Monte 

Carlo sampling

Seismic data are useful for reservoir characterization. By careful processing and inter-
pretation of seismic amplitude data at the top of the reservoir, a petroleum company can 
predict (imperfectly) the spatial distribution of, for instance, sands or shales, or brine and 
oil saturation. The quality of the prediction, of course, depends on the prior knowledge of 
the reservoir and rock and fluid properties, as well as the quality of the seismic amplitude 
data. A similar example was discussed in Chapter 2 and will also be used for VOI analysis 
in Chapter 6.

In this example, the data and the rock-type (facies) variables are represented on a grid 
of size 75 × 75 at the top reservoir. Here, the petroleum company is working toward the 
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prediction of the discrete facies variable x. The facies at a reservoir unit is either oil sand 
(black) or shales (white) – i.e., xi ∈ 0 1,{ } and i = 1 5625, ,… . We consider only the stacked 
zero-offset attribute yi of the seismic amplitude data for all cells at the top reservoir. The 
goal is to demonstrate the applicability of an Ising model prior for the facies in this predic-
tion exercise. This can be phrased as a Bayesian inference problem, where the likelihood 
builds on the established geophysical knowledge via a forward model, while the prior model 
incorporates smoothness or spatial interaction between the facies variables at different cells.

Figure 4.16 shows the seismic amplitude data at the top reservoir. The data are informative 
of the facies because sands and shales tend to give different seismic responses. Given the 
facies variables, the seismic data are modeled as conditionally independent. The likelihood 
p y xi i|( ) is a Gaussian pdf, where the mean value depends on the facies variable, while the 
variance is the same for both classes. Figure 4.17 shows the likelihood model for both classes.

Let us define an Ising model prior with the interaction parameter set to β = 0 75. , simi-
lar to the model used in the realizations shown in Figure 4.15. For the posterior analysis, 
we run a Markov chain Monte Carlo algorithm for 500 000 updates. Specifically, we use a 
Metropolis–Hastings scheme, which updates the facies variable at one randomly selected 
cell at each iteration of the algorithm. The updating is easily done because of the neigh-
borhood of the MRF model and the conditionally independent likelihood model. At each 
update, only the four nearest neighbors must be considered, as well as the seismic ampli-
tudes at the selected cell (see Appendix B).
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Figure 4.16  Seismic reflection data (zero-offset amplitudes) at the top reservoir horizon. The top 
reservoir is represented on a grid of size 75 × 75.
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Figure 4.18 (right) shows the maximum a posteriori solution of the facies variable using 
the Markov chain Monte Carlo algorithm. We compare the MRF solution with the results 
of a pointwise classifier based on the likelihood model alone (Figure 4.18, left). For the 
pointwise classifier, the algorithm simply picks the most likely class depending on the data 
at that cell – i.e., the highest likelihood value for the data is read directly out of Figure 4.17. 
If the data are larger than 0.05, a cell is classified as oil sands; otherwise, it is classified as 
shales. The pointwise result has many more black cells within regions dominated by white 
and vice versa. The MRF solution borrows spatial information from neighboring cells, and 
this entails that all data are involved in making a classification at a cell. The prediction 
becomes smoother than the pointwise classification.

4.7  Multiple-point geostatistics

Although Markov random field models are based on a solid statistical foundation and only 
require a few parameters, it is challenging to construct MRF models that produce realiza-
tions that visually appear like geological images. For instance, a large neighborhood is 
required to reproduce channel structures often seen in reservoirs. Careful computing is 
required to obtain reliable inference and prediction for MRFs with large neighborhoods. 
Markov chain Monte Carlo algorithms tend to be very slow here. An alternative approach 
to Markov random fields is that of multiple-point geostatistics.

4.7.1  Algorithms

The ideas of training images and multiple-point (MP) geostatistics were originally presented 
to overcome the limitations of two-point (Gaussian) models (Guardiano and Srivastava 
1993). Although they were initially developed to construct discrete valued realizations of 
geology from training images, current MP algorithms can also construct realizations of 
continuous variables and handle non-stationarity. The original MP algorithms for categor-
ical variables (e.g., single normal equation simulation (SNESIM) (Strebelle 2000, 2002)) 
extract the MP statistics – i.e., the probability of a state at a given position given the state 
of multiple neighbors – from a training image. The patterns seen in the training image 
are then reproduced (at random) according to the database of conditional distributions. 
This means that no new patterns can occur unless we assign a very small probability for 
non-existing patterns. The MP idea is very empirical, as it is constructed directly from 
the training image, different from Markov random fields, which are built from paramet-
ric assumptions of neighborhood configurations. MP simulations are certainly rich (given 
a rich training image) in the sense that realizations offer close resemblance to geology. 
However, when the patterns grow larger and the training image is not large enough, MP 
algorithms may be prone to overfitting since they basically reproduce what is available in 
the training image, and this may lack predictive power.

In many of the MP algorithms, the simulations using a training image follow the sequen-
tial simulation paradigm. Each node is visited sequentially, and the local conditional dis-
tribution (non-parametric) is obtained from the training image. In this sense, it can be 
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classified as a sequential algorithm, as is common for Gaussian simulation of spatial pro-
cesses. However, the difference is that it is conditioned to data events consisting of patterns 
of multiple data taken together. Some of the more recent MP algorithms are based more on 
computer graphics and do not rely much on probability theory. Instead of assessing para-
metric or non-parametric conditional distributions from the training image, these algorithms 
directly lift from the training image realizations of single nodes or multiple sets of nodes 
in a template (pattern simulation) (Mariethoz and Caers 2015). As an example, the direct 
sampling (DS) MP algorithm (Mariethoz et al. 2010) directly samples the training image 
conditioned to the MP data event surrounding the node to be simulated instead of building 
a conditional distribution from the training image. The algorithm randomly scans the train-
ing image, and as soon as a match (within a certain tolerance threshold) is found to the MP 
data event, the value from the training image is lifted and pasted at the simulation node. The 
match is defined in terms of some similarity distance – e.g., whether the facies categories 
at the nodes in the data event match the corresponding nodes from the training image scan. 
The threshold needs to be selected carefully, of course. Requiring a perfect match leads to an 
exact copy of the training image. A small fraction (<0.1) of mismatching nodes is taken to be 
acceptable. Pattern-based algorithms also compare similarities between the data event and 
the patterns from the training image, but instead of lifting one pixel at a time, they patch a 
finite-sized region of the training image into the simulation grid. Patch-based algorithms are 
generally faster than pixel-based algorithms. The DS algorithm can be used as a patch-based 
algorithm. In addition, some other patch- (or pattern-) based MP algorithms in the litera-
ture include image quilting (Efros and Freeman 2001), FILTERSIM (Zhang et al. 2006), 
SIMPAT (Arpat and Caers 2007), and CCSIM (also Tahmasebi et al. 2012). Mariethoz and 
Caers (2015) provide a detailed overview of all of these algorithms and many others.

As we mentioned earlier, MP statistics can simulate geologically realistic patterns. 
Note that this relies on an appropriate training image, which may not always be available. 
Coming up with a rich enough training image (or sets of training images) that characterize 
the prior uncertainty of the subsurface heterogeneity is challenging, often requiring close 
interaction with geologists familiar with the depositional setting of the area under study. 
Based on the geologists’ inputs, the training image may be built using unconditional sim-
ulations such as object-based methods or process-based or process-mimicking methods. 
Though challenging, once an appropriate training image is available, modern MP simula-
tion algorithms offer very effective ways of modeling realistic geologic heterogeneity that 
no traditional two-point geostatistical method can match.

We discuss more references to MP statistics in the bibliography that follows and finish 
this section with an example.

4.7.2  Example

Go with the flow: petroleum simulation example

Keywords: petroleum simulation, petroleum development, petroleum production, reservoir charac-

terization, multiple-point statistics

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.005
http:/www.cambridge.org/core


4.7 Multiple-point geostatistics 149

Decisions regarding drilling and future production of reservoirs are based on several 
aspects of reservoir characterization. One important aspect is the ability to produce the res-
ervoir from a relatively small number of wells, which is related to the connectivity and the 
permeability of the reservoir. These variables direct the flow of hydrocarbons to the pro-
ducing wells. Petroleum engineers use fluid flow simulators to make production forecasts, 
to detect reservoir zones of bypassed oil, and to develop and manage the reservoir. As we 
discussed for Figure 4.2 at the beginning of this chapter, it has been shown to be beneficial 
to run flow simulations over multiple realizations of stochastic reservoir models. Along 
with the suite of other tools for spatial uncertainty modeling, MP geostatistics have played 
an important role in the modeling of geologic facies as inputs for reservoir simulation.

In Figure 4.19, we show a training image for a meandering river system. The display 
shows spatially dependent patterns of white and black in a three-dimensional (north, east, 
depth) view. It is common practice to use a training image like this one to realistically 
describe the spatial features and alternation styles of the rock types (facies) in the reservoir, 
which is a critical reservoir variable that determines much of the variations in the saturation 
(oil or gas content), porosity (tied to the pore volumes in the reservoir rock), permeability 
(tied to the flow properties in the reservoir), and elastic properties (tied to the seismic data).

There are two facies classes in this training image: channel sands and floodplain (shown 
as black and white, respectively, in the display). The training image is constructed from an 
object-based unconditional simulation. Multiple realizations are then simulated using the 
SNESIM MP algorithm by visiting each node in a sequential routine. When the algorithm 
visits a cell, it samples a color. The color is generated conditional on the colors at the pre-
viously visited cells. The events or patterns around the current node jointly influence the 
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Figure 4.19  Training image for a subsurface meandering channel system with two classes (channel 
sands and floodplain). One can create multiple-point statistics (MPS) realizations of discrete spatial 
variables based on such training images.
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conditional probability – i.e., there is conditioning on the outcome at multiple points. The 
computation is done in a straightforward manner: counting the number of times the config-
uration of the history occurred in the training image (database), with a white or black color 
at the selected configuration. This is Bayes’ rule by counting.

We generate B = 1000 realizations of the discrete random process. At each cell, the sto-
chastic facies variable is either channel or floodplain. The next step in petroleum reservoir 
simulation is to generate other important reservoir variables like porosity or permeability, 
conditional on the facies classes. We use sequential Gaussian simulation for the porosity 
and permeability in the reservoir, conditional on the facies.

If the goal of this exercise were to predict the recoverable petroleum resources, then the 
reservoir engineer would feed the deterministic numerical reservoir flow simulation model 
with the multiple stochastic porosity and permeability inputs. The output is production 
profiles in production wells over time. Of course, other geological and petrophysical inputs 
are also required here, such as well controls, boundary conditions, rock and pore fluid prop-
erties, relative permeability curves, capillary pressure curves, wettability, etc.

Figure 4.20 shows 1000 realizations of the total oil production from six producing wells. 
Each curve is representative of the production obtained by flow simulating one of the sto-
chastic reservoir realizations for facies, porosity, and permeability. The variability in the 
production profiles is inherited from the stochastic elements of the reservoir variables.

Since the reservoir simulator is based on highly non-linear multiphase flow in porous 
media, one cannot rely on linearization and Gaussian assumptions for the output variables. 
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Figure 4.20  Production profiles calculated by multiphase flow simulation over many realizations of 
facies, porosity, and permeability fields.
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The realization-driven approach described earlier is necessary to quantify uncertainties; 
this method is popular in a number of Earth sciences applications. Rather than having a 
closed-form pdf for the output variable (petroleum production in this case), an approach 
like this would result in a discrete, empirical representation of the pdf, as determined by 
the samples.

4.8  Bibliographic notes

Traditional geostatistics books describing variogram methods, Kriging,  
and simulation

Books describing variogram-based geostatistics and Kriging in various forms are abundant. 
Excellent reference books include Journel and Huijbregts (1978), Isaaks and Srivastava 
(1989), Kelkar and Perez (2002), and Wackernagel (2003).

Deutsch and Journel (1992), in the Geostatistical Software Library (GSLIB), provide a 
terse yet useful recall of the theory underlying the algorithms coded in the corresponding 
public domain software. The list covers most traditional two-point geostatistical algorithms 
commonly used in practice, from variograms to Kriging to simulations and their many fla-
vors. GSLIB has been the source of many commercial geostatistics softwares. Goovaerts 
(1997) focuses only on traditional two-point methods and is remarkable for its careful and 
complete derivations and the continuity offered by the sequence of applications performed 
on the same multivariate soil data set. Through that data set, readers can readily appreciate 
the typical flow of a geostatistical study. Lantuejoul (2002) provides theory and algorithms 
for unconditional and conditional simulations of a wide variety of spatial models. Besides 
the classical Gaussian and pluri-Gaussian random functions, theory and algorithms for 
other spatial stochastic models such as point processes, Boolean models, tessellations, and 
substitution random function are described. Chiles and Delfiner (2012) is perhaps one of 
the best current graduate-level books on the theory and applications of geostatistical meth-
ods based on covariances and random function theory. The authors cover a breadth of top-
ics, including not only the traditional Kriging-based technniques but also spatiotemporal 
models, multivariate methods, change of support, and pluri-Gaussian models, along with 
many examples from petroleum geosciences, mining, and hydrogeology. There are concise 
but useful sections on geostatistical inversion and multiple-point simulations from train-
ing images. Though the mathematics is at an advanced level, it is presented in a readable 
manner. Pyrcz and Deutsch (2014) review geostatistical modeling tools, paying attention 
to careful quantification of geological concepts. They also describe process-mimicking 
models and event-based models used in geostatistical modeling.

Sequential simulation techniques and related topics

Borgault (1997) introduced the direct sequential simulation algorithm, where there is no 
need to perform a normal score transform and back-transform of the data. The advantage of 
this approach is that it can handle conditioning to linear averages of the original data. The 
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disadvantage is that there is no guarantee that the simulated realizations reproduce the data 
histogram. Indicator Kriging is a technique that could be used to estimate the conditionals 
at a site. A common reference paper for this technique is Journel (1983). In this case, no 
assumption is made about the shape of the distribution, which is assessed by directly esti-
mating the probability of being below a series of thresholds (for continuous variables) or 
by estimating the probability of being within a set of discrete categories. When this method 
is used for sequential simulation, the algorithm is usually called sequential indicator simu-
lation. In the probability field simulation (P-field) algorithm, conditionals are estimated 
based only on the hard data and not on indirect noisy observations. A common reference 
paper is Froidevaux (1992).

Spatial statistics

There are several excellent books treating spatial data analysis from a more statistical per-
spective. For instance, Cressie (1993) covers a wide range of spatial statistics topics not 
only limited to Gaussian- and Kriging-type techniques. Over the years, it has served as an 
excellent reference book for spatial statistics topics. Stein (1999) provides a solid back-
ground on the more theoretical aspects underlying parameter estimation and prediction 
(Kriging) in spatial Gaussian processes. Banerjee et  al. (2004) provide an overview of 
more recent methodologies for analyzing spatial processes. For instance, they include a 
description of areal-based models, a number of novel tools for non-stationary processes, 
and the use of Markov chain Monte Carlo simulation for inference. The focus of the book 
is on hierarchical modeling in a fully Bayesian perspective. Le and Zidek (2006) take an 
information theory-based approach, paying attention to the design of spatial experiments 
to improve predictions with a focus on the entropy measure. The main applications studied 
involve environmental data about air quality, ozone, and temperature. Schabenberger and 
Gotway (2009) and Gaetan and Guyon (2010) are other great books covering diverse topics 
in spatial statistics.

There has lately been a large focus in the statistical community on methods for large data 
sets. Topics such as predictive processes (Banerjee et al. 2008), fixed-rank Kriging (Cressie 
and Johannesson 2008), and localized models (Stein et al. 2004) are promising modeling 
approaches.

Non-Gaussian response models

In our presentation, we focused on the skew-normal model and the generalized linear 
models, as we will later use them in models for VOI analysis. There are of course sev-
eral non-Gaussian response models that we did not cover here. Perhaps the most com-
mon technique is to transform response variables to achieve Gaussian distributions for 
the empirical marginal. This has been referred to as anamorphosis (Cressie 1993). This 
approach seemed to die out with the advent of hierarchical models in statistics but has 
lately garnered some interest again in another similar form known as copulas (Joe 2014). 
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The Gaussian copula has been used in geostatistics – see, e.g., Bardossy and Li (2008) and 
Kazianka and Pilz (2011).

Non-parametric models such as spatial Dirichlet processes – e.g., Gelfand et al. (2005) – 
or stick-breaking mixture formulations – e.g., Reich and Fuentes (2007) – have also gained 
popularity recently.

There is a large body of literature on point-process models in spatial statistics. These are 
somewhat different from other spatial models because they focus on modeling the random 
location of spatial events rather than the random variable at a fixed location. A popular 
modeling approach is the log-Gaussian Cox process, which can be regarded as a hierarchi-
cal Gaussian model – see, e.g., Illian et al. (2008).

Markov random fields

The most influential publications in Markov random fields are Besag (1974) and Besag 
(1986). These papers sparked a lot of interest in the statistical community – not limited to 
spatial statistics but also in graphical modeling and image processing. Markov chain Monte 
Carlo (MCMC) has been a popular approach for sampling Markov random fields, as we 
have described, and the original paper on Gibbs sampling studied the Ising model (Geman 
and Geman 1984). See also the discussion of multiple-point geostatistics mentioned earlier, 
which in a similar vein provides very useful discrete valued spatial models.

Gaussian Markov random fields are very useful for fast computations of Gaussian pro-
cesses. An overview is provided in the book by Rue and Held (2005). Connections between 
Gaussian Markov random fields on tessellations and continuously described Gaussian ran-
dom fields are drawn in Lindgren et al. (2011).

Multiple-point geostatistics

Guardiano and Srivastava (1993) initially proposed multiple-point geostatistics. Strebelle 
(2000) and Strebelle and Journel (2001) were among the first to describe and use 
multiple-point geostatistics formally. Caers (2005) focuses on reservoir characterization 
techniques. The book includes applications of multiple-point geostatistics to stochastic res-
ervoir modeling and uncertainty assessment. Caers’ (2005) book can be considered the 
first book of the multiple-point generation. Remy et al. (2008) were the first to deliver both 
theory and software related to multiple-point geostatistics. Although this book is a users’ 
guide to the Stanford Geostatistical Modeling Software (SGeMS), its presentation focuses 
not on the modeling of covariance and Kriging but on the representation of a general ran-
dom function. That representation takes the form of equiprobably sampled simulated reali-
zations mimicking the actual spatial distribution of the variable(s) under study. The spatial 
law (MP statistics) of that random function is retrieved from a training image that can carry 
prior knowledge about the physics controlling the phenomenon under study.

Mariethoz and Caers (2015) is a recent comprehensive book on spatial modeling using 
training images and multiple-point statistics. The authors provide a detailed overview of 
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the various algorithms for spatial modeling based on training images. Inverse modeling 
using training images is also covered. Example applications include reservoir modeling, 
mineral resources, and climate modeling. This is an excellent modern reference for sto-
chastic spatial modeling in the physical sciences.

Spatiotemporal models

The recent book by Cressie and Wikle (2011) provides a great overview of recent 
approaches for spatiotemporal statistical modeling. The focus is on low-dimensional basis 
representations in combination with differential equations modeling. There is currently 
significant interest in the dynamic updating of spatial models. For linear Gaussian models, 
the celebrated Kalman filter yields the optimal solution, but this updating becomes very 
complicated for non-linear time-varying models, and there is no single solution. Ensemble 
Kalman filtering (Evensen 2009) has become a popular tool for approximating the dis-
tribution over many time steps with data. A more generally applicable technique for data 
assimilation over time, with its own computational drawbacks, is that of particle filtering 
or sequential Monte Carlo updating (Doucet et al. 2001).
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5

Value of information in spatial decision situations

Figure 5.1  harvesting these woods
means felling our leafy friends
so let’s choose wisely

In this chapter, we integrate concepts from decision analysis (Chapter 3) and spatial sta-
tistics (Chapter 4) to model decision situations that are typical of applications in the Earth 
sciences. These models are then developed to support decisions pertaining to information 
gathering in the Earth sciences.

We start by introducing the concepts of spatial decision situations and 
information-gathering schemes and frame the various models introduced in the chapter in 
Section 5.1. In Section 5.2, we present a fairly general formulation for the value of infor-
mation (VOI) for a class of problems that is studied most comprehensively in the book. 
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We elaborate on a number of special cases in Sections 5.3–6 by categorizing decision situ-
ations based on the number of available alternatives as well as the value function model. 
Sections 5.7–8 describe more complex decision situations: more general risk preferences, 
explicit constraints in the decision situation, and sequential decisions or sequential infor-
mation gathering. Section 5.9 discusses some other information measures that are popular 
for evaluating information-gathering schemes in Earth sciences applications. We demon-
strate the concepts using several examples throughout the chapter. Our focus here is on 
using the examples to illustrate the assumptions of the various models; later in Chapter 6, 
we describe case studies where the emphasis lies more on the applications themselves.

5.1  Introduction

Decision situations in the Earth sciences involve the exploration, utilization, management, 
retrieval, restoration, and sustenance of the Earth’s resources. Decisions are often complex 
due to uncertainties related to the Earth’s subsurface. Furthermore, decisions may have a 
lot at stake, and therefore it may be worthwhile to obtain more information before the deci-
sion is actually made – i.e., before an irrevocable allocation of resources. A crucial question 
to answer is: how much information should one purchase? Gathering the right kind and 
the right amount of information is crucial for the decision maker so as to obtain as much 
value from the Earth’s resources as possible. In this section, we first present a formulation 
of decision situations that are typical of applications in the Earth sciences, referring to 
them as spatial decision situations. Then, we show how VOI analysis can support various 
information-gathering questions that are relevant for such applications.

5.1.1  Spatial decision situations

Applications in the Earth sciences often inherently involve spatial variables – i.e., vari-
ables that are defined over several locations in space, as well as alternatives that are associ-
ated with these spatial locations. Consider a spatial random variable x = x i ni : , ,...,={ }1 2  
and an alternative (or, synonymously, action) a = a j Nj : , ,...,={ }1 2 , where indices i and 
j  are associated with spatial locations – i.e., x xi i= ( )s  and a aj j= ( )s  using the notation 
of Chapter 4. Alternatives are chosen from an available set a A∈ . Let v( )x a,  be the value 
derived by the decision maker from the decision situation; note that this is a function of 
both the spatial variable x as well as the chosen alternative a. As in the previous chapters, 
we refer to the spatial variable as the distinction of interest when it is a variable that is 
fundamental to the decision maker’s value.

Consider the illustrative example shown in Figure 5.2, where a farmer’s forest has been 
segmented into several irregular units. The farmer must decide which units to utilize – 
which entails cutting the timber and then transporting, producing, and selling the wood – 
and which units to leave as is for the forthcoming season to maintain a sustainable resource. 
In this example, xi is the spatial variable that denotes the volume of timber at unit i, and 
aj is chosen from a binary alternative set at unit j . The two alternatives are: should the 
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farmer harvest the wood at this unit or not? There is uncertainty around the actual volume 
of timber available at each unit. The farmer’s value for the season v( )x a,  is a function of 
the volume of timber as well as the choice of utilized units.

Recall that both the spatial variable x = x i ni : , ,...,={ }1 2  as well as the set of alternatives 
a = a j Nj : , ,...,={ }1 2  are associated with spatial locations. The number of units n and the 
number of available alternatives N  need not necessarily be the same; they depend on the 
spatial resolution and the assumptions of the model. For binary alternatives (harvest/do not 
harvest) at each unit i N= 1 2, ,..., , the set A consists of 2N possible alternatives. Decision 
situations may, of course, have more than two alternatives at each unit – e.g., harvest, do 
not harvest, or sell the unit.

As another example, consider Figure 5.3, which depicts a heterogeneous oil reservoir. 
The decision maker must choose where to place injection and production wells to recover 
oil. Here, xi is the spatial variable that denotes oil reserves at unit i of a three-dimensional 
(3-D) reservoir model representing the subsurface. The recoverable oil reserves are typi-
cally complex functions of spatially heterogeneous variables such as rock types, porosity, 
and permeability.

In practice, the set of possible alternatives could potentially be complex; it could involve 
tuning production well rates and injection rates of water or gas, as well as the placement and 
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Figure 5.2  Illustration of a spatial domain: a farmland that is segmented into units. The decision 
maker must decide which units to harvest.
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spatial configuration of these wells. The alternative set may be discrete (well type: injector or 
producer) or continuous (well rates) or a combination of both. The figure depicts one possible 
reservoir model for one particular alternative a, where an injection well and a single produc-
tion well are placed at corners diagonal from each other. The decision maker’s value from the 
reservoir v( )x a,  depends on the oil that is recovered, which is a function of the oil reserves 
x as well as the chosen production strategy a. The value can be computed from a subsurface 
flow scenario that depends on the underlying heterogeneous porosity and permeability.

Both examples highlight common themes around the spatial aspects of decisions in the 
Earth sciences. We refer to such decision situations as spatial decision situations, identi-
fying three primary characteristics that are common:

1.	 Spatial variables typically exhibit spatial dependence.
2.	 There is typically high decision flexibility since alternatives are associated with spatial 

locations.
3.	 The decision maker’s value is typically highly coupled and can be a complex function 

of properties of spatial locations.

Property 1 is inherently present in most Earth sciences applications due to physical 
processes that explain the formation and changes of geographic features. Spatial variables 
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Figure 5.3  Illustration of a spatial domain: a heterogeneous oil reservoir. The decision maker must 
decide where to place injection and production wells so as to recover oil. Here, an injection well is 
positioned in one corner, and a production well is positioned diagonal from the injection corner. The 
water replaces the oil, and the displays show the fluid flow at four stages during the first 150 days of 
production.
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are often best described using models that incorporate spatial dependence, because a loca-
tion that is closer to another may have more similar properties than a location that is farther 
away. In Chapter 4, we reviewed a host of models that may be appropriate for capturing 
such effects, such as Markov random fields, multivariate Gaussian models, multiple-point 
statistics, and training image-based models.

Property 2 is concerned with the alternatives that are available to the decision maker. 
Typically, Earth sciences applications involve selecting locations and subsequently utiliz-
ing and managing resources at these location(s). In the forestry example from Figure 5.2, 
the farmer must choose the set of units to cultivate – this leads to a combinatorial (2N) num-
ber of alternatives. We refer to this property as that of high decision flexibility, because the 
decision maker has many alternatives to choose from.

Property 3 involves the decision maker’s value from the decision situation. Due to 
physical processes, the value in Earth sciences applications is often best described as a 
complex function of the properties and the chosen alternative. In the oil reservoir example 
from Figure 5.3, the decision maker’s profit is a function of the oil that is recovered at the 
production well, which might be best described by complex reservoir simulations com-
puted by numerically solving multiphase fluid flow differential equations in a heterogene-
ous Earth model. We refer to this property as that of coupled value, because the value can 
be a non-trivial function of properties at various locations.

From the perspective of the field of operations research, spatial decision situations can 
be viewed as a type of dependent portfolio problem where dependence is of a spatial nature 
(Bhattacharjya et al. 2013). We stress the generality of these decisions in the Earth sciences 
and suggest models for their analysis.

Discussion: cogency versus verisimilitude in models

Howard (2007) notes two major desiderata of models for decision situations (and in general): 
cogency – the extent to which the model satisfies its functions – and verisimilitude – the extent 
to which the model reflects reality. It is important to formulate models such that they capture 
the most important features of the application being served without being overly complex. This 
is a common trade-off that modelers face, and it is no different in Earth sciences applications. 
In this book, we attempt to frame problems in a realistic fashion using models at granular 
levels of spatial resolution, but we recognize the need for reasonable, problem-dependent 
simplifications. Property 1 of spatial decision situations is retained for most of the book, as we 
believe that this is a crucial aspect of Earth sciences applications. However, incorporating both 
Properties 2 and 3 in addition can result in models with significant computational complexity – 
which can affect the cogency of these models. In Section 5.2, we discuss various formulations 
resulting from relaxing Properties 2 or 3 or both.

5.1.2  Information gathering in spatial decision situations

Decision situations in general, including those that we refer to as spatial decision situations, 
are associated with auxiliary decisions pertaining to information gathering. For instance, in 

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.006
http:/www.cambridge.org/core


Value of information in spatial decision situations160

the forestry example from Figure 5.2, the farmer can perform certain tests to study the vol-
ume of timber before deciding which units to utilize. Similarly, in the oil reservoir example 
from Figure 5.3, the decision maker can conduct seismic or electromagnetic geophysical 
surveys to further study the geology of the reservoir before choosing a production strategy 
to recover oil. When there is a lot at stake in a decision situation, it may be worthwhile to 
obtain more information to better understand the critical uncertainties that have a bearing 
on the decision.

Since spatial variables play an important role in decisions in the Earth sciences, there is a 
spatial aspect to information gathering as well, resulting in numerous practical complexities 
and opportunities. Just like the underlying decision situation itself, information gathering 
may include a combinatorial number of alternatives. Consider, for instance, the alternatives 
that might be available to the farmer with the forest shown in Figure 5.2 with regard to infer-
ring the volume of timber at the various units by carrying out a few sampling tests. To make 
matters more interesting, the decision maker often must choose from among various types 
of data sources, sometimes at varying spatial resolutions and varying reliability. Moreover, 
the information is available only at some expense and effort: consider the attempts at sur-
veying by trekking through thick, dense forests or the extensive infrastructure and compu-
tation required for acquiring, processing, and interpreting seismic information to study the 
geology of reservoirs. When does the information then become worth its cost?

The complexities surrounding information-gathering decisions create opportunities for 
decision makers in the Earth sciences. Since there are so many possibilities, the decision 
maker might be able to tune the spatial coverage of the test or the accuracy of the measure-
ments. In addition, due to spatial dependence that is typical in spatial decision situations 
(Property 1), information about only a select few locations may be sufficient for learning 
enough about the entire spatial domain. The decision maker can therefore be creative in 
designing high-value information-gathering experiments.

Our main focus in this book is on describing techniques for evaluating and compar-
ing different information-gathering schemes, providing the decision maker with powerful 
tools for analysis. These techniques are formal and are based on foundations of probability 
and decision theory, as well as practical considerations, in that they try to address actual 
concerns of decision makers in real-world situations. Integrating decision theoretic notions 
with those from spatial statistics ensures that the connection between the information itself 
and how it will be useful is always maintained.

5.1.3  Overview of models

VOI analysis is performed for information-gathering schemes that provide the decision 
maker the opportunity to observe uncertainties in their underlying decision situation before 
making their decision(s). The remaining sections of this chapter, up to and including 
Section 5.8, are devoted to describing models for VOI analysis in spatial decision situ-
ations. Here, we provide a framework for these models by making a high-level distinction 
between types of decision situations and information-gathering schemes.
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First, we distinguish between static and sequential (or dynamic) decision situations. In 
sequential decision situations, the decision maker makes several decisions over time; it 
is typical for the decision maker to choose an alternative for a particular decision, observe 
some uncertainties, and make subsequent decisions by possibly adapting to whatever out-
comes have been observed thus far. The notion of a strategy, which specifies a plan for the 
decision maker for various decisions given the information that is available at the time of 
the decisions, is central to sequential decision situations. The reader is referred to Section 
3.3, where we discuss strategies in the context of influence diagrams. Static decision 
situations, on the other hand, are decision situations where the decision maker makes a 
one-shot decision. For instance, in the static model of the decision situation for the oil res-
ervoir example from Figure 5.3, the decision maker is assumed to choose the production 
plan, including well locations, control rates, etc., all in one go. In the sequential version, the 
decision maker would have the capability to adapt the plan based on the information from 
production data.

In a similar fashion, we also distinguish between static and sequential 
information-gathering schemes. In a sequential information-gathering scheme, 
the decision maker can acquire data in a sequential fashion – i.e., they can observe an 
uncertainty and then decide whether to pursue further information based on whatever 
has been observed. In a static information-gathering scheme, the decision maker 
is assumed to obtain all the information together. In the oil reservoir example, a static 
information-gathering model would assume that the decision maker selects all exploration 
wells up front.

In this book, we predominantly focus on static models for both the decision situation and 
information gathering. Although sequential models are more realistic in general, such mod-
els can involve serious modeling and computational challenges, and often a static model is 
a reasonable and sufficient model for the application under consideration. Since our focus 
is on performing analysis for practical problems, the efficiency of the proposed approach 
is an important consideration, and as we will see, there are plenty of interesting insights to 
be gleaned from VOI analysis using static models.

Table 5.1 categorizes the models as per the static versus sequential framework and also 
specifies various sections of the chapter that deal with various models. The literature on 

Table 5.1.  Categorizing models: static versus sequential decision situations and 
information-gathering schemes

Static Decision Situation Sequential Decision Situation

Static Information 
Gathering

Section 5.2 provides a fairly general 
formulation. Sections 5.3–6 are 
special cases.

Section 5.7.3 discusses these 
models briefly.

Sequential Information 
Gathering

Section 5.8 discusses these models 
briefly.

This case is not discussed in 
the book.
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sequential models for VOI analysis for Earth sciences applications is currently fairly lim-
ited; we refer to a few relevant articles in the appropriate sections. We suspect that the lit-
erature in these areas will continue to grow.

Even for the static models that are explored extensively in the book, we make some sim-
plifying assumptions about the decision situation and the information-gathering schemes. 
Specifically:

•	 The decision maker is assumed to be risk neutral, therefore the optimal alternative is computed 
by maximizing the expected value. Implications of relaxing this assumption are examined in 
Section 5.7.1.

•	 It is assumed that there are no additional constraints in the decision situation (beyond those that 
have already been explicitly modeled through the available set A) – i.e., the decision maker can 
select any alternative from the available set of alternatives. We explore the effect of additional 
constraints for a special case in Section 5.7.2.

5.2  Value of information: a formulation for static models

We assume that the reader is familiar with the VOI-related concepts that were explained in 
Chapter 3. Recall that the VOI is computed by comparing the situations with and without 
information; we therefore first study the prior value of the decision situation, proceeding 
subsequently to a posterior value that incorporates additional information.

5.2.1  Prior value

A priori, the decision maker is faced with the following spatial decision. He or she must 
choose an alternative from the available set, a A∈ , and his or her beliefs about the uncertain 
spatial variable x are captured by the prior probability distribution p x( ). The value derived 
from the decision situation is denoted v( )x a, .

Assuming that the decision maker is risk neutral, it is optimal to choose the alternative 
that maximizes the expected value. Therefore, the prior value of the decision situation, 
before any additional information has been observed, is:

	 PV v v p dE= ( )( ){ } =











∈ ∈ ∫max ( ) max ( ) .a A a A

x

x a x a x x, , 	 (5.1)

Computing the expected value in this fashion may be computationally challenging 
for problems in the Earth sciences. The high decision flexibility in the decision situ-
ation (Property 2) may result in a combinatorial set of alternatives A to maximize over. 
Moreover, the coupled value arising from a complex value function (Property 3)  may 
require time-consuming numerical simulations for assessing v( )x a, . Equation (5.1) pro-
vides a general formulation; more specific simplifications are provided in subsequent 
sections.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.006
http:/www.cambridge.org/core


5.2 Value of information: a formulation for static models 163

5.2.2  Posterior value

How does the value of the decision situation change when the decision maker can observe 
some information related to the uncertainties before making the decision? We make a dis-
tinction between perfect and imperfect information based on whether the actual distinc-
tion of interest, or merely a noisy measurement related to the distinction of interest, is 
observed. In the case of the oil reservoir example in Figure 5.3, the perfect information case 
for one location occurs when the oil accumulation, porosity, and permeability in that loca-
tion are observed before the drilling strategy is determined. This sort of information might 
be provided by an exploration well. Imperfect sources of information include seismic and 
electromagnetic data and interpretations, since they are noisy measurements that provide 
indirect, remotely sensed information about the pore fluid saturations and rock types. Note 
that perfect information can be viewed as a special case of imperfect information – it is the 
case when there is no measurement inaccuracy.

We also make a distinction between total and partial information, depending on the 
spatial coverage of the information. The case of partial information occurs when informa-
tion is provided for a strict subset of the spatial locations, as opposed to total information, 
where information for all spatial locations is observed before the decision is made. In the 
oil reservoir example, exploration wells are typically partial sources of information, as they 
are only drilled at certain locations in the reservoir. Three-dimensional reflection seismic 
surveys, on the other hand, typically cover the entire spatial domain of the reservoir and are 
therefore sources of total information.

Most information sources in the Earth sciences are arguably imperfect or partial sources 
of information. Common data-gathering schemes include surveys by humans that involve 
visual observations (such as counting species of plants or animals) or recovering samples 
(such as cores of minerals) that are brought back to the laboratory for testing. Such tests 
are often noisy measurements of the distinction of interest due to human errors in meas-
urement, instrument inaccuracy, challenges associated with the spatial scale of the domain, 
etc. Surveys could also be performed remotely, where instruments automatically measure 
features that are relevant to the distinction of interest. Examples include seismic, electro-
magnetic, radar, and satellite data. Table 5.2 summarizes the various cases in the form of a 
matrix, providing a few examples. Although the case of total perfect information is rare, it 
can often be an efficient theoretical construct because it provides an upper bound that can 
be useful for evaluating information sources. Other, more general information-gathering 
schemes are also possible. For instance, the decision maker could perform experiments 
that provide information about averages or sums of properties over many spatial units. 
Replicated sampling at locations may also be possible, perhaps with varying data qualities. 
We explore each case in Table 5.2 individually.

Perfect information

When there is total perfect information, the decision maker has the opportunity to 
observe the distinction of interest x before making the decision. When the instantiation x is 
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observed, the decision maker should choose the alternative to maximize v( )x a, . However, 
there is uncertainty around what will eventually be observed before the information is 
acquired, and the expected value is computed by integrating over the various outcomes of 
the test. The posterior value, for a risk-neutral decision maker, is therefore:

	 PoV v p dx x a x xa A
x

( ) = ( ){ }∈∫ max ( ) ., 	 (5.2)

Since the decision maker is risk neutral, the VOI is computed as the difference between 
the posterior and prior values. The value of the total perfect information is:

	 VOI PoV PVx x( ) = ( ) − .	 (5.3)

The argument in the parentheses for posterior value and VOI indicates the uncertainty 
for which VOI is being computed. (The same notation was used in Chapter 3.)

Consider next the case of partial perfect information, where the distinction of interest 
at a subset of the locations is observed. As was done in Chapter 2, suppose that the loca-
tions at which the observations are made is denoted by , where  ⊂ { }1 2, ,...,n , and that 
the decision maker observes x before making the decision. Denote the complementary 
set C by . When the instantiation x is observed, the decision maker should choose 
the alternative to maximize the conditional expected value E v( ) |x a x, ( ). With total per-
fect information in Equations (5.2) and (5.3), this conditional expectation was the value 
itself, E v v( ) | ( )x a x x a, ,( ) = . Again, there is uncertainty around what will eventually be 
observed, and the expected value is computed by integrating over the various outcomes of 
the test. The posterior value is:

	 PoV E v p dx xx a x xa A   ( ) = ( ){ } ( )∈∫ max ( ) | ., 	 (5.4)

Table 5.2.  The matrix of information-gathering cases: perfect versus imperfect and total 
versus partial information

Perfect Imperfect

Total Exact observations are gathered for all 
locations. This is rare, occurring when there 
is extensive coverage and highly accurate 
data gathering.

Noisy observations are gathered for all 
locations. This is common in situations 
with remote sensors with extensive 
coverage – e.g., seismic, radar, or 
satellite data.

Partial Exact observations are gathered at some 
locations. This might occur, for instance, 
when there is careful analysis of rock 
samples along boreholes in a reservoir or a 
mine.

Noisy observations are gathered 
at some locations. Examples 
include handheld (noisy) meters to 
observe grades in mine boreholes, 
electromagnetic testing along a line, 
biological surveys of species, etc.
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The value of the partial perfect information is:

	 VOI PoV PVx x ( ) = ( ) − .	 (5.5)

Note that this case requires computing the distribution p x( ) by marginalizing out the 
distinction of interest at locations where the information is not observed. Additionally, 
the computation for the conditional expected value E v( ) |x a x, ( ) is not necessarily 
straightforward.

Imperfect information

Suppose that there is another uncertain variable y = y i ni : , ,...,={ }1 2  that is relevant to 
the distinction of interest x. The probabilistic dependence between these variables is rep-
resented through the likelihood p y x|( ). When there is total imperfect information, the 
decision maker can potentially observe y at all locations before making the decision. The 
posterior value can be obtained by integrating over the outcomes of y:

	 PoV E v p dy x a y y ya A( ) = ( )( ){ } ( )∈∫ max , | .	 (5.6)

The computation for the posterior value in this case requires finding the conditional 
expected value E v x a y, |( )( ) as well as the pre-posterior marginal probability density func-
tion (pdf) p y( ), which can be obtained from the prior p x( ) and the likelihood p y x|( ) using 
Bayes’ rule. This likelihood that is required for formulating the case of imperfect informa-
tion introduces complexities that we will return to when we discuss the special cases.

The value of the total imperfect information is:

	 VOI PoV PVy y( ) = ( ) − .	 (5.7)

The posterior value and the VOI for the case of partial imperfect information can be 
computed in a fashion similar to that of partial perfect information in Equations (5.4) and 
(5.5) after replacing y for x. For completeness, we write the equations below:

	 PoV E v p dy yx a y ya A   ( ) = ( ){ } ( )∈∫ max ( ) | ,, 	 (5.8)

	 VOI PoV PVy y ( ) = ( ) − .	 (5.9)

5.2.3  Special cases: an overview

The formulation described in the previous section applies generally to all situations. 
However, simplifications may be required for computational tractability, thereby enabling 
tools for efficient VOI analysis. In Section 5.1, we described three distinctive properties of 
spatial decision situations. In the following four sections, we present special cases that are 
obtained by relaxing and enforcing these properties. Property 1 is never relaxed (spatial 
dependence); relaxing and enforcing the other two properties provides the various combin-
ations presented in Table 5.3.
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5.3  Special case: low decision flexibility and decoupled value

A potential way to enable computational tractability for VOI analysis is to relax both 
Properties 2 and 3.

Relaxing Property 2 leads to a decision situation where there are a small set of alter-
natives  – i.e., set A has a low cardinality. As a result, computations are easier because 
maximizations are performed over small and manageable sets. Such an assumption may be 
reasonable in a host of real-world applications for a variety of reasons. For instance, there 
may be factors that have not been explicitly modeled, enforcing constraints that only make 
a small set of alternatives feasible, or it may be that previous analysis has filtered out most 
of the alternatives. Or it may be the case that only a few alternatives are considered for the 
sake of simplicity of analysis and computational tractability.

Relaxing Property 3 leads to a decision situation where the value function can be easily 
“decoupled,” in the sense that the total value can be decomposed using a separable function 
of the value from each individual spatial unit. In the simplest case, the total value is the sum 
of the value from all units in the spatial domain. This assumption allows computations to 
be performed at the local level of individual units and then combined in a convenient mat-
ter. Again, this assumption may either be natural for a particular application, or it may be a 
simplification that is not necessarily entirely realistic but still a reasonable approximation 
for computational reasons.

Applications where these assumptions have been made include domains such as agricul-
ture (Wiles 2004), fisheries (Forsberg and Guttormsen 2006), mining (Eidsvik and Ellefmo 
2013), and forestry (Kangas 2010). In this book, we focus on the explicitly modeled spatial 
uncertainties.

Table 5.3.  Categorization of different spatial decision situations

Section Special Case
Assumption: Decision 
Flexibility

Assumption: Value 
Function Main Example

5.3 Low decision 
flexibility; 
decoupled value

Alternatives are easily 
enumerated

Total value is a 
sum of value at 
every unit

Norwegian 
wood – forestry 
example

5.4 High decision 
flexibility; 
decoupled value

None Total value is a 
sum of value at 
every unit

The tree 
amigos – 
conservation 
biology example

5.5 Low decision 
flexibility; 
coupled value

Alternatives are easily 
enumerated

None Go with the 
flow – reservoir 
simulation 
example

5.6 High decision 
flexibility; 
coupled value

None None Frozen – 
hydropower 
example
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Our example at the end of this section is motivated by what has been the running example 
in this chapter from the domain of forestry. As a reminder to the reader, the situation is as 
follows: a farmer owns several units of a forest. In this special case, the farmer only has two 
available alternatives: to harvest the forest at all units or to leave the forest as is. The value 
obtained from the wood, if the farmer decides to harvest, would depend on the volume of 
timber, as well as the selling price of wood and paper and the operational and processing 
costs. Before making the decision, the farmer considers purchasing information pertain-
ing to the volume of timber. We use VOI analysis to study various information-gathering 
schemes.

5.3.1  Prior value

We choose the alternative a A∈  that optimizes the overall value. Since the value function 
decouples for the n spatial locations,

	 v a v x ai i
i

n

x, , .( ) = ( )
=
∑

1

	 (5.10)

In the forestry example, the value is assumed to be proportional to the volume of timber, 
and the total volume is a sum of volumes from the n units – hence the sum in Equation 
(5.10). Note that the value function v x ai i ,( ) can vary from unit to unit because there may 
be important differences from site to site. For instance, the spatial units of a forest could be 
at varying altitudes, slopes, distances from infrastructure, etc., and may therefore require 
different local costs to develop.

With the decoupling of value in Equation (5.10), the prior value for this special case 
becomes

	

PV E v a

E v x a v

a A

a A i i
i

n

a A i

= ( )

( )( )
{ } =









=

∈

∈
=

∈∑

max ( , )

max , max

x

1

xx a p x dxi i i
i

n

, ( ) ,( )







∫∑
=1

	 (5.11)

where the final equation holds if the distinction of interest is a continuous random variable 
with marginal pdf at site i denoted p xi( ). Note that the spatial dependence between vari-
ables is not relevant for the prior value in Equation (5.11) because the decoupling of the 
value function leads to n univariate integrals.

5.3.2  Posterior value

Suppose that we can purchase further information about the distinction of interest. The 
information may take any of the forms discussed previously: total versus partial, perfect 
versus imperfect. Note that it is possible for the information to be at a less granular level 
than the spatial units. For instance, in the forestry example, a surveyor could collect infor-
mation about the average tree height or timber volume along a chosen path in the forest, 
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and not necessarily about the height or timber volume at particular locations along this 
path. Such average properties may be valuable, and they might be less expensive to acquire.

The posterior value is now an integral over the data, assuming continuous sample space. 
For the case of total perfect information:

	 PoV v x a p da A i i
i

n

x x x( ) = ( ) ( )







∈
=
∑∫ max , .

1

	 (5.12)

The associated VOI is the difference between the posterior and the prior value, 
as expressed in Equation (5.3), which represents the upper bound on the value of any 
information-gathering scheme in this situation. In the forestry example, perfect and total 
information occurs when the decision maker observes the timber volume at every unit 
before making the decision. In practice, forest surveys would likely be partial sources of 
information because only selected units are observed, and they would be imperfect sources 
due to inaccuracies in measurements.

Instead of repeating the expression for the posterior value for the various cases, here we 
only present the case with partial and imperfect information – i.e., when the data is y with 
marginal likelihood p y( ), as it can be viewed as a generalization. The posterior value is

	 PoV E v x a p da A i i
i

n

y y y y   ( ) = ( )( )







( )∈
=
∑∫ max , | ,

1

	 (5.13)

and the VOI is the difference between the posterior and prior value, as in Equation (5.9).

5.3.3  Computational notes

Computations for the prior and posterior value depend on the local value functions v ai ix , ,( )  
i n= 1, , , and the statistical model. This special case is typically simpler than the more 
complex cases described in Sections 5.4–6.

For the forestry example that follows, there are analytical solutions for the VOI. This is 
possible because the example assumes a Gaussian distribution for the wood volumes as 
well as an additive value function. With a more complex statistical model formulation or 
value function, one may need to approximate the value in one way or another. A general 
approach to computing the prior and posterior values is Monte Carlo sampling. We will 
discuss Monte Carlo methods further for the more complex situations later in this chapter.

Pitfalls: expected value of a non-linear function

The expected value of a non-linear function is not necessarily the same as the non-linear 
function of the expectation. We cannot interchange the function and the expectation in general – 
this only holds for linear functions. The value calculations are based on the expectation of the 
value function: E v a v a p d v E ax y x x y x x y, | , | | ,( )( ) = ( ) ( ) ≠ ( )( )∫ .
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5.3.4  Example

We present a synthetic example to gain insight about the VOI for this special case. The 
statistical model is identical to an example from Section 4.4. In Chapter 7, we present a 
hands-on project based on the same example.

Norwegian wood: forestry example

Keywords:  forestry example, Gaussian random field, total information, partial information, low 

decision flexibility, decoupled value function

Let us study the forestry example in greater detail, with numbers.

Framing the decision situation

Suppose that a farmer owns a forest, which is modeled as a set of spatial units, shown as 
a spatial grid of size 25 × 25 in Figure 5.4. There are thus a total of n = 625 units in this 
example. The uncertain distinctions of interest are the profits xi, i n= 1,...,  from the spatial 
forest units. The farmer must make a decision about whether to harvest all the trees or to 
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Figure 5.4  Forestry example: illustration of a size 25 × 25 grid of forest units. The crossed vertical 
and horizontal lines indicate locations for partial testing.
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leave the forest as is. This means that the farmer has only two alternatives a ∈{ }0 1,  defined 
as follows: to utilize all units (a = 1) or to do nothing (a = 0). The value function decouples 
to the sum over the spatial units. The total value if all units are utilized – i.e., a = 1 – is 

v a xi
i

n

x, =( ) =
=
∑1

1

, whereas the value v ax, =( ) =0 0 if the farmer leaves the forest as is.

Information gathering

Before making the decision, the farmer can pay for tests that are informative of the timber 
volume and therefore the profits. Potential tests one could imagine in this case entail send-
ing a surveyor to selected units and carefully measuring trees and the timber volume in 
selected spatial units. The surveyor would likely walk along a chosen path through the field 
with a device, observing the light or canopy variables that are relevant to the volume of tim-
ber. There are also other possibilities for imperfect measurements about the timber volume 
at all units, such as processed satellite data or other inventory data (Bergseng et al. 2015).

We consider three testing options outlined in detail in the following text. They are all 
considered imperfect information experiments and include a total test, a partial test with 
data at spatial units along two paths in the domain, and a partial test with average timber 
volumes or profits along the paths.

Modeling

We assume that the farmer has a reasonably good idea about the selling price of wood and 
the operational costs, but there is uncertainty about the timber volume. This volume deter-
mines the uncertain profit, which can be positive or negative. These profits at the n spa-
tial units are the distinction of interest x = ( )x xn1,..., . As discussed earlier, the total value 
decouples as a sum over the units. The total profit the farmer receives is simply the sum of 
the profits from all units.

We assume that the profits are Gaussian distributed a priori – i.e., p Nx( ) = ( )µ,Σ . The 
prior mean is set to be the same for all units, µ µi = , i n= 1,..., , and the covariance is defined 

via an exponential-type correlation function, Σ ij
ijt

= −






σ
ξ

2 3exp , where tij is the Euclidean 

distance between two units i and j , the prior marginal variance is σ 2 at every cell, and the 

spatial correlation range is ξ. Recall that we use η
ξ

=
3

 for the spatial correlation decay 

parameter; it may be easier to interpret the effect of the correlation range ξ directly since 
the correlation decreases to only exp .−( ) =3 0 05 for distance tij = ξ. We perform sensitivity 
analysis for VOI with respect to all these model parameters.

The tests are imperfect observations of timber volume providing imperfect information 
about the profits, and the results of the observations are distributed according to a Gaussian 
pdf. The type of test (denoted 1–3 later) and the number or size of measurements (denoted 
m) vary as follows:
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1.	 Total test of forest timber volume and hence profits at every unit. This is denoted using 
the likelihood y x Nj j= + ( )0 2,τ  for  j m n= =1,..., .

2.	 Partial test of the forest along the north–south and east–west center transects of the 
forest domain. We denote these by Cv and Ch, respectively. This is denoted using the 
likelihood y x Nj j= + ( )0 2,τ , j C Cv h∈ ∪ , and m = 49.

3.	 Partial test of aggregated forest timber volume (and hence aggregated profits) along the 
north–south and east–west center lines of the forest domain. This is denoted using the like-

lihood y x Nj
j Cv

1
21

25
0= + ( )

∈
∑ ,τ  for the north–south line and y x Nj

j Ch

2
21

25
0= + ( )

∈
∑ ,τ  

for the east–west line, and m = 2.

The partial testing options in Tests 2 and 3 are illustrated in Figure 5.4. These tests would 
be representative of a surveyor walking along the north–south and east–west lines in the for-
est carrying a surveying device to measure the accumulated timber volume via, for instance, 
the light coming from the canopy. For Test 3, the instrument only gauges the average over a 
certain interval, and the surveyor does not want to reset this all the time. Such situations are 
also common in tomography where only the aggregated response along lines or ray paths is 
measured. Note that Test 2 is similar to the one considered in Section 4.4. An experiment such 
as the other random design studied in that section would likely be more expensive to acquire 
in practice.

VOI analysis

The prior value of this two-action utilization decision for the forest is

	 PV E v a E v a i
i

n

= =( )( ) =( )( ){ } =






=

∑max , , , max , .x x0 1 0
1

µ 	 (5.14)

The posterior value depends on the testing scheme. Using generic notation, we define a 
likelihood model by y Fx T= + ( )N 0, , where the matrix F  of size m n×  defines the acqui-
sition design of the test, with measurement noise covariance matrix T I= τ2 , assuming 
conditionally independent tests defined by Tests 1–3 mentioned earlier. For the total test, 
this design matrix F  is the identity matrix. For the partial test, it picks the entries which 
identify the center cells of the grid. For Test 3, the entries are 125 at the selected units. The 
marginal likelihood model is  p N ty F F F T( ) = +( )µ, Σ .

The conditional mean profits are

	 w w y x y F F F T y F= ( ) = ( ) = + +( ) −( )−
E | .µ Σ Σ µt t 1

	 (5.15)

For the posterior value in Equation (5.13), we use the sum of terms from Equation (5.15) 
in the decision. We then obtain the following posterior value:

	 PoV E x p wi
i

n

i
i

y y y y y( ) =

















( ) = ( )

= =
∑∫ max , | max ,0 0

1

d
11

n

p d∑∫








( )y y.	 (5.16)
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Note that the profit variables are Gaussian distributed because of the Gaussian linear 

modeling functions and the decoupling – i.e., for variable w wi
i

n

= ( )
=
∑ y

1

, we have

	 p w N r r rw w w i w
i

n

ij
j

n

i

n

( ) , , , ,= ( ) = =
= ==
∑ ∑∑µ 2 2

1 11

µ µ 	 (5.17)

where rij is element i j,( ) in the matrix R given by

	 R F F F T F= +( )−Σ Σ Σ.t t 1 	 (5.18)

Based on a result for Gaussian variables (see Appendix A.1), the posterior value in 
Equation (5.16) becomes

	 PoV E x p d r ri
i

n

w w wy y y y( ) =

















( ) = +

=
∑∫ max , | ( )0

1

µ µ /Φ ww ww rφ µ /( ).	 (5.19)

where the mean parameter µw and the standard deviation parameter sw are defined in 
Equation (5.17). Note that the mean µw only depends on the prior mean values, while the 
standard deviation sw depends on the sampling design of the data, as well as on the prior 
and likelihood covariance matrices. Here the symbols Φ and φ denote the cumulative dis-
tribution function and the pdf of a standard Gaussian variable, respectively.

Let us compare the VOI for the three forest measurement designs 1–3 mentioned earlier. 
The comparison is done over a range of prior and likelihood parameters. For the baseline 
model, we use a constant prior mean µ = 0 for all sites, a constant prior marginal variance 
σ2 1= , a spatial correlation range ξ = 0.3, and a measurement noise variance of τ 2 20 5= . .

Figure 5.5 shows the VOI for Tests 1–3, as we change the different parameters of the 
statistical model. The main trends are the same for all test schemes: the VOI is largest for 
the zero prior mean value. At this prior mean, we are indifferent about the decision and 
information is likely to change our decision. The VOI increases as a function of the prior 
standard deviation parameter σ since data become more valuable when there is more prior 
uncertainty. The VOI decreases with larger measurement uncertainty as the data become 
less informative about the profits, and the VOI increases with more spatial dependence as 
the data become more informative about other nearby sites. Note that the spatial correlation 
in the timber volumes has a clear marked influence on the VOI. Ignoring the spatial correl-
ation would lead to an erroneous assessment of the VOI.

Among the different test schemes, the aggregated test (partial, 3) has the smallest VOI, 
but this is reasonable given that the aggregated test consists of just two measurements com-
pared with 49 (partial, 2) or 625 (total, 1). Presumably, the aggregated test would be much 
cheaper compared to the other two information-gathering schemes, and the decision maker 
could then make a decision based on comparing the VOI versus the cost for each scheme. 
With increasing spatial correlation, the VOI for even the aggregated scheme becomes rela-
tively large because this partial information of sums along the center lines is informative 
of the sum from the entire domain due to spatial dependence. However, when there is more 
measurement noise (upper right), this scheme loses its value faster than the other schemes.
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5.4  Special case: high decision flexibility and decoupled value

We now turn to a spatial decision situation where we only relax Property 3. The total value 
is therefore a separable function of value from the individual spatial units. There may be 
initial costs related to equipment or man-hours that are common for some or all units, but 
these may be considered to be negligible. We sometimes refer to this decision situation as 
a “free selection of sites” because as per the assumptions of the model, the decision maker 
can choose to utilize as many sites as is profitable.

Examples of this case include a conservation biology situation where a park is modeled 
as a set of units and the decision is: which units should the decision maker maintain? See 
Polasky and Solow (2001) and Bhattacharjya et al. (2010) for applications. It is also rele-
vant for the selection of large-scale prospects in petroleum development and exploration 
(Martinelli et al. 2011). One may also encounter this situation in the forestry example dis-
cussed in Section 5.3 if the farmer has the opportunity to harvest trees in selected units and 
this action does not influence the value at other forest units. We present a few illustrative 
examples in detail at the end of this section.
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Figure 5.5  Forestry example: the VOI as a function of model parameters. Upper left: VOI as a function 
of the prior mean. Bottom left: VOI as a function of the prior standard deviation. Upper right: VOI as 
a function of the measurement noise standard deviation. Bottom right: VOI as a function of the spatial 
correlation range. The baseline case is shown by vertical lines.
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5.4.1  Prior value

Without loss of generality, we assume that the decision maker can make a decision at any 
site where the distinction of interest x = ( )x xn1,...,  is represented. This implies that we can 
denote alternatives at spatial locations by a Ai i∈  for i N n= =1,.., . More generally, we 
could have alternatives at blocks of spatial variables. These blocks may be defined based 
on the geography and infrastructure – we discuss such examples at the end of this section.

