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Preface

The chapters in this volume are the invited papers presented at the fifth Séminaire
Européen de Statistique (SemStat) on extreme value theory and applications, held un-
der the auspices of Chalmers and Gothenburg University at the Nordic Folk Academy
in Gothenburg, 10-16 December, 2001.

The volume is thus the most recent in a sequence of conference volumes that have
appeared as a result of each Séminaire Européen de Statistique. The first of these
workshops took place in 1992 at Sandbjerg Manor in the southern part of Denmark.
The topic was statistical aspects of chaos and neural networks. A second meeting
on time series models in econometrics, finance, and other fields was held in Oxford
in December, 1994. The third meeting on stochastic geometry: likelihood and com-
putation took place in Toulouse, 1996, and a fourth meeting, on complex stochastic
systems, was held at EURANDOM, Eindhoven, 1999. Since August, 1996, SemStat
has been under the auspices of the European Regional Committee of the Bernoulli
Society for Mathematical Statistics and Probability.

The aim of the Séminaire Européen de Statistique is to provide young scientists
with an opportunity to get quickly to the forefront of knowledge and research in
areas of statistical science which are of current major interest. About 40 young re-
searchers from various European countries participated in the 2001 séminaire. Each
of them presented his or her work either by giving a seminar talk or contributing to
a poster session. A list of the invited contributors and the young attendants of the
séminaire, along with the titles of their presentations, can be found on the preceding
pages.

The central paradigm of extreme value theory is semiparametric: you cannot trust
standard statistical modeling by normal, lognormal, Weibull, or other distributions
all the way out into extreme tails and maxima. On the other hand, nonparametric
methods cannot be used either, because interest centers on more extreme events than
those one already has encountered. The solution to this dilemma is semiparametric
models which only specify the distributional shapes of maxima, as the extreme value
distributions, or of extreme tails, as the generalized Pareto distributions. The rationales
for these models are very basic limit and stability arguments.

The first chapter, written by Richard Smith, gives a survey of how this paradigm
answers a variety of questions of interest to an applied scientist in climatology, in-
surance, and finance. The chapter also reviews parts of univariate extreme value
theory and discusses estimation, diagnostics, multivariate extremes, and max-stable
processes.
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In the second chapter, Stuart Coles focuses on the particularly extreme event of
the 1999 rainfall in Venezuela that caused widespread distruction and loss of life. He
demonstrates that the probability for such an event would have been miscalculated
even by the standard extreme value models, and discusses the use of various options
available for extension in order to achieve a more satisfactory analysis.

The next three chapters consider applications of extreme value theory to risk man-
agement in finance and economics. First, in Chapter 3, Claudia Kliippelberg reviews
aspects of Value-at-Risk (VaR) and its estimation based on extreme value theory.
She presents results of a comprehensive investigation of the extremal behavior of
some of the most important continuous and discrete time series models that are of
current interest in finance. Her discussions are followed by an historic overview
of financial risk management given by Paul Embrechts in Chapter 4. In Chapter
5, Thomas Mikosch introduces the stylized facts of financial time series, in par-
ticular the heavy tails exhibited by log-returns. He studies, in depth, their connec-
tion with standard econometric models such as the GARCH and stochastic volatil-
ity processes. The reader is also introduced to the mathematical concept of regular
variation.

Another important area where extreme value theory plays a significant role is data
network modelling. In Chapter 6, Sidney Resnick reviews issues to consider for data
network modelling, some of the basic models and statistical techniques for fitting
these models.

Finally, in Chapter 7, Anne-Laure Fougeres gives an overview of multivariate
extreme value distributions and the problem of measuring extremal dependence.

The order in which the chapters are compiled approximately follows the order in
which they were presented at the conference. Naturally it is not possible to cover all
aspects of this interesting and exciting research area in a single conference volume.
The most important omission may be the extensive use of extreme value theory
in reliability theory. This includes modelling of extreme wind and wave loads on
structures, of strength of materials, and of metal corrosion and fatigue. In addition
to methods discussed in this volume, these areas use the deep and interesting theory
of extremes of Gaussian processes. Nevertheless it is our hope that the coverage
provided by this volume will help the readers to acquaint themselves speedily with
current research issues and techniques in extreme value theory.

The scientific programme of the fifth Séminaire Européen de Statistique was orga-
nized by the steering group, which, at the time of the conference, consisted of O.E.
Barndorft-Nielsen (Aarhus University), B. Finkenstadt (University of Warwick), W.S.
Kendall (University of Warwick), C. Kliippelberg (Munich University of Technol-
ogy), D. Picard (Paris VII), H. Rootzén (Chalmers University Gothenburg), and A.
van der Vaart (Free University Amsterdam). The local organization of the séminaire
was in the hands of H. Rootzén and the smooth running was to a large part due to
Johan Segers (Tilburg University), Jenny Andersson, and Jacques de Maré (both at
Chalmers University Gothenburg).

The fifth Séminaire Européen de Statistique was supported by the TMR-network in
statistical and computational methods for the analysis of spatial data, the Stochastic
Centre in Gothenburg, the Swedish Institute of Applied Mathematics, the Swedish
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Technical Sciences Research Council, the Swedish Natural Sciences Research Coun-
cil, and the Knut and Alice Wallenberg Foundation. We are grateful for this support,
without which the séminaire could not have taken place.

On behalf of the SemStat steering group

B. Finkenstadt and H. Rootzén
Warwick, Gothenburg
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CHAPTER 1

Statistics of Extremes, with Applications
in Environment, Insurance, and Finance

Richard L. Smith
University of North Carolina

Contents

1.1 Motivating examples
1.1.1 Snowfall in North Carolina
1.1.2  Insurance risk of a large company
1.1.3 Value at risk in finance
1.2 Univariate extreme value theory
1.2.1 The extreme value distributions
1.2.2 Exceedances over thresholds
Poisson-GPD model for exceedances
1.2.3 Examples
The exponential distribution
Pareto-type tail
Finite upper endpoint
Normal extremes
1.2.4 The r largest order statistics model
1.2.5 Point process approach
1.3 Estimation
1.3.1 Maximum likelihood estimation
1.3.2  Profile likelihoods for quantiles
1.3.3 Bayesian approaches
1.3.4 Raleigh snowfall example
1.4 Diagnostics
1.4.1 Gumbel plots
1.4.2 QQ plots
1.4.3 The mean excess plot
1.4.4 Z- and W-statistic plots
1.5 Environmental extremes
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1.5.2 Windspeed extremes
1.5.3 Rainfall extremes
1.5.4 Combining results over all stations
1.6 Insurance extremes
1.6.1 Threshold analyses with different thresholds
1.6.2 Predictive distributions of future losses
1.6.3 Hierarchical models for claim type and year effects
1.6.4 Analysis of a long-term series of U.K. storm losses
1.7 Multivariate extremes and max-stable processes
1.7.1 Multivariate extremes
1.7.2  Max-stable processes
1.7.3 Representations of max-stable processes
1.7.4 Estimation of max-stable processes
1.8 Extremes in financial time series

1.1 Motivating examples

Extreme value theory is concerned with probabilistic and statistical questions related
to very high or very low values in sequences of random variables and in stochastic
processes. The subject has a rich mathematical theory and also a long tradition of
applications in a variety of areas. Among many excellent books on the subject, Em-
brechts et al. (1997) give a comprehensive survey of the mathematical theory with
an orientation toward applications in insurance and finance, while the recent book by
Coles (2001) concentrates on data analysis and statistical inference for extremes.

The present survey is primarily concerned with statistical applications, and es-
pecially with how the mathematical theory can be extended to answer a variety of
questions of interest to an applied scientist. Traditionally, extreme value theory has
been employed to answer questions relating to the distribution of extremes (e.g., what
is the probability that a windspeed over a given level will occur in a given location
during a given year?) or the inverse problem of return levels (e.g., what height of
a river will be exceeded with probability 1/100 in a given year? — this quantity is
often called the 100-year return level). During the last 30 years, many new techniques
have been developed concerned with exceedances over high thresholds, the depen-
dence among extreme events in various types of stochastic processes, and multivariate
extremes.

These new techniques make it possible to answer much more complex questions
than simple distributions of extremes. Among those considered in the present review
are whether probabilities of extreme events are changing with time or corresponding
to other measured covariates (e.g., Section 1.5.1 through Section 1.5.3 and Section
1.6.4), the simultaneous fitting of extreme value distributions to several related time
series (Section 1.6.1 through Section 1.6.3), the spatial dependence of extreme value
distributions (Section 1.6.4) and the rather complex forms of extreme value calcu-
lations that arise in connection with financial time series (Section 1.8). Along the
way, we shall also review relevant parts of the mathematical theory for univariate
extremes (Section 1.2 through Section 1.4) and one recent approach (among several
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that are available) to the characterization of multivariate extreme value distributions
(Section 1.7).

For the rest of this section, we give some specific examples of data-oriented ques-
tions which will serve to motivate the rest of the chapter.

1.1.1 Snowfall in North Carolina

On January 25, 2000, a snowfall of 20.3 inches was recorded at Raleigh-Durham
airport in North Carolina. This is an exceptionally high snowfall for this part of the
U.S. and caused widespread disruption to travel, power supplies, and the local school
system. Various estimates that appeared in the press at the time indicated that such
an event could be expected to occur once every 100 to 200 years. The question we
consider here is how well one can estimate the probability of such an event based on
data available prior to the actual event. Associated with this is the whole question of
what is the uncertainty of such an assessment of an extreme value probability.

To simplify the question and to avoid having to consider time-of-year effects,
we shall confine our discussion to the month of January, implicitly assuming that
an extreme snowfall event is equally likely to occur at any time during the month.
Thus the question we are trying to answer is, for any large value of x, “What is the
probability that a snowfall exceeding x inches occurs at Raleigh-Durham airport,
sometime during the month of January, in any given year?”

A representative data set was compiled from the publicly available data base of the
U.S. National Climatic Data Center. Table 1.1 lists all the January snow events (i.e.,
daily totals where a nonzero snowfall was recorded) at Raleigh-Durham airport, for
the period 1948 to 1998. We shall take this as a data base from which we try to answer
the question just quoted, with x = 20.3, for some arbitrary year after 1998. It can
be seen that no snowfall anywhere close to 20.3 inches occurs in the given data set,
the largest being 9.0 inches on January 19, 1955. There are earlier records of daily
snowfall events over 20 inches in this region, but these were prior to the establishment
of a regular series of daily measurements, and we shall not take them into account.

In Section 1.3, we shall return to this example and show how a simple threshold-
based analysis may be used to answer this question, but with particular attention to the
sensitivity to the chosen threshold and to the contrast between maximum likelihood
and Bayesian approaches.

1.1.2 Insurance risk of a large company

This example is based on Smith and Goodman (2000). A data set was compiled
consisting of insurance claims made by an international oil company over a 15-
year period. In the data set originally received from the company, 425 claims were
recorded over a nominal threshold level, expressed in U.S. dollars and adjusted for
inflation to 1994 cost equivalents. As a preliminary to the detailed analysis, two further
preprocessing steps were performed: (i) the data were multiplied by a common but
unspecified scaling factor — this has the effect of concealing the precise sums of
money involved, without in any other way changing the characteristics of the data set,
and (ii) simultaneous claims of the same type arising on the same day were aggregated
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Table 1.1 January snow events at Raleigh-Durham Airport, 1948-1998.

Year Day  Amount Year Day  Amount Year Day  Amount

1948 24 1.0 1965 15 0.8 1977 7 0.3
1948 31 2.5 1965 16 3.7 1977 24 1.8
1954 11 1.2 1965 17 1.3 1979 31 0.4
1954 22 1.2 1965 30 3.8 1980 30 1.0
1954 23 4.1 1965 31 0.1 1980 31 1.2
1955 19 9.0 1966 16 0.1 1981 30 2.6
1955 23 3.0 1966 22 0.2 1982 13 1.0
1955 24 1.0 1966 25 2.0 1982 14 5.0
1955 27 1.4 1966 26 7.6 1985 20 1.7
1956 23 2.0 1966 27 0.1 1985 28 24
1958 7 3.0 1966 29 1.8 1987 25 0.1
1959 8 1.7 1966 30 0.5 1987 26 0.5
1959 16 1.2 1967 19 0.5 1988 7 7.1
1961 21 1.2 1968 10 0.5 1988 8 0.2
1961 26 1.1 1968 11 1.1 1995 23 0.7
1962 1 1.5 1968 25 1.4 1995 30 0.1
1962 10 5.0 1970 12 1.0 1996 6 2.7
1962 19 1.6 1970 23 1.0 1996 7 29
1962 28 2.0 1973 7 0.7 1997 11 04
1963 26 0.1 1973 8 5.7 1998 19 2.0
1964 13 0.4 1976 17 0.4

Table 1.2 The seven types of insurance claims, with the total number of claims and the mean
size of claim for each type.

Type  Description  Number  Mean

1 Fire 175 11.1
2 Liability 17 12.2
3 Offshore 40 9.4
4 Cargo 30 39
5 Hull 85 2.6
6 Onshore 44 2.7
7 Aviation 2 1.6

into a single total claim for that day — the motivation for this was to avoid possible
clustering effects due to claims arising from the same cause, though it is likely that
this effect is minimal for the data set under consideration. With these two changes
to the original data set, the analysed data consisted of 393 claims over a nominal
threshold of 0.5, grouped into seven “types” as shown in Table 1.2.

The total of all 393 claims was 2989.6, and the ten largest claims, in order, were
776.2, 268.0, 142.0, 131.0, 95.8, 56.8, 46.2, 45.2, 40.4, and 30.7. These figures give
some indication of the type of data we are talking about: the total loss to the company
is dominated by the value of a few very large claims, with the largest claim itself
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Figure 1.1 Insurance data: (a) plot of raw data, (b) cumulative number of claims vs. time,

(c) cumulative claim amount vs. time, and (d) mean excess plot.

accounting for 26% of the total. In statistical terms, the data clearly represent a very
skewed, long-tailed distribution, though these features are entirely typical of insurance
data.

Further information about the data can be gained from Figure 1.1, which shows (a)
a scatterplot of the individual claims against time — note that claims are drawn on a
logarithmic scale; (b) cumulative number of claims against time — this serves as a
visual indicator of whether there are trends in the frequency of claims; (¢) cumulative
claim amounts against time, as an indicator of trends in the total amounts of claims;
and (d) the so-called mean excess plot, in which for a variety of possible thresholds,
the mean excess over the threshold was computed for all claims that were above that

€004 CRC PressLLC



threshold, and plotted against the threshold itself. As will be seen later (Section 1.4),
this is a useful diagnostic of the generalized Pareto distribution (GPD) which is widely
used as a probability distribution for excesses over thresholds — in this case, the fact
that the plot in Figure 1.1(d) is close to a straight line over most of its range is an
indicator that the GPD fits the data reasonably well. Of the other plots in Figure 1.1,
plot (b) shows no visual evidence of a trend in the frequency of claims, while in (c),
there is a sharp rise in the cumulative total of claims during year 7, but this arises
largely because the two largest claims in the whole series were both in the same year,
which raises the question of whether these two claims should be treated as outliers,
and therefore analyzed separately from the rest of the data. The case for doing this
is strengthened by the fact that these were the only two claims in the entire data set
that resulted from the total loss of a facility. We shall return to these issues when the
data are analysed in detail in Section 1.6, but for the moment, we list four possible
questions for discussion:

1. What is the distribution of very large claims?

2. Is there any evidence of a change of the distribution of claim sizes and frequencies
over time?

3. What is the influence of the different types of claims on the distribution of total
claim size?

4. How should one characterize the risk to the company? More precisely, what prob-
ability distribution can one put on the amount of money that the company will have
to pay out in settlement of large insurance claims over a future time period of, say,
one year?

Published statistical analyses of insurance data often concentrate exclusively on
question 1, but it is arguable that the other three questions are all more important and
relevant than a simple characterisation of the probability distribution of claims, for a
company planning its future insurance policies.

1.1.3 Value at risk in finance

Much of the recent research in extreme value theory has been stimulated by the
possibility of large losses in the financial markets, which has resulted in a large amount
of literature on “value at risk” and other measures of financial vulnerability. As an
example of the types of data analysed and the kinds of questions asked, Figure 1.2
shows negative daily returns from closing prices of 1982 to 2001 stock prices in three
companies, Pfizer, General Electric, and Citibank. If X, is the closing price of a stock
or financial index on day ¢, then the daily return (in effect, the percentage loss or gain
on the day) is defined either by

X,
Y, — 100( _ 1) (L.1)

t—1

or, more conveniently for the present discussion, by

X
Y, =100 log X (1.2)

t—1
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Figure 1.2 Negative daily returns, defined by (1.3), for three stocks, 1982 to 2001, (a) Pfizer,
(b) General Electric, and (c) Citibank.

We are mainly interested in the possibility of large losses rather than large gains, so
we rewrite (1.2) in terms of negative returns,
-1

X
Y, =100 log =~ (1.3)

t

which is the quantity actually plotted in Figure 1.2.
Typical problems here are:

1. Calculating the value at risk, i.e., the amount which might be lost in a portfolio of
assets over a specified time period with a specified small probability;

2. Describing dependence among the extremes of different series, and using this
description in the problem of managing a portfolio of investments; and

3. Modeling extremes in the presence of volatility — like all financial time series,
those in Figure 1.2 show periods when the variability or volatility in the series
is high, and others where it is much lower, but simple theories of extreme val-
ues in independent and identically distributed (i.i.d.) random variables or simple
stationary time series do not account for such behaviour.

In Section 1.8, we shall return to this example and suggest some possible approaches
to answering these questions.
1.2 Univariate extreme value theory
1.2.1 The extreme value distributions

In this section, we outline the basic theory that applies to univariate sequences of i.i.d.
random variables. This theory is by now very well established and is the starting point
for all the extreme value methods we shall discuss.

Suppose we have an i.i.d. sequence of random variables, X, X5, ..., whose com-
mon cumulative distribution function is F, i.e.,

F(x) =Pr{X; < x}.
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Also let M,, = max(Xy, ..., X,) denote the nth sample maximum of the process.
Then

Pr{M, < x} = F(x)". (1.4)

Result (1.4) is of no immediate interest, since it simply says that for any fixed x
for which F(x) < 1, we have Pr{M,, < x} — 0. For nontrivial limit results, we must
renormalize: find a, > 0, b,, such that

Mn - bn
Pr{ —— <x;=F(a,x +b,)" - Hx). (1.5)
al’[

The Three Types Theorem, originally stated without detailed mathematical proof
by Fisher and Tippett (1928), and later derived rigorously by Gnedenko (1943), asserts
that if a nondegenerate H exists (i.e., a distribution function which does not put all
its mass at a single point), it must be one of three types:

H(x) = exp(—e™™), all x, (1.6)

Hix) — 0, x <0, L7

) = exp(—x7%), x>0, 147

He) - {exp(—|x| ), x <0, 08
1, x > 0.

Here two distribution functions H; and H, are said to be of the same type if one can
be derived from the other through a simple location-scale transformation,

Hi(x) = Hy(Ax + B), A > 0.

Very often, (1.6) is called the Gumbel type, (1.7) the Fréchet type, and (1.8) the
Weibull type. In (1.7) and (1.8), & > 0.
The three types may be combined into a single generalized extreme value (GEV)

distribution:
{ x— 1 —1/§
H(x) = exp —(l—l—é—) , (1.9)
v/

(y+ = max(y, 0)) where u is a location parameter, ¥ > 0 is a scale parameter, and &
is a shape parameter. The limit £ — O corresponds to the Gumbel distribution, £ > 0
to the Fréchet distribution with « = 1/&, and £ < O to the Weibull distribution with
a=-—1/&.

In more informal language, the case £ > 0 is the “long-tailed” case for which
1 — H(x)  x~ V%, &£ = 01is the “medium-tailed” case for which 1 — H(x) decreases
exponentially for large x, and £ < Ois the “short-tailed” case, in which the distribution
has a finite endpoint (the minimum value of x for which H(x) = 1) atx = u — ¥ /£.
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1.2.2 Exceedances over thresholds

Consider the distribution of X conditionally on exceeding some high threshold u (so
Y=X—u>0):

Fu+y)— F(u)

F =PrlY Sy 1Y >0} = =

Asu — wp =sup{x : F(x) < 1}, we often find a limit

Fu(y) = G(y;0u, ), (1.10)

where G is generalized Pareto distribution (GPD)

v\
G(y;0,86) =1~ <1+§;> . (1.11)

+

Although the Pareto and similar distributions have long been used as models for
long-tailed processes, the rigorous connection with classical extreme value theory
was established by Pickands (1975). In effect, Pickands showed that for any given F,
a GPD approximation arises from (1.10) if and only there exist normalizing constants
and a limiting H such that the classical extreme value limit result (1.5) holds; in that
case, if H is written in GEV form (1.9), then the shape parameter & is the same as the
corresponding GPD parameter in (1.11). Thus there is a close parallel between limit
results for sample maxima and limit results for exceedances over thresholds, which
is quite extensively exploited in modern statistical methods for extremes.

In the GPD, the case £ > 0 is long-tailed, for which 1 — G(x) decays at the
same rate as x /¢ for large x. This is reminiscent of the usual Pareto distribution,
Gx)=1—cx"* with & = 1/a. For £ = 0, we may take the limit as £ — 0 to get

G(y;o,O):l—exp(—X>,
o

i.e., exponential distribution with mean o'. For £ < 0, the distribution has finite upper
endpoint at —o/£. Some other elementary results about the GPD are

o
EY)= ——, D),
=1 E<D
Var(Y) o (s 1) (1.12)
arY) = — <=1, .
(1 —&)2(1 —2¢) 2
E(Y —y|Y >y >0)= "1+?, & < 1).
Poisson-GPD model for exceedances
Suppose we observe i.i.d. random variables X1, ..., X,,, and observe the indices i for

which X; > u.If these indices are rescaled to points i / n, they can be viewed as a point
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process of rescaled exceedance times on [0, 1]. If n — oo and 1 — F(u) — 0 such
that n(1 — F(u)) — A (0 < A < 00), the process converges weakly to a homogeneous
Poisson process on [0, 1], of intensity A.

Motivated by this, we can imagine a limiting form of the joint point process of
exceedance times and excesses over the threshold, of the following form:

1. The number, N, of exceedances of the level u in any one year has a Poisson
distribution with mean A; and

2. Conditionally on N > 1, the excess values Y1, ..., Yy are i.i.d. from the GPD.

We call this the Poisson—-GPD model.

Of course, there is nothing special here about one year as the unit of time — we
could just as well use any other time unit — but for environmental processes in
particular, a year is often the most convenient reference time period.

The Poisson—GPD process is closely related to the GEV distribution for annual
maxima. Suppose x > u. The probability that the annual maximum of the Poisson—
GPD process is less than x is

o0
Pr{lxgzgvy,- <x}=Pr{N=0}+ > P(N=n, ¥ <x,...% <x]

n=1
X Ate™* x—u\ "¢ !
=e K1=1(1
¢ +Z n! { <+E o >+
n=1
_ -1/
:exp{—)\ (1+sx ”) } (1.13)
o /4
If we substitute
w—p\ "V

(1.13) reduces to the GEV form (1.9). Thus the GEV and GPD models are entirely
consistent with one another above the threshold u, and (1.14) gives an explicit rela-
tionship between the two sets of parameters.

The Poisson—-GPD model is closely related to the peaks over threshold (POT)
model originally developed by hydrologists. In cases with high serial correlation,
the threshold exceedances do not occur singly but in clusters, and, in that case, the
method is most directly applied to the peak values within each cluster. For more
detailed discussion, see Davison and Smith (1990).

Another issue is seasonal dependence. For environmental processes in particular,
it is rarely the case that the probability of an extreme event is independent of the time
of year, so we need some extension of the model to account for seasonality. Possible
strategies include:

1. Remove seasonal trend before applying the threshold approach.
2. Apply the Poisson—GPD model separately to each season.

3. Expand the Poisson—GPD model to include covariates.

€004 CRC PressLLC



All three approaches have been extensively applied in past discussions of threshold
methods. In the present chapter, we focus primarily on method 3. (e.g., Section 1.5 and
Section 1.6.4), though only after first rewriting the Poisson-GPD model in a different
form (Section 1.2.5).

1.2.3 Examples

In this section, we present four examples to illustrate how the extreme value and GPD
limiting distributions work in practice, given various assumptions on the distribution
function F from which the random variables are drawn. From a mathematical view-
point, these examples are all special cases of the domain of attraction problem, which
has been dealt with extensively in texts on extreme value theory, e.g., Leadbetter et al.
(1983) or Resnick (1987). Here we make no attempt to present the general theory, but
the examples serve to illustrate the concepts in some of the most typical cases.

The exponential distribution

Suppose F(x) =1—e . Leta, = 1 and b,, = logn. Then

—X

> — exp(—e™™),
n

e

F™(apx + by) = (1 — e~ ¥lognyn — (1 —

in other words, the limiting distribution of sample extremes in this case is the Gumbel
distribution.
For the threshold version of the result, set 0, = 1. Then

F(u+z)— F(u) _ e —eTit
1—Fu) e

Fy(0uz) = =1—-e"

so the exponential distribution of mean 1 is the exact distribution for exceedances in
this case.
Pareto-type tail

Suppose 1 — F(x) ~cx ™ asx — oo, withc > O0ando > 0. Letb, =0, a, =
(nc)Y/*. Then for x > 0,

—

al ) — exp(—x~%),
n

F(a,x) ~ {1 — clayx) )" = (1 _

which is the Fréchet limit.
For the threshold result, let 6, = ub for some b > 0. Then

F(0,2) F(u—+ubz) — F(u) cu ™ —c(u+ubz)™@
uloy2) = ~
< 1— F(u) cu¢

=1->04+b2)™"

Set & = i and b = & to get the result in GPD form.
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Finite upper endpoint

Suppose wp = w < occand 1 — F(w —y) ~cy*asy | Oforc > 0, > 0. Set
b, = w, a, = (nc)~"/*. Then for x < 0,

F'(aux +b,) = F'(w + a,x) ~ {1 — c (—a,x)*}"

— {1 _ (_x)a} — exp{—(—x)"},
n

which is of Weibull type.
For the threshold version, let u be very close to w and consider ¢, = b(w — u) for

b > 0 to be determined. Then for 0 < z < %,

F(u+0,2) — F(u)
1— Fu)

N clw—u)*—clw—u—o,2)*

F,(0,2) =

=1-—(1—bz)".

c(w—u)
This is of GPD form with & = —é and b = —¢&.

Normal extremes

Let d(x) = \/#2_71 [*_ e '/2dy. By Feller (1968), page 193,

1 - (x) L
- X)~ e as x — OQ.
x/2m
Then
=@t z/u) 2\ 7! 1 2\? ,
T ew am (e) ey ty)

For a first application, let o, = 1/u, then

DU+ 0,2) — Pu)
1 — ®(u)

—1—e7

asu — oo,

so the limiting distribution of exceedances over thresholds is exponential.
For a second application, define b, by ®(b,) =1 —1/n,a, = 1/b,. Then

1_q) n bn _
nl= @@+ b)) = e O s
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and hence

lim ®" (a,x + b,) = lim <1 _¢ ) =exp(—e™™),
n—o00 n—o00 n
establishing convergence to Gumbel limit.

In practice, although the Gumbel and exponential distributions are the correct
limits for sample maxima and threshold exceedances respectively, better approxi-
mations are obtained using the GEV and GPD, allowing & # 0. This is known
as the penultimate approximation and was investigated in detail by Cohen (1982a,
1982b). The practical implication of this is that it is generally better to use the
GEV/GPD distributions even when we suspect that Gumbel/exponential are the
correct limits.

1.2.4 The r largest order statistics model

An extension of the annual maximum approach is to use the r largest observations
in each fixed time period (say, one year), where r > 1. The mathematical result on
which this relies is that (1.5) is easily extended to the joint distribution of the r largest
order statistics, as n — oo for a fixed r > 1, and this may therefore be used as a
basis for statistical inference. A practical caution is that the r-largest result is more
vulnerable to departures from the i.i.d. assumption (say, if there is seasonal variation
in the distribution of observations, or if observations are dependent) than the classical
results about extremes.

The main result is as follows: if ¥, > Y,» > --- > Y, , are r largest order
statistics of i.i.d. sample of size n, and a, and b, are the normalising constants in

(1.5), then
Yn,l - bn Yn,r - bn
o o
converges in distribution to a limiting random vector (X, ..., X,), whose density is
-1/
X —
h(xl,...,xr)zw_rexp{ - <1 re “)

1\ « Xi— U
— {1+ = 1 | J . (115
(1+¢) Swe (1465 ) | 119

Some examples using this approach are the papers of Smith (1986) and Tawn (1988) on
hydrological extremes, and Robinson and Tawn (1995) and Smith (1997) for a novel
application to the analysis of athletic records. The latter application is discussed in
Section 1.3.3.

1.2.5 Point process approach

This was introduced as a statistical approach by Smith (1989), though the basic
probability theory from which it derives had been developed by a number of earlier
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authors. In particular, the books by Leadbetter et al. (1983) and Resnick (1987) contain
much information on point-process viewpoints of extreme value theory.

In this approach, instead of considering the times at which high-threshold ex-
ceedances occur and the excess values over the threshold as two separate processes,
they are combined into one process based on a two-dimensional plot of exceedance
times and exceedance values. The asymptotic theory of threshold exceedances shows
that under suitable normalisation, this process behaves like a nonhomogeneous Pois-
son process.

In general, a nonhomogeneous Poisson process on a domain D is defined by an
intensity A(x), x € D, such that if A is a measurable subset of D and N(A) denotes
the number of points in A, then N(A) has a Poisson distribution with mean

A(A) = / A(x)dx.
A

If A, Ay, ..., are disjoint subsets of D, then N(A;), N(A»), ... are independent
Poisson random variables.

For the present application, we assume x is two-dimensional and identified with
(t, y) where ¢ is time, and y > u is the value of the process, D = [0, T] x [u, 00),

and we write

1 y—p\ !

At y) = — (1+§) ) (1.16)
4 4

defined wherever {1 + £(y — w)/v¥} > O (elsewhere A(¢, y) = 0). If A is a set of the
form [z, t;] x [y, 0o) (see Figure 1.3), then

YK U
A(A) = (1 — n)(l +s—)

providedy > u, 14+&(y —w)/¥ >0. (1.17)

Figure 1.3 Illustration of point process approach. Assume the process is observed over a time
interval [0, T, and that all observations above a threshold level u are recorded. These points
are marked on a two-dimensional scatterplot as shown in the diagram. For a set A of the form
shown in the figure, the count N(A) of observations in the set A is assumed to be Poisson with
mean of the form given by (1.17).
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The mathematical justification for this approach lies in limit theorems as T — oo
and 1 — F(u) — 1, which we shall not go into here. To fit the model, we note that
if a nonhomogeneous process of intensity A(¢, y) is observed on a domain D, and if
(T, Y1), ..., (Ty, Yy) are the N observed points of the process, then the joint density

1S
N
[Tr. Yi)-exp{—/ A(t,y)dtdy}, (1.18)
i=1 D

so (1.18) may be treated as a likelihood function and maximized with respect to the
unknown parameters of the process. In practice, the integral in (1.18) is approximated
by a sum, e.g., over all days if the observations are recorded daily.

An extension of this approach allows for nonstationary processes in which the
parameters u, ¥, and & are all allowed to be time-dependent, denoted u,, ¥, and &;.
Thus, (1.16) is replaced by

1 y =\
/\(t,y)=w(1+a " ’) . (1.19)

In the homogeneous case where i, ¥, and £ are constants, the model is mathemat-
ically equivalent to the Poisson-GPD model discussed above, though with a different
parameterization. The extension (1.19) is particularly valuable in connection with ex-
treme value regression problems, which are extensively discussed later (Section 1.5
and Section 1.6).

As an illustration of how the point process viewpoint may be used as a practical
guide to visualising extreme value data, Figure 1.4 presents two plots derived from
a 35-year series of the River Nidd in northern England (Davison and Smith 1990).

(a) (b)

300 | . 300 |
250 | e 250 |
0 0
[$] [$]
(0] Q
£ 200 | g€ 200 |
> >
) e
T 150 | . T 150 |
[0} (] .
- - *
100 | e Y 100 ].7. ivL. o,
$oetatte “_: :;.:{,.‘ st ::.o: “. .‘-':.
AR s e
0 100 200 300 0 4000 8000 12000
Day within year Total days from 1/1/34

Figure 1.4 Plots of exceedances of River Nidd, (a) against day within year, and (b) against
total days from January 1, 1934. Adapted from Davison and Smith (1990).
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The data in this case consist of daily river flows above the level of 65 cumecs/second,
and have been crudely declustered to remove successive high values that are part of the
same extreme event. Figure 1.4(a) shows the data plotted against time measured as day
within the year (1 to 366). Figure 1.4(b) shows a corresponding plot where time is the
total cuamulative number of days since the start of the series in 1934. Plot (a) is a visual
diagnostic for seasonality in the series and shows, not surprisingly, that there are very
few exceedances during the summer months. Plot (b) may be used as a diagnostic for
overall trends in the series; in this case, there are three large values at the right-hand end
of the series which could possibly indicate a trend in the extreme values of the series.

1.3 Estimation

1.3.1 Maximum likelihood estimation

Suppose we have observations Y1, ..., Yy which are data for which the GEV dis-
tribution (1.9) is appropriate. For example, perhaps we take one year as the unit of
time, and Y1, ..., Yy represent annual maximum values for each of N years. The
corresponding log likelihood is

1 Y —
Oy, ¥, §) = —Nlogy — (§+1> Zlog(l e “)

N\ Ve
_Z(Hg"w“) (1.20)

provided 1 + &(Y; — w)/¢ > O for each i.

For the Poisson-GPD model discussed above, suppose we have a total of N observa-
tions above a threshold in time 7', and the excesses over the threshold are Yy, ..., Yy.
Suppose the expected number of Poisson exceedances is AT, and the GPD parameters
are o and &, as in (1.11). Then the log likelihood is

Iyy(r,0,6) = Nlogh — AT — Nlogo

1\ & Y;
— <1+§) ;mg (1+§;> (1.21)

provided 1 + £Y; /o > 0 for all i. Similar log likelihoods may be constructed from
the joint densities (1.15) and (1.18) for the r largest order statistics approach and the
point process approach.

The maximum likelihood estimators are the values of the unknown parameters that
maximize the log likelihood. In practice these are local maxima found by nonlinear
optimization. The standard asymptotic results of consistency, asymptotic efficiency,
and asymptotic normality hold for these distributions if £ > —% (Smith 1985). In
particular, the elements of the Hessian matrix of —¢ (the matrix of second-order par-
tial derivatives, evaluated at the maximum likelihood estimators) are known as the
observed information matrix, and the inverse of this matrix is a widely used approx-
imation for the variance-covariance matrix of the maximum likelihood estimators.
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The square roots of the diagonal entries of this inverse matrix are estimates of the
standard deviations of the three parameter estimates, widely known as the standard
errors of those estimates. All these results are asymptotic approximations valid for
large sample sizes, but in practice they are widely used even when the sample sizes
are fairly small.

1.3.2 Profile likelihoods for quantiles

Suppose we are interested in the n-year return level y,, i.e., the (1 — 1/n)-quantile of
the annual maximum distribution. This is given by solving the equation

_ -1/
exp{— <1+g%) }:1—%. (1.22)

Exploiting the approximation 1 — % ~ exp (—%), this simplifies to

—1/¢

Yo — I 1
l _— = —,
( s v )

nf—1
= (1.23)

One approach to the estimation of y, is simply to substitute the maximum likelihood
estimates [, ¥, £ for the unknown parameters u, ¥, &, thus creating a maximum
likelihood estimator ,. The variance of $, may be estimated through a standard delta
function approximation, i.e., if we define a vector of partial derivatives

OYn 0Yn Oyn
o’ Y O
and write g for g({, ¥, €), and also write H for the observed information matrix for
(ft, ¥, &), then the variance of 9, is approximately

and hence

glu, ¥, ) = (

g-H .87, (1.24)

and the square root of (1.24) is an approximate standard error. In practice, this often
gives a rather poor approximation which does not account for the skewness of the
distribution of ,, especially when n is large.

An alternative approach is via a profile likelihood. Equation (1.23) shows how y,
(for a given value of n) may be expressed as a function of (i, ¥, &§). Suppose we
rewrite this as

n® —1
§
and substitute in (1.20) so that the log likelihood £y is written as a function of new
parameters (y,, ¥, £). If for any given value of y, we maximise this function with
respect to 1 and &, we obtain a function of y, alone, say £3(y,), which is known as
the profile log likelihood function for y,. This function may be plotted to determine
the relative plausibility of different values of y,.

M:yn_w
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Figure 1.5 Profile log likelihood plots for the n-year return value y, for the River Nidd, for
n =25, 50, and 100. The horizontal dotted line is at a level 1.92 below the common maximum
of the three curves; for each n, a 95% confidence interval for y, consists of all values for which
the profile log likelihood is above the dotted line.

A confidence interval for y, may be constructed by exploiting the following prop-
erty: under standard regularity conditions for maximum likelihood (which, as noted
already, are valid provided § > — %), under the null hypothesis that y, is the true value,

2{log €5() — log £3(ya)} ~ x{ (approximately).

Therefore, an approximate 100(1 — «)% confidence interval for y, consists of all
values for which

X oA * 1
log 5($,) — log €3 (yn) < Exﬁl_a (1.25)

where X12; |_q 18 the (1 — )-quantile of the X12 distribution. For example, in the case
o = .05, the right-hand side of (1.25) is 1.92.

The same concept may be used in connection with (1.22) or any other model for
which the standard regularity conditions for maximum likelihood hold. For example,
Figure 1.5 (adapted from Davison and Smith, 1990) shows a profile likelihood plot
for y,, for each of the values n = 25, 50, and 100, constructed from the River Nidd
threshold exceedances mentioned already in Section 1.2.5. The key point here is that
the curves are highly skewed to the right, and correspondingly, so are the confidence
intervals — in sharp contrast to the confidence intervals derived from the delta method
that are always symmetric about the maximum likelihood estimator. This in turn
reflects that there is much less information in the data about the behavior of the process
at very high threshold levels (i.e., above 400) compared with lower levels where there
is much more data. Although there is no proof that the confidence intervals derived by
the profile likelihood method necessarily have better coverage probabilities than those
derived by the delta method, simulations and practical experience suggest that they do.

€004 CRC PressLLC



1.3.3 Bayesian approaches

Bayesian methods of statistics are based on specifying a density function for the un-
known parameters, known as the prior density, and then computing a posterior density
for the parameters given the observations. In practice, such computations are nearly
always carried out using some form of Markov chain Monte Carlo (MCMC) sam-
pling, which we shall not describe here, as a number of excellent texts on the subject
are available, e.g., Gamerman (1997) or Robert and Casella (2000). In the present
discussion, we shall not dwell on the philosophical differences between Bayesian and
frequentist approaches to statistics, but concentrate on two features that may be said
to give Bayesian methods a practical advantage: their effectiveness in handling mod-
els with very large numbers of parameters (in particular, hierarchical models, which
we shall see in an extreme values context in Section 1.6.3); and their usefulness in
predictive inference, where the ultimate objective is not so much to learn the values of
unknown parameters, but to establish a meaningful probability distribution for future
unobserved random quantities.

For the rest of the present section, we focus on a specific example, first given by
Smith (1997), that brings out the contrast between maximum likelihood inference
about parameters and Bayesian predictive inference in a particularly striking way.
Further instances of Bayesian predictive inference applied to extremes will be found
in several subsequent sections, e.g., Section 1.3.4 and Section 1.6.2.

The example concerns the remarkable series of track performances achieved dur-
ing 1993 by the Chinese athlete Wang Junxia, including new world records at 3000
and 10,000 meters, which were such an improvement on previous performances that
there were immediate suspicions that they were drug assisted. However, although
other Chinese athletes have tested positive for drugs, Wang herself never did, and her
records still stand. The question considered here, and in an earlier paper by Robinson
and Tawn (1995), is to assess just how much of an outlier the performance really was,
in comparison with previous performances. The detailed discussion is confined to the
3000-meter event.

Figure 1.6(a) shows the five best running times by different athletes in the women’s
3000-meter track event for each year from 1972 to 1992, along with Wang Junxia’s
world record from 1993. The first step is to fit a probability model to the dataup to 1992.

Recall from (1.15) that there is an asymptotic distribution for the joint distribution of
the r largest order statistics in a random sample, in terms of the usual GEV parameters
(u, ¥, &). Recall also that the upper endpoint of the distribution is at u — ¥/& when
& < 0. In this example, this is applied with » = 5, the observations (running times)
are negated to convert minima into maxima, and the endpoint parameter is denoted
Xulr, the nominal “ultimate running performance.” A profile likelihood for x,;, may
therefore be constructed by the same method as in Section 1.3.2. For the present study,
the analysis is confined to the data from 1980 onwards, for which there is no visible
evidence of a time trend.

The profile log likelihood constructed by this process is shown in Figure 1.6(b). A
95% confidence interval for x,, is again calculated as the set of values for which the
profile log likelihood is above the dashed line, and leads to an approximate confidence
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Figure 1.6 (a) Five best performances by different athletes in the women’s 3000-meter event,
for each year from 1972 to 1992, together with Wang Junxia’s record from 1993, and (b) profile
log likelihood for x,;, the ultimate endpoint parameter, based on the joint density (1.15) fitted
to the data (multiplied by —1 to convert minima into maxima) from 1980 to 1992.

interval (481 to 502). Wang’s 1993 record —486.1 seconds — lies within this confi-
dence interval, so on the basis of the analysis so far, there is no clear-cut basis on which
to say her record was anomalous. Robinson and Tawn (1995) considered a number of
other models for the data, for example, allowing for various forms of time trend from
1972 onwards, but their main conclusions were consistent with this, i.e., that likelihood
ratio confidence intervals for x,;, were wide and typically included Wang’s record.

The alternative Bayesian analysis introduced by Smith (1997) was to consider the
problem, not as one about estimating an ultimate limit parameter, but a more specific
problem of predicting the best performance of 1993 given the preceding results for
1972 to 1992. The idea underlying this is that a prediction interval should give more
precise information about what is likely to happen in a given year than the estimation
of a parameter such as x,;.

More precisely, Smith considered the conditional probability of a record equal to
or better than the one actually achieved by Wang, given the event that the previous
world record was broken. The conditioning was meant to provide some correction for
the obvious selection effect, i.e., we would not even be considering these questions
unless we had already observed some remarkable performance, such as a new world
record. This conditional probability may be expressed as a specific analytic function
of the three parameters w, ¥, and &, say ¢(u, ¥, &), and hence estimated through the
Bayesian formula

/ / / (s . )T (s v, EIVVdpd (126)
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where 7 (...|Y) denotes the posterior density given past data Y. Once again, the
analysis was confined to the years 1980 to 1992 and did not take account of any time
trend. A diffuse but proper prior distribution was assumed. The result, in this case,
was .0006 (a modification of the result .00047 that was actually quoted in the paper
by Smith (1997)). Such a small estimated probability provides strong evidence that
Wang’s performance represented an actual change in the distribution of running times.
It does not, of course, provide any direct evidence that drugs were involved.

In this case, the sharp contrast between the maximum likelihood and Bayesian
approaches is not a consequence of the prior distribution, nor of the MCMC method of
computation, though the precise numerical result is sensitive to these. The main reason
for the contrasting results lies in the change of emphasis from estimating a parameter
of the model — for which the information in the data is rather diffuse, resulting in
wide confidence intervals — to predicting a specific quantity, for which much more
precise information is available. Note that the alternative “plug-in” approach to (1.26),
in which ¢(u, ¥, &) is estimated by ¢(, ¥, ), where f, ¥, and £ are the maximum
likelihood estimators, would result in a predicted probability (of a performance as
good as Wang’s) of 0. This is a consequence of the fact that the maximum likelihood
estimate of x,;, is greater than 486.1. However, this result could not be accepted as
a realistic estimate of the probability, because it takes no account whatsoever of the
uncertainty in estimating the model parameters.

1.3.4 Raleigh snowfall example

The example of Section 1.3.3 is unusual in providing such a sharp contrast between
the maximum likelihood parameter estimation approach and the Bayesian predictive
approach, but the general implications of this example are relevant to a variety of
problems connected with extreme values. Many extreme value problems arising in
applied science are really concerned with estimating probabilities of specific outcomes
rather than estimating model parameters, but until recently, this distinction was usually
ignored.

As a further example, we consider again the Raleigh snowfall data set of Sec-
tion 1.1.1. Specifically, we return to the data set of Table 1.1 and ask what is the
probability, in a single January, of a snowfall equal to or greater than 20.3 inches.
Assuming either the Poisson-GPD model, above, with parameters (A, o, £), or the
equivalent point process approach (Section 1.2.5) with parameters (u, ¥, &), we can
estimate this probability assuming either the maximum likelihood plug-in approach
or the Bayesian approach. In either case, it is necessary to choose a specific threshold,
confining the estimation to those observations that are above the given threshold.

Figure 1.7 shows the predictive probability computed both by the Bayesian formula
(1.26) (denoted by B on the figure) or by the maximum likelihood plug-in approach
(denoted by M). Both quantities are in turn computed for a variety of different thresh-
olds. For ease of plotting and annotation, the quantity actually plotted is N, where
1/N is the predictive probability.

In this case we can see, with both the maximum likelihood and the Bayesian results,
that there is a huge dependence on the threshold, but the Bayesian results are all below
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Figure 1.7 Maximum likelihood (M) and Bayesian (B) estimates of predictive probability 1/ N
for different thresholds.

the corresponding maximum likelihood results (i.e., the Bayesian predictive proba-
bility of an extreme event is larger than the maximum likelihood probability) and
also arguably more consistent across different thresholds. This does not, of course,
prove that the Bayesian estimates perform better than the maximum likelihood esti-
mates, but it does serve to illustrate the contrasts between the two approaches. Most
approaches to extreme value analysis keep separate the procedures of estimating un-
known parameters and calculating probabilities of extreme events, and therefore by
default use the plug-in approach.

The fact that the predictive probabilities, whether Bayesian or maximum likelihood,
vary considerably with the somewhat arbitrary choice of a threshold, is still of concern.
However, it can be put in some perspective when the variability between predictive
probabilities for different thresholds is compared with the inherent uncertainty of
those estimates. Confidence intervals for the predictive probability computed by the
delta method (not shown) are typically very wide, while Figure 1.8 shows the posterior
density of the predictive probability 1/N for two of the thresholds, 0.5 and 1, for which
the point predictive probabilities are at opposite ends of the spectrum. The substantial
overlap between these two posterior densities underlines the inherent variability of
the procedure.

In summary, the main messages of this example are:

1. The point estimates (maximum likelihood or Bayes) are quite sensitive to the
chosen threshold, and in the absence of a generally agreed criterion for choosing
the threshold, this is an admitted difficulty of the approach.

2. The Bayesian estimates of N are nearly always smaller than the maximum likeli-
hood estimates — in other words, Bayesian methods tend to lead to a larger (more
conservative) estimate of the probability of an extreme event.
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Figure 1.8 Posterior densities of 1/ N based on thresholds 1 (solid) and 0.5 (dashed).

3. The variability among point estimates for different thresholds is less important
than the inherent variability of the procedure, based on the standard error in the
maximum likelihood case or the posterior density in the Bayesian case.

This example is somewhat unusual in that it represents a very considerable extrapo-
lation beyond the range of the observed data, so it should not be surprising that all
the estimates have very high variability. However, the Bayesian results are generally
consistent with a return period of between 100 and 200 years, which in turn seems to
be consistent with the judgement of most meteorologists based on newspaper reports
at the time this event occurred.

1.4 Diagnostics

The example of Section 1.3.4 has highlighted one difficulty in applying threshold-
based methods: the lack of a clear-cut criterion for choosing the threshold. If the
threshold is chosen too high, then there are not enough exceedances over the thresh-
old to obtain good estimates of the extreme value parameters, and consequently, the
variances of the estimators are high. Conversely, if the threshold is too low, the GPD
may not be a good fit to the excesses over the threshold and consequently there
will be a bias in the estimates. There is an extensive literature on the attempt to
choose an optimal threshold by, for example, a minimum mean squared error cri-
terion, but it is questionable whether these techniques are preferable in practice to
more ad hoc criteria, based on the fit of the model to the data. In any case, it is
clearly desirable to have some diagnostic procedures to decide how well the mod-
els fit the data, and we consider some of these here. The emphasis is on graphical
procedures.
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Figure 1.9 Gumbel plots, (a) annual maxima for River Nidd river flow series, and (b) annual
maximum temperatures in Ivigtut, Iceland.

1.4.1 Gumbel plots

This is the oldest method, appropriate for examining the fit of annual maxima data (or
maxima over some other time period) to a Gumbel distribution. Suppose the annual
maxima over N years are Yi, ..., Yy, ordered as Y.y < --- < Yn.y; then Y;.y, for
1 <i < N, is plotted against the reduced value x;., where

x;.y = — log(—log p;.n),

pi:n being the ith plotting position, usually taken to be (i — %) /N.

A straight line indicates good fit to the Gumbel distribution. Curvature upwards or
downwards may indicate, respectively, a Fréchet or Weibull distribution. The method
is also a useful way to detect outliers.

Examples. Figure 1.9(a) is a Gumbel plot based on the annual maxima of the River
Nidd river flow series. This is a fairly typical example of a Gumbel plot in practice:
although it is not a perfect straight line, there is no systematic evidence of curvature
upwards or downwards, nor do there seem to be any outliers. On this basis we conclude
that the Gumbel distribution would be a reasonable fit to the data.

Figure 1.9(b), taken from Smith (1990), is another example based on annual max-
imum temperatures (in °C) at Ivigtut, Iceland. Two features stand out: (a) the largest
observation seems to be a clear outlier relative to the rest of the data, and (b) when
this observation is ignored, the rest of the plot shows a clear downward curvature,
indicating the Weibull form of extreme value distribution and a finite upper endpoint.

Plots of this nature were very widely used in the early days of the subject when,
before automatic methods such as maximum likelihood became established, they were
widely used for estimation as well as model checking (Gumbel 1958). This aspect is
now not important, but the use of Gumbel plots as a diagnostic device is still useful.
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1.4.2 QQ plots

A second type of probability plot is drawn after fitting the model. Suppose Y1, ..., Yy
are i.i.d. observations whose common distribution function is G(y;8) depending on
parameter vector 6. Suppose 6 has been estimated by 6, and let G~'(p; 6) denote the
inverse distribution function of G, written as a function of 6. A QQ (quantile-quantile)
plot consists of first ordering the observations Y.y < --- < Yy.y, and then plotting
Y;.n against the reduced value

xin = G (pin; 0),

where p;.y may be again taken as (i — %) /N . If the model is a good fit, the plot should
be roughly a straight line of unit slope through the origin.

Figure 1.10 illustrates this idea for the Ivigtut data of Figure 1.9(b). In Figure
1.10(a), the GEV distribution is fitted by maximum likelihood to the whole data set,
and a QQ plot is drawn. The shape of the plot — with several points below the
straight line at the right-hand end of the plot, except for the final data point which is
well above — supports the treatment of the final data point as an outlier. In Figure
1.10(b), the same points are plotted (including the final data point), but for the purpose
of estimating the parameters, the final observation was omitted. In this case, the plot
seems to stick very closely to the straight line, except for the final data point, which
is an even more obvious outlier than in Figure 1.10(a). Taken together, the two plots
show that the largest data point is not only an outlier but also an influential data point,
i.e., the fitted model is substantially different when the data point is included from
when it is not. On the other hand the plot also confirms that if this suspect data point
is omitted, the GEV indeed fits the rest well.

(a) (b)

10 10
[} [0
3 3
g 5 [ 5
© ©
[} (9]
2 2
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(@) 0 O 0

-5 -5

4 0 2 4 6 8 4 -2 0 2 4
Expected value Expected value

Figure 1.10 GEV model to Ivigtut data, (a) without adjustment, and (b) excluding largest value
Jfrom model fit but including it in the plot.
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Figure 1.11 QQ plots for GPD, Nidd data: (a) u = 70, and (b) u = 100.

Figure 1.11, from Davison and Smith (1990), shows QQ plots for the Nidd data
introduced in Section 1.2.5. In this case, Y7, ..., Yy are the excess values over a high
threshold, to which the GPD is fitted. The entire calculation (model fit followed by
QQ plot) is carried out for two thresholds, 70 in plot (a) and 100 in plot (b). Plot (a)
shows some strange behavior, the final two data points below the straight line but be-
fore them, a sequence of plotted points above the straight line. No single observation
appears as an outlier, but the plot suggests that the GPD does not fit the data very
well. Plot (b) shows no such problem, suggesting that the GPD is a good fit to the
data over threshold 100. Davison and Smith cited this along with several other pieces
of evidence to support using a threshold 100 in their analysis. This example serves to
illustrate a general procedure, that the suitability of different possible thresholds may
be assessed based on their QQ plots, and this can be used as a guide to selecting the
threshold.

Figure 1.12 shows two examples from insurance data sets. Plot (a) again shows a
scatterplot of the oil company data set from Section 1.1.2, and (b) a QQ plot based
on the GPD fitted to all exceedances above threshold 5. The main point here is that,
although there are reasons for treating the largest two observations as outliers, they
are not in fact very far from the straight line — in other words, the data are in fact
consistent with the fitted GPD, which in this case is extremely long-tailed (see Sec-
tion 1.6 for further discussion). If this interpretation is accepted, there is no reason to
treat those observations as outliers. In contrast, plots (c) and (d), taken from another,
unpublished, study of oil industry insurance claims, in this case spanning several
companies and a worldwide data base, show the largest observation as an enormous
outlier; several alternative analyses were tried, including varying the threshold and
performing regression analysis on various covariates (including the size of the spill
in barrels, the x coordinate of plot (c)), but none succeeded in explaining this outlier.
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Figure 1.12 Insurance claims data set, (a) scatterplot of insurance claims data, (b) QQ plot
from GPD fit to insurance claims data, (c) scatterplot of costs of oil spills vs. size of spill, and
(d) QO plot for oil spills data based on GPD fit with regressors.

The outlier is the Exxon Valdez oil spill in Alaska, and the largest component of the cost
was the punitive damages assessed in litigation (9 billion dollars at the time the analysis
was conducted, though the amount was recently reduced to 3 billion dollars on appeal).

The implications of these examples are that observations which first appear to be
outliers (as in the first oil company data set) may not in fact be inconsistent with the rest
of the data if they come from a long-tailed distribution, whereas in other cases (such
as the Ivigtut temperature series and the second oil company example), no amount of
fitting different models will make the outlier go away. This is a somewhat different
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interpretation of outliers from that usually given in statistics; in most statistical ap-
plications, the primary interest is in the center of the distribution, not the tails, so the
main concern with outliers is to identify them so that they may be eliminated from
the study. In an extreme value analysis, it may be important to determine whether the
largest observations are simply the anticipated outcome of a long-tailed process, or
are truly anomalous. QQ plots are one device to try to make that distinction.

QQ plots can be extended beyond the case of i.i.d. data, for example, to a regression
model in which the Y;s are residuals, but it still requires that the residuals have a com-
mon distribution. On the other hand, the W plot of Section 1.4.4 represents a different
variant on the idea, in which there is no assumption of homogeneity in the data.

1.4.3 The mean excess plot

This idea was introduced by Davison and Smith (1990), and is something of an analog
of the Gumbel plot for threshold-exceedance data, in the sense that it is a diagnos-
tic plot drawn before fitting any model and can therefore give guidance about what
threshold to use.

The mathematical basis for this method is equation (1.12), the key feature of which
is that if ¥ is GPD, then the mean excess over a threshold y, for any y > 0, is a linear
function of y, with slope & /(1 — &). Thus, we can draw a plot in which the abscissa is
the threshold, and the ordinate is the sample mean of all excesses over that threshold.
The slope of the plot leads to a quick estimate of &: in particular, an increasing plot
indicates £ > 0, a decreasing plot indicates £ < 0, and one of roughly constant slope
indicates that £ is near 0.

One difficulty with this method is that the sample mean excess plot typically shows
very high variability, particularly at high thresholds. This can make it difficult to
decide whether an observed departure from linearity is in fact due to failure of the
GPD or is just sample variability.

The following Monte Carlo procedure may be used to give a rough confidence
band on the plot. Suppose, for some finite u, the true distribution of excesses over u
is exactly GPD with parameters (o, £). Suppose the estimates of o and &, based on all
exceedances over u, are & and £. Also let u(y) = {o +&(y —u)}/(1 — &) be the theo-
retical mean excess over threshold for y > u, and let i(y) be the sample mean excess.

A natural test statistic for the GPD assumption is

() — %y;w (1.27)

for any given y: this represents the estimated difference between the empirical and
theoretical mean excesses at that y.

We can simulate the distribution of (1.27), as follows. For j = 1, 2, ..., 99, gener-
ate a random sample from the GPD over threshold u, of the same size as the original
sample, based on parameters £, 6. For each j, calculate new MLEs £, 6/) and also
the sample mean excess function 2)(y). For each u, compute the fifth largest and
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Figure 1.13 Mean excess over threshold plots for Nidd data, with Monte Carlo confidence
bands, relative to threshold 70 (a) and 100 (b).

fifth smallest values of
GV+EVy—w) 6 +Ey—w

NG _ _ 1.28
() 120 1_f (1.28)
asindex j ranges over the random samples 1, . . ., 99. Then these values form, for each

¥, approximate 5% upper and lower confidence bounds on fi(y), if the GPD is correct.

It should be pointed out that this is only a pointwise test, i.e., the claimed 90%
confidence level is true for any given y, but not simultaneously over all y. Therefore,
the test needs some caution in its interpretation — if the plot remains within the
confidence bands over most of its range but strays outside for a small part of its range,
that does not necessarily indicate lack of fit of the GPD. Nevertheless, this Monte
Carlo procedure can be very useful in gauging how much variability to expect in the
mean excess plot.

Figure 1.13 shows the mean excess plot, with confidence bands, for the Nidd data,
based on all exceedances over thresholds # = 70 (plot (a)) and u = 100 (plot (b)).
The dotted straight line is the estimated theoretical mean excess assuming the GPD
at threshold u, and the jagged dashed lines are the estimated confidence bands based
on (1.28). Both plots lie nearly everywhere inside the confidence bands, but plot (a)
appears to show more systematic departure from a straight line than (b) (note, in
particular, the change of slope near y = 120), adding to the evidence that threshold
100 is a better bet than 70.

As another example, we consider three windspeed data sets for cities in North
Carolina, based on 22 years of daily windspeed data at Raleigh, Greensboro, and
Charlotte. For the moment we shall assess these series solely from the point of view
of their suitability for a threshold analysis; later (Section 1.5.2) we shall consider the
influence of seasonality and the possibility of long-term trends.
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Figure 1.14 Mean excess plots (with Monte Carlo confidence bands) for windspeed data sets.

Figure 1.14 shows mean excess plots constructed with confidence bands for the
three series. The jagged appearance of the plots occurs with all plots of this nature,
due to the discretization of the data. The first plot shows the plot for the Raleigh data
computed relative to the threshold # = 20 knots. It is clear that there are problems
with this plot, since it crosses the upper boundary of the Monte Carlo confidence
limits in numerous places. The remaining three plots are all calculated relative to
threshold 39.5 (just below 40, to ensure that windspeeds of exactly 40 knots would
be included in the analysis) and show no major problems with the fit, though for all
three series there are isolated values of the mean excess plot that cross the Monte
Carlo confidence limits.
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The conclusion in this case is that (for Raleigh at least) 20 knots is clearly too low
a threshold for the GPD to be a credible model, but for a threshold of 39.5 knots, it
seems to be reasonable.

Other examples of mean excess plots are given in Section 1.5.3.

1.4.4 Z- and W-statistic plots

Consider the nonstationary version of the point process model (Section 1.2.5) with u,,

Yy, & dependent on ¢. This is the most general form of threshold model that we have

seen so far. We denote the exceedance times 71, 75, . . ., (T = 0) and the correspond-

ing excess values Y1, Y», ..., where Y} is the excess over the threshold at time 7;.
The Z statistic is based on intervals between exceedances Tj:

Ti
Zy = /T Mt h(0) = {1+ & — p) /)5 (1.29)
k—1
The idea is that if {7}, T», ..., } are viewed as a one-dimensional point process in
time, they form a nonhomogeneous Poisson process with intensity function A, (-); the
transformation then ensures that Z;, Z,, ..., are i.i.d. exponential random variables
with mean 1. In practice this will only be an approximate result, not exact, because
we do not know the true values of u,, ¥, & and have to use estimates.
The W statistic is based on the excess values:

1 Er Yk
W, = —1 1 . 1.30
¢ Og{ * wmsn(u—un)} (1.30)

This is equivalent to a probability integral transformation on the excesses over a thresh-
old: if the model is exact, W, W,, ... are also i.i.d. exponential variables with mean 1.
Again, in practice this is only an approximation because the parameters are estimated.

The Z and W statistics can be tested in various ways to examine how well they
agree with the i.i.d. exponential assumption. As an example, Figure 1.15 shows three
types of plots computed for the Charlotte windspeed data (the precise analysis from
which these plots were constructed includes seasonal factors and is described in
Section 1.5.2).

Plots (a) and (d) show the Z and W statistics respectively plotted against time of
exceedance, i.e., either Z; (in plot (a)) or W (in plot (d)) is plotted against 7. The
idea here is to observe a possible time trend in the observations. To aid in judging
this, a simple fitted curve (using the “lowess” function in S-Plus) is superimposed on
the plot. In neither case is there evidence of a systematic trend.

Plots (b) and (e) are QQ plots of the Z and W statistics. Since the hypothesized
distribution G is unit exponential, for which G‘l(p) = —log(l — p), this means
plotting either Z;.y or W;.y (the ith smallest of N ordered values) against — log(1 —
pi:N), Where p;.y = (i — %) /N. The results in this case show no reason to question
the assumption of an exponential distribution with mean 1.

Plots (¢) and (f) are plots of the first ten sample autocorrelations for the Z and W
values respectively, with approximate confidence bands at +2/+/N where N is the
sample size. This is a standard plot used in time series analysis and is used here as
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Figure 1.15 Diagnostic plots based on Z and W statistics for Charlotte seasonal Model 1
(Section 1.5.2), (a,d): plots against time with fitted LOESS curve, (b,e): QQ plots, and (c,f):
autocorrelations. The Z plots are in (a,b,c), W plots in (d,e,f).

an indicator of possible serial correlation in either the Z or W series. The only value
outside the confidence bands is the fourth autocorrelation coefficient for the W series
(plot (f)); in conjunction with moderately high values for the first three autocorre-
lations, this does perhaps give some suggestion that there is some autocorrelation
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among the daily excess values of the windspeed series. Given that meteorological
phenomena often persist over several days, this is not a surprising conclusion. The
threshold methods described so far do not take account of short-term autocorrelations,
a theme we return to in Section 1.8.

The calculation in (1.29) and (1.30) assumes u is a constant. This is another as-
sumption that could be generalized, allowing u to be time-dependent. Thus, we could
replace u by u; in (1.29) or uy, in (1.30) to indicate the dependence on time.

1.5 Environmental extremes

This section describes three examples of extreme value theory applied to the envi-
ronment. Section 1.5.1 is an analysis of ozone extremes, motivated by the problem
of determining whether exceedances of an ozone standard are becoming more or less
frequent. Section 1.5.2 treats a similar problem related to windspeed extremes — in
this case, the question of exceeding a standard does not arise, but it is a natural question
in the context of climate change, to determine whether extreme events are becoming
more frequent. Section 1.5.3 and Section 1.5.4 extend this discussion further, first by
asking the same question with respect to rainfall extremes, and then considering how
to combine the information from a large number of rainfall stations. Thus, this section
uses techniques of spatial statistics as well as extreme value theory.

1.5.1 Ozone extremes

As a first example of the use of regression models for extreme value data, we describe
an analysis of ozone extremes given originally by Smith and Shively (1995).

The U.S. Environmental Protection Agency (EPA) establishes standards for a num-
ber of atmospheric pollutants including ozone. This standard applies to ground-level
ozone, which is harmful to human health, and has nothing to do with the stratospheric
ozone layer, which has the beneficial effect of blocking out certain kinds of radiation.

At the time of this study, the EPA standard for ground-level ozone was based on a
daily maximum level of 120 ppb (parts per billion). The question of interest here is to
try to determine whether the EPA standards have had any beneficial effect — which,
for the present study, is interpreted to mean whether there is any downward trend in
either the frequency or the size of exceedances over the threshold. However, a major
complication in assessing trends is the influence of meteorology.

Ozone is produced by various photochemical processes in the atmosphere, and
these photochemical processes are highly influenced by the weather (in particular,
ozone is likely to be high on windless sunny days in the summer). There is therefore
some interest in separating out the trend effects that might be due to genuine trends
in the emissions of the so-called ozone precursors — gases such as nitrogen oxides,
carbon monoxides, and other pollutants typically produced by industrial processes
and by automobiles — and those effects that might be attributed to meteorological
variation.

The main objective of the present analysis is to build a regression model in which
relevant meteorological variables and time are all considered covariates in the
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regression, so that the coefficient of time may be interpreted as an adjusted time
trend after taking the meteorological effects into account.

The data source in this case consists of ozone exceedances from a single station in
Houston from 1983 to 1992. The assumed model has the following components:

1. The probability of an exceedance of a given level u (in practice taken as 120
ppb, the then-current standard) on day 7 is e*"), where

p
a(t) =ag+ars(t) + > ajw;0), (1.31)
j=2
s(t) being the calendar year in which day # falls and {w (), j =2, ..., p} the values

of p — 1 weather variables on day ¢.
2. Given an exceedance of level u on day ¢, the probability that it exceeds u + x,
where x > 0, is

{1+ &B(Hx} "5, (1.32)
where
P
B() = Bo+ Bis(t)+ > Bjw;(0). (1.33)
j=2

Note that for (1.31) and (1.33) to make sense, we require «(r) < 0, 8(¢) > 0, for
all 7. There is a theoretical possibility that these conditions could be violated, but
this was not a practical difficulty in the example under discussion. Also, a further
generalization would also allow £ to be dependent on covariates — in other words,
replace & by £(¢) where £(¢) is given by another formula of the form (1.31) or (1.33).
This extension was not used in the paper (in fact the authors took & = 0, as discussed
further below).

The meteorological variables were selected after consultation with Texas air control
experts who had extensive experience of the kinds of effects that are relevant in the
Houston area. A specific list of variables was as follows:

TMAX. Maximum hourly temperature between 6 a.m. and 6 p.m.

TRANGE. Difference between maximum and minimum temperature between 6
a.m. and 6 p.m. This is considered to be a proxy for the amount of sunlight.

WSAVG. Average wind speed from 6 a.m. to 6 p.m. Higher windspeeds lead to
lower ozone levels because of more rapid dispersion of ozone precursors.

WSRANGE. Difference between maximum and minimum hourly windspeeds be-
tween 6 a.m. and 6 p.m.

NW/NE. Percentage of time between 6 a.m. and 6 p.m. that the wind direction was
between NW and NE.

NE/ESE. Percentage of time between 6 a.m. and 6 p.m. that the wind direction was
between NE and ESE.

ESE/SSW. Percentage of time between 6 a.m. and 6 p.m. that the wind direction
was between ESE and SSW.

SSW/NW. Percentage of time between 6 a.m. and 6 p.m. that the wind direction was
between SSW and NW.
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Table 1.3 Coefficient and standard errors for o(t).

Standard
Variable Coefficient error
s(t) -0.149 0.034
TRANGE 0.072 0.016
WSAVG -0.926 0.080
WSRANGE 0.223 0.051
NW/NE -0.850 0.408
NE/ESE 1.432 0.398

Table 1.4 Coefficient and standard errors for B(t), assuming & = Q.

Standard
Variable Coefficient error
s(t) 0.035 0.011
TRANGE -0.016 0.005
WSAVG 0.102 0.019
NW/NE 0.400 0.018

The wind directions are important for Houston because they determine the level of
industrial pollution — for instance, there is a lot of industry to the south of Houston,
and ozone levels tend to be higher when the wind direction is in the ESE/SSW sector.

In most analyses, the variable SSW/NW was omitted because of the obvious
collinearity with the other wind directions.

The models (1.31) through (1.33) were fitted by numerical maximum likelihood,
and standard variable selection procedures were adopted, with variables being dropped
from the analysis if their coefficients were not statistically significant. The results are
shown in Table 1.3 and Table 1.4. In (1.32), it was found that the parameter & was not
significantly different from 0, and of course (1.32) reduces to e #®¥ if £ = 0, so that
was the form adopted for the reported analysis.

The results show that in both cases the coefficient of s(¢) is statistically significant,
the sign (negative in Table 1.3, positive in Table 1.4) being consistent with the inter-
pretation of an overall decrease in the extreme ozone levels, which was the hoped-for
conclusion.

As a comparison, Smith and Shively also fitted the same model for trend alone,
ignoring meteorological covariates. In this case, the estimated coefficients of s(¢) were
—0.069 (standard error 0.030) in «(z) and 0.018 (standard error 0.011) in B(¢). The
coefficients are thus much smaller in magnitude if the model is fitted without any
meteorology. This confirms the significance of the meteorological component and
shows how the failure to take it into account might obscure the real trend.

Fixing & = 0 in this analysis would probably not be desirable if the objective was
to estimate probabilities of extreme events (or the quantiles associated with specified
small return probabilities). This is because the estimates tend to be biased if & is
assumed to be 0 when it is not, and for this kind of analysis, there is no obvious reason
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to treat & = 0 as a null hypothesis value. On the other hand, the main emphasis in this
example was on the regression coefficients associated with the extreme events, and
especially on the coefficients of s(¢) in the expressions for both «(¢) and (), and for
that purpose, assuming & = 0 seems less likely to bias the results. Another possible
extension of the analysis would be to allow the threshold u to be time-dependent,
though in this example the natural value is 120 ppb because at the time this analysis
was originally conducted, that was the U.S. ozone standard.

1.5.2 Windspeed extremes

This section illustrates an alternative approach to searching for trends in extreme value
data, using the point process approach. The method is applied to the North Carolina
windspeed data introduced in Section 1.4. In this kind of example, it is of interest,
especially to insurance companies, to determine whether there is any evidence of a
long-term increase in the frequency of extreme weather events. There has been much
recent discussion among climatologists (see Section 1.5.3 for further discussion) that
the world’s weather is becoming more extreme as a possible side-effect of global
warming, so when considering a series of this form, it is natural to look for any
possible evidence of a trend. However, another and much more obvious effect is
seasonality, and the analysis must also reflect that.

The analysis uses the nonstationary form of the point process model (Section 1.2.5)
in which the GEV parameters are represented by (u,, ¥, &) to emphasise the depen-
dence on time ¢. A typical model is of the form

qn

qy 9t
=Y _Bixj logiy=> yixj. &= 8xj, (1.34)
=0 j=0

j=0

in terms of covariates {x;;, j = 0,1, 2, ...} where we usually assume xo; = 1. In
the present analysis, we consider models in which only p, depends on covariates, so
qy =g = 0.

The log likelihood for this model may be derived from the joint density (1.18) and
is maximized numerically to obtain estimates of the unknown parameters and their
standard errors.

We illustrate the methodology by applying it to the North Carolina windspeed data.
The model (1.34) was fitted to the Raleigh data based on exceedances over 39.5 knots.
It was restricted to the case g, = g = 0, largely because it simplifies the model
not to have too many regression components, and it is natural to treat the location
parameter u,, rather than i, or &, as the one dependent on covariates.

The covariates x;, were taken to be polynomial functions of time (z, 72, etc.) and
sinusoidal terms of the form sin Z”TI)", cos 2’;—;", wherek = 1,2, ..., and Ty represents
one year. In practice, no model fitted required sinusoidal terms beyond X = 2, and none
of the polynomial trend terms were significant. As an example, Table 1.5 and Table 1.6
give the models fitted to the Raleigh data that involved no covariates (Model 0), and
the covariates sin %’, cos %’, corresponding to a single sinusoidal curve (Model 1).

The difference between negative log likelihoods (X 2 =2x(114.8—103.1) = 23.4)
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Table 1.5 Raleigh data, Model 0: no seasonality. NLLH = 114.8

Standard
Variable Coefficient error
Bo 424 0.9
Y0 1.49 0.16
8o -0.19 0.19

Table 1.6 Raleigh data, Model 1: Single sinusoidal component. NLLH = 103.1

Standard
Variable Coefficient error
Bo 40.9 0.9
B1 0.90 1.07
B 5.29 1.39
%0 1.43 0.13
8o -0.12 0.10

is clearly significant considering that X> has an approximate x7 distribution when
Model 0 is correct. However, when other covariates are added to the model and the
likelihood ratio statistics computed, the results are not significant.

Figure 1.16 shows QQ plots for the W statistics for the Raleigh data just considered,
and corresponding results for Greensboro and Charlotte. These are based on Model
1 except for plot (d), which is based on Model 0 for Charlotte. Each of plots (a), (b),
and (c) show an excellent fit to the model. Plot (d) is more questionable because the
largest two observations appear to be outliers, which is another argument in favor of
the seasonal model.

One conclusion from this analysis is that there do not appear to be overall trends
in the series. This is not conclusive in itself because, as we shall see in the context of
rainfall extremes in Section 1.5.4, trends estimated at individual stations tend to vary
widely, and it is only when a large number of stations are examined together that an
overall positive trend emerges. The other point of debate is whether hurricanes should
be treated as separate events from the rest of the data. Meteorologically this makes
sense, because a hurricane arises from quite different physical processes than ordi-
nary storm events. Nevertheless, it is not clear how this should affect the data analysis.
In the present three series, the two largest windspeeds for each of Greensboro and
Charlotte are hurricane events (the largest for Charlotte is Hurricane Hugo in 1989)
but there are no hurricanes in this section of the Raleigh data series (Hurricane Fran
produced windspeeds up to 79 mph in Raleigh in 1996, but that was after the period
covered by the current data set). The results for Greensboro and Charlotte suggest that
when a threshold model is fitted to the whole of the data, the hurricanes do not appear
as exceptional outliers. On the other hand, the fitted models for Greensboro and Char-
lotte have long-tailed distributions (though not given in detail here, both had £ values
around 0.2) whereas Raleigh had £ = —0.19, indicating a short-tailed distribution.
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Figure 1.16 QQ plots of residuals for Raleigh (a), Greensboro (b), and Charlotte (c and d),
based on Model 1 except for (d) which uses Model 0.

The standard error for £ in Raleigh is also 0.19, indicating that the estimate is not
significantly different from 0. Because of their geographical proximity, one would
expect the parameters of the three series to be similar, and in Section 1.5.4 we shall
propose a specific model to take that feature into account. For the current data sets,
it is as far as we can go to say that the point process model appears to fit ade-
quately to the extremes of all three cities, and that the absence of hurricane events in
Raleigh, for the time period of the analysis, does not necessarily mean that the distri-
bution of extreme windspeeds is significantly different from those of Greensboro and
Charlotte.
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1.5.3 Rainfall extremes

This section is based on the preprint of Smith (1999) which examined, from a rather
broader perspective than the examples so far, the question of whether there is an overall
increasing tendency in extreme rainfall events in the U.S., a popular hypothesis among
climatologists.

The data base consisted of 187 stations of daily rainfall data from the Historical Cli-
matological Network (HCN), which is part of the data base maintained by the National
Climatic Data Center. Most stations start from 1910, but this analysis is restricted to
1951 through 1997 during which coverage percentage is fairly constant (Figure 1.17).

The strategy adopted in this analysis was to look at four stations in detail, which
are widely separated geographically, and then to attempt a spatial analysis over the
entire network. The locations of the four stations are shown in Figure 1.18.
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Figure 1.17 Proportion of missing data over the whole network, for each year from 1910 to
1996.

Figure 1.18 Location of four test stations: (1) Station 319147, Waynesville, NC, (2) Station
53662, Gunnison, CO, (3) Station 49087, Tustin Irvine, CA, and (4) Station 80611, Belle
Glade, FL.
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Figure 1.19 Mean excess plots for four rainfall stations.

Figure 1.31 and Figure 1.32 illustrate some rather deceptive features of mean excess
plots. In these plots, the units of measurement are Tl)o inch, and the base threshold
relative to which the rest of the plot is calculated has been arbitrarily fixed at the 98th
percentile of the raw data at each of the sites. From the simple plots without confidence
bands (Figure 1.19) one would be tempted to conclude that only Station 2 is reason-
ably close to a straight line, the others looking very jagged. In fact, when the same
plots are drawn with confidence bands (Figure 1.20), it becomes clear that Station 2
is the one out of the four for which the excesses over the assumed threshold clearly do
not fit the generalized Pareto distribution. Station 2 is Gunnison, Colorado, and the
dominant feature of the series is a single very large observation, of around 8 inches,
more than three times the second largest observation in the series. When this obser-
vation is removed, the mean excess plot looks quite similar to that for the other three
stations.

We now consider some possible models to fit to the data at individual stations. All
the models are of the nonstationary point process structure of Section 1.2.5, and we
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Figure 1.20 Mean excess plots with confidence bands.

consider two specific model classes:

e = po+ Ve, Y = o, £ =&, (Modell);
we = poe”, Y = Yoe”, & =£&, (Model?2).

In either (1.35) or (1.36), v, is a regression term of the form

Vi = szjﬁj,

500

(1.35)
(1.36)

where {x;;} are known covariates, and the {8;} are coefficients to be estimated.

For the regression terms x,;, we consider a combination of linear time trends (x;; =
1), sinusoidal terms of the form cos wt, sin wt to represent seasonal effects, and some
external signals — as in the analysis of Section 1.6.4, both the Southern Oscillation
Index (SOI) and the North Atlantic Oscillation (NAQO) were considered as possible

external influences.
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Model 2 has some attractiveness because of the following interpretation. Suppose
for a moment we ignore the covariates and just use the model to find the n-year return
level y, (i.e., the level that in any one year is exceeded with probability %) as a function
of (u, ¥, &). This is given (approximately) by solving the equation

—1/8
Yn — K _l
(l*l-fT) =

leading to the solution

n® —1
yn=u+¢< £ > (1.37)

Now consider the case in which p and ¢ are both dependent on time through a function
of the form 1, = poe’, ¥, = Yoe, including the linear covariate on time but ignor-
ing other covariates. Substituting into (1.37), this implies that the n-year return level is
itself increasing with time proportional to ¢f'”. If 8, is small, this has the interpretation
“the extreme rainfall amounts are increasing at a rate 1008; % per year.” In contrast,
if we take v, = B¢ in model (1.35), this does not have such a direct interpretation.

For this reason, the analysis uses model 2 as the main model of interest, though it
is not clear that this is actually the best-fitting model overall.

Table 1.7 shows a variety of model fits for Station 1. The covariates tried here
included seasonal effects represented by either one or two sinusoidal curves, linear
trend LIN, as well as SOI and NAO. The results show that seasonal variation is
adequately represented by a single sinusoidal curve, SOI is marginally significant but
NAO is not, and LIN is significant. Although our main analysis in this section is for
Model 2, the table shows that Model 1 fits the data a little better for this station, raising
a possible conflict between choosing the model that has the easiest interpretation and
the one that appears to fit the data best.

In subsequent discussion we use Model 2 and multiply the parameter 8; by 100 so
that it has the rough interpretation of “percent rise in the most extreme levels per year.”

Table 1.7 NLLH and AIC values for nine models fitted to Station 1 (Waynesville, North
Carolina).

Model
type Covariates NLLH DF AIC
2 None 1354.0 3 2714.0
2 Seasonal (1 component) 1350.3 5 2710.6
2 Seasonal (2 components) 1348.8 7 2711.6
2 Seasonal (1 component) + NAO 1349.6 6 2711.2
2 Seasonal (1 component) + SOI 1348.3 6 2708.6
2 Seasonal (1 component) + LIN 1346.9 6 2705.8
2 Seasonal (1 component) + LIN + SOI 1343.5 7 2701.0
1 Seasonal (1 component) + LIN 1344.8 6 2701.6
1 Seasonal (1 component) 4+ LIN + SOI 1341.3 7 2696.6
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For Waynesville, the estimate of this parameter is .074 if SOI is not included, .077 if
SOl is included, both with standard error .035, indicating a significant positive trend.

Summary results for the other three stations (each based on Model 2):

In Station 2 (Gunnison, CO), there is a large outlier present, but it is not “influential”
in the sense of affecting the parameter estimates. NAO and SOI are not significant.
There is a strong negative linear trend (estimate —.72, standard error .21).

In Station 3 (Tustin Irvine, CA) we fit one seasonal component, the SOI is signal
stronger than NAO, and the linear trend has estimate .67 without the SOI adjustment,
.50 with, each with standard error .26.

In Station 4 (Belle Glade, FL), there is one seasonal component, and none of the
trend terms are significant.

QQ plots based on the Z statistics for the four stations are shown in Figure 1.21,
and those based on the W statistics are in Figure 1.22. For these plots, the outlier
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Figure 1.21 Z plots for four rainfall stations.
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Figure 1.22 W plots for four rainfall stations.

in Station 2 has been removed. In general the plots indicate a good fit, but there are
some features that might justify further investigation, e.g., both the Z and W plots for
Station 3 seem somewhat discrepant at the upper end of the plot.

1.5.4 Combining results over all stations

After the preliminary analyses described in Section 1.5.3, Model 2 was fitted to each
of the 187 stations (with successful fits in 184 cases), including a linear trend and two-
component seasonal terms, but not SOI or any other external covariate. The threshold
for each station was defined as the 98% empirical quantile for the data at that station.
The main focus was on the parameter §; representing the overall trend, but the analysis
also kept track of other parameters including the shape parameter £. Apart from the
parameter estimates themselves, also computed were the ¢ statistics, calculated by
dividing the parameter estimate by its standard error.
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Table 1.8 Summary table of t statistics (parameter estimate divided by standard error) for ex-
treme value model applied to 187 stations and 98% threshold. Tabulated values are percentages
out of 184 stations analyzed.

B §
t>2 14% 40%
t>1 40% 73%
t>0 68% 88%
t<0 32% 12%
t<—1 11% 2.7%
t <=2 5% 0.5%

Asan example of the difficulty in determining some overall “significance” of a trend,
Table 1.8 summarizes the ¢ statistics for both the 8, and & parameters. For example,
if we take |¢| > 2 as the criterion for a significant result, based on S, only 25 of the
184 stations have a significant positive trend, and 10 have a significant negative trend.
On the other hand, for 125 stations we have B; > 0, compared with only 59 for which
B1 < 0. Thus, it is clear that there is an overall preponderance of stations with positive
trends, and more detailed examination of the spatial distribution of Bl cofficients
suggest a fairly random pattern, rather than, for example, the positive coefficients
being concentrated in one part of the country and the negative coefficients in another.

The corresponding results for £ in Table 1.8 show a preponderance of stations
for which & > 0. This is also somewhat contradicting conventional wisdom about
rainfall distributions, since the gamma distribution is very often used in this context,
and the gamma distribution is in the domain of attraction of the Gumbel distribution
(Section 1.2), which would imply & = 0. The present analysis confirms that most
empirical rainfall distributions are somewhat more long-tailed than the gamma.

To integrate the results across the 184 stations, a spatial smoothing technique is
adopted, similar to Holland et al. (2000).

Suppose there is an underlying “true” field for 8;, denoted B;(s) to indicate the de-
pendence on spatial location s. In other words, we assume (hypothetically) that with in-
finite data and the ability to determine §; (s) precisely for any location s, we could mea-
sure a smooth spatial field. However, in practice we are performing regression analysis
and only estimating B (s), as 3 1(s), at a finite set of locations s. Assuming approximate
normality of both the underlying field and the estimates, we can represent this as a two-
stage process, with 8; and B; denoting the vector of values at measured locations s,

B~ NIXy.E], Bi B~ NIBi, W]. (1.38)

Combining the two parts of (1.38) into one equation,
Bi ~ N[Xy, = + W]. (1.39)
In these equations, X is interpretated as the spatial covariance matrix of the unob-

served field 8; — for the present application, this is taken to be the Matérn covariance
function which is popular in spatial analysis (Cressie, 1993). Also, Xy represents
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systematic variation in space of the §; field: in the present application, after examining
various alternatives, the components of the X matrix were taken to be linear and
quadratic terms in the latitude and longitude of a station, leading to a quadratic sur-
face as the “mean field.” Finally the matrix W is interpreted as the covariance matrix
of errors arising from the extreme value regression procedures: this is assumed to be
known, and a diagonal matrix, with the variance of ,31 at each station taken as the
square of the standard error obtained as part of the extreme value fitting procedure.
Equation (1.39) is then fitted to the vector of B, coefficients, the regression parameters
y and the unknown parameters of ¥ estimated by numerical maximum likelihood.
The final step of the fitting procedure uses the fact that once the model parameters are
estimated, the relationships (1.38) can be inverted to obtain the conditional distribu-
tion of B, given B : this is applied to obtain a smoothed predictive estimate of the A,
field, together with estimated prediction covariances, in a manner analogous though
not identical to the spatial interpolation procedure known as kriging.

