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Foreword

What do these things have in common: school enrollment; persons with mobility

limitations; the prevalence of obesity, diabetes, and cardiovascular disease; the size

and composition of the civilian labor force; alcohol and cigarette consumption; and

the number of households and housing units? Answer: they can all be analyzed,

estimated, and projected using cohort change ratios.

A cohort is a group of people who experience the same demographic event

during a given period of time, and a cohort change ratio (CCR) measures changes in

cohort size over time. CCRs frequently focus on age cohorts but can be calculated

for other types of cohorts as well, such as people starting college or getting married

in the same year. They are often broken down by sex, race, ethnicity, or other

demographic characteristics and can be used for a wide variety of purposes.

Common uses include constructing population estimates by age, sex, and race;

forecasting school enrollments by grade; and projecting the number and character-

istics of people living in a particular city, county, or state. CCRs are conceptually

simple but analytically powerful, and their minimal data requirements mean they

can be applied at almost any level of geography.

This book presents an in-depth look at the construction and use of CCRs. It goes

beyond previous treatments of this topic in several ways. It discusses modifications

that can be made to a given set of CCRs, such as adjusting them to reflect the

continuation of historical trends, calculating averages based on several sets of

CCRs, and developing synthetic CCRs that incorporate information from other

geographic areas. It describes techniques for splitting broader age groups into single

years of age and for interpolating values between two points in time. It gives many

step-by-step examples showing how CCRs can be used to construct different types

of estimates and projections. It provides empirical evidence on the accuracy of

estimates and projections made using different techniques or for places with

differing characteristics. Its extensive list of references and websites makes it

easy for readers to delve more deeply into specific aspects of the broader topic

(the instructions for accessing data from American Factfinder are particularly

helpful).
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Applied demography is often defined as the use of demographic methods and

materials for decision-making purposes. Its basic objective is to “get more bang for

the buck” or to accomplish a given task in the shortest possible time and for the least

possible cost. CCR estimation and projection models can play an important role in

this regard because they have relatively low costs and small data requirements and

are fairly simple to apply. In contrast, full-blown cohort-component models are

more complex, costly, and data-intensive. When time is short and budgets are tight,

this is an important advantage of CCR models. In terms of accuracy, CCR models

have generally been found to perform as well as full-blown cohort-component

models in most circumstances.

Cohort Change Ratios and Their Applications is a highly practical book, helping
practitioners undertake a variety of projects and deal with the thorny issues that

often complicate seemingly simple tasks. But it is more than a guidebook. It also

investigates topics such as using CCRs to illustrate the findings of stable population

theory, calculating life expectancy at birth, and examining the relationship between

survivorship and net migration. It discusses the use of spatial weighting to adjust

CCRs and describes a technique for constructing measures of uncertainty for CCR

projections. This book’s treatment of these topics takes CCR models well beyond

their usual applications.

The authors are eminently qualified to write this book, given their broad aca-

demic training, deep knowledge of demographic data and methods, and many years

working in academic, business, and government settings. They have extensive

hands-on experience dealing with CCR models and their clear understanding of

the issues is fully evident. This book promises to be a valuable addition to any

demographer’s or planner’s library.

University of Florida,

Gainesville, FL, USA

December 2016

Stanley K. Smith
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Preface

Like many demographers our first exposure to the cohort change ratio (CCR) was as

a census survival rate, which can be used as a measure of mortality in places lacking

good vital statistics. In places with limited migration, census survival rates are a

very good approximation to life table survival rates. We were also taught that the

cohort-component method was the de facto standard for producing estimates and

forecasts by age, sex, and other demographic characteristics. Once we finished our

education and entered the field, it quickly became apparent that implementing the

cohort-component method in places lacking good vital events and migration infor-

mation was difficult, if not impossible. At the same time there was a rising and

seemingly insatiable demand for small area (especially subcounty) estimates and

forecasts of demographic characteristics. As a result and for many years, we have

successfully used the Hamilton-Perry method (H-P) based on cohort change ratios

to develop such estimates and forecasts for a wide range of geographic areas both

inside and outside of the United States. The H-P method has gained acceptance as

research has demonstrated its practical value and accuracy in estimating and

forecasting population.

While estimation and forecasting has been the main use of the H-P method, over

the past few years we have been investigating potential refinements to this method

as well as other applications for the CCR including stable population analysis and

estimating historical populations. The results of this research have mainly been

presented at professional conferences and to date in only one publication. We

decided it would be worthwhile to write a book that pulls together both published

and unpublished research in one place to present a unified story of the CCR and

to describe the various ways it can be used in both academic and applied demog-

raphy. To our knowledge, this is the first book focused on the CCR. We had three

goals in mind when writing this book: (1) enhancing the reputation and value of the

CCR as being more than a second class citizen to its more widely valued cohort

component method, (2) serving as a platform for future research into uses and

applications of the CCR, and (3) providing a reference guide for those wanting to

implement CCR applications.
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Chapter 1

Introduction

1.1 Why a Book on Cohort Change Ratios?

Why write a book about cohort change ratios (CCRs)? The answer is that CCRs

have a wide range of uses and a high level of utility, features useful to applied

demographers but which we believe have been largely overlooked. So, this book is

aimed at showing how cohort change ratios can deliver a wide range of timely and

cost-effective demographic information with a good level of precision. The book is

primarily designed for use by applied demographers, but planners and others who

generate and use demographic information to guide decision-making and policy in

both the private and public sectors should find it both informative and accessible.

The book also can be used in conjunction with a course on demographic methods or

as a supplement from which chapters can be selected to fit into a number of courses,

including applied demography, demographic methods, business forecasting, eco-

nomic forecasting, and market research, among others. At the end of this chapter,

we discuss its potential classroom use in more detail.

Although the general idea of a CCR has been around for at least 100 years

(Hardy and Wyatt 1911) and it has been widely used to generate population fore-

casts since their “re-introduction” by Hamilton and Perry (1962), CCRs have

largely remained a tool of applied demographers who generate population forecasts

(Smith et al. 2013: 176–181). We started discovering (or more likely,

re-discovering) more of their uses and features because many projects we have

worked over the years called for techniques and data that were not generally found

in the applied demographer’s tool kit. Because we were familiar with them in the

forecasting context, it did not take long to realize that they could be used more

broadly (Swanson and Tayman 2012: 201–204). The more we used CCRs, the more

we learned about their features, which revealed even more uses and features to us.

Before we jump into descriptions of these uses and features, we need to provide

some background. Thus, in this chapter we first describe what cohorts are and give a

brief introduction to their uses in sociology and demography. We then describe
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CCRs and related measures and give an idea of their applications. Finally, we

provide an outline of the book along with some suggestions about how it might be

read and also how it might be used in the classroom.

1.2 Cohorts and Their Analyses

A cohort is a group of people who experience the same demographic event during a

particular period of time such as their year of birth, marriage, or death (Swanson

and Stephan 2004: 755). Cohorts typically are constructed using an “initiating”

signal event, such as birth, but they also can be constructed using a “terminating”

signal event, such as death (Swanson 1986). Cohorts also can be “synthetic.” That

is, they can be an analytic construct, rather than a set of empirical observations. The

period life table, for example, can be viewed as a synthetic cohort (Kintner 2004:

306–307).

Norman Ryder (1951, 1965) is usually credited with establishing the use of a

cohort as a unit of analysis and he did much to deserve this credit, especially in

regard to the study of fertility (Qui~nones 2010). However, others preceded him in

using cohorts as a unit of analysis, notably in regard to the study of mortality

(Dublin et al. 1949: 174–182).

Today, cohort analysis is widely used and not only in academic circles (Ahlburg

1986, Berger 1985, Carlson 1992, Easterlin 1987). It has found a home, for

example, in the private sector, where it is used to study consumer behavior (Martins

et al. 2012: 169–196), often in the form of defining first-time purchasers of a

product or service as a cohort and following it in order to assess cumulative lifetime

value.

Another use of a cohort as a unit of analysis is found in the construction of a

“cohort change ratio,” which was described as early as 1911 (Hardy and Wyatt

1911) and actually first specified and used by Hamilton and Perry (1962). This

methodological and conceptual construct has gained traction in the field of popu-

lation forecasting, especially for small areas (Smith et al. 2013: 176–181; Swanson

and Tayman 2014; Swanson et al. 2010).

1.3 The Cohort Change Ratio

Cohort change ratios (CCRs) are found throughout this book, so it is appropriate to

discuss this concept here. A cohort change ratio (CCR) is typically computed from

age-related data in the two most recent censuses:

nCCRx, t ¼ nPx, t=nPx�k, t�k: ð1:1Þ

where,
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nPx, t is the population aged x to x þ n at the most recent census (t),

nPx�k, t�k is the population aged x�k to x�kþ n at the 2nd most recent census (t–k),
and

k is the number of years between the most recent census at time t and the one

preceding it at time (t–k).

As implied by Eq. 1.1, a cohort change ratio is not typically computed for a single

cohort, but for all cohorts found in two successive census counts.

Given the nature of the CCR in Eq. 1.1, the youngest 5 year age group for which

a CCRs numerator can be constructed is 10–14 if there are 10 years between

censuses. That is, we can construct the denominator for this cohort aged 10–14

using age group 0–4 from the census taken 10 years earlier. By taking the ratio of

those aged 10–14 in the most recent census to those aged 0–4 in the preceding

census, we have a CCR. However, we cannot construct a CCR using either those

aged 0–4 or those aged 5–9 in a given census as the numerator because the members

of these two respective cohorts are not found in the preceding census, given

10 years between censuses. To analyze age groups younger than ten in a given

application, a child-adult ratio (CAR) can be used. This ratio, computed separately

for ages 0–4 and ages 5–9, relates young children to adults in the age groups most

likely to be their parents (Smith et al. 2013: 178). Chapter 4 discusses other

approaches for dealing with these age groups.

For the terminal, open-ended age group (e.g., ages 75 years and older), one uses

the same approach found in life table construction (Smith et al. 2013: 178). As such,

the CCR for a terminal, open-ended age group differs slightly from those for the

closed age groups beyond age 10 preceding it. If, for example, the final closed age

group is aged 70–74, with persons aged 75 years and older as the terminal open-

ended age group, calculating the CCR75þ,t requires the summation of the three

oldest age groups (65–69, 70–74, and 75 years and older) to get the population age

65 years and older at time t–k:

1CCR75, t ¼ 1P75, t=1P65, t�k: ð1:2Þ

Table 1.1 provides an example of a complete set of CCRs for the total population

of Riverside County, California between 2000 and 2010.

In viewing Table 1.1, recall that the CCRs for those aged 0–4 and 5–9 are

actually CARs computed from the 2010 census as follows: 5CAR0,

2010 ¼ 5P0,2010/15P20, 2010; and 5CAR5, 2010 ¼ 5P5, 2010/15P25, 2010. That is, the

CAR for those aged 0–4 in 2010 (0.37171) is found by dividing the number of

persons aged 0–4 (162,438) by the number of adults aged 20–34

(154,572 þ 143,992 þ 138,437) and the CAR for those aged 5–9 in 2010

(0.39184) is found by dividing the number of persons aged 5–9 (167,065) by the

number of adults aged 25–39 (143,992 þ 138,437 þ 143,992). We see the CCRs

vary from a low of 0.20139 for the cohort of people aged 75 years and older in 2010

(found by dividing the number aged 75þ in 2010 by the number 65þ in 2000) to a

high of 1.50517 for the cohort of people aged 35–39 in 2010 (found by dividing the
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number aged 35–39 in 2010 by the number aged 25–29 in 2000). CCRs are never

less than 0.00 and in principle can become very high.

A CCR in excess of 1.00 means that net in-migration occurred over the period

between the two census counts used to construct it. For example, the CCR of

1.50517 for those aged 35–39 in 2010 means that there was net in-migration

between 2000 and 2010 for those who were aged 25–29 in 2000. As you can see

by perusing Table 1.1, all of the CCRs are higher than 1.00 for those aged 10–14 in

2010 to those aged 70–74 in 2.010. This indicates a substantial net in-migration

occurred for these age groups. A CCR between 0.00 and 1.00 can imply net

out-migration, mortality in excess of net in-migration or a combination of the

two. CCRs that are less than 1.00 for younger age groups (i.e., those aged less

than 55 in the most recent census) indicate net out-migration because the effect of

mortality is low. CCRs less than 1.00 for older age groups (i.e., those aged 75 years

and older in the most recent census) typically indicate the effects of mortality

because migration is often low among these age groups. Given this, it is noteworthy

that the age groups in Riverside County from 50 to 54 through 70 to 74 in 2010 all

Table 1.1 Total population CCRs, Riverside County, California, 2000–2010

Population

Age 2000 2010 CCRa

0–4 121,629 162,438 0.37171

5–9 139,468 167,065 0.39184

10–14 133,886 177,644 1.46054

15–19 119,725 187,125 1.34171

20–24 96,374 154,572 1.15450

25–29 95,621 143,992 1.20269

30–34 108,602 138,437 1.43646

35–39 124,260 143,926 1.50517

40–44 117,910 149,379 1.37547

45–49 96,484 152,722 1.22905

50–54 79,538 140,016 1.18748

55–59 61,880 114,765 1.18947

60–64 54,046 98,974 1.24436

65–69 52,309 78,495 1.26850

70–74 50,845 62,103 1.14908

75–79 44,184 49,003 0.93680

80–84 27,542 36,793 0.72363

85–89 14,399 22,399 0.50695

90+ 6,685 9,793 0.20139

Total 1,545,387 2,189,641 n/a

Source: U.S. Census Bureau (http://factfinder2.census.gov)
aAges 0–4 ¼ P0–4,t/15P20,t
Ages 5–9 ¼ P5–9,t/15P25,t
Ages 10–89 ¼ Px+10,t/Px,t�10

Ages 90+ ¼ P90+,t/P80+,t�10
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show CCRs in excess of 1.00 indicating volumes of net in-migration sufficient to

offset the effects of higher mortality found at these ages.

As can be seen from Table 1.1, the data needed to assemble a set of CCRs is

relatively easy to obtain and the calculations are easy to do. We have used census

data to develop the example, but we could have used administrative records or

survey data just as easily. The major requirement is that the width of the age groups

for which CCRs are desired needs to be consistent with the length of time between

the two points in time from which the input data are assembled. In the case of

Table 1.1, we used 5 year age groups which are consistent (evenly divisible by) with

the 10 years between the two points in time. We could have used 10 year age groups

just as easily. With the exception of the terminal, open-ended age group (e.g.,

85 years and over), the remaining age groups should all be of the same width even if

they are consistent with the length of time between the two sets of data.

However, we could not have directly assembled CCRs if we used 5 year age

groups and the data were taken from observations only 2 years apart. Situations

where the width of the age group is not consistent with the length of time between

the two sets of data can be accommodated, but they require “age splitting” (Judson

and Popoff 2004) and re-assembly of the results into age groups that are consistent

with the length of time between the two sets of data. For example, it is not

uncommon to encounter 5 year age groups except for those between ages 15 and

24, where they may be tabulated, for example, as 15–18, 19–20, and 21–24. In such

a case, age group 19–20 would have to be split such that those aged 19 are separated

from those aged 20 so that the former could be added to those aged 15–18 and the

latter to those aged 21–24, forming age groups 15–19 and 20–24, respectively.

Fortunately, age related data provided by agencies in most countries are consistent

with the length of time between two successive data sets, avoiding the need for age

splitting and data re-assembly.

One feature of CCRs that is implicit in the preceding discussion is that they yield

patterns representing demographic change. If, for example, the CCRs for those aged

10–14 are above 1.00 (indicating net in-migration), there will be one or more CCRS

above 1.00 in the age groups that are likely to represent the parents of those aged

10–14. With the exception of special circumstances such as forced migrations,

children move with their parents. CCRs also form broader patterns, usually asso-

ciated with geography. For example, areas representing urban centers often have

CCRs above 1.00 for those of college age and CCRs less than one for those of post-

college age. In many respects, graphs of a full set of CCRs by age for urban,

suburban, and rural areas can be seen to fit into net migration typologies similar to

those developed by Pittenger (1974).

As suggested earlier, cohorts can be defined by criteria other than age. Some-

times the criteria are associated with age, such as K-12 school enrollment by grade

or year of high school graduation. However, it is always the case that once a cohort

has been defined at a given point in time, one can also determine age. This is a direct

result of what is known as the “age-period-cohort” issue, whereby having defined

two of the three, the third is determined (Bloom 1987). This can be illustrated by the

following equation:
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p ¼ aþ c ð1:3Þ

where,

p ¼ period,

a ¼ age, and

c ¼ cohort.

As an example of Eq. 1.3, consider a person who is 50 years of age and who was

part of the 1966 birth cohort. Knowing these two elements (a and c, respectively)
we can determine that the period ( p) in question is 2016. Similarly, if we know that

the period is 2016 and that a person was part of the 2000 birth cohort, then we know

the person is 16 years of age.

It is worthwhile to note that one could calculate a “Cohort Change Difference”

as follows:

nCCDx, t ¼ nPx, t � nPx�k, t�k: ð1:4Þ

where,

nPx, t is the population aged x to x þ n at the most recent census (t),

nPx�k, t�k is the population aged x�k to x�k þ n at the 2nd most recent census

(t�k), and
k is the number of years between the most recent census at time t and the one

preceding it at time t�k.

Unlike a CCR, a CCD has no lower boundary. That is, it can become negative, not

bounded on the lower end by zero. In terms of comparisons, when a CCR is greater

than 1.00, its corresponding CCD will be positive and when a given CCR is less

than 1.00, its corresponding CCD will be negative (less than zero). Given this and

other properties (e.g., neither division nor subtraction is associative and commuta-

tive in terms of their mathematical properties), there is no major advantage in using

a CCD compared to its corresponding CCR. However, the conventional approach

that can be directly traced to Hamilton and Perry (1962) is to use a CCR.

1.4 Reverse CCRs

As illustrated in Chapter 10, it is possible to construct CCRs that go backward in

time. Not surprisingly, these are known as Reverse CCRs (RCCRs) and can

generally be described as:

nRCCRx�k, t�k ¼ nPx�k, t�k=nPx, t ð1:5Þ

where,
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nPx,t is the population aged x to x þ n at the most recent census (t),

nPx�k,t�k is the population aged x�k to x�kþ n at the 2nd most recent census (t�k),
and

k is the number of years between the most recent census at time t and the one

preceding it at time t�k.

As is the case with a CCR, there are special conditions that need to be taken into

account when calculating an RCCR, which are discussed in Chapter 10. However,

there is no major reason why a Reverse Cohort Change Difference could not be

computed and used, other than following convention.

1.5 Census Survival Ratios

A Census Survival Ratio (CSR) is a special case of a CCR where 0� nCSRx, t � 1.0.

With the upper limit of a CSR established as 1.0, we interpret that to mean that no

migration is present. Although the lack of migration in a population is uncommon,

non-migration does occur (or nearly so) in some actual populations; and it is an

important idea in the analysis of mortality via a life table, whereby a CSR can be

viewed as the probability of a member of a given cohort surviving into the future.

These and related issues are covered in detail in Chapter 11.

1.6 Some Applications of Cohort Change Ratios

As you will see in this book, cohort change ratios (CCRs) have a wide range of

applications. Many applications relate to the construction and evaluation of popu-

lation forecasts and current and historical population estimates.1 CCRs are very

valuable when one wants to forecast or estimate the population of a small area, such

as a census tract or school district, and other sub-county units (e.g., townships, fire

districts, legislative districts), or statistical geographies (e.g., block group, block).

Their value stems from the fact that there is a minimal amount of input data

required to generate them and the forecasts and estimates they are used to make.

Small area population projections and estimates are a major staple in both the

private and public sectors (Swanson 2015, Swanson and Pol 2004, Swanson and Pol

2008, Swanson et al. 2010, Yusuf and Swanson 2010). Private sector uses include

determining housing demand, business site location, market valuation, assessing

profitability, and assembling consumer profiles. Public sector uses are often in

1In general, an estimate refers to information for a current or past date in the absence of a census,

whereas a projection refers to information to a time beyond the current date. A forecast is a

projection deemed or judged most likely to occur. Chapter 2 discusses these concepts in greater

detail.
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regard to transportation and strategic planning, land use zoning, and economic

development.

CCRs are also useful in forecasting school enrollments and as the basis for

forecasting a wide range of social, economic, and health outcome related charac-

teristics. The utility of CCRs extends beyond general estimation and forecasting

applications into other areas of demography such as the determination of life

expectancy and stable population theory. CCRs can also be proxies for survival

rates in places lacking vital statistic data of age-specific mortality as discussed in

Chapter 11.

In summary, we believe that there are several theoretical and practical reasons to

use cohort change ratios as measures of cohort change. One of them is that they are

preferable to cohort change differences in terms of a measure of cohort change.

Among other benefits, ratios will not fall below zero, which is not the case for

differences. This issue is not a minor one, as has been pointed out by Swanson

(2004) in regard to using the ratio-correlation method of population estimation,

which yields a time-based regression model that meets the general condition of

“stationarity,” an important feature in constructing valid and reliable population

models that incorporate temporal change. Another feature of cohort change ratios is

they are non-linear whereas cohort change differences are essentially linear, and

cohort change ratios have a natural affinity to probability and, by extension, to

measures such as the odds ratio and relative risk, issues discussed in Chapter 2.

1.7 About This Book

Now that we know something about CCRs and have an overview of their uses, it is

natural to ask what specifically can be done with them. In providing an answer to

this question, this book is organized into 16 chapters (including this one) along with

two appendices, an author index, and a subject index. Even if you are an experi-

enced demographer, we suggest reading Chapters 2, 3, and 4 before moving on to

the other chapters, which depending on your experience, can be read in any order.

Chapter 2 covers basic demographic concepts and terms while Chapter 3 describes

sources of data that can be used to develop CCRs. Chapter 4 shows how to forecast

the size and composition of a population from two census counts. It is the founda-

tion for the other chapters, which generally progress from basic to more advanced

applications.

Chapter 5 shows how CCRs can be modified in order to more fully capture the

dynamics of demographic change while Chapter 6 describes a method for generat-

ing formal measures of uncertainty for population forecasts made using CCRs.

Using CCRs to develop both short-term and long-term school (K-12) enrollment

forecasts is the subject of Chapter 7. Chapter 8 shows how CCRs can be used to

generate forecasts of a wide range of characteristics of interest (health outcomes,

labor force, and so forth), while Chapter 9 shows how CCRs can be used to generate

population size, composition, and characteristics for a current point in time. In
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Chapter 10, the use of CCRs for purposes of estimation is extended to developing

population size, composition, and characteristics for the past. In Chapter 1, we show

how CCRs can be used to develop a standard demographic measure, life

expectancy.

An advanced application is found in Chapter 12, which applies the CCR

approach to a major canon of formal demography, stable population theory. The

theoretical aspects of CCRs are explored in Chapter 13, which deals with

decomposing the factors making up differences in CCRs. Chapter 14 provides an

overview of how CCRs can used in spatial applications while Chapters 15 and 16

offer summary remarks, with the former providing a discussion of the utility of the

CCR approach and the latter providing concluding remarks, including some ideas

about the future of the CCR approach.

A short, but important, proof is given in the Appendix whereby the CCR

approach is shown to be consistent with the fundamental demographic theorem.

Author and subject indices follow the appendix.

For someone who is interested in using this book in the classroom, it is organized

so that the chapters proceed from basic ideas to applications to advanced applica-

tions, which fits the lecture format for a full term course. The writing style also fits

this approach. In the event it is used as a supplemental textbook, both the organi-

zation and writing style should work for this purpose as well. As a textbook, Cohort
Change Ratios and Their Applications is designed to accommodate the trend

toward graded assignments as a form of student assessment rather than closed-

book and other forms of examinations. The examples in this book can be assigned

to students to replicate as tutorial (non-graded) assignments, with graded assign-

ments being similar but using different data (e.g., a tutorial assignment would

involve forecasting the multi-race population of California, while a graded assign-

ment would involve forecasting the multi-race population of the U.S., for which the

excel file for California can be used as a template for the U.S.). As already noted,

Chapter 3 contains the URL for an online site where you can find excel templates

and files containing the data and computational statements used to generate the

book’s examples.

If used in a class, learning outcomes can be derived from the book’s general

objectives, which are to provide (1) basic demographic and measurement concepts

without requiring prior major demographic, mathematical or statistical skills;

(2) useful analytical frameworks and tools; (3) a basic understanding of demo-

graphic factors that affect a wide range of applications, such as current or future

market size and segments; (4) theoretical and conceptual foundations of the cohort

perspective and its implementation in the form of cohort change ratios; and

(5) examples that can be used as the basis for case studies (Swanson and Morrison

2010).
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Chapter 2

Basic Demographic Concepts

2.1 Introduction

We begin this chapter by discussing estimates, projections, and forecasts and

continue with discussions of the size of the population; its distribution across

geographic areas; its composition (e.g., age, sex, race, and other characteristics);

and changes in population size, distribution, and composition over time. We also

define a number of basic demographic concepts, define some commonly used terms,

describe a number of statistical measures used in demography, and present the

participation rate method for doing forecasts of population-related characteristics.

This chapter is designed to give readers with little training or experience in

demography a brief introduction to the field and sets the stage for the topics covered

in the remainder of the book.

2.2 Estimates, Projections, and Forecasts

An important distinction is made between estimates, on the one hand, and on the

other, projections and forecasts. The most fundamental difference is that estimates

refer to the present or the past while projections and forecasts refer to the future. In

addition, estimates are often based on data for corresponding points in time. For

example, estimates for 2016 made in 2015 can be based on data (e.g., births, deaths,

building permits, school enrollments, and Medicare enrollees) reflecting population

growth through 2015. However, such data do not yet exist for forecasts for 2025

made in 2016.

The distinction between estimates and forecasts is not always clear-cut. Some-

times no data are available for constructing population estimates. For example,

calculations of a city’s age-sex composition in 2016 made in 2015 may have to be

based on the extrapolation of 2000–2010 trends because data series reflecting post-
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2010 changes in age-sex composition may not be available. Should these calcula-

tions be called estimates or forecasts? In this book, we refer to calculations

extending beyond the date of the last observed data point as forecasts or projections

and calculations for all prior dates as estimates.

A population projection is the numerical outcome of a particular set of assump-

tions regarding future population trends (Isserman 1985; Keyfitz 1972; Weeks

2014). Some projections refer to total population while others provide breakdowns

by age, sex, race, and other characteristics. Some focus solely on changes in total

population while others distinguish among the individual components of growth—

births, deaths, and migration. Population projections are conditional statements

about the future. They show what the population would be if particular assumptions

were to hold true, but make no predictions as to whether those assumptions actually

will hold true. Population projections are always “right,” barring a mathematical

error in their calculation, and can never be proven wrong by future events. A

population forecast, on the other hand, is the projection the analyst (i.e., the person

or agency making the projection) believes is most likely to occur in the future.

Unlike projections, forecasts are explicitly judgmental. They are unconditional

statements reflecting the analyst’s views regarding the optimal combination of

data sources, projection techniques, and methodological assumptions, leavened

by personal judgment. Population forecasts can be proven right or wrong by future

events and can be found to have relatively small or large errors.

Demographers have traditionally and typically use the term projection to

describe calculations of the future population. There are several reasons for choos-

ing this terminology. Projection is a more inclusive term than forecast. A forecast is

a particular type of projection; namely, the projection the analyst believes is most

likely to provide an accurate prediction of the future population. Given this

distinction, all forecasts are projections but not all projections are forecasts. Also,

demographers often intend their calculations of future population to be merely

illustrative rather than predictive; projection fits more closely with this intention

than forecast. In this book we use the term forecast when discussing calculations of

future events, in part for simplicity, but also because most users view prognostica-

tion about the future as forecasts (rather than projections) regardless of the intent of

the producer (Smith et al. 2013: 323)

2.3 Demographic Concepts

2.3.1 Size

Population estimates and forecasts start with the same basic consideration as a

census: What is the size of a population? The concept of population size refers to

the number of people residing in a specific area at a specific time (the de jure

approach). According to January 1, 2014 population estimates, Loving County,
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Texas had a population of 82, whereas Harris County, Texas had a population of

4,365,601 (Texas State Data Center 2015). These were the largest and smallest

counties in Texas in terms of population size. However, the concept of population

size can also refer to the number of people actually present in a given area at a given

time (the de facto approach). Under a de facto count, all tourists, business travelers,

seasonal residents, and workers in downtown Boston, MA would be counted along

with usual residents who are also in downtown that day (Swanson and Tayman

2011). Usual residents of downtown Boston who were out of town would not be

counted. De facto population estimates have many uses including dealing with

potential traffic congestion, long commuting times, or disaster and relief activities

to know the number of people that may be affected in an emergency.

The de jure concept is more ambiguous in that it comprises all of the people who

“belong” to a given area by virtue of legal residence, usual residence, or some

similar criterion (Wilmoth 2004: 65). However, the de jure concept is used as the

census definition of population in the United States, Canada, and most other

developed countries and, as such, becomes the dominant concept in population

estimation and forecasting. The methods covered in this book use the de jure

concept. A discussion of methods for estimating de facto populations is found in

(Swanson and Tayman 2012: 313–327).

2.3.2 Distribution

The distribution of a population refers to its geographic location; there are two

major ways in which geographic areas have been identified. The first is the

administrative approach, where areas are defined according to administrative or

political criteria. Examples include states, counties, cities, U.S. congressional dis-

tricts, and a wide variety of state and local administrative and political delineations

(e.g., city council, water, and school districts). For many purposes these are the

most important types of geographic areas that can be defined (Plane 2004). How-

ever, administrative areas also have several limitations. Their boundaries may not

account for important economic, cultural, and social considerations. For example,

Gary, Indiana is administratively distinct from the city of Chicago, Illinois, but it is

economically, culturally, and socially linked to it. Another problem is that admin-

istrative boundaries may not remain constant over time–annexations by a city are a

case in point–and changing boundaries make it difficult not only to make compar-

isons over time, but to produce consistent estimates and forecasts.

One way to avoid some of the limitations imposed by administrative definitions

is to define geographic areas specifically for purposes of identifying areas that are

economically, socially, and culturally linked. These so-called statistically defined

areas are used in many countries, including the United States (Plane 2004).

In the United States, important statistical areas are based on geography used in

the census—blocks, block groups, and census tracts. Blocks are small areas

bounded on all sides by visible features such as streets or railroad tracks or by
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invisible boundaries such as city or township limits; they are the smallest geo-

graphic unit for which census data are tabulated. Block groups are clusters of blocks

and generally contain 250–550 housing units; block groups do not cross census tract

boundaries. Census tracts are small, relatively permanent areas that do not cross

county boundaries. These areas generally contain between 2,500 and 8,000 persons

and are designed to be relatively homogeneous with respect to population charac-

teristics, living conditions, and economic status. Figure 2.1 shows a hierarchy of

geographic areas built from the 2010 U.S. census geography. Geographic areas may

work in a hierarchical fashion, with smaller areas nesting in larger ones (e.g., census

tracts within counties, counties within states, and states within the U.S.), while

others like Core Based Statistical Areas do not cover all of the U.S.

Geographic boundaries can also be defined according to other criteria. In the

United States, for example, one can obtain census data for Postal ZIP code areas and

data for market areas that are important for businesses. It is not uncommon to

produce estimates and forecasts for a combination of administrative and statistical

areas. Figure 2.2 shows an example of one such system used in San Diego County,

California. Master Geographic Reference Areas combine census geography,

Fig. 2.1 Standard hierarchy of census geographic entities (Source: U.S. Census Bureau (http://

www.census.gov/geo/www))
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political boundaries, and zip codes into a spatially detailed spatial system that

supports a wide range of uses.

2.3.3 Composition

Composition refers to the characteristics of the population. For population esti-

mates and forecasts the most commonly used characteristics are age, sex, race, and

Hispanic origin. For many purposes, age is the most important demographic charac-

teristic because it has such a large impact on somany aspects of life, for individuals as

well as for society as a whole. The age structure of a population affects its birth,

death, and migration rates, and the demand for public education, health care, and

nursing home care. It also impacts the housing market, the labor market, and the

marriage market. No other characteristic is more valuable for a wide variety of

planning and analytical purposes than the age composition of the population (Smith

et al. 2013: 23). Sex composition also is important for many purposes. It is often used

in combination with age to show a population’s age-sex structure.

The age-sex structure is often illustrated using population pyramids (Hobbs

2004: 161–166). Population pyramids are graphic representations showing the

number (or proportion) of the population. The basic pyramid form consists of

Fig. 2.2 Master Geographic Reference Areas in San Diego County, California (San Diego

Association of Governments 2010)
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bars, representing age groups in ascending order from the lowest to the highest,

pyramided horizontally on one another. The bars for males are given on the left of a

central vertical axis and the bars for females on the right of the axis. The charac-

teristics of pyramids (e.g., the length of a bar compared to others, the steepness and

regularity of its slope) for different populations quickly reveal any differences in the

proportion of the sexes, the proportion of the population in any particular age class

or classes, and the general age structure of the population.

Figure 2.3 shows pyramids for four populations with different age–sex struc-

tures. The pyramid for Yemen has a very broad base and narrows very rapidly. This

pyramid illustrates an age–sex structure with a very large proportion of children, a

very small proportion of elderly persons, and a low median age. It reflects a

“young” population with relatively high fertility rates. The pyramid for Japan is

very different. It has a relatively narrow base and a somewhat larger middle section.

It illustrates an age–sex structure with a very small proportion of children, a very

large proportion of elderly persons, and a high median age. It reflects an “old”

population and relatively low fertility rates. The pyramid for Singapore has a very

narrow base indicative of its very low fertility rate (less than one child per woman

on average), but it has relatively few elderly and a large number of young adults

aged 20 to 34 due to the migration of workers into this country. The U.S. pyramid

has a fairly uniform look for the population aged 0–59 with variations due to the

large baby boom cohort (aged 50–59) that was followed by the much smaller baby

bust cohort (aged 35–49), and then the larger baby boomlet cohort (aged 20–34).

One pattern is the same in every country shown in Fig. 2.3. Females outnumber

males at the older ages due to the cumulative effect of higher male mortality rates at

virtually every age (Wisser and Vaupel 2014). For the population aged 65 years and

older in 2015, the relative number of males to females ranges from 77.1 males per

100 females in Japan to 86.6 males per 100 females in Yemen (U.S. Census Bureau

2015).

Race and ethnicity are two other widely used demographic characteristics. For

example, the U.S. Census Bureau uses five broadly defined racial categories: African

American, American Indian or Alaska Native, Asian, Native Hawaiian or other

Pacific Islander, and White. Starting with the 2000 census, there was an important

change to the collection of racial data. The Census Bureau for the first time allowed

respondents to list themselves as belonging to more than one racial category; prior to

that time, respondents could list only a single category (McKibben 2004). In addition

to race, the census uses an ethnic dimension, with two general categories: Hispanic

and non-Hispanic. It should be noted that “Hispanic” is not a racial category; that is,

people are classified both by race and by Hispanic origin. Composition also can refer

to other characteristics such as employment and marital status, income, education,

and occupation (O’Hare et al. 2004).
As illustrated in Table 2.1, Hispanics and race groups often have different

demographic characteristics and patterns of growth that influence population esti-

mation and forecasting. Between 2000 and 2010 in Los Angeles County, California,

the percentage change in the Hispanic population is more than triple that of the

overall population. Consequently, the Hispanic share of the total population
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increased from 44.5% in 2000 to 47.7% in 2010. Asians are the fastest growing race

group, increasing by 18.4%, and their share of the total population rose from 11.9%

in 2000 to 13.7% in 2010. Almost 2,141,000 people in Los Angeles County

identified themselves as belonging to two or more race groups in 2010, almost

100,000 less than 10 years prior. Blacks, American Indians, and Native Hawaiians

all lost population during the first decade of the twenty-first century in Los Angeles

County. Non-Hispanic Whites, another widely used distinction, lost over 230,000

persons between 2000 and 2010, causing its share of the total population to drop

from 31.3 to 27.8%.

Non-Hispanic Whites have the oldest age structure with a median age of

44.5 years in 2010, almost 16 years older than the Hispanic median age (see

Fig. 2.4). Asians also have a relatively old population with a median age

approaching 40 years. Other races and two or more races have the lowest median

ages (27.4 and 25.2, respectively), indicative of their younger age structures.

2.3.4 Change

Population change is measured as the difference in population size between two

points in time. A point in time can correspond to the date of a census or to the date

Fig. 2.3 Percent distribution by age and sex of the 2015 population of Japan, Singapore, United

States, and Yemen (Source: U.S. Census Bureau International Data Base 2015)
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of a population estimate. Measures of population change always refer to a specific

population and a specific period of time; in most instances, they refer to a specific

geographic area as well. Population change can also be measured for various

subgroups of the population (e.g., females, Asians, teenagers, etc.), different geo-

graphic areas (e.g., counties, cities), and different time periods (e.g., 2010–2015,

2000–2015). In other words, population change can refer to changes in size,

distribution, or composition, or to any combination of the three.

Table 2.1 Population by race and Hispanic origin, Los Angeles County, California, 2000

and 2010

Change

2000 2010 Number Percent

All Races 9,519,338 9,818,605 299,267 3.1%

White 4,637,062 4,936,599 299,537 6.5%

Black or African American 930,957 856,874 �74,083 �8.0%

American Indian and Alaska Native 76,988 72,828 �4,160 �5.4%

Asian 1,137,500 1,346,865 209,365 18.4%

Native Hawaiian and Other Pac. Is. 27,053 26,094 �959 �3.5%

Other Races 2,239,997 2,140,632 �99,365 �4.4%

Two or More Races 469,781 438,713 �31,068 �6.6%

Hispanic or Latino 4,242,213 4,687,889 445,676 10.5%

Non-Hispanic White 2,959,614 2,728,321 �231,293 �7.8%

Source: U.S. Census Bureau (http://factfinder2.census.gov)

Fig. 2.4 Median age by race and Hispanic origin, Los Angeles County, California, 2010 (Source:

U.S. Census Bureau, 2010 census (http://factfinder2.census.gov))
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Population change can be expressed in either numeric or percentage terms.

Numeric change is computed by subtracting the population at the earlier date

from the population of the later date. A percentage change is computed by dividing

the numeric change by the population at the earlier date and multiplying by 100.

Population change is often expressed in terms of an annual average. Average annual

numeric change is computed by dividing the numeric difference by the number of

years between the two endpoints. Average annual percentage changes or growth

rates can be computed assuming discrete compounding (geometric) or assuming

continuous compounding (exponential).

Measuring population change is simple and straightforward in many instances.

However, changes in geographic boundaries, changes in the accuracy of base data,

and changes in definitions makes measuring change difficult. Consistent measures

of change are possible only if geographic boundaries are constant over time. This is

generally the cases for states and counties, but may not be the case for many

subcounty geographic areas. Changes in definition can also be problematic, such

as comparing race in 1990 (where the respondents could choose only one racial

category) with race in 2000 (where respondents could select multiple race catego-

ries). A more detailed discussion of population change is found in Smith et al.

(2013: 25–27) and Perz (2004).

2.3.4.1 Components of Population Change

There are three components of population change: births, deaths, and migration. A

population grows through the addition of births and migrants moving in, and

declines through the subtraction of deaths and migrants moving out. Understanding

these three demographic processes is essential to understanding the nature and

causes of population change. Fertility is the reproductive performance of a

woman, man, couple, or group; it also is a general term for the incidence of births

in a population or group (Swanson and Stephan 2004: 760). Although fertility rates

are generally low in the United States and other developed countries, they can vary

substantially from place to place and from one race, ethnic or socioeconomic group

within a given country. In 2013, the total fertility rate (average number of children a

cohort of women will have during their lifetime) for states ranged from 1.6 in

Vermont to 2.3 in Utah (Martin et al. 2015: Table 12). Mortality is a general term

for the incidence of deaths in a population or group (Swanson and Stephan 2004:

767). While mortality rates do not vary greatly within high income countries, there

are differences between race, ethnic and socioeconomic groups. In 2011, there was

a 17.3 year difference in life expectancy at birth (average number of years of

remaining life) between Black Males (69.5 years) and Asian Females (86.8 years)

in Los Angeles County, CA (Los Angeles County Department of Public Health

2015).

Migration is a general term for the incidence of movement by individuals,

groups, or populations seeking to make permanent changes of residence (Swanson

and Stephan 2004: 766). It refers to changes in usual place of reference and
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excludes short-term temporary movements such as commuting, visiting friends or

relatives, or taking a business trip. Migration levels and rates can vary considerably

from place to place and from country to country and can undergo large sudden

changes, making migration often the most difficult component of change to esti-

mate and forecast (Smith et al. 2013: 103–104).

Migration can be viewed from several perspectives (Smith et al. 2013: 106–109).

Gross migration refers to the total number of migrants into or out of an area

(e.g. 500 migrants; 200 in-migrants plus 300 out-migrants). Net migration is the

difference between the two (e.g., a net outflow of 100 persons); it shows the net

effect of migration on the change in population. It is often useful to make the

distinction between migration that occurs within a country and migration that

occurs between countries. Internal or domestic migration refers to changes of

residence within a country, while foreign or international migration refers to

changes of residence from one country to another. The terms in-migrant and

out-migrant refer to domestic migration. People leaving a country are known as

emigrants and those entering a country are known as immigrants.

2.3.4.2 Fundamental Demographic Equation

The overall change in a population is formalized in the fundamental demographic

equation:

Pl � Pb ¼ B� Dþ IM� OM ð2:1Þ

where,

Pl is the population at the end of the time period,

Pb is the population at the beginning of the time period, and

B, D, IM, OM are the number of births, deaths, in-migrants, and out-migrants during

the time period.1

The difference between births and deaths (B � D) is called natural change coming

from the population itself. It may be either positive (natural increase) or negative

(natural decrease) depending on whether births exceed deaths or deaths exceed

births. The difference between IM and OM reflects the change in population due to

migration and can be either positive or negative depending on whether in-migrants

exceed out-migrants or out-migrants exceed in-migrants. The demographic

balancing equation is a basic formula in demography and has other uses including

deriving estimates of population and net migration (Smith et al. 2013: 30).

To illustrate the fundamental demographic equation, Table 2.2 shows births,

deaths, natural change, and estimates of net domestic and net international migra-

tion from 2010 to 2014 for the 15 counties in Arizona. Natural increase accounts for

1The IM and OM terms include both domestic and foreign migrants. If information is only

available on net migration the IM and OM terms would be replaced by � NM (net migration).

22 2 Basic Demographic Concepts



48% of the population change in Arizona, followed by domestic net migration

(35%) and international net migration (17%). There is substantial variability in the

demographic reasons for population growth among these counties. Eleven counties

show natural increase, while deaths exceed births in Gila, La Paz, Mohave, and

Yavapai Counties. All counties show positive growth due to international migra-

tion, but nine counties (60%) lose population as the result of domestic migration.

Cochise County has the largest loss from domestic migration as well as the largest

loss in total population of any county. In Pima County, the second largest county

and home to Tucson, growth due to international migration is 11 times greater than

the positive growth due to domestic migration. Growth due to domestic migration is

substantially larger than growth due to international migration in Maricopa County,

the largest county and home to Phoenix, and the adjacent Pinal County. The same

pattern is seen in Mohave and Yavapai Counties. In the five counties with positive

natural increase and positive total migration, the share of growth due to natural

increase ranges from 29 to 59%.

Table 2.2 Components of population change, Arizona counties, 2010–2014

Populationa

Change

Natural

Increase Births Deaths

Net Migration

Total

Inter-

national.b Domestic

Apache 310 1,974 4,371 2,397 �1,608 49 �1,657

Cochise �3,909 2,040 7,194 5,154 �5,955 1,463 �7,418

Coconino 3,245 4,218 7,353 3,135 �1,134 503 �1,637

Gila �478 �385 2,650 3,035 �120 119 �239

Graham 737 1,269 2,413 1,144 �543 1 �544

Greenlee 909 263 501 238 644 71 573

La Paz �258 �66 841 907 �166 11 �177

Maricopa 269,834 118,394 232,032 113,638 146,372 38,922 107,450

Mohave 3,175 �2,949 8,005 10,954 5,464 2 5,462

Navajo 607 3,070 7,011 3,941 �2,465 148 �2,613

Pima 24,253 13,771 51,183 37,412 9,905 9,141 764

Pinal 26,148 9,435 20,023 10,588 14,917 3,088 11,829

Santa Cruz �725 1,693 2,876 1,183 �2,485 339 �2,824

Yavapai 7,829 �3,417 7,763 11,180 10,862 637 10,225

Yuma County 7,497 7,713 13,509 5,796 �840 1,999 �2,839

Arizona 339,174 157,023 367,725 210,702 172,848 56,493 116,355

Source: U.S. Census Bureau, Population Division, March 2015. (http://www.census.gov/popest/

data/counties/totals/2014/CO-EST2014-02.html)
aTotal population change includes a residual. This residual represents the change in population that

cannot be attributed to any specific demographic component
bNet international migration for the United States includes the international migration of both

native and foreign-born populations. Specifically, it includes: (a) the net international migration of

the foreign born, (b) the net migration between the United States and Puerto Rico, (c) the net

migration of natives to and from the United States, and (d) the net movement of the Armed Forces

population between the United States and overseas.
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2.4 Statistical Measures

Absolute measures focus on single numbers such as shown in Table 2.2. Relative

measures emphasize the relationship between two numbers; they are typically

expressed as ratios, proportions, percentages, rates, or probabilities. All the relative

measures are similar to each other, but each has a distinct meaning.

2.4.1 Ratios

A ratio is simply one number divided by another. These could be any two numbers

and do not need to have any particular relationship to each other. For example, one

could calculate the ratio of storks to babies, the ratio of sunspots to gross domestic

product, or the ratio of public transportation riders to automobile passengers in a

major traffic corridor. To be useful, a ratio should provide some type of meaningful

information.2

A commonly used ratio in demography is the sex ratio, which is the number of

males divided by the number of females and is usually multiplied by 100. A sex

ratio below 100 indicates an excess of females, while a sex ratio above 100 indicates

an excess of males. Table 2.3 shows that sex ratios by age vary between the United

States, Japan, Singapore, and Yemen in 2015. Sex ratios for ages 0–4 reflect the fact

more males are born than females. Sex ratios at birth typically range from 103 to

106. However, China, India, and some other Asian countries have shown abnor-

mally high sex ratios at birth since the 1980s (Poston and Bouvier 2010: 252). For

example, in 2015, China’s and India’s sex ratios at age 0 are 114.9and 112.1,

respectively (U.S. Census Bureau 2015). Sex ratios under 100 occur in every

country for the population 60 years and older, with the ratios declining consistently

to ages 85 years and older. The greatest excess of males in the U.S. is in ages 15–24;

in Japan in ages 0–9; in Singapore in ages 15–24; and in Yemen in ages 35–39. In

the U.S. and Yemen, there are more males in ages 25–34 compared to females than

in Japan and Singapore. For ages 50–59 the pattern reverses, Japan and Singapore

have more males and the U.S. and Yemen have more females. In all countries

except Yemen, the total population contains more females than males.

Dependency ratios also are widely used measures in demography (Siegel

2002:12). They measure the pressure of those typically not in the labor force on

the productive (or working-age) population, and are usually split into youth and

2A proportion is a type of ratio where the numerator is a subset of the denominator, such as the

portion of the population aged 65 years and older, males, employed, or married. Proportions have a

range from zero to one. A percentage is a proportion multiplied by 100.
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elderly dependency ratios. The youth dependency ratio (YDR) is the population

aged 18 and younger divided by the population aged 18–64, and the elderly

dependency ratio (EDR) is the population aged 65 and older divided by the

population aged 18–64. There is not universal agreement on the age groups that

defines youth, workers, and retirees. For example, Poston and Bouvier (2010: 245)

use ages under 15 and ages 15–64 to define youths and workers; and Meyers (2007:

46) uses ages 25–64 to define workers. For a discussion of the strengths and

weaknesses of dependency ratios based solely on age, see Donoghue (2003),

Ervik (2009), and Siegel (2002: 595–598).

The last ratio we cover in this chapter is the child-woman ratio (CWR), a

surrogate way to examine the level of fertility, computed by dividing the population

in young ages by the female population in childbearing years. The CWR is usually

computed for ages 0–4 and ages 5–9 by dividing the population in these age groups

by the female population aged 15–44 and 20–49, respectively (Smith et al. 2013:

178). The CWR is influenced by past mortality and migration, as well as by past

fertility behavior. However, the CWR does not require any information on births

making it useful in areas lacking vital statistics information and when making

forecasts with the Hamilton-Perry (H-P) method (see Chapter 4).3

Table 2.3 Sex ratio by age, Japan, Singapore, United States, and Yemen, 2015

Age U.S. Japan Singapore Yemen

0–4 104.7 106.0 105.5 103.9

5–9 104.3 104.1 105.6 103.4

10–14 104.3 104.0 108.6 103.1

15–19 104.8 102.8 113.4 103.0

20–24 105.6 93.2 106.8 103.0

25–29 103.8 92.7 97.6 102.3

30–34 101.4 90.4 95.5 112.1

35–39 100.1 95.7 95.4 114.4

40–44 98.7 96.0 97.6 102.9

45–49 98.4 98.1 99.4 92.7

50–54 96.5 102.4 101.3 87.1

55–59 94.6 101.2 101.5 84.7

60–64 91.7 98.9 99.2 88.6

65–69 89.7 93.9 95.7 90.4

70–74 85.7 86.1 89.5 87.0

75–79 80.1 78.9 79.7 83.7

80–84 71.3 72.0 66.8 80.8

85+ 52.9 66.2 43.6 73.6

Total 97.1 96.0 94.3 102.5

Source: U.S. Census Bureau International Data Base (2015)

3Another important ratio used in the H-P method is the cohort change ratio (CCR), which is the

population aged x at time t divided by the population aged x-n at time t-n, where n is the number of

years between the two time points of the population data (e.g., n ¼ 10 if the CCR is based on the

previous two decennial censuses). Chapters 1 and 4 discuss CCRs in detail.
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Table 2.4 shows considerable variation in the YDR, EDR, and CWR ages 0–4

for United States, Japan, Singapore, and Yemen in 2015. Japan and Singapore have

the lowest YDRs, consistent with their low fertility rates. Strikingly, Yemen has

more children aged 18 and under compared to its working-age population. Not

surprising, the EDR is highest in Japan and lowest in Yemen, reflecting the effects

of low and high fertility rates, respectively. However, Singapore’s EDR is much

smaller than the EDRs of the U.S. and Japan. Despite Singapore’s low fertility rate,

the impact of a high level of immigration of the working-age population is evident

in its EDR. The CWRs correspond with the fertility rates in each country; Yemen

has by far the highest CWRs and the Japan and Singapore have has the lowest

CWRs. In each country, the male CWR is higher than the female CWR, reflecting

the slightly higher likelihood of having a male child.

2.4.2 Rates and Probabilities

A rate is the number of events occurring during a given time period divided by the

population at risk of the occurrence of those events. For example, the death rate is

the number of deaths divided by the population exposed to the risk of dying and the

birth rate is the number of births divided by the population exposed to the risk of

giving birth. Strictly speaking, the population at risk to the occurrence of an event is

the number of person-years of exposure experienced by the population during the

period under consideration (typically one-year) (Newell 1988: 7). It is very difficult

to develop an exact measure of the population at risk to the occurrence of an event

and the mid-period population is often used as an approximation of the population

at risk. This approximation assumes that births, deaths, and migration occur evenly

throughout the year.

Demographers make a distinction between crude rates and refined rates. For

example, the crude birth rate (CBR) is calculated by dividing the number of births

during the year by the mid-year total population. It is often multiplied by 1,000 to

express the CBR as the number of births per 1,000 persons. The crude death rate

(CDR) is similarly defined replacing births with deaths in the numerator. These

Table 2.4 Selected demographic ratios, Japan, Singapore, United States,and Yemen, 2015

U.S. Japan Singapore Yemen

Youth Dependency Ratioa 39.8 25.6 30.1 106.8

Elderly Dependency Ratiob 24.4 47.1 12.2 5.7

Child-Woman Ratio, Femalesc 0.1537 0.0696 0.1165 0.3077

Child-Woman Ratio, Malesd 0.1609 0.0738 0.1230 0.3197

Source: U.S. Census Bureau International Data Base (2015)
aPop < 18/Pop 18–64
bPop 65+/Pop 18–64
cFpop 0–4/Fpop 15–44
dMpop 0–4/Fpop 15–44
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rates are called crude because their denominators are only a rough approximation of

the population at risk. For the CBR, the denominator includes males and females

outside the childbearing years; and for the CDR not everyone in the denominator

has the same chance of dying (i.e., males have higher death rates than females and

older people have higher death rates than younger people). To overcome the

problem with crude rates, rates are refined to reflect specific age-sex groups (racial

and ethnic groups can be used as well). For age groups, the general formula for an

age specific rate is (ASR):

nASRx ¼ nEx=nPx ð2:2Þ

where,

x is the youngest age in the age interval,

n is the number of years in the age interval,

nEx is the number of events, and

nPx is the mid-year population.

