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Foreword

What do these things have in common: school enrollment; persons with mobility
limitations; the prevalence of obesity, diabetes, and cardiovascular disease; the size
and composition of the civilian labor force; alcohol and cigarette consumption; and
the number of households and housing units? Answer: they can all be analyzed,
estimated, and projected using cohort change ratios.

A cohort is a group of people who experience the same demographic event
during a given period of time, and a cohort change ratio (CCR) measures changes in
cohort size over time. CCRs frequently focus on age cohorts but can be calculated
for other types of cohorts as well, such as people starting college or getting married
in the same year. They are often broken down by sex, race, ethnicity, or other
demographic characteristics and can be used for a wide variety of purposes.
Common uses include constructing population estimates by age, sex, and race;
forecasting school enrollments by grade; and projecting the number and character-
istics of people living in a particular city, county, or state. CCRs are conceptually
simple but analytically powerful, and their minimal data requirements mean they
can be applied at almost any level of geography.

This book presents an in-depth look at the construction and use of CCRs. It goes
beyond previous treatments of this topic in several ways. It discusses modifications
that can be made to a given set of CCRs, such as adjusting them to reflect the
continuation of historical trends, calculating averages based on several sets of
CCRs, and developing synthetic CCRs that incorporate information from other
geographic areas. It describes techniques for splitting broader age groups into single
years of age and for interpolating values between two points in time. It gives many
step-by-step examples showing how CCRs can be used to construct different types
of estimates and projections. It provides empirical evidence on the accuracy of
estimates and projections made using different techniques or for places with
differing characteristics. Its extensive list of references and websites makes it
easy for readers to delve more deeply into specific aspects of the broader topic
(the instructions for accessing data from American Factfinder are particularly
helpful).



vi Foreword

Applied demography is often defined as the use of demographic methods and
materials for decision-making purposes. Its basic objective is to “get more bang for
the buck” or to accomplish a given task in the shortest possible time and for the least
possible cost. CCR estimation and projection models can play an important role in
this regard because they have relatively low costs and small data requirements and
are fairly simple to apply. In contrast, full-blown cohort-component models are
more complex, costly, and data-intensive. When time is short and budgets are tight,
this is an important advantage of CCR models. In terms of accuracy, CCR models
have generally been found to perform as well as full-blown cohort-component
models in most circumstances.

Cohort Change Ratios and Their Applications is a highly practical book, helping
practitioners undertake a variety of projects and deal with the thorny issues that
often complicate seemingly simple tasks. But it is more than a guidebook. It also
investigates topics such as using CCRs to illustrate the findings of stable population
theory, calculating life expectancy at birth, and examining the relationship between
survivorship and net migration. It discusses the use of spatial weighting to adjust
CCRs and describes a technique for constructing measures of uncertainty for CCR
projections. This book’s treatment of these topics takes CCR models well beyond
their usual applications.

The authors are eminently qualified to write this book, given their broad aca-
demic training, deep knowledge of demographic data and methods, and many years
working in academic, business, and government settings. They have extensive
hands-on experience dealing with CCR models and their clear understanding of
the issues is fully evident. This book promises to be a valuable addition to any
demographer’s or planner’s library.

University of Florida, Stanley K. Smith
Gainesville, FL, USA
December 2016



Preface

Like many demographers our first exposure to the cohort change ratio (CCR) was as
a census survival rate, which can be used as a measure of mortality in places lacking
good vital statistics. In places with limited migration, census survival rates are a
very good approximation to life table survival rates. We were also taught that the
cohort-component method was the de facto standard for producing estimates and
forecasts by age, sex, and other demographic characteristics. Once we finished our
education and entered the field, it quickly became apparent that implementing the
cohort-component method in places lacking good vital events and migration infor-
mation was difficult, if not impossible. At the same time there was a rising and
seemingly insatiable demand for small area (especially subcounty) estimates and
forecasts of demographic characteristics. As a result and for many years, we have
successfully used the Hamilton-Perry method (H-P) based on cohort change ratios
to develop such estimates and forecasts for a wide range of geographic areas both
inside and outside of the United States. The H-P method has gained acceptance as
research has demonstrated its practical value and accuracy in estimating and
forecasting population.