One set of results of this procedure is shown in Figure 1.23, which depicts contour
and perspective plots of the smoothed surface. Even after smoothing, the surface is
somewhat irregular, but it is much smoother than the set of raw ,31 values before any
smoothing.

Finally, we consider the computation of regional averages. Figure 1.24 (from Grady,
2000), who used the same regions in a slightly different context) shows the 187
stations divided into five regions. In Table 1.9, we give estimated “regional trends,”
with standard errors. The regional trends are derived by averaging the smoothed B,
estimates over a very dense grid of points within the region of interest, and the standard
errors are the square roots of the estimated variances of those averages, given the f3;
values. These quantities are computed for each of the five regions and also overall,
i.e., combining the five regions into one.

When interpreted in this way, the results show that each of the five regions has a
positive (and statistically significant) trend in the rainfall extremes, but there are also
significant differences among the five regions, region 3 in the center of the country
having the largest trend and the two coastal regions, region 1 in the west and region
5 in the southeast, having the smallest trends.

1.6 Insurance extremes

This section is concerned with two examples of extremes arising in the insurance
industry. Section 1.6.1 through Section 1.6.3 extend the discussion of the oil company
data set discussed in Section 1.1. As noted there, after some initial preprocessing of
the data, there are 393 claims over a nominal threshold 0.5.

In Section 1.6.1, we consider the results of the GPD and homogeneous point pro-
cess model fitted to data above different thresholds. Section 1.6.2 then extends the
discussion to include Bayesian predictive distributions for future losses, drawing on
our discussion of Bayesian predictive distributions in Section 1.3. Section 1.6.3 is
about hierarchical models, in particular arguing the case in favor of treating the dif-
ferent types of claims in Table 1.2 as coming from separate distributions rather than
all arising from a single distribution of claims.
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Table 1.9 Regionally averaged trends and standard errors for five regions of U.S. and overall.

Region Extreme rainfall trend S.E.
1 .055 024

2 .092 017

3 115 .014

4 .097 .016

5 .075 013
All .094 .007

Z
-0.05 0 0.050.1 0.150.20.25

&

AN

Figure 1.23 Contour and perspective plots for spatial distribution of rainfall extreme trend
coefficients.
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Table 1.10 Fit of the generalized Pareto distribution to the excesses over various thresholds.
The threshold is denoted u, and N, the number of exceedances over u; we also tabulate the
mean of all excesses over u and the maximum likelihood estimates of the GPD parameters o
and &. Standard errors are in parentheses.

u Ny Mean excess G (S.E.) é (S.E.)
0.5 393 7.11 1.02 (0.10) 1.01 (0.10)
2.5 132 17.89 3.47 (0.59) 0.91 (0.17)

5 73 28.90 6.26 (1.44) 0.89 (0.22)
10 42 44.05 10.51 (2.76) 0.84 (0.25)
15 31 53.60 5.68 (2.32) 1.44 (0.45)
20 17 91.21 19.92 (10.42) 1.10 (0.53)
25 13 113.70 33.76 (18.93) 0.93 (0.55)
50 6 37.97 150.80 (106.30) 0.29 (0.57)

“s Region 3
° Plaips

Region 2
« Mountains

. Region1s
West Coast

Region 4
radid Northegst._
.

s
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South *
.

Figure 1.24 Five regions for regional analysis.

Section 1.6.4 is on a different theme, where a 75-year series of extreme storms in
the U.K. were assessed on the basis of the damage they would have caused under
present-day insurance policies. By standardizing to present-day values, we take ac-
count not merely of price inflation, but of the greatly increased quantity and value
of property insured. Such a series is valuable in assessing whether there might have
been long-term trends in insurance claims that could be caused by external factors.
We again use Bayesian methods to assess risks under various models for a long-term
trend.

1.6.1 Threshold analyses with different thresholds

The first analysis was to fit the GPD to the excesses over various thresholds. The
results are shown in Table 1.10.
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Table 1.11 Fit of the homogenous point process model to exceedances over various thresholds
u. Standard errors are in parentheses.

u Ny i (S.E) log (S.E) 3 (S.E)
0.5 393 26.5 4.4 3.30 (0.24) 1.00 (0.09)
25 132 26.3 (5.2) 322 (0.31) 0.91 (0.16)

5 73 26.8 (5.5) 3.25 (0.31) 0.89 (0.21)
10 42 272 (5.7 3.22 (0.32) 0.84 (0.25)

15 31 223 (3.9) 2.79 (0.46) 1.44 (0.45)
20 17 227 (5.7) 3.13 (0.56) 1.10 (0.53)
25 13 20.5 (8.6) 3.39 (0.66) 0.93 (0.56)

A second analysis was to fit the homogenous point process model of Section 1.2.5,
again varying the threshold. In the case of the scale parameter 1/, this is reparametrized
as log i for greater numerical stability. The results are in Table 1.11.

For any given threshold, the models of Table 1.10 and Table 1.11 are mathematically
equivalent, but in comparing results across thresholds, Table 1.11 is easier to interpret
because if the model fits, the (i, ¥, &) parameters will not change with the threshold. In
this case, taking into account the standard errors, there seems good agreement among
the different parameter estimates across a range of thresholds, confirming the good fit
of the model. This is further confirmed by the diagnostic plots of Figure 1.25, which
show the Z and W statistics (analogous to Figure 1.15) for threshold 5. Based on this,
one could recommend threshold 5 as the one to be used for subsequent calculations of
extreme event probabilities, though given the near-constancy of parameter estimates
across different thresholds, it appears that the results are not very sensitive to the choice
of threshold. Note, however, that all the estimated distributions are very long-tailed,
with estimates of & typically close to 1.

1.6.2 Predictive distributions of future losses

One question of major interest to the company is how much revenue it needs to put
aside to allow for possible losses in some future period. This is a question of predictive
inference about future losses, and as noted already in Section 1.3, there may be good
reasons for taking a Bayesian approach to such questions. We approach this here from
the point of view of losses over a fixed time period, taken for definiteness to be one
year.

Let Y be future total loss in a given year. We write the distribution function of Y
as G(y; u, ¥, &) to indicate the dependence on unknown parameters.

As already noted in Section 1.3, the traditional frequentist approach to predictive
inference is based on the “plug-in” approach in which maximum likelihood estimates
are substituted for the unknown parameters,
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Figure 1.25 Diagnostic plots based on u = 5.

The alternative Bayesian approach leads to

G(y)=/G(y;M, v, E)m (. ¥, & | Xyd pudyrdé (1.40)

where 7 (- | X) denotes the posterior density given data X. For the prior density, we
take a diffuse but proper prior.

Equation (1.40) is evaluated numerically using a Markov chain Monte Carlo ap-
proach. Within this Monte Carlo calculation, the distribution function G(y; u, ¥, &)
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Figure 1.26 Estimated posterior densities for the three parameters and for the predictive
distribution function (1.40). Four independent Monte Carlo runs are shown for each plot.

is also evaluated by simulation, since it represents the accumulation of many different
claims. However, we can assume that the major contribution to the total loss comes
from claims over the threshold, so the distribution may be represented as a function
of the extreme value parameters p, ¥, and &.

In Figure 1.26, the posterior densities of w, ¥, and & are shown, together with the
estimated predictive distribution function for the future losses, calculated from (1.40).
To examine the influence of the Monte Carlo error, four independent simulations are
performed for each plot. The four estimates within each plot are very close to one
another, implying that the Monte Carlo-based error is small.
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1.6.3 Hierarchical models for claim type and year effects

In this section, we extend the preceding analysis to allow for the different claim types,
and also examine the possibility of a year effect, that might represent some overall
trend. Preliminary analyses of these aspects indicate:

1. When separate GPDs are fitted to each of the six main types, there are clear differ-
ences among the parameters. (We omit type seven from this discussion because it
contains only two small claims.)

2. The rate of high-threshold crossings does not appear uniform over the different
years, but peaks around years 10 to 12.

To try to take the claim-type effects into account, Smith and Goodman (2000)
proposed extending the model into a hierarchical model of the following structure:

Level 1. Parameters m,,, my,, mg, si, si, and sg are generated from a prior distri-

bution.

Level II. Conditional on the parameters in level I, parameters wi, ..., u; (where
J is the number of types) are independently drawn from N(m,,, si), the nor-
mal distribution with mean m,,, variance si. Similarly, log i1, ..., log ¥, are
drawn independently from N (m.;, sﬁf), &1, ..., &y aredrawnindependently from
N(mg, ssz).

Level III. Conditional on level II, for each j € {1, ..., J}, the point process of

exceedances of type j is a realization from the homogeneous point process
model with parameters w;, ¥;, and &;.

This model may be further extended to include a year effect. Suppose the extreme
value parameters for type j in year k are not u;, ¥;, &; but u; + &, ¥;, &;. In other
words, we allow for a time trend in the w; parameter, but not in v; and &;. We fix
61 = 0 to ensure identifiability, and let {§;, k > 1} follow an AR(1) process:

8 = pS1 + M. M~ N(O,sD) (1.41)

with a vague prior on (p, s7).

These models are estimated by Markov chain Monte Carlo methods, an extension
of the Monte Carlo methods used for computing posterior and predictive densities for
single distributions. Figure 1.27 shows boxplots based on the Monte Carlo output, for
each of uj,logv;,&;, j =1,...,6andfor é, kK =2,...,15. Taking the posterior
interquartile ranges (represented by vertical bars) into account, it appears that there
are substantial differences among the six claim types for the p parameter, and to a
lesser extent for the i parameter. In contrast, the six types seem homogeneous in the &
parameter, though it is notable that the posterior means of &, . . . , & are all in the range
0.7 to 0.75, compared with a value close to 1 when the six types are combined into
one distribution, as in Figure 1.26. This shows one effect of the disaggregation into
different types — when the types of claims are separated, the apparent distributions are
less long-tailed than if the types are aggregated. The effect this has on the predictive
distributions will be seen later (Figure 1.29). In contrast, the estimates of the §;
parameters seem fairly homogeneous when the posterior interquartile ranges are taken
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Figure 1.27 Boxplots for the posterior distributions of i j, log ¥, &; (j = 1, ..., 6) and for §;
(k=2,...,15), based on the hierarchical model. The central dots represent posterior means
and the horizontal bars the first and third quartiles of the posterior distribution, taken from the
Monte Carlo output.

into account, suggesting that trends over the years are not a significant feature of this
analysis.

Figure 1.28 shows the estimated posterior density of p from (1.41), which is fairly
flat over the region of stationarity (—1, 1). Finally, Figure 1.29 shows the estimated loss
curves for future total loss over a one-year period, similar to (1.40) but integrating over
all the unknown parameters in the hierarchical model. Four loss curves are computed:
curve A based on the homogenous model with all data combined; curve B taking into
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Figure 1.28 Posterior density of p.

account the claim-type effects but not year effects; curve C taking into account both
claim-type and year effects; and curve D which is computed the same way as curve
C, but omitting the two outliers which were mentioned in the earlier discussion. The
sharp contrast between curves A and B highlights the advantages of including claim-
type effects: we obtain much less extreme predicted losses, a consequence of the fact
that the data appear less long-tailed if the claim types are separated than if they are
combined. Including the year effects (curve C) makes little difference to the predicted
curve for a typical future year. Curve D was included largely because there was some
interest within the company in separating out the “total loss” events (recall from the
earlier discussion that the two largest claims in this series were the only claims that
represent the total loss of a facility). There is a substantial difference between curves
C and D, highlighting that these very extreme events do have a significant influence
on future predictions — from the company’s point of view, a predicted curve that
includes total losses can be expected to differ from one that excludes total losses, and
this is reflected in the figure here.

1.6.4 Analysis of a long-term series of U.K. storm losses

This example is based on a preliminary analysis of a data set constructed by the
U.K. insurance company Benfield-Greig. The objective of this analysis is to study
long-term trends in insurance claims. However, it is recognized that there are many
reasons, besides possible climate-change effects, why insurance claims are rising over
time — inflation is an obvious reason, but also, with more property being insured,
and insured to higher values in real terms than in earlier times, it is inevitable that
insurance claims will increase with time as well. The interest here, however, lies in
separating out the effects that might possibly be due to long-term climate change.
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Figure 1.29 Computations of posterior predictive distribution functions (plotted on a log-log
scale) corresponding to the homogenous model (curve A) and three different versions of the
hierarchical model.

With this in mind, Benfield-Greig compiled a list of 57 historical storm events in the

period 1920 to 1995, and assessed their insurance impact based on the likely total loss

due to each storm that would have occurred if the same storm event had occurred in

1998. If this series contains a trend, it seems reasonable to conclude that it is due to

climatic influences rather than either inflation or changes in insurance coverage.
The analysis adopted here is again of the point process form (1.34) with gy = g =

0, and with x, modelled as a function of time ¢ through various covariates:

e Seasonal effects (dominant annual cycle);

e Polynomial terms in ¢;

e Nonparametric trends; and

e Dependence on climatic indicators such as SOI and NAO (discussed later).

Other models in which v, and &, depend on ¢ were also tried, but did not produce
significantly different results.
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Figure 1.31 Mean excess plot with Monte Carlo confidence bands.

Figure 1.30 shows scatterplots of the losses against (a) year, and (b) day within year
— the latter plot shows an obvious and expected seasonal effect, but the former is
somewhat ambiguous as to whether there is a trend. Figure 1.31 shows a mean excess
plot, with Monte Carlo confidence bands, to the raw data assuming no trend — since
the slope of the fitted straight line is very near 0, this appears fully consistent with an
exponential distribution for exceedances over a high threshold (as noted in Section
1.4.3, the slope of the mean excess plot may be used as a diagnostic for the sign of &).

To fit the data, a number of different trend effects were included. Seasonal effects
were modelled by a simple sinusoid of period one year (higher-order harmonics were
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Table 1.12 NLLH and AIC values (AIC = 2 NLLH + 2 p) for several models.

p = number
Model of parameters NLLH AIC
Simple GPD 3 312.5 631.0
Seasonal 5 294.8 599.6
Seasonal + cubic 8 289.3 594.6
Seasonal + spline 10 289.6 599.2
Seasonal 4+ SOI 6 294.5 601.0
Seasonal + NAO 6 289.0 590.0
Seasonal + NAO + cubic 9 284.4 586.8
Seasonal + NAO + spline 11 284.6 591.2

tested but found not to be significant). Polynomial trends of various orders were tried,
the best fit being a cubic curve, and also various nonparametric representations of the
long-term trend, using spline functions with various degrees of freedom. Also tried
were some meteorologically-based covariates that are believed to influence British
storm events: the Southern Oscillation Index (pressure difference between Darwin and
Tahiti, henceforth abbreviated to SOI) is very widely used as a measure of the strength
of the El Nifio effect, but more relevant to British meteorology is the North Atlantic
Oscillation or NAO (pressure difference between Iceland and the Azores). A series of
different models, with the corresponding values of the negative log likelihood (NLLH)
and Akaike Information Criterion (AIC) are given in Table 1.12. This confirms that
the seasonal effect and the NAO are both statistically significant, though not the SOIL.
The spline trend used here has five degrees of freedom and fits the data slightly worse
than the cubic trend which has only three degrees of freedom; however, given the
commonsense conclusion that a nonparametric representation of the long-term trend
is likely to prove more satisfactory than the probably accidental fit of a polynomial
function, we retain both trend terms for future study.

For the model including the seasonal effect and NAO only, Figure 1.32 shows the
diagnostic plots based on the Z and W statistics, analogous to our earlier plots in
Figure 1.15 and Figure 1.25. There is no evidence in these plots against the fit of the
proposed model.

To assess the impact of the trend terms on return levels, Figure 1.33(a) shows the
10-year, 100-year, and 1000-year return levels for January, under a model with both
seasonal and NAO effects. To avoid trying to represent both the seasonal and NAO
effects on a single graph, the plot here just represents the loss curve for January. The
10-year return level is here defined as the value that is exceeded on any one day with
probability 1/3652 and similar definitions for 100-year and 1000-year return levels.
The plot brings out the differences among the 10-year, 100-year, and 1000-year return
levels, but taking just the middle one of these and plotting it along with its confidence
limits in Figure 1.33(b) makes clear that the uncertainty of these estimates is higher
than the differences among the three curves. For models in which either a cubic or a
spline-based trend was included, the corresponding curves are shown as Figure 1.34
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Figure 1.32 Diagnostic plots based on the Z (plots a,b,c) and W (plots d,e,f) statistics.

and Figure 1.35. Both curves show a dip in the loss curve in the middle of the century,
followed by a rise in the period following 1975. Figure 1.36 is similar to Figure 1.33
but computed for July — of course, the return levels are much lower in this case. Taken
together, these plots illustrate the influence of different types of trend, demonstrating
that NAO has a strong influence on the return levels but also that there seem to be
persistent long-term trends.

Finally, we consider the question that is of most interest to the insurance industry —
the likelihood of possibly greater losses in the future. The largest value in the present
data set was the January 1990 windstorm that caused damage across a very large area
of the U.K. (worse than the storm of October 1987, which involved stronger winds,
but was confined to a much smaller geographic area). We consider this question by
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Figure 1.33 (a) Estimates of 10-year (bottom), 100-year (middle), and 1000-year (top) return
levels based on the fitted model for January, assuming long-term trend based on NAO, and (b)

100-year return level with confidence limits.
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Figure 1.34 (a) Estimates of 10-year (bottom), 100-year (middle), and 1000-year (top) return
levels based on the fitted model for January, assuming long-term trend based on a cubic
polynomial, and (b) 100-year return level with confidence limits.

computing the return period associated with the 1990 event, calculated under various
models (Table 1.13). The first row of this table assumes the simple Pareto distribution
— this distribution does not fit the data at all, since as already seen from Figure 1.31,
the true distribution of the tail is much closer to exponential than Pareto. The return
period under the exponential distribution, fitted without any seasonality or trend, is
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Figure 1.35 (a) Estimates of 10-year (bottom), 100-year (middle), and 1000-year (top) return
levels based on the fitted model for January, assuming long-term trend based on a cubic spline
with 5 knots, and (b) 100-year return level with confidence limits.
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Figure 1.36 (a) Estimates of 10-year (bottom), 100-year (middle), and 1000-year (top) return
levels based on the fitted model for July, assuming long-term trend based on NAO, and (b)
100-year return level with confidence limits.

in the second row of the table. Fitting the GPD instead of the Pareto, and then adding
a seasonal effect (but for the return level calculations, combining the entire year into
a single calculation) has the effect of reducing the estimated return period, compared
with the exponential model, but not to a very great extent. The next three rows take the
NAO effect into account, first for a “high NAO” year, then for a “low NAO” year, and
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Table 1.13 Estimated return periods (computed from maximum likelihood estimates) associated
with the 1990 storm event for several different models.

Model Return period (years)
Pareto 18.7
Exponential 487
Generalized Pareto 333
GPD with seasons 348
GPD, high NAO year 187
GPD, low NAO year 1106
GPD with random NAO 432
Current industry estimate? <50?
finally for “random NAO” — in other words, NAO is accounted for in the model but

for the return period calculations, it is averaged over the distribution of NAO. In all
cases, the quantity actually being estimated is the probability of a loss over the 1990
value occurring in one year; the cited “return period” is the reciprocal of this. The
final row of this table represents the collective wisdom of a group of British insurance
industry executives at a workshop in Cambridge, who were shown this table and then
asked to give their own estimate of the likelihood of a recurrence of the 1990 event.
Whether they were being more pessimistic or simply more realistic than the statistical
analysis is a matter on which the reader is left to decide.

1.7 Multivariate extremes and max-stable processes

Multivariate extreme value theory is concerned with the joint distribution of extremes
in two or more random variables. Max-stable processes arise from the extension of
multivariate extreme value theory to infinite dimensions. Although there is by now a
large amount of literature on multivariate extreme value theory (see, e.g., Chapter 7 by
Fougeres (2004) in the present volume), there has been much less work on statistical
approaches to max-stable processes. In the present section we review these ideas and
suggest a particular approach based on so-called M4 processes. In Section 1.8, we
consider a possible application of this approach to financial time series.

1.7.1 Multivariate extremes

Suppose {X; = (X;1, ..., Xip), i =1,2,..., }areii.d. multivariate random vectors,
and define vector maxima M, = (M,,1, ..., M,p) where M,,; = max{X;;: 1 <i <
n} for 1 <d < D. Suppose there exist normalizing constants a,; > 0, b, such that

Mnd - bnd
And

converges in distribution to a nondegenerate limit for each d. In its original form,
multivariate extreme value theory was concerned with limiting forms of the joint
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distribution, i.e., with results of the form

{Mnd - bnd } -

Pr ———— =<y, 1<d<D;=H(y,...,yp) (1.42)
And

where H is some nondegenerate D-dimensional distribution function. Of course, it

is a consequence of the theory of Section 1.2 that the marginals of H must be one of

the three types of univariate extreme value distributions, but our interest here is in the

kind of joint distributions that can arise.

Given that we have already developed an extensive theory for fitting univariate
distributions above a high threshold, we can use this to transform the univariate
marginal distributions any way we want. The results we are going to develop are most
conveniently expressed if we assume the marginal distributions are unit Fréchet, i.e.,

Pr{X;; < x} = e V/* for each d, (1.43)

so henceforth we assume (1.43). Note also that in this case, we may take the normal-
izing constants to be a,; = n, b,y = 0.

In practice, we may not be able to achieve (1.43) exactly, but we can perform
a probability integral transformation based on the distribution fitted above a high
threshold. Suppose we select a threshold u for the dth component, and fit the GPD to
the excesses of X;; above u,. Then we can estimate parameters A4, o4, £; such that

Pr{iXiqs > ug} =rg, Pr{Xig>us+yl| Xig > ug)

—1/&
= (1 +sdl> :
04

valid over the range where 1 + £,y /0, > 0. In that case, the transformation

Xig— uy\ Ve -1
Zia = |—log{1—hy <1 +§d) (1.44)
04

achieves the result
Pr{Zy<z)=e Y7, z>{=log(l1—xy)}"". (1.45)

With the transformation to unit Fréchet margins, the key property that charac-
terises multivariate extreme value distributions is max-stability. Suppose, for each
i, (Yi1, ..., Y;p)is an independent random vector with distribution function H. For
each d, we know that

1
Y = ;max{Yld, oo Yol

has the same univariate distribution as Y;4. The property that characterizes max-
stability is that the same thing should be true for the multivariate distributions:

PI‘{Y;I Syl,...,Y:D SyD}ZH(yl,...,yD). (146)
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Equation (1.46) is equivalent to

H(nyy,...,nyp)" = H(y1,...,Yp) (1.47)

so (1.47) may be taken as the definition of a multivariate extreme value distribu-
tion with unit Fréchet margins. There is extensive literature on the characterizations
and properties of multivariate extreme value distributions, which has been very well
reviewed by Fougeres (2004).

1.7.2 Max-stable processes

Consider now the case of a discrete-time stochastic process, i.e., a dependent sequence
{Y;, i =1,2,...}. If we are interested in the extremal properties of this process, then
for the same reasons as with multivariate extremes, it suffices to consider the case
where all the marginal distributions have been transformed to unit Fréchet. Such a
process is called max-stable if all the finite-dimensional distributions are max-stable,
ie,foranyn > 1,r > 1

Pr{Y; <ny;,....Y, <ny}' =Pr{Y1 < y,..., Y, <y }.

In fact we are interested in D-dimensional processes so it makes sense to consider this
case as well. A process {Yig : i = 1,2,...;1 <d < D} with unit Fréchet margins
is max-stable if foranyn > 1,r > 1,

Pr{Yiy <nyqy: 1<i<r;1<d<D}

=Pr{Yiy<ya: 1<i<r;1=<d=<D} (1.48)
Corresponding to this, a process {X;s : i = 1,2,...; 1 <d < D} is said to be in
the domain of attraction of a max-stable process {Y;y : i =1,2,...; 1 <d < D}if
there exist normalizing constants a,;; > 0, b,;s such that for any finite »
. Xia — buia . !
lim Pr ——— <ny,:1<i<r;1<d<D
n—o00 Anid
=Pr{Yiy <yq:1<i<r;1<d<D} (1.49)

If we assume a priori that the X process also has unit Fréchet margins, then we may
again take a,;; = n, byiq = 0.

Smith and Weissman (1996) made a connection between max-stable processes and
the limiting distributions of extreme values in dependent stochastic processes. In the
one-dimensional case, again assuming for simplicity that the marginal distributions
are unit Fréchet, there is a large amount of literature concerned with results of the
form

Pr {lrnax X, < nx} — e 0¥ (1.50)
<i<n
where {X;, i = 1,2,...,} is a stationary stochastic process, and 8 is known as

the extremal index. See for example Leadbetter et al. (1983), Leadbetter (1983), and
O’Brien (1987). If 6 exists, it must be in the range [0, 1] and is a constant for the
process, i.e., it does not depend on x in (1.50).
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For D-dimensional processes, the corresponding quantity is the multivariate ex-
tremal index defined by Nandagopalan (1990, 1994). For a stationary process { X4, d =
1,...,D,i=1,2,...,} with unit Fréchet margins in each of the D components,
we assume

Pr{Xis <nys, 1 <d < D}' - H(y1,...,Yp),

analogous to (1.42). The result corresponding to (1.50), for the joint distributions of
sample maxima in the dependent process, is

Pr {1@% Xig <nyg, 1 <d < D} — H(yi, ..., yp)iOr=yp), (1.51)
Equation (1.51), when itis true, defines the multivariate extremal index 6(yy, ..., yp).

As with univariate stochastic processes, the multivariate extremal index satisfies
0<60(,...,yp) < 1forall (y;,..., yp). Unlike the univariate case, it is not a
constant for the whole process, but it is true that 6(cyy, ..., cyp) = 0(y1, ..., yp) for
any ¢ > 0. Although it is by no means the only quantity of interest in studying extreme
values of discrete-time stationary processes, because of its role in limit theorems such
as (1.50) and (1.51), the (univariate or multivariate) extremal index is widely regarded
as a key parameter.

The connection between max-stable processes and the multivariate extremal index
is as follows. Suppose {X;,} is a stationary D-dimensional process whose finite-
dimensional distributions are in the domain of attraction of a max-stable process —
in other words, there is a max-stable process {Y;;} for which (1.49) is true for every
r > 1. We also assume two technical conditions as follows:

1. For a given sequence of thresholds u,, = (u,q, 1 <d < D)andforl < j <k <n,
let B’J‘-(un) denote the o-field generated by the events {X;y < u,4, j <i < k}, and
for each integer ¢ let

an; =sup{|P(ANB)— P(A)P(B)|: A € Bi(u,), B e B, (u,)}

where the supremum is taken not only over all events A and B in their respective
o -fields but also over k such that 1 < k < n — t. Following Nandagopalan (1994),
A(u,) is said to hold if there exists a sequence {z,, n > 1} such that

ty > oo, t,/n = 0,a,,; — 0asn — oo.

2. Assume A(u,) holds with respect to some sequence t,, and define a sequence k,
so that as n — oo,

ky — oo, kuyty/n— 0, ko, — 0.

X4
max >1;. (1.52)
d Unad

We assume that, with r, = [n/k,],

In D
0= Jim Jim 3> SPr{Xu >

i=r d=1

Then we have:
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Theorem 1.7.1 Suppose the processes X = {X;4} and Y = {Y;4} are each station-
ary with unit Fréchet margins, that Y is max-stable, and (1.49) holds. For a given
iy ..., yp)and uyg = nyq,d =1, ..., D, suppose A(u,) and (1.52) hold for both
X and Y. Then the two processes X and Y have the same multivariate extremal index
O(y1,---» YD)

The practical implication of this is that in calculating the extremal index of X, it
suffices to look at the limiting max-stable process, assuming this exists.

1.7.3 Representations of max-stable processes

Suppose {ax, —00 < k < oo} is a doubly-infinite sequence with ox > 0, Y, o =
1, and let {Z;} denote i.i.d. unit Fréchet random variables. Consider the moving
maximum process

Y, = max oZi_.
—oo<k<oo
It is readily checked that Y; is a stationary stochastic sequence with unit Fréchet
margins, and moreover, is a max-stable process. The latter is most easily seen from
the identity

o0
Pr{Yl§y1,...,Y,§y,}=exp{—Z max i},

1—s<k<r—
Lo Vssksr—s Yoy

which satisfies (1.48) with D = 1.
Deheuvels (1983) defined a class of processes which, translated to the present
context, we may call maxima of moving maxima, or M3, processes, as

Y =max max o2,
>1 —oo<k<oo
where now {a,;} is a double sequence of constants satisfying oy > 0 and
> pex = 1, and Z,; is a double sequence of independent unit Fréchet ran-
dom variables. It is readily checked that this process is also max-stable.

Smith and Weissman (1996) generalized the M3 process to a multivariate context,
the class of multivariate maxima of moving maxima processes, or M4 for short. In this
definition, we assume a double sequence of independent unit Fréchet random variables
Z,; and a triple sequence of constants {a; ;4 : £ > 1;—00 <k < 00,1 <d < D},
such that op 4 4 > O,

Z ZO{g’k,d = 1 foreachd.
k

¢
Then define the M4 process Y = {Y;4} by

Y;s = max mkax o kdZei—k-
¢
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For this process, we have

Pr{Yig <y, 1<i<r, 1 <d <D}

o0 o0
O k.d
=exp{ — E E max  max . (1.53)
1—s<k<r—s 1<d<D Vstk,d

{=1 s=—o0

From (1.53), it is readily checked that Y is max-stable, and moreover, we can also
show that the multivariate extremal index is given by the formula

>, Max, Maxy o k. qYd
D¢ Dk MAXg 0 . Vd

The key characterization result is the following: under some additional technical con-
ditions which we shall not specify here, any D-dimensional stationary max-stable
process with unit Fréchet margins may be approximated arbitrarily closely as the
sum of an M4 and a deterministic process. This result was given by Smith and
Weissman (1996) and is a direct generalization of the result of Deheuvels (1983)
for one-dimensional processes.

The deterministic process mentioned here is one that cycles infinitely through some
finite set of values; since this seems unreasonable behaviour for most real observed
processes, we usually assume it is absent. In that case, the practical interpretation
of the result is that we can approximate any max-stable process with unit Fréchet
margins by an M4 process.

Combined with the results of Section 1.7.2, this suggests the following strategy for
analyzing extremal properties of multivariate stationary processes. First, fit the GPD
or the point process model of Section 1.2.5 to the exceedances of the process above
a threshold (possibly a different threshold for each component). Second, apply the
transformation (1.44) so that the margins of the transformed process may be assumed
to be of unit Fréchet form above a threshold (1.45). Third, assume as an approximation
that the joint distributions of the transformed process, above the relevant thresholds,
are the same as those of an M4 process. Fourth, estimate the parameters of the M4
process {a i 4}. The multivariate extremal index of the process is then given by
(1.54) and other extremal properties of the process may be calculated directly from
the formula (1.53).

0y, ..., Yp) = (1.54)

1.7.4 Estimation of max-stable processes

So far, we have argued that max-stable processes form a suitable class of processes
by which to study the extremal properties of D-dimensional stationary time series,
and that after transforming the tail distributions to unit Fréchet margins, max-stable
processes may be approximated by those in the M4 class. There are still some major
difficulties, however, in estimating these processes in practice.

Since the M4 process is defined by an infinite set of parameters o 4, to make
progress we must in practice reduce these to a finite set. We therefore assume o 4 = 0
outside the range 1 < £ < L, —k; < k < k, where L, ki, and k, are known. In the
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financial time series example to be discussed in Section 1.8, we have D = 3 and
somewhat arbitrarily assume L = 25, k; = ky = 2.

Next, consider a situation where some value of Z, ;, say Z ;«, is much larger than
its neighbors Z,; when 1 < ¢ < L, i* —k; < i < i* + k. Within this range, we
will have

Yia =opi—irgle, 1"—ki<i<i*+k, 1<d<D.

Define
Yia
Sia = )
MAaX;*_k, <i<i*+k, 1<d<D Yid
i"—ki<i<i*+k, 1<d<D. (1.55)
Then
Qpx j—i*.d
Sia =

MaX;+ gy <i<i*+ky, 1<d<D ¥¢*,i—i*.d
i"—k<i<i*+k, 1<d=<D. (1.56)

The variables {S; ;} define a signature pattern, which specifies the shape of the process
near its local maximum.

For any (£*, i*), there is positive probability that (1.56) holds exactly. There are
L such deterministic signature patterns (one defined by each £*), and when looking
along the whole process for —oo < i < 00, it follows from elementary probability
arguments that each of the L signature patterns will be observed infinitely often. Zhang
(2002) has given some precise formulations and alternative versions of these results.

From an estimation point of view, this is both good and bad. On the one hand, if
we were indeed to observe a process of exactly M4 form for a sufficiently long time
period, we would be able to identify all L signature patterns exactly, and hence exactly
estimate all the {«, x 4} parameters. However, in practice we would not expect to ob-
serve an exact M4 process, and even the theoretical results only go as far as justifying
the M4 process as an approximation to the general max-stable process. Moreover,
the presence of deterministic signature patterns means that the joint densities of the
M4 processes contain singularities, which render the method of maximum likeli-
hood unsuitable for such processes. Therefore, we must seek alternative methods of
estimation.

Davis and Resnick (1989) developed many properties of max-ARMA processes
(a special class of moving maxima processes), but did not devise a good statistical
approach.

Hall, Peng, and Yao (2002) proposed an alternative estimation scheme based on
multivariate empirical distributions, for moving maxima processes. Zhang (2002) has
generalized this to M4 processes.

It may also be possible to approach this question by assuming an unobserved process
that is exactly of M4 form, and an observed process derived by adding noise, filtering
the former from the latter by a Monte Carlo state-space approach. This has not so far
been tried, however.
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Here we propose a simple intuitive method for which we claim no optimality
properties but which appears to be a useful practical approach. The steps of this new
approach are as follows:

1. For each univariate series, fit the standard extreme value model to exceedances
above a threshold and transform the margins to unit Fréchet via (1.44).

2. Fixthevaluesof L, k;,and k suchthata, x s = Oexceptwhen1 <€ < L, —k; <
k < k. In our example we take L = 25 and k| = k, = 2.

3. For each local maximum above the threshold, define the signature pattern (1.55).
In practice, some of the Y; s values in (1.55) will be below their corresponding
thresholds; in that case, set S; ; = 0 for those values. In our example, D = 3 and
there are 607 local maxima, so we end up with 607 candidate signature patterns in
15 dimensions.

Note that the theory specifies that L signature patterns occur infinitely often and
these are the ones that identify the coefficients {cy  4}. In practice we will observe
many more than L signature patterns, all different. The idea pursued here is to use
a clustering algorithm to approximate the process by one in which there are only L
signature patterns. Therefore:

4. Use the “K-means clustering” procedure to group the signature patterns into L
clusters. K-means clustering is implemented in S-Plus and took less than a minute
for the example given here.

5. Assume each cluster of signature patterns is represented by one signature pattern
corresponding to the cluster mean, and estimate the o x4 coefficients from the L
cluster mean signature patterns.

In Section 1.8, we shall see the results of this procedure applied to financial data.

1.8 Extremes in financial time series

The 1990s were mostly a boom time for the stock market, but some well-publicized
catastrophes (e.g., Barings Bank, Orange County, Long-Term Capital Management)
made investors aware of the dangers of sudden very sharp losses.

In response to this, there grew a new science of risk management. The best known
tool is Value at Risk (VaR), defined as the value x which satisfies

Pr{X7 > x} =«,

where X7 is the cumulative loss over given time horizon T (e.g., 10 trading days), and
« is a given probability (typically .05 or .01). However, X7 is typically calculated from
a portfolio involving a large number of stocks, so the analysis of high-dimensional
time series is involved.

Various tools have been devised to estimate VaR. The best known, but also the
crudest, is RiskMetrics. Although this contains many complicated details, the main
principles are:
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Table 1.14 Parameters of the point process model of Section 1.2.5, fitted to each of the three
financial time series based on threshold u = .02.

Number of " log ¥ &
Series exceedances (SE) (SE) (SE)
Pfizer 518 .0623 —4.082 174
(.0029) (.132) (.051)
GE 336 .0549 —4.139 .196
(.0029) (.143) (.062)
Citibank 587 .0743 —3.876 .164
(.0036) (.119) (.012)

1. The covariance matrix of daily returns on the stocks of interest is estimated from
a fixed period (e.g., one month) of recent prices.

2. The distribution is assumed to be multivariate normal.

The purpose of the present discussion is to explore whether we could do better
using extreme value theory, based on a specific example.

We use negative daily returns from closing prices of 1982 to 2001 stock prices
in three companies, Pfizer, General Electric, and Citibank. The data were plotted in
Figure 1.2.

Univariate extreme value models were fitted to threshold # = .02 with results given
in Table 1.14.

Diagnostic plots based on the Z and W statistics are shown for the Pfizer data in
Figure 1.37. The clear problem here is seen in the QQ plot for the Z statistics — this
does not stay close to the assumed straight line, indicating that the point process of
exceedance times is not well described by a uniform Poisson process. The reason for
this is obvious to anyone familiar with the literature on financial time series: like all
series of this nature, the Pfizer series goes through periods of high and low volatility,
and extreme values are much more likely to occur in times of high volatility than low
volatility.

For the present study, volatility was estimated by fitting a GARCH(1,1) model to
each series. This is a familiar model in econometrics, see e.g., Shephard (1996). If y,
denotes the observed series (in this case, the observed daily return) on day ¢, assumed
standardized to mean O, then the model represents y, in the form

Yt = 016,

where {¢,} are i.i.d. N[0, 1] random variables, and the volatility o; is assumed to
satisfy an equation of form

2 2 2
o, =ao+oy,_; + pio,.

For the purpose of the present analysis, a GARCH(1,1) model was fitted to each of
the three series, and a standardized series y, /o, computed. The threshold analysis was
then repeated for the standardized series, using threshold # = 1.2. Results from this
analysis are shown in Table 1.15. The diagnostic plots are now satisfactory (plots for
the Pfizer series are shown in Figure 1.38; the others are similar).
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Figure 1.37 Diagnostic plots for the extreme value model fitted to the Pfizer daily returns.

After fitting a univariate extreme value model to each series, the exceedances over
the threshold for each series are transformed to have marginal Fréchet distributions.
On the transformed scale, the data in each series consist of all values in excess of
threshold 1. The resulting series are shown in Figure 1.39.

Up to this point in the analysis, although we have taken into account long-range
dependencies in the data through the volatility function, we have taken no account of
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Table 1.15 Parameters of the point process model of Section 1.2.5, fitted to each of the three
financial time series based on threshold 1.2, after standardizing for volatility.

Number of n log ¥ &
Series exceedances (SE) (SE) (SE)
Pfizer 411 3.118 —.177 200
(.155) (.148) (.061)
GE 415 3.079 —.330 .108
(.130) (.128) (.053)
Citibank 361 3.188 —0.118 194
(.157) (.126) (.050)

(@) (d)

IS
IS

3 |
2 | 2
1
o | o |
0 2 4 6 0 2 4 6
(c) )
010 4. _ _ . _ _ . — — —
010 J._ _ _ _ _ _ — — — — —
0.05 |
0.05 |
0.0 |
0.0 |
0.05 -0.05 J
010 | — — — . - - — — 010 )] — — — — — 4 — — — — —
2 4 6 8 10 2 4 6 8 10

Figure 1.38 Diagnostic plots for the extreme value model fitted to the Pfizer daily returns, after
standardizing for volatility.
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Figure 1.39 Plot of the threshold exceedances of standardized daily returns after transforming
to unit Fréchet marginal distributions.

possible short-term dependencies (e.g., serial correlation between values on one day
and neighboring days), nor have we considered any form of dependence among the
three series.

In Figure 1.40, pairwise scatterplots are shown of the three transformed series
against each other on the same day (top three plots), and against series on neighboring
days. The two numbers on each plot show the expected number of joint exceedances
based on an independence assumption and the observed number of joint exceedances.

Figure 1.41 shows a plot of Fréchet exceedances for the three series on the same
day, normalized to have total one, plotted in barycentric coordinates. The three circles
near the corner points P, G, and C correspond to days for which that series alone had
an exceedance.

These plots provide empirical evidence that there is dependence among the values
of the three transformed series on the same day, and less clear evidence that there
is also some serial correlation among the values on neighboring days. These are the
kinds of dependencies that the M4 series is intended to model, and the next step in
the analysis is therefore to fit an M4 model to the threshold exceedances of the three
transformed series. The method of fitting the M4 model follows the recipe given at
the end of Section 1.7.

One test of whether the fitted M4 process is a realistic representation of the Fréchet-
transformed time series is whether the sample paths simulated from the fitted process
look similar to those from the original series. As a test of this, a Monte Carlo sam-
ple from the fitted model was generated, and Figure 1.42 through Figure 1.44 were
drawn in the same way as Figure 1.39 through Figure 1.41 from the original series.
One point to note here is that although the data were generated so that the marginal
distributions were exactly unit Fréchet, in order to provide a fair comparison with
the original estimation procedure, the marginal distributions were reestimated, and
transformed according to the estimated parameters, before drawing the scatterplots
in Figure 1.43 and Figure 1.44. As a result, the signature patterns in the transformed
simulated series are no longer the exact signature patterns of the M4 model, and the
scatterplots are less clumpy than they would have been without the transformation.
They are still more clumpy than the original Figure 1.40 and Figure 1.41. Despite this,
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Figure 1.40 Scatterplots of the values over the threshold in the Fréchet transformed series.
For each series, a scatterplot is shown against either the values of the other two series on the
same day, or the values of all three series on either the day before or the day after. Of the
two numbers shown on each plot, the second is the observed number of joint exceedances in
the two series, i.e., the actual number of points in the scatterplot, while the first represents a
calculation of the expected number of joint exceedances if the two series were independent (or
for the case of one series plotted against itself, assuming the daily values are independent).

we would argue that Figure 1.42 through Figure 1.44 provide a reasonable indication
that the simulated series are similar to the original Fréchet-transformed time series.
Finally, we attempt to validate the model by calibrating observed versus expected
probabilities of extreme events under the model. The “extreme event” considered is
that there is at least one exceedance of a specific threshold u, on the scale of the
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Figure 1.41 Representation of the trivariate distribution of threshold exceedances on the same
day for the three Fréchet-transformed series. The letters P, G, and C refer to the Pfizer, GE,
and Citibank series. The circle at each vertex of the triangle represent all the days that there
was an exceedance in that series but neither of the other two series. For days on which at least
two of the series had exceedances, the values were normalised to sum to one, and plotted in
barycentric coordinates.
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Figure 1.42 Same as Figure 1.39, but with data simulated from the fitted M4 model.

original daily return series, by one of the three series in one of the next 10 days after
a given day. It is fairly straightforward to write down a theoretical expression for this,
given the M4 model. To make the comparison honest, the period of study is divided
into four periods each of length just under 5 years. The univariate and multivariate
extreme value model is fitted to each of the first three 5-year periods, and used to
predict extreme events in the following period.

Figure 1.45 shows observed (dashed lines) and expected (solid lines) counts for a
sequence of thresholds u. There is excellent agreement between the two curves except
for the very highest thresholds, when the calculation may be expected to break down.

€004 CRC PressLLC



. (39,93) w | (32,62) w | (32,91)

GE day 0
3
Citibank day 0
Citibank day 0

1 510 50 500 1 510 50 500 1 5 10 50 100
Plizer day 0 Plizer day 0 GE day 0

100 . (39,65) 100 . ( )

o © (32’47) 50 . 32,46

GE day 1
Citibank day 1
Citibank day 1

1 510 50 500 1 5 10 1 5 10 50 100
Plizer day 0 Plizer day 0 GE day 0
wl@o71) w - (32,46) w | (32,49)
’
50 . .
. 100 100

GE day -1
3
Citibank day -1
Citibank day -1

1 5 10 50 1 5 10 50 1 5 10 50 100
Plizer day 0 Plizer day 0 GE day 0
(38,61) (40.68)

o] : : o ©] : (26,42)

500 50 S .

Plizer day 1
a
3
GE day 1
35
Citibank day 1

1 5 10 50 500 1 5 10 50 100 1 5 10 50 500

Plizer day 0 GE day 0 Citibank day 0

Figure 1.43 Same as Figure 1.40, but calculated from the simulated data.

We conclude with some summary remarks.

The representation in terms of M4 processes contains the possibility of estimating
both within-series and between-series dependence as part of the same model.

The key step in this method is the use of K-means clustering to identify a mea-
sure in a high-dimensional simplex of normalized exceedances. In contrast, existing
methods of estimating multivariate extreme value distributions usually only work in
low dimensions (up to five or so). However, this method of estimation is itself very ad
hoc, and the field is still open for more systematic methods of estimation with more
clearly defined mathematical properties. The recent thesis of Zhang (2002) may point
the way forward to some more general and powerful methods.
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Figure 1.44 Same as Figure 1.41, but calculated from the simulated data.
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Figure 1.45 Representation of the probability 1/N that there is at least one threshold ex-
ceedance by one of the three series in a 10-day period, as a function of the threshold, on the
scale of the original data. The solid curve represents the theoretical calculation based on the
models fitted to the data. The dashed curve represents an empirical calculation of the same
event, by counting observed exceedances.

Ultimately the test of such methods will be whether they can be used for more
reliable risk calculations than established methods such as RiskMetrics. The numerical
example at the end shows that good progress has been made, but there are also many
variations on the basic method that deserve to be explored.
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CHAPTER 2

The Use and Misuse of Extreme Value
Models in Practice
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Extreme value models and techniques are widely applied in environmental settings for
designing protection systems against the effects of extreme levels of environmental
processes. Asymptotic arguments lead to models that give an approximate description
of the stochastic behavior of extremes under idealized conditions. This approach has
widespread support, at least for its pragmatism. There is less common ground on
how to use the models — decisions of model choice, mode of inference, method of
interpretation, and so on. We consider these issues in the context of a specific data
series of daily rainfall recorded at a single location in Venezuela. For these data such
choices turn out to have a profound effect on the conclusions drawn, and the effect of
miscalculation has already been badly felt: a daily rainfall event in 1999, which was
thought to be virtually impossible on the basis of an extreme value analysis of historical
data, caused widespread destruction and loss-of-life. In this chapter we review the
various options available for extreme value analyses, and argue that four components
are necessary to attain a satisfactory analysis. These comprise an appropriate choice of
asymptotic model, an exploitation of all appropriate information, a proper allowance
for estimation uncertainty, and the modeling of nonstationary effects. We show that
the 1999 rainfall event in Venezuela, while still exceptional, is considerably less
surprising once such issues are properly handled in an extreme value analysis.
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2.1 Introduction: Classical analyses of annual maximum data

Throughout this chapter we examine a series of daily rainfalls recorded at Maiquetia
International Airport in Venezuela. For reasons that will become clear shortly, these
data are of particular interest from an extreme value point of view and represent
a challenge to practitioners of the theory. Annual maxima of the series over the
period 1951 to 1998 are shown in Figure 2.1. Suppose that having available these
data in 1998 your task, as a hydrologist, is to assess what levels to allow for in
order to afford protection against the maximum daily rainfall in a future year, say
1999. Though oversimplified for purposes of presentation, this is precisely the sort
of problem that typifies an extreme value analysis: historical data on extremes are
available, but requirements are made to estimate the likelihood of events that are even
more extreme than those already observed.

Extreme value theory and the models it leads to are often regarded as a panacea for
resolving such difficulties. The basic arguments are well-rehearsed: in the simplest
case we have a process of independent observations Xy, ..., X, with a common
distribution function F, and wish to estimate the behavior of F(x) for large values of
x. Naturally, empirical estimates are poor, especially for values of x that exceed the
largest of the sample values of the X;. Equally, although the exact distribution of large
order statistics from the X; sequence is determined precisely by F — for example,
the distribution function of M,, = max{X, ..., X,} is F"(x) — this is of little help
in practice, since F itself is unknown, and misspecification of F' can lead to gross
error in the distribution of order statistics.

100 120 140
1 1 1
°

°

°

Rainfall (mm)
80
1

Year

Figure 2.1 Annual maximum daily rainfall values recorded in Venezuela.
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In the absence of more direct alternatives, it is usual to turn to asymptotic arguments
as a means of generating models for extremes. For example, in the case of M,,, it is not
difficult to establish that the complete class of limiting distributions of the variable

Mn - bn
M=—,
an
which includes a linear renormalization to avoid degeneracy, is the generalized ex-
treme value (GEV) family

-1 -1/
G(Z)zexp{— [1—}-5( > )] } 2.1
+

for parameters , o (> 0), and &. In fact, this is the limit family for M’ under much
weaker dependence assumptions than independence: the limit must be of the form
stated if the series satisfies a requirement for weak long-range dependence at extreme
levels; see Leadbetter et al. (1983) for precise definitions and results or Coles (2001)
for a less formal overview. This model is usually applied in practice by adopting the
limit family (2.1) as a set of candidate models for the distribution of M,, based on large
enough sample sizes. This is justified since the unknown coefficients a, and b,, can be
absorbed into the GEV location and scale parameters, so that if M;" is approximately
GEY, so is M,,, albeit with different values of x and o. With daily observations, for
example, and with sample size n = 365, the variable M, corresponds to the annual
maximum, and inference amounts to fitting the GEV distribution to a sequence of
observed annual maxima.

The first derivation of the limit laws dates back to Fisher and Tippett (1928), though
the characterization was completed by Gnedenko (1943). However, the limit results
were not originally developed or expressed in the form (2.1). Instead, three families
of limit distributions were given: the so-called Weibull, Gumbel, and Fréchet types.
Although these families of distributions correspond simply to the GEV subclasses
with £ < 0,& = 0, and £ > 0 respectively, it is not immediately obvious from
their conventional parameterizations that they can be unified into a smooth paramet-
ric family. The recognition that this could be achieved with the GEV family — first
observed independently by von Mises (1954) and Jenkinson (1955) — represented
an important advance in the utility of extreme value models for practical applica-
tion. Prior to this, when modeling extreme value data, it was commonplace to try
out all three subfamilies and to make a subjective choice about which of the three
provided the best-fitting model. By unifying the limit distributions in a single fam-
ily, the GEV model has several advantages: just one inference needs to be made,
arbitrary discrimination between models is avoided, and uncertainty about model
type is implicit in any inference. In particular, through inference within the GEV
model, lack of knowledge about the shape parameter £ is properly accounted for and
quantified.

A legacy remains, however, from the partitioning of the limit family into three
separate subclasses. This concerns the Gumbel family, derived by taking the limit
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& — 0in the GEV family, which leads to the family of distribution functions

B

It is still common practice for this family either to be adopted outright as a model
for block maxima in preference to the GEV family, or at least to be considered as a
candidate for model reduction from the full GEV family. Additional arguments are
sometimes adopted to justify this procedure, hinging on the fact that if the X; belong
to any of a wide class of standard families including the normal, exponential, gamma,
and Weibull distributions, then the limit distribution of M;' is Gumbel.

The issue of reduction to the Gumbel model is one of four fundamental aspects
of extreme value modeling that we address in this chapter by studying in detail the
Venezuelan rainfall data. Our contention is that reduction to the Gumbel model is a
risky strategy, even if it has empirical support from historical data. Two of the other
aspects we address also concern model choice; first the option of modeling a greater
extent of the available extremal data by means of threshold models, and second the
importance of modeling nonstationary effects. The remaining aspect, and possibly
the most important, is the management of uncertainty in an extreme value analysis.
We will argue that quantifying uncertainty is an essential (perhaps the essential)
component of an extreme value analysis, and that this is most coherently managed
by adopting a Bayesian analysis. We begin, however, with a classical maximum
likelihood comparison of the GEV and Gumbel models, which will in itself highlight
many of the pertinent issues.

2.2 Inference for extreme value models

A variety of techniques have been proposed for estimating extreme value models,
including graphical procedures, moment-based estimators, estimators based on order
statistics and likelihood-based estimators. Doubts about the regularity of the max-
imum likelihood estimator due to the dependence of the distributional support on
the parameters of the distribution were resolved by Smith (1985), who showed that
despite the violation of the “standard regularity conditions,” the maximum likelihood
estimator has the usual property of asymptotic normality provided the shape parame-
ter £ is larger than —0.5. This condition, which excludes very light-tailed distributions
with finite right endpoint, is almost always satisfied in practice by physical processes,
at least in environmental applications. With this potential difficulty resolved, there are
several reasons for preferring maximum likelihood to infer extreme value models. The
log-likelihood function is easy to evaluate and to maximize numerically, asymptotic
theory provides simple approximations for standard errors and confidence intervals,
and the likelihood can be generalized to more complex model structures. The third of
these points is perhaps the most important in practice, because it widens the scope of
extreme value models to enable inferences on, for example, nonstationary processes.
In the context of model selection, one special case of the second point is that the test
statistic

D =2{£©) — £},
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Table 2.1 Maximum likelihood estimates, standard errors (in parentheses) and negative log-
likelihood (nllh) of Gumbel and GEV models fitted to Venezuelan annual maximum rainfall
series.

Gumbel GEV

n 509(33) 490 (3.4)

o 21525 199 (2.7)

£ - 0.17 (0.14)
nllh 2249 224.1

where 6(5) and 6(5*) denote the maximized log-likelihoods within the GEV and
Gumbel models respectively, has a null x? distribution under the Gumbel hypothesis
(¢ = 0); see Cox and Hinkley (1974) for example. Hence, a formal test can be derived
based on likelihood principles for model reduction to the Gumbel distribution from
the full GEV family.

Assessment of extreme value models, especially in terms of extrapolation proper-
ties, is usually made via quantiles:

D ¢ [1—{~logl = p)}¥], for& #0,
g u — o log{—log(1 — p)}, for& =0,

where G(z,) = 1 — p. With parameter values replaced by estimates, results are often
presented as a plot of z,, against —log(1 — p) on a logarithmic scale, a so-called return
level plot, which has the virtue of compressing the tail of the distribution for ease of
examination, and generates linear plots in the Gumbel case £ = 0.

Details of maximum likelihood inferences for both the Gumbel and GEV models
are given in Table 2.1. In particular, the test statistic for model reduction to the Gumbel
distribution is D = 2(224.9 —224.1) = 1.6, which is not exceptional on the scale of a
x? distribution. Hence, by significance testing at any conventional level, the Gumbel
model would be accepted as a suitable reduction from the GEV family for these data.
The consequences can be seen in the return level plots of Figure 2.2. Added to the
plot are approximate 95% confidence intervals obtained by standard manipulation
of the asymptotic variance-covariance matrix of the maximum likelihood estimator
through the delta method. It is apparent that for short- to medium-term extrapolations,
the return level plots of the GEV and Gumbel models are similar. Moreover, the plot
for each model is reasonably consistent with the corresponding empirical estimate,
lending support to the viability of either model.

But let us take stock of the situation. The point of the analysis is likely to be to set
a design level for protection against future extreme levels of the process. Suppose,
for argument’s sake, that we seek a design level v, such that the probability of expe-
riencing a daily rainfall that exceeds v, in a given year is p or less, for some small
value of p. In other words,

G(vp) =1~ p~log(1/p). 2.2)
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Table 2.2 Design levels v, in millimetres. The MLE estimates are given by/v\p =G! (—log p),
where G is the estimated distribution function. The ‘95% CI’ estimates are given by T/\p =
G~ (—log p), where G(p) is the upper 95% confidence limit for Vvp as a function of p.

MLE 95% CI
p Gumbel GEV Gumbel GEV
01 150 186 176 277
.002 184 265 217 473

Return level (mm)
300 400 500 600
1 1 1 1

200
1

100
1

0
1

0.1 1.0 10.0 100.0 1000.0

Return period (years)

Figure 2.2 Return level plots for Gumbel and GEV models of Maiquetia annual maximum
daily rainfall. Dashed curves correspond to 95% confidence intervals; points correspond to
empirical estimates including the 1999 datum.

With p = 1/100 and p = 1/500 the maximum likelihood estimates of v ,, read-off
directly from Figure 2.2, are given in Table 2.2. Due to the extrapolation involved,
the choice between the Gumbel and GEV models starts to make a difference: the
differences in the estimates are around 3.5 and 8 cm for p = .01 and p = .002,
respectively. So despite the similarity in the GEV and Gumbel models for describing
the statistical behavior of the historical series, the models may provide materially
different estimates of design parameters.

This point becomes more critical once parameter uncertainty is taken into account.
The handling of uncertainty due to model estimation is not an issue that has been
dealt with universally well in the extreme value literature. Models often extrapolate
to such uncomfortably high levels that practitioners have preferred to turn a blind eye
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to the additional increase in design level that would be implied by the incorporation
of sampling error. But the uncertainties are there whether we choose to account for
them or not, and not doing so may lead to catastrophically poor design parameters.

There seems no entirely natural way to handle uncertainty in the context of a maxi-
mum likelihood analysis. We argue below that a Bayesian formulation of the problem
leads to a more satisfactory resolution, but suppose temporarily that we adopt an
ad hoc criterion of designing to the upper end-point of a (1 — «)% confidence interval
for v, with p and « prespecified at some small values. The rationale for this is that
the criterion determined by (2.2) leads to a design parameter that is the maximum
likelihood estimate for v ,. In the understood ‘repeated sampling’ sense, it follows that
the inferred confidence interval for v, contains the true value with probability (1 —c).
Hence, designing to the upper end-point of such an interval builds conservatism into
the estimate. Notwithstanding the absence of a formalism for such a procedure, and
sidestepping questions about the choice of p and «, itis at least clear that this procedure
goes some way to providing an inference that takes parameter uncertainty into account.

The estimates obtained in this case, with « = 0.05 and for both p = 1/100
and p = 1/500, are included in Table 2.2. The difference between the estimates
based on the GEV and Gumbel models, respectively, are now around 10 and 25 cm,
respectively. Hence, the GEV and Gumbel models become markedly different once
uncertainty is taken into account. This was also clear from Figure 2.2 directly: the
relative size of confidence intervals on v, for the GEV and Gumbel models grows
without limit. This should not be surprising, as the major component of uncertainty
in extreme value modeling is in the rate of tail decay, i.e., the shape parameter £. In
the Gumbel family this value is assumed to be known (§ = 0), thus eliminating the
greatest part of uncertainty from the inference. It follows that even if the maximum
likelihood estimate on £ is close to zero, so that the maximum likelihood model within
the GEV is “near-Gumbel,” the inferences will differ to a far greater extent in terms
of their precision.

So, is it appropriate to use the Gumbel model, which would offer considerable
savings in terms of design specifications? A personal view is that, even when formal
tests support reduction to the Gumbel family, as with the Venezuelan rainfall data, it
is better to exploit the conservatism induced by acknowledgement of the uncertainty
of & in the GEV model.

To complete the story on the Venezuelan data: in December, 1999, large areas of
the country were devastated by a torrential daily rainfall event. Widespread dam-
age was caused and there was a considerable loss of life — some estimates put
the number of dead at around 50,000. At Maiquetia a daily rainfall of more than
410 mm was recorded, an event that was almost three times greater than any other
on record. Further details of the extent of the damage caused are given by Larsen
et al. (2001). There is also a large amount of information available on the web:
http://pr.water.usgs.gov/public/venezuela is a good starting point, giving both geo-
logical background information as well as photographs of damage caused in the
Maiquetia vicinity as a consequence of the 1999 event.

While it is easy to be wise after the event, it is constructive to ask whether an
analysis of the pre1999 data could, or even should, have pointed to the necessity to
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design against such an extreme event. Looking back at our analyses, it is clear that
the Gumbel model would have failed completely in anticipating the 1999 event, even
if conservatism were built in by designing to the upper 95% confidence limit of any
reasonable return level v ,. Designing to the maximum likelihood estimate of the GEV
model would have afforded little extra protection against the 1999 event, but designs
made to the upper 95% confidence limit of GEV return levels start to approach this
value. Indeed, had designs been made to the upper limit of the 95% confidence interval
for the 500-year return level, then the 1999 event would have been protected against.'

2.3 Bayesian analysis of annual maxima data

In subsequent sections we assess whether greater accuracy in estimating the extremal
behavior of the Venezuelan rainfall process can be achieved by exploiting more of
the available extreme data than just the annual maxima. First we consider in slightly
more detail the issue of estimation uncertainty. Allowance for parameter uncertainty
by designing to confidence interval limits is not entirely satisfactory — the design
parameter obtained in this way has no simple probabilistic interpretation, and there is
the necessity to set two constants, « and p, each of which is influential in the design
parameter estimation. A better approach is provided by a Bayesian inference of the
model.

Bayes’ theorem converts a prior distribution for a parameter (vector) 6, f(6), on
the availability of historical data H, into a posterior distribution, (6 | ). This takes
the form

JO1H) o< f(H [ 0) x f(6), 2.3)

where f(H | 6) is the likelihood for the historical data. The difficulty in practice
is that the proportionality constant is unknown and potentially difficult to evaluate.
Analytical calculation could be avoided if it were possible to simulate from the pos-
terior distribution, but this is also unfeasible for most models. Markov chain Monte
Carlo (MCMC) has emerged as a flexible alternative simulation method for Bayesian
models. Details of the algorithm are well-known (see Gilks et al. 1996, for example),
but for completeness we give a brief summary.

The basic idea of MCMC is to iterate a sequence of values — technically a Markov
chain, since the iteration to generate the next term in the sequence depends only on
the current value — whose stationary distribution is the target posterior distribution.
In slightly more detail, we simulate a sequence {6;} by setting an initial value 6; and
specifying an essentially arbitrary probability rule g(6* | 6;) to generate a proposal
for the next term in the sequence. Setting

. { J (x| 6%)f(6*)q(b; | 9*)}
o; =min< 1, )
Fx16:)f(6)q0*|6)

! As an aside, we should point out that the impact of the 1999 event on such a geologically fragile region
means it is unlikely that any sort of preemptive action could have afforded genuine protection to its
effects. Nonetheless, an accurate assessment of the risk of a region to extreme rainfall, coupled with
an understanding of the geophysical effects such events may have, would at least have signaled the
vulnerability of the region to the type of catastrophic event that subsequently occurred.
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we complete the transition by letting
01— *  with probability o;,
#1760 with probability 1 — a;.

By construction, the generated sequence is a Markov chain which, under simple
regularity assumptions, can be shown to have a marginal stationary distribution that
is the target posterior distribution. This implies that, for a large enough value of «,
the sequence 61, G4z, ... iS approximately stationary, with marginal distribution
given by (2.3). This sequence can therefore be used to estimate, for example, posterior
means, variances and densities, in a way similar to a sequence of independent values.

Application of the MCMC procedure requires specification of the prior distribution
f(0) and the proposal transition density g(-). Prior choice is intrinsic to the model:
different choices will lead to different inferences. In principle, choices can be made that
add genuine information to the analysis (see Coles and Tawn 1996 for a discussion
of this issue in the context of extreme value analyses). When such knowledge is
unavailable, it is usual to adopt arbitrary prior distributions that have a large variance,
so as to reflect prior ignorance about parameter values, though sensitivities to arbitrary
choices should always be checked. In contrast (subject to regularity) inferences are
invariant to the choice of proposal density g for the MCMC algorithm. Common
choices include random walk densities, or “independence” models, in which g(0* | 6;)
has fixed form independent of ;. However, despite this inferential invariance, selection
of g can have a profound effect on the efficiency of the MCMC algorithm, which
is determined by how adequately the posterior space is explored by a finite series
Ok+1, - - -, O If the variance of ¢ is too small, proposals 6* are likely to be close to
the current value 6;; if the variance of g is too large, proposals 6* are likely to move
from regions of high posterior density to regions of low posterior density, and the
rejection step of the algorithm rejects the proposal with high probability. In either
case, the correlation of successive values in the 6; process will be large, and a long
sequence of the process will be required before the entire space is reasonably covered.
Usually 6 is multidimensional, which complicates further the selection of proposal
transition densities that will have adequate efficiency. Some theoretical guidance based
on asymptotic approximations for special models is available in the literature, but it is
more common in practice to adapt by trial-and-error to obtain a chain whose mixing
properties seem reasonable based on the empirical evidence, usually supported by a
range of diagnostic procedures.

For the analysis of the Venezuelan data we took normal and (in the case of o)
lognormal prior distributions, assumed to be independent and with large variance, for
w, o, and £.> We also generalized the MCMC algorithm in a standard way by using
successive proposal transitions of the type q;(u* | wi, i, &), g2(0™ | wit1, 0, &),
q3(E* | Wit1, 0it1, & ). Standard random walks with Gaussian steps were used for each
of these terms. A small amount of trial-and-error was needed to adapt the variances of
the random walk terms to obtain a sequence that seemed to have reasonable mixing
properties.

2 Repeat analyses with modified prior parameter values led to near-identical results, suggesting a lack of
sensitivity to prior choice provided the variances are reasonably large.
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Denoting the GEV (or Gumbel) distribution function by G and the posterior density
for (u, 0,8) | H by h,

Pr(Z <z |H) = /G(Z | .0, 8)h(p, 0,8 | H)d(n, 0, )

is defined to be the predictive distribution of Z, a future annual maximum random
variable. The fact that inference is carried out by MCMC enables simple approximate
evaluation of the predictive distribution from the generated sample:

PZ <z M)~ —— 3 Gl (o)
m—k .
Jj=k+1
where (i, o, £); denotes the parameter set simulated at iteration i of the algorithm.

It follows that a plot of z, against —log(1 — p) on a logarithmic scale, where
Pr(Z < z, | H) = 1 — p, may be interpreted as a Bayesian equivalent of the
conventional return level plot. In particular, for any choice of p, the corresponding
value of z, is the level that is expected to be exceeded by Z with probability p,
after allowance for parameter uncertainty. It therefore seems reasonable, for example,
to design to a level such as zgg;, because this parameter has a similar interpreta-
tion to the 100-year return level, but includes an implicit allowance for parameter
uncertainty.

For the Venezuelan rainfall data the posterior means and standard deviations for
the GEV and Gumbel models are given in Table 2.3. The corresponding predictive
return level plots are shown in Figure 2.3. Included on these plots are empirical
estimates based on all the annual maxima, including the 1999 datum. It is appar-
ent that although both models attach low predictive probability to the actual 1999
event, the extra allowance for parameter uncertainty contained within the GEV model
means that the event has much higher predictive probability under this model relative
to the GEV model: the exceedance probability of 410.4 mm is estimated as 0.00243
under the GEV model and 5.24 x 10~7 under the Gumbel model. It is also clear that
designing to predictive return levels rather than maximum likelihood estimates would
have afforded greater protection against the 1999 event. In other words, estimation
uncertainty is again accommodated, but now with a clearer probabilistic interpretation
of the design level obtained.

Table 2.3 Posterior means and standard deviations for GEV and Gumbel analysis of daily
rainfall annual maxima.

Gumbel GEV
Mean SD Mean SD
w508 34 49.0 3.6
o 225 28 21.1 3.0
& — — 0.182 0.15
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Figure 2.3 Predictive return level plots for Gumbel and GEV models of Venezuelan annual
maximum daily rainfall. Solid curve is GEV model; dashed curve is Gumbel model. Points
correspond to empirical estimates including the 1999 datum.

2.4 Modeling daily data

With the exception of a two-month period for which data are missing, complete
records of daily rainfall observations are available for the Maiquetia series over
the period 1961 to 1999. The time series of these data for the pre1999 period is
shown in Figure 2.4. Modeling the extremes of this series enables a more efficient
usage of extreme value information than that given by an analysis of annual maxima
data, which excludes from inference many extreme events that did not happen to
be the largest annual event; see Weissman (1984) for a theoretical treatment of this
issue.

The usual method for handling such data is the peaks over threshold technique. As a
statistical modeling technique this procedure was popularized by Davison and Smith
(1990), though the original asymptotic characterization is due to Pickands (1975).
Assuming the daily data to be independent with common distribution function F, the
conditional distribution of excesses of a threshold u is determined by

Pr(X§u+y|X>u)=l—w, y > 0. 2.4)
1— F(u)

Renormalizing and letting u — oo leads to an approximate family of distributions

for (2.4) given by

G(y)=1—(1+E&y—u)/o";", (2.5)
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Figure 2.4 Daily rainfall values recorded at Maiquetia, Venezuela.

the generalized Pareto family. This family describes all possible nondegenerate lim-
iting distributions of the scaled excess-of-threshold distributions, in the same way
as the GEV family describes all possible nondegenerate limiting distributions of the
centered and normalized sample maximum. A direction connection between the gen-
eralized Pareto and GEV models is that if the number of exceedances of u per year
has a Poisson distribution with mean 7, and if the exceedance distribution falls within
the generalized Pareto family with shape parameter &, then the annual maximum
distribution falls within the GEV family with the same shape parameter. There is
also a one-one correspondence between (t, c*) and (u, o), the location and scale
parameters of the annual maximum GEV distribution.

Inference proceeds by deriving a likelihood for o* and & based on model (2.5),
which can be applied to the observed excesses of a specified high threshold u. In-
ference on t is also straightforward from the Poisson assumption, so by transfor-
mation inference can also be made on the associated GEV annual maximum dis-
tribution parameters. The essential point is that inference on the annual maximum
distribution is now derived from a greater amount of information, leading to in-
creased precision. Naturally, the issue of threshold choice involves a compromise
between bias and variance. Low thresholds generate many exceedances, so vari-
ance is low, but the asymptotic support for the model is weak, leading to large
bias. Modeling with high thresholds has stronger asymptotic support, so bias is
low, but there are fewer exceedances and the variance is potentially high. In prac-
tice, a range of diagnostics are available to assist with the selection (as far as possi-
ble) of low thresholds that are consistent with model structure (Davison and Smith
1990).
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There are advantages in reformulating the threshold exceedance model as a point
process model. This approach exploits representations of extremal behavior set out
in Leadbetter et al. (1983), but was again popularized for statistical application by
Smith (1989). Assume the variables X, X, ..., X,, are independent and identically
distributed. For sufficiently high thresholds u the process of points {(i/n, X;) : i =
1,...,n} approximates a nonhomogeneous Poisson process when restricted to the
region (0, 1) x [u, 0o). Furthermore, analysis of the extremal behavior based on
standard asymptotic arguments implies that the intensity function of the approximating
process falls within the parametric family

) —1/§
A((11, 1) X [z,00)) = (1, — 11)n, [1 +£ < > )] : (2.6)

In this formulation, the parameters (i, o, &) correspond to the approximating GEV
distribution of block maxima of the process. Furthermore, choosing the scaling coef-
ficient n, to be the number of years of observation ensures that the unit measurement
is one year. In other words, u, o, & are simply the GEV parameters of the annual
maximum distribution.

As with the generalized Pareto peaks-over-threshold model, the point process model
offers the advantage that all exceedances of u contribute to the inference on extremes.
However, the point process model has the additional advantage that the parameteri-
zation coincides exactly with that of the GEV distribution for annual maxima. This is
advantageous for reasons beyond the extra simplicity of interpretation. First, it may be
desirable to build nonstationarity into the model by modeling parameters as functions
of time; this approach is more restrictive with the generalized Pareto model due to
the way 7 is modeled separately from the remainder of the model. Second, if there is
nonstationarity, it may be appropriate to specify time-varying thresholds. For exam-
ple, a seasonally varying process may generate exceedances of a uniform threshold
only in one season. Finally, because of the commonality of parameterization, the point
process likelihood can be supplemented with historical information that might consist
only of annual maximum data. This is helpful in the case of the Venezuelan rainfall
series, because the recording of annual maxima began 10 years before that of daily
values. Denote by zy, . . ., z,, the annual maxima in those years for which they are the
only data available, and by x, ..., x; the exceedances of the threshold # when the
daily data are available. The log-likelihood is

0, 0,8) = —(m+Kk)logo — (1 + 1/5){2105; [1 +s(z" ;“’)}

i=1

)£ )

i=1

_ —1/¢
—n, {1 +& (%)] , 2.7)

where n, is the number of years of observations for which the complete daily data are
available. This is simply the GEV log-likelihood for the years in which only annual
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maxima are available added to the log-likelihood derived from a Poisson process with
intensity in the family (2.6).

For the Venezuelan daily rainfall data, based on a threshold of # = 10 mm, applying
this model to both the first 10 years of annual maximum data and the daily data from
1961 to 1998 leads to maximum likelihood parameter estimates (with standard errors
in parentheses)

I =492 (2.5), 6 =20.7, (2.3), £ = 0.26 (0.06).

In this case the hypothesis H : & = 0 within the generalized Pareto family, corre-
sponding to an exponential distribution of threshold excesses, is comfortably rejected
by a test at any conventional level of significance. In other words, the evidence for an
exponential tail of the daily rainfall distribution, which could not be rejected by a test
based on the annual maximum data, is not strong once the additional daily informa-
tion is included. Furthermore, the increased value ofg in this model, compared with
the corresponding value in the GEV model, suggests we may do better in terms of
anticipating the 1999 event, although the increased precision could offset some of the
gain if confidence intervals are taken into account. A return level plot based on this
analysis is shown in Figure 2.5. From the return levels, comparable design parameters
to those obtained for the GEV model in Table 2.2 can be calculated; these are given
in Table 2.4. Comparison of the two tables confirms that designs based on this model,
with or without an allowance for parameter uncertainty, would have afforded greater
protection against the 1999 event.

Return Level (mm)
300
1

0.1 1.0 10.0 100.0 1000.0

Return Period (Years)

Figure 2.5 Return level plot for point process/GEV model fitted to Venezuelan rainfall data.
Solid line is maximum likelihood estimate; dashed curves correspond to 95% confidence
intervals.
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Table 2.4 Design levels v, in millimetres based on criterion (2.2) using the point process
model. The 95% CI corresponds to estimates based on designing to the upper 95% confidence
limit of v .

p  MLE 95%CI

.01 236 371
002 331 589

The point process model can also be inferred as a Bayesian model using a similar
prior formulation and MCMC procedure to that described for the GEV annual max-
imum model. There is a complication, however, due to the model parameterization.
The parameter A = t/366, corresponding to the crossing rate of the threshold u«, can
be estimated with high precision, and so has low variance. However, A is a function
of u, o, and &, so there is a near-degeneracy in the (u, o, &) space along which the
density of the posterior is concentrated. The previously described MCMC algorithm
makes proposal transitions orthogonal to the u-, o-, and §-axes, so that proposal
transitions are unable to remain in areas of high posterior density, and a very large
number of iterations are required to cover the space adequately. This is not just a
point of aesthetics: we obtained sequences of wildly divergent parameter values in
the MCMC output, presumably because the algorithm was searching over spaces of
virtually zero posterior density.

The difficulty is easily avoided by reparameterizing the model in terms of the con-
ventional generalized Pareto peaks-over-threshold parameters (1, o*, £). Formally,

we let
1 w—p\) "V
A=1-— ——1
on [l +¢(54)} ]

0" =logfo +&(u — w).

To first order, A and exp(c *) are, respectively, the threshold exceedance probability
and scale parameter in model (2.5). This works because the curve of high density
in the (u, o, £) space has been transformed to lie orthogonal to the A axis in the
new space. Hence, random walk proposals in the respective A, 0*, and & directions
enable transitions across the region of high posterior density, enabling high coverage
with relatively few simulations. Indeed, with this adjustment, the simulated series
displayed fast convergence and good quality mixing properties.

Based on this scheme, and using large-variance priors, we obtained the following
posterior means and standard deviations (in parentheses):

=51.73.0), 6 =23.1, (2.9), £ = 0.26 (0.06).

These values are slightly different from the corresponding maximum likelihood
estimates and standard errors, partly because of the substantive differences between a
Bayesian and classical analysis, and partly because of the convenience in summarizing
a Bayesian inference obtained through MCMC by the marginal posterior means rather
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than the posterior mode. Under the Bayesian point process model, Pr(Z > 410.4 | H) =
0.0038, so although the probability of an event as extreme as the 1999 value remains
low, its value is around 60% greater than the corresponding estimate of 0.00243 under
the GEV model. Nonetheless, the scale of the 1999 event is still surprising, and it is
unlikely that an event with such low probability would have been anticipated, even if
this analysis suggests it to have been a much less surprising result than earlier analyses
implied.

2.5 Seasonal models

Another advantage of working with daily data rather than annual maxima is that it
creates the opportunity to model within-year nonstationary effects. This is usually
achieved by assuming the appropriate extreme value model structure to be valid, but
with parameters substituted by functions of time. For seasonal effects there are two
simple possibilities: one is a model with continuously varying parameters w(t), o (),
and £(t), probably chosen to be periodic with period one-year. The other possibility is
a “separate seasons” model, in which distinct parameters are assumed in distinct sea-
sons, say monthly or three-monthly. Though the first of these model structures seems
more natural — meteorological processes might be expected to change smoothly
through time — it is often difficult to parameterize such time variation in a suitable
way. Moreover, meteorological processes are often observed to have sudden changes,
perhaps due to the passage from one weather system to another. For each of these
reasons a separate seasons model is often preferred.

An exploratory assessment of the Venezuelan data suggests there is a seasonal
variation, but that it may be difficult to capture using smoothly varying parametric
models. For example, Figure 2.6 shows monthly stratified boxplots of log-daily rainfall
for events exceeding 10 mm. Though a typical event in the winter months is more
extreme than an event in the summer months, some of the summer events have been
among the most extreme. This suggests that a parsimonious parameterization that can
adequately capture seasonal variation is likely to be difficult to obtain. Hence, we focus
on separate-season models. A difficulty in implementing such models however, at least
through maximum likelihood, is the necessity to define both the number and timing of
seasons prior to analysis. Documentation of the meteorological activity in Venezuela
suggests a two-season pattern to the rainfall process, though there is little guidance in
the literature as to the precise timing of the seasonal changes. Our initial investigations
consisted of a likelihood analysis based on prespecified seasonal timings. In particular
we compared models based on a three-season structure (November through February,
March through June, and July through October) with reduced models in which pairs of
these seasons were combined. We found, by standard likelihood ratio tests, the three-
season model to be superior, even though this is at odds with the perceived hydrological
wisdom.

To examine this issue further, we considered as an alternative a change-point
model in which the year is partitioned into two seasons: Z; = [1, k1] U [k;, 366] and
I, = k1, k2]. Loosely, these can be thought of as winter and summer seasons, respec-
tively. The point process model is assumed within each of the Z;, but with distinct
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Figure 2.6 Boxplots of log-daily rainfall for events exceeding 10 mm stratified by month.

parameters in periods Z; and Z,. Moreover, the changepoints k; and k, are regarded
as model parameters to be inferred.

In application we excluded the first 10 years of data in which only the annual
maxima data are available, since the timings of the events are not recorded. If this
information were available, these data could also be incorporated in the analysis.
Denoting the parameters in period Z; by (11}, 0, ;) respectively, the log-likelihood
for the model is

2
. —Z{Z <logaj A 1/sj>log[1 +s,-(x’ a“’)])

j=1 “ieI; I

mITI[, L (u- I/El}
+ 2 {1+§]< = ﬂ : 2.8)

where |Z;| is the number of days in period Z ;. Because of the variable season structure,
maximum likelihood is not a viable option for fitting this model. However, the model
is straightforward to implement within a Bayesian setting using a variation on the
earlier MCMC algorithm.

A reparameterization to conventional generalized Pareto parameters is again
necessary to obtain reasonable mixing. It is also necessary to impose some lim-
ited structure on the changepoint parameters, minimally to ensure that k| < k. In fact
we imposed a slightly stronger structure to incorporate at an approximate level the
perceived knowledge about timing of seasonal changes. In particular, we imposed dis-
crete uniform priors on both k; and k,, with k; ~ U[50, 250] and k, ~ U[200, 366],
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Figure 2.7 Posterior distributions of seasonal changepoint parameters k; (left panel) and k;
(right panel).

together with a constraint that k; < k. Inclusion of each of these parameters
into the Metropolis-Hastings algorithm was achieved with simple discrete random
walks.

The posterior distributions on k; and k;, are shown in Figure 2.7. Multiple runs
of the MCMC algorithm confirm that the bimodality in the distribution of k; is
a genuine feature and not attributable to sampling error in the Monte Carlo esti-
mation. Nonetheless, the lack of uniformity in each of the distributions is strongly
supportive of a well-defined seasonal effect, although the precise timing of the op-
timal change from winter to summer is less clear-cut than that of summer to win-
ter. In brief summary, the evidence points to a seasonal breakdown that constitutes
mid-November to April as the winter period, and the remaining months as the summer
period.

A summary of the seasonal model parameters is given in Table 2.5. There is clearly
a difference in the model parameters across the seasons, especially once the 1999 data
are included in the inference. Notice also that in both seasons the posterior mean for
& is some distance (in probability terms) from zero, suggesting that £ = 0 remains an
inappropriate model reduction for either season. This holds true even without inclusion
of the 1999 data. The net effect of these parameter estimates on return level estimation
is again best assessed via the predictive distribution, which is shown in Figure 2.8.
Relative to the previous models, the 1999 annual maximum appears less surprising.
The inclusion of the 1999 data produces a model that is entirely consistent with that
datum, but even without the inclusion of these data the 1999 event no longer seems
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Table 2.5 Posterior means and standard deviations (in parentheses) of point process model
parameters in two-seasonal model fitted to Venezuelan daily rainfall series, with and without
1999 value respectively.

1999 excluded 1999 included
I 62.8 (8.3) 41.3 (2.8) 73.7 (12.0) 41.6 (2.8)
o 31.9 (8.9) 143 (2.4) 45.1 (14.1) 144 (2.4)
& 0.37 (0.13) 0.14 (0.08) 0.52(0.13) 0.14 (0.08)

500

400

300

200

100

1 5 10 50 100 500
1/p

Figure 2.8 Predictive distributions for seasonal models fitted to Venezuelan rainfall data. Solid
line excludes 1999 data; dot-dash line includes 1999 data. Points correspond to empirical
estimates based on the 49 available annual maxima.

so exceptional: Pr(Z > 410.4 | H) = 0.0067, corresponding to another substantial
increase on the previous model.

We note also that although the probability that an individual year having a daily rain-
fall that exceeds the 1999 level of 410.4 mm is still low, the corresponding probability
that any one of 49 annual maxima exceeds this level is 1 — (1 — 0.0067)*° = 0.281.
Judged this way the 1999 event seems even less remarkable, and in any case not
inconsistent with the overall model structure.

In conclusion we present the predictive distributions of the annual maximum dis-
tribution for the various models applied to the pre-1999 data in Figure 2.9.
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Figure 2.9 Predictive distributions for various models fitted to the Venezuelan rainfall data.
Points correspond to empirical estimates.

2.6 Discussion

Our general conclusion is that analysis of the historical Venezuelan rainfall data re-
quires four components before an event of the magnitude of the 1999 event becomes
foreseeable. The full family of asymptotically motivated models should be used;
all available data should be exploited; uncertainty due to model estimation should
be accounted for; and population heterogeneity (in this case, seasonality) should be
modeled. The effect of several of these aspects is seen in Figure 2.9, which com-
pares the predictive distributions of the various fitted models. Though our analysis
in this chapter has been restricted to the single dataset, similar analyses on other
datasets suggest that these themes are also likely to be important in any extreme value
analysis.

An extended discussion of the Venezuelan case study is given by Coles and
Pericchi (2001). In particular, they look in greater detail at the extent to which
models adapted to the exceptional 1999 event once it occurred. It emerges that the
Gumbel model is very poor at adapting to the new information, confirming the model’s
inappropriateness for this process. The GEV, point process and seasonal models all
adapt well to the new information, providing analyses that give adequate fits to all
data including the 1999 data. (We have shown such a plot here only for the seasonal
model in Figure 2.8.) Other aspects of the Venezuelan rainfall process are currently
under investigation. These include the issue of temporal dependence, which we have
argued here to be sufficiently weak to have had little or no impact on extreme value
inferences, and the seasonal aspect for which we are assessing the impact of the
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two-seasonal changepoint model adopted here. We hope to report on each of these
aspects elsewhere in due course.