For example, if x ¼ 35 and n ¼ 5, the ASR would be based on data for the

population aged 35–39, or if x ¼ 35 and n ¼ 1, the ASR would refer to the

population aged 35.

Figure 2.5 contains age-specific fertility (ASFR) and death rates (ASDR) for the

United States in 1990 and 2013. The age pattern of ASFR has changed from 1990 to

2013. In the earlier year, the highest rates occur in ages 20–29 with a substantial

drop after the age of 30. By 2013, the effects of a drop in the overall fertility level

and of delayed childbearing are evident. The fertility rate for ages 30–34 is now

higher that the rate for ages 20–24 and much closer to the rate for ages 25–29. The

rates for all ages below 30 have declined and the rates for all ages above 30 have

increased over the 23 year period. These changes are reflected in the total fertility

rate, which declined from 2.08 in 1990 to 1.86 in 2013 (Martin et al. 2015).

ASDRs show a J-shaped pattern that reflects relatively high death rates for

newborns, considerably lower rates for young children, slowly increasing rates

for the middle ages, and rapidly increasing rates for the older population. The

pattern of the ASDRs is very similar for the 2 years and is found for virtually all

population and population subgroups throughout the world (Smith et al. 2013: 54).

Death rates in 2013 are lower in every age group compared to the 1990 rates. The

percentage declines range from�11% for ages 85 years and older to�49% for ages

15–19. As a result, the life expectancy at birth for both sexes increased from

75.4 years in 1990 to 78.8 years in 2013 (National Center for Health Statistics

1990, 2015).

In addition to the distinction between crude and age-specific rates, a distinction

is also made between probabilities and central rates. A probability is a special type

of rate that measures the chance or likelihood that a population will experience a

given event over a given time period (Siegel 2002: 11). In a central rate, the

denominator is an area’s population at the midpoint of a time period (typically,

the middle of a year) and the numerator is the number of events occurring in the

2.4 Statistical Measures 27



area during the time period. The denominator is meant to represent the average

population during the time period, or the total number of person-years of exposure

to the risk of an event. The CBR, CDR, and ASR defined above are all central rates.

In a probability, the denominator is the population at the beginning of the time

period and the numerator is the number of events occurring to that population

during the time period (Rowland 2011: 32).

For example, a single-year probability for a death rate can be computed by

dividing the deaths occurring over the year by the population at the beginning of the

year. However, some deaths will be missed for people who leave the area and then

die and deaths will be improperly included for people who died after moving into

the area. Consequently, it is next to impossible to construct true probabilities for

demographic measures and central rates are often used to approximate their prob-

abilities (Smith et al. 2013: 35).

Fig. 2.5 Age-specific birth and death rates, United States, 1990 and 2013 (Sources: National

Center for Health Statistics 1990, 2015)
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2.4.3 The Odds Ratio

Given that a Census Survival Ratio (discussed briefly in Chapter 1 and in detail in

Chapter 11) can be defined as the probability of survival, it is natural to ask if it is

related to other measures that are based on probability. One such notable measure is

the “odds ratio,” which provides the odds of an event occurring among those

exposed to a condition that is related to the event in question divided by the odds

of the event in question occurring among those not exposed to the condition. One

example would be the odds of those being diagnosed with asbestos who were

exposed to asbestos relative to those diagnosed with asbestos who were not exposed

to asbestos. The Odds Ratio is defined as:

Odds ratio ¼ Pe= 1� Peð Þð Þ= Pn= 1� Pnð Þð Þ ð2:3Þ

where,

Pe is the probability (condition | exposed), and

Pn is the probability (condition | not exposed).

If we substitute the concept of “dying” for the concept of “condition” and the

concept “cohort” for the concept of “exposed”, we can see that the idea of an odds

ratio can be used to measure the “odds of dying” among members of a given cohort

during a given period of time divided by the “odds of dying” for the same period of

time among those who are members of a different cohort:

Odds Ratio ¼ Pdx, t= 1� Pdx, tð Þð Þ= Pdy, t= 1� Pdy, t
� �� � ð2:4Þ

where,

Pdx,t is the probability of dying among those in cohort x during time t, and

Pdy,t is the probability of dying among those in cohort y during time t.

Note that the probability of dying during the time period defined by t by members of

cohort x is given by Pdx,t and that the probability of surviving during the time period

defined by t for those in cohort x is given by (1 � Pdx,t). These respective values

have the same interpretation when applied to cohort y.
As an example of using the odds ratio in this way, we use a 2010 complete USA

life table (both sexes combined) taken from the Human Mortality Database (2009)

and compare the odds of a person dying in the next year who has reached his or her

10th birthday relative to a person dying in the next year who has reached his or her

65th birthday. In the life table, there are: (1) 99,221 persons in cohort “y” who

reached their 10th birthday of whom 10 died before reaching their 11th birthday;

and 84,492 persons in cohort “x” who reached their 65th birthday of whom 1079

died before reaching their 66th birthday. Inserting these numbers into Eq. 2.4, we

have the odds ratio for those who reached their 65th birthday (cohort x) and dying
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before reaching their 66th birthday relative to those who reached their 10th birthday

(cohort y) and dying before reaching their 11th birthday:

Pd65, t ¼ 0:01277 ð1:079=84, 492Þ,
Pd10, t ¼ 0:00010 ð10=99, 221Þ, and

odds ratio ¼ ð0:01277=ð1�0:1227ÞÞ=ð0:00010=ð1�0:00010ÞÞ
¼ ð0:01277=0:98723Þ=ð0:00010=0:99990Þ

¼ 0:01294=0:00010
¼ 129:4:

Thus, the odds of a member of the cohort of people reaching his or her 65th

birthday and dying before reaching the 66th birthday are about 129 times higher

than that of a member of the cohort of people reaching the 10th birthday and dying

before reaching his or her 11th birthday. Alternatively, we can state that the risk of

dying in the next year is about 129 times higher for those who reached their 65th

birthday than it is for those who reached their 10th birthday.

2.5 Participation-Rate Method

2.5.1 Logic and Formulas

In the participation-rate method, current and historical data are used to construct

rates reflecting the proportion or prevalence of the population having the attribute

of interest (e.g., in the labor force). Rates are typically stratified by demographic

characteristics rather than being defined using the total population. They are

constructed separately for each age group and can be further stratified by sex and

racial/ethnic groups as well. Rates can be forecast into the future by holding them

constant, extrapolating recent trends, tying them to forecast changes in other places,

using structural models, or relying on expert judgment. The forecast rates are then

applied to forecasts with the matching demographic characteristics to obtain fore-

casts of the attribute of interest:

Launch year participation rate PRa,d, t ¼ Pa,d, t=Pd, t ð2:5Þ
Forecasted participation rate PRa,d, tþi ð2:6Þ

Forecasted characteristic Pa,d, tþi ¼ PRa,d, tþi�Pd, tþi ð2:7Þ

where,

PR is the participation rate,

P is the population,

a is the attribute of interest (e.g., in the labor force),

d is the demographic characteristic (e.g., an age cohort),
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t is the launch year; and

i is the length of forecast interval.

These computations are followed for each demographic group and for each interval

over the forecast horizon.

2.5.2 Implementation Issues

What issues must be addressed when preparing population-related forecasts? Per-

haps the most fundamental is obtaining the necessary data. The participation-rate

method requires age-specific data on the variable of interest, and perhaps sex- and

race/ethnicity-specific data as well. These data are often available from adminis-

trative records (e.g., labor force status) or surveys (e.g., the ACS and health

surveys). Clearly, the availability of reliable data is essential for the production of

reasonable forecasts.

The participation-rate method requires population data for constructing rates and

a set of population forecasts to which the projected rates can be applied. Population

data from the decennial census or post-censal estimates can generally be used as

denominators in the rates. If reliable data for either the numerator or denominator

are not available for a particular area, rates from similar areas can be used as proxies

(e.g., county rate forecasts used for census tract rate forecasts). If independently

produced population forecasts are not available, they can be constructed using the

H-P method described in Chapter 4 or other techniques (Smith et al. 2013).

The participation-rate method requires that rates be forecast into the future.

Making reasonable choices regarding future rates is crucial to the reliability of

the forecasts but is largely a subjective process. Thorough knowledge of historical

trends and the factors affecting the variable of interest are essential. In some

circumstances, it may be advisable to consult an expert in the field before making

these choices and to apply several alternative assumptions in order to provide a

range of forecasts. Reasonable forecasts of population-related variables can be

made only if the analyst makes reasonable choices regarding future participation

rates. Thorough knowledge of the population-related variables—and how they are

related to the stages of the life cycle—are essential (Martins et al. 2012: 83–938;

Modigliani 1970; O’Rand and Krecker 1990).
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Chapter 3

Sources of Demographic Information

3.1 Introduction

Several sources of data to make cohort change ratios (CCRs) are available. We

cover four major sources for data that can be used in conjunction with CCR

methods: (1) demographic data for the United States; (2) administrative records

data for the United States (2) demographic data for other countries and (4) other

data sources that can be used in conjunction with CCR methods.

In terms of U.S. demographic data, the Census Bureau is the primary supplier,

with the decennial census being the most important. However, the Census Bureau

also produces population estimates and conducts regular surveys, so we also

provide an overview of data from these sources that can be used in conjunction

with CCR methods. These data cover a wide range of geographic areas, including:

(1) administrative areas such as states, counties, cities, townships, legislative

districts; and (2) statistical areas, such as census tracts and block groups. Our

primary need is the data by age (and sex, ethnicity, and race if desired) for the

U.S. and its geographic subdivisions. The most common application of CCR

methods uses 5-year age groups.

In terms of administrative records, the most widely used in terms of CCR

methods are school enrollment and related data, as shown in Chapter 7, but also

as is shown in Chapters 12 and 13 vital statistics can be useful. Hence, we briefly

cover these types of administrative data.

For demographic data in other countries, we first cover the U.S. Census Bureau’s
International Data Base (IDB) that provides the basic data for CCR construction for

countries of the world. We describe this resource in some detail, but also give links

to data available from the national statistical offices of several countries.

The fourth source we consider is largely made up of the collections assembled

under the auspices of the University of Minnesota. We also describe data found

elsewhere that can be useful for CCR methods, such as the University of Michigan

(ICPSR program) and the University of California Berkeley/Max Planck Institute
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for Demographic Research (The Human Mortality data Base). Useful data can also

be obtained from provincial and state demographic agencies (e.g., BritishColumbia

Stats (BC Stats), California Department of Finance, and the Washington State

Office of Financial Management) and the private sector (e.g., ESRI).

3.2 United States Census Bureau

The U.S. Census Bureau is the “go to” source of data for making CCRs. Data by age

(and sex, ethnicity, and race) are readily available for no cost to anyone with an

internet connection using American FactFinder, which is discussed below. Keep in
mind that the Census Bureau produces a wide range of data beyond demographics

and generates these data through different programs, including the decennial

census, estimates, and surveys.

In addition to programs used to generate and disseminate data, the Census

Bureau sponsors the State Data Center (SDC) Program; one of its longest and

most successful partnerships. Started in 1978, the SDC is a partnership between the

50 states, the District of Columbia, Puerto Rico, the island areas and the Census

Bureau. This partnership has made data readily available locally to the public

through a network of state agencies, universities, libraries, and regional and local

governments. The SDC lead organization is appointed by the Governor of each

state/commonwealth, Puerto Rico, island area (American Samoa, Guam, The

Commonwealth of the Northern Mariana Islands, Virgin Islands), and the Mayor

of the District of Columbia. Since the beginning, the SDC has provided access and

education on Census Bureau data and products as well as other statistical resources

to millions of data users. For access to the data to make CCRs, the SDC in each state

is a first stop source. Current contact information for the SDC program lead and

affiliate agencies is available at: http://www.census.gov/about/partners/sdc/mem-

ber-network.html.

3.3 Decennial Census

Decennial censuses are by far the most important source of demographic data

produced by the Census Bureau. They form the basis for the CCR population

estimates and forecasts described throughout this book. No other source of data is

as comprehensive or used for as many purposes.

Decennial Census data were used to compute the CCRs found in Chapter 1 for

Riverside County, California. The CCRs found in Table 1.1, for example, were

computed using data drawn from the quick Tables (QT-P1) for the 2000 and 2010

censuses, a feature of the “Advanced Search” facility of the American Factfinder
data extraction system. American Factfinder can be found at http://factfinder.

census.gov/faces/nav/jsf/pages/index.xhtml. The Riverside County data were
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found by entering the preceding site, opening the “Advanced Search” tab, and then

clicking on the “show me all” tab, which led to two selection features, “topic or

table name” and “state, county or place (optional).” Under the “topic or table

name,” we typed “QT-P1” and under “State, County or place (optional),” we

typed “Riverside County, California,” and then clicked on the “GO” tab. This

opened up a dropdown list that showed six sources of data, each from a decennial

census. We opened up “QT-P1, Age Groups and Sex 2010, 2010 SF1 100% data”

by clicking on “Age Groups and Sex 2010.” This led to the display of a table from

the 2010 census that showed, along with other information the 2010 population of

Riverside County, California by 5 year age groups. We then clicked on the

download tab and selected the option to download the table as an Excel file.

Once the 2010 data were downloaded, we returned to the original display of the

table, where a box can be seen that states “versions of this table are available for the

following years, 2010 and 2000.” Because we had the 2010 data, we clicked on the

“2000” tab, which opened the 2000 census version of this same table for Riverside

County, California, which we downloaded as an Excel file. From the two

downloaded files, we copied and pasted the 2000 and 2010 counts by age (both

sexes combined) into an excel template set up to construct CCRs for any two

decennial censuses; the 2000–2010 CCRs were automatically calculated. We

could have found these same two tables via several routes available from American
Factfinder, including the “Guided Search” feature and the “Download” feature.

The historical U.S. Census data (1910, 1920, and 1930) used to generate the

estimate of the Native Hawaiian population in 1778 described in Chapter 10 were

not found using American Factfinder, which does not include decennial census data
prior to the year 2000. Instead, the data were taken from online copies of census

reports (.pdf files) that the Census Bureau makes available online at https://www.

census.gov/prod/www/decennial.html. Once at this site scroll down and you will

see tabs for each of the decennial census counts starting with the most recent (2010)

and ending with the first (1790). If you click on the 1910 census, for example, a

window will open that provides several choices, including: (1) information about

the 1910 census; (2) abstracts; (3) bulletins; (4) final reports; and (5) other 1910

census documents. If you click on the fourth choice, “final reports,” another

window will open showing each of the 11 volumes of the 1910 census reports.

The 1910 data found in Chapter 10 were taken from Volume 3. If you click on this

choice, you can click either on “title page” or a “full document (a condensed file).”

If you open the “title page” you will see where the data for Hawai’i are located in

Volume 3, which is “clickable” and will lead you to the data for Hawai’i. Unfor-
tunately like all of the pre-2000 historical decennial data from the Census Bureau,

the source files are all in .pdf format, which means data extraction is time-

consuming and more error prone. Fortunately, there is an alternative data source,

which allows for direct downloads into a file that can be analyzed by Excel and

statistical packages such as SPSS and STATA. We discuss this source in Sect. 3.6.

Like any method requiring data from two time points, the areas used in CCR

methods must be based on constant geographic boundaries. Boundary changes,

while uncommon at the county level and higher geographies, are common in many
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subcounty areas such as cities and census tracts. Since the CCR method is often

used for forecasting subcounty populations by age, sex, and other demographic

characteristics, the data for such application must be adjusted for changes in

geographic boundaries. Although we discuss information on tracking these changes

over time and assembling data sets with common geographical definitions in

Chapter 14, here we give an overview of the available information from the Census

Bureau for making such adjustments.

The Census Bureau’s Geography Division tracks boundary changes for all levels
of geography in several resources. One is “Geographic Change Notes (GCN),” and

can be found at the following website: http://www.census.gov/geo/reference/bound

ary-changes.html. The GCN lists selected changes to incorporated places (cities and

towns), census designated places, county subdivisions, counties and equivalent

areas, and American Indian, Alaska Native, and Native Hawaiian areas, as recog-

nized by the Census Bureau, within the 50 States, the District of Columbia, Puerto

Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the

Northern Mariana Islands, and the U.S. Virgin Islands). Once at this website, you

use a selection tab that starts with the state (or its equivalent) in which the

geography of interest is located. Once a state is selected, a popup appears that

shows a description of changes subsequent to the 2000 census up to a current point

in time (which, as of the writing of this book was 2013) by area and effective data.

The preceding website is useful for determining if a boundary change took place

for a city or town of interest, but it does not provide detailed information on the land

area (in acres) affected. To obtain this detail, you need to use the Geography

Division’s “Boundary and Annexation Survey” data, which can be found at:

https://www.census.gov/geo/partnerships/bas.html. Once at this site, open the tab

marked “Legal Boundary Change/Annexation Data,” which will take you to a site

that shows the years for which data are available and a tab identified by “Download

Legal and Boundary Change Files,” with the tab itself identified by state. This will

take you to a set of files identified by year. Here, you have a choice of downloading

text files, .pdf files, or Excel files.

Like the “Geographic Change Notes,” the “Boundary and Annexation Survey”

are limited in that the latter only provides the land area affected. When a more exact

description of boundary changes over time is needed, we can turn to a third resource

available from the Geography Division, namely, the relationship files. These files

(for block, census tracts, places, counties, and urban areas) show precise relation-

ships between 2000 boundary definitions and 2010 boundary definitions and can be

found at: https://www.census.gov/geo/maps-data/data/relationship.html. Relation-

ship files can be downloaded as compressed Excel files, decompressed, and read by

following the file record layout guidelines available at this website. At this same

website, one can identify the geographic relationships between types of geography

(e.g. a city and one or more census tracts) at the same point in time. Also useful in

this regard are the Topologically Integrated Geographic Encoding Referencing

(TIGER) tools, including shapefiles and geodatabases. Again, Chapter 14 provides

more detail on these resources and the procedures needed to utilize them for

assembling data with the same geographical definitions over time.
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3.4 Population Estimates

A second source of demographic data is found in the Census Bureau’s population
estimates program (PEP), which produces annual population estimates by age and

sex for states and counties (http://www.census.gov/popest/). Population estimates

are not primary data in the same sense as the decennial census data just discussed;

rather, they are derived from (or based on) decennial census data. They play an

important role in supplementing and updating data from the decennial census in that

they are more current and cover years other than those ending in zero.

Population estimates are also produced by a variety of state and local govern-

ment agencies. Many state agencies participate with the Census Bureau in the

Federal-State Cooperative Program for Population Estimates (FSCPPE); this pro-

gram serves as a clearinghouse for demographic data and as a forum for discussing

methods and exchanging ideas related to population estimation (https://www.cen

sus.gov/popest/fscpe/). Some states produce independent population estimates at

the state, county, and/or city level (e.g., The Washington State Office of Financial

Management (http://www.ofm.wa.gov/pop/estimates.asp) and The California

Department of Finance, (http://www.dof.ca.gov/Forecasting/Demographics/Esti

mates). Some city and county governments—and Councils of Governments for

large metropolitan areas—also produce population estimates, often for small areas

such as census tracts and traffic analysis zones (e.g., The New York City Depart-

ment of City Planning (http://www1.nyc.gov/site/planning/data-maps/nyc-popula

tion/current-future-populations.page) and The San Diego Association of

Governments (http://www.sandag.org/resources/demographics_and_other_data/

demographics/estimates/index.asp).

One issue to keep in mind in using population estimates is the point in time to

which they are referenced. The decennial census data are referenced to April 1st, as,

for example, are the annual estimates produced by the State of Washington, but the

Bureau’s PEP estimates are referenced to July 1st. These different reference points

could affect the integrity of CCRs constructed from a combination of decennial and

PEP data.

3.5 Surveys

The U. S. Census Bureau conducts a wide range of sample surveys, about 130 each

year (http://www.census.gov/programs-surveys/are-you-in-a-survey/survey-list/

household-survey-list.html). Notable for purposes of this book is the American

Community Survey (ACS). The ACS is a nationwide, continuous survey designed

to provide communities with demographic, housing, social, and economic data

every year (U.S. Census Bureau 2008). The ACS samples nearly 3 million

addresses each year, resulting in nearly 2 million final interviews. For each area
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with an estimated population of 65,000 or more, the ACS provides single year

estimates, for each area with an estimated population of 20,000 or more, the ACS

provides estimates based on an aggregation of three years of sample data, and for all

areas, the ACS provides annual estimates based on an aggregation of five years of

sample data. The 3-year and 5-year aggregations are problematic in that the data

refer to a period of time rather than a point in time, which makes them inconsistent

with the 1-Year ACS data as well as the decennial and PEP data, which all are

referenced to a single year (Swanson 2010). Another issue is that the definition of a

resident is different than the definition used in the decennial census, which makes

the ACS data inconsistent with decennial data in locations that experience seasonal

variations in the de-facto population (Swanson 2010, Swanson and Tayman 2011).

This inconsistency can affect the integrity of CRRs constructed from a combination

of decennial and ACS data.

ACS data can also be a bit confounding in that one can obtain differences in the

1-year, 3-year, and 5-year estimates for the same period of time for an area with an

estimated population of 65,000 or more. For example, the 2013 total population of

Spokane, Washington is estimated at 210,722; 209,876; and 209,478, respectively,

by the 1-year (2013), 3-year (2011–2013), and 5-year (2009–2013) ACS samples.

Margins of error (90% confidence interval) are available from the ACS but the

choice of which to use as a 2013 estimate is up to the user. Another issue, even for

areas with populations estimated at 65,000 and over, is because of sampling error

the 1-year ACS can yield erratic annual values for some variables (e.g., average

number of persons per household) that is generally not subject to sudden change

(Swanson and Hough 2012). The ACS has been providing data for areas since 2010

and its data can be easily retrieved using American FactFinder.
Other surveys conducted by the Census Bureau that have potential relevance for

this book include the Current Population Survey (http://www.census.gov/pro

grams-surveys/cps.html), The American Housing Survey (http://www.census.gov/

programs-surveys/ahs.html), the National Health Interview Survey (http://www.

cdc.gov/nchs/nhis/index.htm), and the Consumer Expenditure Survey (http://

www.bls.gov/respondents/cex/).

One annual survey funded by the federal government, but specific to each state is

the Behavior Risk Factor Surveillance System (BRFSS), which was established in

1984 in 15 states (http://www.cdc.gov/brfss/). Funded by the Centers for Disease

Control (CDC), it now collects data in all 50 states as well as the District of

Columbia and three U.S. territories and completes more than 400,000 adult inter-

views each year on a wide range of health-related topics. CDC has set up a set of

interactive tools (http://www.cdc.gov/brfss/data_tools.htm) that can be used to

extract data that can be used to construct measures similar to the examples

discussed in Chapter 8.

There are other entities that also conduct regular surveys containing data that

may be useful. For example, the Survey Research Center at the University of

Michigan conducts the National Survey of Family Growth, the Survey of Consumer

Attitudes, and the Panel Study of Income Dynamics, among others (http://www.src.

isr.umich.edu/about/). The National Opinion Research Center (NORC) at the
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University of Chicago also conducts a wide range of surveys (http://www.norc.org/

Research/Topics/Pages/default.aspx).

3.6 Administrative Records

Administrative records are records kept by agencies of federal, state, and local

governments for purposes of registration, licensing, and program administration.

Although not always designed explicitly to do so, these records provide valuable

information on specific demographic events or subgroups of the population. In

terms of data that can be used either directly or in conjunction with the CCR

method, these sources include school enrollment and vital statistics. Other types

of administrative data include employment, voter registration, and property tax

records.

Administrative data can be used for various types of demographic analyses,

including the production of population estimates and projections. In Chapter 7, for

example, data from the California Department of Education are used in conjunction

with the CCR method to generate a short-term enrollment forecast for Riverside

County, California. These data were taken directly from the Department’s website
(http://www.cde.ca.gov). Once at the website, we clicked on the “Data and Statis-

tics” tab, which led to (http://www.cde.ca.gov/ds). At this site, one of the choices is

“DataQuest,” an interactive data query system used to obtain the (fall) enrollment

data by grade for Riverside County in 2013, 2014, and 2015. Because the site is

interactive it is rather tedious to describe the exact steps used to extract the data.

Fortunately, the DataQuest site is very well designed and easy to navigate, so we

invite you to use it to replicate the data we use in Chapter 10.

Data on events such as births, deaths, marriages, and divorces are called vital

statistics. In the United States, the collection of these data is the responsibility of

individual states and not the federal government. As early as 1639, the Massachu-

setts Bay Colony began reporting births, deaths, and marriages as part of its

administrative/legal system. Other states gradually began doing the same thing,

and today all states have complete (albeit imperfect) records of births, deaths, and

other vital events. The federal government sets standards for the collection and

reporting of the data, compiles summaries from data collected by each state, and

publishes a variety of reports based on these data. The quality of vital statistics data

is generally very good in the United States and other high-income countries.

Before 1945, vital statistics reports were published by the U.S. Census Bureau.

Beginning in 1945, this task was taken over by the U.S. Public Health Service,

National Office of Vital Statistics. In 1960, this office was reorganized and became

part of the National Center for Health Statistics (NCHS), which today is a branch of

the Centers for Disease Control (CDC). Annual and monthly reports on births,

deaths, marriages, and divorces are available from the NCHS. It should be noted

that some of the concepts and definitions used by the NCHS do not precisely match

those used by the Census Bureau. Consequently, adjustments may have to be made
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when combining population data from the Census Bureau with vital statistics data

from the NCHS.

Data from the NCHS are available only at the national and state levels; vital

statistics data for local areas must be obtained elsewhere. Most states tabulate data

at the county (or county-equivalent) level, but few go beyond that to develop

regular data series for subcounty areas. Although individual records generally

contain the information needed to allocate them to different types of subcounty

areas (e.g., cities, census tracts), actually doing so requires a substantial effort. In

addition, there are often errors in geocoding birth and death records at the

subcounty level (Flotow and Burson 1996). Analysts needing vital statistics data

for subcounty areas may have to develop those data themselves.

3.7 International Data

For the international data, the Census Bureau has an International Data Base (IDB)

program that contains data for many countries for a series of years. Located at

(http://www.census.gov/population/international/data/idb/informationGateway.php)

it is possible to download age data for two time periods for a host of countries

permitting CCR computations. Additional data if required for other geographies

within a particular country may be available at the respective statistical agencies

within each country. Many individual countries also have high quality data avail-

able online. Often, these population data are taken from a population registration

system, which is a common method for collecting demographic data in the Scan-

dinavian region. Statistics Finland has such data and has produced an English-

language report that documents the methods and quality found in its population

register (Statistics Finland 2004). The U.S. Census Bureau maintains a list of the

URLs for international statistical agencies, which can be found at (https://www.

census.gov/population/international/links/stat_int.html).

3.8 Other Data Sources

Another data source to make CCRs is compiled by Minnesota Population Center

(MPC) at the University of Minnesota. There are several collections assembled and

held by the MPC, including Integrated Public Use Microdata (IPUMS), which is

extensively used by researchers, policymakers, students, and faculty. The MPC is a

leading developer of demographic data resources. All data obtained through the

MPC are available over the internet at no cost (https://www.ipums.org/). The MPC

has both an IPUMS collection for the United States and the IPUMS-International

collection. According to the MPC website, the IPUMS-USA collection has harmo-

nized data on people in the U.S. census and American Community Survey from

1850 to the present. The IPUMS-International collection contains harmonized data
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for 1960 forward covering 560 million people in 258 censuses from around the

world.

Historical population data used in a study by Swanson and Verdugo (2016) on

the demographic effects of the Civil war on the former states of the Confederacy

(described in Chapter 10) were obtained from IPUMS files. Specifically, the

IPUMS data were taken from samples of the original census records from the

1850, 1860, and 1870 census counts, with a sampling ratio of approximately 1 in

every 100 records. There are several advantages to using these data in lieu of

hardcopy census reports. First, they are machine-readable and can be easily

imported into Excel or a statistical system, such as SPSS, SAS, or some other

analytical software package. Second, the IPUMS files have been cleaned, edited,

and assembled using high levels of quality control. Third, because they are indi-

vidual level data, the extracted sample data can be aggregated in different ways to

suit a given analysis and automatically weighted in order to reproduce the census

counts. Finally, MPC provides an online assembly and tabulation feature so that

aggregated data, properly weighted can be extracted from its IPUMS collections.

In the initial extraction, Swanson and Verdugo (2016) selected, non-Hispanic

white males by age and state for each of the three census counts, 1850, 1860, and

1870 along with their weights. They then used the recode, frequency, and filter

procedures provided by MPC to generate output that could be import directly into

Excel. The result was aggregated census counts for each of the 11 Confederate

states that contained the selected five-year age groups appropriately weighted:

(1) from 10–14 to 40–44 for the 1850 and 1860 census years; and (2) from 20–24

to 50–54 in the 1860 and 1870 census years.

MPC also manages The National Historical Geographic Information System

(NHGIS), which provides, free of charge, aggregate census data and GIS-compat-

ible boundary files for the United States between 1790 and 2015 (https://www.

nhgis.org/). Data of this type can be found in Chapter 14. Another useful data set is

the Human Mortality Database (University of California Berkeley). Data from this

site are used in Chapter 12. These and other mortality data can be accessed by

starting at (http://www.mortality.org).

There also are commercial databases, For example, ESRI provides market

segmentation data for the U.S. and other countries using its “Tapestry” market

segmentation system. Current data typically can only be obtained on a cost basis,

but older data are often made available at no cost. These data can be found at (http://

www.esri.com/landing-pages/tapestry/), which has an interactive query system.

These data can be used in conjunction with the methods described in Chapter 8.

3.9 On-line Location of Excel Files

All tables and most figures in this book have a corresponding Excel file, which can

be found at the “Applied Demographer’s Toolbox,” a website created and

maintained by Eddie Hunsinger. The toolbox is a collection of applied demography
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programs, scripts, spreadsheets, databases, and texts. As the title suggests, this

website contains far more than the excel files used in this book, but navigating to

the folder (zipped) containing our Excel files is straightforward. The starting point

is (http://u.demog.berkeley.edu/~eddieh/toolbox.html). Once there, scroll down

until you see “Excel files for the book, Cohort Change Ratios and Their Applica-

tions” which contains the zipped folder.

3.10 Conclusions

There are, of course, many sources of data available that are relevant to this book.

The list is obviously too large to provide in a single chapter, so we have given an

illustrative sample of data resources. Virtually all of the data we have described

herein are reliable and of good quality. The sample data resources we have

described, such as the American Community Survey, have in some cases reliability

issues, but the ACS variables have estimated margins of error, which are very useful

in gauging in reliability.
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Chapter 4

Forecasting Population Size and Composition

4.1 Introduction

In a seminal paper, Hamilton and Perry (1962) proposed cohort-change ratios

(CCRs) as a variant of the cohort-component method for purposes of short-term

population projections. The Hamilton-Perry (H-P) method has much smaller data

requirements than its more data-intensive cousin while still providing a forecast of

population by age (as well as sex, race, ethnicity, if so desired), which is the

hallmark of the cohort-component method. Instead of specific rates for the compo-

nents of population change, forecasts from the H-P method are based on cohort

change ratios and child-woman ratios (CWR) or more generally child-adult ratios

(CARs) as previously discussed in Chapter 1. CCRs and CWRs are most often

obtained from the two most recent censuses, but can be based on age distributions

from any two points in time.

Consequently, the H-P method requires much less time and resources to

implement than the full cohort-component model. Not surprisingly, it has mainly

been used for small geographic areas in which mortality, fertility, and migration

data are non-existent, unreliable, or very difficult to obtain (Baker et al. 2014;

Smith et al. 2013:176; Swanson et al. 2010). Although the H-P method has

primarily been used for small geographic areas, its minimal data input require-

ments combined with its capability for forecasting age and other characteristics

make it attractive for use at higher levels of geography such as states and

counties when detailed information on the components of population change is

not needed.

The H-P method has gained acceptance as research has demonstrated its prac-

tical value and accuracy in forecasting populations (Kodiko 2014; Smith and

Shahidullah 1995; Swanson and Tayman 2017; Swanson et al. 2010). Smith and

Tayman (2003) found for U.S. states and counties in Florida that the H-P and

cohort- component methods produced similar projections of the age-sex structure of

the population; neither approach consistently produced more accurate projections
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than the other for 10- and 20-year forecast horizons.Wilson (2016), however, found

that the H-P method had modestly larger errors compared to some variants of the

cohort-component method for local government areas in New South Wales,

Australia.

In this chapter, we present two step-by-step examples each based on commonly

used procedures to develop forecasts using CCRs and CWRs. These examples

illustrate forecasts by age and sex and by age only for the city of Bellingham,

Washington. We also show a one-year forecast of major league pitchers by con-

secutive years in the league developed from the H-P method. We next investigate

the impact of adjusting H-P forecasts to independent total population controls

because in rapidly growing (declining) areas CCRs applied to a beginning popula-

tion can lead to large forecast errors and a strong upward (downward) biases (Smith

et al. 2013: 180). Controlling also may be useful in other instances such a reaching a

capacity constraint in small areas or adhering to a previously established population

control. We end this chapter by discussing the strengths and weaknesses of the H-P

method.

Our strategy is to describe the simplest, straightforward, and most used appli-

cation of the H-P method; namely, holding CCRs and the CWRs constant over the

forecast horizon. In Chapter 5, we evaluate the accuracy of the H-P method using

modified ratios.

4.2 Hamilton-Perry Forecast

The H-P method is illustrated by producing 2020 forecasts for the city of Belling-

ham in Washington State based on data from the 2000 and 2010 censuses.

Bellingham’s 2016 population is estimated at 84,850 (State of Washington 2016).

Bellingham provides an interesting example because it is home to a large special

population of college students. Western Washington University, Whatcom Com-

munity College, and Bellingham Technical College enroll around 22,100 students,

or 26.2% of the 2016 total population (National Center for Educational Statistics

2016). We also show the adaptability of the H-P method by producing a one-year

forecast pertaining to pitchers according to their number of consecutive years in the

major leagues in this position.

4.2.1 Forecast by Age and Gender

The first example forecasts the 2020 population of Bellingham by age and gender.

CCRs are calculated by dividing the population aged x in year t by the population

aged x–10 in year t–10 calculated separately for males and females, where t is 2010
and t�10 is 2000. These CCRs are applied to each age, gender group in year t to
provide forecasts by age and gender in the year t + 10 (i.e., 2020). Given the nature
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of the CCRs, 10–14 is the youngest five-year age group for which forecasts can be

made if there are 10 years between censuses. Children younger than age 10 are

forecast using CWRs from the launch year (i.e., males or females younger than

5/females aged 15–44 and males or females aged 5–9/females aged 20–45).

Eqs. 4.1 through 4.3 represent the usual application of the H-P framework (i.e.,

holding CCRs and CWRs from the most recent 10-year period constant over the

horizon):

nPxþ10,g, tþ10¼nCCRx,g, t�nPx,g, t Ages 10þð Þ, ð4:1Þ
4P0,g, tþ10¼4CWR0,g, t�44FP15, tþ10 ðAges0�4Þ, ð4:2Þ
9P5,g, tþ10¼9CWR5,g, t�49FP20, tþ10 ðAges5�9Þ, ð4:3Þ

where,

n is the width of the age group;

x is the beginning of the age group,

g is gender,

t is the launch year,

P is the population,

CCR is the cohort change ratio,

CWR is the child-woman ratio, and.

FP is the female population.

Table 4.1 shows the 2020 forecast for Bellingham by age and gender using eqs.

4.1–4.3. As the table shows, the H-P method requires only a limited set of calcu-

lations. For example, the male populations aged 0–4 and 40–44 in 2020 are

calculated as:

0.09219 � (3,993 + 7,459 + 3,683 + 2,907 + 2,976 + 2,601) ¼ 2,177 Ages (0–4),

0.94521 � 2,644 ¼ 2,499 Ages (40–44).

Forecasts of the oldest age group differ slightly from the forecasts of the other

age groups. The population aged 75 years and older in the launch year (2010) forms

the basis of the forecast for the population aged 85 years and older in 2020. For

example, females aged 85 years and older in 2020 are calculated as:

0.43982 � (998 + 1,028 + 1,374) ¼ 1,495.

Remember, the CCRs for ages 10 years and older combine the effect of mortality

and migration. The large CCRs for ages 15–24 reflect the in-migration of college

students and the dramatic decrease in CCRs for ages 25–39, especially ages 30–34,

reflect the out-migration of college students. The CCRs for ages 40–69 suggest

in-migration in these age groups, except for females aged 40–44. At the oldest ages,

the female CCRs are uniformly larger than the male CCRs reflecting, in part, the

higher survivorship of females. Unlike the cohort-component model, the H-P

method does not require adjustments for special population such as college students

(Smith et al. 2013: 251–258). As the table shows, the college age groups have not
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aged between 2010 and 2020, a desirable feature for this population and something

that the cohort-component method would usually require special adjustments to

accomplish.

4.2.2 Forecast by Age

The H-P method can also be implemented without regard to gender by modifying

Eq. 4.1:

nPxþ10, tþ10¼nCCRx, t�nPx, t Ages 10þð Þ: ð4:4Þ

Table 4.1 Population forecast by age and sex, Bellingham, Washington, 2020

Female Male
Age 2000 2010 CCRa 2020b Age 2000 2010 CCRa 2020b

0–4 1,738 1,808 0.08645 2,041 0–4 1,764 1,928 0.09219 2,177

5–9 1,603 1,667 0.08639 1,895 5–9 1,625 1,809 0.09375 2,056

10–14 1,547 1,652 0.95052 1,719 10–14 1,604 1,686 0.95578 1,843

15–19 3,544 3,840 2.39551 3,993 15–19 2,829 3,339 2.05477 3,717

20–24 5,964 6,985 4.51519 7,459 20–24 5,639 6,950 4.33292 7,305

25–29 2,408 3,399 0.95909 3,683 25–29 2,935 3,868 1.36727 4,565

30–34 2,010 2,482 0.41616 2,907 30–34 2,263 2,644 0.46888 3,259

35–39 2,019 2,102 0.87292 2,967 35–39 2,077 2,274 0.77479 2,997

40–44 2,142 2,106 1.04776 2,601 40–44 1,948 2,139 0.94521 2,499

45–49 2,465 2,222 1.10054 2,313 45–49 2,210 2,179 1.04911 2,386

50–54 2,057 2,291 1.06956 2,252 50–54 1,958 2,073 1.06417 2,276

55–59 1,323 2,547 1.03327 2,296 55–59 1,261 2,236 1.01176 2,205

60–64 986 2,222 1.08021 2,475 60–64 895 2,053 1.04852 2,174

65–69 918 1,558 1.17763 2,999 65–69 805 1,356 1.07534 2,404

70–74 1,032 1,120 1.13590 2,524 70–74 782 899 1.00447 2,062

75–79 1,133 998 1.08715 1,694 75–79 744 741 0.92050 1,248

80–84 922 1,028 0.99612 1,116 80–84 493 637 0.81458 732

85+ 1,069 1,374 0.43982 1,495 85+ 459 673 0.39682 814

Total 34,880 41,401 48,429 Total 32,291 39,484 46,719

Source: 2000 and 2010, U.S. Census Bureau (http://factfinder2.census.gov)
a
4P0,g,t /30P15,g¼f,t Ages 0–4 (Child-Woman Ratio)

9P5,g,t /30P20,g¼f,t Ages 5–9 (Child-Woman Ratio)

Px,g,t / Px-10,g,t-10 Ages 10–84

P85+,g,t / P75+,g,t-10 Ages 85+
b
4CCR0,g,t � 30P15,g¼f,t +10 Ages 0–4

9CCR5,g,t � 30P20,g¼f,t+10 Ages 5–9

CCRx,g,t � Px,g,t Ages 10–84

CCR75+g,t / P75+g,t Ages 85+
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The CCR and forecast calculations are now based to the population for both

genders. Instead of child-woman ratios, child-adult ratios (CARs) are used to

forecast the two youngest age groups. These ratios, computed separately for ages

0–4 and ages 5–9, relate young children to adults in the age groups most likely to be

their parents. In this chapter and other examples in the book, the population aged

0–4 is related to the population aged 20–35 and the population aged 5–9 is related to

the population aged 25–39. Of course other adult age groups could be used to

calculate CARs, such as the populations aged 15–44 and 20–49 following the

convention used in the CWR. The choice of the adult population age groups is

not critical as long as the same age groups used to compute the CARs are used in the

forecasting computations.1

Table 4.2 shows a 2020 forecast for Bellingham by age using Eq. 4.4 and CARs

for ages 0–4 and 5–9. The CCRs for all genders shows the in- and out-migration of

college students and indicate net in-migration up to age 79, with CCRs above 1.0

even in ages 70–79, where mortality rates are relatively high. For comparison, the

table includes the forecast of males plus females from Table 4.1 (Bottom-Up

column). The two forecasts are quite similar in ages 10 years and older, but show

more variation in the youngest age groups. This variation is due to the different age

ranges used in the CWRs and CARs. We ran a forecast using CARs for ages 0–4

and 5–9 based on ages 15–44 and 20–49, respectively and found the difference

between the two forecasts drops to 28 persons (0.7%) for ages 0–4 and 11 persons

(0.3%) for ages 5–9.

4.2.3 Forecast of Major League Pitchers

The H-P method is not only applicable to human and other populations stratified by

age cohorts, but can be used to forecast other attributes that change in predictable

ways over time. In this example, we forecast major league pitchers according to the

number of consecutive years they have been in the major leagues. Years in the

majors are measured by consecutive integers ranging from 0–10+ years, making

them analogous to single-years of age. As such, we can construct CCRs using two

consecutive annual time points for each amount of time in the majors. In this

simulated forecast example, we use historical information for 1980 and 1981 to

develop a one-year (1982) forecast of major league pitchers by consecutive years in

the majors (see Table 4.3). These years were not affected by changes in the number

1Another approach for forecasting the youngest age groups is to take their ratios at two points in

time and apply that ratio to the launch year age group. This approach is used in Chapter 6 where

regression models are used to measure uncertainty in H-P forecasts. We prefer using CARs and

CWRs in point forecast applications of the H-P method because they can account for changes in

the at-risk population over the forecast horizon.
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of major league teams (there were 26 in each of the three years) and the three-year

set allows us to compare the 1982 forecast to the recorded 1982 numbers to get an

idea of the accuracy of using the method for this purpose.

A traditional CCR cannot be computed for zero years in the majors, so we

averaged the ratio of pitchers with zero consecutive years in the league to pitchers

with one and two consecutive years in the league for 1980 and 1981. CCRs for the

other years spent in the league are analogous to traditional CCRs. For example, the

CCR for 4 consecutive years in the majors is computed by dividing number of

pitchers in the league for 4 consecutive years in 1981 by the number of pitchers in

the majors for 3 consecutive years in 1980 (0.93939 ¼ 31/33). The CCR for the

open-ended category (10+ years) is the number of pitchers with 10 or more

consecutive years in the majors in 1981 divided by the number of pitchers with

9 or more consecutive years in 1980 (0.78571 ¼ 44/(12 + 44)).

Table 4.2 Population forecast by age, Bellingham, Washington, 2020

2020 2010–2020 Difference

Age 2000 2010 CCRa No Genderb Bottom-Upc Number Percent (%)

0–4 3,502 3,736 0.14190 4,130 4,218 �88 �2.1

5–9 3,228 3,476 0.20729 4,207 3,951 256 6.1

10–14 3,151 3,338 0.95317 3,561 3,562 �1 0.0

15–19 6,373 7,179 2.22398 7,731 7,710 21 0.3

20–24 11,603 13,935 4.42241 14,762 14,764 �2 0.0

25–29 5,343 7,267 1.14028 8,186 8,248 �62 �0.8

30–34 4,273 5,126 0.44178 6,156 6,166 �10 �0.2

35–39 4,096 4,376 0.81902 5,952 5,964 �12 �0.2

40–44 4,090 4,245 0.99345 5,092 5,100 �8 �0.2

45–49 4,675 4,401 1.07446 4,702 4,699 3 0.1

50–54 4,015 4,364 1.06699 4,529 4,528 1 0.0

55–59 2,584 4,783 1.02310 4,503 4,501 2 0.0

60–64 1,881 4,275 1.06476 4,647 4,649 �2 0.0

65–69 1,723 2,914 1.12771 5,394 5,403 �9 �0.2

70–74 1,814 2,019 1.07337 4,589 4,586 3 0.1

75–79 1,877 1,739 1.00929 2,941 2,942 �1 0.0

80–84 1,415 1,665 0.91786 1,853 1,848 5 0.3

85+ 1,528 2,047 0.42469 2,315 2,309 6 0.3

Total 67,171 80,885 95,250 95,148 102 0.1

Source: 2000 and 2010, U.S. Census Bureau (http://factfinder2.census.gov)
a
4P0,t /15P20,t Ages 0–4 (Child-Adult Ratio)

9P5,t /15P25,t Ages 5–9 (Child-Adult Ratio)

Px,t / Px-10,t-10 Ages 10–84

P85+,t / P75+,t-10 Ages 85+
b
4CCR0,t � 15P20,t +10 Ages 0–4

9CCR5,t � 15P25,t+10 Ages 5–9

CCRx,t � Px,t Ages 10–84

CCR75+,t � P75+,t Ages 85+
cMale + female forecasts from Table 4.1

50 4 Forecasting Population Size and Composition

http://factfinder2.census.gov


The 1982 forecast for the all pitchers is 11 lower than the actual count for an

error of-3.8%. There is a wide range of errors for the individual consecutive years in

the league, ranging in absolute terms from 0.0% to 25.0%. Errors for 7 categories

are less than 8.0%, with the other 4 categories showing double digit percentage

errors. On average, the forecast has a slight downward bias with a MALPE of

�1.0% and a lower degree of accuracy with a MAPE of 8.7%.

While we are not experts in baseball statistics, the data shown in Table 4.3

indicate that there is a high level of volatility in the major league career of a pitcher,

especially in the initial years. The factors likely include: (1) injuries that lead to one

or more missed seasons; (2) being sent down to the minors to gain more experience

(one common example is that in the initial season a pitcher is “called up” for a

couple of games at the end of the season to “have a cup of coffee,” followed by a

return to the minors); and (3) outright release. Given this volatility, this example

can be viewed as a rather strenuous test of how well the H-P method can perform in

subject areas where there is less stability year to year than found in large

populations of people. These areas would include any highly competitive activity

such as professional sports. In this regard, we note that while there is variation in the

accuracy of the 1982 forecast by number of consecutive years in the majors by

Table 4.3 Forecast of pitchers by the number of consecutive years in the major leagues, 1982

Years in League

1982

1980 1981 CCRa Forecastb Actual Numeric Error Percent Error (%)

0 48 44 0.61884 40 48 �8 �16.7

1 41 40 0.83333 37 39 �2 �5.1

2 39 29 0.70732 28 33 �5 �15.2

3 33 30 0.76923 22 21 1 4.8

4 21 31 0.93939 28 28 0 0.0

5 21 18 0.85714 27 24 3 12.5

6 20 18 0.85714 15 15 0 0.0

7 18 18 0.90000 16 17 �1 �5.9

8 11 15 0.83333 15 12 3 25.0

9 12 9 0.81818 12 13 �1 �7.7

10+ 44 44 0.78571 42 43 �1 �2.3

Total 308 296 282 293 �11 �3.8

MAPE 8.7%

MALPE 1.0%

Source: Thorn (2004)

Note, the number of teams (26) was constant between 1980 and 1982
a(P0,t / (P1,t + P2,t) + P0,t-1 / (P1, t-1 + P2, t-1)) � 0.5 Year 0

Px,t / Px-1,t-1 Years 1–9

P10+,t / P9+,t-1 Years 10+
bCCR0,t � (P1,t+1 + P2,t +1) Year 0

CCRx,t � Px,t Years 1–9

CCR9+,t � P9+,t Years 10+
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pitchers, the overall forecast is reasonably accurate. Given this, other potential

applications might include forecasting the number of professional football players

by position (e.g., quarterback), as well as forecasting the numbers by position in

basketball, hockey, and soccer. The same idea (forgetting positions) might be

applied to NASCAR drivers and those in other racing circuits.

To assemble the data found in this illustration, we used a hardcopy of the eighth

edition of Total Baseball (Thorn 2004), which means that identifying the correct

data and transcribing it (into Excel) was subject to a high level of potential error,

given what we wanted to record. To minimize transcription error we developed and

used the following protocol. First, we identified all of the pitchers who played in

any one of the years of interest, 1980, 1981, and 1982 in the hardcopy edition. We

next weeded out those who played in those years but did not play consecutively in

prior years (In his 27 year career, Nolan Ryan, for example, was in the majors in

each of the three years but because he initially is listed in the majors in 1966 but

then is not listed again until 1968, as such he is not included in data found in

Table 4.3. Following these two steps we then did three separate counts for each of

the three years of interest. Between the first and second count we weeded out

additional errors (e.g., in the first pass we erroneously included Joey McLaughlin),

but by the second pass we realized that he first was listed in 1977 and then in 1979,

1980, 1981, and 1982, but he was not listed as being in the majors in 1978. As such

he was deleted because he did not have consecutive years in the majors between the

year he was first listed and any of the three years of interest. By the third count, the

number matched up with well with the second count and we were satisfied that the

data were of sufficient accuracy to use. As an additional test, we counted the

number of pitchers by year found in a third count that was separate from the

count by number of consecutive years played and then compared these counts

with the sum of the number by year and consecutive years played as found in the

third set of counts. For 1980, the counts matched at 308, as did the count for 1981

(296) and the count for 1982 (293).

4.3 Controlling a Hamilton-Perry Forecast

The H-P method is essentially a set of cohort growth rates applied to a launch year

population. It is well known that a set of constant growth rates can lead to large

forecast errors in places with rapid changes. We believe it is advisable to control

H-P forecasts to independent forecasts of total population in such instances (Smith

and Shahidullah 1995; Swanson et al. 2010). There may be other more general

reasons for controlling that are specific to any forecasting situation (Smith et al.

2013: 259). One is to make composition forecasts consistent with an “official”

forecast adopted or sanctioned by a government body or some decision making

unit. Another is to tie the demographic composition from an earlier forecast to an

updated forecast of total population. Finally, controlling will ensure forecasts are

consistent across demographic subgroups and geographic areas. For example, a
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forecast by age for census tracts will sum to the total population of each census tract

and the age distribution for the county. Controlling an H-P forecast will require a

single racking factor procedure if an age forecast is adjusted to the total population,

but will require an iterative proportional fitting procedure if an age forecast is

adjusted to total population and to an age distribution for a larger geographic area

(Smith et al. 2013: 260–261 and 266–272).

In this section, we examine the controlling issue relative to H-P forecasts in four

instances 1) Pinal County, a rapidly growing county in Arizona; 2) Gila County, a

slow growing county in Arizona; 3) Pacific Beach, a slow growing community in

San Diego, California and 4) Mission Valley, a fast growing community in San

Diego, California. Forecasts in Pacific Beach andMission Valley are constrained by

a capacity limit. In all four examples, we prepared H-P forecasts by age for 2020

and 2030 based on the procedures discussed in section 4.2.2. This example uses

2000 and 2010 as the base period. We computed total population forecasts by

summing the age groups, compared them to the controls, and computed adjustment

factors needed to match the controls.