The value from each site is denoted by v x ai i i,( ), or simply v x ai ,( ). Because the value 
decouples, the decision maker can optimize the decision locally, and the prior value equals

	 PV E v x aa A i i
i

n

ii i
= ( )( ){ }∈

=
∑max .,

1

	 (5.20)

We assume two alternatives in the following presentation – i.e., Ai = 2, but the analysis 
can be easily extended to incorporate several alternatives. Like we discussed, two alterna-
tives at every site results in 2n alternatives in total. If we further assume that xi is the profit 
at site i n= 1,..,  and that the value function is v x xi i i( ) =  when ai = 1 and zero otherwise, the   
prior value becomes

	 PV E xi
i

n

= ( ){ }
=
∑max , .0

1

	 (5.21)

5.4.2  Posterior value

Total perfect information at all sites means that we can make optimal decisions before 
observing the outcome of the uncertain variable. This allows us to switch the integral and 
the max term in the prior value, and therefore the posterior value is

	 PoV E v x aa A i
i

n

ii i
x( ) = ( ){ }( )∈

=
∑ max .,

1

	 (5.22)

The VOI is computed as in Equation (5.3). As discussed earlier, this situation with total 
perfect information represents an upper bound for the value of any experiment. In the con-
servation biology example, this situation arises if we know the presence or absence of all 
trees at every unit.

Consider next the case of partial perfect information, with information only at a subset 
of the sites. When we calculate the posterior value for this case, we can split the expression 
into two parts: one associated with the information set  and one with the unobserved units 
. The posterior value of partial perfect information is then

	

PoV v x p x dx

E v x a

aa A i i i
i

a A i i

ii i

i i

xK
K

( ) = ( ){ } ( )

+ ( )

∈
∈

∈

∫∑ max

max ,

,

| xx x xK K K
L

( ){ } ( )∫∑
∈

p d
i

,
	 (5.23)

assuming continuous sample space.
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We make a few comments about the posterior value:

1.	 Note that just like for total perfect information in Equation (5.22), the posterior 
value in Equation (5.23) depends only on the prior pdf. We use the joint prior pdf 
to determine marginal pdfs p xi( ) and p x( ) and to get the expected conditional 
value E v x ai i, |( )( )x .

2.	 The latter part of the posterior value in Equation (5.23), the sum over the sites in the 
 set, contains a multivariate integral over the information set x. Together with the 
conditional expectation inside the decision rule, this integral over p x( ) tells us how 
the observations x can have a bearing on our decisions and hence our posterior value 
at unobserved sites, arising from the possible spatial dependence between observed 
and unobserved sites.

3.	 If a variable xi, i ∈, is independent of x, the observations have no bearing on the 
variable, and we gain no value from the prior information. This can be seen mathemati-
cally as follows:

a.	 The conditional expectation is not a function of the observation set when we have 
independence – i.e., E E, | ,v x v xa ai ii i( )( ) = ( )( )x , and the max term can go out-
side the integral.

b.	 The integral over the pdf is p dx x ( ) =∫ 1. We are only left with the 
max ,a A i ii i

E v x a∈ ( )( ){ } term, which equals the part from site i in the prior value in 
Equation (5.20).

4.	 If we have a more realistic spatial statistical model, a variable xi is dependent on the 
observation set x, and we would on average make better decisions and increase the 
value compared to the prior value without the observation set.

In models with complex spatial dependencies, it is common to study what-if scenarios, 
which entails conditioning on various outcomes of selected variables and studying what 
happens to the model outputs. What if we have a particular outcome of x? In the current 
setting, with perfect information at a subset of the variables, the VOI calculation can be 
regarded as revealing the what-if results for optimal decisions under the outcome. This is 
done for all possible outcomes and averaged over the marginal probabilities of the experi-
mental results.

Consider next imperfect information about the distinction of interest. We refer to imper-
fect data (partial or total) as y. For the conservation biology example, this might entail a 
biologist surveying the sites and checking for the presence or absence of a plant or animal. 
The observer may see nothing and this indicates absence, but some plants or animals may 
go unnoticed, and this would lead to a false negative test. On the other hand, the observer 
would notice presence, but this may be the result of misclassification, and the test may lead 
to a false positive. Imperfect information accounts for such errors in the likelihood model 
p y x|( ). When the imperfect information depends only on the local value of the distinc-
tion of interest, conditional independence may be realistic – i.e., p p y xi i

i

y x| |( ) = ( )∏ . 
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In other words, the observation at location i depends only on the value of x at location i and 
not at other locations.

The mathematical expressions for the posterior value of imperfect partial and total infor-
mation are similar. We have

	 PoV E v x p daa A i
i

n

ii i
y y y y( ) = ( )( ){ }∈

=
∫∑ max | ( ) .,

1

	 (5.24)

The complexity of computing this posterior value with total or partial imperfect infor-
mation depends on the likelihood model p y x|( ) and the prior pdf p x( ). Both are needed 
to find the marginal distribution of the data p y( ) and for computing the conditional expect-
ation of profits at all sites E v x ai i, |( )( )y , i n= 1,.., .

Unlike the situation with total and partial perfect information, there is no point in split-
ting the sum in Equation (5.24) into observed and unobserved sites as was done in Equation 
(5.23). With imperfect information, the conditional expectation is required inside the deci-
sion rule regardless of whether it is an observation site or a non-observed site.

5.4.3  Computational notes

The posterior value and VOI calculations are more involved than in the situation described 
in Section 5.3. For some prior and likelihood models, the posterior value expressions are 
still analytically tractable, but in many situations one must use Monte Carlo solutions or 
a combination of analytical, numerical, and Monte Carlo approximations.

The prior value computation is usually not a significant challenge in the free selection 
case because only the marginal probabilities are used for computations. In some situations, 
these marginal probabilities may be hard to extract from a joint probability model, but it 
is more common that the marginal expectations are directly available from the definition 
of the pdf p x( ). Even when the value function v x ai i,( ) has a complex form, the required 
integrals (or sums) for the prior value are univariate,

	 PV v x p x dxaa A i i i

xi

n

ii i

i

= ( ) ( )











∈

=
∫∑max ,,

1

	 (5.25)

and numerical solutions are possible.
Similarly, for free selection, the posterior value with total perfect information is based 

on a series of univariate integrals:

	 PoV v x p x dxaa A i
i

n

i iii i
x( ) = ( ){ } ( )∈

=
∫∑ max .,

1

	 (5.26)

These integrals are usually more challenging to compute than the prior value because 
the maximum is now inside the integral. Nevertheless, it is still a univariate integral, which 
means that numerical approaches can be efficient.
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The posterior value for partial perfect information or for imperfect information can be 
much harder to calculate, but in general the complexity depends on the computational 
efficiency of marginalization and conditioning for the particular statistical model. Note 
that the conditional expected value is the key here; with imperfect information y (which 
could be partial or total), the decision is based on w E v x ai i iy y( ) = ( )( ), | , i n= 1, , . These 
conditional expectations have a univariate function output with a multivariate input as an 
argument. If one can compute the pdf of w wi i= ( )y , the multivariate integral reduces to a 
univariate integral. Analytical or numerical solutions are likely available for this univariate 
integral. However, finding the pdf of wi may be difficult, except for very special prior pdfs 
and likelihoods and simple value functions.

When the prior pdf or likelihood models are more complicated, Monte Carlo methods 
are useful for approximating the posterior value.

This Monte Carlo solution is generally applicable, and it could potentially run in 
parallel computations. In Step 1, which solves the outer integral over the data, efficient 
sampling is needed. In Step 2, the posterior expectation E v x ai i

b, |( )( )y  is calculated. 
Step 3 is a simple average over the Monte Carlo samples. Step 2 is the most difficult 
step; it may be possible to perform this analytically for some models, or one could 
explore analytical approximations. If the conditional expectation in Step 2 requires 
Monte Carlo sampling, a Monte Carlo loop is inside another, and this can become 
demanding from a computational point of view. One could instead try to re-use prior 
samples in the approximation of E v x ai i

b, |( )( )y . We will discuss this in more detail in 
later sections.

5.4.4  Examples

We present a number of illustrative examples to gain insights about VOI analysis for 
this special case. In Chapter  7, we present hands-on projects as extensions of these 
examples.

Algorithm: Monte Carlo approximation of the posterior value  
under free selection

1.	 Draw realizations of the data y y1, , B  from p( )y . This can be done by first sampling 
xb  from p x( ) , then yb  from  p by x|( ) , b = 1, , B.

2.	 Compute the conditional expectation E v x ai i
b, |( )( )y  for b = 1, , B.

3.	 Approximate the posterior value by the average 

PoV
B

E v x aa A
b

b

B

i ii i
= ( ){ }( )∈

=
∑1

1

max |, y .
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Never break the chain: Markov chain example

Keywords: Markov chain, dependent binary variables, perfect information, partial information, 

high decision flexibility, free selection of sites, decoupled value function, design of experiments

In this example, we explore a situation where the decision maker owns multiple dependent 
oil prospects that are modeled as a Markov chain.

Framing the decision situation

Consider a situation where the decision maker can choose to develop prospects and as a 
result encounters binary (uncertain) outcomes:  success or failure. We consider the case 
with N n= = 100 hydrocarbon prospects. The decision to utilize a prospect is based on 
whether the expected profits are positive or not. There are known costs associated with fail-
ure and revenues associated with success. The oil and gas company will choose a prospect 
if its expected a priori profit is positive. Let outcome xi = 0 represent a failure at location 
i,  while xi = 1 indicates success.

The decision maker is free to select as many prospects as are profitable, so the alterna-
tives are given by ai, i n= 1,..., . Here, ai = 0 indicates the alternative associated with not 
developing a prospect, while ai = 1 indicates developing a prospect. There are 2n possible 
alternatives the decision maker can choose from, making this a situation with high decision 
flexibility. The decision maker has the flexibility to select any k of the n sites with k n= 0,..., .

The value function decouples between prospects. Under the development alternative, the 
uncertain value of a prospect is v x ai i, =( )1 . The expected profits at prospects i n= 1,...,  are

	 Rev Rev−( )⋅ =( ) − ⋅ =( ) = ⋅ =( ) −Cost Cost Cost,p x p x p xi i i1 0 1 	 (5.27)

for a fixed revenue (Rev) and cost of development (Cost).

Information gathering

Before making decisions at prospects, should the company purchase information about 
the prospects? If so, which site should it select for testing? In the petroleum industry, 
such information may be acquired through an exploration well at a selected prospect. 
The exploration well informs the company whether hydrocarbon is present at the location 
where the well is drilled. Here, we will assume that the company selects one location for 
drilling and that this provides perfect information at that site. Since there is dependence 
among hydrocarbon prospects, this partial information may also be valuable in informing 
the company about other sites. VOI analysis is useful for designing such experiments – i.e., 
for prioritizing one testing site over others.

Modeling

The hydrocarbon prospect outcomes are dependent and modeled as a Markov chain. 
We used Markov chains and hidden Markov models to illustrate evidence propagation 
in Section 2.3 and for parameter estimation in Section 2.4. (See Appendix A.3 for more 
background on Markov chains and hidden Markov models.) In this example, we study 
a Markov chain with non-stationarity incorporated via an external field. We consider a 
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situation where some currently available data govern this external field. Let us denote this 
data by  y yn1,..., . We use the data from the hidden Markov model example in Section 2.4. 
The probability model is proportional to

	 p p p x x f xi i
i

n

i i
i

n

x( ) ∝ ( )







 ( )−

= =
∏ ∏| 1

2 1

	 (5.28)

and the local function f
y
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σ
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data yi  at some location i are very large, the prior probability of success at this location is 
also large because the external field favors Class 1 in this situation.

Figure 5.6 shows the marginal prior probabilities of success p xi =( )1  at the prospects 
i n= 1,...,  and 10 realizations of the Markov chain from the prior pdf.

VOI analysis

The prior value for the free site selection situation at individual prospects is the expected 
profit of development in Equation (5.27). We have

	 PV p xi
i

n

= ⋅ =( ) −{ }
=
∑max ,Rev .0 1

1

Cost 	 (5.29)
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Figure 5.6  Markovian prospects example – top: the plot shows the prior probability of success at each 
prospect. Center: the plot shows 10 realizations of the Markov chain, each row being one realization. 
White indicates success. Bottom: VOI as a function of the test sites along the prospect chain.
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For this example, we use Rev = 3 and Cost = 1.
We consider collecting perfect information (an exploration well) at one of the prospects, 

indexed j . The posterior value of a test at Prospect  j  is

	 PoV x p x x y p x yj i j j
yi

n

( ) = ⋅ = =( ) −{ } =( )
==
∑∑ max ,Rev | .0 1

0

1

1

Cost 	 (5.30)

The VOI is equal to the difference in the posterior and prior values as defined in  
Equation (5.23).

Let us compare the VOI of observing different prospects j n= 1,..., . For a Markov chain, 
the conditional probabilities can be computed efficiently (Appendix A.3), and all evalua-
tions are exact.

The VOI results of testing at a single prospect are shown in Figure 5.6 (bottom). We note 
a tendency of higher VOI when we collect perfect information at prospects where we are a 
priori most indifferent – i.e., p xi( )= 1  close to Cost/Rev = 0.33 – while the VOI is very low 
when a priori we are either fairly sure of a success or a failure at a prospect. Since there is 
dependence between the prospects, the VOI is highest when we are unsure about several 
prospects near one another, like the prospects around indices 30 and 75.

The tree amigos: conservation biology example

Keywords: conservation biology, Markov random field, total information, imperfect information, 

free selection of sites, high decision flexibility, decoupled value function

This example is inspired from situations in conservation biology that were discussed briefly 
previously. The distinction of interest is the presence or absence of a species such as a type 
of tree. The decision maker has the flexibility of selecting individual sites for conservation, 
if it is indeed beneficial to do so.

Framing the decision situation

We study a small spatial domain split into a 3 × 3 grid – i.e., n N= = 9 spatial sites or cells 
that can be selected for conservation. At each cell, the distinction of interest (presence or 
absence of species) is a binary variable. Figure 5.7 illustrates the model, showing a graph 
of the grid. Let x = ( )x x1 9, ,  denote the uncertain presence or absence of the species at 
all cells in the grid. The binary outcome xi is 1 if the species is present at cell i and 0 if the 
species is absent.

If the decision maker selects a cell, he or she must pay a cost for the construction of 
the natural reserve. The decision maker will not know for sure whether the species is pre-
sent or not until the cell has been selected. If the species is present at a cell that is chosen, 
the decision maker obtains revenue. Both costs and revenues are assumed to be the same 
across cells. Here, revenue represents the value or benefits to society due to conservation 
of the species. Since the sites can be freely selected for conservation, the alternatives 
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are defined ai, i n= 1,..., . Here, ai = 0 indicates leaving a site as is, while ai = 1 indicates 
conservation.

The value function is defined in a fashion similar to the previous example, assum-
ing known costs and revenues. Under the alternative of conserving a unit, the value is 
v x a I xi i i, Rev=( ) = ⋅ =( ) −1 1 Cost, where the indicator function I xi =( ) =1 1 in the event 
of presence and zero otherwise. There is neither cost nor revenue associated with the other 
alternative. The costs of conservation are set to Cost = 1, while we compare VOI for dif-
ferent revenues.

Information gathering

Biologists may perform surveys at some units (partial testing) or all units (total testing) to 
check whether the species of interest is present or absent. We will consider a survey where 
a team explores every cell and indicates whether they believe that the species is present 
or not for each cell. This results in a scheme with total information y = ( )y y1 9,..., .  At 
each cell, this survey result may be falsely positive or falsely negative (imperfect testing).

Modeling

The binary spatial variables are modeled using a Markov random field (Section 4.6 and 
Appendix A.4). We have a prior pdf defined by

Observations:

Latent distinction of
interest:

y = (y1,...,y9)

x = (x1,...,x9)

p (yj = 1 | xj = 1) =

p (yj = 0 | xj = 0) = γ

Figure 5.7  Conservation biology example: illustration of a spatial model for the distinction of interest 
on a 3 × 3 grid and a likelihood model with conditional independence for a total imperfect test.
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	 p
Z

I x xi j
i j

x( ) = =( )





∑1

exp ,
~

β 	 (5.31)

where the denominator Z  ensures that this is a valid pdf summing to 1.  Note that this 
defines an uninformative prior – i.e., there is no prior pointwise information on the field and 
thus there is an equal chance of species presence or absence in every cell. There is some 
spatial correlation for x determined by the interaction parameter β . When this interaction 
parameter is zero, the cell variables are independent. When it gets larger, there is more 
dependence in the spatial random field. We will study the sensitivity of this spatial inter-
action parameter on the VOI result.

The experiments are assumed to have binary outcomes. The survey result yi = 1 
implies that the team believes that the species is present at cell i, and yi = 0 suggests 
otherwise. The experimental results need not be accurate. The cellwise likelihood 
p y k x kj j( | )= = , k = 0 1, , for j = 1 9, , , might be different conditioned on whether the 
latent variable is 1 or 0. We set the specificity to p y xj j= =( ) =0 0| γ  and the sensitiv-
ity to p y xj j= =( ) =1 1| γ  – i.e., the test has the same proportion of false positives as 
false negatives. We further assume that this parameter is constant for all spatial locations. 
A value of γ  close to 1 indicates a test with high accuracy. We will study the sensitivity of 
VOI to this likelihood parameter.

VOI analysis

The formula for the prior value is identical to that of the previous example in Equation 
(5.29). The posterior value with total imperfect information is defined by

	 PoV p x p di
i

n

y y y y
y

( ) = ⋅ =( ) −{ } ( )∑∑
=

max ,Rev | .0 1
1

Cost 	 (5.32)

We compute this posterior value directly by first calculating the marginal probabilities 
p y( ) for all 2 5129 =  possible data outcomes and evaluating the posterior probabilities 
inside the max term for each data set. The marginal probability p y( ) and the conditional 
probabilities p xi =( )1 | y  are computed from the forward–backward recursions useful for 
Markov random fields (see Appendix A.4). Note that this approach would, however, not 
scale well. For larger grids, one would need to use Monte Carlo approaches, first for the 
outer loop over data y. See Chapter 7 for a hands-on example.

We vary the spatial interaction and test accuracy for sensitivity analysis. Figure 5.8 shows 
VOI as a function of these parameters for revenue Rev = 2 and Rev = 5 monetary units and 
for different accuracies of the test. As expected, the test accuracy is a critical parameter. 
The curve for γ = 0 9.  shows higher VOI than γ = 0 7. . The VOI with perfect information is 
a horizontal line and has the same value (4.5 units in this case) for all β  and for both revenue 
levels. This occurs because we have probability p xi =( ) =1 0 5.  for all i = 1 9, , , and with 
Rev ≥ 2 > Cost = 1, the prior value is max ,Rev Rev0 1 1⋅ =( ) −{ } = ⋅ =( ) −p x p xi iCost Cost.  
For computing VOI x( ), the revenue terms cancel each other, and only the difference in the 
cost terms remains:
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The VOI increases as the spatial interaction β  increases. VOI is not very sensitive to β  
for lower values, which is useful to know if one is unsure about the interaction parameter 
or cannot spare much effort estimating it. However, for larger interaction levels, the VOI 
increases rapidly. This is because the chance that the entire grid will either contain the spe-
cies at all cells or in no cells becomes higher as β  increases. The experiment becomes more 
valuable as β  increases because it can tell you about a possible jackpot (all cells favorable) 
or prevent a huge loss (all cells unfavorable). As there are no constraints on the number 
of cells that can be selected, the decision maker is free to choose all the cells or none; for 
large values of β , this all-or-nothing policy is optimal. The experiment can really make a 
difference in the decision for large β .
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Figure 5.8  Conservation biology example: the VOI for total information on the 3 × 3 grid, plotted 
as a function of the spatial coupling in the distinction of interest (first axes). The three tests that are 
compared vary in the accuracy of the measurements.
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Note that when Rev = 2, p xi =( ) =1 0 5. , and Cost = 1, the decision maker is indifferent 
about the choice a priori. The experimental result could change the decision, and in this 
way the experiment is more valuable than for Rev = 5, as it is able to have an impact on the 
decision. When the accuracy of the measurement is small γ = 0 7. , and the spatial interac-
tion is small, VOI y( ) = 0 for the case with Rev = 5 (right display). In comparison, the VOI 
has its smallest value around 1.8 money units for the independent case when Rev = 2.

Norwegian wood: forestry example

Keywords: forestry example, Gaussian random field, total information, partial information, high 

decision flexibility, decoupled value function

We return to the forestry example with a spatial domain split into 25 × 25 units (see Section 
5.3). This example will now be studied from the perspective of free site selection – hence, 
high decision flexibility. We will compare these results with the previous results that 
assumed low decision flexibility.

Framing the decision situation

There are n N= = 625 units, with uncertain profits xi, i = 1 625,..., . Unlike the situation in 
Section 5.3, the decision maker is now free to harvest individual forest units. The alterna-
tives at spatial forest units are denoted ai, i n= 1,..., , and at each unit i the alternative ai is 
either 0 (not harvest) or 1 (harvest).

Information gathering

The data-gathering options are the same as those in Section 5.3, where we defined three 
testing options denoted 1–3.

Modeling

We use exactly the same statistical modeling assumptions as in Section 5.3, with a multi-
variate Gaussian model for the profits of timber volumes for forest units.

VOI analysis

The prior value is

	 PV E xi
i

n

= ( ){ }
=
∑max , .0

1

	 (5.34)

The information-gathering schemes are as 1–3 in Section 5.3. Again, using generic nota-
tion with data y, the posterior value is

	 PoV E x p d w p w dwi
i

n

i i i
i

n

y y y y( ) = ( ){ } ( ) = { } ( )∫∑ ∫∑
= =

max , | max , ,0 0
1 1

	 (5.35)
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where the variable w w E xi i i= ( ) = ( )y y| . Recall from the example in Section 5.3 that 
the posterior value calculation could be calculated analytically since the value function 
is linear and the Gaussian modeling assumptions result in a Gaussian distribution for wi , 
i n= 1,..., . Using the analytical results (Appendix A.1), the posterior value is:

	 PoV y( ) ( ) + ( )( )
=
∑= µ µ φ µ/ /i i i
i

n

ii ii iir r rΦ
1

, 	 (5.36)

where rii, i n= 1,...,  are the diagonal elements of the matrix R in Equation (5.18), and the 
cumulative distribution function Φ and the pdf φ of the standard Gaussian distribution are 
as in Equation (5.19). The difference is that we now have a free selection of forest units to 
harvest or not, and Equation (5.36) contains a sum over all sites.

Figure 5.9 shows the VOI as a function of the input parameters. Clearly the VOI is much 
larger for the free selection problem than for the decision situation described in Section 5.3 
with less spatial decision flexibility. With free selection, the decision maker has the flexibil-
ity to make decisions at each unit. The information may show that some units are profitable 
while others are not, and the decision maker can now select only the profitable ones. With 
less spatial decision flexibility in Section 5.3, the decision maker would have to consider all 
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Figure 5.9  Forestry example: VOI with a free selection of sites. The VOI is plotted as a function of 
the various input parameters for the Gaussian spatial model (first axes).
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units as one entity and would be compelled to choose the entire domain when the expected 
sum over all units is positive.

The spatial units to model the distinction of interest are determined by the finest gran-
ularity required for realistically modeling the heterogeneity of the spatial process. The 
spatial granularity required for the spatial alternatives is determined by demographic 
units or environmental conditions or constraints imposed by the infrastructure. There 
is always added value in having the flexibility to select smaller units if there is not a 
proportionally higher cost per area of the unit. However, this additional value induced 
by free selection of sites will also depend on the spatial nature of the phenomena being 
studied.

We perform a sensitivity analysis to bridge the differences between decision situations 
with less and high spatial flexibility. Suppose that the decision maker is now only free to 
harvest blocks of size 5 × 5, so it is no longer possible to make decisions at every spatial 
unit. The alternatives are then aj ∈{ }0 1, , j N= 1,..., , where N = 25, and aj = 1 signifies 
harvesting block bj. The prior value in this situation with block decisions becomes

	 PV E xi
i bj

N

j

=











( )

∈=
∑∑max ,,0

1

	 (5.37)

where the notation i bj∈  means the forest units i within block bj.
Note the combination of a sum both inside the maximum as for the situation with less 

spatial flexibility in Equation (5.14) as well as outside the maximum for selecting blocks 
[as for units in Equation (5.34)]. The posterior value with information y acquired by one 
of the 1–3 designs is

	 PoV E x p di
j

N

i b j

y y y y( ) = ( )











( )

∈=
∑∫∑ max |,0

1

. 	 (5.38)

The VOI is plotted in Figure 5.10 as a function of the various statistical model parameters.
As anticipated, the VOI is between that achieved by the decision situation with low spa-

tial flexibility (Figure 5.5) and free selection of forest units (Figure 5.9). For a very large 
spatial correlation (bottom right displays), the VOI is close to the VOI with flexibility to 
harvest individual units because there is little to lose by making the decision on the block 
level instead of the unit levels. The profits for units within the block are similar, and the 
same alternative tends to be optimal for all these units.

5.5  Special case: low decision flexibility and coupled value

In this section, we describe the special case with low decision flexibility in spatial decision 
situations. This resembles Section 5.3, but here the value function no longer decouples. 
A more complex value function results in more computationally demanding expressions 
for the prior and posterior values.
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This case is applicable when there are only a few alternatives, but the value from choosing 
any of the different alternatives involves a complex coupling of the spatial variables. This 
setting is, for instance, appropriate in petroleum reservoir development decisions (Bratvold 
et al. 2009) and for decisions concerning the recharge and management of groundwater 
resources (Trainor-Guitton et al. 2011). In such applications, the value is often related to 
the result of fluid flow in the porous subsurface. The fluid flow depends on complex inter-
actions of subsurface variables such as the heterogeneous rock porosity and permeability, 
flow connectivity between different lithologic units, and presence or absence of faults that 
can act as either barriers or conduits to flow. The flow response at one site depends on the 
unobserved uncertain variables at many (potentially all) other sites. Subsurface flow mod-
eling requires the numerical solution of partial differential equations in a heterogeneous 
porous media. Modeling the flow (and hence value) at one site cannot be decoupled from 
other sites. There is low decision flexibility when there are limited alternatives, possibly 
due to infrastructural, logistical, legal, or other practical issues.

The petroleum reservoir simulation example will be used for illustration in this section. 
A petroleum company must evaluate whether to develop the reservoir. There is uncertainty 
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Figure 5.10  Forestry example: VOI with a free selection of blocks of size 5 × 5. The VOI is plotted 
as a function of the various input parameters for the Gaussian spatial model (first axes).
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around the reservoir variables (spatially dependent facies, porosity, and permeability), and 
hence the profits from production are uncertain. In our example, we assume that the main 
uncertainty is the geological scenario that dictates the nature of spatial distribution of the 
high-permeability channel facies. A priori, the geologists believe that the spatial charac-
teristics of the reservoir are governed by two possible depositional scenarios: a river delta 
geological system or a meandering river channel geological system. We consider the sim-
plest situation with only two alternatives: (i) no development and (ii) development with a 
particular drilling strategy.

Note that in most of these complex coupled value function settings, the decision maker 
would clearly benefit from more decision flexibility (Section 5.6), but this is not always 
possible, perhaps because of limitations in the way the existing infrastructure must be 
used. It could also be conceptually easier for management to reflect upon and discuss only 
a select few alternatives. Finally, the added computational requirements would, of course, 
be greater when there is more spatial decision flexibility.

5.5.1  Prior value

The decision maker chooses the alternative a A∈  that maximizes expected value. In the 
petroleum reservoir example, the decision maker could either develop the reservoir or 
avoid development. The prior value over set A is

	 PV v a p da A= ( ){ }∈ ∫max , ( ) .x x x 	 (5.39)

The value function v ax,( ) of the reservoir simulation example signifies the revenues 
obtained from the oil production, minus the cost of development and production. Since 
v ax,( ) involves the solution of partial differential equations governing the flow in porous 
media, it cannot be decoupled. Hence, it is not possible to simplify the expression for the 
prior value in Equation (5.39) any further. We must evaluate the expected value within the 
parentheses for all alternatives A . We return to computational methods later.

5.5.2  Posterior value

Suppose that the decision maker can gather information. The posterior value of perfect 
total information is computed by switching the integral and the maximization from the 
prior value in Equation (5.39). We have

	 PoV v a p da Ax x x x( ) = ( ){ } ( )∈∫ max , ,	 (5.39)

because the decision maker can choose the best alternative upon observing every pos-
sible outcome of the spatial variables x. For the petroleum reservoir simulation example, 
this entails knowing the spatial reservoir variables at all locations. This kind of informa-
tion scheme is unrealistic for the petroleum reservoir application, but the resulting VOI, 
which like before is the difference between the posterior value in Equation (5.40) and 
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the prior value in Equation (5.39), would be an upper bound on the value of any kind of 
information-gathering scheme. Thus, if we get to know the VOI of perfect total infor-
mation, and we know that some experiment is more expensive than this upper bound, it 
would surely not be worthwhile collecting this data. This upper bound obtained from the 
VOI of perfect total information is easier to compute than the VOI of imperfect or partial 
information.

The posterior value expressions of partial perfect information x, partial imperfect infor-
mation y, or total imperfect information y are similar to each other for this case. We will 
simply denote data by y. Like before, the posterior value involves the conditional expected 
value function for every data outcome:

	 PoV E v a p da Ay x y y y( ) = ( )( ){ } ( )∈∫ max , | .	 (5.41)

For the petroleum reservoir simulation example, relevant data include reservoir monitor-
ing in wells, geologic information, seismic data acquisition and processing, electromagnetic 
surveys, etc. Such data would be informative of the reservoir variables and hence the value 
obtained from development. The VOI is the difference between the posterior and prior values.

One challenge in Equation (5.41) is finding the conditional expectation of the values. 
Unlike the case of total perfect information, this expression now involves an inversion step to 
get the conditional pdf p x y|( ), and one must compute the expectation of the complex value 
function with respect to this pdf. We discuss computational approaches in the next section.

5.5.3  Computational notes

The coupled value function means that one must use some sort of approximation to assess 
the VOI for this case. There are many ways to approximate this; we will discuss a couple 
of approaches (see also the discussion in Section 5.6).

Monte Carlo sampling can be used to approximate the prior and posterior values. As the 
number of Monte Carlo samples goes toward infinity, the approximation converges to the 
true theoretical integral. In practice, trial and error is used to tune the number of samples 
required for accurate approximation.

The prior value in Equation (5.39) is approximated as follows:

Algorithm: Monte Carlo approximation of the prior value

1.	 Draw samples x x1,..., B  from the prior model  p x( ) .
2.	 Compute the value v bx ,a( )  for each sample and every action  a A∈ .
3.	 Approximate the expected value for each alternative:

E v a v ab

b

B


x x, ,( )( ) = ( )
=

∑1

1B

4.	 Approximate the prior value  PV E v aa A≈ ( )( )







∈max ,


x .
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The posterior value in Equation (5.40) with total perfect information can be approxi-
mated using a similar algorithm:

The samples and value calculations could be re-used from the prior value approximation. 
The only difference with the algorithm for the prior value is in Step 3, where we switch 
the sum and the max. If resources permit, the value computation v abx ,( ) could be done in 
parallel, thereby making these computations much faster.

It is more difficult to approximate the posterior value of total or partial imperfect infor-
mation in Equation (5.41). This calculation requires realizations of data and the posterior 
expectation of the value function given the data. The core algorithm is as follows:

In Step 1, it is common to first sample x from p x( ), then y from the likelihood p y x|( ), 
which provides a sample from the marginal model for the data. The main challenge lies in 
assessing the posterior conditional mean in Step 2, which may not be easy for a complex 
value function. If this were done only once, it would amount to inferring the value for the 
single data set yb. This could involve, for example, inverting for realizations of reservoir 
variables given the data (stochastic inversion for facies) and then running a flow simulator 
on the realizations. This is computationally demanding because it must be done for all data 
outcomes yb, b B= 1,..., . The direct approach would then be to perform another round of 
Monte Carlo sampling to approximate the conditional expectation. This results in a double 
Monte Carlo loop, which is of computational complexity B A2 , assuming that we use B 
samples for the inner loop as well. We argue that a double Monte Carlo loop may be too 
slow to approximate the posterior value here. On the other hand, the number of alternatives 
is not very large (since there is low decision flexibility), so it may be possible to use the 

Algorithm: Monte Carlo approximation of the posterior value  
with total perfect information

1.	 Draw samples x x1,..., B  from the prior model  p x( ) .
2.	 Compute the value v abx ,( ) for each sample and every action a A∈ .

3.	 Approximate the posterior value  PoV
B

v aa A
b

b

B

x x( ) ≈ ( ){ }∈
=

∑1

1

max , .

Algorithm: Monte Carlo sampling for approximating the posterior value with 
imperfect or partial information

1.	 Draw samples y y1,..., B  from p y( ).
2.	 Approximate the posterior value PoV

B
E v aa A

b

b

B

y x y( ) = ( )( ){ }∈
=

∑1

1

max , | .
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direct Monte Carlo approximation method, especially if parallel computing is possible. 
(Another Monte Carlo approach will be discussed in Section 5.6 for the more flexible deci-
sion situation.)

A promising approach for approximating the VOI is to embed the spatial variables in a 
low-rank spatial representation. We will use such an approach in the reservoir simulation 
example in the following text. Instead of working with the full spatial description of the 
distinction of interest, we focus on a few discrete underlying geological scenarios. The 
approach could be practical for decision situations with few spatial alternatives, especially 
when the geological scenario has a large influence on the spatial variables, the coupled 
value function, and the downstream decision. Trainor-Guitton et  al. (2011) use channel 
directions as the geologic scenario in a groundwater application, reasoning that this geo-
logic attribute is an important variable for decisions regarding recharge. Petroleum res-
ervoir simulation studies have considered scenarios with open or closed faults (Bratvold 
et al. 2009).

The idea is to define a set of discrete geographic or geologic scenarios x ∈Ω, where Ω 
denotes the sample space of the scenario. Based on the scenario or geological features, one 
can generate multiple realizations of a random spatial process x x( ), inheriting properties 
defined by the scenario, but at a full spatial resolution. This would typically involve one 
of the spatial modeling methods described in Chapter 4. Note that we use x to denote the 
low-rank discrete scenario and x  to denote the full spatial process under a specific scen-
ario. We approximate the expected value function for all actions a under every scenario via 
Monte Carlo sampling of the many spatial realizations.

This approach requires B A Ω  computations of the value function, where Ω  denotes 
the number of geologic scenarios.

The posterior value with total and perfect information is again approximated by re-using 
the values computed from the sampling procedure for the prior value. For the posterior 
value, the decision maker chooses after knowing the scenario, given the total and perfect 
information.

	 PoV x x a p xa A
x

� �( ) ≈ ( ){ } ( )∈
∈
∑ max , .ν

Ω

	 (5.42)

Algorithm: Monte Carlo procedure for prior value for scenario-based methods

1.	 Draw Monte Carlo realizations of spatial process  � … �x x1 x x( ) ( ), , B ,  x ∈Ω .

2.	 Approximate values ˆ , ,v x a v x a
b

B

( ) = ( )( )
=

∑1

1B
b
x ,  a A∈ ,  x ∈Ω .

3.	 The prior value is PV v x a p xa A
x

� �≈ ( ) ( )







∈
∈
∑max ,

Ω

.
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Since there are only a few geological scenarios and alternatives, the expected value and 
prior and posterior values can be reasonably approximated even with moderate evaluations 
of the value function. As before, the VOI is the difference between the posterior and prior 
values.

Trainor-Guitton et al. (2011) suggested a method for the approximate inversion of fea-
tures, which makes it applicable to partial information or total and imperfect information. 
It is based on the construction of a reliability measure.

The reliability measure represents a classification confusion (or transition) matrix, 
p y l x k Pkl* |= =( ) = , where large entries on the diagonal imply that the data are correctly 
classified to belong to the scenario from which they were derived. Off-diagonal terms 
provide the misclassification errors. When we study the petroleum reservoir simulation 
example in more detail in the next section, we will use a reliability measure that is a func-
tion of the accuracy of interpreted seismic attributes y*, given geological environments x.

The discrete sample spaces of both the input geologic scenario and the interpreted 
inversion results ensure that the posterior value and VOI with imperfect information are 
straightforward to calculate using a sum over the sample space for the interpretation. Let 
y denote data acquired with a generic information-gathering scheme. The associated inter-
pretation result is denoted y*. The posterior value is

	 PoV y E v x a y p ya A
y

* max , | * * .
*

( ) = ( )( ){ } ( )∈
∈

∑
Ω

	 (5.43)

The marginal distribution for the interpretation is computed by marginalization – i.e.,

	 p y p x p y x
x

* * | .( ) = ( ) ( )
∈
∑

Ω

	 (5.44)

The expected values given the data are computed using Bayes’ rule for the conditional 
probabilities and the approximated values for each scenario. We have

Algorithm: approximation of the reliability measure

1.	 Simulate spatial processes x x� … �1
x xB( ) ( ), ,  for each class of geologic scenario x ∈Ω.

2.	 Simulate data sets yb, b B= 1,...,  conditional on the realizations from Step 1.
3.	 Construct a low-rank inversion or interpretation of every data set, possibly based on 

some summary statistics. The output of this interpretation is a classification, y b* ∈Ω 
for all data sets, into one of the defined classes of geologic scenarios.

4.	 Based on the simulation scenario and the classification, form a reliability measure:

p y l x k

I x k y l

B

b

b

B

* |
, *

= =( ) ≈
= =( )

=
∑

1
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	 E v x a y v x a p x y p x y
p x p y x

p yx



, | * , | * , | *
* |

*
.( )( ) = ( ) ( ) ( ) =

( ) ( )
( )∈

∑
Ω

	 (5.45)

In summary, the posterior value in Equation (5.43) is computed using the same samples 
and value evaluations as those for the computation of the prior value and the posterior value 
with total perfect information in Equation (5.42). The computation now weights the values 
with the posterior probabilities given the interpreted data.

Recall that there is a large reduction of spatial dimension here. The interpretation is a 
scalar variable, as is the geologic scenario. However, full-scale spatial modeling is used 
as an intermediate step to model the value function and to model the full-scale seismic 
data y. If we want to compute the VOI of total testing, the data variable is obtained at 
all sites, and we perform the interpretation based on this full spatial coverage test. For a 
partial test, the data are only represented at a subset of the sites, which would provide a 
less accurate interpretation – i.e., smaller diagonal entries in the reliability measure tran-
sition matrix.

5.5.4  Example

Go with the flow: petroleum simulation example

Keywords: petroleum simulation, petroleum development, petroleum production, reservoir charac-

terization, multiple-point statistics, geologic scenario, low decision flexibility, coupled value function

Let us consider an example about the development and production of a petroleum reservoir. 
The spatial setting is similar to the case described in Section 4.7. The decision has a lot at 
stake, and it may be worthwhile to collect geophysical data before making the decision. We 
will perform VOI analysis for seismic data.

Framing the decision situation

A company considers developing a hydrocarbon reservoir. The development decision 
entails large investments in infrastructure: platforms, wells, pipelines, etc. If the company 
is fortunate, extensive production of oil or gas results in profits. On the other hand, the 
petroleum company could end up with a lower production rate, and this may lead to a large 
loss. There is significant uncertainty around the spatial reservoir variables. We assume that 
most of the uncertainty is driven by the geological scenario, which is classified as either 
x = 0: a delta system, or x = 1: a meandering river system.

There are a number of decisions regarding the development of a petroleum reservoir. 
We will consider a simplified decision situation where the decision maker can either 
(i) develop the reservoir by drilling a fixed configuration of wells or (ii) avoid develop-
ment. Thus, there is low flexibility, with only two alternatives. Development is represented 
by alternative a = 1, while the alternative to avoid development is denoted a = 0. The only 

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.006
http:/www.cambridge.org/core


Value of information in spatial decision situations194

spatial aspect of the decision situation is the known well configuration under the devel-
opment decision. If the decision about drilling production wells is made, a fixed design 
of the production wells is used. The decision situation is not nearly as flexible as that of 
optimizing the well configuration or tuning the production and injection rates by well 
controls. It describes a much simpler decision situation. However, a petroleum company 
could have limited decision flexibility for various reasons: there could be existing infra-
structure, making a few well configuration alternatives much less expensive than others, 
or there could be limited availability in well equipment and the ability to perform compli-
cated well controls.

The petroleum reservoir we consider here is modeled with the geologic scenario as the 
main uncertain variable. Given the geological scenario, we generate the three-dimensional 
spatial distribution of facies classes, porosity, and permeability. The value function is 
highly coupled, and described in more detail after the spatial modeling.

Information gathering

The decision maker may obtain valuable information about the reservoir variables by 
collecting seismic data. For instance, seismic interpretation could be useful for identify-
ing large-scale geological structures such as key reflectors representative of major geo-
logical events, subsurface horizons, and faults. At a finer granularity, quantitative rock 
physics interpretations of seismic amplitude data are also useful for characterizing the 
spatial distribution of facies and pore fluid in the reservoir. In this example, we will look 
at the information content in seismic amplitude data using a reliability measure. Thus, 
the interpreted seismic attributes will be considered as the data, and we are interested in 
studying how informative the interpreted seismic data might be about certain geologic 
scenarios.

Modeling

The two uncertain geologic scenarios are considered equally likely a priori  – i.e., 
p x p x=( ) = =( ) =0 1 1 2/ . The geologic scenario governs a lot of the heterogeneous vari-
ability in the reservoir. Given the geological scenario, the decision maker knows the statis-
tics of the spatial facies distribution, the porosity, and the permeability. Along with the well 
design, these variables describe the flow and production of petroleum. The value function 
is the total production until a stopping time, minus the cost of development. We will study 
sensitivity to the costs, but the main part of the task is to compute the production profiles 
for various reservoir variables for both scenarios x ∈{ }0 1, .

The spatially varying distinctions of interest x x( ) are facies, porosity, and permeabil-
ity. First, we use multiple-point statistics (see Section 4.7) to generate B = 1000 realiza-
tions of facies for each geologic scenario. Next, for each realization, we populate the 
geo-model with porosity and permeability values, given the facies realizations, using 
appropriate rock physics relations for the channel sands and the shale facies. The perme-
ability is related to the porosity via a standard Kozeny–Carman-type relation – see, e.g., 
Mavko et al. (2009).
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Figure  5.11  Petroleum simulation example:  the base case porosity maps derived from a training 
image of the reservoir facies. Top: display represents a delta system. Bottom: display represents a 
meandering river system.
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Figure 5.11 shows an example of porosity realizations for the two geological scenarios. 
The delta system (top) clearly has less of a channel structure than the meandering river system 
(bottom). Also, the delta system has more trends in the facies in the eastern parts. The subsur-
face fluid flow and production profiles would be different under the two geologic scenarios.

The value of developing the reservoir v x a, =( )1  is based on the uncertain production 
of oil under each geologic scenario, with the costs subtracted. The amount of oil being 
produced is obtained by established software for fluid flow simulation in porous media. 
Among other variables, they take the porosity and permeability fields as inputs. For each 
geological scenario, the value is approximated from the 1000 realizations of spatial facies, 
porosity, and permeability. We used the well-known Eclipse software to compute the pro-
duction profiles of each realization. In the hands-on exercises in Chapter 7, the reader can 
either use Eclipse or the MATLAB reservoir simulation toolbox to try out similar situations.

Seismic data y are informative of the reservoir parameters. It may be worthwhile to pur-
chase seismic data to learn more about the reservoir properties. Rock physics relations and 
seismic wave propagation equations can be used for modeling the expected response of seis-
mic amplitudes. We may write y f= ( )x , where the function f  represents the forward model – 
rock physics and wave propagation. The seismic data must be inverted or interpreted before 
they can be used for the prediction of reservoir variables. This interpretation is commonly 
done by looking at smooth attributes valid at the seismic resolution scale. The interpretation is 
imperfect for many reasons, including challenges of seismic imaging, non-uniqueness in rock 
physics relations between seismic attributes and reservoir properties, and the presence of res-
ervoir heterogeneities below the scale of seismic resolution. Here, we will consider a variety 
of simple reliability measures for the interpreted seismic data, denoted by y*. We set the reli-
ability measure to be equal for the two scenarios – i.e., p y x p y x* | * |= =( ) = = =( )0 0 1 1 . 
Combined with the equal marginal probabilities of the two geological scenarios, this implies 
that the marginal for the interpreted data is p y p y* * /=( ) = =( ) =0 1 1 2.

VOI analysis

Figure 5.12 shows the total oil production over time for the delta system (top) and the 
meandering river system (bottom) computed for the 1000 realizations for each scenario.

We see that the delta system produces more oil than the meandering system, with some 
uncertainty, largely driven by the facies realizations. The meandering system has a larger 
variation in the production, whereas for the delta system, the production curves cluster 
into three groups. After 10 years of simulated production, the delta system has an average 
production of 113,000 standard barrels, whereas it is only 60,000 for the meandering river 
system. Note that the actual value may depend on other factors besides oil production. For 
instance, if the wells get early water breakthrough, the costs of processing may become so 
large that it is not profitable to continue production for long.

If the cost (in units of a thousand barrels) of development and production is less than 60 
(assuming that the revenue per barrel is one unit), then the decision maker would develop 
the reservoir in any case. If the cost is larger than 113, then the decision maker would 
avoid development. For intermediate costs, the deal is profitable only if it turns out that the 
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underlying geologic system is a delta system. Of course, the decision maker does not know 
the geologic scenario a priori.

The prior value is the average profit taken over the geologic scenarios. It is

	 PV = −( ) + −( )







= −{ }max , max , . ,0
1

2
113

1

2
60 0 86 5Cost Cost Cost 	 (5.46)

where we have subtracted the cost of development and production. We will assume three 
development cost levels, high: Cost = 100, medium: Cost = 85, and low: Cost = 70. The 
prior value is slightly positive for the medium development and production level and is 
clearly positive for the low level. For the high level, the decision is to avoid development.

The posterior value with perfect information about the geologic scenario is defined by 
Equation (5.42), and for all the specified values of the cost of development we have

PoV x( ) = −{ } + −{ } = −{1

2
0 113

1

2
0 60

1

2
0 113max , max , max ,Cost Cost Cost}}.	 (5.47)
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Figure  5.12  Petroleum simulation example:  realizations of the production profiles for the delta 
system (top) and the meandering river system (bottom).
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The posterior value is positive for all levels of development and production cost. The 
VOI is the difference between the posterior and prior values. We compare the VOI with 
perfect information versus imperfect information in the following text.

For the posterior value with imperfect information in Equation (5.43), the reliability 
measure is needed in addition to the prior probabilities. We compute the posterior value of 
imperfect information and the associated VOI for different reliabilities.

The VOI results for perfect information and imperfect information are sum-
marized in Table  5.4. As expected, we see that the VOI is lower for less reli-
ability in the seismic interpretation. If the accuracy of the interpretation is only 
70%  – i.e.,p y x p y x* | * | .= =( ) = = =( ) =0 0 1 1 0 7, the development cost must be near 
medium for VOI to be positive. At this medium cost, the expected profits are near 0, and 
the data are valuable since they could influence the decision maker either toward or away 
from developing.

5.6  Special case: high decision flexibility and coupled value

This case entails a much larger set of alternatives than in Section 5.5. The decision maker 
can choose among alternatives at various locations. However, unlike the case in Section 
5.4, the value can no longer be decoupled into a sum over sites. The value function is com-
plex and jointly involves the alternatives chosen at different sites. This situation occurs, 
for instance, in hydropower production from several dams that are connected in a river 
system. Decisions must be made about the water level in all dams. If water flows over one 
dam, it will continue downstream to the next dam and influence the value from the alter-
natives chosen there. See, e.g., Alemu et al. (2011) for a more general discussion of this 
hydropower production problem. This case is also applicable for the petroleum simulation 
example in Section 5.5 when there is more flexibility in the spatial decision situation. Such 
flexibility could include optimization of well locations or tuning the well production rates 
at different locations. See, e.g., Barros et al. (2014) for a promising VOI approach for this 
application.

A hydropower production example is used throughout this section, where we analyze the 
VOI of snow measurements before the melting period. The underlying decision situation is 

Table 5.4.  VOI results for perfect information and imperfect information in the 
reservoir simulation example with different reliability measures for the seismic 
data and for different costs of production and development

Perfect
Information Reliability of 0.9 Reliability of 0.7

VOI – Low Cost 5 2.4 0
VOI – Medium Cost 12.5 9.9 4.6
VOI – High Cost 6.5 3.9 0
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how should the decision maker set the levels of several reservoirs (dams) before the snow 
melts? The goal is to fill up all dams during the melting season and then sell the energy 
later at a higher selling price. However, if water runs over dams, the hydropower company 
loses income. By collecting snow measurements at selected locations, the decision maker 
obtains more information about the water that could flow to the dams during the melting 
period, and this information could potentially be worthwhile.

5.6.1  Prior value

We denote alternatives by a Aj j∈ , for j N= 1,.., , and the total set of alternatives by a A∈ .  
As in Section 5.4, alternatives are associated with spatial locations and may or may not 
be of the same dimension as the distinction of interest x = ( ,..., ).x xn1  In the hydropower 
example, n N> . Unlike the decoupled value situation in Section 5.4, the value calculation 
now depends on the alternatives at many locations.

The prior value is the same as in the most general formulation:

	 PV v v p dE= ( )( ){ } =











∈ ∈ ∫max ( ) max ( ) .a A a A

x

x a x a x x, , 	 (5.48)

Only in special cases can the expression be simplified further  – the structure of the 
optimization problem depends very much on the situation. For instance, in the hydropower 
example, the value function decouples a little based on the design of dams in the river 
basin, where water running over one dam flows downstream to the next.

5.6.2  Posterior value

The posterior value is also the same as in the most general formulation:

	 PoV v p dx x a x xa A
x

( ) = ( ){ }∈∫ max ( ), 	 (5.49)

for total and perfect information. Again, this provides an upper bound for any sort of 
information-gathering scheme.

For partial perfect or imperfect information (denoted y),

	 PoV E v p dy x a y y ya A( ) = ( )( ){ } ( )∈∫ max , | .	 (5.50)

The associated VOI is the difference between the posterior and prior values as in 
Section 5.2.

In the context of hydropower production, weather models and precipitation measure-
ments acquired during the winter season provide a priori knowledge about the snow levels 
and therefore about how much water will run into the dams. However, there is still some 
uncertainty about the spatial distribution of snow. It may be useful to measure the snow 
depth at selected locations (partial testing).
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5.6.3  Computational notes

The case of coupled value function and high flexibility in the spatial alternatives is extremely 
computationally demanding in general. Methods similar to those in Section 5.5 could be 
useful for approximating the VOI, but since there is high decision flexibility, it may not be 
that appropriate to study large-scale discrete spatial characteristics as was done with the 
geologic scenarios. It seems more useful to consider approximations that fully incorporate 
the spatial distinction of interest.

Suppose that we have a sample-based representation of the prior. This is represented 
as x x1,..., B realizations of spatial variables sampled from p x( ). The prior value can be 
approximated over the samples:

	 PV
B

v b

b

B

≈ ( )







∈
=

∑max , .a A x a1

1

	 (5.51)

This prior value approximation requires B A  evaluations of the value function v bx a, .( )  
The number of alternatives can be large in this setting with high decision flexibility, and 
it may be necessary to limit the number of Monte Carlo runs required in some way. For 
instance, one may realize that some combinations of spatial alternatives will surely result 
in less value than some another combination, in which case it is not necessary to perform 
the value calculation for alternatives with lower value.

As usual, the posterior value of perfect information is computed by switching the inte-
gral and the max term from the prior value:

	 PoV v p d
B

v b

b

B

x x a x x x aa A a A( ) = ( ){ } ( ) ≈ ( ){ }∈ ∈
=

∫ ∑max , max , .
1

1

	 (5.52)

The calculation requires no additional value calculations if we have computed it for all 
samples and all alternatives for the prior value approximation in Equation (5.51).

For other kinds of information y, the posterior value calculation is more challenging. 
As we discussed in Section 5.5, one must first find the conditional pdf p x y|( ) given data 
outcomes y and then compute the expectation of the value function under this conditional 
pdf for all alternatives. Finally, this is averaged over all data outcomes. Instead of running 
a double Monte Carlo scheme for this posterior value approximation, we outline a compu-
tational method that aims to re-use the Monte Carlo samples generated from the prior value 
approximation. The approach we use here is inspired by approximate Bayesian computing 
(ABC) – see Chapter 2 and Appendix B.

Suppose that the data y are related to the spatial variables of interest by y f x= ( ) . The 
function f  could involve (non-linear) physical relations like in a total imperfect test (say, 
seismic data), or it could pick a subset of variables (partial testing) like we assume in the 
setting with snow measurements at some selected sites. The relation f  between the data 
and spatial distinctions of interest could, of course, include random noise elements associ-
ated with the experimentation.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.006
http:/www.cambridge.org/core


5.6 Special case: high decision flexibility and coupled value 201

For each realization from the prior, one can obtain simulated data y y1,..., B, where 
y f xb b= ( ). This sample is representative of the marginal distribution of the data p y( ).  
The posterior value of imperfect information is therefore

PoV E v p d
B

E v b

b

y x a y y y x a ya A a A( ) = ( )( ){ } ( ) ≈ ( )( ){ }∈ ∈
=

∫ max , | max , |
1

11

B

∑ .	 (5.53)

We now present an approach for the inner expectation that re-uses samples from the 
prior. This approximation is based on the nearest neighbors to each data realization accord-
ing to some loss function or metric.

We define a mismatch, score, or loss l b cy y,( ) to represent the “distance” between a 
data set yb computed from prior sample xb  and data set yc based on the prior sample xc, b, 
c = 1,..., B. This defines a B B×  loss or dissimilarity matrix. We generate posterior samples 
by picking the prior samples that satisfy a small loss l b cy y,( ) < ε. We can tune the thresh-
old ε  so that we have at least a fraction – say, B / 10, of the original prior samples.

The diagonal is ignored in the analysis. The focus is on the remaining samples that are 
independent of the realization for the data. We use these losses to approximate the con-
ditional expectation of value. Samples within the specified threshold are thus uniformly 
weighted, not unlike in rejection sampling (see Section 2.5).

The associated VOI for imperfect information is the difference between the posterior 
value and the prior value in Equation (5.48):
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Algorithm: Monte Carlo approximation of posterior value using approximate 
Bayesian computing for the conditioning

1.	 Sample x x1,..., B from prior p x( ).
2.	 Compute the value v bx a,( ) for each sample b B= 1,...,  and all alternatives a A∈ .
3.	 Generate synthetic data variables y f xb b= ( ), b B= 1,..., .
4.	 Compute the loss, l b cy y,( ), b c B, ,...,= 1 , between all data pairs.
5.	 Approximate the conditional expectation as follows:

E v
B

v B I lb

b

c

c l

b
b c

b c

 x a y x a y y
y y

, ( )( ) = ( ) = ( ) <(
( )<
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, : ,

,

1

ε ε
ε ε))

≠
∑
c b

.

6.	 Approximate the posterior value as follows:

PoV
B

E v b

b

B

y x a ya A( ) ≈ ( )( ){ }∈
=

∑1

1

max | . ,
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This procedure is computationally efficient because we re-use samples from the prior 
value computation. Steps 1 and 2 are identical to those for the prior value in Equation 
(5.51). The number of value computations is B A . In some situations, the forward mod-
eling in Step 3 can be quite demanding as well, depending on the complexity of the 
data-gathering scheme. For instance, seismic data could require complex modeling in the 
relation y x= ( )f . The snow measurements, on the other hand, simply provide the snow 
level at the locations they are made, with noise.

Even though this approximate conditioning scheme based on loss or dissimilarity saves 
plenty of computer time, one must be careful because the statistical properties of such an 
approach are not fully understood. Moreover, these properties are difficult to check because 
the approximate Bayesian computing procedure enforces no statistical modeling assump-
tions on the likelihood. Instead, we simply use samples that are close to the data in some 
sense. There are several ways to select the loss function (see Chapter 2).

Barros et al. (2014) use a related computational approach, trying to learn from one set 
of realizations in creative ways, for VOI analysis in reservoir management. The approach 
evaluates the effect of data assimilation (information) for closed-loop reservoir optimiza-
tion, which includes the locations and tuning or recovery factors of wells. They use an 
ensemble of models and a workflow that loops over the realizations or ensemble members 
as the truth while finding the optimal strategy on all the other ensemble members.

5.6.4  Example

Frozen: hydropower example

Keywords:  hydropower, snow measurements, transformed Gaussian variables, Monte Carlo 

sampling, approximate Bayesian computing, partial information, high decision flexibility, coupled 

value function

We study the VOI of snow measurements for decisions about water levels in a system of 
dams for hydropower production. For more background on the subject of snow meas-
urements for hydrology scheduling, see, e.g., Lundberg et al. (2010) and Bruland et al. 
(2015).

Framing the decision situation

Hydropower production benefits from advanced planning of water levels in dams. In our 
example, as well as in many real hydropower systems, dams are connected such that when 
water from one dam is used or lost due to flooding, it flows into the next dam downstream. 
The connection of dams makes the optimal scheduling (control) of the system challenging. 
The situation is further complicated by uncertainties around snow storage, groundwater 
levels, future precipitation, and energy prices. Note also that value may be a function of 
factors other than hydropower production – for instance, flood protection and water storage 
for agricultural purposes.
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We will consider a simplified problem of short-term decisions about the water level in 
dams right before the snow melting period. At the time of snow melting, selling prices of 
energy are very low, while they get much higher later in the year. The goal for the hydro-
power company is thus to fill up all the dams and sell later. If the water levels before melt-
ing season are high, then the dams will likely exceed their maximum water level, and water 
will be lost for hydropower production. Hence, the hydropower company could actually 
have made more money previous to the melting period by selling, even though this would 
have been at a lower price. If the water levels before the melting season are too low, the 
dams are unlikely to fill, and future revenue is lost.

The example studied here consists of nine dams in a river basin (Figure 5.13). The alter-
natives pertain to the water levels of the dams. We assume that the decision maker is free 
to lower the water level at each dam before the snow melting starts (Figure 5.13, right). 
The high and low levels of the dams are denoted alternatives aj ∈{ }0 1, , j = 1 9, , . A low 
level implies that the dam can handle an additional volume vol(1) before it runs over, while 
a high level means that the dam can handle a smaller additional volume vol(0). The units 
are in million cubic meters. We assume that the current dam level corresponds to the high 
alternative. By choosing the alternative of reducing the dam level to the lower level, the 
hydropower company receives income Rev1 1 0vol vol( ) − ( )( ), where Rev1 is the selling 
price per volume unit during this time of year. However, going through with this low alter-
native implies that there would be a smaller chance of filling up the dam later. The future 
selling price per unit volume is Rev2 . We set Rev Rev2 1≥  because there is plenty of energy 
production and relatively little demand during the snow melting season. We assume that the 
production of energy during the rest of the year will bring the water level down to the high 
level again (vol 0( )) at a constant selling price Rev2 . Note that in practice, the prices would 
be set by the market. Moreover, the energy per unit could also depend on the water level in 
the dam and the production profiles of dams, etc.