Finally, we note that the discussion throughout this article has assumed that an
asymptotic model for the Venezuelan rainfall process is appropriate. This may not,
however, be the case. First, there is the possibility of some sort of climate change, im-
plying that the historical data are not representative of the rainfall process as observed
in 1999. If this were the case, then any analysis based solely on the historical data
would inevitably fail to anticipate the exceptional 1999 value. However, there is no
evidence of any change in the years preceding 1999, nor any strong meteorological
support for a sudden change, so it seems not unreasonable to assume that the 1999
rainfall process did have identical stochastic structure to that of earlier years.

Another possibility is simply that extreme value models are hopelessly inadequate
for modeling this process, at least at the levels to which they are being applied.
Suppose, for example, that with probability A = 1 the daily rainfall is generated from
a distribution function G, but with probability 1 — A > 0 the daily rainfall is derived
from a distribution function with a much heavier tail, G, say. This corresponds to a
mixture model in which the overall distribution of daily rainfall is given by

G(x) = AG1(x) + (1 — )G,(x). (2.9)

Now, because G, has a much heavier tail than G, asymptotic models for G will
be determined by G,. Intuitively, in the long run we will expect heavier rainfall from
the G, population, even if the occurrence of such events is rare. But because of the
rarity of such events, it may be that an observed history of the process consists of
no events generated from the G, population. If this were the case, no analysis of the
historical data would give clues about the G, distribution, and extrapolations based
on modeling the data from G| would be bound to underestimate extreme return levels.
In the case of the Venezuelan rainfall data, the arguments for a model structure of the
type (2.9) seem compelling after the 1999 event, though there seemed no need for
such complexity prior to that.

What we aim to have shown in this chapter is that careful implementation of a
single-population extreme value model would also have signaled concern about the
plausible magnitude of future extreme events. To partially quantify this, based on the
pre1999 data, the 1999 event had a 17.6 million year return period according to the
fitted Gumbel model. Based on the same data, our final model attaches a probability
of around 30% to the event comprising an occurrence of a daily rainfall of the 1999
annual maximum magnitude at some time within a 49 year period, suggesting that
the risk of catastrophic flood events was orders of magnitude greater than the adopted
Gumbel model had implied.
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In this chapter we review certain aspects around the Value-at-Risk, which is nowadays
the industry benchmark risk measure. As a small quantile (usually 1%) the Value-at-
Risk is closely related to extreme value theory, and we explain an estimation method
based on this theory. Since the variance of the estimated Value-at-Risk may depend on
the dependence structure of the data, we investigate the extreme behaviour of some of
the most prominent time series models in finance, continuous as well as discrete time
models. We also determine optimal portfolios, when risk is measured by the Value-
at-Risk. Again we use realistic financial models, moving away from the traditional
Black-Scholes model to the class of Lévy processes.
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3.1 Introduction

In today’s financial world, Value-at-Risk has become the benchmark risk measure.
Following the Basle Accord on Market Risk (1988, 1995, 1996) every bank in more
than 100 countries around the world has to calculate its risk exposure for every
individual trading desk. The standard method prescribes: estimate the p-quantile of
the profit/loss distribution for the next 10 days and p =1% (or p =5%) based on
observations of at least 1 year (220 trading days). Standard model is the normal
model. Finally, multiply the estimated quantile by 3. This number is negative and its
modulus is called Value-at-Risk (VaR). The factor 3 is supposed to account for certain
observed effects, also due to the model risk; it is based on backtesting procedures and
can be increased by the regulatory authorities, if the backtesting proves the factor 3
to be insufficient. The importance of VaR is undebated since regulators accept this
model as a basis for setting capital requirements for market risk exposure. A textbook
treatment of VaR is given in Joriot [50]. Interesting articles on risk management are
collected in Embrechts [32].

There were always discussions about the classical risk measure, which has tradi-
tionally been the variance, and alternatives have been suggested. They are typically
based on the notion of downside risk concepts such as lower partial moments. The
lower partial moment of order n is defined as

X
LPM, (x) = / (x —=r)'dF(r), xe€eR,
—00
where F' is the distribution function of the portfolio return. Examples can be found
in Fishburn [39] or Harlow [47] including the shortfall probability (n = 0), which
is nothing else but the VaR. An axiomatic approach to risk measures can be found
in Artzner et al. [1]; cf. Embrechts [31]. For some discussion see also Rootzén and
Kliippelberg [76].

Standard model in the Basle account is the normal distribution which has the

property that it is sum stable, i.e., for a dynamic model we obtain

VaR(10 days) = +/ 10 VaR(1 day),

and for a multivariate model; i.e., a portfolio with weights w; for asseti and correlation
pij between assetsi and j, i, j=1,...,q,

q
VaR (portfolio) = Z pijwiw;VaR;VaR ;.
i,j=1
However, the obvious disadvantage of the normal model is that it is wrong and can
dangerously underestimate the risk. This is even visible in Figure 3.1 and Figure 3.2.
This is the starting point of the present chapter. Taking also extreme fluctuations of
financial data into account, we want to answer the following questions:

1. How does one estimate VaR from financial time series under realistic model as-
sumptions?

2. What is the consequence of VaR as a risk measure based on a low quantile for
portfolio optimization?
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Figure 3.2 Histogram of the daily price changes of the DAX closing prices with fitted normal
distribution. Also fitted is a GPD distribution to the left-hand tail. The corresponding quantiles
are estimated by the normal quantile, the GPD quantile, and the empirical quantile.

Statistical estimation of risk and portfolio optimization are two important issues in
risk management, influenced by the choice of risk measure. Pricing of derivatives and
hedging of portfolios are other important issues, and the VaR has found its way also
to the hedging problem. In incomplete markets, which is the setup for all “realistic”
pricing models, the traditional hedge without risk (perfect hedge) has been replaced
by a hedge with small remaining risk (so-called quantile-hedging); see Follmer and
Leukert [40] and Cvitanic and Karatzas [24]. This is, however, not a topic for this
chapter.

We first turn to the risk estimation problem. In the simplest case, it is assumed
that the only source of risk is the price of the portfolio itself, i.e., the risk is modeled
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in terms of price changes, which are independent and identically distributed (i.i.d.),
the underlying planning horizon is At =1 (1 day), and we estimate just the quantile
(without multiplying by 3).

Generally speaking, estimation of a small quantile is not an easy task, as one wants
to make inference about the extremal behavior of a portfolio, i.e., in an area of the
sample where there is only a very small amount of data. Furthermore (and this is
important to note), extrapolation even beyond the range of the data might be wanted,
i.e., statements about an area where there are no observations at all.

Under the aphorism let the tails speak for themselves, statistical methods have
been developed which are based only on that part of the sample that carries the
information about the extremal behavior, i.e., only the smallest or largest sample
values. This method is not solely based on the data, but includes a probabilistic
argument concerning the behavior of the extreme sample values. This leads to a class
of semiparametric distributions which can be regarded as plausible.

As a basic reference to modeling and quantifying of extreme events we refer to
Embrechts, Klippelberg, and Mikosch [33], henceforth abbreviated by EKM. The
DAX data example, which we analyze in Section 3.2 can be found in greater detail in
Emmer, Kliippelberg, and Triistedt [36].

Unfortunately, most financial time series are not independent, but exhibit some
very delicate temporal dependence structure, which is often captured by Markovian
volatility models. Consequently, over the last decades a variety of stochastic models
have been suggested as appropriate models for financial products.

In a continuous time setting the dynamics of a price or an interest rate process is
often modeled as a diffusion process given by a stochastic differential equation (SDE)

dX, = w(X)dt +o(X)dW,, t>0, Xo=nx, 3.1)

where W is standard Brownian motion, & € R is the drift term, and o > 0 is the
diffusion coefficient or volatility. Two standard models in finance are of the above
form:

1. The Black-Scholes model: (X;);>0 models the price process of an asset, here
w(x) = ux for u € R and the volatility o (x) =ox for o > 0. The resulting model
for the price process is geometric Brownian motion.

2. The Vasicek model: the process (X,),>o models an interest rate, the drift term 1 is
linear, and the volatility o > 0 is some constant.

Both models can be considered in the framework of Gaussian models; however,
as indicated already, financial data exhibit in general fluctuations which cannot be
modeled by Gaussian processes or simple transformations as in the two standard
models above. In principle there are two different remedies for the problem.

A first concept sticks to Brownian motion as the driving dynamic of the process,
but introduces a path-dependent, time-dependent, or even stochastic volatility into
the model. These models are commonly referred to as volatility models, and in-
clude diffusions given by the SDE (3.1). We investigate their extremal behavior in
Section 3.3.
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The second concept replaces the Gaussian driving process in the Black-Scholes
or Vasicek model (or any other traditional model) by a process with heavy-tailed
marginals, as for instance a Lévy process with nonnormal noise. We consider this
approach in Section 3.5 in the context of portfolio optimization.

A discrete time counterpart to (3.1) is the following model

Xy = /'L(Xn—l) +o0(Xp_1)€n, nE€ N, (3.2)

where u is the conditional mean, o the conditional volatility, and (g,),cn are i.i.d.
random variables (rvs), with mean O and variance 1. Examples, also Markovian models
of higher order, include for instance ARCH and GARCH models, which have been
successfully applied in econometrics.

There is one stylized fact in financial data which models of the form (3.2) can
capture in contrast to linear diffusion models of the form (3.1). This is the property of
persistence in volatility. For many financial time series with high sampling frequency,
large changes tend to be followed by large changes, settling down after some time to
a more normal behavior. This observation has led to models of the form

X,=0,&, neN, (3.3)

where the innovations ¢, are i.i.d. rvs with mean zero, and the volatility o,, describes
the change of (conditional) variance.

The autoregressive conditionally heteroscedastic (ARCH) models are one of the
specifications of (3.3). In this case the conditional variance anz is a linear function

of the squared past observations. ARCH(p) models introduced by Engle [37] are
defined by

p
2 2
o, =ay+ E oc_,-Xn_j, ap>0,01,...,0,-1>0,, >0, neN, (34
j=1

where p is the order of the ARCH process.

There are two natural extensions of this model. Bollerslev [12] proposed the so-
called generalized ARCH (GARCH) processes. The conditional variance o> is now
a linear function of past values of the process X ﬁ_ i j=1,..., p,and past values of
the volatility onz_ i j = 1,...,q. An interesting review article is Bollerslev, Chou,
and Kroner [13]; a nice collection of some of the most influential articles on ARCH
models is Engle [38].

The class of autoregressive (AR) models with ARCH errors introduced by Weiss [88]
are another extension; these models are also called SETAR-ARCH models (self-
exciting autoregressive). They are defined by

Xn:f(Xn—l"'~vXn—k)+Gn8ny I’lEN, (35)

where f is again a linear function in its arguments, and o, is given by (3.4). This model
combines the advantages of an AR model, which targets more on the conditional mean
of X,, (given the past), and of an ARCH model, which concentrates on the conditional
variance of X, (given the past).
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The class of models defined by (3.5) embodies various nonlinear models. In this
chapter we focus on the AR(1) process with ARCH(1) errors, i.e.,

X, =aX, 1 +1/B+ArX? e, neN,

where o € R, 8, A > 0, and (&, ), are i.i.d. symmetric rvs with variance one, and
X is independent of (¢,,),cn. This Markovian model is analytically tractable and may
serve as a prototype for the larger class of models (3.5). Note also that this model is
of the form (3.2).

Two early monographs on extreme value theory for stochastic processes are Lead-
better, Lindgren, and Rootzén [62], henceforth abbreviated as LLR, and Berman [9].
They contain all basic results on this topic, and it is this source from which all specific
results are derived.

The only models of the form (3.2), whose extremal behavior has been analyzed
in detail are the ARCH(1) (by de Haan, Resnick, Rootzén, and de Vries [46], see
also EKM [33], Section 8.4); the GARCH(1,1) (by Mikosch and Starica [68]); and
the AR(1) model with ARCH(1)-errors (by Borkovec and Klippelberg [18] and
Borkovec [15, 16]). The interesting feature of all these models is that they are able to
model heavy-tailedness as well as volatility clustering on a high level.

In Section 3.5 we turn to the second question posed at the beginning. We consider
a portfolio optimization problem based on the VaR as a risk measure. Traditional
portfolio selection as introduced by Markowitz [65] and Sharpe [81] has been based
on the variance as risk measure. In contrast to the variance, the VaR captures the
extreme risk. Consequently, it is to be expected that it reacts sensitively to large
fluctuations in the data. This is what we investigate here.

We concentrate on the Capital-at-Risk (CaR) as a replacement of the variance in
portfolio selection problems. We think of the CaR as the capital reserve in equity to
set aside for future risk. The CaR of a portfolio is commonly defined as the difference
between the mean of the profit-loss distribution and the VaR. We define the CaR as the
difference between the mean wealth of the market (given by the riskless investment)
and the VaR of our present portfolio; i.e., we consider the excess loss over the riskless
investment.

We aim at closed form solutions and an economic interpretation of our results. This
is why we start in a Gaussian world, represented by a Black-Scholes market, where
the mean-CaR selection procedure leads to rather explicit solutions for the optimal
portfolio. As a first difference to the mean-variance optimization, this approach indeed
supports the commonly recommended market strategy that one should always invest
in stocks for long-term investment.

As prototypes of models to allow for larger fluctuations than pure Gaussian models,
we study Lévy processes, which still have independent and stationary increments, but
these increments are no longer normally distributed. Such models have been used
as more realistic models for price processes by Barndorff-Nielsen and Shephard [8],
Eberlein and his group (see [27] and references therein) and Madan and Seneta [64];
they are meanwhile well understood. The class of normal mixture models supports
the observation that volatility changes in time. This is in particular modeled by the
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normal inverse Gaussian model and the variance gamma model, which have also been
recognized and applied in the financial industry. However, as soon as we move away
from the Gaussian world, the optimization problem becomes analytically untractable
and numerical solutions are called for. We present solutions for the normal mixture
models mentioned above.

The data analyses, simulations, and figures presented have been created with the
software S-Plus. Most routines for extreme value analysis are contained in the software
EVIS written by Alex McNeil and can be downloaded from http://www.math.ethz.ch/
finance/.

3.2 Starting kit for extreme value analysis

LetX, X, ..., X, bei.i.d. rvs, representing financial losses, with distribution function
(df) F (we write X < F).

The classical central limit theorem states that for i.i.d. rvs such that EX = u and
varX = o < oo the partial sums S, = X| + - -- + X,,, n € N, satisfy

lim P((S,l —nu)/vno? < x) =N(), xeR,
n—oo

where N is the standard normal df. This result, which holds in a much wider con-
text than just i.i.d. data, supports the normal law for data that can be interpreted as
sum or mean of many small effects, whose variance contributions are asymptotically
negligible.

Consequently, the normal model is certainly questionable whenever extreme risk
has to be quantified. Empirical investigations of financial data show quite clearly that
the large values, in particular the large negative values, are much more pronounced
than could be explained by a normal model.

In the following, we present the basic notions and ideas of extreme value theory
fori.i.d. data. All this and much more can be found in EKM [33]; for more details on
the DAX example we refer to Emmer, Kliippelberg, and Triistedt [36].

3.2.1 Sample maxima

The simplest extreme object of a sample is the sample maximum. Define
M, =X, M,=max(X,...,X,), n>1
Then
P(M, <x)=F"(x), xceR,

and M, 1 xr as n — oo almost surely, where xp = sup{x e R: F(x) < 1} < oo is
the right endpoint of F'.

In most cases M,, can be normalized such that it converges in distribution to a limit
rv, which together with the normalizing constants determines the asymptotic behavior
of the sample maxima. The following is the analogue of the CLT for maxima.
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Theorem 3.2.1 [Fisher-Tippett theorem]
Suppose we can find sequences of real numbers a, > 0 and b,, € R such that

lim P(M,, — b,)/a, < x)= lim F'(a,x +b, <x)=Qkx), xe€R, (3.6)

for some nondegenerate df Q (we say F is in the maximum domain of attraction of
QO and write F € MDA(Q)). Then Q is one of the following three extreme value dfs:

0, x <0,

Fréchet ®,(x) = for a > 0.
exp(—x7%), x>0,

Gumbel A(x) =exp(—e™), x eR.
exp(—(—x)¥), x <0,

Weibull V,(x) = p(=(=x)"), for «a > 0.
1, x >0,

The limit distribution Q is unique up to affine transformations; this whole family
is called of the type of Q.

All commonly encountered continuous df are in MDA(Q) for some extreme value
df Q; see EKM [33], pp. 153—157. Here are three examples.

Example 3.2.2

(a) Exponential distribution: F(x) = 1 — exp(—Ax),x > 0,1 > 0, is in MDA(A)
witha, = 1/A, b, =Inn/A.

(b) Pareto distribution: F(x) = 1 — «“/(k + x)*,x > 0,k > 0, is in MDA(®D,)
with a, = (n/x)"%, b, = 0.

(c) Uniform distribution: F(x) = x,x € (0, 1), is in MDA(W,) with a, = 1/n,
bn =XF = 1.

Taking logarithms and invoking a Taylor expansion in (3.6) we obtain

F e MDA(Q) <= lim nF(cyx +d,) = —-InQ0(x) =1 1(x), xeR, 3.7

where F = 1 — F denotes the tail of F. This MDA condition is a version of Poisson’s
limit theorem. It can be embedded in the more general theory of point processes as
follows.

Fori.i.d.rvs X, X, ..., X, and threshold u, we have

card{i : X; > up,i = 1,...,n} < Bin(n, P(X > u,)).
Define forn € N

Nu(B) =) _ein(BI(X; > u}. B € B, 1],
i=1
where 5(0, 1] denotes the Borel o-algebra on (0,1] and e the Dirac measure; i.e.,
gi/n(B) =11ifi/n € B and 0 else. Then N, is the time normalized point process of
exceedances.
The above equivalence (3.7) extends to the following result.
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Proposition 3.2.3 Suppose that (X,),en is a sequence of i.i.d. rvs with common df
F. Let (u,)nen be threshold values tending to xp as n — 00. Then

lim nP(X > u,) =1 € (0,00) <= N, 4 N Poisson process(t), n — oQ.
n—00

From this follows the asymptotic behavior of all upper order statistics, for instance,

P(M, <u,)= P(N,((0,1]) =0) = P(N((0,1)) =0)=e¢ ", n— 0.

3.2.2 Generalized extreme value distribution (GEV)
For statistical purposes all three extreme value distributions are summarized.

Definition 3.2.4 [Jenkinson-von Mises representation]
exp{—(1 +&x)"%} if& #0,
Q) = {exp{—e-X} ife =0,
where 1 + £x > 0 and £ is the shape parameter.

The GEV represents all three extremal types:
o & > 0Fréchet Q:((x — 1)/§) = Pye(x),
e £ =0Gumbel Qy(x)= A(x),
o & <0 Weibull Qs(—(x+1)/8) = W_y/e(x).

Additionally, we introduce location and scale parameters © € R and ¢ > 0 and
define Q¢ y(x) = Qs(x — w)/v. Note that Q. 4 is of the type of Q.

This representation is useful for any statistical method that can be based on i.i.d.
maxima. These are then modeled by the GEV and the parameters are fitted, leading to
tail and quantile estimates; see EKM [33], Section 6.3. The method has its limitations,
in particular, if the dependence structure cannot be embedded in an i.i.d. maxima
model. Moreover, as for instance the method of annual maxima, it can also be a waste
of data material, because it may only use annual maxima, but ignore all other large
values of the sample. An excellent remedy, also for non i.i.d. data originates in the
hydrology literature and has been developed and very successfully applied by Richard
Smith and his collaborators for the last decades; see Smith [83] and references therein.

3.2.3 The POT-method (peaks over threshold)

We explain the POT-method and show it at work for the DAX closing prices of
Figure 3.1. A superficial glimpse at the data shows some of the so-called stylized
facts of financial data. There are more peaks than can be explained by a normal model
and, in particular, the negative peaks are more pronounced than the positive ones. On
the other hand, the data are simple in their dependence structure; an analysis of the
autocorrelations of the data, their absolute values, and their squares give no indication
of dependence. Consequently, we assume that the data are i.i.d. We want to remark,
however, that many financial data are not i.i.d., but exhibit a very delicate dependence
structure; see Section 3.3 and Section 3.4.

We proceed with a simple exploratory data analysis, which should stand at the
beginning of every risk analysis. In a QQ-plot, empirical quantiles are plotted against
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Figure 3.3 Normal QQ-plot of the daily price changes of the DAX closing prices. The fit is
very bad at the left end of the distribution, which is the region of our interest.

the theoretical quantiles of a given distribution. If the chosen model is correct, nearly
all data points will (if the sample size is large enough) lie on the 45-degree line. If
the chosen distribution is correct up to its scale and location parameter, the plotted
points will still be on a straight line, however with different slope and intersect. Linear
regression gives rough estimates for the scale and location parameter, and these are
often used as starting values for more sophisticated estimation methods. Figure 3.3
shows a normal QQ-plot of the data. The left end of the plot shows clearly that the
left tail of the underlying distribution is much fatter than the left tail of a normal
distribution.

Taking the modulus of the negative values of the given sample enables us to apply
extreme value theory as introduced above to the left tail of the distribution of daily
price changes. This is a sample of size n = 108 and will be the basis for the estimation
of VaR.

One of the main ingredients of the POT-method is the following result.

Theorem 3.2.5 [Balkema and de Haan [3] and Pickands [70]]

- Fu+xpw)  [A+&0)7Y ifg #0,
F e MDA(H;) R ul;r}ch T = {e_x lf%' _ 0’

where 1 4+ £x > 0, for some (positive measurable) function B(u).

Interpretation. For an rv X with df F € MDA (H;) we have

) {<1+5x)—'/$ if £ 0,
X>ul| = .
e~ if £ =0,

. X —u
hmP( > X

utxp

i.e., given X exceeds u, the scaled excess converges in distribution.
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Definition 3.2.6 [Excess distribution function, mean excess function (MEF)]
Let X £ F be an rv with xp < 00. For fixed u < xg we call

F(x)=PX—-u=<x|X>u), x+u=uxp,
the excess df of X or F over the threshold u. The function

_ [T F@)
ew)=E[X —u|X >u]l= mdl, U< Xxp, (3.8)

is called mean excess function of X or F.

Itis easy to calculate the mean excess function of an exponential distribution, which
is a constant, equal to its parameter. The mean excess function of a distribution with
a tail lighter than the tail of an exponential distribution tends to zero as u tends to
infinity; for a distribution with tail heavier than exponential, the mean excess function
tends to infinity; see Figure 6.2.4 of EKM [33].

Now let X1, ..., X, denote the sample variables. As usual, z" = max(z, 0) denotes
the positive part of z, and cardA is the cardinality of the set A. The empirical function

en(u) = 1 } S Xi—w', uz0,
i=1

card{i : X; >u,i=1,...,n

estimates the mean excess function e(u).

The right-hand side of Figure 3.4 shows the empirical mean excess function of the
DAX data corresponding to the left tail. At first, the function is decreasing, but further
to the right, it has an upward trend. This shows that in a neighborhood of zero, the
data might possibly be modeled by a normal distribution, but this is certainly not the
case in the left tail; there, the distribution turns out to have a tail that is clearly heavier
than an exponential tail.

Theorem 3.2.5 motivates the following definition.

Definition 3.2.7 [generalized Pareto distribution (GPD)]
L= (1+&x/B)7"  ifg #0,
Gep(x) = - .
l—e if¢ =0,
for 1+ &x > 0. & € R is the shape parameter and > 0 is the scale parameter.

The GPD represents three different limit excess dfs:

e £ > 0 Pareto with support x > 0,
e £ = 0 exponential with support x > 0, and
e & < 0 Pareto with support 0 < x < —f8/%.
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Figure 3.4 The absolute negative price changes (left) and the corresponding empirical mean
excess function (right) of the DAX values.

These results are applied to model data above a high threshold u as follows:
(1) The point process of exceedances by a Poisson process(7).

(2) The conditional excesses by a GPD(«, B).

(3) The stochastic quantities of (1) and (2) are independent.

3.2.4 Estimating tails and quantiles by the POT-method
Assume that (X,,),cn are i.1.d. and X, Lx4 F. For a high threshold u define
N,=card{i : X; >u, i=1,...,n}.

Then B
th(y)=P(X—u>y|X>u)=%y, y =0,
equivalently,
F(u+y)=FuF,y), y=0. 3.9)

Estimate F(u) and F,(y) by the POT-method:

= 1 N,
F(u) = ;ZI(X,- > )=t

i=1
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Approximate
B v\
Fu(y)%<1+éﬁ> . YER,

and estimate & and 8 by § and B (see below). This results in the following tail and
quantile estimates:

Tail estimate

_ o\ -lE
Fu+y) = —ZO+£ ) ., y=>0. (3.10)

n

™) <

Quantile estimate

o~

s w2 (™a N 1 0.1 311
x,,—u+? (Nu(—p)) —1), pe@. (3.1D)

A standard method to estimate the parameters & and 8 is maximum likelihood (ML)
estimation. It is based on numerically maximizing the likelihood function for the given
data, which are the excesses over a threshold u. However, one should bear in mind
that the estimation procedure often relies on a very small data set as only the excesses
will enter the estimation procedure. For this reason one cannot always rely on the
asymptotic optimality properties of the ML-estimators and should therefore possibly
use other estimation methods for comparison. For example, the classic Hill estimator
could be used as an alternative approach. For a derivation and representation of the
Hill estimator as well as a comparison to other tail estimators, see e.g., EKM [33],
Chapter 6.

As already mentioned, the ML estimation is based on excess data, hence making
it necessary to choose a threshold parameter u. A useful tool here is the plot of the
empirical mean excess function in Figure 3.4. Recall that for heavy-tailed distributions
the mean excess function in (3.8) tends to infinity. Furthermore it can be shown that
for the generalized Pareto distribution, the mean excess function is a linear function
(increasing if and only if the parameter £ is positive). Hence, a possible choice of u is
given by the value, above which the empirical mean excess function is approximately
linear. Figure 3.4 indicates a reasonable choice of u = 10, with corresponding N, =
56. This indicates that the generalized Pareto distribution is not only a good model
for the extreme negative daily price changes, but already for about half of them. The
ML -estimators are then found to be

~ o~

& =0.186, B = 11.120,

which enable us to estimate the lower 5% quantile of the daily price changes.
This estimator leads for the DAX data of Figure 3.1 to the following table.

Empirical ~ Normal GPD

VaR(lday, p =0.05) —30.654 —29.823 —42.856

€004 CRC PressLLC



Threshold
210 4.06 682 894 11.50 13.90 18.30

1.000

0.100

95

99 93 87 81 75 69 63 57 51 45 39 33 27 21 5 10 5 0 100

=0.95)
0.0 02 04 06
1-F(x) (on log scale)
0.010

Shape (xi) (CI, p

-0.4

0.001

Exceedances x (on log scale)

Threshold
210 406 6.82 894 11.50 13.90 18.30

—_—

=0.95)
50 60

Fu(x-u)

_—

99 93 87 81 75 69 63 57 51 45 39 33 27 21

0.95 Quantile (CI, p
40

30

00 02 04 06 08 10

5 10 5 0 100

x (on log scale) Exceedances

Figure 3.5 Extreme value analysis of the data. The upper left-hand plot shows the estimated
shape parameter & with pointwise confidence intervals based on the normal asymptotics of the
estimator, depending on different threshold values u. The upper right-hand plot shows the fit
of the conditional df, and the lower left-hand plot the tail-fit of the DAX daily price changes:
the plotted data points are the 56 largest absolute price changes, the solid curves show the
estimated df and tail based on these data. In the lower left-hand plot, the vertical line marks
the estimated 95% quantile, the curve above is the corresponding profile likelihood. The lower
right-hand plot shows the estimated 95% quantile with pointwise confidence bounds depending
on the threshold values.

As is obvious from this table and Figure 3.5, estimation of the quantile by means
of extreme value theory results in a much larger risk estimate as for the empirical and
normal method.

The estimates fit the given data quite nicely, even in the far end tail. This confirms
that the assumption of an underlying heavy tailed distribution is well in line with
the data. In this context, the corresponding estimate of the lower 5% quantile of the
VaR seems far more plausible than those obtained under the assumption of a normal
distribution.

Confidence intervals for the estimated quantile can easily be obtained from the
plotted profile likelihood. The 95% confidence interval can be read off the horizontal
line. It is the interval [34.37, 60.51], i.e., with probability 0.95 the 95% quantile will
lie in the interval [34.37, 60.51]. Not surprisingly, the confidence interval is rather
wide, in particular to the right, where very few data are to be found. For the definition
and mathematical properties of the profile likelihood we refer to Barndorff-Nielsen
and Cox [6].
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3.3 Continuous-time diffusion models

In this section, which is based on Borkovec and Kliippelberg [17], we study the
extremal behavior of diffusion processes defined by the SDE

dX; = w(X)dt +o(X)dW,, t>0, Xo=ux, (3.12)

where W is standard Brownian motion, i € R is the drift term, and o > 0 is the
diffusion coefficient or volatility.

The stationary distributions of the processes under investigation are often well-
known, and one might expect that they influence the extremal behavior of the process in
some way. This is however not the case: for any predetermined stationary distribution
the process can exhibit quite different behavior in its extremes.

Extremal behavior of a stochastic process (X;);>¢ is as a first step manifested in
the asymptotic behavior of the running maxima

M, = max X;, t>0.
0<s<t

The asymptotic distribution of M, for t — oo has been studied by various authors,
see Davis [25] for detailed references.

It is remarkable that under quite natural conditions running maxima and minima of
(X:)i>0 given by (3.12) are asymptotically independent and have the same behavior
as the extremes of i.i.d. rvs. We restrict ourselves to the investigation of maxima, the
mathematical treatment for minima being similar.

The diffusion (X;);>0 given by the SDE (3.12) has state space (/, r) € R. We only
consider the case when the boundaries / and r are inaccessible and (X, ),>¢ is recurrent.
We require furthermore for all x € (/, r) that o2(x) > 0 and that there exists some
& > 0 such that I:_Jf(l + |;L(t)|)/02(t)dt < oo. These two conditions guarantee in
particular that the SDE (3.12) has a weak solution which is unique in probability; see
Karatzas and Shreve [52], Chapter 5.5.C.

Associated with the diffusion is the scale function s and the speed measure m. The
scale function is defined as

s(x):/x exp<—2/y ”z(t) dt)dy, xed,r), (3.13)
Z . 0%(1)

where z is any interior point of (I, ) whose choice, by the convergence to types
theorem, does not affect the extremal behavior. For the speed measure m we know
that m(/) > 0O for every nonempty open subinterval I of the interior of (I, r). We
only consider diffusions with finite speed measure m and denote its total mass by
|m| = m((l, r)). The speed measure of model (3.12) is absolutely continuous with
Lebesgue density

2
o2(x)s'(x)’
where s’ is the Lebesgue density of s. In this situation (X,),>¢ is ergodic, and its
stationary distribution is absolutely continuous with Lebesgue density

hx)=m'(x)/Im|, xe€(,r). (3.14)

m'(x) = xed,r),
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Notice that the connection between stationary distribution, speed measure, scale
function, drift term, and diffusion coefficient (given by (3.13) and (3.14)) allows
us to construct diffusions with arbitrary stationary distribution (see Example 3.3.6,
Theorem 3.3.4 and Theorem 3.3.5).

Throughout this section, we assume that the diffusion process (X;);>o defined in
(3.12) satisfies the usual conditions, which guarantee that (X,),>o is ergodic with
stationary density (3.14):

s(ry=—s() =00 and |m| < oo. (3.15)

For proofs of the above relations and further results on diffusions we refer to
the monographs of Karatzas and Shreve [52], Revuz and Yor [75], Rogers and
Williams [77], or any other advanced textbook on stochastic processes.

The following formulation can be found in Davis [25].

Proposition 3.3.1 Let (X;),>0 satisfy the usual conditions (3.15). Then for any initial
value Xo =y € (I,r) and any u, 1 r,

Tim [PY(M; < u)— F'u)| =0,

where F is a df, defined for any z € (I, r) by

F(x) =exp (— ), x € (z,r). (3.16)

Im|s(x)
The function s and the quantity |m| also depend on the choice of z.

Various proofs of this result exist, and we refer to Davis [25] for further references.
Davis’ proof is based on a representation of such a diffusion as an Ornstein-Uhlenbeck
process after a random time-change. Standard techniques for extremes of Gaussian
processes apply, leading to the above result. (The idea is explained in the proof of
Theorem 3.3.8.)

As already noted the scale and speed measure of a diffusion (X,),>o depend on
the choice of z and hence, are not unique. Different scale and speed measures (and
therefore different z) lead to different df’s F' in Proposition 3.3.1. They are, however,
all tail-equivalent. This follows immediately by a Taylor expansion from (3.16) and
the fact that s(x) - coasx 1 r.

Corollary 3.3.2 Under the conditions of Proposition 3.3.1, the tail of the df F in
(3.16) satisfies

x ~1
F(x)~ (Iml/ S'(y)dy> ~ (mls)~", x 1.
Zz
In particular, the tail behavior is independent of z.

The extremal behavior (in particular the behavior of the maximum) of an i.i.d.
sequence with common df F is determined by the far end of the right tail F. In our
situation the asymptotic behavior of the maxima M, is determined by the tail of F as
in (3.16): if F' € MDA(Q) with norming constants @, > 0 and b, € R, then

a (M, —b) S 0, t— 0. (3.17)
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The notion of regular variation is central in extreme value theory, and we refer to
Bingham, Goldie, and Teugels [11], which we henceforth abbreviate by BGT.

Definition 3.3.3 [Regular variation]
A positive measurable function f on (0, 00) is regularly varying at oo with index o
(we write f € R(a)) if

fx) =t t>0.

im =
X—00 f (x)
The following results describe the different behavior of diffusions (3.12) with
stationary density & by the df F, which governs the extreme behavior.

Theorem 3.3.4 Assume that the usual conditions (3.15) hold.
(@ Ifu =0, then S = (=00, 00) and F(x) ~ cx~! as x — oo for some ¢ > 0.
(D) Let . and o be differentiable functions in some left neighborhood of r such that

2 2 X
im L T 0 ana tim T exp (—2/ p) dt) = —o0,
5 dx ) ) . 020

then
F(x) ~ [|p()|h(x), x1r.

Theorem 3.3.5 Assume that the usual conditions (3.15) hold and r = oc.
(a) Ifoz(x) ~ x'780(x)/ h(x) as x — oo for some § > 0 and £ € R(0), then

— 8
F(x) ~ Ex_‘sﬁ(x), X — 00.
(b) Ifoz(x) ~ cx‘s’le"”ﬂ/h(x) as x — oo for some § € Rand a, B, c > 0, then
— 1
F(x) ~ Ecaﬁx“ﬁ‘z exp(—ax?), x — oo.

The following example describes the simplest way to construct a diffusion process
with prescribed stationary density /.

Example 3.3.6 Define dX, = o(X,)dW,,t > 0,and Xo = x € (, r) and 02(x) =
oz/h(x) for 0 > 0 and some density i. Then u(x) = 0, s’(x) = 1, and (X,);>0 has
stationary density /. As a consequence of Theorem 3.3.4(a) this example has a very
special extremal behavior, which is — independent of &4 — the same for all 4.

Next we investigate an analogue of the Poisson process approximation for i.i.d.
data; see Proposition 3.2.3. Since (X;);>0 has sample paths with infinite variation, we
introduce a discrete skeleton in terms of a point process of so-called e-upcrossings of
a high threshold u by (X,),>0. For fixed ¢ > 0 the process has an e-upcrossing at ¢ if
it has remained below u on the interval ( — €, t) and is equal to u at . Under weak
conditions, the point process of e-upcrossings, properly scaled in time and space,
converges in distribution to a homogeneous Poisson process, i.e., it behaves again
like exceedances of i.i.d. rvs, coming however not from the stationary distribution of
(X:)1>0, but from the df F, which describes the growths of the running maxima #,,
t > 0 (see Proposition 3.3.1).

€004 CRC PressLLC



Definition 3.3.7 Let (X;);>0 be a diffusion satisfying the usual conditions (3.15).
Take ¢ > 0.
(a) The process (X,);>0 is said to have an e—upcrossing of the level u at ty > 0 if

X:<u for te(to—e,ty) and X, =u.

(b) Fort > 0 let N, ,,(t) denote the number of e-upcrossings of u; by (Xs)o<s<:. Then
N/(B) = N,,,(tB) = Card{e—upcrossings of u; by (Xs)o<s<: :; € B}, B € B(0, 1],

is the time-normalized point process of e-upcrossings on the Borel sets B(0, 1].

Immediately from the definition e-upcrossings of a continuous time process, they
correspond to exceedances of a discrete time sequence. As we know from Proposition
3.2.3 the point processes of exceedances of i.i.d. data converge weakly to a homoge-
neous Poisson process. Such results also hold for more general sequences provided
the dependence structure is nice enough to prevent clustering of the extremes in the
limit.

For diffusions (3.12) the dependence structure of the extremes is such that the
point processes of e-upcrossings converge to a homogeneous Poisson process; how-
ever, the intensity is not determined by the stationary df H, but by the df ¥ from
Proposition 3.3.1. This means that the e-upcrossings of (X,);>¢ are likely to behave
as the exceedances of i.i.d. rvs with df F. The extra condition (3.18) of the following
theorem relates the scale function s and speed measure m of (X;);>o to the corre-
sponding quantities s,, and m,,, of the standard Ornstein-Uhlenbeck process, defined
by

Sou(X) = V271 / ¢’Pdt and ml (x)=1/s.,(x), xeR
0

Theorem 3.3.8 Let (X,),>¢ satisfy the usual conditions (3.15) and u, 1 r such that

lim 1F(u;) = lim =1 € (0, 00).
t—00 1—00 |m|s(u;)

Assume there exists some positive constant ¢ such that
Mo (S0 5@D) ')
sh, (55,0 (s(2))) m'(z) ~

Then for all starting points 'y € (I,r) of (X;);>0 and ¢ > 0 the time-normalized

point processes N, of e-upcrossings of the levels u, converge in distribution to N as
t 1 oo, where N is a homogeneous Poisson process with intensity T on (0, 1].

e, Vzed,r). (3.18)

Proof. The proof invokes a random time change argument. An application of
Theorem 12.4.2 of LLR [62] shows that the theorem holds for the standard Ornstein-
Uhlenbeck (Oy),>¢ process. Denote by

Z; = Sou(Ot)a t >0, and Y, = S(X,), t >0,

the Ornstein-Uhlenbeck process and our diffusion, both in natural scale. (¥;),;>0 can
then be considered as a random time change of the process (Z;),>¢; i.e., forall t > 0,

Yi=27Z, a.s.
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for some stochastic process (7;);>0. The random time 7, has a representation via the
local time of the process (Y;),>0. This is a consequence of the Dambis-Dubins-Schwarz
Theorem (Revuz and Yor [75], Theorem 1.6, p. 170), Theorem 47.1 of Rogers and
Williams [77], p. 277 and Exercise 2.28 of [75], p. 230. For z € (I, r) denote by L(z)
the local time of (¥;)o<s</ in z. Then by the occupation time formula (cf. Revuz and
Yor [75], p. 209)

* _ “m, (s, (5(X,) s'(X,)
T, = [w L(z)dm,, (SOMI(Z)) ZA 5/ ((so—l(s(XA)))) m,(XS)dS, t>0.

Notice also that 7, is continuous and strictly increasing in #; i.e., it defines a random
time. Under condition (3.18) we obtain

T —T_e >ceg, t>0.

Moreover, 1t6 and McKean [49], p. 228 proved the following ergodic theorem
Toas. 1

t ml

The following approximations can be made precise and imply Proposition 3.3.1.

P(max X, > ut) = P<max Y, > s(u,))
0<s<t O<s<t
= P(max Zs > s(ut)> ~ P( max Zg > s(u,))
0<s<t; 0=<s=<t/|m|
1 t/Im|
~ P(Z.> 1/ml ~ [ exp| —
( s > s(uy) ) p s(ty)
t
=exp(— ), t—o00, u tr.
s(ug)|m|

For the point process convergence we use Theorem 4.7 of Kallenberg [51] and
prove that for any y € (I, r)
lim P (N), (tU)=0) = P(N(U) = 0),
1—>00

&,U;
where U is an arbitrary union of semiopen intervals. [

Theorem 3.3.8 describes the asymptotic behavior of the number of e-upcrossings
of a suitably increasing level. In particular, on average there are T ¢-upcrossings of
u; by (Xs)o<s<: for large ¢. Notice furthermore, that we get a Poisson process in the
limit which is independent of the choice of ¢ > 0.

The next lemma provides simple sufficient conditions, only on the scale function
and the speed measure of (X;),>0, for (3.18). Notice that by positivity and continuity,
(3.18) holds automatically on compact intervals. It remains to check this condition
for z in a neighborhood of r and /.

Lemma 3.3.9 Assume that for ¢y, ¢; € (0 00]

1 < s"(2) 3 m”(z) ) R cp z1r,
In(|s(2))s(z) \s'(@m'(z)  (m'(2))? ¢zl

(3.19)
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or (Grigelionis [45]) that for d,, d, € (0, o]

s%(2)h(2) In(|s(2)|) di z1tr,
—
s'(2) d z11,

(3.20)

then (3.18) holds.

In the following we investigate some examples that have been prominent in the
interest rate modeling. All examples have a linear drift term

ux)y=c—dx, xe(l,r), forceR,d=>0,

which implies that the stationary version of (X,),>0 has mean c/d, provided it exists,
and is mean reverting with force d. For financial background we refer to Lamberton
and Lapeyre [61] or Merton [66].

Furthermore, (X,),>¢ has state space R or R, hence F € MDA(®,,) for some > 0
or F € MDA(A). Note that (3.17) implies that

Alt d .
— > &, if F e MDA(®,) (3.21)
a
and
M, —b;, 4 M; p .
— A and ™ — 1 if F e MDA(A). (3.22)
a; t

Figures 3.6 through 3.9 show simulated sample paths of the different models. For
simulation methods of solutions of SDEs, see Kloeden and Platen [56]. The solid

<

i ' \ ‘ Hﬂ ” %" | ”

0 200 400 600 800 1000

i

Figure 3.6 Simulated sample path of the Vasicek model (with parameters c = d = o = 1) and
corresponding normalizing constants b;.
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Figure 3.7 Simulated sample path of the Cox—Ingersoll-Ross model with u(x) = ¢ — dx,
c € R,d > 0, and o(x) = /x. (The chosen parameters are c = d = o = 1.) The sta-
tionary distribution is a gamma distribution. The solid line shows the corresponding norming
constants b;.

line indicates those norming constants which describe the increase of M, for large ¢,
i.e., in MDA(®,) we plot a; (see (3.21)) and in MDA(A) we plot b, (see (3.22)).

Furthermore, all models in this section except the generalized Cox—Ingersoll-Ross
model with y = 1 satisfy condition (3.19) of Lemma 3.3.9, hence the Poisson ap-
proximation of the e-upcrossings is also explicitly given for u;, = a,x + b, and
T = —In Q(x), where Q is either @, or A.

Example 3.3.10 [The Vasicek model (Vasicek [86])]
In this model the diffusion coefficientis 6 (x) = o > 0. The solution of the SDE (3.12)
with Xy = x is given by

t
Xz e 2 + <x - g)e_dt +J/() e_d(l_S)dst t Z O

(X1)r>0 has state space R, mean value, and variance function
c c\ _u c
EX;=—-—4+(x——=)e — —, [ — 00,
d d d

2

_ 0_2 2t o
varX,_Zd(l e ) — o t — 00.

It is well known and easy to calculate from (3.13) and (3.14) that (X,);>0 has a normal

stationary distribution, more precisely, it is N (g, (2’—;), where N(a, b) denotes the
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Figure 3.8 Simulated sample path of the generalized Cox—Ingersoll-Ross model with p(x) =
c—dx,c € R,d > 0,and o(x) = xV fory = 1. (The chosen parametersarec =d = o = 1.)
The solid line shows the corresponding norming constants b;. We can calculate F(x) ~ CH(x)
as x — oo for some C > Q.

normal distribution with mean a and variance b. The assumptions of Theorem 3.3.4(b)
are satisfied giving

— 2d? e\’ —
F(x)w—2 x——] Hx), x— oo,
o d

where H (x) is the tail of the stationary normal distribution; hence F has heavier tail
than H. It can be shown that F € MDA(A) with norming constants

az

o o c o Inlnt + In(c?d/2m)
“avam M M ANTIT G e
Example 3.3.11 [The Cox-Ingersoll-Ross model (Cox, Ingersoll, and Ross [23])]
In this model o(x) = o4/x for o > 0 and 2¢ > o2. Tt has state space (0, 00), for
X = x it has mean value function

c c\ _u c
EX,=—-+4+(x—=)e" > -, t—> 00
d d d

and variance function

’ 2d 2d 2
= g (1= (0 (=) T)e > (- 0) Ee) = 5
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Figure 3.9 Simulated sample path of the generalized Cox—Ingersoll-Ross model for y = 1.5
(with parameters ¢ = d = o = 1) and the corresponding norming constants a;.

From (3.13) and (3.14) we obtain that the stationary distribution H is F(%, i—‘f).
Theorem 3.3.4(b) applies giving

— 2cd — _
F(x)~ — Gx)~AxH(x), x — oo.
o

where A > 0 and G(x) is the tail of the F(% +1, i—‘f) distribution. The gamma distri-
butions are in MDA(A) and the norming constants for F are

©and b= (st X4 d
= — an = — n — Inin n| —— .
=% "T 24 e T'(2¢/o?)

Example 3.3.12 [The generalized Cox—Ingersoll-Ross model]
In this model o(x) = ox? for y € [%, 00). The process is ergodic with state space
(0, 00).

We distinguish the following four cases:

y=1/2 : 2c>02, d>0 (see Example 3.3.11)
12<y<1: ¢>0, d>0

/2= (3.23)
y =1 : ¢c>0, d> —c%/2

y > 1 : ¢>0,deRor ¢=0,d <0.
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For % < y <1 the mean value function of (X;),>¢ is given by
§+(x—§)e_d’—>§ ifd >0

EX,=Q S+ (x=5)e¥ > 00 ifd<0

X + ct — o0 ifd=0

ast — oo where Xy = x. The lack of a first moment indicates already that for certain
parameter values the model can capture very large fluctuations in data, which will
reflect also in the behavior of the maxima.

1
3 <v<l1

The stationary density, which can be calculated by (3.13) and (3.14), is for some
norming constant A > 0

2 2 d
h(x) = —Zx’zy exp|l —— ;x’(%”” +——2x>")), x>0.
Ao o \2y — 1 2 -2y

The assumptions of Theorem 3.3.4(b) are satisfied and hence
F(x) ~ dxh(x) ~ Bx>*"™H(x), x— oo,
for some B > 0. Then F' € MDA(A) with norming constants

2y—1

o2 02(1 —-¥) =2

a=— | —Int
2d d

21 — = 2y —1 In (242 n; 2d
b= (=1, - (4 ) tan (2L,
d (2 —2y)? Int Ac?

vy=1
In this case the solution of the SDE (3.12) with Xy = x is explicitly given by

t
X, = @+ S+ W, (x +C/ e(d+§)s—aWAds) >0
0

We obtain from (3.13) and (3.14) that the stationary density is inverse gamma:

2" g - 2
h(x) = (;—> (F (—2 + 1)) x "2/ =2 exp (——Zx_l) , x>0.
c o o

Notice that i € ’R(—2i/ o2 —2) and hence by Karamata’s theorem (Theorem 1.5.11
of BGT [11]) the tail H of the stationary distribution is also regularly varying. This
implies that certain moments are infinite:

o T(H+1-8) .
tim £x; = § () 7(2_ ) if§<Z+1,

NE )
t—00 o . 2d
o0 iftd> 5+ 1.
In particular,
2 2d
) <00 if5>1,
lim varX, = { 4@
=00 00 if —1 < i—‘f <1
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For the tail of F we obtain by Theorem 3.3.4(b)
F(x) ~ Bx_2d/"2_', X — 00,

for some B > 0. Hence F € R(—1 — 2d/c?), equivalently, F € MDA(®1424/52),
with norming constants

2
a, ~ CtV/+2/7)
for some C > 0.

v>1

Notice first that / is of the same form as in the case % <y <1, in particular H €
R(—2y + 1) with 1 — 2y < —1)). We apply Theorem 3.3.5(a) and obtain for some
A>0

F(x)~ (A7, x - oo.

Hence F € MDA(®) with norming constants @, ~ ¢/A. Notice that the order of
increase of a; is always linear. The constant A, which depends on the parameters,
decides about the slope.

3.4 The AR(1) model with ARCH(1) errors

In this section we study the extremal behavior of discrete time volatility models of
the form
X, =puXy—) +o(X,—1)en, neN,
where w is the conditional mean, o the conditional volatility, and (&,),cn are i.i.d.
symmetric rvs with variance 1.
As a prototype model, which can be treated analytically, we focus on the AR(1)
process with ARCH(1) errors, i.e.,

X,=aX, | +1/B+rX2_ e, neN, (3.24)

where @ € R, B, A > 0, and (&,),en are i.i.d. symmetric rvs with variance 1, and X
is independent of (&,),en. This section is based on Borkovec and Kliippelberg [18]
and Borkovec [15]; see also [16].

Before we analyze model (3.24) we explain the influence of volatility clusters on a
high level within the context of extreme value theory. We also show its consequences
for risk management when estimating a high or low quantile.

We start with an introductory example, which we have found useful before.

Example 3.4.1 [EKM [33], Section 4.4, Section 5.5 and Section 8.1]

See Figure 3.10. Let Y, Y, Y, ... beiid. Y < \/f, and define X,, = max(Y,,, Y,,4+1)
for n € N. Then
P(X, <x)=(P(Y, <x)*=Fx), xeR
Choose u,, such that n P(X; > u,) - t asn — oo, thennP(¥Y| > u,) — tv/2 and
P(max(Xy, ..., X,) <u,) = P(max(Yy, ..., Y1) <up)

= P(max(Yy,...,Y,) <u,)F(u,) — e n— oco.
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Figure 3.10 A realization of the sequences (Yy,),eN (top) and (X )nenN (bottom) with F standard
exponential as discussed in Example 3.4.1.

50

Definition 3.4.2 [Extremal index]
Let (X,)nen be strictly stationary and define as before

M, =X, M,=max(X,...,X,), n>1.
Assume that for every T > 0 there exists a sequence (U ),en Such that

Iim nP(X; > u,) =t
n—o00

lim P(M, < u,) =e "
n—oo

Then 6 € [0, 1] is called the extremal index of (X,)neN-

The extremal index in Example 3.4.1 is & = 1/2. This indicates already the most
intuitive interpretation of the extremal index: 1/0 can be interpreted as the mean
cluster size.

In the context of risk management we give an intuitive example.

Example 3.4.3 We want to calculate the VaR = VaR(10 days, p = 0.05) of a portfo-
lioji.e., fordailylosses X;,i = 1, ..., 10, we wantto estimate P(max(Xy, ..., Xj9) <
VaR) = 0.95. Assume that we know (1 Mio = 10°)

VaR(1 day, p = 0.01) = 10 Mio and VaR(lday, p = 0.005) = 11 Mio.

For the loss rv X this means that P(X < 10) = 0.99 and P(X < 11) = 0.995.
Denote by Z = max(Xy, ..., Xyo). If the X; are i.i.d., then

P(Z <11)= P(X < 11)!* ~0.95,
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whereas for dependent X; with extremal index & = 0.5 we obtain
P(Z <10) = P(X < 10)'92 ~ 0.95.

This means that for i.i.d. data VaR(10 days, p = 0.05) is higher than for dependent
data.

Using the block maxima method it is easy to compare VaR estimation for indepen-
dent and dependent stationary financial time series. The data are divided into, say, N
blocks, such that the corresponding block maxima can be considered as independent.
Moreover, if the sample variables are in MDA(Q) for some extreme value distribu-
tion Q, then the block maxima, we call them Z,, ..., Zy, can be viewed as an i.i.d.
sample of rvs with df Q. Consequently, we assume that Z;, ..., Zy are i.i.d. GEV
distributed; i.e., introducing a location parameter i € R and a scale parameter ¢ > 0,

~1/8
P(Z < VaR(p)) ~ exp ( - (1 + svaR(f;)“> )

Defining for given p € (0, 1) the VaR(p) by 1 — p = P(Z < —VaR(p)), we obtain

by inversion
14

VaR(p) = u + E((_ In(1 — p)~¢ — D).

By Definition 3.4.2 dependence introduces an additional factor 6 in the exponent

of (3.25) giving
_ Y 1 B
VaR(p) = u + £ ((—5 In(1 p)> - l).

In the context of risk management we expect £ > 0 and for £ = 0 we take the limit

(3.25)

VaR(p)=pu — ¢ In (—é In(1 — p)>.

A different method is a dependent version of the POT-method; i.e., the quantile
estimate (3.11). Starting again with (3.9), the estimation of the tail in (3.10) changes,
when f(u) is estimated. The empirical estimator N,/n for i.i.d. data is replaced
by Nf /(nb,), where N,f is the number of block maxima exceeding u and 6, is the
estimated extremal index; see EKM [33], Section 8.1 and references therein. For the
quantile estimate (3.11) this means that

o~

e mut B[ T 0,1
xp_u+§(<N5( _p)) - >a pe(’ )

3.4.1 Stationarity and tail behavior

In this section we present an extreme value analysis of the AR(1) process with
ARCH(1) errors as given by (3.24). As a prerequisite we first need to know whether
we are dealing with a stationary model and what the tail of the stationary distribution
looks like.

For A = 0 the process is an AR(1) process whose stationary distribution is deter-
mined by the innovations (&,),cn and stationarity is guaranteed for || < 1. In the
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ARCH(1) case (the case when o = 0) the process is geometric ergodic provided
that 8 >0 and 0 < A < 2¢?, where y is Euler’s constant. The tail of the stationary
distribution is known to be Pareto-like (see e.g., Goldie [41] or EKM [33], Section
8.4). This result was obtained by considering the square ARCH(1) process leading
to a stochastic recurrence equation that fits into the setting of Kesten [53, 54] and
Vervaat [87]; see also Diaconis and Freedman [26] for an interesting overview and
Brandt, Franken, and Lisek [19]. Goldie and Maller [42] give necessary and sufficient
conditions for stationarity of stochastic processes, which are solutions of stochastic
recurrence equations.

For the general case we follow the standard procedure as, for instance, in the case
a = 0to find the parameter region of stationarity of the process. For the tail behavior,
however, we apply a technique, which differs completely from Kesten’s renewal
type arguments, by invoking the Drasin-Shea Tauberian theorem. This approach has
the drawback that it ensures regular variation of the stationary tail, but gives no
information on the slowly varying function. However, the method does apply to
processes that do not fit into the framework of Kesten [53]. Moreover, the Tauberian
approach does not depend on additional assumptions that are often very hard to check
(as e.g., the existence of certain moments of the stationary distribution). Combining
the Tauberian method with results in Goldie [41], we finally specify the slowly varying
function as a constant.

We shall need the following assumptions on the noise variables. Denote by ¢ a
generic rv with the same df G as ¢;. Throughout this section the following general
conditions are in force:

e ¢ Is symmetric with variance 1.

e ¢ Is absolutely continuous with respect to Lebesgue measure with (3.26)
density g, which is positive on the whole of R and decreasing on R

We summarize in Theorem 3.4.6 some properties of the process (X,),en. In par-
ticular, geometric ergodicity guarantees the existence and uniqueness of a stationary
distribution. For an introduction to Markov chain terminology we refer to Tweedie [85]
or Meyn and Tweedie [67].

The next proposition follows easily from well-known properties of moment gen-
erating functions (one can follow the proof of the case « = 0; see e.g., Lemma 8.4.6
of EKM [33]).

Proposition 3.4.4 Let ¢ be a rv with probability density g satisfying the general
conditions (3.26). Define h; : [0, 00) — [0, co] for « € R and 1 > 0 by

hos(u) = Ella +~Ael"l, u=>0. (3.27)
(a) The function hg ;(+) is strictly convex in [0, T'), where
T :=inf{u > 0| E[|[VA ¢|"] = oo}.
(b) If furthermore the parameters o and A are chosen such that

hl,;(0) = E[ln|a +v1el] <0, (3.28)
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then there exists a unique solution k = k(a, A) > 0 to the equation hy ;(u) = 1.
Moreover, under hy, , (0) < 0,

>2, ifa’+A1E[e?] <1,
k(o, M) =2, ifa®+AE[e*] =1,
<2, ifa*+AE[e*] > 1.

Remark 3.4.5
(a) By Jensen’s inequality a® + A E[e?] < 1 implies h, ;,(0) < 0.
(b) Proposition 3.4.4 holds in particular for a standard normal rv €. Inthiscase T = ooc.

(c) In general, it is not possible to determine explicitly which parameters « and A
satisfy (3.28). If « = 0 (i.e., in the ARCH(1)-case) and ¢ < N(0, 1) (3.28)
is satisfied if and only if A € (0, 2¢”), where y is Euler’s constant (see e.g.,
EKM [33], Section 8.4). For @ # 0, Table 3.1 through Table 3.3 show numerical

domains of o and A; see Kiefersbeck [55] for more examples.

(d) Note that « is a function of @ and A. Since ¢ is symmetric ¥ does not depend on
the sign of «. For ¢ LN (0, 1) we can show that for fixed A the function « is
decreasing in |«|. See also Table 3.1. [J

Theorem 3.4.6 Consider the process (X,)nen in (3.24) with (,),en Satisfying the
general conditions (3.26) and with parameters o and A satisfying (3.28). Then the
following assertions hold:

(a) Let v be the normalized Lebesgue-measure on the interval [-M, M] C R; i.e.,
v() = AN [-M, M))/A([—M, M]). Then (X,),eN is an aperiodic positive v-
recurrent Harris chain with regeneration set [—M, M| for M large enough.

(D) (X)nen is geometric ergodic. In particular, (X, ),en has a unique stationary dis-
tribution and satisfies the strong mixing condition with geometric rate of convergence.
The stationary distribution is continuous and symmetric.

Table 3.1 Range of stationarity of the AR(1)+ARCH(1) model with parameters o« and A. The
matrix components contain the estimated tail index k for standard normal noise. There is no
estimate given if the estimated « is less than 1072 or (3.28) is not satisfied.

A
1 0.2 04 06 08 1.0 1.4 1.8 22 26 30 34 35

0.0 1289 6.09 382 268 200 121 077 049 029 0.14 0.03 0.01
02 11.00 550 354 252 18 116 074 047 028 0.13 002 —
04 814 430 288 211 1.61 1.00 0.64 040 023 010 — —
06 545 303 212 160 124 079 050 030 0.15 004 — —
08 3.02 18 137 107 085 055 033 018 006 — — —
1.0 096 083 070 057 047 029 015 0.04 — — — —
1.1 012 039 040 035 029 017 007 — — — — —
12 — 001 012 014 0.12 005 — — — — — —
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Table 3.2 Range of stationarity of the AR(1)+ARCH(1) model with parameters o and A. The
matrix components contain the estimated tail index k for student-t noise with 5 degrees of
freedom. The range of stationarity has shrunk compared to the normal noise. Moreover, the
corresponding tails are heavier than for normal noise (cf. Table 3.1).

A
| 0.2 0.4 0.6 0.8 1.0 1.4 1.8 22 2.6 2.8

00 400 276 200 150 114 069 041 021 0.07 0.02
02 393 268 192 144 110 066 039 020 0.06 0.01
04 370 241 170 127 097 058 032 015 003 —
06 314 193 136 1.01 077 044 023 008 — —
0.8 210 129 092 068 051 028 011 — — —
1.0 078 060 045 034 024 009 — — — —
1.1 019 027 022 016 010 — — — — —
12 — — 002 001 — — — — — —

Table 3.3 Range of stationarity of the AR(1)+ARCH(1) model with parameters o and A. The
matrix components contain the estimated and tail index for student-t noise with 3 degrees of
[freedom. The range of stationarity has further decreased and the tails have become very heavy
indeed; a third moment does not exist (cf. Tables 3.1 and 3.2).

A
] 0.2 04 06 08 1.0 14 1.8 22 24

00 243 180 135 1.02 078 045 023 0.08 0.01
02 241 176 131 099 075 043 021 0.06 0.01
04 231 162 1.18 088 066 036 016 002 —
06 206 135 09 070 051 026 009 — —
0.8 150 093 064 045 032 012 — — —
1.0 059 041 028 0.18 010 — — — —
1.1 013 0.15 0.10 004 — — — — —

Remark 3.4.7 When we study the stationary distribution of (X;)nen We may wlog
assume that & > 0. For a justification, consider the process (X, ),eny = ((—1)" X, )nen
which solves the stochastic difference equation

)?n = —oz)?n,l +1/8 +A)~(571 &,, neN,

where (&,),en are the same rvs as in (3.24) and )~(0 = Xo. If o < 0, because of the

symmetry of the stationary distribution, we may hence study the new process (X,,),en-
O

In order to determine the tail of the stationary distribution F we need some addi-
tional technical assumptions on g and G = 1 — G, the density and the distribution
tail of &:
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D; The lower and upper Matuszewska indices of H are equal and satisfy in particular

Inlimsup,_, ., H(vx)/H(x)

—oo <y := lim

V—> 00 Inv
— lm Inliminf,_ o H(vx)/H(x) <0.
V—00 Inv
D, If y = —oo then for all § > 0 there exist constants g € (0, 1) and xo > O such
that for all x > xp and ¢ > x4
(x:l:at>>(l 5 ( x tat ) (3.29)
8\ —7/— | zU =08\ —F——==)- .
VAr? v/ B+ A2

If y > —oo then for all § > O there exist constants xo > 0 and 7 > 0 such that for
all x > xo and ¢t > T the inequality (3.29) holds anyway.

The definition of the lower and upper Matuszewska indices can be found, e.g., in
BGT [11], p. 68; for the above representation we used Theorem 2.1.5 and
Corollary 2.1.6. The case y = —oo corresponds to a tail which is exponentially
decreasing. For y € (—o0, 0] condition D is equivalent to the existence of constants
0 < ¢ < C < oo such that for all A > 1, uniformly in v € [1, A],

G(vx)
c(l+o(H) < — <C{ 4o, x— oo. (3.30)
G(x)

In particular, a distribution with a regularly varying tail satisfies Dy; the value y
is then the tail index. Due to the equality of the Matuszewska indices and the mono-
tonicity of g we obtain easily some asymptotic properties of G and of g, respectively.

Proposition 3.4.8 Suppose the general conditions (3.26) and Dy — D, hold. Then
the following holds:

(a) lim,_0 x"G(x) = 0 and E[|e|™] < oo forallm < —y.
(b) lim,_, oo x"G(x) = 00 and Elle|"] = oo forallm > —y.

m+1

(c) im0 x™ ' g(x) =0forallm < —y.

(d) If y > —o0, there exist constants 0 < ¢ < C < 00 such that

¢ < liminf 2% < Jimsup 25X < ¢
X—=>00 G(X X—00 (.X

Moreover, there exist constants 0 < d < D < oo such that for all A > 1, uniformly
inve(l, Al

d(1+ o’ ! < % <D 4o, x— oo. (3.31)
glx
Furthermore, in this case (3.31) is equivalent to (3.30) or D;.

The general conditions (3.26) are fairly simple and can be checked easily, whereas
D, and in particular D, seem to be quite technical and intractable. Nevertheless,
numerous densities satisfy these assumptions.

Example 3.4.9 The following two families of densities satisfy the general conditions
(3.26) and D| — D;.
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(@) gp.0(x) ocexp(—0~'|x|?), x € R, for p, 6 > 0.

Note that this family includes the Laplace (double exponential for p = 1) and the
normal density with mean 0 (p = 2).
(b) 8a,p,0(x) x (14x%/0)~*D/2(1 +a sin(2m In(1+x2/6))), x € R, for parameters
p>2,0>0anda€[0,(p+ 1)/(p+1+4n)).

This family includes, e.g., the Student-t distribution with parameter p (seta = 0
and 6 = p).

The following modification of the Drasin-Shea Theorem (BGT [11], Theorem 5.2.3,
p- 273) is the key to our result.

Theorem 3.4.10 Let k : [0, 00) — [0, 00) be an integrable function and let (a, b)
be the maximal open interval (wWhere a < 0) such that

~ dt
k(z) = / fzk(t)T < oo, forze(a,b).
(0,00)

If a > —o0, assume limg o %(a 4+ 8) = oo, if b < 00, assume lim(gloﬁ(b —8) = o0
Let H be a df on R, with tail H. If

H() dt
lim k(f)()—-=c>> 0,
*¥=00 J(0,00) t H(X) t

c= 2(p)f0r some p € (a,b) and H(x) ~ xI(x), x — o0,
where | € R(0).

then

The following is the main theorem of this section.

Theorem 3.4.11 Suppose (X, )nen is given by equation (3.24) with (€, )nen Satisfying
the general conditions (3.26) and D\ — D, and with parameters o and X satisfying
(3.28). Let F(x) = P(X > x), x > 0, be the right tail of the stationary distribution.
Then

F(x)~cx™, x— oo, (3.32)
where
L ElalX]+ /B +2X2%6l = |(« + VAe)IX ]
2k Ella + Vel In|a + VAel]
and « is given as the unique positive solution to
Ella + Vel = 1. (3.33)

Remark 3.4.12 (a) Let E[|a ++/Ae|f] = hg (k) be as in Lemma 3.4.4. Recall that
fore £ N (0, 1) and fixed X, the exponent « is decreasing in |«|. This means that the
distribution of X gets heavier tails. In particular, the AR(1) process with ARCH(1)
errors has for o # 0 heavier tails than the ARCH(1) process (see also Table 3.1), and
(b) Theorem 3.4.11, together with Proposition 3.4.4, implies that the second moment
of the stationary distribution exists if and only if &> + A E[¢?] < 1. [
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Idea of Proof. Recall that P(e > x) = G(x) with density g.

Fx) = /Oo P(at + /B + At2e > x)dF(t)

=/°° (G( X+ at )—}—G( x —at ))dF(t)
0 B+ At? B+ At?
) ) ot
0 B + rt? B+ A2 t
® /x\— _dt
-G )t
X+« X -
o=x(s(*77) +e(" 7)) x>0

. 1 ® (x\= _dt
lim f(x)/o k(?) Fit)— = 1. (3.34)

Define the transform

N < . dt_ * . t+a t—a«
o= [l (5 () o

=E[la+Ae| ] <00, ze€(—o00,1).

where

then

Since (3.34) holds, the conditions of the Drasin-SAhea Tauberian theorem are satisfied.
Hence there exists some p € (—oo, 1) such that k(z) = 1 and

F(x) ~ x"0(x), x — oo.
But 2(1) = E[|o + v/Ae| %] = 1 for p = —« and hence
F(x) ~x7 0(x), x— oo. (3.35)

We apply now Corollary 2.4 of Goldie [41] to the process (¥, ),en given by the
stochastic recurrence equation

Y, = ’aYnfl + \/ B +)LY,L2_1 s

which satisfies (Y;,) < (IX,).By(3.35) EY*~! < 0o and hence the moment condition
El(laY 4+ /B + AY2e))* — (Ja + VAe|Y)| < 00

requested in Goldie [41] is satisfied. By symmetry of X we conclude finally

oy — ¢ = EUIXI+ VB £ Xl — @+ Vae) XII']
2kE[|la + VAe|< In | + Vel ’

nelN, and Yy=|Xy as.,
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3.4.2 Extreme value analysis

Theorems 3.4.6 and 3.4.11 are crucial for investigating the extremal behavior of
(X1)nen- The strong mixing property implies automatically that the sequence (X,),en
satisfies the conditions D(u,) and A(u,). These conditions are frequently used mixing
conditions in extreme value theory, which, as we do not need them explicitly, we will
not define; instead we refer to Hsing, Hiisler, and Leadbetter [48] or Perfekt [69] for
precise definitions. Loosely speaking, D(u,) and A(u,) give the “degree of indepen-
dence” of extremes situated far apart from each other. This property together with
(3.32) implies that the maximum of the process (X,),en belongs to the domain of
attraction of a Fréchet distribution ®,., where « is given as solution to (3.33).

In the following denote by P* the probability law for (X,,),cy when X starts with
distribution p and 7 is the stationary distribution.

Theorem 3.4.13 [Borkovec [15]]
Let (X,)nen be the AR(1) process with ARCH(1) errors (3.24) with noise satisfying

the usual conditions and D1 — D,. Let X, 4 U, then

lim P (n_l/’( max X; < x) =exp(—cHx7"), x>0,

n—00 1<j<n

where Kk solves the equation (3.33), c is the constant in the tail of the stationary
distribution (3.32) and

o0 n
0=« / P supH(a +Vae) <yt y < dy.
1 neN i1
For x € Rand n € N let N, be the point process of exceedances of the threshold
u, =n'“x by X1, ..., X,. Then
N, —d> N, n— oo,
where N is a compound Poisson process with intensity cOx " and cluster probabilities

Ok — Okt

, keN,
&

Tk

with

fo'e) n
0 = K/ P (card{n eN: [+ Vae) > y—‘} =k — 1>y_"_ldy.
1

i=1

In particular, 6, = 6.

We want to explain the idea of the proof: recall first from Theorem 3.4.6 that
(X,)nen is Harris recurrent with regeneration set [—e®/2, ¢*/?] for a large enough.
Thus there exists a renewal point process (7},),>0 (€.g., the successive entrance times
in [—e%/?, ¢%/?]), which describes the regenerative structure of (X,,),en. This process
(T,)n>0 is aperiodic and has finite mean recurrence times.
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Hence we can apply a coupling argument giving for any probability measure p,
the stationary distribution & and any sequence (i, ),eN

P“(lmkax X gun) - P”(lmkax X gun)‘ —- 0, n— oo.
Consequently, we suppose in the following that (X,,),cn is stationary.
On a high level, the process (X, ),<n can be linked to some random walk as follows.
Define

So=0, S,= Zln(a ++/Ag), neN.
i=1

Although it is not as natural as for pure volatility models we consider besides
(X,)nen also (X,%)neN. Define the auxiliary process (Z,)neN = (ln(Xﬁ)),,eN, which
satisfies the stochastic difference equation

Zy=Zy+In((@+/Be %1 +he,)), neN, Zy=In(X;) as.

Note that, since strong mixing is a property of the underlying o -algebra of the
process, (X ,21),1€N and (Z,),n are also strong mixing. Since ¢ is symmetric the process
(Z)nen 1s independent of the sign of the parameter «. Hence we may wlog in the
following assume that o > 0.

We show that (Z,,),,cny can be bounded by two random walks (S,i'“),,eN and (S, )nen
from below and above, respectively. For the construction of the two random walks
(Sf,’”)neN and (S)“),en we define with the same notation as before

—o —
Ao = {m-fea/z =8= m+ﬁea/2}’
pa, &) :=In((a + \/Be @ + re)’),

(@, &) = ln(l— 2ypele )
qla, . (a—{—\/mé‘)z {e<0} |>»

(@.6) =1 (1— pee )
ria, ) = 1In (a—’—m(;‘)z {e<0} ) -

Note that g(a) and r(a) both converge to 0 a.s. as a — co. Define the lower and
upper random walks

Spt:=> Uf and S¢“:=> V. neN, (3.36)
j=1 Jj=1

where foreach j =1,...,n
Ui := —00- 14, +(pla, &;) +r(a, &)1 aznie; <o) In( + Vie)?) Lig; >0y, (3.37)
V]“ = pla,ej)+q(a,ce;). (3.38)

The following lemma summarizes some properties of the random walks defined in
(3.36) through (3.38).
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Lemma 3.4.14 Let a be large enough, Zo > a and N, := inf{j > 1|Z; < a}.
Then

(a) Zo+ Sy < Zy < Zo+ S forallk < N, a.s.

(b) (S;"Inen and (S,l;“)nEN are random walks with negative drift.
(c) Define Sy = 0 and S, = Z];:1 In((o + \/ij)z)fork eN.
Then

P a.s.
S,lc’a — S and S =S Sk, a1 oo, and

la d u,a a.s.
(d) supy>y " — supgs Sk and  sup.; Sp° — sup;s; Spasa 1 oo

Lemma 3.4.14 characterizes the behavior of the process (Z,),cn above a high
treshold a and hence also the behavior of (X ,%)neN. This is the key to what follows:
the process (S,)nen Will completely determine the extremal behavior of (X,%)neN.

We shall assume strong mixing with a special rate of convergence. This will become
clear in the next lemma. For a stochastic process (X, ),en, for any k, m € N, suppose
that for A e 6(X;,l <m)and B € o(X;,l > m + k),

P(AN B) — P(A)P(b)| < y(k).
Then y is called a mixing function of (X,),en-

Lemma 3.4.15 Let y be the mixing function of (X,)nen and (pp)nen an increasing
sequence such that

Pi o ang "YWPD o s S oo, (3.39)
n Pn
Then for u, = n**x, x > 0,
lim lim sup P( max X7 > u, | X§ > u) =0, (3.40)
P70 pse0 P=<J=Pn
and for u, = n'*x, x > 0,
lim lim supP( max X; >u,| Xy > un> =0. (341
PP pseo P=J=Dn

Proof. The proof of (3.40) is very technical, and we refer to Borkovec [15] for details.
It is, however, easy to see that (3.40) implies (3.41):

20,2 w2 2
2> P(max,<j<p, X; > up, X§ > u;)

Pl max X2>u?|X2>u u
; Jj n 0 n 2 2
P=i=<p P(XO > un)

P(max,<j<, X; > u,, Xo > u,)
- P(Xo>uy)+ P(Xog < —uy,)

1
=P max X;>u,|Xo>u,|.
2 P<j=<pn

O

Remark 3.4.16 (a) Since (X,,),en 1S geometric ergodic, the mixing function y de-
creases exponentially fast, hence it is not difficult to find a sequence (p,),en to satisfy
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(3.39), (b) As mentioned already, the strong mixing condition is a property of the
underlying o-field of a process. Hence y is also the mixing function of (X2),en, and
(Z)nen, and we may work for all these processes with the same sequence (p;).en,
and (c) In the case of a strong mixing process, conditions (3.39) are sufficient to guar-
antee that (p,),en 1S a A(u,)-separating sequence. It describes somehow the interval
length needed to accomplish asymptotic independence of extremal events over a high
level u,, in separate intervals. For a definition see Perfekt [69]. Note that (p,),en is in
the case of a strong mixing process independent of (i, ),en. U

The following theorem is an extension of Theorem 3.2 of Perfekt [69], p. 543
adapted to our situation.

Theorem 3.4.17  Suppose (X,)uen is a strongly mixing stationary Markov chain
whose stationary df F is symmetric withtail F € R(—«) on R.. Suppose furthermore
that

lim P(X; <xu|Xo=u)=Hkx), xeR,
u—0Q

forsomedf H. Let (Ap)uen be an i.i.d. sequence with df H and define Y, = A, Y,— for
n € Nwith Yy independent of (A, )nen and Yy £ W given by u(dx) ==k~ 'x~1/"1dx,
for x > 1. For every T > 0 let (u,(7)),en be a sequence satisfying

lim nF(u,(1)) = 7.
n—00
Then (X,)nen has extremal index 0 given by
0 = PH(cardlneN : Y, > 1} =0).
Moreover, for n € N the time normalized point process of exceedances
T - d
NI(B):= > &im({Xk > uy(v)} > N(B), B e B, 1],

i=1

where N is a compound Poisson process with intensity 0t and jump probabilities
(ke given by

6 — 6
nk:%’ keN,

where
O = P*(cardfn e N : Y, >1} =k—1), keN.

Proof of Theorem 3.4.13 The proof is an application of Theorem 3.4.17. As stated
already we may assume wlog that (X, ), is stationary. Let x € R be arbitrary. Note
that by (3.32)

lim P(X, <ux|Xo=u)=Pla++Ae <x), x€eR.
u— 00
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(Xn)nen satisfies all assumptions of Theorem 3.4.17 and we have the extremal index

/ooP<card{n eN: (H(a+ﬁgi)>yo - 1} =0|y0=y>Ky—K—1dy
1 :

i=1

(o]
/c/ sup H(ot—f-«/zs, <y )y ™ ldy.
1

n>1

S
I

The cluster probabilities can be determined in the same way and hence the statement
follows. [

Remark 3.4.18 (i) Notice that for the squared process the extremal index and the
cluster probabilities can be described by the random walk (S}, ), cr, namely

oo
62 = %/ P(card{n e N| S, > —x} =k —1)e"*"dx, keN.
0

The description of the extremal behavior of (X 2),161\; by the random walk (S,,),en
is to be expected since by Lemma 3.4.14 the process (Z,,),eny = (In(X 3)),,61\; behaves

0

. 1

£,
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Y kA P

. : t
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Figure 3.11 Simulated sample path of (X,)nen with parameters («, B, A) = (0.8, 1, 0.2) (top,
left), Uf(X,%)neN with the same parameters (top, right), of (X,)neN with parameters (o, B, ) =
(—0.8, 1, 0.2) (middle, left), of(X%)neN with the same parameters (middle, right), of (Xn)neN
with parameters («, B, 1) = (0, 1, 0.2) (bottom, left) and of(X,%)neN with the same parameters
(bottom, right) in the case ¢ = N(0, 1). All simulations are based on the same simulated noise
sequence (&,)neN-
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above a high threshold asymptotically like (S, ),cn. Unfortunately, this link fails for
(X n )nEN .

(i) Analogous to de Haan et al. [46] we may construct “estimators” for the extremal
indices 6® and 9,52) of (X ,zl)neN, respectively, by

N
_~ 1 . .
= 251w s =)
i1 1<j<m
and

N
g}iz) _ %Zl{zl{gﬁ,") > —ES)} =k— 1}, fork e N,
i=1

j=1

where N denotes the number of independent simulated sample paths of (S, )nen, EL
are i.i.d. exponential rvs with rate «, and m is chosen large enough. These estimators

can be studied asinthe caseo = Qand ¢ < N(0, 1)in de Haan et al. [46]. In particular,

JN

9 _ o

d
@O —gmy ~ NOD. Nom— oo,

(iii) The approach chosen in (ii) is not possible for (X,),cn, because Hljzl (+ Ve
may be negative. In a similar spirit we choose as “estimators” for 8 and 6; for (X,,),en

N J
—~ 1 ;
9=Ni§ll{ sup H((x—l—ﬁsz)fl/PK()}

lf.iim 1=1

and

R 1 N m J ]
O = NZl{Zl{H(wﬁm > 1/P;l>} =k—1}, fork € N,
j=1

i=1 =1

where N denotes the number of simulated paths of ([]/_, (@ +~/A &)nen, P areii.d.
Pareto rvs with shape parameter «, i.e., with distribution function G(x) = 1 —x7,x >
1, and m is large enough. These are suggestive estimators since [ [_, (« + Vie) =0
a.s. as n — oo because of assumption (3.27).

(iv) Note that the extremal index 6 of (X,,),cn is not symmetric in « (see Table 3.4).
This is not surprising since the clustering is for @ > 0 stronger by the autoregressive
part than fore < 0. O

Remark 3.4.19 (i) Model (3.24) has a natural extension to higher order: the autore-
gressive model of order ¢ with ARCH(q)-errors has been investigated in Kliippelberg
and Pergamenchtchikov [58, 59]. It is also shown there that for Gaussian error vari-
ables this model is in distribution equivalent to a random coefficient model.

(i1) Such models also lead to interesting statistical theory, some can be found in
econometric textbooks; see, e.g., Campbell, Lo and MacKinley [21], Gouriéroux [44],
Shephard [82], or Taylor [84]. In Kliippelberg et al. [57] tests for models including
(3.24) are suggested. A pseudo-likelihood ratio test for the hypotheses that the model
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Table 3.4 “Estimated” extremal index 6 of (X,)neN in the case € 4 N(, 1). We chose N =
m = 2000. Note that the extremal index decreases as || increases and that we have no
symmetry in o.

A
o 0.2 0.4 0.6 0.8 1.0 1.2 1.5 20 25 30 35

-12 — 0.001 0.001 0.003 0.004 0.001 0.000 — — — —
-1 0.15 019 019 016 013 009 005 001 — — —
-08 056 047 041 034 026 021 013 005 0.01 — —
-06 08 071 061 050 041 033 022 010 0.03 000 —
-04 09 08 071 060 050 040 030 0.14 0.06 001 —
-02 098 089 077 065 056 047 033 0.18 0.07 0.02 0.00
0 098 089 078 065 055 045 033 0.18 0.08 0.02 0.00
02 09 082 072 061 052 043 032 018 0.07 0.02 0.00
04 08 072 063 053 045 037 028 0.13 0.06 001 —
06 068 055 048 041 035 029 021 010 003 0.00 —
08 039 034 032 027 022 019 012 005 001 — —
1.0 0.09 014 013 013 011 008 0.04 001 — — —
1.2 — 0.000 0.001 0.003 0.004 0.001 0.000 — — — —

Table 3.5 “Estimated” extremal index 6 and cluster probabilities (7 )1<k<6 of (Xn)nenN de-
pendent on a and X in the case € = N(0, 1). We chose N = m = 2000. Note that the extremal
index for o« > 0 is much larger than for o < 0.

o A (% T b12) 3 T4 5 6

0 02 0974 0973 0.027 0.000 0.000 0.000 0.000
0 0.6 0.781 0.799 0.147 0.036 0.012 0.005 0.001
0 1 0.549 0.607 0.188 0.107 0.036 0.034 0.017
—-04 02 0962 0962 0.037 0.001 0.000 0.000 0.000
04 02 0853 0867 0.103 0.026 0.002 0.002 0.000
—-04 06 0715 0.747 0.168 0.048 0.026 0.006 0.002
04 0.6 0624 0676 0.182 0.066 0.040 0.019 0.012
—-04 1 0.497 0540 0.210 0.115 0.075 0.040 0.004
04 1 0.445 0533 0.185 0.080 0.109 0.032 0.017
-08 02 0572 0626 0.185 0.111 0.026 0.033 0.001
0.8 02 038 0470 0.172 0.148 0.062 0.068 0.006
-08 0.6 0414 0520 0.159 0.134 0.072 0.043 0.016
0.8 0.6 0314 0443 0.156 0.110 0.087 0.073 0.041
-08 1 0.273 0429 0.137 0.126 0.106 0.016 0.012
08 1 0.224 0346 0.132 0.114 0.129 0.045 0.004
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reduces to random walk or i.i.d. data is investigated and the distributional limit of the
test statistic is derived. [

3.5 Optimal portfolios with bounded Value-at-Risk (VaR)

In this section we investigate the influence of large fluctuations and the Value-at-
Risk as a risk measure to portfolio optimization. The section is based on Emmer,
Kliippelberg, and Korn [35] and Emmer and Kliippelberg [34].

Starting with the traditional Black-Scholes model, where stock prices follow a
geometric Brownian motion we first study the difference between the classical risk
measure, i.e., the variance, and the VaR.

Since the variance of Brownian motion increases linearly, the use of the variance
as a risk measure of an investment leads to a decreasing proportion of risky assets in a
portfolio, when the planning horizon increases. This is not true for the Capital-at-Risk
which—as a function of the planning horizon—increases first, but decreases, when the
planning horizon becomes larger. We show for the CaR that, as seems to be common
wisdom in asset management, long term stock investment leads to an almost sure
gain over locally riskless bond investments. In the long run stock indices are growing
faster than riskless rates, despite the repeated occurrence of stock market declines.
The CaR therefore supports the portfolio manager’s advice that the more distant the
planning horizon, the greater should be one’s wealth in risky assets. Interestingly, the
VaR as risk measure supports the empirical observation above and hence resolves the
contradiction between theory and empirical facts.

Then we study the optimal portfolio problem for more realistic price processes,
i.e., Lévy processes that model also large fluctuations. Here, as is to be expected, the
VaR reacts to exactly those and, consequently, so does the CaR. We investigate, in
particular, the normal inverse Gaussian and variance gamma Lévy processes.

3.5.1 The Black-Scholes model

In this section, we consider a standard Black-Scholes type market consisting of one
riskless bond and several risky stocks. Their respective prices (Py(t)),;>0 and (P;(t)),;>0
fori =1, ..., d evolve according to the equations

Pyt)y=e", 1>0,
1 d d
_ 2
Pi(t) = p;exp ((bi -5 ;‘o,,)r + ]Z;oijwj(r)) 1> 0.