Table 4.4 shows the forecasts, independent population controls, and adjustment

factors for the two Arizona counties. The total population in Pinal County more

than doubled between 2000 and 2010. That rapid growth is reflected in CCRs for

ages 10–69 that range from 1.65 (ages 20–24) to 2.64 (ages 30–34). Growth is also

indicated is ages 70–79, where the CCRs are sizable despite of the relatively high

mortality in these age groups. As a result, the total population forecasts from the

H-P method are much higher than the controls taken from the “official” medium

series forecast produced by the State of Arizona (2015). Consequently, the adjust-

ment factors are substantially below 1.0 and decrease as the horizon length

increases from 10- to 20-years. The H-P forecasts are too high by 41% in 2020

and are too high by 64% in 2030 relative to the controls.

In contrast, Gila County’s total population grew slowly by about 0.4% per year

on average between 2000 and 2010. This slow growth is reflected in CCRs for ages

10–69 that range from 0.655 (ages 20–24) to 1.241 (ages 65–69) and imply

out-migration of young adults (ages 20–29) and in-migration of ages 30–69, with

the most rapid in-migration occurring in the retirement ages. As a result, the total

population forecasts from the H-P method align closely with the controls. The 2020

and 2030 total population forecasts are about 1% higher and about 1%, lower than

the controls, respectively.

Table 4.5 shows the forecasts, independent population controls, and adjustment

factors for the two communities in San Diego, California. Pacific Beach (PB) is a

beach community 10 miles north of downtown San Diego. It has grown very slowly

over the past 25 years and showed no change in the total population between 2000

and 2010. Historically, new houses in PB have come from small in-fill and

redevelopment projects. The age composition in PB has been very stable overtime

as illustrated in the 2000 and 2010 age distributions. PB is home to large number of

young adults (aged 20–29) that tend to leave the area once they reach their thirties.

This pattern is suggested in the large CCRs for ages 20–29 that drop dramatically to

below 1.00 for the ages (35–44).
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H-P forecasts for PB imply a decline in the total population after 2010, which is

at odds with the controls developed by the San Diego Association of Governments

(SANDAG) (2013). H-P forecasts are too low by 12% in 2020 and too low by 26%

in 2030 relative to the controls. SANDAG’s forecast assumes that substantial

redevelopment will occur in PB as envisioned in the City of San Diego’s City of

Villages Plan (2016).

Mission Valley (MV) is six miles northeast of downtown San Diego and is home

to Qualcomm stadium. For many years MV was largely developed with retail,

commercial, and hospitality services with relatively little residential activity. That

pattern started to change in the early 1990s, as MV began to attract large multi-

family residential developments and the City of San Diego updated the MV

Community Plan. MV grew substantially between 2000 and 2010, increasing by

57%. MV’s age structure is similar to PBs, with relatively few people either under

the age of 20 or over 64 and a concentration in the young adult ages (20–34). Young

adults tend to leave between the ages of (35–49), but MV seems to attract persons in

their 50s. This pattern is suggested in the very large CCRs for ages 20–29, a CCR of

1.47 for 30–34, CCRs below 1.00 for 35–49, and CCRs of 1.15 for those aged

50–59.

H-P forecasts for MV that assume continuation of the rapid growth seen from

2000–2010 are substantially higher than the controls. It is estimated that the MV

Community Plan has a capacity for around 36,000 people (San Diego Association

of Governments 2013); this capacity constraint is reflected in the controls. The H-P

age forecasts are too high by 23% in 2020 and too high by 39% in 2030 relative to

the controls.

4.4 Conclusions

The major advantage of the H-P method compared to the cohort-component method

is that it has much smaller data requirements. Consequently is it far less expensive,

much quicker to implement, and particularly useful for subcounty forecasts where

data on the components of population change are very limited, if they exist at all.

The 2000 U.S. census was the first to allow respondents to list themselves as

belonging to one or more racial categories, and as a result racial data are inconsis-

tent with racial data prior to 2000. In addition, racial classifications from the

decennial census and America Community Survey are not completely consistent

with the classification system used for vital statistics data, making it difficult to

develop reliable estimates of the components of change for racial groups. Because it

is based solely on data for two age distributions, the H-P method avoids these

complications and provides a viable alternative to the full cohort-component

method for forecasts of race, especially for forecasts of the multi-racial population

(Swanson 2013).

Another attractive feature of the H-P method is that the CCRs, which embody

both changes in mortality and migration, can handle special populations or unique

56 4 Forecasting Population Size and Composition



age structures, like Pacific Beach and Mission Valley, without any adjustments to

the basic model. The same is not true for the cohort-component model, where in

these situations adjustments might be needed to the base population and/or to

fertility, mortality, and migration rates.

The H-P method does not provide information on the components of change and

will not be useful if this information is needed. (In Chapter 13, we present a

decomposition method of the CCR that yields forecasts of migration and deaths).

In rapidly changing areas, the H-P method can lead to large forecast errors and a

strong upward or downward bias depending on whether the change in population is

increasing or decreasing. We saw the strong upward bias in the rapidly increasing

areas of Pinal County, Arizona and the Mission Valley community in the City of

San Diego, California. To illustrate the impact of a large decline on H-P forecasts,

we chose census tract 9.0 in Curry County, New Mexico; home to Cannon AFB.

The population in that census tract dropped from 4,307 to 2,193 between 2000 and

2010, and H-P forecasts for 2020 and 2030 were 949 and 436, respectively. These

forecasts likely have unreasonably large downward biases.

Census enumerations are generally high quality, but are not perfect. Some

people are missed, others counted twice, and others counted in the wrong place.

Coverage rates that differ from one subgroup to another and change over time may

introduce error into the CCRs. While H-P calculations can be characterized as

“quick and easy,” application of this method can be anything but, especially dealing

with subcounty areas. As Swanson et al. (2010) point out in their census tract

forecasts for Clark County, Nevada, the H-P method required calibrations, many

adjustments, and knowledge of the growth patterns for specific areas to generate

plausible forecasts. One major effort, especially in subcounty areas, is creating data

for geographic areas with constant boundaries at both points in time.

Finally, the H-P method has been shown to produce accurate and reasonable

forecasts for 10- and 20-year forecast horizons relative to other forecasting

methods. We know of no studies that have evaluated the H-P method for longer

forecasting horizons.
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Chapter 5

Forecasting Using Modified Cohort Change
Ratios

5.1 Introduction

Assessments of the H-P method have been based on the usual assumption that

cohort change ratios (CCRs) developed over the base period (e.g., 2000 and 2010)

and child-woman ratios (CWRs) or, more generally, child-adult ratios, developed

for the launch year (e.g., 2010) are held constant over the forecast horizon (hori-

zon). This basic or constant model was presented in Chapter 4. Smith et al. (2013:

179) discuss the possibility of relaxing this assumption by averaging together CCRs

and CWRs from several recent censuses, by extrapolating historical trends, or using

a synthetic approach based on CCR and CWR forecasts from a population in a

larger geographic area. We are not aware of any studies that have evaluated the

accuracy of the H-P method using modified CCRs and CWRs.

In this chapter, we evaluate several approaches for modifying CCRs and CWRs

over the horizon. These approaches include: (1) averaging; (2) trending; (3) and a

synthetic method that generates changes in local CCRs and CWRs by linking them

to state-level changes. We evaluate three dimensions of error (accuracy, bias, and

allocation error) and compare forecasts using modified CCRs and CWRs against

forecasts holding them constant (the basic H-P framework). Our focus here is not on

the utility of the H-P method for population forecasting (something we discuss in

Chapter 15), but on the size of the errors of the modification alternatives relative to

basic H-P framework. Errors for two 10-year horizons and one 20-year horizon are

examined for counties in Washington State and a 10-year horizon is examined for

census tracts in New Mexico. This evaluation suggests that averaging or trending

CCRs and CWRs are not worthwhile strategies. However, we find that the synthetic

method has lower errors in comparison to the errors found using the basic H-P

framework.
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5.2 Modifying Cohort Change and Child-Woman Ratios

As described in Chapter 4, the H-P method uses CCRs, which are calculated by

dividing the population aged x in year t by the population aged x–10 in year t–10.
For the analysis conducted in this chapter, CCRs are calculated separately for males

and females. These CCRs are applied to each age, gender group in year t to provide
forecasts by age and gender in the year t + 10. Given the nature of the CCRs, 10–14
is the youngest 5-year age group for which forecasts can be made if there are

10 years between censuses. Children by gender younger than age 10 are forecast

using CWRs from the launch year (i.e., males or females younger than age

5/females aged 15–44 and males or females aged 5–9/females aged 20 to 45).

Eqs. 5.1, 5.2 and 5.3 represent the usual application of the H-P framework (i.e.,

holding CCRs and CWRs from the most recent 10-year period constant over the

horizon):

nPxþ10,g, tþ10 ¼ nCCRx,g, t � nPx,g, t Ages 10þð Þ, ð5:1Þ
4P0,g, tþ10 ¼ 4CWR0,g, t � 44FP15, tþ10 ðAges 0� 4Þ, ð5:2Þ
9P5,g, tþ10 ¼ 9CWR5,g, t � 49FP20, tþ10 Ages 5�9ð Þ, ð5:3Þ

where,

n is the width of the age group,

x is the beginning of the age group,

g is gender,

t is the launch year,

P is the population,

CCR is the cohort change ratio,

CWR is the child-woman ratio, and

FP is the female population.

What are the effects on the errors from H-P forecasts if the assumption of

constancy is relaxed? To study this question, we evaluate three approaches for

modifying CCRs and CWRs over the horizon. Following the suggestions the Smith

et al. (2013: 179), we create forecasts using averages and then produce them using

trends in the CCRs and CWRs. Our third approach uses a synthetic method that

links changes in the CCRs and CWRs for one area to the changes forecast for a

different area, which is usually a higher level of geography (e.g., county ratios

modified by forecast changes in state ratios). The synthetic method is frequently

used in state and local forecasting (Smith and Rayer 2012; Smith et al. 2013: 65)

and has a long history of use in population estimation (Swanson and Tayman 2012:

209–213).

The average alternative (AVG) combines two CCRs over the most recent

20-year period (e.g. 1990–2010) and two CWRs over the most recent 10-year

period (e.g. 2000 and 2010):
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nCCRx,g, t ¼ nPx,g, t=nPx�k,g, t�10, ð5:4Þ
nCCRx,g, t�10 ¼ nPx,g, t�10=nPx�k,g, t�20, ð5:5Þ

AVGnCCRx,g ¼ nCCRx,g, t þ nCCRx,g, t�10

� �
=2, ð5:6Þ

AVG4CWR0,g ¼ 4CWR0,g, t þ 4CWR0,g, t�10

� �
=2, ð5:7Þ

AVG9CWR5,g ¼ 9CWR5,g, t þ 9CWR5,g, t�10

� �
=2, ð5:8Þ

where,

AVGCCR is the average CCR over a 20-year period, and

AVGCWR is the average CWRs over10-year period.

Forecasts for AVG assume the averaged CCRs and CWRs stay constant over the

horizon. These forecasts are made by substituting AVGnCCRx,g, AVG4CWR0,g, and

AVG9CWR5,g for the CCRs and CWRs into Eqs. 5.1, 5.2 and 5.3, respectively.

The trend alternative (TREND) is based on the proportionate change (or ratio) in

the CCRs over the most recent 20-year period and the proportionate change in the

CWRs over the most recent 10-year period as follows:

RATIOnCCRx,g ¼ nCCRx,g, t=nCCRx,g, t�10

� �
, ð5:9Þ

RATIO4CWR0,g ¼ ð4CWR0,g, t=4CWR0,g, t�10Þ, ð5:10Þ
RATIO9CWR5,g ¼ 9CWR5,g, t=9CWR5,g, t�10

� �
, ð5:11Þ

where,

RATIOCCR is the ratio of the CCRs over a 20-year period, and

RATIOCWR is the ratio of CWRs over a 10-year period.

Forecasts based on TREND are computed by:

nPxþ10,g, tþ10 ¼ nCCRx,g, t � RATIOnCCRx,g

� �� nPx,g, t Ages 10þð Þ, ð5:12Þ

4P0,g, tþ10 ¼ 4CWR0,g, t � RATIO4CWR0,g

� �� 44FP15, tþ10 Ages 0�4ð Þ, and ð5:13Þ

9P5,g, tþ10 ¼ 9CWR5,g, t � RATIO9CWR5,g

� �� 49FP20, tþ10 Ages 5�9ð Þ: ð5:14Þ

AVG and TRENDmake individual adjustments to the CCRs and CWRs. That is,

the average and proportionate adjustments are specific to each area being forecast.

The synthetic method (SYN) does not make area-specific adjustments, but applies

the same proportionate change to each area based on a forecast for a larger

geographic area (i.e., state changes applied to each county). Including SYN allows
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examination of the efficacy of using area-specific modifications to the CCRs and

CWRs as compared to a more global approach to modification. Unlike AVG and

TREND, SYN requires an independent forecast of CCRs and CWRs for the larger

area. The synthetic method globally incorporates information pertinent to the

horizon, which may be an advantage over the average and trend alternatives,

which rely solely on historical patterns.

For the CCRs, the proportionate adjustments for the larger area are based on

CCRs from times t and t-10 and CCRs from times t + 10 and t; that is, from the

decades prior and subsequent to the launch year. For the CWRs, the adjustments

represent CWRs from times t and t + 10; that is, from beginning and end of the

decade after the launch year. Forecasts using SYN are computed by (bold indicates

the larger area):

SYNnCCRx,g ¼ nCCRx,g, tþ10=nCCRx,g, t

� �
, ð5:15Þ

SYN4CWR0,g ¼ 4CWR0,g, tþ10=4CWR0,g, t

� �
, ð5:16Þ

SYN9CWR5,g ¼ 9CWR5,g, tþ10=9CWR5,g, t

� �
, ð5:17Þ

nPxþ10,g, tþ10 ¼ nCCRx,g, t � SYNnCCRx,g

� �� nPx,g, t Ages 10þð Þ, ð5:18Þ
4P0,g, tþ10 ¼ 4CWR0,g, t � SYN4CWR0,g

� �� 44FP15, tþ10 Ages 0�4ð Þ, ð5:19Þ
9P5,g, tþ10 ¼ 9CWR5,g, t � SYN9CWR5,g

� �� 49FP20, tþ10 Ages 5�9ð Þ, ð5:20Þ

where,

SYNCCR is the CCR adjustments for the larger area, and

SYNCWR is the CWR adjustments for the larger area.

5.3 Measures of Forecast Error

We employ several commonly used measures that capture three dimensions of

forecast error—accuracy, bias, and allocation error (Swanson 2015; Swanson et al.

2011). Error is defined as the difference between the simulated forecast and a

census count. The mean algebraic percent error (MALPE) measures bias in which

positive and negative values offset each other. A positive MALPE reflects the

tendency for the forecasts to be too high on average and a negative MALPE reflect

the tendency for the forecasts to be too low on average. The mean absolute percent

error (MAPE) measures forecast accuracy in which positive and negative errors do

not offset each other. It shows the average percentage difference between the

forecast and observed population, ignoring the sign of the error.

The error distribution underlying the MAPE is often asymmetrical and right-

skewed, causing the MAPE to overstate the error represented by most of the
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observations. MAPE-R and the median absolute percent error (MEDAPE) are two

measures of accuracy that can be used when the error distribution underlying the

MAPE is highly asymmetrical (Swanson et al. 2011; Swanson et al. 2012). Because

forecast errors are generally stable across a variety of error measures (Rayer 2007),

we forego using MEDAPE and MAPE-R in this study.

MAPE and MALPE are based on forecast errors for a particular geographic area.

Another perspective views the misallocation of the forecast across geographic

space or across a given variable such as age. Our focus here is not on geographic

misallocation, but on the accuracy of the age distribution forecast. A number of

measures can be used to measure allocation error (Duncan et al. 1961; Massey and

Denton 1988). We use the Index of Dissimilarity (IOD) that compares the percent-

age distribution of the forecast population by age group with the corresponding

percentage distribution in the census. The IOD calculates the percentage that the

forecast distribution would have to change to match the census distribution. The

IOD ranges from 0 to 100, with 0 indicating identical percentage distributions and

100 indicating complete disparity between the forecast and census distributions.

5.4 Empirical Data

Our samples consist of: (1) the 39 counties in Washington State; and (2) census

tracts in New Mexico. Data were collected for 18 age groups (0–4, 5–9,. . ., 80–84,
and 85+) for males and females. For the counties, we assembled census data for

each decade from 1970 to 2010. Boundary changes are an issue when using

longitudinal data for census tracts and limited how far back in time we could get

data with consistent boundary definitions. As a result, we used census data from

1990, 2000, and 2010 for 471 of the 499 census tracts in New Mexico. Census tract

boundaries for 2010 formed the basis of this data set. Census 1990 and 2000 data

were extracted at the block level and then re-aggregated to census 2010 census tract

boundaries.

Aside from boundary changes, implementing the H-P method in census tracts is

effected by zero and small non-zero population counts. A CCR is undefined if the

earlier census count (the denominator) is zero. The variability inherent in small

population counts can also lead to abnormally large or abnormally small CCRs

when percentage changes increase or decrease by large amounts. For this study, we

made some general adjustments to the census tract data to deal with these issues.

We excluded 28 census tracts that contained zero population in any age and sex

group in 1990 and 2000. These excluded census tracts accounted for around 5% of

the total males and females in the state, with a range from 2.4% for males and

females aged 85 and older to 8.1% for males aged 20–24.

CCRs were also set at a maximum value of 3.0 and a minimum value of 0.4. The

minimum and maximum values were applied to 5.6% and 7.0% of the 15,072

1990–2000 CCRs, respectively. Remember, the objective here is to compare the

errors from the basic H-P model to modification alternatives and not to produce the
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most accurate H-P forecast. In the latter case, different adjustments strategies and a

much closer inspection of the census tract CCRs would be necessary. Such adjust-

ment strategies could include using county-level CCRs, using CCRs from an

aggregation of census tracts around the census tract in question, and/or setting

upper and lower limits on the total population size (Swanson et al. 2010).

For Washington State counties, we constructed H-P models for the four alter-

natives: (1) CONST (holding CCRs and CWRs constant), (2) AVG (averaging

CCRs and CWRs and holding the averages constant; (3) TREND (proportionate

changes applied to CCRs and CWRs; and (4) SYN (county CCRs and CWRs

adjusted by a forecast of state trends in CCRs and CWRs). We prepared forecasts

for three launch year and target year combinations, which yielded two 10-year

horizons and one 20-year horizon: (1) 1990 launch year and 2000 horizon year;

(2) 2000 launch year and 2010 horizon year; and (3) 1990 launch year and 2010

horizon year.

For the 10-year forecast with the 1990 launch year, CONST used CCRs from the

1980–1990 decade and CWRs from 1990; AVG and TREND used CCRs from the

1970–1980 and 1980–1990 decades and CWRs from 1980 and 1990; and SYN used

CCRs from the 1980–1990 decade, CWRs from 1990, state-level CCRs from the

1980–1990 and 1990–2000 decades, and state-level CWRs from 1990 and 2000.

For the 20-year horizon, SYN used state-level CCRs from the 1990–2000 and

2000–2010 decades and state-level CWRs for 2000 and 2010.

For the 2000 launch year, CONST used CCRs from the 1990–2000 decade and

CWRs from 2000; AVG and TREND used CCRs from the 1980–1990 and

1990–2000 decades and CWRs from 1990 and 2000; and SYN used CCRs based

on the 1990–2000 decade, CWRs from 2000, state-level CCRs from the 1990–2000

and 2000–2010 decades, and state-level CWRs for 2000 and 2010.

Because the census tract data started in 1990, fewer alternatives and only one

10-year horizon was analyzed. We prepared forecasts for CONST and SYN using

the 2000 launch year and the 2010 horizon year (1980 data would have been needed

for the average and trend alternatives). CONST used CCRs from the 1990–2000

decade and CWRs from 2000; and the SYN used CCRs from the 1990–2000

decade, CWRs from 2000, state-level CCRs from the 1990–2000 and 2000–2010

decades, and state-level CWRs for 2000 and 2010.

To test the synthetic alternatives for counties, we would like to have 2000 and

2010 forecasts by age and sex for Washington State based on a 1990 launch year

and a 2010 forecast by age and sex based on a 2000 launch year. For the census tract

synthetic alternative, we would like to have a 2010 forecast by age and sex for New

Mexico based on a 2000 launch year. We were only able to obtain a 2010 forecast

for Washington State based on a 2000 launch year (Office of Financial Management

2002). So for this analysis, we used state-level census data for all synthetic

alternatives.

We do not believe the use of state-level census data, in place of state-level

forecasts contemporaneous with the launch and target years examined, has a
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significant impact on the forecasts from SYN. To examine this claim, we compared

2010 forecasts (from a 2000 launch year) based on the SYN alternative using 2010

census data and the 2010 forecast for Washington State. The patterns and levels of

bias and accuracy for age groups and total population were quite similar for both

forecasts. Differences in MALPEs were less than 2% points and the differences in

MAPEs were less than 1% point. The errors using state-level census data were not

uniformly lower than errors using the state-level forecast, and misallocation errors

were virtually identical in both forecasts.

Some applications control H-P forecasts to an independent forecast of total

population (Smith et al. 2013: 180–181; Swanson et al. 2010).1 We opted not to

control the Hamilton-Perry forecasts by age because we wanted to evaluate the total

population forecast error derived directly from the method itself for each alterna-

tive. Total population forecasts are derived by summing the forecast over all age

groups.

5.5 Empirical Results2

5.5.1 Total Population Forecast Error

5.5.1.1 Washington State Counties

We begin the analysis by examining forecast error for the total population (sum of

the age group forecasts) for Washington State counties. Table 5.1 contains the

average bias and accuracy for the four alternatives and the three launch and

horizon year combinations. In terms of bias, TREND clearly performs the worst

in all launch year and horizon years. Its MALPEs range from �41.8% to 24.5%,

compared to the largest and smallest MALPEs (ignoring signs) of the other alter-

natives (0.8% and 20.8%). For 10-year horizons, AVG performs the best, followed

by the SYN, and then CONST. For the 20-year horizon, SYN has the lowest bias

(�8.7%), followed by CONST (�14.4%). The biases in AVG and TREND, espe-

cially TREND, are considerably larger than the biases in CONST and SYN for the

20-year horizon.

In terms of accuracy, SYN has the least error of any alternative for all but one

launch and horizon year combination; SYN’s MAPE (5.7%) is slightly larger than

1Smith and Tayman (2003) found that while uncontrolled H-P forecasts generally had larger errors

than the controlled forecasts for all states and counties in Florida, the patterns of errors by age

groups was generally very similar for both the controlled and uncontrolled forecasts.
2We analyzed separate projections for males and females, but do not report the results here

because of space limitations. Forecast errors for males and females were similar for most age

groups and the total population. For ages 65 years and older, females generally had greater

accuracy and lower bias.
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AVG’s MAPE (5.6%) for the 2010 horizon using the 2000 launch year. TREND

universally has the lowest accuracy of any alternative, with MAPEs ranging from

20.7% to 47.3%. For 10-year horizons, CONST has greater accuracy (11.2%) than

AVG (12.3) using the 1990 launch year, but AVG (5.6%) has greater accuracy than

CONST (7.6%) using the 2000 launch year. For the 20-year horizon, the AVG

MAPE (31.3%) is now considerably larger than the CONST MAPE (17.7%), which

is somewhat higher than the SYN MAPE (15.3%).

5.5.1.2 New Mexico Census Tracts

Turning to the forecast errors for the total populations of NewMexico census tracts,

Fig. 5.1 shows bias is lower in SYN (29.2%) compared to CONST (34.7%); a

difference of almost 19%. Accuracy is greater in SYN (48.3% vs 51.3%), but the

difference of just over 6% is less than the improvement in bias. The distribution of

absolute percent errors (APEs) is similar for SYN and CONST (see Fig. 5.2). SYN

does have more relatively small APEs under 25% (52.9% vs 50.7%) and fewer

extreme APEs greater than or equal to 100% (13.8% vs. 15.5%).

To provide a more detailed geographic perspective on the total population

forecast error in New Mexico’s census tracts, Table 5.2 shows the MALPE and

MAPE for census tracts in each of New Mexico’s 34 counties. SYN has lower bias

in 29 counties (85.3%). The percentage improvement in bias in these counties

ranges from 8.5% in Sierra County to 91.4% in Chaves County. In the other

counties, excluding Curry, the bias in SYN is between 29% and 41% larger than

the bias in CONST. In Curry County the MALPEs for CONST and SYN are 0.1%

and �4.0%, respectively, leading to a large percentage increase in bias in SYN

(3,900%). SYN has greater accuracy in 28 counties (82.3%). The percentage

improvement in accuracy in these counties ranges from 0.7% in Cibola County to

46.3% in Debaca County. The percentage loss in accuracy in SYN compared to

CONST ranges from 1.6% in Roosevelt County to 41.5% in Union County.

Table 5.1 Forecast bias and accuracy for total population by alternative, Washington State

counties

MALPE

Launch year Horizon year Constant Average Trend Synthetic

1990 2000 �10.4% 4.5% �24.5% �5.9%

2000 2010 6.3% 0.8% 20.7% 2.4%

1990 2000 �14.4% 20.8% �41.8% �8.7%

MAPE

Launch year Horizon year Constant Average Trend Synthetic

1990 2000 11.2% 12.3% 25.2% 8.3%

2000 2010 7.6% 5.6% 20.7% 5.7%

1990 2000 17.7% 31.3% 47.3% 15.3%
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5.5.2 Forecast Error by Age Group

5.5.2.1 Washington State Counties

We continue the analysis by examining forecast error by age group for Washington

State counties. We constructed the forecasts using 5-year age groups and a terminal

age group of 85 years and older, but evaluate forecast errors using a reduced set of

seven categories that cover the full age spectrum, adequately capture the

age-specific performance of the alternatives, and make the analysis easier to follow.

Fig. 5.1 Forecast bias and accuracy for total population by alternative, NewMexico census tracts,

2010

Fig. 5.2 Distribution of absolute percentage errors for total population by alternative, New

Mexico census tracts, 2010
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The seven age groups are: younger than age 10, 10–19, 20–34, 35–54, 55–64,

65–74, and 75 years and older.

Table 5.3 contains the level of bias by age group along with the average across

age groups for the four alternatives and the three launch and horizon year

Table 5.2 Forecast accuracy and bias for total population by alternative, census tracts within New

Mexico counties, 2010

MALPE MAPE

County Constant Synthetic % Diff.a,b Constant Synthetic % Diff.a

Bernalillo 20.3% 15.4% 24.1% 40.0% 37.9% 5.3%

Catron 35.6% 31.9% 10.4% 35.6% 31.9% 10.4%

Chaves 3.9% �0.3% 92.3% 10.4% 10.1% 2.9%

Cibola 39.5% 33.9% 14.2% 64.3% 63.8% 0.8%

Colfax 14.3% 10.2% 28.7% 14.5% 15.1% �4.1%

Curry 0.1% �4.0% �3900.0% 12.9% 13.3% �3.1%

Debaca 8.2% 4.4% 46.3% 8.2% 4.4% 46.3%

Dona Ana 69.5% 62.2% 10.5% 106.7% 101.7% 4.7%

Eddy 41.3% 35.6% 13.8% 76.7% 72.9% 5.0%

Grant 48.2% 43.1% 10.6% 51.3% 47.0% 8.4%

Guadalupe 12.8% 8.3% 35.2% 12.8% 8.3% 35.2%

Harding �9.6% �12.4% �29.2% 9.6% 12.4% �29.2%

Hidalgo 18.2% 13.6% 25.3% 18.2% 16.7% 8.2%

Lea �11.4% �15.2% �33.3% 13.7% 15.4% �12.4%

Lincoln 44.0% 39.3% 10.7% 44.0% 39.3% 10.7%

Los Alamos 1.7% �2.3% �35.3% 7.8% 7.6% 2.6%

Luna 40.7% 35.0% 14.0% 45.0% 40.4% 10.2%

Mckinley 119.4% 108.9% 8.8% 130.1% 121.3% 6.8%

Mora 26.2% 21.6% 17.6% 26.2% 21.6% 17.6%

Otero 53.6% 47.4% 11.6% 76.2% 72.1% 5.4%

Quay 58.5% 53.3% 8.9% 62.0% 59.5% 4.0%

Rio Arriba 31.2% 25.9% 17.0% 44.8% 40.8% 8.9%

Roosevelt 11.2% 6.4% 42.9% 41.6% 42.3% �1.7%

Sandoval 48.9% 42.7% 12.7% 68.9% 64.8% 6.0%

San Juan 54.9% 48.2% 12.2% 62.0% 56.6% 8.7%

San Miguel 87.2% 79.6% 8.7% 101.5% 97.6% 3.8%

Santa Fe 22.2% 17.4% 21.6% 31.9% 29.6% 7.2%

Sierra 56.0% 51.2% 8.6% 56.0% 51.2% 8.6%

Socorro 57.9% 51.4% 11.2% 78.2% 73.1% 6.5%

Taos 17.2% 12.8% 25.6% 20.2% 17.0% 15.8%

Torrance 60.6% 53.6% 11.6% 60.6% 54.7% 9.7%

Union �8.2% �11.6% �41.5% 8.2% 11.6% �41.5%

Valencia 48.0% 41.6% 13.3% 48.3% 42.7% 11.6%

New Mexico 34.7% 29.2% 15.9% 51.5% 48.3% 6.2%

a(Constant – synthetic ) / constant � 100
bCalculated using the absolute value of the MALPE
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combinations. SYN has lower bias than TREND and CONST in every age group for

all launch and target year combinations. SYN’s bias over the age groups is roughly
50% lower than CONST and four to five times lower than TREND. SYN has lower

bias than AVE in 14 of 21 comparisons (7 age groups and 3 launch and target

years). SYN’s average bias across age groups is substantially smaller than AVE in

the 20-year horizon, slightly lower than AVE in the 10-year horizon using the 1990

launch year, and low (2.4%), but larger than AVE (0.2%) in the 10-year horizon

using the 2000 launch year.

TREND shows the largest bias of any alternative in all but one comparison. In

only one instance (ages 75 years and older, launch year 2000 and horizon year

2010) does TREND have a smaller (in absolute value) MALPE compared to AVE

(4.2% vs �6.3%). The performance related to bias is less clear comparing CONST

and AVE. AVE has lower bias than in CONST in 12 of 21 comparisons and a lower

average bias across age groups in the 10-year horizons, but CONST has a decidedly

lower average bias across age groups in the 20-year horizon (�13.7 vs 20.4). Also,

Table 5.3 Forecast bias (MALPE) by age group and alternative, Washington State counties

Launch Year 1990 and Horizon Year 2000

Age Group Constant Average Trend Synthetic

<10 �6.4% 16.8% �28.3% �3.3%

10–19 �13.3% �10.0% �13.4% �8.4%

20–34 �10.5% 25.9% �44.6% �1.7%

35–54 �12.3% �3.2% �20.3% �8.3%

55–64 �8.7% 0.1% �19.3% �6.9%

65–74 �7.0% 8.0% �26.6% �5.5%

75+ �5.9% 2.6% �15.1% �0.4%

Average �9.2% 5.7% �23.9% �4.9%

Launch Year 2000 and Horizon Year 2010

Age Group Constant Average Trend Synthetic

<10 8.9% 6.0% 18.9% 3.0%

10–19 9.3% 1.9% 28.9% 3.6%

20–34 10.9% 5.0% 27.3% 1.7%

35–54 7.2% 0.7% 24.1% 2.4%

55–64 4.6% 0.0% 16.2% 4.0%

65–74 �2.4% �5.9% 6.1% 1.0%

75+ �3.3% �6.3% 4.2% 0.7%

Average 5.0% 0.2% 18.0% 2.4%

Launch Year 1990 and Horizon Year 2010

Age Group Constant Average Trend Synthetic

<10 �9.5% 46.8% �53.1% �4.9%

10–19 �10.8% 17.5% �20.3% �7.9%

20–34 �12.3% 40.2% �60.9% �6.6%

35–54 �18.1% 24.0% �44.0% �11.2%

55–64 �13.2% �1.9% �24.6% �9.2%

65–74 �16.7% 8.3% �50.4% �10.6%

75+ �15.1% 7.9% �38.0% �3.6%

Average �13.7% 20.4% �41.6% �7.7%
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AVE has more large outlying MALPEs than CONST; 25.9% in the 10-year horizon

using the 1990 launch year and 46.8% and 40.2% in the 20-year horizon.

Table 5.4 contains the level of accuracy by age group along with the average

across age groups for the four alternatives and the three launch and horizon year

combinations. SYN has greater accuracy than TREND and CONST in every age

group for all launch and horizon year combinations. SYN’s average accuracy across
age groups is roughly 20% lower than CONST and three times lower than TREND.

SYN has a greater accuracy than AVE in 19 of 21 comparisons and its average

accuracy across age groups is substantially smaller than AVE in the 20-year horizon

and in the 10-year horizon using the 1990 launch year, and somewhat lower than

AVE in the 10-year horizon using the 2000 launch year (6.3% vs 7.3%).

TREND shows the lowest accuracy of any alternative in all 21 comparisons.

TREND’s average across age groups range from 150% higher to 372% higher

compared to the corresponding figures for the other alternatives. In general,

CONST performs better than AVE regarding accuracy as compared to bias.

Table 5.4 Forecast accuracy (MAPE) by age group and alternative, Washington State counties

Launch Year 1990 and Horizon Year 2000

Age Group Constant Average Trend Synthetic

<10 10.3% 21.2% 29.2% 9.3%

10–19 14.1% 15.6% 21.6% 11.1%

20–34 13.9% 28.5% 45.5% 10.2%

35–54 12.9% 12.4% 23.2% 10.1%

55–64 9.4% 12.8% 20.4% 8.3%

65–74 8.0% 13.0% 26.6% 7.0%

75+ 6.4% 9.0% 17.8% 4.1%

Average 10.7% 16.1% 26.3% 8.8%

Launch Year 2000 and Horizon Year 2010

Age Group Constant Average Trend Synthetic

<10 10.6% 9.5% 20.2% 7.6%

10–19 10.6% 6.9% 29.7% 6.9%

20–34 12.7% 9.4% 28.2% 8.2%

35–54 8.6% 5.2% 24.3% 5.2%

55–64 6.9% 5.8% 16.8% 6.7%

65–74 5.3% 7.3% 9.4% 4.5%

75+ 5.6% 7.2% 8.5% 4.7%

Average 8.6% 7.3% 19.6% 6.3%

Launch Year 1990 and Horizon Year 2010

Age Group Constant Average Trend Synthetic

<10 18.6% 53.1% 57.8% 17.3%

10–19 18.1% 31.6% 50.2% 17.4%

20–34 19.6% 47.5% 64.9% 18.1%

35–54 21.0% 34.7% 53.7% 17.7%

55–64 16.0% 25.8% 37.2% 14.3%

65–74 18.5% 26.4% 50.4% 15.0%

75+ 15.3% 19.9% 41.6% 8.3%

Average 18.1% 34.1% 50.8% 15.4%
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CONST has a greater accuracy than AVE in 15 of 21 comparisons, a lower average

across age groups in the 10-year horizon using the 1990 launch year, and a

decidedly lower average across age groups in the 20-year horizon (18.1% vs

34.1). AVE does show greater accuracy than CONST in the 10-year horizon

using the 2000 launch year. AVG has smaller MAPEs in 6 of 7 age groups, (the

sole exception is for the age group 65–74), and a smaller average across age groups

(7.3% vs 8.6%).

We now turn to the last forecast error evaluation criterion, misallocation error

across age groups. Table 5.5 contains the average of the IODs across counties for

the four alternatives and the three launch and horizon year combinations. Under this

criterion, SYN once again shows the smallest allocation errors of any alternative;

although the differences with CONST are relatively small. CONST generally out-

performs AVE; its average IODs are roughly half the size of those for AVE in two

of three launch and horizon year combinations and its average IOD is only 0.1%

larger than the AVE value for 2010 forecast using the 2000 launch year. TREND by

far has the largest allocation errors of any alternative.

We conclude this section by looking at the relative performance of the alterna-

tives in individual counties. We use a non-parametric approach that measures the

percentage of counties where one alternative has a smaller absolute percent error

(APE) or IOD than another, regardless of the magnitude of the difference. We

compare SYN against CONST stratified by launch and horizon year combinations

for age groups and the total population.3

SYN has a smaller APE than CONST in at least 61% of counties in all age

groups and for the total population for each launch year and horizon year combi-

nation (See Fig. 5.3). SYN generally performs the best, according to this criterion,

in the 2000 forecast using the 1990 launch year. The percentage of counties with

smaller APEs for SYN ranges from 74.4% to 89.7% and 84.6% for the total

population. For the 2010 forecast using the 1990 launch year, the percentages for

age groups range from 69.2% to 82.1%, and 76.9% for the total population. For the

2010 forecast using the 2000 launch year, the percentages for age groups range

from 61.5% to 82.1%, and 74.6% for the total population.

IODs for SYN are smaller than CONST in all launch and horizon year combi-

nations, with percentages ranging from 59.0% of counties for the 2010 forecast

3To conserve space we do not present comparisons of SYN with AVE and SYN with TREND. To

summarize these results, SYN had smaller APEs than AVE in more counties in 20 of the

21 combinations, with percentages in the age groups that ranged from 51.3% to 84.6%. For ages

10 to 19 in the 2010 forecast using the 2000 launch year, SYN had a lower MAPE in 48.7% of the

counties. SYN also had smaller IODs than AVE in more counties, with percentages that ranged

from 64.1% for the 2010 forecast using the 2000 launch year to 97.4% of counties for the 2000

forecast using the 1990 launch. SYN had smaller APEs than TREND in more counties in all age

groups and launch year and horizon year combinations, with percentages that ranged from 69.2%

to 100%. In terms of allocation error, SYN had a lower IOD than TREND ranged from 92.3% of

the counties in both 10-year horizons and 100% in the 20-year horizon.
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using the 1990 launch year to 76.9% for the 2010 forecast using the 2000

launch year.

5.5.2.2 New Mexico Census Tracts

Turning to the analysis by age group for New Mexico census tracts, Table 5.6

contains the level of bias and accuracy by age group along with the average across

age groups for the 2010 forecasts from SYN and CONST. Across all age groups,

SYN has 13.1% less bias than CONST. SYN has lower bias than CONST in all age

groups, but especially in age groups under 65 years of age. Bias is between 8.5%

and 21.1% lower in SYN in these age groups, compared to around 2% lower for

ages 65 and older.

A similar pattern is seen for forecast accuracy. Across all age groups, SYN has

4.7% greater accuracy than CONST. SYN has greater accuracy than CONST in all

age groups, but especially in age groups less than 65 years of age. Accuracy is

between 2.1% and 8.3% greater in these age groups, compared to less than 1% for

ages 65 years and older. While SYN does lower bias and raise accuracy compared

to CONST, SYN has a greater impact on lowering bias than on increasing accuracy.

Table 5.5 Forecast allocation error across age groups by alternative, Washington State counties

Mean index of dissimilarity

Launch year Horizon year Constant Average Trend Synthetic

1990 2000 2.6% 5.6% 7.2% 2.5%

2000 2010 2.3% 2.2% 4.0% 1.8%

1990 2010 3.7% 6.5% 15.5% 3.6%

Fig. 5.3 Synthetic APE lower than constant APE by age group and total population by launch and

horizon years, Washington State counties
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There is no difference in allocation error across age groups between SYN and

CONST. The average IOD is 9.0% for both alternatives. The distribution of IODs

by IOD size was virtually identical as well (data not shown).

We conclude this section by looking at the relative performance of SYN and

CONST in individual census tracts using the same non-parametric technique used

for Washington State counties. Figure 5.4 shows the percentage of census tracts

where SYN has a smaller APE than CONST by age group and for the total

population. The difference in forecast error between SYN and CONST is more

muted using this criterion. In all age groups less than 65 years of age and for the

total population, SYN has a smaller APE in more than 50% of the census tracts. For

these age groups, the percentages are quite similar ranging from 56.7% to 59.9%

and 59.4% for the total population. In age range of 65–74, SYN has a smaller APE

Table 5.6 Forecast accuracy and bias by age group and alternative, New Mexico census

tracts, 2010

MALPE MAPE

Age group Constant Synthetic Pct.a,b Diff. Constant Synthetic Pct.a,b Diff.

<10 43.1% 37.4% 13.3% 65.8% 62.6% 4.8%

10–19 42.7% 33.7% 21.1% 63.4% 58.2% 8.3%

20–34 51.4% 41.7% 18.9% 73.0% 67.1% 8.1%

35–54 28.1% 22.8% 19.0% 46.3% 43.6% 5.9%

55–64 22.8% 20.9% 8.5% 42.2% 41.3% 2.1%

65–74 21.5% 21.1% 1.8% 40.9% 40.7% 0.5%

75+ 42.6% 41.8% 1.9% 62.6% 62.0% 0.9%

Average 36.1% 31.3% 13.1% 56.3% 53.6% 4.7%

a(Constant – synthetic) / constant � 100
bCalculated using the absolute value of the MALPE

Fig. 5.4 Synthetic APE lower than constant APE by age group and total population, New Mexico

census tracts, 2010
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in 46.1% of the census tracts. The percentage is 50.1% for ages 75 years and older

showing almost no advantage for either SYN or CONST. Regarding allocation

error; SYN has a smaller IOD than CONST in 54.1% of the census tracts.

5.5.3 Total Population Forecast Error by Population Size
and Growth Rate4

5.5.3.1 Washington State Counties

In this section we analyze county total population forecast errors by county

population size and growth rate for CONST and SYN. Size represents the popula-

tion at the launch year and growth rate represents the percentage change over the

decade prior to the launch year. We present detailed tables for only launch year

2000 and horizon year 2010, but discuss any major differences with the other two

launch year and target year combinations. We begin by taking an aggregate look at

the MALPE, MAPE, and IOD by four size categories and three growth rate

categories (see Table 5.7). We use three categories for growth rate because it had

much less variation compared to size. These results should be viewed with caution

given the relatively small samples sizes in each category (9 or 10 for size and

10 to 15 for growth rate).

In terms of bias, the MALPE for SYN is lower than the MALPE for CONST in

every size and growth rate category by an appreciable amount. For size, SYN has

between 37.5% and 81.8% less bias and for growth rate SYN has between 44.0%

and 97.1% less bias. These results are generally similar to those for the other launch

and horizon year combinations. However in the forecast with a 20-year horizon, the

MALPE for SYN is larger than the MALPE for CONST in the largest counties

(4.2% vs �2.1%) and in the fastest growing counties (8.9% vs 2.1%).

A similar pattern by size and growth rate is seen for the MAPE, except the

percentage differences are considerably smaller than those for the MALPE. In fact,

for the slowest growing counties, the MAPEs for SYN and CONST are almost

identical. These results are generally similar to those for the other launch and

horizon year combinations with a few exceptions. In the forecast with a 20-year

horizon, the MAPE for SYN is larger than the MAPE for CONST in the largest

counties (13.0% vs 11.0%) and in the fastest growing counties (13.4% vs 10.6%).

Similarly, in the 10-year forecast using the 1990 launch year, the SYN MAPE

(6.5%) is a larger than the CONST MAPE (5.5%) in the largest counties and

slightly larger in the fastest growing counties (6.9% vs 6.8%).

In terms of allocation error, the IODs for all size and growth rate categories are

very low for both SYN and CONST. Except for counties with between 20,000 and

4We analyzed forecast errors by size and growth rate for each age group, but do not present these

results to save space. The results for all groups were very similar to those for total population.
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50,000 people, the IOD for SYN is lower than the IOD for CONST in all other size

and growth rate categories. These percentage differences range between 23.8% and

35.0% for size and between 10.7% and 25.0% for growth rate. In counties with

between 20,000 and 50,000 people, the IOD for SYN is 0.1 of a percentage point

larger than the IOD for CONST (2.6% vs 2.5%). These results are nearly identical

to those for the other launch and horizon year combinations.

We now look at individual counties where the APEs for SYN are lower than the

APEs for CONST by the size and growth rate of the counties (see Table 5.8). There

is no discernable relationship between population size and a lower SYN APE. In all

size groups, the APE for SYN is lower in over 60% of the counties. These figures

are very close for populations above 20,000 (66.7% to 70.0%), and SYN most

outperforms CONST in the smallest counties (90.0%). The relationship between a

lower SYN APE with size is not statistically significant and weak (Kendal’s
Tau-c ¼ �0.150).

The relationship between population size and a lower SYN APE is similar in the

other combinations using the 1990 launch year, and quite different from these

results. The relationship with size is now statistically significant, moderate in

strength (Kendal’s Tau-c of �0.379 and �0.396), and negative in direction. As

growth rates increase, the percent of counties where SYN has greater accuracy

decreases. For example, in the forecast with a 20-year horizon, SYN has a lower

APE than CONST in 91.7% of the smallest counties. That percentage decreases to

37.5% in the largest counties.

There is a stronger and positive relationship between growth rate and a lower

SYN APE. For counties in the lowest growth rate category, SYN is lower than

Table 5.8 Absolute percent errors for total population by size and growth rate, synthetic alter-

native (launch year 2000 and horizon year 2010), Washington State counties

2000 Population

Size < 20,000 20,000–49,999 50,000–141,999 142,000+ Total

Synthetic lowera 90.0% 70.0% 66.7% 70.0% 74.4%

Odds ratiob 3.857 1.000 0.857 n/a

Sample size 10 10 9 10 39

Chi square 1.762 p ¼ 0.623

Kendal’s Tau-c �0.150

1990–2000 Growth rate

Growth rate < 15% 15% to 24.9% 25 + % Total

Synthetic lowera 50.0% 80.0% 85.7% 74.4%

Odds ratioc 0.167 0.667 n/a

Sample size 10 15 14 39

Chi square 4.309 p ¼ 0.116

Kendal’s Tau-c 0.281

aCompared to the absolute percent error from the constant model
b142,000+ is the reference group
c25 + % is the reference group
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CONST just as often as CONST is lower than SYN. As growth rates increase, SYN

has a lower APE in a larger percent of the counties. While this relationship is still

not significant, the Kendal’s Tau-c ¼ 0.281 is almost double the figure for size. The

relationship between population growth rate and a lower SYN is similar in the

combinations using the 1990 launch year, and quite different from these results. The

relationship with growth rate is now statistically significant, considerably larger in

strength (Kendal’s Tau-c’s of �0.365 and �0.570), and negative in direction. As

growth rates increase the percent of counties where SYN has a lower APE than

CONST decreases. For example, in the forecast with a 20-year horizon, SYN has a

lower APE in 100% of the counties with the lowest growth rate. That percentage

decreases to 30.0% in the fastest growing counties.

5.5.3.2 New Mexico Census Tracts

We now turn to the analysis of total population forecast errors for SYN and CONST

by population size and population growth rate for New Mexico census tracts. The

number of census tracts enabled a more detailed breakdown of size and growth rate

into five groupings for these characteristics. Table 5.9 provides an aggregate look at

the MALPE, MAPE, and IOD by size and growth rate.

In terms of bias, the MALPE for SYN is between 9.5% and 31.2% lower than the

MALPE for CONST in every size category. A different pattern related to bias

occurs for growth rate. For census tracts that grow by more than 10%, SYN has a

lower MALPE than CONST by between 7.2% and 24.8%. The MALPEs for SYN

and CONST are �34.0% and �31.4%, respectively, in declining census tracts. In

the most stable census tracts (growth rate between�10% to 9.9%), the MALPEs for

SYN and CONST are �5.8% vs �1.9%, respectively.

Similar patterns by size and growth rate are seen for the MAPE, except the

percentage differences are generally smaller than those for the MALPE. For size,

the SYN MAPEs are in a tight range and lower than the CONST MAPEs by

between 4.2% and 6.8%. For growth rate, CONST has greater accuracy than

SYN for the declining and relatively stable census tracts, with the MAPEs for

SYN around 6.0% higher. For census tracts that grow by 10% or more, SYN has

greater accuracy than CONST, with MAPEs between 6.9% and 12.7% lower.

In terms of allocation error, there is not much difference between SYN and

CONST across size and growth rate categories. For size, the IODs for SYN and

CONST are identical for census tracts with 3,000 or more people. For smaller

census tracts, IODs for SYN are smaller by only trivial amounts. IODs for census

tracts with between 2,000 and 2,999 people differ by 0.2 of a percentage point and

for census tracts with less than 2000 people they differ by 0.1 of a percentage point.

For growth rate, IODs for CONST are smaller than IODs for SYN in declining and

stable census tracts. For the faster growing census tracts (growth rates of 10% or

more), SYN has slightly less allocation error. But the largest difference in IOD
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between SYN and CONST across growth rate categories is only 0.2 of a percentage

point.

In looking at individual census tracts, we find that the APEs for SYN are lower

than the APEs for CONST by the size and growth rate (see Table 5.10). There is a

weak positive and statistically significant relationship between population size and

a lower SYN APE (Kendal’s Tau-c of 0.177). The percent of census tracts with

lower SYN APEs is relatively close for census tracts with less than 4,000 people,

ranging from 49.6% to 55.9%. SYN does outperform CONST in census tracts with

4,000 or more people. SYN has a lower APE in 64.1% of census tracts with between

4,000 and 5,000 persons and 75.7% of the census tracts with more than 5,000

persons.

Compared to size, there is a much stronger and statistically significant positive

relationship between growth rate and a lower SYN APE (Kendal’s Tau-c of 0.717).
For declining areas, SYN is lower than CONST in only 5.2% of census tracts, and

for stable areas SYN is lower than CONST in 34.7% of census tracts. As growth

rates increase, SYN has a lower APE in a larger percentage of the census tracts. For

census tracts that grow from between 10% and 50%, SYN has a lower APE in 79%

of them. The percentage steadily increases, reaching 95.9% in census tracts that

more than doubled in size.

Table 5.10 Absolute percent errors for total population by size and growth rate, synthetic

alternative, New Mexico census tracts, 2010

2000 Population

Size < 2,000 2,000–2,999 3,000–3,999 4,000–4,999 5,000+ Total

Synthetic lowera 55.9% 52.9% 49.6% 64.1% 75.7% 59.4%

Odds ratiob 0.407 0.361 0.315 0.573 n/a

Sample size 59 102 125 78 107 471

Chi square 19.548 p ¼ 0.001

Kendal’s Tau-c 0.177

1990–2000 Growth rate

Growth rate <�10%

�10% to

9.9%

10% to

49.9%

50% to

99.9% 100.0%+ Total

Synthetic lowera 5.2% 34.7% 79.0% 89.0% 95.9% 59.4%

Odds ratioc 0.002 0.023 0.162 0.348 n/a

Sample size 77 124 124 73 73 471

Chi square 212.036 P < 0.001

Kendal’s Tau-c 0.717

aCompared to the absolute percent error from the constant model
b5000+ is the reference group
c100.0% + is the reference group
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5.6 Conclusions

Assessments of the H-P method have been based on the basic H-P framework in

which CCRs developed over the base period and CWRs developed for the launch

year are held constant over the forecast horizon. In this chapter, we evaluated

several alternatives to modifying CCRs and CWRs and compared the errors from

those forecasts to errors from forecasts using the basic H-P framework. These

alternatives included: (1) averaging; (2) trending; and (3) and a synthetic method

that based local CCRs and CWRs changes on state-level changes in the

corresponding CCRs and CWRs. We evaluated three dimensions of forecast error

(accuracy, bias, and allocation error) from forecasts created for counties in

Washington State (10-year and 20-year horizons) and census tracts in New Mexico

(10-year horizon). Forecast errors were computed by comparing the simulated

forecasts to results from the 2000 and 2010 censuses.

How did the basic H-P framework (CONST) stack up against the alternatives

(AVE, TREND, and SYN)? The short answer is very well against AVE and

TREND in Washington State counties. Forecasts from CONST were almost uni-

versally better (lower error) than forecasts (total population and population by age)

from TREND for all forecast launch year and target year combinations, and

generally better than forecasts from AVE. AVE forecasts had lower forecast errors

than CONST in the one of the forecasts with a 10-year horizon (launch year 2000

and horizon year 2010), but for the 20-year horizon AVE had much larger forecast

errors than CONST. Incorporating historical information for 20-years for CCRs and

10-years for the CWRs did not lower forecast errors, but in fact increased them

compared to the basic H-P framework.