The map in Figure 5.13 (left) displays the river basin – i.e., the water outside this region 
will not run off to the dams. The catchments define the water that accumulates to the dam. 
In addition, the run-off from the dams above will flow along the river to the next dam. The 
profit made from hydropower production depends on the price of energy and the water 
volumes. The uncertain distinction of interest is the water volume equivalents of snow at 
spatial cells in the river basin. We split the spatial domain defining the river basin into a grid 
composed of 50 × 50 regular cells. Each cell is of size 1 × 1 km2. The optimal decisions for 
dam levels are based on the uncertain water volume equivalents denoted xi, i = 1 2500,..., .

The value function is spatially coupled through the connection between the various 
dams. We define it in further detail as we present expressions for the prior value  in the 
following text.

Information gathering

It is common to acquire measurements of snow depth and density before the snow melts. 
A team would travel with snow scooters to measure the snow depth and properties of the 
snow at select locations.
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Figure 5.13 (left) illustrates the acquisition sites (circles) in this example. They are at the 
northernmost part of the basin at high altitude. The snow measurements acquired at these 
locations could influence the decisions about water levels at the dams. If it has a large effect 
on the decisions, the snow data acquisition may perhaps be worth its price.

Note that the snow measurements include the depth of the snow column as well as certain 
properties of the snow such as the snow water equivalent. For simplicity, we assume that 
the snow water equivalent is 0.5 and focus on the snow depth measurements that are related 
to the water volume equivalents at the spatial cells where the measurements are made.

Modeling

The water volume equivalent xi of snow at cells i = 1 2500,...,  is estimated by multiplying 
the snow column depth at that cell, the area of the cell, and the snow water equivalent (set 
to 0.5). In practice, the prior knowledge of the uncertain snow depth relies on numerical 
weather modeling, as well as precipitation and temperature observations at a few monitor-
ing sites. We model the snow depth as a random field with a spatial correlation and a spa-
tial trend. Spatial correlation is incorporated by an exponential covariance function for a 
Gaussian random field. These Gaussian variables at all sites are transformed to truncated 
power law variables (see Section 2.2) that represent the snow depth. The power law distri-
butions have location-specific parameters, making large snow depths more likely at high 
altitudes and in the eastern part of the domain.
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Figure 5.13  Hydropower example: a map view of nine dams with catchments. The acquisition line 
(north, center) indicates where the decision maker can collect snow measurements to better predict 
the water that will run into the catchments. The decision maker chooses the water level of the dams 
before the snow melts.
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Figure 5.14 shows two realizations of the snow depth distribution (in meters). As mod-
eled, there is a tendency to find deeper snow at higher altitudes and in the eastern parts. 
The cells with deep snow are seen to be spatially correlated. This correlation means that the 
aggregated snow in a catchment could vary significantly from one realization to another.

We denote the spatial cells for different catchments (basins of flow attraction) by C C1 9,...,  
and the accumulated water volumes at the dams by x xC C1 9

,..., . For Dams 1 and 2, which 
are at the highest altitude, the accumulated snow melt contribution from the catchments is

	 x x x xC i
i C

C i
i C

1

1

2

2

= =
∈ ∈
∑ ∑, .	 (5.55)

For the dams farther down the river system, the accumulation from snow melting is more 
complicated. For catchments j = 3 8,..., ,

	 x x x aC i
i C

C pa jj

j

pa j
= + − ( ){ }

∈
( )∑ ( )max , ,0 vol 	 (5.56)

where pa j( ) denotes the nearest upstream (or “parent”) dam. Note that the melting contri-
bution here depends on the alternatives chosen at the upstream dams. If the water volume 
equivalents are larger than the volume the parent dam can handle, the run-off flows to the 
next dam.

For the dam at lowest altitude, the sum over its catchment and the contribution from 
water flowing over dams 7 and 8 is

	 x x x a x aC i
i C

C C9

9

7 8
0 07 8= + − ( ){ } + − ( ){ }

∈
∑ max , max , .vol vol 	 (5.57)

The decision maker’s monetary value depends on these uncertain water volumes in the 
dams, as described by Equation (5.55)–(5.57) after snow melting, as well as the alternatives 
chosen at the dam. It is also a function of the selling price Rev1 before melting and Rev2  
in the future.

Data are acquired at 82 cells in the northern parts of the river basin (Figure 5.13). For 
these snow measurements, we assume that the depth measured at a cell is representative 
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Figure 5.14  Hydropower example: two realizations sampled from the model for snow thickness.
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of that spatial 1 × 1 km2 cell. We also assume that the measurements provide perfect infor-
mation at the cells where they are made – i.e., the data consist of x, where  denotes the 
subset of partial testing locations among the total of 2500 cells.

VOI analysis

The value is a function of the sum of water volumes sold prior to snow melting (if alterna-
tives include lowering the water level) and the selling price of volume capacity after snow 
melting. This can be summarized by

	 v vj
j

x a x a, , ,( ) = ( )
=

∑
1

9

	 (5.58)

where the contributions at dams j = 1 9,...,  are defined by

	
v I a

x I a

j j

C jj

x a, Rev

Rev min

( ) = ( ) − ( )( ) =( ) +

− =( ) (
1

2

1 0 1

1 1

vol vol

vol )) − ( )( ) ( ){ }vol vol0 0, .
	 (5.59)

Note that the value from a dam in Equation (5.59) depends on the uncertain snow amount 
in its catchment and the chosen dam level, as well as the uncertain snow contribution at 
higher altitudes and the chosen levels at these upstream dams.

In this example with high flexibility in the spatial alternatives as well as a coupled value 
function, the calculation of the prior value is rather demanding. For calculating the prior 
value approximation, we use Equation (5.51) with B = 5000 samples, where each value 
calculation v bx a,( ) is based on Equation (5.58). Thus, we generate B realizations of snow 
depths using the random field model with power law marginal distributions for the depth. 
For each of these realizations, we run the dams for all possible combinations of alterna-
tives – i.e., A A1 9 . With the two alternatives at each dam, there are 2 5129 =  alternatives. 
The optimal alternative is the configuration of alternatives that provides the largest value, 
on average, over the realizations.

Assuming an average snow depth of 1.2 m, there is a volume of 1000 1 2 0 5 250 1502 ⋅ ⋅ ⋅ =. .  
million m3 from the 250 cells in a catchment. Obviously, if the higher level corresponds 
to smaller volumes than this, it is likely best to lower the dams. On the other hand, when 
the higher level corresponds to larger volumes than this, the decision maker is better off by 
not lowering the dam levels. Aside from these extreme situations, it is not straightforward 
to tell the effects of the various alternatives because of the complicated interactions, and it 
also depends on the price levels before melting and in the future.

For calculating the posterior value, we use the approximate Bayesian computing-type 
algorithm presented earlier. We condition on the data at the 82 acquisition points by choos-
ing a subset of realizations that have snow depths close to what is observed in the data real-
ization. The similarity measure between realizations is calculated from the average depth 
at the acquisition cells. The specified threshold of the approximate Bayesian computing 
algorithm picks about B / 10 realizations for posterior assessment.
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5.6 Special case: high decision flexibility and coupled value 207

We compute the prior and posterior values and the VOI for a variety of parameters, 
as indicated in Table  5.5. The prior values clearly increase with larger revenues, and 
the same trend is seen for the VOI. The largest VOI is achieved when the energy prices 
per unit are Rev1 2=  and Rev2 5=  and for high and low water levels around the typical 
water volume in a catchment of 150. When high and low volumes are vol 0 120( ) =  and 
vol 1 180( ) = , the best a priori combination of alternatives is to lower the level in the east 
and south parts of the basin, in which case the prior value is 5750. If all dams are lowered, 
the average value is only 5100, because the decision maker will likely not be able to fill 
up the dams, thereby losing high-revenue water. The large VOI noted here indicates that 
the snow depth information is clearly useful for decisions pertaining to the dam level. 
When the prices are the same, Rev Rev1 2 1= = , it is optimal to lower the dams in most 
situations. When water levels are too high, vol 0 120( ) =  and vol 1 150( ) = , lowering the 
dams is prudential.

Figure 5.15 shows the prior and posterior values and the VOI as a function of the diffe-
rence in the low and high water levels – i.e., vol vol1 0( ) − ( ), symmetric around the typical 
volume of 150. The two curves represent different sets of revenues. The displays show 
that the prior and posterior values decrease as the high and low levels become farther 
apart. Having extreme alternatives prevents the decision maker from tuning the levels. On 
the other hand, when the high and low water levels are almost the same, there is little to 
gain by collecting the snow depth information because it does not have enough coverage 
to affect the decisions. The highest value of the snow measurements appears to occur for 

Table 5.5.  VOI for the snow measurements for hydropower planning. The results are over 
various prices per water unit of current water and that of future water

Prior Value

vol

vol

0 140

1 160

( ) =

( ) =
, vol

vol

0 120

1 180

( ) =

( ) =
, vol

vol

0 150

1 180

( ) =

( ) =
, vol

vol

0 120

1 150

( ) =

( ) =
, vol

vol

0 100

1 200

( ) =

( ) =
,

Rev ,Rev1 21 1= = 1320 1340 1340 1300 1350

Rev ,Rev1 21 2= = 2520 2350 2600 2340 2160

Rev ,Rev1 22 5= = 6290 5750 6480 5740 5210

VOI

vol

vol

0 140

1 160

( ) =

( ) =
, vol

vol

0 120

1 180

( ) =

( ) =
, vol

vol

0 150

1 180

( ) =

( ) =
, vol

vol

0 120

1 150

( ) =

( ) =
, vol

vol

0 100

1 200

( ) =

( ) =
,

Rev ,Rev1 21 1= = 0 0 0 0 0

Rev ,Rev1 21 2= = 20 28 18 14 27

Rev ,Rev1 22 5= = 50 64 36 35 53
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intermediate high and low differences when the decision maker gains sufficient flexibility 
of lowering dams at the right level after observing the snow depth information.

5.7  More complex decision situations

In Section 5.1.3, we described a high-level framework for a suite of models, and in Section 
5.2, we presented a fairly general formulation for static models. We then proceeded to dis-
cuss various special cases in Sections 5.3–6. Here, we relax some of the previous assump-
tions:  specifically, we consider more general risk preferences (beyond risk neutrality), 
constraints in the decision situation, and sequential decision situations. The reader should 
note that our discussion in this section and the next is fairly cursory, since research on 
models for VOI analysis in the Earth sciences for more complex decision situations is at a 
nascent stage.

More complex decision situations are very much relevant for real applications. However, 
they should be used wisely, because the price of generality in the formulation is often a sig-
nificant increase in the computations required. We focus on the essential ideas to provide 
a flavor of some of the modeling and computational complexities using examples that are 
essentially special cases of more general formulations.
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Figure  5.15  Hydropower example:  prior value, posterior value, and VOI as a function of the 
difference in high and low values around the typical volumes in catchments. The plots are shown for 
two different sets of current revenue Rev1 and future revenue Rev2.
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5.7.1  Generalized risk preferences

We previously assumed a risk-neutral decision maker – i.e., someone who makes decisions 
by maximizing expected value. For prior value calculations, we computed the expectation 
of the value function, and for posterior value calculations, we computed the conditional 
expectation of the value function. The VOI was obtained by subtracting the prior value 
from the posterior value. When the decision maker has a more general utility function, the 
expected value is no longer the only statistic that is pertinent. Moreover, the VOI compu-
tation is not necessarily the difference between the prior and posterior values. Here, we 
return to aspects from Chapter 3 regarding general utility functions and discuss these in the 
context of spatial decision situations.

In Chapter 3, we presented a general approach for computing VOI for a general utility 
function. Let us return to first principles and apply these techniques to equations from 
Section 5.2. Suppose that the decision maker has wealth w and utility function u .( ) and 
faces a spatial decision situation where the distinction of interest is x and any alternative 
from the available set, a A∈ , can be chosen.

Prior to receiving any information, the decision maker chooses the alternative that maxi-
mizes the expected utility. Incorporating the initial wealth and of course the utility func-
tion, the maximum expected utility is

	 MEU u v u v p dE= ( ) ( ) ( )( ){ } =







∈ ∈ ∫max ( ) max ( )a A a A

x

x a x a x x, ,+w +w 



.	 (5.60)

Suppose that the decision maker is offered total perfect information about the distinc-
tion of interest at a price P . The decision maker will lose this price for all prospects, since 
this price will be paid for certain. Again, as usual, the integral and the maximization are 
switched, and the maximum expected utility of this new situation is

	 MEU u v P p d’ max ( ) .= −( ) ( ){ }∈∫ a A
x

x a x x, +w 	 (5.61)

The value of perfect information is the price at which the maximum expected utilities for 
the situations from the preceding two equations are equal. A similar approach can be taken 
for computing the value of partial perfect or imperfect information.

As we described in Chapter 3, when the decision maker has an exponential utility func-
tion, then the VOI can indeed be computed as a difference between the prior and posterior 
values (see Appendix A.1). Only the linear and exponential utility functions have this con-
venient property.

5.7.2  Additional constraints

Recall that the decision maker can choose alternatives from the available set a A∈ . This 
notation captures the effect of constraints to a degree – if some alternatives are no longer 
feasible for whatever reason, they will no longer be in set A, and the analysis can be repli-
cated without making further changes to the model. However, what if there are additional 
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constraints that enforce further restrictions on the alternatives that are available to the deci-
sion maker by necessitating underlying changes to the model? We will explore this aspect 
by extending an example from a previous subsection.

Consider the special case from Section 5.4 – a decision situation where there is high 
decision flexibility and a decoupled value function. We also referred to this case as that of 
the “free selection of sites,” because the decision maker was free to select as many sites 
as profitable. Now suppose that there is a budget that puts limitations on the number of 
selections that can be made. Suppose that the decision maker is only allowed to select k n<  

sites. The possible way to select subsets of size k out of n sites is 
n

k






. We denote the set 

of such subsets by W n
k( ). An element of this set, ϖ = ( ) ∈ ( )ϖ ϖ1,..., k n

k

W , indicates which of  

the k cells are selected. Here, ϖ i n∈{ }1,...,  and ϖ ϖi j≠ , i, j = 1,...,k. For the chosen set, the 
decision maker can choose among alternatives a A

i iϖ ϖ∈ .
If the value function can be decoupled, like in Section 5.4, the prior value is the max-

imum over all subsets of size k among the n sites – i.e.,

	 PV E v x an
k

W a A
i

k

n
k

i i i i( ) ∈ ∈
=

= ( )( ){ }





( ) ∑max max , .ϖ ϖ ϖ ϖ ϖ

1
	 (5.64)

Due to the decoupling of value, the computation of Equation (5.64) is simply done by 
ranking the n sites and picking the best k. If the value function is coupled, the calculation 
would be much more difficult.

The posterior value with imperfect information y is

	 PoV E v x an
k

W a A
i

k

n
k

i i i i( ) ∈ ∈
=

( ) = ( )( ){ }




( ) ∑y ymax max , |ϖ ϖ ϖ ϖ ϖ

1 
( )∫ p dy y.	 (5.65)

The critical difference with the prior value computation in Equation (5.64) is that the 
selection of sites now depends on the data – the decision maker can choose different sites 
depending on the data. The VOI is the difference between the posterior and prior values, as 
the decision maker is risk neutral.

The tree amigos: conservation biology example

Keywords:  conservation biology, Markov random field, constraints, total information, imperfect 

information

We revisit the example inspired by a situation in conservation biology in Section 5.4. The 
spatial domain is represented as a 3 × 3 grid, and the presence xi =( )1  or absence xi =( )0  
of a species of tree at the cells is modeled as a binary Markov random field model.

Now we allow for constraints on the number of reserve sites that can be selected. Let 
k denote the maximum number of cells that can be selected (based on a budget). The 
prior value computation is Equation (5.64), while the posterior value is computed in 
Equation (5.65). The value function for the two alternatives is as in Section 5.4  – i.e., 
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v x a I xi i i, Rev=( ) = ⋅ =( ) −1 1 Cost and v x ai i, =( ) =0 0, i = 1 9,..., . From the prior or pos-
terior probability at all cells, the profits from the field are maximized by choosing the best 
k prospects.

Suppose that the decision maker considers purchasing a total test. Furthermore, sup-
pose that the outcome of this experiment is a discrete variable at each cell, yi ∈{ }0 1, , 
i = 1 9,..., , which is indicative of the true absence or presence of the species of tree. As in  
Section 5.4, the accuracy of the experiment is defined by the likelihood model. Here, we 
set this accuracy to γ = 0 9. .

The VOI for the different parameter settings is calculated using forward–backward 
recursions for the marginal likelihood p y( ) evaluation and the marginal probability 
p xi =( )1 | ,y  i = 1 9,..., .

Figure 5.16 shows the VOI as a function of the spatial interaction parameter β . The dis-
play has three curves, valid for different values of k (the maximum number of cells that 
can be selected): k = 1, k = 5, and k = 9. The revenues are set to Rev = 2 (left) and Rev = 5 
(right), while Cost =1, as in Section 5.4. The case with k = 9 corresponds to the uncon-
strained case in Figure 5.8, since there are n = 9 cells in the field.

Previously, we noted that the VOI tends to increase with spatial interaction in the uncon-
strained situation. However, for k = 5 and k = 1, the VOI seems to decrease as β  increases. 
This is most prominent in the graph for large revenues on the right. We explain this ten-
dency as follows:  the experiment conducted over the entire field has a certain facet that 
can be relatively more valuable when there is both low spatial dependence and a limit on 
the number of cells that can be selected. It tells you which cells are likely to be favorable, 
thereby guiding the decision maker about the choice of site location. There is a little more 
leeway for the decision maker regarding the selection of an appropriate location when there 
is high spatial dependence. Thus, VOI can be relatively smaller when β  is high.

VOI is not always highest when k = 9 and lowest when k = 1. The prior value is larger 
without constraints, but as we see in Figure 5.16 (right), the VOI need not follow such a 
trend. It is indeed possible for the experiment to be more valuable in the situation when 
there are constraints, as opposed to when there are none. In our experience, it is often com-
plicated to interpret the VOI in situations with constraints, even in this simple example with 
a decoupled value function and a grid of relatively small size.

5.7.3  Sequential decision situations

In Section 5.1.3, we laid down a high-level framework for the various models by making a 
distinction between static and sequential decision situations as well as static and sequential 
information-gathering schemes. In this section, we briefly consider models of sequential 
decision situations. Our intention is not to be general, but only to provide the reader a sense 
of the complexities involved. We focus largely on the special case of high decision flexibil-
ity and decoupled value from Section 5.4.

In static spatial decision situations (for a risk-neutral decision maker with binary alter-
natives), the selection of sites is a one-time decision where the decision maker chooses 
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alternatives from ai ∈{ }0 1, , indicating no selection and selection, to maximize the total 
expected profits. Instead, suppose that the decision maker is now allowed to make sequen-
tial decisions; in this way, they can adapt to outcomes as they are observed. Sequential 
decisions therefore provide additional flexibility in making the decision. However, the cor-
responding model dramatically increases computational tasks. This increase is partly due 
to the need for evaluating many (sequential) conditional probabilities, given the results, but 
it is also caused by a large increase in the number of alternatives in each strategy of the 
sequential decision situation.

Figure 5.17 illustrates a decision tree for this sequential decision situation when there 
are only two uncertain variables x1 and x2. At the first stage, the decision maker can select 
one of these projects or none. If Project 1 or 2 is selected, they get to observe the result of 
the chosen one. Given the observation, the decision maker can now either select the other 
project as well or stop. The optimal selection strategy depends on the profits associated 
with the projects as well as the conditional probabilities of random variables x1 and x2. If 
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Figure 5.16  Conservation biology example: constrained selection of conservation biology units. VOI 
for total information on the 3 × 3 grid as a function of the spatial coupling in the distinction of interest 
(first axes). The three curves represent the number of cells that can be selected in the constrained 
decision situation. Revenues are 2 (left) and 5 (right) while cost is 1.
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observing the variable x1 has an impact on the decision about Project 2, the decision maker 
would benefit from making the decision sequentially.

Assume a situation with n sites and two alternatives, select or not, for all projects. 
Selecting project number i is denoted ai = 1. The prior value is

PV E v x a x p xseq i i i i i i i i= =( )( ) + ( ){ } (≠max , max
1 1 1 2 1 2 1 1

1 0,ContVal ))











∫ dxi

xi

1

1

0, ,	 (5.66)

where the continuation value is defined by

ContVal 0,ContVali i i i i i i i ix E v x a x x
2 1 2 2 1 3 1 2 3

1( ) = =( )( ) + ≠, | max , ii i i i i

x

x p x x dx
i

1 2 2 1 2

2

, | .( ){ } ( )∫
	

� (5.67)

We have assumed a continuous sample space for these equations. For a discrete sample 
space, the integrals would become sums.

This prior value is computed by a dynamic program, which can be solved using 
Bellman’s equations. These equations are nested, and their solution requires going through 
all possible sequences of selections. The optimal sequence depends on the outcome of 
selected sites at earlier stages. At the final stage, the continuation value is

	 ContVali i i i i i in n n n n
x x E v x a x x

1 1 1 1
0 1, , max , , | , , . 

− −( ) = =( )( ){ } 	 (5.68)

The prior value in Equation (5.66) is always at least as large as the prior value for the 
associated static decision situation. When there is dependence, it is always helpful to see the 
outcome of another variable before making a selection. Bickel and Smith (2006) describe 

Select 1

Select 2

x1

x1

x2

x2

Stop

Select 1

Stop

Select 2

Select neither

Figure 5.17  Illustration of sequential decisions for a two-variable situation: at the first branch, the 
decision maker selects 1, 2, or neither. After seeing the result of the first decision, the decision maker 
can go on selecting or stop.
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an example where the static decision situation has PV = 0, while the sequential decision 
situation has a value that is clearly positive.

The computations depend on the probabilistic model in general. The integrals are often not 
solvable using analytical methods. For a discrete sample space or for a discretized numer-
ical approach, it is possible to sum out the entire multivariate sample space when there are 
relatively few sites – see, e.g., Bickel and Smith (2006) for an example with prior value cal-
culation on a size n = 6 problem inspired from the petroleum industry. (A similar example is 
provided as an exercise in Chapter 7.) When there are many spatial sites, solving the integrals 
or sums can be very computationally demanding, and one may need to turn to approximate 
solutions. The method of choice depends very much on the situation and the probabilistic 
model. There is a large body of literature on dynamic programs and approximate dynamic 
programs – see, e.g., Powell (2011). A myopic (or greedy) solution is often used in practice, 
where the algorithm looks one step ahead, then updates, then looks one step further, updates, 
and so on. An alternative is to consider multiple steps into the future. This is often better than 
the myopic approach but is more computationally demanding – see, e.g., Martinelli et al. 
(2013a).

For imperfect information y, one can compute the posterior value using a similar recur-
sion, but this time conditional on the information. Data could be partial, total, imperfect, or 
perfect. The posterior value becomes

  PoV

E v x a

xseq i

i i

i i i i
y

y

( ) =
=( )( ) +

≠
max

, , |

max ,1

1 1

2 1 2 1

0 1

0,ContVal yy y y y( ){ } ( )
















( )∫∫ p x dx
p d

i i

xi

1 1

1

| ,
y

	 (5.69)

where the continuation value must again be computed in a nested manner, and now includes 
the information provided by the data y. The VOI for a risk-neutral decision maker is the 
difference between the posterior and prior values. Computations for obtaining the poster-
ior value and the VOI are much harder than those for the prior value, and simplifications 
inspired by approximate dynamic programming will likely be required.

Gotta get myself connected: Bayesian network example

Keywords: Bayesian network, exploration wells, binary outcomes, Bayes’ rule, sequential decisions

This example revisits the two-node network example in Section 2.3. Two prospects are 
assumed to be dependent via a common parent node in a Bayesian network. The marginal 
success probability at both nodes is p xi =( ) =1 0 1. . The conditional probability, given a 
success at the other, is p x xi i2 1

1 1 0 5= =( ) =| . , while p x xi i2 1
1 0 0 055= =( ) =| . . The rev-

enues and costs associated with success and failure are specified to be the same for both 
prospects. The revenues are set to Rev  =  3, while we vary the costs to study sensitiv-
ity. For static selection, the prior value is PV = ⋅ −( )2 3 0 1 0max . ,Cost . This is plotted in 
Figure 5.18 (dashed line). It decreases as a straight line with a slope of 2 until it reaches the 
first axis at Cost = 0.3.
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When the decision maker has the ability to make sequential decisions, there is a greater 
prior value, as given by Equation (5.66). When we plug in the probabilities for this case, 
we obtain:

	 PVseq = ⋅ − +
⋅ −{ }⋅ +
⋅ −

max , .
max , . .

max , .
0 3 0 1

0 3 0 055 0 9

0 3 0 5
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.	 (5.70)

The prior value with sequential decisions in Equation (5.70) is piecewise linear, and it 
goes slower toward 0 than for the static case. At Cost 0.055= ⋅ =3 0 17. , the slope changes 
because one enters a range of costs where the second project will not be selected if the first 
was a failure. Figure 5.18 (top display) shows how the prior value of the sequential deci-
sions is clearly larger in the cost range where the decision maker is most indifferent.

Suppose that the decision maker considers gathering imperfect information at both projects. 
The test has a discrete result, but it may yield a false positive or false negative. The accuracy 
is assumed to be the same for the two and is denoted by γ = 0 9. , as we have done in previous 
examples. Following Equation (5.69), the posterior value of the total imperfect information is
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Figure 5.18  Prior and posterior values and VOI for the situation with two dependent prospects for 
a sequential decision situation. The dashed lines are for the situation with static decisions; the solid 
lines are for the situation with sequential decisions.
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where ContVal Costj j ik p x x k, Rev | ,y y( ) = ⋅ = =( ) −1 . Note that one must now account 
for the order in which the decisions are made. For some observations, the decision maker 
may select one prospect before the other and vice versa. When the prior value was computed, 
this order was not considered due to the symmetry in this specific situation. Conditional on 
the data y, this symmetry is broken.

The posterior values and the associated VOIs are plotted in Figure 5.18. The poster-
ior value of the sequential strategy is only slightly more than that for the static decision 
situation, and it is larger for different cost ranges than for the prior value (top display). 
Therefore, the VOI could either be lower or higher for sequential decisions as compared to 
the VOI for static decisions.

5.8  Sequential information gathering

We briefly discuss models related to sequential information gathering – i.e., when infor-
mation need not be collected in one go, and therefore the decision maker can use the infor-
mation obtained from one test to evaluate whether subsequent tests should be performed. 
Sequential information schemes provide additional value due to the additional flexibility 
around planning information gathering. Miller (1975) is an early reference on this subject.

We consider the case of a static spatial decision situation – i.e., where the decision maker 
must make a one-shot selection of sites – but with sequential information gathering, so the 
decision maker can perform experiments sequentially. Furthermore, we consider the spe-
cial case of high decision flexibility and decoupled value from Section 5.4. The prior value 
is the same as in Section 5.4 – i.e.,

	 PV E v x aa A ii
i

n

i i
= ( )( ){ }∈

=
∑max , .

1

	 (5.72)

The posterior value is evaluated for all possible strategies of sequential testing. Let the 
possible tests be y j , j m= 1, , . This is generic notation that represents all sorts of tests – for 
instance, the tests could be univariate, aggregated, or made site by site. They could be total, 
partial, perfect, imperfect, etc. In any event, we assume a price Pj, j m= 1, ,  of tests. For cal-
culating the VOI of sequential tests, one must know the prices of these experiments up front, 
since they are needed to evaluate whether future tests are worthwhile. Miller (1975) clearly 
states some assumptions about these prices Pj of experiments, which we will also use. First, 
we assume that the prices are fixed – i.e., they are not random variables. Second, we assume 
that they are additive, implying that the price of shared elements in the acquisition, process-
ing, or some initial common price is negligible compared with the prices of each experiment.

For now, consider two tests y1 and y2. Suppose that the decision maker acquires the first 
test, with the ability to follow up with the other. For some outcomes of the first test, he 

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.006
http:/www.cambridge.org/core


5.8 Sequential information gathering 217

or she may not acquire the second. For other outcomes, he or she may indeed acquire the 
second test. Thus, the value of a sequential information-gathering scheme cannot be less 
than doing both tests at once – i.e., a static testing scheme. A risk-neutral decision maker 
can determine the best test sequence by maximizing the expected value. With two tests, 
the decision maker has the following four alternatives: Test 1 and stop, Test 1 and continue 
with Test 2, Test 2 and stop, or Test 2 and continue with Test 1.

Assume that Test y1 has been performed. The posterior value of this static test is

	 PoV E x p dv aa A i
i

n

ii i
y y y y1 1

1
1 1( ) = ( ){ }( )∈

=
∑∫ max | ( ), .	 (5.73)

With sequential testing, there is a more complicated integrand for the solution because 
one must consider all possible sequences of information gathering. The decision maker 
will only acquire the test if the additional value minus the price of the second experiment 
P2 is larger than the value of the first test alone – i.e., we require
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We refer to the left side of Equation (5.74) as continued testing, while the right side is 
associated with the decision maker stopping testing. The posterior value of the first test 
having the option of continuing with Test 2 becomes
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and, since the decision maker is risk neutral, the VOI is the difference between the posterior 
and prior values. This VOI should now be compared to the price P1 of Test y1. If the VOI 
is larger than this price of the experiment, it is worthwhile doing a sequential test starting 
with y1. The optimal sequential testing scheme may be to perform Test 2 first and then Test 
1. The posterior values of all strategies must be evaluated and compared after incorporating 
the prices of the experiments.

More generally, for sequential tests y j , j m= 1, , , the VOI can be written as a sequence 
of interchanging integrals and maximizations, not dissimilar to the expression for the prior 
value for sequential decisions in Equation (5.66). The integrals (or sums for the discrete 
sample space) are assumed to be over the outcomes of the tests. The maximizations are 
assumed to be over the alternatives of continued testing or stopping testing. The situation 
is illustrated as a partially drawn decision tree in Figure 5.19.

The posterior value of sequential information starting with Test y j1
 is
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where the continued value when doing more sequential testing is as follows:
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Due to the nesting with continued values, the computational solution to the posterior 
value and the VOI is extremely demanding in general. The solution to the general setup is 
provided by dynamic programming. For small models and toy problems, this can be solved 
exactly, but for larger models, heuristic strategies are required in practice. There are numer-
ous approximate solutions that can be leveraged for different cases – see, e.g., Powell (2011).

For whom the bell tolls: Gaussian projects example

Keywords:  Gaussian projects example, bivariate Gaussian distribution, correlation, linear 

Gaussian model, perfect information, partial information, total information, sequential information 

gathering
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Figure 5.19  Illustration of sequential testing: at each branch, the decision maker can continue testing 
or stop. When he or she stops, the decision is made at all sites.
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We return to the bivariate Gaussian pdf, which was also used in Sections 2.3 and 3.4. Two 
projects have Gaussian profits with mean µi = 0, variance σ i

2 1= , and correlation ρ. We 
study imperfect information-gathering schemes with a conditionally independent likeli-
hood model p y x N xi i i| ,( ) = ( )τ 2 , τ 2 20 5= . . We consider a static decision situation where 
we can freely select a project if it is profitable.

This example has been constructed specifically for comparing the cases of static and 
sequential information gathering. We plot the VOI minus the price of the experiments. 
When the decision maker can pursue sequential information gathering, the price of the 
second test is subtracted wherever testing is continued. Figure 5.20 shows the results as 
a function of the correlation parameter ρ. We compare the VOI of the sequential testing 
model with that of static testing at both prospects as well as static testing at one prospect.

The figure indicates that sequential testing is always of greater value than the results of 
static testing at one or both sites. For small correlations, the results of sequential testing 
seem to follow that of static testing in the sense that for most data outcomes of the first test, 
the sequential scheme will continue testing. For very high correlations, the sequential test-
ing curve follows the static test at one of the sites. In this case, there is so much dependence 
that performing one test is sufficient – i.e., the sequential scheme will stop testing for most 
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Figure 5.20  Gaussian projects example: VOI minus the price of the experiment for different testing 
options plotted versus the correlation between the projects (first axis). The plot compares the results 
of static and sequential information gathering.
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outcomes of the first test. Intuitively, the added value obtained from sequential testing is 
largest for intermediate correlations, where it is worthwhile for the decision maker to have 
the additional flexibility of determining whether to continue testing.

5.9  Other information measures

We have described VOI analysis for the comparison and evaluation of various 
information-gathering schemes. In this section, we take a diversion and discuss some alter-
native approaches for measuring information content. We advocate the use of VOI analysis 
when faced with a clear decision situation involving uncertain distinctions of interest that 
can be modeled reasonably. However, when there is ambiguity around the decision situa-
tion or situations that the information might be useful for, alternative information measures 
such as the ones discussed in this section may be useful.

Our discussion focuses on three information measures that are commonly used for select-
ing and designing spatial experiments:  entropy, prediction variance, and prediction error. 
Other measures are also used in practice, and we mention these briefly. Dobbie et al. (2008) 
review the different types of spatial monitoring designs. Geometric designs are routinely 
used in practice (Royle and Nychka 1998). They are also denoted as the space-filling design 
of experiments since they do not rely on any aspects of the spatial statistical model or spatial 
correlation. Other designs attempt to have a degree of space filling while maintaining some 
design locations close together (Diggle and Lophaven 2006). This is useful when the goal is 
to estimate spatial correlation parameters and at the same time maintain good spatial cover-
age for prediction purposes. We only treat the situation with fixed statistical model parameters 
here, assuming that auxiliary data exist that allow us to specify unknown nuisance param-
eters. Most of the literature on spatial experimental design relies on a Gaussian model for 
the distinction of interest and the data. Under this assumption, both the entropy and variance 
criteria are easily computed in a prospective sense – i.e., before the data are actually collected. 
For other probability models and for high-dimensional spatial variables, the computations 
required to evaluate a suggested design may be very demanding. Approximate solutions are 
available for some models, like spatial generalized linear models (GLMs) (Evangelou and 
Zhu 2012), but in general the computations involve an outer loop drawing realizations of data 
and an inner loop evaluating the information measure for each data realization. The search for 
the best design in a large set of spatial candidate sites becomes a combinatorial problem, and 
various heuristics have been applied. One of these is the exchange algorithm (Royle 2002), 
which iteratively picks candidate sites and tries to replace the selected site with another.

There is a gulf of difference between the philosophies of the information measures pre-
sented in this section and VOI. For instance, the information-theoretic notion of entropy pro-
vides a sense of how much uncertainty can be reduced by performing an experiment, but it 
cannot directly indicate how much the decision maker should pay for it. The decision-analytic 
notion of VOI is tied inexorably with decisions and the preferences of the decision maker, 
and can inform the decision maker about how much he or she should pay. VOI is a more com-
plete measure for valuing information and therefore is also more difficult to obtain. Recall 
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from Chapters 1 and 3 that from a decision analysis perspective, an experiment should be 
conducted when it is: (i) relevant to the distinction of interest, (ii) material to the decision that 
brings value, and (iii) economic for the decision maker. A material experiment is one that can 
affect the decision – i.e., the action chosen by the decision maker is not identical for different 
outcomes of the experiment. By the decision-analytic philosophy, information from experi-
mentation may reduce uncertainty but is not valuable until it can change the decision. The 
information measures we present in this section only address aspects of the relevancy of the 
experiment without addressing the other two requirements. Entropy measures may be used 
as a guide in designing the most relevant experiment (e.g., Mukerji et al. 2001), but it cannot 
be used to say anything about the experiment being material or economic.

5.9.1  Entropy

Information entropy was originally introduced by Shannon (1948) as a measure of uncer-
tainty in problems related to signal communication across noisy channels. Later, the con-
cepts of entropy and mutual information were applied in other fields, including statistics, 
physics, biology, engineering, and computation (Cover and Thomas 2006). The notion of 
entropy, introduced from information theory (e.g., Ash 1965) is useful for measuring the 
reduction in uncertainty of x = x xn1, ,( ) on observing the outcome of an experiment. It is 
a commonly used information measure to gauge the relevancy of experiments and has been 
used for constructing useful designs of spatial experiments – see, e.g., Shewry and Wynn 
(1987), Zimmerman (2006), or Fuentes et al. (2007). For a fixed-size design, one selects 
the spatial experiment sites which, when combined, result in the smallest overall entropy 
for the distinction of interest.

Recall the definition of entropy, which was briefly discussed in Section 2. For a con-
tinuous sample space, Ent p p d( ) ( ) log ( )x x x x= −∫ , where p x( ) is the pdf of x. Consider 
experimental observations y = y ym1, ,( ), which are informative of the distinction of inter-
est x. The data could represent perfect or imperfect information and partial or total test-
ing. Without loss of generality, we assume a likelihood model p y | x( ), with the marginal 
distribution p p p dy x y x x( ) = ( ) ( )∫ | . The conditional entropy, given the experiment y, is 
given by Ent p p d( ) ( ) log ( )x | y x | y x | y x= −∫ .

The expected reduction in entropy is obtained by subtracting the expected conditional 
entropy from the original (marginal) entropy. We have

	 EMI y x x y y y( ) = − ∫Ent Ent p d( ) ( | ) ( ) , 	 (5.78)

where EMI denotes the expected mutual information between x and y.
Entropy can be used to compare various information-gathering schemes. For instance, 

EMI can be used to study if one test reduces entropy more than another test of similar size 
or complexity. One can also compute the sequential reduction in entropy – for instance, by 
augmenting the current design with one experiment or site at a time. In the beginning, one 
may choose to pick the sites that are expected to reduce entropy the most, but as more sites 
are sequentially selected, the entropy reduction becomes smaller. One could potentially stop 
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selecting sites after a fixed number m is reached. Note, however, that a forward selection of 
m spatial sites chosen in this fashion may not be identical to the optimal size m set of sites.

The entropy information criterion has been popular in spatial statistics – see, e.g., Le 
and Zidek (2006). Entropy has close ties with likelihood theory, and this makes it a natural 
measure for a statistician when there is no extrastatistical knowledge. The criterion relies 
solely on the joint probability models. Entropy has been particularly popular for Gaussian 
geostatistical models, where a common assumption is that of stationarity. When the spatial 
model is non-stationary, there may be other criteria that are more intuitive. For instance, 
Lilleborge et al. (2015) suggest using sums of marginal entropy rather than the EMI in 
Equation (5.78) for a petroleum exploration example. Lindberg and Lee (2015) argue for 
an asymmetric entropy measure to guide the selection of experiments. In their applications, 
the experiments are very computationally demanding, and the traditional entropy measure 
appears to select a lot of wasteful experiments.

The goal of Lilleborge et al. (2015) is to select a subset of petroleum fields for explor-
ation drilling. A Bayesian network (BN) model is used to model the outcome of n petrol-
eum fields. An exploration well provides perfect information about the presence or absence 
of hydrocarbons at the location where it is drilled. Suppose that the decision maker can 
perform one experiment here – i.e., drill one exploration well to learn as much as possible 
about the petroleum resources. We will denote the perfect information at the testing node 
by x, while the uncertain outcomes at other nodes are x. By conditional probability, 
p p x p xx x( ) = ( ) ( )K L K| ; therefore, log log log |p p x p xx x( ) = ( ) + ( )K L K . Using this for-
mula in Equation (5.78)

	
EMI x x p x dx

x x p x

Ent Ent

Ent Ent

K L K K K

K L K K

( ) = ( ) − ( ) ( )
= ( ) + ( ) (

∫x x

x

| ,

| )) − ( ) ( ) = ( )∫ ∫dx x p x dx Ent xEntK L K K K Kx | .
	(5.79)

The largest reduction in entropy is achieved by selecting the node with the highest marginal 
entropy. Since the marginal entropy is largest at success probability of 0.5, the EMI criterion 
focuses experimentation on the prospects where the decision maker is most indifferent. In some 
situations, this is natural, but it does not necessarily value learning about the outcomes at other 
nodes. Consider a network consisting of n −1 very dependent prospects, where the n-th node is 
independent of the rest. If this last node has marginal probability closer to 0.5 than any of the 
other nodes, the algorithm based solely on EMI would select this node. This seems counter-
intuitive since the information acquired at this single node is completely uninformative about 
the rest of the nodes. In comparison, an observation at another node could be very informative 
about the entire network except the one independent node.

5.9.2  Prediction variance

Another commonly used measure for comparing experimental designs is prediction vari-
ance. The goal is to construct spatial designs that provide the smallest possible overall (inte-
grated) variance for the distinction of interest. It is most commonly used for the Gaussian 
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model or hierarchical models with GLM likelihood – see, e.g., Diggle and Lophaven (2006) 
and Evangelou and Zhu (2012).

As before, let us represent the distinction of interest at n sites as x = x xn1, ,( ). We denote 
the covariance matrix of x by Σ . The sum of marginal prior variances at the sites is:

	 SV ( ) .= = ( )
= =
∑ ∑Var xi
i

n

ii
i

n

1 1

Σ =trace Σ 	 (5.80)

An experiment yields data y, and we can compute the posterior variances. The expected 
reduction in variance is used to compare various experimental designs. To construct a cri-
terion, we must therefore compute the expected variance reduction (EVR):
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	 (5.81)

When we compare designs of equal size, the one with the largest EVR y( ) would be 
preferred. Again, one could use this criterion in a sequential manner, as discussed for the 
entropy criterion.

Norwegian wood: forestry example

Keywords: forestry example, Gaussian random field, prediction variance, entropy, design of experi-

ments, spatial design

Let us compare the prediction variance for different spatial designs of experiment for the 
forestry example discussed in Sections 5.3 and 5.4. We maintain the same discretization of 
the spatial domain: the sites are the 25 6252 =  cells covering the unit square.

The a priori Gaussian distribution of the forest profits is denoted p Nx( ) = ( )µ,Σ . We 
assume a homogeneous structure with no trend (mean 0), but as we will see, this is not rele-
vant for the prediction variance since it is a function of the variance–covariance alone and not 
the mean.

Pitfalls: reduction of uncertainty by data

It is a misconception that data always reduce uncertainty. Consider, for instance, the 
binary univariate model, x ∈{ }0 1, , with success probability p p x= =( )1 . We can easily 
construct likelihood models and data realizations y  such that p x y=( )1 |  is closer to 0.5 
than the prior probability. For instance, in the pirate example in Section 2.3, p = 0 01. ,  
but when we get a positive test, p x y= =( ) =1 1 0 16| . . This means that the variance 
Var x y Var x p p|( ) > ( ) = −( )1 . However, notably, this will not hold when we average over 
all possible data realizations y . On average, of course, data will reduce the uncertainty. 
Using the formula of conditional variance:

Var x E Var x y Var E x y E Var x y( ) = ( )( ) + ( )( ) ≥ ( )( )| | | .

Similar arguments hold for the other information criteria.
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When the decision maker collects data y, which are acquired according to one of the 
three test designs described in Section 5.3, the conditional covariance matrix matters. 
Using generic notation, data are obtained via y = Fx 0 T+ ( )N ,  for some design matrix F  
defined by the spatial experiment.

The posterior covariance matrix, conditional on the data, is given by

	 Σ Σ Σ Σ Σ.x y F F F T F| = − +( )−t t 1
	 (5.82)

Note that for the Gaussian distribution, the conditional variance does not depend on the 
data, nor does it depend on the prior mean. It only depends on the prior variance, the accur-
acy of the experiment, and the design of data acquisition via the matrix F . The variance 
reduction criterion includes the expected trace of the matrix in Equation (5.82), where the 
expectation is taken over by the data y. However, since the data are not directly involved, 
the EVR is simply given by the trace of the prior covariance minus the trace of the posterior 
covariance. We have

	 EVR( ) .|y F F F T Fx y= ( ) − ( ) = ( )+( )−
trace trace traceΣ Σ Σ Σ Σt t 1

	 (5.83)
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Figure 5.21  Forestry example: the expected reduction in variance for three different spatial designs 
of experiment. The results are plotted as a function of the various input parameters for the Gaussian 
spatial model (first axes).
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In Figure 5.21, we plot the variance reduction for the three acquisition schemes as a 
function of the model parameters. As expected, we see that the variance reduction does not 
depend on the mean (top left), while it decreases as a function of the measurement noise 
(top right) since more accurate measurements would tend to pin down the distinctions of 
interest more than an inaccurate test. We also see that the EVR increases as a function of the 
prior noise level (bottom left) and the spatial correlation range parameter (bottom right). 
When there is more prior noise, the data are more informative, and it is relatively easier to 
make a large reduction. For a univariate model, the reduction in variance is σ σ τ4 2 2/ +( ),  
where the increasing trend with σ 2 is apparent. The large spatial correlation means that 
the variables are more connected, and the data would have more ability to reduce overall 
uncertainty. The increase of EVR with the spatial range parameter is very pronounced for 
the partial tests compared with the decrease or increase as a function of the mean, measure-
ment noise, or prior noise parameters. A partial test becomes relatively more informative 
when there is a stronger correlation. There is not much point in testing cells adjacent to 
each other with high correlation, as the two cells have very similar properties.

5.9.3  Prediction error

The prediction error is commonly studied for discrete models – see, e.g., Peyrard et al. 
(2013) and Lilleborge et al. (2015). The intent is that data collection on average should pull 
predictive probabilities closer to 1 or 0.

Consider again a distinction of interest x = ( )x xn1, ,  represented at n sites. The vari-
ables are represented on a finite discrete sample space. The prediction error is defined 
via classification based on the most likely outcome  – i.e., for each i n= 1,..., , a class 
k p x kk i* argmax= =( ){ } is selected. If the complement occurs, there is an error. A priori, 
before collecting any data, the prediction error is:

	 PE max .= − =( ){ }( )
=
∑ 1

1
k i

i

n

p x k 	 (5.84)

Conditional on observing data y, the expected prediction error is:

	 PE E max | E max |y y y( ) = − =( ){ }( )
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, 	(5.85)

where the expectation is over the data pdf p y( ). Within the expectation, for each data out-
come, the largest posterior probability is computed at all cells. For some data outcomes, the 
largest probability may be Class 1 at a particular cell; for other data outcomes, the largest 
may be for Class 2 at the same cell, and so on. In this way, the data would allow a change 
in the classification at cells, and this would be more likely if the data were collected at that 
cell or at a cell in its vicinity. Since the probability at a cell is constant in the prior but can 
change depending on data in the posterior, PE PEy( ) < . The improvement made by data 
collection can be compared over various experimental designs, and according to this criter-
ion, one should select the design with the smallest expected prediction error.
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The tree amigos: conservation biology example

Keywords: conservation biology, Markov random field, prediction error

This example revisits the conservation biology case with the selection of reserve sites for 
trees; see Sections 5.4 and 5.7. A Markov random field model is used for the binary distinc-
tions of interest xi on a 3 × 3 grid – i.e., i = 1 9,..., .

We evaluate the expected prediction error for various interaction parameters β in the binary 
Markov random model for two different likelihood accuracies: γ = 0 7.  and γ = 0 9. . This is a 
case of total imperfect information – the decision maker collects binary data at all nine cells 
in the grid, but there is a chance that the data at a cell will give the wrong interpretation of the 
latent distinction of interest (in this case, whether a particular species of tree is present or not).

The prior probability is assumed to be p xi =( ) =1 0 5.  at each cell i = 1 9,..., , so the pre-

diction error without data is PE = −( ) =
=
∑ 1 0 5 4 5

1

9

. .
i

.

We compute the expected posterior prediction error in Equation (5.85) by the 
forward–backward algorithm (Appendix A.4) for the marginal likelihood p y( ) and the 
conditional probabilities p x ki =( )| y , k = 0 1, , and i = 1 9,..., .

Figure 5.22 shows the expected prediction error as a function of the spatial interaction on the 
first axis. Both tests reduce the prior prediction error of 4.5 by a substantial amount. The predic-
tion error is smaller for the more accurate experiment. The difference between the more accur-
ate tests (γ = 0 9. ) and the less accurate tests (γ = 0 7. ) is largest for small spatial interaction. 
Both curves decrease when the spatial interaction gets larger. When there is larger dependence, 
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Figure  5.22  Conservation biology example:  prediction error plotted as a function of the spatial 
interaction parameter in the Markov random field.
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the latent variables are more coupled, and a test has greater impact. The decrease is more pro-
nounced for the less accurate test, since this test gains relatively more from the dependence in 
the latent field. Similar tendencies were seen for the VOI analysis of this example in Section 5.4. 
The challenge with the prediction error criterion, just like other criteria that only explore rele-
vance, is that it does not relate directly to the ultimate impact of the experiment on the decision.

5.10  Bibliographic notes

We present real-world applications of VOI analysis in the next chapter, so in this section, 
we will focus on a bibliography related to conceptual and methodological attempts at quan-
tifying VOI in spatial decision situations.

Low decision flexibility and decoupled value

VOI analysis for spatial applications is commonly done for the simplified decision situation, 
which we have here referred to as low decision flexibility – i.e., few alternatives. Most of 
these describe a situation of “all” or “nothing” or “utilize now” or “wait.” Analytical results 
for the Gaussian distribution were shown by Schlaiffer (1959) and Bickel (2008). Eidsvik 
and Ellefmo (2013) place such models in the spatial context.

Low decision flexibility and coupled value

Trainor-Guitton et al. (2011) and Trainor-Guitton et al. (2013) describe a spatial decision 
situation with few spatial alternatives for groundwater recharge. They carefully incorpor-
ate spatial heterogeneity to model a complex value function. Their approach requires the 
inversion of transient electromagnetic data, and Trainor-Guitton et al. (2011) introduce the 
reliability measure for interpreted geologic scenarios to simplify the inversion step.

High decision flexibility and decoupled value

For the situation with high decision flexibility, Polasky and Solow (2001) suggest a measure 
similar to VOI for the selection of reserve sites. The approach assumes a decoupled value 
giving a sum over the sites considered, but the criterion pertains more to a coverage measure 
rather than decisions. Eidsvik et al. (2008) and Bhattacharjya et al. (2010) describe the free 
selection problem as a spatial decision situation; their value computation includes no coup-
ling. Bhattacharjya et al. (2013) outline closed-form expressions for this high decision flexi-
bility situation under Gaussian modeling assumptions. The context is not dissimilar to that of 
portfolio management, where VOI has been studied, for instance, by Zan and Bickel (2013).

High decision flexibility and coupled value

When there is high spatial decision flexibility and coupling in the value function, new 
approaches and reliable approximations are required. In Section 5.6, we presented an 
approach that re-used Monte Carlo samples. Barros et al. (2014) apply a similar strategy of 
re-using Monte Carlo samples in a closed-loop reservoir management setting. They com-
pute the VOI for production data using samples and treat one of these samples as the truth, 
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while the others were used to find an optimal strategy. We believe that there is likely to be a 
large growth of tools and methods for high decision flexibility and coupled value decision 
situations in the future. We envisage that clustering techniques or sophisticated designs of 
experiments could be useful. For instance, multidimensional scaling – see, e.g., Scheidt 
and Caers (2009) for a geostatistical application – is useful for the subset selection of real-
istic models or realizations or clustering the sample space of high-dimensional situations. 
Approximate computer models  – i.e., proxy models or surrogate models (Ginsbourger 
et al. 2013) – and multiscale models (Ferreira and Lee 2007) may also be important. New 
ideas around analyzing or emulating computer experiments – see, e.g., Santner et al. (2003) 
and Gramacy and Apley (2015) – could be applied for approximating the prior and poster-
ior values. VOI computations lend themselves well to parallel computing, and we suspect 
that there will be future research along that direction.

More complex decision situations

Bickel (2008) outlines solutions to VOI analysis for a two-action situation for a decision 
maker with an exponential utility function. Bickel et al. (2008a) present VOI analysis for 
seismic data when there are multiple (spatial) drilling targets and constraints on the number 
of wells that can be drilled. There is a large body of literature on dynamic programing for 
sequential decision problems such as Markov decision processes and the policy iteration 
algorithm – see, e.g., Puterman (2005) and Bertsekas (2012) for extensive coverage of these 
topics. Even though these are very powerful tools, there has been limited use in spatial 
applications. Bickel and Smith (2006), Bickel et al. (2008b), and Martinelli et al. (2013a, 
2014) present cases for optimal exploration among dependent prospects. Their cases were 
limited to rather small sizes. For problems of larger dimensions, approximate dynamic pro-
gramming methods are available – see, e.g., Powell (2011) and Bertsekas (2012). At this 
larger scale, creative approaches for special cases are required. For instance, Brown and 
Smith (2013) use bounds for efficient sequential strategies for a Bayesian network model, 
and Martinelli and Eidsvik (2014) apply this approach for networks and Markov random 
field models. Frazier and Powell (2010) study VOI based on ranking of projects and sequen-
tial strategies. Krause and Guestrin (2007) present a non-myopic strategy based on entropy 
gain for Gaussian models, with an application to river monitoring. Alkhatib and King (2014) 
use a technique called least-squares Monte Carlo to approximate and solve a dynamic pro-
gram around decision flexibility in reservoir production. Most of these approaches attempt 
to find the optimal strategy to optimize value rather than studying the VOI of experiments. 
Another new direction of important VOI research might be spatiotemporal models. This 
would require new methodologies that would likely be associated with sequential models.

Other information measures

There are several good books describing the challenges related to spatial design of experi-
ments  – see, e.g., Muller (2007) and Le and Zidek (2006). Dobbie et  al. (2008) is an 
excellent tutorial paper on the subject. The book by Cressie and Wikle (2011) has some 
exposition around the use of information measures other than VOI for decision making and 
management in spatiotemporal models.
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6

Earth sciences applications

Figure 6.1  before mining ore
it would help to test its grade
how much should we spend?

The examples presented in this chapter are based on real cases from the Earth sciences. 
In each case, we describe the spatial decision situation, discuss possible data-gathering 
schemes, present the spatial statistical modeling, and highlight the applicability of value 
of information (VOI) analysis. Some aspects of the examples have been introduced earlier 
in the book to motivate spatial decision making and for illustrating multivariate and spatial 
statistical modeling. Now we consider these examples from the perspective of performing 
a comprehensive VOI analysis. We consider these real-world data sets from across domains 
and apply the models and concepts of previous chapters to analyze their value to a deci-
sion maker. Projects based on these examples and corresponding data sets are presented 
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in Chapter  7. Before presenting the cases, we start by describing a common workflow 
template.

6.1  Workflow

According to decision-theoretic principles, information is valuable to the decision maker 
only if it can influence the decision(s). Therefore, in any VOI analysis, the first step is to 
frame the underlying decision situation with clarity, because it is important to understand 
what the decision maker can do with the potential information. This is followed by assess-
ing the different types of potential information that might be relevant. Spatial decision 
situations will typically involve some aspects of spatial modeling incorporating spatial 
dependencies due to geology and geography. Finally, all of these come together for VOI 
calculations and analysis. The key ingredients of this workflow are:

1.	 Framing the decision situation: For each case, one must define the underlying deci-
sion situation. It is crucial to understand the domain of application and how potential 
data might help in making better decisions. This process typically entails identifying 
the critical distinctions – i.e., the most relevant uncertainties involved and the deci-
sions. The next stage is to understand which distinctions affect the decision maker’s 
value. Typical questions to consider in spatial decision situations are related to the 
complexity of the decision situation, as we discussed in Chapter 5: what is the deci-
sion flexibility? Is the value function coupled, or can it be decoupled from one spatial 
site to another? Are there shared costs? Are there constraints? What are the decision 
maker’s risk preferences, as represented by a utility function? Are sequential decisions 
possible? There are often several input parameters that are either known to be constant 
or are assumed to be fixed for convenience, as revealed in the initial discussions, such 
as costs and revenues. It is good practice to make a note of these and later check the 
sensitivity of these various input parameters on the VOI calculations.

2.	 Studying the potential information-gathering schemes: One should consider the 
various types of data that could be acquired and that may be relevant to the uncertain 
distinctions of interest. There are usually already some data or prior knowledge about 
the distinctions of interest. The question is which additional data to gather, if any. As 
was outlined in Chapter 5, the spatial data could be partial or total and could entail 
perfect or imperfect information. It may also be possible to perform sequential testing. 
One should conduct the VOI analysis for the different feasible data-gathering options.

3.	 Building the spatial model: One should specify the sample space of the uncertain 
distinctions of interest and the prior probability distribution. Spatial modeling typic-
ally involves statistical dependence, as discussed in Chapter 4. One must also specify 
the sample space of the potential data variables and a likelihood model linking the 
uncertain distinctions of interest to the data. When forming these models, we suggest 
using existing data from similar settings as well as expert knowledge. Techniques from 
Chapters 2 and 4 can often be applied when tuning the model parameters.
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4.	 Conducting VOI analysis: At this stage, one has all the required inputs for performing 
VOI computations. The computations for prior and posterior values can sometimes be 
done exactly, or one may have to rely on approximations, as discussed in Chapter 5. 
The posterior values are obtained for the different data-gathering schemes, while the 
prior value is the same for a given decision situation, as it does not incorporate the 
additional data being evaluated. The VOI for the case of perfect total information is 
often useful as a limiting upper bound. This case is often easier to compute than the 
more realistic case of imperfect partial information. Sometimes the easier upper-bound 
calculation can short-circuit the workflow, bypassing the more difficult VOI analysis 
with imperfect information, by showing that even perfect complete information does 
not increase the posterior value sufficiently to make it worthwhile.

The VOI should be compared with the potential price of the experiment in the final 
analysis. A test is worthwhile if the VOI is greater than the price of the experiment. 
With various alternatives for data-gathering schemes, one can compare them and iden-
tify schemes that are more valuable to purchase. This may be done by plotting the VOI 
under various information-gathering schemes or by displaying decision regions for 
various price ranges of the experiments. To better explore the possible solutions, VOI 
analysis should include sensitivity to a variety of input parameters or models. Rather 
than viewing this VOI analysis as a final conclusion, we believe that this should be used 
as a basis for discussion to guide decisions about information gathering. In fact, the 
main benefit of VOI analysis is that the decision maker can start considering various 
information-gathering schemes before the prices are known with any clarity to pro-
actively consider how to improve the value from the situation.

The applications presented in this chapter are from basin-scale exploration of petrol-
eum prospects (Section 6.2), geophysical reservoir characterization (Section 6.3), mine 
planning and safety (Section 6.4), and groundwater management (Section 6.5). We use a 
variety of spatial models in the applications. The aim is not to stress the particular models 
but rather to illustrate a range of possibilities. The chosen models and applications are in no 
way exhaustive. Using these case studies, together with the tutorial examples in Chapter 5 
and the hands-on material in Chapter 7, we aim to provide motivating insights about VOI 
analysis for spatial situations, enabling practitioners to integrate more decision analysis 
and spatial modeling in their own applications.