Here W(t) = (W;(2), ..., Wy(t)) is a standard d-dimensional Brownian motion,
r € R is the riskless interest rate, b = (b1, ..., by) the vector of stock-appreciation
rates, and 0 = (0jj)1<i,j<a 15 the matrix of stock-volatilities. For simplicity, we
assume that o is invertible and that b; > r fori = 1, ..., d. Since the assets are
traded on the same market, they show some correlation structure which we model
by a linear combination of the same Brownian motions Wy, ..., W, for each traded
asset. Throughout this chapter we denote by R? the d-dimensional Euclidean space.
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Its elements are column vectors and for x € R? we denote by x’ the transposed vector;
analogously, for a matrix 8 we denote by g’ its transposed matrix. We further denote
by x| = (0%, x2)'/? the Euclidean norm of x € RY.

We need the SDE corresponding to the price processes above.

d Py(t) = Py(t)r dt, Py(0) =1,
d
3.42
ary = Py (bt + 3 ogawi0). PO = pr i =1d O
j=1
Letn(t) = (m1(2), ..., mwa(®)) € R? be an admissible portfolio process, i.e., ; (t) is

the fraction of the wealth X” (¢), which is invested in asset i (see Korn [60], Section 2.1
for relevant definitions). Denoting by (X (¢));>0 the wealth process, it follows the
dynamic

dX™(t) = X" OI(1 — 2(tY Dr + w@)b)dt + w(t)cdW ()}, X™(0) = x,

where x € R denotes the initial capital of the investor and 1 = (1, ..., 1)’ denotes
the vector (of appropriate dimension) having unit components. The fraction of the
investment in the bond is mo(#) = 1 — 7 (¢)'1. Throughout the chapter, we restrict
ourselves to constant portfolios 7 (¢) = m = (7, ..., my) for all ¢+ € [0, T']. This
means that the fractions in the different stocks and the bond remain constant on [0, 7'].
The advantage of this is twofold: first we obtain, at least in a Gaussian setting, explicit
results, and, furthermore, the economic interpretation of the mathematical results is
comparatively easy. It is also important to point out that following a constant portfolio
process does not mean that there is no trading. As the stock prices evolve randomly
one has to trade at every time instant to keep the fractions of wealth invested in the
different securities constant. Thus, following a constant portfolio process still means
one must follow a dynamic trading strategy.

Standard It integration and the fact that EeSW () = ¢5°/2 s € R, yield the following
explicit formulae for the wealth process for all ¢ € [0, T].

X*(t) =xexp(W' (b —rD)+r — w0}t + 7o W), (3.43)
E[X™(t)] = xexp((w'(b — r1) + r)t), (3.44)

var(X” (1)) = x> exp2(m' (b — r1) + r)t)(exp(|7o [*t) — 1). (3.45)
Definition 3.5.1 [Capital-at-Risk]
Let x be the initial capital and T a given planning horizon. Let z,, be the o-quantile of

the standard normal distribution. For some portfolio m € R and the corresponding
terminal wealth X™(T), the VaR of X™(T) is given by

VaR(x, 7, T) = inf{z e R: P(X™(T) < z) > «}
=xexp(m'(b —rD) +r — |70 /DT + 24|17’ |NT).
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Then we define
CaR(x,m,T) = xexp(rT) — VaR(x, , T)
=xexp(rT)
x (1 —exp((w'(b — r1) = |70 * /DT + 24|7'a |VT))  (3.46)
the Capital-at-Risk of the portfolio w (with initial capital x and planning horizon T ).

To avoid (nonrelevant) subcases in some of the following results we always assume
o < 0.5 which leads to z, < 0.

Remark 3.5.2 (i) Our definition of the Capital-at-Risk limits the possibility of excess
losses over the riskless investment.

(i) We typically want to have a positive CaR (although it can be negative in our
definition as the examples below will show) as the upper bound for the “likely losses.”
Further, we concentrate on the actual amount of losses appearing at the planning
horizon T'. This is in line with the mean-variance selection procedure enabling us to
directly compare the results of the two approaches; see below. [

In the following it will be convenient to introduce the function f (;r) for the exponent
in (3.46), that is

f(m) = zoln'o|NT — |7'aPT/2+7'(b—rDT, 7w €R% (3.47)

By the obvious fact that f(r) — —oo as |[n’0| — oo we have the natural upper
bound sup, .pe CaR(x, 7w, T) = x exp(rT); i.e., the use of extremely risky strategies
(in the sense of a high norm |7’o |) can lead to a CaR which is close to the total capital.
The computation of the minimal CaR is done in the following proposition.

Proposition 3.5.3 Let0 = |o~'(b —r1)|.

(a)Ifb; =r foralli =1,...,d, then f(m) attains its maximum for 7* = 0 leading
to a minimum Capital-at-Risk of CaR(x, 7*, T) = 0.

(b) If b; # r for somei € {1,...,d} and 0T < |z¢ |, then again the minimal CaR
equals zero and is only attained for the pure bond strategy 7* = 0.

(c) If bi # r for some i € {1,...,d} and 6T > |zq|, then the minimal CaR is

attained for
. 2o\ (00) ' (b —r])
v =(0-5) e o 49

with
1
CaR(x, 7", T) = x exp(rT) (1 - exp(i(ﬁe — |za|)2>> <0. (3.49)
Proof. (a) follows directly from the explicit form of f(;r) under the assumption of

b, =rforalli =1,...,d and the fact that o is invertible.
(b), (c) Consider the problem of maximizing f(;r) over all & which satisfy

'] = (3.50)
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for a fixed positive €. Over the (boundary of the) ellipsoid defined by (3.50) f ()
equals
f(0) = 246VT — 2T/2 + 7' (b — rDT.

Thus, the problem is reduced to maximizing a linear function (in 7) over the
boundary of an ellipsoid. Such a problem has the explicit solution
Nl —rl
- PN CLI NN k) (3.51)
lo=1(b —rD)
with
f) = —e’T/2 + (BT — |2 |V/T). (3.52)

Asevery m € R satisfies relation (3.50) with a suitable value of ¢ (due to the fact
that o is regular), we obtain the minimum CaR strategy m* by maximizing f ()
over all nonnegative ¢. Due to the form of f(r)) the optimal ¢ is positive if and
only if the multiplier of ¢ in representation (3.52) is positive. Thus, in the situation
of Proposition 3.5.3(b) the assertion holds. In the situation of Proposition 3.5.3(c) the
optimal ¢ is given as
F
N

Inserting this into equations (3.51) and (3.52) yields the assertions (3.48) and (3.49)
(with the help of equations (3.46) and (3.47)). O

e=0—

Remark 3.5.4 (i) Part (a) of Proposition 3.5.3 states that in a risk-neutral market the
CaR of every strategy containing stock investment is bigger than the CaR of the pure
bond strategy.

(i) Part (c) states the (at first sight surprising) fact that the existence of at least one
stock with a mean rate of return different from the riskless rate implies the existence
of a stock and bond strategy with a negative CaR as soon as the planning horizon T
is large. Thus, even if the CaR would be the only criterion to judge an investment
strategy the pure bond investment would not be optimal if the planning horizon is
far away. On one hand this fact is in line with empirical results on stock and bond
markets. On the other hand this shows a remarkable difference between the behavior
of the CaR and the variance as risk measures. Independent of the planning horizon and
the market coefficients, pure bond investment would always be optimal with respect
to the variance of the corresponding wealth process. [

We now turn to a Markowitz mean-variance type optimization problem where we
replace the variance constraint by a constraint on the CaR of the terminal wealth.
More precisely, we solve the following problem:

max E[X™(T)] subjectto CaR(x,m,T)<C, (3.53)
meR
where C is a given constant of which we assume that it satisfies C < x exp(rT).

Due to the explicit representations (3.45), (3.46) and a variant of the decomposition
method as applied in the proof of Proposition 3.5.3 we can solve problem (3.53)
explicitly.
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Proposition 3.5.5 Let 0 = |0~ (b — r1)| and assume that b; # r for at least one
i e{l,...,d}. Assume furthermore that C satisfies

0<C <xexprT) if ONT < |zal, (3.54)

x exp(rT) (1 —exp (%(ﬁQ - IZa|)2)) <C<xexp(rT) if 0T > |zq|.
(3.55)

Then problem (3.53) has solution
L(00) (b —rl)
lo=1(b —r1)]|

*

with

£ =0+ 24/VT) + \/(9 + 2o /VT)? = 2¢/T,

where ¢ = In(1— % exp(—rT)). The corresponding maximal expected terminal wealth
under the CaR constraint equals

E[X™(T)] = x exp((r + |0~ (b — rD|T). (3.56)

Proof. The requirements (3.54) and (3.55) on C ensure that the CaR constraint in
problem (3.53) cannot be ignored: in both cases C lies between the minimum and the
maximum value that CaR can attain (see also Proposition 3.5.3). Every admissible
for problem (3.53) with |7'c| = ¢ satisfies the relation

1
(b—rlYxT >c+ Eng — z206VT (3.57)

which is in this case equivalent to the CaR constraint in (3.53). But again, on the set
given by |’ | = ¢ the linear function (b — r1)'7 T is maximized by
n—1
7, =0 (0-rh (3.58)
lo=1(b —rD)|
Hence, if there is an admissible 7 for problem (3.53) with |n’c| = ¢ then x,
must also be admissible. Further, due to the explicit form (3.44) of the expected
terminal wealth, 7, also maximizes the expected terminal wealth over the ellipsoid.
Consequently, to obtain 7 for problem (3.53) it suffices to consider all vectors of the
form m, for all positive ¢ such that requirement (3.56) is satisfied. Inserting (3.58)
into the left-hand side of inequality (3.57) results in

b—r)n. T =¢lo™ (b —rD|T, (3.59)

which is an increasing linear function in ¢ equalling zero in ¢ = 0. Therefore, we
obtain the solution of problem (3.53) by determining the biggest positive ¢ such that
(3.57) is still valid. But the right-hand side of (3.59) stays above the right-hand side
of (3.57) until their largest positive point of intersection which is given by

e =0+ 24/VT) + \/(9 + 20/NT)? —2¢/T.

The remaining assertion (3.56) can be verified by inserting 7* into equation (3.44).
|
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Figure 3.12 CaR(1000, 1, T') of the pure stock portfolio (one risky asset only) for different
appreciation rates as a function of the planning horizon T; 0 < T < 20. The volatility is
o = 0.2. The riskless rate is r = 0.05.

Remark 3.5.6 Note that the optimal expected value only depends on the stocks via the
norm |0 ~'(b—r1)|. There is no explicit dependence on the number of different stocks.
We therefore interpret Proposition 3.5.3 as a kind of mutual fund theorem as there is
no difference between investment in our multistock market and a market consisting
of the bond and just one stock with appropriate market coefficients b and . [

Example 3.5.7 Figure 3.12 shows the dependence of CaR on the planning horizon
T illustrated by CaR(1 000,1,T). Note that the CaR first increases and then decreases
with time, a behavior which was already indicated by Proposition 3.5.3. It differs
substantially from the behavior of the variance of the pure stock strategy, which
increases with 7'. Figure 3.13 illustrates the behavior of the optimal expected terminal
wealth with varying planning horizon corresponding to the pure bond strategy and the
pure stock strategy as functions of the planning horizon 7 . For a planning horizon of up
to 5 years the expected terminal wealth of the optimal portfolio even exceeds the pure
stock investment. The reason for this becomes clear if we look at the corresponding
portfolios. The optimal portfolio always contains a short position in the bond as long
as this is tolerated by the CaR constraint. This is shown in Figure 3.14 where we
have plotted the optimal portfolio together with the pure stock portfolio as function
of the planning horizon. For b = 0.15 the optimal portfolio always contains a short
position in the bond. For b = 0.1 and T > 5 the optimal portfolio (with the same CaR
constraint as in Figure 3.13) again contains a long position in both bond and stock
(with decreasing tendency of 7 as time increases). This is an immediate consequence
of the increasing CaR of the stock price. For the smaller appreciation rate of the
stock it is simply not attractive enough to take the risk of a large stock investment.
Figure 3.14 shows the mean-CaR efficient frontier for the above parameters with
b = 0.1 and fixed planning horizon T = 5. As expected it has a similar form as a
typical mean-variance efficient frontier.
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Figure 3.13 Expected terminal wealth of different investment strategies depending on the plan-
ning horizon T, 0 < T < 20. The parameters are d = 1, r = 0.05, b = 0.1, 0 = 0.2, and
a = 0.05. As the upper bound C of the CaR we used CaR(1000, 1, 5), the CaR of the pure
stock strategy with planning horizon T = 5. On the right border we have plotted the density
function of the wealth for the optimal portfolio.
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Figure 3.14 For different appreciation rates the left-hand figure shows the optimal portfolio
and the pure stock portfolio. An optimal portfolio of m > 1 corresponds to short selling. The
right-hand figure shows the mean-CaR efficient frontier with the mean on the horizontal axis
and the CaR on the vertical axis. The parameters are the same as in Figure 3.13.

We compare now the behavior of the optimal portfolios for the mean-CaR with
solutions of a corresponding mean-variance problem. To this end we consider the
following simpler optimization problem:

max E[X™(T)] subjectto var(X™(T))<C. (3.60)
meR
Proposition 3.5.8 Ifb; # r for at least one i € {1, ..., d}, then the optimal solution

of the mean-variance problem (3.60) is given by

(oMb —rD)
T e b=l
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where € is the unique positive solution of the nonlinear equation
1 1 C 1 )
rT+ o7 (b—rD|eT — -In{ — | + = In(exp(e"T) — 1) = 0.
2 x2 2

The corresponding maximal expected terminal wealth under the variance constraint
equals
E[X" (D) = xexp((r + &0~ (b — rDDT).

Proof. By using the explicit form (3.45) of the variance of the terminal wealth, we
can rewrite the variance constraint in problem (3.60) as

(b—rl)nT < lln(%) — lln(exp(ezT) — 1) —rT =:h(e), |n'oc|l=¢ (3.61)
2 X 2

for & > 0. More precisely, if 7 € R satisfies the constraints in (3.61) for one & > 0
then it also satisfies the variance constraint in (3.60) and vice versa. Noting that i (¢)
is strictly decreasing in ¢ > 0 with

limh(e) = o0 and lim A(e) = —00
el0 £—00

we see that the left-hand side of (3.61) must be smaller than the right-hand side for
small values of ¢ > 0 if we plug in 7, as given by equation (3.58). Recall that this was
the portfolio with the highest expected terminal wealth of all portfolios 7 satisfying
|7’c| = e. It even maximizes (b — r1)w T over the set given by |7'c| < &. If we
have equality

- rl)’ng T = h(e) (3.62)

for the first time with increasing ¢ > 0, then this determines the optimal € > 0. To
see this, note that we have

E[X™(T)] < E[X™ (T)] forallw with |7'c| <%,
and for all admissible = with ¢ = |70 | > € we obtain

(b—r1)YnT <h(e) < h(@) =(b-— rl)’ng T.

By solving the nonlinear equation (3.62) for € we have thus completely determined
the solution of problem (3.60). [

Example 3.5.9 Figure 3.15 compares the behavior of € and ¢* as functions of the
planning horizon 7. We have used the same data as in Example 3.5.7. To make the
solutions of problems (3.53) and (3.60) comparable, we have chosen C differently
for the variance and the CaR risk measures in such a way that € and &* coincide for
T = 5. Notice that C for the variance problem is roughly the square of C for the
CaR problem taking into account that the variance measures an L>-distance, whereas
CaR measures an L!-distance. The (of course expected) bottom line of Figure 3.15
is that with increasing time the variance constraint demands a smaller fraction of
risky securities in the portfolio. This is also true for the CaR constraint for small
time horizons. For larger planning horizon T (T > 20) * increases again due to the
fact that the CaR decreases. In contrast to that, € decreases to 0, since the variance
increases.
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Figure 3.15 & and &* as functions of the planning horizon; 0 < T < 20. The parameters are
the same as in Figure 3.13.

3.5.2 The exponential Lévy model

As in Section 3.5.1 we consider a standard Black-Scholes type market consisting of
a riskless bond and several risky stocks; however, we assume now that their prices
follow exponential Lévy processes. This is a large class of models, including be-
sides the geometric Brownian motion also much more realistic price models. The
respective prices (Py(t));>0 and (P;(¢));>0 fori = 1, ..., d evolve according to the
equations

d
Py(t)=¢€"" and Pi(t) = p; exp (bit + Za,-,L,»(t)), t>0. (3.63)
j=1

Here r € R is the riskless interest rate, b € R? and o = (0ij)1<i,j<da 1 an invert-
ible matrix. (L(#));>0 = (L1(?), ..., Ly(t));>0 is a d-dimensional Lévy process with
independent components. Hence we assume that each (L;(¢)),>o fori =1, ..., d has
stationary independent increments with cadlag sample paths. We define this model
analogously to the Black-Scholes model in Section 3.5.1, but replace the Brownian
motion by a general Lévy process L.

Before we specify this model further we summarize some results on Lévy processes.
For relevant background we refer to Bertoin [10], Protter [72] and, in particular,
Sato [80]. A very interesting collection of research articles is Barndorff-Nielsen,
Mikosch and Resnick [7].

Each infinitely divisible df F on R? generates a Lévy process L by choosing F
as df of the d-dimensional vector L(1). This can be seen immediately, since the
characteristic function is for each # > 0 given by

Eexp(is'L(t)) = exp(tW(s)), seRY,
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where W has Lévy-Khintchine representation

S/ﬂ/ﬁs is'x o/ d
5 + /Rd(e —1—is'xI(]x| < )vdx), seR? ((3.64)

Here a € RY, B’B is a nonnegative definite symmetric d x d-matrix, and v is
a measure on R? satisfying v({0}) = 0 and fRd(|x|2 A Dv(dx) < oo, called the
Lévy measure of the process L. The term corresponding to x/(]x| < 1) represents
a centering, without which the integral (3.64) may not converge. The characteristic
triplet (a, 8’8, v) characterizes the Lévy process L.

According to Sato [80], Chapter 4 (see Theorem 19.2), the following holds. For
each w in the probability space, define AL(f, w) = (AL (¢, w), ..., ALy(t, w)) with
ALi(t,w) = Lj(t,w) — Lj(t—,w) for j = 1,...,d. For each Borel set B C
[0, 00) x R (R = R? \ {0}) set

M(B,w) =card{t >0 : (¢, AL(t, w)) € B}.

W(s) =is'a—

Lévy’s theory says that M is a Poisson random measure with intensity
m(dt, dx) = dtv(dx),

where v is the Lévy measure of the process L. Notice that m is o -finite and M (B, -) =
00 a.s. when m(B) = oo.
With this notation, representation (3.64) corresponds to the Lévy-Itd representation

L) =at + W) + > ALS)I(AL(s) > 1)

O<s<t
t
+/ / x(M(dx,ds) —v(dx)ds), t=>0. (3.65)
0 |x|<1

This means that L(¢) is the independent sum of a drift term, a Brownian component
BW(t) and a pure jump part with Lévy measure v, having the interpretation that a
jump of size x occurs at rate v(dx). To ensure finiteness of the integral (3.64), the
small jumps are compensated by their expectation. If the sample paths of L have
almost surely finite variation on (0, ] for any ¢ > 0, then this representation reduces
to

Lit)y=yt+BW(t)+ Y _ AL(s). =0, (3.66)

O<s<t

where y =a — [ _, xv(dx).

We return to model (3.63) with L having characteristic triplet (a, 8’8, v), where a is
ad-dimensional vector, § = diag(By, ..., Bs) is a d-dimensional diagonal matrix and
v is the Lévy measure, which corresponds to the product measure of the independent
components of L on R?. This means that, e.g., for d = 2 and a rectangle A =
(a,b] x (c,d] C R? the Lévy measure v(A) = vi((a, b]) + v2((c, d]), where v; is the
Lévy measure of L; fori = 1, 2. The diagonal matrix § means that the d-dimensional
Wiener process W has independent components with different variances possible.
This allows for different scaling factors in the Wiener processes and the nonGaussian
components; moreover, if some B; = 0 the model allows for Lévy processes without
Gaussian component as asset price models.
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In order to derive the wealth process of a portfolio we need the corresponding SDE.
By It6’s formula (see, e.g., Protter [72]), P;,i = 1, ..., d, is the solution to the SDE

dPi(t) = Pi(t—)(bidt + dL; (1))

1 d d
= Pi(t—)<<bi +3 ;(o,-jﬂjf) dt+ Y oij(dLj(t) — AL;(1))

j=1

d
+exp (Za,-,-AL,»(;)) - 1), t>0, Pi(0)=p;. (3.67)

j=1

Remark 3.5.10 (i) Note the similarity but also the difference to the geometric Brow-
nian motion model (3.42). Again the Wiener process introduces an Itd term in the
drift component of the SDE. However, there is a main change in the jumps of the
Lévy processes. First note that, because of the independence, jumps of the different
processes Ly, ..., L, occur at different times (see Sato [80], Exercise E12.10 on
p- 67). Then every jump of one of the original processes is replaced: a jump of size
Z?:l o;;jAL; is reAplaced by a jump of size exp(Z?:1 o;;AL;) — 1.

(i1) Note also that L; is such that

d
exp(ZaijL]) 25(21), i:l,...,d,
Jj=1

where £ denotes the stochastic exponential of a process. [J

We shall use the following lemma which relates the characteristic triplet of an
exponential Lévy process and its stochastic exponential in R.

Lemma 3.5.11 (Goll and Kallsen [43])

If L is a real-valued Lévy process with characteristic triplet (a, B, v), then also
L defined by et = E(L) is a Lévy process with characteristic triplet (a, B,ﬁ)
given by

~

1
a—a= 5/32 + /((ex = Dlger—11<1y — x1gxj<1y)v(dx)
B=p8
V(A) =v({x e R : & — 1€ A}) for any Borel set A C R*.

As in the Black-Scholes model before, we restrict ourselves to constant portfolios;
ie., w(t) = mw,t € [0, T], for some fixed planning horizon 7. In order to avoid
negative wealth we require that & € [0, 1 and 7'l < 1. Denoting by (X7 (#));>0 the
wealth process, it follows the dynamic

dX™(t) = X" (t=)((1 — 7' Dr + 7'b)dt + 7'dL(t)), t>0, X"(0)=nx,

where x € R denotes the initial capital of the investor.
Using It6’s formula, this SDE has the solution

X" (t) = xexp((r +7'(b — rl))t)E(n/Z(t)), t>0. (3.68)
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One important consequence of this representation is the fact that a jump AL(¢) is
transformed into a jump AX™(¢) = In(1 + /(2™ — 1)) > In(1 — 7’1) and hence
we also require for the portfolio that 7’1 < 1. (Note that 0 AL(¢) is a vector and
e”AL® is defined componentwise.)

From (3.67) it is clear that (X™ (¢));>0 cannot have a nice and simple representation
as in the case of geometric Brownian motion; see (3.43). In any case, (X7 (¢));>0 is
again an exponential Lévy process and we calculate the characteristic triplet of its
logarithm.

Lemma 3.5.12 Consider model (3.63) with Lévy process L and characteristic triplet
(a, B, v). Define for the d x d-matrix o8 the vector [ 81> with components

d
(0B} = (04", i=1,....d.
j=1

The process (In X™(t));>0 is a Lévy process with triplet (ax, Bx, vx) given by
ax =r+7n'(b—rl+[opl’/2+0a)— |7'0p|*/2
+ /4 (In(1 + 7™ = D) jn(4ners—yi<ty — 7'ox Ly <) v(d),
R

Bx = |7'opl,
vy (A) = v({fx € R? : In(1 + 7/(e°* — 1)) € A}) for any Borel set A C R*.

In the finite variation case we obtain

d
E@'L() = yxt +T'ofWE) + Y In (1 + Zn,Ai,(s))

O<s<t i=l

= yxt +7'cpW(r)
d d
+> I <1 +Zm<exp (Za,-jALj(s)> — 1)) t>0,
O<s<t i=1 j=1
where
yx = '(oy + [0B1/2) — |7'aBI?/2,

andy =a — f\x|<1 xv(dx) as in (3.66).
By Lemma 3.5.12 In X™(¢) has characteristic function E exp(islnX7™(t)) =
exp(tx(s)), s € R. If it can be analytically extended around s = 0 in C, then

by Theorem 25.17 in Sato [80] we obtain for all k € N
E[(X™ ()] = exp(tWx(—ik)), t=>0. (3.69)

In particular, E exp(s In X™(¢)) = E[(X™(¢))°] < oo for one and hence all ¢ > 0 if
and only if flx\>1 e*vx(dx) < oo.

Proposition 3.5.13 Let L = (L4, ..., Ly) be a Lévy process with independent com-
ponents and assume thatforall j =1, ..., d therv L (1) has finite moment generating
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function ?j such that ?j(aij) = Eexp(o;;jL;j(1)) <oofori, j=1,...,d. Denote

d d
f(0) := Eexp(o L(1)) = (Eexp (Zalej(l)>, .., Eexp <Za¢,-L,(1)>).

j=1 j=1
(3.70)
Let X™(t) be as in equation (3.68). Then

E[X™(1)] = xexp(t(r +7'(b — r1+In f(0)),
var(X™ (1)) = x?expt(r + 7'(b —r1 +1n ?(a))))(exp(tn’Arr) -1,
where A is a d x d-matrix with components

d d
Aij = Eexp <Z(C7il + sz)L1(1)> — Eexp (Z a,-,L,(l))

=1 =1

d
— Eexp (ZaﬂLl(l)> ., 1=<i,j=d.

I=1
Proof. Formula (3.69) reduces for k = 1 and k = 2 somewhat, giving together with
the expression of vy in terms of v of Lemma 3.5.12,

E[X™(t)] = x exp <t (r +7r/<b —rl+ %[05]2 +oa
+ [ (" -1- 0X1{|x<1})v(dx))>),
Rd

var (X7 (1)) = x*exp <2t (r + rr/<b —rl+ %[0,3]2 +oa

+ (eax -1 ox1{|x<1,)v(dx))>)

Rd
X <exp <t <|rr’0/3|2 +/ ('(e%* — 1))2v(dx)>> — 1).
]Rd
Fori = 1,...,d denote by e; the i-th unit vector in R?. Then the i-th component
of (3.70) is obtained by

d
E exp (Za,-lLl(l)> = exp <(Ga+[aﬂ]2/2+/(e”—1—ox1{|x|<1,)v(dx)) >

=1 i
which corresponds to the i-th component of In(E exp(o L(1))). The formula for the
variance is obtained analogously. [

Remark 3.5.14 Note thatfor/ =1,...,d (i =+/—1)

d d d
In (E exp (Zm_,-Lju))) = "Infi(o) =M EEL)D] =Y W(—ioy).

j=1 j=1 j=1

This implies in particular EE(w'L(t)) = ([, (EIEL())™), O
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3.5.3 Portfolio optimization

We consider now the portfolio optimization problem using the Capital-at-Risk as risk
measure in the more general setting of Lévy processes. The definition of the CaR
from Definition 3.5.1 adapted to the more general situation reads as follows.

Definition 3.5.15 [Capital-at-Risk]

Let x be the initial capital and T a given planning horizon. Let z, be the a-quantile of
E(@' L(T)) for some portfolio w € R? and X7 (T) the corresponding terminal wealth.
Then the VaR of X™(T) is given by

VaR(x, 7, T) = inf{z e R: P(X™(T) <z) > a}
= xzqexp((r'(b — r1) +r)T)
and we define
CaR(x,m, T) = xexp(rT) — VaR(x, 7, T)
= xexp(rT)(1 — zg exp(r'(b — r)T))
the Capital-at-Risk of the portfolio w (with initial capital x and planning horizon T).
We consider now the following optimization problem.

max E[X"(T)] subjectto CaR(x,nw,T)=<C.

7el0,114, 7'1<1

In general, quantiles of Lévy processes cannot be calculated explicitly. Usually, the
df of X™(T) is not known explicitly. At first sight there are various possibilities for
approximations, and we discuss their applicability for quantile estimation below.

For simplicity we restrict ourselves to d = 1, i.e., the portfolio consists of the bond
and one risky asset, which is modeled by the exponential Lévy process

P@)=pexp(bt + L)) t=>0,

where L has characteristic function Ee™L®) = /%G s ¢ R. We set 7y = 7 and
X7 (t) reduces to

XT(t) = xexp((r + 7w (b — r))t)é'(ni(t)), t>0, X7(0)=x,

where (In E(r Z(t))),zo is a Lévy process with characteristic triplet (ax, Bx, vx) given
by

ax =1 (a - %(1 - JT)/32> + /(ln(l +m(e’ — NI In(l +7(e" = 1) < 1)
—nmx1(]x] < D)v(dx),

Bx = 7B,
vx(A) = v({x € R : In(1 +n(e* — 1)) € A}) for any Borel set A C R*.
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Setting W(—si) = In Ee*tD) for s € R such that the moment generating function
is finite, also the existing moments reduce for ¢ > 0 to

E[X"(¢)] = xexp(t(r + w(b — r + W(—i))),
var(X™ (¢)) = x exp2t((r +7w(b — r + \Il(—i)))(exp(nzt(\ll(—Zi) —2W(=i))) —1).

We obtain in the case of a jump part of finite variation for ¢ > 0,

E[X”(t)]=xexp(<r+n<b—r+%ﬂ2+y+ﬁ>)t>, (3.7

var(X” (1)) = x% exp <2t (r +ab—r+y+p+ %,32>>

x(exp(m*1(B* + i — 21)) — 1), (3.72)
where /i = [(e* — Dv(dx), fir = [(€** — Dv(dx),andy =a — [_,_, xv(dx) .

In the following we discuss some estimation nAlethods for the Ca‘lx(l,< ;vhich means
that we have to estimate a small quantile of £(;r’ L(T)); see Definition 3.5.15.

Simulation methods of Lévy processes are often based on infinite series represen-
tations; see Rosinski [78] and references therein. In principle, such methods can be
applied here to simulate independent copies of X™(T') and estimate the quantile by
its empirical counterpart. Such methods are based on the Lévy measure vy, which
we derived in Lemma 3.5.12. There are, however, two serious drawbacks. The first is
that low and high quantiles are even in straightforward models not well estimated by
their empirical counterparts; the second is that the infinite series has to be truncated,
which obviously is another source of inaccuracy.

We invoke instead an idea used for instance by Bondesson [14] and Rydberg [79] for
simulation purposes and made mathematically precise by Asmussen and Rosinski [2].
Before we apply their result to approximate a low quantile as the VaR above we first
explain the idea. The intuition behind it is that small jumps (< ¢) may be approximated
by Brownian motion, whereas large ones (> ¢) constitute a compound Poisson process
N¥¢.This normal approximation works for various, but not for all models. In particular,
it fails for the exponential variance-gamma model, which has become an important
model also in practice. We formulate therefore a more general result.

For a Lévy process with representation (3.65) we write for small ¢ > 0,

L(t) = pu(e)t + BW({) + N°(1) +/ / x(M(ds, dx) — dsv(dx))
0 Jlx|<e

~ e + W) + N +o(@)V@), =0, (3.73)
where V is some (hopefully simple) Lévy process and
ol(e) = / x2v(dx), (3.74)
|x|<e
ue) =a— / xv(dx), (3.75)
e<|x|<1
Ne@t) = Z AL(S)1aL(s)ze)- (3.76)

s<t
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The approximation (3.73) can be made precise. Under certain conditions it is a conse-
quence of a functional central limit theorem, provided that for ¢ — 0 and V standard
Brownian motion,

a(e)—l/ / x(M(ds, dx) — dsv(dx)) = o()" (L) — L.(1)) > V (1),
0 |x|<e
t>0, (3.77)

where
L.(t) = ue)t +BW()+ N(t), t>0. (3.78)

We denote by 4 weak convergence in D[0, co) with the supremum norm uniformly
on compacta; see Pollard [71].

Since the Brownian component and the jump component of a Lévy process are
independent, (3.77) justifies approximation in distribution (3.73)..

We want to invoke this result to approximate quantiles of E(m'L(T)). We do this in
two steps: firstly, we approximate £(7t’ L(T')); secondly, we use that convergence of dfs
implies also convergence of their generalized inverses. This gives the approximation
of the quantiles.

Theorem 3.5.16 [Emmer and Kliippelberg [34]]

Let Y be any Lévy process with Lévy measure v. Let £ (exp(Y (-)) = Z(-) be such that
EZ(-) = exp Y (-) with characteristic triplets given in Lemma 3.5.11. Let furthermore,
o (+) be defined as in (3.74), and Y, and Z. as L. in (3.78), respectively.

Let V be a Lévy process. Equivalent are for e — 0

a(e) (Y (1) — Y.(2)) 4 V), t=0, (3.79)
(mo (&))" (InE@ Z(1)) — InE(w Z,(1))) 4 V), t=>0. (3.80)
For the proof we need the following theorem.

Theorem 3.5.17 Let Z%, ¢ > 0, be Lévy processes without Brownian component and
Y¢ = InE(Z°) their logarithmic stochastic exponentials with characteristic triplets
(az, Bz,vz) and (ay, By, vy) as defined in Lemma 3.5.11. Let g : R — R, with
g(e) > 0as e — 0and V some Lévy process. Then equivalent are as ¢ — 0,

20 4 vy, =0,
g(e)
Y@ 4 vy 1o
g(e)

Proof of (3.79) < (3.80). Setting g(¢) := o(¢) and Y* := Y — Y, in Theorem 3.5.17
we obtain that (3.79) holds if and only if

o)~ E(exp(Y (1) — Yeo(1)) > W(t), 1> 0. (3.81)
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Applying Theorem 3.5.17 to g(¢) := mwo(e) and Z, := & (exp(Y (¢) — Y. (1))
leads to the equivalence of (3.81) and

(o () InE@E(exp(Y (1) — Ye(1) > W(r), t>0.
The identity
InE@E™ (exp(Y (1) — Y.(1))))
=InE@E(exp(Y (1)) —InE@E (exp Ye(1))), >0, (3.82)

which can be proven by calculating all three logarithmic exponentials by Itd’s formula
(see Emmer and Kliippelberg [34]), leads to the equivalence with (3.80). [

In the finite variation case (3.77), i.e., (3.79) can be rewritten to

a(s)_'( ST ALOI(ALGS) <e)— E| Y ALG)I(ALE)| < S)D v,

O<s<t O<s<t

as ¢t = oo, which shows immediately the connection to the classical central limit
theorem. R
We apply (3.80) and (3.82) to approximate In £(;r L) for = € (0, 1] as follows.

InEm@ET (exp(L(1))) ~ InEMET (L)) + wa(e)V(t), =0,
and hence we obtain
InE@ET (exp(L())) ~ yrt + W) + Mi(1) + wo(e)V(1), =0,
where
v = m(u(e) + (1 — m)p%/2),
ME@) = In(1 + 7 (exp(AL(S) L jari=e) — 1),

s<t

i.e., M£ is a compound Poisson process with jump measure
vpe (A) = v ({x : In(1 + 7 (e" — 1)) € AQ\(—¢, ¢))
for any Borel set A C R*. [0

By Proposition 0.1 of Resnick [74] we obtain the corresponding approximation for
the a-quantile z,, of E(w L(T).

Proposition 3.5.18 With the quantities as defined above we obtain
e (M) =inf{zeR: P(yiT +apW(T)+ M:i(T)+ 7o (e)V(T) <Inz) >a},
giving the following approximations

VaR(x,w, T) ~ ng(n) exp((m(b —r)+r)T),

CaR(x, 7, T) ~ xe'™ (1 — 25 (m)e™*~"7).

The following corollary characterizes, the normal approximation.
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Corollary 3.5.19 [Asmussen and Rosinski [2]]
(a) V is standard Brownian motion if and only if

o(ha(e) A e)~ a(e)foreach h > 0. (3.83)

(b) Condition (3.83) holds if lim, g o (¢)/e = o0.
(c) If the Lévy measure has no atoms in a neighborhood of 0, then condition (3.83) is
equivalent to lim, o o (¢)/& = 00.

Provided the above condition is satisfied, we have reduced the problem of estimating
a quantile of a complicated Lévy process to the estimation of a quantile of the sum of
the compound Poissonrv M£ (T) and the normal rv W(T) := /(B> +07(e))/*W(T).
We calculate the density of M:(T)+ VNV(T) using the Fast Fourier Transform method,
henceforth abbreviated as FFT. By independence, we have for the characteristic func-
tion of ME(T) 4+ W(T)

o) = Py )W (@), u €R. (3.84)
Denote by &y the Lévy density of M, which we assume to exist, then we obtain
butz () () = exp(Top: R)(py ) — 1)), u € R,

where

1 .
YR e (X)d X, R. 3.85
® /e me(xX)dx, ue (3.85)

¢y(u) =

vai

Furthermore, by normality,
Py r) (1) = exp (- Tw’n*(B* +0ie)), uek

We approximate the integral in (3.85) by the trapezoid rule, choosing a number n
(a power of 2) of intervals and a step size Ax. Set g = hy: /vy (R). We truncate the
integral ¢y and obtain

o (n/2—1)Ax )
/ e g(x)dx ~ / " g(x)dx
—00 —(n/2)Ax

n/2—1)

Z eiukAxg((kAx)Ax
k=—(n/2)

&

=

eiu(k—n/Z)Axg((k —n/2)Ax)Ax

~
Il
S

n—1

— Axe*iunAx/Z Z eiukAXg((k _ n/Z)Ax)
k=0

For g := g((k — n/2)Ax), k = 0,...,n — 1, the sum is the discrete Fourier
transform of the complex numbers g; and can be calculated by the FFT algorithm
for uy = 2nk/(nAx), k = 0,...,n — 1, simultaneously (see, e.g., Brigham [20],
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Chapter 10). This results in an approximation for ¢ in (3.84). By the inverse FFT we
obtain the density of MZ(T) + W(T).

Example 3.5.20 [Exponential Brownian motion with jumps]|

Here the Lévy process is the sum of a Brownian motion with drift (8 W (¢)+yt),>0, and
a compound Poisson process (L(t));=0, with Poisson intensity ¢ and p as distribution
of the jump heights (Y;);cn. For illustrative purpose we restrict this example to one
compound Poisson process, we could as well take several different ones, see, e.g.,
[35]. The drift y = —% B% — [i is chosen such that it compensates the jumps. The
Lévy measure is v(dx) = cp(dx) and hence & = c(g(1) — 1) and 1, = c(g(2) — 1),
where g is the moment generating function of Y;, which we assume to exist at the
required points. By (3.71) and (3.72) we obtain for r > 0

X7(1) = xexp (z (r +ab—r)—ni— %n2ﬁ2> + n,BW(t))

N(t)

x [ +me" =y,

i=1

E[XT(D)] = x exp(t(r + (b — 1)),
var(X™ (1)) = x* exp(2t(r + (b — r)) x (exp(*1(B> + c(8(2) — 2&(1) + 1)) — 1).

Note that for ¢ = 0 the model reduces to exponential Brownian motion; i.e.

X™(t) = x exp (t (r +ab—r)— %n2ﬂ2> + n,BW(t)) )

On the other hand, if 8 = 0 the model reduces to exponential compound Poisson
process; i.e.,
N()
X7(t) = xexp(t(r + (b —r) — w) [ [(1 + 7" = 1)).
i=1

Example 3.5.21 [Exponential normal inverse Gaussian (NIG) Lévy process]
This normal mixture model has been suggested by Barndorff-Nielsen [5, 4]; see also
Eberlein and collaborators [28, 29, 30]. It has the representation

L(t) = pt + ra2(t) + W(o?(1)), t=>0,

where p, A € R, W is standard Brownian motion and (az(t)),zo has inverse Gaus-
sian increments. The process (L(#)),>o is uniquely determined by the distribution
of the increment L(1), which is NIG (see Barndorff-Nielsen [5]). This means that
L(1) 4 N(p+AZ, Z), where N(a, b) denotes a normal rv with mean a and variance
b and Z is inverse Gauss distributed; more precisely, the density of L(1) is given
by

Ki(Bag(x — p))

, x€eR,
glx —p)

nig(x,a, A, p,8) = il exp(8vVa? — A2+ A(x — p))
i
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wherea > [A| > 0,8 >0, p € R, g(x) = +/62 + x% and

Ki(s) = %/000 exp( — %s(x +x_l)>dx

is the modified Bessel function of the third kind. The parameter « is a steepness
parameter, i.e., for larger o we get less large and small jumps and more jumps of
middle height, § is a scale parameter, A is a symmetry parameter and p a location
parameter. For p = A = 0 (symmetry around 0) the characteristic triplet of a NIG
Lévy process is given by (0, 0, v) with

da .
v(dx)=;|x| Ki(a|x|)dx, xeR"*.

We can calculate i and fi, via the moment generating function of L(1), which is
for the NIG distribution given by

E exp(sL(1)) = exp(8(a — Va2 —52)), |s| <a,

(see, e.g., Raible [73], Example 1.6) and hence because of symmetry,

n=28—+Var-1),
oy =8 — Va2 —4).

Plugging these results into (3.71) and (3.72), and choosing b,;, = bps — d(ax —
v/a? — 1) (bps is the quantity b from Example 3.5.20), such that the expectation of
an asset in the NIG model is the same as for the exponential Brownian motion, we
obtain for ¢t > 0,

X"(t) = xexp(t(r + w(bps — r — 8(a — Va2 — 1))
< [[ (147 1),

O<s<t
E[X™(1)] = x exp(t(r + 7(bps — 1)),
var (X" (1)) = x* exp(21 (7t (bps — r)) + 1))

x(exp(8mt2vVa? — 1 —a — Va2 —4) —1).

By Corollary 3.5.19, for the exponential normal inverse Gaussian Lévy process
the normal approximation for small jumps is allowed since o%(g) ~ (28/m)e as
& — 0. For an estimate of the «-quantile we invoke Proposition 3.5.18 and use FFT.
Figure 3.16 shows sample paths of a geometric NIG-Lévy process with certain para-
meter values.

Example 3.5.22 [Exponential variance gamma (VG) model]

This normal mixture model has been suggested by Madan and Seneta [64], its nonsym-
metric version can be found in Madan, Carr and Chang [63]. An interesting empirical
investigation has been conducted by Carr et al. [22]. The nonsymmetric model is
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Figure 3.16 Ten sample paths of the exponential NIG Lévy process with « = 8 and § = 0.32
(top) and with « = 2 and § = 0.08 (bottom), its expectation E(L(T)) and expectation +
standard deviation for x = 1000, b = 0.1, and r = 0.05.

defined as follows.
L(t) = pt + 1o*(t) + W(a*(1)), =0,

where p, A € R, W is standard Brownian motion and (02(1‘)),20 has gamma incre-

ments, more precisely, o2(s) < ['(as, 0) for parameters ¢ > 0 and 8 > 0; i.e., it has
density

xasfl .
h(x) = ——e%, x>0.
IM'(as)0*s
The characteristic function of L(1) is given by
exp(ispt)
(1 —isOr + 520 /2)

The Lévy process L is a pure jump process with Lévy density

Eexp(isL(1)) =

2
v(dx):lj—lexp<— §+k2|x|+kx> dx, xeR".
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‘We obtain as before

X*(1) = xexp(t(r + (b —r + p)) [ [ + 7 — 1)),

E[X™(1)] = x(1 — 01 —0/2)™ " exp(t(r + (b —r + p))),
var(X™ (1)) = x2(1 — Ox — 0/2) 2™ expt(r + (b — r + p)))

(1— 6 —6/2)>\ "
X _ —1].
1—201—26

For our figures we choose p = aln(l1 4+ A — 6/2) and b = bpg such that
E[X™(t)] = x exp((r + w(bgs — r))t). In order to find an approximation for the VaR
we calculate 0%(¢) ~ ae? as ¢ — 0. Since its Lévy measure has no atoms in a neigh-
borhood of 0, by Corollary 3.5.19, the normal approximation for small jumps is not
allowed.

However, there is another limit process to allow for approximation of the small
jumps: fore — 0

o(e) (L(t) — Le() > V@), t>0,

where V is aLévy process with characteristic triplet (0, 0, vy ) where the Lévy measure
vy has density vy(dv) = (a/v)1(_i, a1/ /a)(v)dv. This means that the following
approximation is valid

g X zo(m)=inflz e R : P(y:T + M. +no(e)V(T) <Inz) > a},
giving again approximations as in Proposition 3.5.18.

Remark 3.5.23 When we want to perform a portfolio optimization for the different
exponential Lévy models as price processes, then certain structures can be exploited.
Note, e.g., that the expected wealth process is increasing in 7; hence the optimal
portfoliois always the largest 7w such that the risk bound is satisfied. For Lévy processes
additionally 7 < 1 has to be satisfied. Such 7 can always easily be found by a simple
numerical iteration procedure.

Next note that to make results comparable we have chosen all mean portfolio
processes equal.
(a) Mean-variance optimization: Since NIG and VG models have so many parameters
we can always choose them so that all variances are equal in the different examples.
Then, of course, the mean-variance optimization problem always leads to the same
result.
(b) Mean-CaR optimization: Here the shape of the distribution in the left tail enters;
see Figure 3.17. The heavier the tail at the corresponding «-quantile, the higher the
risk, i.e., the more cautious the investment 7 into the risky stock.

For more details see Emmer and Kliippelberg [34]. O
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Figure 3.17 Density of L(1) for the NIG model with parameters o« = 2,5 =0.08, . = p =0,
x = 1000, b = 0.1, and r = 0.05. The normal density with the same variance 0.04 is plotted
for comparison. Moreover, the respective 1%-quantiles (left vertical lines) and 5%-quantiles
(right vertical lines) are plotted. All solid lines correspond to the NIG model, all dotted ones
to the normal model.
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Figure 3.18 Ten sample paths of the exponential VG Lévy process with o« = 0.1, § = 0,
0 = 0.35, and u = —0.019 (top) and withoe = 0.2, § = 0,60 = 0.2, and u = —0.022 (bottom),
its expectation E[L(T)] and expectation + standard deviation for x = 1000, b = 0.1, and
r = 0.05.

€004 CRC PressLLC



Bibliography
[1] Artzner, P., Delbaen, F., Eber, J.M. and Heath, D. (1999) Coherent measures of
risk. Math. Finance 9, 203-228.

[2] Asmussen, S. and Rosinski, J. (2000) Approximation of small jumps of
Lévy processes with a view towards simulation. J. Appl. Probab. 38,
482-493.

[3] Balkema, A.A. and Haan, L. de (1974) Residual lifetime at great age. Ann.
Probab. 2, 792-804.

[4] Barndorff-Nielsen, O.E. (1997) Normal inverse Gaussian distributions and
stochastic volatility modeling. Scand. J. Statist. 24, 1-14.

[5] Barndorff-Nielsen, O.E. (1998) Processes of normal inverse Gaussian type. Fi-
nance and Stochastics 2, 41-68.

[6] Barndorff-Nielsen, O.E. and Cox, D. (1994) Inference and Asymptotics.
Chapman & Hall, London.

[7] Barndorff-Nielsen, O.E., Mikosch, T. and Resnick, S.I. (Eds.) (2001) Lévy
Processes — Theory and Applications. Birkhauser, Boston.

[8] Barndorff-Nielsen, O.E. and Shephard, N. (2001) Modelling by Lévy pro-
cesses for financial econometrics. In: Barndorff-Nielsen, O.E., Mikosch, T. and
Resnick, S. (eds) Lévy Processes —Theory and Applications. Birkhauser, Boston.

[9] Berman, S.M. (1992) Sojourns and Extremes of Stochastic Processes.
‘Wadsworth, Belmond, CA.

[10] Bertoin, J. (1996) Lévy Processes. Cambridge University Press, Cambridge.

[11] Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987) Regular Variation. Cam-
bridge University Press, Cambridge.

[12] Bollerslev, T. (1986) Generalized autoregressive conditional heteroscedasticity.
J. Econometrics 31, 307-327.

[13] Bollerslev, T., Chou, R.Y. and Kroner, K.F. (1992) ARCH modeling in finance:
a review of the theory and empirical evidence. J. Econometrics 52, 5-59.

[14] Bondesson, L. (1982) On simulation from infinitely divisible distributions. Adv.
Appl. Probab. 14, 855-869.

[15] Borkovec, M. (2000) Extremal behaviour of the autoregressive process with
ARCH(1) errors. Stoch. Proc. Appl. 85, 189-207.

[16] Borkovec, M. (2001) Asymptotic behaviour of the sample autocovariance and
autocorrelation function of the AR(1) process with ARCH(1) errors. Bernoulli
7, 847-872.

[17] Borkovec, M. and Kliippelberg, C. (1998) Extremal behaviour of diffusion mod-
els in finance. Extremes 1, 47-80.

[18] Borkovec, M. and Kliippelberg, C. (2001) The tail of the stationary distribu-

tion of an autoregressive process with ARCH(1) errors. Ann. Appl. Probab. 11,
1220-1241.

€004 CRC PressLLC



[19] Brandt, A., Franken, P. and Lisek, B. (1990) Stationary Stochastic Models.
Wiley, Chichester.

[20] Brigham, E.O. (1974) The Fast Fourier Transform. Prentice-Hall, Englewood
Cliffs, NJ.

[21] Campbell, H.Y., Lo, A.W. and MacKinley, A.C. (1997) The Econometrics of
Financial Markets. Princeton University Press, Princeton, NJ.

[22] Carr, P., Geman, H., Madan, D.B. and Yor, M. (2001) The fine structure of asset
returns: an empirical investigation. Journal of Business.

[23] Cox, J.C., Ingersoll, J.E. and Ross, S.A. (1985) A theory of the term structure
of interest rates. Econometrica 53, 385—408.

[24] Cvitanic, J. and Karatzas, 1. (1999) On dynamic measures of risk. Finance and
Stochastics 3, 451-482.

[25] Davis, R.A. (1982) Maximum and minimum of one-dimensional diffusions.
Stoch. Proc. Appl. 13, 1-9.

[26] Diaconis, P. and Freedman, D. (1999) Iterated random functions. STAM Review
41, 45-76.

[27] Eberlein, E. (2001) Application of generalized hyperbolic Lévy motion to fi-
nance. In: Barndorff-Nielsen, O.E., Mikosch, T. and Resnick, S. (eds) Lévy
Processes — Theory and Applications. Birkhauser, Boston.

[28] Eberlein, E. and Keller, U. (1995) Hyperbolic distributions in finance.
Bernoulli 1, 281-299.

[29] Eberlein, E., Keller, U. and Prause, K. (1998) New insights into smile, mispricing
and value at risk: the hyperbolic model. Journal of Business 71, 371-405.

[30] Eberlein, E. and Raible, S. (1999) Term structure models driven by general Lévy
processes. Math. Finance. 9, 31-53.

[31] Embrechts. P. (2004) Extremes in economics and the economics of extremes,
in Extreme Values in Finance, Telecommunications, and the Environment,

Finkenstadt, B. and RootZen, H., Eds., CRC/Chapman & Hall, Boca Raton,
Ch. 4.

[32] Embrechts. P. (Ed.) (2000) Extremes and Integrated Risk Management. UBS
Warburg and Risk Books.

[33] Embrechts, P., Kliippelberg, C. and Mikosch, T. (1997) Modelling Extremal
Events for Insurance and Finance. Springer, Berlin.

[34] Emmer, S. and Kliippelberg, C. (2001) Optimal portfolios when stock prices
follow an exponential Lévy process. Finance and Stochastics, to appear.

[35] Emmer, S., Kliippelberg, C. and Korn, R. (2000) Optimal portfolios with
bounded Capital-at-Risk. Math. Finance 11, 365-384.

[36] Emmer, S., Klippelberg, C., Tristedt, M. (1998) VaR - ein Mass fiir
das extreme Risiko. Solutions 2, 53-63. English version available at
http://www.ma.tum.de/stat/

€004 CRC PressLLC


http://www-m4.ma.tum.de/m4/

[37] Engle,R.F. (1982) Autoregressive conditional heteroscedasticity with estimates
of the variance of U.K. inflation. Econometrica 50, 987-1007.

[38] Engle, R.F. (Ed.) (1995) ARCH. Selected Readings. Oxford University Press,
Oxford.

[39] Fishburn, P.C. (1977) Mean-risk analysis with risk associated with below-target
returns. American Economic Review 67, 116—126.

[40] Follmer, H. and Leukert, P. (1999): Quantile hedging. Finance and Stochastics
3,251-273.

[41] Goldie, C.M. (1991) Implicit renewal theory and tails of solutions of random
equations. Ann. Appl. Prob. 1, 126-166.

[42] Goldie, C.M. and Maller, R. (2000) Stability of perpetuities. Ann. Probab. 28,
1195-1218.

[43] Goll, T. and Kallsen, J. (2000) Optimal portfolios for logarithmic utility. Stoch.
Proc. Appl. 89, 31-48.

[44] Gouriéroux, C. (1997) ARCH Models and Financial Applications. Springer,
New York.

[45] Grigelionis, B. (2001) On point measures of e-upcrossings for stationary diffu-
sions. Preprint. Vilnius University.

[46] Haan, L. de, Resnick, S.I., Rootzén, H. and Vries, C.G. de (1989) Extremal
behaviour of solutions to a stochastic difference equation, with applications to
ARCH processes. Stoch. Proc. Appl. 32, 213-224.

[47] Harlow, W. (1991) Asset allocation in a downside-risk framework. Financial
Analyst Journal, 28—40.

[48] Hsing, T., Hiisler, J. and Leadbetter, M.R. (1988) On the exceedance point
process for a stationary sequence. Probab. Theory Related Fields 78, 97-112.

[49] 1t6, K.I. and McKean, H.P. (1974) Diffusion Processes and Their Sample Paths.
Springer, Berlin.

[50] Joriot, P. (1997) Value at Risk: the New Benchmark for Controlling Market Risk.
Irwin, Chicago.

[51] Kallenberg, O. (1983) Random Measures. Akademie Verlag, Berlin.

[52] Karatzas, I. and Shreve, S.E. (1988) Brownian Motion and Stochastic Calculus.
Springer, New York.

[53] Kesten, H. (1973) Random difference equations and renewal theory for products
of random matrices. Acta Math. 131, 207-248.

[54] Kesten, H. (1974) Renewal theory for functional of a Markov chain with general
state space. Ann. Probab. 2, 355-386.

[55] Kiefersbeck, N. (1999) Stationaritait und Tailindex bei zeitdiskreten
Volatilitaitsmodellen. Diploma Thesis. Munich University of Technology.
www.ma.tum.de/stat/

€004 CRC PressLLC


http://www-m4.ma.tum.de/m4/

[56] Kloeden, P.E. and Platen, E. (1992) Numerical Solutions of Stochastic Differen-
tial Equations. Springer, Berlin.

[57] Kluppelberg, C., Maller R.A., Van De Vyver M. and Wee, D. (2000) Testing
for reduction to random walk in autoregressive conditional heteroscedasticity
models. Econometrics Journal 5, 387-416.

[58] Kliippelberg, C. and Pergamenchtchikov, S. (2001) Renewal theory for func-
tionals of a Markov chain with compact state space. Ann. Probab., to appear.

[59] Kluppelberg, C. and Pergamenchtchikov, S. (2001) The tail of the stationary dis-
tribution of arandom coefficient AR(q) process with applications to an ARCH(q)
process. Submitted for publication. www.ma.tum.de/stat/

[60] Korn, R. (1997) Optimal Portfolios. World Scientific, Singapore.

[61] Lamberton, D. and Lapeyre, B. (1991) Introduction au calcul stochastique ap-
pliqué a la finance. Edition Marketing S.A., Ellipses, SMAI, Paris. English

translation by Rabeau, N. and Mantion, F. (1996) Introduction to Stochastic
Calculus Applied to Finance. Chapman & Hall, London.

[62] Leadbetter, M.R., Lindgren, G. and Rootzén, H. (1983) Extremes and Related
Properties of Random Sequences and Processes. Springer, Berlin.

[63] Madan, D.B., Carr, P. and Chang, E. (1998) The variance gamma process and
option pricing. European Finance Review, 2, 79—105.

[64] Madan, D.B. and Seneta, E. (1990) The variance gamma (VG) model for share
market returns. Journal of Business 63, 511-524.

[65] Markowitz, H. (1959) Portfolio Selection — Efficient Diversification of Invest-
ments. New York, Wiley.

[66] Merton, R.C. (1994) Continuous—Time Finance, revised ed., Blackwell, Cam-
bridge, MA.

[67] Meyn, S. and Tweedie, R. (1993) Markov Chains and Stochastic Stability.
Springer, New York.

[68] Mikosch, T. and Starica, C. (2000) Limit theory for the sample autocorrelations
and extremes of a GARCH(1,1) process. Ann. Statist. 28, 1427-1451.

[69] Perfekt, R. (1994) Extremal behaviour of stationary Markov chains with appli-
cations. Ann. Appl. Probab. 4, 529-548.

[70] Pickands, J. III (1975) Statistical inference using extreme order statistics. Ann.
Statist. 3, 119-131.

[71] Pollard, D. (1984) Convergence of Stochastic Processes. Springer, New York.

[72] Protter, P. (1990) Stochastic Integrals and Differential Equations. Springer, New
York.

[73] Raible, S. (2000) Lévy Processes in Finance: Theory, Numerics, and Em-
pirical Facts. PhD thesis, University of Freiburg. http://www.freidok.uni-
freiburg.de/volltexte/51

€004 CRC PressLLC


http://www-m4.ma.tum.de/m4/
http://www.freidok.uni-freiburg.de/freidok/
http://www.freidok.uni-freiburg.de/freidok/

[74] Resnick, S.I. (1987) Extreme Values, Regular Variation and Point Processes.
Springer, New York.

[75] Revuz, D. and Yor, M. (1991) Continuous Martingales and Brownian Motion.
Springer, Berlin.
[76] Rootzén, H. and Kliippelberg, C. (1999) A single number can’t hedge against

economic catastrophes. Ambio 28, 6, 550-555. Royal Swedish Academy of
Sciences.

[77] Rogers, L.C.G. and Williams, D. (2000) Diffusions, Markov Processes, and
Martingales, Vol. 2, 2nd Ed. Cambridge University Press, Cambridge.

[78] Rosinski, J. (2001) Series representations of Lévy processes from the per-
spective of point processes. In: Barndorff-Nielsen, O.E., Mikosch, T. and
Resnick, S. (eds) Lévy Processes — Theory and Applications. Birkhauser,
Boston.

[79] Rydberg, T. (1997) The normal inverse Gaussian Lévy process: simulation and
approximation. Stoch. Models 13, 887-910.

[80] Sato, K. I. (1999) Lévy Processes and Infinitely Divisible Distributions. Cam-
bridge University Press, Cambridge.

[81] Sharpe, W. (1964) A theory of market equilibrium under condition of risk.
Journal of Finance 19, 1536-1575.

[82] Shephard, N. (1996) Statistical aspects of ARCH and stochastic volatility. In:
Cox, D.R., Hinkley, D.V. and Barndorff-Nielsen, O.E. (Eds.) Likelihood, Time
Series with Econometric and other Applications. Chapman and Hall, London.

[83] Smith, R. (2004) Statistics of Extremes with applications in environment, in-
surance, and finance, in Extreme Values in Finance, Telecommunications, and
the Environment, Finkenstadt, B. and RootZen, H., Eds., CRC/Chapman & Hall,
Boca Raton, Ch. 1.

[84] Taylor, S. (1995) Modelling Financial Time Series. Wiley, Chichester.

[85] Tweedie, R.L. (1976) Criteria for classifying general Markov chains. Adv. Appl.
Prob. 8, 737-771.

[86] Vasicek, O.A. (1977) An equilibrium characterization of the term structure. J.
Fin. Econ. 5, 177-188.

[87] Vervaat, W. (1979) On a stochastic difference equation and a representation of
nonnegative infinitely divisible random variables. Adv. Appl. Prob. 11,750-783.

[88] Weiss, A.A. (1984) ARMA models with ARCH errors. J. Time Ser. Analysis 3,
129-143.

€004 CRC PressLLC



CHAPTER 4

Extremes in Economics and the
Economics of Extremes

Paul Embrechts
Department of Mathematics, ETH Ziirich

Contents

4.1 About the title
4.2 On the history of financial risk management
4.3 BaselIand II
4.4 Some current research
4.4.1 Coherent risk measurement
4.4.2 Allocation and aggregation of risk
4.4.3 Portfolio management under general constraints
4.4.4 Dynamic models catering for extremes
4.5 Final comments

4.1 About the title

Within econometrics, probability theory and statistics, an enormous literature exists on
the topic of extremes in economics. See, for instance, Mikosch [47] and Kliippelberg
[36] in this volume, and the numerous references listed in those contributions. For
a long time, econometric research has shown that, for instance, logarithmic returns
of financial data are nonnormal. Extremal moves up or down do occur much more
regularly than standard (normal based) models make us believe. Extreme value theory
(EVT) has become a standard toolkit within quantitative finance useful for describing
these nonnormal phenomena. Statistically exploring and stochastically modelling
such extremes in financial data is, however, a rather different task from answering
the question: “Given a financial market where such extremes occur, how are they to
be handled from an economic point of view?” Perhaps the most striking answer to
the question came in the late eighties, early nineties through the emergence of risk
management (RM) regulations. In this chapter, I want to highlight some of these
developments, stress the interplay between EVT and RM and hint at possible areas
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of research where the focus is more on the second part of the title, “the Economics of
Extremes.” Several references will guide the reader to related publications.

4.2 On the history of financial risk management

In his excellent text Steinherr [51], the author, states, “Risk Management: one of the
most important innovations of the 20th century.” This statement summarizes the rev-
olution we witnessed on financial markets during the second half of the 20th century.
Some key dates that emphasize this revolution are (without striving for completeness):

1933 (four years after the 1929 crash): the Glass—Steagall Act was passed in the U.S.
in the aftermath of the Depression, prohibiting commercial banks from under-
writing insurance and most kind of securities. From that act emerged a new trend
of financial institutions: the investment bank. Many of the limitations embedded
in the Glass—Steagall Act were gradually softened, leading to its abolishment
and reformulation through the 1999 Financial Services Act repealing many
key provisions of Glass—Steagall. As a consequence, bank holding companies
will continue to expand the range of their financial services, and further conver-
gence of finance and insurance is likely. For a critical discussion on the latter, see
Cummins [14].

Around the early fifties, the foundation of modern portfolio theory was laid, for
instance through the seminal work of Harry Markowitz. Risk (measured through
standard deviation) entered as an extra dimension next to (excess) return. The
risk-return diagram with its efficient frontier became the bread and butter of
any portfolio manager.

In 1970, the Bretton Woods system of fixed exchange rates was abolished, leading
overnight to increased exchange rate volatility. The seventies also saw several
oil crises making energy an unpredictable, highly volatile market component.
Investors were looking for instruments that would enable them to hedge this
increased riskiness on financial markets.

Through the work of Fisher Black, Myron Scholes, and Robert Merton (1972),
this search for hedging instruments got a scientific response in that financial
derivatives could be rationally priced and hedged. Advanced mathematics and
finance joined forces in order to come up with what we now call the Black-
Scholes pricing formula (framework) for options; see Black and Scholes [7].
The floodgates opened starting with the opening in 1973 of the Chicago Board
of Options Exchange (CBOE). In those days, it seemed that the sky was the
limit.

An enormous growth in both volume and complexity of instruments traded on
financial markets resulted. For example, on the New York Stock Exchange,
the 3.5 million shares traded daily in 1970 grew to a volume of 40 million in
1990. The nominal value of the so-called over-the-counter (OTC) derivatives
increased over the period from 1995 until 1998 from $13 trillion to $18 trillion
for forex contracts, $26 to $50 trillion for interest rate contracts and across all
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types from $47 to $80 trillion. To be sure, $1 trillion = 1 x 10'?; an enormous
figure indeed! For details on these statistics, and much more, see Crouchy et al.
[12]. At this point, it needs stressing that all these developments were made
possible by an unprecedented growth in IT technology.

In the late eighties and early nineties, first attempts were made, both industry-
internally as well as from a regulatory point of view, to get these so-called
off-balance instruments (derivatives) under control. Again, Crouchy et al. [12]
has the full story. For the purpose of this chapter, it suffices to recall the work of
the Basel Committee on Banking Supervision. No doubt this regulatory frame-
work came very much into being due to some spectacular losses including
Orange County, Metallgesellschaft, Barings, and indeed more recently LTCM
and Enron. A lot has been written on these spectacular losses, so much that
Professor Stephen Ross (MIT) has been going around starting his talk with “I
am like a financial pathologist, I dissect financial corpses.” Under the title “Dis-
asters: Divine Results Rocked by Human Recklessness,” Boyle and Boyle [9]
have written an excellent account on Orange County, Barings, and LTCM. See
also Jorion [34] for an interesting discussion on LTCM. Specific contributions
on RM for alternative investments (hedge funds, private equity, alternative risk
transfer, . . . ) are Jaeger [32] and Lane [38].

It is essentially the regulatory framework that contributes strongly to laying down the
rules for the economics of extremes, hence in the next section, we will have a closer
look at these rules.

4.3 Basel I and II

When I refer to extremes in economics, [ refer to the modeling and analysis of extremes
in econometric data. As an example, look at the recent paper by Longin [43], one of
the pioneers of EVT in finance. In that paper, the author, for instance, estimates the
probability of exceedance and waiting time period for the ten largest daily return
price movements in the U.S. equity market (S&P 500) over the period July 1962 to
December 1999. This “hit parade” ranges from —18.35% on October 19, 1987 to
—3.29% on October 9, 1979. Other, perhaps less well known applied econometric
work on extremes in economics concerns spill-over events; see for instance Hartmann
et al. [31]. In this case, EVT in a multidimensional setup appears.

The second part of my title, “the Economics of Extremes,” concentrates on the
crucial question: given the econometric evidence on quantifiable extremal events in
finance (and insurance), how can we handle these extremes from an economic point
of view. Some concrete questions could be:

How can one devise prudent regulatory rules aiming at market stability? Here the
Basel Committee enters; see below for more details.

Measure and (more importantly) price the time-dimension of system-wide risk.
For these questions, see, for instance, Crockett [11] and Borio et al. [8]. An
interesting review on systemic risk, an area where EVT as a quantitative tool
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has a lot to offer, is De Brandt and Hartmann [17]. Important in these problems
is finding typically macroeconomic structures that help the economy/market to
dampen (hopefully avoid) the more negative consequences of extremal events.

For most of the more mathematically minded extreme value theorists, working in risk
management is equivalent to estimating Value-at-Risk (VaR) for ever more compli-
cated stochastic models. In their (our) terminology, VaR is “just” a quantile of some
underlying process or distribution. However, VaR is to finance what body tempera-
ture is to a patient; an indicator of bad health but not an instrument telling us what
is wrong and far less a clue on how to get the patient (system) healthy again. Let
us look at some of the main issues in risk management (RM) from the perspective
of the regulator as personified by the famous Basel Committee. Details underlying
the summary below are to be found on the homepage www.bis.org of the Bank of
International Settlements in Basel.

The Basel Committee was established by the Central-Bank Governors of the Group
of Ten at the end of 1974. The committee does not possess any formal supranational
supervisory authority, and hence its conclusions do not have legal force. Rather, it
formulates broad supervisory standards and guidelines and recommends statements
of best practice in the expectation that individual authorities will take steps to im-
plement them through detailed arrangements — statutory or otherwise — that are
best suited to their own national system. In 1988, the committee introduced a capital
measurement system, commonly referred to as the Basel Capital Accord (also called
Basel I). This system provided for the implementation of a credit risk measurement
framework with a minimum capital standard of 8% (a so-called haircut) by the end
of 1992. From the start, banks criticized the lack of risk sensitivity in this approach.
On the credit risk side, this led to the New Capital Adequacy (so-called Basel II)
framework of June 1999. The latter is now under discussion with the industry and
is planned to become operational by the end of 2006. Besides these key develop-
ments within the credit risk area, already around 1994 we saw various amendments
to Basel I catering to market risk, in particular for derivative positions. The 1996
report on the amendment to the Capital Accord to incorporate market risks opened
the floodgates for the VaR—modelers. Through this amendment, a direct link between
the quantitative VaR measure for market risk and regulatory capital was established.
The exact form of the link very much depends on the statistical qualities of the un-
derlying market risk models through backtesting. For banks opting for the so-called
internal modelling approach, the following formula yields the capital charge C, at
time ¢:

60 60
, 1 1
C; = max { VaR,_; +d, ASRY*}, M,@ § VaR,_; +d,@ § ASR,_;
j=1 j=1

where

VaR,_; is the 99%, 10-day VaR atday t —i;

M; is the multiplier for day ¢, M; > 3, mainly depending on the statistical qualities
of the model, in particular, depending on backtesting results;
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ASRY®R s the extra VaR-based charge derived from specific portfolio risk for
equity and interest rate instruments (using the CAPM language), and

d,; is a {0, 1}-indicator function which for day ¢ possibly includes specific risk.

For details on the formula, and its related economic interpretation, see, for instance,
Jovic [35]. There are also various regulatory rules on the allowable size of C; in func-
tion to the banks’ so-called Tier 1 and 2 capital, as well as bank internal allocation
rules of C; to subunits and the safeguarding of limits spoken based on VaR measures.
Moreover, the independent calculation/supervision/verification of VaR and ASRYR
poses a major problem, implying that there is much, much more to the calculation of
VaR than just saying that “we are estimating a quantile.” I find it very important that
EVT specialists, especially those participants to this SemStat meeting with an inter-
est in finance, take a deeper interest in these underlying economic and more detailed
computational issues. As already stated above, the BIS website is a good place to start.
J.P. Morgan’s RiskMetrics is a further source of more applied reading, especially its
more recent updated technical document, Mina and Xiao [48], which makes a nice
link between current EVT research and its impact on Market RM.

Although I have already used various examples of risk classes, in order to move
more in detail to Basel II it may be useful to give a brief classification of financial
risks as referred to in the Basel documents:

Market risk (MR): the risk associated with fluctuations in the value of traded
assets.

Credit risk (CR): the risk associated with the uncertainty that debtors will honor
their financial obligations.

Operational risk (OR): the risk of loss resulting from inadequate or failed internal
processes, people, and systems or from external events.

Liquidity risk (LR): the risk that positions cannot be unwound quickly enough at
critical times.

Other risks: business, reputational.

A modern financial institution will have to map the above zoology of risks with
indications of relevance, size, organizational issues, qualitative, and quantitative as-
sessment. See, for instance, Litterman [41], [42] for a discussion of some of these
issues. An important point concerns aggregation across risk classes and allocation of
resulting risk capital to the various relevant layers within the institution. In all these
fundamental steps, mathematical techniques enter at more or less prominent levels.
The key improvement within Basel II concerns an increased risk sensitivity for
credit risk internal models. This can be achieved through various analytical models
that go under the names of contingent claim, actuarial, and reduced form approaches;
see Crouchy et al. [12] for details. Gordy [29] gives an excellent review, Frey and
McNeil [27] unify the above models from a statistical (latent variable) point of view,
whereas a definitive textbook may well become Duffie and Singleton [21]. See also
Arvanitis and Gregory [5] for a guide to pricing, hedging, and risk management of
credit positions. Within CR management, extremes play a role through the typical
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skewness of the loss distributions, but more importantly through the nonGaussian
dependence between credit loss events. As shown by Frey and McNeil [27], the EVT
based modelling of default correlation is of key importance to any well functioning
CR management system. See also the latter paper for further references on this. A
critical discussion on the use of EVT to CR modeling is Lucas et al. [44].

An important economic consequence of the risk sensitiveness improvements made
for CR within Basel II is an anticipated reduction in total regulatory capital. At the
same time, however, the Basel Committee introduced within Basel II operational risk
(OR) as a new risk class. Although the consultation with industry is still ongoing,
it is to be expected that the decrease in CR capital charge will be (approximately)
offset by the new OR charge. Given that there will be a new OR capital charge
forthcoming, EVT in combination with standard actuarial modeling will be called for
in a fundamental way. In order to see this, consider the following OR setup. A stylized
OR database will look as follows:

(v, i, j,k}
where
i=12,...,T (years, say, e.g., T = 10);
j=12,...,s (# claim types, e.g., s = 6), and

k=1,2,...,Nb (# claims of type j in year ).
Note that typically Y,f’j is censored from below, i.e.,
v = (7 — i)

for the full (ground up) claims (?,i’j ) and some company specific lower thresholds
(d™)). As a result, the total yearly OR loss amounts across all s types are

s

Ni;
ZZY”, i=1,...,T

j=1 k=1

Because of Basel II, banks using an internal OR modelling approach will have to come
up with an estimate of the 100(1 — )% quantile (OR-VaR) with & small (« = 0.0005,
say) of the distribution function of next year’s total loss

s Nriwj

Z Z YkT+l,j'

j=1 k=1
Of the few facts available for real OR losses, one is very clear: losses are heavy
tailed. Hence from an extremes in economics point of view, actuarial total loss mod-
elling under a heavy tailed regime is natural; for some publications along these lines,
see Medova [46] and Cruz [13]. Embrechts and Samorodnitsky [26] contains some
advanced ruin theoretic results motivated by OR. At present, the more important
issue falls under the economics of extremes heading: why introduce an OR capital
charge in the first place? The already quoted BIS website (www.bis.org) contains un-
der “Basel Committee: Comments Received” several discussion papers on this topic.
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As an example, see Danielsson et al. [16] where some of the more fundamental eco-
nomic issues underlying quantitative risk management regulations a la Basel II are
critically assessed.

In the next section, some current mathematical research is summarized originating
from the above discussions on risk management in general and Basel I and II in
particular. The choice of topics is rather subjective. An attempt is made (mainly from
an economics of extremes point of view) to complement other EVT applications
within finance and insurance discussed elsewhere in this volume.

4.4 Some current research

4.4.1 Coherent risk measurement

In a sequel of fundamental papers, Artzner, Delbaen, Eber, and Heath ([3], [4], [18],
[19]) posed and answered the following questions:

(a) What economic properties should a “good” risk measure have?

(b) Characterize all “good” risk measures.

(c) Is VaR “good”?

(d) If the answer to (c) is no, suggest improvements.

In a one-period setup, a risk X is a bounded random variable (X € L°(2, F, P))
denoting the profit-and-loss of a financial position that we hold today for a fixed
future period, 10 days, say. Suppose the risk free interest over this one period is
r > 1. In the above publications, a “good” risk measure

p:L°(Q2,F,P)—>R
is termed coherent and has to satisfy the following axioms:

(C1) (translation invariance)

VXel’, aeR:pX+ar)=pX)—a.
(C2) (subadditivity)

VX, Y eL’:p(X+7Y) < p(X)+ p(Y).
(C3) (positive homogeneity)

VX eL’A>0:pAX)=ro(X).
(C4) (monotinicity)

VX,Y € L?, X <Y, wehave p(X) > p(Y).

In Artzner et al. [4], the link to economics is made through the notion of acceptance
set associated with a coherent risk measure p:

A, ={XeL’ pX)=<0}.

Hence A, contains those financial positions for which, using the risk measure p, no
further capital charge (p(X) = 0) is necessary, or even (p(X) < 0) capital can be
redrawn. A further result from this paper is the following representation theorem: a
risk measure p is coherent if and only if there exists a set P of probability measures
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on (2, F), such that
p(X) = sup{E2(=X/r), QeP},

i.e., p is a so-called generalized scenario through which Q2 is answered. It is not
difficult to see that in general VaR is not coherent. Indeed typically for nonelliptically
distributed portfolios, VaR fails to satisfy the (for economic purposes) important sub-
additive property (C2). The following easy example goes back to Claudio Albanese;
a similar example is to be found in Artzner et al. [3].

Example 4.1 (VaR is not necessarily coherent) Suppose X1, ..., X oo correspond
to the profit-and-loss (P&L) positions of 100 defaultable (one year) bonds, each
with face value $100, default probability 1% and 2% yearly coupon. Hence, for
i=1,...,100,
¥ 2 with probability 99%
"] =100 with probability 1%.

Surely, the more diversified position > ,‘2‘{ X; should have a lower capital charge as
the “all eggs in one basket” position 100X ;. When we take p = VaRgs¢, however, it
is easy to check that

100 100
p(100X1) = p(X;) <0 < p (Z Xl-> :

i=1 i=1
The sign convention, VaRgs¢, = minus the 5% left quantile of the P&L distribution,
corresponds to usage in practice to report VaR positively and the definition of coher-
ence used above where losses are in the left tail of the P&L distribution. Indeed (C3
and C4) yield that a risky position (X < 0) becomes a positive net regulatory capital
charge (p(X) > 0). This convention is not material for the example.

The main reason that VaR fails the subadditivity property is the high skewness of the
positions X;; these so-called “spike-the-firm” positions (terminology coined by Dilip
Madan) do however occur in practice, especially in markets where high severity—low
probability events occur. Embrechts et al. [25] discuss the relevance of the above for
portfolio theory and stress that one other reason why VaR may lack subadditivity in
more general situations is the typical nonGaussian dependence structure of financial
data. We will come back to this point in Section 4.4.2.

VaR has a further, very obvious shortcoming in that it only yields a frequency
estimate of a high loss; it does not give information on the severity for when that
(rare) loss happens. For instance, saying that a 99%, 10-day VaR equals $1 Mio
means that with probability 1%, by the end of a 10-day period, our present portfolio
(held fixed) will incur a loss of $1 Mio or more. VaR does not give any information on
this crucial “or more.” Going now to question (d), an obvious risk measure stressing
the “or more” would be the conditional VaR measure

pev(X) = E(=X/r | =X/r > VaR(X))

for some given VaR. Under weak conditions, see Delbaen [19] and Acerbi and Tasche
[1], pcv is coherent. Clearly pcy > VaR and in some extreme (though realistic) cases
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pcy > VaR. When we would move to pcy as a measure determining regulatory
capital, the immediate economic question arises of how to handle in practice (given
the present regulatory environment) the difference pcy — VaR. One would have to
come up with a fully, economically sound regulatory capital framework based on pcv;
this task is definitely doable but needs combined input from academia, regulators, and
industry. I refer to Danfelsson et al. [16] for a discussion of the relevant economic
pitfalls underlying such a task. At this point, I would like to stress that so far we do
not have a full theory for coherent multiperiod risk measurement. First attempts to
come up with such a theory, already showing that pcy is also problematic, are under
discussion (private communication with Freddy Delbaen and Philippe Artzner).

4.4.2 Allocation and aggregation of risk

As soon as one has reached a consensus between regulators and industry on how
to quantify and measure risk, one immediately faces the question: how to use this
technology to improve capital allocation. As in the previous section, it would be
useful to come up with an axiomatic definition of (risk) capital allocation. Denault
[20] has worked out the details of such a coherent risk capital allocation, based on the
work on coherent risk measures (Section 4.1), game theory and related results from
the actuarial literature. As before, after understanding what rules are scientifically
sound, the next step is to work out their actual implementation in practice. On the
latter, Matten [45] yields a good introduction.

A related (in some sense, reverse) question concerns the aggregation of risk mea-
sures. One often faces the problem that risk measures p (X;),i = 1, ..., d have been
calculated for separate risk classes; how can we estimate the risk measure p(W (X))
of a global position ¥(X) on X = (X|, ..., X,)'. Typical examples for X, ..., X,
are one-period risks within certain risk classes (market, credit, operational), but also
across different classes. At the highest level, one could think of X standing for mar-
ket, X, for credit and X3 for operational risk of a particular financial institution over
a comparable fixed time period. Another example would correspond to d lines of
business in a multiline insurance contract. Depending on the context, for ¥ one could
think of examples like:

d +
V() = (in —k) :
i=l

‘IJ()\(’) = Md1{5d>qa}’ etc.
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For the risk measure p one could restrict attention to the class of coherent risk mea-
sures. The more interesting case however is that of noncoherence like VaR. In general,
one could even take p(W(X)) = Fyy), the distribution of the financial position W(X)
or some functional of W (X) as for instance moments E(W( X Y9). Often in practice one
is given only the marginal distribution functions Fi, ..., F; of Xy, ..., X, respec-
tively, together with some notion of dependence between X1, ..., Xy. The crucial
point is that most often one does not have full (even usable statistical) information on
Fx. How can one construct optimal bounds

pL(¥ (X)) < p(¥(X)) = pu(¥(X)) 4.1

in agreement with the above assumptions? A full discussion of this problem, with
several examples, is to be found in Embrechts et al. [23]. The notion of dependence is
defined using the language of copulas; suppose Fi, ..., F; are continuous, then there
exists a unique function

C:[0,11 = [0, 1]

which is a distribution function with standard uniform marginals so that
PXi=xi,....Xg =xg) = C(Fi(x1), ..., Fg(xq)).

The function C is called copula as it couples the marginal laws Fy, ..., F; to the
joint distribution of X. A typical dependence condition on the unknown copula C
of X could be C > C, for some known copula C,, e.g., the independence copula
Co(u) = Hle u;. From Embrechts et al. [23] take for instance d =2, W(X) =
X1 + X, and p = VaRysq, (here we only look at the right tail of the distribution
function so that VaRosq, corresponds to the 95th percentile). If we assume for example
that F; =I'(3,1),i = 1,2, then p (X;) = 6.3, i = 1, 2. The unconstrained range of
possible values for p (X| + X»)in (4.1)is [6.47, 14.44]. If we assume X | and X, to be
independent, then p (X + X;) = 10.52. Whenever X, and X, are comonotone, i.e.,
there exist increasing functions fj, f>» and a random variable Z so that X; = f;(Z),
i = 1, 2, then p becomes additive so that p (X| + X3) = p (X1)+ p (X2) = 12.60. In
case C > C,, the independent copula, then the possible range becomes [8.17, 14.41].
The crucial observation stems from a comparison of the (attainable) upper bound
for the unconstrained case (14.44) and the value of p (X + X3) = p(X1) + p(X3)
for comonotonic risks (12.60). The gap [12.60, 14.44] corresponds to dependence
structures (copulas) on (F, F») which yield, for the corresponding bivariate model
for (X, X,), a nonsubadditive risk measure p = VaRgsq. The key issue here is
not the shape of F; (we could also have taken F; = N(0, 1)) but rather the damage
nonGaussian dependence structures can cause on risk management systems. These
issues, and their economic implications, need further investigation. See Embrechts
et al. [25] for a start.

4.4.3 Portfolio management under general constraints

Using the one-period setup so far, given X,, X1, ..., X; where X, corresponds to a
riskless investment and X, ..., X, correspond to risky positions, the basic problem
of portfolio analysis concerns the following. Given some risk measure p, find the
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portfolio weights ag, af, ..., a} so that

* . !
a* =argminp(a’' X
~ a%]RdH p(’\’ ’\’)
£

so that (g’ X) = ro, fixed.

Here, r(Y') stands for the one-period excess return on the investment Y. The case p = o
(standard deviation) corresponds to the classical Markowitz problem, leading to the
notion of efficient frontier/portfolios. Numerous authors have considered this problem
for a variety of risk measures p. For instance, going from p = o to p = VaR seems
a very natural thing to do; however, from an economic (stability) point of view, such
optimization can readily lead to dangerous situations and should be treated with care.
For this particular case, a detailed discussion is to be found in Basak and Shapiro [6].
See also Krokhmal et al. [37] and Rockafeller and Uryasev [49]. I also would like to
stress that already in the early days of portfolio theory, optimization with respect to al-
ternative risk measures was considered; see for example Lemus et al. [39] for a review.

4.4.4 Dynamic models catering for extremes

Most of the work within the realm of extremes in economics has centered around
either static or discrete time modelling. However, given that extremal moves do occur
and are important, one has to take the logical step following on from this and come up
with dynamic models for derivative pricing and hedging replacing the Black-Scholes-
Merton framework based on geometric Brownian motion:

dS(t) = S (udt + o dW(t)).

One of the key models already in use in practice is the one where in the above SDE,
standard Brownian motion is replaced by a more general Lévy process {L(t), t > 0}.
Replacing (W (#)) in such a way immediately leads to an incomplete market where
there is no unique pricing martingale measure. Fairly recently, several authors have
worked out a possible framework. Readers interested in this area of research could,
for instance, consult Eberlein [22], Carr et al. [10], Geman et al. [28], and Levin and
Tchernitser [40]. The latter paper can be downloaded via www.gloriamundi.org/var/
wps.html, a website containing numerous working papers on VaR.