Incorporating forecast information from a larger geographic area outperformed

the basic H-P framework for Washington State counties. County forecasts from

SYN had less bias, greater accuracy, and less allocation error than forecasts than

CONST. This finding was very pervasive. It held for total population and popula-

tion by age group for all launch and horizon year combinations based on an

aggregate analysis of MALPEs, MAPEs, and IODs and analysis of the relative

sizes of the APEs and IODs in individual counties. The advantage of SYN over

CONST was greater in forecasts with a 10-year horizon than it was in the forecast

with a 20-year horizon. Total population forecasts from SYN were also better than

forecasts from CONST across virtually all size and growth rate categories. In

counties with 20,000–50,000 persons, however, CONST’s average IOD (2.2%)

was marginally lower than SYN’s average IOD (2.3%). These results by size and

growth rate were based on rather small samples and should be viewed with caution.

Because of limited historical data with comparable boundaries, we were able to

evaluate only SYN and CONST for census tracts. Like counties, census tract

forecasts based on SYN had less bias, greater accuracy, and less allocation error

than forecasts based on CONST, but the advantages of SYN were less dramatic and

not quite as universal for census tracts. For example in the 2010 county total

population forecast using a 2000 launch year, SYN had a lower MALPE and
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MAPE than CONST by 62% and 25%, respectively. For the total population in

census tracts, SYN had 18.8% less bias and 6.2% greater accuracy. While SYN had

less bias and greater accuracy than CONST in all age groups, SYN’s advantage was
least in age groups 65 years and older. Forecasts from SYN were also better than

forecasts from CONST across size and growth rate categories with a few excep-

tions. For census tracts with 3,000 or more people, there was no difference in

averages IOD between SYN and CONST. The most noticeable exception was in

declining or stable census tracts where CONST has less bias and allocation error

and greater accuracy than SYN.

This analysis has shown that a synthetic approach is a viable alternative to the

basic H-P framework in Washington State counties and New Mexico census tracts.

We have shown that applying methods that altered CCRs and CWRs based on their

history was not an effective strategy in Washington State counties. There is more to

be gained by applying a global (the same) adjustment covering the horizon being

forecast rather than basing adjustments on county-specific historical changes. Even

though we did not test averaging or trending of CCRs and CRWs in the census tract

forecasts, we believe these alternatives would not be useful at this level of geog-

raphy. Assembling the necessary data would be daunting and costly, and historical

variations in CCRs and CWRs for individual census tracts would be much more

volatile and inconsistent than the county-level ratios analyzed here. Perhaps,

averaging and trending CCRs and CWRs might be more viable strategies for states

and other geographic areas larger than counties.

Although not as apparent in the county forecasts, the census tract forecasts

suggest the basic H-P framework may produce forecasts with less error than a

synthetic method in declining or stable census tracts. More study is needed to

determine the generality of this finding. Perhaps this finding was not as apparent

in Washington State counties because of a lack of variation in growth rates, which

were almost always positive. It could also be an artifact of the way we applied the

synthetic adjustment. We used state-level forecasts for both the counties and census

tracts. This is how a synthetic forecast for counties would likely be implemented,

but application of state-level changes to census tracts throughout the state might

ignore important substate variation in CCRs and CWRs over the forecast horizon,

affecting the performance of the synthetic approach.

Our results are conclusive enough to recommend using the synthetic approach

when implementing the H-P forecasting method. In most forecasting situations a

forecast for the higher level of geography would be available, so the synthetic

approach would be a low cost alternative to the basic H-P framework. These

findings are also conclusive enough warrant additional research into the efficacy

of the synthetic alternative. Evaluating counties with more varied size and growth

rate characteristics might shed additional light on the performance of the synthetic

alternative, especially in declining or stable counties or in counties with small

populations. It would be useful to examine whether more geographically-specific

CCR and CWR forecasts as global adjustments is a better synthetic strategy for

census tracts. Perhaps, the synthetic approach may have an even greater advantage

over the basic H-P framework using such a strategy. Finally, we only examined
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uncontrolled forecasts. Would forecast errors and their patterns change for the

synthetic alternative and the basic H-P framework, if the forecasts by age were

adjusted to the total population for each geographic area?
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Chapter 6

Forecasting Uncertainty

6.1 Introduction

This chapter explores the idea of creating statistical intervals for population fore-

casts based on stochastic forecasts of the cohort-change ratios (CCR). We provide

an overview of the three approaches that have been used to assess population

forecast uncertainty, judgment and personal opinion, a range of forecasts based

on alternative scenarios, and statistical forecast intervals. This chapter focuses on

the latter approach. We describe and evaluate a method for developing statistical

intervals around population forecasts by age and for the total population. The

method combines regression modeling of the cohort change ratios used in the

Hamilton-Perry (H-P) method. The evaluation of state-level forecasts shows the

intervals are neither so wide to be meaningless nor too narrow to be overly

restrictive and that, overall, the percent of the forecasts contained within the

intervals is consistent with the uncertainly level of the intervals. We make some

observations regarding the limitations of this approach to measuring forecast

uncertainty, and conclude with suggestions for further work.

6.2 Forecast Uncertainty

Although they are widely used, population forecasts entail an amount of uncer-

tainty, especially for long time horizons and for places with small or rapidly

changing populations (Alho 1984; Alho and Spencer 1985, 1990, 1997, 2005;

Lutz et al. 1999; Smith et al. 2013: 365; Tayman et al. 2007, 2011; Wilson 2012).

As such, virtually every forecast is wrong, making the task of an accurate forecast

impossible, but the task is unavoidable (Keyfitz 1987: 236). It is impossible in that

the forecasted numbers turn out to be different from what actually occurs, but
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unavoidable in that forecasts must be done in the modern world. Swanson and

Tayman (1995) describe this irony as the “rock” and the “hard place.”

Demographers have developed several strategies for dealing with the “irony” of

forecasting. They include the use of the term “projection” rather than “forecast,”

(Keyfitz 1972; Pittenger 1978; Smith and Bayya 1992; Smith et al. 2013: 323),

“normative” forecasting (Moen 1984), and providing measures of forecast uncer-

tainty. One way to assess forecast uncertainty is to use judgment and methods based

on judgment (Linstone and Turoff 1975, Ševčı́ková et al. 2013). A second way is to

produce several alternative forecasts or scenarios based on different sets of assump-

tions (Campbell 1996; Cheeseman-Day 1992; Spencer 1989; Tayman 2011;

Thompson and Whelpton 1933). A third approach is to develop statistical forecast

intervals (Alho and Spencer 2005; Rayer et al. 2009; Stoto 1983; Swanson and

Beck 1994).

6.3 Statistical Forecast Intervals

Forecast intervals based on statistical theory and data on error distributions provide

an explicit estimate of the probability that a given range will contain the future

population. These intervals are sometimes called prediction intervals, probability

intervals, confidence intervals, or confidence limits. We call them forecast intervals

to distinguish them from traditional confidence intervals, which—strictly speak-

ing—apply only to sample data.

Two approaches have been used to develop statistical forecast intervals. The first

is based on the development of statistical (or stochastic) models of population

growth, and the second is based on empirical analyses of errors from past popula-

tion forecasts. Both rely on the assumption that historical or simulated error

distributions can be used to predict future error distributions. To a large extent,

the two approaches complement one another, but neither is fully satisfactory. On

the one hand, model-based intervals tend to exploit the theories and underlying

inferential statistics, but can fall short in utilizing the information available in

historical data. On the other hand, empirically-based intervals must utilize infor-

mation from historical data and forecasts, but fall short in exploiting the theories

underlying inferential statistics. Our method for developing statistical intervals

around population forecasts uses a model-based approach enhanced with informa-

tion in historical data, a feature found in the empirically-based approach.

6.3.1 Model-Based Intervals

Model-based forecast intervals capitalize on the stochastic (or random) nature of

population processes and offer one important benefit: they provide explicit proba-

bility statements to accompany point forecasts and provide consistency among
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demographic trajectories and parameters. These intervals often exceed the low and

high projections produced using alternative scenarios (McNees 1992). Given that

many data users (and producers) tend to overestimate the accuracy of population

forecasts, model-based probability intervals can provide an important reality check.

However, model-based forecast intervals are valid only to the extent that the

assumptions underlying the models are valid. In spite of their objective appearance,

they are strongly influenced by the analyst’s judgment. The models themselves are

often complex and require a substantial amount of base data. They are subject to

errors in the base data, errors in specifying the model, errors in estimating the

model’s parameters, and future structural changes invalidating the model’s param-

eter estimates (Lee 1992). In addition, it is the case that many alternative forecast-

ing models can be specified, each providing different (perhaps dramatically

different) forecast intervals (Cohen 1986; Lee 1974; Tayman et al. 2007).

Model-based intervals can be developed in a number of ways. Past applications

have included maximum likelihood estimators of population growth rates (Cohen

1986), Monte Carlo simulations of fertility and migration rates (Pflaumer 1988),

simulations incorporating uncertainty from other methods (Wilson and Terblanche

2017); regression-based forecasting models (Swanson and Beck 1994), Bayesian

forecasting models (Alkema et al. 2011; Raftery et al. 2013), models based on the

opinions of a group of experts (Lutz et al. 1999; San Diego County Water Authority

2002), and time series models covering mortality rates (Lee and Carter 1992), life

expectancy (Torri and Vaupel 2012), fertility rates (Lee 1993), net migration

(De Beer 1993), and total population size (Alders et al. 2007; Hyndman and

Booth 2008). Although much of the research on model-based intervals has focused

on national or regional forecasts, research has extended the analysis to subnational

forecasts as well (Cameron and Poot 2011; Tayman et al. 2007; Wilson and Bell

2004). Providing a detailed description of model-based forecast intervals is beyond

the scope of this chapter, but we can give several examples of the intervals

produced by these models and compare them to the high and low projection series

produced using alternative scenarios.

Lee and Tuljapurkar (1994) forecast a population of 398 million for the United

States in 2065, with a 95% forecast interval of 259–609 million. This range is

considerably wider than the spread between the low and high projections produced

by the Census Bureau at about the same time; those projections ranged from

276–507 million in 2050, with a medium projection of 383 million (Cheeseman-

Day 1992). The previous set of Census Bureau projections reported much lower

numbers and a slightly smaller range, with a medium projection of 300 million and

a range of 230–414 million for 2050 (Spencer 1989).

Pflaumer (1992) made two time series forecasts of the U.S. population: one

based on population size and the other based on the natural logarithm of population

size. The first model produced a medium forecast of 402 million in 2050, with a

95% forecast interval of 277–527 million. These numbers are similar to the Census

Bureau’s projections from the same time. The second model produced a medium

forecast of 557 million, with a 95% forecast interval of 465–666 million. These
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numbers are much higher and provide a narrower range than the Census Bureau’s
projections.

McNown et al. (1995) made time series forecasts of the components of growth

for the U.S. population, as well as total population size. For 2050, they forecasted a

total population of 373 million; with a 95% forecast interval ranging from 243 mil-

lion to 736 million. The total fertility rate was forecasted to be 2.46 in 2050, with a

95% forecast interval ranging from 0.91 to 5.53. Life expectancy at birth for males

was forecasted to be 75.5, with a 95% forecast interval ranging from 68.5 to 82.8.

For fertility, these intervals are much larger than those found in the Census Bureau

projections, which assumed that the total fertility rate would range only from 1.83

to 2.52 in 2050 (Cheeseman-Day 1992). For mortality, the interval widths are not

much different than those reported by the Census Bureau, in which life expectancy

at birth was projected to range between 75.3 and 87.6 in 2050.

Swanson and Beck (1994) developed a regression-based model for making

short-term county population forecasts in the state of Washington. They compared

the 2/3 forecast intervals associated with this model to census counts of

Washington’s 39 counties in 1970, 1980, and 1990. They found the forecast

intervals to contain the 1970 census count in 30 counties (77%), the 1980 census

count in 24 counties (62%), and the 1990 census count in 31 counties (79%). These

results suggest that Swanson and Beck’s 2/3 forecast intervals provided a reason-

ably accurate view of forecast uncertainty.

6.3.2 Empirically-Based Intervals

The second type of forecast interval is based on empirical analyses of errors from

past forecasts rather than on an explicit stochastic model (Keyfitz 1981; Smith and

Sincich 1988; Stoto 1983; Smith and Rayer 2012; Tayman et al. 1998). The

empirical approach has some advantages over models that incorporate the stochas-

tic nature of change and may generally be more useful for small areas. This

approach is much less complex and within the capabilities of most agencies

preparing forecasts. The problems implementing stochastic models for small

areas are even more difficult because of the lack of time-series data and the lower

reliability of rates and statistical parameters based on relatively small areal sizes.

However, empirically-based probability intervals require past forecasts whose

availability/usability may be an issue.

Keyfitz (1981) took approximately 1,100 national forecasts made between 1939

and 1968 and calculated the difference between the forecast annual growth rate and

the rate actually occurring over time. He found this difference to be largely

independent of the length of horizon over which the forecasts were made. He

calculated the RMSE for the entire sample to be approximately 0.4% points and

developed 2/3 forecast intervals by applying that error to the growth rates fore-

casted for each country. For example, if a country were forecast to grow by 2% per

year for the next 20 years, the probability would be approximately 2/3 that the
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actual growth rate would be somewhere between 1.6 and 2.4%. He refined his

analysis and found RMSE of 0.60 for rapidly growing countries, 0.48 for moder-

ately growing countries, and 0.29 for slowly growing countries. He applied the 0.29

RMSE to U.S. growth rate of 0.79% per year projected by the Census Bureau,

yielding a range of 245–275 million in 2000. He concluded that the odds were about

2 to 1 that this range would contain the U.S. population in that year.

Stoto (1983) followed a similar approach, but analyzed forecasts containing

more temporal and geographic diversity. He differentiated between two compo-

nents of error, one related to the launch year of the forecast and the other to

seemingly random events (the residual). For more developed countries, he found

the launch-year component to have a distribution that was stable over time and

centered on zero, implying that the forecasts were unbiased. For less developed

countries, he found the variance of the launch-year component to be stable, but that

earlier sets of forecasts had a strong downward bias (although recent sets had little

bias). The second component (the residual) was found to have a stable distribution

but with occasional outliers. For both components, the variance was larger for less

developed countries than more developed countries. He calculated the standard

deviations for these two components of error and constructed forecast intervals of

the U.S. population and estimated that there was about a 2/3 probability that an

interval of 241–280 million would contain the actual population in 2000, and a 95%

probability that an interval of 224–302 million would contain the population. He

compared his results to projections produced by the Census Bureau, concluding that

the Census Bureau’s low and high series were very similar to a 2/3 forecast interval.

Smith and Sincich (1988) also used the distribution of past forecast errors to

construct forecast intervals, but followed a different approach. They modified a

technique developed by Williams and Goodman (1971), in which the predicted

distribution of future forecast errors was based directly on the distribution of past

forecast errors. An important characteristic of this technique is that it can accom-

modate any error distribution, including the asymmetric and truncated distributions

typically found for absolute percent errors.

Using population data for states from 1900 to 1980, Smith and Sincich (1988)

used four simple extrapolation methods to make a series of forecasts covering 10-

and 20-year horizons. They calculated absolute percent errors for each target year

by comparing forecasts with census counts, focusing on the 90% intervals for each

set of forecasts (i.e., the absolute percent error larger than exactly 90% of all

absolute percent errors). They investigated two approaches to constructing 90%

forecast intervals, one using the 90% interval from the previous set of forecasts and

the other using the 90% interval from all other sets of forecasts. They found both

approaches to provide relatively accurate forecast intervals. For most individual

target years, 88–94% of state forecast errors fell within the forecasted 90% interval.

Summing over all target years, 91% of all forecast errors fell within the forecasted

90% interval. They concluded that stability in the distribution of absolute percent

errors over time made it possible to construct useful forecast intervals for state

forecasts.
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Rayer, et al. (2009) constructed and tested forecast intervals for a large sample of

counties in the U.S. using the Williams and Goodman (1971) approach. They

constructed county forecasts covering 10-, 20-, and 30-year horizons and calculated

forecast errors for target years covering decades from 1900 to 2000. Although the

center of the error distributions shifted considerably from one decade to the next,

their shape remained relatively constant over time. They evaluated the performance

of 90% forecast intervals based on the distribution of absolute percent errors and

found over all decades errors for 91% of the counties fell within the forecast

intervals for all three horizons. Although there was some decade to decade varia-

tion, the proportion of errors falling within the intervals was usually between 88%

and 93% and never varied by more than 10% points.

Smith and Rayer (2012) also constructed and tested forecast intervals for

counties in Florida. Using forecast errors for target years 1985, 1990, and 1995,

they constructed 2/3 forecast intervals for forecasts with launch years 1995, 2000,

and 2005 and counted the number of counties in which the subsequent population

counts or estimates fell within the forecast intervals. They found that 43 counties

(64%) fell within the forecasted range for 5-year horizons and 49 counties (73%) for

both 10- and 15-year horizons. These numbers were fairly close to the 45 counties

implied by the forecast intervals. Given the year-to-year volatility of Florida’s
population growth, this reflects a reasonably good forecasting performance.

Tayman et al. (1998) developed statistically-based forecast intervals for

subcounty population forecasts in San Diego County. They started by forecasting

the population residing in 2000 ft. by 2000 ft. grid cells. These forecasts had 1980 as

a launch year and 1990 as a target year. Using repeated sampling techniques and

randomly selected grid cells, they developed forecasts for a large number of areas

varying in size from 500 to 50,000. Forecast errors were calculated by comparing

the 1990 forecasts with 1990 census counts. Rather than constructing forecast

intervals for the population forecasts per se, they developed forecast intervals for

the mean errors implied by those forecasts. Empirical forecast intervals for MAPEs

and MALPEs were developed using an approach similar to that used by Williams

and Goodman (1971) and Smith and Sincich (1988). For areas with 500 persons,

they found a 95% forecast interval of 67.4%–80.3% for the MAPE. For areas with

50,000 or more, the interval was 9.7%–11.5%. For MALPE, the intervals were

wider, but centered closer to zero.
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6.4 Statistical Intervals for Cohort Change Ratios
and Population Forecasts

6.4.1 Statistical Inference and the Concept of a Super-
Population

The approach underlying the discussion of uncertainty found in this chapter is based

on the concept of a super-population rather than a random sample. This concept can

be traced at least back to 1941 in a paper entitled “On the interpretation of censuses

as samples” (Deming and Stephan 1941). Although the concept of a super-

population has been refined (Graubard and Korn 2002), the definition provided by

Deming and Stephan (1941: 48) remains relevant:

Even a complete census, for scientific generalizations, describes a population that is but one

of the infinity of populations that will result by chance from the same underlying social and

economic cause systems. The infinity of populations may itself be thought of as a popula-

tion, and might possibly be called a super-population. A sample inquiry is then only a

sample of a sample, a so-called 100 percent sample is simply a larger sample, but still only a

sample. In order to study the underlying cause systems, it is necessary to study several

members of this infinity of populations. . .

Not surprisingly, the idea of a super-population gained ground since 1941,

largely due to the increased use of samples and other data to guide decision making.

It has found a home in wildlife studies and other areas of research where sampling is

widely used (because conducting a complete enumeration is either too costly or

simply not feasible), but without the benefit of a sample frame. For example, a

super-population represents the theoretical foundation underlying the statistical

inference applied to capture/recapture studies used to estimate the size of a finite

population. This type of study is also applied to evaluations of census accuracy and

other forms of estimates involving human populations, where it is known, among

other names, as “dual system estimation” (Andridge and Little 2010, Brown et al.

2011, and Wolter 1986).

6.4.2 Hamilton-Perry Method

As described in Chapter 4, the H-P method moves a population by age from time

t to time t þ k using cohort change ratios (CCR) computed from data in the two

most recent censuses:

nCCRx, t ¼ nPx, t=nPx�k, t�k: ð6:1Þ

where,

nPx, t is the population aged x to x þ n at the most recent census (t),
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nPx-k, t�k is the population aged x � k to x � k þ n at the 2nd most recent census

(t � k), and
k is the number of years between the most recent census at time t and the one

preceding it at time t � k.

The formula for moving the age cohorts of a population into the future is then:

nPxþk, tþk ¼ nCCRx, t � nPx, t ð6:2Þ

where,

nPxþk, tþk is the population aged x þ k to x þ k þ n at time t þ k, and

nCCRx, t and nPx, t are as defined in Eq. 6.1.

Given the nature of the CCRs, 10–14 is the youngest 5-year age group for which

forecasts can be made if there are 10 years between censuses. To forecast the

populations aged 0–4 and 5–9 one can use the Child-Woman Ratio or more

generally as a Child-Adult Ratio as previously discussed in Chapters 1 and 4.

Another way to forecast the youngest age groups is to take their ratios (R) at two
points in time and apply that ratio to the launch year age group. In the first step, the

ratios are:

Population 0�4 : 5R0, t ¼ 5P0, t=5P0, t�k ð6:3Þ
Population 5�9 : 5R5, t ¼ 5R5, t=5P5, t�k ð6:4Þ

In the second step, the forecast population at t þ k is found by:

Population 0�4 : 5P0, tþk ¼ 5P0, t � 5R0, t ð6:5Þ
Population 5�9 : 5P5, tþk ¼ 5P5, t � 5R5, t ð6:6Þ

We prefer the ratio method since it is better suited for the regression-based method

for creating intervals around forecasts for the two youngest age groups. It is better

suited because the CAR values are substantially different than the CCRs, whereas

the ratios are not. This means that the CAR values are potential outliers that could

serve as influential observations that adversely affect model construction (Fox

1991).

Forecasts of the oldest open-ended age group also differ slightly from the fore-

casts for the age groups beyond age 10 up to the oldest open-ended age group. If for

example the final closed age group is 70–74, with 75 years and older as the terminal

open-ended age group, then calculations for the CCRxþ,t require the summation of

the three oldest age groups to get the population aged 65 years and older at time

t � k:

1CCR75, t ¼ 1P75, t=1P65, t�k: ð6:7Þ
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The formula for forecasting the population aged 75 years and older for the year

t þ k is:

1P75þ, tþk ¼ 1CCR75, t � 1P65, t: ð6:8Þ

6.4.3 Incorporating Uncertainty into the Hamilton-Perry
Method

It is not surprising that the H-P Method is deterministic given its consistency with

the fundamental demographic equation (See Appendix at the end of this chapter),

which by its nature is an accounting method. However, we also know that popula-

tion forecasting is subject to uncertainty since we do not precisely know the future

components making up the fundamental equation. So, the question is how to

introduce an element of statistical uncertainty into a forecasting method that is

inherently deterministic. One answer to this question is found by employing a

simple regression method to estimate CCRs and then applying the regression-

estimated CCRs to the launch-year age groups to obtain forecasts by age group.

Text was changed to explictily reference the Appendix at the end of this chapter

The CCRs for the most current census period (nCCRx,t) was given in Eq. 6.1 and

we define the CCRs for the preceding census period as:

nCCRx, t�k ¼ nPx, t�k=nPx�k, t�2k ð6:9Þ

We construct a regression model with nCCRx,t as the dependent variable and

nCCRx,t � k as the independent variable. We note that for age groups 0–4, 5–9,

and the terminal open-ended age group that the dependent and independent obser-

vations follow the equations provided earlier. The estimated CCRs at time t are as
follows:

nECCRx, t ¼ aþ b� nCCRx, t�k ð6:10Þ

We then multiply nECCRx,t and the corresponding population by age at time t to
forecast the CCR at time t þ k:

nCCRx, tþk ¼ nECCRx, t � nPx, t: ð6:11Þ

Utilizing the regression measure of statistical uncertainty (the standard error of

estimate) for the model along with the sample size and other characteristics of the

data, we can generate forecast intervals around nCCRx,tþk. The approximate margin

of error associated with a regression-based forecast is given by Hyndman and

Athanasopoulos (2012):
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moe ¼ tn�2se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

n
þ x� �Xð Þ2

n� 1ð Þsx2

s

ð6:12Þ

where

n is the total number of observations,

tn� 2 is the t-distribution value corresponding to the probability level,
�X is the mean of the observed x values,

sx
2 is the variance of the observed x values, and

se is the standard error of the regression.

These forecasts intervals around nCCRx,tþk are translated directly to the actual

population numbers forecasted for each age group (Espenshade and Tayman

1982; Swanson and Beck 1994).

We use data from 1980–2010 for Minnesota to illustrate the derivation of point

and interval forecasts using regression combined with the H-P method. We begin by

computing the CCRs and ratios for the two youngest age groups for 1980–1990 and

1990–2000 as shown in Table 6.1. We then estimate the these values for 1990–2000

by regressing the observed 1990–2000 values against the observed 1980–1990

values for each age group and solving the regression as follows:

nECCRx,1990�2000 ¼ 0:1676667þ 0:8644256� nCCRx,1980�1990

� �

adj:r2 ¼ 0:755 and se ¼ 0:07124:
ð6:13Þ

Under usual assumption in the H-P method that the launch year ratios are held

constant, point forecasts in 2010 are computed by:

nPopx,2010 ¼ nECCRx,1990�2000 � Popx,2000, where x 0� 4 and 5� 9ð Þ, ð6:14Þ
nPopx,2010 ¼ nECCRx,1990�2000 � Popx�10,2000, where x ð10� 74Þ, and ð6:15Þ

nPopx,2010 ¼ nECCRx,1990�2000 � Pop65þ, 2000, where x 75þð Þ: ð6:16Þ

The 1990–2000 nECCRx and point forecasts for population by age are shown in

Table 6.1.

Table 6.2 shows the 66% forecast intervals for both the 1990–2000 nECCRx and

2010 population. We first develop intervals around the 1990–2000 nECCRx by:

nECCRx x,1990�2000 �moe ð6:17Þ

where,

moe is the margin of error at a given probability level.

Equation 6.12 shows the forecast interval is wider when x is farther from �X
(or the average of the 1980–1990 CCRs). That is, we are more certain about our
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forecasts when values of the predictor variable are close to its sample mean. For

example, the largest margin of error is for ages 75 years and older (0.09091). The

1980–1990 CCR for that group (0.52634) is 44% below the average CCR. We then

translate the intervals around the 1990–2000 nECCRx into population forecast

intervals by applying Eqs. 6.14, 6.15 and 6.16 to the lower and upper limits

determined by Eq. 6.17.

6.5 Evaluation

To test the regression-based method for developing intervals around population

forecasts by age generated from the H-P Method, we selected a sample made up of

one state from each of the four census regions in the United States. The states

selected are Georgia (South Region), Minnesota (Midwest Region), New Jersey

(Northeast Region) and Washington (West Region). We then assembled census

data for these four states for each census year from 1900 to 2010 (U.S. Census

Bureau 1973, 1982, 1992, 2000, 2010). The data provide nine points in time

at which the forecast intervals can be evaluated 1930, 1940, 1950, 1960, 1970,

Table 6.2 66% forecast intervals, Minnesota, 2010

1990–2000 Cohort change ratios 2010 Population forecast

Age

Point

forecasta
Margin of

errorb
Lower

limitc
Upper

limitd
Lower

limite
Upper

limite

0–4 1.11501 0.07615 1.03886 1.19116 342,402 392,599

5–9 1.17641 0.07909 1.09732 1.25550 390,530 446,825

10–14 1.04890 0.07415 0.97475 1.12305 321,272 370,151

15–19 1.03572 0.07390 0.96182 1.10962 342,306 394,907

20–24 0.98696 0.07344 0.91352 1.06040 342,565 397,645

25–29 0.99286 0.07346 0.91940 1.06632 344,188 399,190

30–34 1.04160 0.07400 0.96760 1.11560 312,035 359,762

35–39 1.02675 0.07376 0.95299 1.10051 304,791 351,972

40–44 1.00900 0.07356 0.93544 1.08256 330,502 382,481

45–49 0.99925 0.07349 0.92576 1.07274 381,867 442,495

50–54 0.98312 0.07343 0.90969 1.05655 374,512 434,973

55–59 0.96727 0.07346 0.89381 1.04073 325,568 379,083

60–64 0.93358 0.07377 0.85981 1.00735 259,189 303,665

65–69 0.89769 0.07447 0.82322 0.97216 186,753 220,541

70–74 0.84880 0.07603 0.77277 0.92483 137,562 164,631

75+ 0.62254 0.09091 0.53163 0.71345 315,930 423,979

aFrom Table 6.1
bBased on Eq. 6.12, using a t-value of 1.00 for a 66% forecast interval
cPoint forecast – margin of error
dPoint forecast + margin of error
e2000 population � upper and lower limits of the nECCRx,1990–2000

94 6 Forecasting Uncertainty



1980, 1990, 2000, and 2010. The terminal open-ended age group is reported

differently over the period for which we assembled census data, so we used

75 years and older since it was the common denominator. This means there are

16 age groups used in the evaluation (0–4, 5–9,. . ., 70–74, and 75 years and

older).

This sample provides a wide range of demographic characteristics in terms of

variation in population size, age-composition, and rates of change. Table 6.3 pro-

vides an overview of this range by displaying the population of each state in 1900

and in 2010 and decennial rates of population change from 1900 to 2010. Although

we do not show a summary of the changes in age composition by state and census

year, they are extensive.

We proceed by constructing CCRs over two successive decennial periods (e.g.,

1910–1920/1900–1910) over the entire period, using regression to estimate the

CCR in the more current period (e.g., 1910–1920) from the CCR in the earlier

period (e.g., 1900–1910). We then use the regression-based estimate of the CCR of

the “current period” (e.g., 1910–1920) to forecast the CCRs to the next period, the

“launch year” (e.g., 1920–1930) and develop forecast intervals around the fore-

casted CCRs, which are then translated into the forecasted age groups for the “target

year” (e.g., 1930). The forecast intervals are then examined to see if they contain

the census age groups for the target year.

6.5.1 Age Groups

How well does the regression approach based on the H-P method perform in its

ability to predict the uncertainty of population forecasts? One way to address this

Table 6.3 Total population 1900 and 2010 and annual rate of change by decade, sample states

Census year Georgia Minnesota New Jersey Washington

1900a 2,209,974 1,747,292 1,879,890 511,844

1900–1910 1.64% 1.70% 2.99% 7.97%

1910–1920 1.05% 1.41% 2.19% 1.75%

1920–1930 0.05% 0.72% 2.47% 1.44%

1930–1940 0.72% 0.86% 0.30% 1.06%

1940–1950 0.98% 0.66% 1.50% 3.14%

1950–1960 1.35% 1.35% 2.27% 1.83%

1960–1970 1.52% 1.08% 1.67% 1.78%

1970–1980 1.74% 0.69% 0.27% 1.92%

1980–1990 1.70% 0.71% 0.48% 1.64%

1990–2000 2.34% 1.17% 0.85% 1.92%

2000–2010 1.68% 0.75% 0.44% 1.32%

2010 9,687,653 5,303,925 8,791,894 6,724,540

aThe 1900 population totals exclude those for whom age was not reported

6.5 Evaluation 95



question is to determine the number of population counts that fall inside the forecast

intervals (Tayman et al. 2007). In terms of the forecast interval probability, we

selected 0.66 or 66% because of prior research indicating that “low” and “high”

scenarios constructed for the cohort-component method corresponded empirically

to 66% confidence intervals (Stoto 1983), as well as findings by Swanson and

Beck (1994).

Table 6.4 provides a summary of the results for all four states at each of the nine

census test points. The table shows the number of times (out of 16) that the 66%

forecast interval contained the corresponding census number for a given age group.

If the forecast intervals provide a valid measure of uncertainty, they will contain

approximately 11 of the 16 observed population counts. The table also shows

percent of the counts falling within the forecast intervals for all target years for

each state (144 intervals), the percent falling within all states for each target year

(64 intervals), and the single percent falling within all states for all target years

(576 intervals).

In Georgia (South Census Region), we find that its population increased by

almost fivefold between 1900 and 2010. In 1900 it had the largest population of any

of the four sample states and it retains that position in 2010. Its annual average

growth rates (by decade) ranged from 0.05% between 1920 and 1930 to 2.34%

between 1990 and 2000. Changes in its age composition are substantial with large

impacts associated with the great depression, World War II, the baby boom, and

immigration to the Sunbelt states more recently. The 66% forecast intervals contain

their corresponding age groups 76 times out of 144 observations, or 53%. Overall,

Georgia has the lowest percent of census age groups within the 66% forecast

intervals.

The population of Minnesota tripled from 1900 to 2010. Its average annual

growth rates ranged from a low of 0.66% between 1940 and 1950 to a high of 1.70%

Table 6.4 Number of population counts falling within the 66% forecast intervals by state and

target year, 2010

Target year Georgia Minnesota New Jersey Washington Total Percent (N/64)

1930 9 12 8 13 42 67%

1940 3 5 11 12 31 48%

1950 10 14 4 3 31 47%

1960 13 14 14 8 49 86%

1970 6 12 14 13 45 77%

1980 7 12 12 10 41 67%

1990 13 14 14 14 55 83%

2000 8 15 14 15 52 81%

2010 7 15 15 14 51 81%

Total 76 113 106 102 397

Percent 53% 78% 74% 71% 69%

Percent

(N/144)

Percent

(N/144)

Percent

(N/144)

Percent

(N/144)

Percent

(N/576)

96 6 Forecasting Uncertainty



between 1900 and 1910, a period when the state was still receiving large numbers of

immigrants from Europe. As is the case for Georgia, changes in its age composition

are extensive, with big impacts associated with the restrictions placed on immigra-

tion during World War I and the great depression, World War II, the baby boom,

and out-migration to Sunbelt states in more recent decades. The 66% forecast

intervals contain their corresponding age groups 113 times out of 144 observations,

or 78%. Overall, Minnesota has the highest percent of census age groups within the

66% forecast intervals.

For New Jersey, its population grew from 1,879,890 in 1900 to 8,791,894 in

2010. New Jersey had the second highest population in 1900 and again in 2010. Its

average annual growth rates ranged from a low of 0.27% between 1970 and 1980 to

a high of 2.99% between 1900 and 1910. As is the case for Georgia and Minnesota,

changes in its age composition are extensive, with big impacts associated with the

restrictions placed on immigration during World War I and the great depression,

World War II, the baby boom, and out-migration to Sunbelt states in more recent

decades. The 66% forecast intervals contain their corresponding census age groups

106 times out of 144 observations, or 74%. Overall, New Jersey has the second-

highest percent of census age groups within the 66% forecast interval.

In 1900, Washington was largely a frontier state. It had the smallest population

(511,844) of any of the four states in the sample. However, by 2010 it had grown to

6,724,540 which surpassed the population of Minnesota in 2010. Its annual rates of

population change are somewhat more dramatic than the other states. Between

1900 and 1910 it posted an annual rate of 7.97%, the highest of any of the decennial

growth rates in the sample. It also posted the second highest rate. Between 1940 and

1950 the state grew at an annual rate of 3.14%. The lowest rate of annual population

change (1.06%) is found between 1930 and 1940. The 66% forecast intervals

contain their corresponding census age groups 102 times, which represents 71%

of the 144 observations.

6.5.2 Total Population

It should be clear that we are primarily interested in measuring uncertainty in

forecasts of age groups. This is an important topic due to the role that the absolute

and relative sizes of age groups play in both commerce (Gauthier et al. 2006;

Martins et al. 2012, Murdock et al. 1997) and public policy (Bongaarts and Bulatao

2000, Murdock et al. 1997, Smith et al. 2013: 23, Tuljapurkar et al. 2005). We are

aware that levels of uncertainty related to forecasts of the total population are

important as well. In this regard, we note that technically the forecast intervals

we generated here apply only to the age groups.

There are two ways in which intervals around age group forecasts can be used to

place intervals around the total population forecast; one is informal while the other

is formal. In the informal approach, we obtain 66% forecast intervals for the total

population by adding the lower and upper boundaries of the intervals for each age
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group. We found that in 28 of the 36 forecasts (four states at each of nine time

points) the summed lower and upper boundaries contained the actual total popula-

tion, or 78%. By state, we find: Georgia’s total population is contained in 5 of the

9 time points (56%); Minnesota’s in 9 of the 9 time points; New Jersey’s in 6 of the
9 time points (67%); and Washington’s total population is contained in 8 of the

9 time points (89%). By target year, we find: 4 of 4 were contained in the 1960,

1970, and 1990 years; 3 of 4 were contained in the 1930, 1980, 2000, and

2010 years; and 2 of 4 in the 1940 and 1950 years.

The formal approach is called the “error propagation method” by Deming (1950:

127–134). In different forms it has been used by Alho and Spencer (2005),

Espenshade and Tayman (1982), and Hansen et al. (1953), among others. In this

application, the error propagation method involves summing the squared values of

the forecast intervals by age, finding the square root of the summed forecast interval

values and dividing this square root of the sample size (n¼ 16) to obtain an estimate

of the standard error for the total population forecast. This standard error is then

multiplied by the total population forecast (found by summing the point forecast for

each age group) to obtain the margin of error. The margin of error is added to and

subtracted from the total population forecast to obtain its 66% forecast interval.

This approach assumes a simplifying assumption that the 16 age groups are

independent (Espenshade and Tayman 1982). Using this approach, we found that

in 29 of the 36 forecasts (four states at each of nine time points) the error

propagation intervals contained the actual total population, or 81%. By state, we

find: Georgia’s total population is contained in 6 of the 9 time points (67%);

Minnesota’s is in 9 of the 9 time points; New Jersey’s is in 6 of the 9 (67%), and

Washington’s is in 8 of the 9 time points (89%). By time point, we find: 4 of 4 were

contained in the 1960, 1970, 1990, and 2010 target years; 3 of 4 were contained in

the 1930, 1980, and 2000 target years; and 2 of 4 in the 1940 and 1950 target years.

6.6 Conclusions

Overall, the 66% intervals contain their corresponding census age groups in

397 cases, which represent 69% of the 576 total observations. In terms of the

nine census target years, the overall results show that in five of them (1960, 1970,

1990, 2000, and 2010) the forecast intervals contain the census age groups sub-

stantially more than 66% of the time. In two target years (1930 and 1980), the

intervals contain the census age groups 67% of the time. In the remaining two target

years, 1940 and 1950, the intervals contain the census age groups 48% and 47% of

the time, respectively. We note that the 1940 test point encompasses the economic

boom experienced in the 1920s, the economic depression during the 1930s, and the

large scale “baby bust” associated with it. The 1950 point encompasses the depres-

sion and baby bust period of the 1930s, the economic recovery stimulated by World

War II, and the initial part of the large scale “baby boom” from 1946 to 1950.
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Table 6.5 contains a summary of the results by age group across all of the nine

census target years and the four states. The table shows the number of times (out of

36) that the 66% forecast interval contained the corresponding census number for a

given age group. If the forecast intervals provide a valid measure of uncertainty,

they will contain approximately 24 of the 36 observed population counts. In

general, the forecast intervals capture the population count at least 66% of the

time for age groups 10–14, 15–19, 20–24, and 40–44 through 75 years and older.

For age groups 0–4 and 5–9, the forecast intervals only encompass the population

counts 25% of time. For age group 30–34 the count is encompassed 53% of the

time, while for age group 25–29 the count is encompassed 58% of the time. The

population counts are captured by the forecast intervals 61% of the time for age

group 35–39.

Perhaps it should not be surprising that the cohort change method is better able to

capture older age groups than the very youngest since births are not part of a cohort

change ratio. In addition, migration likely comes into play because the population

in the two youngest age groups (0–4 and 5–9) would be moving with their parents,

who are likely to be in age range 25–39, the other age groups for which the forecast

intervals encompassed the population counts less than 66% of the time. Overall, we

find that these effects are consistent with theory regarding migration; that is, those

who tend to move are less socially integrated into communities than those who tend

not to move, and the aging of those who tend not to move increases community

social integration (Goldscheider 1978).

Although not shown here, the average width of the forecast intervals appears to

us to be reasonable at the 66% level in that they are neither so wide as to be

meaningless nor too narrow to be overly-restrictive. This is largely consistent with

Table 6.5 Number of

population counts falling

within the 66% forecast

interval by age group, all

states and target years, 2010

Age Number Percent (N/36)

0–4 9 25%

5–9 9 25%

10–14 26 72%

15–19 27 75%

20–24 24 67%

25–29 21 58%

30–34 19 53%

35–39 22 61%

40–44 26 72%

45–49 28 78%

50–54 30 83%

55–59 31 86%

60–64 30 83%

65–69 31 86%

70–74 33 92%

75+ 31 86%

Total 397 69%
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prior work by Swanson and Beck (1994) on forecast intervals derived from regres-

sion-based forecasts, which found that the forecast intervals contained the actual

numbers by age in 69% of the 576 observations; providing further support that 66%

forecast intervals based on an regression-estimated CCR approach are both useful

and feasible. We find these results encouraging.

At this point, we suggest caution using this method beyond a 10-year forecast

horizon. This is consistent with observations about the use of the H-P method in

general (Swanson et al. 2010) and as such is not a major limitation.1 We also

suggest that this approach to developing uncertainty measures be used with care

when applied to small populations, such as those found at the county and subcounty

levels. While our sample provides a wide range of demographic behavior in terms

of size, age composition, and population changes, it is a sample of states, which

means that greater variability in demographic characteristics found at substate

levels is not present (Swanson et al. 2010). We suggest that further research using

this approach would be useful by examining both longer forecast horizons and

smaller populations and different probability intervals. Another area for further

research would be to utilize root mean square errors in conjunction with the H-P

Method (Keyfitz 1981).

The fact that the forecast intervals do not contain the population counts at least

66% of the time for neither the two youngest age groups (0–4 and 5–9) nor the age

groups associated with those most likely to be the parents of these children

(ages 25–39) should not be surprising. The dynamics of birth and migration are

difficult to capture in the cohort-component method forecast and the H-P Method is

a variant of this method (Smith et al. 2013: 177; Smith and Tayman 2003). Thus,

work on these issues in regard to one of these two methods should be of use to the

other.

Appendix

Cohort Change Ratios and the Fundamental Demographic
Equation

It is important that a demographic technique satisfy various mathematical identities

and, in particular, the demographic accounting identity known as the fundamental

demographic equation:

Ptþk ¼ Pt þ Births�Deathsþ In�migrants � Out�migrants ðA:1Þ

1The ten-year horizon is also consistent with accuracy evaluations of the H-P method, which show

that the method performs well for ten year forecasts (Smith and Tayman 2003; Swanson and

Tayman 2013) and even 20 year forecasts (Smith and Tayman 2003).
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This equation states that the population at a given point in time, Pt+k, must be equal

to the population at an earlier time, Pt, plus the births and in-migrants and minus the

deaths and out-migrants that occur between time t and time t þ k.
The Cohort Change Ratio method moves a population by age from time t to time

tþ k using cohort-change ratios (CCRs) computed from data in the two most recent

censuses. It consists of two steps. The first step uses existing data to develop CCRs

and the second step applies the CCRs to the cohorts of the launch year population to

move them into the future. The formula for the first step, the development of a CCR

is:

nCCRx, t¼nPx, t=nPx�k, t�k ðA:2Þ

where,

nPx,t is the population aged x to x þ n at the most recent census (t),

nPx – k,t – k is the population aged x – k to x – kþ n at the 2nd most recent census (t –
k), and

k is the number of years between the most recent census at time t and the one

preceding it at time t-k.

The basic formula for the second step, moving the cohorts of a population into the

future is:

nPxþk, tþk¼nCCRx, t�nPx, t ðA:3Þ

where,

nPxþk,tþk is the population aged x þ k to x þ k þ n at time t þ k, and

nCCRx,t and nPx,t are as defined in Eq. (6.2).

In terms of the CCR Method satisfying the fundamental demographic equation, let

nCCRx, t ¼ ðnPx�k, t�k þ B�Dþ I�OÞ=ðnPx�k, t�kÞ ðA:4Þ

where,

nPx�k,t�k is the population aged x � k to x � k þ n at the 2nd most recent census

(t � k),
B ¼ Births between time t � k and t,
D ¼ Deaths between time t � k and t,
I ¼ In-migrants between time t � k and t, and
Out-migrants between time t � k and t.
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Since,

nPxþk, tþk ¼ ððnPx�k, t�k þ B�Dþ I�OÞ=ðnPx�k, t�kÞÞ � ðnPx, tÞ: ðA:5Þ

then,

nCCRx, t ¼ ðnPx�k, t�k�Dþ I�OÞ=ðnPxþk, tþkÞ, ðA:6Þ

where, x þ k > ¼ 10.

Thus, the CCR method expresses the individual components of change—births,

deaths, and migration—in terms of cohort change ratios and satisfies the funda-

mental demographic equation.
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Chapter 7

Forecasting School Enrollment Size
and Composition

7.1 Introduction

Demographics drive all aspects of school district management, and student popu-

lation and enrollment forecasts represent integral components of the management

process. In this chapter, we briefly review the history of the development of

methods used for student population and enrollment forecasting before describing

how cohort change ratios can be used in this process. We cover both short-term and

long-term forecasting needs and describe methods that can be used in conjunction

with the cohort change ratio approach, giving examples. We conclude the chapter

with a discussion on the accuracy and utility of the CCR method regarding its use

for forecasting student populations and enrollment.

“For reasons understood by every school administrator, a primary demographic

concern centers on the size of a school district’s student population. Size drives

planning from every perspective relating to budget, program, staffing, space, and so

forth.” (Wood et al. 1995: 5–17). This observation says it all in regard to the

importance of demographic information to school districts planning, and because

planning is about the future one can see the importance of student population and

enrollment forecasting to school districts. In this chapter, we show how the cohort

change ratio (CCR) method can be used to forecast student populations and

enrollments for school districts. In general, the chapter is aimed at public

schools, grades kindergarten to twelve (K-12). We note, however, these methods

can be used for private schools as well as post-secondary institutions such as

community colleges and universities, both public and private. However, unlike

the latter, which are not mandated to accept students, the K-12 system is mandated

to accept students because of compulsory attendance laws and regulations. That is,

in the K-12 system enrollments are virtually determined by student demographics,

whereas enrollment in private schools and post-secondary institutions stop short of

being virtually determined by student demographics because of admission policies.
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These policies add an additional factor to the enrollment forecasting task (Swanson

2016: 25–34).

Student population and enrollment forecasting using demographic methods in

use today can be traced to the early 1950s in the states of Washington (Swanson

2016: 23) and California (California Department of Finance 1954). Today, these

methods and variants of them are used in school districts throughout the

U.S. (Demographics Research Group 2014; Hussar and Bailey 2011; Lapkoff

2008; Rynerson and Chun 2015).

7.2 Short-Term Enrollment Forecasting by Grade

One useful method for short-term (year to year) enrollment forecasting is known as

the Grade Progression Ratio (GPR). This method is basically the CCR method

applied to grade levels in the K-12 system—those in 2nd grade this year were part

of the cohort of first graders last year and so on. This method has a long history of

use. Hauser and Kitagawa (1961) describe it as being simple to use and capable of

yielding good short-range forecasts.

This method consists of two steps. In the first step, GPRs from the prior year to

the current year are calculated; and in the second step, the GPRs are applied to

enrollments by grade for the most current year to get a forecast by grade for next

year. Typically, fall enrollments are used.

GPRx, t ¼ Gx, t=Gx�1, t�1 Step 1ð Þ ð7:1Þ

where,

Gx,t is the (fall) enrollment in grade x for the current year, and
Gx�1, t�1 is the (fall) enrollment in grade x � 1 for the prior year.

Assuming that the school or school district in question offers Kindergarten, First

Grade is typically the lowest grade for which a GPR can be calculated as shown in

Eq. 7.1. We will address this issue shortly, but for now, we move on to the second

step, forecasting

Gxþ1, tþ1 ¼ GPRx, t�Gx, t Step 2ð Þ ð7:2Þ

where,

Gx,t is the (fall) enrollment in grade x for the current year, and
Gx+1, t+1 is the forecasted (fall) enrollment in grade x + 1 for the next year.

Several methods are typically employed to forecast Kindergarten enrollment.

One approach is to find the ratio of current Kindergarten enrollment to the number

of births reported in the same area (e.g., the school district) 6 years ago. Then apply

this ratio to the births reported 5 years ago to obtain a forecast of Kindergarten
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enrollment for next year. A variation on this approach is to compute an average of

these ratios over the past 5 years (in terms of Kindergarten enrollment) and apply

the average to births 5 years ago to obtain a forecast of Kindergarten enrollment for

next year.

Another approach is to “look backwards” and compute a ratio composed

of the Kindergarten enrollment in the current year (the numerator) to the first

grade enrollment in the current year (the denominator). This ratio can then be

applied to the number of first graders forecast for next year to obtain a

forecast of Kindergarten enrollment for next year. Conceptually, this approach

is similar to using a “Child-Adult Ratio” to forecast those in the age groups born

since the last census. We use this approach to illustrate the GPR method

discussed later.

Yet another approach is to take the ratio of current year Kindergarten enrollment

(the numerator) to prior year Kindergarten enrollment (the denominator) and then

apply this ratio to the current year’s Kindergarten enrollment to obtain a forecast of

Kindergarten enrollment for the next year. Without exhausting all of the possibil-

ities for obtaining a forecast of Kindergarten enrollment, it also is possible to use

more than one of the approaches and average the results.

In many schools and school districts, there are special categories of students who

do not fall in one of the grades from Kindergarten through twelfth grade. They are

often classified as ungraded. In order to deal with these students, ratios such as

described for forecasting Kindergarten enrollment may be used.

An empirical example of the GPR method is found in Table 7.1, where the

K-12 enrollment by Grade of the Riverside (California) Unified School District

is forecasted for fall 2015 (using fall 2013 and fall 2014 enrollment data). The

GPRs are very close to one in grades 2 through 4, 8, and 9 through 12. The

largest GPR shows there are 5.4% more Kindergarteners than first graders in

2014, the current year of this illustration. Most of the other GPRs show changes

of between one and two percent. The enrollment forecast for 2015 for all grades

increases by only 2 students from 2014 to 2015. Six grades show enrollment

declines and six show enrollment increases, excluding the ungraded category.

The largest decline (�84 students) occurs in grade 8 due in large part to the

smaller number of students in grade 7 compared to grade 8 in 2014. The largest

change (199 students) occurs in grade 4 as there are 178 more students in grade

3 than in grade 4 in 2014.

While the GPR method works well in the short-term, it addresses neither the

long-term nor the student population from which enrollment is drawn. To deal

with these issues, we turn to the CCR method, which can handle long-term student

population forecasts and, with some augmentation, long term enrollment

forecasts.
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7.3 Long-Term Student Population and Enrollment
Forecasting by Grade

By using the CCR method to forecast a population by age, the student population of

a given area (e.g., a school district) can be generated. Because the age groups

generated by the CCR method are associated with K–12 enrollments, the latter can

then be generated using an “enrollment rate” approach (Swanson and Tayman

2012: 127–128). In turn, future enrollment rates can be generated using several

methods, including the shift method, which forecasts changes in the rates into the

future (Swanson and Tayman 2012: 128–130). Because we describe the CCR

method in detail elsewhere (Chapters 1, 4 and 8 for example) and give examples

of population forecasts generated by it, we will move directly to a discussion of the

participation rate method and then to the shift method. Next, we provide an example

that illustrates all of the combined elements, the CCR method, the enrollment rate

method, and the shift method.

By itself, the CCR method does not directly generate enrollment forecasts.