While estimation and forecasting has been the main use of the H-P method, over
the past few years we have been investigating potential refinements to this method
as well as other applications for the CCR including stable population analysis and
estimating historical populations. The results of this research have mainly been
presented at professional conferences and to date in only one publication. We
decided it would be worthwhile to write a book that pulls together both published
and unpublished research in one place to present a unified story of the CCR and
to describe the various ways it can be used in both academic and applied demog-
raphy. To our knowledge, this is the first book focused on the CCR. We had three
goals in mind when writing this book: (1) enhancing the reputation and value of the
CCR as being more than a second class citizen to its more widely valued cohort
component method, (2) serving as a platform for future research into uses and
applications of the CCR, and (3) providing a reference guide for those wanting to
implement CCR applications.

vii
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In terms of cooperation, we want to thank Dr. Frank Trovato for permission to
use a 2012 article published by Swanson and Tedrow in Canadian Studies in
Population as the basis for Chapter 11. Similarly, the general idea found in
Chapter 12 is based on a chapter by Swanson, Tedrow, and Baker in Dynamic
Demographic Analysis (2016), a book edited by Robert Schoen. Materials in
Chapter 6 are taken from a 2013 paper by Swanson and Tayman, which appears
in Proceedings of the 6th EUROSTAT/UNECE Work Session on Demographic
Projections (2014), edited by Marco Marsili and Giorgia Capacci. Materials in
Chapters 5, 10, and 16 come from papers presented at various conferences, includ-
ing those of the British Society for Population Studies, the Canadian Population
Society, and the Southern Demographic Association. We are grateful for the
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Chapter 1
Introduction

1.1 Why a Book on Cohort Change Ratios?

Why write a book about cohort change ratios (CCRs)? The answer is that CCRs
have a wide range of uses and a high level of utility, features useful to applied
demographers but which we believe have been largely overlooked. So, this book is
aimed at showing how cohort change ratios can deliver a wide range of timely and
cost-effective demographic information with a good level of precision. The book is
primarily designed for use by applied demographers, but planners and others who
generate and use demographic information to guide decision-making and policy in
both the private and public sectors should find it both informative and accessible.
The book also can be used in conjunction with a course on demographic methods or
as a supplement from which chapters can be selected to fit into a number of courses,
including applied demography, demographic methods, business forecasting, eco-
nomic forecasting, and market research, among others. At the end of this chapter,
we discuss its potential classroom use in more detail.

Although the general idea of a CCR has been around for at least 100 years
(Hardy and Wyatt 1911) and it has been widely used to generate population fore-
casts since their “re-introduction” by Hamilton and Perry (1962), CCRs have
largely remained a tool of applied demographers who generate population forecasts
(Smith et al. 2013: 176-181). We started discovering (or more likely,
re-discovering) more of their uses and features because many projects we have
worked over the years called for techniques and data that were not generally found
in the applied demographer’s tool kit. Because we were familiar with them in the
forecasting context, it did not take long to realize that they could be used more
broadly (Swanson and Tayman 2012: 201-204). The more we used CCRs, the more
we learned about their features, which revealed even more uses and features to us.

Before we jump into descriptions of these uses and features, we need to provide
some background. Thus, in this chapter we first describe what cohorts are and give a
brief introduction to their uses in sociology and demography. We then describe

© Springer International Publishing AG 2017 1
J. Baker et al., Cohort Change Ratios and their Applications,
DOI 10.1007/978-3-319-53745-0_1



2 1 Introduction

CCRs and related measures and give an idea of their applications. Finally, we
provide an outline of the book along with some suggestions about how it might be
read and also how it might be used in the classroom.

1.2 Cohorts and Their Analyses

A cohort is a group of people who experience the same demographic event during a
particular period of time such as their year of birth, marriage, or death (Swanson
and Stephan 2004: 755). Cohorts typically are constructed using an “initiating”
signal event, such as birth, but they also can be constructed using a “terminating”
signal event, such as death (Swanson 1986). Cohorts also can be “synthetic.” That
is, they can be an analytic construct, rather than a set of empirical observations. The
period life table, for example, can be viewed as a synthetic cohort (Kintner 2004:
306-307).

Norman Ryder (1951, 1965) is usually credited with establishing the use of a
cohort as a unit of analysis and he did much to deserve this credit, especially in
regard to the study of fertility (Quinones 2010). However, others preceded him in
using cohorts as a unit of analysis, notably in regard to the study of mortality
(Dublin et al. 1949: 174-182).

Today, cohort analysis is widely used and not only in academic circles (Ahlburg
1986, Berger 1985, Carlson 1992, Easterlin 1987). It has found a home, for
example, in the private sector, where it is used to study consumer behavior (Martins
et al. 2012: 169-196), often in the form of defining first-time purchasers of a
product or service as a cohort and following it in order to assess cumulative lifetime
value.

Another use of a cohort as a unit of analysis is found in the construction of a
“cohort change ratio,” which was described as early as 1911 (Hardy and Wyatt
1911) and actually first specified and used by Hamilton and Perry (1962). This
methodological and conceptual construct has gained traction in the field of popu-
lation forecasting, especially for small areas (Smith et al. 2013: 176—-181; Swanson
and Tayman 2014; Swanson et al. 2010).