4.5 Final comments

In the above discussion, I have tried to stress the need for more economic thinking/
modelling in the interplay between EVT and risk management. Especially now when,
through Basel II, new basic guidelines for quantitative risk management are under
discussion, extreme value theorists with an interest in applying their techniques
to finance have to take a closer look at the underlying economic fundamentals.
That extremes in finance matter is clear. Looking back at the LTCM case in 1998
where extreme market movements resulted from the Russian moratorium on gov-
ernment bonds, it is interesting to see that the key player in LTCM’s up and down,
John Meriwether on 21/8/2000 (Wall Street Journal), talking about his new business
JWM Partners, was quoted as follows: “With globalization increasing, you’ll see
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more crises. Our whole focus is on the extremes now — what’s the worst that can
happen to you in any situation — because we never want to go through that again.”
Already in the introduction to our book Embrechts et al. [24], we stated that “Though
not providing a risk manager in a bank with the final product he or she can use for
monitoring financial risk on a global scale, we (i.e., EVT models) will provide that
manager with stochastic methodology needed for the construction of various compo-
nents of such a global tool.” By now, EVT has provided RM for banking and insurance
with a useful set of techniques for looking more realistically at extremes. The main
emphasis of the present paper is for EVT researchers to take the step beyond and look
at the economic implications of their research. The following papers may offer some
further guidance along this road:

Danielsson [15] offers a critical assessment of the use of statistical, EVT based
techniques in RM. With respect to VaR based RM, the author states that “For reg-
ulatory use, the VaR measure may give misleading information about risk, and
in some cases may actually increase both idiosyncratic and systemic risk.” This
paper also formed the basis of the earlier quoted Basel II response Danielsson
et al. [16]. Also the following papers offer a useful introduction to the main
issues at hand: Jorgensen et al. [33] and Zigrand and Danielsson [52].

In [50], Myron Scholes rediscusses some of the basic issues underlying the collapse
of LTCM, stressing the crucial importance of market liquidity. Concerning VaR,
Scholes concludes the following: “Over the last number of years, regulators
have encouraged financial entities to use portfolio theory to produce dynamic
measures of risk. VaR, the product of portfolio theory, is used for short-run day-
to-day profit and loss exposures. Now is the time to encourage the BIS and other
regulatory bodies to support studies on stress test and concentration method-
ologies. Planning for crises is more important than VaR analysis. And such new
methodologies are the correct response to recent crises in the financial industry.”

The discussions above are mainly restricted to EVT issues in finance. Similarly, we
could have discussed more specifically examples in insurance. At present one
witnesses an increasing collaboration between insurance and banking regula-
tors. On the website of the Canadian Institute of Actuaries (wWww.actuaries.ca),
one finds the following vision statement: “for actuaries to be recognized as the
leading professionals in the financial modelling and management of risk and
contingent events.” On that same website, a presentation by Allen Brender on
capital requirements and stochastic methods can be found where he concludes
“We are only in the early days of a new actuarial age.” The publication Hancock
et al. [30] gives a very readable introduction to this “new actuarial age.”
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CHAPTER 5

Modeling Dependence and Tails
of Financial Time Series

Thomas Mikosch
University of Copenhagen
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dependence structure of financial data.

We start by discovering some of the “stylized facts” of real-life returns: long range
dependence effects that affect the sample autocorrelation behavior of the absolute
log-returns and erratic behavior that results in heavy-tailed marginal distributions. In
practice one often observes that financial log-return series can have infinite 3rd, 4th,

5th, ... moments.
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Then we look at some of the standard econometric models that try to capture the
empirical behavior. Those include GARCH (generalized autoregressive conditionally
heteroscedastic) and stochastic volatility processes. The GARCH case turns out to
be a very complex one. We embed these processes in finite-dimensional stochastic
recurrence equations. Following classical work of Kesten [88], we show that the
finite-dimensional distributions of these processes are multivariate regularly varying,
thus they have infinite power moments of a certain degree. Heavy tails cause the
classical limit theory for the sample autocorrelations to break down. Therefore one
has to modify this asymptotic theory: unfamiliar infinite variance limit distributions
occur and rates of convergence can be extremely slow. Point process techniques turn
out to be important in this context.

The long range dependence effect of real-life data cannot be explained by GARCH
models. A possible explanation for this effect is nonstationarity of the underlying time
series. We will learn how statistical tools behave under nonstationarity and how they
can fool us to see things that are not there.

5.1 “Stylized facts’ about financial data

Over the last few years financial mathematics has been one of the mathematical
success stories that has attracted the attention not only of mathematicians but also
of various groups of people outside these circles of specialists. Among them are
nonmathematicians such as economists, econometricians, physicists, psychologists,
and many more. Mathematicians clearly get excited because difficult parts of their
theory are applicable in an area that is far away from mathematics, whereas the finance
industry thinks that this part of mathematics might be useful to make money in one
form or the other. Certain people find it intellectually stimulating that, eventually, there
is a formula that explains a difficult procedure such as the pricing of an option very
much in the same way as Newton’s law gives a quantitative description of gravitation.

It is mainly that part of financial mathematics related to the pricing of derivatives
such as options and futures that has been considered as most useful. The Black-Scholes
option pricing formula, which, by now, is taught in any good course on stochastic
integration and martingales, stands as a synonym for this theory. It has been pushed
forward since 1973 when the two fundamental papers of Black-Scholes and Merton
appeared. Brownian motion and Itd stochastic integral, Girsanov transformation and
change of measure are the basic notions in this framework. A deep knowledge of the
theory of stochastic processes is the basis for anybody who wants to conduct serious
research in this area.

Parallel to the pricing theory of derivatives, econometricians have modeled financial
time series. Time series are discrete time processes, and the link to continuous time
processes is not obvious and in general difficult to establish, i.e., the embedding
of a discrete time process in a continuous time one is by no means an easy matter.
However, the aims of time series analysis are different from those of pricing. Whereas
the latter requires a continuous time framework in order to make martingale and
stochastic integration techniques applicable, time series analysis has always been
directed towards the understanding of the mechanism that drives a given series of
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data with the aim of possibly predicting future values in the series. This does not
mean that stochastic differential equations which are commonly used to model price
movements for derivative pricing do not describe a certain physical mechanism of the
price evolution. This approach, however, does not primarily aim at the most realistic
model for prices. Its basic goal is to get a reasonable model that is mathematically
tractable and can be understood or interpreted by financial practitioners.

Thus, financial time series analysis focuses on the truth behind the data, meaning
that one is interested in finding physical models that explain, at least to some extent,
the empirically observed features of real-life data. Because there are many financial
data, it might be difficult to say anything about some common properties. Surprisingly,
a large variety of financial data which we denote consistently by P,,t =0,1,2, ...,
(t can be minutes, hours, days, etc.) exhibits similar properties after the transformation

P — P
X, =log P, —log P,_; =log 1+P7 ,
—1

at least if one focuses on share prices (of Microsoft, say), stock indices (DAX,
Nikkei, Dow Jones, etc.) or foreign exchange rates (such as USD/JPY, USD/DEM, or
JPY/DEM). As a matter of fact, these similar properties depend on the time scale cho-
sen. Depending on whether the time unit is a second, half an hour, or a day, a month, or
a year, qualitative differences in the time series can be expected, and different models
need to be introduced. For example, if the time scale is too small (minutes, seconds,
etc.) P; lives on a grid and varies little; one often observes that P, does not change over
longer (relative to the time unit) periods. This would imply that the distribution of X,
has an atom at zero. This would be an unacceptable assumption if X, was calculated
on a daily basis, in which case one often requires that X, has a density. Since we do
not want to get into too large or small time scales; in what follows we think of ¢ in
units of hours, days, or weeks.

The resulting (X,) is the time series of log-returns which, by a Taylor series argu-
ment, is close to the relative returns series ((P;, — P;_1)/P,_1). The relative returns
give some more intuition on the log-returns (the relative returns are very small and
therefore almost indistinguishable from the log-returns), i.e., they describe the relative
change over time of the price process. In what follows, we often refer, for short, to
returns instead of log-returns. See Figure 5.1.

The log-differences X; have the advantage that they are free of any unit, therefore,
comparable among each other. Moreover, there is an important mathematical issue as
well: itis believed that the time series (X,) can be modeled by a stationary (in the strict
or wide senses) stochastic process, i.e., this transformation yields one realization of
a stationary process. In turn, stationarity is a basic assumption for any kind of time
series analysis. In the beginning, we will accept stationarity of (X;) as a working
hypothesis. Later, in Section 5.11, we will criticize it.

5.1.1 Distribution and tails

Samples of returns X, ..., X, have the following stylized facts in common:

e The sample mean of the data is close to zero; the sample variance is of the order
10~* and smaller.

€004 CRC PressLLC



0.05

0.0

log-returns
-0.10 -0.05

-0.15

-0.20

1960 1970 1980 1990
time

Figure 5.1 Plot of 9558 S&P500 daily log-returns from January 2, 1953, to December 31,
1990. The year marks indicate the beginning of the calendar year.

This is not surprising because price changes are in general very small; a daily change
of more than 2 to 3% is unusual.

e A density plot of the data shows that the distribution of the data is roughly sym-
metric in its center, sharply peaked around zero with heavy tails on both sides.

See the top graph of Figure 5.2 for an illustration in the S&P500 series case.

The shape of the density indicates that the normal distribution is perhaps not the most
appropriate model for returns. This is also seen by a QQ-plot of the data against the
normal distribution (see the bottom graph of Figure 5.2), i.e., the empirical quantiles
are plotted against the quantiles of the normal distribution with the same mean and
variance as the data. The deviation from normality is in contrast to the Black-Scholes
model, which is most frequently used for stock prices. Indeed, the latter assumes that
prices are modeled by the continuous time stochastic process

P = PyetB >0,

with constants ¢, o, and standard Brownian motion B, i.e., (P;/Py) is geometric
Brownian motion. Choosing ¢ at equidistant instants of time, the structure of P implies
that the log-return series (X;) constitutes an iid normal sequence. As we have seen
by empirical means, this is not a realistic assumption. But it is convenient for the
purposes of derivative pricing.

The very large and very small values in the density plot and the shape of the normal
QQ-plot (which curves down at the right and curves up at the left) are indications for
the next stylized fact:
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Figure 5.2 Top: Density plot of the S&P500 data. The limits on the x-axis indicate the range
of the data. Bottom: QQ-plot of the S&P500 data against the normal distribution whose mean
and variance are estimated from the S&P500 data.

e Log-return data have heavy-tailed marginal distributions.

Later, in Section 5.5, we will see that the tails of log-returns are conveniently
modeled by distributions with power law tails, i.e., for large x and some positive
number « (the tail index),

P(X, >x)~x“.

We use ~ in a heuristic way meaning that P(X, > x) is roughly of the order x~* for
large x; in Section 5.4 we introduce the notion of regularly varying tail in order to
make these heuristics precise. Examples of distributions satisfying the latter right tail
condition are the Pareto distribution (with an exact power law) and the ¢-distribution
with o degrees of freedom. Thus, for the moment, it is convenient to think of log-
returns as 7-distributed random variables. This is closer to the truth than the normal
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Figure 5.3 Top: Plot of the ratio max;=1, ., |Xi|?/(|X1|P + --- + |X,|P) against n for the
S&P500 data (X ;) for various values of p. If E|X1|P < oo and the data came from a stationary
ergodic model, the ratio should converge to zero a.s., by virtue of the strong law of large numbers.
Bottom: Hill plot (dotted line) for the S&P500 data with 95% asymptotic confidence bounds.
The Hill estimator estimates the tail index o in the model P(X| > x) ~ ¢x~% as a function
of the m upper order statistics in the return sample. The estimate is taken in the m-region
where the plot does not change much; o = 3.7 would be reasonable. See Embrechts et al.
[58], Chapter 6, for details and more tools on extreme value statistics, or Resnick [121] (this
volume) for an extensive discussion of Hill plots.

distribution as can be seen in Figure 5.3, where some procedures for determining the
tail index « of the distribution of the S&P500 are exercised.

Since the 1960s there has been discussion about whether or not log-returns can
be modeled by an infinite variance «-stable distribution. This discussion was started
by Benoit Mandelbrot [99]; see Mandelbrot [100, 101] for some recent thoughts on
this hypothesis. The definition of an «-stable distribution is given in Section 5.7,
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but for our present purposes we only need to know that the «-stable hypothesis im-
plies the tail behavior P(X; > x) ~ cx~% as x — oo, for some o € (0, 2). (Here
and in what follows, f(x) ~ g(x) for two functions f and g means that their ra-
tio converges to 1 as x — o0.) Thus we are in the framework of power law tails
for log-returns. Although stable distributions (more generally, stable processes) have
very desirable scaling properties, there is quite general agreement in the literature
that log-return series cannot be reasonably modeled by stable distributions. The au-
thor has never found convincing statistical evidence for any log-return series to be
in agreement with the infinite variance marginal distribution hypothesis. The con-
trary position is defended, for example, in the monograph by Mittnik and Rachev
[111].

5.1.2 Dependence, autocorrelations, and clusters of extremes

A further deviation from the Black-Scholes model is that returns are dependent.

In standard time series analysis such as presented in the excellent books of
Brockwell and Davis [29, 30] the second order structure of a stationary time se-
ries (X;) is fundamental for any studies. In particular, the autocovariances yx(h) and
autocorrelations px(h) at lag h € 7Z, given by

yx(h) = cov(Xy, X)) and px(h) = corr(Xg, Xp), 5.1.D)

are the main objects of interest. The functions yx and px will be referred to as the
autocovariance function (ACVF) and the autocorrelation function (ACF) of the time
series (X;). For a stationary Gaussian time series, the mean and the ACVF completely
determine the dependence structure and the finite-dimensional distributions of the
sequence (X,). This, in general, is not the case for a nonGaussian time series. Nev-
ertheless, the ACVF and in particular its normed version, the ACF, are considered
as important indicators for the dependence structure in a time series. The ACVF and
ACF are essential ingredients for parameter estimation, model testing, and prediction
in classical time series analysis, which is the analysis of linear processes, in particular,
ARMA (autoregressive moving average) processes.

Since the ACVF and ACF are not known for a real-life data set, they have to be
estimated by statistical means. Standard estimators are given by the sample autoco-
variances y, x(h) and sample autocorrelations p, x(h) atlag h € Z:

n—|h|
Yax(h) == > (X, = X,)X,1p — X,) and p, x(h) =
n

t=1

yn,X(h)
Vn,X(O) ’

(5.1.2)

where we interpret y, x(h) = p, x(h) = 0 for |h| > n, and, as usual, X,, stands for
the sample mean. A straightforward application of the ergodic theorem yields that for
every h € Z,

Yax(h) = yx(h) and p, x(h) = px(h), (5.1.3)
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provided that (X,) is stationary ergodic and var(X,) < oo. For this reason, the sample
ACVF and sample ACF are usually taken as surrogates for the ACVF and ACF, respec-
tively, although common sense tells us that we may get in trouble with this procedure
if n is too small or % too large with respect to n. We will see later, in Section 5.9.1,
that the sample ACF may also lead to misinterpretations if the distribution of the X,’s
is very heavy-tailed (in the sense that EX; = oo) since the rate of convergence in
(5.1.3) can then be extremely slow and, hence, asymptotic confidence bands for the
ACF can be unusually wide. But let us assume for the moment that the sample ACF
is what it is supposed to be: a reasonable estimator for the ACF. Then the following
properties of log-return series (X,) are commonly observed.

e The sample ACF p, x is negligible at all lags. (A possible exception is the first lag.
However, the estimated value is usually small in absolute value as well.)

e The sample ACFs p, x| of the absolute values | X,| (further referred to as absolute
log-returns) and p, x of the squares X7 are different from zero for a large number
of lags and stay almost constant and positive for large lags.

An illustration of these empirically observed facts for the S&P500 data of Figure 5.1
is presented in Figure 5.4.

The slow decay of the sample ACF for the absolute log-returns we observe in
Figure 5.4 is very typical for longer time series. Since the autocorrelation pjx|(h)
describes the degree of dependence in the process (| X;|) over a period of A units of
time, and p, |x|(h) is not negligible even for lags 200, 250 (one business year), 300,
etc., one often refers in this context to the long memory or long range dependence of
absolute returns and their squares. We will discuss this issue later in Section 5.11.1,
and try to find an explanation for this effect.

At this point it is worthwhile explaining why we focus on the time series of the
absolute values and squares of the log-returns. Empirical evidence shows that the
sequence of the signs of a log-return series has similar statistical properties as a se-
quence of i.i.d. symmetric Bernoulli random variables. Therefore many models are of
the form X, = | X,| sign(X,), where the sequence (sign(X,)) consists of i.i.d. symmet-
ric Bernoulli random variables, and so one is left to model absolute returns. To be more
precise, as we will see in Section 5.2.2, various popular models are of multiplicative
type: X; = o; Z;, where (Z,) is an i.i.d. symmetric sequence, the volatility sequence
(oy) is stationary and nonnegative, and o; and Z, are independent for every fixed 7.
Thus the sequence (sign(X;)) = (sign(Z,)) is i.i.d. symmetric Bernoulli, as desired.
The volatility of a log-return is of major interest but, by construction, it cannot be
observed. Therefore the observable quantities | X;| and X f are often considered as
surrogate values or estimators of o, and o2, respectively. To some extent this may
explain the interest in modeling the dependence of the absolute log-returns and their
squares.

We focus in this chapter on extremes, so it is worthwhile mentioning that autocorre-
lations are not good tools for explaining large and small values in a time series. Indeed,
covariances and correlations are moments, hence they are integrated characteristics
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Figure 5.4 Sample ACFs for the log-returns (top) and absolute log-returns (bottom) of the
S&P500. Here and in what follows, the horizontal lines in graphs displaying sample ACFs

are set as the 95% confidence bands (£1.96/./n) corresponding to the ACF of iid Gaussian
noise.

of the distribution of the underlying time series; the contribution of the probabilities
in the tails of the distributions is averaged out and disappears.

The dependence of extremal return values is obvious if one looks, for example, at
pairs | X;|, | X;+1| exceeding a high threshold; see Figure 5.5. For comparison we in-
clude the graph of the joint exceedances of the same threshold for the successive values
| X;], | X;+1] in an i.i.d. sequence (X,) with a student distribution with four degrees of
freedom which often fits returns nicely. It is obvious that joint pairwise exceedances of
a high threshold occur in clumps for log-return data due to the dependence of the ex-
treme values. We refer to dependence in the tails. For an i.i.d. sequence, exceedances
of high positive or low negative thresholds (relatively to the size of the data) occur
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Figure 5.5 Top: Absolute returns |X;| of the S&P500 series for which both |X;| and | X;+1]
exceed the 87% quantile of the data. The latter is indicated by the bottom line. Bottom: The
same kind of plot for an i.i.d. sequence from a student distribution with 4 degrees of freedom. In
the former case pairwise exceedances occur in clusters, in the latter case exceedances appear
uniformly scattered over time.

separated over time, roughly according to a homogeneous Poisson process. For re-
turns, this is not true.
This leads one to the next stylized fact:

e The large and small values in the log-return sample occur in clusters. There is
dependence in the tails.

Since autocorrelations are not appropriate for describing the dependence of large
and small X,-values, further tools have been considered. One of them we want to
explain now. For an i.i.d. sequence (X;) we know that

PM, =x)=[P(X; =0)]", n=12..,
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where
M, = max(X,..., X,).

For large classes of strictly stationary sequences (X,) one can show the existence of
anumber 6 € [0, 1] such that

P(M, < x,) =[P(X; < x,)1”" + o(1),

where (x,) is a suitable sequence converging to the right endpoint of the distribution
of X . This number 6 is the extremal index of (X;). It can be estimated from the data
by statistical methods; see Figure 5.6 for an illustration.

Due to dependence, the serial indices of the data can be separated into blocks in such
a way that the size of the data is comparable within such a group which, for obvious
reasons, is referred to as a cluster. We avoid giving a more precise definition. (This is
a difficult task with various possible answers.) The value 1/6 has interpretation as the
expected value or the mean cluster size of high level exceedances of the data, and so
an estimated value 6 < 1 for returns gives some indication on the clustering behavior
for very large values of the returns. For more information on modeling of clusters
and estimation of 0, see [58], Section 8.1, and the references therein, or the classic in
extreme value theory, Leadbetter et al. [94].
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Figure 5.6 Point estimation of the extremal index for the S&P500 data. The estimators are based
on the upper order statistics exceeding the threshold u. The smallest u is the 97% quantile of
the data. The estimator estimates 6 in a u-region where the plot does not change much (between
0.03 and 0.04) resulting in an extremal index of about 0.7. If u is too high (above 0.04 say),
the estimator is based on too few order statistics and not reliable.
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The extremal index gives a rough description of the clustering behavior of high
level exceedances. In Section 5.4.2 we will learn about more sophisticated measures
of dependence in the tails.

5.1.3 Aggregational Gaussianity

The list of stylized facts for returns is by far not complete. In the literature one finds
more properties that are typical for a large variety of return series. Among them is

o the aggregational Gaussianity, i.e., the distribution of log-returns over longer peri-
ods of time (such as a month, half a year, a year) is closer to the normal distribution
than for hourly or daily log-returns.

This means that density plots of returns are sharply peaked about zero and exhibit
heavier tails than consistent with normal behavior (see Figure 5.2), but that under
aggregation exhibit more of a bell shape characteristic of the normal density. Alterna-
tively, this is an indication that daily or hourly returns satisfy the central limit theorem
(CLT). In turn, because the condition of finite variance is close to necessity for the
CLT with normal limit of a strictly stationary mixing series (cf. Ibragimov, Linnik
[84] or Doukhan [52]), this indicates that the variance of the distribution of the data
is finite. Aggregational Gaussianity is another piece of empirical evidence against
Mandelbrot’s hypothesis on infinite variance stable distributions; see the discussion
in Section 5.1.1.

density

-0.03 -0.02 -0.01 0.0 0.01 0.02 0.03

Figure 5.7 Estimated probability density for the scaled (with 1//n) aggregated log-returns of
the S&P500 from disjoint periods of n = 1, 25, 150 days and the normal density curve with the
same mean and variance as the complete S&P500 series. Density plots are sharply peaked about
zero and exhibit heavier tails than consistent with normal behavior, but under aggregation they
exhibit more of a bell shape characteristic of the normal. If the aggregation period increases
the sample size used for the density estimation becomes smaller and, therefore, the density
curves are less smooth than for a lower aggregation level. (For periods of n = 1, 25, 150 days,
the sample sizes used for density estimation are 9558,382, and 63, respectively.)
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In the literature one can often find the statement that log-returns over longer periods
of time have tails less heavy than compared to those over shorter periods. This is
frequently explained by the aggregational Gaussianity. This statement is incorrect if
the data come from a distribution with a power law tail and the dependence structure
of the data is specified in a suitable way; see Example 5.4.9 for more details. Indeed,
in this case it can be shown for large classes of strictly stationary time series (X,) that
the sums X; + - - - + X, have very much the same asymptotic power law tails as X,
itself. In particular, they have the same tail index.

We finally mention a property of log-return data that is often referred to as leverage
effect. We claimed before that the distribution of log-returns is roughly symmetric in
the center of the distribution. However, there is a tendency for the data to be negative
in periods of higher activity compared to periods of lower activity. This means that
the market is prone to react differently to positive as opposed to negative returns.
This dynamic version of asymmetry (Barndorff-Nielsen and Shephard [5]) will not
be addressed in this chapter where we mainly focus on the issue of modeling the
dependence in the tails.

5.2 Standard models
5.2.1 Linear and ARMA processes

The stylized facts of returns indicate the difficult task of modeling time series with
such a complicated structure. We start by asking what answers classical time series
analysis would yield to the mentioned problems. Classical (or standard) time series
analysis is motivated by the theory of Gaussian stationary processes where the second
order structure of the time series tells us everything about the finite-dimensional
distributions and, hence, the dependence in the process. Although this statement is
not correct for an arbitrary (strictly) stationary process, the detection of the second
order structure of the time series remains the basic goal with the aims of fitting models
to real-life data and predicting future values out of the data. For returns X, the second
order structure of the time series (all autocorrelations are negligible) does not help
one much to understand its structure, and therefore it is useful to consider alternative
means, in particular, when one is interested in the extremal behavior of the return
series.

In classical time series analysis as presented in Brockwell and Davis [29], linear
processes constitute the basic model:

o0
X, =) VYiZ_j, teL, (5.2.1)
j=0

where (Z;)is ani.i.d. noise sequence, and () is a sequence of real numbers satisfying
some mild summability condition depending on the tails of the distribution of Z,. The
role of linear processes is justified by the fact that any reasonable stationary (i.e.,
nondeterministic) Gaussian process has a representation as Gaussian linear process;
see Brockwell and Davis [29], Section 5.7. ARMA processes (autoregressive moving
average processes) of a certain order (p, g) are particular linear processes (under

€004 CRC PressLLC



certain conditions on their parameters). An ARMA(p, g) process (X,) is given as the
solution to the difference equations

o(B)X;, =0(B)Z,, te€LZ. (5.2.2)
Here

P q
@) =1-> ¢z and 0@ =1+ 0/,
i=1 j=1
are polynomials with real coefficients ¢;, 6; and

B*A, = B¥"'(BA) = B* 'A,_ 1 = Ay

is the kth power of the backshift operator B satisfying BA; = A;_; for any sequence
of random variables (A;). Also recall that (X, ) is said to be an AR(p) process (autore-
gressive process of order p) if ¢ = 0 and an MA(g) process (moving average process
of order q) if p = 0.

The heavy tails of the distribution of X, can easily be explained by assuming power
law behavior for the distribution of the Z;s; see Section 5.4.3 for more details. How-
ever, the only causal! ARMA processes driven by i.i.d. noise whose autocorrelation
structures are in agreement with the sample ACF of the returns X, would be an i.i.d.
finite variance noise sequence or an MA(1) process with a small parameter 6, . Clearly,
the latter models cannot explain the dependence in the data, in particular in the ab-
solute and squared returns. Thus one is forced to model return data by a nonlinear

process.”

5.2.2 Multiplicative models
Most models for return data used in practice are of a multiplicative form
Xl :M+GIZ[7 t e Z, (523)

where (Z;) is an i.i.d. sequence, (o;) is a stochastic process with nonnegative values
and such that o; and Z, are independent for fixed 7. Mostly, the volatility process (o;)
and (X,) are assumed to be strictly stationary. In order to model the symmetry of the
return distribution, it is often assumed that Z, is symmetric or, at least, has mean zero.
In what follows, we will always assume that Z; is symmetric and has unit variance.
The latter assumption does not restrict generality because a scaling trade-off between
o; and Z, is always possible. The former assumption is an idealization — there is no
perfect symmetry in real-life return data. This condition can be abandoned in most
parts of the theory presented, but we stick to it in what follows, because it often leads
to an easier presentation. Moreover, we suppose that ; can be estimated from the data
and therefore it will be convenient to assume © = 0 as well.

! This means that (X;) has representation (5.2.1).

2 The time series models considered below are white noise models, i.e., they are stationary with zero
ACEF. In the terminology of classical time series analysis, these models would be called linear processes
in the sense of the Wold decomposition; see Brockwell and Davis [29], Section 5.7, for details. We call
these processes nonlinear since they do not have representation as a linear process (5.2.1) with i.i.d.
innovations Z;.
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There are various reasons for the particular choice of the simple multiplicative
model.

e First of all, the direction of price changes is modeled only by the sign of Z,,
independently of the order of magnitude of this change, which is directed by the
volatility o;. This is in agreement with the empirical observation that it is difficult
or even impossible to predict the sign of price changes.

e Secondly, since o, and Z; are independent and Z; is assumed to have mean zero
and variance 1, olz is then the conditional variance of X, given o;. Some models
assume that o; is a function of the past, i.e., X;_1, X;—»,... and oy_1, 05, ...,
therefore, it is in principle known at time ¢. For this reason, o; in connection with
the distribution of Z, can be used to give a distributional forecast of X;.

For example, assume Z, to be standard normal. Then, conditionally on the past
values X,_1, oy,—1, X;—2, 0y_5 ..., today’s return X, has an N(O, 0,2) distribution.
This allows one to give conditional confidence bands for X,. For example, it is an
easy matter to determine the conditional VaR (Value at Risk) of the sequence (X;),
i.e., the 1% or 5% quantiles of the distribution of X;. The determination of VaR is one
of the main requirements of regulators of banks: based on their own historical data,
banks have to prove that they have enough reserves to cover essential future losses
at the 1% or 5% levels of the distribution of the returns X,. Multiplicative models of
type (5.2.3) are therefore attractive models, in particular when paired with Gaussian
noise (Z;). The above lines should not give the impression that it is an easy task to
determine VaR. The latter is an extremely difficult statistical problem — because of
the sparseness of data and the fact that in reality one has to face portfolios of assets,
i.e., one has to deal with linearly combined returns from various (typically dependent)
assets. For arecent account on the VaR methodology we refer to Crouhy et al. [33], the
website www.gloriamundi.org on recent developments on VaR, or the RiskMetrics
group’s website www.riskmetrics.com.

It is an easy exercise to see that the multiplicative model (5.2.3) with o, being a
function of the past values of the o's and X's has ACF

px(h) = corr(X;, X;yp) =0, t€Z,

for all lags i # 0, provided the latter expressions are well defined, i.e., when the
variance of X is finite. At least this stylized fact of real-life returns is captured, given
that the autocorrelation px (k) at lag & is well approximated by its sample analogue
on.x(h), which is not significantly different from zero as we have seen in Section 5.1.2.

5.2.3 The ARCH family
Definition and relation to ARMA processes

Engle [59] suggested the following simple model for the volatility o;:

14
of =g+ oX;, tel (5.2.4)
i=1
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Here «; are nonnegative constants with o, > 0 if p > 1. The model (5.2.3) with
the specification (5.2.4) for o/ is called an ARCH(p) (autoregressive conditionally
heteroscedastic model of order p).

The autoregressive structure can be seen by the following argument. Writing

V=X —of = a,z(th - 1),
with the help of (5.2.4) one obtains
o(B)X; =ag+v,, teL, (5.2.5)

where

P
p)=1-) &,
i=1

and BA, = A,_ is the backshift operator. If (Z;) is an i.i.d. sequence with mean
zero and unit variance, and (X;) is second-order stationary, then (v;) constitutes a
white noise sequence. Therefore we observe a formal analogy with an AR(p) pro-
cess given in (5.2.2) with (z) = 1. But we also observe one crucial difference: the
right-hand side of (5.2.2) depends on the i.i.d. sequence (Z;), whereas the right-hand
side of (5.2.5) depends on the sequence (v;) which consists of dependent random
variables.

Since ARCH(p) processes do not fit log-returns very well unless one chooses the
order p quite large (which is not desirable when the sample is small), various people
have thought about improvements. Because (5.2.5) bears some resemblance with
an AR structure, the similarity with (5.2.2) suggests that we introduce an ARMA
structure for squared returns:

p(B)X}? =ag+ B(B)v,, teTZ, (5.2.6)

where ¢(B) and B(B) are polynomials in the backshift operator B with coefficients
@i, Bj. More precisely, let o;, i = 0,..., p,and B;, j = 1, ..., g, be nonnegative
coefficients with o), > 0if p > 1and B, > Oif g > 1, then

p q a
p@=1-Y o =Y Bzl and p@)=1- Bz’
i=1 j=1 j=1

This construction leads to the GARCH(p, ¢) process (generalized ARCH process
of order (p, q)), which was independently introduced by Bollerslev [15] and Taylor
[132]. The latter process, with its ramifications and modifications, has become the
model for returns used most frequently in applications. It is more conveniently written
as the multiplicative model (5.2.3) with specification:

14 q
of =ap+» X, +> Bjol,. tel. (5.2.7)
i=1 j=1
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Here o; and B; are nonnegative constants. To understand the motivation behind the
ARCH processes it pays to read some of the original articles of which some were
mentioned; see Engle [60] for a good collection.

Why GARCH?

The popularity of the GARCH model can be explained by various arguments.

e Its relation to ARMA processes suggests that the theory behind it might be closely
related to ARMA process theory, which is well studied, widely known, and seem-
ingly easy.

This opinon is, however, wishful thinking. The difference to standard ARMA pro-
cesses is due to the fact that the noise sequence (v;) in (5.2.6) depends on the X;s
themselves, so a complicated nonlinear relationship of the X;s builds up. For ex-
ample, in order to show that a stationary version of (X2) exists, one would have
to iterate equation (5.2.6), hoping that X? becomes an explicit expression only of
the sequence (v;), which expression one might take as the solution to the differ-
ence equation (5.2.6). For an i.i.d. noise sequence (v;) this recipe is known to work;
see Brockwell and Davis [29], Chapter 3, who study conditions for the validity of
this approach. However, the noise v, = X> — o itself depends on the stationary
sequence (X;) to be constructed, and so one has basically gained nothing by this
approach.

Conditions for the existence of the stationary version of a general GARCH process
are not easily given. An exception is the GARCH(1,1) process for which necessary
and sufficient conditions for the existence of a stationary version of (X,) in terms of
ap, &1, B1, and the distribution of Z; are known. More arguments on this issue will
be given in Section 5.3.2.

If one knows that (X,) is a well defined stationary process, the relation with ARMA
processes can be useful. For example, one can derive formulae for the moments of
X? by using the moments of an ARMA process in terms of the ARMA parameters
and the moments of the underlying noise sequence (v;).

A second argument for the use of GARCH models is that,

e even for a GARCH(1,1) model with three parameters one often gets a reasonable
fit to real-life financial data, provided that the sample has not been chosen from
a too long period making the stationarity assumption questionable. Tests for the
residuals of GARCH(1,1) models with estimated parameters «g, o1, 81 give the
impression that the residuals very much behave like an i.i.d. sequence.

Some evidence on this issue can be found in the paper of Mikosch and Starica [107].
A third, and perhaps the most powerful argument in favor of GARCH models, from
an applied point of view, is the fact that

e the statistical estimation of the parameters of a GARCH process is rather uncom-
plicated.

This attractive property has led S+ to provide us with a module for the statistical
inference and simulations of GARCH models.
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Estimation: Gaussian quasi-maximum likelihood

The estimation technique used most frequently in applications is a Gaussian quasi-
maximum likelihood procedure that we want to explain briefly. Assume for the mo-
ment that the noise (Z;) in an ARCH(p) model of a given order p is i.i.d. standard

normal. Then X, is Gaussian N (O, otz) given the whole past X,_|, X;_»,..., and a
conditioning argument yields the density function fx,, ... x, of X, ..., X, through the
conditional Gaussian densities of the X;s given X| = x, ..., X,, = x,:

fX,, ..... X,,(xp"“vxn)

= fx, X | Xno1=%Xp—1, ..o, Xi=x0) fx, ,Gn1 | X2 =X, ..., X1 =X1) -+

fXI,H(xp-H |Xp =Xpy oy X =X])pr(Xp)

n
:(Zn)—(;z—p)/z H ot—le—X,“/(Zo,z) pr(xp)~ (5.2.8)
t=p+1

Ignoring the density fx, and replacing ¢ = p + 1 by = 1 in (5.2.8), the Gaussian
log-likelihood of X1, ..., X, is given by

n

1
Lo, a1, ety B By) = = Z [2logo; +0,72X7]. (5.2.9)

t=1

The latter quantity is also formally defined for general GARCH(p, ¢q) processes, and
it can be maximized as a function of the o;s and ;s involved. The resulting value in
the parameter space is the Gaussian quasi-maximum likelihood estimator (MLE) of
the parameters of a GARCH(p, ¢g) process.

There are obvious problems with this estimation procedure. For example, one
might be surprised about the assumption of Gaussian noise (Z;). Although this is
not the most realistic assumption,’ theoretical work (see the references below) shows
that asymptotic properties such as /n-consistency (i.c., consistency and asymptotic
normality with /n-rate) of the Gaussian quasi-MLE remain valid for large classes of
noise distributions. This observation is similar to other estimation procedures in time
series analysis where one does not maximize the true maximum likelihood function
of the underlying data, but rather assumes Gaussianity of the data and maximizes
a corresponding score function. This approach works for the Gaussian maximum
likelihood of ARMA processes (see Brockwell and Davis [29], Section 10.8) and in
more general situations, see Heyde [82].

Attempts to replace the Gaussian densities in L, by a more realistic density of the
Z,s (for example, a r-density) can lead to nonconsistency of the MLE. Consistency
of the estimators can be achieved if one knows the exact density underlying Z,, but
when dealing with data one can never rely on this assumption. Even if one tries to

3 Empirical evidence indicates that the Z; s are much better modeled by a -distribution; see Section 5.10.1.
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estimate the parameters of the density of Z, together with the GARCH parameters
(for example, some professional software offers to estimate the degrees of freedom
of t-distributed Z;s from the data), the MLE based on these densities can lead to
nonconsistent estimators.*

The careful reader might also have observed that the derivation of the maximum
likelihood function (5.2.8) is not directly applicable if the model deviates from an
ARCH(p) process. Indeed, that formula requires calculating the unobservable values
o, t = 1,...,n, from the observed sample X1, ..., X,. A glance at the defining
formula (5.2.7) convinces one that this is not possible in the general GARCH(p, q)
case. Indeed, an iteration of (5.2.7) yields that one would have to know all values
Xn-1s-.-, X0, X1, ... for the calculation of oy, . . ., 0,. Alternatively, one needs to
know finitely many values of the unobservable values Xo, X_1,...and 0g,0_1, .. ..
Therefore practitioners (and software packages) have to choose a finite number of
such initial values in order to make the iteration for the os run. The choice of deter-
ministic initial values implies that the calculated o1, .. ., 0, cannot be considered as
a realization of a stationary sequence. One may, however, hope that the dependence
on the initial values disappears for large values of n in a way similar to a Markov
chain with arbitrary initial value whose distribution becomes closer to the stationary
distribution. We will see in Section 5.3.2 that the afs can be embedded in a multivari-
ate Markov chain, and, therefore, this reasoning has some foundation. However, the
Gaussian quasi-MLE is a complicated functional of the Xs and o's and, therefore, the
theoretical properties of this estimator are not easy to derive. Alternatively, the MLE
with fixed initial values can be viewed as conditional MLE.

There exist various papers dealing with the asymptotic properties of the quasi-
MLE. The first one to be mentioned in this context is Weiss [135] who treated the
ARCH(p) case. Notice that in this case it is possible to calculate 6,41, ..., 0, from
X1, ..., X,. Then, working with the sample X1, ..., X,, one can avoid the men-
tioned theoretical problems. Lee and Hansen [96] addressed the GARCH(1, 1) case,
assuming the stationarity of the sequence (o;,), thus avoiding the problem of the initial
values. They showed +/n-consistency of the quasi-MLE. A similar result, but under
different conditions, was given by Lumsdaine [98] in the GARCH(1, 1) case. He first
shows the result for the stationary sequence (o;), then he addresses the problem of de-
terministic initial values and shows that the result proved for the stationary sequence
remains valid. The paper of Berkes et al. [11] contains an alternative proof of the
J/n-consistency in the general GARCH( p, ¢) case under weak assumptions; see also
Comte and Lieberman [32] for the multivariate case.

Simulation results, see Figure 5.8, indicate that the Gaussian quasi-MLE does not
work too well for small sample sizes of a couple of hundred values. On the other
hand, it is not very realistic to fit a particular GARCH model to several years of daily
log-returns — the data do not behave like a stationary process over such long periods
of time; see the discussion in Section 5.11. (In the course of this chapter the author
will deviate from this principle and fit GARCH models to data worth many years or
returns.) The accuracy of the estimation procedure based on one business year of data

4 Daniel Straumann, personal communication.
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Figure 5.8 A boxplot comparison of the distributions of the Gaussian quasi-MLE and the
Whittle estimator for By (top) and ¢1 = a1 + B1 (bottom) in a GARCH(1, 1) model with
parameters oy = 8.58 x 1070, a; = 0.072, and By = 0.92. The sample size is n = 250. The
boxplots are based on 1000 independent repetitions of the parameter estimation procedures.

(250 days) is rather nonsatisfactory. The poor behavior of the quasi-MLE for GARCH
models seems to be due to the fact that the log-likelihood function L,, in (5.2.9) is
rather flat in the parameter space and therefore it is difficult to find its maximum. This
fact is well known as the author has learned in various conversations, but he did not
find a reference where theoretical reasons are given.

Whittle estimation

The emphasis in the literature on estimation in GARCH models is on the Gaussian
quasi-MLE. Other estimation techniques have often been ignored. As an alternative to
quasi-maximum likelihood one might think of using classical estimation techniques
developed for the ARMA case. We have learned in Section 5.2.1 that the squares
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X? of a GARCH process satisfy the system of ARMA equations (5.2.6) with noise
sequence (v;), which is uncorrelated if EX f < 00. This idea was taken up by Giraitis
and Robinson [67] who showed in the context of parametric ARCH(oco) models, which
include the GARCH(p, ¢g) case, that the so-called Whittle estimator of the ;s and
Bjs is /n-consistent provided the 8th moment of the data is finite. They pointed out
that the variance of the Whittle estimator is larger as compared to the ARMA case
with the same coefficients and i.i.d. noise with the same variance as v;.

‘We mention here that Whittle estimation is one of the three classical estimation tech-
niques for ARMA processes with i.i.d. noise. It is based on the idea of approximating
the spectral density of the underlying process and can be shown to be asymptotically
equivalent to Gaussian quasi-maximum likelihood and least squares estimation in the
sense that all three methods are /n-consistent with the same asymptotic variance.
See Brockwell and Davis [29], Section 10.8, for a comparison of these methods. We
also mention that the Whittle estimator coincides with the least squares estimator and
the celebrated Yule-Walker estimator for AR(p) processes. The Whittle estimator for
ARMA processes even works if the noise has infinite variance and its rate of con-
vergence compares favorably to ./n-rates; see Mikosch et al. [104] for details and
Section 7.5 in Embrechts et al. [58] for related results for various other estimators.

We mentioned in Section 5.1.1 that log-return data tend to be heavy-tailed with
3rd, 4th, 5th, etc., moments possibly infinite. It is worthwhile studying the Whittle
estimator for the squared GARCH process under the moment assumption EX? =
oo. The asymptotic results, however, differ very much from the ARMA case with
i.i.d. noise. As shown in Mikosch and Straumann [110], two cases can occur. If
E X;‘ < oo the rate of convergence for the Whittle estimator based on the squares
of a GARCH(1, 1) process is slower the fewer moments of X, exist. Even worse,
if EX} = oo the Whittle estimator converges in distribution to a nondegenerate
limit. Thus the quasi-MLE seems to outperform the Whittle estimator as regards
basic consistency questions and convergence rates. This is very much in contrast to
the classical ARMA case. This is also illustrated by some simulation evidence in
Figure 5.8 and Figure 5.9.

For small sample sizes such as one business year of data, both estimators behave
very much in the same way for parameter values that ensure the existence of the 4th
moment of the X,s. For larger sample sizes the Whittle estimator is clearly inferior
to the MLE, and although no theoretical results seem to be available for this case, the
MLE improves its performance when the tails of the distribution of X, become heavier.
It is difficult to compare the asymptotic covariance matrices for the Whittle estimator
(they depend only on the variance of the v;s and the parameters) and for the quasi-
MLE (they depend on the distribution of the noise Z, and the parameters, are rather
unattractive and need to be evaluated by using simulations) in the cases when it makes
sense to compare them, i.e., when E X f < 00. However, the problems noted above for
the MLE estimation show that the MLE is not an ideal estimator that one should always
use without seeking alternatives. Many theoretical problems in this context remain.

Finally, the question arises as to whether the GARCH model captures any of the
stylized facts of real-life returns (heavy-tailed distribution, dependence in the tails,
long memory effects of the absolute, and squared returns) mentioned in Section 5.1.
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Figure 5.9 A boxplot comparison of the distributions of the Gaussian quasi-MLE and the
Whittle estimator for 1 = 0.92 in the GARCH(1, 1) model of Figure 5.8 for different sample
sizes n. The boxplots are based on 1000 independent repetitions of the estimation procedures.
Gaussian quasi-MLE outperforms the Whittle estimator, but one needs samples of size about
n = 5000 before the asymptotic normality assumption starts working. All estimators are nega-
tively biased.

These problems will be addressed in detail starting in Section 5.3 and summarized in
Section 5.10.1.

5.2.4 The stochastic volatility model

The GARCH model is explicitly defined by the difference equation (5.2.7) for o2.
However, its probabilistic properties (existence of stationary solution, dependence
structure, tails, etc.) are by no means easy to derive and not in all cases well under-
stood. We will consider another multiplicative model, the stochastic volatility process
X; = o0,Z;, where (o;) is a strictly stationary process, independent of the i.i.d.
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Figure 5.10 Top: A simulated path of the GARCH(1, 1) time series X; = (0.0001 —}—O.IXIZ_l +
0.903_1)0'52,, t =1,...,1000, for i.i.d. standard normal (Z;). Bottom: A simulated path of
the stochastic volatility time series X; = eViz, r=1,...,1000, for i.i.d. student noise (Z;)
with 4 degrees of freedom, Y; = 0.5Y;_1 + 0.3n,—1 + n; is an ARMA(I, 1) process with i.i.d.
standard normal noise (n;). An eyeball inspection gives the impression that the characteristics
of a GARCH time series are more in agreement with return series than those of a stochastic
volatility time series. In particular, the clusters of high and low volatility observed in real-life
data are more appropriately mimicked in the top than in the bottom graph. Compare with
Figure 5.1 and Figure 5.23.

symmetric noise process (Z;). In contrast to GARCH-type processes, there is no
feedback between the noise (Z;) and the volatility process (o), i.e., there are two
independent sources of randomness. For this reason, the stochastic volatility mod-
els are sometimes considered as unnatural.’ However, the probabilistic properties
of a stochastic volatility process are much better understood than the properties of

5 A referee of this chapter pointed out that the independence of (o) and (Z;) is not universally assumed
for stochastic volatility models; some econometricians allow for dependence between (o;) and (Z;) in
order to model leverage.
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GARCH processes: the mutual independence of (o;) and (Z;) allows one to model
dependency only via the volatilities o,, whereas the heavy tails of the distribution of
X, can be regulated via the interplay between the tails of o, and Z,.

Usually, (o;) is given by a parametric model such as a Gaussian ARMA process for
(log o;). By first squaring X, and then taking logarithms, one can see that the ARMA
process 2 log o, gets perturbed by the extra noise 2 log | Z;| which makes estimation
more complicated because it is impossible to give an explicit expression for the
likelihood function. In comparison to ARCH, the lack of estimation procedures for
stochastic volatility models made them less attractive for modeling purposes than the
GARCH family. In recent years the attitude towards stochastic volatility has changed
and a variety of estimation techniques (such as GMM and quasi-MLE) has been deve-
loped as well; see, for example, Section 5 in Ghysels et al. [65] or Shephard [129]
for some surveys. Often one needs to resort to simulation based methods to calculate
efficient estimates. Quasi-MLE methods are discussed in Harvey et al. [81], Breidt
and Carriquiry [26], and Breidt et al. [27]. Simulation based methods are used in
Jacquier et al. [85] and Durbin and Koopman [56].

As for GARCH processes, the question arises as to which of the stylized facts of
real-life returns are actually captured by stochastic volatility models. This issue will
be discussed in detail in the following sections and summarized in Section 5.10.2.

5.3 The stationarity issue

The assumption of stationarity of the time series (X,) is basic for the statistical analysis
of the data. In this section we address the question under which conditions strictly
stationary versions of the GARCH and stochastic volatility processes exist.

5.3.1 The stochastic volatility case

For a stochastic volatility model, (o;) and (Z;) are independent, and (Z;) is i.i.d.
Hence (X;) is strictly stationary if (o;) has this property. In what follows, we assume
the following representation for the log-volatilities:

oo
logo; =Y ¥m—j. teL, (5.3.1)
j=0

where (77,) is an i.i.d. sequence with mean zero and finite variance and the real co-
efficients ¥; are square summable. Under these conditions, (log o;), hence (o;), is a
strictly stationary process; see Brockwell and Davis [29], Chapter 3. We will often
assume that (7,) is i.i.d. Gaussian. In this case we know that o, is log-normal.

5.3.2 The GARCH case

The stationarity issue for a GARCH process is a difficult one and requires some
sophisticated arguments that we want to discuss now.

In what follows, we assume that the noise (Z;) is i.i.d. with mean zero and unit
variance, i.e., the symmetry assumption on Z; is not needed here. As for the stochastic
volatility model, X; = o,Z, constitutes a strictly stationary sequence if and only if
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(02) is strictly stationary. Indeed, by iterating the defining equation of the o>-process,
it is not difficult to see that (0,2, Z,) is strictly stationary if and only if (o) is strictly
stationary, and so are processes given by (f (012, Z,)) for some measurable f. Hence
we will focus on showing that a stationary version of (o) exists.
For the sake of argument, we first focus on the GARCH(1,1) case. Writing
A,:aIle_1~|—ﬁ1, Btzao and Y,:O’Z,

t

we see that
of =ay+ a1 X] + ol = a0+ (0 Z + Bi) o,
or
Y, =AY, + B. (53.2)

Notice that A, and Y,_; are independent, and (A,, B,) constitute an i.i.d. sequence.
We refer to (5.3.2) as a stochastic recurrence equation (SRE) or random coefficient
autoregressive model. Indeed, if A; = ¢ were a constant, (5.3.2) would describe an
AR(1) process with parameter ¢. For an AR(1) process with i.i.d. noise (B;) we know
that a unique stationary causal® solution of (5.3.2) exists if |¢| < 1 and B, satisfies a
mild moment condition. This solution is obtained by iterating the defining SRE, and
one can proceed in a similar way for (5.3.2). Iterating » times back and noticing that
B; = B;, we obtain:

t
Yi=A A Yoo+ ) A A By,

i=t—r

Now, letting r go to infinity, we hope that the first term on the right-hand side will
disappear, and the second one will converge. Notice that
}. (5.3.3)

! t—1 !
Z A Ay =14 Z exp{(t—i)[% Z log A;

i=—00 i=—00 B J=i+l

For fixed ¢, the strong law of large numbers tells us that as i — —oo,

t—1

> logA; %3 ElogAy,

j=i+1

t—i
provided that E log A is defined, finite or infinite. Hence, under the moment condition

—oo < Elog A; < 0, the infinite series (5.3.3) converges a.s. for every fixed ¢. Then
the sequence

t
Y, = Z A~ A By, tel,

i=—00

6 This means the solution depends only on past and present values of the noise (B;).
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Figure 5.11 The (a1, B1)-areas below the two curves guarantee the existence of a stationary
GARCH(1, 1) process. Solid line: IID student noise with 4 degrees of freedom with variance 1.
Dotted line: i.i.d. standard normal noise. The regions were determined by checking the condi-
tion £ log(alzf + B1) < 0 through simulating n = 1,000, 000 i.i.d. Z;s and then calculating
n~! Z:’:l log(a 1Zt2 + B1). According to the strong law of large numbers, the latter quan-
tity converges a.s. to E log(o Z% + B1). If Z1 has a density, an alternative way to verify the
stationarity assumption is to calculate E log(a Z% + B1) by numerical integration.

constitutes a strictly stationary solution to equation (5.3.2). If there is another station-
ary solution (Y;) we have by iterating (5.3.2),

Y, =Y =A A Yo — Y], (5.3.4)

and since A; ---A,_, and |?,,,,1 — ?,,,,1| are independent, the weak law of large
numbers and E log A; < 0 imply that the right-hand side in (5.3.4) converges to zero
in probability as r — oco. Therefore Y; = Y; for every ¢ with probability 1.

More sophisticated arguments show that Elog A; <0 is also necessary for the
existence of a nontrivial stationary solution.

Theorem 5.3.1 (Nelson [112], Bougerol and Picard [21])  There exists an a.s.
unique nonvanishing strictly stationary causal' solution of the SRE (5.3.2) with
B, = oy if and only if ag > 0 and Elog(alzf + B1) < 0.

Remark 5.3.2 The assumption oy > 0 is crucial; otherwise X, = 0 a.s. would be a
solution to (5.3.2). Since

log(B1) < Elog(a1 Z7 + B1) < O,
0 < B1 < 1lis anecessary condition on ;. [

Remark 5.3.3 The condition EA; = Elog(a; Z} + B1) < 0 can be interpreted in
the context of the random coefficient AR(1) model Y; = A,;Y;_; + B;. For a constant
coefficient AR(1) model Y; = ¢Y;_; + B, the condition |¢| < 1 is necessary for the

7 This means it depends only on past and present values of the Zs.
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existence of a stationary causal solution (Y;). The condition E log A} < O meansina
sense that A; is less than 1 on average. [J

A general GARCH(p, g) process can be embedded in a SRE in a similar way.
Indeed, writing

YI = (01[24',17 M O‘[iq+29 X]29 LR} thprrz)/’ (5.3.5)
aZF 4B B o Bt By w3 e a
1 o --- 0 o o0 o0 --- 0
0 1 -~ 0 o o0 o0 --- 0

A = 0 o .- 1 o o0 0 --- 0], (5.3.6
z? 0 0 0O 0 O 0
0 0 0 0O 1 o0 0
0 0 0 0 O 1 0

B; = (9, 0,...,0), (5.3.7)

((A;, By)) is an i.i.d. sequence, Y;_; and (A,, B,) are independent, where the A,s
are i.i.d. random (p + ¢ — 1) X (p + g — 1) matrices and the B;s i.i.d. (p + g — 1)-
dimensional random vectors. Moreover, (Y, ) satisfies the following vector SRE which
is analogous to the scalar SRE (5.3.2):

Y[ = A[Y[7] +Bt7 t e Z. (538)

Proceeding in a way similar to the one above, one can show the existence of a strictly
stationary solution to (5.3.8). The condition E log A; < 0 has then to be replaced by
negativity of the so-called top Lyapunov exponent y:

y =inf{n~" Elog|A,---A{]l} <0,

where || - || is the operator norm corresponding to a given norm in R”*9~! In general,
the value y cannot be calculated explicitly. According to the subadditive ergodic
theorem (cf. Kingman [89], Theorem 6), it follows that

n!log A, - Ay 2y, (5.3.9)

which relation offers a Monte-Carlo procedure for calculating . Asymptotic confi-
dence bands for y can be obtained by using central limit theory due to Goldsheid [72].
The GARCH(1,1) case is a real exception:

n

A, Ay :H(a12,2+[31),

t=1
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and so we immediately have y = E log(er; Z} + B1) provided the latter expectation
makes sense.

Theorem 5.3.4 (Bougerol and Picard [21]) The GARCH(p, q) SRE specified in
(5.3.5) through (5.3.8) has the a.s. unique strictly stationary nonvanishing causal
solution
t t—1
Y= ) A--AuBi =B+ Y A--AuB, 1€Z,
1=—00 1=—00

if and only if 2y > 0 and y < 0. Moreover, this solution is also ergodic.

Remark 5.3.5 Similar to the GARCH(I, 1) case (see Remark 5.3.2), o9 > 0
ensures that X, = 0 a.s. is excluded as a solution to the SRE (5.2.7) and

q
j=1

is a necessary condition for y < 0; see Bougerol and Picard [21], Corollary 2.3.
A sufficient condition for y < 0 is given by

P q
Dt Bi<l
i=1 j=1

provided that EZ,2 = land EZ; = 0; see remark on p. 122 of [21]. O

Above we learned that the existence of a strictly stationary volatility sequence (o)
is equivalent to strict stationarity of X, = 0;Z;. So we can conclude the following:

Corollary 5.3.6 The GARCH(p, q) process X, = 0,Z,;, t € Z, with the specification
(5.2.7) for atz and an i.i.d. noise sequence (Z;) with mean zero and unit variance has
a nonvanishing strictly stationary causal version if and only if ag > 0 and y < 0.

Example 5.3.7 (The IGARCH process)
In financial practice one often observes that the sum of the estimated parameters
RS ; Bj is close to one; see Figure 5.12 for an illustration. For the parameter

setting
P q
Dt By=1.
i=1 j=1

Engle and Bollerslev [61], in analogy to integrated ARMA (ARIMA) processes,
coined the name integrated GARCH(p, q) or IGARCH(p, ¢) process. The integrated
refers to the fact that there might be a unit root problem (as for ARIMA processes)
which could lead to the nonexistence of a stationary version of (X;). However, this
is not the case for the IGARCH under the conditions of Corollary 5.3.6, as shown by
Nelson [112] for the IGARCH(1, 1) case and by Bougerol and Picard [21], Corol-
lary 2.2, for the general IGARCH(p, ¢) case, assuming some mild additional assump-
tions. As we will see in Example 5.5.8, the IGARCH process has infinite variance, a
property that is not exhibited in real-life log-returns. Later, in Section 5.11.2, we will
give another possible explanation for the IGARCH effect: nonstationarity in the data.
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Figure 5.12 The estimated values of a1 + B, using quasi-MLE, for an increasing sample of
the S&P500 log-returns from Figure 5.1. An initial GARCH(1,1) model is fitted to the first
1500 observations (6 business years). Then k x 100, k = 1,2, ..., data points are successively
added to the sample and a1 and B are reestimated on these samples. The labels on the time
axis indicate the date of the latest observation used for the estimation procedure.

The author hopes that he has convinced the reader that the question about a station-
ary version of a GARCH(p, ¢q) process is not a trivial one. In general, given a set of
parameter values o;, 8; and the distribution of Z;, we cannot decide whether a station-
ary version of the corresponding GARCH(p, g) process exists or not. Remark 5.3.5,
however, indicates that the situation is not totally hopeless since >, o; + >, B < 1
is a sufficient condition for the existence of a stationary solution provided Z; has
mean zero and unit variance. As we will see in Example 5.5.8, the remaining cases
DY j Bj = 1 correspond to infinite variance GARCH processes.

The stationarity region of the «- and 8-values clearly depends on the distribution of
Z,: one has to check where y < 0. In the GARCH(1, 1) case this is more transparent
since y = Elog(e; Z} + B1). But even in this case one depends on Monte Carlo
or numerical integration techniques in order to determine those «; and 8; for which
y <0; see Figure 5.11 for an illustration. The ARCH(1) case with i.i.d. standard
normal Z;s has been studied in detail, and the o -values ensuring stationarity were
tabulated; see de Haan et al. [79] or Section 8.4 in Embrechts et al. [58]. It turns
out that a; < ef & 3.56856, where E is Euler’s constant, is the correct «;-area of
stationarity. As for the IGARCH case, we see that parameter values greater or equal
to 1 are possible, in sharp contrast to a stationary constant coefficient AR(1) model
with i.i.d. noise where the AR-parameter cannot exceed 1; see also Remark 5.3.3.

The literature on SREs of type Y, = A,Y,_; + B, for i.i.d. and stationary ergodic
sequences ((A,, B,)) is vast. We refer to pioneering work of Kesten [88] (a paper which
will be essential for the study of the tails of GARCH processes), Goldie [70], Le Page
[97] for extensions and refinements of Kesten’s work, Brandt [24] for the existence of
a stationary version (Y,) for dependent (A,, B,)s, Brandt et al. [25] for a general theory
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of SREs, the papers of Bougerol and Picard [20, 21] and Babillot et al. [1] who give
necessary and sufficient conditions for the existence of stationary (Y;) or conditions
close to the optimal ones. The model Y, = A,;Y,_; + B, with independent (A;, B;)
is a simple example of a Markov chain or random iterated mapping. The book by
Meyn and Tweedie [103] on Markov chains yields various results on the dependence
structure and the distribution for this particular model. The random iterated mapping
aspect is covered by the recent overview paper of Diaconis and Freedman [48]. The
paper by Vervaat [134] gives an accessible introduction to random autoregressive
models.

5.4 An excursion to regular variation

In what follows, we will need the notion of regularly varying random variable and
regularly varying random vector. Regular variation is one of the basic notions for
describing heavy-tailed distributions and dependence in the tails. Regular variation of
random vectors or random variables is used to describe domain of attraction conditions
for stable distributions in the summation theory of i.i.d. random vectors and maximum
domain of attraction conditions for max-stable distributions in the limit theory for
maxima of i.i.d. random vectors. We refer to Feller [63] for the classical summation
theory of i.i.d. random variables, Rvaceva [127] for the summation theory of i.i.d.
random vectors, Embrechts et al. [58] for the limit theory of partial maxima of i.i.d.
random variables and Resnick [119] for the corresponding theory for component-wise
maxima of random vectors. An encyclopedic treatment of univariate regular variation
and its applications is given in the monograph of Bingham et al. [14]. A more recent
treatment, including multivariate regular variation, is Meerschaert and Scheffler [102].

5.4.1 Univariate regular variation

Recall that a measurable function L on (0, co) is said to be slowly varying if it
is positive for large x and satisfies the relation L(cx)/L(x) — 1 as x — oo for all
positive c. Simple examples are the functions L(x) = ¢ forsome ¢ > 0, L(x) = log® x
for any real «, iterated logarithms, etc.

We say that the random variable X and its distribution F are regularly varying®
with index o > 0 if there exist p,q > 0, p + ¢ = 1, and a slowly varying function
L such that as x — o0,

F(x)=P(X >x)=p (1+o(1) &2,
F(—x)=P(X < —x)=¢q (1 +o(1)) £2.

(54.1)

Condition (5.4.1) is often referred to as the tail balance condition. Itis a semiparametric
assumption about the tails: they are close to power laws, but we do not specify the
function L. Its behavior in any neighborhood of the origin is not of interest.

8 It is common use to call the function g(x) = x” L(x) regularly varying with index p € R. If we followed
this convention we should say that F(—x) and 1 — F(x) are regularly varying with index —a. In this
chapter, we prefer to assign a nonnegative index « to the distribution F.
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Relation (5.4.1) is equivalent to the following: for any ¢ > 0,

P(X < —tx)
lim ———=g¢
x—oo P(|X]| > x)

—o

. P(X > tx)
lim =

————— = pt e, 542
S P(X[> 0 7 642

and

The limiting expressions determine a measure 4 on R\ {0} given by
wdt)y = p ot Tooo(t)dt + qa |t Is0)(t)dt.

Using the measure u, relation (5.4.2) can be shown to be equivalent to

P(X € xA)

for every Borel set A C R\ {0} bounded away from zero whose boundary d A satisfies
(@A) = 0. For such A we also have

. P(X etxA) P(X|>tx) o
u(tA) = lim =1t u(A).
x—oo P(|X| > tx) P(|X]|> x)
Hence p satisfies the homogeneity property p(tA) = t~*u(A) for every r > 0. It is
not difficult to see that relation (5.4.2) can be rewritten in spherical coordinates: let
0 € {—1, 1} be arandom variable with distribution P( = 1) = pand P(6 = —1) =
q. Then for any t > O and set S C {—1, 1},
P(X|>1tx,X/IX|€S)

li =t PO €. 5.4.4
lim PUX| > x) (CESIN) ( )

The limit relations (5.4.3) and (5.4.4) look very much like the ordinary notion of
weak convergence of probability measures. However, the limiting measure is infinite
and therefore one refers to the convergences in (5.4.3) and (5.4.4) as vague conver-
gence. Vague convergence plays an important role in the weak convergence theory of
point processes; see Kallenberg [87] or Resnick [119].

Example 5.4.1 (Some univariate regularly varying distributions)
Various well known univariate distributions are regularly varying. Among them are
the following distributions F whose right tail F' or density f we give here:

o

Pareto F(x) = Ki, x>0, k>0, a>0,
(x +x)*
r 1)/2
student with fx) = r«%)/) (1 +x2/n)~ V2 x eR,
n degrees of freedom (n/2)y/7n
of
log-gamma fx) = — (logx)ﬁflx"j"l, x>1, o p>0.

')
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Remark 5.4.2 The notion of regular variation is central in the weak limit theory for
sums and maxima of i.i.d. random variables. To make this statement more transparent,
let (X;) be a sequence of i.i.d. random variables with common distribution F, and
denote their partial maxima and partial sums respectively by

M, = max(X{,...,X,) and S, =X;+---+X,, n>1.

It is well known that there exist only three location-scale families of extreme value
distributions H for which one can find constants ¢, > O and d, € R

lim P(c;' (M, —d,) <x)=H(x), xeR,
n—o0

and the distribution F is then said to be in the maximum domain of attraction of H
(F € MDA(H)). One of these classes consists of the scale-location family defined
by the Fréchet distribution ®, of order o > 0. Its distribution function is given by
D, (x) = exp{—x~%} for x > 0. It is well known that ' € MDA(®d,,) if and only if
the right tail F = 1 — F is a regularly varying function with index —a, and then
one can choose ¢, according to F(c,) ~ n~' and d, = 0; see Embrechts et al. [58],
Section 3.3.1, for the corresponding theory.

A similar theory holds for the partial sums. It is well known that the only limiting
distributions H for standardized sums of i.i.d. random variables are the stable distri-
butions; see Section 5.7 for a short introduction. This means that there exist ¢, > 0
and d, € R such that

lim P(c,' (S, —d,) <x)=H(x), x€eR,
n—0oQ

and the distribution F is then said to be in the domain of attraction of the stable
distribution H (F € DA(H)). Clearly, the normal distribution is stable. The remaining
stable distributions are less familiar; the Cauchy distribution is perhaps its best known
representative. All nonnormal stable distributions have infinite variance, in particular
they are regularly varying with index o < 2, and therefore we denote a representative
of the class of «-stable distributions by H,,. Moreover, F € DA(H,) for some o < 2
if and only if X is regularly varying with index «; see Gnedenko and Kolmogorov
[69], Ibragimov and Linnik [84], or Feller [63] for extensive discussions of summation
theory. O

5.4.2 Multivariate regular variation
Definition

Since we have already reformulated univariate regular variation in terms of vague
convergence, we can immediately take over relations (5.4.3) and (5.4.4) to define
multivariate regular variation: the random vector X with values in RY is regularly
varying with index « > 0 if there exists a random vector ® with values in the unit
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sphere S9! of R? such that for any 7 > 0 and any Borel set S ¢ S?~! with P(® €
38) =0,

P(X t ,fi S
im PRI >0, X€5) o pges, (5.4.5)
S P(X[>x)

where for any vector x # 0,

X=—.
x|
The distribution of @ is called the spectral measure of X. Here and in what follows,
we write | - | for any fixed norm.

Relation (5.4.5) holds if and only if the limit relations

P(X| > 1x)

ST 7 forallt > 0, 54.6

i P(X| > x) orait > ( )

lim PX e S|X|>x)= PO e S), (5.4.7)
X—> 00

are satisfied. Indeed, choosing § = S?~!in (5.4.5), we see that |X| is regularly varying
with index «, hence (5.4.6) holds. Therefore (5.4.5) implies

. P(X|>tx,XeS) . - _ P(X| > tx)
lim = lim PXe S||X]|>tx) lim ————, (5.4.8)
X—> 00 X

xX—00 P(X]| > x) —oo P(|X] > x)

hence (5.4.7) follows. On the other hand, if (5.4.6) and (5.4.7) hold, (5.4.5) follows
from (5.4.8). Relations (5.4.6) and (5.4.7) illustrate the meaning of regular variation
of the vector X: its radial and spherical parts become independent in an asymptotic
sense if |X] is sufficiently large.

The right-hand side of (5.4.5) can be interpreted as the p-measure of the Borel set

A, $) ={x: x| > 1, Xe S} c R\{0}, (5.4.9)

and (5.4.5) can be written as
PXexA®,S)) . P (X exA@,S))
im ———— = lim i
x—oo  P(IX| > x) x—o0 P(X € xA(1,5877))
= u(A(t, S)) =t u(A(l, S)).

The totality of the values p(A(t, S)) determines a Radon measure pu (i.e., finite on
compact sets) on R" \{0}. It can be shown that relation (5.4.5) is equivalent to
PX exA
im FEEXA) 4, (5.4.10)
o0 P(X| > x)

for every Borel set A C Ed\{O} bounded away from the origin satisfying u(0A) =
0, where u is a measure on the Borel sets of Rd\{O} satisfying the homogeneity
assumption pu(tA) = t~*“u(A).
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Both (5.4.5) and (5.4.10) define vague convergence of the left-hand measures to
the measure ©; we again refer to Kallenberg [87] and Resnick [118, 119] for an
exact description of vague convergence and its relation to weak convergence of point
processes. In what follows we write, for example,

PXex) o
PX[>x MO

for the totality of the relations (5.4.10). Note that this vague convergence is defined
on the o-field of the Borel sets of @d\{O}.

Inrelation (5.4.10) the case (A) = O for certain sets A is not excluded. This means
in particular that the vector X may contain components whose tails decay to zero faster
than other components. For example, the vector X = (X, 0, ..., 0) € R? is regularly
varying if X is a regularly varying random variable, and then u(A; x Ap) = 0 if
Ay C R does not contain the vector 0 € R4!,

In theoretical work one often assumes that the nondegenerate components of the
vector X are transformed in such a way that they are regularly varying with the same
index; see, for example, Resnick [119], Chapter 5, or de Haan and de Ronde [80] for
details. In statistical applications this fact creates problems because the transformation
of all components to the same order of magnitude requires knowledge of all marginal
distributions. We refer for example to de Haan and de Ronde [80], Draisma [54],
or Einmabhl et al. [57] for solutions in various statistical applications. An alternative
approach has been advocated for many years: use operator normalizations for the
components, i.e., choose for each component a normalization adjusted to the tails
of the components. We refer to de Haan and Resnick [76, 77] and Greenwood and
Resnick [74] for some early work; see also Meerschaert and Scheffler [102] for a
recent account.

Regular variation of X implies regular variation of |X| with the same index. This
is immediate from (5.4.5) with § = S?!. Then we can choose a sequence (x,) of
positive numbers satisfying the asymptotic relation

P(X] > x,) ~n~",

and this sequence is regularly varying with index 1/«, i.e., there exists a slowly
varying function £ such that x,, = n'/“£(n). This is a well known fact from the theory
of regular variation; see, e.g., Bingham et al. [14]. Replacing x by x,, in (5.4.5) and
(5.4.10), we arrive at the relations

nP(X € x,-) N u(-) and
nP(X| > tx,,X€) >t *POc), t>0. (5.4.11)

In the former case, % refers to vague convergence on the Borel o-field of Ed\{O},
in the latter case to vague convergence on the Borel o-field of S~!. If one requires
that u(tA) = r~*(A), any of the convergence relations with x,, as chosen above is
equivalent to the regular variation of X. We refer to any of the relations (5.4.11) as
the sequential definition of regular variation.
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Example 5.4.3 (Some multivariate regularly varying distributions)

Various well known multivariate distributions are regularly varying. Those include

the following ones whose precise description can be found in Johnson and Kotz [86]

or Tong [133]: multivariate student, multivariate F', and multivariate Cauchy.
Resnick [119], Proposition 5.20 and examples following it, discusses various abso-

lutely continuous regularly varying distributions, including the ones above. In partic-

ular, he gives conditions on the densities implying regular variation of the distribution.

Analogously to the univariate case (see Remark 5.4.2) multivariate regular variation
is used to characterize maximum domains of attractions for partial componentwise
maxima of i.i.d. random vectors attracted by a multivariate extreme value distribution
with Fréchet marginals; see Resnick [119] and the discussion at the end of Section
5.4.2. Moreover, as in the univariate case, multivariate regular variation is used as
domain of attraction condition for partial sums of i.i.d. random vectors attracted by
a-stable distributions; see Rvaceva [127] for the summation theory and Section 5.7
for a brief introduction to stable random vectors.

Multivariate regular variation is by no means an easy notion and is far from being
completely understood. Indeed, many results for univariate regular variation (such as
Abelian and Tauberian results) do not exist for multivariate regular variation or are
only known in some special cases; see Bingham et al. [14], p. 426, for some existing
results. See also Section 5.4.3 for another open problem related to regular variation. A
recent account on regular variation and its applications can be found in Meerschaert
and Scheffler [102].

Examples and intuitive interpretation of the spectral measure

In this section we first consider some examples of regularly varying random vectors
and try to determine their spectral measures. For the purpose of illustration we focus
on two-dimensional vectors.

Example 5.4.4 (Total independence)

Consideravector X = (X, X») ofi.i.d. components X |, X, with common distribution
function F, and assume for simplicity that X; > 0 a.s. Suppose that both are regularly
varying with index «. In this context it will be convenient to choose the max-norm
|x| = max(xi, xp) and the sequential characterization of regular variation introduced
in Section 5.4.2. Thus we have to study the limits, for ¢ > 0, of the quantities

(X1, X2) c S}.

nP ({max(Xy, X;) > tx,} N A(S)), where A(S)= {m

Notice that
nP(X| > x,) =n (1 — P(max(X, X») < x,))
[nF(x,)] (1 + F(x,)) ~ 2 [nF(x,)] ~ 1

and therefore

F(x,) ~0.5n7". (5.4.12)
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Choose § € (0, 1). Then
{max(Xy, Xp) > tx,} = {X| > tx,, Xo > 6tx,} U{X| > tx,, Xp < btx,}
U{X, > tx,, X1 > 6tx,} U{Xy > tx,, X1 < dtx,}.
Hence by the independence of X and X»,
nP ({max(X1, X2) > tx,} N A(S))
= O [FOtx,)>) + nP(X| > tx,, X5 < 8tx,, (1, X2/ X1) € S)
+nP(Xy > tx,, X1 <dtx,,(X1/X2,1)€09).

Because § € (0, 1) can be chosen arbitrarily small, the right-hand expressions make
nonnegligible contributions to the limit if and only if (1,0) € S or (0,1) € S. (We
have to assume that neither (0, 1) nor (1, 0) are at the boundary of S.) In the latter
case, by fine tuning the convergences as n — oo and § | 0 and taking account of
(5.4.12), the quantity n P(X, > tx,, X| < étx,, (X1/X», 1) € S) can be shown to be
of the asymptotic order

nP(X, > tx,) Is((0, 1)) ~ 0.5¢:7* I5((0, 1)).
Using analogous arguments, it finally turns out that
P(® € §)=0.515((1,0) + 0.5 I5((0, 1)),

or, in words, the spectral measure is concentrated on the intersection between the
axes and the unit circle. As a matter of fact, a more precise argument shows that this
statement remains valid for any norm in R,

An intuitive interpretation of this fact is that for an i.i.d. sequence Xy, ..., X,, with
the same distribution as X, extremes, i.e., X; with large |X;|, are caused with high
probability by X; with one component significantly larger than the other one. Thus,
for a plot of the two-dimensional points X, ..., X,, we expect that the points X;
which are far away from the origin are concentrated along the axes. See Figure 5.13
for an illustration of this fact.

X2

Figure 5.13 Plot of 1000 realizations from an i.i.d. sample (X;) with i.i.d. components satisfying
P(X| > x) ~ x73. The X;s with large distance from the origin are concentrated along the
axes.
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Example 5.4.5 (Total dependence)
We assume that X = (X, X) for some regularly varying X with index @ > 0 and
again choose the max-norm |x| = max(xy, x»). In this case, with n P(| X| > x,) ~ 1,

nP(|X| > x,, Xe S)=nP(X| > x,,(1,1) e S) ~ Is((1, 1)),

where we assume that (1, 1) is not at the boundary of S. The spectral measure is
degenerate and concentrated on the intersection of the unit sphere with the line x = y.
The same remark applies to any norm in R>.

For an i.i.d. sequence Xj, ..., X, with the same distribution as X, it is clear from
the dependence structure of the components that an X; far away from the origin occurs
if both components in the vector are large at the same time.

In contrast to the previous artificial example, for a real-life time series Xy, ..., X,
with dependent nonidentical components we do not expect that all these vectors lie
on the line x = y. However, when X;s of large modulus stay away strongly from the
axes, we have an indication of asymptotic dependence.

The observed features can be generalized to vectors with values in RY. Again,
the spectral measure of vectors with independent components is concentrated on the
intersection of the axes with the unit sphere, and the spectral measure of vectors with
strong dependence in the components tends to be concentrated along the diagonals
of the orthants. We illustrate these features for the lagged vectors (X,, X, ) of the
AR(1) process X; = 0.9X,_; + Z; with i.i.d. symmetric noise (Z,) regularly varying
with index 1.8; see the left part of Figure 5.14. In the right part we illustrate the
dependence in the tails for pairs of daily log-returns of the S&P500 series.

Example 5.4.6 (A toy model)
If one wants to get an intuitive understanding of the spectral measure, the following
example is quite helpful:

X = R (cos P, sin D), (5.4.13)

00 005
.

X_(t+1)
X_(t+1)
010 -0.05

-0.15

-0.20

Figure 5.14 Left: Plot of 1000 lagged vectors X; = (X, X;+1) for the AR(1) process X;+1 =
0.9X; + Z; for i.i.d. symmetric regularly varying noise (Z;) with tail index 1.8. The vectors X;
with a large norm |X;| are typically concentrated along the line y = 0.9x. Right: Scatterplot
of the pairs (X;, X;+1) of the daily log-returns X; of the S&P500 series. The extremes in the
series do not tend to cluster around the axes. This is an indication of dependence in the tails;
for an estimate of the density of the corresponding spectral measure we refer to Figure 5.16.
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-2
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Figure 5.15 LLD. vectors X; from the model (5.4.13) with tail index o« = 5. Left: ® is uniform
on (—m, ). Right: ® has a discrete uniform distribution on the points 2mi /50.

where the random radius R has distribution P(R > r) =r %, r > 1, forsome @ > 0
and is independent of the random angle ® with distribution on (—, w]. Choosing
the Euclidean norm | - | and exploiting the independence of R and ®, this vector is
immediately seen to be regularly varying with ® = (cos @, sin ®):

P(X|>x,X€S) PR>tx,0c8) PR >tx)

P(X]| > x) P(R > x) PR > x)
=t “PO¢€b?),

P(O®eS)

provided min(zx, x) > 1. The knowledge of the distribution of & allows for some
straightforward interpretation of the two-dimensional dependence in the tails; see
Figure 5.15 for two examples; cf. Figure 5.16 for estimates of the density of ®.

Point process convergence to a Poisson process and regular variation

For an i.i.d. sequence of regularly varying R¢-valued vectors X; the following ele-
mentary relation holds for a Borel set A bounded away from zero with ©(dA) = 0:

n
nP(x'X, € A)=E [Z I{X"IX[“,] — u(A). (5.4.14)

i=1
By virtue of Poisson’s limit theorem we conclude that the binomial sequence
Y- I-1x,c 4y converges in distribution to a Poisson random variable with param-
eter (A). This approach allows for an extension to point processes: let ex be Dirac
measure at X, i.e., for any set A

ex(A) = 14(x).

It is a well known fact (see Resnick [118, 119]) that regular variation in Rd\{O} in the
sense of relation (5.4.10) is actually equivalent to convergence in distribution of the
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Figure 5.16 Top: Spectral density estimation for the pairs (X;, X;+1) of the S&P500 returns
(X1). The vertical lines indicate multiples of m /4. Bottom: Spectral density estimation for the
pairs (X;, Yy), where (X;) is the log-return series of the DAX, (Y;) the corresponding series for
the CAC40 for the period from September 21, 1988, until August 24, 1995. See Example 5.4.7
for details.

point processes
No=Y exys, > N, (5.4.15)
i=1

where N is a Poisson random measure or Poisson process with mean measure ©
(PRM(u)) on Kd\{ﬂ}, the state space for the point processes N,, and N. Recall that N
is PRM() with state space Kd\{ﬂ} if N(Ay), ..., N(A,,) are independent for disjoint
sets A; and N(A) ~ Poisson(u(A)) for every Borel set A C Ed\{O} with the inter-
pretation that N(A) = oo a.s. if u(A) = oo. Convergence in distribution as given in
(5.4.15) is equivalent to the convergence of the finite-dimensional distributions, i.e.,

(Na(AD, . Na(An)) > (N(AD, ... N(An)

for any collection of sets Ay, ..., A, C Rd\{O} with w(0A4;) = 0. We refer to
Kallenberg [87] and Resnick [118, 119] for introductions to the theory of point
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processes and their weak convergence, and in particular to the latter two references
for connections with regular variation.

The point process convergence in (5.4.15) and the particular form of the measure
w for ii.d. regularly varying X, ..., X, imply that for any set A bounded away
from the origin the number of points x, 'X; € A is roughly a Poisson(u(A)) random
variable. This applies in particular to the sets A = A(z, S) defined in (5.4.9). Thus,
regular variation tells us about the likelihood that one of the scaled x, 'X;s in an i.i.d.
sample falls into the set A(z, S) with distance ¢ from the origin, and S tells us about
the direction where the extremal event will happen. The spectral measure P(® € )
gives a quantitative description of the likelihood of this event.

Finally, regular variation also has an intuitive interpretation in terms of the conver-
gence of componentwise maxima. To explain this, assume for the sake of simplicity
that d = 2 and X; = (X;, Y;) has nonnegative components. Write

M,(X) =maxX; and M,(Y)=max};.
We also need the sets
Ca={y=0ny):y <a,y=<al, whre a=(a,a) e o].
Since the X;s are i.i.d., a Taylor expansion argument yields
P()Cn_an(X) =<ai, -xn_an(Y) = Clz)

= [P(xn_lxl < al,xn_lYl < az)]n

=(1-P(x,'X; € Ca))" ~exp{ —nP(x,'X; € Ca) }

— exp{—u(Ca)}.

Some standard argument (similar to the weak convergence of probability measures)
shows that the convergence of n P(x, X, € C,) to u(Cy) for all a is actually equiv-
alent to regular variation in the sense explained above, and therefore convergence in
distribution of the partial maxima of i.i.d. vectors X; with nonnegative components
is equivalent to the point process convergence (5.4.15); we again refer to Resnick
[118, 119] for precise statements.

Some statistical problems

When dealing with real-life data it is important to estimate the measure p on Ed\{()},
the tail index o, and the spectral measure P(© € -) on the unit sphere S*~'. Although
we know in particular cases (such as the GARCH and stochastic volatility models) that
the underlying finite-dimensional distributions of the processes are regularly varying,
it is most often impossible to describe their characteristics in an accessible form; see
Section 5.5.

Estimation problems in one dimension for the tail index have led to explosive growth
in the literature, and the multivariate case is by no means easier. To estimate tail char-
acteristics, one must use the rare data points far from the origin. The main difficulty
is to choose a sufficiently high threshold to get reliable estimates, in particular when
samples are small. An honest discussion can be found so far only in some case studies
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that are restricted to dimensions 2 or 3; see de Haan and de Ronde [80] for a survey
paper and the related thesis of Draisma [54]. A discussion and many references on
the estimation of « in the univariate case (also for the dependent case) can be found in
Embrechts et al. [58], Chapter 6. Recent progress on the estimation of « for dependent
data is reported in Drees [55], Novak [113], and Resnick and Stérica [123]. The latter
theory applies to the multivariate case if one considers the norms |X;|. Nonparametric
estimation of u is the topic of the papers by de Haan and Resnick [78] and Einmahl
etal. [57]. Stdrica [131] gives an accessible account of multivariate regular variation,
considers a particular multivariate GARCH model and applications to the modeling
of joint extremal movements of pairs of foreign exchange rates. Multivariate extreme
value distributions are treated in the recent book of Kotz and Nadarajah [93] who con-
sider various multivariate parametric models. We refer to the survey paper by Ledford
and Tawn [95] for several parametric models and related estimation techniques.

The author believes that multivariate extreme value statistics is not well developed.
In particular, for dependent data such as return series, the map contains large white
spots. Further investigations are clearly needed. The gap between the theory that was
well understood in the 1980s (see, e.g., Resnick [119]), and its statistical applications
has not been closed so far. In contrast to the univariate case for which we have by
now an almost complete picture and a multitude of real-life applications in insurance,
climatology, earthquake modeling, stress testing in engineering, etc., the multivariate
case lacks an honest discussion about the limitations and applicability of the methods.

Example 5.4.7 (Spectral density estimation for S&P500, DAX and CAC40)

In this example we assume that | - | is the Euclidean norm. We consider spectral
measures P(® € -) on S'. Then we can write ® = (cos @, sin ®), and if ® has a
density on (—m, ] we refer to it as the spectral density. In Figure 5.16 we give two
examples of spectral density estimation in a two-dimensional setting. In both cases
the estimation is based on those 2% of the considered two-dimensional sample for
which the Euclidean norm is above the 98% empirical quantile of the lengths of the
pairs; we use a standard S+ function for probability density estimation.

In the top graph we consider the pairs (X;, X;+1) of the S&P500 returns X;. The
density has peaks around —3m /4, /4, /2, and 7. The first two peaks indicate that
an extreme value of X, is likely to be followed by a value X, 1, roughly of the same
absolute size. When this happens, both X, and X, are likely to have the same sign.
The peak at v /2 indicates that a large positive value X, is not necessarily preceded
by alarge value | X, [; it may happen out of the blue. Analogously, the peak at 7 shows
that a large negative value of X, is not necessarily followed by a large value | X, |-
From the heights of the peaks one can also conclude that joint extremal movements
of X, and X, are more likely than independent extremal moves of the components.