However, by embedding “enrollment rates” in a CCR method forecast, enrollment

forecasting is easily done (George et al. 2004). In the “Enrollment Rate” approach,

current and historical data are used to construct proportions (the rate) of the

population that have the characteristic of interest (e.g., enrollment in a given

Table 7.1 Public school enrollment forecast, Riverside, California Unified School District, Fall

2015

Change 2014–2015

Grade Fall 2013 Fall 2014 GPR 2013–2014a Fall 2015b Numeric Percent

Pre K & K 3,251 3,278 1.05436 3,305 27 0.8%

First 3,162 3,109 0.95632 3,135 26 0.8%

Second 3,251 3,163 1.00032 3,110 �53 �1.7%

Third 3,082 3,280 1.00892 3,191 �89 �2.7%

Fourth 3,023 3,102 1.00649 3,301 199 6.4%

Fifth 3,147 3,054 1.01025 3,134 80 2.6%

Sixth 3,168 3,195 1.01525 3,101 �94 �2.9%

Seventh 3,326 3,242 1.02336 3,270 28 0.9%

Eighth 3,327 3,322 0.99880 3,238 �84 �2.5%

Ninth 3,370 3,389 1.01864 3,384 �5 �0.1%

Tenth 3,406 3,366 0.99881 3,385 19 0.6%

Eleventh 3,389 3,358 0.98591 3,319 �39 �1.2%

Twelfth 3,638 3,420 1.00915 3,389 �31 �0.9%

Ungraded (9–12) 47 61 1.29787 79 18 29.5%

Total 42,587 42,339 42,341 2 0.0%

Source: California Department of Education DataQuest (http://dq.cde.ca.gov/dataquest)
aGx,t/Gx�1,t�1 Grades 1–12

Gk,t/G1,t Grade K

Gu,t/Gu,t�1 Ungraded
bGx+1,t+1 ¼ Gx,t � GPR x,t Grades 1–12

Gk,t+1 ¼ G1,t+1 � GPRk,t Grade K

Gu,t+1 ¼ Gu,t � GPRu,t Ungraded
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grade level). These ratios are forecast into the future. The forecast rates are then

applied to population forecasts by age (and other characteristics) to obtain enroll-

ment forecasts. Chapter 2 provides more detail on the participation rate forecasting

method. The first step is to obtain an enrollment “rate.” Because we are discussing

enrollment by grade, we will simply use it as the characteristic in question:

Ri, t ¼ Ei, t=Pi, t ð7:3Þ

where,

Ri is the Enrollment Rate for grade i,
Pi is the population age i (the age group most closely associated with the grade in

question),

Ei is enrollment in grade i (the grade most closely associated with the correspond-

ing population age group), and

t is time.

It is important to note that when 5 year age groups are used, the enrollment rate

generated is for the set of grades with which given age groups correspond. We

illustrate this point in the example given later for the Memphis, Tennessee School

District.

With a set of participation rates, we are ready to generate a forecast. One

assumption is to hold the rates constant, but this often yields less satisfactory results

than using the shift method. The approach we show here is perhaps the simplest way

to implement the shift method (Smith et al. 2013: 2006–211; Swanson and Tayman

2012: 128–131) as shown below:

Si, t ¼ Ri, t=Ri, t�k ð7:4Þ

where,

Si,t is the shift in the Enrollment Rate for grade i between time t � k and time t,
Ri,t is the Enrollment Rate for grade i at time t (the most recent census),

Ri,t�k is the Enrollment Rate for grade i at time t � k (the 2nd most recent census),

and

k is the number of years between the years of the most recent census and 2nd most

recent census.

Using the shift in the Enrollment Rate, we forecast the enrollment rate by:

Ri, tþk ¼ Si, t�Ri, t ð7:5Þ

where,

Ri,t+k is the forecasted enrollment rate for grade i at time t + k, and
Si,t and Ri,t are defined as before.
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Finally, enrollment is forecast by applying the forecast enrollment rate for a given

grade to its corresponding age group generated by the CCR forecast:

Ei, tþk ¼ Ri, tþk�Pi, tþk ð7:6Þ

where,

Ei,t+k is the forecast enrollment in grade i at time t + k,
Ri,t+k is the forecast enrollment rate for grade i at time t + k,
Pi,t+k is the forecast population age i (the age group most closely associated with the

grade in question) at time t + k, and
t and k are as defined before.

As an example of the CCR participation rate and shift methods, we use

public school enrollment in Memphis, Tennessee School District. These

data consist of three grade groups for school years 1989–1990 and 1999–2000:

(1) pre-kindergarten and kindergarten (PreK&K); (2) grades 1–8; and (3) grades

9–12. Fall public school enrollments represent the school years. That is, for

1989–1990 we have fall 1989 enrollment and for 1999–2000 we have fall 1999

enrollment. The fall enrollments work well with the census data since the latter

are as of April 1st the following year. The CCR method uses population in

5 year age groups for the Memphis School District in 1990 and 2000. Age groups

0–4, 5–14, and 15–19 are associated with grades PreK&K, 1–8, and 9–12,

respectively. Using these data and the CCR and enrollment rate methods, we

forecast the population by age and enrollment by grade group to 2010. Selecting

this “historical” forecast for 2010 allows us to conduct an ex post facto evalu-

ation of the accuracy of the population and enrollment forecasts by comparing

them to the corresponding 2010 data, respectively. This is done in the following

Sect. 7.4.

First, we forecast the population of the Memphis, Tennessee School District by

age. The 1990 and 2000 input data as well as the CCRs and forecast population for

2010 are shown in Table 7.2. The total population increased by 13.8% between

2000 and 2010. Growth in the school-age groups exceeds the percentage increase in

the total population, except for ages 0–4. The fastest growing age group is 45–59,

reflecting the aging of the baby boom cohorts.

Second, we calculate enrollment participation rates by grade group for fall 1989

and fall 1999 using the corresponding age groups from the 1990 and 2000 censuses.

We use the shift method, described earlier, to forecast these rates to 2010 based on

trends in the previous decade. Finally, we convert enrollments into expected 2010

enrollment levels by grade using the 2010 forecast for the school-age population.

The results are shown in Table 7.3

We use grades 1–8 to illustrate the enrollment forecasting method. The enroll-

ment rate for the population aged 5–14 found in grades 1 through 8 in 1990 is

0.67155 and by 2000 this rate increases to 0.70221. The ratio of these two rates

(1.04566) is multiplied by the 2000 rate to obtain the forecast 2010 enrollment rate
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(0.73427). This forecast rate is then multiplied by the forecast population aged 5–14

in 2010 (104,845) to obtain the forecasted enrollment in grades 1 through

8 (76,985).

Public school enrollment increases by 9,740 students between 1990 and 2000, an

increase of 8.9%. The school-age population (student population) increases at a

slower pace (6.5%). This difference is due to grades under 9, which show increasing

participation rates between 1990 and 2000 that are assumed to continue for the next

10 years. Conversely, the participation rates for grades 9 through 12 declines by

2.4%, and its enrollment growth is slower than the population growth in the

corresponding age group (15–19).

This example shows how both the student population by age and the enrollment

by grade can be forecast using the CCR method in conjunction with participation

rates by grade/age group and the shift method. To get individual age groups (e.g.,

age 6, age 7, age 8, and so forth) the same “age-splitting” methods cited in

Chapter 9 and elsewhere (Smith et al. 2013:279–284; Judson and Popoff 2004)

can be applied. These same methods can also create enrollment by individual

Table 7.2 Population forecast, Memphis, Tennessee School District, 2010

Change 2000–2010

Age

1990

Population

2000

Population CCRa
2010

Populationb Number Percent

0–4 49,394 50,175 0.32991 54,548 4,373 10.4%

5–9 45,864 52,315 0.34670 53,425 1,110 16.5%

10–14 42,989 50,620 1.02482 51,420 800 19.6%

15–19 44,945 47,180 1.02869 53,816 6,636 19.7%

20–24 49,093 50,720 1.17984 59,724 9,004 21.7%

25–29 55,132 53,960 1.20058 56,643 2,683 2.7%

30–34 55,054 47,405 0.96562 48,976 1,571 �11.0%

35–39 47,060 49,530 0.89839 48,477 �1,053 3.0%

40–44 39,358 49,520 0.89948 42,640 �6,880 8.3%

45–49 29,722 44,745 0.95081 47,094 2,349 58.4%

50–54 26,256 35,690 0.90680 44,905 9,215 71.0%

55–59 24,275 26,240 0.88285 39,503 13,263 62.7%

60–64 26,747 20,780 0.79144 28,246 7,466 5.6%

65–69 24,813 19,185 0.79032 20,738 1,553 �16.4%

70–74 18,803 17,215 0.64362 13,374 �3,841 �28.9%

75–79 14,349 16,310 0.65732 12,611 �3,699 �12.1%

80–84 9,126 9,710 0.51641 8,890 �820 �2.6%

85+ 7,357 8,530 0.27666 9,559 1,029 29.9%

Total 610,337 649,830 694,589 44,759 13.8%

Annual growth rate 0.63% 0.67%

Source: 1990 and 2000, National Center for Education Statistics, Special Census Tabulation for

School Districts (https://nces.ed.gov/datatools/index.asp?DataToolSectionID¼4)
a
4P0,t/15P20,t Ages 0–4

9P5,t/15P25,t Ages 5–9

Px,t/Px�10,t�10 Ages 10–84

P85+,t/P75+,t�10 Ages 85+
b
4CCR0,t � 15P20,t +10 Ages 0–4

9CCR5,t � 15P25,t+10 Ages 5–9

CCRx,t � Px,t Ages 10–84

CCR85+,t � P75+,t Ages 85+

7.3 Long-Term Student Population and Enrollment Forecasting by Grade 113

http://dx.doi.org/10.1007/978-3-319-53745-0_9
https://nces.ed.gov/datatools/index.asp?DataToolSectionID=4
https://nces.ed.gov/datatools/index.asp?DataToolSectionID=4


T
a
b
le

7
.3

P
u
b
li
c
sc
h
o
o
l
en
ro
ll
m
en
t
fo
re
ca
st
,
M
em

p
h
is
,
T
en
n
es
se
e
S
ch
o
o
l
D
is
tr
ic
t,
2
0
0
9
–
2
0
1
0

P
o
p
u
la
ti
o
n
a

C
h
an
g
e
2
0
0
0
–
2
0
1
0

A
g
e

1
9
9
0

2
0
0
0

2
0
1
0

N
u
m
b
er

P
er
ce
n
t

0
–
4

4
9
,3
9
4

5
0
,1
7
5

5
4
,5
4
8

4
,3
7
3

8
.7
%

5
–
1
4

8
8
,8
5
3

1
0
2
,9
3
5

1
0
4
,8
4
5

1
,9
1
0

1
.9
%

1
5
–
1
9

4
4
,9
4
5

4
7
,1
8
0

5
3
,8
1
6

6
,6
3
6

1
4
.1
%

T
o
ta
l

1
,8
3
,1
9
2

2
,0
0
,2
9
0

2
,1
3
,2
0
9

1
2
,9
1
9

6
.5
%

E
n
ro
ll
m
en
tb

E
n
ro
ll
m
en
t
R
at
ec

C
h
an
g
e
2
0
0
0
–
2
0
1
0

G
ra
d
e

1
9
8
9
–
1
9
9
0

1
9
9
9
–
2
0
0
0

1
9
8
9
–
1
9
9
0

1
9
9
9
–
2
0
0
0

S
h
if
td

2
0
0
9
-2
0
1
0
e

E
n
ro
ll
m
en
tf

2
0
0
9
–
2
0
1
0

N
u
m
b
er

P
er
ce
n
t

P
re

K
&

K
8
,4
1
5

9
,4
3
2

0
.1
7
0
3
6

0
.1
8
7
9
8

1
.1
0
3
4
3

0
.2
0
7
4
2

1
1
,3
1
4

1
,8
8
2

2
0
.0
%

1
–
8

5
9
,6
6
9

7
2
,2
8
2

0
.6
7
1
5
5

0
.7
0
2
2
1

1
.0
4
5
6
6

0
.7
3
4
2
7

7
6
,9
8
5

4
,7
0
3

6
.5
%

9
–
1
2

2
7
,0
9
8

2
7
,7
7
1

0
.6
0
2
9
1

0
.5
8
8
6
2

0
.9
7
6
3
0

0
.5
7
4
6
7

3
0
,9
2
6

3
,1
5
5

1
1
.4
%

T
o
ta
l

9
5
,1
8
2

1
,0
9
,4
8
5

1
1
9
,2
2
5

9
,7
4
0

8
.9
%

a
F
ro
m

T
ab
le

7
.2

b
N
at
io
n
al

C
en
te
r
fo
r
E
d
u
ca
ti
o
n
S
ta
ti
st
ic
s,
E
L
S
i
ta
bl
eG

en
er
at
o
r
(h
tt
p
:/
/n
ce
s.
ed
.g
o
v
/c
cd
/e
ls
i/
ta
b
le
G
en
er
at
o
r.
as
p
x
)

c
E
i,
t/
P
i,
t
an
d
E
i,
t�

1
0
/
P
i,
t�

1
0

d
R
i,
t/
R
i,
t�

1
0

e
R
i,
t
�

S
i,
t

f R
i,
t+
k
�

P
i,
t+
k

114 7 Forecasting School Enrollment Size and Composition

http://nces.ed.gov/ccd/elsi/tableGenerator.aspx


grade level (e.g., grade 1, grade 2, grade 3, and so forth). Similarly, interpolation

methods can be applied to obtain age groups and grade levels for the years between

the launch year and the horizon year, which in this example would be 2001, 2002,

and so on to 2010 (Smith et al. 2013: 273–278; Judson and Popoff 2004).

7.4 Evaluation

In this section we provide two evaluation examples. The first is for the 2015

forecast of enrollment by individual grade we prepared for the Riverside, California

Unified School District. To evaluate this short-term enrollment forecast, we com-

pared 2015 actual enrollments by grade to the forecast enrollments by grade for

2015. Table 7.4 provides this summary.

As can be seen in Table 7.4, the GPR method provides highly accurate results.

For all grades, the forecast is low by only 121 students or �0.3%. In terms of the

K-12 enrollments (excluding the ungraded and adult learners), the MAPE is 1. 9,

indicating that on average the GPR method errs by only 1.9%. In terms of basis

(tendency to over-forecast or under-forecast), the MALPE is �0.2%, which indi-

cates a very slight overall under-forecast of the actual fall 2015 enrollment.

Table 7.4 Public school enrollment forecast error, Riverside, California Unified School District,

Fall 2015

Fall 2015 Error

Grade Actuala Forecastb Number Percent

Pre K & K 3,393 3,305 �88 �2.6%

First 2,891 3,135 244 8.4%

Second 3,105 3,110 5 0.2%

Third 3,193 3,191 �2 �0.1%

Fourth 3,323 3,301 �22 �0.7%

Fifth 3,191 3,134 �57 �1.8%

Sixth 3,129 3,101 �28 �0.9%

Seventh 3,351 3,270 �81 �2.4%

Eighth 3,342 3,238 �104 �3.1%

Ninth 3,445 3,384 �61 �1.8%

Tenth 3,413 3,385 �28 �0.8%

Eleventh 3,292 3,319 27 0.8%

Twelfth 3,332 3,389 57 1.7%

Ungraded (9–12) 62 79 17 27.4%

Total 42,462 42,341 �121 �0.3%

MALPE (K-12 only) �0.2%

MAPE (K-12 only) 1.9%

aCalifornia Department of Education DataQuest (http://dq.cde.ca.gov/dataquest/)
bFrom Table 7.1
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For the long-term forecast, we first look at the forecast of the school-age

population of the Memphis School District for the fall of 2010. This result is

found in Table 7.5

Overall, the forecast of the student population (people aged 5–19) is reasonably

accurate, being high by 13.7%. One item of interest is that all three age groups

(5–9, 10–14, and 15–19) are over-forecast. Thus the MALPE is the same as the

MAPE, indicating that the average error over the three age groups is 13.7%

too high.

Table 7.6 shows the public school enrollment forecast for the three grade

groups, PreK&K, grades 1–8, and grades 9–12. The MAPE is 10.4%, which

indicates that on average, the forecast by grade level errs by about 10%. Unlike

the forecast of the population age groups, not all of the grade groups are over-

forecast. The forecast of grades 9–12 is �6.6% less than the actual enrollment. The

other two grade groups are, however, over-forecast. Grades 1–8 are over-forecast

by 17.2% and PreK&K by 7.5%. Taken as a whole, total public school enrollment is

over-forecasted by 9.1%.

Table 7.5 School-age population forecast error, Memphis, Tennessee School District, 2010

2010 Error

Age Actuala Forecastb Number Percent

5–9 44,404 53,425 9,021 20.3%

10–14 45,249 51,420 6,171 13.6%

15–19 49,833 53,816 3,983 8.0%

Total 139,486 158,661 19,175 13.7%

MALPE 14.0%

MAPE 14.0%

aSpecial tabulation of the 2010 census by Cropper GIS (croppergis.com)
bFrom Table 7.2

Table 7.6 Public school enrollment forecast error, Memphis, Tennessee School District,

2009–2010

2009–2010 Error

Grade Actuala Forecastb Number Percent

Pre K & K 10,521 11,314 793 7.5%

1–8 65,664 76,985 11,321 17.2%

9–12 33,115 30,926 �2,189 �6.6%

Total 109,300 119,225 9,925 9.1%

MALPE 6.0%

MAPE 10.4%

aNational Center for Education Statistics, ELSi tableGenerator (http://nces.ed.gov/ccd/elsi/

tableGenerator.aspx)
bFrom Table 7.3
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7.5 Conclusions

In this chapter, we provide examples of how the Cohort Change Ratio method can

be used for both short- and long-term student population and enrollment forecasts.

There is a great deal of work that goes into a good enrollment forecast and we have

only touched the surface. A good source for details on methods is Hussar and Bailey

(2011). Other sources include materials at the websites of demographic organiza-

tions that specialize in school enrollment and related forecasts. Four examples, two

in the private sector and two in the public sector, are given below:

1. Lapkoff and Gobalet Demographic Research Inc.

(http://www.demographers.com/about_us.htm);

2. McKibben Demographic Research, LLC

(http://www.mckibbendemographics.com);

3. Population Research Center, Portland State University

(https://www.pdx.edu/prc/about-prc); and

4. Demographic Research Unit, California Department of Finance

(http://www.dof.ca.gov/Forecasting/Demographics/).
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Chapter 8

Forecasting Other Characteristics

8.1 Introduction

Chapter 7 focused on forecasts of school enrollment size and composition using a

grade progression rate variant of the cohort change rate and participation rates. Our

focus now turns to forecasts of other population-related characteristics like house-

holds, family structure, labor force, poverty, obesity, and disability needed for

planning, budgeting, policy analysis, and program administration. Socioeconomic

and health characteristics possess a feature that distinguishes them from strictly

demographic characteristics; namely, they are “achieved” rather than “ascribed.”

Ascribed characteristics such as age, sex, and race/ethnicity are largely set at birth,

while achieved characteristics such as marital status, labor force status, and health

status change over time (Stark 2007). This distinction is not totally clear-cut,

however, because a person’s sex or gender classification can be altered and his/her

racial and ethnic identity may vary according to the prevailing social context (Alba

and Islam 2009; Kaneshiro et al. 2011).

Because achieved characteristics can change substantially over time they are

more difficult to forecast accurately than strictly demographic characteristics. Many

achieved characteristics are strongly affected by population size and demographic

composition, but they are influenced by other factors as well. Forecasts of a

population’s age structure (and, to a lesser extent, its sex and race/ethnicity struc-

ture) provide a basis for forecasting achieved characteristics. This chapter uses the

participation-rate (or prevalence-rate method) in which forecasts of achieved char-

acteristics are derived from forecasts of demographic characteristics through the

use of rates. The participation rate method is discussed in Chapter 2. We present

several studies that have used the participation-rate method to develop forecasts of

the U.S. population with disabilities, obesity, and cardiovascular disease. We then

develop, using the participation-rate method, population-related forecasts of alco-

hol consumption, diabetes, cigarette use and consumption, labor force, and house-

holds and related variables.
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8.2 Studies Using the Participation-Rate Method

8.2.1 Disability in the United States

The older population in the U.S. is large and growing rapidly. There were 48 million

persons aged 65 and older in 2015, representing 15% of the total population. This

population is forecast to reach almost 88 million by 2050, or 22% of the total

population (U.S. Census Bureau 2014). Since many types of disability rates rise

with age, the aging of the population is likely to bring substantial increases in the

number of disabled persons and associated costs (Bhattacharya et al. 2004).

Smith, Rayer, and Smith (2008) used the participation-rate method to forecast

the number of persons with a particular type of disability; namely, mobility

limitations. First, they constructed mobility limitation rates by age and sex using

population data from the 2000 census and data on mobility limitations from the

2000 census microdata files. Two definitions of disability were analyzed. One

definition related to persons with long-lasting conditions that substantially limit

one or more physical activities (DIS-1); and the other related to persons with self-

care limitations lasting 6 months or more (DIS-2). They developed three scenarios

regarding changes in those rates between 2000 and 2050. Under the medium

scenario, rates were forecast to remain constant through 2050. Under the low and

high scenarios, they were forecast to fall or rise by 5% per decade, respectively.

They applied the forecasted rates to forecasts of the U.S. population and households

by age and sex developed from the ProFamy model (Zeng et al. 2006).

Under the medium scenario, the number of persons with mobility limitations

was forecast to grow by 106% (DIS-1) and 127% (DIS-2) between 2000 and 2050.

Even under the low scenario, the number of disabled persons grew more rapidly

than the total population (46%); 59% for DIS-1 and 76% for DIS-2. Under the high

scenario, the number of disabled persons grew by 163% (DIS-1) and 190% (DIS-2).

They also forecasted an increase in length of time at least one disabled person will

reside in a single family residence; rising from an average of 17.6 years in 2000 to

an average of 21.2 years in 2050.

8.2.2 Obesity in the United States

Obesity is a common health issue associated with poorer mental health outcomes,

diabetes, heart disease, strokes, and some types of cancer.1 Obesity rates for adults

aged 20 rose from 22.9% between 1988 and 1994 to 34.9% between 2011 and 2012

and the extremely obese rate more than doubled from 2.8% to 6.4% over the same

period (Fryar et al. 2014). Roughly 17% of children aged 2–19 were obese in

1Obese is defined as a body mass index greater than or equal to 30.0 kg/m2. Extremely obese is a

body mass index greater than or equal to 40 kg/m2.
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2011–2012 (Ogden et al. 2014). Childhood obesity rates have stabilized in the last

decade, but no stabilization has occurred in adult rates. There is a link between

rising obesity rates and rising medical expenses. In 1998 medical costs of obesity

were estimated to be $78.5 billion and may have reached $147 billion a decade later

(Finkelstein et al. 2009); although, these estimates may be far too low (Cawley and

Meyerhoefer 2012). Some believe that current trends in obesity could lessen future

gains in life expectancy or cause life expectancy to decline in the United States

(Olshansky et al. 2005; Walls et al. 2012).

Arterburn et al. (2004) used the participation-rate method to develop short-term

forecasts of obesity in elderly (ages 60 years and older) Americans for 2010. Age-

and sex- specific estimates of obesity prevalence were obtained from national

surveys conducted from 1960 to 2000, which enabled them to track changes in

the prevalence rates by four birth cohorts over time.2 Three scenarios were used to

provide a range of forecast obesity prevalence: 1) the Best-Case scenario assumed

the obesity prevalence would change at the lowest absolute rate observed over the

four birth cohorts; 2) the Middle-Case scenario assumed the obesity prevalence

would change at the mean rate over the four birth cohorts; and 3) the Worst-Case

scenario assumed that the dramatic changes occurring in the 1990s would continue

until 2010. To conduct sensitivity analyses, the above scenarios were applied to

low, middle, and high 2010 national population forecasts developed by the

U.S. Census Bureau.

Thirty-two percent of the population aged 60 years and older was obese in 2000.

By 2010 the obesity prevalence increased to between 33.6% (Best-Case) and 39.6%

(Worst-Case). Using middle series population projections, the number of obese

Americans increased from 14.6 million in 2000 to 18.8 million (Best-Case) and

22.2 million (Worst-Case) in 2010. Even under the best case scenario the number of

obese elderly increased by more than four million. The Worst-Case scenario for

obesity prevalence (39.6%) turned out to be a very accurate forecast for 2010 when

compared to the estimated prevalence for 2009–2010 of 39.7% (Ogden et al. 2012).

8.2.3 Cardiovascular Disease in the United States

Death rates from cardiovascular disease (CVD) have declined precipitously; the

rate (per 100,000) decreased from 520.4 in 1969 to 169.1 in 2013, a drop of 67.5%

(Ma et al. 2015). Despite this progress, cardiovascular disease remains the number

one cause of death for both men and women. Around 610,000 people die of CVD

each year in the United States (about 1 in every 4 deaths), and each year 735,000

2The birth cohorts were: 1911–1920, 1921–1930, 1931–1940, and 1941–1950. The surveys

analyzed were the National Health Examination Survey 1959–1962, National Health and Nutrition

Examination Survey (NHANES) I 1971–1973, NHANES II 1976–1980, NHANES III 1988–1994,

and NHANES 1999–2000.
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Americans have a heart attack (Centers for Disease Control and Prevention 2015a;

Mozaffarian et al. 2015). Since the prevalence of CVD is heavily concentrated in

those aged 60 and over (especially those aged 80 years and older) (Mozaffarian

et al. 2015), the aging of the population is likely to bring substantial increases in the

number of persons affected by CVD and the associated costs.

Heidenreich et al. (2011) used the participation-rate method to forecast the

future of CVD in the United States for both prevalence and cost to the year 2030.

They generated historical estimates of CVD prevalence by age (18–44 years,

45–64 years, 65–79 years, and 80 years and older), sex, and race/ethnicity (white

non-Hispanic, white Hispanic, black, and other) using data from the 1996 to 2006

National Health and Nutrition surveys. CVD prevalence rates were held constant

over the forecast horizon. These rates were applied against the 2008 U.S. Census

Bureau forecast for the years 2010–2030 to forecast the number of people with

CVD by age, sex, and race/ethnicity.

Forecasts were prepared for both direct and indirect expenses of CVD. The main

data sources for direct medical expenses were the 2001–2005 Medical Panel

Surveys (MEPS). Logistic regression was used to estimate per capita medical

expenses by age, sex, and race/ethnicity (from MEPS) stratified by CVD condition

(e.g., hypertension, congestive heart failure). Adjustments were made to remove

double counting of expenses (e.g., when more than one condition is treated during a

visit) and to account for nursing home expenses (from the 2004 National Nursing

Home Survey and National Health Accounts). Per capita direct expenses were

adjusted by assuming the same future growth rate (annual rate of 3.6%) to 2030

in health care expenses above and beyond those due to aging and population growth

forecasted by the Congressional Budget Office. Future direct expenses for CVD

were obtained by applying forecasted per capita expenses against the forecasted

number of people with CVD.

Indirect costs represented the value of foregone earnings due to lost productivity

from morbidity and premature mortality by age, sex, and race/ethnicity. Morbidity

expenses included three components: 1) work loss among employed persons; 2)

home productivity loss; and 3) work loss among people too sick to work. Work loss

expenses were derived from per capita work loss days due to CVD (from MEPS),

adjusted for double counting. Per capita work loss days multiplied by the proba-

bility of employment given CVD (fromMEPS) and the mean per capita earning per

day (from the Current Population Survey) provided estimates of the work loss

expenses. Home loss expenses were derived from per days in bed due to CVD

(from MEPS) multiplied by the dollar value of a day of housework. Work loss

expenses for sickness due to CVD were derived from estimates of the number of

people too sick to work who would have been employed except for their CVD

multiplied by their mean annual earnings.

Mortality costs were based on 2006 death rates due to CVD by age, sex, and

race/ethnicity. These rates multiplied by population forecasts determined the num-

ber of deaths due to CVD to 2030. Total mortality expenses were based on the

forecast deaths multiplied by remaining life time earnings by age, sex, and race/
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ethnicity. Indirect expenses of CVD were assumed to grow at the assumed annual

rate of real earnings growth to 2030 (1.4%).

By 2030, 116 million people are forecasted to have some form of CVD, an

increase of 42 million from 2010 (36%). The crude prevalence rate increased from

36.9% of U.S. adults having CVD in 2010 to 40.5% in 2030. This forecast assumed

no change in CVD prevalence rates but reflected the demographics of an aging

population. Direct expenses are forecasted to triple from $272.5 billion in 2010 to

$818.1 billion in 2030. The aging of the population had less impact on indirect

expenses than on direct expenses because of lower employment rates among

persons aged 60 years and older. Indirect expenses are forecast to increase by

61% from 171.7 billion in 2010 to $275.8 billion in 2030. By 2030, the forecast

total expenses for CVD exceeded $1 trillion.

8.3 Developing Population-Related Forecasts

8.3.1 Alcohol Consumption in the United States

Alcohol use is very common and can increase the risk of many harmful health

conditions. Excessive alcohol consumption either in the form of heavy drinking or

binge drinking leads to an average of 80,000 deaths in the United States each year

and cost $223.5 billion in 2006 (Sacks et al. 2013). The prevalence of binge

drinking in the United States has been relatively stable, remaining in a range of

14–17% of adults from 1993 to 2013, while the prevalence of heavy drinking rose

from 3% to 6% of adults from 1993 to 2002 and has been stable since that time

(Centers for Disease Control and Prevention (2015b).

We prepare a forecast of alcohol use in the United States for the year 2025 based

on 2013 prevalence use rates by age for current users, binge users, and heavy users

(U.S. Department of Health and Human Services (2014).3 The prevalence use rates

represent the percent of the population in each age group that falls into each alcohol

user category. The binge and current use categories are not mutually exclusive;

heavy use is included in the estimates of binge use, and heavy use and binge use are

included in the estimate of current use. To avoid double and triple counting of

alcohol users, we create a mutually exclusive set of prevalence use rate. Binge users

are separated by subtracting the heavy use rate from the published binge use rate,

and current users are separated by subtracting the adjusted binge use and heavy use

rates from the published current use rate.

3Current use is at least one drink in the past 30 days. Binge use is five or more drinks on the same

occasion (i.e., at the same time or within a couple of hours of each other) on at least one day in the

past 30 days. Heavy use is five or more drinks on the same occasion each of five or more days in the

past 30 days.
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The 2013 current use rates are shown in Table 8.1. The binge and heavy use rates

have similar age-specific patterns. They both peak at ages 21–25 and decline

consistently for ages above 25 years. The current use rate is similar in magnitude

to the binge use rate to ages 21–25, but the current use rate shows a continuing

increase until ages 60 to 64 and then declines for the oldest age group (65 years and

older). Table 8.1 shows the alcohol use forecast for 2025, which is derived by

applying the 2013 mutually exclusive prevalence rates to the most recent

U.S. population forecast (U.S. Census Bureau 2014). Since the prevalence rates

are held constant, this forecast shows the impact of the aging population on alcohol

use.

There are 139.7 million alcohol users in 2013 (52.2% of the population aged

12 years or older).4 In 2025, there are 153.8 million users of alcohol, an increase of

10.1% from 2013. By comparison, the total population increases by 11.1%. Current

alcohol users increase the fastest by 12.3% between 2013 and 2025, while binge and

heavy users show similar and lower increases of 7.4% and 7.1%, respectively.

Prevalence rates for current users are relatively high in ages 60 years and older

which show the fastest population growth, while the population declines or grows

much slower in the age groups (21–29) with the highest binge and heavy use

prevalence rates. Consequently, 51.7% of the population aged 12 years and older

uses alcohol in 2025, down slightly from 52.2% in 2013; the percentage of current

users rises from 29.3% in 2013 to 29.6% in 2025; and the percentage of binge and

heavy use decreases from 22.9% to 22.1%.

8.3.2 Diabetes in the United States

There are significant personal impacts in terms of reduced quality of life and

suffering of people with diabetes. Additionally diabetes places a substantial eco-

nomic burden in the form of direct medical costs and indirect costs from work-

related absenteeism, reduced productivity and labor force participation, and pre-

mature mortality. In 2012, the total economic cost in the U.S. from diabetes was

estimated at $245 billion, including $176 billion in direct expenses and $69 billion

in indirect costs (American Diabetes Association 2013). As Fig. 8.1 shows, the

prevalence of the population with diagnosed diabetes continues to rise. The prev-

alence rate was relatively stable in each age group from 1980 to 1990, but it has

shown a substantial increase over the last 20 years. On average, the prevalence rate

grew by around 4% annually from 1990 to 2011 in every age group.

4The number of alcohol users from the 2013 Drug Survey (136.9 million) is about two percent

lower than our estimate. The Drug Survey estimate is based on the non-institutional population,

whereas our estimate is based on the total population. The total population in the United States is

roughly two percent higher than the non-institutional population.
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We prepare a forecast of persons with diagnosed diabetes in the United States for

the year 2025 based on prevalence rates by age (National Center for Health

Statistics 2015). The prevalence rate represents the percent of the population

diagnosed with diabetes in each age group. We create two scenarios based on

different assumptions about the prevalence rate. The first scenario (Constant)

holds the prevalence rate constant for each age group at their 2013 level.5 The

second scenario (Trend) assumes the prevalence rate changes linearly from 2013 to

2025 based on the 1980–2013 base period:

2025PRa ¼ 2013PRa � ð1þ ððPR2013a � PR1980aÞ � 12=33Þ ð8:1Þ

where,

PR is the prevalence rate,

a is the age group,

12 is the length of the forecast horizon (2013–2025), and

33 is the length of the base period (1980–2013).

As Table 8.2 shows, persons diagnosed with diabetes continues to increase in the

United States to the year 2025, increasing by almost 4.4 million (20.3%) in the

Constant scenario and nearly doubling in the Trend scenario (93.1%). By far the

Fig. 8.1 Diagnosed diabetes prevalence rate by age, United States, 1980–2011 (Source: National

Center for Health Statistics 2015)

5The latest prevalence rates provided by the National Center for Health Statistics were for 2011.

To estimate rates for 2013, we adjusted the 2011 prevalence rates so when applied to the 2013

population by age the result would match the latest estimate of the number of persons diagnosed

with diabetes in the United States from the Centers for Disease Control and Prevention (CDCP),

adjusted upward for the difference in population definition (21.6 million). CDCP numbers are

based on non-institutional population and we are using total population.
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largest increase in persons diagnosed with diabetes occurs in the elderly population

(ages 65 years and older). In the Constant scenario, 98.5% of the increase occurs in

the elderly population, while in the Trend scenario the corresponding figure is

62.1%. In 2013 6.2% of the total population is diagnosed with diabetes, rising to

7.5% and 12.0% by 2025 in the Constant and Trend scenarios, respectively. By

2025, roughly 20% of the elderly population will be diagnosed with diabetes in the

Constant scenario. In the Trend scenario that percentage increases to almost

one-third.

8.3.3 Cigarette Use and Consumption in the United States

Cigarette consumption in the U.S. grew from 2.5 billion in 1900 to a peak of

640 billion in 1981, and then declined to a level of under 300 billion in 2013

(ISH Global Inc. 2014). The decline over the last four decades is due to a number of

factors including the increased recognition of the adverse health impacts of

smoking (including second-hand smoke), proliferation of programs and treatments

to help people quit smoking, indoor smoking bans that spread across the United

States, and increases in federal and state taxes on cigarettes. Both the percent of the

population using cigarettes and daily cigarette volume varies by age (see Fig. 8.2).

For cigarette use the pattern is N-shaped; the percentage reaches a peak at ages

20 and 21, stays relatively stable until ages 26–29, and then declines steadily to ages

65 years and older. For daily consumption, there is a direct relationship with age,

with the highest consumption at ages 50–64. From 2003 to 2013 both usage and

volume declined in every age group, with the greatest declines occurring in ages

18–25.

Our 2025 forecast of persons using cigarettes and cigarette consumption in the

U.S. is based on prevalence use rates by age and daily cigarette volume by age

(Substance Abuse and Mental Health Services Administration 2014). The preva-

lence use rate represents the percent of the population using cigarettes in the last

month. The consumption rate represents the average daily number of cigarettes

(or sticks) consumed by cigarette users. We create two scenarios based on different

assumptions about the prevalence and consumption rates. The first scenario (Con-

stant) holds the prevalence and consumption rates constant for each age group at

their 2013 level. The second scenario (Trend) assumes the prevalence rate and

consumption rate changes linearly from 2013 to 2025 based on the 2003–2013

trend, using the same logic shown in Eq. 8.1, except the base period is now 10 years

while the forecast horizon is still 12 years. We prepare the forecast in two stages.

First, we forecast the number of cigarette users from the assumed prevalence rate

and the 2025 forecast of the U.S. population. Second, we forecast 2025 cigarette

consumption using the cigarette use forecast from the first stage and the assumed

consumption rate.

Assuming no change in the prevalence rate, cigarette users increase from 55.6

million in 2013 to 60.0 million in 2025 (see Table 8.3). This increase offsets the
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decline in cigarette users from 2003 to 2013. The Trend scenario shows a continued

decline in cigarette users, reaching 52.6 million in 2025. In both scenarios, the

change in cigarette users varies by age group, with declines generally seen for ages

under 30 years and with the largest increases in cigarette users 65 years and older.

One-fifth (20.8%) of the population aged 12 and older uses cigarettes in 2013. By

2025, the percentage declines slightly to 20.2% in the Constant scenario and more

steeply to17.7% in the Trend scenario.

The Constant scenario shows a reversal to declining trend of cigarette consump-

tion, with consumption rising by 23 billion cigarettes (9%) between 2013 and 2025

(see Table 8.4). Over one-half of the increase is due to smokers aged 65 and older.

The Trend scenario shows continued decline in cigarette consumption from 254.9

billion in 2013 to 221.5 billion in 2025 (17%). In this scenario, cigarette consump-

tion declines in every age group, except for those aged 65 years and older.

Fig. 8.2 Cigarette use and consumption by age, United States, 2003 and 2013 (Source: Substance

Abuse and Mental Health Services Administration 2014)
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8.3.4 Civilian Labor Force Forecast for San Diego County,
California

The U.S. civilian labor force has gone through substantial changes in its size and

demographic composition. The labor force grew rapidly from 1970 to 1990 due to

Table 8.4 Cigarette Consumption, United States, 2025

Constant Scenario
2025 Consumption (in 000”s)

Ages Ratea Usersb 2013c 2025d
Pct. Chg.

2013–2025

12–17 2.28 1,393,166 1,163,832 1,159,393 �0.4%

18 5.53 905,006 1,808,150 1,826,709 1.0%

19 6.18 1,231,668 2,809,172 2,778,274 �1.1%

20 6.60 1,413,311 3,481,828 3,404,666 �2.2%

21 6.73 1,443,951 3,693,707 3,546,993 �4.0%

22–23 8.06 2,923,965 9,102,920 8,602,013 �5.5%

24–25 8.84 3,046,830 9,488,391 9,830,902 3.6%

26–29 10.42 5,925,996 20,997,200 22,538,341 7.3%

30–34 12.28 6,798,659 26,504,785 30,472,949 15.0%

35–49 14.32 16,128,335 78,187,100 84,299,581 7.8%

50–64 16.41 12,031,478 72,344,800 72,064,342 �0.4%

65+ 15.23 6,721,843 25,342,600 37,366,389 47.4%

Ages 12+ 59,964,208 254,924,485 277,890,552 9.0%

Trend Scenario
2025 Consumption (in 000”s)

Ages Ratea Usersb 2013c 2025d
Pct. Chg.

2013–2025

0 1.27 597,071 1,163,832 276,772 �76.2%

12–17 3.09 554,425 1,808,150 625,308 �65.4%

18 3.80 934,611 2,809,172 1,296,305 �53.9%

19 4.22 1,064,998 3,481,828 1,640,416 �52.9%

20 4.30 1,110,562 3,693,707 1,743,027 �52.8%

21 5.90 2,288,404 9,102,920 4,928,078 �45.9%

22–23 7.09 2,502,930 9,488,391 6,477,207 �31.7%

24–25 8.71 5,283,482 20,997,200 16,796,982 �20.0%

26–29 10.49 6,185,818 26,504,785 23,684,569 �10.6%

30–34 12.18 14,561,262 78,187,100 64,735,002 �17.2%

35–49 14.05 11,030,310 72,344,800 56,566,187 �21.8%

50–64 13.74 6,526,036 25,342,600 32,728,723 29.1%

Ages 12+ 52,639,909 254,924,485 211,498,576 �17.0%

Source: Substance Abuse and Mental Health Services Administration (2014)

Trend is the linear extrapolation of the 2003–2013 trend applied to the 2013 rate.
aConstant is the 2013 daily consumption rate of cigarettes.
bFrom Table 8.3
c2013 daily consumption rate � 2013 users � 365
d2025 daily consumption rate � 2025 users � 365
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rising female labor force participation and the baby boom generation entering the

labor market. Since then, demographic changes and social forces have dampened

labor force growth. The female labor force participation rate (LFPR) peaked in

1999 and baby boomers are starting to exit the workforce due to retirement.

Moreover, the severe economic impacts of the 2007–2009 recession caused dis-

ruptions in the labor market. Going forward, the aging of the population poses

challenges for Social Security, Medicare, and pension programs as the working

population is expected to grow much slower than the non-working elderly popula-

tion. Forecasts of the size and composition of the labor force are useful for

understanding the future impacts of these challenges and for other types of eco-

nomic planning.

Most long-term labor force forecasts use the participation-rate method (Frees,

2006; Loichinger 2015). The Bureau of Labor Statistics (BLS) uses the

participation-rate method to forecast the labor force in the United States (Toossi,

2013) from population forecasts developed by the U.S. Census Bureau in conjunc-

tion with labor force participation rates developed by BLS. The same method can

be used for state and local labor force forecasts. We illustrate this method by

preparing a 2025 labor force forecast by age for San Diego County, California.

We derive LFPRs by age in 2014 from civilian population in the denominator (San

Diego Association of Governments 2014) and persons in the labor force in the

numerator (U.S. Census Bureau 2015). We create two scenarios based on different

assumptions about the LFPR. The first scenario (Constant) holds the LFPR constant

for each age group at its 2014 level. The second scenario (Trend) uses the synthetic

method (Smith et al. 2013: 65), which assumes San Diego’s LFPR changes at the

same rate as the national LFPR (forecast by the BLS from 2012 to 2022).

Comparing the Constant and Trend LFPRs found in Table 8.5, between 2014 and

2025 the LFPR rate declines in all age groups under the age of 55 years, with the

largest percentage declines in the ages 15–19 and 20–24 (�22.3% and �5.5%,

respectively). LFPRs increase in all ages 55 years and older, with larger percentage

increases as the labor force ages. The LFPR in ages 55–59 increases by 4.6% and it

increases by 41.3% in ages 85 years and older.

The total labor force increases by 8.1% in the Constant scenario and 9.0% in the

Trend scenario. Percentage changes in the labor force show a similar pattern in

terms of direction across ages in both scenarios, but are generally of greater

magnitude (ignoring the sign) in the Trend scenario. The impacts of changes on

the labor force age composition from changes in the civilian population age

composition are seen by looking at the Constant scenario. In that scenario, the

labor force increases in all age groups, except for 15–24 and 50–59. As expected the

largest increases in the labor force occur in the older ages. The median age of the

labor force increases from 40.9 years in 2014 to 41.0 years in the Constant scenario

and to 42.4 years in the Trend scenario.
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8.3.5 Other Population and Housing Variables for San Diego
County, California

Households (occupied housing units) and their populations are important con-

sumers in the goods and services markets and are an important determinant of

housing market trends. Forecasts can show the extent to which households and their

occupants will change in the future in both number and composition. As such, they

provide basis for other forecasts such consumer durables, the need for in-home

nursing care services and assisted living, and the need for municipal services.

Persons per household (PPH) can be derived from forecasts of households and

household population; and housing units (or supply) forecasts can be derived from

household forecasts. Uses for these other population and housing variables might

include developing economic strategies, designing service delivery programs,

evaluating future housing and transportation needs, and preparing marketing and

business plans.

Our approach begins with a participation-rate method for developing group

quarters and household population forecasts. The household population forecast is

then combined with householder rates to forecast households. From households,

household population, and assumptions about the housing vacancy rate, we derive

forecasts of PPH and housing units. The general formulae for this approach are:

GQPopc ¼ TPopc�GQRc, ð8:2Þ
HHPopc ¼ Tpopc�GQPopc, ð8:3Þ
HHc ¼ HHPopc�HHRc, ð8:4Þ

PPH ¼
X

HHPopc=
X

HHc, ð8:5Þ
HU ¼ HH=ð1�VRÞ, ð8:6Þ

where,

c is the demographic characteristic

GQpop is population living in group quarters,

Tpop is the total population,

GQR is the group quarters population participation rate,

HHPOP is the population living in households,

HH is the number of households,

HHR is the householder rate,

PPH is the average number of persons per household,

HU is the number of housing units (occupied and vacant), and

VR is the housing vacancy rate.

Housing units can also be forecast directly from data on housing trends, zoning

requirements, the amount of buildable land, and other relevant factors (Smith et al.

2013: 296–297). A population forecast can be derived from the housing unit
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forecast by applying the widely-used housing unit method (Swanson and Tayman

2012: 137–164):

Tpop ¼ HU� ð1�VRÞ � PPHþ GQpop: ð8:7Þ

8.3.5.1 Group Quarters and Household Population

We prepare 2025 group quarters and household population forecasts by age for San

Diego County, California. We split the group quarters population into civilian and

military. In places with a large military presence, like San Diego County, it is useful

to make this division. Not only do the demographic characteristics differ between

the military and civilian group quarters populations, but the military group quarters

population is not likely to be affected by changes in demographic composition of

the local population like, say, the nursing home population.6 Civilian group quarters

participation rates (CivGQR) by age in 2014 are developed from the civilian

population in the denominator (San Diego Association of Governments 2014) and

persons living in civilian group quarters in the numerator (U.S. Census Bureau

2015). The 2014 military group quarters population and CivGQR are held constant

in this forecast.

Table 8.6 shows the CIVGQR is relatively similar in size for most ages,

generally between 1.5% and 2.5% of the civilian population. The highest rates

occur in ages 75 years and older, reflecting the population in elder care facilities.

The civilian group quarters population increases by 9,014 (14.2%) from 2014 to

2025, slightly faster than the 12.5% increase for the civilian population. Most of this

increase (7,499) occurs in ages 65 years and older, reflecting the aging of the

civilian population. The household population reaches 3.49 million in 2025, up

from 3.11 million in 2014.

8.3.5.2 Households, Household Size, and Housing Units

We conclude our examples by preparing 2025 forecasts of households by age, PPH,

and housing units for San Diego County, California. When a participation-rate is

used to forecast households, it is often called the headship or householder rate

(HHR) since the principal person (or householder) is usually reported by age

(as well as by sex and by ethnicity and race, and so on). The HHR approach is

widely used to develop forecasts of households (Goodman et al. 2015; Holmans

2012; Kono 1987; McCue 2014; Reardon and Hari 2014: Appendix B). We derive

6If an area has large college group quarters or prison/jail populations, they should be forecast

separately from other civilian group quarters for the same reasons the military and civilian group

quarters populations handled distinctly.
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HHR by age in 2014 from household population in the denominator (San Diego

Association of Governments 2014) and householders in the numerator (U.S. Census

Bureau 2015). We create two scenarios based on different assumptions about the

HHR. The first scenario (Constant) holds the HHR constant for each age group at its

2014 level. The second scenario (Trend) uses the synthetic method (Smith et al.

2013: 65), which assumes San Diego’s HHR changes at the same rate as the

national HHR (forecast by Goodman et al. (2015) from 2010 to 2025). To derive

housing units in 2025, we assume that the 2014 vacancy rate (San Diego Associ-

ation of Governments 2014) does not change.

HHR are lowest in ages under 30 years, then rise until ages 45–49, stay

relatively constant through ages 75–79, and then decline for ages 80 years and

older (see Table 8.7). Comparing the Constant and Trend HHR, between 2014 and

2025, the HHR rate declines in all age groups, with the largest percentage declines

in the ages 15–19 and 20–24 (�13.0%), 25–29 (�7.3%), and 30–34 (6.3%). The

slowest declines (around 2%) occur in ages 35–54 and the decline increases to

around 3% for those 55 years and older. More households are formed under the

Constant scenario between 2014 and 2024. Households increase by 165,198

(14.8%) in the Constant scenario compared to 115,578 (10.3%) in the Trend

scenario. As a result, under the Constant scenario the PPH in 2025 is �2.3%

lower than it is in 2014, but the PPH increases by 1.7% in the Trend scenario.

Roughly 52,000 more housing units would have to be built in San Diego County

to accommodate the demand under the Constant scenario (173,747) compared to

the Trend scenario (121,559).

8.4 Conclusions

Population-related forecasts can be used to address a broad array of socioeconomic

and health-related issues. They play an important role in many types of real-world

decision making. The participation-rate method described in this chapter is con-

ceptually simple and relatively easy to apply. More complex methods for forecast-

ing households, health status, employment, and other population-related variables

have also been developed (Barnichon and Nekarda 2012; Christiansen and Keilman

2013; IHS Global Inc. 2014; Finkelstein et al. 2012; Huang et al. 2009; Lindh and

Malmberg 2007; Rowley and Bezold 2012; Zeng et al. 2006). Complex methods

draw on a greater variety of inter-relationships among variables and provide a richer

array of detailed characteristics than simpler methods; for some purposes, they will

be more useful than the methods described here. However, the methods presented in

this chapter require considerably less data and can be applied more easily than

complex methods. These are important advantages when resources are scarce and

time is short. Their relatively small data requirements are particularly important for

small-area forecasts because many types of data are not available for them.
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We believe there are many circumstances in which the methods described here will

provide useful forecasts of population-related variables.

Although the participation-rate method is widely used, the usefulness of the

forecast it produces will depend on the validity of its underlying assumptions. The

illustrations presented in this chapter depict several different approaches to fore-

casting future participation rates. In the alcohol consumption and group quarters

population forecasts, we assumed constant launch year rates. Launch year rates

were also held constant in the other forecasts (cigarette use and consumption,

diabetes, labor force and other population and housing), but an alternate assumption

regarding future rates was also applied for these variables. In the labor force and

household forecasts, county rates were assumed to change at the same rate as

national rates; and in the other projections, historical changes in the rates were

extrapolated into the future. Regardless of the approach, developing reasonable

assumptions regarding future participation rates is an important part of the devel-

opment of any set of population-related forecasts. Thorough knowledge of histor-

ical trends and the factors affecting the variables of interest is essential. Although

the participation-rate method is capable of producing reasonably accurate forecasts,

there is no guarantee that it will actually do so.
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Chapter 9

Estimating Population Size and Composition

9.1 Introduction

In a sense, population estimates are like population forecasts in that they are done in

lieu of a census. For both future and past populations it is not possible to conduct a

census; and while it may be possible in principle to conduct a census for a current

point in time, it may not be feasible. In this chapter, we explore the use of the CCR

method for generating estimates for a current point in time (In the following

chapter, we will extend this discussion to past points in time). Before proceeding,

recall the definition from Chapter 2 of a population estimate: the determination of

the size or the characteristics of a population at a current or past date in the absence

of census data for the same date.

When used to make population estimates, the CCR method falls into the second

of three categories of estimation identified by Swanson and Tayman (2012: 3–4),

namely that of “mathematical models that use census data.” Methods falling into

this category have generally been developed by and for academic demographers,

most of whom work at universities and research institutes. To a large extent, this is

not the case for the CCR method, in that it has become widely known and used

among applied demographers as a forecasting method. This chapter shows that the

CCR method can be used to generate current estimates (and the following chapter

shows that the CCRmethod can be used to generate historical estimates). In order to

accomplish this, however, the CCR method needs to be used in conjunction with a

general class of demographic methods known as interpolation, the subject to which

we now turn.
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9.2 Interpolation Methods

Interpolation methods are a well-established technique in the field of demography

and have a wide range of uses (Judson and Popoff 2004). In a sense, they are

methods of estimation, in and of themselves. Here, we focus on a general class of

interpolation methods that have two uses: (1) splitting age groups in to single years

of age; and (2) assembling an annual series of numbers between the last census and

a current point in time. We note at the outset that there is a wide range of

interpolation methods in this class that could be used, but we focus on only three

of them: (1) Waring’s formula (Judson and Popoff 2004: 685–686, 2) The Karup-

King method (Judson and Popoff 2004: 688, 726); and (3) Interpolation by Prorat-

ing (Judson and Popoff 2004 696–697). In the examples provided later, we show

how to use each of these methods in conjunction with the CCR method and at the

same time illustrate how two of them may be combined for use in conjunction with

the CCR method.

Waring’s formula (Judson and Popoff 2004: 685–686) is a form of polynomial

interpolation based on four known points. Simpler forms of it can be used, however,

with three and two known points, respectively. We use the version that is based on

two known points. This allows us to generate a current estimate using only data

from the last census and a forecast made using the CCR method. Interpolation

methods can also be used to develop a forecast for point in time that is between a

current estimate and the target year for a given CCR method forecast (e.g., if we

have a 2020 forecast and the current point in time is 2017, we can use interpolation

to obtain 2018 and 2019 data).

In general terms, this version of Waring’s formula is defined as:

Ptþx ¼ Pt � ðk�x=kÞþPtþk � ðx=kÞ ð9:1Þ

where,

x is the point in time for which an estimate is desired and t &lt; x &lt; t þ k,
t is the year of the most recent census (from which the CCR method

forecast was launched),

k is the horizon length of the CCR method forecast (typically 10 years), and

P is the population.