1.3 The Cohort Change Ratio

Cohort change ratios (CCRs) are found throughout this book, so it is appropriate to
discuss this concept here. A cohort change ratio (CCR) is typically computed from
age-related data in the two most recent censuses:

nCCRx,t - an,l/anfk,tflv (11)

where,



1.3 The Cohort Change Ratio 3

#Py. 1 is the population aged x to x + n at the most recent census (f),

#Px—k. —i 18 the population aged x—k to x—k + n at the 2nd most recent census (+—k),
and

k is the number of years between the most recent census at time ¢ and the one
preceding it at time (t—k).

As implied by Eq. 1.1, a cohort change ratio is not typically computed for a single
cohort, but for all cohorts found in two successive census counts.

Given the nature of the CCR in Eq. 1.1, the youngest 5 year age group for which
a CCRs numerator can be constructed is 10—14 if there are 10 years between
censuses. That is, we can construct the denominator for this cohort aged 10-14
using age group 0—4 from the census taken 10 years earlier. By taking the ratio of
those aged 10-14 in the most recent census to those aged 0—4 in the preceding
census, we have a CCR. However, we cannot construct a CCR using either those
aged 0—4 or those aged 5-9 in a given census as the numerator because the members
of these two respective cohorts are not found in the preceding census, given
10 years between censuses. To analyze age groups younger than ten in a given
application, a child-adult ratio (CAR) can be used. This ratio, computed separately
for ages 0—4 and ages 5-9, relates young children to adults in the age groups most
likely to be their parents (Smith et al. 2013: 178). Chapter 4 discusses other
approaches for dealing with these age groups.

For the terminal, open-ended age group (e.g., ages 75 years and older), one uses
the same approach found in life table construction (Smith et al. 2013: 178). As such,
the CCR for a terminal, open-ended age group differs slightly from those for the
closed age groups beyond age 10 preceding it. If, for example, the final closed age
group is aged 70-74, with persons aged 75 years and older as the terminal open-
ended age group, calculating the CCR7s, , requires the summation of the three
oldest age groups (65—69, 7074, and 75 years and older) to get the population age
65 years and older at time —k:

CCR75 = P75t/ Pes,i—k- (1.2)

Table 1.1 provides an example of a complete set of CCRs for the total population
of Riverside County, California between 2000 and 2010.

In viewing Table 1.1, recall that the CCRs for those aged 0—4 and 5-9 are
actually CARs computed from the 2010 census as follows: sCARy,
2010 = 5P02010/15P20, 2010 @nd sCARs 2010 = 5Ps, 2010/15P2s, 2010- That is, the
CAR for those aged 0—4 in 2010 (0.37171) is found by dividing the number of
persons aged 04 (162,438) by the number of adults aged 20-34
(154,572 4+ 143,992 + 138,437) and the CAR for those aged 5-9 in 2010
(0.39184) is found by dividing the number of persons aged 5-9 (167,065) by the
number of adults aged 25-39 (143,992 + 138,437 4 143,992). We see the CCRs
vary from a low of 0.20139 for the cohort of people aged 75 years and older in 2010
(found by dividing the number aged 75+ in 2010 by the number 65+ in 2000) to a
high of 1.50517 for the cohort of people aged 35-39 in 2010 (found by dividing the
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Table 1.1 Total population CCRs, Riverside County, California, 2000-2010

Population

Age 2000 2010 CCR*

04 121,629 162,438 0.37171
5-9 139,468 167,065 0.39184
10-14 133,886 177,644 1.46054
15-19 119,725 187,125 1.34171
2024 96,374 154,572 1.15450
25-29 95,621 143,992 1.20269
30-34 108,602 138,437 1.43646
35-39 124,260 143,926 1.50517
40-44 117,910 149,379 1.37547
45-49 96,484 152,722 1.22905
50-54 79,538 140,016 1.18748
55-59 61,880 114,765 1.18947
60-64 54,046 98,974 1.24436
65-69 52,309 78,495 1.26850
70-74 50,845 62,103 1.14908
75-79 44,184 49,003 0.93680
80-84 27,542 36,793 0.72363
85-89 14,399 22,399 0.50695
90+ 6,685 9,793 0.20139
Total 1,545,387 2,189,641 n/a

Source: U.S. Census Bureau (http://factfinder2.census.gov)
*Ages 0-4 = Po_4./15P20.