In the bottom graph we consider the pairs (X, ¥;), where (X;) is the log-return series
of the DAX from September 21, 1988 until August 24, 1995, (Y,) the correspond-
ing series for the CAC40. The DAX and CAC40 are the major German and French
composite stock indices, respectively. The density is concentrated at —3 /4 and 7 /4.
This means that extreme movements of (X;, Y;) happen in a way such that both
components are big at the same time. This strong dependence in the tails is not sur-
prising in light of the strong joint links between the German and French economies,
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Figure 5.17 Simulation of 3000 values from a stochastic volatility model X; = o0:Z; (a, c)
and spectral density estimation for the pairs (X;, X;+1) (b, d). The i.i.d. symmetric noise
satisfies P(Z; > x) = 0.5x74 x > 1, and logo; is a Gaussian linear process. Hence
P(X; > x) ~ cx~%; see (5.4.18). (a, b): The process (logoy) is fractional ARIMA with
difference parameter d = 0.49. This implies hyperbolic decay of its ACF and in turn very
strong dependence in the series. See Brockwell and Davis [29], Section 13.2, for details. The
estimated spectral density has various peaks at multiples of w /4 and a deep valley at —3m /4.
The latter fact implies that extremes are very unlikely with both | X;|, | X;+1| large and X;, X;41
negative. Any angle between —m /2 and 1 is likely.

on the one hand, and their dependence on the U.S. economy on the other hand.
The large peak at —37m /4 is a small surprise since it means that, if an extreme pair
(X, Yy) occurs, it is quite likely that both X; and Y; are negative, whereas it is less
likely that both X, and Y, are positive. This can be understood as a consequence
of the leverage effect mentioned in Section 5.1.3. The small peak at zero indicates
that there is a small probability that an extreme movement might be caused only by
a positive value of the DAX.? In contrast to the S&P500 example, it is quite astonishing

9 The author has learned from Steve Marron that this peak is statistically insignificant. It appears as an
artifact of the S+ procedure used.
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Figure5.17 (Continued). (c,d): The log-volatility is an ARMA(1,1) modellog oy = 0.9 log o;+
0.5n;—1 + n; with i.i.d. standard Gaussian noise. The ACF of this series decays exponentially
fast; the series has very short memory. The estimated spectral density has sharp peaks at multi-
ples of w /2. This means that extremes are due to almost independent behavior of X; and X;41.

that the DAX-CAC40 density is not spread over the whole interval (—m, ].
This observation implies that for extremal movements it would be enough to study
only the DAX.

5.4.3 Operations on regularly varying random vectors

Regular variation is a very flexible tool for describing heavy tails and dependence in
the tails. This will be illustrated in the sequel where we will see that regularly varying
vectors remain regularly varying after some operations.

Linear combinations

Simple consequences of multivariate regular variation are, for example, that the
linear combinations of the components of a regularly varying random vector X are
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regularly varying. Indeed, writing
Ax={y: x,y) > 1} forx #0,
where (-, -) denotes the usual inner product, we have
P((x,X) > x) . PXexAy
im ———— = lim ———— = u(Ay),
x—oo  P(X| > x) x—oo P(|X]| > x)
hence (x, X) is univariate regularly varying with the same index as X provided that
n(Ax) > 0.
Now suppose that the following condition holds:
There exists an « > 0, a slowly varying function L and a finite-valued function

w which is not identical zero such that, for all x # 0, the limit

W =w(xX) exists.
u=%* L(u)

(5.4.16)

lim,, oo

That is, for all x with w(x) > 0, the random variable (x, X) is regularly varying with
index «. As noted above, (5.4.16) holds if X is regularly varying with index «. The
converse implication is not obvious, i.e., if X obeys (5.4.16), then the vector X is
regularly varying with index o and a uniquely determined spectral measure on the
unit sphere corresponding to a fixed norm. Here is a partial answer to the problem.

Theorem 5.4.8 (Basrak et al. [7]) Let X be a random vector in RY.

1. If the random vector X is regularly varying with index a > 0, then (5.4.16) holds
with the same o.

2. If X satisfies the condition (5.4.16), where the o is noninteger, then X is regularly
varying in the sense of (5.4.5) with index a and the spectral measure is uniquely
determined.

3. IfX assumes values in [0, 00)? and satisfies (5.4.16) for x € [0, 00)?\{0}, where o
is a noninteger, then (5.4.5) holds with index o and the spectral measure is uniquely
determined.

4. If X assumes values in [0, 00)? and satisfies (5.4.16), where « is an odd integer,
then (5.4.5) holds with index « and the spectral measure is uniquely determined.

For integer-valued « and general X the problem remains open. Meerschaert and
Scheffler [102], Example 6.1.35, show that one can find two-dimensional regularly
varying vectors X and X, with index o = 1 and different spectral measures for which
(5.4.16) holds with the same function w.

The problem arises from the fact that one has to reconstruct the infinite measure
w in (5.4.10) from its values on the half-spaces Ax. Because u is an infinite measure
and the half-spaces do not constitute a 7-system, this creates difficulties. Notice that
the problem bears some resemblance with various well known results in probability
theory where one has to conclude from the behavior of the linear combinations of the
components of vectors about the properties of the vector itself. Those include the
Cramér-Wold device on convergence in distribution of sequences of vectors and
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the fact that Gaussianity of all linear combinations implies Gaussianity of the vector.
However, it is also well known that «-stability of the linear combinations of a vector
witha € (0, 1) does not necessarily imply «-stability of the vector; see Samorodnitsky
and Taqqu [128], Section 2.2.

Example 5.4.9 In Section 5.1.3 we have argued about the interplay between heavy
tails and the CLT. It follows from the above theory that, for every fixedn, X +- - -+ X,
is regularly varying with index « > 0 if the vector X = (X1, ..., X,) is regularly
varying with index «. In particular, as x — oo,

PXi+---+X,>x)
P(X] > x)

> u({x:x; 4+ +x, > 1}).

If X has i.i.d. and nonnegative regularly varying components with positive index then,
choosing the max-norm | - |, as x — oo,

PXi+- -+ X,>x) PXi+---+X,>x)
P(max(Xy,..., X,) > x) nP(X| > x)
> u({x:x1+---+x,> 1) =1. 5.4.17)

(Compare also with the results in Section 5.4.3.) The assumption of fixed n was crucial.
For a general sequence of i.i.d. nonnegative random variables X; relation (5.4.17) leads
to the notion of subexponentiality: X has a subexponential distribution if for n > 2,

PXi+---4+ X, >x)
P(max(Xy,..., X,) > x)

s

cf. Embrechts et al. [58], Chapter 1. The latter family contains distributions with very
heavy tails (such as regularly varying distributions) and moderately heavy tails. A
subexponential distribution has finite power moments of all degrees and tails lighter
than the exponential distribution. The class of subexponential distributions includes
the Weibull distribution with shape parameter less than 1 and the log-normal distri-
bution. The subexponential distributions are considered as prime examples of heavy-
tailed distributions. They have gained popularity in various applied probability con-
texts such as telecommunications, branching, queuing, and insurance mathematics.

The picture in (5.4.17) changes if x = x, — oo and n — oo. Depending on how
fast x, increases one can get very different answers as to the asymptotic order of the
left-hand ratio in (5.4.17). In the i.i.d. case this is well known and is described either
by the CLT with normal or infinite variance stable limits ([58], Section 2.2) or by
heavy-tailed large deviation behavior ([58], Section 8.6).

Products

Consider two independent nonnegative random variables X and Y. Assume X is
regularly varying with index @ > 0 and EY*"™ < oo for some € > 0. Then XY is
regularly varying with index «, and

P(XY >x)~EY* P(X >x) asx — oo. (5.4.18)
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This result was proved by Breiman [28] (in a special case). It is an extremely useful tool
for many applied problems where one has to deal with products of random variables.
Among others, it has been extensively used in the recent queuing theory literature on
telecommunications.

A multivariate version reads as follows:

Theorem 5.4.10 (Resnick and Willekens [124], Basrak et al. [7]) Assume the R9-
valued random vector X is regularly varying in the sense of (5.4.10) and A is a random
q x d matrix, independent of X. If 0 < E||A||**¢ < oo for some € > 0, then

PAXex:)  _ . _y
xggom = p():=E[poA™ ()],

4 . —=d
where <> denotes vague convergence in R \{0}.
A particular case is the following.

Corollary 5.4.11 Let X be regularly varying with index a > 0, independent of the
random vector Y = (Y1, ..., Yg) which has independent components. Assume that
E|Y;|*"¢ <00 for some € > 0,i = 1,...,d. Then the inner product (Y, X) is
regularly varying with index a.

Products of heavy-tailed, not necessarily regularly varying random variables have
been considered in the literature for some time. We refer to Cline and Samorodnitsky
[31] and references therein for a recent account on the topic, in particular on products
of subexponential random variables.

Example 5.4.12 The investigation of the tails of products of regularly varying ran-
dom variables can be quite tricky. Assume, for example that the two-dimensional
vector X = (X, X») is regularly varying with nonnegative components. Then by the
definition of regular variation,

P(X X, >’x*) P 'Xet{y:yy>1))
P(X|>x) P(X| > x)

= p{y:yiy2> 1D =t""ul{y: y1y2 > 1}). (5.4.19)

Thus, X X, is again regularly varying with index /2 if u({y : y1y> > 1}) > 0. This,
however, is not true for many examples of interest. For example, the above Breiman
theory tells that X X, is regularly varying with the same index « if X; and X, are
independent and one of the components in the vector X has substantially lighter right
tail than the other component. This means that the whole mass of the measure p is
concentrated on the axis where the largest component lives. Hence the right-hand side
of (5.4.19) is zero.

If both components have approximately the same magnitude of the tail, addi-
tional information about X; and X is needed to get more precise information about
P(X1X;, > x). For example, if X and X are i.i.d. with P(X; > x) ~ cx~“ for some
¢ >0, then P(X;X;>x) ~ ¢’x *logx, some ¢’ > 0; see Rosiriski and Woyczyriski
[126] and Davis and Resnick [46] for more general results on products of i.i.d.
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regularly varying random variables. In this case, u is concentrated on the axes and
the right-hand side of (5.4.19) is again zero.

If X = X5, n is concentrated on the line x =y, and hence the right-hand side
in (5.4.19) is finite, and so we may conclude what we already know: X? is regularly
varying with index « /2. Generally speaking, only in the case of strong tail dependence
between X and X, one can expect that (5.4.19) gives meaningful information. This
is the case for products of the components of any lagged vector (X, X;) of a GARCH
process, as follows from the theory developed in Section 5.5.2.

Infinite moving averages

Interesting supplements to the results about the regular variation of linear combi-
nations of the components of a regularly varying vector, given in Section 5.4.3, are
results about (in)finite moving average processes, so-called linear processes. It is the
best understood class of time series models, including the class of ARMA processes
mentioned in Section 5.2.1.

Assume that (Z,) is an i.i.d. sequence of regularly varying random variables with
index o > 0 and tail balance condition

P(Zy > x)=pP(Z] > x)(1 +0(1)) and
P(Z, = —x) = qP(Zi| > x) (1 + o(])),

where p+¢ = 1, x — o0. Then the vector (Z, ..., Z,) is regularly varying as well,
where the spectral measure of this distribution is concentrated on the intersection of
the unit sphere S"~! with the axes, see Example 5.4.4. Hence linear combinations
of finitely many Z;s are regularly varying, see Section 5.4.3. The same statement
remains valid if we consider an infinite moving average of the Z;s:

Xe= > ViZij, (5.4.20)

j=—00

where the ;s are real coefficients satisfying some condition stronger than square
summability, depending on the tail of Z,. Then the following relation holds (see
Embrechts et al. [58], Appendix A3.3; the weakest conditions on (/) are given in
Mikosch and Samorodnitsky [105]):

P(X; > x)

XLHC}O m = ';w[p (Wj)i +4q (wj)(i]

J

This means that X, is regularly varying. Using the same methods as for fixed ¢, one
can show that the finite-dimensional distributions of (X,) are regularly varying as well
(although no reference seems availabe for general linear processes).

If we consider the noise (Z,) in (5.4.20) as input into a linear filter with coefficients
¥; and X; in (5.4.20) as output after filtering, we see that the property of regular
variation remains invariant. This is due to the linearity of the system. We will see
later, in Section 5.5, that this invariance is atypical for nonlinear time series, such as
GARCH processes.
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5.5 The tails

The tails of the finite-dimensional distributions of the stationary process (X;) de-
termine its extremal behavior. Clearly, there is no unique definition of the tail of a
multivariate distribution G; in our context of regularly varying distributions it will be
convenient to refer to the collection of probabilities G(A) for A bounded away from
zero as the tail of G.

In what follows, we will study conditions under which the finite-dimensional dis-
tributions of stochastic volatility and GARCH models are regularly varying. In order
to ensure regular variation, we need to require in the stochastic volatility model that
the noise is regularly varying. Surprisingly, the GARCH process has regularly varying
finite-dimensional distributions even for large classes of light-tailed noise distribu-
tions. This is due to a fundamental result of Kesten [88] for SREs.

5.5.1 The stochastic volatility case

We study the stochastic volatility case first because it is uncomplicated. Consider
the stochastic volatility process X, = o,Z, with logo, being a strictly stationary
mean-zero Gaussian linear process as introduced in (5.3.1), independent of the i.i.d.
symmetric sequence (Z;). Clearly, o, is log-normally distributed. The log-normal
distribution is heavy-tailed in the sense that its right tail is heavier than an exponential
tail. The log-normal distribution belongs to the class of subexponential distributions;
see Example 5.4.9. For log-returns data the log-normal distribution is too light-tailed
and power law behavior of the tails seems more appropriate. This can easily be
achieved by assuming that the noise is regularly varying with index «. Then by
Breiman’s result (5.4.18), as x — o0,

P(X, > x)= P(01Z, > x)~ EoP(Z, > x) and
P(X] < —.X) ~ EO’{XP(Z] < —.X).

A similar relation for

(X1,..., X,) =diag(oy, ...,00)(Z1,..., Z,)
can be obtained by the multivariate version of Breiman’s result (Theorem 5.4.10)
because the i.i.d. vector (Zy, ..., Z,) is regularly varying and independent of the
matrix diag(oy, . .., 0,).

5.5.2 The GARCH case

For the stochastic volatility model we had to impose a regular variation condition
on the noise to get regular variation of its finite-dimensional distributions. For the
GARCH process the tail behavior is less obvious. However, it will turn out that the
finite-dimensional distributions of a GARCH process are regularly varying under
mild conditions on the noise distribution. This is somewhat surprising because, in this
case, light-tailed input such as i.i.d. Gaussian noise (Z;) generates regularly varying
output (X,). This is due to the fact that the squared GARCH process and the squared
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volatility process can be embedded in a SRE; see Section 5.3.2. Therefore we first
consider the more general SRE case.

The tails of the solution to a stochastic recurrence equation

Under general conditions, the stationary solution to the SRE
Y, =AY,.1+B,, neZ, (5.5.1)

where ((A,,, B,,)) is ani.i.d. sequence with nonnegative-valued d x d random matrices
A,, and nonnegative-valued d-dimensional random vectors B,,, satisfies a multivariate
regular variation condition. This follows from ingenious work by Kesten [88] on
renewal theory for products of i.i.d. random matrices in the general case d > 1. We
give a modification of Kesten’s fundamental result, a combination of Theorems 3 and
4 in [88]. In what follows, we use the Euclidean norm | - | in R? and | - || denotes the
corresponding operator norm.

Theorem 5.5.1 (Kesten [88]) Let((A,, B,)) be ani.i.d. sequence of d x d matrices
A, with nonnegative entries and d-dimensional nonnegative-valued random vectors
B, # 0 a.s. Assume that the following conditions hold:

o Forsomee > 0, E||A{||€ < 1.

e A has no zero rows a.s.

o The set

{loglla,---aj|: n>1a,---a; > 0anda,, ...,a; € the support of Pa,}
(55.2)

generates a dense group in R with respect to summation and the Euclidean topol-
ogy. Here Py, denotes the distribution of A.

o There exists a kg > O such that

Ko

d
; N k0/2
E iﬂ;ﬂdZA,j > o (5.5.3)
j=1
and
E (A1 log* A, ]]) < oo. (5.5.4)

Then the following statements hold:

1. There exists a unique solution k1 € (0, ko] to the equation
1
0= lim —log E||A, - - A{||“". (5.5.5)
n—»oon

2. If E|B1|' < oo, there exists a unique strictly stationary causal solution (Y,) to
the stochastic recurrence equation (5.5.1).
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3. If E|B{|* < oo, then Y satisfies the following regular variation condition:
Forallx € R? \ {0}, lim &' P((x,Y)) > u)=w(X) exists
u—00

(5.5.6)

and is positive for all nonnegative-valued vectors x # 0.
In particular, all components of Y are regularly varying with index k.

Kesten [88] also treats the case of A, and B,, with general entries; see also Le Page
[97] and Kliippelberg and Pergamenchtchikov [91] for some extensions. Goldie [70]
gave an elegant alternative proof in the case d = 1. It is based on renewal theory and
also treats real-valued A;s and B;s. In particular, he determined the exact value of
the tail constant ¢, in the relation P(Y; > x) ~ c,.x~*. Related work can be found
in Diebolt and Guégan [49] and Baxendale and Khasminskii [9]. Various nonlinear
models can be embedded in a SRE or can be shown to be close in some sense to the
solution of a SRE. Those include bilinear models with light-tailed noise (Basrak et al.
[6]) and autoregressive models with ARCH error (Borkovec [18, 19]). These models
have regularly varying finite-dimensional distributions as well.

At a first glance, the conditions of Kesten’s theorem look mysterious. The case
d = 1is more transparent.

Example 5.5.2 (The cased = 1)

Assume that ((A,, B,)) is a sequence of i.i.d. (0, c0)*-valued random vectors. Con-
dition (5.5.2) then simply means that the distribution of the step size of the random
walk

log(Aj -+ A,) =) log4;, n=>1 (5.5.7)
i=1

is not concentrated on a lattice. This is a typical assumption in renewal theory. Indeed,
an inspection of the proof of Goldie [70] (cf. Embrechts et al. [58], Section 8.4,
for a special case) shows that renewal theory is applied to this random walk. The
assumption E log A; < 0 in combination with EB}' < oo ensures the existence of
a stationary version of (Y;); compare with the discussion in the GARCH(1,1) case
before Theorem 5.3.1 where exactly this condition appears. Moreover, the random
walk (5.5.7) has negative drift. Now, if £ A‘f < oo for some § > 0, the conditions
Elog A < 0Oand EA{ < 1 are actually equivalent. Therefore part two of the theorem
follows.
The function

h(e) = EAS = Ee€o¢/ (5.5.8)

is convex in €. So far we know that 2(0) = 1 and h(e¢) < 1 for small ¢ > O.
Condition (5.5.3) finally ensures that there exists ko > 0 such that i(kg) > 1. By
convexity of 4 we conclude the existence of a unique solution «; to the equation
h(x1) = 1. This is the content of part one of the theorem. The moment generating
function A (¢) of the random variable log A; and the solution «; play a major role in
renewal and queuing theory as well as in insurance mathematics. In the latter case,
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k1 is known as the Lundberg or adjustment coefficient, which appears in the classical
Cramér bound of the ruin probability; see [58], Chapter 1. From the Cramér ruin theory
it is also well known that an additional moment condition is needed that ensures the
finiteness of i’(kg) (cf. Theorem 1.2.2 in [58)]): this is condition (5.5.4).

A comparison of the methods for deriving bounds for the probability of ruin (the
tail probability of the supremum of a random walk with negative drift, equivalently,
the tail of the stationary distribution in a stable queue) shows that the tools used are
quite similar in the one-dimensional case; see [58], Chapter 1 and Section 8.4, or
go directly to Goldie’s [70] paper. In particular, in both cases an application of the
key renewal theorem is key to deriving the desired tail behavior. See also the recent
paper of Kluppelberg and Pergamenchtchikov [90] for an extension to more general
Markov chains. An alternative method based on large deviation techniques could also
be applied; see Nyrhinen [114].

We continue with a simple one-dimensional example. Let (Z;) be i.i.d. standard
normal random variables, oy be any positive number. Define A, = th, B, = ato,
and Y, = A,Y,_; + B, ie.,

Y, =2, +aZ2, tel (5.5.9)

It is not difficult to see that the latter SRE describes the squares of a stationary
ARCH(1) model with standard normal innovations. Reading through the above com-
ments on one-dimensional SREs it is not difficult to see that Kesten’s theorem applies,
ie., P(Y; > x) ~ cx ™ and EA'{l = E[Z%]"l = 1. Since the solution « is unique,
k1 = 1 and therefore Y; has tail index 1. In Figure 5.18 we illustrate this fact.

Choosing x = e; in (5.5.6) as the ith unit vector, it is immediate that the ith
component of Y, is regularly varying with index . It is natural to ask whether the
vector Y| itself is regularly varying. Clearly, (5.5.6) is a special case of (5.4.16) and
so an appeal to Theorem 5.4.8 immediately gives the following result.

Corollary 5.5.3 Under the assumptions of Theorem 5.5.1, the marginal distribution
of the unique strictly stationary causal solution (Y,) of the stochastic recurrence
equation (5.5.1) is regularly varying in the following sense. If the value « in (5.5.5)
is not an even integer, then there exists a positive constant ¢ and a random vector ©
with values in the unit sphere S*' such that

WP(Y | >tu, Y€)= ct ™™ P@Oc-), asu— oo. (5.5.10)
Now iterate the SRE to obtain
Y1, Y =A1LAAL LA, ADYo + R,

The components of R, have lighter tails than the components of Y due to the fact that
E|A]" < oo and E|B;|" < oo. A standard argument shows that the contribution
of R,, to the tail of (Y}, ..., Y,,) is asymptotically negligible. The regular variation of
the vector (Y, ..., Y,,) is assured by regular variation of Y, and by the multivariate
Breiman Proposition 5.4.10.

We conclude:
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Figure 5.18 Top: Simulation of 1000 values from the squared ARCH(1) SRE (5.5.9) with
parameter «g = 0.001. Bottom: QQ-plot of the largest 5% values in a simulated sample of
size 2000 from the same model against the Pareto distribution with tail parameter one. We also
indicate the line y = x. The QQ-plot is in good agreement with the fact that the right tail of Y1
is Pareto-like.

Corollary 5.5.4 Under the conditions of Corollary 5.5.3 the finite-dimensional
distributions of the stationary solution (Y,) of (5.5.1) are regularly varying with
index k.

The above discussion might have given the impression that the solution to SREs
always has regularly varying finite-dimensional distributions. This is not necessarily
the case as work by Goldie and Griibel [71] shows: if the distribution of ||A;]|| is
concentrated on a too small compact interval, the tails of Y, can be very thin.

The tails of a GARCH process

We have learned in Section 5.3.2 that the vector

— (2 2 2 2 !
Y, = (otﬂ,...,a,fﬁz,Xt,...,X,7p+2)
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constructed from a GARCH(p, ¢q) process X; = o, Z, can be embedded in the SRE
(5.3.5). Therefore an application of Kesten’s Theorem 5.5.1 (we refrain from verifying
its assumptions) yields the following.

Theorem 5.5.5 (Basrak et al. [8]) Assume the following conditions:

1. ag > 0 and the Lyapunov exponent y < 0 of the SRE (5.5.1) specified by (5.3.5).

2. Zi has a positive density on R and either E|Z,|" < oo for all h < hy and
E|Z|" = oo for some finite hy > 0 or E|Z,|" < oo for all h > 0.

3. Not all of the parameters a; and B; vanish.

Then there exist a k1 > 0 and a finite-valued function w(x) such that

forall x e RPT171\ {0}, lim u*' P((x, Y1) > u) = w(x) exists,
u—>00
i.e., (x,Y) is regularly varying with index k. Moreover, if x € [0, 00)?T4~! and
X # 0 then w(x) > 0.
Furthermore, if k1 is not even, then Y| is regularly varying with index k1, i.e., there
exist a constant ¢ > 0 and an SPY9~2-valued random vector © such that

u" P(|Y1| > tu, Y e ) D ctMP@Oec-), asu— oo.

Example 5.5.6 (The GARCH(1, 1) case)

In this case it is not difficult to verify the conditions of Theorem 5.5.5. However,
one can directly verify the conditions of Kesten’s Theorem 5.5.1. We know from
Theorem 5.3.1 that the conditions g > 0 and Elog(aIZf + B1) < 0 ensure the
existence of a unique strictly stationary solution to the GARCH(1,1) SRE

0,2 =aqag+ othZZ_l + 510,2_1 =ap + (05123_1 + ,31)‘7:2—1‘
Hence Y, = o satisfies
Y, =AY, + B, with A, = Z>,+8 and B, = a.

Moreover, EA{ < 1 for some small € follows from E log A; < 0. Condition (5.5.2)
is satisfied because Z; has a density (actually, it suffices to assume that log A; does
not have a lattice distribution) and therefore the distribution of the step size of the
negative drift random walk log(A, --- A;) is nonlattice. Condition (5.5.3) simply
turns into 1 < E A} for some k. If there exists iy < oo such that E|Z||" = oo
and E|Z,|" < oo for h < hg, one has E|Z;|" 1 oo as h 1 hy. Thus one can
choose ko < hy sufficiently close to . Alternatively, if E|Z; |" < oo forall h > 0,
the unbounded support of Z; ensures that E|Z;|" 1 oo as h 1 oo, and therefore
one can find k sufficiently large, which satisfies 1 < E A'f‘). Condition (5.5.4), i.e.,
EAY logt A} < oo is satisfied for the same reason. Hence a unique «; € (0, k]
exists with the property that

EAY' = E(aZ{ + B1)" = 1. (5.5.11)

Since B; is a constant, it immediately follows from Kesten’s theorem and Corol-
lary 5.5.4 that the finite-dimensional distributions of the sequence (o/?) are multivariate
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Table 5.1 Estimation Results for k, Normal Noise

A1 09 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
K 2.0 12.4 16.4 19.0 21.0 23.0 24.8 26.4 28.2 29.6
sd  0.0003 0.01 0.05 0.08 0.80 0.40 1.00 0.50 0.50 3.00
B 081 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89

Kk 120 11.4 10.8 10.0 9.0 8.0 7.0 5.6 3.8

sd  0.006 0.008 0.004 0.004 0.002 0.002 0.002 0.001 0.004

regularly varying with index . It is not difficult to see that if a nonnegative-valued
vector (Y1, ..., Yy) is regularly varying with index @ > 0, the vector (Ylp, e, Yf) is
regularly varying with index «/ p for any p > 0. Hence the finite-dimensional distri-
butions of (o) are regularly varying withindex x = 2k;. An appeal to Corollary 5.4.11
and some additonal argument give that the finite-dimensional distributions of the se-
quence of random variables X, = o0; Z, are regularly varying with index « . In the above
approach, in contrast to Theorem 5.5.5, no restrictions on the values k| are required.

Example 5.5.7 (A simulation study on the estimation of «)

In the GARCH(1, 1) case we can in principle calculate the solution «; of the equation
(5.5.11) for given parameters «; and B;. This can be done in the naive way by replacing
the left-hand expectation in (5.5.11) by a simulated average for various values of «
provided one knows the exact distribution of the noise Z,. Then one chooses the
k1-value for which the simulated average is closest to one. A theoretical justification
for this approach exists (Csorgd and Teugels [34]). The resulting estimator ; can be
shown to be consistent and asymptotically normal.

Inreality we clearly never know the exact distribution of the noise and therefore this
approach is doubtful. However, in order to see how this Monte Carlo procedure works
we made a small simulation study with fixed o; = 0.1 and varying 8;. When fitting
GARCH(1, 1) models to returns one often obtains small «;-values, and therefore the
chosen value is close to reality.

In Table 5.1 we collected the average k = 2kj-value from 20 repetitions of the
Monte Carlo procedure based on 1,000,000 averages of i.i.d. simulated variables
(1 Z? + B1)“. (This sample size was the largest one the author’s computer could
still handle.) We first choose Z, standard normal. Despite the large sample size, the
variation of the estimator « is very large and therefore the obtained values must be
considered with enormous care. Standard deviations (sd) for k of the order 0.5 are
not unusual, in particular for larger «-values. For smaller «, i.e., larger 8;-values, the
estimator performs much better.

In a second experiment we choose the student distribution with four degrees of
freedom, scaled to unit variance, for the noise Z,. The results are reported in Table 5.2.

These results show that there can be a substantial variation in the estimation of «.'°
Alternatively, one can estimate « by using classical methods such as Hill’s estimator;

10 An alternative and perhaps more promising approach for calculating k1 was suggested by a referee of
this chapter. He suggested to use numerical integration for solving the equation E(«; le + B =1
which is possible for many distributions of Z;.
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Table 5.2 Estimation Results for k, Student Noise with 4 Degrees of Freedom

Bi 09 038 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
K 20 40 44 44 44 44 4.8 4.8 4.6 4.8
sd  14x1077 05 0.5 0.5 0.5 1.4 1.5 1.5 2.0 2.0
Bi 081 082 083 084 08 08 087 0.88 0.89

(3 42 40 4.0 3.8 3.6 34 34 3.0 2.6

sd 0.15 013 008 0.10 0.08 0.04 0.02 0.005 0.002

see Drees [55] and Resnick and Starica [123] for some results on the estimation of
the tail index for dependent data. For dependent data, the asymptotic variance of the
estimators is typically larger than in the i.i.d. case.

Example 5.5.8 (The IGARCH(1, 1) case)

Recall the definition of an IGARCH model from Example 5.3.7. In this case we have
a; + B1 = 1, and the unique solution to the equation (5.5.11) is x; = 1. Following
the argument above, we conclude that the finite-dimensional distributions of (X,) are
regularly varying with index 2. To be more specific, let X; = (X1, ..., X4). Then there
exist a constant ¢ > 0 and a random vector with values in S?~! such that for ¢ > 0,

X2P(1X,| > tx,)zd €) > ct2P@O€-) asx — oo.

In particular, X, has infinite variance, a property shared by any IGARCH(p, g) pro-
cess (Engle and Bollerslev [61]). Assume that (X;) is a stationary IGARCH(p, q)
process. Then (o;) is stationary as well. Taking expectations in the defining GARCH
equation (5.2.7) and observing that EX? = Ec?, we obtain

P q
Eol2 =0{0+EX% Zai +E012 Z,B_,«

i=1 j=1
P q

=a0—|—E012 Z“i+zﬂf =a0+E012.
i=1 j=1

Since ap > 0 is necessary for stationarity, the only possible conclusion is that
Eo? = EX?} = 00, and similar arguments apply to the case Y7, o; + Z?:l B; > L
It is an open question as to whether any IGARCH(p, ¢) process is regularly varying
with index k = 2.

Using Corollary 5.4.11, one can show that the finite-dimensional distributions of a
GARCH process are regularly varying.

Corollary 5.5.9 Assume that the conditions of Theorem 5.5.5 hold. Then there exists
aconstantk; > 0suchthatthe linear combinations of the vectors (X2, 012, R Xfl, 03)
for any d > 1 are regularly varying with index k). If k| is not an even integer,
then the latter vector is multivariate regularly varying with index k|, and the vector
Xy, 01, ..., X4, 0q) is regularly varying with index k = 2. For a GARCH(1, 1)
process the corollary holds without the restriction on the values of k.

€004 CRC PressLLC



5.6 Classical measures of dependence: Mixing properties and correlations

In probability theory and statistics different tools have been developed to measure
the strength of dependence in a vector or sequence of random objects. Among them,
covariances and correlations are the quantities used most frequently by statisticians,
time series analysts, and practitioners. These instruments completely describe the de-
pendence structure in a Gaussian world. However, for nonGaussian random variables,
vectors and stochastic processes, covariances, and correlations are less meaningful.
As we know from a course on elementary probability theory, they describe the degree
to which two random variables are linearly dependent. For example, the ACF of a
GARCH process (X,) is zero at all lags; hence, there is no linear dependence between
X, and X, for h > 1. Nevertheless, there is a complicated dependence structure in
this process, and therefore the ACF does not help one much.

Among theoretical persons the mixing properties of a stationary sequence are con-
sidered as appropriate tools that describe dependence in a very sophisticated way.
These conditions are often expressed in terms of o -fields; we restrict our attention to
one particular case.

5.6.1 Strong mixing

Rosenblatt’s [125] strong mixing property is one of the most popular mixing condi-
tions in the literature. We focus on the strong mixing condition. The strictly stationary
ergodic sequence of random vectors Y, is strongly mixing with rate function (¢ ), if

sup |[P(ANB)— P(A)P(B)| =: ¢ > 0 ask — oc.
Aeo(Yy,s5<0), Beo (Y, s>k)

If (¢x) decays to zero at an exponential rate then (Y,) is said to be strongly mixing
with geometric rate. Then the memory between past and future dies out exponentially
fast.

The rate function is closely related to the decay of the autocovariances of a one-
dimensional strongly mixing process (Y;). Indeed, if E|Y;|*** < oo for some § > 0,
then

lyy ()] = [cov(Yo, Yy)| < ¢ ¢/ *+ (5.6.1)

for some constant ¢ > 0 and all /. See Ibragimov and Linnik [84], Theorem 17.2.2.

The stochastic volatility case

Since the volatility sequence (o) and the noise (Z;) are mutually independent, the
dependence of the sequence of random variables X; = o,Z; is caused only by the
sequence (o;). If we assume, as before, that (logo;) is a Gaussian ARMA process,
one can give some easy conditions in order to describe the dependence in (X,).

If (log o,) is an ARMA process, its autocovariance function decays to zero expo-
nentially fast; see Brockwell and Davis [29], Chapter 3. For a Gaussian stationary
sequence this implies that (log o;) is strongly mixing with geometric rate (Doukhan
[52]). For nonGaussian sequences this statement is in general not true.
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Since strong mixing is defined via o-fields, it transfers to measurable functions
of the log o;s, in particular to the (o;) and (0,2) sequences. Since (o;) and (Z;) are
independent, we have

|P((..., X_1,X0) (S} A,(Xk,Xk_H, ) (S] B)
—P((...,X_1,X09) € A) P(Xk, Xp+1,...) € B)|

= |E[f( <01, UO)g(Okv Ok+15 -« - )] - E[f( <0501, UO)] E[g(Uk, Ok415 - - )]|’
where

fl..,om1,00) = P((..., X1, Xo) € A| 05, s =0),

g(ox, 0k41, . ..) = P(Xk, Xk41,...) € Bl os, s > k),

and standard results about strong mixing (Doukhan [52]) show that the right-hand
side is bounded by 4¢;. Hence the sequences (X;), (log o), (o7), (otz) basically have
the same mixing properties. Again, the stochastic volatility case is easy to handle and
does not require sophisticated tools.

The GARCH case

Under general conditions, a stationary GARCH process is strongly mixing with ge-
ometric rate. This follows from general results about mixing properties of Markov
chains as presented in Meyn and Tweedie [103]. These results can be applied first
to the solutions of the SRE (5.3.5) and then to the squared GARCH process (X,2).
Finally, since we assumed that (Z,) is i.i.d. symmetric the same arguments as for
the stochastic volatility case show that (| X;|, sign(Z;)) = (| X;|, sign(X;)) inherits the
mixing properties of (th) and so does X; = | X,| sign(X,).

Theorem 5.6.1 (Boussama [22]) Considerthe SRE (5.5.1) with specification (5.3.5)
through (5.3.7) which defines the GARCH(p, q) process. Assume that this SRE has a
stationary solution, and that Z, has a positive density in some interval around zero.
Then the resulting unique GARCH(p, q) process is strictly stationary and strongly
mixing with geometric rate.

Remark 5.6.2 A particular consequence of Theorem 5.6.1 in combination with
inequality (5.6.1) is that

Yeoy(h) = lcov(g(X1), g(X1o)| < cq", h>0,

for some positive constants ¢ and ¢ < 1 provided that E|g(X)|**® < oo for some
6 > 0. This means that the ACVFs and ACFs of any measurable function g of a
GARCH process, if they are well defined, decay exponentially fast to zero. [

5.6.2 When does the sample ACF describe the ACF?

The mixing properties of a stationary process are precise theoretical tools that describe
the dependence in the time series. Notice that, because the definition of strong mixing
involves o-fields, this notion immediately translates to measurable functions of the
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underlying process, so, for example, to the sequence of products X, X, , or to the
lagged vectors (X, ..., X¢yn)-

However, strong mixing is not a property one can detect by statistical tools. There-
fore one has to rely on other means. Standard time series analysis deals with the
second order structure of time series. This is mainly due to the fact that Gaussian sta-
tionary processes are fully described by the mean and the autocorrelations, and time
series analysis was, and still is, devoted in its most parts to Gaussian processes. For
nonGaussian sequences the correlation structure of a time series has been used for es-
timation and prediction purposes. Least squares estimation (such as the Yule-Walker
estimators for AR-processes) only requires the knowledge of the autocorrelations of
the process, and so does prediction of a time series based on the minimization of
the mean square prediction error. Thus the autocovariances and autocorrelations have
traditionally played an important role.

For nonlinear time series models such as GARCH or stochastic volatility models
it is of interest to study the meaning of the autocorrelations and autocovariances.
In particular, since one observes empirically that log-returns may have infinite 3rd,
4th, or 5th moments, it is questionable what the sample autocorrelations and sample
autocovariances actually mean. Indeed, if the 4th moment of X, does not exist but
var(X,) < oo, and if (X;) is modeled by a GARCH process, say, then the strong law
of large numbers gives us for every h > 0,

[ - s
Vax(h) =~ 3 (Xi = X)Xepn = Xu) = yx(h) = cov(Xo, X,
t=1

i.e., the sample autocovariance at lag / consistently estimates the autocovariance at
lag h, but since E[(X; X4 )] can be shown to be infinite, the central limit theorem
with Gaussian limit is not applicable anymore. Moreover, since it is common practice
to look at the sample autocovariances and sample autocorrelations of |X,| and X?
(as surrogate estimators of the unobserved o; and olz), one would need moments
higher than the 4th in order to apply standard central limit theory for strongly mixing
sequences. If these moments exist and are finite, standard results (Ibragimov and
Linnik [84], Theorem 18.5.3, and Doukhan [52]) ensure the validity of the CLT. We
formulate such a result for X,. Recall the notions of autocorrelation px(h) at lag
h and its sample analogue p, x(h) for a stationary sequence (X,) from (5.1.1) and
(5.1.2).

Theorem 5.6.3 Assume that one of the following conditions holds:

(1) (X,) is a strongly mixing stochastic volatility process with E| X, X1,,)**® < oo
forh =0,1,...,m, some § > 0 and a mixing rate function (¢y) satisfying
[o.¢]
> o < oo (5.6.1)
k=1

(2) (X,) is a GARCH(p, q) process with E|X|**® < oo for some § > 0 satisfying
the conditions of Theorem 5.6.1.
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Then the central limit theorem holds:

(n'2(pn.x(h) — px(h)), _,

where (V1, ..., V,,) is multivariate normal with mean zero and covariance matrix
(o]
Z cov(XoX;, X Xy ,) and Vo = E(X3).
k=—00 ij=1,...m

The proof of these statements follows from the mentioned standard CLT for strongly
mixing sequences ([84], Theorem 18.5.3, [52]). The latter result says that the strongly
mixing sequence (Y;) with mixing rate function (¢ ) satisfies the CLT with normal-
ization /7 if condition (5.6.1) holds and E|Y;|**® < oo for some § > 0. In the case
of strong mixing with geometric rate, (5.6.1) is obviously satisfied. In particular, a
GARCH(p, q) process satisfying the conditions of Theorem 5.6.1 and a stochastic
volatility process with (log o,) Gaussian ARMA (see Section 5.6.1) have geometric
mixing rates. Therefore (5.6.1) does not appear explicitly in the formulation of (2). For
the stochastic volatility process with (log o;) Gaussian ARMA, the required moment
condition

245 245 2145
EIX1X144""° = Elo10151" " E1Z1 Z 134" < 00

boils down to E|Z;|*"® < oo since o101, has a lognormal distribution.

For the sequences (X;) in both parts of Theorem 5.6.3, px(h) = yx(h) = O,
the covariance matrix of the limiting Gaussian vector is diagonal and, therefore, the
limiting vector has independent components. Since the strong mixing property is
defined via o -fields generated by subsequences of (X;), the mixing rate functions of
the sequences (| X;|) and (X ,2) are dominated by (¢) and therefore the same CLT
for mixing sequences applies. Thus the results of Theorem 5.6.3 remain valid for
the sample ACVF and ACF of the sequences (| X;|) and (X f): one can everywhere
replace X; by | X;| (or X tz). However, in these cases the limiting Gaussian vectors have
dependent components. Moreover, the moment conditions for the sample ACF and
ACVF of the squares X? have to be adjusted correspondingly: E|X;X.,[*™ < oo
in the stochastic volatility case and E|X|¥*% < oo in the GARCH case.

5.7 Stable random vectors

If the condition of finite second moment for the stochastic volatility model/finite
fourth moment for the GARCH(p, g) model is not satisfied, classical summation
theory for i.i.d. and weakly dependent random variables (see for example Feller [63])
suggests that the limit distributions for the sample autocovariances are infinite variance
stable. The theory of infinite variance stable processes is masterfully presented in
Samorodnitsky and Taqqu [128].

Recall that the random vector X and its distribution are said to be «-stable for some
a € (0, 2] if for i.i.d. copies X1, ..., X,, of X and any n > 1 there exists a constant
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a,, such that
X+ +X, £n/*X +a,.

Clearly, the case « = 2 defines a Gaussian vector. For « < 2 the components of
X have infinite variance. Like the Gaussian random vectors, infinite variance stable
random vectors have densities which, in general, cannot be written in terms of familiar
functions. The best way to summarize the distribution is by means of characteristic
functions.

An infinite variance stable vector X with values in RY has characteristic function
([128], Theorem 2.3.1)

EelxX) _
{exp{— Joor 1, WI“(1 — i sign((x, y) tan(wa/2)T(dy) +i(x, )} @ # 1,

exp{— [y |(x, PI(1 + i Zsign((x, y)) log |(x, y)DT(dy) +i(x, w)} o = 1.

The number o € (0, 2) (the index of stability), the spectral measure I" on the unit
sphere S?~! and the location parameter x uniquely determine the distribution of an
infinite variance «-stable random vector X. If X is a-stable, it is regularly varying
with index « and, up to a constant multiple, I" is the spectral measure appearing in
the definition of regular variation.

The stable distributions are the only possible weak limits for (normalized and
centered) sums of i.i.d. random vectors, regular variation of the summands with index
a being necessary and sufficient for their attraction to an «-stable law; see Rvaceva
[127].

An infinite variance «-stable random variable X enjoys a series representation; see
Samorodnitsky and Taqqu [128], Chapter 3. In particular,

(re F;”‘”Yk —by), (5.7.1)

where (7), (I't), (Yx) are independent, the 7;s are i.i.d. Bernoulli random variables
assuming the values %1, the I';s are the points of a unit rate homogeneous Poisson
process on (0, co) and the Y;s are i.i.d. with E|Y;|* < oo. The bys are constants
which can be chosen as zeros if ¢ < 1 or X is symmetric. From this representation it
is clear that infinite variance stable variables are functionals of the points of a Poisson
process, and therefore it seems natural to use the theory of weak convergence of point
processes for studying the asymptotic behavior of the sample autocovariances and
sample autocorrelations with infinite variance stable limits. In what follows, we will
indicate how one can make this idea work.

5.8 Weak convergence of point processes

5.8.1 A motivating example

In Section 5.4.2 we learned about the equivalence of the regular variation condition
on the 1.i.d. random vectors X;, i.e., nP(xn‘le € ) 5 u(-) in Kd\{O} with u(t-) =
t~u(-) for some o > 0, all ¥ > 0, and the weak convergence of the point processes
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iy &X,x, With P(IXy| > x,) ~ n~! to a Poisson random measure PRM(u). The
limiting measure w in the regular variation condition reappears as the mean measure
of the Poisson random measure. The weak convergence of point processes is closely
related to the weak convergence of extreme values. One does certainly not exaggerate
if one says that modern extreme value theory is nothing but applied point process
theory. This claim is supported by the monographs of Leadbetter et al. [94], Resnick
[119], Falk et al. [62], and Embrechts et al. [58].

On the other hand, the weak convergence of point processes has also been exten-
sively used in order to derive results of sum-type functionals for the points of the
converging point processes, including their sample means, sample autocovariances,
and sample autocorrelations. This may sound somewhat paradoxical because point
processes count points whereas the mentioned functionals sum points, and it seems
that both operations do not have too much in common. However, this method works
well when the extremal points in the sample are roughly of the same size as the sum
of the points. Early on, Resnick [118] propagated this approach and applied it in joint
work with Davis to linear and, more recently, to bilinear processes; see for example
[44, 45, 46, 47]. To explain the basic ideas we consider a simple example.

Let (X;) be i.i.d. positive random variables regularly varying with index o € (0, 1).
It is well known from classical theory for sums of i.i.d. random variables (e.g., Feller
[63]) that

X4+ X)) S Y, (5.8.1)

for some positive «-stable random variable Y,, where (x,) is a sequence of positive
constants satisfying P(X; > x,) ~ n~'. We also know (e.g., Resnick [119]; cf.
Section 5.4.2) that

n oo
d
N, = E Ex;/x, — N = E Ep-ifa,
i=1 i=1

where (I';) are the points of a homogeneous Poisson process on (0, 00), i.e., I'; =
E| + --- 4 E; for an i.i.d. exponential sequence (E;). It is not difficult to see that
N ~ PRM(u), where u(x, o0) = cx™%, x > 0, for some ¢ > 0. For fixed € > 0 the

mapping
o0
Tom) = ¥i Lie.o)(3i)
i=1

acting on the point measures m = Yy ;- &,, can be shown to be a.s. continuous (in
the vague topology underlying the weak convergence of point processes; Resnick
[118]). An application of the continuous mapping theorem (e.g., Billingsley [13],
Theorem 5.1) yields

n [o¢]
- . d , _
T.(N») =2, Xileoo (%, Xi) 5 T(N) =Y Tl ooy (T7%). (5.82)
i=1 i=1
Letting € | O the right-hand expression converges a.s. to > .~ I';’ % The series
converges since I';/i — E(I'}) a.s. by the strong law of large numbers. The latter
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infinite series indeed represents an «-stable random variable Y,,, as indicated in (5.7.1)
and proved in Samorodnitsky and Taqqu [128], Chapter 3. Using a Slutsky argument
(Theorem 4.2 in Billingsley [13]), it suffices to show that

n n
x;lS,,(e) = x;l Z Xi — x;l ZXiI(e,oo) ()CJIX,')
i=1 i=1

= xn_l ZX,’I(Q,G]()C;]X,')

i=1
makes a negligible contribution to the limit by showing that

limlim sup E [(x,:lSn(e))z} =0.

€ n—00

Combining the above arguments, we arrive at

o0
e x) S YL,
i=1

The case @ € [1, 2) is more tricky since both sides in (5.8.2) need to be centered if
one wants to show that the convergences as € | 0 combined with n — oo work. We
refrain from giving details and refer, for example, to Resnick [118].

The classical limit theory for proving (5.8.1) as presented, e.g., in Gnedenko and
Kolmogorov [69], Ibragimov and Linnik [84], Feller [63], or Petrov [115] heavily
depends on the manipulation of characteristic functions. Classical summation theory
and characteristic functions fit nicely because the characteristic function of the sum
of independent random variables factorizes into the characteristic functions of the
summands. In contrast to the latter method, we used two other powerful tools, the
weak convergence of point processes in combination with the continuous mapping
theorem. The point process approach has its limitations when Gaussian limits appear,
but it is well adjusted to the very heavy tail case when the summands have infinite
variance. Or in other words, the point process approach works fine when the extremes
in a sample are roughly of the same order as the aggregated sum of the sample.
For dependent data, the characteristic function approach to the weak limits of sums
becomes more tedious since the characteristic function of the sum does not factorize
anymore. The point process approach still works for sums of dependent stationary
random variables with infinite variance, as was shown by Davis and Hsing [40] under
quite general dependence assumptions. Their approach is also the basis for the results
presented in the sequel.

5.8.2 The GARCH case

Recall the definition of a GARCH(p, ¢) process (X;) from Section 5.2.3. Since we aim
at a weak limit theory for the sample autocovariances and sample autocorrelations
of a GARCH process, its absolute values, squares, etc., we need to consider point
processes whose points are given by the (m + 1)-dimensional vectors

Xl(m) = (Xta R X[-‘rm)a m 2 0
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The motivation for this choice will become more transparent soon. The following
result is based on work by Davis and Mikosch [41] for the SRE case; it appears in
Mikosch and Starica [107] for the GARCH(1, 1) case and in Basrak et al. [8] for the
general GARCH(p, ¢) case as the fundamental point process convergence result.

Recall from Corollary 5.5.9 that the finite-dimensional distributions of a GARCH
process are regularly varying with index x > 0, under general conditions on the noise
and the parameters of the process. The vector X,;(m) and its norm |X;(m)| are then
regularly varying with index «. In particular,

P(X,(m)| > x) ~ cx™* forsome ¢ > 0.
Define a sequence (x,) of positive numbers such that

P(IXi(m)| > x,) ~n~!

1/k

Then, clearly, x, ~ ¢'n'/* for some ¢’ > 0.

Theorem 5.8.1 Assume the conditions of Corollary 5.5.9 hold and that /2 is not
an even integer. Then the following point process convergence holds:

No="exmym > N= Zzsr e - (5.8.3)
=1 i=1 j=1

Here % denotes convergence in distribution of point processes with state space
1
R" \{0}, (I';) are the points of a homogeneous Poisson process on (0, 00), with
intensity 0 > 0, which is independent of the i.i.d. point processes Z‘]:l eQp i = 1
The points Q;; satisfy sup; |Q;;| = 1. Their distribution is described in [41].

The intensity 6 is nothing but the extremal index of the sequence (|X;(m)|) men-
tioned in Section 5.1.2; see [41]. To make the latter theorem more accessible it pays
to go back to the original papers by Davis and Hsing [40] and Davis and Mikosch
[41]. There two assumptions were needed (which are hidden in the formulation of
Corollary 5.5.9 and Theorem 5.6.1):

e The finite-dimensional distributions of (X;) are regularly varying with positive
index k > 0.

e (X,) satisfies a mild mixing condition that is satisfied for strong mixing.
The structure of the limiting point process is closely related to the regular variation
condition on X;(m): for t > 0,
u“ P(IXi(m)| > tu, Xi(m)/|X\(m)| € ) = ct ™ P(® € ),
asu — oQ. (5.84)
This means that, in an asymptotic sense, the radial and the spherical parts of the
vector X(m) behave independently provided |X;(m)| is sufficiently far away from
the origin. (This fact is nicely illustrated in Example 5.4.6.) The radial part in the

regular variation condition (5.8.4) translates into the point process of the radii I"; 1 -,
which is independent of the points Q;;. The latter describe the spherical distribution of
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the limiting points in space. The distribution of the Q;; is determined by the spectral
measure P(® € ) but it is not very transparent: in Davis and Mikosch [41] it is given
in implicit form via Laplace functionals.

According to the strong law of large numbers the points I'; 1k converge to zero as
i — oo. Hence there is an infinite number of balls with random radii I'; < in any
neighborhood of the origin. In these balls we can find the random points I'; 1 Qi;.
See Figure 5.19 for an illustration.

For the investigation of the sample ACF it will be important to study the lagged
vectors

X, 2Y m) = x, 2 (XE X Xoits oo Xo Xoim)- (5.8.5)

A continuous mapping argument and the point process convergence of Theorem 5.8.1
show that the processes with points consisting of the lagged vectors of these products
also converge weakly to a point process whose components are generated in exactly
the same way as the products in (5.8.5):

—2/k 072 ©) H(1) 0) H(m)
Z; =T, ([Qij] O N 0 z;n)

Corollary 5.8.2 Under the assumptions of Theorem 5.8.1,

n d o o
ZEY,(m)/x,’; — ZZSZ‘.}.. (5.8.6)
=1 i=1 j=1

Since sample autocovariances and sample autocorrelations are built from the prod-
ucts X, X,,, Corollary 5.8.2 turns out to be the crucial tool for proving weak conver-
gence of these statistical tools; see Section 5.9.1 for details.

5.8.3 The stochastic volatility case

We consider the stochastic volatility model X; = o0;Z; with i.i.d. symmetric noise
(Z;) satistying

P(Z, > x) ~0.5dx™® forsome «,d > 0. 5.8.7)
As before we assume that (log o;) is a linear process with i.i.d. standard normal noise
(m;):
o0
logo; = ZI//jn,_j, t eZ.
j=0

The only condition needed is square summability of (1/;) ensuring the a.s. existence
of the infinite series above.

It was mentioned in Example 5.4.12 that the (symmetric) random variable Z; Z is
regularly varying:

P(Z\Zy > x) ~cx *logx forsome ¢ > 0. (5.8.8)
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Figure 5.19 An attempt to visualize the limiting point process in Theorem 5.8.1 on different

scales for the ARCH(1) process X;

(0.001 + Xlz_l)o'5 Z; with i.i.d. standard normal noise

(Z;). Then P(X; > x) ~ cx72; see Example 5.5.2. We plot the scaled pairs (X, X¢+1)//10

for n = 10, 000 (top left). In the remaining graphs we zoom in this figure to smaller scales

around the origin. The shape of the limiting points on larger scale (top graphs) reminds one of

the form of a butterfly.
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An application of Breiman’s formula (5.4.18) implies that the random variables X; X},
are regularly varying with index o:

P(XIXh >x) = P(lezo'IO'h >x) ""E[O'IO'h]a P(ZIZQ >x),
(5.8.9)
P(X1Xp = —x) = P(Z1Zy010, < —x) ~ Eloyou]* P(Z1Z; < —x).

We introduce two normalizing sequences (a,) and (b,):
P(Z\| > a)) ~n~' and P(Z1Zs| > by) ~n"".

By (5.8.7) and (5.8.8) it is clear that there exist positive constants ¢’ and ¢” such that
a, ~ c'n'* and b, ~ ¢ (nlogn)'/*.

As for the GARCH model the point processes constructed from the points
Yn,t(m) = (an_le, b,l_IX,XH_] yeees bH_IX,XH_m)

can be shown to have weak limits. This is the content of the next result, which will
become the basis for studying the asymptotic behavior of the sample ACF for the
stochastic volatility process in Section 5.9.2.

Theorem 5.8.3 (Davis and Mikosch [42]) Under the above assumptions on the
noise (Z;) and the volatility sequence (o;),

n
Nn = ZEY,,,,(m) _d> N = Z
t=1 i

m
i=0

Zgrk,/r,:il/ue,‘ ’ (5810)

[o¢]
k=1
d e . ;

where — denotes convergence in distribution of point processes with state space
—=m+1 . i . . )

R" \{0}, and e; is the ith unit vector in R, The sequences of points (I'y;),
i =0,1,..., m constitute independent homogeneous Poisson processes on (0, 00),
usually with different intensities, depending on the dependence structure of (o;). The
random variables ry; are i.i.d. symmetric Bernoulli random variables with values
=+1, independent of (I'x ;).

Notice the crucial difference between the latter result and its analog in the GARCH
case (Corollary 5.8.2): the limiting points of the products of the stochastic volatility
process are concentrated along the axes (see Figure 5.20), whereas the limiting points
of the products of the GARCH process are spread everywhere in the state space. The
superposition of independent PRMs (interpreted as PRM with state space R \{0})
is aPRM whose mean measure /¢ is just the sum of the individual mean measures. Thus
(N,) has the same weak limit N as the processes N, = Z:Z: | €X; /x, Withii.d. R
valued points X; with independent components and a regularly varying distribution
satisfying nP(x, X, € ) = u(-). Thus, although the dependence between the
o8 can be arbitrarily strong in terms of autocorrelations or mixing coefficients, the
limiting PRM in (5.8.10) is very much the same as if the components of the vectors
Y, (m), i.e., the products X, X,,;, were independent.
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Figure 5.20 An attempt to visualize the limiting point process in Theorem 5.8.3 on different
scales for the stochastic volatility model X; = e Yoz, Y, =09Y,_; ~+ 1y, for independent noise
sequences () and (Z;). The sequence (n;) is i.i.d. standard Gaussian, the sequence (Z;) is
i.i.d. symmetric regularly varying with tail index 2, resulting in regular variation of the products
X; X, with index 2. We plot the pairs of scaled products (X;X;11, X;X;12)//nlogn for
n = 100, 000 (top left) and zoom in to smaller scale in the remaining graphs. The shape of
the cloud of limiting points is in agreement with the theoretical result: the limiting points are
concentrated along the axes.

€004 CRC PressLLC



5.9 Asymptotic behavior of the sample autocorrelations

In this section we are interested in the situation when standard central limit theory
for the ACVF and ACF as described in Theorem 5.6.3 breaks down, i.e., when the
marginal distribution of the time series is very heavy-tailed. Then other techniques are
needed to study their asymptotic behavior. It will turn out that point process techniques
are, then, the right tools to be used.

For convenience, in order to illustrate the method, we define the modified sample
autocovariance ¥, x (h) and the modified sample autocorrelation p, x(k) at lag i of
(X,) without the usual centering by the sample mean X, :

?n,X(h)
Vux(0)

- 1 ¢ _
Tox() =~ X, Xiop and Py x(h) =
t=1

Since we are only interested in asymptotic results, the change of the summation limit
fromt =n — h to t = n is inessential.

The sample autocovariances and sample autocorrelations of a stationary sequence
(X;) are functionals of sum-type of products X; X,;. It is therefore an attractive idea
to use the point process convergence results of Section 5.8 in order to derive suitable
weak limits of the (normalized) sums »__; X, X4, by summing up the points in
the limiting point processes for the (X, X,;,) sequence. This approach is similar to
the one for the sample mean, as explained in Section 5.8.1. This continuous mapping
argument can really be shown to work in various situations. One of the first successful
applications of this method can be found in Resnick [118] who showed that point
process convergence can be used to derive infinite variance stable limits for sums of
i.i.d. random variables. Using similar point process techniques, Davis and Resnick
[44, 45, 46] studied the weak limit behavior of sums and sample autocorrelations
of linear processes X; = Zj Y¥; Z,_; withi.i.d. centered regularly varying noise (Z;)
with index o < 2. They showed the surprising result that the sample autocorrelation of
an infinite variance linear process at lag & estimates the quantity JVivisn/ > j WJZ
which, in the case of a finite variance linear process (X, ), represents the autocorrelation
cov(Xo, X»). Thus, although the ACF at lag % is not defined anymore — because of
infinite variance marginals — its sample analogue still estimates a quantity that can
be interpreted as population autocorrelation. For a long time these results have been
considered as a justification for the belief that, in principle, there is no problem with
the sample ACF for heavy-tailed time series.

However, once one leaves the class of linear processes the sample autocorrela-
tions can behave in a very unpredictable way. For example, Davis and Resnick [47],
Resnick [120], Basrak et al. [6], and Resnick and van den Berg [122] study vari-
ous pitfalls of sample autocorrelation behavior for bilinear and other nonlinear time
series models with very heavy tails. In particular, if such a process does not have
sufficiently high moments the sample autocorrelations can have nondegenerate weak
limits. Thus the sample ACF would not estimate anything reasonable in this case. A
similar statement can be shown to be true for GARCH processes, whereas the sample
ACEF of stochastic volatility models behaves in a way that is very similar to the linear
process case mentioned above. Davis and Mikosch [43] give a comparative study on
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sample ACF behavior for linear, GARCH, and stochastic volatility processes with
heavy tails.

5.9.1 The GARCH case

The basic point process idea for dealing with the sample autocorrelations of heavy-
tailed processes has already been explained above. Now recall the basic point process
result of (5.8.6) for the products X, X, of a GARCH process (X;):

n oo oo
d
E £, - — E E e .
— X0 XXX Xt Xe Xem) P I‘i’z/“ ( [Q,«,])] Z,Qﬁﬁ)Qﬂi),...,Qif;)Qﬁ',v”))
For a fixed 4 we sum up the points in the point processes on both sides of this limiting
relation and hope that we can achieve a convergence result of type

n (o] [o¢]
[, 217 x () = 2,23 X, X 5 Y TS 00 0,
=1 i=1 j=1
Compare the right-hand side with the series representation (5.7.1) of a k/2-stable
random variable. Indeed, calculating, for example, the Laplace transform of the right-
hand infinite series, the latter can be shown to represent a « /2-stable random variable;
see Davis and Hsing [40]. However, this method only works for values k < 2.Ifx > 2,
E XX}, exists and is finite, i.e., the autocorrelation at lag 4 is well defined. Then one
has to center ¥, x(h) with E XX}, i.e., one has to consider nx, (¥, x(h) — EXoX})
in order to achieve a weak convergence result.

The results are summarized in the following theorem, which was proved in Davis
and Mikosch [41] for the SRE and ARCH(1) cases, for the GARCH(1,1) case in
Mikosch and Stiricd [107] and can be found for the general GARCH(p, g) case in
Basrak et al. [8]. Recall that the normalizing constants x,, are of the asymptotic order
n'/¥ which explains the order of the normalization in the following result.

Theorem 5.9.1 Assume that (X,) is a GARCH(p, q) process with regularly varying
finite-dimensional distributions of index k > 0 satisfying the conditions

(1) Ifk € (0, 2), then

(}’ll_z/KVn,X(h))hzo m = (Vidh=o0....m-

where the vector (Vy, ..., V) is jointly k /2-stable in R"F!
(2) If k € (2,4) then

("2 x (B = yx (1)) g = (Vidn=0,..m»

_ d  _
(' o x () = px(m)),_, = vx OVi = px(h) Von=1,._.m»
where (V, ..., V) is jointly k /2-stable in R™*!.
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The limiting random vectors can be expressed in terms of the I'; and Q;; used for the
formulation of Theorem 5.8.1. For more details, see [41], Theorem 3.5. Notice that
yx(h) = px(h) =0, h > 1, for the GARCH(p, ¢) model.

The conclusions of Theorem 5.9.1 remain valid for other functions of (X,) including
linear combinations of powers of the components, in particular for (] X,|) and (X ,2).
In the latter case the moment conditions have to be modified: ¥« € (0,4) in part
(1) and « € (4, 8) in part (2). Notice that yx;(h) # 0 and yx2(h) # 0 (when they
are well defined) and therefore centering in the limit relations of part (2) is needed;
in part (1) centering of the sample ACVFs and ACVs ¥, x|, ¥u.x25 Pn,|X|> Pn.x2 18
not needed. These statements follow from the fact that (| X,|) and (X [2) inherit the
strong mixing property with the same (geometric) rate function (¢ ) as well as joint
regular variation of the finite-dimensional distributions from the (X;) process, and
point process convergence follows from the continuous mapping theorem.

The case ¥ > 4 is covered by the CLT in part (2) of Theorem 5.6.3 with rate
/. Tt is worthwhile to compare the rates in both theorems. If « € (2, 4) the conver-
gence of the sample ACF to the ACF can be very slow, the slower the closer « to 2.
This is surprising if one recalls the corresponding result for linear processes (Davis
and Resnick [46]), where the rate of convergence of the sample ACF is the faster
the smaller the index of regular variation of X,. Moreover, for linear processes the
sample ACF never converges to a nondegenerate weak limit, but this is the case for
the GARCH process when « € (0, 2).

The results of Theorem 5.9.1 are not of great practical value, but more of a philo-
sophical nature. They tell us that, if we were to model log-returns by a GARCH
process with infinite fourth moment — a situation not untypical for many real-life
data — we could not use the standard central limit theory to construct asymptotic
confidence bands for the sample ACF. In particular, the use of the sample ACF for
squared returns would suffer from the lack of moments. A consequence would be that
rates of convergence in these results are extremely slow. Therefore, and because the
limiting distributions are very heavy-tailed, asymptotic confidence bands would be
much wider than the classical 1/./n-bands. In particular, they could be wider than
the estimated autocorrelations. We do not know much about the limit distributions,
in particular we do not know all parameters of the stable distributions involved, and
we know little about the spectral measure of the limiting stable vector. These facts
make the asymptotic theory for the sample ACF not very pleasant because it is depen-
dent on Monte-Carlo simulations: one would have to derive asymptotic confidence
bands for the ACF depending on the choice of GARCH parameters. We refer to
Figure 5.21 and Figure 5.22 in order to get some impression of the asymptotic con-
fidence bands one has to expect in this case and for comparison with the stochastic
volatility model.

5.9.2 The stochastic volatility case

We consider the same stochastic volatility model (X,) as in Section 5.8.3. The contin-
uous mapping approach to the converging point processes also works in this situation.
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Figure 5.21 Boxplot comparison of the asymptotic distributional behavior of the sample ACF
for a GARCH (left) and a stochastic volatility model (right). Boxplots are generated for the
first 20 lags of the sample ACF. At each lag, the boxplot describes the distribution of the
sample autocorrelation from 1000 independent GARCH(1, 1) samples. The parameters and
noise distributions are chosen in such a way that both time series have tail index 3, which is not
untypical for return series. Despite the large (and highly unrealistic) sample sizes n = 10,000
and n = 100,000 the distribution of the sample ACF of the GARCH model is unusually wide
and hardly changes when the sample size is increased, although the sample ACF is consistent
in this case. For the stochastic volatility model the sample ACF is \/n-consistent.
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Figure 5.22 Boxplot comparison of the asymptotic distributional behavior of the sample ACF
for the squares of the GARCH and the stochastic volatility models from Figure 5.21. Since
the tail index of the model is 3 in both cases, it is 1.5 for the squared time series. The sample
autocorrelations of the squared GARCH process have nondegenerate weak limits in this case.
On the other hand, the rate of convergence to zero of the sample ACF for the squared stochastic
volatility model is faster than the classical \/n-rates.
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Recall from Theorem 5.8.3 the limit relation

n d m o0
Na =D a5, X Xowr b XX > N =D 0D 8, e,

t=1 i=0 k=1

1/a

where a, ~ cn'/* and b, ~ ¢’(nlogn)"/%. For h = 0 a continuous mapping argument

suggests that
n d oo
[na, 17, x(0) =a,> Y X7 5 Y o
r=1 k=1

The right-hand series represents a positive ¢ /2-stable random variable for @ < 2; see
(5.7.1). Similarly, for fixed & > 1, it seems plausible that

n o0
1y~ _ d “1/a
[, 1 70x () = b,' 5" XiXewn > male)/™.
=1 k=1

The «-stable limit on the right-hand side exists for o < 2.
These heuristic arguments can be made to work even under weaker assumptions
on the distribution of the noise Z,; than required here, see [42].

Theorem 5.9.2 (Davis and Mikosch [42]) Assume (X;) satisfies the conditions of
Theorem 5.8.3. If « € (0, 2), then

where Vy, ..., V,, are independent random variables, Vy is a/2-stable and V), h =
1,...,m, is a-stable. In addition,
o d
((n/logm)""* pu x (Wn=1.... ~> Vi) Vet - (5.9.1)

,,,,,

Notice that in the stochastic volatility case the normalization for the sample autoco-
variance y, x(0) has to be stronger than for the other sample autocovariances y,, x (h),
h > 0. This implies that the sample ACF p, x(h) at lag i converges to zero at a
rate that is faster the smaller «; the normalization a,% /b, ~ ¢ (n/log n)Y* in (5.9.1)
compares favorably to the classical ,/n-consistency results for the sample ACF. Not
only the result, but also the proof of it, are very close to the linear process case; see
Davis and Resnick [46]. However, one always estimates zero in the case of a stochastic
volatility process in contrast to a linear process that is distinct from an i.i.d. sequence.

The discussion at the end of Davis and Mikosch [42] also indicates that the sample
ACFs of the absolute and squared returns of a stochastic volatility model behave in
a very similar way. This means that the sample ACFs of the absolute and squared
returns quickly converge to zero. This can be seen in Figure 5.21 and Figure 5.22,
where we compare the large sample behavior of the sample ACF for GARCH and
stochastic volatility models.

5.10 Do GARCH and stochastic volatility models explain the
stylized facts of log-returns?

After this long theoretical excursion one may want to look back at the starting point
of our discussion in Section 5.1. There we discussed some of the typical properties

€004 CRC PressLLC



of log-returns. Now it is worthwhile to ask whether the above theory can explain any
of the stylized facts.

5.10.1 A case study for GARCH

Mikosch and Staricd [107] discuss the extremal properties of GARCH processes, their
sample ACF behavior and the use of GARCH modeling for tick-by-tick return data.
We include a part of their discussion here. We focus on a series of 70,000 30-minute
foreign exchange (FX) rate data of Japanese Yen (JPY) against U.S. Dollar (USD)
between 1992 and 1996, kindly provided by Olsen and Associates (Ziirich). Since tick-
by-tick data are measured at unevenly spaced instants of time, the time scale has been
transformed into so-called Olsen’s -time. The basic idea of this transformation is to
avoid seasonalities and to stabilize the flow of return data over time. In a mathematical
sense, the aim of this time transformation is to construct a stationary time series. We
refer to the recent book by Dacorogna et al. [35] on high density financial data;
Shiryaev [130] gives a mathematical explanation for 6-time.

Using quasi-maximum likelihood estimation (see Section 5.2.3), a GARCH(I, 1)
process with the following parameters was fitted to the FX data:

ap=10"", a; =0.11, p; =0.88. (5.10.1)

The estimated value ¢; = «; + f1 = 0.99 suggests the use of an IGARCH process
(Example 5.3.7). Values ¢; close to one have been frequently observed for longer
return series; see, for example, Engle and Bollerslev [61], Baillie and Bollerslev [2],
or Guillaume et al. [75].

The residuals

Given the estimated parameters &, &, and El of a GARCH(1, 1) process one can
calculate the residuals

Z,=X,/5,, where &) =ao+a16°, 4+ B X,
Clearly, one has to choose initial values 6y and X,. Empirical evidence from
GARCH(1, 1) simulations shows that the values &, for large ¢ are quite insensitive to
the initial value.

The bottom graph in Figure 5.23 presents the residuals of the FX log-returns with
parameters (5.10.1) and their density. The latter shows that the distribution is roughly
symmetric and very much peaked around zero (leptokurtic). A comparison of the
graphs in Figure 5.23 shows that the residuals are much less volatile than the original
FX series. The residuals are nicely fitted by a student distribution with (roughly) four
degrees of freedom, both in its center and in the tails; see Figure 5.24. The tails of a
student random variable S with four degrees of freedom are Pareto-like: P(S > x) ~
¢ x~*. In the literature, student and generalized Pareto distributions were fitted to the
residuals; see for example Baillie and Bollerslev [2] or Frey and McNeil [64].

The tails

The discussion in Example 5.5.6 suggests to calculate the tail index k corresponding
to a GARCH(1, 1) process as the solution to the equation E(a;Z? + 1)/ = 1.
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Figure 5.23 Top: All 70,000 JPY-USD FX log-returns (left) and their density (right). Bottom:
The residuals of the JPY-USD FX log-returns (left) and their density (left). The scale difference
on the x-axis when compared with the FX density is due to the standardization var(Z1) = 1.
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Figure 5.24 QQ-plot of the GARCH(1, 1) residuals against the quantiles of a student distri-
bution with 4 degrees of freedom.
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Proceeding in a naive way, we replace the parameters «; and f; by their estimators
and, because we do not know the distribution of the noise (Z; ), we choose the empirical
distribution of the residuals (Z) as the distribution of the Z;s. Then we solve the
equation

I~ =
N @7z +p) =1 (5.10.2)
n

i=1

numerically, resulting in an estimate of k¥ = 2.2. A partial theoretical basis for this
approach, showing asymptotic normality for i, was given by Pitts et al. [116] in
the more general context of estimating the adjustment coefficient for ruin bounds
in insurance mathematics. However, there are two crucial differences between our
approach and theirs: they do not assume that parameters of the underlying distribution
have to be estimated and they replace the residuals Z; by i.i.d. Z;s. The latter deviations
have been correctly criticized by Berkes et al. [12] who give a precise asymptotic
theory for the estimation of x through the solution of (5.10.2) based on the residuals Z;.

Alternatively, assuming for Z; a student distribution with d = 3.25,3.5,3.75, 4
degress of freedom and variance 1, we calculated the solution k¥ to (5.10.2) from
1 million i.i.d. simulated Z,s, resulting in estimates of ¥ = 2.3,2.4,2.5, and 2.5,
respectively. Again, these values have to be taken with caution since the variance of
K can be quite large, as documented in Table 5.2.

From the theory in Section 5.5.2 we can conclude that the GARCH(1, 1) process
with parameters (5.10.1) estimated from the FX log-returns has distributional tails

P(o; > x) ~cox 2% and P(X, > x)~ E[Z,|*? P(o| > x),
for some ¢y > 0. This implies that var(X) < oo, but EX{ = oc.

The sample ACF

Figure 5.25 shows the sample ACFs of the FX log-returns, their absolute values, and
squares at the first 300 lags. Pointwise confidence bands were derived from 1000 inde-
pendent simulations of the sample ACFs for a GARCH(1, 1) process with parameters
(5.10.1). The corresponding i.i.d. noise was generated from the empirical distribu-
tion of the residuals of the FX log-returns. The interpretation of the sample ACFs
in Figure 5.25 very much depends on how heavy the tails of the X;s are. If we ac-
cept the hypothesis of a Pareto-like tail for the finite-dimensional distributions of the
X,s, we can apply the asymptotic theory of Theorem 5.9.1 about the sample ACF
behavior. In particular, we conclude that the sample ACFs of the X;s and | X;|s con-
sistently estimate their deterministic counterparts, but the normalized sample ACFs
converge to infinite variance 1.1-stable limits at the rate n~'7*/2 = n%!. Notice that
n%! = 70,000%!" = 3.05. Thus, despite the large sample size, one can hardly speak of
asymptotic confidence bands for p, x(h) and p,,x|(h). This observation is supported
by the width of the bands in Figure 5.25. The slow rate of convergence of the sam-
ple ACFs in combination with the heavy tails of the limit distributions raises serious
questions about the meaning and quality of these estimators. This remark applies
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Figure 5.25 The sample ACF's for the FX log-returns (top, left), their absolute values (top, right)
and squares (bottom). Each graph contains pointwise (simulation based) confidence bands for
the distribution of the sample ACFs for the sequences (X;), (| X;|), and (X ,2), respectively, where
(Xy) is a GARCH(1, 1) process with parameters (5.10.1). In each graph, the solid lines and
the dotted line indicate the 2.5%- and 97.5%-quantiles, and the median, respectively, of the
distribution of the sample ACF at a fixed lag. For the returns, the sample ACF is inside the 95%
confidence; it is negative at the first few lags with very small absolute values, and it is very close
to the median curve which is indistinguishable from zero. In the top right graph, the sample
ACF of the absolute returns at the first 50 lags stays below the 2.5%-quantile prescribed by
the fitted GARCH(1, 1) model, then it stays almost constant up to lag 300 and remains in the
95%-confidence band. A similar picture can be observed for the squared returns in the bottom
graph: after a fast decay from inside the confidence bands at the first lags, the sample ACF is
below the 2.5%-quantile of the distribution prescribed by the GARCH, and then it is almost
constant and stays inside the confidence band.

even more to the sample ACFs of the squares. In this case, p, x2(h) would converge
in distribution to a nondegenerate limit, i.e., it does not estimate anything.

The sample ACFs at the first 50 lags, say, of the absolute FX log-returns do not fall
within the 95% confidence bands suggested by the fitted GARCH(1, 1) process. This
means that, even when accounting for the statistical uncertainty due to the estimation
procedure, the GARCH(1, 1) model does not describe the second order dependence
structure of the absolute FX log-returns sufficiently accurately. Even if we take into
account that the sample ACF of the squares is not meaningful, the sample ACF of the
absolute returns, despite its big statistical uncertainty, should decay to zero roughly at
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Figure 5.26 The sample ACFs of the residuals of the FX log-returns (top, left), their absolute
values (top, right) and squares (bottom, left). The straight lines in the two upper graphs indicate
the £1.96/\/n asymptotic confidence bands for an i.i.d. sequence with finite second moment.
In the lower graph we refrain from giving (1/./n)-confidence bands because Z| possibly has
an infinite 4th moment. Compare with the sample ACFs of the FX log—returns in Figure 5.25,
in particular observe the differences in scale.

an exponential rate. Exponential decay of the ACF of the | X, |s follows from the strong
mixing property with geometric rate of the GARCH(1, 1) process; see Remark 5.6.2.
For reasons of comparison it would be desirable to get analytic expressions for the
theoretical ACF of the | X;|s but this seems impossible even for Gaussian noise.

On the other hand, the sample ACFs for the residuals, their absolute values and
squares (Figure 5.26) are quite convincing in the sense that they behave very much
like the sample ACF of a finite variance i.i.d. sequence or of a moving average process
with very small parameters. This compliance with the theoretical requirements of the
model is a remarkable feature of the GARCH(1, 1) process and contributed greatly
to its success.

The extremal index

In this section we try to judge the quality of the fit of the GARCH(1, 1) model with
parameters (5.10.1) as regards some basic extremal characteristics of the FX log-
return series. For this reason we estimate the extremal index as a simple quantity
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characterizing the clustering behavior of high level exceedances of a time series; see
Section 5.1.2 for a brief introduction.

As a consequence of the point process convergence outlined in Section 5.8.2, the
normalized partial maxima M,,(X), M, (o) and M,,(| X|) of the sequences (X;), (o,) and
(] X ), respectively, have a Frechét limit distribution with parameter «, see Mikosch
and Stdricd [107] for details. In particular, choosing the normalizing constants x,,(A)
for any stationary sequence (A,) in such a way that P(A; > x,(A)) ~ n~! and writing
D, (x) = exp{—x7"}, x > 0, for the standard Fréchet distribution, one obtains for
every y > 0,

P(M,(X) < x,(X) y) = [®. ()],
P(M,(0) < x,(0) y) = [®.(M]",

P(M,(1X]) < xa(IX]) y) = [P0,

Here 0,4 denotes the extremal index of any stationary sequence (A;). We mentioned
in Section 5.1.2 that 1/64 has interpretation as mean cluster size of high threshold
exceedances in the sequence (A;). Although it is possible to give analytical expressions
for the extremal indices of the X-, | X|-, etc., sequences in the GARCH(1, 1) case,
these expressions are too difficult for numerical evaluations. Therefore, one depends
on statistical estimators of the extremal index. We compared the estimators for the
simulated fitted GARCH(1, 1) process with those for the FX log-returns, using the
so-called blocks method explained in Embrechts et al. [58], Section 8.1. It depends on
the number of the upper order statistics in the sample that has to be small compared
to the sample size.

Figure 5.27 displays the results for estimating the extremal indices 6y of the JPY-
USD FX log-returns, 67 of their residuals and 6, of the volatility sequence, based on
the GARCH(1, 1) fit with parameters (5.10.1). The 95% confidence bands and the
median were obtained from 400 independent GARCH(1, 1) simulations with param-
eters (5.10.1) and the empirical distribution of the FX residuals for the distribution of
the Z;s.

The estimates for Ox and 6, of the FX log-returns lie above the 97.5% quantile,
indicating that they do not agree with the fitted GARCH(1, 1) model. Alternatively,
the expected cluster size is smaller than for the fitted GARCH(1, 1) model, i.e., there
is less dependence in the tails for the returns and volatilities than for the prescribed
GARCH(1, 1) model. Nevertheless, the estimated values 50 ~ 0.1 are small and
show that the sequence (o;) contains large clusters of high threshold exceedances
with expected cluster size ~ 10. The clustering effect for the extremes of the (X;)
sequence is less pronounced, but still gives values 6x =~ 0.6.

The corresponding estimates for 87 lie within the 95% bands for an i.i.d. sequence.
This implies that the residuals very much behave like an i.i.d. sequence with extremal
index 1. As for the calculation of « from (5.10.2), one has to be cautious with inter-
pretations because there is no theory for the estimation of 6, based on the residuals
of a GARCH(1, 1) model.
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Figure 5.27 Estimates of the extremal indices Ox (top left), O, (top right), and 67 (bottom)
as a function of the k upper order statistics. (Top): The three lower curves correspond to the
97.5%, 50% and 2.5% quantiles of the estimators for the GARCH(1, 1) model with parameters
(5.10.1). The upper curve presents the 0 estimates for the FX log-returns. They do not fall within
the 95% confidence bands. (Bottom): In the lower graph the estimates for 6z fall into the 95%

confidence bands.

Concluding remarks

The GARCH(1, 1) fit to various log-return series is rather convincing, even for
large series, if one takes the structure of the residuals as a basis for the judgment
of the quality of the fit. The fitted residuals behave very much like an i.i.d. sample,
in particular their sample ACF and the extremal index have the properties of an
i.i.d. sequence. This shows that the GARCH model mimics some of the essential
dependence structure of the returns X,. In order to judge the goodness of fit of
GARCH models, it would be desirable to have reliable goodness of fit tests for the
residuals. So far such results are available only in the ARCH( p) case (Horvéth et al.
[83]). The latter paper contains the asymptotic theory for Kolmogorov-Smirnov
type goodness of fit tests based on the residuals. Unfortunately, the proposed re-
sult is of limited practical relevance since the limiting process is not distribution
free, i.e., it depends on the distribution of the noise (Z;) and the ARCH param-
eters. Nevertheless, this result shows that the naive approach to deal with the
residuals as if they were i.i.d. can lead to substantial deviations from the classical
limit results.
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e On the other hand, the GARCH(1, 1) model does not accurately capture either the
extremal behavior or the correlation structure as described by the sample ACF of
return data.

e Given we accept a GARCH process as a reasonable model for returns for a certain
period, the sample autocorrelations are extremely unreliable tools for model se-
lection and validation. In various practical situations one has to deal with models
that do not have sufficiently high moments. Then the standard theory for the sam-
ple ACF (Gaussian limit distribution and \/n-rates of convergence) breaks down
and the sample ACFs of returns, absolute and squared returns are either poor es-
timators of their theoretical counterparts (slow convergence rates) or meaningless
(nondegenerate limit distributions).

e A general conclusion may be: avoid using the sample ACF to draw conclusions
about the dependence structure of log-return data.

e Even when accounting for the mentioned larger than usual statistical uncertainty,
the GARCH(1, 1) model (and more generally any GARCH model) cannot explain
the effect of almost constant sample ACFs for the absolute returns. An alternative
explanation will be given in Section 5.11.1: nonstationarity of the data.

5.10.2 The stochastic volatility model

Neither the GARCH nor the stochastic volatility model have a theoretical grounding
in economic or financial theory. They are ad hoc models for explaining the changing
stochastic volatility of log-returns by a simple model. By the efforts of its inventors
the GARCH model has become more popular than the stochastic volatility model al-
though, as the above discussion might have shown, a GARCH process is an extremely
difficult theoretical object. Much of its popularity is due the fact that it is tailor-made
for the purposes of parameter estimation.

As we have seen above, the stochastic volatility model can explain regularly vary-
ing tails and dependence in a flexible way. In particular, the stochastic volatility can be
chosen in such a way that the ACF of its absolute and squared values converges arbi-
trarily slowly to zero. The GARCH model fails to explain this stylized fact. Attempts
were made to incorporate long range dependence in the GARCH model by introduc-
ing additional parameters, resulting in models such as FIGARCH or LM-ARCH, but
they fell short in achieving this goal; see the discussions in Giraitis, Kokoszka, and
Leipus [66] and Mikosch and Stérica [109]; Giraitis et al. [68] propose an alternative
mathematical approach to modeling long memory by allowing for negative values in
the volatility sequence (o;).

It is not clear which of the two models would win in a fair competition; perhaps
both would lose. In particular, there do not exist rigorous statistical means to distin-
guish between them. However, there is a striking difference between the sample ACF
behaviors for the absolute and squared processes that might be useful for discrimi-
nating between the two models. In the GARCH case, the sample ACF has the slower
convergence rates the fewer moments exist and, eventually, if moments above a cer-
tain threshold do not exist, the sample ACF has a nondegenerate distributional limit.
This is in contrast to the stochastic volatility model, where the sample ACF converges
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faster to zero the fewer moments (below two) exist. In particular, if the data came
from a stochastic volatility model and we chose » > 0 sufficiently large, the sample
ACF of |X,|" should approach zero quickly. This, however, cannot be observed in
general. Although there are some time series such as the S&P500 returns for which
the sample ACF dies out quickly, at all lags for » = 3 or 4; for other return series
(CAC40, DAX, and FX rates) one does not observe this effect. This may rule out the
stochastic volatility model or refers to another property: nonstationarity of the data.
This is the topic of the next section.