6.2  Exploration of petroleum prospects

The examples in this section pertain to basin-scale petroleum exploration. A petroleum 
company is interested in selecting promising petroleum fields, which can be explored fur-
ther and eventually developed to produce oil and gas. The goal is to drill successful wells 
at the petroleum prospects and to develop and produce the recoverable oil and gas at min-
imum cost. The company has established quite some knowledge about the regional geol-
ogy, but there is still uncertainty about the geological properties. Since decisions about 
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drilling wells and building infrastructure for petroleum production can be extremely expen-
sive, it may be worthwhile to find creative ways to gather more information, potentially 
leading to better decisions.

At this stage of hydrocarbon exploration, the company considers gathering information 
through exploration drilling campaigns. The company must choose where to target their 
exploration wells. An offshore exploration well costs $10–$100 million, along with large 
planning costs. Then again, future revenues could be huge if an exploration well discovers 
hydrocarbons.

The main goal of an exploration well is, of course, to discover hydrocarbons at the 
drilling location. Another goal is to get information about the geological variables at the 
selected drilling target, and to use the results from an exploration well at one prospect to 
learn about the other petroleum prospects geologically related to the drilling location. This 
learning is possible because of common large-scale geological mechanisms that induce 
statistical dependence between petroleum prospects and segments. Therefore, the decision 
about one prospect should depend on whatever is known at other prospects. For instance, 
if we observe oil in an exploration well associated with Prospect A, this can boost the 
chances of finding oil at nearby Prospect B, because they have similar geological settings 
and are perhaps charged from the same source rock. The observation at A does not, how-
ever, completely remove all the uncertainty at B. Here, we will use VOI analysis to assist 
in the selection of exploration drilling locations. In all examples, we assume a risk-neutral 
decision maker and no constraints for the decision situation, and we consider the static situ-
ation instead of sequential decision making.

Next we discuss some common background aspects of the spatial modeling in the 
forthcoming examples. Petroleum geologists study the geological history of regions 
to understand the mechanisms forming the basin and petroleum systems. An import-
ant step is to use advanced computer models for numerically simulating the geological 
events over time. Several dynamic processes are modeled together, including sediment 
deposition, burial, compaction, erosion, faulting, kerogen maturation kinetics, heat flow, 
and multiphase fluid flow. The comprehensive text by Hantschel and Kauerauf (2009) 
describes the theories and workflows used in basin and petroleum system modeling. 
The models allow us to vary geological input parameters such as heat flow, total organic 
carbon content, lithology, porosity, and others and then study the associated output vari-
ables such as the generated hydrocarbons, hydrocarbon accumulations, and their spatial 
distributions. The motivating illustrations in Chapter 2 examined basin modeling using 
a simple flowchart.

An important goal of basin and petroleum system modeling is to study whether the 
required geological elements for a petroleum prospect are present and whether the tim-
ing of geologic processes is favorable for trapping and accumulating hydrocarbons. 
These elements are often summarized by a few categories. Some companies operate with 
three geological attributes: source, trap, and reservoir. In addition, sufficient overburden 
is necessary to facilitate the burial and preservation of the other elements. The source 
variable is related to the presence of organic-rich source rocks, their burial, and heating, 
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causing the organic matter to be chemically transformed, ultimately generating hydrocar-
bons. Once generated, the oil and gas start to flow and migrate through the porous sub-
surface formations. It is essential to have a trap or seal to prevent the hydrocarbons from 
leaking out. The reservoir variable represents the reservoir facies, with good porosity and 
permeability to facilitate accumulation and ultimate production. All attributes – source, 
trap, and reservoir (along with overburden) – must be present to have a petroleum pro-
spect “play.” If an element or process is missing or a process occurs out of the required 
timing, the prospect is no longer viable. Since there is uncertainty, spatial and geological 
modeling is used to assign probabilities for the uncertainties of interest. In addition to 
the presence or absence of geological attributes, this modeling also includes the volume 
of hydrocarbons in prospects or segments of prospects under different configurations. 
Decision makers must use these geologic models and combine them with probabilistic 
models for the planning of future investments. We present various models and demon-
strate VOI analysis for each example.

In Sections 6.2.1 and 6.2.2, we discuss Bayesian network (BN) models for the hydrocar-
bon at multiple prospects. The first case (6.2.1) is an application from the North Sea, with 
uncertain charge (source) attributes at several prospects. The charge variables are discrete 
random variables, and the data obtained from exploration wells are assumed to provide per-
fect information about this source attribute. We compare the VOI for different partial tests 
using single or multiple exploration wells. The second example (6.2.2) is based on a case 
used for teaching at Norwegian University of Science and Technology (NTNU), Norway. 
There are four geological petroleum prospects. The uncertain variables of interest are the 
source, reservoir, and trap elements. We use basin and petroleum system modeling runs 
to build and train (or learn) the BN model for all three attributes at the four prospects and 
to approximate the volumes associated with different outcomes. We compare the VOI of 
one or two exploration wells and use VOI for sequential data gathering. In Section 6.2.3, 
we present scenario-based models for prospect evaluation. The data set consists of 524 
equally likely scenarios with revenues at 27 prospects in a region of the North Sea. Here, 
we take an empirical approach and work directly with the volumes or revenues derived 
from Monte Carlo runs (risking) of basin modeling scenarios. We compare the VOI results 
of this empirical model with the VOI obtained using a Gaussian approximation for the 
probability distribution of prospect revenues.

6.2.1  Gotta get myself connected: Bayesian network example

Keywords: Bayesian networks, exploration wells, petroleum prospects, high decision flexibility, perfect 

information, partial information, decoupled value function

Let us consider a part of the North Sea where a petroleum company has identified a num-
ber of candidate prospects. In Section 2.3, we showed a graphical representation for this 
situation. Here, we describe the case in detail and perform VOI analysis for exploration 
wells. This case has been studied for many purposes – see, e.g., Martinelli et al. (2011) 
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and Lilleborge et al. (2015). The idea of using BNs for the modeling of petroleum pro-
spect dependencies is presented in van Wees et al. (2008). We assume that the risk-neutral 
decision maker is free to select as many prospects as are profitable  – i.e., there are no 
constraints. Moreover, we consider the static decision situation, where the selection of 
prospects is done once up front without any sequential learning. The situation is similar to 
that described in Martinelli et al. (2011). Finding an optimal dynamic strategy is a sequen-
tial optimization problem, studied for this example in Brown and Smith (2013), Martinelli 
et al. (2013a), and Martinelli and Eidsvik (2014).

We view the highlights of this example in the context of the framework outlined in 
Chapter 5:

•	 The exploration wells are assumed to provide perfect information about the hydrocarbons at the 
location where they are drilled. Only one or two exploration wells are drilled – the company will 
not drill at every location of interest. This means that the exploration information gathering gives 
partial perfect information. We focus on static information gathering.

•	 Regarding the three properties of spatial decision situations:

1.	 The spatial modeling is done using a Bayesian network model built from expert knowledge 
about the geology of the basin. The focus is on the uncertain geological charge variable.

2.	 We assume that the decision maker is free to select profitable prospects for development, so 
there is high decision flexibility. The prospect consists of several subunits called segments, 
which cannot be selected independently, and this means that there are some restrictions on 
the flexibility in development decisions.

3.	 Decisions are made at the prospect level, while exploration is done for segments associated 
with prospects. The value function is thus a sum of segment results for the prospect.

Framing the decision situation

The geologists have prior qualitative and quantitative knowledge about this region in the 
North Sea. There are wells in the vicinity of this region, the subsurface geometry of forma-
tions is known from seismic surveys, and the petroleum company has a reasonable under-
standing of the geological mechanisms involved in the petroleum system. Based on all this 
background information, the petroleum company has identified 13 geological prospects 
that are development candidates. The petroleum company would like to develop the pros-
pects that are profitable, but there is uncertainty around the outcome (oil, gas, or dry) at 
the prospects.

The background knowledge has led to the geological prospect regions being split into 
subunits called segments. Each prospect has between one and three associated segments, 
and in total there are 25 segments. These segments are the actual oil reservoirs at known 
geographic coordinates, and the segments corresponding to the same prospect are close to 
each other. If a prospect is selected for development, the company will build infrastructure 
to produce from all segments for the prospect. The development decision must consider the 
uncertainty in the outcome at each segment.
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Figure 6.2 shows a graph (BN) where the 13 prospect and 25 segment variables are rep-
resented as nodes. This graph summarizes the qualitative geological knowledge relevant 
for this decision situation, which is encoded in a network of nodes.

There is uncertainty around the geological outcomes at each node in the graph. In this 
region, the geologists are sure about the existence of a trap. They are also convinced that 
there are sufficiently good reservoir properties. This information about the trap and reser-
voir attributes is based on the regional knowledge about the geology obtained from wells 
and seismic data. The key remaining uncertainty is the charge variable – i.e., whether 
migration of generated hydrocarbons from the source rock kitchens have been effective 
enough to reach and fill the reservoir segments. The states are binary: are the segments dry 
(brine filled) or filled with oil or gas? This uncertain variable is the distinction of interest, 
denoted x = ( )x xn1,..., , where n = 25 is the number of unknown segment variables.

Decisions are made at the prospect level – i.e., at nodes denoted P1,...,P13. Since develop-
ment would occur at the prospect regions, the alternatives are defined aj ∈{ }0 1, , j = 1 13, , ,  
where the two alternatives per prospect j  are whether to develop (aj = 1) or not (aj = 0).  
If a prospect is developed, there is a large known initial cost, and uncertain revenues 
result from production at the selected segments attached to each prospect. There is a fixed 
segment-specific cost associated with this production from a segment. The value function 
decouples to depend only on the segment variables associated with the selected prospects.

We use a value function that depends on the known revenues associated with finding 
oil and gas at the prospects and the costs of drilling and production of petroleum. We will 
discuss the value function in greater detail later.

Information gathering

In order to make better decisions about the possible development at prospects, an oil and 
gas company drills exploration wells at selected segments. Although this is not nearly as 
expensive as a development plan, an exploration well has a high price: about $300 million 
in this area when the planning and segment or prospect evaluation is included. It is there-
fore important for a company to find a valuable information-gathering scheme – i.e., decide 
where to place the exploration wells. The evaluation includes several aspects, but here we 
will focus on a generic exploration well giving perfect information about the uncertainty 
at the segment where it is drilled. The well is assumed to perfectly discover whether that 
particular segment is brine, oil, or gas filled.

The company considers drilling one or two exploration wells, which corresponds to a 
partial testing scheme that selects only a subset of the segments. Using the subset nota-
tion from previous chapters, the information is denoted by x when we have one explor-
ation well at segment , while we have information x  = ( )x x1 2,  when we drill two 
exploration wells.

We will assume static information gathering  – i.e., when two exploration wells are 
drilled, the decision maker is not in a position to stop testing once the outcome of the first 
exploration well has been observed. The information-gathering alternatives are to drill one 
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exploration well, two exploration wells, or none. VOI is used to compare the sets of two 
exploration wells. Note that one could also consider other data-gathering schemes in prac-
tice. In some exploration situations, it could be useful to purchase detailed seismic process-
ing at a prospect. In other situations, it could be useful to pay to learn the outcome of some 
key underlying geological variables (such as source, reservoir, or trap).

Modeling

The probabilistic model is based on the BN shown in Figure 6.2. This display shows a 
number of edges between the nodes in the BN that describe the dependence structure in 
the model. The network edges probabilistically mimic the geological mechanisms associ-
ated with the migration of the hydrocarbons from the source to charge the reservoirs. We 
describe this in some detail using the notion of kitchens, prospects, and segments for the 
nodes. Each node is assumed to have a discrete sample space with three possible states 
(dry, gas, or oil), representing the actual state of the charge in that node. Our network 
includes three possible kinds of nodes:

1.	 Kitchen nodes: We define the kitchens as areas where source rock has reached appro-
priate conditions of pressure and temperature to generate hydrocarbons; in our model, 
the kitchens are nodes that with probability 1 assume the state “gas.” Kitchens are 
denoted by K  in Figure 6.2.

2.	 Prospect nodes: We define prospects as larger-scale geological structures that may 
contain hydrocarbons that have been fully evaluated. The prospects are the key nodes 
of the network, because they define the spatial relationships and the dependence set-
ting, which is easier to elicit from experts. Prospects are denoted by P  in Figure 6.2.

3.	 Segment nodes: We define the bottom or leaf nodes as segments representing the 
potential exploration drilling sites associated with a certain prospect. For each pro-
spect, there can be one or more segments that share part of the infrastructure needed 
for development drilling and production. In Figure 6.2, segments inherit the number of 
their prospect with an alphabetical listing.

The edges define a dependence structure for the nodes in a BN formulation. The edge 
structure and conditional probabilities are defined by expert geologists together with stat-
isticians. Experience in the complex basin modeling of this area is the foundation for the 
edge structure. For instance, in Figure 6.2, the prospect { }P4  has just one directed edge 
from the kitchen { }K2 , because there is a strong prior belief indicative of a unique kitchen 
for this prospect. On the other hand, prospect { }P1  has directed edges from two kitchens 
({ }K1  and { }K3 ). The experts in the local geology assume that there is the possibility of 
migration pathways from any of these kitchens to provide hydrocarbons in prospect { }P1 . 
A BN model makes it relatively easy to ask conditional “what if?” questions, which helps 
in the elicitation of conditional probabilities, along with the expert knowledge about the 
geology. We make a few assumptions about the geological mechanisms. For instance, dry 
nodes are assumed to propagate dry outcomes to the children nodes. This occurs because 
the kitchens generated the hydrocarbons, which then migrate to prospect areas and finally 

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.007
http:/www.cambridge.org/core


6.2 Exploration of petroleum prospects 237

to segments. If there are no traces of oil in the parents, the children nodes will for sure be 
dry. In the opposite situation, when a parent node contains oil or gas, there is still a chance 
that the child node may be dry because the migration failed.

The distinction of interest is x = ( )x x1 25,..., , which is the uncertain charge variables at 
the segment nodes. These are the variables at nodes numbered 1A,...,13C in Figure 6.2. 
The nodes can have three discrete states, x j ∈{ }1 2 3, , , j = 1 25, , , where the three discrete 
states are dry (x j = 1), gas, (x j = 2), or oil (x j = 3) at segment j . The prospect nodes are 
also uncertain, but they are only included to realistically describe the probability density 
function (pdf) of the real distinctions of interest, which are the segment nodes. The kitchen 
nodes are assumed to be fixed in the subsequent analysis.

We show the marginal probabilities of all segments in Figure 6.3. Note that there is a 
large variability in the probabilities for the states “oil,” “gas,” and “dry” for the different 
segments. This holds true even for the segments tied to the same prospects because of the 
local failure rates between prospects and segments. Nevertheless, there is some similarity 
in the marginal probabilities at the prospect level – for instance, at Segments 5A–C tied to 
Prospect P5 and Segments 12A–B tied to Prospect P12.

K3 K1 K2 K4
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P1 P3

P13 13C
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11A
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Figure 6.2  Bayesian network example: Bayesian network model for 4 kitchens (marked K1–K4), 13 
prospects (marked P1–P13), and 25 segments (marked 1A–13C) in the North Sea.
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In Figure 6.4, we plot the conditional probabilities, having observed different outcomes 
at Segment 13B. In this display, the identical markers sum to 1 for each segment. For 
instance, the cross markers represent probabilities when Segment 13B is dry. For Segment 
10C in the top display, the cross marker is at 0.57, while the cross marker for Segment 10C 
in the middle display is 0.01 and the cross marker for Segment 10C in the bottom display 
equals 0.42. These probabilities sum to 1, and they indicate that dry (probability of 0.57) 
is the most likely outcome for the state of 10C when Segment 13B is dry. The marginal 
probability of Segment 10C being dry, when one does not know the outcome at Segment 
13B, is only 0.37. This means that the observation at Segment 13B has an effect on the 
probabilities at 10C. This effect of conditioning at 13B is most visible at segments tied to 
P10, P6, P4, P3, P2, and P1. This comes as no surprise since Prospect P13 is rather con-
nected to these prospects in the network edge structure. For some other prospects, the effect 
on conditioning is very small. When we observe 13B to be dry, the chance of having a dry 
P13 node is increased, and this results in increased probabilities of 13A and 13C being dry. 
When we observe oil or gas at 13B, we know that P13 for sure contains hydrocarbons, and 
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Figure 6.3  Bayesian network example: marginal probabilities of states  at the 25 segments.
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this increases the gas and oil probability. The distinction between gas and oil at 13A and 
13C appears to be largely influenced by the local failure probability. The computations of 
marginal and conditional probabilities are done through the junction tree algorithm (see 
Appendix A.5).

VOI analysis

The decision maker’s value depends, of course, on the development decision at the pros-
pects. We refer to the prospect-related cost of establishing infrastructure and production as 
the development fixed cost (DFC), which is assumed to be the same for all prospects. The 
prior value is

	 PV IV x DFCi
ir
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where the sum inside the maximum is over all segments belonging to prospect Pr. The 
intrinsic values are defined mathematically as
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Figure 6.4  Bayesian network example: conditional probabilities of dry (top), gas (middle), and oil 
(bottom) at the 25 segments, conditional on different information at Node 13B.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.007
http:/www.cambridge.org/core


Earth sciences applications240

	 IV x p x k p x ki i k i i k i
k

i( ) = =( ) − =( )( ) −
=

∑ Rev ,, , ,Cost Cost
1

3

0 	 (6.2)

where the fixed expected revenues of oil Rev ,i 3 and gas Rev ,i 2 are associated with the vol-
ume, recovery rates, and market price of oil and gas, while the revenue of the dry case 
Rev ,i 1 0= . Here, Cost i,2 and Cost i,3 represent proportionality factors of the produced oil 
and gas, while again Cost i,1 0= . The fixed segment cost denoted Cost i,0 is that of drilling 
and production at the segment level.

Figure 6.5 shows the intrinsic values in Equation (6.2) for each segment. These are the 
expected profits at the segment level, ignoring the shared costs at the prospect level.

From the display, we see a large variability in the intrinsic value. The largest intrinsic 
value is at Segment 10B. Segments for Prospects P2, P3, P4, P8, and P9 have negative or 
very small intrinsic values. They are not likely to be development targets, unless there is a 
clear indication that a neighboring prospect or segment contains hydrocarbons.

The posterior value for single-segment exploration wells is shown next. Assume that the 
company considers drilling an exploration well at any one of the 25 segments. The poste-
rior value of perfect information at a single segment  = 1 25, ,  is
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irl
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where the conditional intrinsic values are defined as in Equation (6.2), but now using the 
conditional probabilities p x k x li = =( )|   rather than the marginal p x ki =( ).
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Figure  6.5  Bayesian network example:  intrinsic values are the marginal expected values for the  
25 segments.
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For the case when two exploration wells can be drilled, the posterior value is

	 PoV IV x DFC pi
ir

x x x
x
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




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
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0
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13

	 (6.4)

where the intrinsic values inside the maximization are now based on the conditional prob-
abilities given the outcome of two exploration wells – i.e., p x ki =( )| x .

The VOI is the difference between the posterior values in Equations (6.3) or (6.4) and the 
prior value in Equation (6.1). Let us compare the VOI for perfect information at the differ-
ent segment nodes for a range of costs.

In Figure 6.6, we show the VOI of perfect information at a single segment when the DFC 
is fixed at $1000 million. The VOI is plotted as a function of the 25 segments.

The most valuable node is 12B, followed by 12A and 10B. Therefore, the petroleum com-
pany should drill the exploration well at 12B if it is going to drill one well during a cam-
paign. The VOI is rather large (about $700 million), which is clearly higher than the cost of 
an exploration well, so this information is worth the price. We see little association between 
the intrinsic values and the VOI results. The largest intrinsic value was for 10B, which also 
has a large VOI, but not as high as for the segments associated with P12. The tendency is 
that information is most valuable at prospects of great prior uncertainty, and the data can 
influence the decision toward or away from development. For the P12 segments, we see that 
the intrinsic values are near $1000 million, which is the DFC here. Similarly, for P1, P6, and 
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Figure 6.6  Bayesian network example: VOI of a single exploration well at a segment. The segments 
with perfect information gathering are plotted on the first axis.
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P13, we observe positive VOI because the segment (and prospect) values are close to the DFC 
level, and a local exploration well will have impact. The VOI is not always easy to interpret, 
because there is dependence in the BN model and there are shared costs at the prospects.

Figure 6.7 shows the VOI of perfect information at single segments as a function of the 
segment number and as a function of increasing DFC. The VOI clearly depends on the DFC. 
A very small DFC means that most prospects are lucrative, and they can be developed with-
out exploring any further. As a result, the VOI is small. Similarly, a very large DFC means that 
most prospects are too expensive and that development should be avoided. Data are unlikely 
to affect this decision, so the VOI is again small. For intermediate DFC levels, the VOI can be 
large because data have a large impact. The VOI plots further display similarities in segments 
belonging to the same prospect. For instance, the segments for P9 are very aligned in terms of 
VOI, and so are the ones tied to P13. When there is information at one segment, this binds up 
the probabilities for that prospect. Moreover, there are the shared prospect costs. We further 
note that the VOI is multimodal – it has local maxima when the information at that segment is 
likely to influence the decision not only at its own prospect but also at other prospects because 
of the dependence in the BN model. This effect kicks in at different DFCs – hence the mul-
tiple modes. For Segment 1A, there are three clear modes: one for DFC near $200 million, 
another for $4000 million, and one for $10 000 million. The largest VOI by far shown in this 
display is for Segment 10B, which was also seen to have the largest intrinsic value. When the 
DFC is at a level where the decision maker is indifferent about P10, it will be very valuable 
to acquire the single-segment information at Segment 10B.
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Figure 6.7  Bayesian network example: VOI of a single exploration well at a segment. The VOI is 
displayed on a grid of DFC costs and for the 25 segments.
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Let us now consider VOI for two exploration wells drilled at different segments. This 
is done by computing the value conditional on the perfect information at two wells and 
then marginalizing over this information in an outer loop. Figure 6.8 shows the VOI for 
perfect information at two segments for fixed DFC equal to $1000 million. We assume that 
Segment 12B is always explored, since it was the most valuable in the single well assess-
ment, and check which of the other wells to include with Segment 12B.

The largest VOI result in Figure 6.8 is for Prospects 12B and 10B. Therefore, Segment 
12A, which had the second-largest VOI in Figure 6.6, should not be explored together with 
12B. This is not surprising, as they are both for Prospect P12, and hence 12A provides very 
limited additional information over 12B.

The solid horizontal line in Figure 6.8 represents the VOI of a single exploration well 
at 12B. The VOI of an additional exploration well (together with 12B) must be larger than 
or equal to this level. In this example, the VOI results of perfect information at two wells 
are almost the same as the sum of the VOI at two single wells. For instance, the VOI of 
Segment 6A was around $200 million in Figure 6.6, and when we compute the VOI of 6A 
and 12B together, we see that it is about $200 million larger than that of 12B alone (two 
dashed horizontal lines up from the solid horizontal line in Figure 6.8). This additional 
effect could be useful to study in practice. Here, it holds since 12B is isolated from most of 
the other segments. The segments attached to the neighboring Prospects P7, P8, and P11 
are too small to be developed for this level of DFC with or without information at 12B.
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Figure 6.8  Bayesian network example: VOI of two exploration wells where one of the wells is at 
Segment 12B.
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In Figure 6.9, we show the VOI of perfect information at two exploration wells when 
13B is always included in the pair. We have included this segment just to relate the VOI 
results to the conditional probability illustrations in Figure 6.4 earlier.

This figure highlights the fact that the VOI results do not necessarily add up from the 
single exploration results in Figure 6.6. For instance, Segments 6B and 10C had zero 
VOI for single well exploration in Figure  6.6, but when explored together with 13B, 
they result in a VOI larger than 13B alone. Figure 6.4 shows how the conditional prob-
abilities at Segments 6B and 10C are influenced by the information at Segment 13B. 
Considering the network structure in Figure 6.2, note that P13 is directly connected to 
P10 and P6. Figure  6.9 shows how this dependence between prospects and segments 
propagates to VOI.

6.2.2  Basin street blues: basin modeling example

Keywords: Bayesian networks, basin and petroleum systems modeling, exploration wells, petrol-

eum prospects, perfect information, partial information, sequential information

This case study also pertains to prospect evaluation and valuing the information that can be 
obtained from exploration wells. The example consists of fewer prospects than in the previ-
ous one, but the modeling involves complex geological model assessment, including that of 
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Figure 6.9  Bayesian network example: VOI of two exploration wells where one of the wells is at 
Segment 13B.
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trap and reservoir properties. The baseline geological model is used for teaching purposes 
at NTNU, Norway. More background is provided in Tviberg (2011) and Martinelli et al. 
(2013b). Here, we will focus on the applicability of BNs to capture the key geological 
elements and on the VOI analysis.

We view the highlights of this example in the context of the framework outlined in 
Chapter 5:

•	 The exploration wells will be assumed to provide perfect information about the hydrocarbon 
properties at the location where they are drilled. Only one or two exploration wells are drilled; 
thus, there is partial perfect information. We mainly study static information gathering but also 
briefly mention sequential information gathering in this example.

•	 Regarding the three properties of spatial decision situations:

1.	 The spatial modeling uses outputs from basin modeling that are subsequently encoded as 
a probabilistic model by a Bayesian network for the key geological attributes source, trap, 
and reservoir at the prospects.

2.	 We assume that the decision maker is free to select profitable prospects for development, so 
there is high decision flexibility.

3.	 The total value is the sum of the individual values from the prospects. The value at each pro-
spect only depends on the geological attributes, volumes, revenues, and costs at that prospect 
alone. Thus, we have a situation where the value function decouples.

Framing the decision situation

The case is a controlled basin environment where there are four identified petroleum pros-
pects. Two of the prospects are at the eastern parts of the basin, while the other two are at 
the western parts. The eastern prospects are called anticlinal prospects. One of the pros-
pects (called Top East (TE)) is at a shallower depth than the other (Bottom East (BE)). The 
western prospects are called fault prospects. Again, one of the prospects (called Top West 
(TW)) is at a shallower depth than the other (Bottom West (BW)).

The distinction of interest x is represented in an augmented space, including model-
ing elements for all three geological attributes – source, trap, and reservoir – at all four 
prospects. We will use terms such as success, partial success, partial failure, and failure 
for the prospect variables. The basin modeling simulations used to learn the inputs for 
a probabilistic representation of these attributes are discussed in the spatial modeling 
subsection.

Figure 6.10 illustrates the geographical locations of the prospect in a three-dimensional 
(3-D) numerical basin model. The names of the geological layers (Eek, Mlf, Mmd, and Ou) 
are consistent with the ones used in a course at NTNU, Norway (Tviberg 2011).

As in Section 6.2.1, the question is whether the prospects are valuable enough to jus-
tify expensive investments in planning and development. We consider the situation with a 
free selection of prospects. The petroleum company has alternatives ai ∈{ }0 1, , i = 1 4, , ,  
where the two alternatives are to develop (ai = 1) or not (ai = 0) at a prospect i. The 
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decision maker will select individual prospects if they are profitable, and this selection is 
done once and for all, without opportunities for sequential decisions. We assume that the 
value function depends on fixed revenues or cost that vary with the uncertain discrete dis-
tinction of interest. The value function decouples to depend only on the outcome at every  
prospect v x ai i,( ).

Information gathering

Again, the information the petroleum company considers acquiring is that obtained from 
drilling exploration wells. This will provide partial perfect information about the presence 
of oil (“success”) at the prospect where the well is drilled. In the established notation, the 
result of one exploration well at selected prospect  ∈{ }1 4,..,  is denoted x, while two 
exploration wells that result in perfect information are denoted x  = ( )x x, ,,1 2 .

We will consider both static and sequential information gathering. Sequential infor-
mation gathering means that the decision maker can first drill an exploration well at 
Prospect TE, with the capability of drilling a new exploration well at Prospect BE later. 
Since there is a depth ordering here, this is relevant – the exploration team could drill a 
second exploration well nearby without too many logistic costs. Through sequential test-
ing, the company can choose to drill or not drill the second exploration well based on what 
is seen at the first well. Note that even though information gathering is sequential here, the 
underlying decision situation is assumed to be static – i.e., the decision maker must still 
make a one-shot decision regarding developing the prospects.

TW=Top West

BW=Bottom West

BE=Bottom
East

TE=Top East

Mlf source layer Eek source layer

Figure  6.10  Basin modeling example:  illustration of the basin under consideration and the four 
prospects (Top East (TE), Bottom East (BE), Top West (TW), and Bottom West (BW)).
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Modeling

We build a BN consisting of source, reservoir, and trap variables with conditional prob-
abilities learned from multiple scenarios of basin modeling runs. Our focus will be on 
ways to encode this geo-modeling in a framework useful for decision making. One of 
the critical points in the network described in Section 6.2.1 was the substantial use of 
expert opinion when designing the BN. By running basin and petroleum system mod-
eling (BPSM) – numerical simulations over a set of initial conditions and forcing condi-
tions – we can integrate quantitative geology into the network construction. We train the 
probabilistic structure of the BN from multiple BPSM runs, and the resulting BN model 
incorporates the geological processes and their responses. The compression of a complex 
basin modeling setup into a BN allows fast computation of what-if scenarios and VOI 
analysis.

The resulting qualitative network is shown in Figure 6.11. Notice the three arms: one 
for source, one for reservoir, and one for trap. The attributes of trap, source, and reservoir 
that are used in the BN are not identical to the factors involved in the experimental setup 
for the basin modeling runs, even though there are usually connections. A variable like the 
heat flow interacts at both the source and trap levels. The outer (root) nodes in the BN are 
needed to build the probabilistic model, but we do not consider gathering information at 
these nodes; they are only considered to be latent variables. The BPSM simulations are 
used to understand the geological mechanisms underlying the structure of the BN.

BPSM is useful in exploration risk assessment. As mentioned earlier, BPSM numerically 
simulates the geological, physical, and chemical processes in a basin through geological 
time and helps to identify the critical aspects of the hydrocarbon generation, migration, 
and accumulation. The critical factor for sufficient hydrocarbon accumulation is the geo-
logical timing of events. BPSM allows one to quantitatively study the impact of different 
conditions on the accumulations of petroleum. We use established software (Petromod) to 
construct the BPSM simulations.

In this basin, there are two main source rocks producing hydrocarbons, the deepest being 
the coal bed layer denominated “Eek” and the shallowest being a shale rich in organic con-
tent denoted “Mlf.” The layers above these are the reservoirs: “Ou” (bottom) and “Mmd” 
(top), which may contain sufficient hydrocarbons when the geological conditions are suit-
able. Since we have identified the anticlinal zone and the fault zone, we have the four 
prospects: BE, TE, BW, and TW.

The basin modeling runs are chosen based on various scenarios:

•	 We use three levels for the heat flow: cool, normal, or hot. It is expected that a cool basin will stay 
mainly in the oil window, consequently generating mostly oil, while a warm basin will reach the 
gas window at an earlier stage and will therefore generate more gas.

•	 We use two levels for the porosity of the reservoir rock: high or low.
•	 We use two levels for the total organic carbon (TOC) content of both source rocks, with TOC ran-

ging from 8% (high) to 4% (low) for the Mlf black shale and from 20% (high) to 10% (low) for 
the Eek coal.

•	 We use two levels, open or close, for the presence of a main fault.
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Altogether, this yields 24 BPSM simulations. Figures  6.12 and 6.13 summarize the 
results for oil generation and accumulation.

In addition to these results, the simulations keep track of the contributions of each source 
rock to the hydrocarbon accumulations and the amounts of hydrocarbon that have leaked. 
Based on the totality of these outputs, we fit the edge structure and the conditional prob-
ability tables for the trap, source, and reservoir network (Figure 6.11).

The BN has one sub-network for each attribute (trap, source, reservoir), and we associate 
them to the bottom level nodes, which will be the prospect oil presence. The trap nodes are 
binary (on/off), and the structure is divided in two: the anticlinal zone and the fault zone. 
The reservoir nodes are binary (on/off), and the structure of the reservoir sub-network is 
tied to the Ou and Mmd reservoirs. For the source network (high/medium/low outcomes), 
the sub-network is based on the Eek and Mlf source rock layers, which are common for the 
bottom and top prospects, respectively.

The quantitative learning of the BN is partly based on the categorization of the output 
data and counting the number of successes/failures to estimate the conditional probability 

TrapAnti

TrapTE

ResOuO

RESERVOIR

ResOu

Res ResMmd

ResMmdO

TW

TE

BE

BW

RESERVOIR
PROSPECT NODES

SOURCE

SouMlfO

SouMlf Sou

SouEek

SouEekO

TrapBE TrapTW TrapBW

TrapFault
TRAP

Figure  6.11  Basin modeling example:  network of trap, reservoir, and source attributes. The 
distinctions of interest are the bottom nodes in the network. Their joint probability distribution is 
represented by the Bayesian network model, including more source, trap, and reservoir variables. The 
Bayesian network model is learned from basin and petroleum systems modeling.
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structure. We learn the probabilities at each edge in the network using various outputs 
from the BPSM runs. Since the nodes have discrete states, we also cluster the outputs 
into discrete groups. The categorization of the data clusters the 24 outputs for different 
variables. The horizontal lines shown in Figures 6.12 and 6.13 indicate splitting points of 
clusters. We use a k-means clustering algorithm with k = 2 (accumulation low or high) or 
k = 3 (generation low/medium/high) for categorizing the data. The reservoir network is 
learned from the categorized accumulation outputs. For example, we assign the probabil-
ity that the reservoir root node Res is “on” = 9/24 since we see that 9 out of the 24 accu-
mulation outputs fell in the “high accumulation” category (Figure 6.13). The conditional 
probabilities of success are based on the categorization of the partial accumulations in the 
Mmd and Ou units, as well as the ones at the total level. Similarly, the source network is 
learned from the generation data. For example, the marginal probability that the source 
Mlf is in the state “low” is assigned to be 12/24, while the source Eek is in state “low” with 
a probability of 4/24 (Figure 6.12). For the trap network, the anticlinal trap is always on, 
while the marginal probabilities are { . , . }0 5 0 5  for the fault trap. The conditional probability 
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Figure 6.12  Basin modeling example: generation of hydrocarbons over many basin modeling runs. 
The horizontal lines indicate cluster boundaries used when building the Bayesian network model for 
the source attribute.
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for the children nodes includes the possibility of a local failure, quantified in the success 
probability of 0.9. A failure at the parent trap node will for sure result in a failure at the 
child node.

Finally, for the bottom nodes that are of primary interest, we summarize the possibil-
ities for hydrocarbon accumulations broadly by assigning four categories: success, par-
tial success, partial failure, and failure. These categories are defined depending on the 
different configurations of the discrete states for the reservoir, source, and trap nodes. We 
define a failure when any two of the variables fail. A partial failure occurs when the source 
is medium and either the reservoir or trap is on. A partial success occurs when the source 
is high and either the reservoir or trap is off or when the source is medium and both the 
reservoir and trap are on. Here, we have approximately modeled the situation that when 
the source is very prolific – even if there is some seal leakage or poor reservoir rock – 
there might still be some small accumulation available. A  full success occurs when the 
source is high and the reservoir and trap are both on. The working assumption here is that 
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Figure  6.13  Basin modeling example:  accumulation of hydrocarbons over many basin modeling 
runs. The horizontal lines indicate cluster boundaries used when building the Bayesian network 
model for the reservoir attribute.
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partial success and partial failure allow more flexibility than the simplest on/off configura-
tions. A partial success is rarely lucrative at the exploration site but could carry very use-
ful information about the source or trap of other prospects. These bottom-level nodes are 
the distinctions of interest. We will denote the outcomes at Prospects TE, TW, BE, and 
BW by x = ( )x x x x1 2 3 4, , , , where each xi ∈{ }1 2 3 4, , , , i = 1 4,..., . Martinelli et al. (2013b) 
used a more sophisticated approach with a Gaussian distribution for these bottom-level  
leaf nodes.

We describe the model by showing the marginal and conditional distributions computed 
using the junction tree algorithm (Appendix A.5). The marginal distribution for the four 
configurations at the bottom level is shown in Figure 6.14.

Next, we condition on Prospect BE being a failure or a success. In Figure 6.15, we see 
that there is a large dependence between the prospects in the event of failures. Of course, 
the probability is now 1 that BE is a failure, but the probability of failure is also much lar-
ger at the other three prospects. The information about the trap for the bottom unit and the 
migration from the Eek source rock are critical, particularly for Prospect BW.

Figure 6.16 shows the conditional probability when BE is a success. In this case, the 
chance of success is boosted in the other three prospects. There is now a chance of 0.7 for 
a full success at TE.

1
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Figure 6.14  Basin modeling example: marginal probabilities of failure, partial failure, partial success, 
and success at the four prospects.
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Figure  6.15  Basin modeling example:  conditional probabilities of failure, partial failure, partial 
success, and success at the four prospects given a failure at Prospect BE.

VOI analysis

The value function under the selection of a prospect depends on the total accumulation 
values under the partial failure, partial success, and success configurations. We further take 
into account the recovery factor, which is estimated to be 0.45 for oil accumulations. The 
resulting revenues are summarized in Table 6.1 along with the marginal probabilities.

The VOI of exploration wells is computed by using the established BN model that has been 
trained with the BPSM results. We first compute the VOI for the static information-gathering 
scheme with one exploration well. VOI analysis can be used to guide the location of that 
exploration well.

From the BN model and given the revenue inputs, the prior value is

	 PV x xp
j x

j x j= =( ) −






∈ =

∑ ∑max , Rev ,
{ }

,
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1

4

	 (6.5)

where Rev ,j x are the revenues associated with outcome x at prospect j , shown in Table 6.1, 
and Cost is that of the development and production at a prospect.

The posterior value of perfect partial information at Prospect  ∈{ }TE,TW,BE,BW  is
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where the decision maker may now change his or her decision depending on the evidence e 
at node . Note that when  = j, the innermost probability becomes 0 or 1, because there 
is perfect information at this prospect. For the other prospects,  ≠ j, information is only 
obtained indirectly. Partial testing allows learning because of the statistical dependence 
(arising from the underlying geological dependence) between the prospects.

The conditional probability displays in Figures 6.15 and 6.16 show that information has 
a large effect for this network and that the petroleum company may hope to gain value by 
exploration – i.e., achieve large VOIs. In addition to changes in probability, the monetary 
values also play a role. If the cost is much smaller than the revenues, the prior value is 
large, and the data are unlikely to change the development decision. This is also the case 
when the cost is very large compared with the revenues, resulting in 0 prior value. The four 
prospects differ a lot in the revenues, and information at each prospect will be valuable for 
different cost ranges.

In Figure 6.17, we show the VOI for an exploration well acquired at each prospect 
for cost ranging from 0 to 200 MMBOE. The VOI varies a lot depending on the cost. 
Recall from Table 6.1 that the expected values of the two biggest prospects are about 33 
and 160. We see that the VOI plots peak near these cost levels. For some of the curves, 
we also observe a small spike around Cost ≈ 10, which is close to the expected value for 
Prospect TW. The peaks occur here because at these costs, both alternatives (develop or 
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Figure  6.16  Basin modeling example:  conditional probabilities of failure, partial failure, partial 
success, and success at the four prospects given a success at Prospect BE.
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not) have similar values; therefore, perfect information from an exploration well would 
be more likely to help the petroleum company make better decisions. The largest VOI 
is obtained when information is acquired at Prospect TE and the cost is 160. At a cost 
around 30, the VOI when the information is acquired at Prospect BE is smaller because 
the possible revenues associated with Prospect BE are smaller than for Prospect TE.

It is interesting to study the conditioning effect via Figure  6.17. When the cost is 
around 160, the VOI is large for observing TE, but it is also large for TW because there is 
a strong dependence between the two Mmd prospects. In particular, TW carries informa-
tion about the source rock in Mlf and the reservoir properties in Mmd. There is less of a 
conditioning effect when BE or BW is observed, but an effect is still noticeable because 
the observation at BE would be informative about the anticlinal trap at the eastern pros-
pects, and this is valuable for the TE prospect. Similarly, when the cost is around 30, the 
VOI is largest for BE but is also very large for the other Ou prospect (BW). An interpret-
ation of the VOI results of this sort can be useful in situations with strong dependence 
imposed by geological processes. The processes are captured through the basin modeling 
simulations, while the interaction of information at different locations is captured via the 
BN model. Inferring the interaction effects of different observations directly from the 
basin modeling results would be hard. BNs are very useful for information propagation, 
while the BPSM simulations are very useful to learn the conditional probabilities needed 
by the BN model.

The VOI for any test should be compared with its price. Suppose that we express 
the price of an exploration well in MMBOE units. If the exploration well has a cost 
of 10 MMBOE and the development cost is equal to 30 MMBOE, it is optimal (more 
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Figure 6.17  Basin modeling example: VOI for single exploration wells at the prospects.
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informative) to focus on Prospect BE. In this case, TE is not as informative since its 
high accumulation and expected revenue make it profitable anyway. If the development 
cost is equal to 150, it is most informative to explore TE. If the development cost is 50 
MMBOE, the VOI is smaller than the price of the exploration well, and the decision 
maker should stick with the original choices without acquiring any additional informa-
tion. Note, however, that we do not view the VOI results as a final output. Rather, plots 
of the VOI as a function of cost, or as a function of other input parameters, should be 
used as a basis for discussion. It can guide the decision maker toward looking for new 
and creative alternatives.

Let us now study the VOI of two exploration wells and only consider Prospects TE and 
BE. When gathering information at TE and BE, the petroleum company knows the bivari-
ate outcome at these nodes. The posterior value calculation sums over all possible bivariate 
outcomes of the two exploration wells, denoted x = ( )x x1 3, . The VOI will again vary as a 
function of the development cost.

Figure 6.18 shows the VOI of bivariate (two-well) information gathering displayed as 
a solid line along with curves for the VOI of univariate (single-well) information gather-
ing at TE or BE alone. Bivariate information seems to have no added value over uni-
variate information gathering at TE when Cost is large. For very high development costs, 
Prospect TE is the only one that may be profitable, while the other prospects are too 
expensive. Indirect information about TE, via BE in this case, does not add anything to 
the information already obtained by knowing TE. This causes the overlap of VOI for TE 
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Figure 6.18  Basin modeling example: VOI for a single exploration well at Prospects TE or BE versus 
exploration wells at both TE and BE prospects.
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and VOI for (TE, BE) for large costs. For moderate to small costs, there is added value in 
knowing both TE and BE since we now get valuable perfect information about two pos-
sibly lucrative prospects.

Finally, let us study sequential information gathering for this example. The assump-
tion of the free selection of prospects for development remains, but with sequential testing, 
the petroleum company can drill the second exploration well, if it so desires, after seeing 
the outcome of the first exploration well. We study this situation only for the two big-
gest prospects – i.e., (TE, BE). Sequential information gathering was discussed earlier in 
Section 5.8.

The prior value is the same as in Equation (6.5), while the posterior value calculations 
are different. As described in Section 5.8, one now performs the first test and only then con-
tinues with the second test if its added value is larger than the price of the second experi-
ment. In the situation with perfect information, the posterior value is

	 PoV x x x x Pseqtest
e

    , , , , ,| max2 1 1 1 2

1

( ) = ( ) ( ) −{ }Stop ,ContVal
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11p x e, ,	 (6.7)

where the two terms within the max term indicate two alternatives: (i) no further testing 
before making the decision and (ii) continue testing at the other prospect before making the 
decision. These are given by
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The idea behind sequential testing is that one can choose to stop testing – i.e., Equation 
(6.8)  – for some outcomes of the evidence x e,1 1= , while continuing testing  – i.e., 
Equation (6.9) – for other outcomes. In Equation (6.7), the petroleum company can stop 
testing if the added value of the second experiment is less than its price, denoted P,2.  
This flexibility results in a larger VOI than static testing at one or both prospects (the 
static information-gathering case was outlined in Figure 6.18). The final posterior value 
of sequential testing is obtained by maximizing over the experimentation sequence – i.e., 
whether we should start testing at x TE,1 =  or x BE,1 =  in our case. Note that this VOI 
analysis cannot be done without knowing the price of testing. The price P,2 must now 
take part explicitly. When static testing is done, we can first compute the VOI and then 
compare it with the price of the experiment. The VOI computation can therefore be done 
without knowing the price – this is no longer possible when studying the VOI of sequential 
experimentation.
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Figure 6.19 shows the VOI results of sequential testing where the petroleum company 
starts exploring at the BE or TE prospects and then can drill a second exploration well after 
observing the outcome of the first well.

The prices of the experiments (20 MMBOE/well) have been subtracted from the VOI 
results in all cases to make the plots comparable. Note that there is something to gain 
by sequential exploration drilling when the costs are quite small. In this case, the deci-
sion maker can sometimes avoid drilling the second exploration well because sufficient 
information is gained from the first well. When the costs are large, it is optimal to drill 
the exploration well at the large Prospect TE, and the petroleum company need not drill a 
subsequent exploration well at BE.

6.2.3  Risky business: petroleum prospect risking example

Keywords: risking, basin and petroleum systems modeling, petroleum prospects, exploration wells, 

empirical modeling, Gaussian model, perfect information, partial information, high decision flexibil-

ity, decoupled value function

Let us analyze hydrocarbon resource data from another part of the North Sea. The deci-
sions are again about petroleum development and production of hydrocarbon prospects, 
and we study the information obtained from exploration wells. The prospect volumes are 
generated using computer models for hydrocarbon migration for a number of uncertain 
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Figure 6.19  Basin modeling example: VOI for exploration well(s) at one or two prospect(s) versus 
the VOI of sequential testing where the decision maker can drill the second exploration well after 
observing the result of the first.
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geological input variables. The software we build on here was developed by Sylta (2004); 
see also Sylta (2008) and Manoharan (2014).

In the context of the framework outlined in Chapter 5, the highlights of this example are:

•	 The exploration wells will be assumed to provide perfect information about the hydrocarbon 
profits at the location where they are drilled. Only one exploration well is drilled. Thus, the infor-
mation gathering gives partial perfect information.

•	 Regarding the three properties of spatial decision situations:

1.	 The spatial modeling contains a combination of geological and statistical modeling to 
describe the volumes of hydrocarbons. The geological understanding is largely based on 
basin modeling with uncertain input parameters.

2.	 We assume that the decision maker is free to select profitable prospects for development, so 
there is high decision flexibility.

3.	 When we choose to develop prospects, the total value is the sum of the values of the pros-
pects. The value at one prospect only depends on the revenues and costs at that prospect 
alone; therefore, the value function decouples.

Framing the decision situation

We consider 27 petroleum prospects from offshore Norway. The 27 prospects are a subset 
of a larger geological interpretation of the North Viking Graben. A prospect is profitable if 
its volume of hydrocarbon and the associated revenue exceeds the expected cost of estab-
lishing infrastructure and producing and processing the hydrocarbons. The distinctions of 
interest are the profits x = ( )x x1 27,..., , defined as the difference between uncertain revenues 
(derived from uncertain geological risking variables and resulting uncertain hydrocarbon 
volumes) and fixed costs. Potential development would take place at the individual pros-
pects, and we assume that the petroleum company has a free selection problem, where the 
decision maker has alternatives ai ∈{ }0 1, , i = 1 27, , , representing development or not. 
There is no coupling in value between prospects, and the value function for the alternative 
of development is v x a xi i i,( ) = .

Information gathering

The information again involves an exploration well made at a single prospect. An explor-
ation well provides perfect information about the distinctions of interest (volumes or profits 
in this case) at the prospect where it is drilled. As we have previously discussed, informa-
tion at one location will also be informative of other prospects when there is statistical 
dependence. VOI analysis is useful for selecting the exploration site.

Modeling

The main uncertainties in this part of the North Sea are believed to be fault seal parameters, 
source rock parameters, geothermal gradients, and rock flow parameters. The local fault 
model was built specifically for this area by Sylta (2008).
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We perform risking over these geological variables using Gaussian distributions with 
mean and variance based on the currently available geological knowledge. The risking 
results in 524 realizations of geological parameters, which are inputs to the basin modeling 
(migration) software. The outputs studied here are volumes at the 27 prospects for the 
524 realizations. Given our focus on the prospect volumes alone, this can be considered a 
non-parametric approach. The empirical approach uses the “data” by themselves with-
out enforcing parametric assumptions. The “data” are not field experiments but rather the 
volume outputs of computer experiments using geological concepts from basin modeling.

The profits are defined by the revenues with costs subtracted. We assume a cost of 1 
billion to establish infrastructure and produce the hydrocarbons in the reservoir. This is 
subtracted from revenues corresponding to every realization of hydrocarbon volumes.

We denote these realizations of profits by xi
b, where the subscript is an index for the 

prospect number i = 1 27, , , while the superscript is the scenario b = 1 524, , . We con-
sider each of the 524 risking scenarios to be equally likely. Figure 6.20 shows the mean as 
well as the approximate 10th and 90th percentiles of profits at all prospects. Prospect 26 is 
clearly the most lucrative, while Prospects 1–18 and 22 have very small oil accumulations 
in these basin modeling runs, leading to negative expected profits. Prospects 19–21, 23–25, 
and 27 are near 0 profits and could potentially benefit from more information.

Figure  6.21 shows a cross-plot of the 524 realizations for Prospects 20 and 25. In 
Figure 6.21 (left), we show the fitted 70% Gaussian ellipse for the bivariate distribution of 
these two prospects. This ellipse does not seem to capture the data very well, as it focuses 
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Figure 6.20  Petroleum prospect risking example: mean, 10th, and 90th percentile for profits at the 
27 prospects. The volumes and profits are obtained by risking over 524 realizations of geological 
input parameters.
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on the central parts of the data, ignoring a tail to the lower left with low profits. Some other 
distribution may be more appropriate.

Figure 6.21 (right) shows the 50 nearest neighbors of a data point for Prospect 20. This 
approach of k-nearest neighbors is used to approximate the conditional distributions in the 
VOI expression.

VOI analysis

The prior value is determined by making the development decision at every prospect with-
out additional information. We simply use the empirical data to approximate the prior mean 
for each prospect. We get prior value

	 PV xi
b

bi

=






==

∑∑max , .0
1

524 1

524

1

27

	 (6.10)

For approximating the posterior value and to perform the VOI analysis, we need to 
condition on the outcomes of possible exploration wells. Within the completely empiri-
cal approach, an exploration well would pinpoint one of the 524 scenarios. We apply a 
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Figure 6.21  Petroleum prospect risking example:  realizations of the 524 profits for Prospects 20 
(first axis) and 25 (second axis). The left display shows a Gaussian approximation to the bivariate 
distribution. The right display illustrates the k-nearest neighbors of an observation for Prospect 20.
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k-nearest neighbor approach to smooth across a few scenarios and use the outcome of 
profits at the neighboring scenarios to approximate the conditioning.

The posterior value of information at x j is then computed as follows:

	 PoV x E x x E x x
k

xj i j
b

bi
i j

b
i( ) = ( ){ } ( ) =

==
∑∑ 1

524
0

1

1

524

1

27

max , | , |
 

cc

c Nb k j∈
∑

, ,

,	 (6.11)

where the Nb k j, ,  notation means the k-nearest neighbors of realization number b, computed 
in the dimension defined by prospect j . For instance, Figure 6.21 (right) shows the nearest 
neighbor of a realization for Prospect j = 20 with i = 25. The dashed lines define the neigh-
borhood region for realization number b. It is not symmetric; it depends on the configur-
ation of the neighbors. The separation between the lines depends on the choice of k. If the 
true model was a continuous parametric pdf, a conditioning on Prospect 20 like this would 
cut the pdf along the vertical line defined by the conditioning profit at Prospect 20. Instead, 
with the non-parametric approach, we first find the k-nearest realizations of the condition-
ing profit (xb

20 in Figure 6.21 right) and then average the prospect’s profits over the realiza-
tions identified by the neighborhood. From Figure 6.21 (right), this average is ˆ ( | )E x xb

25 20 . 
The maximum of this approximation of the conditional expectation and 0 is then averaged 
over all 524 realizations (inner sum over b in Equation (6.11)). Finally, we sum over all 27 
prospects (outer sum over i in Equation (6.11)) because the value is decoupled. If the com-
pany considered drilling two exploration wells, we would condition on the realizations in 
a similar way but now perform the k-nearest neighbor calculation in the space defined by 
the two exploration prospects in the conditioning statement. Through double expectation, 
we could apply the same procedure for the prior value before making the average over j  
instead of the straightforward sum in Equation (6.10). The suggested approximation of the 
conditional expectation in Equation (6.11) is just one possible approach here – the approxi-
mation can be done in other ways, including kernels and clustering approaches (see the 
hands-on projects in Section 7.2).

Figure  6.22 (top) shows the VOI approximation (the posterior value minus the prior 
value) obtained using this k-nearest neighbor approach to conditioning on the realizations 
from the basin modeling runs, with k = 50. The VOI is large for Prospects 23–26 and quite 
small for the rest. A large part of the VOI is perfect information at the selected prospect, but 
some value is also due to information propagating to the dependent prospects.

Let us compare this non-parametric VOI result with those based on a parametric Gaussian 
model. This Gaussian model is simply based on taking the empirical mean and covariance 
of the 27 prospects from the 524 realizations. As we saw in the bivariate display earlier, 
this approximation did not capture all details of the distribution, but then again it may not 
matter since we are interested in making decisions, not in the details of the probability 
distributions. The highest VOIs are again achieved for Prospects 23–26, with some differ-
ences in the actual VOI values. An exploration well at Prospect 26 is now less valuable, 
while information at Prospect 24 is more valuable compared to the non-parametric calcula-
tions. For the prospects with expected profits below 0, the VOI is smaller for the Gaussian 
approximation. These effects are caused by the approximations imposed by the k-nearest 
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neighbor method as well as the Gaussian model. For the Gaussian approximation, one may 
lose important information in the tail, and this is reflected in smaller (or sometimes larger) 
VOI. This effect holds for both the marginal effects at the prospect where we get perfect 
information as well as at the other dependent prospects where this information propagates.

6.3  Reservoir characterization from geophysical data

In this section, we zoom in and scrutinize a finer spatial resolution than the large basin-scale 
examples in the previous section. The scale is now that of a reservoir. A petroleum com-
pany must decide whether to drill wells or not at defined reservoir units. There is prior 
knowledge about the reservoir from previous geological and geophysical data, but there 
is still uncertainty in the spatial distribution of oil (and other reservoir variables), and this 
makes it hard to make the drilling decisions. It may be worthwhile to purchase additional 
geophysical information to better characterize the subsurface before making the decisions. 
When is it worth acquiring this additional geophysical information? Geophysical data may 
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Figure  6.22  Petroleum prospect risking example:  the VOI comparison of the k-nearest neighbor 
approach (top) and the results obtained by the Gaussian approximation (bottom).
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include seismic travel time and amplitude information, electromagnetic resistivity data, 
ground-penetrating radar, and other remotely sensed data.

Reflection seismic data are acquired by emitting sound waves at the surface and then 
recording reflected echoes from the subsurface formations to create a 3-D seismic image of 
the subsurface. The processing, imaging, interpretation, and inversion of reflection seismic 
data is a big industry. The reflected amplitudes depend on many factors, including the lith-
ology and pore fluids. Interpretation of seismic amplitudes requires rock physics models to 
understand the links between the observed seismic data and the reservoir properties (lith-
ology, fluids) of interest. This interpretation is non-unique and uncertain. Often in addition 
to reflections at normal incidence to the subsurface horizons, it is also useful to get infor-
mation from reflection at a range of reflection angles, obtained by recording reflections at 
increasing distances (offset) between the source and the receivers in the seismic experi-
ment. The additional information in amplitude variation with the reflection angle (or offset) 
can help to reduce the ambiguity of the rock physics interpretations for reservoir character-
ization. The text by Avseth et al. (2005), among others, describes the use of rock physics 
models for quantitative seismic interpretation. Many different attributes can be extracted 
from seismic data and used for reservoir characterization. For the purpose of the examples 
that we consider here, the decision maker is considering whether it is valuable to integrate 
seismic amplitude-versus-offset (AVO) data to inform the reservoir well placement deci-
sions. The extraction of seismic AVO information entails the interpretation of amplitudes 
at different reflection angles from what is called pre-stack seismic data, which are much 
larger data sets than the post-stack (or partial-stack) data sets used for the interpretation 
of normal-incidence amplitudes. Seismic AVO analysis is typically more costly than just 
getting the reflection amplitude data at zero incidence angles (stacked seismic data). In the 
second example, in addition to seismic AVO data we also consider acquiring information 
from electromagnetic (EM) surveys. EM geophysical methods use EM waves to image the 
resistivity of the subsurface, usually at a much lower spatial resolution than reflection seis-
mic imaging. An advantage of EM data is that they are quite sensitive to the presence of 
oil or gas accumulations since hydrocarbon-saturated rocks are much more resistive than 
brine-saturated rocks. However, there are uncertainties associated with the EM interpret-
ations, just as there are uncertainties associated with the seismic interpretations. Should we 
acquire EM data instead of seismic AVO analysis? Perhaps we should acquire only seismic 
AVO and no EM data? When is it valuable to acquire both?

In both examples, we assume a risk-neutral decision maker, no constraints for the deci-
sion situation, and a static decision situation without opportunities for sequential decision 
making. The spatial modeling involves geostatistical models for discrete and continuous 
variables, using some of the methods discussed in Chapter  4. Seismic AVO data were 
discussed and illustrated in Chapters 2 and 4. In Section 6.3.1, the distinction of inter-
est is the presence or absence of oil at the reservoir units, modeled by a discrete Markov 
random field. We compare the VOI of partial and total seismic tests. In Section 6.3.2, 
the modeling involves transformed Gaussian random field models for oil saturation and 
reservoir porosity, but then we approximate the model to work directly on reservoir unit 
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revenues. We conduct VOI analysis for seismic and EM geophysical data used for reser-
voir characterization.

6.3.1  Black gold in a white plight: reservoir characterization example

Keywords:  reservoir characterization, drilling decisions, Markov random fields, seismic data, 

imperfect information, partial information, total information, high decision flexibility, decoupled 

value function

Let us consider a reservoir where the top reservoir horizon has been identified. This is 
a two-dimensional domain in the east–north plane, but with varying depth since the top 
reservoir is not flat but instead follows an interpreted horizon in the subsurface. The spa-
tial distribution of reservoir variables in this domain is relevant for drilling decisions at 
selected units. As relevant background material, we illustrated the Gaussian mixture model 
for seismic AVO data in Chapter 2 and inversion of seismic AVO data to facies classes 
for a similar two-dimensional spatial model in Section 4.6. The case is inspired by an oil 
reservoir in the North Sea, the Glitne field – see, e.g., Avseth et al. (2001), Mukerji et al. 
(2001), and Eidsvik et al. (2004b). We are interested in analyzing the VOI for two attributes 
of seismic AVO data processed along the top reservoir. This example was also discussed in 
Bhattacharjya et al. (2010).