Equation 9.1 can be applied to age groups, age groups by sex, age groups by age,

race and sex, and whatever other characteristics that the CCR method forecast

generated.

The Karup-King method (Judson and Popoff 2004: 688, 726) is also a form of

polynomial interpolation, but it is an “osculatory” approach. This means that it can

create a smooth junction at the point where two ranges of interpolated numbers meet

(e.g., if we interpolate age group 5–9 and age group 10–14 into single years of age,

respectively, then the number for age 9 will intersect smoothly with the number for

age 10). This method is implemented using coefficients (Judson and Popoff 2004:
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726). It can be used with four known “points” or three.1 We provide an example

using three. The method disaggregates grouped data into fifths, which makes it

well-suited for obtaining single years of age from five-year age groups.

The third method, “Interpolation by Prorating” (Judson and Popoff 2004:

696–697) uses applicable known data to subdivide grouped data. For example,

we could take a distribution of enrollment for grades 9, 10, 11, and 12, and apply it

to an estimate of enrollment in grades 9–12 to obtain enrollment in grades 9, 10,

11, and 12 consistent with the estimate. We show a variation of this approach in

regard to disaggregating enrollment by groups based on single years of age obtained

using the Karup-King method.

9.3 Examples

Our first example uses a 2020 forecast of the population by age of Riverside

County, California by age using the CCR method (see Table 9.1). We then use

Waring’s 2 point formula and produce “current” estimates of this population by age

for each year from 2011 to 2019 (see Table 9.2).

As specific examples, here is how the 2011, 2015, and 2019 estimates for age

group 10–14 were generated, respectively. For 2011, the estimated number of

183, 604 ¼ ((0.9 � 177,644) þ0.1 � 237,247)), where 177,644 is the population

aged 10–14 in 2010 and 237, 247 is the forecasted population aged 10–14 in 2020.

For 2015, the estimated number of 207,446¼ ((0.5� 177,644)þ (0.5� 237,247)),

where 177,644 and 237,247 are previously defined. For 2019 the estimated number

is 231,287 ¼ ((0.1 � 177,644) þ (0.9 � 237,247)), where 177,644 and 237,247 are

previously defined.

Waring’s 2-point formula weights each endpoint, with the sum of the weights

equal to 1.0. Estimates closer to the census point receive larger weights on the

census number, which diminish as the estimates get closer to the forecast number.

As can be seen in Table 9.2, the estimated numbers across the years from 2010 to

2020 are consistent with one another, as are the numbers across the age groups

within a given year and across all of the years. This is a highly desirable feature that

is an outcome of using the CCR method in conjunction with Waring’s 2-point

formula.

Figure 9.1 shows the population in selected 5 year age groups (0–4, 5–9, 10–14,

15–19, and 20–24) forecasted by the CCR method developed in Chapter 7 for the

Memphis School District in 2010. Table 9.3 shows the population by individual

year of age from 5 to 19 using the Karup-King method for interpolating grouped

1First and last interval coefficients are available for interpolating the youngest (0–4) and terminal

age groups (e.g., 85 years and older). Interpolation for these age groups is not as reliable as

interpolation for other age groups because they use information from only one side of the relevant

age group.
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data, which requires the population in the age groups shown in Fig. 9.1. In

implementing the Karup-King method for this purpose, we took each age group

5–9, 10–14, and 15–19, as the “middle panel,” respectively (Judson and Popoff

2004: 726, Table C.13.b).

As examples of how we use the Karup-King method: (1) the number in Table 9.3

forthoseaged5is10,789¼(0.064�54,548)þ(0.152�53,425)þ(�0.016�51,420),

where 0.064, 0.152, and �0.016 are middle panel Karup-King coefficients from

Table C13.b, respectively applied to the total number aged 0–4 (54,548), 5–9

(53,425), and 10–14 (51,420); (2) the number shown for age 12 is

10,178 ¼ (�0.024 � 53,425) þ (0.248 � 51,420) þ (�0.024 � 53,816), where

�0.024, 0.248, and �0.024 are the Karup-King coefficients respectively applied

to the total number aged 5–9 (53,425), 10–14 (51,420), and 15–19 (53,816);

and (3) the number shown for age 16 is 10,555 ¼ (0.008 � 51,420)

Table 9.1 Population forecast by age, Riverside County, California, 2020

Change 2010–20

Age 2000 2010 CCRa 2020b Number Percent

0–4 121,629 162,438 0.37171 242,421 79,983 49.2%

5–9 139,468 167,065 0.39184 260,112 93,047 55.7%

10–14 133,886 177,644 1.46054 237,247 59,603 33.6%

15–19 119,725 187,125 1.34171 224,153 37,028 19.8%

20–24 96,374 154,572 1.15450 205,090 50,518 32.7%

25–29 95,621 143,992 1.20269 225,053 81,061 56.3%

30–34 108,602 138,437 1.43646 222,036 83,599 60.4%

35–39 124,260 143,926 1.50517 216,732 72,806 50.6%

40–44 117,910 149,379 1.37547 190,416 41,037 27.5%

45–49 96,484 152,722 1.22905 176,892 24,170 15.8%

50–54 79,538 140,016 1.18748 177,385 37,369 26.7%

55–59 61,880 114,765 1.18947 181,658 66,893 58.3%

60–64 54,046 98,974 1.24436 174,230 75,256 76.0%

65–69 52,309 78,495 1.26850 145,579 67,084 85.5%

70–74 50,845 62,103 1.14908 113,729 51,626 83.1%

75–79 44,184 49,003 0.93680 73,534 24,531 50.1%

80–84 27,542 36,793 0.72363 44,940 8,147 22.1%

85–89 14,399 22,399 0.50695 24,842 2,443 10.9%

90+ 6,685 9,793 0.20139 13,893 4,100 41.9%

Total 1,545,387 2,189,641 3,149,942 960,301 43.9%

Source: 2000 and 2010, U.S. Census Bureau (http://factfinder2.census.gov)
a
4P0,t/15P20,t Ages 0–4

9P5,t/15P25,t Ages 5–9

Px,t/Px�10,t�10 Ages 10–89

P90+,t/P80+,t�10 Ages 90+
b
4CCR0,t � 15P20,t +10 Ages 0–4

9CCR5,t � 15P25,t+10 Ages 5–9

CCRx,t � Px,t Ages 10–89

CCR80+,t � P80+,t Ages 90+
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þ (0.224 � 53,816) þ (�0.032 � 59,724), where 0.008, 0.224, and �0.032 are the

Karup-King coefficients respectively applied to the total number aged 10–14

(51,420), 15–19 (53,816), and 20–24 (59,724).

The Karup-King method is self-normalizing in that the sum of the populations

for the single years of age within an age group will sum to the population of that age

group. This occurs because the weights for the age group being interpolated

(e.g. 5–9) sum to 1.0 and the weights for the younger age group (e.g., 0–4) and

older age group (e.g. 10–14) sum to zero.

Fig. 9.1 Population forecast by selected age groups, Memphis, Tennessee School District, 2010

(Source: Chapter 7, Table 7.2)

Table 9.3 School age population forecast by single years of age, Memphis, Tennessee School

District, 2010a

Associated Grade Age Population

Pre K 5 10,789

K 6 10,758

1 7 10,706

2 8 10,633

3 9 10,539 53,425 Ages 5–9

4 10 10,374

5 11 10,223

6 12 10,178

7 13 10,239

8 14 10,405 51,419 Ages10–14

9 15 10,515

10 16 10,555

11 17 10,679

12 18 10,887

19 11,180 53,816 Ages 15–19

aAge splitting based on the Karup-King middle panel coefficients
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Our third example uses “Interpolation by Prorating” (Judson and Popoff 2004:

696–697) to estimate public school enrollment by individual grades (1–12) in the

Memphis, Tennessee School District based on enrollment forecasts by grade groups

(1–8 and 9–12) developed in Chapter 7. The Pre-Kindergarten and Kindergarten

group does not require any further disaggregation. In prorating, a distribution is

taken from a similar group (i.e., population) that has satisfactory detail to split a

known total for a given group (i.e., enrollment by grade group).

The first step is to find the school age population by single years of age, which

we did in Table 9.3. In the second step, we develop population shares that based

on two aggregated age groups (7–14) and (15–18), which are associated with

grades 1–8 and 9–12, respectively. These shares are shown in Table 9.4 in which

the sum of the population shares associated with grades 1–8 and grades 9–12

each sum to 1.0. In the third step, we split the aggregated enrollment into

individual grades by multiplying the proportion at given age by the aggregated

enrollment in the group with which it is associated. For example, the 10,706

children aged 7 shown in Table 9.3 are associated with grade 1 and represent

0.12853 of the total children aged 7–14 (10,706/83,297). Multiplying this pro-

portion by the total number enrolled in grades 1–8 provides the estimated

number of first graders, 9895 ¼ 0.12853 � 76,985. This same logic was used

to obtain the estimated enrollment for grade levels 1 thru 12. These estimates

along with the “forecasted” number for Pre-Kindergarten/Kindergarten are

displayed in Table 9.4.

Table 9.4 Public school enrollment by individual grade, Memphis, Tennessee School

District, 2010

Grade Population Sharea Enrollmentb

Pre K & K n/a 11,314

1 0.12853 9,895

2 0.12765 9,827

3 0.12652 9,740

4 0.12454 9,588

5 0.12273 9,448

6 0.12219 9,407

7 0.12292 9,463

8 0.12492 9,617 76,985 Grades 1–8

9 0.24662 7,627

10 0.24756 7,656

11 0.25047 7,746

12 0.25535 7,897 30,926 Grades 9–12

Total 119,225

aDerived from Table 9.3

Grades 1–8 represent shares of the population aged 7–14

Grades 9–12 represent shares of the population aged 15–18
bGrades 1–8 are the population share times the total enrollment in grades 1–8

Grades 9–12 are the population shares times the total enrollment in grades 9–12
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9.4 Conclusions

In this chapter we have shown several examples to illustrate a few of the many

applications there are for estimating “current “ populations and their characteristics

by combining the CCR method with interpolation methods. Of course, these same

interpolation methods can be applied to populations forecasted using the CCR

method in order to obtain detailed information such as the population by individual

age group and enrollments by individual grade level (Smith et al. 2013: 272–284).

By extension, the same approach can be used to estimate (or forecast) a very wide

range of demographic, social, and economic characteristics. In the next chapter we

provide several examples, one of which uses interpolation and the CCR method run

in reverse, to create historical estimates.
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Chapter 10

Estimating Historical Populations

10.1 Introduction

Using the discussion of developing current estimates via the CCR method found in

Chapter 9 as a point of departure, in this chapter we show how the CCR method can

be run in reverse to generate historical population estimates, a procedure known as

backcasting. This is followed by a section that provides three examples and also

shows how life table survival rates are related to CCRs. The chapter concludes with

a brief discussion and summary.

10.2 Reverse Cohort Change Ratios

Running the Cohort Change Ratio method in reverse provides a way to generate

historical estimates using data from the two relevant censuses so that we can move a

population by age (and sex) backwards, from time t to time t�k using reverse

cohort-change ratios (RCCR). This takes place in two steps. First, we calculate an

RCCR:

nRCCRx, t¼nPx, t=nPxþk, tþk ðStep1Þ ð10:1Þ

where,

nPx,t is the population aged x to x + n at the time of the census (t) just following the
period for which an historical estimate is desired, and

nPx+k,t+k is the population aged x + k to x + k + n at the time of the census (t + k),
which follows the census at time (t), and

k is the number of years between the two censuses.

In the second step, we move the population into the past:

© Springer International Publishing AG 2017
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nPx�k, t�k ¼ nRCCRx, t�nPx, t Step 2ð Þ ð10:2Þ

where,

nRCCRx,t and nPx,t are defined above.

One advantage of RCCRs is that we can backcast age groups 0–4 and 5–9 (from

those aged 10–14 to 15–19, 10 years later, respectively). This is not possible for the

forward-looking CCR method discussed in Chapters 1 and 4. A backcast of the

oldest age group (the terminal, open-ended age group, e.g., 75 years and older),

however, requires some adjustments. The initial two steps are straightforward, but

as one goes back in time an important adjustment is required. As an example,

suppose the final closed age group is 80–84, with 85 years and older as the terminal

open-ended age group in the census following the earliest census, then calculating

the terminal age group RCCR is:

RCCR85þ, t ¼ P75þ, t=P85þ, tþk: ð10:3Þ

The formula for estimating the population 75+ for the year t�k is:

P75þ, t�k ¼ RCCR85þ�P85þ, t: ð10:4Þ

Notice that the population aged 85 years and older in the census used to launch

the backcast becomes 75 years and older in the target year given that k ¼ 10. If we

apply the RCCRs to our initial backcast in order to backcast another k years, the

terminal, open-ended age group would be 65+. Every 10 years we went back in

time, the terminal, open-ended age group would be 10 years younger until, finally,

we would be left with 5 years and older as the only population age group. For

example, if one takes the ratio of the population aged 80 years and older in the 2000

census to the population aged 90 years and older in the 2010 census and applies this

to the population aged 90 years and older in the 2000, the population aged 80 years

and older is backcasted for the year 1990. This is now the “new” terminal open-

ended age group, so an RCCR for 80+/70+ must be applied to this age group, which

in turn, generates the population 70 years and older for the year 1980. By the time

the backcasting process reaches 1910, the only age information would be for the

total population aged 0 and above and 1910 would be the terminal point of the

backcast.

As the preceding discussion indicates, an adjustment is needed for the terminal

open-ended age group because every 10 years in the past (in the U.S. Census

context) this group would be 10 years younger and, as such, successively providing

less information about the age structure of the population in question. To avoid this,

proportions of the closed age groups that make up a given open-ended age group are

calculated and applied to the backcasted number in the terminal open-ended age

group. For example, in the 2010 census one can redefine the terminal open-ended

age group not only as 90 years and older but also as 80 years and older, and the latter

would have three associated age groups, 80–84, 85–89 and 90 years and older.
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These proportions are used to maintain a constant definition of the terminal open-

ended age group as the backcast proceeds. That is, as soon as one backcasts the

population 80 years and older for the year 2000 from the population aged 90 years

and older in 2010, the proportions can be applied to the backcasted 80 years and

older population so that the 2000 population aged 80–84, 85–89 and 90 years and

older can be estimated.

10.3 Examples

10.3.1 1910 Native Hawaiian Population Estimates
in Hawai’i

In our first example, we show an estimate taken from Swanson and Tayman (2012:

348–351). It uses 1930 and 1920 age-sex census data on Native Hawaiians in

Hawai’i to develop RCCRs and then backcasts the 1920 Native Hawaiian popula-

tion to generate population estimates by age and sex for Native Hawaiians in

Hawai’i for 1910. The input data, calculations, and results are shown in Table 10.1.
Because Native Hawaiians were counted in the 1910 census, we can compare

our estimates of them to the enumerated numbers to get an idea of the method’s
accuracy. These comparisons are found in Table 10.2. The RCCR method under-

estimates the total population of Native Hawaiians in 1910 by 930 people (�3.6%).

The total numbers of males and females are underestimated by the same percentage.

The MAPE is 7.1 for the estimates by age group for both sexes combined, with the

estimates for males being less accurate than the estimates for females. The absolute

percent error distributions are right-skewed as the MEDAPE (median APE) is

substantially less than the MAPE for both sexes combined and separately. The

average level of downward bias is similar, with MALPEs ranging for�4.1 to�3.5.

10.3.2 1770 to 1900 Native Hawaiian Population Estimates
in Hawai’i

Our second example extends the historical estimates of the Native Hawaiian

population in Hawai’i back to 1778, the year of first European contact. Here, we

provide estimates by age for both sexes combined. In this example, the 1920 and

1910 U.S. Census data are used to define the RCCRs using 5 year age groups, 0–4,

5–9, 10–14,. . ., 70–74, with a terminal open-ended age group of 75 years and older.

This means that the ratio of the population aged 65 years and older in 1910 to the

population aged 75 years and older in 1920 is used to generate the terminal open-

ended age group of 65 years and older, with the latter having 65–69, 70–74 and

75 years and older as its three associated age groups. The proportions for these three
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Table 10.1 Native Hawaiian population estimates by age and sex, Hawai’i, 1910a

Age in

1930

1930

Male

Age in

1920

1920

Male RCCRb
Age in

1910

1910a

Male

10–14 1,161 0–4 1,266 1.09044 0–4 1,223

15–19 1,127 5–9 1,219 1.08163 5–9 1,180

20–24 952 10–14 1,122 1.17857 10–14 1,223

25–29 760 15–19 1,091 1.43553 15–19 1,380

30–34 728 20–24 1,038 1.42582 20–24 1,098

35–39 748 25–29 961 1.28562 25–29 1,196

40–44 710 30–34 770 1.08527 30–34 665

45–49 631 35–39 930 1.47444 35–39 1,255

50–54 553 40–44 613 1.10800 40–44 573

55–59 466 45–49 851 1.82496 45–49 878

60–64 371 50–54 517 1.39471 50–54 633

65–69 266 55–59 481 1.80700 55–59 669

70–74 153 60–64 454 2.97096 60–64 377

75+ 197 65–69 370 3.41624 65+ 601

70–74 127

75+ 176

Total 11,299d 11,986 12,951

Age in

1930

1930

Female

Age in

1920

1920

Female RCCRb
Age in

1910

1910c

Female

1910 Total

Population

10–14 1,222 0–4 1,298 1.06219 0–4 1,282 2,505

15–19 1,071 5–9 1,209 1.12885 5–9 1,242 2,422

20–24 1,031 10–14 1,207 1.17071 10–14 1,290 2,513

25–29 915 15–19 1,100 1.20219 15–19 1,273 2,653

30–34 794 20–24 1,102 1.38791 20–24 1,137 2,235

35–39 876 25–29 1,059 1.20890 25–29 1,059 2,255

40–44 642 30–34 819 1.27570 30–34 856 1,521

45–49 625 35–39 876 1.40174 35–39 1,036 2,291

50–54 522 40–44 671 1.28529 40–44 598 1,171

55–59 399 45–49 739 1.85126 45–49 718 1,596

60–64 296 50–54 465 1.57194 50–54 486 1,119

65–69 202 55–59 388 1.92020 55–59 413 1,082

70–74 118 60–64 309 2.62003 60–64 296 673

75+ 166 65–69 215 2.92169 65+ 459 1,060

70–74 113

75+ 157

Total 11,308b 11,727 12,145 25,096

Sources: The Bureau of the Census (1922, 1932)
aBased on the reverse cohort change ratio method and 1930 to 1920 CCRs.
bPx,t/Px+k,t+k Ages 0–64

P65+,t/P75+,t+k Ages 65+
cRCCRx,t � Px,t Ages 0–64

RCCR75+,t � P75+,t Ages 65+
dIncludes 2477 males aged 0–9 not shown in table
eIncludes 2429 females aged 0–9 not shown in table
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age groups were found by averaging the proportions for them found in the 1930,

1920, and 1910 census counts for Native Hawaiians in Hawai’i.
The RCCRs and the adjustments were initially applied to the 1910 census by age

to generate a set of backcasted 1900 estimates by age for the Native Hawaiian

population in Hawai’i. The same RCCRs were then applied to the 1900 estimates by

age to generate a set of backcasted 1890 estimates by age. This process was

repeated until the 1770 population of Native Hawaiians by age was generated for

Hawai’i. As should be clear, the backcasting proceeded in decennial cycles from

1900 to 1770. The 1920 and 1910 input data and the 1920–1910 RCCRs used to

generate the estimates are shown in Table 10.3.

As shown in Table 10.4, the total population estimates of Native Hawaiians track

well with the 1900 U.S. census count, two census counts done by the Kingdom of

Hawai’i for 1890 and 1860, and a carefully prepared estimate done by Adams et al.

(1925) for1850. The estimate of 683,200 for 1778 is found by calculating the rate of

change between 1770 and 1780 and then applying that rate of change to the 1770

estimate. As mentioned at the end of Chapter 9, the estimate for 1778 is found using

an interpolation method.

In addition to tracking well with the census counts, it also is important to note

that the RCCRs are all in excess of one. This means that their corresponding

reciprocals, the CCRs, are all less than one. This makes sense for Native Hawaiians

Table 10.3 RCCRs and

allocation proportions for

generating decennial

estimates of the Native

Hawaiian population,

Hawai’i, 1920–1910

1920 1910

Age in Population Age in Population RCCRa

10–14 2,329 0–4 2,713 1.16488

15–19 2,191 5–9 2,509 1.14514

20–24 2,140 10–14 2,528 1.18131

25–29 2,020 15–19 2,657 1.31535

30–34 1,589 20–24 2,267 1.42668

35–39 1,806 25–29 2,213 1.22536

40–44 1,284 30–34 1,784 1.38941

45–49 1,590 35–39 2,049 1.28868

50–54 982 40–44 1,468 1.49491

55–59 869 45–49 1,575 1.81243

60–64 763 50–54 1,242 1.62779

65–69 585 55–59 1,049 1.79316

70–74 240 60–64 651 2.71250

75+ 333 65+ 1,320 3.96396

Proportions for Allocating Pop 65+b

65–69 0.42518

70–74 0.23684

75+ 0.33798

1.00000

Sources: The Bureau of the Census (1913, 1922)
aPx,t/Px+k,t+ Ages 0–64
bP65+,t/P75+,t+k Ages 65+
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since there is virtually no migration into Hawai’i of Native Hawaiians, which

means the CCRs are generated only by out migration and mortality. Evidence

suggests that while out-migration did occur, it was not extensive among Native

Hawaiians. To the extent any appreciable out-migration—and return

in-migration— occurred, it was largely confined to young adult males (Adams

et al. 1925: 10–12; Kana’iupuni and Malone 2006; Schmitt 1968: 38–40; Schmitt

1977: 90–91; Schmitt and Nordyke 2001: 5).

These RCCRs also indicate high levels of mortality in the Native Hawaiian

population in the early part of the twentieth century. In this regard, the RCCRs are

consistent with survival rates generated from the life tables constructed for Native

Hawaiians in the early part of the twentieth century by Park et al. (1979: 14), who

estimate Native Hawaiian male and female life expectancy at birth in 1920 as 34.21

and 32.90 years, respectively.

Although we do not go into details here, it is worth noting that there is a link

between the application of RCCRs and the subject of Chapter 12 that uses CCRs to

analyze stable population theory. The major point in Chapter 12 is that when a

constant set of CCRs is applied to a given population, a stable population will

eventually result (whereby once stability is achieved, the relative age distribution of

the population remains constant over time). Given this, the application of a constant

set of RCCRs to a given population should also yield a stable population at some

point in time. In fact, this was found for the Native Hawaiian population in Hawai‘i,

which reached stability by 1820. Also worth noting is that the relative 1820 age

Table 10.4 Total population

of Native Hawaiians,

Hawai’i, 1900–1770

Year Estimate Censusa

1900 29,336 29,799

1890 33,457 34,436

1880 39,711 n/a

1870 48,579 n/a

1860 61,931 67,084b

1850 80,574 82,035c

1840 110,948 n/a

1830 149,297 n/a

1820 200,018 n/a

1810 267,971 n/a

1800 359,010 n/a

1790 480,978 n/a

1780 644,383 n/a

1778d 683,200 n/a

1770 863,302 n/a

aSchmitt (1968)
bIncluded Chinese living in Honolulu and part Hawaiians

(Schmitt 1968:74)
cEstimate by Adams (Schmitt 1968:43)
d683,200 ¼ 863,302 � er�8, where r ¼ �0.02925 ¼ [ln(644,383/

863,302)]/10
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structure not only remains constant back to 1770 (and will do so beyond), but that it

is different than the 1910 relative age structure. This finding also is consistent with

stable population theory in that the initial 1910 age structure is “forgotten” by the

time stability is reached in 1820.

10.3.3 CCRs and Life Table Survival Rates

In this section, we build on the idea that the RCCRs used in the preceding example

approximate the inverse of survival rates. In the context of a life table (Kintner

2004: 322–324), a CCR is known as a “survivorship ratio.” We discuss the

application of the CCR method to life tables and survivorship in Chapter 11, but

the context in that chapter is on developing life expectancy and mortality estimates

rather than population estimates. The latter topic is our focus here. In preparation

for this example, we note that the survivorship rates computed from the “nLx”

column (years lived in a given age interval) of a life table are equivalent to the

CCRs calculated for age groups of a specific width, while the survivorship rates

computed from the “Tx” column (years lived at this and all subsequent ages) are

equivalent to the CCRs calculated for open-ended terminal age groups (for a

discussion of nLx and Tx, see Kintner 2004: 322–323). The relationship between

survivorship rates calculated from Tx and CCRs calculated from open-ended,

terminal age intervals brings up a way in which the RCCR method can be used to

estimate an historical population.

We first consider the relationship between T0 and Tx in a life table as follows:

xS0 ¼ Tx=T0 ð10:5Þ

where,

xS0 is the survivorship rate from birth to the open-ended terminal age group, x
Tx is the years lived in the open-ended, terminal age group, and

T0 is the years lived at birth and all subsequent age groups.

Re-arranging the terms in Eq. 9.5, we see that:

Tx ¼ xS0�T0, ð10:6Þ

and further that:

T0 ¼ Tx=xS0ð Þ, ð10:7Þ

The preceding equations suggest that a RCCR can be constructed such that a

total population can be estimated. First, note that:
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RCCRkþ, t ¼ P0þ, t=Pkþ, tþk: ð10:8Þ

Second, that the formula for estimating the total population 0+ of area i for the year
t�k is:

P0þ, t-k ¼ RCCRkþ�Pkþ, t: ð10:9Þ

To illustrate how Eq. 10.8 and Eq. 10.9 can be used to estimate a population, we

again turn to the historical data on the Native Hawaiian population in Hawai’i using
an example from Swanson and Tayman (2012: 350–351). Here, 1930 and 1910 data

for Native Hawaiians is used to estimate a RCCR for age group 20 years and older.

We then apply this RCCR to the Native Hawaiian population aged 20 years and

older in 1910 in order to estimate the total number of Native Hawaiians in 1890.

There are 13,120 Native Hawaiians aged 20 years and over in 1930, while in 1910

there are 25,095 Native Hawaiians in total, of whom 15,001 are aged 20 and over.

From these data, we find:

RCCR20þ, 1910 ¼ 1:9127 25; 095=13; 120ð Þ, and
P0þ, 1890 ¼ 28, 693 1:9127� 15; 001ð Þ:

So, our 1890 estimate of the Native Hawaiian population of Hawai’i is 28,693.
This estimate is 16.7% less than the number reported by Schmitt (1977: 25) from

the Hawaiian Kingdom’s 1890 census (34,436). Given that migration of Native

Hawaiians was not a major factor of its population change (Schmitt, 1968: 183), it

appears that mortality rates were dramatically higher for this population between

1890 and 1910 than they were between 1910 and 1930, which the available

evidence suggests was the case (Nordyke 1989; Schmitt 1968; and Schmitt 1977).

The correct RCCR20+ for estimating the total number of Native Hawaiians in 1890

from those aged 20 and over in 1910 would be 2.2956.

10.3.4 Multi-racial Population Estimates for San Bernardino
and Riverside Counties

The third example uses the RCCR method to estimate the 1990 multi-racial

population of Riverside and San Bernardino Counties, California. This estimate is

of interest because the U.S. Census Bureau started the practice of providing multi-

racial respondents with the opportunity to identify themselves as multi-racial in the

2000 census. In 1990, respondents had to choose which single race category best fit

them. The RCCR method provides an opportunity to construct RCCRs for a multi-

racial category of interest (e.g., Asian and one or more other races) found in the

2000 and 2010 censuses in order to estimate the number of people in the category of

interest for 1990.
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The 2010 and 2000 input, the RCCRs calculated from them, and the 1990

estimates of the multi-racial population of these two counties are shown in

Table 10.5. The multi-racial population has increased substantially in San

Bernardino and Riverside counties since 1990 (132,949 persons and 68%).

Between 2000 and 2010 the multi-racial population increased by 79,302 or

59.7%. From 1990 to 2010, the largest percentage changes are seen in the

population aged 45 years and older. However, almost 70% of the numeric change

in the multi-racial population occurs in persons younger than 45 years of age (data

not shown).

Table 10.5 Estimation of the multi-racial population by age, Riverside and San Bernardino

counties, California, 1990

2010 2000 1990

Age in Population Age in Population RCCRa Age in Populationb

10–14 26,522 0–4 21,266 0.80183 0–4 13,165

15–19 24,268 5–9 20,271 0.83528 5–9 11,288

20–24 17,040 10–14 16,418 0.96352 10–14 9,788

25–29 13,461 15–19 13,514 1.00395 15–19 8,988

30–34 12,073 20–24 10,159 0.84144 20–24 6,623

35–39 10,880 25–29 8,952 0.82281 25–29 6,557

40–44 10,319 30–34 7,871 0.76276 30–34 5,380

45–49 9,525 35–39 7,969 0.83668 35–39 4,499

50–54 7,914 40–44 7,053 0.89122 40–44 3,668

55–59 5,955 45–49 5,377 0.90293 45–49 2,534

60–64 7,914 50–54 4,116 0.52008 50–54 1,107

65–69 4,115 55–59 2,806 0.68196 55–59 1,183

70–74 1,982 60–64 2,128 1.07356 60–64 1,397

75+ 3,105 65–69 1,735 1.58758 65+ 3,006

70–74 1,301 65–69 1,201

75+ 1,894 70–74 720

75+ 1,085

Total 212,132c 132,830 79,183

Proportions for allocating population 65+d

65–69 0.39956

70–74 0.23966

75+ 0.36078

1.00000

Sources: 2000 and 2010, U.S. Census Bureau (http://factfinder2.census.gov)
aPx,t/Px+k,t+k Ages 0–64

P65+,t/P75+,t+k Ages 65+
bRCCRx,t � Px,t Ages 0–64

RCCR75+,t � P75+,t Ages 65+

1990 P65+ � proportions Ages 65–69, 70–74, and 75+
cIncludes 57,059 population aged 0–9 not shown in table.
dAverage of the share of the population 65+ from 2000 and 2010
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The change in the multi-racial population of these two counties between 2000

and 2010 is not only due to demographic factors (births, deaths, and migration), but

also social factors. As a great deal of research shows, ethnicity and race are social

constructs and fluid (Cornell and Hartmann 2007; Goldstein and Morning 2000;

Nagel 1994, 1995; Omi and Winant 2015; Perez and Hirschman 2009; Yamashiro

2011). As such, a population defined on the basis of race or ethnicity is subject to

change from factors that are not demographic. One desirable feature of the CCR

method is that both demographic and non-demographic changes affecting race and

other social constructs are captured across censuses.

10.4 Conclusions

In addition to the RCCR method, the CCR method itself can be used to construct

certain types of historical population data. For example, by using 1850 and 1860

census counts to construct CCRs, the 1860 white male population aged, say, 15–44

(by 5 year age groups) of a given state such as Virginia could be projected to 1870

and compared with the 1870 census count of white males aged 25–54 (by 5 year age

groups) to estimate the demographic impact of the Civil War on this population.

This population would, of course, been most likely to have served in the Confed-

erate army during the Civil War so the comparison would provide an estimate not

only of casualties, but of migration as well. Casualty counts are available for the

Civil War, but for the Confederate army they are widely believed to be understated

(Hacker 2011).

Swanson and Verdugo (2016) conducted this type of analysis and estimated that

there were nearly 25% fewer white males aged 20–54 than expected in the 1870

census results for all of the 11 Confederate states due to the combined effects of

mortality and net out-migration between 1860 and 1870. They obtained this esti-

mate by subtracting the 1870 expected number (1,393,125) for age group 20–54

generated by the CCR method (using 1950–1860 cohort change ratios) from the

1870 actual (census) number (1,047,323). Swanson et al. (2009) used this type of

approach to estimate the demographic impact of Hurricane Katrina by zip code and

found that by 2007 there were 311,250 people fewer than expected in the absence of

Katrina, which struck in August of 2005. Swanson (2009) used the same approach

to estimate the effect of Hurricane Katrina on the potential client populations in the

service area associated with two medical facilities on the Mississippi Gulf Coast.

The results showed that Katrina had an adverse impact on the client base of the two

facilities.

Both the CCR method and the RCCR method could be used and averages could

be taken across the CCR and RCCR results in a manner similar to what is done

when one uses the “forward-reverse survival rate procedure” to estimate an inter-

censal population (Bryan 2004: 537–538). Thus, either the CCR and RCCR

approaches, or a combination of the two, can be used to provide new perspectives

on the demographic impact of wars and other forms of human conflict, as well as
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natural and man-made disasters. Whether one is using RCCRs, CCRs or both to

generate historical estimates, keep in mind what was covered in Chapter 9, namely,

that when CCRs (or RCCRs) are used in conjunction with interpolation methods, a

wide range of possibilities opens up.

In this chapter we have provided several examples to illustrate the many

applications for estimating “historical” populations and their characteristics using

the RCCR method. In addition, the interpolation methods described and discussed

in Chapter 9 also can applied to population’s backcasted using the RCCR method in

order to obtain a very wide range of historical demographic, social, and economic

characteristics.
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Chapter 11

Estimating Life Expectancy

11.1 Introduction

Census survival methods are the oldest and most widely applicable methods of

estimating mortality, and for populations with negligible migration they can pro-

vide accurate estimates. As opposed to other data and analytically intensive

methods, CCR methods have minimal data requirements; use available census

data; and do not require a great deal of judgment or “data-fitting” techniques to

implement. In this chapter we demonstrate that life expectancy at birth can be

computed by using CCRs in combination with a protocol in which the life table

radix set to one. We compare our estimates of life expectancy at birth using CCRs

against U.S. Census Bureau estimates and find the CCR method works reasonably

well. We discuss the benefits of the CCR method for estimating life expectancy and

believe that it is a viable alternative in populations that experience negligible

migration.

11.2 Estimating Life Expectancy

As noted in Methods for Estimating Adult Mortality from Census Data (United

Nations 2002: 5), “Census survival methods are the oldest and most widely

applicable methods of estimating adult mortality. . . and can provide excellent

results for populations that experience negligible migration. . .” The reason for the

ubiquity of this approach is threefold: (1) data requirements are minimal in that only

two successive age distributions are needed; (2) the two successive age distributions

are usually easily obtained from census counts; and (3) the method is straight-

forward in that it requires neither a great deal of judgment nor “data-fitting”

techniques to implement. This ubiquity is in contrast to other methods, such as

“Model Life Tables,” which require more data as well as judgment and, often, data
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fitting (United Nations 1982: 16–27). Our purpose in this chapter, however, is not to

debate the relative merits of these and other approaches (e.g., Swanson 1989;

Swanson and Palmore 1976; Swanson and Stanford 2012; Swanson et al. 1977,

2009), but to demonstrate another way of calculating life expectancy from census

survival rates that is less involved than existing methods.

11.3 Life Expectancy: The United Nations Census Survival
Method

Census survival methods require two population age distributions at two points in

time (generally, two successive census enumerations). Ideally, the interval between

the census enumerations (e.g., 10 years) is either equal to the width of the age

groups (e.g., the age groups are given in 10 year increments, 0–9, 10–19,. . .,75–84,
85 years and older) or a whole number multiple thereof (e.g., age groups given in

5 year increments, 0–4, 5–9,. . .,80–84, through the final open-ended age group

(e.g., 85 years and older).

The United Nations (2002: 6) shows that using the census survival method,

expectation of life at age x can be computed as:

ex ¼ ðTx=lðn=2ÞÞ=ðlx=lðn=2ÞÞ ¼ Tx=lx ð11:1Þ

where,

ex ¼ life expectancy (average years remaining) at age x,
x is age,
n is the width of the age groups (up to, but not including the terminal, open-ended

age group)

Tx is the total person years remaining to persons age x,
lx is the number reaching age x, and
l(n/2) are persons aged x to x + n assumed to be concentrated at the mid-point of the

age group, and

l xþn=2ð Þ=l x�n=2ð Þ ¼ P2 x;nð Þ=P1 x�n;nð Þ ð11:2Þ

where,

P2(x,n) are the number of persons counted in the second census in age group

x to x + n, and
P1(x�n,n) are the number of persons counted in the first census in age group

x � n to n.

In general, then, the life-table probability of surviving from the mid-point of one

age group to the next (l(x+n/2)/l(x�n/2)) is approximated by the census survival ratio

(P2(x,n)/P1(x�n,n)). The cumulative multiplication of the probabilities shown in
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Eq. 11.2 gives the conditional survival schedule (lx/l(n/2)) (United Nations 2002:

5–6). From the conditional lx values given by Eq. 11.2, the conditional estimates of

the number of person years lived in each age group (nLx) can be calculated as:

nLx=l n=2ð Þ ¼ n=2ð Þ � lx=l n=2ð Þ
� �þ l xþnð Þ=l n=2ð Þ

� �� � ð11:3Þ

where,

nLx is the number of person years lived in each age group.

Given a value of Tx/l(n/2) for some initial age x, the United Nations (2002) shows

that total remaining years expected at age x (Tx) can be calculated as:

T x�nð Þ=l n=2ð Þ ¼ Tx=l n=2ð ÞþnL x�nð Þ=l n=2ð Þ, ð11:4Þ

or Eq. 11.1 for the expectation of life at age x.

11.4 Estimating Life Expectancy from Cohort Change
Ratios

In the proposed CCR method, we start with the radix of a life table (lx) equal to one
and life expectancy at birth can be computed directly from the expression:

e0 ¼ S0 þ S0�S1ð Þ þ S0�S1�S2ð Þ þ . . .þ S0�S1�S2. . .� Sxð Þ ð11:5Þ

where,

e0 is life expectancy at birth,

S0 is the survivorship from t¼ 0 (e.g., birth) to t¼ 1 (e.g., age 1), S1 ¼ survivorship

from t ¼ 1 (e.g., age 1) to t ¼ 2 (e.g., age 2), and so on through Sx, and
Sx ¼ nLx/nL(x�n).

Equation 11.5 represents single years of age. However, we can generalize that

equation to other age groups (nSx ¼ nLx/nL(x�n)), so that:

e0 ¼ nS0 þ nS0�nS1ð Þ þ nS0�nS1�nS2ð Þ þ . . .
þ nS0�nS1�nS2 . . .�nSxð Þ: ð11:6Þ

As Eqs. 11.5 and 11.6 imply, the fundamental life table function is inherent in our

method; that is, via the nSx values, we have nqx values. The Appendix at the end of

this chapter shows a derivation of the relationship between survivorship rates and

life expectancy shown in Eq. 11.5 and generalized in Eq. 11.6.
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We also use census survival rates, although we prefer to use the more general

term “cohort change ratios” (CCRs). Following Smith et al. (2013: 177) and using

notation from Eq. 11.2, a CCR can be generally defined as:

nCCRx ¼ P2 x;nð Þ=P1 x�n;nð Þ: ð11:7Þ

Survivorship rates can approximated by CCRs as follows:

nSx¼nLx=nLðx�nÞ � P2ðx,nÞ=P1ðx�n,nÞ: ð11:8Þ

We can determine life expectancy at birth by substituting CCR values for nSx values

in either Eq. 11.5 (for single years of age) or Eq. 11.6 (for age groups).

As with the more involved United Nations (2002) approach, or methods will

only work for populations for which migration is negligible, but there are many

areas around the world where this is the case, or approximately so (United Nations

2002). The world as a whole meets this requirement. Countries with negligible

migration include North Korea and Burma, among others. Other such populations

are found in the historical record—the former Soviet Union, Albania from 1950 to

1980, and the Peoples Republic of China from 1950 through 1970, for example.

Still others may be defined by race and ethnicity or other ‘rules’ of membership

(e.g., Indigenous populations in Australia and Canada, Native Hawaiians; native-

born populations).

Broadly speaking, the method can be applied to any population subject to

renewal through a single increment (birth) and extinction through a single decre-

ment (death), where there are at least two successive census counts that provide the

population by age and other characteristics if desired. We also note that unlike the

United Nations’ method, the CCR method can be used to yield estimates of life

expectancy at birth. Our method is also not subject to the limitations imposed by

stationary or even stable population requirements.

11.5 Empirical Examples and Evaluation

We developed life expectancy estimates directly from cohort change ratios

constructed for the world as a whole and Burma, using 5 year age groups. We

compare the CCR-based life expectancy at birth estimates to U.S. Census Bureau

(CB) estimates for the period 1950–1955 to 2045–2050 for the world and

1975–1980 to 2010–2015 for Burma. The data for implementing the CCR method

and the CB e0 estimates were obtained from the international database (U.S. Census

Bureau 2010). We computed e0 estimates by male, female, and both sexes, but we

only present and evaluate the estimates for both sexes.1

1The absolute and relative differences by sex are similar to the results for both sexes combined.
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Table 11.1 contains the CCR and CB estimates of world e0 for both sexes for the
period 1950–1955 to 2045–2050. The Mean Absolute Percent Difference (MAPD)

between our estimates and those made by the CB over the entire period is 3.3%,

while the Mean Algebraic Percent Difference (MALPD) is 0.7% indicating only a

slight upward bias compared to the CB estimates. During the first 50 years

(1950–2000), the CCR estimates have a distinct upward bias relative to the CB

estimates (MALPD of 4.0%). From the year 2000 forward, however, all CCR

estimates are lower than the CB estimates (MALPD of �2.5%). These summary

measures of difference indicate rather close agreement between the two sets of

estimates.

Table 11.2 shows e0 estimates for Burma for the period 1975–1980 to

2005–2010. As the Table shows, all but one of the CCR e0 estimates are less than

those produced by the CB, which means the MALPD of�4.1 percent is the same as

the MAPD ignoring the sign. The one exception is the 1985–1990 period when the

CCR and CB estimates are the same. The CCR estimates of e0 remain almost

constant at age 60 from 1995–2000 to 2005–2010, while the CB estimates increase

Table 11.1 World life expectancy at birth estimates for both sexes, 1950–1955 to 2045–2050

Difference

Years

CCR e0
Estimate

CB e0
a

Estimate Numberb Percentc

1950–1955 51.8 46.6 5.2 11.2%

1955–1960 54.0 49.5 4.5 9.1%

1960–1965 56.0 52.4 3.6 6.9%

1965–1970 58.4 56.1 2.3 4.1%

1970–1975 60.4 58.2 2.2 3.8%

1975–1980 61.8 60.2 1.6 2.7%

1980–1985 62.6 61.7 0.9 1.5%

1985–1990 63.5 63.2 0.3 0.5%

1990–1995 64.1 64.0 0.1 0.2%

1995–2000 64.9 65.2 �0.3 �0.5%

2000–2005 65.8 66.4 �0.6 �0.9%

2005–2010 66.7 67.6 �0.9 �1.3%

2010–2015 67.7 68.9 �1.2 �1.7%

2015–2020 68.6 70.1 �1.5 �2.1%

2020–2025 69.4 71.1 �1.7 �2.4%

2025–2030 70.1 72.1 �2.0 �2.8%

2030–2035 70.8 73.1 �2.3 �3.1%

2035–2040 71.4 73.9 �2.5 �3.4%

2040–2045 72.0 74.8 �2.8 �3.7%

2045–2050 72.6 75.5 �2.9 �3.8%

MALPD 0.7%

MAPD 3.3%

aU.S. Census Bureau (2010)
bCCR est. – CB est.
c(CCR est.– CB est.)/CB est. � 100

11.5 Empirical Examples and Evaluation 169



from 61 to 65 years. However, we again find that the summary measures suggest

reasonably close agreement.

11.6 Conclusions

Despite some nuances (e.g., converting CCRs into survival ratios may require

additional refinements) and cautions (e.g., the population data by age may be

faulty), we find benefits in using this approach to estimate life expectancy, includ-

ing the ability to develop estimates of average remaining life at any age (not shown

here). We suggest that the technique is worthy of consideration for use in estimating

life expectancy in populations experiencing negligible migration, given the cau-

tions we discuss. As such, we believe that this approach adds another dimension to

census survival methods—which, as we noted at the outset, are “. . . the oldest and
most widely applicable methods of estimating adult mortality. . . (and can) provide

excellent results (for) populations that experience negligible migration. . .” (United
Nations 2002: 5).

Appendix

Relation Between Survival Rates and Life Expectancy

Any particular set of age-specific survival rates implies a specific life expectancy.

As an example using a complete life table where x is a single age, the relationship
between a set of survival rates (Sx) and, the corresponding entries in the “years

Table 11.2 Life expectancy at birth estimates for both sexes, Burma, 1950–1955 to 2045–2050

Difference

Years

CCR e0
Estimate

CB e0
a

Estimate Numberb Percentc

1975–1980 50.0 54.0 �4.0 �7.4%

1980–1985 52.0 56.0 �4.0 �7.1%

1985–1990 56.0 56.0 0.0 0.0%

1990–1995 57.0 59.0 �2.0 �3.4%

1995–2000 60.0 61.0 �1.0 �1.6%

2000–2005 61.0 63.0 �2.0 �3.2%

2005–2010 61.0 65.0 �4.0 �6.2%

MALPD �4.1%

MAPD 4.1%

aU.S. Census Bureau (2010)
bCCR est. – CB est.
c(CCR est.– CB est.)/CB est. � 100
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lived” column of the life table (Lx) is Sx ¼ Lx/Lx�1 for ages 1 and over, while

S0 ¼ L0 for survivors from birth to the age zero. Thus, in a life table with a

radix ¼ 1.0, life expectancy at birth can be expressed as e0 ¼ L1 + L2 + L3 +,. . .,
+ Lx. That is, life expectancy can be expressed as the sum of the Lx values. It is
readily seen that:

L0 ¼ S0:
Ll ¼ S0�S1, and:
L2 ¼ S0�Sl�S2, . . .Lx ¼ S0�S1�S2, . . . , Sx�1�Sx:

Substituting Sx for Lx in the preceding yields Eq. 11.5:

e0 ¼ S0 þ S0�S1ð Þ þ S0�S1�S2ð Þ þ , . . . , þ S0�S1�S2; . . . , � Sxð Þ:

Equation 11.5 can be generalized to apply to an abridged life table and expressed as

Eq. 11.5a:

e0 ¼ nS0 þ nS0�nS1ð Þ þ nS0�nS1�nS2ð Þ þ , . . . , þ nS0�nS1�nS2; . . . ,�nSxð Þ:
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Chapter 12

Stable Population Theory

12.1 Introduction

Stable population theory underpins much of our intuition about population dynam-

ics and it continues to have a fundamental influence on research in demography.

Classical presentations of the theory focused upon analyzing the long-term impli-

cations of a stable set of vital rates within a closed population. Under these

conditions, it has been shown that any population—regardless of its initial popula-

tion structure and growth rate—will converge upon a stable equilibrium over time

characterized by a constant rate of growth and a stable proportional age-structure

(Fisher 1930; Keyfitz and Caswell 2005; Lotka 1956; Schoen 2010). Any popula-

tion characterized by stable vital rates may be considered to be in the process of

converging upon a stable equilibrium (Kim and Schoen 1993; Schoen 2010). Once

this convergence is reached, the population will change smoothly in step with an

exponential birth series dictated by a constant fertility regime and a consistent

proportion of the population comprised of women of reproductive age (Coale 1972;

Coale and Demeny 1966). More recently, it has been demonstrated that these

findings also hold under conditions of migration (Espenshade 1986; Espenshade

et al. 1982; Mitra and Cerone 1986; Schoen 2010), thus suggesting the use of cohort

change ratios to consider questions in stable population theory (Swanson et al.

2016).

In this chapter, we present the classical stable population model in terms of

cohort change ratios (CCRs), illustrate the classical findings of the theory using

CCR-based demographic forecasts, demonstrate how these findings continue to

hold when net-migration is considered within cohort change ratios, and evaluate the

effect of the components of population change on convergence to a stable popula-

tion. We conclude by showing how CCRs ratios can lead to novel analyses aimed at

traditional questions in stable population theory.
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12.2 Cohort Change Ratios and the Stable Population
Model

The classical stable population model applies a constant set of age-specific fertility

and survival rates to any age-specific population. If enough time passes that initial

population reaches a stable state with a constant rate of change and stable propor-

tionate age structure. This classical model has been extended to show that even with

the inclusion of a constant set of age-specific migration rates a population will

eventually reach a stable state. Cohort change ratios (CCRs) combine the effects of

mortality and migration. As such they provide a tool for examining the transient

dynamics of a population as it moves toward the stable equivalent captured in most

formal demographic models based on asymptotic population dynamics (Swanson

et al. 2016). This application uses a Leslie matrix containing an initial population,

an invariant set of CCRs and an invariant set of age-specific fertility rates.

CCRs are calculated by dividing the population aged x in year t by the population
aged x–k in year t–k. For the analysis conducted in this chapter, k ¼ 5, indicating a

5-year time period between censuses. Given the nature of the CCRs in this instance,

0 to 4 is the youngest five-year age group for which a forecast can be made.

Children younger than age 5 are forecast using age-specific fertility rates (ASFR).

Equations 12.1 and 12.21 show the forecast calculation sequence:

nPxþ5, tþ5¼nCCRx, t�nPx, t and Ages 5þð Þ ð12:1Þ
4P0, tþ5 ¼

X
30
P15, t�30ASFR15 Ages 0� 4ð Þ: ð12:2Þ

A convenient way to express these equations to employ a matrix population

model (Caswell 2001; Cushing 1998; Lefkovitch 1971; Leslie 1945, 1948; Schoen

2010; Sykes 1969) to further develop these relationships and to relate cohort change

ratios to stable population theory (Swanson et al. 2016). To accomplish this, let us

consider nPx,t as the initial population count vector, the ASFRs are contained in a

single top row of the matrix and the CCRs are in the sub-diagonal to create a

forecasting matrix (A) that is conformable for multiplication with the population

count vector. Thus, Eqs. 12.1 and 12.2 and be recast into forecasting equation based

on a matrix population model:

nPxþ5, tþ5 ¼ AnPx, t: ð12:3Þ

Using Eq. 12.3, a population can be sequentially forecast in 5-year time intervals. If

the initial population nPx,t is multiplied against the matrix A for a significant number

of iterations, nPx,t will converge upon a stable population with a constant rate of

growth and unchanging proportional age structure (Caswell 2001; Swanson et al.

2016). This has been shown to be true in cases including assumptions of

1The births are adjusted for infant and child survivorship probabilities.
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no-migration (in which the cohort change ratio is equivalent to a survival rate) as

well as under conditions where this assumption is relaxed (Cerone 1987;

Espenshade 1986; Espenshade et al. 1982; Mitra 1983, 1990; Swanson et al.

2016). The Perron-Frobenius theorem (Gantmacher 1959; Shores 2007) implies

that any forecasting matrix for which all entries are non-zero and positive will

converge into a stable population equilibrium. CCRs, which are always positive,

meet the requirements of the Perron-Frobenius theorem.

12.3 Illustration of Stable Populations with and without
Migration

Demographic forecasts in which rates are held constant over a sufficiently long time

provide a method for gaining insights about stable population models (Cushing

1998; Swanson et al. 2016). To arrive at a stable population, we successively apply

Eq. 12.3 to the base population producing a forecast every 5-years until stability is

reached. We define stability as the point in time where the change from one forecast

interval (five years) to the next produces no measurable impact in either the

proportion of persons in any specific age category or the observed five-year

exponential growth rate. In this illustration a population is deemed stable when

the Index of Stability (S) (Index of Dissimilarity), introduced by Swanson et al.

(2016), between two successive age structures in time (e.g., 2100 and 2105) equals

0.000, or a less than a 0.04% difference.

We show two alternative paths to stability. One uses fertility and survival rates

and assumes zero migration, while the other uses fertility rates and CCRs that

combine the effect of mortality and net effect of migration. The first alternative

(NoMig) holds the ASFRs and 5-year life-table survival rates constant until stability

is reached, assuming zero population change due to migration. The 5-year survival

rates are in the sub-diagonal of the Leslie matrix. The second alternative (MIG)

allows for migration and holds the ASFRs and CCRs constant until stability is

reached. The CCRs replace the 5-year survival rates in the sub-diagonal of the

Leslie matrix used in the NoMig alternative.