5.11 Nonstationarity in log-return series

There are two particular anomalies of log-returns that have puzzled the author for
some time. One of them is the long range dependence (LRD) one observes in absolute
returns and their squares. The other one is the IGARCH effect (the sum of the estimated
parameters of a GARCH model add up to a number close to one). LRD and IGARCH
effects are present in medium and large return samples.

We start with a discussion of the notion of LRD in Section 5.11.1. It has become
quite popular not only among statisticians and time series analysts, but also among
practitioners who use the tools of time series analysis in their daily work. LRD is
one explanation for the slow decay of the sample ACF we see in return data. Another
explanation is nonstationarity of the data. In Section 5.11.1 we indicate that standard
tools of time series analysis (sample ACF, periodogram) can behave very much in the
same way both for long range dependent stationary sequences and for nonstationary
sequences. In Section 5.11.2 we indicate that the IGARCH effect might be due to
nonstationarity as well.

5.11.1 The LRD effect
What is LRD, and how can one detect it?

Over the last few years the phenomenon of long range dependence or long memory
has attracted some attention. There exists a long and steadily increasing list of pub-
lications of theoretical and empirical nature that aim at the probabilistic modeling
or the statistical detection of LRD in areas as diverse as hydrology, meteorology,
climatology, telecommunications and finance; see Doukhan et al. [53] for a recent
theoretical discussion of LRD. Roughly speaking, LRD means that there is depen-
dence in a time series over an unusually long period of time. There exist various
definitions of LRD for a (second-order) stationary process (X,); see Beran [10]. One
way to define it is via the decay rate of the ACF: (X,) is long range dependent if

oo
> lox()] = oo, (5.11.1)
h=0
short range dependent otherwise. For example, ARMA processes with finite variance
have exponentially decaying ACF (Brockwell and Davis [29], Chapter 3), hence they

are short range dependent. Fractional ARIMA processes with difference parameter
d € (0,0.5) exhibit LRD ([29], Section 13.2). An alternative definition of LRD is
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possible via the spectral density fy of a stationary time series. If the latter exists, it
satisfies the relation

px(h) = [var(Xo)]™' / ™ fx(Gydr, hel,
(—m.7]

see [29], Section 4.3. Under some subtle conditions LRD in the sense of the ACF,

i.e., (5.11.1), translates into the fact that the spectral density has a singularity at

zero, and vice versa. The presence of a singularity of fx(A) at zero can be taken as

another definition of LRD in (X,). In particular, if one assumes that for some constant

¢, >0

px(h) ~ c,h*"=V" for large h and some H € (0.5, 1), (5.11.2)

(in this case (5.11.1) holds) then under some further subtle conditions for some con-
stantcy > 0

fx(A) ~ cfk_2H+l for frequencies A > 0 near zero, (5.11.3)

and vice versa. Exact conditions for the equivalence of (5.11.2) and (5.11.3) can be
found in Zygmund [136]. The constant H € (0.5, 1) is called the Hurst coefficient,
and LRD is sometimes referred to as the Hurst phenomenon. The closer H to 1 the
slower the rate of px(h) to zero as h — 00, i.e., the longer the range of dependence
in the time series. Alternatively, the closer H to one the more pronounced is the
singularity of fx (1) at zero, i.e., the stronger the LRD in terms of the spectral density.
A naive way to detect LRD by statistical means is to replace the ACF px(h)
by the sample ACF p, x(h) and the spectral density by its empirical estimator, the
periodogram:
2

L x(\) = , Arel0,m].

n
E e*l}LIXt
t=1

It is common practice to evaluate [, x at the Fourier frequencies
Aj=2mj/n € (0, m).

If (X,) is stationary and ergodic and var(Xy) < oo, the sample ACF estimates the
ACEF consistently. Although the periodogram does not consistently estimate the spec-
tral density (it has a nondegenerate limit distribution), under general conditions it
is asymptotically unbiased: EI, x(A) — fx(A) for every fixed A € (0, ). Using
smoothing techniques, fx())can be consistently approximated; see [29], Section 10.4,
or Priestley [117], Chapter 7. Asymptotic normality for the sample ACF and the
smoothed periodogram can be derived under certain moment and mixing conditions.

However, the assumptions of stationarity, ergodicity, and mixing cannot be verified
satisfactorily on real-life data: one has to believe them. In Figure 5.28 we show an ex-
ample of a stationary time series for which the stationarity assumption is not plausible.

1
n

An explanation of the LRD effect: structural breaks

Now recall the stylized ACF-fact for log-return series (X;) from Section 5.1.2, which
we supplement with the corresponding stylized fact in terms of the periodogram:
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Figure 5.28 We see a realization of 500 values of the stationary AR(1) process X; = 0.5X;—1+
Z; with i.i.d. Cauchy noise (Z;) (middle). The left (right) graph visualizes the first 100 (last
400) values. If one looks at the whole series the first piece gives one the impression that the
series is not stationary. When the time series in the right graph is analyzed the assumption
of stationarity is plausible, while, when in possession of the whole series, a structural break
seems more likely.

e The sample ACF p, x of the data is negligible at almost all lags with a possible
exception at the first lag. The smoothed periodogram is flat at all frequencies.

e The sample ACFs p, x| and p, x> of the absolute and squared returns are all
positive, decay relatively fast at the first lags, and tend to stabilize around a positive
value for larger lags. The periodograms I, x| and I, x> blow up at zero.

Whereas the first property indicates that (X,) constitutes white noise, the second
property hints at LRD in the | X |- and X 2-sequences. We refer to the latter phenomenon
as the LRD effect of log-return data. We illustrate the LRD effect for the S&P500
series for the sample ACF in Figure 5.4 and for the periodogram in Figure 5.29.
The LRD effect is typical for longer time series: only for them it makes sense to look
at the sample ACF at larger lags. Indeed, by construction, p, x(#)1is reliable (consistent
estimator) only for lags ~ small compared to n, say h < n/4 as recommended by
Box and Jenkins [23], p. 33. Thus, only for samples of several thousand points one is
allowed to look at the sample ACF at lags 250, 300, 350, etc., and a similar remark
applies to the periodogram for small frequencies. Only for such time series one can
make statistical inference on the LRD phenemenon. Therefore, the overwhelming
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Figure 5.29 The log-periodogram of the S&P500 log-returns (bottom), and the periodogram
of the absolute log-returns close to zero (top).

proportion of time series used in the econometrics literature to document the LRD
property covers decades of economic activity. The latter are inevitably marked by
turbulent years of crises and, possibly, structural changes. To give some examples:
Ding et al. [51] discuss the slow decay of the sample ACF of powers of absolute
daily returns in the S&P 1928 to 1990; Ding and Granger [50] consider daily returns
of the Japanese Nikkei index 1970 to 1992, the FX rate DEM/USD 1971 to 1992,
and Chevron stock 1962 to 1991; Bollerslev and Mikkelsen [17] use the S&P500
daily returns 1953 to 1990 to fit their FIGARCH model while Breidt et al. [27] fit a
stochastic volatility model with LRD in the volatility sequence to the daily returns of
the value-weighted market index 1962 to 1987.

We have tried to argue that the statistical detection of LRD requires long time series.
On the other hand, the critical reader might have some serious doubts about such a
statistical analysis: in decades of economic activity, structural breaks are likely, and,
therefore, the stationarity assumption is questionable. Under the circumstances of
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changing structure in the time series, statistical tools can easily fool one. To illustrate
this point we show how the LRD effect builds up in a nonstationary time series
(X¢):i=1....2000 containing one structural break. The first and second 1000 points of
the series are generated from two different GARCH(1, 1) models with corresponding
parameters:

a=0.17x10"%, a; =0.1, B =05, (5.11.4)
g =0.17x10"°, a; =0.1, B =038. (5.11.5)

The noise sequences of the two models are independent and standard normal. The
structural break in this series is obvious by a simple eyeball inspection; see the right-
hand top graph in Figure 5.30. In the left column one can find the sample ACF of
the absolute values | X, | and the corresponding periodogram for the first 1000 points:
the sample ACF decays to zero exponentially fast and the periodogram is a smooth
function for all frequencies including zero. For the second piece of the data one gets
a similar picture; we omit it. This is in agreement with the theoretical properties
of a stationary GARCH(1, 1) model; see the remarks in Section 5.10.1. The picture
changes dramatically for the concatenated time series: both the sample ACF and
the periodogram exhibit the LRD effect; see the right column of Figure 5.30. The
parameters B in the two pieces only differ by 0.3. By choosing a larger difference
of the parameters or by concatenating pieces from more than two models, the LRD
effect becomes even more striking.

The LRD effect of the sample ACF of the absolute values develops even though we
know there is no LRD in the data: the time series is nonstationary. The explanation
lies in the change in mean of the underlying series. This can be seen by some simple
analysis as outlined in Mikosch and Stdricd [106, 108]. Assume we have a sample

X1, ..., X, thatconsists of two pieces from different stationary GARCH(1, 1) models
with finite variance, say Xﬁl), e Xf,ll;] and X@HI, cory X9 for some p € (0, 1).

Then the ergodicity of the two different models implies that the sample ACVF of
(|X;]) at a fixed lag & converges as n — oo to the quantity

P
Yu xi(h) = pyixo(h) + (1 — p)yxoh)
+p (1= p)EIXV] = EIXP)), (5.11.6)
where y,x0(h) and y,x@,(h) are the theoretical ACVFs corresponding to the first and
second model, and analogous results are evident for the sample ACF. Moreover, if

the two subsamples are uncorrelated and A, = 2nj,/n — O sufficiently fast, then
the periodogram 1, x|(,) satisfies, as n — oo,

E]n,\XI()"j,,) ~p 27Tf|X(”|()"j,,) —+ (1 — p) 27Tf|x(2)‘()\.j”) +

2 ) @12 ;
o (EIXT = EIXDA = cos@rjup)), (5117
n

where fixm(A) and fix@(1) are the spectral densities corresponding to the first and
second model.
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Figure 5.30 Left: 1000 simulated values of the GARCH(1, 1) model (5.11.4) (top), the sample
ACF (middle) and the log-periodogram (bottom) of the absolute values | X;|. Both tools indicate
short range dependence. Right: Concatenated time series from two different GARCH(1, 1)
models with parameters (5.11.4) and (5.11.5) (top), the sample ACF (middle) and the log-
periodogram (bottom) for the absolute values. The vertical lines at the right end of the graphs
for the estimated spectrum indicate the width of 95% asymptotic pointwise confidence bands.

These simple arguments explain the LRD effect in simulated data with one break
at a deterministic instant of time as illustrated in Figure 5.30, and similar calcu-
lations apply to the case of finitely many different models in a time series. In-
deed, since the GARCH(1, 1) is strongly mixing with geometric rate, the sample
ACEF of its absolute values and squares decays to zero exponentially fast (see Sec-
tion 5.10.1); and its spectral density is everywhere continuous. Thus (5.11.6) explains
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Figure 5.31 The sample ACF for the absolute log-returns of the first 9 and 11 (a, b), 20 and
24 years (c, d) of the S&P500 data.

that the sample ACF decays quickly at the first lags and then approaches the pos-
itive value p(1 — p)(E|XWV| — E|X®|)2. This is exactly what we observe for log-
returns. Relation (5.11.7) explains that we observe a blow-up of the periodogram
at the origin because the spectral densities fjxo|(A) are continuous at zero and the
third term in (5.11.7) can be quite large for small frequencies, due to the factor
(n)»fn)_l(E|X(1)| — E|X®)) for n)»?n — 0.

In real-life data we would not expect to have abrupt breaks of the structure, with
a few exceptions, but we can easily imagine a long time series such as the S&P500
being modeled through the concatenation of smaller pieces from different models.
This would give some theoretical ground for the LRD effect in long log-return series.
We illustrate the build-up of the LRD effect in the S&P500 series by concatenation
of several years of data in Figure 5.31.

When dealing with long financial time series, structural breaks often have well
known reasons. Mikosch and Stiricd [106] considered tests for detecting breaks in
the spectral structure of squared returns in the S&P500 and in FX rate series. It turns
out that various of the detected change points can be identified as concrete economic
events such as the beginning of recession periods in the U.S. Change point analy-
ses for ARCH-type models have been suggested by various other authors; see for
example Kokoszka and Leipus [92]. A reasonable alternative is a locally stationary
model as advocated by Dahlhaus and coworkers where parameters change when
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time evolves. We refer to Dahlhaus [36, 37], Dahlhaus and Neumann [38], and
Dahlhaus and Polonik [39] for a recent survey paper. Recently, Granger and Stérica
[73] and Stéricd (personal communication) have argued and provided statistical ev-
idence that absolute returns can be reasonably modeled in a minimalistic way by
|X,| = e*"Z, where u(t) is a deterministic (step or smooth) function changing over
time and Z, is a regularly varying i.i.d. sequence. The latter model reduces the prob-
lem of detecting dependence to estimation of p(¢) and the problem of heavy tails to
estimation of the distribution of Z,.

5.11.2 The IGARCH effect

The LRD effect is one anomaly that can easily be explained by nonstationarity of the
time series. Throughout this chapter we have witnessed another striking property of
GARCH modeling: the IGARCH effect; see Example 5.3.7 and Example 5.5.8 and
Figure 5.12 in the S&P500 case. From the previous discussion we know that long
return series are usually fitted by GARCH models whose estimated parameters add
up to a value close to 1. From Example 5.5.8 we know that an IGARCH(1, 1) model
has regularly varying finite-dimensional distributions with index 2, hence infinite
variance. This is in agreement with numerical calculations; see Section 5.10.1. It is
immediately clear that LRD and IGARCH exclude each other since the usual definition
of LRD is based on the second-order characteristics such as the ACF which requires
finite variance.

On the other hand, if one estimates the tail parameter « of log-return series from the
data (see Section 5.1.1 for a short introduction) one typically obtains values between
3 and 5; see Figure 5.3 for the S&P500 case and Chapter 6 in Embrechts et al. [58]
for more statistical evidence. This indicates that the GARCH model is not flexible
enough to explain the dependence and tails present in real-life data. One possible
reason for the IGARCH effect is nonstationarity of the data. The empirical evidence
for the IGARCH effect comes from considering long log-return series; see Bollerslev
et al. [16] and the references therein. For example, Bollerslev and Mikkelsen [17] fit
a GARCH(1, 1) process to the S&P500 daily returns 1953 to 1990 with estimated
Q1 = a; + Bl = 0.995. Breidt et al. [27] obtain ¢; = 0.999 for the daily returns of
the value-weighted market index 1962 to 1987.

While studies of daily asset log-returns have frequently found IGARCH behavior,
studies with higher-frequency data over shorter time spans have often uncovered
weaker persistence. For example, Baillie and Bollerslev [3] report on the estimation
of a GARCH(1, 1) model for hourly log-returns on FX rates of GBP, DEM, CHF,
and JPY with respect to USD January 1986 to July 1986 the values $Z5F = 0.606,
PPEM = 0.568, p1HF = 0.341, 7Y = 0.717.

The IGARCH effect can also be seen in a time series consisting of two GARCH
pieces with parameters given in (5.11.4) and (5.11.5); see Figure 5.32 for statisti-
cal evidence. The parameters were estimated by Gaussian quasi-MLE; see Section
5.2.3. We fit a GARCH(1, 1) model to the increasing samples X1, ..., X50+4505
k =1,...,37. For sample sizes less than 1000, the sum of the theoretical parame-
ters is ¢ = a; + B; = 0.6. Notice that the values @, are not even close to 0.6 for
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Figure 5.32 The estimated values ¢1 = a1 + B1 for a GARCH(1, 1) model fitted to samples
increasing by 50 values from the simulated series at the right top of Figure 5.30. The labels on
the x-axis indicate the size of the sample used in the estimation procedure.

n = 1000 although the estimator is ,/n-consistent. This behavior is not untypical,
it is not an artifact of a badly chosen sample path, but due to the properties of the
quasi-MLE procedure. The graph in Figure 5.32 clearly shows how the switch of
regimes (at # = 1000) makes the sum increase to 1. This is in agreement with Whittle
estimation theory for the GARCH(1, 1) parameters in nonstationary sequences; see
Mikosch and Stéricd [106]. However, the Whittle estimator is poor for tail parameters
between 4 and 8 and even nonconsistent for tail parameters less than 4 (Mikosch and
Straumann [110]). It would be desirable to get theoretical results for the IGARCH
effect in nonstationary time series for the Gaussian quasi-MLE procedure, which
is much less sensitive with respect to the heaviness of the tails of the marginal
distribution.

5.12 Concluding remarks

Hopefully, the above discussion has convinced the reader that modeling of log-return
data is not an easy matter. If one browses through the literature on financial data
one can find a large multitude of methods and proposals. It seems that any more
recent technique of modeling or statistical analysis has been used to describe the data,
including deterministic (chaotic) time series, dynamical systems, neural networks,
genetic algorithms, infinite variance stable processes, stochastic differential equations,
Malliavin calculus, self-similar processes, long memory processes, Lévy processes,
fractional Brownian motion, ... As a matter of fact, financial time series such as the
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daily log-returns of the S&P500 have attracted the attention of various researchers who
have applied their, sometimes very distinct, methods to them and obtained different
answers. Certainly, i.i.d. Gaussian noise as prescribed for log-returns by the Black-
Scholes model and long memory processes with Pareto tails are worlds apart.

The described state of the art allows one to draw several conclusions. If very
different models have been taken for one and the same data set — the S&P500 is such
a time series — it seems that we do not know too much about the structure of the data.
The usual approach in time series analysis and mathematical finance is to assume a
physical model for the evolution of the price process as if the latter followed a law
similar to Newton’s gravitation or Maxwell’s electro-magnetic fields. Mathematical
models have certainly always been influenced by physics, and they work quite well
in that field, as we know. By now, there is no sufficient economic explanation for a
GARCH or stochastic volatility model or even geometric Brownian motion. These
models have been taken for mathematical or statistical convenience, and one must not
be surprised if they do not always do what they are supposed to. The existing models
are black box models; they do not take additional economic or political information
into account. It may be doubted whether one can build a time series model which
would use such information.

Despite its drawbacks, the GARCH and related models (some people have counted
more than 150 modifications) have the advantage of being simple. The fact that the
residuals of GARCH processes fitted to real-life data are “almost independent” in
many cases shows that these models can be used for forecasting the conditional log-
return distribution over a short time horizon. They are certainly not good models over
a long period of time; as we have seen, parameters change and one has to reestimate.

The question as to whether even a GARCH(1, 1) model might be too sophisticated
cannot be answered at the moment. Granger and Staricd [73] looked at the absolute
returns of the S&P index from 1928 to 2000 and fitted a simple model of the form

log |X;| = u(®) + o) &, (5.12.1)

where (¢,) is an i.i.d. sequence or an ARMA process, ((t) and o (¢) are deterministic
functions. They show by some goodness of fit tests that (4(¢) stays constant over long
periods of time, several years in general, and o (¢) does not vary very much at all. If
this model were more appropriate than any other it would mean that there is not much
structure in absolute log-returns at all. Granger and Stéricd [73] compare the short
term prediction power of (5.12.1) with a classical long memory FARIMA model.
It turns out that the model (5.12.1) with updated w(¢) and constant o does a better
job than fractional ARIMA models. This is perhaps not surprising because a long
memory model has to take into account the whole evolution of the time series from its
beginning to its end whereas the updated model (5.12.1) would react to more recent
developments.

Over the last years the need for a better modeling of financial data has become
quite obvious. The Value at Risk (VaR) calculation that is required by the financial
regulatory authorities has called for an efficient way of calculating 1% or 5% quantiles
in the profit and loss (P&L) distribution of a bank. Typically, the latter corresponds
to a linear combination of hundreds or thousands of different, perhaps correlated,
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prices/returns of assets. There are two common ways to handle the problem: historical
simulation (i.e., Monte-Carlo simulation of the distribution of the portfolio value based
on historical data, often 1 year) or assuming Gaussianity of the data. In the latter case
one only needs the correlations to determine the distribution of a linear combination
of jointly Gaussian random variables. The historical simulation corresponds to the
empirical distribution of the data, and therefore the tails can never be worse than those
suggested by the data. This means that an extrapolation outside the data is impossible,
an event worse than happened in the past is excluded. On the other hand, Gaussianity
of the data is much too optimistic as regards the tails of the distributions, and one uses
inadequate quantities (correlations) to describe dependence in a highly nonGaussian
environment.

Multivariate regular variation is an elegant alternative to correlations in order to
describe dependence in the extremes of multivariate data. However, it involves the
estimation of the index of regular variation and of the spectral distribution. Conclu-
sions about the tail of a linear combination of a regularly varying vector of returns,
in particular about the very low quantiles, are then not straightforward.

The demand for a more realistic modeling of financial data is also implied by the
fact that in many cases one has a huge amount of data (so-called high density or
high frequency data), not just daily or weekly returns, but hundreds of transactions
every day. Olsen & Associates in Ziirich organized two big conferences on the issue.
It seems that traditional time series models or stochastic differential equations are
inappropriate in this case but it is not clear what is suitable. Moreover, it has been
discussed whether more data mean more information or simply more noise, but a clear
answer has not been found although, from a statistical point of view, one might hope
that more data might improve the accuracy of estimation. The practical experience of
the Olsen group has been summarized in the recent book by Dacorogna et al. [35].

A major challenge is the multivariate case. Although various models for multi-
variate log-returns (including GARCH and stochastic volatility models) exist, their
mathematical/statistical tractability is to a large extent an open question. The curse
of dimensionality also concerns multivariate extremes. Although a theory exists in
this case and statistical case studies have been done in two or three dimensions, it is
questionable how the theory can be applied when one deals with portfolios of sev-
eral hundred or thousand assets. Unfortunately, there is no Gaussian distribution in
multivariate extreme value theory.

The previous discussion on the theoretical properties of the GARCH and stochastic
volatility models and their fit to real-life data might have given the right impression:

Return data are not easily fitted by any model. They change structure at any time.

Return data contain trends, change variance, and dependence structure. Therefore it
is impossible, for example, to tell whether the LRD effect is due to nonstationarity,
LRD stationarity or just an artifact of too small confidence bands, ignoring the heavy
tails of the distributions. Although extreme value theory, extreme value statistics, and
time series analysis are potentially useful tools for financial data, one has to be careful
with the conclusions to be drawn. To make extreme value statistics work one needs
large samples. This in turn makes the assumption of structural breaks or changes in
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the data more likely and, therefore, the statistical analyses less reliable. One of the
very difficult tasks of modeling financial data consists of finding out when such a
break happens and how long a period of relative stability in the data persists. In the
opinion of the author, if effects like IGARCH or LRD show up in return data one
should not trust a unique model, but break the data into pieces and try to find out what
is the underlying statistical/economic reason for the changing structure.

There are more questions than answers, which will keep the academic community
and practitioners busy for the next few years.
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6.1 Introduction

The story begins around 1993 with the publication of what is now known as the
Bellcore study [54, 100, 164]. Traditional queueing models had thrived on assump-
tions of exponentially bounded tails, Poisson inputs and lots of independence.
Collected network data studied at what was then Bellcore (now Telcordia) exhibited
properties that were inconsistent with traditional queueing models. These anoma-
lies were also found in world wide web downloads in the Boston University study
[28, 29, 30, 31, 32, 33, 36]. The unusual properties found in the data traces
included:

e Self-similarity (ss) and long-range dependence (LRD) of various transmission
rates:

— packet counts per unit time

— WWWw bits/time

e Heavy tails of quantities such as
— file sizes
— transmission rates
— transmission durations
— CPU job completion times
— call lengths

The Bellcore study in early 1990s resulted in a paradigm shift worthy of a socio-
logical study to understand the frenzy to jump on and off various bandwagons, but
after some resistance to the presence of long range dependence, there was widespread
acceptance of the statement that packet counts per unit time exhibit self similarity and
long range dependence. Research goals then shifted from detection of the phenomena
to greater understanding of the causes. The challenges were:

e Explain the origins and effects of long-range dependence and self-similarity.

e Understand some connections between self-similarity, long range dependence, and
heavy tails. Use these connections to find an explanation for the perceived long
range dependence in traffic measurements.

e Begin to understand the effect of network protocols and architecture on traffic.
The simplest models, such as the featured infinite source Poisson model, pretend
protocols, and controls are absent. This is an ambitious goal.

e Say something useful for the purposes of capacity planning.

6.1.1 The infinite node Poisson model

Attempts to explain long range dependence and self-similarity in traffic rates cen-
tered around the paradigm: heavy tailed file sizes cause LRD in network traffic.
Specific models must be used to explain this and the two most effective and simple
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models were:

Superposition of on/off processes [74, 75, 88, 109, 110, 120, 153, 157, 164]. This
is described as follows: imagine a source/destination pair. The source sends at
unit rate for a random length of time to the destination and then is silent or
inactive for a random period. Then the source sends again and when finished
is silent and so on. So the transmission schedule of the source follows an
alternating renewal or on/off structure. Now imagine the traffic generated by
many source/destination pairs being superimposed and this yields the overall
traffic.

The infinite source Poisson model, sometimes called the M/G/oco input model
[72, 76, 89, 90, 109, 121, 137, 142]. Imagine infinitely many potential users
connected to a single server that processes work at constant rate . At a Poisson
time point, some user begins transmitting work to the server at constant rate
which, without loss of generality, we take to be rate one. The length of the trans-
mission is random with heavy tailed distribution. The length of the transmission
may be considered to be the size of the file needing transmission.

Both models have their adherents, and the two models are asymptotically equivalent
in a manner noone (to date) has made fully transparent. We will focus on the infinite
source Poisson model.

Some good news about the model:

e It is somewhat flexible and certainly simple.

e Since each node transmits at unit rate, the overall transmission rate at time ¢ is
simply the number of active users N(¢) at f. From classical M/G/oo queueing
theory, we know N(#) is a Poisson random variable with mean Ao, where A is
the rate parameter of the Poisson process, and ., is the mean file size or mean
transmission length.

e The length of each transmission is random and heavy tailed.

e The model offers a very simple explanation of long range dependence being caused
by heavy tailed file sizes.

e The model predicts traffic aggregated over users and accumulated over time [0, 7T']
is approximated by either a Gaussian process (fractional Brownian motion or FBM)
or a heavy tailed stable Lévy motion [109]. Thus the two approximations are very
different in character but at least both are self-similar.

Some less good news about the model:
e The model does not fit collected data traces all that well.

— The constant transmission rate assumption is clearly wrong. Each of us knows
from personal experience that downloads and uploads do not proceed at a con-
stant rate.
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— Not all times of transmissions are Poisson. Identifying Poisson time points in the
data can be problematic. Some are machine triggered and these will certainly
not be Poisson. While network engineers rightly believe in the invariant that
behavior associated with humans acting independently can be modeled as a
Poisson process, it is highly unlikely that, for example, subsidiary downloads
triggered by going to the CNN website (imagine the calls to DoubleClicks ads)
would follow a Poisson pattern.

e There is no hope that this simple model can successfully match fine time scale
behavior observed below, say, 100 milliseconds. Below this time scale threshold,
observational studies speculate that traffic exhibits multifractal characteristics.

e The model does not take into account admission and congestion controls such as
TCP. How can one incorporate a complex object such as a control mechanism into
an informative probability model?

6.1.2 Broad issues (Bls) to consider for data network modeling

Before considering further the infinite node Poisson model, consider the following
issues related to data network modeling and data analysis.

BI 1. The problem of research time scales: how do the disciplines of applied prob-
ability, statistics, and applied mathematics make contributions to data net-
work analysis and planning in internet time? The rapid pace of development
makes it difficult for mathematical research to find a niche. If you propose
a research project lasting perhaps 2 to 3 years to an internet engineer, their
eyes will glaze over. The world will be a different place by the time the
project is completed and your project results may or may not have applica-
bility. How many of us remember using Mosaic as our browser? The year
1994 may be fresh in some of our minds, but is the dark ages of the in-
ternet. Several of the data sets analyzed in [72] are quite old (of the or-
der of 7 years and the clock is still ticking) and this raises the question of
their relevance. Are these measurements an accurate reflection of current
traffic? Maybe not. If not, are the methods collected and developed to an-
alyze the old data sets at least useful for analyzing current measurements?
Hopefully.

Is the most meaningful contribution we can make that we simply help cause
and justify paradigm shifts with explanations that may lag behind empirical,
experimental, and heuristic developments?

Consider the following sobering thought. When the monolithic AT&T
spun off Lucent and Lucent wound up with Bell Laboratories, the newly
constituted AT&T Labs-Research in Florham Park did not stock the build-
ing with researchers and engineers from the applied probability community.
(My informal count in 1999 of people whose primary affiliation was applied
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probability was two, though of course there are many broad and talented
people who defy easy classification.) Why did the expertise of the applied
probability community not appeal to the organizers of the Florham Park
facility?

BI 2. Insider vs. outsider: do you:

(a) Analyze data that is already available, say on the web (e.g., the ITA web
site at http://ita.ee.lbl.gov/html/traces.html) or that you have bootlegged
by hook or by crook? This is often what academics (including the author)
have done. However, such data may be old (dangerous when the internet
time clock is ticking), badly suited for the purposes of the study, or just
plain dirty. Note, for example, the UCB data analyzed in [72] is not very
suitable for testing the Poisson assumption, or

(b) Design a network experiment to get the data you want. This typically
requires cooperative net administrators and some hardware and soft-
ware expertise more typically found in the computer science and elec-
trical engineering communities. It may require you to go beyond your
local area network to something of the scale of World Net, UUNet,
etc.

BI 3. How can you discern the influence of network architectures and protocols?
How do you model the complexities of something like TCP [92] realistically?
Can you get a reasonably accurate model that encourages analytic analysis,
or if mathematical analysis is too difficult, is the model accurate enough that
simulation and experimentation yield fruitful information? Some beginning
but not entirely satisfactory attempts to grapple with the dynamics of TCP are
contained in [6, 17, 67, 116, 117, 118, 152].

BI 4. A broad variety of techniques is useful and a wide background is required.
Teamwork may be the way to go. Here is a partial list of skills and expertise
that your team’s toolbox should have:

(a) Applied probability and statistics:

— Stochastic processes: FBM, Lévy stable motion, and fractional
motions

— Poisson point process theory

— weak convergence

— heavy tailed analysis

— long-range dependence

— self-similarity and multifractality

— extreme value theory and associated statistical techniques

— estimation methods such as maximum likelihood, exploratory tools
using graphical techniques

— time series analysis
— queueing theory
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(b) Applied mathematics:

— wavelets (seem to be the right tool for examining phenomena on dif-
ferent time scales)

— numerical methods

— design and implementation of simulation tool

— computing

BI 5. Black box vs. structural modeling: the philosophy behind black box modeling
is to provide a broad class of models with enough parameters to fit a variety
of data sets. The emphasis is on finding something that fits according to some
criterion. For example, the classical Box-Jenkins ARMA approach to fitting
time series models is to difference the data until it looks stationary and then
fit an ARMA(p, ¢) model of the form

P q
Xo= ¢iXu-i+ Y 6Zui.
i=1 i=0

where one specifies p, g, ¢, and 6 to yield a model matching the L, sample
moments of the data. Traditionally, {Z,} is white noise.

One may try to adapt this class of models to a heavy tailed context, in which
caseitis natural to suppose {Z,, } isi.i.d. and heavy tailed. However, while such
highly structured methods may have some appeal in economics and finance,
in other contexts the approach may have drawbacks.

Consider the following problems with the approach.

(a) The dependence structure in heavy tailed models is complex, and there is
no reason why a highly structured linear model will model the dependence
correctly. Generally, you do not get good fits for dependent heavy tailed
data with ARMA modeling and one could go out on a limb and assert
that the only heavy tailed data that ARMA fits are simulated data from
the ARMA model.

(b) Eveniftheblack box approach of fitting something like an ARMA worked
acceptably, there would be a tendency to say “so what,” since this does
not provide fundamental insights into system dynamics. A method that
finds a pattern in a bunch of numbers but ignores physics, structure, and
system dynamics is not so revealing.

(c) In a rapidly changing environment, spending excessive time just fitting
the data to a black box model may not be so useful, since the next data
set generated from similar mechanisms may not be fit to the same model.
One should not overemphasize this point, but keep in mind the goal is to
understand system dynamics and not just to successfully fit a model to
the data.

These objections have caused the internet community to emphasize struc-
tural modeling, which incorporates idealized features of the network. The
typical internet trace collects packet headers that contain rather detailed in-
formation, and this can hopefully be utilized to good effect.
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6.2 How do heavy tails cause long range dependence?

Understanding the connection between heavy tails and long range dependence requires
a context. For the simplest explanations one can choose either the superposition of
on/off processes or the infinite node Poisson model, and our preference is for the
latter.

6.2.1 The infinite node Poisson model

The simplest model that explains the paradigm that heavy tails induce long range
dependence is the infinite source Poisson model, sometimes called the M/G/oo input
model.

In this model, there is potentially an infinite number of sources capable of sending
work to the server. Imagine that transmission sources turn on and initiate sessions
or connections at Poisson time points {I';} with rate A. The lengths of sessions {L,}
are i.i.d. nonnegative random variables with common distribution F,, and during a
session, work is transmitted to the server at constant rate. As a normalization, we
assume the transmission rate is 1. Assume

1 — Fop(t) := Fon(t) = t™*L(t), t — o0; 6.2.1)
for some slowly varying function L, that is,

Fon(tx) _
— =X
=00 Fon(t)
In practice, empirical estimates of o usually range between 1 and 2 [101, 164].
However, studies of file sizes sometimes report measurements of @ < 1 [7, 142]. The
assumption of a fixed unit transmission rate is one of the more unrealistic aspects
of the model, which accords neither with anyone’s personal experience nor with
measurement studies. Later, in Section 6.8, we mention how to modify the model in
the interests of greater realism so that either (i) transmission rates are random and
possibly dependent on the size of the file to be transmitted; or (ii) it is assumed that
cumulative input from a source follows a random multifractal process. However, for
the present, in the interests of simplicity and for tractability, the fixed transmission
rate will be assumed.
Note that in the case of 0 < @ < 1, which we will term the very heavy tailed case,

both the mean and the variance of Fy, are infinite. In case | < o < 2, termed merely
the heavy tailed case, the variance of Fy, is infinite but

“  x>0.

o0
Moan(Ll)Z/ Fon(t)dt < oo.
0
The processes of primary interest for describing this system are the following:

N(t) = number of sessions in progress at ¢ (6.2.2)

= number of busy servers in the M/G/co model

00
= E llrk§t<rk+Lk]
k=1
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and
13
A(t) = / N(s)ds = cumulative input in [0, 7], (6.2.3)
0
r = release rate or the rate at which the server works off the offered load.

Note that expressing A(?) as an integral gives N (¢) the interpretation of instantaneous
input rate at time ¢. So realizations of N(¢) correspond to data traces of packet counts
per unit time.

Stability requires us to assume that the long term input rate should be less than the
output rate, SO we require

AMlon < T.

This means the content or buffer level process {X(¢), ¢ > 0}, which satisfies
dX(t) = N(t)dt — r][x(t)>0]dl‘,

is regenerative with finite mean regeneration times and achieves a stationary distri-
bution.

6.2.2 Connection between heavy tails and long range dependence

The common explanation for long range dependence in the total transmission rate by
the system is that high variability causes long range dependence, where we understand
that high variability means heavy tails. The long range dependence resulting from
the heavy tailed distribution F,, can be easily seen for the infinite node Poisson
model.

Assume that | < « < 2. To make our argument transparent, we consider the
following background. For each ¢, N(¢) is a Poisson random variable. Why? When
1 < @ < 2, N(-) has a stationary version on R, the whole real line. Assume

Z er, = PRM(Adr)
k

is a homogeneous Poisson random measure on R, with rate A. Then

M =" €r,.L,) =PRM(Ad! X Fop) (6.2.4)
k

is a two-dimensional Poisson random measure on R x [0, 00) (e.g., [139]) with mean
measure Adt x Fy,(dx), and

N = linsieriir,
k

=M{(s,D):s<t<s+1}=M(B)

is Poisson because it is the two-dimensional Poisson process M evaluated on the
region B, see Figure 6.1. Note B is the region in the (s, [)-plane to the left of the
vertical line through (¢, 0) and above the —45 degree line through (¢, 0). The mean
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Figure 6.1 The region B.

t t+s

Figure 6.2 The regions Ay, Ay, and A3.
of M(B) is

EM{G,D):s<t<s+1})= // Ads Fon(dl)

{(s,):s<t<s+l}
t
= / Fon(t —$)Ads = Ajton.  (6.2.5)
§=—00

Understanding the relation between {N(#)} and the random measure M allows us
to compute easily the covariance function. Refer to Figure 6.2. Recall that N (¢) corre-
sponds to points to the left of the vertical through (¢#,0) and above the
—45 degree line through (¢, 0), with a similar interpretation for N (¢ 4 s). The process
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{N(t),t € R} is stationary with covariance function
Cov(N (1), N(t + 5)) = Cov(M (A1) + M(Az), M(Az) + M(A3)),
and because M(A) and M(A3) are independent, the previous expression reduces to
= Cov(M(A2), M(Az)) = Var(M(A2)).

For a Poisson random variable, the mean and the variance are equal, and therefore the
above equals

= E(M(A»)) = / Adu Fon(t + 5 — u)

o _ A
= ,\/ Fon(W)dv ~ ————s~@ D[ (s),
R a—1

where we used Karamata’s theorem for regularly varying functions [14, 42, 139]. To
summarize, we find that

Cov(N(t), N(t +5)) = A /00 Fon(v)dv

A
~ p— s DL (s)

A _
= sFo(s), s — oo. (6.2.6)
a—1

The slow decay of the covariance as a function of the lag s characterizes long range
dependence.

6.3 Further implications of the simple model: is network traffic stable Lévy
motion or fractional Brownian motion?

Our simple Poisson based model offers a compelling explanation of how heavy tailed
file sizes induce long range dependence in the traffic rates. To decide if our model
is an accurate enough reflection of reality, however, we need to see how well data
measurements fit the model. So we require a partial catalogue of features of the model,
in order to see if such features are found in data measurements. In this section, based
on [109], we analyze what the model predicts about the cumulative traffic process.

6.3.1 Background

There is strong belief in the self-similar nature of aggregate traffic rates, at least at time
scales above a certain threshold. Empirical [7, 164] and theoretical [74, 75, 76, 157]
evidence supports the heavy tailed explanation of the self-similarity. However, various
authors diverge in their conclusions about the marginal distributions of cumulative
traffic. There exists theoretical interest in the conclusion that marginal distributions
should be heavy tailed [93, 137] and spirited interest and evidence for Gaussian
marginal distributions [101]. The latter result coincides with empirical observations
that traffic looks Gaussian on links that are heavily loaded.

€004 CRC PressLLC



The infinite source Poisson model with heavy tailed file sizes allows cumulative traf-
fic at large time scales to look either heavy tailed or Gaussian, depending on whether
the rate at which transmissions are initiated (crudely referred to as the connection
rate) is moderate or quite large.

The process describing offered traffic is A(¢), the cumulative input in [0, ¢] by all
sources. Recall from (6.2.2) and (6.2.3) that the model assumes unit rate transmissions
and A(?) is the integral of N(s) over [0, ¢]. For large T, we think of (A(T't),t > 0)
as the process on large time scales. The results show that if the connection rate A(-) is
allowed to depend on 7 in such a way that it has a growth rate in 7' that is moderate
(in a manner to be made precise), then A(T'-) looks like an «-stable Lévy motion,
while if the connection rate grows faster than a critical value, A(T-) looks like a
fractional Brownian motion. We make these statements precise by adopting a heavy
traffic outlook and think of a family of models indexed by T', where the T-th model
has connection rate A(7") and file size distribution F,,. Depending on growth rates,
the T'-th model is approximated by either Lévy stable motion or FBM.

Let (T'x, —00 < k < 00) be the points of the rate & homogeneous Poisson process
on R, labeled so that 'y < 0 < I'y and hence {—T"¢, I'1, (Tx4+1 — ', k 5% 0)} are i.i.d.
exponentially distributed random variables with parameter A. The random measure
that counts the points is denoted by Y ;= er, and is a Poisson random measure with
mean measure AL, where L stands for Lebesgue measure. The communication system
has an infinite number of nodes or sources, and at time I'; a connection is made and
some node begins a transmission at constant rate to the server. As a normalization, this
constant rate is taken to be unity. The lengths of transmissions are random variables
Ly. Assume Loy, L1, Lo, ... are i.i.d. and independent of (I'), and

P(Lyy > x)= Fop(x) =x"%L(x), x>0, l<a<?2, (6.3.1)

where L is a slowly varying function. Since « € (1, 2), the variance of L, is infinite
and its mean p,, is finite. We will need the quantile function

N ) 1
b(t)=(1/Fon) (t) = 1nf{x T F Fo ) > t}, t >0, (6.3.2)

which is regularly varying with index 1/a. Recall the two-dimensional Poisson ran-
dom measure M defined by (6.2.4), which is a counting function on R x [0, o0]
corresponding to the points {(I'x, L)} and has mean measure AL x Fyy; cf. [139].

To remind us we consider the 7' -th model, we sometimes subscript quantities by 7.
So for example, the number of active sources at z, or the overall transmission rate at
t is denoted by either N(¢) or Ny (¢). We will consider a family of Poisson processes
indexed by the scaling parameter 7 > 0 such that the intensity A = A(T) goes to
infinity as T — oo. The intensity A = A(T") will be referred to as the connection rate
for the T-th model.

Recall that heavy tailed transmission times L induce long range dependence in N;
the precise expression of this is (6.2.6). High variability in transmission times causes
long range dependence in the rate at which work is offered to the system.
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6.3.2 The critical input rate

Recall that A = A(T) is the parameter governing the connection rate in the 7' -th model,
and suppose A = A(T) is a nondecreasing function of 7. We phrase our condition
first in terms of the quantile function b defined in (6.3.2). The asymptotic behavior of
A7 (-) depends on whether

. . b(AT)
Slow Growth Condition 1: Thm — = 0,
or
- . bQT)
Fast Growth Condition 2:  lim —— = o0

T—o0 T
holds. Notice that b(-) is regularly varying with index 1/c.
There is an alternative, more intuitive, way to express the conditions.

Lemma 1 Assume F,, satisfies (6.3.1). Consider the stationary version of the input
rate Nt (-).

1. The slow growth condition 1 is equivalent to either of the two conditions
lim AT Foo(T) =0 or lim Cov (N7(0), Np(T)) = 0. (6.3.3)
T—o0 T—o0
2. The fast growth condition 2 is equivalent to either of the two conditions
lim AT Foo(T) =00 or lim Cov (Nr(0), Ny (T)) = oo. (6.3.4)
T—o00 T—o0
If we think of the scaled process N7 (t) = N(T't), then the covariance appearing
in (6.3.3) and (6.3.4) is the lag 1 covariance of N7 (-). So, as we proceed through our

family of models indexed by T', under slow growth, the lag 1 covariance is diminishing
at large scales, and under fast growth the lag 1 covariance is getting very strong.

Proof. In the case of Condition 1, there exists a function 0 < €(7') — 0 such that
Te(T) — ooand b(AT) = Te(T). Thus

AT ~ 1/Fon(Te(T)). (6.3.5)
Therefore, Condition 1 implies
AT Foo(T) ~ Fou(T)) Fon(Te(T)) — 0. (6.3.6)

Conversely, if §(T) := AT Fon(T) — 0, then using b (T) ~ 1/ Fo,(T), we get
b(T)  b(8(T)b=(T))

)

T b(b=(T))
and so Condition 1 and (6.3.6) are equivalent. Similarly, Condition 2 is the same as
AT Foo(T) — 0. (6.3.7)

To get the equivalence in terms of the covariances, use (6.2.6). [
We will need the following facts proven in [72]. If Condition 1 holds, then
AT?F on(T)
lim ———— =0,
T—o00 b()»T)
and if Condition 2 holds, this limit is infinite.

(6.3.8)
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6.3.3 «a-stable approximations for the infinite source Poisson model under
slow growth

We now assume Condition 1 holds and show why at large time scales, A is ap-
proximately an a-stable Lévy motion; that is, a process with stationary independent
increments with «-stable marginals [64, 151]. The following is the result under the
slow growth condition.

Theorem 1 If Condition 1 holds, then the process (A(Tt), t > 0) describing the total
accumulated input in [0, T't], t > O, satisfies the limit relation
A(T") — Thpon(") fidi

XDy = 0T X, 0, (6.3.9)

. p . fidi .
where X,(-) is an a-stable Lévy motion. Here — denotes convergence of the finite
dimensional distributions.

Remark. The mode of converge cannot be extended to J; convergence in the Sko-
rokhod space D[0, 0o). This follows, for example, from [93] who show that a sequence
of processes with a.s. continuous sample paths cannot converge in distribution in
(DI0, 00), J1) to a process with a.s. discontinuous sample paths. A thorough discus-
sion of this phonomena is in [162]; see also [137].
Here is an outline of some elements of the proof.

6.3.3.1 The basic decomposition
We start by giving a useful decomposition of the random variable A(T) corresponding
to a decomposition of (—oo, T'] x [0, 00) :

R ={(,y):0<s<T,0<y, s+y<T}

Ry :={(5,y):0<s<T, T <s+y}

Ry :={(5,y):5s<0,0<s+y<T}, (6.3.10)

Ry ={(s,y):5s <0, T <s+y},

(see Figure 6.3). Rewrite A(T), using (6.2.3), as
AT) =Y Lidiy.coera + (T = Tl Loers)
k k

+ Z(Lk + Tl Loers + Z T 1y, LR, (6.3.11)
X X

=:A+ A+ A3+ Ay

Recall the definition of the PRM M from (6.2.4) with mean measure AL x F,,. Note
that A; is a function of the points of M in region R;, and because the R;s are disjoint,
A;,i = 1,...,4, are mutually independent. Calculations as in (6.2.5) and use of
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A
R4
R2
R3
RI
0 T 8
Figure 6.3 The regions Ry, Ra, R3, and Ry.
Karamata’s theorem give that as 7 — oo
T
Amy = EM(R)) = A / Foo(T —s)ds ~ AT,
0
T -
Amy = EM(Ry) = A / Fon(T —s5)ds ~ A lon, (6.3.12)

—s+T
Am3 = EM(R3) = )\/ / Fon(dy) ds ~ Afton

my = EM(R4) = k/ / Fon(dy) ds = A/ Fon()du
s=—00 Jy=—s+T T
~ AT Fon(T) /(e — 1) — 0.

So the mean measure EM(-) restricted to R; is finite fori = 1, ..., 4, which implies
that the points of M |  canbe represented as a Poisson number of i.i.d. random vectors
[140, page 341]:

P;
d .
M|Ri = E :e(tk.i,jk.i) ,oi=1,...4

where P; is a Poisson random variable with mean Am;, which is independent of the
ii.d. pairs (#;, jk.i), kK > 1, with common distribution

AL(ds)Fon(dy) | L(ds)Fon(dy)
km,- -

, (6.3.13)

Ri mi R;
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fori = 1,...,4. Notice that the distributions of ((#_;, jk.;)) are independent of A,
which only enters into the specification of the mean of P;,i = 1, ..., 4. This means
that for fixed 7', we can represent A; as the sum of a Poisson number of i.i.d. random
variables,

d P d P
Al = Z ]= Ji,1 5 A2 = Z 2= (T — tk,Z)»

d ]; l d ];, : (6.3.14)
Ay =320 Gks +1e3), Aa= 30T,

6.3.3.2 Moments of the summands

‘We need information about the moments of the summands in (6.3.14). All the variables
are bounded by T, so all moments exist, and we derive the asymptotic form of the
moments as 7 — oo. For notational ease, we often suppress the dependence on
T in the notation, and let (#;, j;) be random variables with the same distribution as
(tk,i’ jk,i)’ fori =1,...,4.

From (6.3.12) and (6.3.13), observe that for [ > 1,

T T—s
Ejl / / L(dS)Fon(dy) l / / yl Fon(dy) ds
i T s=0 Jy=0
N </ , Fon(dy)>ds' (6.3.15)
T s=0 y=0

Forl = 1, since ] yFon(dy) = [on, We have
Eji = on . (6.3.16)

For I > o, we have, using first a change of variables and then Karamata’s theorem,

that
_ Eji / / Fon(Tdy) /1 / W aye dy ds
TlFon(T) on(T) 0 0

6.3.17
(l—a)(l—a+l) ( )
We also note that (6.3.16) and (6.3.17) imply
V: . 1 S
f_ri(]‘) ~/ / Vay e dyds = — % — 62 (63.18)
T*Fon(T) Jo Jo C-a)E—-a)
and
Elji — Ej|? 4(Eji + (Ejr)?
lim sup |J1_—J1| < lim sup M = const. (6.3.19)

T—o0 T3Fon(T) a T—o0 TSFon(T)
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Similar calculations for T — 1, give that for [ > 1,

BT — 1) = / / oy @) Fon(d)
s=0 Jy=T-s

ma

~ / / (T_S) Fon(dy) ds
Mon Js=0Jy=T—s

1 T _
- / ! Fon(u)du,
0

Hon

and therefore, for! > 1, as T — oo, from Karamata’s theorem

E(T — 1) 1‘/11Fmdw)
—— ~ x'—
TlJrlFon(T) Mon Jo Fon(T)

1/1Fa 1
X dx = ————.
Mon Jo Mon(l —o+ 1)

dx (6.3.20)

~

This implies that

Var(T — ¢ 1
a(l — ) = o? (6.3.21)
T3F on(T) Hon(3 — o)
and
E|IT —t, — E(T —t))?
lim sup ! z ( 2| < const. (6.3.22)
T—o0 T4F0n(T)
Finally,
L(ds)Fon(dy)
EGy+1) = / / (7 +5) = TontY)
m3
()’ +S)Z Fon(dy) ds,
and thus

EGi+n) 1 /0 /” ; Fon(Tdy)
e L (y+s) =2 ds (6.3.23)
T Fon(T)  ton Jseoo Jye Fon(T)

y + ) ay™'"% dy ds.

It follows that

Var(j; + ¢ 1 /O I=s
73({3 +h) ~ / / (y+ s)2 ozy_l_“ dyds =: 032
T Fon(T) Mon Js=—o0 Jy=—s

and

: Eljs—t3— E(js —3)
lim sup E < const.
T—o00 T Fon(T)
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To compute o7, observe that

1 [e') 1+s
o7 = / / (y — ) ay * 'dyds
Mon Js=0 Jy=s
1

1 ¥
= /) ay 1[ (y—s)zds}dy

Mon =0 s=0

1 0 Y
+ / ay ot [/ (y— s)zds} dy
Mon Jy=1 s=y—1

1 3 0
_ 1 —a—1 yf 1 —a—1 1
= ay dy + ay dy
Mon Jy=0 3 Mon Jy=1 3
1 o 1 1
B RN B
Mon 133 — ) 3 Mon(3 — o)

This may not be remarkably thrilling, but is quite useful.

(6.3.24)

6.3.3.3 «a-Stable limits: one-dimensional convergence

We show under Condition 1 that A(T) is asymptotically an «-stable random variable
by showing that A{(T) = A, is asymptotically stable and A;(T) = A;,i = 2,3,4
are asymptotically negligible.

It is relatively easy to see that

ATy 50, i=23,4. (6.3.25)

We restrict ourselves to the case i = 2; a similar argument works for i = 3, 4. By
(6.3.20), (6.3.8), and Condition 1,

EAy = EP, E(T — 1) = [Amy] E(T — 1) ~ (const) AT?F oo(T) = o(b(AT)).
Thus it remains to consider A. Recall the representation of A; given in (6.3.14).
We start with the following decomposition:
Py

A= MionT =Y Gt = Ejr) + Eji [Pr = EP\1 4+ [EA; = MtonT]
k=1

=An+An+As.

By (6.3.16), Ej; ~ on. Since P; is Poisson with mean Am; — 00, it satisfies the
central limit theorem, i.e.,

i 172 [Py — amy] 5 N(O, 1). (6.3.26)
We conclude that

A = 0p(IAT1'?) = 0p(b(LT)), (6.3.27)
since i

MM him B = 2 Ve
700 BOAT) 5200 b(s)  somo” /L)

and1<a<2implies%<é<1.
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By (6.3.14) and (6.3.26), A} is a sum of approximately Am| ~ AT i.i.d. summands.
Under Condition 1, b(AT)/T — 0, so that for any x > 0 fixed, we eventually have
T — b(AT)x > 0. Therefore, from (6.3.13)

ATP(j; > b(LT)x) = AT//O<S<T

0<s+y<T
y>b(AT)x

T—b(\T)x T—s F(d
_aT / ds / on(dy)
N y

=0 =b(\T)x M1

ds Fon(dy)
mi

— AT [i Fon(bAT)x)(T — b(LT)x)
nj

1 T—b(AT)x B
- Fon(T — s)ds]
miy Jo

() _baD
(_ T

) AT Fon(b(MT) x)

b(AT) [T/P0D
- AT Fon(b(AT)s) ds
~x7Y,
Following an argument using point processes [107, 108, 127, 128, 137, 138, 139] we
get fort > 0,
[AT]
YO = (b01) " D Gk = Eji) = Xau() in D[0, ), (6.3.28)
k=1
where the limit is a totally skewed «-stable Lévy random motion (p = 1, g = 0). In
fact, by independence, we may couple (6.3.26) and (6.3.28) to get joint convergence

<Y<T>(-), %) = (X,(), D in D0, 0o0) x R.

Using composition and the continuous mapping theorem, one obtains

(bG.T)) " An = YD(P /(LT

Py
= (bGT) ™ Y Gkt — Ej) = Xo().  (6.3.29)

i=1

It remains to consider A;3. By (6.3.15) and Karamata’s theorem,

A3 = E(A1) — AptonT = Eji EPy — AT jion

T s T 00
=X / [/ y Fon(dy) — Mon] ds = —A / / y Fou(dy) ds
0 0 0 s

~ —(const) AT2F on(T) = o(b(AT)). (6.3.30)

The last limit relation follows from (6.3.8). Combining the limit relations (6.3.25),
(6.3.27), (6.3.29), and (6.3.30) we conclude that A(T') has the desired «-stable limit.
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6.3.3.4 «-Stable limits: finite dimensional convergence

We restrict ourselves to a sketch of the convergence of the two-dimensional distribu-
tions; the general case is analogous. Suppose #; < t,. The same arguments as for the
one-dimensional convergence show that it suffices to consider the joint convergence
of [b(AT)1™Y(A|(Tt;) — ATt fion), i = 1,2. We can write

ATh) = ATt + > Lilingrezroi+ Y Lilirg<rir,<rn)

THh<Iv<Tt Iy<Tn
= Ai(Tt) + Ay (T(ta — 1) + Ao

Observe that A|(Tt;) and A, (T (t, — t1)) are independent and that A, (T (¥, — #1)) <
A (T (t; — 11)). Hence the proof of the two-dimensional distributions follows from the

one-dimensional convergence if one can show that [bAAT)] A £ 0. This follows
by arguments similar to earlier ones as one shows EAy = o(b(AT)) using (6.3.8).

6.3.4 FBM approximations for the infinite source Poisson model
under fast growth

We now study why fast connection rates associated with strong correlations of Nz (-)
imply fractional Brownian motion limits.

Recall that a mean-zero Gaussian process (By(t),t > 0) with a.s. continuous
sample paths is called fractional Brownian motion if it has covariance structure

2
Cov(By(1), By(s)) = UTH(WH +|s?# — |t — s|*™) for some oy >0, H € (0, 1).

The case H = 1/2 corresponds to Brownian motion and, if H € (1/2, 1), the autoco-
variance function of the increment process (By(t) — By (t — 1)),=1.2,..., the so-called
fractional Gaussian noise, exhibits long range dependence. The following is the result
under the fast growth condition.

Theorem 2 If Condition 2 holds, then the process (A(Tt), t > 0) describing the total
accumulated input in [0, Tt], t > 0, satisfies the limit relation
A(T-) — Aon T ()
[AT3Fon(T)o2]'/?
Here = denotes weak convergence in (D[0, 00), J1), By is standard fractional
Brownian motion, H = (3 — «)/2 and &* is given by
) o n 2 n 1
CQ2-0)B-a) pn@B-—a) a-—1

= Bu ().

(6.3.31)

1 o . 2 . 1

T 3—a|2—a e a—1
Remark. Notice that H = (3 — «)/2 € (0.5, 1). Hence the corresponding fractional
Gaussian noise sequence of By exhibits long range dependence. This is in contrast

to Theorem 1 where the limiting process, «-stable Lévy motion, has independent
increments.
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As for Theorem 1, the decomposition of Section 6.3.3.1 will be the key for deriving
the Gaussian limit. We omit details and refer to [109]. Unlike the slow growth case,
each A;,i =1, ..., 4 contributes to the Gaussian limits. Fast growth means there are
more contributions in [0, 7] making it difficult for a single contribution to dominate
as is typical of heavy tailed limits. The moment conditions of Subsection 6.3.3.2 allow
one to prove asymptotic normality using the Lyapunov condition [64, page 286] and
[141, page 319].

6.3.5 Covariance calculations for the infinite source Poisson model

It is interesting to note that the second order structure of

T.
AT(T~)=/ Nr(s)ds
0

converges to that of FBM. This happens even under the slow growth condition when
A7(T-) is approximated by Lévy stable motion. This emphasizes how dangerous it is
to judge a process [book] by its second order properties [cover].

For 0 < s < t write (suppressing the subscript T)

Tt Tt
E(A(Tt) — A(Ts))* = E N(x)dx N(y)dy
Ts Ts

=T? / / E(N(Tx)N(Ty))dxdy
=272 / / E(N(Tx)N(Ty))dxdy
s<x<y<t

=217 / / (CovN(Tx), N(Ty) + 2713, ) dxdy

_2T2{/ / ( / _(,n(w)dw)dxdy
y=x w=T(y—x)
+/ / Azp,indxdy}
x=s Jy=x

= Lst + IIs,l’
where we used (6.2.6). Integrate I, ; to get

(t —s)*
””ZZTW”%"T T2 U2, (t — 5).

For I ; we have

I, = 2T3 ( on(Tw)dw) dxdy
y—x

—X o0
= 2T3A/ / (/ _on(Tw)dw> dxdy,
x=s Jy= w=y
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and as T — o0, this is asymptotic to

—x y—(@=D)
~ 273 “AL(T)/ (/ dy) dx
a—1

5 -3 x27a . L(T))»([ _ S)3fot
=27 “L(T)A/ —  dx =27 )
=0 C—a)a—1) Q-a)3—a)a—1)
‘We conclude
lim — 2 2 (t —5)° = K(a)(t — 5> (6.3.32)
126 AT Fop(T)  B—a)2—a)a—1) 0~ s o
and
Iy, = T2 22 (t —5)*. (6.3.33)

Now observe
Cov(A(Ts), A(T1)) = E(A(Ts)A(T1)) — EA(Ts)A(Tt)
= E(A(Ts)A(T1)) — TsiptonT 1A fhon
(since E [y Nw)du = [y EN@w)du = [ Miondu = thjiy,)

= %(EA(TS)2 + EA(TZ‘)2 — E(A(T?t) — A(TS))Z) _ T2k2M§nst

1
= E(IO,J + IO.t — At + IIO,S + IIOt Ils t) - MonSt

1 1
E(IO,X + I(),t - Ly, t) + {2 2)»2/1,0[1[5‘ +t - (t - S)z] T2)‘2M§nSZ}

1
= 5(103 + IO,r - Is,t) + 0,

and so
1 Cov(A(T_s), A(Tt)) — K@) 41
T—o0 )\.TSFOH(T)

a ([ _ S)37w].

Ifweset3—oz=2H0r3%’1 = H thensince 1 < « <2,weget% < H < 1.
The conclusion: the second order structure of
Ap(T)

VAT3 Fon(T)

converges to that of FBM with H = 3%“, but we do not have weak convergence under
the slow growth condition.

6.4 Does the model fit the data? Checking for Poisson, independence, and
stationarity. Formal and informal statistical techniques

Now we have a model with some fairly well understood characteristics. Does it do a
satisfactory job of explaining reality? Here are several statistical techniques that help
decide.
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6.4.1 How do you identify Poisson time points and validate the choice statistically?

Not all data is particularly well suited to identifying Poisson time points. Points of a
homogeneous Poisson process have the following characteristics:

e Interpoint distances are i.i.d.,

e Interpoint distances are exponentially distributed.
The Q&D methods of checking these characteristics that are most common are:

e Check that the sample autocorrelation function (ACF) of interpoint distances is
approximately zero for a reasonable number of lags.

e Check the exponential distribution postulate by a QQ-plot, which plots theoretical
quantiles of the exponential distribution against sample quantiles of the empirical
distribution function, to check if the plot is approximately linear.

The expectation is that:

e The behavior of lots of humans acting independently is often well modelled by a
Poisson process, but

e Initiation times of machine triggered downloads or transmissions cannot be mod-
elled as a Poisson process.

Example 1 The UCB data; HTTP sessions via modem. The UC Berkeley data is an
18-day trace collected in November 1996. It contains the home IP HTTP traffic pro-
cessed by UC Berkeley during this period. It is available at http://ita.ee.lbl.gov/html/
contrib/UCB.home-IP-HTTP.html. In [72], we analyzed a 3-hour peak portion of the
data, with mean traffic rate of 341 kbit/s. The data content consists of: initiation time
of a file transfer, file size, transfer times of a request, and IP address of client. Due to
the nonstationarity (more on this later) and the diurnal cycle, we restricted the analysis
to several hours of peak traffic on a weekday, i.e., the period 5 to 8 p.m. on Thursday,
November 7. This part of the trace consists of about 80,000 requests. It is essential to
select the period for analysis carefully.

The Figure 6.4 displays both the ACF and QQ-plots for times between requests.
From the plots, the data does not look convincingly independent (too many spikes
protruding from the magic window in the ACF plot) nor exponentially distributed (the
plot deviates alarmingly from a straight line). Further analysis of the data would be
necessary to identify a subset of points as Poisson times. Probably a Poisson cluster
process would better fit the data.

6.4.2 Checking heavy tailed data for independence
6.4.2.1 The sample autocorrelation function

Although there are many pitfalls associated with using the sample autocorrelation
function for nonGaussian data [25, 37, 41, 61, 126, 130, 131, 135], it is still the most
common method for checking for independence. The sample ACF of the stationary
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Figure 6.4 UCB interarrival times of requests: (top) QQ-plot against exponential distribution,
(bottom) autocorrelation function of interarrival times.

sequence X1, X, ... is defined as

o) = it Xi = D) Xin = )
Y (X — X)?

and the method is to plot p(h), for various lags & and check if the values are all close

to zero. Typically we plot atlags h = 1, ..., 25 and this should be adequate to assess

evidence against independence. Of course, an essential point is to give meaning to
the phrase close to zero. Consider the following two cases.

, h=1,2,...,

The variances are finite: then standard L, theory applies and Bartlett’s formula from
classical time series analysis [18] provides asymptotic normality for p(h) and
under the null hypothesis of independence, one constructs for each p(h) a 95%
confidence interval. This leads to the magic window that many mature statistical
packages such as Splus automatically plot. If the ACF spikes at various lags

€004 CRC PressLLC



call holding call holding

2 2
[=} o
L
O
<<
ke
W o
< 10 En
< >
o & ©
| H
o | ‘ | [ Q o B e
°I|I | I||""|||H e
5 10 15 20 5 10 15 20 25
Lag Lag

Figure 6.5 Classical ACF (left) and heavy tailed modification (right) for call holding time data.

protrude from the magic window less than 5% of the lags, we shrug comfortably
and think so far, so good. No evidence against independence has turned up using
this technique.

The variances are infinite: if the data is heavy tailed with infinite variance, the math-
ematical correlations do not exist. However, under the null hypothesis of inde-
pendence, formulas of Davis and Resnick [18, 38, 39, 40] provide for asymptotic
distributions of p(h) given by the distribution of the ratio of stable random vari-
ables. The distribution cannot be calculated explicitly, but percentiles of the
distribution can be easily simulated and incorporated into a routine. Then, a
magic window is plotted and the procedure outlined in (a) can be carried out
with this new magic window.

Example 2 Consider 4045 telephone call holding times indexed according to the
time of initiation of the call. The range of the call holding data is (2288,11714735).
Figure 6.5 shows the classical sample ACF on the left for the call holding data side by
side with the heavy tailed modification on the right which does not center the data by
X. The right graph of the heavy tailed sample ACF has a dotted line drawn at height
h = 0.0035 and the interval [0, /] is a 95% confidence window analogous to the one
given by Bartlett’s formula in classical time series. The confidence window is drawn
based on the assumption that the data is independent and has Pareto tails. According
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Figure 6.6 Classical ACF (left) and heavy tailed modification (right) for packet interarrival
data.

to [40, Theorem 3.3], & is given by

where [ is the quantile satisfying
PIU/V <1]1= .95

for U, V independent positive stable random variables with indices « and «/2. In the
case of the call holding data, we used the estimated value of « = .97. The quantile /
was estimated by simulation. The position of £ relative to the heights of the sample
heavy tailed ACF values casts serious doubts on the assumption of independence.
Figure 6.6 exhibits comparable graphs for the packet interarrival data. The right heavy
tailed graph does not offer evidence against the hypothesis of independence.

6.4.2.2 Two Q&D methods

Here are two additional techniques that are often helpful.

(i) Transform. If data is heavy tailed, take a function of the data (say the log) to get a
lighter tail. The advantage is that this puts you in a possibly more familiar domain and
you can test for independence using your favorite method. You could, for example,
use the classical ACF method with Bartlett’s formula. The disadvantage is that you
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Figure 6.7 Silence: tsplot (left) and qq-plot (right).

may obscure the importance of large values, which is exactly what makes the data
interesting in the first place.

(i1) The subset method. See [61, 126, 136]. This is a special case of cross-validation.
Split the data into, say, two subsets. Plot the ACF of each half separately. If the data
comes from an i.i.d. model, the two plots should look exactly the same even for
moderate sample sizes of, for instance, 200. A discussion of how to make this more
formal is in [136].

Example 3 (Silence) This data consists of 1026 times between transmissions of pack-
ets at a terminal. It is clearly not independent. Figure 6.7 gives the time series plot
and a QQ-plot (more later) estimating «.

Suppose, against good advice, that we try to fit a black box time series model to
the data. Good available techniques [61, 125] for fitting linear models suggest an
autoregression of order 9

9
Xy =Y ¢iXoi+Zy n=12..,
i=1

and where {Z,,} are i.i.d.. There are many good ways to estimate the coefficients. We
used the linear programming method [58, 59, 60, 61]. A goodness of fit test for the
AR(9) model is to fit the coefficients and then estimate the residuals. If the model is
correct, the residuals are close to i.i.d. However, that is not the case here. Plotting the
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Figure 6.8 Sample acf for two disjoint subsets of silence of length 400.

sample correlation functions of two disjoint blocks of length 400 gives very different
plots, showing a serious problem with the fit.

6.4.3 Stationarity

Network traffic data is often not stationary over the course of, say, 24 hours. There
are diurnal cycles and periods when intensity is high and periods when it is low.
This is to be expected and discerning this problem does not require any particular
genius.

Example 4 (Ericsson) The Ericsson data trace consists of time stamps of starts and
completions of the TCP connections that correspond to HTTP file transfers to and
from a corporate Ericsson WWW server which holds home pages and information
primarily directed to about 2000 company users at Ericsson facilities around the
world. The recording started Thursday, October 15, 1998, at 15:20, and ended Friday,
October 16, at 15:49. The information extracted from the data gives the times of
connection starts, connection durations, number of bytes transferred (from server to
user as well as the opposite direction), and client identification for each connection.
The data set is quite nonstationary, and hence a more stationary subset needs to be
selected.

Figure 6.9 displays traffic rates resulting from HTTP requests to the Erisson server
over approximately a 24-hour period. The lack of stationarity is clear.
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Figure 6.9 Ericsson traffic rates over 24 hours; number of bytes/second.

How does one cope with the lack of stationarity? To date, the most common method
is to think that since there is so much data, we might as well take a block of the copious
data which looks stationary. A common rule of thumb is to restrict data to time spans
of at most 4 hours.

Obviously, a more sophisticated approach would be to account for nonstationary
behavior in the model.

6.5 Does the model fit the data? How to detect heavy tails

There are a variety of techniques — none foolproof — that are available for deciding
when a heavy tailed model is appropriate:

e Hill plots (a modified maximum likelihood estimation method) and refinements
(smoothing, plotting on different scales).

e QQ-plots of the empirical quantiles of the log-transformed data against corre-
sponding exponential quantiles.

e Mean residual life plots from exteme value theory, whose popularity is puzzling
since they do not work when o < 1.

e Extreme value theory techniques such as

— The Dekkers, Einmahl, de Haan moment estimator [51] of 1/«.

— Peaks over threshold modeling leading to fitting a generalized Pareto distribu-
tion by the method of maximum likelihood to the exceedances in the data. There
is excellent Splus software called EVIS (extreme values in statistics) available
(free) from Alexander McNeil’s web site (http://www.math.ethz.ch/~mcneil/
software.html) as well as the appealing package XTREMES by Reiss and
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Thomas [124]. A drawback to this, and many other similar methods, is sen-
sitivity to the choice of threshold.

There is not universal agreement on terminology, but we will say that a random
variable X has a heavy (right) tail if

P[X > x]~x"“L(x), x — o0, (6.5.1)

where L(x)1is slowly varying. The existing statistical techniques would be hard pressed

to discern with discrimination the form of L(x) and for many people in the engineering

community the phrase heavy tails means Pareto or Pareto beyond some point or

asymptotically Pareto; that is, L(x) is constant. We will try to resist this simplification.
Recall the following cases:

(1) Very heavy tails: 0 < « < 1. In this case, assuming the random variable X is
positive, both the mean and the second moment of X are infinite. This case is
somewhat rare, but file size distributions have been fitted with « in this range. See
[7, 142].

(ii) Heavy tails with infinite second moment: 1 < o < 2. This is a frequently observed
case in which the mean is finite but the second moment is infinite. On/off cycle
distributions have been fitted with this case [165], and it allows a stationary renewal
process to be defined since finite means prevail.

(iii) Heavy tails with finite variance: o > 2. This case is typical of financial data.
We now consider the methods outlined above in more detail. We suppose {X,,,
n > 1} is a stationary sequence and that

P[X|>x]=x"“L(x), x— o0

where L is slowly varying and & > 0. Consistency of estimates of o can usually be
proven under just stationarity, but asymptotic normality usually requires the i.i.d.
assumption or mixing conditions.

6.5.1 The Hill estimator and Hill plot

Let
X(]) > X(z) > e > X(n)

be the order statistics of the sample X1, ..., X,,. We pick k < n and define the Hill
estimator [78] of 1/« based on k + 1 upper order statistics to be

The number of upper order statistics used in the estimation is £ 4+ 1. The Hill plot is
the plot of

((k ). 1 <k <),
If the process is i.i.d., or a linear MA(o0) or is an ARCH process from economics or
more generally satisfies mixing conditions, then the Hill estimator is consistent for
1/« in the sense that

P _
Hk,n — !
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asn — oo, k/n — 0. The Hill plot should have a stable regime sitting at height
roughly «. There is a voluminous literature. See [48, 79, 106, 132, 133, 134, 146,
147]. In the i.i.d. case, under a second order regular variation condition, Hy, is
asymptotically normal with asymptotic mean 1/« and asymptotic variance 1/a?. See
[34, 35, 44, 47, 49, 50, 66, 122].

6.5.1.1 The Hill estimator in practice

In practice, the Hill estimator is used as follows: we make the Hill plot, of
{(k,H ;). 1 <k <n}

and hope the graph looks stable so you can pick out a value of «.

Sometimes this works beautifully and sometimes the plots are not very revealing.
Consider Figure 6.10, which shows two cases where the procedure is heart-warming.
The top row are time series plots. The top left plot is 4045 simulated observations
from a Pareto distribution with ¢ = 1 and the top right plot is 4045 telephone call
holding times indexed according to the time of initiation of the call. Both plots are
scaled by division by 1000. The range of the Pareto data is (1.0001, 10206.477) and
the range of the call holding data is (2288, 11714735). The bottom two plots are Hill
plots {(k, H,;,}), 1 < k < 4045}, the bottom left plot being for the Pareto sample and
the bottom right plot for the call holding times. After settling down, both Hill plots
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Figure 6.10 Time series and Hill plots for Pareto (left) and call holding (right) data.
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Figure 6.11 A Hill horror plot.

are gratifyingly stable and are in a tight neighborhood. The Hill plot for the Pareto
seems to nail @ = 1 correctly and the estimate in the call holding example seems
to be between .9 and 1. (So in this case, not only does the variance not exist but the
mean appears to be infinite as well.) The Hill plots could be modified to include a
confidence interval based on the asymptotic normality of the Hill estimator. McNeil’s
Hill plot function does just this.

The Hill plot is not always so revealing. Consider Figure 6.11, one of many Hill
horror plots. The left plot is for a simulation of size 10,000 from a symmetric a—stable
distribution with @ = 1.7. One would have to be paranormal to discern the correct
answer of 1.7 from the plot. The middle plot is for a sample of size 10,000, called
perturb, from the distribution tail

1 — F(x) ~x 'dogn)!?, x — oo,

so that @ = 1. The plot exhibits extreme bias and comes nowhere close to indicating
the correct answer of 1. The problem, of course, is that the Hill estimator is designed for
the Pareto distribution and thus does not know how to interpret information correctly
from the factor (log x)'° and merely readjusts its estimate of « based on this factor
rather than identifying the logarithmic perturbation. The third plot is 783 real data
called packet representing interarrival times of packets to a server in a network. The
problem here is that the graph is volatile, and it is not easy to decide what the estimate
should be. The sample size may just be too small.
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A summary of difficulties when using the Hill estimator include:

1. How do you get a point estimate from a graph? What value of k do you use?

2. The graph may exhibit considerable volatility and/or the true answer may be hidden
in the graph.

3. The Hill estimate has optimality properties only when the underlying distribution
is close to Pareto. If the distribution is far from Pareto, there may be outrageous
errors, even for sample sizes like 1,000,000.

4. The Hill estimator is not location invariant. A shift in location does not affect the
tail index but may throw the Hill estimator into a tizzy.

The lack of location invariance means the Hill estimator can be surprisingly sensi-
tive to changes in location. Figure 6.12 illustrates this. The top plots are time series
plots of 5000 i.i.d. Pareto observations where the true &« = 1. The two right plots on
top have the Pareto observations shifted by 1 and then 2. The bottom two plots are
the corresponding Hill plots. Shifting by larger and larger amounts soon produces a
completely useless plot.

For point 1, several previous studies advocate choosing k to minimize the asymp-
totic mean squared error of Hill’s estimator [73, 122]. In certain cases, the asymptotic
form of this optimal k can be expressed, but such a form requires one to know the
distribution rather explicitly, and it is not clear how much value one gets from an
asymptotic formula. There are adaptive methods and bootstrap techniques that try
to overcome these problems; it remains to be seen if they will enter the research
community’s toolbox.

For point 2, there are simple smoothing techniques that always help to overcome
the volatility of the plot and plotting on a different scale frequently overcomes the
difficulty associated with the stable example. These techniques are discussed in the
next paragraph.

6.5.1.2 Variant 1: The smooHill plot

The Hill plot often exhibits extreme volatility, which makes finding a stable regime
in the plot more guesswork than science, and to counteract this Resnick and Starica
[134] developed a smoothing technique yielding the smooHill plot: pick an integer u
(usually 2 or 3) and define

1

1 uk :
(u—1k Ej:k-H H]v”

SO0 Qe py =

In the i.i.d. case when a second order regular variation condition holds, the asymptotic
variance of smoo Hy , is less than that of the Hill estimator, namely:

12( logu)
— (1~ .
a-u u
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6.5.1.3 Variant 2: Alt plotting; changing the scale

As an alternative to the Hill plot, it is sometimes useful to display the information
provided by the Hill or smooHill estimation as

{ (s, Hr;gln),o <6 <1},

and similarly for the smooHill plot, where we write [y for the smallest integer greater
or equal to y > 0. We call such plots the alternative Hill plot abbreviated AltHill and
the alternative smoothed Hill plot abbreviated AltsmooHill. The alternative display
is sometimes revealing since the initial order statistics get shown more clearly and
cover a bigger portion of the displayed space. Unless the distribution is Pareto, the
AltHill plot spends more of the display space in a small neighborhood of « than the
conventional Hill plot [52].

Figure 6.13 compares several Hill plots for 5000 observations from a stable distri-
bution with @ = 1.7. Plotting on the usual scale is not revealing and the alt plot is
more informative.

6.5.2 Dynamic and static QQ-plots

Suppose { X, ..., X,,} are i.i.d. with distribution F. As we did for the Hill plots, pick
k upper order statistics

Xy > X > - X,
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Figure 6.13 Stable, « = 1.7.
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neglect the rest and consider these as the order statistics of exceedances above X x4 1).
The distribution of these exceedances should be roughly Pareto if F is heavy tailed.
Take the log transform to make this sample of exceedances approximately exponen-
tially distributed and plot empirical quantiles of this sample of size k against the
theoretical quantiles of the exponential density. This plot

J .
{(— log(1 — m),log Xg—jr1, 1 < j < k} (6.5.2)

should yield approximately a straight line with slope=1/« if F satisfies (6.5.1). The
slope of the least squares line through the points is an estimator called the QQ-
estimator [94]. Computing the slope, we find that the QQ-estimator is given by

S (loe () low () — § o0 (= 1og (k) i
Pl (Croe () - (G2l (el

k.n —

There are two different plots one can make based on the QQ-estimator. There is the
dynamic QQ-plot obtained from plotting {(k, 1 /a1 ,, 1 < k < n}, which is similar
to the Hill plot. Another plot, the static QQ-plot, is obtained by choosing and fixing
k, plotting the points in (6.5.2) and putting the least squares line through the points
while computing the slope as the estimate of o~

The QQ-estimator is consistent if k — oo and k/n — 0. Under an additional
second order condition on F(x) and further restriction on k(n), it is asymptotically
normal with asymptotic mean 1/« and asymptotic variance 2/, [10, 94]. This is
larger than the asymptotic variance of the Hill estimator but bias and volatility of the
plot seem to be more of an issue than asymptotic variance. The volatility of the QQ-
plot always seems to be less than that of the Hill estimator. As with the Hill estimator,
sensitivity to choice of k is an important issue. It is rare that another technique gives
a clearer answer to the question, is the data heavy tailed?

Figure 6.14 compares the Hill plot with the dynamic QQ-plot for the call holding
data and Figure 6.15 does the same thing for the packet interarrival data. Figure 6.16
gives two static QQ-plots for the call holding data, one using k = 3500 and the other
using k = 1500, yielding estimates of o of 0.95 and 0.98, respectively. For this data
set, the estimators are unusually insensitive to the choice of k; the Hill plots and the
dynamic QQ-plots are quite stable and the static QQ-plots do not change much as k
varies. Figure 6.17 gives two static QQ-plots for the packet interarrival data. The data
set is only 783 in length and now there is some sensitivity to k.

The QQ-plot is often a valuable technique to gauge if a heavy tailed model is
appropriate. One can plot

Jj .
{(—log (1 - m),logx(n/ﬂrl)): l<j= ”}

using all the data. If the plot from some point on looks linear, this is evidence that a
heavy tailed model is applicable. In many examples, there are a number of points at
the end of the plot that do not seem to follow the line. The number of such points is
of the order of 10.

€004 CRC PressLLC



call holding times

N~
N
© [aV]
o
[Te) o
© «©
s S ® |
© T —
5 < ks
2 2 o
®©
£ E-
g g
= o ¥
T T -
[aV]
N
T o |
0 1000 2000 3000 4000 0 1000 2000 3000 4000
number of order statistics number of order statistics
Figure 6.14 Hill and QQ-plots for call holding times.
packet interarrivals
o [o)]
- o
© ©
53 5o
© ©
S °
L 2
© © N~
£ 3 EoS
T g
©
g o
0
o o
o
0 200 400 600 800 0 200 400 600 800
number of order statistics number of order statistics

Figure 6.15 Hill and QQ-plots for packet interarrivals.

€004 CRC PressLLC



k=3500, alpha=0.95 k=1500, alpha=0.98

L]
© hd © .
- ~—
L]
e*® .....o
o r 4
et
<
A
S S <
© ©
© ©
o °
2 2
S S
17,1 17,1 5‘2
()] ()]
S « o
-
A
-
-
o ~
=
0 2 4 6 8 2 4 6 8
quantiles of exponential quantiles of exponential

Figure 6.16 Static QQ-plots for call holding times.
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Figure 6.17 Static QQ-plots for packet interarrivals.
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Figure 6.18 Hill and static QQ-plots for BU file size data.

An interesting example of heavy tailed data is the Boston University study of web
use from 1994 [30, 31, 32, 33, 36] which, among other things, kept track of sizes of
files downloaded in a WWW session. For the month of November, 1994, in the lab
in Room 272, Figure 6.18 shows both a classical Hill plot and a static QQ-plot. The
mean of this data appears infinite since the estimate of o« ~ 0.66.

One example where the Hill plot requires careful inspection but the QQ-plot is
immediately informative is the following data set called zjz, which represents file
sizes requested from a server at the University of North Carolina. The QQ-plots of
Figure 6.20 are informative, allowing an estimate of « = 1.42 for k = 18,000. The
size of the data set is 131,943. The Hill plots in Figure 6.19 are initially less clear
because there is no clear region where the plot is stable. After the QQ-estimate is
obtained, the Hill plot serves to confirm the QQ-estimate.

6.5.3 The Dekkers, Einmahl, De Haan moment estimator

Ignoring location and scale, we know that the extreme value distributions [24, 42, 98,
139] can be parameterized as a one parameter family

G,(x)=exp{—(1+yx)7"'}, yeR, l+yx>0. (6.5.4)

The Dekkers, Einmahl, De Haan moment estimator 7 [49, 50, 51] is designed to
estimate y for a random sample in the domain of attraction of G,,. When y > 0, this
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is the same thing as estimating y = 1/«. Recall that the exponential, normal, gamma
densities, and many others are in the D(Gy), the domain of attraction of the Gumbel
distribution. This provides another method of deciding when a distribution is heavy
tailed or not. If  is negative or very close to zero, there is considerable doubt that
heavy tailed analysis should be applied.

The moment estimator is defined as follows: as usual, let X1y > X¢2) > -+ > Xy
be the order statistics from a random sample of size n. Define for r = 1, 2

k r
n 1 X
H,f,)l =3 Z <10g > ,

- Xty

so that H,f 1,2 is the Hill estimator. Define

12

S e — (6.5.5)
L= (HOP HE

Pa = Hi) +1 -
Then assuming F' € D(G,, ), we have consistency
. P
Yn =V,

asn — oo and k/n — 0. Furthermore, under an additional condition and a further
restriction on k,

vk —y)= N,

where N is a normal random variable with zero mean and variance

14+ y7, ify >0
o) = {(1 — 20 —2y)( 48l %) ify < 0.
The asymptotic variance of the moment estimator exceeds that of the Hill estimator
when y > 0, so from the point of view of asymptotic variance, there is no reason to
prefer it. However, the moment estimator discerns a light tail more effectively than
the Hill estimator, and thus it is often useful to apply the moment estimator to see if
y < 0, which would rule out heavy tail analysis.

Figure 6.21 compares the effectiveness of the moment estimator for discerning a
light tail (y = 0) with that of the Hill estimator @« = oco. The Hill estimator does not
seem very reliable for this purpose. Both estimators are applied to the same random
sample of size 1000 taken from an exponential distribution with unit mean.

Figure 6.22 shows the moment estimator applied to the call holding data on the
left and the packet interarrival data on the right. Keep in mind when comparing these
graphs with previous graphs that y = 1/«.

6.5.4 Peaks over threshold method

A standard technique from extreme value theory is the peaks over threshold method
[56, 124]. Assuming that the underlying distribution F is in a domain of attraction of
an extreme value distribution G, given by (6.5.4), the excesses over a high threshold
are approximately distributed as a generalized Pareto distribution. In most cases,
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Table 6.1 Point estimates of the extreme value parameter for cumulative traffic £ standard
deviation.

Data set y(=1/a)
simM/G/oo —.13£.03
BUburst 10s —.36+.13
BUburst 1s 17 £.03
UCB 10s .05+ .18
UCB syn 10s —.60£ .14

Munich lo TX .09 £+ .04
Munich lo RX —.03+£.05

Munich hi .1s A7 £ .12
Munich hi .01s .10+ .03
Ericsson —47+ .09
Eri syn 1s —31+.12

the parameters of the generalized Pareto can be estimated by maximum likelihood
estimation. This certainly works in the heavy tailed case where F satisfies (6.5.1).