We view the highlights of this example in the context of the framework outlined in 
Chapter 5:

•	 The seismic data provide imperfect information about the reservoir variables. The spatial cover-
age is usually large but could focus on selected spatial regions. Thus, there could be partial or 
total imperfect information. We consider static information gathering.

•	 Regarding the three properties of spatial decision situations:

1.	 We use a discrete Markov random field model to represent the reservoir facies. The focus 
is on defining the prior pdf for spatial reservoir variables and relating these to the seismic 
amplitude data through a likelihood model based on rock physics and wave physics rela-
tions between reservoir properties and seismic amplitudes.

2.	 We assume that the decision maker freely selects profitable reservoir units – i.e., there is 
high decision flexibility. The decision is whether to drill a well at a reservoir unit or not.

3.	 When reservoir units are selected, the total value is the sum of the values of individual reser-
voir units. Again, this situation is one where the value function decouples. The value at each 
unit depends only on the oil content at that unit, the volume of the unit, the oil price, and the 
costs of producing the unit.

Framing the decision situation

We assume that the geometry of the reservoir has been mapped out to a sufficient extent, 
including the cap rock formation and the depth of different reservoir units. In the follow-
ing, we split the top reservoir into 100 units or cells, allocated on a regular grid of size 
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20  × 5.  The distinction of interest is the reservoir litho-fluid facies at the site, denoted 
xi ∈{ }1 2 3, , ,  i = 1 100, , . The three classes are oil sand, brine sand, or shale. The lucrative 
outcome is an oil-filled sand unit (xi = 1). At each reservoir unit, the decision is whether 
to drill a production well or not. Thus, we have alternatives ai ∈{ }0 1, , i N= 1, , , where 
N = 100 and the alternative ai = 1 indicates the decision to drill. We assume that the decision 
maker can drill as many units as are profitable. The value of the drilling decision depends 
on the uncertain facies outcome. There is a large cost of drilling (set to 2 monetary units), 
but a large revenue (set to 5 monetary units) if the well discovers oil sand. When there is no 
oil sand at the drilling location, the petroleum company receives no revenues but must still 
pay the cost of drilling. The decision is based on expected profits, assuming a risk-neutral 
decision maker. We assume that the value function decouples between sites. As for several 
examples in Section 5.4 and in Section 6.2, we assume the known cost of production and 
revenue associated with the lucrative outcome – i.e., v x a I xi i i, Rev=( ) = ⋅ =( ) −1 1 Cost.

Information gathering

Potential information-gathering schemes include a partial or total seismic test, with two dif-
ferent seismic attributes. Seismic tests provide imperfect information about the reservoir facies 
variables of interest. In this case, the information gathering does not necessarily mean acquiring 
a new seismic survey; here, the two attributes require different processing and analysis of the 
seismic data: post-stack versus pre-stack. We will compare the use of just normal-incidence 
reflectivity (from post-stack seismic data) or both normal-incidence reflectivity and amplitude 
change with angle (the AVO gradient) for providing information that might help with the deci-
sion. If AVO attributes are purchased, the decision maker will have to pay for pre-stack seismic 
AVO processing, inversion, and analysis. VOI analysis can reveal if it is worth the price. We 
will further study the value of partial testing or processing only a part of the domain and com-
pare this with the total information of the AVO attributes over the entire field.

Figure 6.23 shows the situation with a 20 × 5 grid and the location of partial tests. The 
grid coordinates are determined by the sailing directions and the resolution of the seismic 
survey, but for simplicity these coordinates may be interpreted as (east, north).
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Figure 6.23  Reservoir characterization example:  illustration of a grid with 20 x 5 reservoir cells 
where the decision maker can drill for oil. The gray and black subsets of cells indicate areas where 
the decision maker is considering purchasing partial seismic amplitude data.
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Modeling

The seismic AVO attributes are informative of the facies classes of interest. The seismic 
AVO data at a cell j m= 1,...,  is denoted yj j jy y= ( , ), ,1 2 . Note that the data at each cell can 
be univariate: when the processing provides only the zero-offset attributes of seismic data, 
the measurement at site j  is yj,1. With pre-stack processing of seismic data, both attributes 
(AVO intercept and gradient) are available at the cell, and we get the bivariate response yj .

To integrate the seismic AVO data for facies prediction, we must define a likelihood 
model. We considered a particular likelihood model for seismic AVO data in Chapter 2 
(and Section 4.6) when we presented Gaussian mixtures. In general, the modeling of seis-
mic amplitudes from facies classes can be complicated and uses elastic wave propagation 
theory. Reflection amplitudes depend on several aspects of the reservoir, including rock 
types and pore fluids, and the appropriate rock physics models connecting reservoir vari-
ables to the seismic signatures would vary from case to case. In this specific example, we 
first assume conditional independence, implying that we can model the likelihood unit by 
unit and that the reflection amplitudes only depend on the facies and fluids at that location. 
Second, we build the likelihood model using a graphical representation (see Section 2.3) 
involving porosity, density, and velocity variables in addition to the facies and the seis-
mic AVO data. We note that the seismic amplitudes are directly related to the velocities 
and density (elastic properties) and only indirectly to the facies variable. However, once 
we have a graphical relation of variables, we can propagate deterministic physics-based 
relations (along with uncertainty) in the graph to get a connection between the facies and 
seismic AVO. Our approach is to build a likelihood model using this graphical representa-
tion of reservoir variable connections, established rock physics relations for the North Sea 
region, and well data in the vicinity of the reservoir.

The likelihood model for seismic AVO given only the facies variable is approximated by 
a Gaussian distribution where the mean value depends on the facies class and the variance 
is constant between classes – i.e.,

	
p x k Ni i ky T| , ,

. , . , . , . , .

=( ) = ( )
= −( ) = −( ) =

µ
µ µ µ1 2 30 03 0 21 0 08 0 15 0 02,, .0( ) 	

(6.12)

The covariance matrix T  has diagonal elements 0 062.  and 0 172.  and an off-diagonal term 
including negative correlation at −0 7. . Seismic AVO attributes typically have a negative 
correlation.

In Figure 6.24, we visualize the marginal pdfs for the zero-offset data yj,1 (left) and the 
angle-dependent yj,2 (right). Based on the mean values and the likelihood variances, there 
is much overlap between the classes, and a seismic AVO measurement cannot discriminate 
very well between the classes. The pdf for brine sand is a little different from the other two 
pdfs for the zero-offset seismic attribute. The response distributions for shale and oil sand 
are very similar for zero-offset data but differ somewhat for the AVO gradient. The oil sand 
shows a more negative AVO gradient. It appears that when both attributes are available, 
the data should clearly be more valuable because they can improve the prediction of facies 
classes. The underlying spatial dependence in the oil saturation will also help discriminate 
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between the classes, because the dependence means that data at one location contain some 
information of the saturation at all locations, as the facies have spatial dependency. This 
aspect could make partial spatial information-gathering schemes rather attractive.

The reservoir is heterogeneous, and its interpretation and facies characterization bene-
fit from spatial modeling. Spatial dependence in the facies variable at the top reservoir 
is incorporated through the use of a first-order Markov random field (MRF) formula-
tion: the Ising model as described in Chapter 4. This implies that the probability for oil in 
a given cell, given the outcome in the entire field, depends only on the outcome in the four 
neighboring cells. The joint prior pdf for the spatial facies variable is then represented by

	 p
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Figure  6.24  Reservoir characterization example:  likelihood model for seismic AVO data. The 
zero-offset reflectivity (left) represents the amplitude at the top reservoir for zero incidence angles. 
The seismic AVO gradient (right) represents the change of amplitude as a function of the incidence 
angle. The likelihood model is conditional on three different facies classes (oil sand, brine sand, 
and shale).
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where β  is the interaction parameter, while I A( ) is an indicator function that equals 1 if A 
is true and 0 otherwise. The first summation is over all pairs xi and x j, which are the nearest 
neighbors in the grid, and Z  is a normalizing constant. The external field or pointwise prior 
function α i ix( ) is a function of the outcome at every cell. Without this external field, each 
class would be equally likely in the prior model. With the external field, we can incorporate 
some of the geological knowledge about the reservoir. As an example, in this case, oil sands 
are more likely to occur at the shallower parts of the reservoir zones, as oil is lighter than 
brine. We achieve this by specifying larger α i ix( ) potentials for xi = 1 than for xi = 2 and 
xi = 3 when i represents a spatial location at shallow depth.

We specify β  based on an analogue seismic AVO data set. Thus, we assume that the spa-
tial interaction is about the same for similar reservoir settings. The maximum likelihood 
estimate (MLE) of β  is computed by evaluating the marginal likelihood p y;β( )  for a set of 
β  values. This marginal likelihood requires that we sum out all dependent uncertain vari-
ables xi, i = 1 100,..., . This is possible by using the forward–backward algorithm (Appendix 
A.4) for the moderate-sized MRF model. The marginal likelihood is shown in Figure 6.25. 
The plot shows that the MLE for the interaction parameter is about 0.9.

Only the marginal probabilities are needed for making decisions at the reservoir 
units. We compute the prior marginal probabilities by the forward–backward algorithm 
(Appendix A.4) for MRFs, taking the interaction parameter β  and the pointwise parameters 
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Figure  6.25  Reservoir characterization example:  maximum likelihood estimation for the spatial 
interaction parameter in the Markov random field. The plot shows the marginal likelihood of 
a currently available seismic amplitude data set as a function of the interaction parameter on the 
first axis.
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αi ix( ) as inputs. The prior probability of the oil sand facies is shown in Figure 6.26. We see 
that the northernmost central part has a high probability of oil but that there is large hetero-
geneity in the spatial facies classes in the grid cells.

VOI analysis

Let us now evaluate the VOI for various data attributes and test schemes. We assume fixed 
revenues, Rev = 5, monetary units in the event of oil and fixed drilling costs, Cost = 2, mon-
etary units no matter the outcome. The value under the drilling alternative is the expected 
value based on the marginal probability of oil sands. The prior value then becomes

	 PV p x
i

N

i= ⋅ =( ) −{ }
=
∑max ,Rev .

1

0 1 Cost 	 (6.14)

The marginal probabilities are computed by one run of a forward–backward algorithm 
(Appendix A.4).

If the petroleum company purchases seismic AVO data, it can make informed decisions 
based on the conditional probability of success at each reservoir unit. This decision may 
change depending on the observation. The posterior value calculation integrates over all 
possible data, and we have

	 PoV p x p di
i

N

= ⋅ =( ) −{ } ( )∫∑
=

max ,Rev | .0 1
1

y yCost y 	 (6.15)

We use Monte Carlo sampling to approximate the multidimensional integral over the 
data. One data set is sampled by first generating a realization xb  of the discrete facies from 
the MRF model p x( ) in Equation (6.13); next, a data set yb is sampled from the likelihood 
model p by x|( )  in Equation (6.12) given the facies realization. For the inner calculation, 
p xi =( )1 | y , we use forward–backward computations. The forward–backward algorithm is 
also used when we sample a realization from the MRF model (Appendix A.4).
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Figure 6.26  Reservoir characterization example: marginal probability of the oil sand facies at all 
reservoir units on the 20 × 5 grid.
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Table 6.2 shows the Monte Carlo approximations of VOI for total and partial tests for 
seismic attributes. The partial test regions are shown in Figure 6.23.

The results indicate that total testing is more valuable than partial testing but that the sec-
ond partial test does surprisingly well considering that it only explores 15 out of 100 grid 
units. Partial Test 1 does not do so well because the test is done in an area with high chances 
of oil a priori; thus, the prior value is high, and the decision maker would most likely drill 
here in any event. The area of Partial Test 2 is more uncertain, and the expected profits at 
cells in that area are close to 0, indicating that seismic processing in this southeastern area 
could likely help in making better drilling decisions.

The value with seismic AVO attributes is much larger than that of only the zero-offset 
attributes. Together, the two attributes will discriminate between the facies classes much bet-
ter than only one of the attributes. The VOI of a total test with both attributes is 36 monetary 
units. In comparison, total perfect information yields a VOI of 70. This could be important in 
a case where the company wishes to compare two processing schemes known to have differ-
ent accuracies of the seismic likelihood. The case of perfect information is representative of 
seismic processing that is extremely accurate and in which there is no interpretation uncer-
tainty. This is not possible in practice, but one could imagine spending substantial labor and 
money (expensive processing) to obtain better-quality data, and the VOI analysis could then 
be used to check whether this extensive processing work is worth the price.

6.3.2  Reservoir dogs: seismic and electromagnetic data example

Keywords: reservoir characterization, drilling decisions, transformed Gaussian variables, seismic 

data, electromagnetic data, imperfect information, total information, high decision flexibility, decou-

pled value function, decision regions

Let us again study drilling decisions at defined reservoir units at a grid of the top reservoir 
horizon. We are interested in comparing the VOI of seismic AVO data processed along 
the top reservoir with the VOI of an EM survey. Unlike the previous subsection, we will 
now model reservoir variables using a continuous sample space. The spatial model is for 
the saturation and porosity in the reservoir units, and the profits result from producing oil 
at the reservoir units. The modeling of spatially correlated continuous reservoir variables 
and VOI analysis of seismic and EM data was studied by Eidsvik et al. (2008) and Rezaie 
et al. (2014).

Table 6.2.  VOI results of total and partial testing as well as post-stack (zero-offset data) 
versus pre-stack (both zero-offset data and AVO gradient) seismic amplitude processing

Total Test Partial Test 1 Partial Test 2

Zero-Offset Data 4.9 0.5 2.1
AVO Data 35.9 1.9 10.6

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.007
http:/www.cambridge.org/core


Earth sciences applications272

In the context of the framework outlined in Chapter 5, the highlights for this example are:

•	 The seismic or electromagnetic data provide imperfect information about the reservoir vari-
ables. The spatial coverage is usually large, and in this example we have total imperfect informa-
tion. We focus on static information gathering.

•	 Regarding the three properties of spatial decision situations:

1.	 The reservoir heterogeneity is modeled by a continuous random field. The focus is on defin-
ing the prior pdf for spatial reservoir variables and relating these to the geophysical data 
by a likelihood model using rock physics and wave physics relations.

2.	 We assume that the decision maker freely selects profitable reservoir units – i.e., there is 
high decision flexibility. The decision is whether to drill a well at a reservoir unit or not.

3.	 When reservoir units are selected, the total value is the sum of the values of individual reser-
voir units. We thus have a situation where the value function decouples. The value at each 
unit depends only on the oil content at that unit, the volume of the unit, the oil price, and the 
costs of producing the unit.

Framing the decision situation

We assume that the geometry of the reservoir has been mapped out from seismic travel time 
information. A grid of reservoir units or cells is defined at the top reservoir zone. This grid 
is of size n n1 2× , where n1 25=  and n2 25= , and the total number of cells is n n n= =1 2 625.  
The decision maker can freely select drilling sites. At every reservoir unit, the petroleum 
company decides whether to drill a well or not – i.e., alternatives are ai ∈{ }0 1, , i N= …1, , ,  
with N n= = 625. The distinctions of interest, x = ( )x xn1,..., , are the profits from a reser-
voir unit. These profits are related to porosity and oil saturation, as we describe in detail 
in the spatial modeling later. The value function decouples to the sum of individual values 
obtained from the reservoir units. At cell i, the value v x ai i,( ) only depends on the alterna-
tive taken at that reservoir unit and the uncertain distinction of interest at that cell.

Information gathering

We will study the value of reprocessing seismic AVO data and that of acquiring and pro-
cessing EM resistivity data. It is possible to purchase either AVO data, EM data, or both. 
We will consider total testing here, but it could be possible for a petroleum company to pur-
chase partial tests as well – for instance, EM data only along one east–west or north–south 
line in the grid.

We assume that prior knowledge about the reservoir includes initial post-stack seis-
mic interpretation. The question is whether to process the angle-dependent information 
in the seismic amplitude data  – i.e., perform pre-stack seismic AVO analysis. These 
amplitude-versus-angle data are informative of the reservoir saturation and could help in 
making better drilling decisions. The petroleum company can also consider purchasing 
an EM survey. The EM resistivity information is obtained by processing and inversion 
of the phase and amplitude data measured by sea bed logging sensors along with depth 
information and overburden resistivity properties. The integration of seismic data and 
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EM resistivity data is important for reservoir characterization. While interpretation of 
zero-offset seismic data can be ambiguous because of saturation or porosity effects, the 
combination of elastic and resistivity data may help resolve this ambiguity in the inter-
pretation of saturation and porosity (Gomez et al. 2008). Adding these sources of informa-
tion will reduce the uncertainty in the predicted profits. However, as we have mentioned 
several times now, reducing uncertainty alone does not necessarily make the data valuable 
to the decision maker.

Modeling

Our approach is based on a Bayesian model for the porosity and saturation along the top 
reservoir horizon and for the seismic AVO data and EM resistivity data. The saturation 
is two-phase brine or oil dominated. Brine saturation at a reservoir unit is denoted by 
s s si ∈( )min max, , where smin .= 0 1 is the irreducible water saturation, while smax .= 0 9 is 
associated with the residual oil saturation. The oil saturation is 1− si, and the porosity is 
φ φ φi ∈( ) = ( )min max, . , .0 15 0 4 . Both saturation and porosity are spatial variables with a het-
erogeneous spatial distribution along the reservoir horizon. The minimum and maximum 
values are defined by the reservoir situation. Typically, they are calibrated from geological 
conditions and well and core data. The saturation and porosity variables are represented at 
every grid cell i n n= …1 1 2, , . The prior knowledge and the available seismic interpretation 
are used to build the current reservoir model before considering the inclusion of the seismic 
AVO information or EM resistivity data.

In Figure 6.27, we summarize the current knowledge of the porosity and saturation res-
ervoir variables, as well as the data that have been used to get to this description. The data 
include zero-offset seismic amplitudes (top left) and seismic travel time data (top right). 
The porosity and oil saturation estimates (middle row) come from a quantitative seismic 
reservoir characterization workflow. They are obtained by Bayesian inversion, applying a 
logistic Gaussian prior model for the saturation and porosity (Eidsvik et al. 2008), and a 
rock physics model, similar to the soft sand model used by Bachrach (2006) for relating 
the reservoir variables to the zero-offset seismic data at the top of the reservoir. In the prior 
model, the seismic travel time is used to interpret the depth of the horizon. Shorter travel 
times indicate shallower depths where high oil saturation is a priori more likely since oil 
is lighter than brine.

The displays show that the zero-offset seismic amplitudes are informative of the poros-
ity in this case. Relatively stronger positive reflections correspond to lower porosity in this 
reservoir. Uncertainty levels for porosity (bottom left) are rather low as compared with 
the ones for oil saturation (bottom right). In the following, when we consider the value 
of purchasing the seismic AVO gradient attribute or EM resistivity data, we will fix the 
porosity in the reservoir and assume that only the saturation is uncertain. We will further 
assume that the saturation is directly related to the reservoir profits defined as the difference 
between the revenues and drilling costs.

The distinctions of interest x = ( )x xn1, ,  are the profits associated with drilling wells 
and producing oil from the n reservoir units. At unit i, profit xi i= −Rev Cost , where Revi 
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is the uncertain revenue from the reservoir unit and where the subtracted cost of drilling is 
assumed to be fixed and constant for all units. The revenues are linearly related to the uncer-
tain saturation variable: Rev Revi i is= −( )0 1ϕ , where the constant Rev0  incorporates fac-
tors such as the cell area, the assumed reservoir thickness, the recovery factor, and the oil 
price. We assume that the profits are Gaussian in the prior model – i.e., p Nx( ) = ( )µ, Σ .  
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Figure 6.27  Seismic and electromagnetic data example: a summary of prior knowledge about the 
reservoir variables. The zero-offset seismic data and the seismic travel time data (top) are used to 
construct the current estimate of porosity and saturation (middle) with associated uncertainties 
(bottom).
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The mean µ  of profits depends on several physical parameters of the model, such as the 
expected saturation, porosity, and reservoir depth and thickness, as well as on the price of 
oil and the cost of drilling wells.

Figure 6.28 shows the prior mean used for profits. This is largely based on the predic-
tions of saturation and porosity from the currently available zero-offset seismic data and 
the seismic travel time information. Note how the saturation influences the profits, making 
higher profits more likely at some of the central units. The prior variance–covariance Σ  
of profits is defined by the variance terms specified from propagating the uncertainty in the 
saturation to profits, while the spatial correlation is modeled by an exponential correlation 
function with a range of 5 or 10 grid cells. We compare the effect of different correlation 
ranges for the VOI analysis in the following text.

At this stage of building the reservoir model, there is still uncertainty around the spa-
tial distribution of saturation and hence profits. The decision maker has to decide whether 
to purchase pre-stack seismic AVO attributes, EM resistivity data, or both. Purchasing 
these sources of information could reduce the uncertainty in the predicted profits. The 
seismic AVO data and EM resistivity are related to the reservoir saturation by rock and 
fluid properties described by rock physics relations and by the physics of elastic and 
electromagnetic waves. These relations, along with the uncertainty in the acquisition and 
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Figure 6.28  Seismic and electromagnetic data example: expected value for profits at all reservoir 
units. The top reservoir domain is split into 625 reservoir units on a regular grid. The prior model for 
profits is based on post-stack seismic data.
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processing of data, define the likelihood model p y x|( ) . In the likelihood model, poros-
ity is used as a fixed explanatory variable, and profits are modeled via saturation.

In Figure 6.29, model curves for the two geophysical attributes as a function of satur-
ation and porosity (dots) are plotted with associated revenues (first axis). The modeling 
uses well-known rock physics relations and theories described in texts such as Mavko 
et  al. (2009) and Schon (2011). The elastic moduli of the rocks with different porosi-
ties and saturations are first computed using a soft sand model (Dvorkin and Nur 1996; 
Bachrach 2006) tuned to a North Sea well log, along with Gassmann’s fluid substitu-
tion equations. This is followed by the Aki and Richards approximations for the seismic 
P-wave reflectivity and AVO gradient. The cap rock shale was assigned fixed elastic prop-
erties. Archie’s law, with parameters tuned to a North Sea well log, is used to compute the 
resistivity as a function of porosity and saturation. The seismic AVO gradient (left) varies 
strongly with porosity but has a weaker trend with saturation, especially for high porosity. 
Logarithmic resistivity (right) has a clear trend as a function of saturation but is a weaker 
function of porosity.

Non-spatial inputs include the fixed reservoir thickness, the cell area, the recovery fac-
tor, and the oil price, which when multiplied together result in revenue Rev0 18=  monet-
ary units. The profits are obtained by subtracting the cost of development, which is set to 
Cost = 2 monetary units. As expected, Figure 6.29 shows that profits increase with higher 
porosity and decrease with increasing water saturation.
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Figure 6.29  Seismic and electromagnetic data example: the geophysical response variables (second 
axis) depend on the saturation and porosity through rock physics models.
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In the likelihood model for the seismic AVO data and the electromagnetic data, we assume 
conditional independence. This holds for the seismic AVO data, the EM data, and between 
seismic AVO and EM data. Thus, the likelihood factors into products between the data and 
between the reservoir units. Let y1 = ( )y y m1 1 1 1, ,, ,  denote the seismic AVO data, where 
m n1 625= =  since the seismic AVO attribute is available over the entire domain (total but 
imperfect information). The individual terms comprising the likelihood are modeled in a 
linear fashion, resulting in p y x N f F xi i i i i1 1 1 1

2
, , ,| ,( ) = + +( )( )Cost τ , where the expectation 

term (the mean of the distribution) is plotted in Figure 6.29. Critically, this model assumes 
a linear relationship between the revenues xi +Cost and the expected seismic pre-stack 
attribute E y xi i1, |( ). In this model for the likelihood mean value, we fit the intercept f i1,  
and slope F i1,  using a linearized version of the rock physics modeling described earlier. The 
fixed terms f i1,  and F i1,  depend on the spatial porosity as covariates, which are now assumed 
to be fixed based on the prior post-stack reservoir characterization. The variance τ1

2 can be 
estimated from well logs of saturation, porosity, and elastic properties, as well as seismic 
AVO data. This accuracy of the data would depend on the rock and fluid properties, data 
quality, and processing; in this example, we have set the noise to τ1

2 20 035= . . A very elab-
orate processing scheme could have higher accuracy, but of course at a higher price.

Let y2 2 1 2 2 1
= ( )=y y m m, ,, ,  denote the EM data (being the logarithm of electromagnetic 

resistivity). Note that m2 here, but does not have to equal m1. The EM data may have dif-
ferent coverage than the seismic attributes. The individual terms of the EM likelihood are 
defined by p y x N f F xi i i i i2 2 2 2

2
, , ,| ,( ) = + +( )( )Cost τ , where the expectation term is based 

on a linearization of Archie’s law with parameters tuned to a North Sea well log. This is 
plotted in Figure 6.29. Again, the fixed terms f i2,  and F i2,  depend on porosity. The variance 
τ2

2 can be estimated from well logs of saturation, porosity, and resistivity, but the accuracy 
of the EM data would generally also depend on the processing and inversion. We have set 
this noise to τ2

2 22=  in this example.
We group both sets of data together in a vector of length m m1 2+  such that y y y= ( )1 2,  

and similarly group the other terms, f f f= 1 2,( ) and F F F= 1 2,( ) for the forward models 
and T 1 1= diag τ τ1

2
2
2

1 2m m,( ) for the covariance matrix of the seismic AVO and EM data.
Under the Gaussian and linear modeling assumptions connecting revenues to the data, 

the posterior mean of profits becomes

	 E t tx y F F F T f F|( ) = + +( ) − −( ) − ⋅−µ µΣ Σ 1
y Cost 1,	 (6.16)

where Cost ⋅1 is a length n vector of the drilling costs. The marginal likelihood of the seis-
mic AVO and EM data is a Gaussian given by p N ty f + F F F T( ) = +( )µ, Σ .

VOI analysis

The decision about whether to drill or not at a reservoir unit is determined by the expected 
profit xi at the reservoir units. Thus, the VOI is defined by
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	 VOI E x p d E xi
i

N

i
i

N

y y y y( ) = ( ){ } ( ) − ( ){ }∫∑ ∑
= =

max , | max , .0 0
1 1

	 (6.17)

Here, the data y could be seismic AVO data, EM resistivity data, or both.
The prior value, the second term in Equation (6.17), is obtained from the sum of profits 

from all units that have a positive prior mean based on the assumed Gaussian prior model 
for profits. For the posterior value, the first term in Equation (6.17), we use the closed-form 
analytical solution to this integral, which is valid under Gaussian linear modeling assump-
tions (see Sections 5.3–4 and Appendix A.1).

In Figure 6.30, we plot the VOI of seismic AVO data (SD), the EM resistivity data (ED), 
and both of these geophysical data (SD + ED) as a function of the cost of drilling. This cost 
is assumed to be constant for all cells in the grid. Obtaining both data (SD + ED) obviously 
results in the highest VOI. The VOI for the seismic AVO data is a little less than that of the 
EM data for our parameter settings. Notably, the VOI of both SD and ED is not the sum of 
the VOI of SD and the VOI of ED; the additional value of collecting both data types instead 
of just one is low. All curves peak around Cost = 2.5 monetary units, at which level added 
information is most valuable. For a very low drilling cost, the drilling decisions are easy 
to make without further information and the VOI is small. Similarly, at very large drilling 
costs, it is not necessary to acquire more data before making the decision to avoid drilling 
and, again, the VOI is small.

Next, we compare these VOI results with the price of the different geophysical experi-
ments. As an example, say the processing required for pre-stack seismic data has a price of 
10 monetary units. Figure 6.30 shows that the VOI of the seismic AVO gradient is greater 
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Figure 6.30  Seismic and electromagnetic data example: the VOI of seismic AVO gradient data (SD) 
and electromagnetic resistivity data (ED) as a function of the fixed drilling cost at the reservoir units.
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than this processing price for drilling costs between 1 and 4 monetary units. In this cost 
range, it would be valuable for the petroleum company to purchase the AVO gradient infor-
mation. As another example, say that obtaining EM resistivity data at our accuracy has a 
price equal to 40 monetary units. The VOI of EM resistivity data is greater than this price 
for drilling costs between 2 and 3.5 monetary units.

By constructing decision regions, one can figure out which data are most valu-
able to purchase. Decision regions are obtained by plotting the optimal choice of the 
information-gathering scheme with the price of the seismic AVO gradient (PSD) on one axis 
and the price of the EM resistivity data (PED) on the other axis. For various price levels, the 
decision regions are defined by picking the most valuable information relative to its price 
of the experiment – i.e.,

	 argmax ( ), , , .VOI VOI VOISD ED ED SD SD SD ED EDP P P P+ − + − −{ }0
	

(6.18)

The decision maker should purchase the data with the largest difference between the 
VOI and the associated price, if any of these are positive. For these calculations, the drilling 
cost is set to Cost = 2.

The decision regions are shown in Figure 6.31. We display the case of a short spatial 
correlation range (five cells, left) and a long correlation range (10 cells, right). If the price 
of seismic AVO and EM data is very low, the company benefits from purchasing both. 
This is shown in the lower left corners in the display. If the price of one or both data types 
is too high, the value of this information cannot justify purchasing this data. The deci-
sion boundaries are computed by equating the values for the different types of data. For 
instance, the boundary between ED or SD is defined by the line P PED ED SD SD= +VOI -VOI .  
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Figure  6.31  Seismic and electromagnetic data example:  decision regions for geophysical testing 
schemes. The left display is indicative of small spatial correlation in the reservoir profits, while the 
results of the right display are based on large spatial dependence.
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For the parameters used here, there is no boundary between purchasing both or neither. 
Both data are informative about the underlying uncertainty related to saturation and are 
thus related to the profits, and for a large range of prices it is valuable to obtain at least 
one of the geophysical data. The spatial dependence in the model clearly matters since the 
decision regions are different in the left and right displays. When there is high correlation 
in the profit variables (right display), the regions of only SD and only ED are dominant for 
a larger range of prices.

6.4  Mine planning and safety

In this section, we study information-gathering options for making improved mining deci-
sions. The evaluation of information criteria in the mining industry has been studied exten-
sively – see, e.g., Rivoirard (1987) and Chiles and Delfiner (2012). There are often large 
costs involved with the planning and development of mines. Profits are a function of the 
uncertain ore grade. Mining also involves issues related to the safety and prevention of 
mine hazards. In this case, the decision maker’s value is created from the avoidance of a 
disastrous event with potential loss of life. In both situations, there are uncertainties, and 
the decision maker must choose whether it is worthwhile to acquire additional information 
to aid in decision making under uncertainty.

6.4.1  I love rock and ore: mining oxide grade example

Keywords: oxide grade example, mining, X-ray data, Gaussian random field, perfect information, 

imperfect information, partial information, low decision flexibility, decoupled value function, deci-

sion regions

In the mining oxide project considered here, there is a lot of prior geological knowledge 
and some borehole data that are highly informative about the oxide grade at the locations 
where they have been drilled. We studied some of the aspects of the currently available data 
in Chapter 2 and used them for spatial modeling in Section 4.4. Even though current data 
provide extensive knowledge about the resource, there is still uncertainty about the spatial dis-
tribution of the oxide. We study whether it will be worthwhile for the mining company to drill 
additional boreholes to improve the spatial predictions about the oxide grades and thus make 
a better decision.

We view the highlights of this section in the context of the framework outlined in 
Chapter 5:

•	 The borehole data are of two types. One provides perfect information about the oxide grade 
at the locations where they are acquired, while the other provides imperfect information about 
the oxide grade at the locations where they are acquired. We will compare the two measurement 
types. Data are acquired in boreholes, while our interest is in the entire spatial domain, so this is an 
example of partial information gathering. We focus on static information gathering.
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•	 Regarding the three properties of spatial decision situations:
1.	 We use a Gaussian random field model for the spatial distribution of the oxide grade.
2.	 We assume that the decision maker either selects the whole mining project or not – i.e., 

there is low decision flexibility.
3.	 If the decision maker decides to start mining, the total value is the sum of individual values 

from mining blocks. We thus have a situation where the value function decouples to a sum. 
The value at each unit depends on the oxide grade at that unit and the recovery factors and 
costs of producing the unit.

As in Eidsvik and Ellefmo (2013), we assume a risk-neutral decision maker and no con-
straints for the decision situation, and we consider the static situation without opportunities 
for sequential decision making.

Framing the decision situation

The distinction of interest, x xi is( ) = , is the oxide grade at locations si in the mine. It will 
be profitable to start mining if the aggregated oxide resources are abundant and if the total 
revenue exceeds the total operational costs. We consider a simple decision situation with 
two alternatives:  mining or not. Going ahead with the mining would involve building 
infrastructure and extracting the resources in the entire region of interest. We denote the 
mining alternatives by a ∈{ }0 1, , where a = 1 denotes mining and a = 0 denotes not mining. 
The value function decouples to the sum over all defined blocks or composites in the mine. 
A preliminary analysis has defined around 8000 blocks in total, each of a fixed volume. The 
discretization into blocks entails an assumption about the equal oxide grade levels inside 
every block. The development decision, a = 1, involves the company mining all the blocks. 
Some blocks are, however, known to be largely waste rock, and these would only incur a 
cost without generating revenues. For the central part of the ore, all blocks are taken to the 
plant and processed for mineral production. Note that the company could probably gain 
value by choosing a more complex development strategy with more decision flexibility, 
such as through sequential decisions, because of the way mining is done from the top (open 
pit) or via tunneling operations.

Information gathering

It is useful to evaluate different schemes for collecting more exploratory borehole data 
about the spatial distribution of the oxide grade. Several exploration boreholes have already 
been drilled, and oxide grade measurements of two types are available from 1871 locations. 
One data type is obtained from X-ray fluorescence (XRF) spectrometry in the laboratory, 
which is assumed to provide perfect information about the oxide grade sample. Another 
type of data is obtained by portable X-ray meter (XMET) acquisition; this kind of infor-
mation gathering is made on the location with a handheld meter, and it provides imperfect 
information about the oxide grade. The XMET data (imperfect information) are available 
at 1871 locations. The XRF data (perfect information) are observed at 103 of the 1871 cur-
rent observation locations. The VOI question is whether more borehole data are needed at 
this stage, and should the additional measurements be of the XMET type or the XRF type? 
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The mining company plans to drill at 265 additional locations to collect oxide grade meas-
urements. However, going through the actual drilling operation has a price, and it may not 
be worthwhile to do so. VOI analysis is useful for checking if the value from the scheme is 
greater than the price of data acquisition.

We assume that boreholes, once drilled, are sampled every meter. A core sample of the 
rock formation is then analyzed and results in a measured value of the oxide grade at the 
location where the sample was acquired. As in the currently available data, we may collect 
data of two different accuracies and price: XMET or XRF. Figure 6.32 illustrates the cur-
rently available data (XRF as crosses and XMET as small black dots), as well as blocks 
where mining development will be done and the locations where the mining company 
could collect more measurements.

The mining development will focus on the spatial blocks at a high altitude and in the 
eastern zone (gray squares in the display). The planned boreholes (indicated by gray circles 
in the display) are in the center of this development domain.

Modeling

The example in Section 4.4 illustrates parameter estimation and spatial prediction based on 
the currently available oxide grade data from this deposit. We recall the modeling aspects 
briefly here.

We use a Gaussian regression model for the oxide grade and estimate parameters in this 
model from available geological knowledge about the mining ore formation in addition to 
the available XRF data and XMET data at the observation sites. The preliminary geological 
analysis has revealed three dominant rock classes. We use this rock class as a covariate in a 
Gaussian regression model for the oxide grade. Thus, the marginal distribution for the oxide 
grade at location si is defined by p x N hi is s( )( ) = + ( )( )β β σ0 1

2, , where the mean of the 
oxide grade varies in the spatial coordinate along with the variations of the geological class 
covariate h is( ) ∈{ }1 2 3, , . The class represents the mineralization grade that has been con-
structed from a smooth interpretation of the preliminary data by experts in the local geology.

Spatial correlation is modeled by Cov x x ti j ijs s( ) ( )( ) = −( ), σ2exp η , where tij is the 
Euclidean distance between the two sites si and s j and η is the correlation decay param-
eter. The imperfect XMET data are assumed to be unbiased estimates of the oxide grade 
at the locations where the data are acquired, with an independent Gaussian noise term 
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Figure  6.32  Mining oxide grade example:  map views of current data locations (black), planned 
data-gathering sites (gray circles), and mining development block sites (gray squares).

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.007
http:/www.cambridge.org/core


6.4 Mine planning and safety 283

with variance τ2. Model parameters are estimated by maximum likelihood, as described 
in Section 4.4. The regression parameter β1 1 32= .  for the slope with a mineralization class 
clearly indicates a significant trend of an increased oxide grade from Class 1 to Classes 
2 and 3.

The suggested model for oxide grade may seem implausible because grade is positive 
and bounded upward. Nevertheless, the Gaussian modeling approach appears to provide a 
reasonable description when accounting for the mineralization covariate. This is indicated 
by the quantile–quantile (QQ) plot in Section 4.4 as well as the analysis by Eidsvik and 
Ellefmo (2013).

VOI analysis

The VOI is computed using the expected revenues and costs from the mine. For computing 
the prior and posterior values, we make certain assumptions about the mining processes that 
will be executed if the mine is developed. (Various extensions are possible here.) First, the 
block values have been calculated assuming that the blocks have already been uncovered 
and that they will be mined. Second, we assume known costs for mining 1 tonne of oxide 
ore. In addition, the blocks with a currently predicted grade above cut-off are processed 
after mining, whereas the waste rock (with a predicted grade below cut-off) is not pro-
cessed any further. This entails that only a fraction of the blocks contain possible revenues 
but that there are costs associated with all blocks. The cut-off is fixed in our application.

Let Revl be the revenue factor associated with resource block l = …1 7936, , , which pro-
vides the revenue once it is multiplied with the expected grade. We set Revl to 0 outside the 
ore, since these blocks are not processed further. The revenue factor is a product of several 
elements:  the price of the commodity extracted from the oxide, block volume, density, 
and certain processing parameters. Let Rev = …(Rev , ,Rev )1 7936  be the (column) vector of 
revenue levels and Cost = …( )Cost Cost1 7936, ,  the costs in the set of resource blocks. The 
cost includes both the cost of mining and processing a block, except if a block is waste 
rock, then the cost of processing is not included in the cost for that block. The prior value 
is calculated from the expected profits (Prof) based on the currently available data – i.e.,

	 PV   = ( ){ } ( ) = −max , Prof , Prof ,0 E E t
x

tRev Cost 1µ 	 (6.19)

where µ x is the vector of the mean oxide block grades given the current data. This is 
computed from the Gaussian regression model, similar to Kriging (see Chapter  4 and 
Appendix A.1).

Consider what happens when more data y are collected. The new data are either XMET 
or XRF in the planned boreholes. The posterior value is

	
PoV

 

y y y y

y y

( ) = ( ){ }
( ) = −

∫ max , Prof | ( ) ,

Prof | ,|

0 E p d

E t
x

tRev 1Costµ 	 (6.20)

where µ x | y is the prediction of the block grades given the current data and planned data y.  
We need to integrate over all possible prospective data outcomes for the posterior value 
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computation. The pdf of the planned data is Gaussian and denoted p N( ) ( , )y y y= µ Σ .  
The conditional mean of the oxide grade at resource blocks given the planned data µ x | y  
is computed from the Gaussian regression model, similar to Kriging. The mean µ y and 
covariance Σ y  of the planned data are also computed from the known equations for 
Gaussian variables (see Chapter 4 and Appendix A.1). As discussed in Sections 5.3–4, 
the Gaussian linear formulation enjoys closed-form analytical solutions for the posterior 
value and the VOI (see also Appendix A.1). We can hence compute the VOI analytically 
in this situation.

The mining company should decide to purchase the data if the VOI is larger than the 
price of data acquisition. The XRF data is perfect information, and the VOI of the XRF 
data is always larger than the VOI of the imperfect XMET data. However, the XRF data 
are more expensive than the imperfect XMET data. Figure 6.33 shows the decision regions 
for the XMET data and XRF data. The company should choose to purchase XRF data for a 
rather small window of XRF and XMET prices. When the price of XRF exceeds $0.75 mil-
lion and the XMET price exceeds $0.5 million, the VOI results show that neither data type 
should be acquired.

VOI analysis can also help the mining company design the data-gathering scheme – i.e., 
choose which boreholes to drill. We can compare the VOI of the XMET data at all bore-
holes with the VOI of the XRF data at a subset of boreholes. Figure 6.34 shows the decision 
regions for the XRF data in a subset consisting of the two longest boreholes, versus the 
XMET data in all boreholes, or nothing. The decision regions are computed as a function 
of the drilling price and the price of laboratory experiments. When the price of laboratory 

1

0.8

0.6

P
ric

e 
of

 X
R

F
 (

m
ill

io
n 

$)

0.4

XRF

XMET

Nothing

Not possible.
Price of XRF > Price of XMET

0.2

0
0 0.2 0.4

Price of XMET (million $)

0.6 0.8 1

Figure 6.33  Mining oxide grade example: decision regions for full sampling of XMET and XRF 
data. The price of drilling is the same, but the processing of the XRF data is more expensive.
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experiments is low and the price of drilling is not too high, the partial XRF testing is pre-
ferred. When laboratory prices get higher, one should acquire total tests of XMET unless 
the price of drilling gets too high.

The decision theoretic notion of VOI is useful because it evaluates the information con-
tent in the context of a decision situation and is in monetary units. However, as we discussed 
in Chapter 5, many other measures can be applied to evaluate designs for data acquisition. In 
the following analysis, we will compare the VOI results with the integrated prediction vari-
ance and the entropy. Other measures used in the mining industry are discussed in Rivoirard 
(1987), Vann et al. (2003), Chiles and Delfiner (2012), and Eidsvik and Ellefmo (2013).

In Table 6.3, we summarize the relative VOI, prediction variance, and entropy of the par-
tial sampling schemes. It is not always appropriate to compare these measures in general, 
as they are based on fundamentally different principles, but we note that the entropy crite-
rion tends to prefer perfect information more than the others. For the entropy measure, it is 
more informative to collect perfect information in the 10 longest boreholes than to collect 
imperfect information in all boreholes.

6.4.2  We will rock you: rock hazard example

Keywords: rock hazard example, mining, joint frequency data, spatial generalized linear model, 

Laplace approximation, imperfect information, partial information, high decision flexibility, decou-

pled value function, decision regions
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Figure 6.34  Mining oxide grade example: decision regions for partial sampling of XRF data or full 
sampling of XMET data. The axes represent the price of drilling per 10 m and the price of acquiring 
and processing XRF data in the laboratory.
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In this example, we consider decisions for rock support in mining and tunneling operations. It is 
necessary to make assessments of the rock strength to avoid rock fall. The decision is whether 
to increase support at selected tunnel locations to avoid uncertain future rock falls. One may 
acquire data from boreholes to improve the prediction of variables for rock fall analysis, such as 
the spatial intensity of joints within the rock mass. Joints are opening mode fractures in rocks, 
and zones that are heavily fractured might be weaker and more prone to rock falls.

We view the highlights of this section in the context of the framework outlined in 
Chapter 5:

•	 Borehole data are informative of joint frequencies, which are uncertain and considered imper-
fect information. Data are acquired in boreholes, while the key areas of interest are the selected 
tunnel locations where support may be increased, so this is an example of partial information 
gathering. We focus on static information gathering.

•	 Regarding the three properties of spatial decision situations:
1.	 We use a Gaussian random field model with a Poisson likelihood for the spatial distribu-

tion of joint frequencies.
2.	 The decision maker chooses to increase the rock support at a selected site if this is expected 

to be the best alternative. The decision maker is free to select as many sites as are profitable – 
i.e., there is high decision flexibility. Here, the notion of “profit” is essentially avoiding 
losses arising from the hazard and associated damages.

3.	 The decision maker’s choice (increasing the rock support or not at a site) only depends on 
that particular location in the mine. We thus have a situation where the value function decou-
ples. The value at any unit depends on the cost of rock fall and the cost of adding support to 
increase stability.

We assume a risk-neutral decision maker and no constraints for the decision situation, 
and we consider the static situation without opportunities for sequential decision making. 
We studied a joint frequency data set in Section 4.5. In this section, we conduct VOI ana-
lysis for joint frequency data (see also Evangelou and Eidsvik 2015).

Framing the decision situation

The distinction of interest is the intensity of joints, denoted x xi is( ) = , at locations si in the 
mine. A couple of mining tunnel locations at a depth of 250 m have experienced rock fall, 
and the underlying decision is whether the mining company should increase the support 

Table 6.3.  Relative comparison of partial or total XRF testing with total XMET

VOI Kriging Variance Entropy

XRF Partial (5)/XMET Total 0.39 0.76 0.69
XRF Partial (10)/XMET Total 0.94 0.92 1.21
XRF Total/XMET Total 1.45 1.06 1.68
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along the tunnels at this depth. A set of N = 52 critical tunneling locations near a depth of 
250 m has been selected. The decision to add support at any of these locations comes at the 
cost of bolting equipment and labor.

If the decision is to add support (at a cost), we assume that there will be no future rock 
fall. We denote this alternative by aj = 1, j N= 1,..., . When no added support is provided 
(aj = 0), rock fall may occur, and the cost of this event depends on the uncertain size of 
the fall via the joint intensity at the locations. This decision is slightly different from the 
previously considered decision situations in the sense that here we consider a minimization 
problem where the decision maker is interested in minimizing costs rather than maximiz-
ing profits.

Information gathering

Information about the predicted joint intensity at spatial locations could help the engineers 
make better decisions about stability. By acquiring joint frequency data in boreholes, one 
obtains information about the spatial intensity of joints. We consider a baseline set of pos-
sible boreholes to drill. This data set has size m = 1615, where data are sampled every 4 
m in boreholes. This baseline setup is next split into subsets for various partial tests. The 
first partial testing scheme is to acquire and analyze only half of the boreholes, resulting in 
m = 768 measurement locations. Another potential scheme is to analyze only every second 
location (i.e., every 8 m) in half of the boreholes, with m = 383. The last scheme is to acquire 
data only in a quarter of the boreholes, with m = 383. Note that the data size in the last two 
data-gathering options is the same, but the price of experimentation may be different. VOI is 
used to compare the different information-gathering schemes for different price ranges.

This analysis will be done retrospectively, meaning that for this mining location, we have 
all m = 1615 data from all boreholes, but now we study this case in hindsight, evaluating 
whether other information-gathering schemes would have been just as good. Figure 6.35 
shows the situation with the boreholes and the 52 sites identified for adding rock support. 
The 52 sites are plotted along the plane at a depth of 250 m.

Modeling

The hierarchical model formulation has a Poisson likelihood model for the joint counts 
at each core sample location and a Gaussian spatial process for the latent logarith-
mic intensity of joints. This model is hence a spatial generalized linear model (GLM), 
as was discussed in Section 4.5. The data are denoted y = ( )y ym1,...,  at the m observa-
tion sites. Conditional on the spatially varying intensity, the Poisson likelihood is 
p y x V xi i i is s s( ) ( )( ) = ( )( )( )| expPoisson , i m= 1,..., , for fixed volume Vi (fixed diameter 
and 4-m cores). We assume a Gaussian distribution for the log intensity x is( ) with a con-
stant mean (µ) and variance structure defined by a nugget effect (τ 2) and a correlated effect 
with an exponential anisotropic covariance function with variance σ 2. There is more spatial 
correlation along the geological strike of the formations and less correlation perpendicular 
to the strike. When we discretize the spatial process x is( ) on a grid of spatial locations, 
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we can write p Nx( ) = ( )µ, Σ , where µ = µ1 and the covariance matrix has entries 
Σ ij s ij s p ij pI i j t t= =( ) + − −( )τ σ η η2 2 exp , , . Here, the lag distances tij s,  and tij p, , as well as the 
spatial correlation parameters η = ( )η ηs p, , are defined in the strike direction (subscript s) 
and the direction perpendicular to the geological strike (subscript p).

We specify the statistical modeling parameters from the available data in this mine. 
The estimation procedure is based on optimizing an approximation of the marginal like-
lihood p py y( ) = ( ); , , ,σ τ µη  of the joint count data. For details, please see Section 4.5 and 
Appendix A.2. The maximum MLEs of the parameter values are as follows (with standard 
errors in parentheses): mean 1.55 (0.06), partial sill 0.13 (0.014), and nugget 0.04 (0.003), 
and the in-strike correlation range, 3 / ηs, is about 300 (41) m. Thus, the marginal variance 
in the latent intensity process is σ τ2 2 0 17+ = .  at all sites. The correlation range perpen-
dicular to the strike is set to a quarter of the in-strike correlation range – i.e., 75 m. For the 
initial analysis, we fix the parameters, but we later analyze the parameter values accord-
ing to the uncertainty ranges to study the effect of the mean, variance, and correlation 
range on the VOI. The conditional pdf of joint frequencies given the data is p x y|( ). This 
posterior does not have a closed-form solution, but we can approximate it by a Gaussian 
approximation, and this will be useful for performing analytical approximations for the 
VOI expressions.

VOI analysis

The prior value for this decision situation is

	 PV E x
j

j= − − ⋅ ( )( )( ){ }
=

∑max , Rev exp ,
1

52

Cost ζ s 	 (6.21)
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Figure 6.35  Rock hazard example: illustration of joint frequency data and the 52 alternative locations 
concerning rock stability. The 52 sites are at an altitude of 250 m, and their locations are indicated 
across the shaded plane.
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where Cost is the cost of added support at a location s j, while Rev exp⋅ ( )( )( )E x jζ s  is the 
expected cost associated with rock fall at that location, with x js( ) being the logarithm of 
the joint intensity at that location. The decision maker should choose the alternative that 
minimizes the expected costs at each of the locations. Note that in general, Cost, Rev, and 
ζ  (a scale factor) depend on rock mechanics, fluid composition, geometric considerations, 
cost of rock mass transport, and other engineering inputs. Here, the input variables have 
been set to Cost = 20000, ζ = 3, and Rev = 100 monetary units.

Let y denote a generic joint count data set acquired according to a specific spatial design. 
The posterior value is

	 PoV E x pj
j

y y y( ) = − − ⋅ ( )( )( ){ } ( )
=

∑max , Rev exp | .Cost ζ s
1

52

	 (6.22)

The VOI is defined as the difference between the posterior and prior values (for a 
risk-neutral decision maker). The computation of the prior value in Equation (6.21) is ana-
lytically available under the Gaussian modeling assumptions for x js( ) (see Appendix A.2). 
The posterior value is not straightforward in this case: first, the conditional distribution of 
the joint intensity has no closed-form expression. Second, the marginal distribution of the 
data is unknown. We briefly outline an analytical approximation to the VOI for this setting. 
This analytical solution relies on a Gaussian approximation and the Laplace approximation 
for integral expressions. The details for the approximate GLM calculations are provided in 
Appendix A.2.

The idea is to first construct a Gaussian approximation to the posterior. Let

	 ˆ argmax | ,x y x x= ( ) ( ){ }x p p 	
(6.23)

and let Σ− +1 D̂ be the negative inverse Hessian of log |p x y( ) evaluated at x̂. The matrix D̂ 
is diagonal with the i-th element given by V xi jexp ˆ s( )( ), where Vi again equals the volume 
of the 4-m cores. Then, an approximation to the conditional mean and variance is

	 E Varx y x x y D| | .( ) ≈ ( ) ≈ +( )−
−



, Σ 1
1 	 (6.24)

Critically, the posterior mean and variance depend on y only through x̂. We can approxi-
mate the distribution of x̂ by a multivariate normal with mean µ  and known covariance. 
The integral expressions required in Equation (6.22) can then be approximated in a similar 
manner to the method for the Gaussian model in Sections 5.3 and 5.4.

Let us now interpret the results. First, we note that the prior mean for the joint intensity 
is quite high in this case, and the prior decision is to add support at all locations. Additional 
data will either push the decision more clearly toward added support or toward avoiding 
support when the observations indicate that this is not necessary. The VOI depends, of 
course, on the spatial acquisition design. When data are acquired near one of the 52 pre-
diction sites, the information gain is large for that location. If data are far from a prediction 
site, there is hardly any added value at this location. In addition to evaluating the full design 
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(entire set of 1615 data), we split the data into various subsets and compute the VOI for 
each acquisition design. The results are as follows:

•	 All boreholes (data size m = 1615): VOI is 216 000 monetary units.
•	 Half of the boreholes (data size m = 768): VOI is 165 000 monetary units.
•	 Every second observation in half of the boreholes (data size m = 383):  VOI is 159 000 

monetary units.
•	 Quarter of the boreholes (data size m = 383): VOI is 96 000 monetary units.

The VOI clearly decreases when we collect less data. However, the decrease is slower 
than one would expect from a fractional splitting of the data. Moreover, the reduction 
depends a lot on the borehole design, since there is spatial correlation in the model. In 
particular, we note that the data size is the same for the last two options, but the strat-
egy with more boreholes and coarser core samples of joint counts has a much higher 
VOI. The mining company benefits from such VOI evaluation when planning the data 
acquisition.

These VOI results must be compared with the price levels of the different data acquisi-
tion schemes. Based on the various fractions of the borehole samples and the associated 
price of data acquisition, we next construct decision regions. Here, we compare the scheme 
defined by a quarter of the boreholes (Quarter) with the analysis of every second observa-
tion in half of the boreholes (Half–Half). Note that the total number of data is the same. 
Thus, the processing of joint count data is assumed to be equal for the two schemes, but the 
cost of drilling is larger for the Half–Half option. Like in the previous sections, the notion 
of decision regions for data collection relies on selecting the best data-gathering scheme 
as follows:

	 argmax , , ,VOI P VOI PHalf-Half Half-Half Quarter Quarter− −{ }0
	

(6.25)

where the price of the data gathering is denoted P*, with the subscripts denoting the acquisi-
tion scheme. Figure 6.36 shows the decision regions as a function of the price of the drilling 
parameter (first axis) and the price of processing per sample (second axis).

The Quarter scheme drills about 383 4 1500⋅ ≈  m, while the Half–Half option drills about 
383 8 3000⋅ ≈  m. When the drilling cost is small, the more valuable Half–Half scheme is 
only a little more expensive than drilling a quarter of the boreholes. The mining company 
should then decide to drill half of the boreholes and analyze samples every 8 m. The price 
of processing per sample – i.e., counting the joints in a core sample – is the same for both 
data acquisition schemes. If the prices are too high, the “Nothing” region indicates that the 
optimal alternative is to purchase no data.

Next, we study sensitivity to the statistical model parameters. This analysis is done by 
varying each parameter at a time from its reference level. The low and high cases are deter-
mined by ±2 standard deviations from the reference levels, which are set from the joint 
count data described earlier in this section.

The results of the sensitivity analysis are shown in Table 6.4 for the full spatial design, 
with a reference VOI of 216 000 monetary units. The VOI is much lower in both the low 
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and high cases for the mean, indicating large sensitivity to the prior mean value. In fact, 
the VOI is highest for values near the prior mean in this case, at which the decision maker 
is most indifferent about the alternatives a priori, and therefore the data become very valu-
able. When the mean value is low, there tends to be few joints, and the company should 
decide not to provide extra support. Additional data are unlikely to change this decision, 
and the VOI is low. Similarly, for a large mean, data are unlikely to change the decisions 
about adding support, and the VOI is low.

The VOI increases with longer spatial correlation because the spatial data carry more 
information to the 52 prediction sites with stronger dependence. The VOI decreases with a 
higher partial sill and nugget. This comes as a surprise since large prior uncertainty tends to 
make data more valuable. This counterintuitive result occurs because the nugget and partial 
sill also impact the expected number of joint counts in the Poisson distribution, not just the 
variability of the joint intensity.
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Figure  6.36  Rock hazard example:  decision regions for Half–Half or Quarter data-gathering 
schemes. The price of drilling (per meter) is on the first axis, while the price of processing a borehole 
data sample is on the second axis.

Table 6.4.  VOI results for different configurations of statistical model parameters

VOI Mean Correlation Partial Sill Nugget

Low 131 000 164 000 218 000 228 000
High 113 000 252 000 202 000 205 000
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We believe that the Poisson distribution with a Gaussian process model for the intensity 
is a suitable model for such data (see also Ellefmo and Eidsvik 2009). The approximate 
analytical results make it possible to perform VOI analysis routinely for different input 
conditions.

6.5  Groundwater management

In this section, we study an example concerning groundwater management. There are 
important decisions to be made in this domain regarding maintaining the quality of water. 
This has an impact on the quality of life through its effects on agriculture, availability of 
drinking water, etc. Geophysical measurements such as those conducted by electromag-
netic methods may provide information about properties such as the salinity of the water, 
and this information may help in making better decisions.

6.5.1  Salt water wells in my eyes: groundwater management example

Keywords: groundwater characterization, geological scenario, multiple-point statistics, electro-

magnetic data, perfect information, imperfect information, low spatial decision flexibility, complex 

value function

This example concerns decisions about potentially recharging groundwater with fresh-
water. The subsurface distribution of the sand and shales, which impact the groundwater 
flow and recharge in the aquifer, is uncertain. Geophysical measurements conducted by a 
transient or time-domain electromagnetic method (TEM) may be valuable for better char-
acterizing the subsurface and thus helping to make informed decisions about the recharge 
and selection of possible recharge locations. This example, inspired by a real situation on 
the California coast, is related to groundwater use for agriculture and the decision to miti-
gate salt water intrusion. The example is described in Trainor-Guitton et al. (2011) as well 
as in the chapter on VOI in Caers (2011).

In the context of the framework outlined in Chapter 5, the highlights are:

•	 The electromagnetic data provide imperfect information about the spatial variables and the 
geologic scenario. Data cover the entire spatial domain of interest, and this is an example of total 
imperfect information. We focus on static information gathering.

•	 Regarding the three properties of spatial decision situations:

1.	 We use a model with geological scenarios defined by channel directions and then propa-
gate spatial uncertainty given the scenario.

2.	 The decision maker chooses either no recharge or recharge from the center, north, or 
south locations. The four alternatives can easily be enumerated, and this is a setting with low 
decision flexibility.

3.	 The value function associated with the different alternatives involves complex spatial mod-
eling and subsurface fluid flow to give a scalar response. We thus have a situation with a 
coupled value function.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.007
http:/www.cambridge.org/core


6.5 Groundwater management 293

We assume a risk-neutral decision maker and no constraints for the decision situation, 
and we consider the static situation without opportunities for making sequential decisions.