We illustrate these alternatives using data from Greece starting in 2005 (see

Table 12.1). The female population of Greece in 2005 is 5.4 million and has a slow

growth rate. Between 2000 and 2005 the population increased by 71,300, or an

average of only 0.3% per year. Females in Greece have a relatively old age

structure. Their median age is 41.6 years; 20.6% of the population is 65 years and

older; and 13.7% of the population is under the age of 20. These characteristics are

indicative of a very low total fertility rate (1.33). Female life expectancy at birth is

81.8 years. For the forecasts, the two adjustments are made to the ASFR rates. First,

male births are removed using the 2005 proportion of births that are female (0.484)

(Hellenic Statistical Authority 2016); and second, these adjusted rates are
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multiplied by 5 to reflect the number of births that occur over the 5-year forecast

horizon. Forecasted female births are reduced by the child survival rate shown in

Table 12.1.

Table 12.2 compares the number and share of the population by age in 2005 and

2290, the year in which stability is reached. The absence of migration does not impact

the year stability is reached, which for both alternatives is the year 2290. Between

2000 and 2005, net migration of females was only 68,314 or a total population

net migration rate of (0.013 per person).2 This low level of migration is embedded

in the CCRs used in the migration alternative. As such, it is not surprising that

Table 12.1 Female demographics, Greece, 2005

Fertility rate

Age Populationa
Population

share

2005/2000

CCR

5-yearb

survival

rate Intitala Adjustedc

Child 0.995180

0–4 248,465 4.6% 1.0024 0.999311

5–9 244,554 4.5% 1.0039 0.999489

10–14 251,159 4.6% 1.0086 0.999179

15–19 275,802 5.1% 1.0313 0.998675 0.0116 0.0281

20–24 344,984 6.4% 1.0453 0.998571 0.0554 0.1341

25–29 396,902 7.3% 1.0324 0.998298 0.0957 0.2316

30–34 410,594 7.6% 1.0167 0.997541 0.0791 0.1914

35–39 416,009 7.6% 1.0090 0.996370 0.0301 0.0728

40–44 385,419 7.1% 1.0035 0.993940 0.0058 0.0014

45–49 373,201 6.9% 0.9986 0.990749

50–54 343,818 6.3% 0.9917 0.986085 TFR 1.39

55–59 331,449 6.1% 0.9817 0.979553

60–64 286,497 5.3% 0.9624 0.965937

65–69 312,159 5.7% 0.9262 0.936690

70–74 293,305 5.4% 0.8644 0.875901

75–79 246,909 4.5% 0.7683 0.768619

80–84 149,470 2.8% 0.5332 0.486671

85+ 120,245 2.2%

Total 5,430,941 100.0%

Median Age 41.6 e0 81.8

aU.S. Census Bureau International Data Base (http://www.census.gov/population/international/

data/idb/informationGateway.php)
b2000–2004 Female Life Table for Greece. Human Mortality Database (http://www.mortality.org)
cAdjusted to remove male births and to represent a 5-year period (2005ASFR � 0.484 � 5).

2Net migration from 2000 to 2005 was computed using the residual method by subtracting female

natural increase from the female population change. Births and deaths were obtained from the

Hellenic Statistical Authority (2016).
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migration does not affect the time to stability in Greek females. This finding is not

universal and is a function of the particular characteristics of this population.

However, given the same fertility and mortality conditions, high levels (positive/

negative) of migration will lengthen / shorten the time to stability (Swanson et al.

2016).

In the NoMig alternative, the population of Greek women shrinks from

5,430,941 in 2005 to 177,636 in 2290, a decline of�96.7%. The population growth

rate has stabilized at �1.3% per year, down from 0.2% in 2005.There is also a

remarkable shift is the female age structure. Median age rises from 41.6 in 2005 to

52.5 in 2290, caused by drop in the share of the population under 20 years of age

(13.7% vs 11.1%) and an even more dramatic increase in the population 65 years an

older (20.6% vs 33.0%). The overall absolute average difference in the population

shares in 2290 and 2005 across the age groups is 1.7 percentage points, but the

differences in the populations aged 80 to 84 and 85 years and older are 2.8% and

3.8%, respectively.

Allowing for migration, the population of Greek women shrinks from 5,430,941

persons in 2005 to 552,750 in 2290, a decline of �89.8%. The population growth

rate has stabilized at�0.9% per year, 0.4% higher (lower rate of decline) compared

to the NoMig alternative. The effect of migration results in 375,114 more Greek

females in 2290. As shown in Table 12.1, net-migration is positive in the 20 to

34 year age groups because the CCRs are above 1.00 and mortality rates are very

low in these ages. These ages also have the highest fertility rates, indicating that

migration is reinforcing the impact of fertility on convergence. Although migration

has a sizable impact on the total population size, the stable age composition is

similar in both alternatives. In 2290, the median age is 1.3 years higher, the percent

of the population 65 years and older is 1.8 percentage points higher, and the percent

of the population under age 20 is 0.3 percentage point lower than the corresponding

figures in the NoMig alternative. We compared the two stable age distribution using

the Index of Dissimilarity and find a value of 2.0%, indicating a very close match. In

15 age groups the difference is 0.3 percentage points or less and in 3 age groups

(70 to 84) the differences range between 0.5 and 0.6 percentage points.

The results for the NoMig alternative are consistent with stable population

theory and would occur in any population subjected to constant birth and survival

rates. However, the stable age structure and growth rate that results is uniquely

determined by the specific observed rates involved. This finding reflects the prin-

ciple of ergodicity in which the long-term, asymptotic population dynamics are

guaranteed to occur indifferent of the initial population age structure or growth rate

(Cushing 1998; Tuljapurkar 1982; Wachter 2014). We have demonstrated ergodic-

ity is the context of a forecast, but ergodicity may also be demonstrated analytically

using the eigenvalues of the forecast matrix (Cohen 1979; Caswell 2000, 2001;

Schoen 2010).

The comparison between the NoMig and MIG alternatives also are in line with

expectations. With positive migration the population would be larger due to the

migration itself and its positive impact on births. The population would also age less

due to migration’s greater effect on younger adult age groups (ages 20 to 44). The
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total population in the MIG alternative is 211% larger than the total population in

the NoMig scenario. However in ages 25 to 44, the population is between 224% and

228% larger. The impact of migration of Greek females is not sufficient to offset the

effect of the continuation of very low fertility rates: as the MIG alternative shows,

the population also diminishes considerably.

12.4 Impact of Demographic Components of Change
on Convergence

The focus of classical population stable population models on a closed population is

a simplifying assumption that allows ignores the complexities of migration, which

complicates the analysis of stable populations (Caswell 2001; Fisher 1930; Lotka

1907; Wilson and Bossert 1971). While classical stable population theory has

focused on the convergence toward a stable proportional age-structure and popu-

lation growth rate, a corollary prediction is the general fertility rate should stabilize

and the time-series of births should be exponentially increasing or decreasing in a

smooth manner. At stability, variation in fertility should be the primary determinant

of population growth (Cushing 1998; Preston et al. 2001; Wachter 2014).

In our example of Greek females, the observed convergence of the general

fertility rate, the time series of births, and exponential trajectory of population

growth rates are in accordance with the predictions of stable population. In

Fig. 12.1, we observe the stabilization of the general fertility rate (GFR) at each

forecast year to the year 2290.3 While the amplitude of GFR fluctuations is strong in

the earliest portion of the forecast, over time the pattern of oscillation dampens

progressively, settling to a low that at stability is produced by rounding error in

calculations rather than real fluctuations. The MIG alternative has slightly higher

GFRs and births (shown below); suggesting that over the forecast horizon migration

would tend to add proportionately fewer females in the child-bearing ages than the

additional births they produce.

Figure 12.2 shows how convergence plays out in the time-series of births (over a

five- year period). While their numbers are falling throughout the period (indeed at

this rate Greek women are in danger of eventually going extinct!), they smooth to

an equilibrium decline that is similar whether migration is present or absent in the

forecast. The trend in births is much smoother compared to the trend in GFRs. This

equilibrium trend in births is at a higher level for the MIG alternative in accordance

with the slightly higher population growth rate (lower rate of loss), which is also

seen to stabilize similarly over time in both forecast alternatives (see Fig. 12.3). The

positive impact of migration itself and its impact of migration on births explains

why the MIG alternative has 375,114 more persons than the NoMig alternative in

the year 2290.

3The general fertility rate is computed by dividing female births by females aged 15 to 44.
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These results suggest that variation in demographic components impact the

process of convergence, both in terms of transient and long-term or asymptotic

dynamics (Caswell 2001; Schoen 2010; Swanson et al. 2016). Stable population

researchers have analyzed the time required for a population to converge to stability

in light of variation in fertility or survival rates (Coale 1972; Coale and Trussell

1974; Keyfitz 1977; Kim and Schoen 1993; Schoen 2010) and have considered how

patterns of oscillations are determined by them (Caswell and Werner 1978;

Lefkovitch 1971; Longstaff 1984; Rago and Goodyear 1987). By comparison

relatively few studies have focused on the role and impact of migration on the

path to population stability (Alho 2008; Bratadan 2016). To date, a discussion of the

complex, multidimensional interaction of a nearly infinite space occupied by

Fig. 12.1 Female general fertility rate, Greece, 2005–2290

Fig. 12.2 Female births, Greece, 2005–2290
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combinations of fertility, mortality, and migration rates has been all but absent from

the literature (Swanson et al. 2016).

To address these issues, Swanson et al. (2016) examined the relationship

between fertility (total fertility rate), mortality (life-expectancy at birth), and

migration (the average CCR across the 20 to 34 year old age groups) and measures

of population convergence derived from CCR-based demographic forecasts. Using

CCRs from 2000 to 2005 or 2001 to 2006 and age-specific fertility rates at the

middle of the base period for 62 countries, they forecasted the base populations

forward to stability using the same approach previously described for the migration

alternative for Greek females, except they defined stability using a smaller S of

0.000000. Swanson et al. (2016) regressed the years to stability on the components

of change variables previously described.

These regression results showed that both life expectancy at birth and migration

are positively related to the time to stability, while fertility had an inverse relation-

ship. That is, increases in fertility hasten the time to convergence, while increases in

life expectancy and net-migration slow it. Using standardized regression coeffi-

cients, they found that migration plays the largest role in determining the time to

stability (beta ¼ 0.428), fertility the second largest (beta ¼ �0.333), and life

expectancy the least (beta ¼ 0.238). These values suggest that the time to stability

is longer for a population with low mortality, low fertility, and high net in-migration

than it is for a population with high mortality, high fertility, and low net

in-migration.

Fig. 12.3 Annual rate of female population change, Greece, 2005–2290
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12.5 Other Strategies to Analyze Convergence

While developments in stable population theory suggest that relaxing assumptions

of population closed to migration do not invalidate the basic findings associated

with this theory, the widespread availability of cohort change ratios can be used to

further explore stable population theory. We believe that an important opportunity

exists to build upon the results of Swanson et al. (2016) and to compare and contrast

convergence paths associated with asymptotic and transient dynamics (Caswell

2001; Caswell and Werner 1978). This section outlines three strategies that may

prove useful for further research and that explore the use of cohort change ratios in

examining the impact of demographic components of change on population

convergence.

12.5.1 Clarifying Measures of Convergence: Transient or
Asymptotic Dynamics

As a general rule, measures of convergence may be either asymptotic (long-term) or

transient (short-term). Examples of asymptotic measures of convergence include

the damping ratio (Anderson and May 1979; Caswell 2001) and the force of

convergence (Kim and Schoen 1993; Schoen 2010). Both measures reflect a time

to stability that is determined solely by the rates contained in a projection matrix,

which is important because these rates are independent of the observed state of the

population (Caswell 2001; Schoen 2010). They also suggest that the process of

convergence should follow a path of exponential decay from a maximum difference

to a minimum. Using unpublished data from Swanson et al. (2016), Fig. 12.4

illustrates this exponential pattern of decay for Albania, Russia, and Tajikistan.

This figure shows showing the path of the Index of stability (S) to convergence over
a 290 year forecast horizon. The negative exponential decay to convergence shown

for these countries is not unique and occurs in the other 59 counties their study.

In cases where transient dynamics are to be studied through forecasts, variation

in the rate of convergence might be directly modeled as an exponential rate of decay

with observed oscillations in that overall rate considered as the population

approaches stability. For instance, S could be tracked over time and rates of

convergence at each time step recorded to establish these oscillations with a

baseline exponential decay model providing a basis for comparison. In this way,

a logically consistent set of asymptotic and transient measures of population

convergence could be considered in a single study from both perspectives (Caswell

2001; Caswell and Werner 1978). What asymptotic measures cannot tell us about

the specific trajectory of a population as it moves toward stability might be

observed using forecast-based (transient) measures of convergence (Caswell 200;

Swanson et al. 2016). However, forecast-based observations begin at a specific

point under a specific demographic structure. As such, we may expect differences
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between transient measures because initial conditions may impact time to conver-

gence, and asymptotic ones that depend solely on the rates contained in a projection

matrix. What transient measures cannot tell us, due to limitations inherent to where

we begin observation of differences between current and forecasted stable struc-

tures, we may derive insights based on asymptotic measures.

We believe progress in studying stable population theory using data containing

CCRs would benefit from a clarification between the two types of convergence

measures. While both transient and asymptotic approaches should produce conver-

gence pathways that are distributed according to the negative exponential model,

the estimated rates of convergence for each approach may differ in important and

unknown ways. For example, Swanson et al. (2016) indicated a strong correlation

between forecasted and asymptotic estimates of the time to stability. However

non-trivial differences between these two solutions were observed, suggesting

that “jump-off bias” could be present and may be a confounding influence. We

believe that much can be learned from both asymptotic and forecasting approaches

using CCRs in the study of stable populations.

12.5.2 Components of Change: Interactions
and Convergence

To our knowledge, Swanson et al. (2016) was the first attempt to explore the

multidimensional space in which combinations of fertility, mortality, and migration

schedules interact to determine the timing of convergence as well as the amplitude

and frequency of oscillations experienced along the path to stability. Creating

usable referent categories of interactions for analyzing these dynamics occurring

Fig. 12.4 Exponential decay in population convergence to stability, Albania, Russia, and

Tajikistan
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in such a complex space is a daunting challenge and subject to misclassification

biases (Agresti 2013; Christensen 1997; Hastie et al. 2009). In this section, we

suggest a scheme for organizing and analyzing these interactions using unpublished

data from the Swanson et al. (2016) study.

Imagine a simplified space in which countries are stratified into low or high life

expectancy. Within these groupings, countries are classified into combinations of

high or low fertility and low and high migration. Within each category of high and

low life expectancy, there are four separate categories of high-low fertility and

high-low migration. These eight combinations represent one simplification over the

alternative of using a continuous space. Table 12.3 defines this multidimensional

space where. Taking the order of letter options H (high) and L (low) as life

expectancy/fertility/net-migration, the 3-letter groups such as HLL (high life expec-

tancy, low fertility, and low migration) depict the eight combinations covering the

multidimensional space.

Using the unpublished data from the Swanson et al. (2016), we stratified the

62 countries based on their relationship to the averages for life expectancy at birth

(e0), fertility (TFR), and net-migration (meanCCR_20 to34).4 Countries above the

mean on any indicator were considered “high” and those equal to or below the mean

were considered “low. Countries were assigned to the eight strata based on a binary

categorization for each component of change. In this example, the dependent

variable is the years required to reach stability (Years).

Table 12.4 shows the average of Years in relationship to the components of

change categories. The top panel shows these averages for the survivorship, fertil-

ity, and migration dichotomies separately. These averages not only are consistent

with the regression results previously discussed, they provide additional informa-

tion as to their numeric impact on Years. High survivorship increases Years;

countries with high life expectancy take on average 161 more Years than countries

with low life expectancy. The same directional relationship is seen for migration;

countries with high migration take on average of 158 more Years than countries

with low migration. The effect of fertility is in the opposite direction than that found

for migration; countries with high fertility take on average 83 fewer Years than

countries with low fertility.

The bottom panel of Table 12.4 shows the average of years for the 3-way, cross-

classification of the components of change to analyze their interaction on Years.

With a sample of 62, the cells contain relatively few observations; four cells contain

less than five countries and the other four cells contain between 11 and 14 countries.

In countries with low survivorship and low fertility, migration has a modest impact;

with high migration needing 33 more Years than low migration. This impact is

significantly reduced in countries with low survivorship and high fertility, with high

4Three countries had outlying TFRs greater than 3 (Tajikistan (3.28), Saudi Arabia (3.43), and

Guatemala (4.23)). We excluded these countries from the average used to classify the TFRs. This

resulted in a more even distribution between high and low TFR countries (28 High and 34 Low). If

the unadjusted average was used 6 countries would have been from High to Low TFR.
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migration needing only 12 more Years or 1.8%; the smallest difference of any

comparison in the table.

Regardless of fertility level, migration has a large impact in high survivorship

countries. However, it is more noticeable in high survivorship countries when

fertility is low. In high survivorship countries with low fertility, those with high

migration need an average of 141 more Years than those with low migration.

However, in high survivorship countries with high fertility, those with high migra-

tion need an average of 95 more Years than those with low migration to reach

stability. The shortest average Years (378) occur in countries with low survivorship,

high fertility, and low migration, while the longest average Years (637) occurs in

countries with the opposite characteristics (high survivorship, low fertility, high

migration); a difference of 68.5% between these two extremes.

In classical stable population models, fertility will have a much more dramatic

impact on population structure, growth, and convergence than mortality (Coale and

Demeny 1966; Preston et al. 2001 Wachter 2014). CCRs play an important role in

this regard because they permit an evaluation of migration along with fertility and

mortality in the context of stable populations. In the preceding example, a much

Table 12.3 Multidimensional space combinations of components of change

Low fertility High fertility

Low migration High migration Low migration High migration

Low Life Expectancy LLL LLH LHL LHH

High Life Expectancy HLL HLH HHL HHH

Table 12.4 Average number of years to stability by components of change, selected countries

Surviorshipa Fertilityb Migrationc

Lowd 408 526 417

(31) (34) (34)

Highe 569 443 575

(31) (28) (28)

Low fertility High fertility

Low migration High migration Low migration High migration

Low survivorship 432 465 378 385

(14) (2) (14) (1)

High survivorship 496 637 437 532

(4) (14) (2) (11)

Sample sizes in parentheses
aLife expectancy at birth
bTotal fertility rate
cCCR 20–24 to 30–34
dLess than or equal to the average rate for all countries
eGreater than the average rate for all countries
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more complicated relationship is suggested in which all three components of

change interact in shaping both transient and asymptotic population dynamics.

A larger sample and finer grade cross-classifications will allow more precise

statements to be made about the levels of fertility, mortality, and migration and

their impacts on stable populations. Also, more rigorous statistics methods such

loglinear modeling (Agresti 2013) or regression models using continuous variables

and interaction terms (Mitchell 2012) may be useful analytical strategies in this

regard. In Chapter 13, we explore a decomposition of the components of change

that may provide a more comprehensive analysis of the referent categories useful

for additional investigation into population models based on cohort change ratios.

12.5.3 Perturbation Analysis and the Life Table Response
Experiment Framework

In seeking to understand the impact of demographic components of change on

stable population trajectories, one might consider an analytical approach using the

stable population mathematical framework. Using this framework, responses of a

population convergence measure, such as the damping ratio, could be measured in

light of changes in the (ij) elements of forecasting matrix using perturbation

analysis (Caswell 2000; de Kroon et al. 2000; McPeek and Kalisz 1993). One

such strategy would be to compute damping ratios associated with a forecast matrix

holding fertility and mortality levels constant and adjusting migration levels using

bootstrap resampling of the (ij) elements of the matrix (Baker et al. 2015; Brault and

Caswell 1993; Caswell 2000; Lewontin and Cohen 1969; Sykes 1969).

Perturbing the forecast in a pre-specified manner while considering the effects

across strata reflects different sets of referent categories would allow replication of

the Life Table Response Experiment (LTRE) Caswell (2000, 2010). The LTRE

measures the sensitivity of overall population growth to changes in each (ij)
element of a forecast matrix along meaningful “experimental” strata. In this

context, one might decompose CCRs into survivorship and net-migration compo-

nents (see Chapter 13), forecast these factors using stochastic simulation (Gardiner

1983; Graham and Talay 2013; Lemieux 2009; Taylor and Karlin 1998), reconsti-

tute the matrix, and re-compute the damping ratio. Although computationally

intensive, such an approach would measure the sensitivity of a measure of conver-

gence to shifts in components of change. These shifts could be formulated to test

specific hypotheses about the relationship between demographic components of

change and population convergence across relevant demographic factors.

The LTRE approach is well-established in population ecology (Brault and

Caswell 1993; Caswell 2000; Caswell and Kayne 2001) and similar simulation-

based alternatives have been proposed as well (Wisdom and Mills 1997; Wisdom

et al. 2000). At least one application of both LTRE and simulation-based studies has

been done in the field of anthropology (Baker et al. 2015), where the similar concept
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of natural experiments is widely utilized in studies of growth and development

(Bogin and Loucky 1997; Lasker 1969). Equivalent approaches have also been used

in the field of toxicology (Gentile et al. 1982; Marshall 1962) and in operations

research (Coleman and Montgomery 1993; Taguchi 1986).

12.6 Conclusions

In this chapter, we illustrate the principal findings of stable population theory using

CCR-based demographic forecasts, examined the role of demographic components

of change on population convergence, and sketched future possibilities for

expanding such research. We believe that the CCR-based demographic approach

provides new insights and capabilities for stable population analysis. The

CCR-based demographic approach is also more flexible than classical approaches

in dealing with migration. Because CCRs are always greater than zero and encom-

pass both net in-migration and net out-migration, they can be used in a Leslie matrix

with assurance that a given population will converge to stability. Other approaches

that have examined migration as part of the process to convergence have only

allowed for net in-migration in order to provide assurance that a given population

would converge (Espenshade 1986, Sivamurthy 1982). The CCR-based demo-

graphic forecast approach does not require the mathematical sophistication of

classical stable population theory making its implementation more widely

accessible.
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Chapter 13

Decompositions

13.1 Introduction

Decomposition methods in demography attempt to partition rates of population

change into constituent contributors such as population structure or other charac-

teristics that might confound an overall comparison (Canudas-Romo 2003). For

example, when comparing the change in the crude fertility rate over time, observed

differences might be due to changes in the female age-structure, changes in age-

specific rates of childbearing, or a combination of the two. A decomposition of the

crude birth rate can ascertain whether its change is due to increasing or decreasing

fertility rates or changes in the population age composition (Canudas-Romo 2003;

Das Gupta 1978; Kitagawa 1955). This form of decomposition is similar to

standardization methods in epidemiology and demography that attempt to adjust

comparisons of population-level indicators differences in demographic composi-

tion (Aschengrau and Seage 2003; Palmore and Gardner 1994).

Similarly, one might consider components of change within the fundamental

equation of demography (see Eq. 2.1 in Chapter 2 and the Appendix) to be a

decomposition of an overall rate of population change, such as the cohort change

ratio. This form of decomposition is directly related to the procedure of “control-

ling” for confounding variables in biostatistics (Agresti 2013; Aschengrau and

Seage 2003; Canudas-Romo 2003; Hastie et al. 2009) and to the analysis of

sensitivities in population ecology (Caswell 2000; de Kroon et al. 2000;

Tuljapurkar 1982). Decomposition, then, ought to be possible for cohort change

ratios (CCRs) in order to analyze subgroup contributions to growth or to decompose

population change into its components related to survivorship and migration. In this

chapter, we present algebraic derivations for these types of decompositions and

illustrate this architecture by analyzing 2010–2020 population change in the state of

California. We then discuss additional possibilities for applying decompositions to

demographic analyses involving CCRs.
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13.2 Decompositions

13.2.1 Subgroup Decomposition

Often in demographic analysis, one wants to assess the proportional contribution of

population growth in a specific subgroup or set of subgroups to overall population

change. A decomposition of the cohort change ratio into components contributed by

subgroups is one way to approach this question. We begin with the overall CCR:

nCCRx, t¼nPx, t=nPx�k, t�k ð13:1Þ

where,

nPx, t is the population aged x to x+n at the most recent census (t),

nPx�k, t�k is the population aged x�k to x�k+n at the 2nd most recent census (t�k),
and

k is the number of years between the most recent census at time t and the one

preceding it at time t�k.

The overall CCR can be represented as the weighted average of subgroup CCRs:

nCCRx, t ¼ n1, t�k nCCRx, 1, t þ n2, t�k nCCRx, 2, t þ � � � þ ng, t�k nCCRx,g, t

Nt�k
ð13:2Þ

where,

g is a subgroup;

n is the population for each subgroup at time t�k; and

N is the total population of that cohort at time t�k.

The weighting for each subgroup, then, is proportional to its contribution to the

entire cohort population (N ), such that we may rewrite this decomposition as the

convex combination of population weights (this means that the weights are all

positive and sum to 1.00) and CCRs as:

nCCRx, t ¼ w1nCCRx,1, t þ w2nCCRx,2, t þ . . . :þ wgnCCRx,s, t ð13:3Þ

where,

w is the population weight for a subgroup based on n / N.

The proportional contribution of each subgroup’s CCR to total population CCR is

captured in the weighting term. This relationship permits the decomposition of an

overall CCR into the contribution of its subgroup’s CCRs as:

pg ¼ wg,nCCRx,g, t=nCCRx, t � 100 ð13:4Þ

where,

p is the relative contribution of a subgroup CCR to the overall CCR.
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13.2.2 Components of Change Decomposition

As discussed in Chapter 1, a CCR represents a geometric rate of change that

captures information on both mortality and migration in a single factor and as we

know from the Appendix, a CCR is algebraically equivalent to the fundamental

population theorem. As such, it may be decomposed into its constituent elements

using standard demographic approaches (Canudas-Romo 2003; Das Gupta 1978;

Kitagawa 1955). The numerator of the CCR (nPx,t) can be decomposed into

survivorship and net migration components as follows:

nPx, t ¼ nPx�k, t�k�nSRx,ð Þ þ nPx�k, t�k�nNMRxð Þ ð13:5Þ

where,

SR is the survival rate,

NMR is the net migration rate.

The quantity inside the first set of parentheses is the survived population at time

t and quantity inside the second set of parentheses is the net migration from time

t�k to time t. Therefore, the CCR can be re expressed as:

nCCRx, t ¼ ððnPx�k, t�k�nSRxÞ þ ðnPx�k, t�k�nNMRxÞÞ=nPx�k, t�k: ð13:6Þ

By dividing the right side of de of Eq. 13.6 by nPx�k,t�k, we see that the CCR is the

sum of the survivorship rate and net migration rate:

nCCRx, t¼nSRxþnNMRx: ð13:7Þ

The net migration rate can then derived from by subtracting nSx from both sides of

Eq. 13.7:

nNMRx¼nCCRx, t�nSRx: ð13:8Þ

Deaths and net migration for persons aged x at time t�k who are aged x+k at time

t are found by:

nDx¼nPx�k, t�k � ð1�nSRxÞ and ð13:9Þ
nNMx¼nPx�k, t�k�nNMRx ð13:10Þ

where,

D is the deaths over the period between time t�k and time t, and
NM is net migrants over the period between time t�k and time t.
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Equations 13.9 and 13.10 together are equivalent to the “forward-survival rate”

(FSR) method of indirect estimation of net migration (Siegel 2002: 22–23). These

equations measure the deaths and net migration of persons alive at time t�k. It does
not account for births, deaths, or net migration of persons born after time t�k. We

will show how these components of change in aggregate can be measured using

results from the CCR decomposition of survivorship and net migration. Like the

FSR method, any error in the census counts or survival rates is transmitted to the net

migration rates and numbers.

13.2.3 Subgroup and the Components of Change
Decomposition

In the preceding section, we presented a method for deriving the components of

total population change from the CCR and life table survival rates. Here, we

elaborate on this decomposition by proposing a method that determines the contri-

bution of the components of change within each subgroup to overall population

change reflected in the CCR. Specifically, our aim in this section is to determine the

relative contribution (RelCon) of subgroup specific deaths and migration to the total

population change.

We begin by calculating the components of change for each subgroup by

modifying Eqs. 13.8, 13.9, and 13.10 to make them specific for each subgroup (g):

nNMRx,g¼nCCRx, t, g�nSRx,g, ð13:11Þ
nDx,g¼nPx�k, t�k,g � ð1�nSRx,gÞ, and ð13:12Þ

nNMx,g¼nPx�k, t�k,g�nNMRx,g: ð13:13Þ

Therefore, the total population change is derived by:

nPChgx ¼
X

n
NMx,g�nDx,g, where,

X
is the sum across the subgroup ðgÞ:

ð13:14Þ

The RelCon’s for deaths and migration are derived by:

nRelConDx,g ¼ �nDx,g=�nPChgx and Deathsð Þ ð13:15Þ
nRelConNMx,g ¼ �nNMx,g=�nPChgx: Migrationð Þ ð13:16Þ

Normally a RelCon would represent a proportion that ranges from zero to one, but

in this application some RelCons may be less than zero and others greater than one.

When the total population decreases, the RelCon for deaths and negative migration
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will be positive and the RelCon for positive migration will be negative. The

opposite occurs when the total population increases; the RelCon for deaths and

negative migration will be negative and the RelCon for positive migration will be

positive. In this application, the only condition where the RelCons will fall between

zero and one is if the total population decreases and the migration for all subgroups

is negative.

A RelCon smaller than �1.00 or larger than 1.00 means that changes in one or

more categories will have to overcompensate for changes in the other categories.

For example, Hispanic and non-Hispanic deaths of 1920 and 1760, respectively,

and Hispanic and non-Hispanic migration of 131,590 and �12,708, respectively,

leads to a total population change of 115,192 (131,590 – 12,708 – 1920 – 1760). In

this instance the RelCon for Hispanic migration is 1.142 (131,590 / 115,192), while

the RelCon’s for the other categories are all less than zero.

13.3 Applications

13.3.1 Contribution of Subgroup CCRs to the Total CCR

One often is confronted with questions about the proportional contribution of

different subgroups to overall population growth, such as the contribution of

Hispanics to overall population growth in the United States (Krogstad et al. 2015;

Passel and Cohn 2008). Between 2000 and 2010, Hispanics had the largest growth

of any ethnic minority in the Unites States (Passel et al. 2011). NewMexico had the

highest percentage of Hispanics in 2010 (46.3%) and California was the state with

the largest overall Hispanic population (14,013,719). A majority of the Hispanic

population growth between 2000 and 2010 has been attributed to increases in

Hispanic responses to the census (Ennis et al. 2011), raising questions about the

overstating the impact Hispanics on overall future U.S. population dynamics.

A decomposition of the cohort change ratio for the overall population into

Hispanic and non-Hispanic components provides a means for analyzing the ques-

tion in the context of CCRs. Table 13.1 provides this decomposition based on

Eq. 13.4 for the Hispanic and non-Hispanic populations of the State of California

from 2010 to 2020. The 2010 age-specific proportions (Hispanic proportion of the

total population) show the youth of the Hispanic population. There is a clear inverse

relationship between the Hispanic proportion and the age of the population; the

proportion ranges from 0.532 for ages 0 to 4 to 0.159 for ages 75 years and older.

For populations under the age of 35, the Hispanic proportion exceeds that for the

total Hispanic population (0.377). For Hispanics over the age of 35 years, the

proportion declines rapidly and is substantially below the proportion for the total

Hispanic population. In the oldest age group, Hispanics comprise just 0.159 of the

population aged 75 years and older compared to 0.377 for the total Hispanic

population.
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The age-specific proportion trends for the non-Hispanic population are the

reverse of those for the Hispanic population, which is expected since the Hispanic

and non-Hispanic proportions are complements. A clear direct relationship is seen

between the non-Hispanic proportion and the age of the population; the proportion

ranges from 0.468 for ages 0 to 4 to 0.841 for ages 75 years and older. For the

population over the age of 44 years, the non-Hispanic proportion exceeds that for

the total non-Hispanic population (0.623). For non-Hispanics under the age of

44 years, the proportion declines steadily and is below the proportion for the total

non-Hispanic population. In the youngest age group, non-Hispanics make up 0.468

of ages 0 to 4 population compared 0.623 for the total non-Hispanic population.

Hispanic CCRs are highest in the age groups 0 to 4 through 25 to 29, falling

below 1.0 (indicating a decline in the age cohort) at ages 30 to 44 years and for

subsequent age groups. Non-Hispanic CCRs are generally lower than Hispanic

CCRs, except for ages 20 to 24, which is not surprising because in California

non-Hispanics have lower survivorship and considerably less net migration than

Hispanics. Among non-Hispanics, we see the same general pattern across age

groups as for Hispanics. However, the non-Hispanic CCR is less than 1.0 in the

two youngest age groups and they fall below 1.0 at ages 25 to 29, 5 years earlier

than the Hispanic CCR.

These last two columns of Table 13.1, based on Eq. 13.4, show the relative

contributions (in percentage terms) of Hispanics and non-Hispanics to age-specific

total population change from 2010 to 2020 embedded in the total CCRs. The

contribution to the total CCR is greater for Hispanics than non-Hispanics in the

three youngest age group (ages 0 to14), and the contributions of the two subgroups

are roughly equal for ages 15 to19. For the other age groups, the contribution of

Hispanics declines from 44.1% for ages 20 to 24 to 19.6% for ages 75 years and

older. Given that the Hispanic and non-Hispanic contribution are complements,

declines in the Hispanic contribution are reflected by increases in the non-Hispanic

contribution.

Because there are fewer Hispanics than non-Hispanics in each age-group, their

relative contribution declines with age despite the fact that Hispanic CCRs remain

higher than non-Hispanic CCRs for all age groups. However for each age group, the

Hispanic contribution to the total CCR between 2010 and 2020 is greater than their

share of the population in the year 2010. Conversely, the non-Hispanic contribution

is less than their share of the 2010 population.

13.3.2 Indirect Forecasts of the Components of Change

While the relative impact of Hispanic CCRs and non-Hispanic CCRs on total CCRs

is evident, it says nothing about the reasons for the age-specific population changes;

that is, changes due to survivorship and net migration. Of course, the survivorship

component will decrease the population and the net migration will either increase or

decrease the population. Some very general statements about net migration can be
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ascertained from the CCRs. A CCR of 1.0 suggests a positive net migration

sufficient enough to exactly offset any declines due to survivorship. A CCR

exceeding 1.0 suggests a positive net migration that offsets any declines due to

survivorship. The interpretation of a CCR less than 1.0 is not definitive about the

direction of the migration. A CCR less than one could indicate positive net

migration that is not sufficient to offset declines due to survivorship or a negative

net migration that accentuates the declines due to survivorship.

What can we say about net migration from the CCRs for Hispanics and

non-Hispanics in California? Net-migration is positive and large for Hispanics

during childhood and young adulthood (ages 0 to 24), which suggests family

migration in which young adults bring dependents (See Fig. 13.1). For

non-Hispanics, the CCRs suggest positive net-migration among young adults

aged 10 to 24, but without a corresponding positive migration of youngest

dependents (ages 0 to 9). The high survivorship probabilities for ages 30 to

59 suggest negative net migration in this age range for both Hispanics and

non-Hispanics, with non-Hispanics showing a greater loss due to migration.

Because of declining survivorship probabilities in the older age groups (e.g.,

ages 60 years and older), CCRs will generally be less than 1.0; this is the case for

both Hispanic and non-Hispanics.1 All that can be inferred about net migration in

Fig. 13.1 Cohort change ratios by age and Hispanic origin, California, 2000–2010 (Source:

U.S. Census Bureau, 2000 and 2010 censuses (http://factfinder2.census.gov))

1The notable exception to this generalization will be in places with large retirement related

in-migration. For example in Maricopa County, Arizona, the CCRs are 1.10, 1.09, and 1.02 for

the five-year age groups from 60 to 74. Even the CCR of 0.87 for ages 75 to 79 suggests net

in-migration given the relatively low survivorship probabilities in this age group.
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these age groups is that any net migration will be greater (more positive or

less negative) for Hispanics because they have larger CCRs than the

non-Hispanics.

More precise statements about impact of components of change on the dynamics

of Hispanic versus non-Hispanic population growth could be made from a direct

estimate of the survivorship and net-migration components of growth using

Eqs. 13.8, 13.9, and 13.10. These computations require age-specific survival

rates, ideally computed from a life table. Our example is uses a 10-year forecast

horizon, so 10-year survival rates are required. That is, the probability of those aged

0 to 4 surviving to ages 10 to 14, the probability of those aged 5 to 9 surviving to

ages 15 to19 and so forth until the last survival rate for the opened-end age group

(e.g., the probability of those aged 75 years and older surviving to ages 85 years and

older. Smith et al. (2013: 58–60) provide details for constructing life table survival

rates.

Survival rates for Hispanics and non-Hispanics were developed from 2010

abridged life tables for California. Life tables were created using age-specific

death rates (under 1 year of age, 1 to 4, 5 to 9,. . ..., 80 to 84, and 85 years

and older) for Hispanics and non-Hispanics. The 2010 census furnished denom-

inators for the rates and the deaths were obtained from the California Depart-

ment of Public Health (2016: Tables 5-4 and 5-5). Non-Hispanic deaths were

obtained by subtracting Hispanic deaths from total deaths by age. The Hispanic

death data had broad ranges for some age groups (1 to 14, 15 to 24, 25 to 34, 35 to

44, and 45 to 54). Deaths for these age groups were partitioned into the finer

classification used shares from total deaths. We adjusted the 2010 age-specific

death rates so the life tables would conform to 2020 life expectancy assumptions

from the latest forecasts developed by the California Department of

Finance (2014).

Based on Eqs. 13.8, 13.9, and 13.10, Table 13.2 provides information about the

components of change for the Hispanic population in the State of California from

2010 to 2020. Specific age ranges mentioned pertain to the 2020 age groups.

Hispanics alive in 2010 experienced 465,677 deaths and a net in-migration of

932,710, for a population gain of 457,033. With exception of age groups 50 to

54, 75 to79, and 85 years and older net-migration is positive in the other age groups.

The highest net migration rates (0.180 and 0.193) are found in ages 20 to 29. These

age groups have a net migration of 497,757 or 53.4% of the total Hispanic net

migration. Net migration rates of around 0.10 seen in ages 10 to19 and 30 to

34 indicate significant net in-migration of Hispanic children and teenagers as well

as other young adults. Positive net migration rates and numbers in other age groups

are small by comparison.

The positive net migration and relatively high survival rates results in positive

population change for ages 10 to 39. The population declines in the other age

groups as net migration is not enough to offset the impact of decreasing survival
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probabilities. Between 2010 and 2020, the Hispanic population grew by 3,761,528.2

Of that about 25% is due to net migration of persons alive in 2010 (932,710). The

gain due to migration is offset by 475,677 deaths. So, the net impact on total

Hispanic population growth from 2010 to 2020 of persons alive in 2010 is

457,033 (or 12.2%). Therefore, the bulk of the total population change in the

Hispanic population in California is due to persons born after the year 2010

(3,304,495 ¼ 3,761,528 – 457,033). This figure includes births that occurred in

California, net migration of children ages 0 to 9, and population loss due to

mortality, so it is not a pure measure of the fertility component of change. However,

it seems clear that Hispanic fertility is the primary reason for growth in the Hispanic

population in California between 2010 and 2020.

Table 13.3 provides information about the components of change for the

non-Hispanic population in the State of California from 2010 to 2020.

Non-Hispanics alive in 2010 experienced 2,116,806 deaths and a net

out-migration of �182,692, for a population loss of �2,299,498. With exception

of those aged 10 to 24, net migration is negative in the other age groups. The highest

net migration rates (0.086 and 0.096) are found in ages 25 to 34. These age groups

have a net migration of 274,248, which is not enough to offset the net migration loss

in the other age groups. Non-Hispanic net in-migration rates in these age groups are

roughly 50% lower than the largest net in-migration rates seen in the Hispanic

population. Also, the peak positive net migration occurs 5 years later (ages 30 to 34)

in the non-Hispanic population. The largest non-Hispanic net-out migration occurs

in ages 75 to 79 (�85,339). The lowest amount of net out-migration (<�20,000 net

migrants) occurs in ages 10 to 19, 34 to 44, and 80 to 84.

The positive net migration and relatively high survival rates results in positive

population change for a narrow range of ages, 10 to 34. The population decreases in

the other age groups because the losses due to net migration are further accentuated

by deaths. This is especially evident in the population 50 years and older, where

deaths exceed the net out-migration in every age group. The population loss is

�79,491 for ages 50 to 54 and the population loss dramatically increases, reaching

�1,088,759 in persons 85 years and older. Between 2010 and 2020, the Hispanic

population grew by only 149,941. The net impact of migration (�182,692) and

deaths (�2,116,806) on persons alive in 2010 is �2,299,498. The only reason there

is a positive change in the non-Hispanic total population in California (149,941)

between 2010 and 2020 is due to the births after the year 2010, which offset

population loses due to net out-migration and deaths (2,449,439 ¼ 149,941 –

(�2,299,498)).

2The 2020 Hispanic and non-Hispanic populations aged 0 to 9 were based on 2010 Child-Adult

Ratios (CADs). Chapter 5 illustrates the use of CADs in forecasting. The 2020 total population

forecasts were computed by adding the population aged 0 to 9 to the population aged 10 to 85 years

and older obtained using CCRs.
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13.3.3 Contribution of Subgroup Components of Change
to Total Population Change

In the prior section, we illustrated the effects of mortality and migration on the

population change by age group for Hispanic and non-Hispanic separately. In this

section, we illustrate the impact of the subgroup population dynamics on the total

population growth across the age intervals. Does the strong and positive migration

among young Hispanics drive strong total population growth among these age

groups? How does the relatively large numbers of non-Hispanic deaths in persons

aged 65 years and older impact the total population change in these age groups? The

greatest positive change due to migration for both Hispanics and non-Hispanics

occurs in ages 20 to 34, so which subgroup contributes the most to the total

population change in these age groups? To answer these and other similar types

of questions, we use the age-specific components of change for each subgroup

(Hispanic deaths, Hispanic migration, non-Hispanic deaths and non-Hispanic

migration) and relate them to the age-specific total population change rather than

the age- and subgroup-specific population change shown in Tables 13.2 and 13.3.

These relative contributions (RelCon) are expressed in proportionate terms that sum

to 1.0 over these four comparison categories or any mutually set of comparison

categories. In this illustration, we focus only on changes to the population alive in

the launch year (i.e., 2010) and not persons born over the forecast horizon (i.e.,

2010–2020).

Interpretation of the RelCon is somewhat involved because it may involve both

negative and positive population changes. Deaths always remove people, and

migration can either add or remove people depending on its direction, and total

population change can be either positive or negative. Since the RelCon sums to 1.00

across categories, some RelCon’s may be less than zero and others greater than

1.00, depending on the direction of the change in total population. As noted earlier,

the RelCon for deaths and losses due to migration will be positive if the total

population change is negative and negative if the total population change is

positive. Conversely, for gains due to migration the RelCon will be positive if the

total population change is positive and negative if the total population change is

negative.

We begin by examining the impact of the components of change and Hispanic

origin separately on the total population change by age group (see Table 13.4). For

reference, the table includes the total population change. We first examine the

relative impact of deaths and migration. The population for all ages decreases by

1.84 million persons due to 2.59 million deaths (1.407), which are offset by a

positive migration of 0.75 million (�0.407). Population growth is positive for

persons under 34 years of age (age refers to age in 2020) and migration has a

much greater influence than deaths. Like for all ages, population change in ages

35 to 39 is more heavily influenced by deaths than migration. Persons age 40 and

above show a decline in total population and a population loss due to migration.

With the exception of ages 45 to 49, deaths have a larger impact than migration,
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with proportions ranging from 0.622 for ages 50 to 54 to 0.952 for ages 85 years and

older. For ages 45 to 49, migration accounts for 0.575 of the total population loss.

We now look at the impact of Hispanics and non-Hispanics on total population

change. The population loss for all ages is due completely to the non-Hispanic

population, which declines by 2.30 million (1.248). This decline is offset by growth

in the Hispanic population of 0.46 million (�0.248). For persons under the age of

30 years, Hispanics contribute more to the total population growth than

non-Hispanics. However, for ages 30 to 34, the last age group with a population

increase, non-Hispanics contribute more (0.569) than Hispanics (0.431). For the

remaining age groups non-Hispanics are the major factor in their population losses.

For ages 35 to 39, non-Hispanics decline by 30,934, which is double the gain seen

in the Hispanic population (15,075). For persons 40 years and older, the outsized

role of the non-Hispanic population is evidence, with RelCon’s ranging from 0.737

for ages 50 to 54 to 0.936 for ages 55 to 59.

Table 13.5 presents the combined effects of the components of change specific to

each Hispanic origin subgroup on the total population change. Non-Hispanic deaths

are the primary reason for the population loss for all ages (1.149), followed by

Hispanic deaths (0.258). Non-Hispanic negative migration accounts for just under

1/10 of the total population loss. These three factors more than compensate for the

positive migration of Hispanics (932,710). Hispanic migration is the only reason

that the population under 20 years of age increases between 2010 and 2020,

offsetting the small loses due to deaths and a loss of 12,708 non-Hispanics due to

Table 13.4 Proportionate contribution of deaths, net-migration, and Hispanic origin to population

change, California, 2010–2020a

2010 age 2020 age

Population

change Deaths

Net

migration Hispanic

Non-

Hispanic

0–4 10–14 115,192 �0.032 1.032 1.125 �0.125

5–9 15–19 110,910 �0.037 1.036 1.143 �0.144

10–14 20–24 247,542 �0.042 1.042 0.930 0.070

15–19 25–29 371,307 �0.048 1.047 0.685 0.314

20–24 30–34 240,149 �0.079 1.079 0.431 0.569

25–29 35–39 �15,859 1.380 �0.381 �0.951 1.950

30–34 40–44 �41,969 0.658 0.342 0.235 0.765

35–39 45–49 �97,148 0.425 0.575 0.082 0.918

40–44 50–54 �107,905 0.622 0.378 0.263 0.737

45–49 55–59 �127,789 0.829 0.170 0.063 0.936

50–54 60–64 �163,605 0.921 0.079 0.164 0.836

55–59 65–69 �221,179 0.840 0.160 0.106 0.894

60–64 70–74 �269,904 0.829 0.171 0.123 0.877

65–69 75–79 �328,961 0.725 0.275 0.140 0.860

70–74 80–84 �287,612 0.944 0.056 0.145 0.855

75+ 85+ �1,265,634 0.952 0.049 0.140 0.861

Total �1,842,465 1.407 �0.407 �0.248 1.248

aDerived from Table 13.5
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migration. Hispanic positive migration (0.950 and 0.707) is more important that

non-Hispanic positive migration (0.092 and 0.340) in explaining the population

growth in ages 20 to 29. However, non-Hispanic positive migration (0.616) con-

tributes more than Hispanic positive migration (.463) to the population growth in

ages 30 to 34.

In general, for the population 35 years and older, non-Hispanic deaths and

migration are the largest contributors to the population losses in these age groups;

although there are some variations. Non-Hispanic negative migration is the most

important factor in ages 35 to 39 (1.083) and ages 45 to 49 (0.637), but

non-Hispanic deaths are most important in the other age groups. Hispanic migration

even when negative (positive RelCon) contributes little to the total population loss

in the population 35 years and older, with impacts ranging from 0.004 for the

population ages 85 years and older to 0.071 for ages 50 to 54. Hispanic deaths play a

modest role in the total population losses, with RelCon ranging from 0.136 for the

population ages 85 years and older to 0.223 for the population aged 55 to 59. For the

population 55 years and older, non-Hispanic deaths account for most of the

population loss in these ages, with RelCon ranging from 0.606 for ages 55 to

59 to 0.816 for the population 85 years and older. In the two oldest age groups,

Hispanic deaths have a greater impact on the total population loss (0.157 and 0.136)

than does the loss of population due to non-Hispanic migration (0.068 and 0.045).

Table 13.5 Proportionate contribution of deaths and net-migration by Hispanic origin to popu-

lation change, California, 2010–2020a

Deaths Net migration

2010 age 2020 age

Population

change Hispanic

Non-

Hispanic Hispanic

Non-

Hispanic

0–4 10–14 115,192 �0.017 �0.015 1.142 �0.110

5–9 15–19 110,910 �0.018 �0.019 1.161 �0.125

10–14 20–24 247,542 �0.020 �0.022 0.950 0.092

15–19 25–29 371,307 �0.022 �0.026 0.707 0.340

20–24 30–34 240,149 �0.032 �0.047 0.463 0.616

25–29 35–39 �15,859 0.513 0.867 �1.464 1.083

30–34 40–44 �41,969 0.236 0.422 �0.001 0.343

35–39 45–49 �97,148 0.144 0.281 �0.062 0.637

40–44 50–54 �107,905 0.192 0.430 0.071 0.307

45–49 55–59 �127,789 0.223 0.606 �0.160 0.330

50–54 60–64 �163,605 0.214 0.707 �0.050 0.129

55–59 65–69 �221,179 0.171 0.669 �0.065 0.225

60–64 70–74 �269,904 0.146 0.683 �0.023 0.194

65–69 75–79 �328,961 0.124 0.601 0.016 0.259

70–74 80–84 �287,612 0.157 0.787 �0.012 0.068

75+ 85+ �1,265,634 0.136 0.816 0.004 0.045

Total �1,842,465 0.258 1.149 �0.506 0.099

aDerived from Tables 13.2 and 13.3

13.3 Applications 205



13.4 Conclusions

The decompositions presented here provide important insights into population

dynamics using CCRs. Certainly, these types of decompositions do not apply

where current or historical period CCRs are involved or in forecasts that use a

cohort component model where all components of change are explicitly

represented. So why use CCRs for this type of analysis? Perhaps the most compel-

ling reason for doing so revolves around the use of CCRs in demographic forecast-

ing where a complete cohort component model is not feasible or cannot be

implemented due to time and resource constraints (Smith et al. 2013; Smith and

Shahidullah 1995; Swanson et al. 2010). In these instances, CCR-based forecasts

have been used successfully with the caveat that no information was available on

the components of change.

The decomposition methods shown here may help address this shortcoming in

CCR-based forecasting models because they require only survival rates to accom-

pany the CCRs. From a practical standpoint, it is much easier and feasible to create

survival rates as opposed to fertility rates and, especially, migration rates for many

different forecasting applications. This is particularly relevant for areas with rela-

tively small populations where data availability is problematic. In this context, one

could produce scenario-based forecasts by adjusting the CCRs and survival rates

and analyze not only analyze the impact of population changes, but be able to make

statements about the causes of such changes. Information on the impact of shifts in

any subgroup’s cohort change ratio or an ability to decompose the impact of

survivorship and migration on forecasted population dynamics would be valuable

information to this end.

If one makes the additional leap to incorporate cohort change ratios into matrix-

based population models as shown in Chapter 12, the links between these decom-

positions and the analysis of demographic sensitivity becomes immediate as well

(Baker et al. 2015; Tuljapurkar 1982). A major goal behind decomposition appears

to be to gain an understanding into the sensitivity of overall population dynamics to

sub-dynamics (Canudas-Romo 2003; Das Gupta 1978; Keyfitz 1971); a question

that is directly related to examining the sensitivity of overall population change to

variation in the (ij) elements of a forecast matrix (Caswell 2000). In a forecasting

matrix encompassing multiple subgroups (Schoen 1986; Rogers 1995), the sensi-

tivity of an (ij) element in such a matrix provides direct information on the

proportional contribution of overall population growth to survivorship or migration

within any subgroup desired. By applying the decompositions presented here within

a forecast matrix model framework, one could efficiently describe and analyze both

the impact of population structure using decompositions and shifts in using elas-

ticity measures within a single analysis.

The difficulties of operationalizing combinations of sensitivity analysis and

population structure impacts (as in decompositions) is not trivial and has con-

founded demographic analyses in both human populations (Baker et al. 2015;

Preston and Coale 1982) and animal populations (Wisdom and Mills 1997; Wisdom
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et al. 2000). However, it has been shown that extensions of this analysis could link

decomposition and sensitivity analysis within a matrix framework without neces-

sarily resorting to complex computational and simulation-based frameworks (Baker

et al. 2015; Wisdom and Mills 1997; Wisdom et al. 2000).