Example 5 The theory presented in the previous Section 6.3 concluded that if the
model is correct, then the distribution of cumulative traffic aggregated over users and
time is approximable either by FBM or by a stable Lévy motion. In [72] several data
sets were examined to see if there were examples where cumulative input looked
heavy tailed. The cumulative traffic was calculated over disjoint time blocks to get a
sample, and then the POT method was used to estimate the extreme value index y . In
order to conclude the stable Lévy motion approximation is possibly correct, the POT
estimation would need to find a positive value for y that was greater than 1/2 because
this would correspond to 0 < @ < 2. Such a value was not found, as the summary
from Table 6.1 below, taken from [72], demonstrates.

6.6 Does the model fit the data? Long range dependence, self-similarity,
Hurst phenomenon

6.6.1 Long range dependence
A stationary L, sequence {§,, n > 1} possesses long range dependence (LRD) if
Cov(En, uen) ~ hPL(h),  h — o0 (6.6.1)

for 0 < B < 1 and L(-) slowly varying [11]. Set y(h) = Cov(§,, &,+1) and p(h) =
y(h)/y(0) for the covariance and correlation functions of the stationary process {§,}.
There is no universal agreement about terminology, and sometimes LRD is taken
to mean that covariances are not summable: ), |y (h)| = oo, whereas short range
dependence means >, |y (h)| < oo.

LRD, like the property of heavy tails, has acquired a mystical, almost religious, sig-
nificance and generated controversy. Researchers argue over whether it exists, whether
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it matters if it exists or not, or whether analysts have been fooled into mistaking some
other phenomena like shifting levels, undetected trend [95], or nonstationarity for
long range dependence. Discussions about this have been going on since (at least)
the mid 1970s in hydrology [13, 15, 16, 19, 148, 149, 150], in finance [111, 112]
and in data network modeling [21, 22, 53, 65, 77, 99, 119, 154]. Think of it as one
more modeling decision that needs to be made. Since LRD is an asymptotic property,
models that possess LRD presumably have different asymptotic properties from those
models where LRD is absent, although even this is sometimes disputed.

The definitions of short and LRD are designed so that the differences in properties
show up clearest under block averaging [27]. Define the block average operator

Am :R* = R®
by
1 km
Ap(xy, x2,...) = <m Z Xi k= 1)’
i=(k—1)m+1

so that A,, maps a sequence into the averages over successive blocks of length m.
Suppose

{£m} = An{&:D)
is the block averaged {£,} sequence (which is still L, weakly stationary), and
y™(h) = Cov (£, &)

is the covariance function, and p"(h) is the corresponding correlation function.
Under short range dependence

p™(h) =0, |h| =1, m— oo,
and the second order structure of {ﬁf,ﬁ'"), n > 1} converges, as m — 00, to that of
white noise. However, under LRD defined in (6.6.1),

p™(h) = p(h) = %[(h + 1> P20 P+ (h=1*P], m— o0, (662)

which is the correlation function of fractional Gaussian noise (FGN). The correlation
function of FGN exhibits slow decay characteristic of long range dependence since

B

p(h) ~ HQH — Dh*H 72 = (1 - E)(1 —Bh?, h— oo, (6.6.3)

where H = 1 — g is called the Hurst parameter (but be wary of this terminology

when we get to the R/S statistic).
6.6.2 Self-similarity in discrete time; connections with long range dependence

There is a tendency to muddle LRD and the related notion of self-similarity, so some
care in distinguishing between the concepts is worthwhile.
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Let X = (X1, X», ...) be weakly stationary. Call X distributionally self-similar if
there exists H > 0 such that for everym = 1,2, ...

m A, X LX (6.6.4)
as random elements of R*. This is equivalent to
mA,X Lt x

where mA,, X is the block aggregated process.
Call X second order self-similar if the second order structure of m!=# A,, X and
X are the same for every m. This means

(@) p((Ap Xk, (A Xi1n) = p(Xi, X)),
(i) Var((m'=7 A4,, X)) = Var(X)).

It turns out that (ii) implies (i) and provided 1/2 < H < 1, a second order self-similar
process has the same correlation structure as FGN, and any Gaussian distributionally
self-similar process with 1/2 < H < 1 1is FGN.

Asymptotic self-similarity in discrete time: call the weakly stationary process X =
(X1, X2, ...) asymptotically second order self-similar if as m — oo

0™(h) = p((Ap Xk, (A Xisn) — %[(h + D — 20" — (h — 1)*H],
h=0,+1,.... (6.6.5)

Call H the self-similarity parameter. Such processes have a correlation structure
such that after aggregation over blocks of length m, the resulting process has only
approximately the correlation structure of FGN. Any stationary process with long
range dependence as defined in (6.6.1) is asymptotically second order self-similar.
This includes fractionally differenced ARIMA models.

6.6.3 Self-similarity in continuous time

A continuous time stochastic process (X(¢)), ¢t > 0) is self-similar with self-similarity
parameter H > 0 (abbreviated H-ss) if for every a > 0

X(a) < at X().

This means that the finite dimensional distributions of the process (X (at), ¢t > 0) with
its dilated time are the same as those of the rescaled process a X(-) where the state
space is stretched.

Brownian motion is H-ss with H = % which immediately gives an example of a
nonstationary process which is H-ss. In fact a strictly stationary process cannot be
H-ss unless it is identically zero. However, there is the following connection between
stationarity and self-similarity [96, 97]:

(a) If {X(¢),t > 0} is H-ss, then {Y(¢), t € R} defined by
YY) =e "M X(e)

is strictly stationary.
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(b) If {Y(2), t € R} is strictly stationary, then {X(¢), t > 0} defined by
X(@t) =t"Y(logt),
is H-ss.

The transformation applied to Brownian motion to get a stationary process yields
the Ornstein-Uhlenbeck process.

Stationary increments: a process {Y(¢), ¢ > 0} has stationary increments if for any
s >0

(Y(s+1) = Y(5).1 = 0} £ {Y(1) — Y(0), 1 = 0.
A process Y that is both H-ss and has stationary increments will be abbreviated

H-sssi.
Suppose {Y(¢),t > 0} is H-sssi and suppose E(Y(¢)*) = t*" E(Y(1)*) < oo and

EY(1) = 0.
Then
(a) If H € (0, 1] ([151))
2
Cov(Y (1), Y(12)) = EY;D (" + 67— — ). (6.6.6)

(b) Define for j > 0
X;=YG+D-=Y()).

Then {X, j > 0} is weakly stationary and has the correlation structure of FGN.

Extremal processes [139] are good examples of H-ss processes that do not have
stationary increments. The range of H can be (0, co). There are many extremal pro-
cesses that are not L, or even L;. Self-similarity is a distributional property, not a
moment property.

6.6.3.1 Fractional Brownian motion

For 0 < H < 1, a Gaussian process with correlation function

2
o2
7(|t1|2” + 16l — | — ) 6.6.7)

for o > 0 will be called fractional Brownian motion (FBM) and denoted (By(¢), t >
0). This correlation function corresponds to the covariance in (6.6.6).

This helps explain the temptation to model traffic with FBM. Increments of FBM
give FGN, a stationary sequence with LRD provided H € (0.5, 1).

6.6.3.2 Asymptotic self-similarity in continuous time

This is a notion developed by Lamperti [96, 97]. See also [55, 114, 115, 160, 161] for
extensions.

Suppose {X(¢),t > 0} is a stochastic process such that X(0) = 0 and for each
t>0

X(t) is a nondegenerate random variable. (6.6.8)
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Assume {£,, n > 0}is asequence of random variables and b(¢), ¢t > 0, is ameasurable,
nonnegative function such that as s — oo, b(s) — oo and

'i:[st]

b(s)
in the sense of convergence of finite dimensional distributions. Then for some H > 0,
b(-) is regularly varying with index H and X(-) is H-ss. Furthermore X(-) is H-sssi
provided for {&,,n > 0} is stationary. This result, known as Lamperti’s theorem,
shows that limits of partial sum processes of stationary random variables will be
self-similar.

Here is a summary and some additional facts: suppose {Y(¢), t > 0} is H-sssi: (a)
If EY(1)> < 00, then0 < H < 1. (b) If H = 1, then Y(¢) = ¢Y (1) almost surely. (c)
IfX; =Y(j+1)—=Y(j), for j > 1, then { X} has the covariances of fgn and hence
has long range dependence if % <H<1.

This leads to methods of constructing long range dependent processes.

(i) Fractionally differenced ARMA processes [18].

(i1) Increments of H-sssi processes with % < H < 1. Processes with the H-sssi
property can be constructed by various means:

= X(1) (6.6.9)

(a) Stochastic integration [151],

(b) Lamperti’s theorem.

6.6.4 Should we be happy?

There are obvious problems with all this when you think it over:
(i) LRD is defined by covariances for weakly stationary variables.

(ii)) What happens if the variables have infinite variance? What if the process is
nonGaussian so that covariances are relatively uninformative?

(iii) There exist examples of a LRD sequence {X,} and a function 4 : R — R
such that {h(X,)} does not have long range dependence and vice versa. This
is disturbing if you think of LRD as an intrinsic property describing depen-
dence. The definition in terms of product moments falls short of capturing
this.

6.6.5 Statistical techniques and exploratory methods

We mention some (not all) traditional techniques to identify when a model with LRD
is appropriate as well as some recent wavelet methods. See [1, 3, 5, 12, 158, 159].

6.6.5.1 The sample ACF

The most common, ubiquitous Q&D method, assuming you are convinced the data
comes from a stationary process, is to graph the sample ACF. The plot should not
decline rapidly. Classical time series data that one encounters in ARMA (Box-Jenkins)
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Figure 6.23 Time series plots for Company X data. Top: full data set. Middle: first 10,000 data.
Bottom: last 20,000 observations.

modeling exercises has a sample ACF that is essentially zero after a few lags, and
ACF plots of financial or teletraffic data are often in stark contrast.

Example 6 (Company X) This trace is packet counts per 100 milliseconds = 1/10
second for Financial Company X’s wide area network link including U.S.—U K. traffic.
It consists of 288,009 observations corresponding to 8 hours of collection from 9 a.m.
to 5 p.m. Figure 6.23 shows time series plots. The top plot of the whole data set does not
raise any alarms about lack of stationarity, but this is partly due to the muddy plotting
resulting from the abundance of data. The middle plot shows the first 10,000 observa-
tions and the bottom plot displays the last 20,000. With reduced data size, the last two
plots raise some question whether stationarity is appropriate, but this has not been
pursued.

Figure 6.24 shows the ACF plot for 2000 lags. There is little hurry for the plot to
approach zero. (Do not try to model this with ARMA..)

Example 4 (continued). Recall that the Ericsson data did not look very stationary. In
an attempt to counteract the nonstationarity, a subset of the last 28,122 observations
was considered. The time series and ACF plots are given in Figure 6.25. The ACF
plot is clearly not settling down as it would with an ARMA model, but is also not
declining like a power law.
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Figure 6.25 Time series plot (left) of the 28,122 last Company X data and ACF plot (right) of
these data.
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6.6.5.2 The variance-time plot

Suppose X = {X,} is a weakly stationary sequence with long range dependence
whose ACF satisfies (6.6.1). If we block average over a block of length m, the variance
Vi of (X1 4+ --- + X,,)/m satisfies

~ (const) m~PL(m). (6.6.10)

Note for short range dependence

1
v ~ (const) —. (6.6.11)
m

We seek a graphical technique that capitalizes on the differences between (6.6.10) and
(6.6.11) and that will identify 8 € (0, 1), or at least make sure that the usual square
root of n central limit behavior is not present.

Here is the method. Start from measurements {x;,j=1,...,n}

(i) Compute the block averages x , j =1,...,[n/m] over blocks of length m.

(i1) Use (xﬁm) ,j=1,...,[n/m]) to estimate v,, by computing the sample variance

[n/m
[n/m] z:: AR

where
[n/m]

=3 x"/n/m]

j=1
is the sample average.

(iii) Plot {(logm,log?,),m = 1,2, ...}. Because
logv,, ~ (const) — Blogm,
the plot of {(logm, log¥,,), m > some threshold value m} should be roughly
linear.
(iv) Put the least squares line through
{(logm’ lOg ‘,}m)y m > mO}'
The threshold m( can be determined by inspection frequently (or at least hope-
fully). The slope of this line is an estimate of —f.

(v) If short-range behavior is present, the plot of ((logm, log¥,,), m > m) would
be linear with slope approximately —1, so we also plot the line of that slope for
comparison.

Example 6 (continued). Figure 6.26 gives the variance-time plot for the initial 20,000
measurements of the Company X data and yields an estimate of 8 = 0.196.

6.6.5.3 The Hurst phenomenon and the R/S statistic

What attributes does one expect from data that is generated by a long range dependent
process? Because of slowly decreasing covariances, such data will exhibit long periods
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Figure 6.26 Variance-time plot of the initial 20,000 measurements in the Company X data.

where the level is high relative to the mean and long periods where it is low. (This
may, of course, make LRD difficult to distinguish statistically from a shifting level
model.)

The origin of the R/S statistic is in hydrology [80, 81] and comes from the following
thought experiment (which to the unitiated may seem a bit like artificial mumbo

jumbo): suppose inputs to a reservoir are X, ..., X7 and think of X; as the input
at the i"" time interval. The level at time zero is x, and we are allowed to withdraw
water at constant rate r > 0. In time periods 1, ..., T we want the reservoir never to

be empty, never to overflow, and we want to allow maximum possible usage of the
water, which we interpret as meaning that the final water level at 7 should be x. Let
R be the size of the reservoir. Find R, x, r.

Let S; = >7_, X, be the cumulative input in the first i periods and set Sp = 0.
The following are the constraints.

(a) The initial amount equals the final amount in the reservoir:
x=x+8 —Tr.

This immediately implies r = S—TT =Xr7.

(b) The never dry condition:
x+S—ir>0, i=0,...,T
or

X+ A_o(Si —ir) = 0.

=— Al S,'—LS .
X i=0 T T

So we can set
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(c) The condition that capacity R is never exceeded:

x+S—ir<R, i=0,...,T

or
x + VIS —ir) <R
or
I I
Vi <S,» — TST) - A (Si - TST> <R.
We set

R=Rr =V (85— 28 ) —nly(s—28r).
= T - T

which is called the adjusted range.

To make a statistic that is scale invariant, we divide by

1 & )
S=8 = 7IZZ;(xi—XT)z

and then R/S is scale and location invariant. R/S is called the rescaled adjusted
range.

Hurst [80, 81] found empirically that for Nile river flows, as a function of T, R/S
grew roughly like (const)T" where H = 0.75. However in 1951, W. Feller [63]
proved that if {X ;} are i.i.d. with finite variance, then

Rr/Sr
JT

where L is a nondegenerate random variable, and thus, if Hurst’s data had come from
an i.i.d. model, the growth rate of R/S should be 7''/2. This discrepancy is known as
the Hurst phenomenon.

The modern way to understand Feller’s result is by means of the theory of weak
convergence.

=L, T -

Theorem 3 Suppose {X,} are randomvariables such that for some constants jL,,, b, >
0, there exists a process X(-) in D0, 1] such that

[nt]
i— Xi - Mn
Xn(l‘) = % = X(t)

in D0, 1]. Define
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and
n

Ry=\/ W= \w,.
j=0 j=0

Assuming V|_, and N)_, operators are almost surely continuous, we have
R,
T \ x@—xay - N\ x@-ix)).
0=<t<l 0<t<I
Additionally, if for B, > 0
Sn
Xn(')» ﬁ_ = (X()v S) ’

n

then

R, /S _
[On s 1( \V x@—-xay- A\ (X(t)—fX(l))>~

bu/ B 0<r<I 0<r<I
For example, suppose in DI[0, 1]
Xn(1) = B(1),

a Brownian motion. Then BO(¢) = B(t) — t B(1) is a Brownian bridge. When short
range dependence is present we frequently have b, = /n and Sf — o2, some
constant; this would certainly be true in the i.i.d., finite variance case. Then we would
have
1 1
R, /Su 0 0
= \/ B0 - \ BOw.
a/n 1=0 =0

If we let R = i”—&%‘, so that R, /S, = o R"\/n, we would have

1
logR,/S, = 3 logn +logo RV,

Plotting {(logn, log R,/S,), n > some threshold} should approximately give a line
of slope 1/2, and plotting
log R, /Sy
(M, s 1)
logn

should give a graph that settles in a neighborhood of 1/2.
However, this is frequently not the case.

6.6.5.4 Trying to explain the Hurst phenomenon
Suppose the following conditions hold:
(1) The R/S statistic has a limit distribution:
Ry /Sn
b, X

where x is a nondegenerate random variable, and

(6.6.12)
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(2) b, is a scaling function satisfying
b, ~n’L(n) € RVy; (6.6.13)

that is, #/ L(¢) is regularly varying with index J. The regular variation index J
is called the Hurst exponent (as opposed to the Hurst parameter discussed just
after (6.6.3). One hopes J always equals the self-similarity parameter H, since
the R/S procedure estimates J, but, alas, this is not always the case.

The R/S estimation procedure: to estimate J we follow the outline in the Brownian
limit example above. Define
RV! /Sn
by

Xn =

and then x, = x and
log x, = log(R,/S,) — J logn — log L(n) = log x,

SO

log(Ru/Sn) ;_ logxn +logL(n) _

D).
logn logn op(1)

The strategy, then, is to plot
{ ( log(Rin/Sm)
m, —omem’

) 1 <m< length(dataset)}
logm

and this should asymptote at J.

To see how this works in practice, Figure 6.27 displays two R /S plots for simulated
data. On the left is the R/S plot for 5000 N(0,1) i.i.d. variables and on the right is the
R/S plot for 5000 i.i.d. stable variables with @ = .2 and skewness 1. Note both plots
hug the height 1/2, which is the correct self-similarity parameter for normal but not
the self-similarity parameter for stable, which would be 1/.2 = 5.

As a bonus, here is the R/S plot in Figure 6.28 for the last 5000 measurements in
the Ericsson trace. The plot is definitely not indicating 1/2.

So, from these examples, the R/S statistic may detect something, but it may not be
the self-similarity parameter. In particular, with the example of the i.i.d. stable random
variables, R/S definitely indicated 1/2 and not anything related to the self-similarity
parameter. This requires some further explanation.

Notation: If {X(t),0 <t < 1} is a stochastic process such that X(0) = 0, we write

X0 =Xx@)—tx1), 0<tr<]1

for the bridge version. If B is a Brownian motion, BY is Brownian bridge, and if X
is a stable Lévy motion, then X? is a stable bridge. We also write

XV(t) = \/ X(s), X'¢t)= /\ X(s).

0<s<t O<s<t
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Figure 6.27 R/S plots {(m, (log m)~! 10g(Ry /Sm)), 1 < m < n} for i.i.d. normal (left) and
i.i.d. stable (right) with @ = 0.2 and skewness 1.

For instance, we have

(BO)' (1) - (BO) )=\ B@)—1BA)— ) B@)—1B(1).

0=<r<1 0<t<l1
Consider the following cases:
(a) If {X,} are i.i.d. with finite variance, since R/S is location and scale invariant, we
might as well suppose EX,, = 0, EX2 = 1. Then S, £ 1and
R, /S,
N

This certainly does not explain the Hurst phenomenon.

= (B9)'(1) - (BO) ().

(b) Moran [113] speculated long range dependence could perhaps be explained by
heavy tails and/or infinite variance but, alas, this is not true [104]. If {X,,} are
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Figure 6.28 R/S plot {(m, (logm)~ 1og(Ryu/Sm)), 1 < m < n} for last 5000 measurements
in the Ericsson trace.

1.1.d. and in the domain of attraction of an «-stable distribution, then
Rl‘l /Sl’l :> X ,
Jn
where x is constructed from the stable bridge. This too does not explain the

Hurst phenomenon; note the disturbing fact that J = % but the self-similarity
parameter H = %

(c) Suppose {Y(¢),t > 0} is H-sssi with nice paths, say in D[0, c0). Set X; =
Y(k)—Y(k— 1),k >1and S, = > ", X;. Note S, = Y(n) since Y(0) =0
from self-similarity. Then using self-similarity, it is easy to check

f_g 4 k\=/0<y (5) _ 51/(1)) —k/:\O(Y (5) - 5Y(1)>

- (YO) (1) - (r" ) = r*.

(6.6.14)

|~

If also {X;} is ergodic with EX? < oo, so that
S? — Var(X)),

then

R./S,
n/H = R*/+/Var(X)).

The conclusion is thatif (a) Y (-) is H-sssi with regular paths, (b) (Y (k)—Y (k—1),
h > 1) is ergodic with EY(1)? < oo, then J = H, and the Hurst exponent
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equals the self-similarity parameter. Asymptotic versions of this result could be
developed.

Recent discussions of ways to fool the R/S statistic are in [69, 70]. See also [13].

6.6.5.5 Wavelet methods

The recently developed wavelet estimation methodology works under a variety of
assumptions. If the process under investigation is stationary with finite variance and
long range dependence, the method yields an estimate of the long range dependence
parameter § in (6.6.1). When applied to the increments of a self-similar process, the
wavelet method yields an estimate of H.

The wavelet method has gained adherents because it provides an appealing com-
promise between low computational cost and good statistical performance. It does not
require an exact parametric model and because it is based on identification of scaling
in a log-log diagram, it is possible to judge the range of scales on which the model
fits. It is also robust to smooth nonstationarities depending on the filtering capabilities
of the wavelet chosen.

Important ideas are in [1, 2, 3, 158, 159]; here is the briefest outline. Let ¢ be
a reference or mother wavelet; that is, a smooth function, well-localized in both
position and frequency which satisfies the admissibility and moment conditions
f t"Y(t)dt = 0, n = 0,1...N. The phrase well-localized means the function
has compact support or at least is rapidly decaying. The moment conditions allow
the wavelet transform to filter means and smooth trends and to make the procedure
robust against certain departures from stationarity. Define the location-scale family

l,bb[l by
) . a < a ) g

Define the wavelet transform Wy, X of a process X by
Wy X(b,a) = /wba(t)X(t)dt

= /\/EW(S)X(GS +b)ds, (b,a)e RxR'. (6.6.15)

If the process X(-) is stationary, or has stationary increments, then the process
Wy X(-, a) is again stationary from (6.6.15). If a process Y is H-sssi with finite
second moments, then

E|W,Y(b,a)? =a*" T E\W,Y(b/a, 1)

Define X(t) = Y(t + A) — Y(¢) for A > 0. By a change of variables, a Taylor
expansion and self-similarity,

Wy X(b, a) ~ —aH_'/zA/w/(s)Y(s)ds, a — oo, (6.6.16)

and if second moments exist,

Cov(X(0), X(a)) = E|Wy X (b, a)* ~ Ka*™', a — oo. (6.6.17)
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For comparison, note that if X = By, FBM, then for ¢ fixed and a — oo we have for
aconstant o > 0

Cov(X(1), X(t +a)) = o((t + &)™ + 2 — ¢*y ~ 26 Hta®" 1.

Now suppose only that X(-) is a LRD stationary process satisfying the analogue of
(6.6.1), then

Cov(X(0), X(a)) = E|Wy X(b,a)* ~ Ka™?, a— oo, (6.6.18)

which agrees with (6.6.17) for FGN. The wavelet estimator is a regression method
based on (6.6.17) or (6.6.18), which makes use of the fact that the wavelet transform
is less correlated than the process.

In practice, wavelet coefficients are computed on a dyadic grid, so define

d(j, k)= Wy X2k, 27), j, keZ.
By (6.6.18),
Cov(X(0), X(2') = E|d(j, k)|* ~ K27/#,  j - oo, (6.6.19)

which suggests averaging coefficients at fixed scale,
: 1
Cov(X(0), X)) = — 3 Id;l’,
Tk

where n; is the number of available coefficients at scale 2/. The parameter f in
(6.6.18), or equivalently H, can then be estimated from a linear regression in the log-
log diagram of {(J, ni Dk |d j,k|2)}, where d .k 1s the estimated wavelet coefficient
obtained from the data.

There are refinements to reduce bias induced by the log-transform and to replace

an ordinary least squares by weighted least squares [3, 159].

Example 7 (Munich Trace) The Munich low data set contains measurements of
cell rates for both the sending (TX) and receiving (RX) directions of an ATM link.
The data was collected on Wednesday, November 12, 1997 (TX) and Wednesday,
December 17, 1997 (RX) with a temporal resolution of 2 seconds, i.e., the total number
of cells that passed the ATM link every 2 seconds was recorded. Recorded traffic
was pure IP (mainly HTTP, FTP, and NNTP) data traffic, without any audio/video
components. A shorter sample covering the period between 10 a.m. until 1 p.m. was
selected for analysis. The shorter period was chosen to obtain a roughly stationary
data set.

The estimated cumulative traffic looks neither Gaussian nor stable so the approx-
imations in Theorems 1 and 2 do not seem in evidence. There is a clear and strong
LRD, which persists over a wide range of scales as seen by autocorrelation functions
and wavelet regression plots. In both traces, the estimates of H are close to 0.95. See
Figure 6.29.
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Figure 6.29 Wavelet regression plots for the Munich traces: receiving (RX) on left and trans-
mitting (TX) on right.

6.7 Does the model fit the data? Small time scales: Holder exponents
and multifractality

Itis now rather widely accepted (but not without some controversy) that network traces
examined at time scales above a certain resolution appear statistically self-similar. The
limiting processes discussed in Theorems 1 and 2 are self-similar. Lamperti’s theorem
[96] says to expect self-similarity whenever a process is obtained as a distributional
limit by dilating time linearly and scaling space. (See the discussion following (6.6.8)
and (6.6.9).)
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The observed self-similarity seems to hold above a resolution of about 100 mil-
liseconds and not below. At smaller thresholds, certain researchers fervently believe
there is evidence for chaotic behavior or extreme intermittency, which may be typ-
ical of multifractal phenomena. [62, 68, 119, 143, 144, 145, 163]. Current statisti-
cal goals are to verify if multifractality is really present and develop methods for
dealing with it statistically. The probabilistic goal is to develop model-based ex-
planations for why the multifractality should be present [23, 105, 107, 129]. It is
at the small time scales that one must seek the influence of protocols and network
architecture.

There seem to be two literatures, which have not intersected much. One grows
out of the Gaussian process tradition and defines Holder exponents in a mean square
sense [83, 84, 85, 86]. The other is path based. A nice summary is [143]. We give a
brief summary of both approaches.

6.7.1 Second order definition

The semivariogram V of a second order process {X(#)} is defined by
1
V(t,7) = JEX( +71) = X(1))%,

and contains the same information as the covariance function. If X(-) is H-ss, then
for @ > 0, we have 627V (0¢,07) = V(¢, 7). If X(-) also has stationary increments,
V does not depend on its first variable, V (¢, 7) = V(7), and if it is also self-similar,
then V(r) = V(1)t?# := ¢t If the process is also a centered Gaussian process,
this means that it is an FBM.

A stationary process X(-) has local Holder index H,(¢) at ¢ (in the mean square
sense) if the semivariogram satisfies

V(t, 7) = ct?O 4 o(c?0), as T — 0, (6.7.1)

for each ¢. For fBm, H,(-) is constant and H = H,(¢). This is significant because if
empirical estimates of H,(t) for various values of ¢ either reject the constancy of H,(-)
or indicate, for instance, that H,(0) is not equal to the estimate of H, then we have
evidence against approximation to the cumulative traffic by FBM. For a Gaussian
process, the Holder index process gives precise information on sample paths [4, 82],
on the rate of convergence of nonparametric estimates of the covariance function [86]
and on the asymptotic behavior of wavelet coefficients of X [83]. A final preliminary
comment is that this approach is limited to L, processes and has no direct relevance
to heavy tailed processes.

One method to estimate H,(¢) can be based on simple empirical quadratic variation
[26, 71, 85, 91]. Assuming the underlying process X(-) has stationary increments
allows one to focus on r = 0. At scale 1/n, define

l n
Va= 2D (Xk/m) = X((k = D)/m))*.

k=1
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Table 6.2 Comparison of estimated values for H and H,(0) for various data sets.

Data set H H,(0)
simM/G/oo .90 + .01 .88
BUburst 10s .89 +.02 73
BUburst 1s .81 4.01 .87
UCB 10s .58 +.03 .65
UCB syn 10s 95+ .07 1.36

Munich lo TX .89 £+ .01 .86
Munich lo RX .97 £ .01 .85
Munich hi .1s 1.02 £ .03 .66
Munich hi .01s  1.03 £ .04 .56
Ericsson .88 .02 1.21
Eri syn 1s 1.48£.02 1.51

Suitably normalized, this converges with probability 1,

lim n? O~y — ¢
n—o00o

where ¢ appears in (6.7.1).

The quadratic variation estimator is not scale invariant and may converge slowly,
so there are proposed refinements that weight the squared terms and then take ratios
and that also filter certain polynomial trends. In [72], the quadratic variation based
estimator of H,(0) discussed in [85, page 437] was used to study various traces.
Empirical evidence suggested that H,(¢) was not constant and in no case was it found
that H = H,(0). The estimator of H,(0) is designed for Gaussian processes and more
experience in traffic contexts is required to assess its reliability.

Table 6.2 from [72] compares estimated values of H and H,(0) for various traces.
The agreement is not good.

6.7.2 Pathwise definition

Since self-similarity is a distributional property, it seems like mixing apples and or-
anges to consider small time scale properties in the pathwise sense. In the literature,
two types of Holder exponents have been considered, namely, one based on exponen-
tial growth rate and one based on polynomial approximation. We consider the first.
The Holder exponent based on exponential growth rate of the function x(-) at ¢ is
defined as
log sup |x(u) — x(2)]|

h(f) := lim inf —<“~1=¢ (6.7.2)
€l0 loge
For nondecreasing functions, the definition of £, (¢) in (6.7.2) simplifies to
1 t —x(t t) —x(t —
ho(r) = liminf og[(x(t + €) — x(1)) A (x(t) — x(t — €))]
€l0 loge
I t —x(t —
— Jiminf QX O —xC =€) (6.7.3)
€l0 loge
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The Holder exponent of the sum of two functions satisfies the following inequality.
For two functions x and y, we have

hyyy (@) = hye(@) A By(2). (6.7.4)

Furthermore, equality holds if A, (¢) # h,(¢) or if x and y are monotone. We are, of
course, interested in Holder exponents of sums of functions because of the need to
superimpose traffic streams.

How do we decide which values of the Holder exponent are common? One way
to do this is with the multifractal spectrum. The multifractal spectrum of the Holder
exponent of the function x for the Holder exponent based on exponential growth rate
is

dy(a) =dim({t > 0: h,(t) = a}), a €[0,c0),

where for a set A, dim(A) is the Hausdorff dimension (cf. Chapter 2 of [57]) of A.

An increasing Lévy process X (-) has the interesting property that, restricted to any
interval, it has a nonrandom multifractal spectrum for the Holder exponent based on
exponential growth rate [87]. In fact the spectrum is linear and is thus nontrivial.
Empirically, spectra that have been estimated from traffic, have never been observed
to be linear. Neither do observed spectra correspond to the monofractal structure of
FBM.

Note that if we require the increasing Lévy process X (-) to also be an «-stable Lévy
motion, then X (-)is 1/a-ss (a distributional property) as well as a random multifractal
with a nonrandom multifractal spectrum.

6.8 A model for large and small time scales

The good news about the infinite source Poisson model is that it provides a simple,
compelling reason why long range dependence exists in the traffic data. The not so
good news is:

1. The model does not fit the data all that well.
(a) The constant transmission rate assumption is clearly wrong.

(b) Notall times of transmission initiation can be modeled as Poisson. Presumably
humans acting independently can have the times of their acts modeled as a
Poisson process but machine triggered events, in say web browsing, will never
be Poisson.

(c) There is no hope the simple model can successfully match fine time scale
behavior observed below, say, 100 milliseconds, which is speculated to be
multifractal.

2. The model predicts that cumulative traffic can be approximated by either FBM
or stable Lévy motion. In practice, traffic is not observed to be heavy tailed, and
while some report traffic at heavily loaded links is Gaussian, there is the disturbing
evidence that Holder exponents are not constant and not equal to the self-similarity
parameters, as would be the case if the FBM approximation were valid.
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3. The traffic data is often not stationary. There are always time of day effects. This
has, so far, been ignored.

This is quite a laundry list of defects needing repair. Let us make a start and at least
try to address 1.(c).

6.8.1 A more general model appropriate for the study of small and large time scales

Here are the ingredients of a more general model.

1. Denote the time when the k-th transmission begins by I'y. The sequence {I';} is
strictly increasing to oo.

2. The size of the file required to be transmitted at Iy, is J;, and we assume J; > 0.

3. Thereis atransmission schedule, denoted by A (-), where A (#) denotes the amount
of data transmitted in time ¢ after the kth transmission has begun. It is a nonde-
creasing cadlag function starting at zero and increasing to co, which vanishes on
the negative real axis.

With these assumptions, the accumulated traffic in [0, T'] aggregated over the dif-
ferent users is

[o.¢]
AW =) At =T A i (6.8.1)

k=1
Because the assumption of unit transmission rate is highly arbitrary and restrictive,
there have been efforts to remove this deficiency. A nonconstant but deterministic
transmission schedule has been considered in [93, 137] and with a constant input rate
it was shown that a Lévy stable motion approximation could be fashioned. A trans-
mission schedule that was linear with randomly chosen slope (chosen not necessarily
independent of the file size) is considered in [108]. Related results about renewal
reward processes are given in [102, 103, 123, 156]. However, none of these efforts
captures the small time scale properties. Our model allows a random, time-dependent
transmission schedule A;(-) and random file size J; chosen at the beginning of each
transmission. The length of transmission L is obtained as a function of these two

random quantities and is readily defined as

L, = A]E_(Jk) = inf{s : Ag(s) > Ji}.

This model suggests that the fine time scale behavior of network traffic results from
individual transmission schedules exhibiting multifractality. This results in multifrac-
tal behavior for the cumulative traffic process at the microscopic level, and still gives a
stable Lévy motion as the macroscopic approximation. This may not be good news if
you believe this approximation has never been seen in practice, but at least this setup
allows multifractal behavior on fine time scales and self-similar scaling at large time
scales. The suggestion that the multifractal behavior of the cumulative traffic process
results from similar behavior of the individual input processes, presumably due to
extreme intermittency and blocking caused by congestion at various nodes, needs to
be verified by empirical study of individual, user level input processes.

The following summarizes findings in [107].
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6.8.1.1 Small time scale behavior
The small time scale behavior of the cumulative traffic process A(-) requires the
following further minimal assumptions on the transmission schedule {A;}:

4. Suppose {A;} are identically distributed with stationary increments.

5. The multifractal spectrum of A (-) is not degenerate at a single point. This ensures
that we consider processes with paths that show real multifractal behavior.

6. The multifractal spectrum of A(-) restricted to any (nonrandom) interval is non-
random.

If Ay is, for example, an increasing Lévy process, then, restricted to any interval, it
has a nonrandom multifractal spectrum for the Holder exponent based on exponential
growth rate [87].

If the assumptions (1) to (6) hold, then with probability 1,

dy =dy,. (6.8.2)

So the aggregate traffic process A(-) inherits the multifractal structure of the individual
transmission schedules.

6.8.1.2 Large time scale behavior
Small time scale behavior was a path by path analysis. Large time scale analysis
requires distributional assumptions.
7. Suppose {I';} forms a homogeneous Poisson process with intensity parameter A.
8. Assume {(Ag, Ji) : k > 1} are i.i.d. and independent of {T";}.
9. Assumptions about the joint distribution of (A;(-), J1): Suppose
(a) there exists a regularly varying function o (-) with index H > 0;

(b) there exists a proper random process y (that is, x(¢) is nondegenerate for
each r) with stationary increments, taking values in D[0, c0).

Then suppose that for each fixed € > 0,
1 { Ji AT ]
= P > €, € -
Fy(o(T)) o(T) o(T)
5 e P[x e

on D[0, co) where “5” denotes weak convergence and we assume 1 < «a; < 2.

10. Technical: for all y > 0, assume
Ji Ly
T

lim lim sup = P [ <€
0 700 Fy(o(T)) o(T)

11. Technical: assume

>y} =0.

E[x(1)™] < oo.

These assumptions lead to certain consequences and there are several simplifying
conditions that make the assumptions easier to check. Here is extra information that
should make the framework clearer.
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(a) The limit x is H-self-similar. To see this, one must elaborate the methods used
to prove Lamperti’s theorem [96, 55, 161, 160, 115, 114].

(b) The limit x being cadlag, self-similar, and nondegenerate implies that H > 0.
(c) The limit x being nondecreasing implies H > 1.

(d) If H = 1, then x(¢) = tx(1) is linear and no interesting structure exists so we
exclude this possibility.

(f) The distribution tail of J; is regularly varying with index —o:
Fix)=1—F;x)=x"%L(x), x>0.
(g) Cumulative traffic on large time scales looks like stable Lévy motion. We describe
this in more detail next.

The precise statement for (g) is as follows: suppose (1) to (3) and (7) to (11) hold
with 1 < a; < 2 and define

A(Tt) — ATtE(Jy)

Yr(r) = .

! by(T)
where

1 <«
b;(T)= T
/(1) (1 — F,> (T)
is the usual quantile function. Then we have
v %z, 6.83)

where Z,, is a mean 0, skewness 1, o ;-stable Lévy motion.

Here are some simpler sufficient conditions for (6.8.3) to hold: (i) J; and A, are
independent, (ii) J; has a tail of index «, (iii) A is itself a proper H -ss process, and
@iv) E[A{(1)™"] < oo for some p > «ay.

Note that if A(-)is a %-stable Lévy motion, then (iii) and (iv) are automatically
satisfied.

6.8.2 A model more amenable to statistics

Section 6.8 gives a model that successfully exhibits both small scale multifractality
and large scale self-similarity. However, it is not easy to do statistics with this model.
Here we will see what can be achieved by dropping the assumption of fixed unit
transmission rate and allowing the rate to be random. We will examine whether the
rate is independent of the transmission duration. Some of this material is adapted from
[108].

It is difficult to conclude from evidence in measured data that the rate and the
length of the transmission are always independent, but in certain cases we may rea-
sonably assume that the rate and the length of the transmission are at least asymptot-
ically independent. As an example, we consider the BUburst dataset considered by
[72]. This is data processed from the original 1995 Boston University data described
in the report by [36] and catalogued at the internet traffic archive (ITA) web site
www.acm.org/sigcomm/ITA/.
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Figure 6.30 Plot of the length of transmission against the rate of the transmission of the BUburst
data in (left) natural scale and in (right) log-log scale.

A plot of the transmission length against the transmission rate (Figure 6.30) shows
that most of the data pairs hug the axes, which suggests the variables are at least
asymptotically independent. However, if we plot the data in the log scale on both
the axes, then a weak linear dependence is observable and the correlation coefficient
between the two variables after log transform is approximately —0.379, which ar-
gues against an independence assumption. We consider the log transform to make
the variables have finite second moment, so that correlation coefficient becomes
meaningful.

The Hill estimates obtained for the transmission length, the transmission rate,
and the size of the transmitted file are 1.407, 1.138, and 1.157, respectively. The
corresponding Hill plots are given in Figure 6.31.

For each of the variables, the first column gives the Hill plots, the second column
gives the AltHill plots (see Section 6.5.1) and the third plot, named the Stéricd plot, is
an exploratory device suggested in [155, Section 7] to help decide on the number of
upper order statistics to be used. (It was designed for higher dimensional problems, but
is basically a one-dimensional technique.) It uses the fact that for a random variable
X with Pareto tail of parameter «, we have

T—o0 b

. X _
lim TP[ T >r}=r «,

For every k, we estimate the left-hand side by

1 — X;
ﬁn,k((r» o)) = E ZI [W > }’:| .

i=1
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Figure 6.31 Hill plots of transmission length (top), transmission rate (middle), and transmitted file size (bottom).



We expect the ratio of D, x((r, co]) and r~% called the scaling ratio, to be approxi-
mately 1, at least for values of r in a neighborhood of 1, if we have made the correct
choice of k. In the Stiricd plot, we plot the above scaling ratio against the scaling
constant r, and choose & so that the graph hugs the horizontal line of height 1. The
interesting point to be noted is the fact that the rate of the transmission has a much
heavier tail than the length of transmission. So a model with a random transmission
rate with heavy tails seems appropriate.

When two random variables are heavy tailed, a modest assumption on the joint
distribution F(x) of the pair is that the distribution be in the domain of attraction
of an extreme value distribution. When both marginal distributions of F(x) are the
same, the extreme value distribution will have an exponent measure v,(-) in standard
form [43, 45, 46, 139]. However, when the two marginal distributions are not the
same (which is always the case except in simulations), we must first rescale each
component of the bivariate vector by its quantile function (or its estimate, the k-th
largest marginal order statistic) and then adjust for the difference in tail exponents by
powering each component of the random vector by the tail exponent (or its estimate).
The transformation to polar coordinates

T:x+— (r,0)
induces a product form on v,
v, o T7'(dr, d6) = cr='S(d0),

for some constant ¢ > 0 and S(-) a probability measure. When the bivariate vector
X concentrates on Ri, S(-) concentrates on [0, 7/2]. Asymptotic independence
corresponds to S concentrating on {0} and {7 /2}. If the bivariate observations are
X ={(X1., X2.:), 1 <i < n}, then we transform

. o] ) a
Xﬁ{(( ! ) ’(Xl2> );i:l,...,n}li{(le’l)’(_)gn)), ISiSn},
X1,k X2,

and we need to estimate S from

{0 :R" > 1}.

If we make a density plot of these ®s, we should be able to get an impression of the
tendency toward asymptotic dependence. Modes at 0 and 7 /2 indicate a tendency
toward asymptotic independence while a mode at 77 /4 indicates a tendency towards
asymptotic dependence.

For the (buL,buF) data, that is, the length of download against the file size down-
loaded, the estimated angular measure density, given in Figure 6.32, shows two modes
atzero and v /2 indicating a tendency toward independence. The angular measure esti-
mation was made using k = 100. This is based on the Stdricd plot given in Figure 6.33,
which shows the superiority of the choice k = 100.

Interestingly, the analysis of (buL,buR), the download length vs. the inferred trans-
mission rate, shows much less tendency toward asymptotic independence [108] and
the whole issue of the dependence between download time, download rate, and down-
loaded file size deserves more careful study. See [20] for more comments on this point.
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Figure 6.32 The data (buL,buF): density estimate for the angular measure.

6.8.2.1 A model for asymptotic independence

An obvious generalization of the infinite source Poisson model is to retain Poisson
connection times, but generalize the transmission mechanism. We assume that there
are i.i.d. pairs {(Ly, Ry), k > 1} giving length of a download and rate of transmission
so that when a download is initiated, a random rate is chosen for the transmission.
Empirically it is often the case that each marginal distribution of L; and Ry, is heavy
tailed. The file transmitted will, of course, be L; R; and analyzing the infinite source
Poisson model will require knowledge of how the product L R, behaves. The classical
extreme value notion of asymptotic independence is not strong enough to generate
useful information about the product and a strengthening is required. We briefly
discuss the approach assuming that L has the heavier tail; a minor modification is
necessary if R has the heavier tail.
Define the measure v, on (0, co] by

Ve(dx) = ax“dx, x>0,a>0.

We assume the following.

(1) Asymptotic independence. There exists a probability distribution G on R and
a sequence b, — oo such that

L v
nPKb,R> € ] — vy X G,

vaguely on E := (0, oo] x [0, oc]. This implies that L has a regularly varying
tail with parameter « and that for large n, R and large values of L tend to be
independent.
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(2) Tightness. For some n > 0,

L a+n
limlimsupnE [(b_R> 1[L§bn€]:| =0.

0 oo n

Then provided
[o.¢]
c:= / u*G(du) < oo
0

we have
P[LR > x] ~cP[L > x], x — oc.

It turns out that (1) holds if multivariate regular variation [8, 9, 139] holds and
suggests that (L, R) is multivariate regularly varying but in the wrong coordinate
system:

nP[b, (LR, R) € -] > u
on E. It is not hard to see that u and v, x G are related.

The implication for the modified infinite source Poisson model is that cumulative
traffic at large time scales is still approximated by a stable Lévy motion. It is undoubt-
edly true, in addition, that under the right asymptotic regime, FBM limits are possible.
This is either good or bad news depending on whether you believe cumulative traffic is
or is not either FBM or stable Lévy motion. And keep in mind that in the data example
given, it was (buL,buF) that seemed to be asymptotically independent (in the classical
sense) and not the pair (buL,buR). When L and R both have regularly varying tails
with parameters «; and ag in the range (1, 2) but L and R are not asymptotically
independent, F' = LR has tail index o < 1 [108].

6.9 A model with a control

One of the obvious problems with the previous models is that they do not incorporate
controls and protocols that have been designed to make the real internet robust and
scalable. One reason why it may be unlikely to observe stable Lévy motion as an
approximation to cumulative traffic is that controls prevent the big buildup of traffic
that a heavy tailed model would predict. Protocols, such as TCP (transport control
protocol), are designed to keep congestion at the end user when packets are being
lost by the simple mechanism that the sending machine is signaled to slow transmis-
sion. Roughly, how it works is as follows [92]: files are broken into packets and the
first packet is sent. If an acknowledgement from the destination is received within a
specified time window, then the sender sends two packets. As long as acknowledge-
ments are received from the destination machine, transmission continues to increase
linearly. However, if no acknowledgement is received, the packet is presumed lost
and resent but the transmission rate is halved. The rate continues to be halved until
an acknowledgement is received, at which point linear build-up of the rate resumes.

It is a curious fact that the transmission rate is halved when packets are lost. Why
not divide the rate by 3?7 We sought a model that would help us study this question as
well as the delay the protocol imposes on the sender. What price in terms of delay does
a sender pay for the socially or globally optimal behavior of allowing the transmission
rate to be slowed?
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Because it is very difficult to model the complex interactions in the internet in a
realistic way, we have studied these questions in a restricted, simplified context of a
single channel on/off source destination pair with a buffer in between [17].

The model consists of i.i.d. jobs or files of size {L,}, which have common distri-
bution F; as well as off periods denoted by the i.i.d. random variables {Y,,}, which
have common distribution Fy and which are independent of the file sizes. There is a
buffer between the source and destination and the buffer empties at constant rate r,
assuming the buffer is nonempty. We assume » € (0, 1) to ensure that buffer content
can exit from zero. In place of the system of acknowledgements, we assume that there

is a critical buffer level y > 0. During a transmission in this single channel model, if
e buffer content <y, then the transmission rate increases linearly like 1 + at; and if
e buffer content >y, then the transmission rate decreases geometrically like e 9.

We suppose X, is the buffer content at time of the beginning of the n-th transmission.
The process {X,} will have a Markov chain structure. Here is a more formal outline
of the construction of the process.

6.9.1 Construction

Step 1. Cumulative input function. Begin by defining the cumulative input function

I, (t), which is the amount of work injected into the system in [0, ¢] starting from

initial content x, assuming the job size is oo. There are two cases: x < y and x > y.
Case x > y. Define

u
to(x) = inf{u >0:x +/ e Mdw —ru = y},
0

which is the time necessary for buffer content to move from level x down to y.
Provided ¢ € (0, ty(x)), we have

d

— (1) = e,

7 (1)

At time fy(x), we reset the input rate to 1, and then let it decrease exponentially again.
Repeat this at times #o(x) + nto(y),n > 1.
Case x < y. Define

t(x):inf{u>0:x+/ (l—i—as)ds—ru:y}
0

as the time required to move from x up to level y. At time #(x), the input rate is
1 4+ at(x) and the input rate begins to decrease exponentially until time #,(x) + #(x),
where

t,(x) = inf{u Y —l—/ (4 atx)e ™ ™dw —ru =y,
0

at which time, buffer content is again y. Then at #(x) + #,(x),

e reset the input rate to 1, and let the rate decrease exponentially until the content
level is again y. Then
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e reset the input rate to 1, let the rate decrease exponentially until content is again
y. Then

Step 2. The transmission time t(x, /). We have defined I, (¢) assuming there was an
infinite file to send. What if the file is of size /? The time necessary for transmitting
a file of size / when content is initially x is

t(x,)=17"()=inf{t > 0: I,(r) =1}.
Step 3. The embedded MARKOV chain. Define the embedded Markov chain {X,}.
With {L,}, {Y,} representing i.i.d. file sizes and off periods, define
X=X+ L, —rt(X,_1, Ly) — 1Y)y

to be the buffer content at the beginning of transmissions of files. This says the buffer
content when a transmission begins is the content when the previous file was sent,
plus the file sent, minus what left the buffer during the transmission of the file, minus
what left the buffer during an off period.

Step4. A time scale. If X, is the buffer content when the n-th transmission commences,
let S,, be the time, and we define

SO =0» Sn - Sn—l +77(Xn—la L11)+Yn

We think of [S,,, S,+1) as the nth transmission cycle, and it consists of an on period of
length ©(X,,—1, L,) plus an off period. Then we can define a continuous time process
between the times {S,}: for r € [S,—_1, S,—1 + T(X,_1, L,))

X(t) = Xp—1 + Ix, (¢ — Sp1) —r(t — Sp—1)
and fort € [S,—1 + ©(X,—1, Su),

X(1) = (X(Su—1 + 1(Xp—1, Ln)) —r(t — [Sp—1 + 7(Xp—1, L) D4

6.9.2 Results

Here is an outline of features of this model.
1. Controlled growth. The Markov chain can increase only in a controlled way due
to the effect of the control. If X,, > y then

! l1—r+rlo
X1 — X, < sup ( / e — n) _lordrigr
>0 0 d

2. Thin tails. Since the service rate satisfies r < 1, if L is too small and Y = 0, the
content would always increase. To prevent circumstances like this, it is desirable to
assume

1
P|L>—-|>0.
b
In this case, {X,} possesses a stationary distribution 7 and

7T(.X, OO) = Cleiczxa
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for sufficiently large x. Thus, even if we assume heavy tailed file sizes, the control
keeps buffer content moderate and the stationary distribution tail is exponentially
bounded. Since buffer content is thin tailed, we have a right to worry about the effect
on user transmission times.

3. Ergodicity. Under mild additional conditions, {0} is an atom and { X} is geomet-
rically ergodic, strongly mixing, and Harris recurrent. There exists 0 < p < 1 such
that

pin”Px[Xn €-]— 7T()”TV — 0,
where || - ||tv denotes the total variation metric.

4. Stationary transmission times. For any y > 0

Py[t(Xp—1, Ly) € A] = Pr[t(X, L) € A],

where X and L are independent random variables with L 4 L, and X has the
stationary distribution 7.
5. Transmission time tail behavior. If L has a subexponential distribution,

P.[t(X,L) > x] ~ Fr(rx).

Thus, the transmission tail is asymptotically equivalent to the file size tail, modulo the
factor r for the work rate. Note this expression is independent of d, the exponential
rate parameter. So the exponential decrease parameter does not affect the asymptotic
form of the tail. (Whether you halve the rate or divide by 17 does not influence the
asymptotic tail of the transmission time distribution.)

Where is the effect of d felt? Based on simulations, it appears to influence E(t (X, L))
mildly, but we only have bounds on E(t(X, L)), and the influence of d is difficult to
quantify.

6.10 Conclusion

Data networks are fascinating to the curious and broadly trained investigator. Their
thorough study benefits from techniques taken from probability, statistics, applied
mathematics, computer science and electrical and computer engineering. Many stud-
ies today have isolated one small part of the network for study and ignored many
interactions and dependencies. The challenge for the future is to increase model re-
alism by accounting for interaction among users competing for network resources.
Most of the current attempts to realistically take into account competition have been
empirical or simulation based.

Heavy tail and extreme value analyses are fraught with imprecisions. Modeling
assumptions based on asymptotic properties are inherently controversial. The as-
sumption to model with a heavy tail or to incorporate long range dependence into
the model may be viewed in the same light as conviction about religion: it works for
the user, but there may be other models that work for other users. There are usually
several models consistent with collected data measurements. Imagine the difficulty of
trying to statistically distinguish between a Pareto distribution and a truncated Pareto.
It is useful to maintain a focus that suggests the key question is not, does a particular
model fit the data?, but rather, what is the class of models consistent with the data?
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CHAPTER 7

Multivariate Extremes

Anne-Laure Fougeres
INSA de Toulouse—Université Paul Sabatier
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7.1 Introduction

A wide variety of situations concerned with extreme events has an inherent multivari-
ate character, as pointed out by Coles and Tawn (1991). Let us consider, for example,
the oceanographic context, and focus on the sea-level process. Such a variable can
be divided into several physical components like mean-level, tide, surge, and wave,
which are driven by different physical phenomena (see, for example, Tawn (1992)
for details). Moreover, extreme sea conditions leading to damages are usually a con-
sequence of extreme values jointly in several components. The joint structure of the
processes has therefore to be studied. Another type of dependence that can be of great
interest is the temporal one: high sea levels can be all the more dangerous when they
last for a long period of time. Therefore, a given variable observed at successive times
is likely to contain crucial information. Other examples of applications have been
listed recently by Kotz and Nadarajah (2000), concerning, among others, pollutant
concentrations (Joe, Smith, and Weissman, 1992), reservoir safety (Anderson and
Nadarajah, 1993), or Dutch sea dikes safety (Bruun and Tawn, 1998; de Haan and de
Ronde, 1998).

Historically, the first direction that had been explored concerning multivariate
extreme events was the modeling of the asymptotic behavior of componentwise
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maxima' of independent and identically distributed (i.i.d.) observations. Key early
contributions to this domain of research are, among others, the papers of Tiago de
Oliveira (1958), Sibuya (1960), de Haan and Resnick (1977), Deheuvels (1978), and
Pickands (1981). The general structure of the multivariate extreme value distributions
has been explored by de Haan and Resnick (1977). Useful representations in terms
of max-stable distributions, regular variation functions, or point processes, have been
established. The next section is devoted to the asymptotic model for componentwise
maxima. The main results are sketched, after a brief summary of the univariate extreme
value context. Statistical inference developed in this setup will also be summarized.
The limitations of this way of modeling multivariate extreme events will then be en-
visaged in Section 7.3, where we focus on asymptotically independent events. Recent
alternatives introduced by Ledford and Tawn (1996, 1997) will be presented. Finally,
the problem of how to measure extremal dependence is tackled, and some tools are
reviewed.

7.2 Classical results on componentwise maxima

7.2.1 Univariate extreme events: Summary

The problem of how to model the tails of a univariate distribution has been widely
studied, and presents a myriad of applications, as recently listed by Kotz and Nadarajah
(2000, Section 1.1, Section 1.9, and Section 2.8). The key assumption that underlies all
the methods of modeling is the existence of a domain of attraction for the maxima, that
is: if Xy, ..., X, are i.i.d. observations of a random phenomenon with distribution
function (d.f.) F, then there exist two sequences (a,), and (b,),, where a, > O,
b, € R, and a nondegenerate d.f. G such that

. max X; — b, .
lim P{—— <x p = lim F'(a, x + b,) = G(x). (7.1)
n—o00 a n—o0

The set of d.f. G such that (7.1) holds is now referred as the generalized extreme value
(GEV) family, introduced by von Mises (1954) and Jenkinson (1955). The d.f. G has
the following parametric form:

X\
G(x) = exp{—(l—i—é ) },
o +

where the notation ay stands for a if @ > 0 and zero otherwise, and where ¢ > 0
and pu, & € IR. This distribution function was originally called Fréchet, Weibull,
or Gumbel distribution, depending on whether the shape parameter & is positive,
negative, or zero (as a limiting case). Fisher and Tippett (1928) exhibited these three
types of distributions for G, see also Gnedenko (1943).

Under the fundamental hypothesis of the existence of a domain of attraction for the
maxima, two main ways of modeling extreme events have emerged. The first concerns

! Note that results on minima can immediately be deduced using the property that for any variable X,
min X = — max(—X). All that follows will just be written for maxima.
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models for block maxima, based on the representation (7.1), where the asymptotic
distribution of the (renormalized) maxima is considered as an approximation for
the distribution of the maxima over a fixed (large enough) number of observations.
Statistical inference in the GEV parametric family has been largely studied, see,
for example, a review in Kotz and Nadarajah (2000), Section 2.2 to Section 2.6.
Secondly, threshold methods have been considered, based on the asymptotic form of
the distribution of excesses over a given threshold. More precisely, two avenues have
been exploited. The first one, referred to as the peaks over threshold (POT) method, is
based on the generalized Pareto approximation. If the d.f. of a random variable (r.v.)
X is in the domain of attraction of a GEV distribution with parameters (i, o, £), then
the conditional distribution function of exceedances has the following property
x\ V¢
P(X>u+x|X>u)~<1+é§§) , U—> 00
+

where 6 = o + &(u — w). This approach is due to Balkema and de Haan (1974)
and Pickands (1975), and has been widely studied (see Leadbetter, Lindgren, and
Rootzén (1983), for example). Davison and Smith (1990) make a review of the sta-
tistical properties of this method, and focus also on the problem of the choice of the
threshold. The second way of using threshold models is to approximate the point
process associated with observations greater than u by a nonhomogeneous Poisson
process with intensity measure of (x, oo) given by (1 +§& (x — n)/o );1/ ¥ This has
been studied by Pickands (1971) and Smith (1989). Adapted methods have also been
developed when extremes of dependent sequences are of interest, which is actually
the usual case when considering notably environmental data. See, for example, Lead-
better, Lindgren, and Rootzén (1983), Smith (1989), and Davison and Smith (1990).
In addition, the nonstationary frame has been explored by Leadbetter, Lindgren, and
Rootzén (1983) and Hiisler (1986), among others. We refer to Coles (2001) for a
review of practical methodologies when dealing with such data. For an introduction
to univariate extreme value theory with applications to insurance and finance, see
Embrechts, Kliippelberg, and Mikosch (1997).

7.2.2 Multivariate extreme value distributions

As mentioned in the introduction, exploration of how to model multivariate extreme
events began with the study of the limiting behavior of componentwise maxima.
All the theory developed is based, as in the univariate case, on the existence of
a domain of attraction. Denote in bold-face elements x = (xi,...x;) of R?. If
X, = (Xi1,...X;4),i = 1,...,n, are i.i.d. random vectors of dimension d with
d.f. F, one assumes that there exist ]Rd-sequences (a,)n and (b,),, where a, ; > 0
andb, ; € Rforall j =1,...,d,and ad.f. G with nondegenerate margins such that

P{('P}ax X; —bn)/an §x} = F'(a,x+b,) - GX), (7.2)
when n — oo. The d.f. G is then called a multivariate EV distribution function, and
one says that F is in the (multivariate) domain of attraction of G (for the maxima).
Note in particular that the univariate margins of G are EV distributions.
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Example 1 (i) Consider the multivariate normal d.f. Fs, with all univariate margins
equal to NV(0, 1), and with all its correlations less than 1 (EX; X; <1, foralli,j =
1, ..., d). Such a distribution is in the domain of attraction of the independence with
univariate Gumbel margins (Sibuya, 1960). Indeed, one has that

d
Fj’\1/(anx + bn) —> G(X) = Hexp{_gfx/’}.
j=1

The norming constants are respectively equal to a, = (2logn)~'/? and b, = b,1,
where b, = (2logn)'/? — 1/2(loglogn + log4m)/(2logn)'/?,and 1 = (1, ..., 1)
(see, for example, Resnick (1987), Example 2).

(ii) Next consider the Archimedean d.f. Fy, with all univariate margins uniformly
distributed on [0, 1], introduced by Genest & MacKay (1986a, 1986b), and defined by

d
Fo) =973 ¢(x)
j=1

where ¢ is a function defined on (0, 1] such that (1) = Oand (—1)/d’ ¢~ (r)/dt/ > 0,
forall j = 1,...,d. Moreover, assume that ¢(1 — 1/¢) is a regularly varying function
at infinity with index —m, for some m > 1. Recall that a function ¢ : (0, c0) —
(0, o0) is said to be regularly varying at infinity with index p, denoted ¥ € RV,
if and only if lim,_, o ¥ (st)/¥(t) = s” for all s > 0 (e.g., Bingham, Goldie, and
Teugels, 1989). These distributions are in the domain of attraction of the logistic EV
distribution (see further in Example 2), namely:

1/m

d
Fy(x/n+1) — exp |— Z(—x_,-)’" ,
j=1

forallx < 0, where 0 = (0, ..., 0). This last result is due to Genest and Rivest (1989).

Even if the parametric character of the univariate EV family of distributions is now
lost in the multivariate context, as a subset of the max-infinite divisible distributions, a
specific structure still remains. The results sketched here are essentially due to de Haan
and Resnick (1977), and are, for example, presented in Galambos (1987), Resnick
(1987, Chapter 5) and Kotz and Nadarajah (2000, Chapter 3).

Let us first assume for convenience that the univariate extreme value margins follow
unit Fréchet distributions (with d.f. defined for all y > 0 by ¢(y) = e~!/*). This
standardization leads to a separation of the marginal behavior and the dependence
part of the distribution. There is no loss of generality in assuming specific margins,
as stated in Proposition 5.10 by Resnick (1987). Note that in the case of unit Fréchet
margins, normalization sequences (a,, ;) and (b, ;) can be shown to be respectively
equaltoa, ;j =nand b, ; =0, forall j=1,...,d.

The following characterizations of the multivariate EV distributions can then be
obtained (see, for example, Proposition 5.11 of Resnick, 1987). The set E denotes
here E = [0, 0o} \ {0}. The symbol \/ is used for supremum. The function 1 is
defined by 1,.c = 1if z € C, and 0 otherwise, and || - || denotes any norm on R,
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Theorem 1 The following assertions are equivalent:

[C1] G is a multivariate EV distribution with unit Fréchet margins.

[C2] There exists a finite measure S on B ={y € E : ||y|| = 1} such that for each x
= (x1,...,Xq) € E, one has that

d
G(x) = exp —/ \/ Hdsow) ¢,
By %
with
/wde(w):l, forall j =1,...,d. (7.3)
B

[C3] There exists a nonhomogeneous Poisson process Y, 1, joe . on [0,00) x E
with intensity measure A defined, fort > Q0 and B C E, by A([0,¢t] x B) =
tu*(B), where forall A C Bandr > 0,

A
u*{yeE:||y||>r;ieA}=S( ). 7.4)

[yll r
and S is a finite measure such that (7.3) holds and

Gx)=P (\/ Jk < x) = exp (—u*{(0,x]}) .

(<1

Remark 1 Conditions (7.3) secure that the margins are all unit Fréchet distributed.
Equation (7.4) shows that the measure 1* composed with the application 7! defined
from T : E — (0,00] x B, y — (||yll, y/llyll]), is a product measure of a simple
function of the radial component and a measure S of the angular component. More
precisely, one has u* o T H(r,00) x A} = S(A)/r forall A C B, r > 0, so that

. X 1
pHO,XI) = p* o TNT{O,XI) = / — dSwydr.  (15)
T{0x]} T
Moreover, writing 7' ((0, x]°) = {(r, w) € (0,00) x B : rw € (0, x]°}

d
= {(r,w) € (0, B: —’
(. w) € (0, 00) x /:\ "
and using this last expression in (7.5) leads to

d
.
“{(0,x]°) = / Wi asw).
’ G

The measure S is often called spectral measure, and p* is the exponent measure.
Finally, without going into the proof, note that the key result leading to Theorem 1 is
that the EV distributions coincide with the max-stable distributions. Assuming unit
Fréchet margins, these distributions are of the form G(x) = exp(—u*{(0, x]}), for all
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x € E, where t* is a measure satisfying the homogeneity property tu*(t B) = u*(B),
for all # > 0 and B a Borel set of E.

Example 2 (i) A particular and important case is the case of independence. It corre-
sponds in the representation [C2] to a measure S, which is concentrated on {e;,i =
1,...,d},wheree; = (0,...,0,1,0,...,0)are the vectors of the canonical basis of
R¢ (see, for example, Corollary 5.25 of Resnick, 1987).

(ii) Several parametric families of bivariate and multivariate EV distributions have
been proposed by Tawn (1988), Coles and Tawn (1991), Joe (1990), and Tawn (1990),
among others. See Kotz and Nadarajah (2000) for a recent review of these existing
parametric models. One of the most classical is the so-called logistic model, proposed
by Gumbel (1960), and defined for x > 0 by

1/

d
Ga(®)=expq — [ > x;® , (7.6)
j=1

for some parameter @ > 1. The limit case @ = 1 corresponds to the independence
between the variables. Different asymmetric generalizations of this family have been
proposed; see, for example, the nested logistic model (Coles and Tawn, 1991).

In the bivariate case, the family of EV distributions can be represented in a different
way. Indeed, Pickands (1981) has shown that a bivariate d.f. G is an EV d.f. with unit
Fréchet margins if and only if

aw=eni- (53 ) (535}
X)) =exps—(—+—]A , 7.7
X1 X2 X1+ x2

where A is a convex function, A : [0, 1] — [1/2, 1], such that max(z, 1 —¢7) < A(¢¥) <
1 forall 0 <t < 1. See also Sibuya (1960) and Tiago de Oliveira (1975, 1980) for
other bivariate representations. The measure S defined in representation [C2] is thus
related to the function A by the following

A(t) = /max{twl, (1 —t)wo} dS(w).
B

Hence, except for the margins, the d.f. G is characterized by a one-dimensional
function A, referred to as the dependence function. Particular examples for A are
A(t) = 1, for all 0 < ¢ < 1, which corresponds to the independence for G, or
A(t) = max(t, 1 — t) corresponding to total positive dependence. The logistic model
defined in (7.6) corresponds to A, () = exp{t® + (1 — 1)*}'/% for 0 <t < 1 and
oa>1.

Atthis stage, itis of practical importance to examine what the different characteriza-
tions yield when formulated from a d.f. F belonging to a specific domain of attraction.

As before, one considers i.i.d. observations X; = (X 1, ... X;4),i = 1,..., n, which
are assumed to have unit Fréchet margins. In practice, when the margins have unknown
distributions, one may, for example, transform the observations X; ;, ( =1, ..., n,

and j =1, ..., d)into the pseudo-observations Z; ; = 1/log{n/(R; ; —1/2)}, where
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R; j is the rank of X; ; among X ;, ..., X, ;. Such a transformation, suggested in
Joe, Smith, and Weissman (1992), ensures the Z; ; to be in the univariate domain of
attraction of a unit Fréchet distribution. Refer also to Mason and Huang’s work for the
estimation of the dependence function using ranks only (see Huang, 1992 or Drees
and Huang, 1998). We use the same notations as in Theorem 1.

Theorem 2 The following statements are equivalent:

[D1] The d.f. F of the X;s (i = 1, ...,n) is in the domain of attraction of a multi-
variate EV distribution G with unit Fréchet margins.
—logF(x) . 1—Fax) _ —logGx) _ wi([0,x])
[D2] lim ————= = lim = = =,
t—oo —log F(t1) t—oo 1 — F(t1) —log G(1) w*([0, 1]°)

where the measure u* is defined in Theorem 1.

Xi
[D3] tlim tP {||Xi|| >t; —— € A} = S(A), for each A Borel set of B and
—00

9]
i=1,...,n, where S is defined in Theorem 1.
[D4] The point process associated with {X,/n, ..., X,/n} converges weakly to a

nonhomogeneous Poisson process on E with intensity measure (1*.
Remark 2 Note that expression [D3] is also equivalent to
[D3'] lim PAX; /11Xl € A TIXil| > 1} = S(A)/SDB).

Formulation [D3] clearly suggests a simple nonparametric way to estimate the
measure S associated with an EV d.f. G from observations that are in the domain
of attraction of G. If a sample (X, ..., X)) is available from F, then, provided that
t is a well chosen function of n, which ensures convergence, a natural candidate
to estimate S is deduced from the empirical measure of (||X;||/t, X;/||X;|]), that
is 1/n >0, H{(I1X:11/¢, X /1IX;iI]) € - }. More precisely, such a convergence is
achieved as soon as t = n/k,, where (k,), is a sequence of integers such that k, — oo
and n/k, — oo when n — oo (Resnick, 1986, Proposition 5.3). An estimator of
S can therefore be obtained using the observations X; such that ||X;|| > n/k,.
From a practical point of view, it is usually more convenient to replace the condition
{IIX]| > n/k,} by {|IX|| > [IX]|,1}, where ||X]|,] denotes the (n — k,, 4+ 1)th order
statistic of ||X]|;. Both conditions are asymptotically equivalent (see, for example,
Appendix 3 of Capéraa and Fougeres, 2000); the second one offers the advantage
of keeping a fixed number of observations for estimating S. This finally leads to the
estimator S, of S, defined for any Borel set A of B, by:

n

1 X;
Sn<A>=k—Zl{||X,-||>||X||[kn], X0 eA}. (7.8)
n i=1 1

A variety of nonparametric estimation techniques have been developed from the
useful representation [D3], referred as multivariate threshold methods. The estima-
tors proposed essentially differ from each other in terms of the choice of the norm
and of a function closely related to the mapping 7 defined in Remark 1. The de-
velopments have been mostly formulated in the bivariate case. See, for example,
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de Haan (1985a), Joe, Smith, and Weissman (1992), de Haan and Resnick (1993),
Einmahl, de Haan, and Huang (1993), Einmahl, de Haan, and Sinha (1997), as well
as Capéraa and Fougeres (2000) for a small-sample study comparing several methods
from the previously cited works. Further interesting references are de Haan and de
Ronde (1998), de Haan and Sinha (1999), Abdous, Ghoudi, and Khoudraji (1999),
and Einmabhl, de Haan, and Piterbarg (2001). Note that no theoretical result has been
obtained yet concerning an optimal choice for the threshold k, in the multivariate
setup. In practice, choosing k, is a tricky problem, and usually several values are
considered, for which a relative stability of the estimations is expected. Improving
this empirical choice, Abdous and Ghoudi (2002) proposed recently an interesting
and convenient procedure for an optimal threshold selection, based on a double kernel
technique (Devroye, 1989). Abdous and Ghoudi also suggested a unifying approach
that includes most of the estimates previously mentioned. Parametric approaches have
been proposed by Coles and Tawn (1991, 1994) and Joe, Smith, and Weissman (1992),
among others. These approaches make use of the point process representation [D4]
and of parametric families of multivariate EV distributions. Finally, some parametric
models based on the representation [D2] have also been introduced by Ledford and
Tawn (1996) and Smith, Tawn, and Coles (1997). Even if traditionally parametric
and nonparametric schools seem to confront each other, they present complementary
advantages, and nonparametric estimations can notably be used as a starting point for
inference, on which flexible parametric models can be built.

Remark 3 In the particular case where observations from an EV d.f. G are directly
available, specific techniques that differ from the threshold methods have been devel-
oped in the bivariate case by Pickands (1981), Tawn (1988), Tiago de Oliveira (1989),
Smith, Tawn, and Yuen (1990), Deheuvels (1991), Coles and Tawn (1991), Capéraa,
Fougeres, and Genest (1997), Hall and Tajvidi (2000), among others. In such a sit-
uation where no selection is needed above a sufficiently high threshold, estimation
techniques are, of course, much more accurate.

Below we summarize for a simple case the practical estimation of the probability
of an extreme event via multivariate EV models. Given a sample of random vectors
X;,i = 1,...,n, with d.f. F, consider the problem of estimating the probability
P(X € A), where A is an exceptional set in which no data have been observed. We
assume that F is in the domain of attraction of a multivariate EV d.f. G, and again,
for simplicity we deal with known margins and assume that they are unit Fréchet
distributed. If A is the complement of a rectangle, A = (0, nu]¢, one may write, for
example, using [D2]:

P(XeA):1—F(nu)%—%logG(u)=1 {(0, u]‘} /\/ de()

Making use of the empirical measure S, defined in (7.8), an estimator of P(X € A)
is then given by

n d

L1 > [1X]gs,1)-
; \/u,nx,,u -

Jj=1

€004 CRC PressLLC



This is one possible nonparametric way to make use of the multivariate EV model.
The choice of the proportion of data used for the estimation of S is a delicate point in
practice. Dealing with any form of extreme event A is of course not so straightforward,
and needs care. We refer, for example, to de Haan and de Ronde (1998), or Bruun
and Tawn (1998), for a complete application and evaluation of failure probabilities.
Note that, even if from a theoretical point of view the methods based on multivariate
EV models that have been developed in the literature are available in a d-dimensional
context, the complexity linked to the solution of problems in practice increases rapidly
with the dimension d. Most of the work done in the multivariate context concerns
examples where d = 2 or 3.

An important point is that both parametric and nonparametric threshold estimation
techniques present some problems in the particular case where the data are asymp-
totically independent, i.e., when their distribution is in the domain of attraction of the
independence. This limit situation corresponds in the representation [C2] to the case
where S is singular, concentrated on some boundary points of B (see Example 2).
Hence parametric methods, as maximum likelihood estimation, face a problem of non-
regularity, and nonparametric methods also present less satisfying results, as shown
via simulations by Capéraa and Fougeres (2000) in the bivariate case. Moreover, EV
models come from componentwise maxima (max;—i,_, X; 1, ..., MaX;—=1, n Xid),
which in practice typically do not correspond to any observation X;. In case of asymp-
totic dependence, the componentwise maxima, however, tend to occur jointly, so EV
models are useful in such a situation. This is not the case anymore in case of asymp-
totic independence. Asymptotic independence seems, however, to be an important
case in practice, as pointed out by Marshall and Olkin (1983) or de Haan and de
Ronde (1998). Indeed, it actually corresponds to most of the classical families of
distributions, as listed in Marshall and Olkin (1983) or Capéraa, Fougeres, and Genest
(2000), among others. For example, see the wind and rain data considered by
Anderson and Nadarajah (1993) and Ledford and Tawn (1996). Some alternatives
and refined models have been proposed in this particular case by Ledford and Tawn
(1996, 1997), and will be presented in the following section.

7.3 An alternative modeling approach

According to Sibuya (1960), a bivariate pair of r.v. (X, X,) with common marginal
d.f. Fj is said to have asymptotically independent components if and only if
Iim P(Xy>u|X;>u)=0,
U—xp,
where xr, = sup{x € R : F;(x) < 1}. For the distribution of (X, X») this property
is equivalent to being in the domain of attraction of the independence. This follows
from the next result, which also states how multivariate asymptotic independence

in general actually reduces to the bivariate case (Berman, 1961; see, for example,
Resnick, 1987, Proposition 5.27).

Theorem 3 Let {X,,,n > 1} be a sequence of i.i.d. random vectors in R? (d = 2)
with d.f. F. Assume for simplicity that all the univariate margins are the same, with

€004 CRC PressLLC



common d.f. Fy belonging to the univariate domain of attraction of G. So one has,
for some a, > 0, b, € R, the convergence F|'(a, x + b,) — Gi(x), asn — oo. The
following assertions are then equivalent:

(1) The d.f. F is in the domain of attraction of the independence:

n d
F"(ap,X + by1) = P (\/ X; < anx+bn1> — [[Gixp.
i=1 j=1

(i) Foralll <k <{ <d,

p (\/ Xik < anxi+by . \/ Xie < anxe + bn> — Gi1(x)G1(xp).

i=1 i=1
(iii) Forall1 <k < £ <d, and xy, x¢ such that G1(x), G1(x¢) > 0,
lim n P(Xyx > apxx + by, X1 > apnxe+b,)=0.

n—00

(iv) Foralll <k <t <d,
lim P(Xl’k >Z|X17g >1)=0.

1—xp,

For simplicity consider the bivariate case of asymptotic independence. Note that
in this case, the probability mass of joint tails, that is, of sets of the form {(X; —
bp1)/ana > x1, (X2 —by2)/a,» > x»}, is of lower order than that for sets like
{(X1 — bp1)/an1 > x1 or (X2 — by2)/ay» > x»}. Therefore, models based on
bivariate extreme value distributions do not provide any satisfying way to estimate
such joint tails.

In order to fill this gap in the bivariate setup, Ledford and Tawn (1996, 1997)
proposed joint tail models adapted to the asymptotic independence case. When stated
with unit Fréchet margins, these models are essentially based on the model
L(z1, 22)

N C )
z1'zy

P(Zy > 21, Zp > 22) ~ (7.9)
when z;, 7o — 00, where ¢, ¢, > 0 are such that ¢; + ¢, > 1, and £ is a bivariate
slowly varying function. Recall that a measurable function £ : x € R? = £(x) > 0
is called a multivariate slowly varying function if there exists a positive function A
satisfying A(tx) = A(x) for all x € R?, t > 0, and such that

L(tx)
im =

t—o0 L(t1)
forallx € IR?. See, for example, de Haan (1985b), Basrak, Davis, and Mikosch (2000)
or Mikosch (2001) for further properties. A measure of extremal dependence is then
provided by the so-called coefficient of tail dependence n = 1/(c; + ¢2) € (0, 1].

Asymptotic dependence corresponds to n = 1 and L(r, r) — 0 as r — 00, whereas
n < 1 implies asymptotic independence. Since because of (7.9) one has

La+tu+t) @+ ( z)“/”

142
L, u)un + u

A(x),

P(T>u+t|T >u)~
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Ledford and Tawn (1996) suggest to estimate 1 as the shape parameter of the GPD
for T = min(Z;, Z,). Peng (1999) proposed another estimator of 7, for which he
obtained the asymptotic normality.

Note that (7.9) is ensured as soon as a second order condition is assumed for
(Z1, Z3), which strengthens the multivariate domain of attraction condition (7.2).
More precisely, one assumes the existence of a positive function v and a finite and
nonzero function 4 such that

lim b {t P(Z) > tz1 0r Zy > t23) + log G(z1, 20)} = h(z1, 22).

1—00 (1)
As mentioned by de Haan and de Ronde (1998), the function v is then necessarily
a regularly varying function with nonpositive exponent p (that is, ¥ (tu)/ ¥ () — u”
ast — oo, for all u > 0). The relation between p andnis p =1 — 1/n.

Ledford and Tawn (1997) and Bruun and Tawn (1998) implemented different sub-

models from (7.9), specifying further conditions concerning the form of L. For ex-
ample, Bruun and Tawn modelled the joint tails assuming that

aO + £*(Zl9 Z25 V)

(z1z2)1/20

for z;, z» large enough, in terms of n € (0, 1], and ay € RR*. The function L, is
defined by

P(Z) > 21, Z, > 25) = , (7.10)

21 12 22 12
L.(z1, 22, v>=(—) +<—> —(z122)"?V (21, 22),

22 21

where V is an exponent measure as in Theorem 1, V(zy, z2) = p*{(0, z]}. Bruun
and Tawn used more specifically a parametric model for V. They compared, through
Monte-Carlo simulations and for different degrees of dependence, the behavior of
three models, namely: the model (7.10), the bivariate extreme value model with d.f.
F(z1, 22) = exp{—V (z1, 22)}, and a model based on univariate extreme value models
for the margins. In case of asymptotic independence, the model (7.10) really outper-
forms the bivariate extreme value model in terms of relative percentage error when
estimating a specific 103 quantile (see Bruun and Tawn (1998), Section 4, for de-
tails). The bivariate extreme value model has actually the tendency to overestimate
the probability of failure when asymptotic independence occurs.

7.4 Measuring extremal dependence

One of the main topics strongly connected with multivariate extreme events modelling
is the problem of how to measure the dependence in the extreme observations. A first
way to look at this problem is to use multivariate EV models and to measure the
strength of the dependence in the limiting distribution. Representation [C2] clearly
exhibits that all the dependence is contained in the measure S, but summaries of this
information can be useful. Note in passing that the correlation coefficient is useless
in the EV context, as on the one hand it is not invariant under transformations of the
margins, and on the other hand several cases of univariate EV d.f. may not have a
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finite variance, as the Fréchet d.f., for example. Focusing on the EV model, several
measures have been proposed, mainly in the bivariate case. Consider a pair (X, X»)
from an EV distribution, with common marginal d.f. F. Tiago de Oliveira (see de
Haan, 1985a) proposed as an index of extremal dependence 6 € [1, 2] defined by

P(max(X;, X,) < x) = F(x). (7.11)

Using Pickands’ representation (7.7) gives another expression of 6, that is 8 =
2A(1/2). Such a measure has been considered by Tawn (1988) for testing indepen-
dence in the bivariate EV context (see also Capéraa, Fougeres, and Genest, 1997).

Alternative measures for bivariate EV distributions are Kendall’s T and Spearman’s
p. They are nonparametric measures of dependence, which have the following closed
forms in terms of A (see, e.g., Ghoudi, Khoudraji, and Rivest, 1998):

r—/l -0 dA'(1) = 12/1{A(t)+1}2dt—3
) A® A '

The definition (7.11) can clearly be extended by considering 6 € [1, d] such that
P(max(Xi, ..., Xq) < x) = FO(x).

In a more general context than EV distributions, Buishand (1984) considered, for all
r.v. X1, X, with common d.f. F and joint d.f. H, the function 8y defined by

P(max(Xi, X») < x) = F®(x). (7.12)

In the particular case of the EV distribution, such a function is constant, 0y (x) = 6.
Another way to introduce the measure 6 can be deduced from Joe (1993). Indeed,
in the bivariate case he defines the upper tail dependence parameter A for a d.f. H
with univariate marginal d.f. F as
. H,x)
A= 1lim ———— = lim P(X; > x| X, > x), (7.13)
x—=xp 1 — F(x) x—xr
where (X, X,) is a random pair from H, and H denotes the survival function de-
fined by H(x;,x) = P(X, > x1, X2 > x2). Asymptotic independence is therefore
equivalent to & = 0. The tail dependence parameter of a distribution is linked to the
domain of attraction of this distribution. More precisely, if H is a d.f. belonging to
the domain of attraction of an EV d.f. L, and if A is the tail dependence parameter of
H, then A is also the tail dependence parameter of L (see Joe, 1997, Theorem 6.8).
Moreover, as

H(x,x) 5 log H(x, x)

1— F(x) log F(x)
in the neighborhood of xf, it follows from (7.12) and (7.13) that
log H
n=2— lim 08H&X)

=2— lim 0 .
x—xr log F(x) xigclp 1 (x)

Consider a bivariate d.f. H, with upper tail dependence parameter A. Assume that H
belongs to the domain of attraction of an EV d.f. L, with univariate margins G, and

€004 CRC PressLLC



with index 0 in (7.11). Then Joe’s result above yields for 8, constant:

A:Z—xliJle Or(x)=2-906.
One should note that the upper tail dependence parameter just depends on the depen-
dence structure, so it can be expressed in terms of the copula, as did Joe (1993). Recall
that a copula is a multivariate d.f. with all its univariate margins uniformly distributed
on [0, 1] (Sklar, 1959). Given a multivariate d.f. H with continuous univariate margins
Fy, ..., Fy, there exists a unique function Cy associated to H such that

H(x) = Cu(Fi(x1), ..., Fa(xq)).

This function Cy, called the copula of H, does not depend on the margins of H,
and contains therefore all the information relative to the dependence between the
different components X1, ..., X4. It is the d.f. of the vector U = (Uy,...,U,) =
(Fi1(Xy), ..., Fg(Xy)). See, for example, Kimeldorf and Sampson (1975), Schweizer
and Sklar (1983), or Nelsen (1998), for further details. The upper tail dependence
parameter defined by (7.13) is equivalently defined by:

C )
5= fim S oy
u—1 1 —u u—1 logu

log Cry(u, u) (7.14)

In case of asymptotic independence (A = 0), Ledford and Tawn (1996) proposed to
measure the tail dependence via the coefficient n = 1/(c; + ¢;) defined from (7.9).
Coles, Heffernan, and Tawn (2000) make use of both measures A and 5 (denoted x
and (1 + j)/2, respectively) for diagnostics of asymptotic independence on different
sets of data.

7.5 Conclusion

The aim of this chapter was to present a review of the results obtained in the area
of multivariate extreme events. The models developed in the literature are essentially
based on the limiting behavior of renormalized componentwise maxima. The struc-
ture of the family of limiting distributions is actually quite rich, and can be studied in
terms of max-stable distributions, as well as via point process representations. Statis-
tical inference methods deduced from this family of EV distributions have also been
reviewed. The limits of the multivariate EV models have been pointed out, especially
in the case of asymptotic independence. Alternative models have been summarized.
Finally, some measures of extremal dependence have been presented. One should
note that this domain of research is currently very active, and promising alternatives
have recently been proposed, for example, Heffernan and Tawn (2001).
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