Framing the decision situation

Groundwater is pumped out from a coastal fluvial aquifer and is used for agriculture. 
Excessive groundwater pumping causes seawater intrusion, leading to increased water sal-
inity and decrease in usability for crops. Artificial groundwater recharge by pumping fresh-
water into the subsurface is considered a way to mitigate salt water intrusion.

We assume that the main uncertainty pertains to the geological scenarios denoted x,  
where x ∈{ }1 2 3, ,  represents three geological scenarios to be defined in the spatial 
modeling later.

The four alternatives a ∈{ }1 2 3 4, , ,  considered are: (i) no recharge, (ii) recharge at a cen-
tral location, (iii) recharge at a northern location, and (iv) recharge at a southern location. 
Figure 6.37 illustrates the situation. Value comes from the use of fresh groundwater to grow 
cash crops sold at profit. The value function is highly nonlinear – it cannot be decoupled to 
a sum over some spatial variables represented at geographical units.

Information gathering

Geophysical surveying by the time domain TEM provides information about the sub-
surface geological uncertainty. TEM can be a land-based or airborne method. In this 
example, we consider the airborne TEM (see Chapter 7 for further hands-on projects 
with land-based data). Pulsed electrical currents from a transmitter coil induce electrical 
currents and fields in the subsurface. The time-varying induced electrical field gives rise 
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Figure 6.37  Groundwater management example: locations for performing groundwater recharge.
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to a magnetic field that is recorded by a receiver coil. The basic data are the magnetic field 
response as a function of time. The basic data are inverted for the subsurface resistivity 
that can then be interpreted in terms of subsurface lithology patterns, since different lith-
ologies have different resistivities.

Modeling

The spatial modeling relies on embedding the groundwater reservoir variables in a few 
discrete classes or geological scenarios. The heterogeneous subsurface consists of 
high-porosity, high-permeability sand channels within low-permeability background 
shales. The spatial distributions and orientations of these channels are uncertain. As a 
result, the subsurface flow and the impact of recharge are uncertain. The prior geological 
uncertainty is modeled as being one of three different scenarios of sand channel orienta-
tions: dominantly northeast, dominantly southeast, and a mix of both. A priori, the geo-
logical scenarios have equal probabilities – i.e., 1/3 for each.

The spatial modeling starts with these geological scenarios. Given a scenario, we can 
generate multiple realizations of the spatial variables of interest using Monte Carlo sam-
pling. Using a multiple-point geostatistical technique (see Section 4.7), 50 facies realiza-
tions were generated for each geological scenario. All of these facies realizations were 
populated with porosities and permeabilities appropriate for sand and shales. The value 
function is computed from these realizations as inputs.

VOI analysis

To assess the expected value under the three uncertain geological scenarios and the four 
alternatives, we rely on the Monte Carlo simulations of spatial variables. Flow simulations 
are run for each of the simulations from every geologic scenario and for all four alter-
natives. This simulates 10 years of groundwater flow. The volume of fresh groundwater 
(salinity less than 150 ppm of chloride) available after 10 years is converted to a monetary 
value using fixed numbers for the amount of crops grown per unit volume of fresh water 
and profit per ton of crop. The expected values are obtained by averaging over the 50 
realizations for each geological scenario under each alternative. For the alternatives where 
recharge is performed, the cost of recharge is subtracted. Thus, this requires a total of 
50 3 4 600⋅ ⋅ =  computational flow simulations.

The values (in units of million $) are as shown in Table 6.5. Again, we denote the values 
by v x a,( ), where the first index denotes the geologic scenario and the second index denotes 
the alternative. The prior value is then

	

PV E v x a v x a p x

v x p x

a A
a A x

= ( )( ){ } = ( ) ( )







= ( )

∈
∈

∑max , max , ,

max ,1 (( ) ( ) ( ) ( ) ( ) ( ) ( )







∑ ∑ ∑ ∑
x x x x

v x p x v x p x v x p x, , , , , , .2 3 4 	

(6.26)
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Filling in the values v x a,( ) from the table, and using equal prior probability of 1/3 for 
each geological scenario, we get

	
PV =

+ +( ) + +( )

+ +
max

. . . , . . . ,

. .

1

3
12 15 13 66 11 6

1

3
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1
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
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(6.27)

The optimal decision is not to recharge. A decision tree representation of the problem is 
shown in Figure 6.38.

The value with perfect information is calculated by interchanging the expectation and 
the max operation in the equation for prior value to give

	 PoV x E v x a v x a p x
a A a A

x

( ) = ( ){ }( ) = ( ){ } ( )
∈ ∈∑max , max , .	 (6.28)

Using the numbers for v x a,( ) in this example,

	 PoV x( ) = ( ) + ( ) + ( ) =
1

3
12 9

1

3
13 9

1

3
11 6 12 8. . . . . 	 (6.29)

The situation with perfect information (clairvoyance) is represented by the flipped tree in 
Figure 6.39.

The value of perfect information is the difference between the posterior value with per-
fect information and the prior value:

	 VOI x PoV x PV( ) = ( ) − = − =12 8 12 47 0 33. . . .
	

(6.30)

Table 6.5.  Expected values for all geological scenarios under all alternatives for 
groundwater recharge

Channels Recharge Value

Northeast channels No recharge 13.66
Northeast channels Central recharge 13.8
Northeast channels North recharge 13.9
Northeast channels South recharge 12.8
Mixed channels No recharge 12.15
Mixed channels Central recharge 11.1
Mixed channels North recharge 12.9
Mixed channels South recharge 11.3
Southeast channels No recharge 11.6
Southeast channels Central recharge 9.89
Southeast channels North recharge 9.66
Southeast channels South recharge 9.44
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Figure  6.38  Groundwater management example:  decision tree representing the prior situation 
showing the alternatives, the geological scenario uncertainty, and the associated values.
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Figure  6.39  Groundwater management example:  flipped decision tree representing perfect infor
mation about the geological scenario uncertainty before the alternatives and the associated values.
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This represents an upper bound on how much a risk-neutral decision maker should be 
willing to pay to get relevant information about the uncertainty – in this case, about the 
subsurface conditions.

We will continue this example using influence diagrams. While this is a fairly simple 
example that can be solved using either decision trees or influence diagrams, the use of 
influence diagrams allows us to potentially handle more complex VOI problems than can 
be handled by decision trees.

We illustrate how this situation can be solved by influence diagrams using Netica as the 
software. Chapter 7 has a hands-on example. First, represent chance nodes for the geologic 
uncertainty with the three states (“MixedChannels,” “NEChannels,” and “SEChannels”). Next, 
add a decision node with four states (“NoRecharge,” ”CentralRecharge,” “NorthRecharge,” 
and “SouthRecharge”). Finally, define a value node. Figure 6.40 shows the setup.

Next, we fill in the tables in this display with the probabilities and values defined in 
Table 6.5. The prior value (or expected utility) can then be obtained by selecting “compile” 
or similar from a menu bar. Netica solves the network by internally creating a junction tree 
for efficient inference. The expected utility is reported to be 12.47, and the optimal deci-
sion is “NoRecharge.” The value with perfect information can be calculated by first adding 
an arc from the “Channels” node to the decision node. This arc indicates that the uncertain 
factor will be known before the decision. As we have shown, compiling will give 12.8 as 
the expected utility, and the value of perfect information is 12 8 12 47 0 33. . .− = . Note that 
the optimal decision (from the “optimize decisions” menu) is to recharge at the north for 
both the mixed or northeast channel orientations and no recharge for the southeast channel 
orientation.

The value of perfect information is an upper bound. The value of imperfect information 
about the subsurface geological uncertainty obtained from geophysical surveys such as 
TEM cannot exceed this bound. The basic TEM data are the magnetic field response as a 

Channels

Recharge

MixedChannels
NEChannels
SEChannels

NoRecharge
CentralRecharge
NorthRecharge
SouthRecharge

33.3
33.3
33.3

0.33 ± 0

Value

Figure  6.40  Groundwater management example:  basic influence diagram for the groundwater 
recharge example.
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function of time. These data have to be inverted for the subsurface resistivity that can be an 
indicator of subsurface lithologies. Clay-rich shales typically have lower resistivity (less 
than 30 ohm-m) compared to water-saturated sands (~80 omh-m).

Thus, TEM data after inversion and interpretation can help identify the subsurface 
channel heterogeneity (e.g., Auken et  al. 2008). In order to compute the VOI for this 
geophysical data, we use the data reliability given by the conditional probability p(data 
interpretation|true geological scenario). Note that this involves not just how reliably the 
receiver coil records the magnetic field (instrumental error) but also the inversion and the 
interpretation of the inversion in terms of the underlying geologic scenario. In other engin-
eering applications, it is possible to get numbers for the reliability of tests by conducting 
repeated experiments under well-controlled laboratory conditions. However, in geoscience 
applications it is much more challenging, as geology is much more varied from site to site 
and less well controlled; in addition, here the value is derived not just from the test result 
itself but from the geological interpretation of the test. Assessments from experts who 
have worked with these kinds of data in similar geological environments provide one way 
of obtaining the required conditional probabilities. Another potential approach is that of  
Monte Carlo simulations, as described in Trainor-Guitton et al. (2011).

As mentioned earlier, using a multiple-point geostatistical technique, 50 facies realiza-
tions were generated for each geological scenario. All of these facies realizations were popu-
lated with resistivity appropriate for sand and shales, and TEM data were forward simulated. 
These were then inverted, and finally the inverted resistivity images were interpreted in 
terms of channel orientations. The interpretation was done by a local spatial autocorrelation 
to find the direction of maximum spatial correlation, which was taken to be the interpreted 
orientation of the subsurface channels. The interpretations were compared with the true 
channel orientations, and the counts of correct versus incorrect interpretations were used to 
obtain the conditional probability table, as shown in Table 6.6.

The posterior value of TEM must be computed as an average over all TEM interpreta-
tions, in each case making the optimal decision from Bayes’ rule for the conditional prob-
abilities and conditional expected values. We illustrate how this situation can be solved by 
influence diagrams. Let us add a chance or uncertainty node for TEM data to our original 
influence diagram. This network is shown in Figure 6.41.

Table 6.6.  The reliability measures represented as a conditional probability table for 
TEM interpretation (columns) given the true geological scenario (rows)

Channels
Interpretation of 
Northeast

Interpretation of 
Mixed

Interpretation of 
Southeast

Northeast channels 0.98 0 0.02
Mixed channels 0 0.96 0.04
Southeast channels 0 0 1
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To solve the influence diagram, we select “compile” from the menu bar in Netica for 
solving the influence diagram by the junction tree algorithm. The expected utility given 
in the messages window (12.78) is close to the value with perfect information (12.8). This 
is not surprising, since the data are very reliable, though not perfect. Perfect information 
would be represented by “1” on the diagonal and “0” elsewhere. The value of this imper-
fect TEM information is 12.78 – 12.47 = 0.31. The TEM survey should then be acquired 
and interpreted if the price of the data is less than this value. The optimal decisions (from 
the “optimize decisions” menu) show that the optimal decision is to recharge at the north 
for both cases of TEM data interpreted as mixed or northeast channel orientations and no 
recharge when the TEM interpretation is southeast channel orientation. This is similar to 
the case with perfect information.

6.6 Bibliographic notes

VOI analysis is popular in several domains of applications. For instance, there are abun-
dant health and medical applications – see, e.g., Yokota and Thompson (2004b), Willan and 
Pinto (2005), and Welton et al. (2008) for a partial overview of this vast field or Braithwaite 
and Scotch (2013) for a recent paper advocating the use of VOI in clinical management and 
testing. Another domain is that of product engineering – see, e.g., Keisler and Brodfuehrer 
(2009), who apply VOI analysis to automobile manufacturing, or Panchal et al. (2009), 
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Figure 6.41  Groundwater management example:  influence diagram for the groundwater recharge 
example with a node for geophysical (TEM) data.
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who apply VOI analysis to improved product design for data center cooling systems. Please 
see the bibliographic notes in Chapter 3 for further references on VOI applications in gen-
eral. Our focus in this section is on literature specifically related to VOI in the Earth sci-
ences. Several relevant articles have been grouped into the following categories. Interested 
readers may pursue the mentioned papers or references therein to find more literature on 
the particular Earth sciences topic.

Petroleum

The petroleum industry has a long history of VOI analysis dating back to at least Grayson 
(1960). See Bratvold et al. (2009) for a recent overview of VOI in the industry. Despite 
the interest in VOI analysis, most efforts have been at a high level without fully integrat-
ing spatial modeling and spatial decision making. Bickel and Smith (2006) and Bickel 
et  al. (2008b) study decision making for reservoir development, with dependent petro-
leum prospects. Their focus is on the best sequential strategy and not on VOI analysis. 
Martinelli et al. (2011) calculate the VOI of perfect information from exploration wells at 
segments, modeled by a Bayesian network, as in Section 6.2.1. Martinelli et al. (2013b) use 
basin modeling to learn a network and then conduct VOI analysis, similar to Section 6.2.2. 
Manoharan (2014) conducts VOI analysis for petroleum prospect risking, not unlike what 
we described in Section 6.2.3.

We list a number of papers that value geophysical data and, to some extent, contain 
elements of spatial or multivariate modeling: Houck and Pavlov (2006) calculate the VOI 
of electromagnetic data using a threshold method and a sensitivity map for spatially distrib-
uted anomalies. Kolbjørnsen et al. (2012) evaluate the VOI of electromagnetic data using a 
linear fluid factor model. Bickel et al. (2008a) consider a multivariate reservoir model and 
conduct VOI analysis for seismic data with constraints on the well budget. Houck (2007) 
and Pinto et  al. (2011) study the VOI of time-lapse seismic data. Blangy et  al. (2014) 
evaluate the value of time-lapse seismic data at a more qualitative level. Bhattacharjya 
et al. (2010) present VOI analysis for seismic amplitude data for making improved spatial 
decisions about drilling at units where discrete facies variables are the distinctions of inter-
est using a MRF model as in Section 6.3.1. Eidsvik et al. (2008) apply a logistic model to 
saturation and porosity and analyze the VOI of seismic amplitude data and EM data for 
reservoir drilling decisions, similar to Section 6.3.2. Rezaie et al. (2014) extend this to a 
spatial closed-skew Gaussian representation. Barros et al. (2014) describe a VOI workflow 
for history matching in closed-loop reservoir management using creative computational 
techniques (see Section 5.10).

A topic related to VOI of geophysical data is that of constructing spatial acquisition 
designs for surveys in the petroleum industry. Examples include Vermeer (2012), who out-
lines the many aspects of seismic survey design; Curtis (2004), who provides a tutorial on 
traditional statistical design of experiments for geophysical data acquisition; and Horesh 
et al. (2010), who look at inverse problems, design, and uncertainty quantification. Unlike 
VOI analysis, these approaches for constructing useful experiments are not based on deci-
sion theoretic principles.
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Mining planning and safety

The mining industry has a long history of evaluating various kinds of spatial informa-
tion – see, e.g., the book by Chiles and Delfiner (2012) or the various methods presented 
by Rivoirard (1987) for measuring the information content, such as the Kriging variance, 
slope, correlation, or weight of the mean. These measures are, however, not directly based 
on any decision situation. Froyland et al. (2004) compute the VOI of infill drilling deci-
sions (scheduling). Phillips et al. (2009) apply VOI analysis for the selection of ore grade 
scanning data, which is applied to an iron ore mine in Sweden where there is uncertainty 
regarding categorical ore types at spatial sections. Eidsvik and Ellefmo (2013) conduct 
VOI analysis of perfect and imperfect oxide grade measurements, assuming a Gaussian 
spatial regression model for the oxide grade in a mining project, as shown in Section 6.4.1.

Karam et al. (2007) outline principles for decision situations and information-gathering 
schemes in mining and tunneling operations. Zetterlund et al. (2011) conduct VOI analy-
sis of rock measurements for decisions about tunneling projects. They model classes of 
deformation as spatial variables along with a beta distribution for the probability of sealing 
fractures. The case has low decision flexibility with only two alternatives. Evangelou and 
Eidsvik (2015) use the Poisson regression model for joints and study a decision situation 
of high decision flexibility, similar to Section 6.4.2.

Groundwater, hydrology, and geothermal resources

Wagner et  al. (1992) introduce VOI analysis for groundwater management in their sto-
chastic optimization for pumping and recharge costs. Their approach is simulation and 
optimization based but includes spatial correlation in the model for hydraulic conductivity. 
Borisova et al. (2005) present VOI analysis for the management and control of agricultural 
nitrogen pollution in the Susquehanna River Basin. They model the economic uncertain-
ties as well as the uncertainties of pollutant transport in the watershed. Nowak et al. (2012) 
use measures related to VOI for studying the value of hydrological field campaigns in the 
situation of a contaminant source in an aquifer. Trainor-Guitton et al. (2011, 2013) study 
the VOI of EM data for groundwater sustainability decisions in an aquifer. They use exten-
sive spatial modeling to estimate the value function of the different spatial alternatives 
for recharge, similar to our example in Section 6.5. Trainor-Guitton et al. (2014) study an 
example of a hidden geothermal resource where magnetotelluric data could be useful for 
guiding the spatial drilling alternatives.

Environmental applications

Borsuk et al. (2001) describe VOI analysis for management decisions regarding the water 
quality of a river estuary. They use a Bayesian network for the various model components, 
where edges and conditional probabilities are guided by (spatial) physical processes. De 
Bruin et al. (2001) apply VOI for evaluating geographical information related to the vol-
umes of sand at a port in the Netherlands. Bouma et  al. (2009) present an application 
of VOI analysis of satellite observations for monitoring algal bloom in the North Sea.  
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Bates et al. (2014) conduct VOI analysis for a spatial decision situation with several alterna-
tives regarding contaminant management in a fjord. The value calculation builds on several 
factors, including the environmental (spatial) impact. Ballari et al. (2012) present VOI for 
mobile wireless sensor networks for environmentally connected decisions. The mobility of 
sensors offers substantial opportunities for spatial or spatiotemporal information gathering.

Biological conservation, forestry, and fishing

Polasky and Solow (2001) study information measures for the problem of selecting bio-
logical conservation sites. Williams et al. (2011) study the VOI of monitoring exercises 
for management alternatives about the conservation of a rare bird species. Kangas (2010) 
describes a situation with a forest owner who can harvest immediately or after 10 years and 
studies the VOI in this context. Several data-gathering options are discussed in the paper, 
such as small test area sampling and remote sensing. Mantyniemi et al. (2009) study the 
VOI of control measurements for fish management, applied to a herring population with 
uncertain dynamic models. Hansen and Jones (2008) review VOI approaches in fisheries.

Agriculture and climate forecasting

Byerlee and Anderson (1982) present VOI analysis for agricultural applications. Adams 
et al. (1995) discuss the VOI for weather information for agricultural management, in par-
ticular the value of El Niño Southern Oscillation forecasts for an enterprise. An example 
with farming policies, with or without climate information, is shown in Cabrera et  al. 
(2006). Meza et  al. (2008) review evidence for the economic value of seasonal climate 
forecasts for agriculture.
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Our aim in this chapter is to make it easier for the reader to get started with value of infor-
mation (VOI) analysis. The problems and projects provide some training in statistics, deci-
sion analysis, and spatial modeling, but the main goal is to allow the reader to learn VOI 
analysis by solving problems and completing projects. We have included a variety of ques-
tions – there are smaller constructed examples as well as more real-world cases. Some of 
the problems can be solved by pen and paper, while larger projects require more hands-on 
computer implementation that comes with models or data sets available for download from 
the book website (srb.stanford.edu/voi). This website also provides MATLAB and Netica 

7

Problems and projects

Figure 7.1  concepts, equations
seep in and stay for good, if
you do it yourself
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files and other auxiliary informational documents that we hope will be useful for the prob-
lems and projects.

Section 7.1 mainly contains problem or project versions of examples used in the book, 
such as those used to illustrate VOI analysis for spatial decision making in Chapter 5. The 
real data examples in Sections 7.2–5 follow the same section structure as in Chapter 6. 
Readers can modify various parameters of the examples and study the effect on the 
VOI. Note that the model descriptions in Sections 7.2–5 are very short. Before starting a 
hands-on project, we advise the reader to review the associated example(s) with much more 
explanation and discussion in Sections 6.2–5 and to consult the book website. If the deci-
sion maker’s utility function is not explicitly specified for a problem or a project, the reader 
should assume that the decision maker is risk neutral – i.e., has a linear utility function.

7.1  Problems and tutorial hands-on projects

The first few problems cover concepts from Chapters 2 and 3. They typically start with 
some modeling assumptions and methodological aspects, and then progress to VOI ana-
lysis. For each exercise, we indicate the most relevant chapter in parentheses, where the 
topic of the exercise is discussed. Some exercises are necessarily more complex  – for 
instance, those involving spatial modeling and spatial decision situations (Chapters 4 and 5),    
and we present these as hands-on projects. Note that several models are described in some 
detail in the appendix.

7.1.1  Problem sets

1.	 Consider the power law pdf, p x
x

( ) =
− 





β
α

α β
1

, for x > >α 0 and β > 1.

a.	 (2) Show that the cumulative distribution function is F x
x

( ) = − 





−

1
1α β

.

b.	 (2) Show that the expected value is E x( ) =
β −1
β − 2

α.

c.	 (2) One can generate a random variable x from this power law distribution by 
inversion. Set β = 3, α = 1. Generate a uniform random variable u U= ( )0 1, . Set 
u F x= − ( )1 , and solve for the sampling variable x. Repeat the sampling B = 1000 
times, display the realizations in various ways, and calculate the mean to compare 
with the result from b.

d.	 (3) Suppose that the power law distribution mentioned earlier describes the distri-
bution of revenue from a project that a decision maker is considering investing in. 
He or she either invests or does not invest. The decision maker invests only if the 
expected revenue is larger than Cost. Calculate the prior value as a function of Cost  
and the statistical model parameters. Assume that β > 2.
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e.	 (3) Assume that one can purchase perfect information about the project revenue. 
Calculate the posterior value and the VOI. Compute and plot the VOI for a variety 
of input parameters: Cost, β > 2, α.

f.	 (3) Use the sampling scheme in c. to compute a Monte Carlo approximation of the 
VOI. Compare this with the analytical result in e.

2.	 Assume that the profit of a project has a univariate Gaussian pdf

p x
x

x( ) = −
−( )







 − ∞ < < ∞

1

2

1

2

2

2π σ
µ

σ
exp , .

A decision maker will invest in a project that has a positive expected value.
a.	 (2) Use symmetry arguments to show that the mean µ of the Gaussian satis-

fies  x p x dx E x−( ) ( ) = ( ) − =∫ µ µ 0.

b.	 (2) Use a transformation of variables: z g x
x

= ( ) =
− µ
σ

, x g z z= ( )−1 = µ + σ , and 

the transformation formula p z
dg

dz
p g z( ) = ( )( )

−
−

1
1  to show that the variable z is 

standard normal distributed.

c.	 (2) Use integration by parts  – i.e., u v u v u v⋅ ′ ⋅ ′ ⋅∫ ∫= −( )|  to show that 

z z dz z z dz a b
a

b

a

b

φ φ φ φ( ) = ( ) = ( ) − ( )∫ ∫1⋅ , where the standard normal pdf  is φ z
z( ) = −





1

2 2

2

π
exp

 
 

φ z
z( ) = −





1

2 2

2

π
exp .

d.	 (3) Suppose that a decision maker is considering getting perfect infor-
mation about the profit. The posterior value of perfect information is 

PoV x x p x dx xp x dx( ) = { } ( ) = ( )∫ ∫
∞

max ,0
0

. Use the results from b. and c. along 

with the symmetry properties of the standard normal pdf φ z( ) and its cumulative 

distribution Φ z( ) to show that PoV x( ) = 











σ
µ
σ

+ µΦ
µ
σ

φ .

e.	 (3) Plot the analytical VOI solution as a function of the mean in the range µ ∈ −( )2 2,  
and standard deviation σ ∈( . , )0 1 2 . Draw realizations from the Gaussian, and use 
Monte Carlo integration to check the analytical solution for the VOI.

3.	 Consider a univariate skew-normal model, as described in Section 4.5, with pdf 
p x x N( ) = −( )( ) ( )2 2Φ λ µ µ σ, , with standard normal cumulative distribution Φ z( ). 
This is a special case of a closed skew normal with parameters q = 1, ς = 0, and ∆ = 1.

a.	 (2) Plot this skew-normal pdf for a grid of x values and for different values of the 
location µ ∈ −( )2 2, , scale σ ∈( )0 1 1. , , and skewness λ ∈ −( )10 10,  parameters.
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b.	 (2) Draw samples from this skew-normal distribution by rejection sampling using 
proposal density q x N( ) = ( )µ σ, 2 . Study the acceptance rate.

c.	 (3) Assume that x represents an uncertain profit of a project. Compute the prior 
value and the value of perfect information using Monte Carlo sampling (rejection) 
from the skew normal.

d.	 (3) Assume instead that the decision maker can purchase imperfect information 
according to the Gaussian likelihood p y x N x| ,( ) = ( )τ 2 . This is a special case of 
the closed skew-normal model, and there is a closed-form solution for the poster-
ior mean E x y|( ); see Dominguez-Molina et al. (2003). Use this result and Monte 
Carlo sampling over data y to compute the VOI for this decision situation. Study 
the VOI for different measurement standard deviations τ 2 0 1 1∈( ). ,  and compare 
with the result in c.

4.	 Consider the bivariate Gaussian pdf p Nx( ) = ( )0,Σ  for profits x = ( )x x1 2,  at two pro-
jects, just like the “For whom the bell tolls” examples in Chapters 2 and 3. Assume 
variance 1 for both projects and correlation − < <1 1ρ . The decision maker selects a 
project (alternative ai = 1, i = 1 2, ) if its expected profit is positive and otherwise avoids 
investment (alternative ai = 0, i = 1 2, ). We consider a decision situation with a free 
selection of projects without constraints (see the example in Section  3.4). Assume 
that the decision maker can purchase total imperfect information, y x Nj j= + ( )0 2,τ ,  
j = 1 2,  – i.e., likelihood p Ny x x T|( ) = ( ), , Τ = τ2 I .

a.	 (2) Show that the conditional distribution of profits, given the imperfect informa-
tion, is Gaussian with covariance Σ Σx y| = +( )− − −1 1 1T  and mean µ x y| |= −Σ x yT y1 . 

Here, use the relation p p px y x y x| |( ) ( ) ( )∝ , and complete the quadratic forms 

for x in the exponent of the Gaussian pdfs.
b.	 (2) Use the formula for linear combinations of Gaussian variables to show that 

p Ny( ) = +( )0, Σ T  and p N Tµ x y x y x yT T T| | |,( ) = +( )( )− −0 Σ Σ Σ1 .
c.	 (3) Use the result from b. and from Exercise 2 to compute the posterior value of total    

imperfect information: PoV p dj
j

y y yx y( ) = { } ( )∫∑
=

max , |0
1

2

µ , . (Hint: note that the 

only part of the data that is informative of the decision is µ x y| , so the expression 

simplifies to: PoV p dj j j
j

y x y x y x y( ) = { } ( )∫∑
=

max , | | |0
1

2

µ µ µ, , , .)

d.	 (3) Cross-plot the VOI results as a function of the correlation ρ and for different 
test accuracies τ  of the imperfect test.

e.	 (3) Assume next that the decision maker can gather information about only one of the 
projects (partial testing) say, y x N1 1

2 20 0= + ( ) = ( ), ,τ τFx+N , where F = 1 0,( ).   
Calculate the posterior value of this partial test.

f.	 (3) Let the price of a test be Pj for Project j = 1 2, . The decision maker should pur-
chase the test that has the largest VOI compared with the test price if it is positive. 
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The price of testing both projects is P P1 2+ . Make a diagram of the decision regions 
as a function of price P1 on the first axis and P2 on the second axis. Draw this dia-
gram for a couple of correlation parameters ρ and test accuracies τ .

5.	 Consider a binary bivariate example concerning the selection of petroleum Prospects 
1 and/or 2 for development. The joint probability density function (pdf) is defined by 
Table 7.1. The petroleum company aims to develop infrastructure and produce hydro-
carbons. The decision about selecting prospects for development depends on the prob-
abilities of failure and success as well as the revenues associated with the successful 
outcome and the cost of selection. In the event of a success at Prospect 1, the company 
receives revenue Rev Rev1 3= = , and the same at Prospect 2, Rev Rev2 3= = . The fixed 
cost of selection, no matter the outcome of the prospect, is set to Cost Cost Cost1 2= = .

a.	 (2) Suppose that the company can obtain perfect information at one of the pros-
pects. Use Bayes’ rule to show that the conditional probabilities are:

p x x p x x( | ) ( | ) . ,1 2 121 1 1 1 0 5= = = = = =

p x x p x x( | ) ( | ) . .1 2 121 0 1 0 0 055= = = = = =

b.	 (3) Assume that the company can freely select prospects when they are expected to 
be profitable. Show that the prior value is PV = −{ }2 0 0 3max , . Cost .

c.	 (3) Show that the posterior value of total perfect information at both Prospects 1 
and 2 is PoV x( ) = −{ }0 2 0 3. max , Cost . Plot the posterior value, with the prior 
value in b., as a function of Cost. Interpret the results.

d.	 (3) Compute the posterior value of perfect partial information at Prospect 1:

PoV x p x

p x x z p x

1 1

2 1 1

0 3 1

0 3 1

( ) = −{ } =( ) +

⋅ = =( ) −{ }
max ,

max , |

Cost

Cost ==( )
=
∑ z
z 0

1

e.	 (3) Plot the posterior value in d. with the one from c. and the prior value in b. as a 
function of Cost. Interpret the results.

Table 7.1.  The joint pdf for the two petroleum prospects and their marginal probabilities

Failure Prospect 2 Success Prospect 2 Marginal Probability

Failure Prospect 1 0.85 0.05 0.9
Success Prospect 1 0.05 0.05 0.1
Marginal Probability 0.9 0.1 1
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6.	 Let us expand the same binary bivariate example, concerning the selection of petrol-
eum Prospects 1 and/or 2 for development, with imperfect information. We denote the 
imperfect test(s) by y1 and/or y2 at the two prospects. This could, for instance, be seis-
mic test(s) at the petroleum prospect(s). We assume that these are binary: positive or 
negative – i.e., yj ∈{ }0 1,  for j = 1 2, . In the likelihood model, we assume conditional 
independence and symmetry – i.e., p y k x kj j= =( ) =| γ  for k = 0 1,  and for  j = 1 2, .

a.	 (2) Compute the marginal bivariate distribution for the test results by marginaliz-
ing over x.

b.	 (3) The posterior value of imperfect information at Prospect 1 is

PoV y
p x y z

p x y z
1

1 1

2 1

0 3 1

0 3 1
( ) =

⋅ = =( ) −{ }
+ ⋅ = =( ) −

max , |

max , |

Cost

Costt{ }








 =( )

=
∑ p y z
z

1
0

1

.

	 Set likelihood reliability γ = 0 9.  and compute this posterior value as a function of 
Cost. Plot the results for various Cost with the prior value and the posterior values 
of perfect information in the previous exercise. Interpret the results.

c.	 (3) Compute the posterior value of total imperfect information PoV y y1 2,( ), assum-
ing reliability γ = 0 9. . Plot the result as a function of Cost and compare with the 
other information-gathering schemes.

7.	 The following game motivated Bernoulli to introduce the logarithmic utility function 
in 1738. This is known as the St. Petersburg’s paradox. Consider a lottery where a coin 
is tossed repeatedly until it lands heads, and the owner of the lottery is rewarded $ 2ntrial ,    
where ntrial is the total number of coin tosses. Assume that heads and tails are equally 
likely outcomes and that the coin tosses are independent.

a.	 (2) What is the pdf for the number of tosses until the coin lands heads? What is the 
pdf for the reward?

b.	 (3) How much would you be willing to pay to own this lottery? (Thinking about 
this carefully may make the following parts more enjoyable.)

c.	 (3) What would a risk-neutral person be willing to pay to own the lottery? Consider 
the solution obtained and list some reasons why you think that this game is referred 
to as a paradox.

d.	 (3) Suppose that the lottery terminates after a maximum of ntrial coin tosses. Plot 
the expected value of the lottery as a function of ntrial from 1 to 50.

e.	 (3) Consider a person with an initial wealth of $1000 and a logarithmic utility 
function u x x( ) = ( )log , where x is the person’s total wealth. How much would this 
person be willing to pay to own the lottery for maximum coin tosses ntrial = 10? 
(Hint: Use the same approach that was used for the general definition of VOI as 
a personal indifference price – i.e., by equating the expected utilities for the situ-
ations with and without the lottery.) Plot this amount as a function of ntrial from 1 
to 50. Then, plot this amount as a function of initial wealth $100 to $100 000.
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f.	 (3) Draw an influence diagram for someone who is deciding whether to play this 
lottery or not. Try this first with a small ntrial initially – say, ntrial = 3 – and then try to 
generalize the diagram for a larger ntrial. For ntrial = 3, also construct the conditional 
probability tables and the value table for the influence diagram.

8.	 In this problem, we will build decision trees for a situation related to CO2 sequestration, 
where there is a risk of leakage (Konishi, 2014). The decision maker can proceed with 
CO2 injection or suspend sequestration. The latter incurs a tax of 80 monetary units. 
The former only has a cost of injection equal to 30 monetary units, but the injected CO2 
may leak. If leakage occurs, there will be a fine of 60 monetary units (i.e., a cost of 90 
in total). The probability of leakage is p x =( ) =1 0 3. , while a safe or sealing formation 
has probability p x =( ) =0 0 7. .

a.	 (3) Draw a decision tree for this situation. What alternative does the maximum 
expected value (or minimum expected cost) have?

b.	 (3) What if the decision maker could get perfect information about the leaking or 
sealing formation? Draw a decision tree for this situation with perfect information. 
What is the maximum expected value (or minimum expected cost)?

c.	 (3) Assume next that the decision maker can purchase a geophysical experiment 
with a binary outcome, indicating whether the formation is leaking or not. The 
reliability of the test is defined by p y x= =( ) =1 1 0 9| .  and p y x= =( ) =0 0 0 95| . .   
Draw the decision tree for this situation with imperfect information and compute 
the maximum expected value.

9.	 Consider the oil wildcatter example described in Chapter  3. Figure  3.9 shows the 
influence diagram for the oil wildcatter’s decision situation where he or she is con-
sidering whether to purchase a seismic test for more information about the amount   
of oil.

a.	 (2) Compute the pre-posterior probability for the seismic test result and the poster-
ior probability of the amount of oil given a seismic test result using Bayes’ rule.

b.	 (3) Draw the decision tree corresponding to the influence diagram.
c.	 (3) Solve the decision tree for a risk-neutral decision maker – i.e., find the optimal 

strategy and the expected value.
d.	 (3) Solve the decision tree for a decision maker with an exponential utility func-

tion, with risk aversion coefficient γ = 0 002.  (M$)^(-1)  – i.e., find the optimal 
strategy and the certain equivalent.

10.	 Consider the “MacKenna’s gold” example described in Chapter  3, where a person 
owns an oil field. Figure 3.11 shows the influence diagram, and Figure 3.12 shows 
the probability tree that was used to compute the certain equivalent. Make the same 
assumptions about the person’s utility function as was made earlier. Suppose that the 
person’s financial advisor suggests a lottery/deal through a futures contract where the 
payoff is −$50 million when the price of gold is high and $100 million when the price 
of gold is low.
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a.	 (3) Suppose that the person does not own the oil field and only owns the futures 
contract (as determined by the price of gold). Update the influence diagram in 
Figure 3.11 and the probability tree in Figure 3.12 with this new situation. Find the 
certain equivalent for this new situation.

b.	 (3) Now suppose that the person owns both lotteries (the oil field and the futures 
contract). Update the influence diagram in Figure 3.11 to also include the new lot-
tery (along with the older lottery of the oil field) by adding another value node and 
a corresponding value table.

c.	 (3) Edit the influence diagram mentioned earlier by merging the value nodes 
together into one node. What are the parents of this value node? Form the value 
table corresponding to this new value node by merging the previous two value 
tables. (Hint: the new value table will grow in size.)

d.	 (3) Using the formulation in c. mentioned earlier, update the probability tree in 
Figure 3.12 and compute the new certain equivalent.

e.	 (3) Compare the certain equivalents of the three situations where the person 
(i) owns only the oil field, (ii) owns only the futures contract, and (iii) owns both.

11.	 This problem is similar to the “Never break the chain” examples. We consider the fol-
lowing Markov chain models, differing in Markov transition probabilities P k l,( ):
(i)	 Independent case: P P( , ) ( , ) .0 0 1 1 0 5= = , p x1 1 0 5=( ) = . .
(ii)	 Equal dependence: P P( , ) ( , ) .0 0 1 1 0 9= = , p x1 1 0 5=( ) = . .
(iii)	 Absorbing: P( , )0 0 1= , P( , ) .1 1 0 9= , p x1 1 0 5=( ) = . .

a.	 (2) Simulate Markov chains realizations of length n = 100 from each of these 
models and compare the results. (The simulation is done by simulating uniform 
random variables U 0 1,( ). If the number is larger than 0.5, the initial state x1 1= ; 
otherwise, it is x1 0= . At the subsequent step, we draw new independent uniform 
variables and set the correct state according to the conditional probability defined 
by the Markov transition rule.)

b.	 (2) Compute the marginal probabilities for xi, i n= 1,..., , for the Markov chain with 
an absorbing state. Compare with realizations.

c.	 (2) Assume that we know that x20 1=  and compute the conditional probabilities for 
all states xi, i n= 1,..., . (Note that the computation is straightforward for the subse-
quent states but more difficult for the states prior to the observation site.)

d.	 (2) Compute similarly the probabilities when we know that x20 0= .
e.	 (3) Assume that the nodes represent petroleum prospects. The decision situation 

is that of free selection of sites. Let us compare the VOI of information at single 
nodes and for the different Markov chain models. We assign costs associated with 
the selection of petroleum prospects and revenues associated with successful pros-
pects. In this example, assume fixed revenues and costs: Rev = 3 and Cost =1, 
identical for all sites. Compute and plot the VOI of the single observation nodes. 
Discuss and interpret the results. For which node is it better to collect data, and 
what should the price of the experiment be to make it worthwhile?
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12.	 Let us consider the hidden Markov model version of the “Never break the chain” 
examples, which adds a hierarchical level of uncertainty at every node in the Markov  
chain model.

a.	 (2) Simulate a Markov chain of length n = 250 with equal depend-
ence: P P p( , ) ( , )0 0 1 1= = , p x1 1 0 5=( ) = . . We set p = 0 9. . For each node or time 
step, generate conditionally independent data y x Nj j= + ( )0 2,τ , j n= 1,..., . We set 
τ2 20 4= . . Plot the data y = ( )y yn1,...,  and interpret.

b.	 (2) Describe the forward recursion for evaluating the marginal likelihood p( )y . ( This is 
based on marginalizing over one of the x j variables at a time to get p y y yj j( | ,..., )−1 1 .) 
Compute the marginal likelihood model for a grid of values for p and τ2, given the data 
from a., and find the maximum likelihood estimate (MLE). Compare with the values 
used in the simulation.

c.	 (2) Use the forward–backward recursions to find the marginal probabilities 
p x j =( )1 | y  for all j n= 1,..., . Use similarly the forward–backward recursions to 
sample realizations xb  from p x y|( ), b = 1 100,..., .

d.	 (3) Suppose that the nodes represent petroleum prospects. The decision situation 
is that of free selection of nodes or sites. In addition to the current data y, the deci-
sion maker considers purchasing perfect information at a single node. Like in the 
previous exercise, there are costs associated with the selection of prospects and 
revenues associated with successful prospects: Rev = 3 and Cost = 1, identical for 
all sites. Compute and plot the VOI of the single observation nodes. Discuss the 
results. (Note that you will get different results every time because the current data 
y vary from simulation to simulation.)

e.	 (3) Suppose instead that the decision maker can only select disjoint blocks of size 
10 – i.e., 25 blocks in total. A block is selected if the sum of expected revenues for 
that block is larger than the sum of costs for the block. Compute the prior value of 
this decision situation. Compute the VOI of observations at a single node for this 
decision situation.

13.	 Consider the logistic integral that is common for modeling success probabilities in 
generalized linear models (GLM):

I
x

x

x
dx=

( )
+ ( ) −

−( )









−
∫

exp

exp
exp .

1

1

2 22

2

2
∞

∞

πσ

µ
σ

Set parameter σ2 20 1= . , and let µ vary around ±4σ.
a.	 (2) Approximate the integral by Monte Carlo sampling from the Gaussian with 

mean µ and variance σ2. Plot the results as a function of µ.
b.	 (2) Approximate the integral by the Laplace approximation. This entails 

expanding the exponent in the integrand to a quadratic form. We have 
exp

exp exp
exp log exp

x

x x
x

( )
+ ( ) =

+ −( ) = − + −( )( )( )
1

1

1
1 . The method further relies on 
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maximizing the exponent and finding the curvature at the mode from the second 
derivative of the exponent. Plot the approximation as a function of µ.

c.	 (2) Approximate the integral using an alternative function in the integrand 
(Demidenko 2004). This approach relies on the fact that the logistic expression is 
rather similar to the cumulative distribution of the standard Gaussian:

exp

exp
exp , . ,

x

x

z
dz

x( )
+ ( ) −





= ≈
−∞
∫1

1

2 2

16 3

15
1 7

2

≈
π

α

α
π

	 where the seemingly arbitrary number for α  fits the logistic function for a wide 
range of parameters (Demidenko 2004). The expected value of the cumulative 
Gaussian is now analytically tractable as another cumulative, and we get the 
estimate:

I
z

dz = −





=
+





−

+

∫
1

2 2 1

21

2 2

2 2

π
µ

∞

µ

exp .

α

α σ α
α σ

Φ

	 Plot this integral approximation as a function of µ.
d.	 (3) Assume that the logistic model represents the probability of success, awarded 

with a revenue defined by Rev = 3, while there is Cost = 1 in either outcome (success 
and failure). For this decision situation, the prior value is max Rev ,⋅ −{ }I Cost 0 ,   
while the posterior value with perfect information is

I
x

x
post = ⋅

( )
+ ( )







−











−
∫ max ,Rev

exp

exp
Cost0

1

1

2∞

∞

πσ22
exp .−

−( )









x
dx

µ
σ

2

22

	 Approximate the posterior value by Monte Carlo sampling from N µ σ, 2( ).
	 By introducing a =

−






log
/ Rev

/ Rev

Cost

Cost1
, the posterior value equals

I
x

x

x
dxpost

a

=
( )

+ ( )






−

−( )







∫Rev

exp

exp
exp

1

1

2 2

2

2

∞

2πσ

µ
σ

−− − ( )( )Cost 1 Φ a .

	 The first term can again be approximated by the cumulative normal approximation 
to the first part of the integrand. This method results in

ˆ Rev , ;I
a a

post =
−





−
− −

+
−
+











Φ Φ

µ
σ

µ
σ

αµ
α σ

ασ
α σ

2
2 2 2 21 1 

− − ( )( )Cost 1 Φ a ,

	 where Φ2 1 2z z, ;ρ( ) is the cumulative distribution function of bivariate standard 
Gaussian variables with correlation ρ (function “mvncdf” in MATLAB).

	 Compare this approximate posterior value and the VOI solution with the Monte 
Carlo approximation.
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7.1.2  Hands-on projects

We now present some larger-sized projects from Chapters 3–5.

Time after time: time-lapse seismic example

This example is related to time-lapse seismic monitoring of producing reservoirs and was 
used in Chapter 3 to illustrate concepts from decision analysis, influence diagrams, and 
VOI analysis. Readers not familiar with the software Netica or Kevin Murphy’s MATLAB 
Bayes Net Toolbox (BNT) might want to start with a simpler influence diagram project, as 
described in Section 7.5, before proceeding to this one.

1.	 (3) The influence diagram model shown in Figure 3.14 is available on the website as a 
Netica project. Open the influence diagram and see how the different conditional prob-
ability distribution (CPD) tables and the value function tables are assigned.

2.	 (3) Recreate the results for the three scenarios described in Table 3.2.
3.	 (3) Explore the sensitivity of the results to changes in various reservoir factors such as 

depth, rock and fluid properties, and spatial heterogeneity.
4.	 (3) If you are familiar with Kevin Murphy’s BNT toolbox (see also Sections 7.2 and 

7.5), you can construct the influence diagram in MATLAB and test the various sce-
narios. A MATLAB file is provided on the website to build and run the model.

5.	 (3) The value of time-lapse seismic monitoring comes from being able to monitor 
unexpected changes. In this influence diagram model, unexpected changes come from 
unexpected breakthroughs (with states “true” or “false”) or bypassed oil (with states 
“high,” “medium,” or “low”). These in turn depend on the level of spatial heterogen-
eity, “high,” or “low.” In general, high spatial heterogeneity will lead to more chances 
of high bypassed oil and unexpected breakthrough behavior. The CPD tables for the 
nodes “bypassed oil” and “breakthrough” have been elicited from experts, but the num-
bers are quite uncertain. Let α  and β  denote the probability of bypassed oil being 
“high” and the probability of breakthrough being “true” when spatial heterogeneity is 
high, nominally set to 20% each. These probabilities are lower when spatial heterogen-
eity is low – say, α / 2 and β / 2, respectively. Explore the sensitivity of the outputs to 
these parameters. How sensitive is the ratio of the value if time-lapse seismic monitor-
ing is performed to the value if it is not performed –i.e., value(perform_seismic = true)/
value(perform_seismic = false), to α  and β? Vary α  and β  from 0.02 to 0.4, and make 
a contour plot of the value ratio as a function of α  and β . You will probably find the 
MATLAB model using the BNT toolbox useful for this exercise, as you can run it in a 
for-loop with a range of inputs.

Norwegian wood: forestry example

This project builds on the forestry example that was presented in Sections 4.4 and 5.3–4.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.008
http:/www.cambridge.org/core


Problems and projects314

Part I: parameter estimation and Kriging

Here we will study the simulation of Gaussian processes or random fields. We simulate 
spatial data and perform parameter estimation and prediction (Kriging). Consider an expo-
nential covariance model for the spatial distinction of interest x s( ).

Cov x x

y x N

i j ij ij ij

j j

s s t t

s s

( ) ( )( ) = ( ) = −( )
( ) ( ) ( )

, exp ,

,

Σ σ η2

20= + τ ,, ,..., .j m= 1

where t ij  is the Euclidean distance between the two sites si and s j, and the measure-
ments y yj j= ( )s  are assumed to be conditionally independent. The unit square is the 
domain of interest. We assume a mean increasing with east and north coordinates as fol-
lows: µ αi i is s= −( ) + −( )( )1 20 5 0 5. .  for site si i is s= ( )1 2,  on the unit square.

1.	 (4) Simulate m = 100 random data sites within the unit square. This is done by simulat-
ing uniform numbers along each axis. Plot the data sites. Set parameter values σ2 1= , 
η = 10, and τ2 20 1= . . Form the spatial covariance entries from the exponential covari-
ance function to build a m m×  covariance matrix for the data yj, j m= 1,..., . Take its 
Cholesky factorization and simulate dependent zero-mean Gaussian data variables, 
then add the mean using α = 1.

2.	 (4) Use the data to estimate the model parameters α σ τ η, , ,2 2 . Do this by maximum 
likelihood, iterating between an update for the mean parameter, and updating the 
covariance parameters. Monitor the likelihood function at each step of the algorithm to 
check for convergence.

3.	 (4) Use the Gaussian model with the estimated parameters to perform Kriging – i.e., 
predict variables x s( ), where sites are on a regular grid of size 25 × 25 for the unit 
square. Visualize the Kriging surface and the prediction standard error.

4.	 (4) Generate conditional realizations at the grid nodes given the data. This can be 
done in different ways. One alternative is to simulate unconditional realizations of the 
regular lattice variables, simulate a perturbed version of the data set at the m = 100 
observation sites, and then add together the unconditional simulation and the spatially 
weighted (Kriged) perturbed data variable. Compare the simulations with the Kriged 
surface in Step 3.

Part II: VOI analysis and spatial design

Let us use variance, entropy, and VOI to compare three spatial designs of size m = 49. The 
goal is to make better decisions at all sites in the 25 × 25 regular grid for the unit square 
(n = 625 sites in total). The mean and covariance are the same as those in Part I of this 
project.

1.	 (5) Construct design a. based on random sampling – i.e., picking m random cells (the 
MATLAB command is randsample(n,m)). Construct design b. along the center lines 
(as in Section 4.4). Construct design c. by focused sampling near the northwest and 
southeast diagonal: 25 samples on the diagonal, and four series of six sites every three 
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columns and rows away from this diagonal (this is a total of m sampling sites). Plot the 
three designs. Designs b. and c. are shown in Figure 7.2.

2.	 (5) Compute the total (sum over all prediction cells) reduction in the variance for vari-
ables x s( ) on the regular grid. Compare the reduction obtained by the three designs. 
Similarly, compute the reduction in the entropy obtained by the three designs. (The 
result should not depend on the mean parameter α .)

3.	 (5) Assume that the Gaussian variables x s( ) represent uncertain profits at the cells 
on the regular grid. The decision maker would select all the cells if the total profit 
(sum over all prediction cells) is positive. This is a decision situation with low deci-
sion flexibility. Compute the prior value and the VOI for designs a.–c. Does the result 
depend on α ?

4.	 (5) Assume instead that the decision maker is free to select individual cells that are 
profitable. This is a decision situation with high decision flexibility. What is the prior 
value and the VOI of all three designs? How does the result depend on α ? Compare 
with the situation with less decision flexibility.

The tree amigos: conservation biology example

We study the fitting of parameters in a Markov random field (MRF) (Section 4.6) and 
compare designs for information gathering with the goal of making better decisions about 
biological conservation, similar to the example in Section 5.4. We consider a regular grid 
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Figure 7.2  Illustration of the spatial designs of experiment. The center design has survey locations 
along the middle north–south column and the middle east–west row in the grid (crosses). The 
northwest–southeast design has survey lines near this diagonal (diamonds).
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of size n n1 1×  and two possible classes (presence or absence) at every cell. We will use 
the forward–backward algorithm for grids for computations (see the code on the book 
website).

Part I: parameter specification

1.	 (4) Generate a realization on a size 10 × 10 grid from an Ising model with interaction 
parameter β = 0 75. .

2.	 (4) Fit a neighborhood probability model based on this realization. The fitting will be 
of increasing complexity, cell-by-cell, center cell given nearest neighbors (northeast, 
south, and west), given 8 nearest neighbors and given 12 nearest neighbors. We refer to 
these as zero-, first-, second-, and third-order neighborhoods on the lattice. The condi-
tional probabilities are obtained by counting the number of 0s and 1s at the center node 
for various configurations of neighbors. In the situation with the third-order neighbor-
hood, there are a total of 4096 possible configurations for the neighbors.

3.	 (4) Generate 10 new realizations from the Ising model. For each realization, evaluate the 
probability p of success at the center nodes, given the neighboring configurations for 
all zero-, first-, second-, and third-order neighborhoods. Compare this prediction with 
the actual realization at the center node. Use a score function to favor observations x at 
the center node that are consistent with high probability p. The Brier score is defined by 
Score = +I x p I x p=( ) − −( )( ) =( ) −( )0 1 1

2 2
. Study how the score varies with increas-

ing neighborhood order. Relate what you see to overfitting the model to the data.

Part II: value of information

For the VOI analysis, the setting is as in Section 5.4 with a grid of size 3 × 3.

1.	 (5) Assume that the decision maker can freely select cells on the grid for conservation. 
If the species is present at a cell, a reward of Rev = 2 is obtained. A site selection has 
Cost = 1. Compute the VOI for total imperfect data gathering. Assume imperfect test-
ing with accuracy γ = 0 9.  in the likelihood model, as in Section 5.4. Computing can be 
done exactly with the forward algorithm for the likelihood p y( ) and backward calcu-
lation of p xi =( )1 | y ; see Appendix A.3.

2.	 (5) Consider now partial tests along the various vertical lines (data size m = 3) and a 
diamond-like design (data size m = 4). Compare the VOI of these partial tests with the 
VOI for total testing from 1. (Note that the marginal probability of the partial test can 
be computed by marginalizing over the p y( ). A trick for the forward–backward recur-
sion is to model the data at unobserved sites as completely uninformative data – i.e., 
set γ i, .unobserved = 0 5 at the unobserved sites.)

Go with the flow: petroleum simulation example

This hands-on project builds on the petroleum reservoir simulation example that was 
described in Section 5.5. The VOI is computed for seismic amplitude data, which is inform-
ative of the subsurface geology.
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You can complete most of the exercise by downloading geostatistical realizations of the 
reservoir and flow response values from the website, or you may create your own realiza-
tions and flow simulations. For the latter, you will need to run software for flow in porous 
media. Commercial software for this purpose includes Eclipse, which is commonly used in 
the petroleum industry. The website contains code based on the freely available MATLAB 
reservoir simulation toolbox (MRST) developed by Lie et al. (2012), which can be down-
loaded from www.sintef.no/Projectweb/MRST.

Part I: downloading realization outputs

Consider the two geological scenarios and their associated production realizations in 
Section 5.5. For this exercise, you need to download the production profiles.

1.	 (5) Compute the prior value and posterior value of the drill or do not drill decision 
situation. Assume a range of reliability parameters for the scenario interpretation and 
compare the VOI.

Part II: generate realizations from geologic scenario

1.	 (4) Define a spatial grid model and a drilling strategy. (You may use what was 
described in Section 5.5 and available on the website, or you may define your own. 
A corner design is commonly used for illustration.) Using geostatistical algorithms, 
generate multiple realizations of facies, porosity, and permeability for two (or more) 
geologic scenarios. Training images of facies for the two geological scenarios used in 
Section 5.5 are provided on the website. (Alternatively, you can download the multiple 
realizations for porosity and permeability from the website.)

2.	 (5) Run the reservoir simulator for all realizations of porosity and permeability (for 
each geologic scenario) to create realizations of the production profile over the future 
years. (The simulator requires more input variables such as initial saturation, produc-
tion rates, rock compositions, type of flow, etc. You can check the website for these 
inputs.) Use the output production profiles and profits to approximate the prior value, 
assuming a cost of development.

3.	 (5) Assume a rock physics model for seismic acoustic impedance, which takes porosity 
as input and returns the expected seismic impedance conditional on a realization of the 
porosity field. (Check the website for the modeling codes.) Create synthetic seismic 
acoustic impedance for all realizations and visualize the result.

4.	 (5) Compute a summary statistic of the data for each realization. The variogram of 
impedance data is one possibility. Classify the realizations into the two (or more) geo-
logic scenario classes according to this summary statistic. This defines the reliability 
measure represented as a confusion matrix. Use the reliability measure to approximate 
the VOI of an imperfect seismic interpretation.

5.	 (5) Form the reliability measure for the seismic data based on clustering techniques. 
For instance, you may use multidimensional scaling (Scheidt and Caers 2009). Use the 
results to approximate the VOI of an imperfect seismic interpretation.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.008
http:/www.cambridge.org/core


Problems and projects318

Part III: VOI analysis using approximate Bayesian computing

1.	 (4) Define a spatial grid model and a drilling strategy. (You may use what was described 
in Section 5.5 and available on the website, or you may define your own. A corner 
design is commonly used for illustration.) Using geostatistical algorithms, gener-
ate multiple realizations of facies, porosity, and permeability from the prior model. 
Training images for facies for the two geological scenarios used in Section 5.5 are 
provided on the website. (Alternatively, you can download the multiple realizations for 
porosity and permeability from the website.)

2.	 (5) Run the reservoir simulator for all realizations of porosity and permeability to cre-
ate realizations of the production profile over the future years. (The simulator requires 
more input variables such as initial saturation, production rates, rock compositions, 
type of flow, etc. You can check the website for these inputs.) Use the output production 
profiles and profits to approximate the prior value, assuming a cost of development.

3.	 (5) Assume a rock physics model for seismic acoustic impedance, which takes poros-
ity as input and returns the expected seismic impedance conditional on a realization of 
the porosity field. (Check the website for the modeling code.) Create synthetic seismic 
acoustic impedance for all realizations and visualize the result.

4.	 (5) Define a summary statistic from the seismic data and generate the loss matrix for 
each of the realizations. You may, for instance, choose loss as the sum of square distance 
between synthetic seismic impedances, variogram properties of the synthetic seismic 
impedances, or some other low-dimensional summary statistic. Use the approximate 
Bayesian computing algorithm presented in Section 5.6 to approximate the VOI. Use 
different values of the threshold parameter and discuss the results.

Frozen: hydropower example

The project builds on the hydropower example presented in Section 5.6. The goal is to 
evaluate snow depth data-gathering schemes for optimization of dam levels.

1.	 (4) Define a spatial grid model and a system of dams with their catchments in a river 
basin. Also define high and low (or more) water levels for each dam. (You may use 
what was described in Section 5.6 and available on the website or define your own.) 
Generate multiple realizations of snow depth for each grid cell. You can define your 
own spatial stochastic model or generate a transformed Gaussian random field of some 
kind (Section 5.6). See the code on the website for one candidate model.

2.	 (5) Use the geometry of catchments to calculate the value (water) running into the 
dams for the realizations mentioned earlier. Use the aggregated water in catchments to 
study what the situation will be for all low–high alternatives for all realizations. Study 
in particular the situation for the all-low and all-high situations. What is the mean 
value, and what is the variance over the realizations? Approximate the prior value. 
Note: you will get different answers every time because of the random snow depths in 
Step 1.
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3.	 (5) Define an acquisition design for snow measurements. (You may use the one in 
Section 5.6 or on the website, or you may create your own.) Define further a sum-
mary statistic for the snow data at the acquisition sites and compute the loss matrix 
for each of the realizations. You may choose any summary statistic and corresponding 
loss function, such as the squared difference in the mean snow thickness at the acquisi-
tion sites. Use the approximate Bayesian computing-based algorithm in Section 5.6 to 
compute the posterior value and conduct VOI analysis when there is an opportunity to 
perform snow measurements at the indicated locations.

4.	 (5) Suppose that the decision situation has less decision flexibility: the decision maker 
is only allowed to adjust the uppermost dams in the river system, while the bottom ones 
have to be lowered at this time (say, due to flood avoidance systems or for agricultural 
use). Compute the prior value and the VOI of this decision situation.

7.2  Hands on: exploration of petroleum prospects

The reader is advised to go through Section 6.2 before starting on these hands-on projects, 
as most exercises are extensions of what was discussed in that section.