The decompositions presented are easily generalizable in terms of numbers and

categorization schemes for subgroups. Provided that the subgroups are appropri-

ately defined, the methods presented in this chapter are scalable and can accom-

modate more than the two subgroups analyzed. The framework of contained in

Eqs. 13.2, 13.3, and 13.4 is simply a weighted average. As such, there is no

limitation to the groups that might be compared as long as they are mutually

exclusive and exhaustive categories of the overall population (Agresti 2013;

Christensen 1997; Witmer and Samuels 1998). For example, one might imagine

expanding the decomposition to include gender or to further decompose Hispanic

ethnicity into the complex racial designations. This capability is, of course, tem-

pered by the quality and reliability of the available data.

Decomposition is a challenging, but important area of analysis within demog-

raphy (Canudas-Romo 2003). In the context of population analysis and forecasting

using CCRs, decomposition provides a means for analyzing important numerical

determinants of population dynamics including shifts in composition and compo-

nents of change (Das Gupta 1978; Keyfitz and Caswell 2005) as well as rates

(Caswell 2000; Caswell and Werner 1978; de Kroon et al. 2000; Tuljapurkar 1982).

The decompositions presented here explore both types of decompositions and

provide an example of how to combine them in a way that provides insights into

the basic components of population dynamics. Extensions outlined here, including

melding decomposition methods with sensitivity analysis, will likely provide fruit-

ful avenues for further research on the applications of CCRs in demographic

analysis.
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Chapter 14

Forecasting with Spatial Dependencies

14.1 Introduction

In terms of estimates and forecasts, applied demography can be viewed as essen-

tially a geographic field. Data utilized in producing estimates and forecasts are

nearly always reported in geographically-bounded summary units (Swanson and

Tayman 2012: 22–28 and 74–79; Voss 2007) and it is now well-known that

population data are spatially-dependent (Baker et al. 2014; Hogan and Tchernis

2004; Pace and Gilly 1997; Pattachini and Zenou 2007). As such, it has been

suggested that demographic estimation and forecasting methods move in the

direction of incorporating population dynamics across dimensions of both space

and time (Baker et al. 2008, 2012; Chi and Voss 2011; Chi and Zhu 2008; Tayman

1996). The explosion of computerized mapping technology over the last 30 years

has put this possibility within the grasp of many practitioners and has ushered in a

new era of applied spatial demography.

In this chapter, we examine both the promise and pitfalls associated with this

possibility and then present a coherent method for making spatially-explicit demo-

graphic forecasts using an extension of the Hamilton-Perry (H-P) method (Baker

et al. 2014). This method provides a simple way to leverage the power of spatial

dependencies in the forecasting process while avoiding the pitfalls associated with

using geocoded data to make small area forecasts (Baker et al. 2012, 2013, 2014).

Our approach in involves three steps: (1) constructing a spatial weighting matrix of

geographic neighbors that directly captures spatial dependencies to the geographic

area of interest; (2) creating weighted averages of cohort change ratios (CCRs); and

(3) using the weighted CCRs to produce a forecast for the geographic area of

interest using the H-P method (as described in Chapter 4 and elsewhere in

this book).
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14.2 Issues with Georeferenced Data

Using georeferenced data (such as address points) in a computerized mapping

interface should allow demographic estimates and forecasts to be made for any

subcounty geographic level from municipalities (Cai 2007), to census tracts

(Swanson et al. 2010), to census block groups (Baker et al. 2015; Zandbergen and

Ignizio 2010), and even down to assessor parcels (Jarosz 2008; Waddell 2012).

This has, understandably, generated a considerable amount of excitement around

the possibilities of extending standard demographic methods to small geographic

units. However, known defects in the geocoding create missing data bias or

incorrect geographic assignments when using geocoded data (Flotow and Burson

1996; Karimi et al. 2004; Zandbergen 2009).

The general direction of this bias should be negative and the amount of bias

associated with incomplete geocoding may be considerable. Geocoding error might

be as high as 9% over a ten year period for total population estimates for block

groups in Albuquerque, New Mexico (Baker et al. 2012). This study indicated that

geocoding errors were associated with demographic and socioeconomic factors

related to ethnicity, income, education, and spatial residency dynamics, and that a

statistically-significant clustering of “missing data bias” was directly attributable to

defects in the geocoding process itself. Baker et al. (2013) suggested that even

larger errors are associated with age/sex-specific estimates made using geocoded

data. Other studies have found that geocoding-based errors are spatially clustered

along lines of race/ethnicity and rural/urban residence (Gilboa 2006; Goldberg et al.

2007; Oliver et al. 2005; Zandbergen 2009).

While the challenges associated with using geocoded data are not to be mini-

mized, it also is important to recognize that demographic data show spatially-

explicit clustering patterns (Vasan et al. 2015). As such, a perspective suggested

by Chi and Zhu (2008), Chi and Voss (2011) and Baker et al. (2014) is that patterns

of spatial dependencies and relationships might be leveraged to both improve

forecast accuracy and minimize bias (Fotheringham et al. 2002; Getis 2009;

Hogan and Tchernis 2004; Pace and Gilly 1997; Pattachini and Zenou 2007). Chi

and Zhu (2008), Chi and Voss (2011), and Chi and Wang (2017) have focused on

regression-based methods that incorporate spatial relationships, while Baker et al.

(2014) introduced spatial dependencies into standard demographic models; specif-

ically, the H-P method based on CCRs.

14.3 Modeling Spatial Dependencies: Spatial Weights
Matrices

Spatial dependency—the tendency of things close in space to have similar charac-

teristics—may be modeled in a variety of ways depending on the type of data

(Fotheringham et al. 2002; Tobler 1979, Turnbull 1976). Geographically-
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referenced data generally fall into three types: point, polygon, and raster (Getis

2009; Getis and Aldstadt 2004). Point data is straightforward—a good example

would be address points that capture latitude/longitude (xy) coordinates of a

housing unit; as they say, X marks the spot (along with Y in the case of a coordinate

system). Geographic units such as census tracts, block groups, and blocks are

typological examples of polygon data. Raster data refers to information captured

in pixel densities, such as aerial imagery, terrain maps, digital elevation models,

and the like. Our focus here is on modeling spatial dependency when individual

data are aggregated into geographic units represented by polygons, which is by far a

more common representation than either point or raster representations in terms of

small area demographic forecasts.

In the case of polygon-based data, spatial dependency is usually captured by one

of three processes: (1) defining “neighborhoods” based on contiguity (sharing of

boundaries), which is found by measuring distances between centroids (centers) of

the polygons (Fotheringham et al. 2000: 20–21); (2) by strategies of “overlaying”

viewing windows to define an alternative number of neighboring geographic units

(Kuldorff 1997, 1999; Turnbull 1976); and (3) by selecting a variable number of

nearest neighbors visually or algorithmically (Steinberg and Steinberg 2015:

278–279). In this example, we provide a relatively simple approach based on

contiguity. While we focus on visual selection for the small example presented

here, computerized mapping software such as ESRI’s Arc-GIS provides algorithms

for ready-automation of these approaches.

14.3.1 Defining a Geographic Neighborhood

Perhaps two of the simplest forms of spatial weighting revolve around the use of

rook and queen contiguity. In rook contiguity, polygons within a geographic

“neighborhood” share only sides, while in queen contiguity, the polygons may

share sides and/or corners (Getis 2009; Getis and Aldstadt 2004). A visual example

provides an aid for understanding the two relationships. We use adjacent sets of

census tracts within the city of Albuquerque to illustrate rook and queen contiguity.

Figure 14.1 shows rook contiguity using census tract 1.14 as the area for defining

adjacency. Rook contiguity defines the geographic neighborhood of census tract

1.14 to include census tracts 1.10 to the north, 1.21 to the west, 1.15 to the south,

and 1.13 to the east. In constructing a spatial weights matrix to reflect this relation-

ship, values from each of the four census tracts along with census tract 1.14 would

be utilized in the calculation of a smoothed value for census tract 1.14.

Figure 14.2 shows a more liberal definition is applied when using queen conti-

guity. The queen criterion for neighborhood membership adds three additional

census tracts to the neighborhood, 1.16 to the southeast, 1.11 to the northeast, and

1.20 to the northwest. While under rook contiguity only four neighbors were

included, relaxing the membership criteria to include corners as well resulted in a

total of eight census tracts within the neighborhood. In queen contiguity, the
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contribution of the focal census tract to its own value would be reduced in

comparison to the more restrictive rook contiguity. In constructing a “spatial

weights matrix” to reflect this relationship, values from each of the seven census

tracts neighbors along with census tract 1.14 would be utilized in the calculation of

a smoothed value for census tract 1.14. Baker et al. (2014) have noted that this

difference in neighborhood definition could impact forecast accuracy; a point

discussed in the Conclusion to this chapter.

Fig. 14.1 Rook contiguity, census tract 1.14, Albuquerque, New Mexico (Sources: Google Earth

and Geospatial and Population Studies at the University of New Mexico (http://gps.unm.edu))

Fig. 14.2 Queen contiguity, census tract 1.14, Albuquerque, NewMexico (Sources: Google Earth

and Geospatial and Population Studies at the University of New Mexico (http://gps.unm.edu))
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14.3.2 Constructing and Using a Spatial Weights Matrix

The strategy for capturing spatial dependency through weighting is contained

within a spatial weights matrix that determines how the value of each geographic

area (e.g., census tracts) will contribute to the forecast of the focal census tract

(i.e. census tract 1.14). A spatial weights matrix is a rule for defining the

contribution of each census tract in the designated neighborhood to the variable

or variables of interest in the focal census tract. Such a matrix allows each census

tract to “share in one another’s fortune” in a specific way (Baker et al. 2014;

Fotheringham et al. 2002; Le Sage and Pace 2004; Pace and Gilly 1997). The

standard H-P forecast might be seen as inherently “ultra-local” because it tracks

trends specific to the geographic unit being examined. However, the geographic

patterning of population growth is regulated in some sense by housing unit

density-dependent effects (Baker et al. 2008; Herold et al. 2003; Ward et al.

2000). A spatially-weighted forecast allows the preservation of spatial dependen-

cies as well as incorporating hierarchical effects in which groups of census tracts

interact in terms of their growth patterns.

Table 14.1 presents how: (1) a spatial weights matrix is conceptualized;

(2) weights are determined and a corresponding matrix is constructed; and (3) the

weighted average CCR is determined based on rook contiguity. A total of five

census tracts (including the focal census tract of 1.14) contribute to a spatially

weighted forecast. The geographic configuration is presented in the upper left hand

portion of the table, while the corresponding weighting is captured in the upper

right hand portion. Typically, the weighting is equal across all of the census tracts,

dictating that each census tract will contribute 1/5th or 0.20 to the CCR of the focal

tract. Finally, the bottom section shows how the weighted average CCR for census

tract 1.14 is determined.

Table 14.2 presents the same set of representations for queen contiguity. The

main difference, of course, is that with queen contiguity a greater number of census

tracts is permitted to join the neighborhood, thus decreasing the “self-contribution”

of census tract 1.14 to its own forecast. Under queen contiguity, each census tract

would contribute 1/8th or 0.125 to the CCR of the focal tract.

In these examples (and in practice), non-weighted values are used in all calcu-

lations. That is, when a specific census tract contributes to its neighbor it does so

using its non-weighted value rather than its weighted value based on calculations

from nearby neighborhoods it also belongs to. This computational strategy ensures

independence of calculations and minimizes potential distortions propagating from

one neighborhood to another. The weighting also reflects an equal contribution of

each census tract in the defined neighborhood; however, Baker et al. (2014) suggest

that the weights could be defined through an optimization method where the

weights are chosen to minimize some loss function similar to the estimation of

portfolio weightings in quantitative finance (DeMiguel et al. 2009; Markowitz

1952).
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In this process, keep in mind we weight the CCRs themselves rather than the

forecasted population values. The rationale for weighting the CCRs is provided by

Baker et al. (2014), who observed significant biases when the weights were applied

to the forecasts themselves where two “neighbor” census tracts had radically

different population sizes; larger census tracts were under-forecasted and small

census tracts were over-forecasted.

Table 14.1 Spatial weights matrix and weighted CCR under rook contiguity

Census tract geographic configuration Census tract weights

1.10 0.20

1.21 1.14 1.13 0.20 0.20 0.20

1.15 0.20

Census tract Count Weight Weighted CCR

1.10 CCR1.10 0.20 CCR1.10 � w1.10

1.13 CCR1.13 0.20 CCR1.13 � w1.13

1.14 CCR1.14 0.20 CCR1.14 � w1.14

1.15 CCR1.15 0.20 CCR1.15 � w1.15

1.21 CCR1.21 0.20 CCR1.21 � w1.21

∑ (CCRi � wi)

Weighted CCR

Table 14.2 Spatial weights matrix and weighted CCR under queen contiguity

Census tract geographic configuration Census tract weights

1.20 1.10 1.11 0.125 0.125 0.125

1.21 1.14 1.13 0.125 0.125 0.125

1.15 1.16 0.125 0.125

Census tract Count Weight Weighted CCR

1.10 CCR1.10 0.125 CCR1.10 � w1.10

1.11 CCR1.11 0.125 CCR1.11 � w1.11

1.13 CCR1.13 0.125 CCR1.13 � w1.13

1.14 CCR1.14 0.125 CCR1.14 � w1.14

1.15 CCR1.15 0.125 CCR1.15 � w1.15

1.16 CCR1.16 0.125 CCR1.16 � w1.16

1.20 CCR1.20 0.125 CCR1.20 � w1.20

1.21 CCR1.21 0.125 CCR1.21 � w1.21

∑ (CCRi � wi)

Weighted CCR

214 14 Forecasting with Spatial Dependencies



14.4 Spatially-Weighted Hamilton-Perry Forecast

Using census tract 1.14, we illustrate the construction of a rook contiguity spatially

weighted forecast using the H-P method for the year 2010. This forecast uses CCRs

for the 1990–2000 decade shown in Table 14.3. Along with census tract 1.14, the

table contains CCRs for the four other census tracts defined by rook contiguity. The

weighted CCR represents the arithmetic average of the five census tracts and will be

used in the spatially weighted H-P forecast that borrows additional information

from adjacent census tracts. The last column of the table show there are substantial

differences in many age groups between the CCRs for census tract 1.14 and its

weighted average. The average absolute percent difference across age groups is

around 11.0% and they range from –22.1% for ages 30 to 44 to 0.4% for ages 25 to

29. Relative to the other census tracts, census tract 1.14 has decidedly lower CCRs

Table 14.3 Weighted total population cohort change ratios under rook contiguity, census tract

1.14, Albuquerque, New Mexicoa

Census tract

Age 1.10 1.13 1.14 1.15 1.21

Weightedb

CCR

Percentc

difference

0–4 0.21 0.34 0.28 0.29 0.33 0.29 2.1%

5–9 0.25 0.32 0.29 0.26 0.27 0.28 �4.3%

10–14 1.24 0.69 1.02 0.84 1.03 0.96 �6.1%

15–19 1.30 0.81 0.81 0.76 1.12 0.96 15.8%

20–24 1.35 0.88 0.67 1.15 1.19 1.05 35.7%

25–29 1.29 1.10 1.19 1.26 1.14 1.20 0.4%

30–34 0.92 0.94 1.26 0.95 1.08 1.03 �22.1%

35–39 0.81 0.88 0.96 0.77 0.95 0.87 �10.1%

40–44 0.85 0.74 0.68 0.71 0.86 0.77 11.2%

45–49 0.90 0.80 0.79 0.74 1.04 0.85 7.6%

50–54 0.87 0.82 0.75 0.75 0.98 0.83 9.7%

55–59 0.77 0.81 0.85 0.83 0.97 0.85 �0.5%

60–64 0.88 0.86 0.76 0.83 0.88 0.84 10.1%

65–69 0.89 0.73 0.76 0.73 0.81 0.79 3.0%

70–74 0.68 0.86 0.79 0.68 0.90 0.78 �1.6%

75–79 0.69 0.71 0.56 0.72 0.82 0.70 19.5%

80–84 0.62 0.63 0.48 0.63 0.65 0.60 19.6%

85+ 0.31 0.29 0.24 0.29 0.29 0.28 14.2%

Source: Geospatial and Population Studies, University of New Mexico. 1990 and 2000 data are

normalized to 2010 geographic boundaries.
aCCRs based on the 1990–2000 decade.

4P0,t/15P20,t Ages 0–4 (Child-Adult Ratio)

9P5,t/15P25,t Ages 5–9 (Child-Adult Ratio)

Px,t/Px�10,t�10 Ages 10–84

P85+,t/P75+,t�10 Ages 85+
bAverage of the CCRs for all census tracts, assuming equal weighting
c(Weighted – standard)/weighted * 100
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in three age groups 15 to 24, ages40 to 44, and ages 75 years and older and

decidedly higher CCRs in age groups 30 to 39.

In preparing a 2010 forecast using the H-P method for census tract 1.14, we used

both the standard CCRs and spatially weighted CCRs, and evaluated them against

the 2010 census (see Table 14.4). Both forecasts show a decline in the total

population, but it is much steeper using standard CCRs. The total population

forecast error is more than double using the standard CCRs compared to spatially

weighted CCRs, and the spatially weighted CCRs also perform better in forecasting

the age composition. The spatially weighted forecast has less bias and greater

accuracy compared to forecast using standard CCRs with MALPEs of -7.8% vs

-12.5% and MAPEs of 17.1% and 23.2%, respectively. Ignoring signs, the spatially

weighted forecast has lower errors in 13 of the 18 age groups.

It may be difficult to see from this simple example how one might make fore-

casts for a large set of census tracts (or other geographic) areas using spatial

weighting. However, ESRI’s Arc-GIS contains modules for constructing spatial

weights matrices under specified neighborhood inclusion rules such as the queen

and rook contiguity models presented here. These tools can create a spatial weights

matrix that can be overlaid over a larger section of census tracts simultaneously. A

key point is that the weighting scheme would yield weighted CCRs for census tracts

prior to any spatial weight-based adjustment being made on any census tract. As

noted earlier, calculations of neighborhoods are kept independent of each another,

which is thought to minimize distortions introduced by the order of calculations.

14.5 Alternative Spatial Approaches

The method presented in this chapter provides a relatively simple technique for

directly incorporating spatial effects into demographic forecasts using the H-P

method. There are, however, other techniques that include spatial relationships

into small area forecasts (Harper et al. 2003; Jarosz 2008; Smith et al. 2013:

203–207 and 228–237; Tayman 1996). Although these methods do not explicitly

incorporate spatial dependence into their algorithms, they are based on factors

known to be spatially-dependent such as housing, historical shares, employment,

or other socioeconomic factors (Hammer et al. 2004; Hauer et al. 2015;

Fotheringham et al. 2002; Hogan and Tchernis 2004; Pattachini and Zenou 2007).

Since these methods are based on a spatially-dependent pattern of symptomatic

indicators or historical ratios their forecasts are influenced, at least to some degree,

by spatial dependencies and relationships (Pagliara et al. 2010; Voss 2007; Waddell

2012; White et al. 2015). One of the most well-studied of methods with an

embedded spatial component is the ratio-correlation regression model (Swanson

and Tayman 2015), which links symptomatic indicators at a smaller geographic

scale to symptomatic indicators at a larger geographic scale within a regression

framework.
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Additionally, there are several new and very promising approaches that could be

applied in the context of a CCR-based model. Ordorica-Mellado and Garcia-

Guerrero (2016) have proposed Kalman filters as a small-area demographic model-

ing tool. A Kalman filter is an allocation model based on a stochastic process

estimated using a least-squares algorithm. As such, it introduces some degree of

spatial dependency through its use of the relationship between smaller and larger

geographic areas based on historical trends. This method could be applied to an H-P

forecast by relating the CCRs of smaller areas to those of larger ones and it has the

added advantage of simultaneously forecasting a small area’s population while

controlling it to a population for a larger geographic area. Kalman filters have been

utilized in a variety of settings ranging from aeronautics to economics (Grewal and

Andrews 1993), but to our knowledge the work of Ordorica-Mellado and Garcia-

Guerrero (2016) is the first attempt to utilize the method in demographic analysis.

In a similar vein to the method presented here, Inoue (2017) has proposed a

smoothing method for CCRs and child-woman ratios (CWRs) for use in the n

method. In particular, mean and median smoothing routines that use CCRs and

CWRs from neighborhoods or adjacent small areas. Unlike our method, which is

based solely on adjacency, his approach is based on two principles: (1) the demo-

graphic of a target area are similar to areas closest to it; and (2) if different areas are

the same distance from the target area the more populated area has greater influ-

ence. So the smoothing weight applied to the CCRs and CWWs in the target area

gets larger when neighboring areas are closer and more populated. Implementation

of these principals is implemented using a measure known as population potential

(PP) (Stewart 1947). Calculating PP requires detailed data on the distance between

the small areas and complex calculation. Inoue (2017) developed an approach to

simplify the calculations and make the implementation more practical. Simulations

were performed using a 2000 to 2005 base period and the H-P method to produce a

2010 forecast that was subsequently compared to the 2010 census for small areas in

the Shibuya Ward, Tokyo, Japan. These simulation shows that his method based on

PP outperformed a method where no smoothing was applied.

There is also the alternative of using spatial regression models in demographic

forecasting (Chi and Voss 2011; Chi and Wang 2017; Chi and Zhu 2008). Spatial

regression methods directly utilize spatial weighting algorithms (hence the

umbrella term of “geographically weighted least squares”) and provide another

way to incorporate spatial dependencies and relationships into demographic fore-

casts. Such models incorporate both space and time effects in a “spatial lag”

framework. Using this framework, CCRs could be forecasted using a spatial

regression model as another way to incorporate spatial dependencies into the H-P

model. Swanson and Tayman (2014) provide an example of using CCRs in a

non-spatial regression framework that could form a basis for investigating this

possibility.
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14.6 Boundary Changes

Like all demographic forecasts, those that utilize spatial weighting will be subject to

unavoidable sources of errors such as those in the decennial census (Fellegi 1968;

Hogan 1993, 2003; Hogan and Mulry 2015) or reversals in historical growth trends

that cannot easily be captured in methods using CCRs (Baker et al. 2013; Hoque

2010; Smith et al. 2013: 1–2). Spatially detailed demographic forecasts are also

prone to specific types of errors not always relevant when making small-area

demographic forecasts. The most important of these involves geographic normal-

ization, which is the process of harmonizing population counts when geographic

boundaries change over time (Lloyd 2017; Tobler 1979; Voss et al. 1999;

Zandbergen and Ignizio 2010). Generally, when the change involves adding up

smaller areas that have been subsumed into larger ones—such as a set of census

tracts that have been annexed by a municipality—the error is generally small

(Fisher and Langford 1995; Sadahiro 2000). When, however, a large geographic

area is split into smaller areas significant distortions in historical data can occur

(Baker et al. 2015; Simpson 2002; Zandbergen and Ignizio 2010). Unfortunately,

this latter form of geographic splitting is very common and geographic normaliza-

tion will frequently be required prior to making spatially detailed demographic

forecasts.

When such normalization is required, adjustments have relied upon various

methods of areal interpolation that assume the population is proportional to the

area split into a new geography (Flowerdrew and Green 1992; Tobler 1979; Voss

et al. 1999). This assumption has been shown to introduce large amounts of error,

perhaps as much as 47%, for example, when geocoding to streets (Zandbergen and

Ignizio 2010). Significant improvements to areal interpolation may be made by

using ancillary data on housing, such as may be garnered from aerial photography,

E911 structure points, or assessors’ parcel data (Baker et al. 2015; Jarosz 2008;

Sylvester 2013).

Where census data require adjustment for boundary changes, we can use the

Census Bureau’s “tract relationship files,” which are described in Chapter 3. These

relationship files provide areal weighting factors based on the Bureau’s Master

Address File (MAF). The MAF forms the basis for census data collection (NRC

2011) and while its quality is largely unknown (Dobson et al. 2011), it is likely at its

highest quality at the time of the decennial census when a block canvassing effort

has double-checked its completeness (GAO 2015; NRC 2011; Swanson and

Walashek 2011). Even at the time of a decennial census, the MAF may have

misallocation errors of between five and ten percent when aggregated to census

tracts (Ratcliffe 2001). However, that study is 15 years old and it is possible that the

MAF has improved since. Those seeking to create spatially detailed population

forecasts should be aware of errors due to spatial normalization and build review

tools and allow sufficient time to create geographically normalized datasets

(Swanson et al. 2010).
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14.7 Conclusions

The possibilities for incorporating spatial effects into demographic forecasting

models are promising, but there is little research on its effectiveness. We know of

only one study that has specifically compared the accuracy of forecasts with and

without spatial dependencies (Baker et al. 2014). That study, which used the H-P

model, found that introducing either form of contiguity (rook or queen) improved

forecast accuracy dramatically in total population forecasts as well as in forecasts of

age and sex composition in urban census tracts in Albuquerque, New Mexico. This

same study also found that queen contiguity reduced error even further than rook

contiguity-based weighting schemes, suggesting that incorporating larger neighbor-

hoods may be preferable to smaller ones. Importantly, it also found that either form

of spatial weighting cut errors in half in census tracts whose change was the greatest

either in terms of gains or loss; growth categories for which H-P and other forecast

methods tend to underperform (Smith and Shahidullah 1995; Swanson et al. 2010;

Baker et al. 2013).

These improvements strongly suggest the efficacy of introducing spatial dynam-

ics into small area forecasting models and those producing such forecasts should

consider these methods. The relatively simple contiguity models based on CCRs,

shown in this chapter provide a flexible, relatively inexpensive, and accessible

accurate method for modeling spatial population dynamics. There is, however, a

need for more research on forecast accuracy of models with and without spatial

dependencies. How would such models perform under different demographic

conditions in different parts of the county? At what geographic level, if any, does

the incorporation of spatial dependencies no longer impact forecast error? Are

spatial models better suited for subcounty forecasts or do they help lower forecast

errors in larger geographies such as counties, metropolitan areas or states? These

and other questions will help us learn more about the strengths and weakness of

spatial forecasting models.
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Chapter 15

The Utility of Cohort Change Ratios

15.1 Introduction

In this chapter we first describe the utility of cohort change ratios (CCRs) and relate

it to the field of demography, particularly to applied demography. Next ,we provide

a measure of utility relative to the cohort change ratio (CCR) method (also referred

to in this book as the Hamilton-Perry method) and provide examples of its use. We

conclude with a brief discussion that suggests how the concept of utility relative to

the CCR method can be extended.

15.2 The Concept of Utility

In preparation for our discussion of utility, we start with the argument by Swanson

et al. (1996) that the guiding principle in applied demography is to do only as much

as necessary for the immediate problem at hand. We note that properly applied, this

can lead to efficiency, but poorly applied, this principle and lead to mediocrity.

Underlying this principle is the “Triple Constraint” (TC) perspective (Rosenau

1981; Swanson et al. 1996), which consists of three dimensions:

1. a performance specification—the explanatory/predictive precision sufficient to

support a given decision-making situation (PS);

2. time—the scheduling requirements under which the performance specification

must be accomplished (TS); and

3. cost—the budget requirements under which the performance specification must

be accomplished (CS).

Using this perspective, for example, we can see that a high performance spec-

ification, such as a very high degree of accuracy for a total population number,

generally requires a great deal of time and a high cost, such as those required for a
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complete census. A lower performance specification requires much less time and

lower cost, such as those required to generate a population estimate.

The triple constraint (TC) perspective is embedded within a distinctly different

context when applied to basic (academic) demography. For basic demography, the

context involves the goal of maximizing the performance dimension. That is, the

goal is to maximize explanatory power and precision. Thus, on the one hand, basic

demography tends to view time and resources as barriers to surmount in order to

maximize explanatory power and precision; for applied demography, on the other

hand, the context is to set the performance dimension at a level that is just sufficient

to support a given decision-making process in order to minimize the use of time and

resources. Given this, we argue that utility is an important concept in applied

demography, but that it has less importance in basic demography.

One way in which utility can be examined is presented by Tayman and Swanson

(1996) who measured the utility of population forecasts as a complement to

measuring forecast accuracy. As a first step in developing this measure, they

asked how much “value added” knowledge is gained by a forecast over and

above the knowledge gained by either not doing a forecast or using a no-cost

alternative. Next, they asked if useful and valid generalizations could be made

about forecast utility in specific forecasting situations. In answering these two

questions, they argued that a proportionate reduction in error measure (PRE),

introduced by Costner (1965) and employed by Swanson and Tayman (1995),

could be used to quantify the “value added” component of a given forecast.

Using the basic idea of PRE, we propose to measure the performance dimension,

the time dimension, and the cost dimension is such a way that the three measures

can be simply (algebraically) combined to obtain an overall score or a composite

measure of utility. We start with the formula for PRE:

PRE ¼ ððA� BÞ=AÞ ð15:1Þ

where,

A is an Alternative method; and

B is the CCR method.

PRE will be positive if the TC dimension of the Alternative method is greater

than the TC dimension of the CCR method, and a larger value would indicate

greater value added by the CCR method. Conversely, PRE will be negative if the

TC dimension of the Alternative method is smaller than the TC dimension of the

CCR method, and a smaller value (larger negative) would indicate more value

added by the Alternative method. A PRE of zero would indicate that value of the

TC dimension is the same in the Alternative and CCR methods

In the case of the performance dimension (error), “A” would represent the error

level of an estimate or forecast generated by an Alternative method, while “B”
would represent the error of an estimate or forecast generated by the CCR method.

In terms of time, “A” would represent the time needed to generate the forecast or

estimate using the Alternative method, while “B” would represent the time needed
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using the CCR method. Finally, in terms of the cost dimension, “A” would represent
the cost needed to generate the forecast or estimate using the Alternative method,

while “B” would represent the cost needed to use the CCR method. These dimen-

sions are averaged obtain a composite measure of utility over all TC dimensions:

U ¼ PREps þ PREts þ PREcs

� �
=3 ð15:2Þ

where,

U is the TC or composite utility of the CCR method;

PREps is the performance (error) of the CCR method relative to an Alternative

method;

PREts is the time required to implement the CCR method relative to an Alternative

method; and

PREcs is the cost of the CCR method relative to an Alternative method.

As a starting point each TC score is implicitly given a weight of 0.333. If we want to

place more importance on, say, cost compared to error, we could re-arrange the

weights. For example, we could give a weight of 0.363 to cost and remove 0.030

from the error weight.

As a hypothetical example (we will shortly provide real-life examples), suppose

that we have PREps ¼ 0.10, PREts ¼ 0.20 and PREcs ¼ 0.15. In this case, the U is

0.15 (0.45 / 3), indicating that the CCR method has more composite utility com-

pared to the Alternative method. A negative U would indicate that the Alternative

method has more composite utility than the CCR method. A zero U would indicate

that the CCR and Alternative methods have the same composite utility. Finally, a

positiveUwould indicate the CCRmethod provides more composite utility than the

Alternative method.

How should one evaluate the U itself relative to the performance of the CCR

method? For example, is a U of 0.60% “excellent”, or is it “good”? Is a U of 0.20

“poor”? Swanson and Tayman (1995) suggest the following guidelines: less than

zero, bad; 0–0.25, poor; 0.26–0.50, average; 0.51–0.75, good; 0.76–1.00, excellent.

These guidelines are not cast in stone and are likely to be specific to the historical

context, size, and growth rate of the geographic areas under consideration.

15.3 Utility and the Cohort Change Ratio Method

We present two separate sets of examples. In the first set, we examine four ex post

tests of the TC dimensions of population forecasts using 2010 census counts as the

accuracy benchmark. In these examples, the accuracy of the total population is the

“performance specification.” Following this set, we look at the TC dimensions of

age group forecasts as the performance specification and present two assessments of

the accuracy of age group forecasts using 2010 census counts.
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In the first set, we compare a 2010 forecast of the total population for the state of

Nevada using 1990–2000 CCRs to a forecast from a cohort-component model. In

the second example of the first set, we compare the 2010 CCR forecast of the total

population to a simple exponential extrapolation forecast using 1990 and 2000

census data. In the third example, we repeat the first comparison, using Inyo

County, California. In the fourth comparison, we repeat the second comparison

using Inyo County. By using the state of Nevada and Inyo County, we can get a feel

for the utility assessments involving a relatively large population (Nevada) and a

relatively small population (Inyo County, California).

In regard to time and cost, the cohort-component forecasts took 20 person-hours

to assemble; the CCR method forecast took approximately 2 person-hours; and the

exponential extrapolation took 0.5 hour. The costs of these forecasting methods

were completely determined on the basis of personnel time, which was set at $100

per hour. Therefore, the costs were $2000, $200, and $50 for the cohort-component,

CCR method, and exponential extrapolation respectively.

Table 15.1 provides the 1990 and 2000 input data, the 1990–2000 CCRs, the

2010 forecast, the 2010 census counts, and the error statistics for the CCR forecast

of Nevada. Table 15.2 provides the 2010 forecast using the cohort-component

method along with the 2010 census data, and the error statistics for this forecast.

Details underlying the cohort-component method forecast for Nevada are provided

in Table A.1 at the end of the chapter.

As can be seen in Table 15.1, overall, the 2010 CCR forecast of the state of

Nevada is too high by 20.4%. Table 15.2 shows that the 2010 cohort-component

forecast is also too high by 23.5%. The U for the CCR method relative to the

Cohort-Component method for Nevada is:

0:644 ¼ 0:132þ 0:900þ 0:900ð Þ=3

where,

PREps is 0.132 (0.235–0.204) / 0.235;

PREts is 0.900 (20–2) / 20; and

PREcs is 0.900 ($2000 – $200) / $2000.

This U reveals that relative to the cohort-component method, the CCR method

has far more utility in this total population forecast for the State of Nevada. A U of

0.553 suggests a good performance of the CCR method in terms of its composite

utility relative to the cohort-component model.

The 2010 exponential extrapolation forecast of the total population for Nevada

yields a forecast error of 21.8% as follows:

P2010 3,289,281 ¼ 1,988,257 � e ((ln(1,988,257 / 1,201,833)) � 10),

Census 2010 2,700,551, and

Pct. Error 21.8% ¼ ((3,289,281–2,700,551)/2,700,551) � 100.
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Relative to the exponential extrapolation method, the U for the CCR method is:

�1:98 ¼ 0:064þ�3:00þ�3:00ð Þ=3

where,

PREps is 0.064 (0.218–0.204)/0.218;

PREts is �3.00 (0.5–2.0)/0.5; and

PREcs is �3.00 ($50 – $200)/$50.

Clearly, if we were only interested in a total population forecast of Nevada, the

exponential extrapolation method has far more utility than does the CCR method,

which performed poorly.

In regard to our example of a small population, Tables 15.3 and 15.4 provide the

same information for Inyo County, California that Tables 15.1 and 15.2 did for

Nevada. Details underlying the cohort-component method forecast for Inyo County

are provided in Appendix Table A.2 at the end of the chapter.

Table 15.3 shows that the 2010 CCR forecast of Inyo County is too low by 7.4%.

Table 15.4 shows us that the 2010 cohort-component forecast is also too low by

6.8%. This yields a PREps of �0.088 ((�6.8 – (�7.4)) / �6.8). Using this PREps in

conjunction with the time and cost PREs shown earlier, we find the U for the CCR

method relative to the cohort-component method for Inyo County is:

Table 15.2 Population forecast error cohort-component method, Nevada, 2010

2010 Population Forecast error

Age Forecast Actual Number Percent Allocationa

0–4 202,591 187,478 15,113 8.1% 0.625%

5–9 166,171 183,077 �16,906 �9.2% 1.598%

10–14 181,216 183,173 �1,957 �1.1% 1.132%

15–19 179,509 182,600 �3,091 �1.7% 1.164%

20–24 186,596 177,509 9,087 5.1% 0.755%

25–29 257,809 196,644 61,165 31.1% 0.757%

30–34 333,477 190,642 142,835 74.9% 3.339%

35–39 346,438 191,652 154,786 80.8% 3.706%

40–44 291,062 191,391 99,671 52.1% 1.989%

45–49 247,137 193,790 53,347 27.5% 0.530%

50–54 212,086 182,737 29,349 16.1% 0.154%

55–59 172,045 164,575 7,470 4.5% 0.730%

60–64 143,801 150,924 �7,123 �4.7% 1.105%

65+ 287,072 324,359 �37,287 �11.5% 3.060%

Total 3,207,010 2,700,551 506,459 18.8%

MAPE 23.5%

MALPE 19.4%

IODb 10.3%

Source: 2010, U.S. Census Bureau ( http://factfinder2.census.gov)
aabs((Px,t+10/∑Px,t+10) – (Ax,t+10/∑Ax,t+10))
bIndex of Dissimilarity
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0:571 ¼ �0:088þ 0:900þ 0:900ð Þ=3:

This U reveals that relative to the cohort-component method, the CCR method

has far more utility than the cohort-component methods in this forecast of Inyo

County, California. Like the Nevada example, the CCR has a good performance

relative to the cohort-component model in Inyo County.

The 2010 exponential extrapolation forecast of the total population for Nevada

yields a forecast error of �5.0% as follows:

P2010 17,615 ¼ 17,945 � e ((ln(17,945/18,281)) � 10),

Census 2010 18,546, and

Pct. Error �5.0% ¼ ((17,615–18,546)/18,546) � 100.

With the CCR method having a percent error of �7.4%, the PREps of the CCR

method relative to the exponential extrapolation method is �0.480 ((�5.0 –

(�7.4))/ �5.0). Using this PREps in conjunction with the time and cost PREs

shown earlier, we find the U for the CCR method relative to the exponential

extrapolation method for Inyo County is:

Table 15.4 Population forecast error cohort-component method, Inyo County, California, 2010

2010 Population Forecast error

Age Forecast Actual Number Percent Allocationa(%)

0–4 943 1,070 �127 �11.9 0.314

5–9 880 985 �105 �10.7 0.220

10–14 809 1,134 �325 �28.7 1.434

15–19 1,018 1,087 �69 �6.3 0.028

20–24 1,134 865 269 31.1 1.897

25–29 647 1,041 �394 �37.8 1.870

30–34 263 979 �716 �73.1 3.757

35–39 536 977 �441 �45.1 2.167

40–44 1,282 992 290 29.2 2.068

45–49 1,589 1,367 222 16.2 1.822

50–54 1,696 1,594 102 6.4 1.217

55–59 1,706 1,581 125 7.9 1.345

60–64 1,273 1,339 �66 �4.9 0.145

65+ 3,509 3,535 �26 �0.7 1.240

Total 17,285 18,546 �1,261 �6.8

MAPE 22.1%

MALPE �9.2%

IODb 9.8%

Source: 2010, U.S. Census Bureau ( http://factfinder2.census.gov)
aabs((Px,t+10/∑Px,t+10) – (Ax,t+1�/∑Ax,t+10))
bIndex of Dissimilarity
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�2:16 ¼ �0:480ð Þ þ �3:00ð Þ þ �3:00ð Þð Þ=3

If we were only interested in a total population forecast for Inyo County, the

exponential extrapolation method has far more utility than the CCR method. Like

for the Nevada example, however, the CCR method has a poor performance relative

to the extrapolation method.

In the second set, we set the performance specification as the accuracy of age

group forecasts, operationalized as the Mean Absolute Percent Error (MAPE). The

first example compares the age group accuracy of the CCR and cohort-component

methods for Nevada. In the second example, we do the same comparison for Inyo

County, California.

In regard to the Nevada 2010 forecast, the MAPE for the CCR method is 19.3%

while the MAPE for the same forecast resulting from the cohort-component method

is 23.5%. This yields a PREps of 0.178 ((23.5–19.3) / 23.5). Using this PREps in

conjunction with the time and cost PRE’s shown earlier, we find that the U for the

CCR method relative to the cohort-component method is:

0:659 ¼ 0:178ð Þ þ :900ð Þ þ :900ð Þð Þ=3:

This U reveals that relative to the cohort-component method the CCR method

has more utility in forecasting the 2010 population by age for the Nevada. Given the

U for total population was 0.591, the CCR method has greater utility than the

cohort-component method in forecasting the population by age than in forecasting

total population.

Looking at the comparison for Inyo County, the MAPE for the CCR method is

8.5% while the MAPE for the cohort-component method is 22. 1%. This yields a

PREps of 0.615 ((22.1–8.5) / 22.1). Using this PREps in conjunction with the time

and cost PRE’s shown earlier, we find that the U for the CCR method relative to the

cohort-component method is:

0:805 ¼ :615ð Þ þ :900ð Þ þ :900ð Þð Þ=3:

This U reveals that relative to the cohort-component method the CCR method

has far more utility in forecasting the 2010 forecast of the population by age for

Inyo County, California. This represents the largest U of any example and indicates

an excellent performance of the CCR method compared to the cohort-component

method in term of composite utility.

15.3 Utility and the Cohort Change Ratio Method 235



15.4 Conclusions

In this chapter we have discussed the concept of utility and applied an

operationalized definition of it to the CCR method. Using two sets of examples,

we illustrated how the utility can be measured and interpreted. There are, of course,

a number of variations that can be applied to the concept as identified, as well as

multiple ways to operationalize it.

The main objective of this chapter was to show that the CCR method can have a

great deal of utility relative to the information it provides. For example, if one is

interested in population forecasts by age (and sex and race, etc.), the CCR method

can have a much higher composite utility than the cohort-component method for

short-term forecasts, such as ten years. Smith and Tayman (2003) reported a similar

finding in their analysis of the 50 states and the 67 counties in Florida. In their

analysis, the CCR and cohort-component methods produced similar forecasts by

age and sex; neither approach consistently produced more accurate forecasts.

Although they did not measure composite utility, the much lower time and costs

of the CCR method would have increased its utility relative to the cohort-

component method along these two TC dimensions.

With modifications (discussed in the previous chapter), the CCR method has the

potential for higher utility than the cohort-component method for long-term fore-

casts as well. As discussed in Chapter 6, the CCR method can be used to generate

formal measures of uncertainty around the forecasts it produces. This feature is not

found in forecasts made using the cohort-component method, which requires much

more work and subtlety in order to generate measures of uncertainty around the

forecasts it produces (Alho and Spencer 2005; Hyndman and Booth 2008; Lutz

et al. 1999; Ševčı́ková et al. 2013). As illustrated in this analysis, if one is only

interested in the total number of people at some future date, the CCR method does

not have as much utility as a simple extrapolation method, all things equal.

We have used “accuracy” as a performance specification in this chapter. Other

performance specifications are possible, along with other methods of scoring this

dimension of utility. For example, it would be complicated and impractical to use a

cohort-component method to forecast the population of a set of census tracts by age,

something that is very feasible using the CCR method. In this case, the scoring for

the performance specification could be a numeric coding for “yes” and “no” in

regard to the ease of which each method could be implemented for a set of census

tract forecasts by age.
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Chapter 16

Concluding Remarks

16.1 Introduction

We hope that you now have a good idea of why we wrote a book about cohort

change ratios (CCRs) and trust that we have demonstrated that CCRs have a wide

range of uses and a high level of utility, features that are useful to applied

demographers. Taking a cue from David Letterman, the recently retired late night

TV personality, whose “top ten” lists became a mainstay of his show, we would like

to conclude this exposition of the CCR method with our “top ten reasons” for using

it (Swanson and Tedrow 2016). As did Letterman, we work through the list in

reverse order, starting with reason number 10 and ending (although without a drum

roll) with reason number 1. Following the initial list, we elaborate a bit on each

reason.

Exhibit 16.1 The Top Ten Reasons to Use the CCR Method

10. You only need two census counts of population by age to generate of

population forecast.

9. You can run it forward or backward, as a forecast or a backcast.

8. You can use it at virtually any level of geography.

7. You can use it for any population for which cohort data are available over

time, including institutionally or administratively defined populations.

6. You can use it to estimate life expectancy.

5. It provides formal demography enthusiasts with an efficient numerical means

for generating stable population, incorporating both sexes and migration.

4. It is a great method for doing multi-race population forecasts.

3. With lagged regression models, it can provide forecast intervals.

2. It is a re-expression of the fundamental demographic equation.

1. The number one reason is that it is easy to explain and implement.
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16.2 Top Ten Reasons to Use the CCR Method

Reason # 10. You Only Need Two Census Counts of Population by Age

to Generate a Population Forecast As shown in Chapters 1, 2, 4, 8, and 9 you

only need data from two census counts of population by age to generate a popula-

tion forecast and locating data generally is easier than is the case for the cohort-

component method (see, Chapter 3, for example).

Reason # 9. You Can Run It Forward or Backward, as a Forecast or

a Backcast You can not only run the CCR method forward in time as a forecast,

but as shown in Chapter 10 also in reverse, as a backcast. Recall that this approach

was used to estimate the size of the Native Hawaiian population in 1778, the year of

first European contact. Evaluations of this approach supported the idea the CCR

method is capable of producing reasonably accurate historical estimates. Also,

Swanson (2016) also used reverse CCRs, in conjunction with other methods, to

reconstruct both the Hawaiian and part-Hawaiian populations by age of Hawaii

from 1778 to 1990 and then applied CCRs to estimate them to 2010 and forecast

them to 2030.

Reason # 8. You Can Use It at Virtually Any Level of Geography The CCR

method is well-suited for use in states and counties and as shown in Chapters 4 and

14, you can also do small area (i.e., subcounty) forecasts with this method. For

example, in Chapter 4 forecasts were produced for the city of Bellingham in

Washington and for the Pacific Beach and Mission Valley communities in San

Diego, California, while in Chapter 14, they were produced for census tracts in

Albuquerque, New Mexico.

Reason # 7. You Can Use It With Any Population for Which Cohort Data Are

Available Over Time, Including Institutionally or Administratively Defined

Populations You can also use the CCR method for populations such as school

enrollment by grade. You can do this in two ways, directly and “embedded” within

a CCR generated forecast by age, with the first method generally used for short-

term forecasts and the second, for long-term forecasts. As an example of the first

approach, Chapter 7 showed how the K-12 enrollment by grade of the Riverside

(California) Unified School District is forecast for fall 2015 (using fall 2013 and fall

2014 enrollment data). In terms of the second approach, Chapter 7 showed how the

embedded method generated a longer-term (10-year) public school enrollment

forecast by grade for the Memphis, Tennessee School District.

Reason # 6. You Can Use It to Estimate Life Expectancy In Chapter 11, the CCR

method is used to provide estimates of life expectancy at birth and other mortality-

related indicators. When used with populations that have negligible migration the

CCR approach can provide accurate estimates of these characteristics. As opposed to

more data and analytically intensive methods (e.g., life tables), the CCRmethod has

minimal data requirements in that it uses available census data and does not require a

great deal of judgment or “data-fitting” techniques to implement.
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Reason # 5. It Provides Formal Demography Enthusiasts with an Efficient

Numerical Means of Generating Stable Populations, Incorporating Both Sexes

and Migration In Chapter 12, the CCR method was used to generate stable

populations for Greece and over 60 other countries. That chapter also demonstrated

that the CCR results were consistent and in-line with results obtained using classical

stable population mathematics.

Reason # 4. It Is a Great Method for Doing Multi-race Population

Forecasts The 2000 census was the first to allow respondents to list themselves

as belonging to one or more racial categories, as a result racial data in and after the

2000 census are inconsistent with racial data prior to 2000. In addition, racial

classifications from the decennial census and America Community Survey are not

completely consistent with the classification used for vital statistics data, making it

difficult to develop reliable estimates of the components of change for racial and

ethnic groups. Because it is based solely on data for two age distributions, the CCR

method avoids these complications and provides a viable alternative to the full

cohort-component models for forecasts of race, especially for forecasts of the multi-

racial population (Swanson 2013). Given that the U.S. census only started counting

multi-race people in 2000, it would be very difficult, for example, to construct a

pre-2000 estimate of a given multi-race population in the absence of a CCR method

backcast. Such an example is shown in Chapter 10 where we used the CCR method

to estimate the 1990 multi-racial population in California’s Riverside and San

Bernardino counties (combined). Also, as mentioned under Reason # 9, Swanson

(2016) used reverse CCRs and forward CCRs to reconstruct both the Hawaiian and

part-Hawaiian populations by age of Hawaii from 1778 to 2010 and to provide a

forecast of these populations by age to 2030.

Reason # 3. With Lagged Regression Models, It Can Provide Forecast

Intervals In Chapter 6, the CCR method in conjunction with lagged regression

models was used to generate formal measures of uncertainty (i.e., forecast intervals)

for forecasts by age and for the total population for four states, Georgia, Minnesota,

New Jersey, and Washington. The forecast intervals generated for every 10-year

period from 1930 to 2010 were found to be both reasonable and informative.

Reason # 2. It Is a Re-Expression of the Fundamental Demographic

Equation As noted by Land (1986), any quantitative approach to forecasting is

constrained to satisfy various mathematical identities. Accordingly, a demographic

approach should ideally satisfy demographic accounting identities, which are

summarized in the identity known as the fundamental demographic equation:

Pt ¼ P0 + Births – Deaths + In-migrants – Out-migrants. The Appendix shows

that the CCR method does, in fact, satisfy the fundamental demographic equation,

which provides the theoretical foundation that connects it to the Life Table

(Chapter 11) and Stable Population Theory (Chapter 12). This foundation also

facilitates the ability to decompose differences between CCRs into meaningful

factors (Chapter 13) and provides a conceptual basis for the substantive interpreta-

tion of CCRs and their characteristics (Chapter 1).
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Reason # 1. The Number One Reason Is That It Is Easy to Explain

and Implement As discussed throughout this book, the CCR Method can be

used in a variety of situations with minimal data requirements and, as such,

comes with an inherently high level of utility (see Chapter 15). The minimum

data needed is simply population data by age at two censuses. More detail is easily

added to yield more detailed results as is the case with multi-race projections.

One of the authors of this book (Swanson) was engaged as an expert witness in a

court case that involved population and enrollment projections for which he used

the CCR method. It made an economist serving as the opposition’s expert witness
grumble that the method was so simple that one of his children could understand

and operate this technique. The US Federal Judge hearing the case understood the

method and how it operated as well. The side the economist was representing lost

the case (Thomas 2012). We would like to think that Hamilton and Perry (1962) and

Hardy and Wyatt (1911) would be pleased at the Judge’s decision.
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Appendix

Cohort Change Ratios and the Fundamental Demographic
Equation

It is important that a demographic technique satisfy various mathematical identities

and, in particular, the demographic accounting identity known as the fundamental

demographic equation:

Ptþk ¼ Pt þ Births� Deathsþ In-migrants� Out-migrants: ðA:1Þ

This equation states that the population at a given point in time, Pt+k, must be

equal to the population at an earlier time, Pt, plus the births and in-migrants and

minus the deaths and out-migrants that occur between time ¼ t and time ¼ t + k.
The Cohort Change Ratio method moves a population by age from time t to time

t + k using cohort-change ratios (CCRs) computed from data in the two most recent

censuses. It consists of two steps. The first step uses existing data to develop CCRs

and the second step applies the CCRs to the cohorts of the launch year population

to move them into the future. The formula for the first step, the development of a

CCR is:

nCCRx, t¼nPx, t=nPx�k, t�k ðA:2Þ

where,

nPx,t is the population aged x to x + n at the most recent census (t),

nPx-k,t-k is the population aged x–k to x–k + n at the 2nd most recent census (t–k),
and

k is the number of years between the most recent census at time t and the one

preceding it at time t–k.
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The basic formula for the second step, moving the cohorts of a population into the

future is:

nPxþk, tþk ¼ nCCRx, t � nPx, t ðA:3Þ

where,

nPx+k,t+k is the population aged x + k to x + k + n at time t + k, and

nCCRx,t and nPx,t are as defined in Eq. (A.2).

In terms of the CCR Method satisfying the fundamental demographic equation, let

nCCRx, t ¼ ðnPx�k, t�k þ B� Dþ I� OÞ=ðnPx�k, t�kÞ ðA:4Þ

where,

nPx-k,t-k is the population aged x–k to x–k + n at the 2nd most recent census (t-k),
B ¼ Births between time t–k and t
D ¼ Deaths between time t–k and t
I ¼ In-migrants between time t–k and t, and
O ¼ Out-migrants between time t–k and t. Since,

nPxþk, tþk ¼ ððnPx�k, t�k þ B� Dþ I� OÞ=ðnPx�k, t�kÞÞ � ðnPx, tÞ: ðA:5Þ

then,

nCCRx, t ¼ ðnPx�k, t�k � Dþ I� OÞ=ðnPxþk, tþkÞ, ðA:6Þ

where, x + k > ¼ 10.

Thus, we see that the CCR method expresses the individual components of

change—births, deaths, and migration—in terms of Cohort Change Ratios. As

such, it satisfies the fundamental demographic equation.
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