7.2.1  Gotta get myself connected: Bayesian network example

For this project, you will need to download Kevin Murphy’s Bayesian Network Toolbox 
(BNT) for MATLAB. This is available at http://code.google.com/p/bnt/. Additional code using 
BNT is provided on the book website. Readers not familiar with BNT may wish to start with  
a simpler BNT network project described in Section 7.5 before proceeding to this project.

Part I: small network

Consider the small network shown in Figure 7.3 with 12 nodes, of which 6 are segment 
nodes, where a petroleum company is considering development. This network is used in 
Martinelli et al. (2013a). The probability model is provided on the book website. The mar-
ginal probabilities for the three discrete classes (dry, gas, and oil) are displayed in Table 7.2, 
along with the revenues (costs) for the dry, gas, and oil outcomes.

1.	 Use the code to compute the marginal probabilities and the expected values (intrinsic 
values) shown in Table 7.2.

2.	 Assume that the decision maker drills the most profitable Segment 3 and finds oil. 
Compute the conditional probabilities at all Segments 1, 2, 4, 5, and 6. What is now the 
(second) most profitable segment? A myopic drilling strategy is based on sequential 
alternatives using forward updating of conditional probabilities in this way. Assume 
that the second well at the (conditional) second-best segment is dry. What is the next 
alternative? Should the decision maker continue drilling?

3.	 Assume free selection of segments, and compute VOI x( ) for a single exploration 
well. Which segment is most valuable?
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Part II: North Sea network with 25 segments

1.	 Download and run the North Sea network. Compute the VOI of perfect information 
at single-segment exploration wells and verify the results displayed in Figures 6.3–6, 
Section 6.2.1.

2.	 Repeat the same exercise as in Step 1, but this time with uncertainty in the kitchen 
variables. Assume that the kitchens generate gas with a probability of 0.8 and are 
otherwise dry.

Table 7.2.  Marginal probabilities and expected revenues for the six segments in the small 
Bayesian network

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6

p(Dry) 0.2 0.1 0.8 0.3 0.15 0.34
p(Gas) 0.52 0.72 0.01 0.02 0.68 0.52
p(Oil) 0.28 0.18 0.19 0.68 0.17 0.14
Rev(Dry) −20 −25 −1 −15 −22 −8
Rev(Gas) 6 3 9 0 4 5
Rev(Oil) 3 1 6 7 2 1
E(Value) −0.04 −0.16 0.43 0.15 −0.25 0.05

1
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P1

K2

P2

P4

P3

6

5

4

3
2

Figure 7.3  A Bayesian network model with 12 nodes. The nodes marked 1–6 (gray) are the observable 
nodes. They may represent petroleum fields.
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3.	 Assume that one can only acquire imperfect information about the charge variable – 
for example, from seismic data or analysis by basin and petroleum systems modeling. 
Let the accuracy of the imperfect test be p y k x kj j= =( ) =| .0 7. Compute the VOI of 
partial imperfect information at single segments and compare with the results in Steps 
1 and 2.

7.2.2  Basin street blues: basin modeling example

The petroleum exploration example with four Prospects TE, BE, TW, and BW in the 
North Sea is presented in Section 6.2.2. It relies on basin and petroleum systems modeling 
(BPSM) outputs to obtain the parameters of the network. If you have your own case with 
BPSM runs, you can analyze that instead.

For most of this project, you will need to download Kevin Murphy’s BNT for MATLAB. 
This is available at http://code.google.com/p/bnt/.

1.	 Study the simulated 24 runs of BPSM with the different input conditions and accumu-
lations in Prospects TE and BE (Chapter 2, Table 2.1, or download this from the web-
site). Plot the results as a function of the various input parameters and use the design of 
experiment and analysis of variance to study the effects of the input variables on each 
output.

2.	 The learning of the network is based on clustering. Run the code (on the website) for 
this model specification. You may try to modify and change the conditional probability 
tables of the network and study the effect on the subsequent VOI analysis.

3.	 Use the established BN to reproduce the marginal and conditional probabilities, as well 
as the VOI of perfect information at single prospects (Figures 6.14–17).

4.	 Assume that only imperfect information will be available at single prospects. Compare 
the VOI of exploration at single wells when the accuracy of the imperfect test is 
p y k x kj j= =( ) =| .0 7 for a test. Compare with the VOI of perfect information. 
Assume instead that the accuracy depends on the expected prospect size – i.e., the 
volumes for the success outcomes displayed in Table 6.1. Larger accumulations are 
easier to detect geophysically than smaller accumulations. One way to model this is to 

set accuracy to p y k x kj j

j

j

= =( ) =





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	 Compute the VOI of such imperfect tests at single prospects for different cost ranges. 
5.	 Suppose that an exploration well provides perfect information about the reservoir, trap, 

and source attributes at single prospects. This will be more informative than just know-
ing the success, partial success, partial failure, or failure outcome at the leaf nodes. 
Compute the VOI of this sort of perfect information at the reservoir, trap, and source 
parent nodes to the leaf prospect variable. Compare the results.
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7.2.3  Risky business: petroleum prospect risking example

This exercise builds on the 524 volume scenarios at 27 prospects in the Viking Graben, 
presented in Section 6.2.3. The data are based on basin modeling runs kindly provided to 
us by Øyvind Sylta and Migris (www.migris.no). For this project, you must download the 
results from risking. If you have your own risked volumes over multiple prospects, you 
may of course try a similar analysis for that case.

1.	 Consider Prospects 20 and 25, which were analyzed in Figure 6.21. Construct a kernel 
density estimate for these bivariate data. (See the m-files for this example.) The ker-
nel density estimate can be represented on the grid of prospect volumes (or profits). 
Visualize the density estimate.

2.	 Compute the VOI of single-prospect exploration as was done in Figure 6.22. Vary the 
number of neighbors k and study the effect on the VOI.

3.	 Compute the VOI of single-prospect exploration wells using the kernel density esti-
mate for all pairs of variables. This approach builds on the results in Step 1, where 
it is possible to approximate the conditional distributions by summing over the dis-
crete grid of profits at two prospects. Hence, each conditional expectation required for 
the posterior value is now computed from the discretized conditional pdf on the cells 
used for the kernel density estimate. Compare the results with that of the k-nearest 
neighbors.

4.	 Compute the VOI of two exploration wells using the k-nearest neighbors for the two 
prospects in the conditioning statement. Compare the VOI of the two exploration wells 
with the VOI of single exploration wells.

7.3  Hands on: reservoir characterization from geophysical data

The hands-on projects in this section build on the examples in Section 6.3. The reader is 
advised to go through that section before starting on these hands-on projects.

7.3.1  Black gold in a white plight: reservoir characterization example

The petroleum example with a MRF model and seismic amplitude–versus-offset (AVO) 
data information was presented in Section 6.3.1. We start by modeling the seismic attrib-
utes from facies and predicting lithofacies from the current seismic data. Next, we conduct 
VOI analysis for processed seismic AVO data. You will need to download the data set and 
the MATLAB files from the website. If you have your own example, you may try this work-
flow for that case instead.

Part I: modeling and prediction from seismic amplitude versus offset data

1.	 Download the rock physics modeling associated with the hierarchical model in 
Figure 7.4. Fix the lithofacies variable (facies and saturation variables) at the three 
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classes (oil sand, brine sand, and shale); generate realizations of porosity conditional 
on the facies; generate elastic properties (P-wave velocity, S-wave velocity, and den-
sity) given the facies, saturation, and porosity; and finally generate seismic AVO data 
given the elastic properties. Study the propagated uncertainty for the seismic AVO data 
within each facies class. Plot the fitted Gaussian pdf from the multiple realizations. 
Cross-plot the propagated synthetic seismic with the observed seismic AVO data (see 
data file on website).

2.	 Consider the available seismic AVO data on the size 75 × 75 grid. (A part of this was 
shown in Section 4.6.) Implement a Markov chain Monte Carlo sampler for posterior 
assessment of the model for lithofacies, given the seismic AVO data. Use the like-
lihood model established from Step 1, as presented in Section 6.3.1. Use further a 
MRF prior model for the lithofacies with spatial interaction β = 0.75 for equal colors 
(oil sand, brine sand, or shale). Study the convergence of the Markov chain Monte 
Carlo sampler by plotting the fraction of different colors (xi = 1 2 3, , ) in the realiza-
tions. Classify the lithofacies at every cell based on the color that occurs most often 
at that cell.

3.	 Repeat the exercise in Step 2, but this time condition only on the zero-offset attribute 
of the seismic amplitude data. Compare this classification with both data.

4.	 Linear discriminant analysis: argmaxk i k
t

i ky y−( ) −( ){ }−µ µΣ 1  is used to construct 

the pointwise classifier at a site i  into one of the classes k = 1 2 3, , . Calculate and 
draw the classification boundaries in the data space yi i iy y= ( )1 2,  of zero-offset 

Saturation

Seismic AVO data Cap rock
properties

Facies

Porosity

Density

Reservoir variables

VS

VP

Figure  7.4  A graphical model for reservoir variables and seismic reflection data. The facies and 
saturation variables of main interest are connected to the seismic reflectivity data via rock physics 
models represented by edges in the graph.
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reflectivity and AVO gradient. Apply this method to construct a pointwise classi-
fier that only integrates the data at that particular cell. This is equal to a model with 
β = 0. Compare classifications using both seismic AVO attributes.

Part II: VOI analysis for seismic amplitude versus offset data

Consider the grid of size 20 × 5 that was studied in Section 6.3.1. The MRF prior model 
is an Ising model with spatial interaction parameter β = 0 9.  and an external field αi ix( ),  
i = 1 100,..., , xi = 1 2 3, , . Use the forward–backward algorithm for Monte Carlo sampling 
for the outer loop over data y as well as for analytical calculation of the marginal success 
probability given data p xi =( )1 | y . The code is available at the website. (Note that this VOI 
analysis takes some time to run on the computer.)

1.	 Reproduce the marginal prior probabilities in Figure  6.26 and the VOI results in 
Table 6.2 with a total seismic AVO test with both attributes. Compare the VOI results 
with the one assuming independence – i.e., β = 0 in the MRF prior.

2.	 Assume that the accuracy of the seismic data is much better so that the standard devia-
tions of the likelihood are half. Compute the VOI of this situation, with β = 0 9.  and 
β = 0. Discuss the results.

7.3.2  Reservoir dogs: seismic and electromagnetic data example

The example with a Gaussian model for profits and seismic AVO data or electromagnetic 
(EM) resistivity data was presented in Section 6.3.2. We start by rock physics modeling 
for the seismic attributes and the EM resistivity given the saturation and porosity variables. 
We then turn to VOI analysis. The project requires MATLAB and data files that are down-
loadable from the website. If you have your own example, you may try a similar workflow 
for that case.

Part I: rock physics modeling

1.	 The rock physics model for the seismic data is based on a soft sand rock physics 
model with parameters tuned from well logs and Gassmann’s fluid substitution. The 
EM resistivity model is based on Archie’s law. Run the MATLAB forward models 
provided on the website to study the expected data response as a function of saturation. 
Make plots for different porosities.

2.	 Suppose that the porosity is fixed from seismic post-stack data, as in Section 6.3.2. Run 
the code available online for this example to plot the expected seismic and resistivity 
response as a function of the reservoir unit revenues (and profits). One version of this 
plot is shown in Figure 6.29. Study the associated derivatives numerically and compare 
the linearized model with the assumed nonlinear rock physics models.
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Part II: VOI analysis for seismic and electromagnetic data

1.	 Compute the VOI of seismic AVO and EM resistivity data for fixed parameter settings 
as indicated in the example and the associated code. Plot the VOI as a function of drill-
ing cost, but also vary the accuracy of the AVO data and the EM resistivity data and 
study the effects.

2.	 Suppose that the EM resistivity data are only collected along the two center lines. 
Compute the VOI of this partial information-gathering scheme and compare with total 
testing.

3.	 What if it is not possible to freely select units in the grid? Instead, the decision maker 
can only select blocks of variables. The grid is split into 25 disjoint blocks of size 5 × 
5. The decision maker will select a block if the sum of expected revenues from the 25 
cells in a block is larger than the sum of the costs. We first assume additive revenues 
and costs. Compute the VOI of total seismic AVO and EM testing.

4.	 Decisions are made at blocks, as in Step 3, but now there are shared costs. If the block 
is selected, there is only one common cost. Decrease this cost from 25 Cost to 0. Plot 
the VOI results of total seismic AVO and EM testing.

7.4  Hands on: mine planning and safety

These projects pertain to the decision situations for mining and tunneling presented in 
Section 6.4. The reader is advised to go through that section before starting on the exercises.

7.4.1  I love rock and ore: mining oxide grade example

These exercises require downloading a data set from the website and running and modify-
ing MATLAB files. Note that the data set has aspects similar to the real data but has been 
modified for confidentiality reasons. Of course, if you have similar data of your own, you 
may try the same exercises.

Part I: data analysis

1.	 Cross-plot the available X-ray fluorescence (XRF) and X-ray meter (XMET) data and 
plot each XRF and XMET along with the mineralization covariate. Tune model param-
eters for the regression parameter and the nugget effect from the XMET and XRF data. 
(Note that the numbers here are different from the ones in Section 6.4.1 because we 
have modified the original data set.)

2.	 Estimate the variogram from the XMET data. Assume an isotropic covariance model.
3.	 Use your established model from Steps 1 and 2, as well as the locations of data, to pre-

dict (by Kriging) the oxide grade at the selected blocks (download from the website). 
Predict also the sum of oxide grades at these blocks and the associated variance.
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Part II: VOI analysis

1.	 All blocks will be utilized if the aggregated value from all blocks exceeds the cost of 
development. Use the Gaussian model to compute the analytical posterior value of 
XMET data in all boreholes. Compute the VOI.

2.	 The planned data consist of 10 boreholes (of equal length and sampling intensity). 
Suppose that we can collect XMET data in only one borehole. Which one is most valu-
able from a VOI perspective?

3.	 Do Exercises 1 and 2 with XRF data instead of XMET data and compare the results.

7.4.2  We will rock you: rock hazard example

The exercises are done in MATLAB, with the code available at the website. Note that the 
data have been slightly modified for confidentiality reasons.

Part I: data analysis

1.	 Make a histogram of the joint frequency data. Compute the average of the data. 
Compare the empirical results with the fitted Poisson distribution. without any hierarch-

ical spatial modeling. The Poisson distribution is p y k
k

i

k

=( ) = −( )λ λ
!

exp , k = 0 1, ,...,   

and parameter λ̂ = y  is the sample mean.
2.	 The marginal likelihood for covariance parameters θ can be written as fol-

lows:  p
p p

p
y

x y x
x y

;
; |

| ;
θ

θ
θ

( ) =
( ) ( )

( ) . Expand the numerator in an exponential quadratic 

form and show how an iterative optimization of the posterior would proceed. Use the 
MATLAB code to optimize the Laplace approximation of the marginal likelihood.

Part II: VOI analysis

1.	 Use the analytic forms for the prior and posterior values to conduct VOI analysis for 
full samples and subsample the joint frequency borehole data to only every second or 
fourth sample. Discuss the results.

2.	 Perform VOI analysis for individual boreholes. Assume a fixed price for drilling per 
meter. Study which borehole is the most valuable for acquiring joint frequency data.

3.	 Instead of the joint counts, one can imagine getting direct measurements of the log 
joint intensity x s( ) at selected sites, possibly through geophysical testing. Assume 
imperfect measurements of the log intensity at all rock hazard sites of interest, 
y x Nj js s( ) = ( ) + ( )0 2,τ , j N= 1,..., . Study the effect of accuracy τ  and compare with 
the joint counts in Steps 1 and 2.

7.5  Hands on: groundwater management

This example considers decisions about groundwater recharge and was described in 
Section  6.5. The reader is advised to go through that section before starting on these 
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exercises. We split the hands-on project into two parts: the first uses Netica software; the 
second uses the BNT.

7.5.1  Part I: salt water wells in my eyes – groundwater monitoring in Netica

We will describe how to use the software Netica (obtainable from www.norsys.com) to 
build and solve the influence diagrams. The free download version running in the limited 
mode will suffice for this example. After downloading and extracting, double-click on the 
Netica icon to start. From the File menu, start a new network. (Alternatively, you can 
download the pre-built network from the website for the book.) In Netica, nodes represent-
ing uncertainty or chance nodes are called “nature” nodes. In addition, there are decision 
nodes, utility (or value) nodes, and deterministic or constant nodes. Add a nature node to 
the new network representing the geological uncertainty.

By right-clicking and going to the properties of this nature node, fill out the 
name (“Channels,” say) and the three states (“MixedChannels,” “NEChannels,” and 
“SEChannels”). Do not assign any numeric vales to the three discrete states. In the table 
for this node (right-click), assign the prior probabilities for each geological scenario. 
Add a decision node (“Recharge”) with four states (“NoRecharge,” “CentralRecharge,” 
“NorthRecharge,” and “SouthRecharge”) and finally a utility (“Value”) node. Connect 
the “Channels” node and “Recharge” node to the “Value” node by arrows as shown in 
Figure 6.40. Fill in the table for the “Value” node as shown in Table 6.5.

1.	 The prior value or expected utility is obtained by selecting “compile” and “optimize 
decisions” from the “Network” menu at the top. If “compile” is grayed out, it indicates 
that the network has already been compiled. Netica solves the network by internally 
building a junction tree for fast inference. The expected utility is reported in the mes-
sages window to be 12.47, and the optimal decision is “NoRecharge.” You may need 
to bring up the message window to see the computed expected utility. The value with 
perfect information can be calculated by first adding a link from the “Channels” node 
to the decision node. This link indicates that the uncertain factor will be known before 
the decision. Optimizing the decision will result in 12.8 as the expected utility, repre-
senting the posterior value with perfect information.

2.	 Let us add a node (chance or “nature” node in Netica language) for the transient elec-
tromagnetic method (TEM) data to our original influence diagram. This network is 
shown in Figure 6.41. Fill in the reliabilities. Select “optimize decisions” from the 
“Network” menu at the top. The expected utility (12.78) is close to the value with 
perfect information (12.8) obtained earlier. If we change the table to represent perfect 
information (“1” on the diagonal and “0” elsewhere), we get back 12.8 as the expected 
utility. The value with imperfect information is 12.78, so the value of this imperfect 
information is 12.78 − 12.47 = 0.31.

3.	 A different mode of electromagnetic survey, a land-based survey, has coarser spacing 
and hence lower resolution. The reliability is as shown in Table 7.3.
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	 On average, the three different channel scenarios are correctly identified about 60% of 
the time. The northeast channels are not very likely to be misinterpreted as southeast 
channels (only 5% of the time), and vice versa, but the northeast and southeast chan-
nels can be misinterpreted as mixed channels 35% of the time. This survey is somewhat 
cheaper, but is this any good? How much should the decision maker be willing to pay 
to purchase this information?

4.	 Compute the VOI for the groundwater example when the three different channel sce-
narios have unequal prior probabilities: [0.15, 0.15, 0.70]. Compute both the value of 
perfect information and the value of imperfect EM data with different reliability.

7.5.2  Part II: salt water wells in my eyes – groundwater monitoring in BNT

In this example, we will use influence diagrams in MATLAB to solve the same ground-
water recharge case as in Section 7.5.1. You will need to download the BNT for MATLAB 
written by Kevin Murphy. This is available at http://code.google.com/p/bnt/.

1.	 After installing BNT, use the help documentation and familiarize yourself with the 
basic BNT functions for creating simple Bayes’ nets and influence diagrams.

2.	 Create a three-node graph with nodes “geology,” “recharge” and “value,” where both 
“geology” and “recharge” are parents of “value.” Define the number of states for each 
node:  three states for “geology,” four for “recharge,” and one for “value.” Use the 
description from the previous exercise or from Section 6.5 to name the states. You can 
also follow along with the associated m-file on the book website. Using this graph as 
an input to the “mk_limid” BNT function, create an influence diagram with “geology” 
as a “chance” node, “recharge” as a “decision” node, and “value” as a “utility” node. 
Assign the probability tables for the geology node using “tabular_CPD.” Start with 
equal probabilities for all three geological scenarios. Assign the table for the value 
node using “tabular_utility_node.” Be careful about the ordering of the value num-
bers from Table 6.5. The values for node numbered 1 (“geology”) cycles uncertain 
outcomes first, followed by the different recharge alternatives. Thus, the ordering of 
the values in the table correspond to:  (geology_scenario_1, recharge_1), (geology_
scenario_2, recharge_1), … ,(geology_scenario_n, recharge_1), (geology_scenario_1, 
recharge_2), and so on. Assign uniform initial policies using “tabular_decision_node.” 

Table 7.3.  Reliability measure for the land-based electromagnetic survey

Channels
Interpretation of 
Northeast

Interpretation of 
Mixed

Interpretation of 
Southeast

Northeast Channels 0.6 0.35 0.05
Mixed Channels 0.2 0.6 0.2
Southeast Channels 0.05 0.35 0.6
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Next, set up the junction tree inference engine (“jtree_limid_inf_engine”), and solve 
the influence diagram (“solve_limid”) to get the prior value (maximum expected util-
ity) and the optimal strategy (“strategy” function). Is this consistent with the calcula-
tions using the Netica influence diagram and the decision tree in Section 6.5?

3.	 Compute the value with perfect information. Add an arc from “geology” to “recharge,” 
and re-solve the influence diagram.

4.	 Compute the value with imperfect EM information. Add another “chance” node, “tem,” 
to the graph. (In the MATLAB m-file, the “tem” node is numbered 2). This represents 
the imperfect EM data and will have three states (“interpMixed,” “interpNE,” and 
“interpSE”). Add arcs from “geology” to “tem” and from “tem” to “recharge.” Assign 
the CPD tables for the “tem” node using information given in Section 6.5. Solve the 
influence diagram for the posterior value and, finally, get the value of imperfect infor-
mation. Compute the VOI for both high-resolution and low-resolution (land-based) 
EM data.

5.	 Assign unequal prior probabilities to the geological scenarios with more probability 
for the “SEchannels” scenario, and study the trade-offs between these prior geological 
probabilities and the reliability of the EM data.
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Appendix: selected statistical models and  
sampling methods

The first five sections (Appendices A.1–5) provide further mathematical descriptions of 
statistical models that are used in the book. The final section (Appendix B) presents a var-
iety of sampling methods.

Appendix A.1:  Gaussian distribution

The multivariate Gaussian model is fundamental in statistics. We present some proper-
ties of the Gaussian distribution; consult, e.g., Mardia et al. (1980), Anderson (2003), or 
Johnson and Wichern (2012) for more detailed discussions.

A.1.1  Definition and properties

The Gaussian pdf for random variable x = ( )x xn1,..., , viewed as an n ×1 vector, with model 
parameters µ  and Σ  is

	
p N

n

t
x x x( ) = ( ) = − −( ) −( )



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− −µ µ µ,
( )

| | exp ,
/
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2

1

22
1 2 1

π 	
(A.1)

with continuous sample space −∞ < < ∞xi , i n= 1,..., . The distribution is recognized by 
the exponent of a quadratic form in x. The normalizing constant in front of the exponent 
ensures that  p dx x( ) =∫ 1.

Joint and marginal probabilities

For the Gaussian distribution:
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(A.2)

The marginal pdf p x Ni i ii( ) = ( )µ ,Σ  and Cov x xi j ij,( ) = Σ .

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.009
http:/www.cambridge.org/core


Appendix A.1332

Conditioning

Let  be a subset of the indices 1,...,n{ }. The marginal pdf of block variable x is 
p Nx  ( ) = ( )µ , Σ , where we pick entries identified by  in the mean vector and in the 
rows and columns of the covariance matrix.

If we split the random vector into two blocks, x
x
x

=





L

K
, with mean µ

µ
µ

=




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L

K
 and 

covariance structure Σ
Σ Σ
Σ Σ

=






L LK

KL K
, the conditional pdf of x given x is also Gaussian 

and has the mean and covariance matrix
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(A.3)

The conditional covariance structure can be recognized from the inverse covariance 
matrix Q = −Σ 1, sometimes called the precision matrix. Assuming the same block structure 

Q
Q Q
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(A.4)

From the quadratic form in the exponent, p( | ) N ,x x Q Q x QL K L L LK K K L= − −( )( )− −µ µ1 1 . 
The block entries in the precision matrix are defined via Q IΣ = – i.e.,
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(A.5)

and we can identify terms in Equation (A.3).
For a single variable, this means that the full conditional mean and variance equal

	 E x
Q

Q x Var x
Q

i i i
ii

ij j j
j i

i i
ii

( | ) , ( | ) .x x− −= − −( ) =∑µ µ1 1

≠ 	
(A.6)

These full conditional calculations can sometimes be simplified by imposing conditional 
independence. This is represented by 0 entries in the precision matrix Q, giving a sparse 
structure. Instead of summing over all j i≠ , only the modeled non-zero entries take part 
in Equation (A.6). This sparse structure of the precision matrix relies on conditional inde-
pendencies modeled by the Markov property. This is critical for graphical representations, 
where sparseness facilitates modeling and interpretation – see, e.g., Whittaker (1990) and 
Meinshausen and Buhlmann (2006). Special cases include time series models (Brockwell 
and Davis 2009) and Gaussian Markov random fields (MRFs) (Rue and Held 2005). The 
literature on sparse matrix computation is enormous because it plays a prominent role in 
numerical analysis. For instance, a finite difference approximation to a differential equa-
tion involves solving sparse linear systems Qx = µ . Having a sparse structure is also key 

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.009
http:/www.cambridge.org/core


Gaussian distribution 333

to the success of iterative solvers of large linear systems such as conjugate gradients – see, 
e.g., Golub and van Loan (1996).

Linear transformations

A transformation y Fx b= + , for a size m n×  fixed matrix F and known length m vector b,  
has Gaussian pdf p N ty F b F F( ) +( )= µ , Σ . In particular, a Gaussian variable can always 
be transformed to independent zero-mean and unit-variance variables z = ( )z zn1,...,  by set-
ting F L= −1 and b L= − −1µ as follows:

	 z y L x x Lz LL= = −( ) = =−1 µ µ, , .+  t Σ 	 (A.7)

The result can be derived from the transformation formula of random variables:
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(A.8)

The matrix L is called the Cholesky factorization of the covariance matrix Σ. It is a lower 
triangular matrix – i.e., it has 0 entries in the upper right triangle.

This important transformation in Equation (A.7) ensures that many computations for 
dependent normal distributed random variables can build on known results about independ-
ent univariate variables. As an example, consider the probability that the random vector 
falls within distance unit 1 from the mean, as defined by the covariance ellipsoid – i.e.,

	 p p d
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(A.9)

The computation is straightforward once we transform to independent variables. It trans-

lates to the sum of squared independent standard normal variables zi
i

n
2

1

1
=
∑ < , and this is dir-

ectly available from the chi-square distribution since zi
i

n
2

1=
∑  is chi-square distributed with 

n degrees of freedom. Note that the probability of outcomes within the circle decreases 
quickly as a function of the dimension n (Table A.1). The chance of a sample close to the 

Table A.1.  Probability of having standard normal samples within the unit circle and the 
unit square displayed as a function of the variable dimension

Dimension of Variable 1 2 3 4 5 10 20

p
tx x−( ) −( ) ≤( )−µ µΣ 1 1 0.68 0.39 0.20 0.09 0.04 0.0002 2e-10

p zi
i

n

− < <( )
=

∏ 1 1
1

0.68 0.46 0.31 0.21 0.14 0.02 4e-4
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mean gets extremely small in high dimensions as it is always in the tail of the distribution. 
The probability of all independent variables occurring within the unit square is also dis-
played in Table A.1.

Consider also the linear transformation y F ex= + , where p Ne T( ) = ( )0,  and x and e 
are independent. The pdf of y is p N Ty F F F T( ) = +( )µ, Σ . The joint distribution of x and 

y is Gaussian with mean 
µ
µF
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. The conditional distri-

bution of x given y is also Gaussian with mean and variance:
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Parameter estimation

For multiple data sets of x x1,..., B, the empirical mean and covariance estimates are
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(A.11)

Suppose instead that the mean is modeled by µ = Hβ, where the size n k×  matrix H  
consists of known explanatory variables and that β is a length k vector of fixed but unknown 
regression parameters. If the data contain total perfect information y x=  and the prior 
covariance Σ  is known, the maximum likelihood estimator (MLE) of the regression param-
eter β equals that of the weighted least-squares estimate:

	
β Σ Σ= ( )− − −H H xt t1 1 1H . 	 (A.12)

If the covariance matrix is Σ = σ2 I , this simplifies to the ordinary least-squares 

β = ( )−
H H xt tH

1
. An estimate of the noise level is σ̂2 1

= −( ) −( )
n

t
x H x H β β . This esti-

mate is asymptotically unbiased, but for a finite sample we may use n k−  in the denomin-
ator instead to achieve an unbiased variance estimate.

Assume that we have imperfect information y = ( )y ym1,...,  and the model is

	 p N p Nx H y x Fx T( ) = ( ) ( ) = ( )β, , | , .Σ 	 (A.13)

The marginal likelihood of the data is p Ny G C( ) = ( )β,  for G FH=  and C F F T= Σ T + .  
The log-likelihood as a function of β and unknown fixed nuisance parameters θ in the prior 
covariance matrix Σ Σ= ( )θ , and/or the likelihood noise matrix T T= ( )θ , becomes

	
l

m t
( , ) log( ) log | | .θ β β β= − − − −( ) −( )−

2
2

1

2

1

2
1π C Cy yG G

	
(A.14)

The MLEs of β and θ are obtained by

	 ˆ ,ˆ , .β θ θ β( ) = ( ){ }argmax l
	

(A.15)
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For fixed θ, the MLE of β is analytically available. We have

	

dl

d
t t t t

β
β β β= − = = = ( )− − − − −G y G Gy G G G y.C C C C1 1 1 1 1 0, ˆ ˆ( ; )θ

	
(A.16)

A direct calculation shows that Var t( )β = ( )− −
G GC 1 1

.
Treating the regression parameter β as fixed, the MLE of nuisance parameters θ can be 

obtained by numerical maximization. Set z y G= − β, and let Q C= −1. Denote a component 
of θ by θr, r d= 1,..., . (In our setting of Chapter 4, the components are prior variance σ 2, 
correlation decay η, nugget τ 2, and d = 3.) The first derivative (score) of the log-likelihood 
in Equation (A.14) with respect to element θr becomes

	
dl

d

d

d

d

dr r

t

rθ θ θ
= −







+
1

2

1

2
trace Q

C
Q

C
Qz z,

	
(A.17)

where we have used 
d

d

d

dr r

log | |C
Q

C
θ θ

=






trace , 
d

d

d

d

t

r

t

r

z z z zC
Q

C
Q

−
= −







1

θ θ
.

The expected Hessian is

	 E
d l

d d

d

d

d

dr rr r

2 1

2θ θ θ θ’ ’

,






= −






trace Q
C

Q
C

	
(A.18)

where we used E Vartz z zΣ Σ( ) = ( )( )trace , assuming E tz( ) = 0.

Algorithm: the iterative Fisher scoring algorithm for obtaining  
the MLE of β and θ

Initiate β0 , θ0  by least-squares estimation and empirical variograms or other approaches.
Iterate for b = 0 1, ,, until convergence:

C C= ( )θb

β βb b t t+ + − − −= =1 1 1 1 1( ; ) [ ] ,y G G G yθ C C
z y G= − +βb 1

Q C C
C

= =
( )

=−1 1, , , ,*
r

b

r

d

d
r d

θ
θ



u
dl

d
r dr

r
r

t
r= = − ( ) + =

θ
1

2

1

2
1trace QC QC Q* * , ,...,z z

V E
d l

d d
r r d

r r
r rrr trace′ ′{ } =







= − ( ) =
2 1

2
1

θ θ ’

*
’

* , , ,..., .QC QC

θ θb b+ −= +1 1V u.

b b= + 1.
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It is convenient to parameterize the model such that θr is on the real line. Asymptotically, 
as the number of data n → ∞, the MLEs are unbiased and Gaussian distributed with vari-

ance obtained from the inverse Hessian E
d l

d

2

2

1

θ






−

 and E
d l

d
t

2

2

1

1 1

β






= ( )
−

− −
G GC . The speed 

of convergence to this asymptotic result also depends on the design of experiment as well 
as the true model parameters.

Note that these derivations are for fixed parametric covariance structure such as in spa-
tial covariance models. In a graphical model with an unknown conditional independence 
structure, there have been several attempts trying to specify the conditional independence 
structure from data. This is more difficult than estimating the parametric covariance matrix. 
If the non-zero structure cannot be specified by auxiliary data or expert opinion, it is pos-
sible to try novel techniques for sparse estimation – see, e.g., Meinshausen and Buhlmann 
(2006), Friedman et al. (2009), and Khare et al. (2015).

Sampling

There are several ways to sample random Gaussian vectors. The preferred approach 
depends on the situation, especially on the structure of the covariance matrix. We present a 
common method based on Cholesky factorization of the covariance matrix.

Algorithm: sampling from p(x) = N(μ, Σ)

1.	 Find the Cholesky factorization Σ= LLt of the variance–covariance matrix.
2.	 Sample independent standard Gaussian variables zi  from N 0 1,( ), i n= 1,..., .
3.	 Set x Lz=µ+ .

The method relies on sampling independent standard Gaussian variables, which is a 
built-in routine in most software (see Appendix B).

Alternative approaches rely on different decompositions of the covariance structure – for 
instance, the eigendecomposition of Σ  – see, e.g., Gray (2006). If the covariance matrix 
can be embedded in a circulant matrix, methods from the spectral domain are immediately 
applicable. In spatial applications, this can often be achieved by using a regular grid and 
wrapping the grid around to form a torus. Under stationarity assumptions, the covariance 
matrix is then fully defined by the covariance from one point to all the others (length n, not 
n n −( )1 2/ ) . The discrete Fourier transform of the resulting matrix and the inverse Fourier 
transform of the equal size matrix of independent variables give a realization of the random 
field with the specified covariance structure in Σ  – see, e.g., Chan and Wood (1997). The 
posterior is likely not stationary, but it may be possible to re-use unconditional samples.

If the precision matrix is sparse, it is more efficient to use the Cholesky factorization of 
Q = −Σ 1 instead of the covariance matrix Σ . The Cholesky factor of the precision matrix is 
not as sparse as the precision matrix, but the fill-in is rather small for many models (Rue 
and Held 2005).
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Assume again the Gaussian hierarchical model for imperfect information – i.e., a prior 
pdf p Nx( ) = ( )µ,Σ  and a likelihood model p Ny x Fx T| ,( ) = ( ). Conditional samples can 
be drawn directly based on the Cholesky factor of the conditional covariance matrix in 
Equation (A.10). Alternatively, samples can be generated as follows, re-using the uncondi-
tional samples as in the following algorithm.

Algorithm: sampling conditional Gaussian samples given linear Gaussian data y

1.	 Draw an unconditional sample x  from p Nx( ) = ( )µ,Σ .
2.	 Sample a noise term e from p Ne T( ) = ( )0, .
3.	 Set a conditional sample x x F F F T y e Fx= + +( ) + −( )−Σ Σt t 1

.

A direct calculation shows that the mean and covariance of the expression in Step 3 
match those in Equation (A.10). This conditional sampling method is particularly useful if 
the dimension of the data m is small relative to the dimension n of the distinction of interest. 
If the size of data is large, the inverse in Step 3 may be time consuming. Again, it is possible 
to factorize the matrices in different ways.

In the context of geostatistical simulations, drawing from a multivariate Gaussian dis-
tribution can be done sequentially using the chain rule of probability distributions. This is 
the so-called sequential Gaussian simulation (SGSIM) algorithm described in Chapter 4.

A.1.2  Decision analysis and VOI results

We show analytic results for computing the posterior value for Gaussian linear models. The 
following result is a known property of the Gaussian distribution, see e.g. Schlaiffer (1959) 
and Bickel (2008). For a Gaussian variable w with mean m and variance r2:

	

E w w p w dw wp w dw m rz z dz

m

m
r

max , max ,0 0
0

{ }( ) = { } ( ) = ( ) = +( ) ( )

=

∫ ∫ ∫
∞

−

∞

φ

φφ φ φz dz r z z dz m m
r r m

r

m m
r r m

r

m
r

m
r

( ) + ( ) = − −( )( ) + −( )
= ( ) +

−

∞

−

∞

∫ ∫ 1 Φ

Φ φ(( ),
	

(A.19)

where the cumulative distribution of the standard Gaussian is Φ( )z =
−∞

−∫
1

2

2

2

π

z x

e dx, and its 

pdf is φ z e
z

( ) = −1

2

2

2

π
. The solution uses a transformation of variables z

w m

r
=

−( )
 to get 

standard normal integral expressions. It further uses z
z

dz
z

constexp exp−





= − −





+∫
2 2

2 2
 

as well as symmetry properties of φ z( ) and Φ( )z .

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.009
http:/www.cambridge.org/core


Appendix A.1338

Similar results hold for an exponential utility function – see, e.g., Bickel (2008). Consider 
utility function u w w( ) = − −( )1 exp γ . Then

	

exp exp exp

exp

−( ) ( ) = −( ) −
−( )









=

∫ ∫γ γw p w dw w
r

w m

r
dw

r

1

2 2

1

2

2

2π

π
−− +

( )
−








=
( )

−







∫
w

r

w m r

r

m

r
dw

m r

r

m

r

2

2

2

2

2

2

2 2

2

2

2

2 2

2

−

−
2

γ

γ
exp


 − +

( )
−

( )









= +

∫
1

2 2 2

2

2

2

2

2 2

2

2

π

− −

−

r

w

r

w m r

r

m r

r
dw

m

exp

exp

γ γ

γ γ rr2

2




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,
	

(A.20)

where we expanded the Gaussian quadratic form to get the integral over the N m r r−( )γ 2 2,  
pdf. The certain equivalents in Section 3.2 are computed by the inverse utility function of 

this integral solution  – i.e., CE m
r

m
r

=
−

− + − +









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= −
1

1 1
2 2

2 2 2

γ
γ γ γ

log exp . For VOI 

computations, related expressions exist, but the integrals are incomplete – i.e.,

	 exp exp−( ) ( ) = +





−
− −( )










∞

∫ γ γ γ α γ

α

w p w dw m
r m r

r
−

2

2 2 2

1 Φ



 .

	
(A.21)

See Bickel (2008) for details regarding VOI calculations for exponential utility  
functions.

Assuming again a risk-neutral decision maker, we next show analytical expressions for 
the two-action decision situation and decoupling of the value function. We assume that 
the distinction of interest x are profits with prior pdf p Nx( ) = ( )µ, Σ  and that informa-
tion is obtained by a linear model y F ex= + , p Ne T( ) = ( )0, . The marginal distribution of 
data is p N Ty F F F T( ) = +( )µ, Σ .

The conditional mean E T Tx y F F F T y Fx y| |( ) = = +( ) −( )−µ µ µ+ Σ Σ 1
 depends lin-

early on the random data. The distribution of µ x y|  is thus Gaussian with

	
E

Var T T

µ µ

µ

x y

x y F F F T F R

|

|

,

.

( ) =

( ) = +( ) =−Σ Σ Σ1

	

(A.22)

In the situation with low decision flexibility (select all sites or none), we have the 
posterior value

	 PoV E x p d w pi
i

n

y y y y y( ) =

















( ) = ( ){ }

=
∑∫ max , | max ,0 0

1

yy y( )∫ d ,
	

(A.23)

where the expected profits w w E xi
i

n

= ( ) =




=

∑y y
1

|  has a pdf derived from Equation (A.22):
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	 p w N r r Rw w w i
i

n

w kl
l

n

k

n

( ) , , , .= ( ) = =
= ==
∑ ∑∑µ 2

1

2

11

µ µ
	

(A.24)

The integral in Equation (A.23) is multivariate, but the only variable that matters is 

the linear combination of the data  – i.e., w E xi
i

n

=




=

∑
1

| y , which takes part within the 

maximum. As a consequence, we can integrate over the univariate distribution of w. 
Mathematically, we do a transformation of variables and integrate over w, w−( ) instead of y.  
The second component w− contains m −1 dimensions of the data that are independent of w. 
Since the variable w− is not involved in the maximization, it integrates out. We get

	 PoV E x p d w p wi
i

n

y y y y( ) =




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


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


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( ) = { } ( )

=
∑∫ max , | max ,0 0

1

ddw∫ ,
	

(A.25)

and the solution is similar to that in Equation (A.19). From Equation (A.24) we get

	 PoV E x p d r ri
i

n

w
w

w
wy y y y( ) =





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
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(A.26)

For the case with high spatial flexibility (select any site) and a decoupled value function,

	 PoV E x p d w p di
i

n

i
i

n

y y y y y y y( ) = ( ){ } ( ) = ( ){ } ( )∫∑ ∫∑
= =

max , | max ,0 0
1 1

,,
	

(A.27)

where the expected profits are E x w wi i i| y y( ) = ( ) = , with Gaussian pdf p w N ri i i( ) ,= ( )µ 2 , 
where r Ri ii

2 =  are the diagonal elements of matrix R in Equation (A.22). Again, the integrals 
are multivariate over the entire sample space of data y, but in each integral only the linear 
combination of data is relevant for the maximization. We get

	 PoV E x p d w p w dwi
i

n

i i i
i

n

y y y y( ) = ( ){ } ( ) = { } ( )∫∑ ∫∑
= =

max , | max , ,0 0
1 1 	

(A.28)

and using the closed-form solution in Equation (A.19) and the parameters in Equation (A.22):

	 PoV E x p d r r ri
i

n

i
i i

i
i

i
y y y y( ) = ( ){ } ( ) = ( ) + ( )



∫∑

=

max , |0
1

µ µ µΦ φ 
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∑
i

n

1

.
	

(A.29)

Appendix A.2:  Generalized linear models

A.2.1  Definition and properties

Generalized linear models (GLMs) are very popular in statistics, and we list some proper-
ties of GLMs that are directly useful for this book. Excellent textbooks on GLMs include 
McCullagh and Nelder (1989) and Dobson and Barnett (2008). Extensive content related 
to these models is available in Demidenko (2004).
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Table A.2.  The pdf of the binomial with ntrial trials and success probability p and the 
Poisson distribution with intensity λ. For the binomial distribution, the probability 
of success depends on the latent variable via a logistic transform. For the Poisson 
distribution, the intensity depends on the latent variable via a log transform

Probability Mass Function (pdf) Link

Binomial p y k
n

n k k
p p k ntrial

trial

k n k
trial

trial=( ) =
−( ) −( ) =−!

! !
, , ,..,1 0 1 p

x

x
=

( )
+ ( )
exp

exp1

Poisson p y k
k

k
k

=( ) = −( ) =
λ λ

!
exp , , ,..0 1 λ = ( )exp x

Table A.2 gives the univariate pdfs of the Poisson and binomial distributions. They are 
the two most common distributions for discrete response GLMs. The rightmost column 
shows the link functions, where the variable x is on the real line. Here, the inverse link 
functions are logistic and log variables.

Joint model

Assume that we have data y = ( )y yn1,...,  and possibly some known covariates, organ-
ized in matrix H , as in Appendix A.1. In a hierarchical framework, we regress the 
latent variable x = ( )x xn1,...,  on the covariates. We set p Nx( ) = ( )µ, Σ , where µ = Hβ  
and Σ Σ= ( )θ  as in Appendix A.1. We assume that the data are conditionally independ-
ent p y p y xi i i i( | , ) |y− = ( )x , i n= 1,..., .

A GLM is straightforward to simulate based on the Gaussian model and the 
likelihood.

Algorithm: sampling from a GLM

1.	 Draw a random Gaussian sample x  from pdf p Nx( ) = ( )µ,Σ .
2.	 For each i n= 1,..., ,  sample yi  using the conditional independence 

likelihood p y xi i|( ) .

Conditioning

The posterior pdf p x y|( ) is not available in closed form but can be approximated in vari-
ous ways. Maximization of the posterior is identical to

	 ˆ argmax | .x y x x= ( ) ( ){ }x p p 	 (A.30)
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Denote by Σ− +1 D̂ the negative Hessian (second derivatives) of log |p py x x( ) ( )( ) 
evaluated at the posterior mode x̂. Because of the conditional independence, the matrix 
D̂ is diagonal. Straightforward differentiation of the form in Table A.2 gives the i-th 
element ˆ ˆ,Di i i= ( )exp x  for the Poisson model. The binomial exponent is available from 

Table A.2; log
!

! !
log exp

n

n k k
kx n xtrial

trial
trial−( )







+ − + ( )( )1 , and differentiation results 

in  ˆ ˆ

ˆ,D
n

i i
trial i

i

= −
+

( )
( )

exp

exp

x

x1
.

A Gaussian approximation to the posterior has the mean and covariance matrix

	 E Varx y x, x y D| | .( ) ≈ ( ) ≈ +( )−
−



Σ 1
1

	
(A.31)

Assume that the goal is to predict x xj j= ( )s0,  at a site s0, j. We let E xj j( ) = µ ,and 
Var x j j( ) = σ 2, and Σ j,* denotes the covariance between x j and x. By the Gaussian proper-
ties from Equation (A.3), 

	

κ µ

ξ σ
j j j j

j j j j j
t

E x
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= ( ) = + −
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2 2 1
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(A.32)

Moreover, we can approximate the conditional distribution given data y by the Laplace 
approximation – see, e.g., Evangelou and Zhu (2012):

	

ν µ

ζ σ

j j j j

j j j j

E x

Var x

= ( ) ≈ −
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
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µ
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Σ j
t
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(A.33)

Note the similarity with the Gaussian case in Equation (A.10) and the differences in the 
matrix inverse expressions.

Parameter estimation

The estimation of unknown regression parameters β and covariance parameters θ can be 
done via the Laplace approximation of the marginal likelihood. From Bayes’ formula and 
the Gaussian approximation, this is defined by

	 ˆ ; , ˆ
ˆ ˆ,

| ˆ ˆ

ˆ |

| ˆ ˆ

ˆ
p p

p N

p p p p
y y

x

y x x

x y

y x x
β

Σ
θ( ) = ( ) = ( ) =

( ) ( ) ( ) ( )
+−1 DD( )( )−1

,

	

(A.34)

where the denominator is the Gaussian approximation to the posterior defined by  
Equation (A.31), while the numerator is defined by the model.

The maximum likelihood estimate (MLE) must be computed numerically.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.009
http:/www.cambridge.org/core


Appendix A.2342

The algorithm may overshoot, and it could be wise to apply more robust updating meth-
ods, especially in the beginning of the iterative optimization scheme.

A.2.2  Decision analysis and VOI results

We derive the approximate VOI computations for the spatial GLM with Poisson likelihood. 
Suppose that we have the situation with a free selection of sites j N= 1,...,  with two alterna-
tives at each site. Using generic notation with a log intensity x j, revenues denoted Rev per 
random event at a site, and fixed costs denoted Cost, the prior value can be written

	 PV E xj
j

N

= ⋅ ( )( ) −{ }
=

∑max ,Rev exp .0
1

Cost
	

(A.35)

The setting is the same for minimizing expenses (maximizing negative expenses) and 
maximizing profits. For the situation described in Section 6.4.2, the value of Rev is tied to 
expenses associated with random rock fall when we choose the alternative of not adding 
rock support. Rock fall is again connected with the random number of joints with log inten-
sity x j. (Here, we assume that unit volume Vj = 1; otherwise, the expected counts become 
V E xj j(exp( )).) The value of Cost is the expenses associated with the alternative of adding 
support with a non-random outcome. If we subtract the fixed Cost for both alternatives, we 
get the formula in Equation (A.35).

From the Gaussian modeling assumptions, 
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2
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,

	

(A.36)

which can be inserted in Equation (A.35).

Algorithm: maximum likelihood estimation by the Laplace approximation

�Initiate β0 , θ0 by least-squares estimation and empirical variograms or other approaches.
Iterate for b = 0 1, , until convergence:

1.	 Compute log ; ,p b b
 y β θ( ).

2.	 Approximate the derivatives u and the Hessian V of the approximate log-likelihood.
3.	 β βb bb b+ + −( ) = ( ) +1 1 1, , .θ θ V u
4.	 b b= + 1.
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For the posterior value, we can have partial or total sampling given data y, which are 
Poisson distributed, given the intensity of counts x. Recall that the mean and variance 
in Equation (A.33) depend on y only through x̂. The asymptotic distribution of x̂ is the 
Gaussian with mean µ  and variance

	
R .=Σ Σ ΣE ˆ

ˆ
x +( )−

−
D 1

1

	
(A.37)

The diagonal entries of this matrix are denoted rj
2, j N= 1,..., . Notice the similarity 

between this result and that for the Gaussian models in Equation (A.22). For the Poisson 
model ˆ ˆD ejj

x j− −=1 , so E D ejj
rj j

ˆ
/ˆ

x
− − +=1 22µ , which depends on R itself. We can use iterative 

updates to get R  (Evangelou and Eidsvik 2015).
The posterior value is

	

PoV E x p dj
j

N

y y y( ) = ⋅ ( )( ) −{ } ( )

≈ ⋅
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2
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∞ ∞
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e
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N
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 
Cost

1

eexp / /µ ξ
µ µ

j
j j

j

j

j
j j

j jr
r

r
Cost

r

e e
+ +( ) − −
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


− ⋅

−





2 2

2

2 2 Φ Φ ,,
	

(A.38)

where ej j= −(log( / Rev) / )Cost ξ2 2 , with ξ j defined in Equation (A.32).
The VOI is the difference between the posterior and prior values. Because of the approx-

imations done, this is not necessarily always positive. To ensure positive VOI, we can apply 
double expectation E E xexp |( )( )( )y  and use the Laplace approximation on the expression 
for the prior value as well. This gives

	 PV
r

Cost
j

j

N
j j= ⋅ + +







−










=
∑max ,Rev exp .

1

2 2

0
2 2

µ
ξ

	
(A.39)

With these established analytical results, it is possible to conduct VOI analysis without 
Monte Carlo approximations.

Appendix A.3:  Markov chains and hidden Markov models

A.3.1  Definition and properties

There is an enormous body of literature on Markov chains and stochastic processes – see, 
e.g., Taylor and Karlin (1994) or Lawler (2006) – and on hidden Markov models – see, e.g., 
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MacDonald and Zucchini (1997). Again, our focus is on providing more background for 
the results used in this book.

Denote the random variable by x di ∈{ }1, , , i n= …1, , . In the simplest case, there are 
only two discrete states: d = 2. The modeling is based on an ordering in the variables so 
that xi−1 is before xi in some sense. Sometimes this might be an obvious temporal ordering. 
A Markov chain is defined by conditional probabilities and by reducing the conditioning 
from all previous variables to only a subset of the nearest or most recent variables. A lag r,  
or order r, Markov chain is defined by

	 p x l x x p x l x x l di i i i i r=( ) = =( ) =− − −| , , | , , , ,..., .1 1 1 1  	 (A.40)

For a first-order Markov chain

	 p x l x x p x l x l di i i i=( ) = =( ) =− −| , , | , ,..., .1 1 1 1 	 (A.41)

We focus on this first-order Markov chain, but the models and methods easily generalize 
to the r-th order.

Joint and marginal probabilities

The joint pdf for all variables x = ( )x x xn1 2, , ,  in a first-order Markov chain is

	 p p x p x xi i
i

n

x( ) = ( ) ( )−
=

∏1 1
2

| ,
	

(A.42)

where the initial state has pdf p x1( ).
Marginal probabilities are obtained by recursively summing out the previous variables

p x l p x k l d i np x l x ki i
k

d

i i+
=

+=( ) = =( ) = = −= =∑1
1

1 1 1 1( | ), ,..., , ,..., ..
	

(A.43)

Time invariance or time homogeneity entails that the conditional probabilities do not 
depend on the location or time step i – i.e., p x l x k P k li i( | ) ( , )+ = = =1 . These one-step con-
ditional probabilities can be organized in a size d d×  Markov transition matrix

	 P =

( ) ( ) ( )
( ) ( ) ( )

(

P P P d

P P P d

P d

1 1 1 2 1

2 1 2 2 2

1

, , ... ,

, , ... ,

... ... ...

, )) ( )

















... ... ,

,

P d d 	

(A.44)

where P k l
l

d

,( ) =
=
∑

1

1 for all k d= 1,..., . Time-invariant transition probabilities are conveni-

ent because of easy interpretation and the parsimonious structure with just a few unknown 
parameters to specify.

In this situation, the conditional distribution over many time steps is defined by multiply-
ing the transition matrix many times – i.e., P P Pi j− = ⋅...⋅  holds the i j−  step conditional 
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probabilities p x k x li j= =( )| , k l d, ,...,= 1 . Regular Markov chains are characterized by 
the possibility to reach every state, so all entries in P i j−  are strictly positive. This is not 
obvious in general since some states may be absorbing states. For a formal discussion, see, 
e.g., Taylor and Karlin (1994) or one of the other textbooks.

If the distribution for the initial state p x1( ) is defined directly from the distribution asso-
ciated with the transition matrix P, the marginal probabilities in Equation (A.43) are the 
same for every location or time step – i.e., p x p xl li i( ) ( )+ = ==1  for all l d= 1,..., . This 

stationary distribution satisfies p x l p x k P k li i
k

d

( ) ( ) ( , )+
=

= = =∑1
1

 for any l. In vector matrix 

form p pP= , p = = =( )p x p x di i( ), , ( )1  , and p x ki
k

d

=( ) =
=

∑
1

1. The stationary distribu-

tion is an eigenvector of the transition matrix P with an eigenvalue of 1. The stationary dis-
tribution will coincide with the limiting distribution defined from limi

i
→∞ P  under certain 

regularity conditions (see, e.g., Gamerman and Lopes (2006)). This means that no matter 
where we initiate the Markov chain, it will converge to the stationary distribution.

Sampling from a Markov chain

To sample a realization x from a first-order Markov chain, we directly use the model.

Algorithm: sampling a first-order Markov chain

1.	 Draw an initial state x1 from (stationary distribution) p x1( ).
2.	 For i n= −1 1,..., , sample xi+1 from p x xi i+( )1 | .

The class is picked by drawing uniform numbers and comparing the uniform random 
variables with the transition probabilities (see Appendix B).

Conditioning

As we indicated earlier, the forward conditioning over multiple time steps is defined by 
P P Pi j− = ⋅...⋅ , which equals the following recursive calculation for i j n= +1,..., :

p x k x l p x k x q x l P q k p x q x li j i i j
q

d

i j= =( ) = = = =( ) = ( ) = =( )−
=

−∑| , | , |1
1

1
qq

d

=
∑

1

.
	

(A.45)

The full conditional distribution of xi is

	 p x k p x k x q x l P q k P k li i i i i( | ) ( | , ) , , ,= = = = = ∝ ( ) ( )− − +x 1 1 	 (A.46)

and normalization gives
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	 p x k x q x l
P q k P k l

P q k P k l
i i i

k

d
( | , )

, ,

, ,

.= = = =
( ) ( )

( ) ( )
− +

=
∑

1 1

1 	

(A.47)

The backward transition probability of a first-order Markov chain is defined by

p x k x x p x k x l
p x k x l

p x l

P
i i n i i

i i

i

=( ) = = =( ) =
= =( )

=( ) =+ +
+

+

| , , |
,

1 1
1

1



kk l p x k

p x l
i

i

,
.

( ) =( )
=( )+1 	

(A.48)

The backward computation over multiple time steps can be computed recursively,  
i j= −1 1,..., , and

	 p x k x l p x k x q p x q x li j i i i j
q

d

= =( ) = = =( ) = =( )+ +
=

∑| | | .1 1
1 	

(A.49)

Conditional backward sampling proceeds by recursively drawing variables xi, 
i j= −1 1,..., , from the backward transition probabilities in Equation (A.48) rather than 
summing over the subsequent state xi+1 as in Equation (A.49).

Hidden Markov model

The hidden Markov model (HMM) represents a latent distinction of interest x = ( )x xn1,...,  
by a Markov chain, while the measurements y = …( , , )y ym1  provide imperfect information 
about x. Here we assume data size m n= . The most common setting is that of a parsimo-
nious model with a first-order Markov chain with time-invariant transition probabilities 
p x l x k P k li i+ = =( ) = ( )1 | ,  and a likelihood model involving conditional independence 
p y p y xi i i i( | , ) |y x− = ( ). The data could be either discrete or continuous. For the discrete 
data situation, the likelihood model p y k x ki i( | )= =  indicates the accuracy of the meas-
urement. With a continuous model for the data, some of the parameters of the likelihood 
p y x ki i( | )=  depend on the latent class k d∈{ }1,..., . The joint distribution is

	 p p x p x x p y xi i
i

n

i i
i

n

x y, | | .( ) = ( ) ( )





( )



−

= =
∏ ∏1 1

2 1 	
(A.50)

Sampling data y from the marginal distribution p y( ) of an HMM is done by first sampling 
a Markov chain p x( ) as shown earlier and then sampling yi  from p y xi i|( ) for all i n= 1,..., .

The most common goals of analyzing an HMM are (i) marginal likelihood calculation 
p y y;θ( ) = ( )p  for parameter estimation, (ii) evaluation of posterior marginal probabil-
ities p xi | y( ), i n= 1,..., , and (iii) sampling a realization from the posterior p x y|( ). We 
illustrate the forward–backward algorithm for these tasks. For more background, see Scott 
(2002). The algorithm is based on recursively summing out one latent variable at a time. 
The first step is a forward calculation that defines the marginal likelihood. Some expres-
sions from this forward recursion must be stored in memory, as they will be useful in the 
backward recursion.
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Algorithm: the forward recursion involves prediction, updating, and 
marginalization

	

p x y y p x j x k y y

p x

k

k

i i i i i
j

d

j

d

i

=

=

…( ) = = = …( )

=

− − −
=

=

∑

∑

| , , , | , ,1 1 1 1 1
1

1

|| | , , ,x j p x j y yi i i− − −=( ) = …( )1 1 1 1

	

(A.51)
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=
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(A.52)

	 p y y y p y x k p x k y yi i i i i i
k

d

| , , | | , , .1 1 1 1
1

…( ) = =( ) = …( )− −
=

∑
	

(A.53)

Initiate by i = 1 and a predictive distribution p x1( ); proceed using Equations (A.52) and 
(A.53); set i = 2; calculate Equations (A.51), (A.52), and (A.53): set i = 3 , etc., until the last 
time step i n= .

Algorithm: the backward recursion for posterior marginal probabilities

1.	 Start at n with p x y yn n| , ,1 …( ) – i.e., the result of the final forward step.
2.	 Step backward for i n= − …1 1, ,  using

p x k y y p x k y y x l p x y yli i i in i n
l

= …( ) = = … =( ) …( )=+ + +| , , | , , | , ,,1 1 1 1 11
==
∑

1

d

.� (A.55)

Note how the conditional independence assumptions simplify the expressions, i.e. p x x j y y p x x jk ki i i i i= ==( ) = =( )− − −| , , , |1 1 1 1

p x x j y y p x x jk ki i i i i= ==( ) = =( )− − −| , , , |1 1 1 1  and p y x k y y p y x ki i i i i| , , , |=( ) = =( )−1 1 .
The product of all normalizing constants p y y yi i| , ,1 1…( )−  in Equation (A.53) is the mar-

ginal likelihood

	 p p y y yi i
i

n

y( ) = …( )−
=

∏ | , , .1 1
1 	

(A.54)
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The backward steps use p x x p x y y x p x y y xk k ki i i i i i i i= = =( ) = …( ) = …( )+ + + +| , | , , , | , , ,y 1 1 1 1 1 1

p x x p x y y x p x y y xk k ki i i i i i i i= = =( ) = …( ) = …( )+ + + +| , | , , , | , , ,y 1 1 1 1 1 1  from the conditional independence assumptions. The additional conditioning on 
yi+1 allows more efficient re-use of the computations from the forward recursion. The first 
term in Equation (A.55) can be derived from the forward recursion by noticing that
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p x k x y y
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i i i

i i i
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+

+
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p x x k p x k y y
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i1 1 1

1 1

…( ) …( )

=
=( ) = …( )

+

+

+11 1| , ,
.

y yi…( ) 	

(A.56)

All components are given either from the Markov transition model, or the forward cal-
culation. The resulting p x ki =( )| y  is the posterior given all data, which is also called the 
smoothing distribution in this context of the (dynamic) HMM.

Sampling from an HMM is done by backwards sampling.

A.3.2  Decision analysis and VOI results

The decision situation we have used in association with such discrete distinctions of inter-
est involves revenues in the success outcome and costs in the failure outcome(s). This 
means that the prior value is

	 PV p xj
j

N

= ⋅ =( ) −{ }
=

∑max ,Rev ,0 1
1

Cost
	

(A.57)

when we have a high decision flexibility – i.e., a free selection of sites, N n= , and two 
alternatives at each site. Note that the prior may include current data – for instance, mod-
eled by an HMM.

For the posterior value, we can have total or partial imperfect or perfect data y. If data 
(perfect or imperfect) are discrete and only at a few sites, we can directly compute the pos-
terior value as a sum over the data variables – i.e.,

	 PoV p x pj
j

N

y y y( ) = ⋅ =( ) −{ } ( )
=

∑∑ max ,Rev | .0 1
1

Cost
y 	

(A.58)

The forward–backward algorithm is used for the inner probabilities in Equation (A.58). 
The VOI is the difference between this posterior value and the prior value in Equation (A.57).

Algorithm: sampling from the posterior of a hidden Markov model

1.	 Draw xn from p x y yn n| , ,1 …( ) derived in the forward recursion in Equation (A.52).
2.	 For i n= − …1 1, , , draw xi from p x y y xi i i| , , ,1 1…( )+  using Equation (A.56).
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If the data are located at many sites, the outer sum involves a lot of terms. Moreover, the 
probabilities for partial tests y, where  ⊂ 1,...,n{ }, may require specific marginalization 
techniques similar to Equation (A.53). It might then be easier to use Monte Carlo sam-
pling for the outer sum while maintaining the forward–backward recursion to solve for the 
inner probabilities. For partial testing, we can sample the entire vector y and discard the 
non-observed parts to get y. The same holds for continuous data when the outer integral 
cannot be solved numerically. 

Appendix A.4:  Categorical Markov random fields

The categorical Markov random field (MRF) model extends the one-dimensional Markov 
chains and hidden Markov models to the two- and three-dimensional spatial domains. 
There is no longer a natural ordering of the variables, and dependence is modeled either by 
the conditional structure or by potentials over subsets of variables.

A.4.1  Definition and properties

The most common setting represents variables on a regular grid. In two dimensions, the 
grid size could be n n1 2× , where the total number of cells is n n n= 1 2. Let the random vari-
able x di ∈{ }1, , , i n= …1, , , and in the simplest case there are only two discrete states 
d = 2. Similar to the Markov chain, the MRF model reduces the conditioning to the nearest 
neighbors, but in the spatial model there is no natural ordering of the variables of interest 
x = ( )x xn1,..., . One variable does not naturally come before another.

Conditional model formulation

The Markov assumption means that the full conditional distribution reduces to the condi-
tional distribution given variables in the neighborhood – i.e.,

	 p x p x x j Ni i i j i| | ; ,x−( ) = ∈( ) 	 (A.59)

Algorithm: Monte Carlo approximation of the posterior value for  
a Markov chain model or HMM

1.	 Sample data variables yb, b B= 1,...,  from p y( ).
2.	 Compute the posterior probability p x j

b=( )1 | y , j N= 1,..., , and b B= 1,...,  by the 
forward–backward algorithm.

3.	 Average the values PoV
B

p x j
b

j

N

b

B

y y( ) ≈ ⋅ =( ) −{ }
==

∑∑1
0 1

11

max ,Rev | Cost .
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where the neighborhood Ni can be of various orders. The MRF on a regular grid has the 
following neighborhoods:

First order: Ni consists of grid cells to the north, east, south, and west of the current cell;
Second order: Ni is north, northeast, east, southeast, south, southwest, west, and northwest.
And so on.
The Ising model is the most popular MRF model. The conditional probabilities are then

	 p x x j N I x xi j i i j
j Ni

| ; exp .∈( ) ∝ =( )




∈
∑β

	
(A.60)

for xi ∈{ }1 2,  and where β  is the spatial interaction parameter to first order neighbors. If this 
interaction parameter is zero, the variables are independent. It is usually set to a positive 
value, imposing similarity in neighborhood colors.

The model in Equation (A.60) does not favor one color over the other. We can increase 
the chance of colors at selected cells by adding an external field in the form of single-node 
potentials in the exponent as follows:

	 p x x j N I x x xi j i i j
j N

i i

i

| ; exp .∈( ) ∝ =( ) + ( )




∈
∑β α

	
(A.61)

Note, however, that the potentials α i ix( ) do not have a one-to-one relation with the mar-
ginal probability p x p xi i i( ) = ( ) at cell i on the grid.

The extension of the Ising model to more than two colors is sometimes called the 
Potts model.

Joint model formulation for Markov random fields

The associated joint distribution of the MRF, called the Gibbs formulation, is given by

	 p
Z

k
k C

k

k
k C

kx

x

x( ) =
− ( )





∝ − ( )





∈

∈

∑
∑

exp

exp ,

ψ
ψ

	
(A.62)

where xk is a subset of the variable x, and C  is the set of all cliques. The normalizing 
constant Z  results from summing over the entire sample space of x1, …, xn, and it does 
not depend on x. The cliques are representative of the interaction or dependence structure 
of the MRF, and the clique potentials ψ k kx( ) assign a penalty (or reward) to configura-
tions xk within a clique type k. The potentials can be specified to make it more likely to 
get patches of similar color in the grid. For a first order neighborhood on the regular grid, 
there are just two types of cliques: single-cell cliques and vertical and horizontal cell-pair 
cliques. For the Ising model, the positive clique potentials are β  for equal colored cell 
pairs (north–south) and (east–west) on the grid. The zero potential for cliques with black 
and white cells then penalize differences in colors. For a second-order neighborhood, the 

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.009
http:/www.cambridge.org/core


Categorical Markov random fields 351

cliques are of size 2 × 2. When the cliques get larger, there is additional flexibility for 
incorporating spatial patterns via low or high clique potentials for various configurations of 
xk – see, e.g., Tjelmeland and Besag (1996).

It is not obvious that the definition of the MRF by conditional probabilities in Equation 
(A.59) results in a unique joint statistical model. However, the Hammersley–Clifford the-
orem (Besag 1974) states that there is such a one-to-one correspondence between the condi-
tional model formulation over neighborhoods in Equation (A.59) and the joint formulation 
over cliques in Equation (A.62). It is relatively easy to show that this holds one way, while 
the other is harder. For the easier approach, given a joint distribution over cliques, we show 
that the full conditional depends only on the neighboring variables. We have

p x pi i k
k C

k k
k C i

k| exp expx x x x−
∈ ∈ ∩

( ) ∝ ( ) ∝ − ( )





∝ − ( )



∑ ∑ψ ψ == ∈( )p x x j Ni j i| ; ,

	
(A.63)

since the cliques where xi is involved are the ones with xi and its interactions with the 
neighbors of cell i. None of the variables outside the neighborhood interact with xi in the 
joint distribution, since there are no cliques associated with such pairs.

Hidden Markov random fields

Assume an MRF for the latent variable x. Imperfect data y = ( )y ym1,...,  can be gathered, 
and the likelihood is p y x|( ). The joint distribution for latent variables and data is

	 p p px y x y x, | .( ) = ( ) ( ) 	 (A.64)

Again, we impose the customary assumption of conditionally independent data – i.e., 
p y xi i|( ), i m= 1,..., . For location i n= 1,..., , the full conditional distribution then becomes

	 p x p x y x j Ni i i i j i| , | , ; .x y−( ) = ∈( ) 	 (A.65)

Assuming an Ising model, we have full conditional distribution

	 p x p x y x j N I x x p y xi i i i j i i j
j N

i i

i

| , | , ; exp log |x y−
∈

( ) = ∈( ) ∝ =( ) + ( )∑β






.
	
(A.66)

Note that the structure of the full conditional in Equation (A.66) is the same as for the 
Ising model with an external prior field in Equation (A.61).

Calculations for Markov random fields and hidden Markov random fields

We discuss marginalization and conditioning for prior and posterior pdfs together. If the 
data are conditionally independent, the calculations for the posterior model (with data) fol-
low the same steps as those in the prior (without data) because the likelihood terms enter as 
an external field; see Equation (A.66).

For small-sized grids and moderate-sized neighborhoods, it is possible to perform exact 
marginalization and conditioning for MRFs. The idea is similar to the forward–backward 
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algorithm used for the hidden Markov model in Appendix A.3. For large-sized MRFs, 
the solution requires approximations. The most popular approach has been Markov chain 
Monte Carlo (MCMC) sampling.

Consider the Ising model with an external field (which could be a conditionally inde-
pendent likelihood term as in Equation (A.66)). The model can be written

	 p

I x x x
h

Z Z

i j
i j i

i
i

x
x( ) =

= +






=

( )∑ ∑exp ( ) ( )

,
~

β α

	
(A.67)

where the short notation i j∼  denotes a clique – i.e., all pairs of north–south or east–west 
nodes on the grid. The normalizing constant Z  is given by

	 Z h
x

d

x

d

n

= … ( )
= =

∑ ∑
1 1 1

x .
	

(A.68)

This normalizing constant is very hard to compute because it is a sum over all variables. 
The evaluation of the joint, marginal, and conditional distributions is then computationally 
demanding.

Suppose that the grid nodes are numbered sequentially from northwest to southeast. 
Then, x1 is the categorical value in the northwest corner, xn1

 the one in the southwest corner, 
xn n1 2 1 1( )− +  in the northeast corner, and xn in the southeast corner. For the Ising model, with 
d = 2, the neighbors of an interior node i are defined by i +1, i −1, i n− 1, and i n+ 1. If node 
i is on the edge or a corner node, some of these neighbors vanish. Assume n n1 2≤ , and n1 
is quite small (say, 10 or 20). It is then possible to explore the probability model analytic-
ally using the forward–backward algorithm. If the dimensions are larger, the combinatorial 
increase in d n nmin ,1 2( ) becomes too demanding.

To understand the forward–backward algorithm in this context, write the probability 
function for x in a sequential manner as follows:

	

p p x x x p x x x p x x p x

p x x x

n n n n nx( ) = …( ) …( )… ( ) ( )
= …

−1 2 2 3 1

1 2

| , , | , , |

| , , 11 2 3 2 1

1 2 1

1 1

1

+ + −

+

( ) …( )… ( ) ( )

=
…( )

n n n n n

n

p x x x p x x p x

h x x x h x

| , , |

| , , 22 3 2 11
| , , |

,
x x h x x h x

Z

n n n n…( )… ( ) ( )+ −

	

(A.69)

where we use the Markov property but choose to condition on all buffer variables in the 
sequential lineup. The buffer is of length n1 in this case, indicating the length of the north–south 
column in the grid. It gets shorter for the last (easternmost) column. The terms in this 
expression are defined by h x x x I x x I x x xn n1 2 1 1 2 1 1 1 11 1

| , , exp…( ) = =( ) + =( )( ) +( )( )+ +β α  
for the first location, then goes on like this for x2, x3, and so on until h x x I x x xn n n n n n− − − −( ) = = +( )1 1 1 1| exp ( ) ( )β α

h x x I x x xn n n n n n− − − −( ) = = +( )1 1 1 1| exp ( ) ( )β α , h x xn nn( ) = ( )exp ( )α .
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Algorithm: forward calculation for small-sized MRFs

1.	 Start with

Z x x h x x xn
x

d

n1 2 1
1

1 2 11

1

1
, , | , , ,… = …( )( )+

=
+∑ � (A.70)

2.	 For general i n n≤ − 1

Z x x h x x x Z x xi i i n
x

d

i i i n i i i n

i

+ +
=

+ + − + −… = …( ) …( ) (∑1
1

1 1 11 1 1
, , | , , , , )).� (A.71)

3.	 At the final step n, calculate

Z Z x Z xhn n n n
x

d

n

= = ( ) ( )−
=

∑ 1
1

,� (A.72)

which is the normalizing constant in Equation (A.67).

Algorithm: backward recursion scheme for the marginal probabilities

1.	 Start with the marginal for xn:

p x
Z

h

Z

x Z x
x dn

x

d

x

d

n n n
n

n( ) = =
( )… ( ) ( )

∈ …= = −
∑ ∑

−1 11 1 1 1

h x

, { , , }.� (A.73)

2.	 For x dn− ∈ …1 1{ , , }, first arrange the joint density p x xn n( , )−1  and then sum out xn:

p x

h x h x x

Z
n n

x

d

x

d

x

d

x

d

n n n

nn n
− −

= == =
−

=
…

=
∑ ∑∑ ∑

−
1 1

1 11 1
1

1 2( )

( ) ( ) ( |h x )) ( , )

.

Z x x

Z

n n n− −2 1

� (A.74)

3.	 For a general node i , construct the joint probability for the buffer of length n1, and then 
the marginal p xi i( ) for node i  is obtained by summing over all buffer configurations 
x xi i n+ +…1 1

, ,  for each possible value x di ∈ …{ , , }1 .

Here, for the intermediate step, ( , , )x xi i n+ +…1 1
 has dn1 possible values of buffer configura-

tions. As the buffer length gradually decreases in the last (easternmost) column, the number 
of possible configurations gets smaller.
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The conditional situation given data y is not dissimilar. The likelihood term can be 
regarded as an external field, where α i i i ix p y x( ) = ( )log | , x di ∈ …{ , , }1 . The marginal pdf 
of main interest is then the posterior marginal p xi | y( ). The normalizing constant depends 
on both the model parameters and the data.

Note that for numerical stability, it is preferred to work on the logarithmic scale and to 
perform robust summing operations. This entails

	 h x h x lh h x lh
x

d

x

d

x

( ) = ( )( ) = ( ) ( ) −( )
= = =

∑ ∑
1 1

exp log exp exp logmax max
11

d

∑ ,
	

(A.75)

where lh h xmax max log= ( ){ }.

Sampling

We demonstrate a recursive backward sampling algorithm for drawing a variable x from 
the joint pdf p x( ). A similar approach would work for conditional sampling.

Parameter estimation

There are unknown interaction parameters in the MRF that must be specified. The MRF 
parameters are the clique potentials that reduce to the pairwise interaction term β  for the 
Ising model. We may also have unknown parameters in the likelihood model, but we focus 
on the interaction parameter in this discussion.

In many models, it is easier to maximize the likelihood with perfect information x. But in 
this MRF case it is still complicated to compute p x( ) because of the normalization constant. 
By the forward–backward recursion it is possible to compute the likelihood and perform 
maximum likelihood estimation (MLE) for small grids. For larger grids, one often maximizes 
the pseudo-likelihood to specify the parameters. The pseudo-likelihood for general clique  
potentials ψ  is defined via the full conditionals, cl p x x j Ni j i

i

ψ( ) = ∈∏ ( | ; ). Since we have 

Algorithm: sampling for small-sized MRFs

1.	 Run the forward recursion for sequential normalizing constants in Equation (A.71).
2.	 Sample the value of xn from probability vector

p x
Z

h x Z x x d
Z

n n
x

d

x

d

n n n n

n

( ) ( )= … ( ) = ( ) ∈ …
= =

−∑ ∑
−

1 1
1

1 11 1
1h x , { , , }, � (A.76)

where the sequential normalizing constants in the forward recursion are re-used.
3.	 Continue backward, generating xn−1 conditional on the sample of xn from 

probability vector

p x x
h x x Z x x

x
x d

Z
n

n n n n n

n n
nn−

− − −

−
−( ) =

( )
∈ …

( )
( )1

1 2 1

1
1 1|

| ,
, { , , },  � (A.77)

and so on for all i n= − …2 1, , .

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.009
http:/www.cambridge.org/core


Categorical Markov random fields 355

the Markovian structure, each term is computed by counting the number of different neigh-
borhood clique configurations (Besag 1986).

If the latent variable is not directly observed but only imperfectly informed by data y,  
we can estimate parameters from the marginal likelihood model p py y( ) = ( );β . For a 
large-sized grid, MCMC algorithms are the preferred approximation. For small-sized grids, 
we can use the forward–backward algorithm. The marginal likelihood is the ratio of nor-
malizing constants:

	 p
p p

p

h p Z

Z h

Z

Z
y

x y x

x y

x y x

x y
( ) =

( ) ( )
( ) =

( ) ( )
( ) =

| |
,

|| |
x x| y

x x y

x| y

x 	
(A.78)

because the functions in hx y x | y| ( ) are defined by the function in the prior model hx x( ) and 
the terms in the likelihood model p y x|( ).

A.4.2  Decision analysis and VOI results

The decision situation we have used in association with MRFs is similar to that for the 
Markov chain in Appendix A.3. For the prior value,

	 PV p x
j

N

j= ⋅ =( ) −{ }
=

∑max ,Rev ,
1

0 1 Cost
	

(A.79)

when we have a free selection of sites, N n= , and two alternatives at each site. The mar-
ginal pdf in the prior must now be computed by forward–backward recursions or by sophis-
ticated MCMC sampling.

For the posterior value, 

	 PoV p x pj
j

N

y y y( ) = ⋅ =( ) −{ } ( )
=

∑∑ max ,Rev | .0 1
1

Cost
y 	

(A.80)

For small-sized grids, the forward–backward algorithm solves for the inner probabilities 
in Equation (A.80). The outer loop can be summed out exactly for partial testing at only 
a small set of sites. Alternatively, for larger data sizes, samples from p y( ) can be used to 
get a Monte Carlo approximation like we described in Appendix A.3.2. Samples of yb,  

Algorithm: likelihood evaluation for small-sized MRFs

1.	 Run the forward recursion without data to get the normalizing constant Z x in the prior 
model p x( ).

2.	 Run the forward recursion with data to get the normalizing constant Z x y|  in the 
posterior model p x y|( ).

3.	 Compute the ratio of the normalizing constants p
Z

Z
y x| y

x
( ) =  as in Equation (A.78).
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b B= 1,...,  can be obtained by first sampling from p x( ) and then drawing conditionally 
independent samples for y from p y xi i|( ) given the realization for the latent field.

Appendix A.5:  Discrete graphs and Bayesian networks

We show the main modeling and computational elements for discrete graphical models. In 
some sense, Markov chains and Markov random fields are special cases of this situation. 
For details regarding a more formal description, please consult a reference such as Pearl 
(1988), Shachter (1988), Jensen (1996), Jensen and Nielsen (2007), Darwiche (2009), or 
Koller and Friedman (2009).

A.5.1  Definition and properties

Bayesian networks (BNs), also called belief networks, are graphical models consisting of 
nodes and edges. We assume n nodes. The edges connect the nodes together, and they are 
directed. An edge that indicates direction from one node to another is an arc or, equiva-
lently, an arrow. The arrows indicate the (causal) conditional dependence structure of the 
model. The graph is acyclic, meaning that there are no directed paths leading back to a 
node. These graphs are termed directed acyclic graphs (DAGs).

The variables of interest are x = ( )x xn1,..., . Data y could either be included in some of 
these nodes or be represented by additional nodes. The BN model for x is defined from 
conditional statements,

	 p p x x j pa ii j
i

n

x( ) = ∈ ( )( )
=

∏ | ; ,
1 	

(A.81)

where pa i( ) indicates the parent nodes of i. Top nodes (root nodes) in the network have 
empty parent sets. For the discrete situation that we consider here, the probabilities in 
Equation (A.81) can be collected in conditional probability tables.

If there is a directed path from node i to node j , we say that i is an ancestor of j  and that 
j  is a descendent of i.

Marginal and conditional probabilities

Several independence properties can be proven from the semantics of the network. The 
local Markov independence property of a belief network is the property that any node in 
the network is independent of its non-descendents given its parents. Other global independ-
ence properties can also be derived based on a graphical analysis of the network.

The full conditional probability of xi is

	 p x p x x j pa i j ch i j op ch ii i i j| | ; , , ,x−( ) = ∈ ( ) ∈ ( ) ∈ ( )( )( ) 	 (A.82)

where the child nodes are denoted ch i( ) and the other parents of such a child node j  are 
denoted op j( ). The latter nodes, sometimes called wife or husband nodes, are required 
because all parents are needed in the modeled probability of the child. This set of 
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conditioning nodes in Equation (A.82), which makes a variable conditionally independent 
of the rest, is sometimes called the Markov blanket. A related concept is d-separation: if 
two nodes i and j  are separated by a node (or a collection of nodes) s, then the conditional 
probability p x x x p x xi j s i s| , |( ) = ( ). This kind of d-separation can be useful for condi-
tional independence statements not directly enforced by the model.

The marginal probability at a node i n∈{ }1,...,  is obtained by marginalization over the 
parents, as follows:

	 p x p x x j pa i pi i j pa i
xpa i

( ) = ∈ ( )( ) ( )( )
( )

∑ | ; .x
	

(A.83)

Note that this requires the joint pdf of the parent nodes, which is not always straightforward 
to obtain.

Assume that we can get perfect or imperfect data denoted by y. The conditional prob-
ability of a node given information y is given by Bayes’ formula:

	 p x
p x

p

p x

p x
i

i i

i
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|
, ,

,
,y

y

y

y

y
( ) =

( )
( ) =

( )
( )∑

	

(A.84)

which in this general form requires the joint distribution over the information (denomina-
tor) and the joint distribution of the variable of interest and the data (numerator).

Unlike Equations (A.81) and (A.82), the computations in Equations (A.83) and (A.84) 
are not directly defined from the model. We need to marginalize over variables for these 
computations. There are many ways of computing these marginal (and conditional) prob-
abilities, and the method of choice depends on the situation.

Parameter estimation

Suppose that the edge structure of the BN is known; the specification of unknown param-
eters θ is typically done by maximum likelihood estimation (MLE) or fully Bayesian 
methods. If we have total perfect information in the form of data replicates x x1,..., B, the 
conditional probability tables can be computed by counting. All conditional probabilities 
are then estimated directly by

	 ˆ | ;

, ;

p x l x k j pa i

I x l x k j pa i

I x
i j j

b

B

i
b

j
b

j

b

B
= = ∈ ( )( ) =

= = ∈ ( )( )
=

=

∑

∑
1

1
jj
b

jk j pa i= ∈ ( )( );

.

	

(A.85)

If there are few replicates, it is possible to borrow structure within the network structure. 
It is also possible to assign Dirichlet prior pdfs to the network probabilities θ in a fully 
Bayesian procedure. If the data y are partial or imperfect, we can estimate parameters θ 
using the marginal likelihood p y;θ( ), again possibly with a Dirichlet prior model p θ( ).

In many applications, the graph structure is assigned from expert opinion. If the graph 
structure is unknown, we must specify the edge structure as well as the parameters θ. This 
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is more difficult than the parameter estimation (or learning) problem for a fixed structure – 
see, e.g., Chickering (1996).

Junction tree algorithm

There are several algorithms for efficient computation of BNs (see the discussions in 
Chapters 2.3 and 3.3).

A very successful approach for efficient marginalization in BNs is the junction tree algo-
rithm (JTA). We present the idea only briefly since the full explanation of the JTA requires 
a great deal of set notation. The original presentation of the algorithm was provided by 
Lauritzen and Spiegelhalter (1988); see also Cowell et al. (2007) for a complete descrip-
tion. Rather than knowing all the computational aspects of this famous algorithm, one can 
of course just run it using numerously available software. In our analysis in this book, we 
used the Bayesian Network Toolbox (BNT) software implemented by K. Murphy.

A core idea of the JTA algorithm is to reform the BN to another network of clusters of 
nodes, sometimes called supernodes. The resulting graph consists of clusters that are formed 
in a special way that simplifies marginalization. This graph is built from the structure of 
the BN, but unlike the shape of a BN model, it is singly connected – i.e., it does not have 
branches that meet. The graph is also undirected. This is achieved by creating a triangulated 
graph – i.e., by adding edges between parent nodes that are not already connected – i.e., the 
so-called “moralizing” operation. A triangulated graph has no cycles of size larger than 3.

The junction graph has cluster nodes that define the cliques of the model, and the junc-
tion tree is built by utilizing the role of separators in the triangulated structure. There is no 
unique junction tree for a given BN model, and the optimal junction tree depends on the 
situation. There are a number of heuristic methods for constructing junction trees.

Once the junction tree is established, it is relatively straightforward to compute marginal 
and conditional probabilities using recursive computations (belief or evidence propagation) 
along the tree. These use operations on the conditional probability tables for the clique 
configurations. The procedure is often called query or message passing in the BN literature.

To compute several probabilities at the same time, the JTA may utilize the clustering 
nodes and then use a local message passing algorithm (Pearl 1988) on the established tree. 
This avoids repeated variable elimination and redundant computation. Message passing on 
the junction tree can be thought of as a generalization of the forward–backward algorithm 
for a hidden Markov model to BNs (Murphy 2012).

A.5.2  Decision analysis and VOI results

The decision situation we have used for BNs is similar to that for the Markov chain and 
Markov random fields in Appendices A.3–4. The prior value is

	 PV p xj
j

N

= ⋅ =( ) −{ }
=

∑max ,Rev ,0 1
1

Cost
	

(A.86)

when we have a free selection of sites, N n= , and two alternatives at each site. The mar-
ginal pdf in the prior must now be computed by efficient marginalization.
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For the posterior value, 

	 PoV p x pj
j

N

y y y( ) = ⋅ =( ) −{ } ( )
=

∑∑ max ,Rev | .0 1
1

Cost
y 	

(A.87)

The JTA is useful for computing both p y( ) and p x j =( )1 | y  for various kinds of informa-
tion y. If the information set is small, the outer sum can be solved exactly. Otherwise, it can 
be approximated by Monte Carlo sampling, as presented in Appendices A.3–4. Re-using 
samples or computations may be possible.

Appendix B:  Sampling methods

The starting point of random number generation on the computer is the generation of  
independent uniform variables. These algorithms generate numbers that mimic (uni-
form) randomness and independence. Consider a simple algorithm that specifies a seed 
(start value, 10 here) and continues for b = 0 1, ,... as follows:

	 10 10 5 210
1

, ,
mod ,

, , .u c u
a c u c

c a cb
b

= = ⋅( ) = =
−⋅

	
(A.88)

This gives the following sequence of uniform numbers ub: 0.47, 0.38, 0.91, 0.52, 0.62, 0.09, 
which may appear to be a random and independent sequence at first sight. We can perform 
tests to check whether a sequence gives independent uniform numbers. Obviously, some 
more inspection shows that the choice in Equation (A.88) is not very intelligent. In fact, 
the next number in the sequence is mod . , / .0 09 21 5 21 21 0 47⋅ ⋅( ) =  – i.e., exactly the same 
as the first number, and the process will just repeat itself. The very basic-level research on 
Monte Carlo sampling is in constructing deterministic sequences of “uniformly distrib-
uted” numbers. For a long time, MATLAB used a congruential simulator algorithm simi-
lar to the one mentioned earlier with a = 75 =16,807 and c = − =2 1 2 147 483 64731 , , , . The 
resulting sequence repeats itself after c periods and covers the uniform domain very well.

Given the uniform variables, two direct methods for simulation are readily available. 
They are called inversion and transformation. We illustrate them by examples. Inversion 
works as follows: (i) draw a uniform random number u between 0 and 1, denoted by U( , )0 1 ,  
and (ii) set x F u= ( )−1 , where F −1 is the inverse cumulative distribution function of x. 
Note that F  is a monotone increasing function, and the inverse then exists. We can prove 
correctness by

	 p F x p u F x F xu− ( ) <( ) = <( ) =1 ( ) ( ).	 (A.89)

As an example, suppose we want to sample a binomial variable with ntrial = 5 trials and 

success probability p = 0 4. . The pdf is p x
n

n x x
p ptrial

trial

x n xtrial( )
!

( )! !
( )=

−
− −1 , x ntrial= …0, , ,  

and the associated cumulative distribution function F x p y
y

x

( ) ( )=
=
∑

0

 is displayed in Table B.1.

Suppose that we generate a uniform random number u = 0 05. , then F u( )0 > , and the 
inverse function sets x = 0. Naturally, the chance of ending up in x = 0 is the same as that 
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of a uniform random number being smaller than 0.08, which is the same as F( )0 . Similarly, 
we get x = 1 if the generated uniform random number is between 0.08 and 0.34, and so on. 
Outcome x = 5 only happens if u > 0 99. .

Inversion is efficient in many situations, but the cumulative (or its inverse) function is 
not always available in a closed form. For instance, the Gaussian cumulative distribution 
is defined by an integral expression, and one has to store the cumulative distribution for a 
dense set of values in the interval (0, 1) to use inversion. Using such a look-up table is not 
always achievable.

The common way of generating a Gaussian variable, and many other distributions, is 
to use transformations. We illustrate an algorithm for simulating independent bivariate 
Gaussians from two uniform variables. Suppose that we have generated two independent 
U 0 1,( ) variables u1 and u2. Then the outputs x1 and x2 from the following algorithm

	 θ π θ θ= = − = =2 21 2 1 2u r u x r x r, ,log cos( ), sin( ),	 (A.90)

are two independent standard Gaussian variables. Here, the idea is to use polar coordi-
nates – i.e., simulate a random angle θ and a random positive distance r, and then take the 
sine and cosine part of the (distance, angle) vector. By the transformation formula, we have 
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where we use the kernel rule and 
d x

dx x

arctan
=

+
1

1 2
. This Jabobian is recognized as the pdf 

of the bivariate Gaussian distribution.

Table B.1.  Probability distribution for the binomial with success probability p = 0.4 and 
five trials

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

p 0 0 08( ) = . p 1 0 26( ) = . p 2 0 34( ) = . p 3 0 23( ) = . p 4 0 08( ) = . p 5 0 01( ) = .
F 0 0 08( ) = . F 1 0 34( ) = . F 2 0 68( ) = . F 3 0 91( ) = . F 4 0 99( ) = . F 5 1( ) =
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Correlated Gaussian can be generated in various ways, such as the Cholesky factoriza-
tion described in Appendix A.1. Most computational softwares such as MATLAB and R 
have algorithms for generating random numbers from many different distributions.

Rejection sampling

In many situations, we can write p
p

Z
x

x( ) =
( )0 , where Z  is a normalizing constant, not 

depending on x, while p0 x( ) is a function that can be evaluated. As an example, this is typ-
ically the case in posterior models in the Bayesian context, where p x( ) is the prior model 
and the likelihood of data y is defined by p y x|( ). The posterior distribution is

	 p p px y y x x| | .( ) ∝ ( ) ( ) 	 (A.91)

Here, the proportionality sign is used instead of the normalizing constant, which is (the 

often intractable) p py x y
x

( ) = ( )∑ , . For several modeling assumptions, we can evalu-

ate p p p0 x y y x x| |( ) = ( ) ( ), but we cannot sample directly from p x y|( ). We present 

a reject/accept method for generating realizations from such p
p

Z
x

x( ) =
( )0 . This method 

relies on an alternative pdf q x( ) that is easy to draw from.

The factor r defines an envelope rq x( ) that is always larger or equal to p0 x( ). We see that 
the normalizing constant is not needed since it cancels from the acceptance rate in Step 3.

The mean number of accepted samples becomes 
1

r
. Thus, if the maximum ratio of the 

two densities is close to 1, we accept most proposals. If the maximum ratio is high, the 
acceptance rate goes down. Typically, we must make the tails of the proposal distribu-
tion q x( ) at least as heavy as that of p x( ); otherwise, r → ∞ in the tails, and we would 
accept no samples. If we can find a natural proposal distribution that makes r computable, 
this method performs very well. However, in high dimensions, it seems very hard to find 
attractive proposal distributions that give small r, and the acceptance rate tends to decline 
with increasing variable dimensions.

Algorithm: rejection sampling

1.	 Draw a sample x  from q x( ).
2.	 Evaluate r

p

q
≥ ( )







( )

max x

x

x
0 .

3.	 Accept sample x if 
p

rq
U0 0 1

x

x

( )
( ) > ( , ).
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Approximate Bayesian computing

Approximate Bayesian computing (ABC) is similar to rejection sampling in its accept/
reject step. It has been limited to posterior sampling in Bayesian contexts. Notably, for 
this approach, the expected relation or forward model E y x f x|( ) = ( ) between the dis-
tinction of interest and the data is known, but no further assumptions are made about the 
likelihood model. For this reason, ABC is often referred to as likelihood-free sampling. 
Instead of a formal likelihood description, a similarity measure is used in the conditioning 
to the data.

In Step 3 of the algorithm, a summary statistic and distance measure must be selected, 
as well as a threshold for acceptance ε . The approach has become popular in several 
application domains, and it has been intensely studied in the statistics literature (Marin 
et al. 2012).

Markov chain Monte Carlo algorithms

The basis of Markov chain Monte Carlo (MCMC) sampling is to simulate a Markov chain 
over the state space of the variable x. The Markov chain converges to its limiting distribu-
tion under mild regularity conditions. And by construction of the MCMC algorithm, this 
limiting distribution is equal to the distribution p x( ), which we aim to sample from.

The Markov chain must be irreducible so that it is possible to reach every state from any 
other in a number of Markov chain iterations. If this is not the case, one risks sampling 
only a subset of the sample space. Naturally, Markov chains with absorbing states are not 
allowed. The sampler is initiated in x0  and then each transition b = 0 1, ,... moves accord-
ing to a transition distribution or kernel P bx x,( ). After a transient phase, often called the 
burn-in, samples are assumed to be from the desired pdf. Note that if the initial sample is 
from the correct pdf, the Markov chain will stay within that (stationary) distribution, and 
any random sample is an exact sample from the correct distribution.

Subsequent MCMC samples will be dependent, but the sample average will still con-
verge to the right value under mild regularity assumptions. The key to successful imple-
mentation is to construct a Markov chain that mixes well  – i.e., produces samples that 
are not too dependent. Such a Markov chain will traverse the probability space in fewer 
iterations than a poorly mixing Markov chain, and one can run the chain for a shorter time 
before extracting relevant statistics.

Algorithm: approximate Bayesian computing

Repeat for samples b B=1,..., .

1.	 Sample xb from p x( ).
2.	 Evaluate the forward model f xb( )
3.	 Accept within a tolerance of data – i.e., if the sample has dissimilarity: d by f x, ( )( ) < ε

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139628785.009
http:/www.cambridge.org/core


Sampling methods 363

The Gibbs sampler is an MCMC method using the full conditional pdfs in the Markov 
chain transitions. Considering a single-site updating scheme, the Gibbs sampler changes 
only one variable per iteration:

Algorithm: Gibbs sampling (single site)

Initiate x0
1
0 0= ( )x xn, , . Iterate as follows for b B= 1,..., :

1.	 Pick a component i n∈{ }1,..., . Sample xi
b  from the full conditional distribution:

p x x x x x p xi
b

i
b

i
b

n
b

i
b

i| 1
1

1
1

1
1 1 1−

−
−

+
− −

−
−( ) ∝ ( ), , , , , ,  x � (A.92)

2.	 Set x x j ij
b

j
b= ≠−1, .

The approach relies on the ability to sample from full conditionals. This is straight-
forward for many hierarchical models, where the full conditionals only depend on some 
neighboring variables. Gibbs sampling is then an efficient way to divide and conquer. For 
the MRF model, this Gibbs sampler would update the color of one cell at a time from the 
conditional distribution at the selected cell, given the current state of the neighboring cells.

The Gibbs sampler can also update block variables at every time step. The full condi-
tional distributions for blocks are often more complicated to derive, but the sampler gets 
better mixing properties in the Markov chain, and the block sampler does not have to run 
as long as a single-site sampler.

Metropolis–Hastings (MH) sampling is based on accepting or rejecting a proposed sam-
ple at every iteration:

Algorithm: Metropolis–Hastings sampling

Initiate x0
1
0 0= ( )x xn, , . Iterate as follows for b B= 1,..., :

1.	 Draw a proposal from q bx x* | −( )1 .
2.	 Set x xb = * if the acceptance probability

min ,
|

|
( , ),

* *

*
1 0 1

1

1 1

p q

p q
U

b

b b

x x x

x x x

( ) ( )
( ) ( )







>

−

− −
otherwisse set x xb b= −1. � (A.93)

There are a multitude of MH algorithm variants. They all evaluate the acceptance rate 
in Step 2, which includes the proposal distribution and the target pdf p x*( ), but they dif-
fer in the proposal distribution q bx x* | −( )1 . The flexibility in choosing the proposal gives 
opportunities for creating efficient MH samplers, and there are only few regularity condi-
tions on the proposal distribution q bx x* | −( )1 . On the other hand, selecting a useful pro-
posal distribution could be a difficult task since some choices induce much poorer mixing 
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properties than others. We discuss some proposal mechanisms that have been common in 
applications.

For the MRF model, a single-site MH sampler attempts to randomly change the color at 

site i and accepts the change with probability min ,
*

1
1

p

p b

x
x
( )

( )





−
. Then, x xj j

b* = −1 for all sites 

j i≠ , and the acceptance ratio simplifies to 
p

p b k k k k
b

k C i

x

x
x x

*
*exp

( )
( ) = − ( ) + ( )









( )−

−

∈ ∩{ }
∑1

1ψ ψ ,  

which only contains cliques where cell i is involved.
The random walk MH sampling defines proposal q N hb bx x x I* | ,− −( ) = ( )1 1 2  –  i.e., 

symmetric around the current state xb−1. This approach is easy to implement and has 
shown to be useful for several continuous models. For this random walk MH algorithm, 
the mixing properties are (asymptotically) optimal with an average acceptance rate of 
about 0.25. More sophisticated MH proposals can be constructed by using derivative 
information at the current state. The Langevin–Metropolis algorithm defines proposal 
q N hh pb b bx x Ix x* | ,log− − −( ) = ( )+ ∇ ( )1 1 21 . Since the proposal uses more of the specific 
model in the proposal, it tends to traverse the distribution function more quickly. The sam-
ples are less dependent, and the mixing properties are usually very good. The mixing prop-
erties are (asymptotically) optimal under an average acceptance rate of about 0.5. Note that 
the faster mixing comes at the cost of evaluating the gradient.

Slice sampling is one of many MCMC methods that generate variables by augmentation. 
The idea is to sample an auxiliary variable u in addition to x and in this way improve the 
mixing properties of the Markov chain. The slice sampler generates the auxiliary variable 
by cutting or slicing the pdf horizontally and then moving to an updated variable with a pdf 
above this slice. The rationale behind cutting is not dissimilar to that of inversion.

The constraint in the second step may be hard to calculate in practice – i.e., the region of 
valid proposals is not easily identified. Suggested solutions construct a valid region using 
gradual stepping-out schemes.

Algorithm: slice sampling

Initiate x0
1
0 0= ( )x xn, , . Iterate as follows for b B= 1,..., :

1.	 Draw an augmented variable u from U p b0 1, x −( )( ).
2.	 Sample xb from uniform pdf U C ux |( )( ), with constrained region C u p ux x|( ) = ( ) >{ }.
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Index

acquisition design, 171, 285, 289, 319; see also 
design of experiments

agriculture, 292
Aki–Richards approximations, 276
alternatives, 66

optimal alternative, 74; see also decision analysis
amplitude-versus-offset (AVO) seismic data, 19, 265; 

see also seismic data
anisotropy, 287
approximate Bayesian computation (ABC), 58, 200, 

362
approximate dynamic programming, 214, 218
Archie’s law, 277, 324
assessed form, 96
axioms of decision theory, 75

basin modeling, 21, 59, 247, 260, 321, 322
basin modeling example, 244

project, 321
value of information (VOI), 244–258

basin street blues, see basin modeling example
Bayes’ rule, 40, 96
Bayesian modeling, 39

fully Bayesian, 41
marginal likelihood and posterior, 40, 96
prior and likelihood, 40, 96

Bayesian network example, 233
Bayes’ rule, 42–44
North Sea model, 233–244
project, 319–321
sequential decisions, 214–216

Bayesian network toolbox (BNT), 313, 319, 328
Bayesian networks, 36, 44, 236–239, 356–359

child node, 36, 356
cliques, 358
conditional probability table, 36
directed acyclic graph (DAG), 80, 356
edges, 36
full conditional distribution, 356
Markov property, 356

nodes, 36
parent node, 36, 356; see also influence diagram

belief networks, 36
belief propagation, 358
big data, 2
binary variables, 24, 38, 42

project, 307–308
binomial distribution, 135, 340
black gold in a white plight, see reservoir 

characterization example
Boolean models, 118
borehole data, 280

cores, 282, 289
joint counts data, 287
XRF or XMET, 280; see also mining oxide grade 

example; rock hazard example
Brier score, 316

catchment, 205, 318
categorical process, 139
certain equivalent, 71, 77, 95; see also decision 

analysis
charge variable, 235
child node, 36, 356
choice rule, 75
Cholesky matrix, 58, 333, 336
circulant matrix, 336
clairvoyance, 93
classification, 31, 147, 225
clique tree, 358
cliques, 350

Bayesian networks, 358
Markov random fields, 141, 350
potentials, 142

closed skew-normal model, 134, 305
clustering, 249
CO2 sequestration, 309
cogency, 159
commitment to action, 67
conditional independence, 34–39
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conditional probability density function (pdf), 32; 
see also Bayesian modeling; probability density 
function

conditional probability table, 36, 248
conservation biology example, 180

prediction error, 226–227
project, 315–316
VOI, constraints, 210–211
VOI, high flexibility, 180–184

constraints, 162, 209–211
continuous pdf, 25
controlled source electromagnetic data, 264, 272
copula, 59
correlation, 28

spatial correlation, 111
correlogram, 111
coupled value, 159

high decision flexibility, 198–208
low decision flexibility, 186–198

covariance, 28, 34, 46, 102, 111
spatial covariance, 111
spatial covariance function, 112, 122, 314; see also 

spatial models; spatial simulation
crops, 293
cross-covariance, 112
cross-validation, 48
cumulative distribution function, 25
cut-off in grade, 283

dams, hydropower scheduling, 202, 318
decision analysis, 65–70

certain equivalent, 71, 77, 95
clairvoyance, 93
delta property, 72, 95
lottery, 70
maximum expected utility, 74
optimal alternative, 74
risk preferences, 70
strategy, 84
utility function, 70
value function, 69
VOI, definition, 95
wealth, 72, 74, 94

decision quality, 66
decision regions, 279, 284, 290
decision situations, 68

sequential decision situations, 161, 211–216
spatial decision situations, 158
static decision situations, 161

decision theory, 65–70
decision tree, 78–79

CO2 example, 309
decoupled value, 165

high decision flexibility, 173–186
low decision flexibility, 166–172

delta property, 72, 95
deposit, mining, 282

descriptive, decision making, 65
design of experiments, 21, 54

acquisition design, 171, 285, 289, 319
space-filling design, 220
spatial design, 121, 125, 220

detector experiment, 99
development, petroleum reservoir, 193
digging decision, 76
dimension reduction, 193
direct sampling (DS), 148
direct simulation, 116
directed acyclic graph (DAG), 80, 356
discrete probability function, 25
dissimilarity, 201
distinction of interest, 15, 68, 156
double Monte Carlo, 190, 200
drilling decisions, 263
d-separation, 357
dynamic programming, 78, 213, 218

approximate dynamic programs, 214, 218

economic, 3, 97, 221
edges, 36
electromagnetic data, 264, 272; see also resistivity 

data; geophysical data
elicitation schemes, 73
entropy, 25, 29, 34

spatial design, 221–222
equivalence rule, 75
evidence propagation, 358
exploration well, 232, 235, 246, 259
exploratory data analysis, 15
exponential utility function, 71
external field, Markov random field, 143, 269

facies, 148, 194, 268, 317, 322
factorization formula, 33, 34
failure or success, 44, 178, 214, 223, 250
fault, 259
five ‘Vs’’ of big data, 2
five rules of actional thought, 75
flow simulation, 196, 294, 317
for whom the bell tolls, see Gaussian projects 

example
forestry example, 169

prediction variance, 223–225
project, 313–315
spatial modeling, 125–128
VOI, high flexibility, 184–186
VOI, low flexibility, 172

forward–backward algorithm, 346
hidden Markov model (HMM) example, 52
Markov models, 346
Markov random field, 143, 352
project, 311, 316

frame, 66
free selection of sites, 173
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frozen, see hydropower example
full conditional distribution, 33

Bayesian networks, 356
Markov random fields, 141

gamma ray, 16, 17
Gassmann’s fluid substitution, 276, 324
Gaussian, 25, 28, 305, 331
Gaussian approximation, 55, 137
Gaussian mixture distribution, 30
Gaussian projects example, 102

certain equivalents, 76–77
decision trees, 85
modeling, 45–47
project, 306, 307
VOI, 102–104

generalized linear model (GLM), 339–343
spatial GLM, 135

geologic scenarios, 191, 294
channel orientation, 294
delta system, 193
meandering system, 149, 193

geophysical data, 263, 266–270, 272–277; see also 
seismic data; electromagnetic data

geostatistical simulation, 116–120; see also spatial 
simulation

geostatistics, 110
Gibbs formulation, 350
go with the flow, see petroleum simulation example
gotta get myself connected, see Bayesian network 

example
graphical models, 35, 42, 78, 236–239, 332, 356–

359; see also Bayesian networks; influence 
diagram

groundwater management example 
project, 326–329
VOI, 292–299

Hammersley–Clifford theorem, 351
harvesting decisions, 169, 184
heat flow, 247
Herodotus, 66
Hessian, 136, 341

likelihood, 335
hidden Markov random field, 143
hierarchical model, 121, 124, 340; see also Bayesian 

networks; influence diagram
high decision flexibility, 159

coupled value, 198–208
decoupled value, 173–186

HMM, 52, 179, 346–348
hydropower example, 202

project, 318–319
VOI, 202–208

I love rock and ore, see mining oxide example
importance sampling, 57

independence, 28
indifference, 71, 74, 94
inferred form, 96
influence diagram, 79–85, 309, 313

algorithms, 85
arcs, 80
nodes, 80
oil and gold example, 86–88
time-lapse seismic example, 88–93; see also 

Bayesian networks
information gathering, 104

decision quality, 67
sequential information gathering, 161, 216–220, 

257
spatial decision situations, 159
static information gathering, 161

information theory, 25, 29, 220–221
information measures, 220–221
interaction parameter, Ising model, 142
interpretation, 192, 298
intrinsic values, 239
inversion, Bayesian inversion, 40
inversion, sampling method, 58, 359
investment decision, 76

Gaussian projects example, 306
Ising model, 141, 350
isotropy, 112
iterative simulation, 117

join tree algorithm, 358
joint counts, 136

project, 326
joint pdf, 27; see also probability density function
junction tree algorithm, 39, 251, 358

kernel density, 27, 322
k-nearest neighbors, 261
Kriging, 108, 115, 120
Kronecker product, 124

Laplace approximation, 55, 57, 136, 137, 289, 311
latent variable, 121, 135
least squares, 51, 108, 334
likelihood, 40

Bayesian modeling, 40, 96
Hessian, 335
marginal likelihood, 40
parameter estimation, 48
pre-posterior, 96
pseudo-likelihood, 354
score, 335

linear utility function, 70
logic, 67
lottery, 70, 308, 309
low decision flexibility, 165

coupled value, 186–198
decoupled value, 166–172
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MacKenna’s gold, see oil and gold example
marginal likelihood, 40
marginal pdf, 28
Markov chain, 38, 344

absorbing state, 310
backward chain, 346
forward–backward algorithm, 346

Markov chain example, 178
modeling, 44–45
parameter estimation, 52–53
project, 310–311
VOI, 178–180

Markov chain Monte Carlo (MCMC), 59, 145, 323, 362
Gibbs sampler, 363
Metropolis–Hastings, 363
Slice sampling, 364

Markov mesh models, 144
Markov property, 38

Bayesian networks, 356
Markov chains, 38, 344
Markov random fields, 140, 349

Markov random field, 140–147, 268, 315
cliques, 141
external field, 269
forward–backward algorithm, 143, 352
Ising interaction parameter, 142
Ising model, 141, 350
neighborhood, 140, 350
seismic data project, 323

material, 3, 97, 221
Matlab Bayesian network toolbox, 313, 319, 328
Matlab files, 303
Matlab reservoir simulation toolbox (MRST), 317
maximum expected utility, 74, 209
maximum likelihood estimation, 48

Bayesian networks, 357
Fisher scoring, 130, 335
Gaussian, 341
Markov models, 346
Markov random fields, 354
Newton–Raphson method, 49
spatial regression model, 125, 335

mean, 25, 28, 34, 46, 111
mean square prediction error, 127; see also spatial 

prediction
message passing, 358
migration, 235, 247, 260
mineralization classes, 50, 128, 282
mining decisions, 280, 281
mining oxide grade example, 280

project, 325–326
regression, 50–52
spatial modeling, 128–131
VOI, 280–285

mismatch, 201
Monte Carlo simulation, 32, 53–61, 359–364
multiattribute criteria, 73

multidimensional scaling, 54, 317
multiple-point geostatistics, 118, 147–151, 294

DS algorithm, 148
patch-based algorithms, 148
pattern simulation, 148
pixel-based algorithms, 148
SNESIM algorithm, 147
template, 148

neighborhood, Markov random fields, 140, 350
Netica, 297, 313, 327
never break the chain, see Markov chain example
nodes, 36
non-parametric models, 26, 32, 260
normative, decision making, 65
Norwegian wood, see forestry example
nugget effect, 112, 288

object-based simulation, 118
oil and gold example, 86

influence diagram, 86–88
project, 309–310

oil wildcatter, 81
project, 309

order rule, 75
oxide grade, 18, 50, 128, 280, 325

parent node, 36, 356
Pareto pdf, 26
partial imperfect information, 165
partial perfect information, 164
perfect versus imperfect information, 39, 96, 163

binary variables project, 308
conservation biology example, 182
Gaussian projects example, 46
mining oxide grade example, 128, 282

permeability, 194, 294, 317
petroleum development decisions, 231
petroleum prospect play, 233
petroleum prospect risking example, 258

project, 322
sampling, 59–61
VOI, 258–263

petroleum prospects, 233
anticlinal, 245
faults, 245
geological, 36, 232, 234, 259

petroleum simulation example, 193
project, 316–318
spatial modeling, 149–151
VOI, 193–198

pirate example, 98
Bayes’ rule, 42–43
digging decision, 75–76
VOI, 98–102

pluri-Gaussian models, 140
Poisson distribution, 135, 287, 326, 340
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porosity, 194, 247, 273, 294, 317
posterior value, 95

spatial decision situations, 163–165
posterior value computation, 97

approximate Bayesian computation, 201
interpretation, reliability measure, 192
Monte Carlo, 177, 190

Potts model, 350
power law distribution, 26, 304
precision matrix, 332
prediction error, 227
prediction variance, 123

information measure, 222–225
Kriging, 123

preference, 67
preference probabilities, 73
pre-posterior distribution, 96
prescriptive, decision making, 65
prior and posterior, 39–41; see also Bayesian 

modeling; probability density function
prior value, 95

definition spatial decision situations, 162
high decision flexibility and coupled value, 199
high decision flexibility and decoupled value, 174
low decision flexibility and coupled value, 188
low decision flexibility and decoupled value, 167

probability density function, 24
conditional pdf, 32
continuous pdfs, 25
discrete pdfs, 25
independence, 28
joint pdf, 27
marginal pdf, 28; see also statistical models

probability rule, 75
probability tree, 79
process-based and process-mimicking, 119
production, petroleum reservoir, 193
prospect, decision making, 69
prospects, geological, 36, 232, 234, 259
P-wave velocity, 16, 323
pyramid of conditions, 2, 97, 221

QQ plot, 48, 129, 283

random field, 110; see also spatial models; spatial 
simulation

random variable, 22
range, 112
recharge decisions, 293, 326
regression, 46, 50, 334

generalized linear model, 341
spatial regression model, 120

rejection sampling, 58, 361
relevance diagrams, 36
relevant, 3, 97, 221
reliability measure, 192, 194, 298, 327
reservoir attribute, 233, 247, 321

reservoir characterization example, 265
project, 322–324
spatial modeling, 144–147
VOI, 265–271

reservoir dogs, see seismic and electromagnetic data 
example

reservoir simulation, 317
resistivity data, 264, 272

Archie’s law, 277, 324
resource block, mining, 283
risk averse, 71
risk neutral, 70, 162
risk preferences, 70
risk seeking, 71
risking, 22, 59, 259
risky business, see petroleum prospect risking 

example
rock hazard example, 286

project, 326
spatial modeling, 136–139
VOI, 286–292

rock physics, 264
Gassmann’s fluid substitution, 276, 324
seismic and electromagnetic data, 324
seismic modeling, 267, 317
soft sand model, 273, 324

rock support, mining, 286
rules of actional thought, 75

salinity, 292
salt water wells in my eyes, see groundwater 

management example
sample space, 22, 27
saturation, 267, 273, 322
scenario, 69
scenario, geologic, 191, 294
segment, geologic, 234
seismic and electromagnetic data example, 271

project, 324–325
VOI, 271–280

seismic data, 18, 30, 144, 263–280, 322–325
Aki–Richards approximations, 276
AVO data project, 322
AVO gradient, 267
post-stack versus pre-stack data, 266, 272
time lapse, 88, 313
zero-offset attributes, 267

sensitivity, 182
sensitivity analysis, 54
separable covariance, 124
sequential decision situations, 161, 211–216
sequential Gaussian simulation, 118
sequential indicator simulation, 139
sequential information gathering, 161, 216–220, 257
sequential simulation, 117
sequential testing, 161, 216–220, 257
sill, 111, 288
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simulation, 53–61; see also Monte Carlo simulation; 
spatial simulation

skew-normal distribution, 132, 305
SNESIM algorithm, 149
snow measurements, 202, 318
soft sand model, 273, 324
source attribute, 233, 247, 321
space-filling design, 220
sparse matrix, 332
spatial alternatives, 156
spatial correlation, 111
spatial correlation range, 112
spatial covariance, 111
spatial covariance function, 112, 122, 314
spatial decision situations, 158
spatial design, 121, 125, 220; see also design of 

experiments
spatial generalized linear model, 135
spatial models, 107–110

Gaussian random field, 120
Markov random field, 140–147
multiple-point geostatistics, 147–151
pluri-Gaussian models, 140
process-based and process mimicking, 119
skew-normal distribution, 132
spatial generalized linear model, 135
truncated Gaussian models, 140

spatial prediction, 114–115
best linear unbiased predictor, 115
Kriging, 115, 123, 127
mean square prediction error, 115
optimal spatial predictor, 115

spatial regression model, 120
spatial simulation, 116–120

Boolean, 118
direct simulation, 116
iterative simulation, 117
object-based, 118
process-based and process-mimicking, 119
sequential Gaussian simulation, 118
sequential indicator simulation, 139
sequential simulation, 117
SNESIM, 149
unconditional and conditional simulation, 116, 117

SPE 10 dataset, 132
specificity, 182
St. Petersburg’s paradox, 308
standard deviation, 25
static decision situations, 161
static information gathering, 161
stationary, 38, 121

Markov chain, 345
random field, 110

statistical models, 22
Bayesian networks, 36, 44, 236–239, 356–359
binary variables, 24, 38, 42

binomial, 135, 340
Gaussian, 25, 28, 305, 331
Gaussian mixtures, 30
generalized linear models, 339–343
HMMs, 52, 179, 346–348
Markov chain, 38, 344
Poisson, 135, 287, 326, 340
power law, 26, 304
skew normal, 305; see also probability density 

function
stochastic simulation, 53–61; see also Monte Carlo 

simulation; spatial simulation
strategy, 84
subset selection, 210, 222, 284
substitution rule, 75
success or failure, 44, 178, 214, 223, 250
survey, 167

conservation biology example, 181
forestry example, 170
groundwater management example, 293
seismic and electromagnetic data example, 272

S-wave velocity, 323

test sequence, 217
the tree amigos, see conservation biology example
time after time, see time-lapse seismic example
time-lapse seismic example, 88

influence diagram, 88–93
project, 313

time–domain electromagnetic method, 292
airborne, 293
land-based, 327, 329

total imperfect information, 165
total organic carbon (TOC) content, 247
total perfect information, 163
total versus partial information, 39, 163

forestry example, 170, 184
Gaussian projects example, 46
reservoir characterization example, 266

training image, 118, 147, 149
transformation formula, 333
transformation of variables, 32, 58, 360
transient electromagnetic data, 292

airborne, 293
land-based, 327, 329

trap attribute, 233, 247, 321
treasure island, see pirate example
truncated Gaussian models, 140
tunnel, rock hazard, 286

uncertainties, 22, 68
unconditional and conditional simulation, 116, 117
uniform random numbers, 359
utility function, 70, 209

exponential utility, 71
linear utility, 70
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logarithmic utility function, 308; see also decision 
analysis

value function, 69
coupled, 188, 199
decoupled, 166, 174; see also decision analysis

value of clairvoyance, 93
value of imperfect information, 97

partial, 165
total, 165

value of information, 95
spatial decision situations, 163–165

value of perfect information, 95
partial, 165
total, 164

value table, 69, 80, 294, 309, 310
variable elimination, 39, 358

variance, 25, 28, 34, 111
variogram, 107, 111, 129, 325
versimultitude, 159

waste rock, 283
we will rock you, see rock hazard example
wealth, 72, 74, 94, 209, 308
workflow, 3, 230–231

framing the decision situation, 230
information-gathering schemes, 230
spatial model, 230
VOI analysis, 231

XMET data, 50, 128, 281
project, 325

XRF data, 50, 128, 281
project, 325
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