Ages 5-9 = Ps_g,/15P2s,

Ages 10-89 = Py, 10.4/Px_10

Ages 90+ = Poo, /Pgo+.c—10

number aged 35-39 in 2010 by the number aged 25-29 in 2000). CCRs are never
less than 0.00 and in principle can become very high.

A CCR in excess of 1.00 means that net in-migration occurred over the period
between the two census counts used to construct it. For example, the CCR of
1.50517 for those aged 35-39 in 2010 means that there was net in-migration
between 2000 and 2010 for those who were aged 25-29 in 2000. As you can see
by perusing Table 1.1, all of the CCRs are higher than 1.00 for those aged 10-14 in
2010 to those aged 70-74 in 2.010. This indicates a substantial net in-migration
occurred for these age groups. A CCR between 0.00 and 1.00 can imply net
out-migration, mortality in excess of net in-migration or a combination of the
two. CCRs that are less than 1.00 for younger age groups (i.e., those aged less
than 55 in the most recent census) indicate net out-migration because the effect of
mortality is low. CCRs less than 1.00 for older age groups (i.e., those aged 75 years
and older in the most recent census) typically indicate the effects of mortality
because migration is often low among these age groups. Given this, it is noteworthy
that the age groups in Riverside County from 50 to 54 through 70 to 74 in 2010 all
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show CCRs in excess of 1.00 indicating volumes of net in-migration sufficient to
offset the effects of higher mortality found at these ages.

As can be seen from Table 1.1, the data needed to assemble a set of CCRs is
relatively easy to obtain and the calculations are easy to do. We have used census
data to develop the example, but we could have used administrative records or
survey data just as easily. The major requirement is that the width of the age groups
for which CCRs are desired needs to be consistent with the length of time between
the two points in time from which the input data are assembled. In the case of
Table 1.1, we used 5 year age groups which are consistent (evenly divisible by) with
the 10 years between the two points in time. We could have used 10 year age groups
just as easily. With the exception of the terminal, open-ended age group (e.g.,
85 years and over), the remaining age groups should all be of the same width even if
they are consistent with the length of time between the two sets of data.

However, we could not have directly assembled CCRs if we used 5 year age
groups and the data were taken from observations only 2 years apart. Situations
where the width of the age group is not consistent with the length of time between
the two sets of data can be accommodated, but they require “age splitting” (Judson
and Popoff 2004) and re-assembly of the results into age groups that are consistent
with the length of time between the two sets of data. For example, it is not
uncommon to encounter 5 year age groups except for those between ages 15 and
24, where they may be tabulated, for example, as 15-18, 19-20, and 21-24. In such
a case, age group 19-20 would have to be split such that those aged 19 are separated
from those aged 20 so that the former could be added to those aged 1518 and the
latter to those aged 21-24, forming age groups 15-19 and 20-24, respectively.
Fortunately, age related data provided by agencies in most countries are consistent
with the length of time between two successive data sets, avoiding the need for age
splitting and data re-assembly.

One feature of CCRs that is implicit in the preceding discussion is that they yield
patterns representing demographic change. If, for example, the CCRs for those aged
10—14 are above 1.00 (indicating net in-migration), there will be one or more CCRS
above 1.00 in the age groups that are likely to represent the parents of those aged
10-14. With the exception of special circumstances such as forced migrations,
children move with their parents. CCRs also form broader patterns, usually asso-
ciated with geography. For example, areas representing urban centers often have
CCRs above 1.00 for those of college age and CCRs less than one for those of post-
college age. In many respects, graphs of a full set of CCRs by age for urban,
suburban, and rural areas can be seen to fit into net migration typologies similar to
those developed by Pittenger (1974).

As suggested earlier, cohorts can be defined by criteria other than age. Some-
times the criteria are associated with age, such as K-12 school enrollment by grade
or year of high school graduation. However, it is always the case that once a cohort
has been defined at a given point in time, one can also determine age. This is a direct
result of what is known as the “age-period-cohort” issue, whereby having defined
two of the three, the third is determined (Bloom 1987). This can be illustrated by the
following equation:
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p=a+c (1.3)
where,
p = period,
a = age, and
¢ = cohort.

As an example of Eq. 1.3, consider a person who is 50 years of age and who was
part of the 1966 birth cohort. Knowing these two elements (@ and c, respectively)
we can determine that the period (p) in question is 2016. Similarly, if we know that
the period is 2016 and that a person was part of the 2000 birth cohort, then we know
the person is 16 years of age.

It is worthwhile to note that one could calculate a “Cohort Change Difference”
as follows:

nCCDx,t = an,l - an—k,t—k- (14)

where,

»Py. ¢ is the population aged x to x + n at the most recent census (f),

#Px_k. +—r 1s the population aged x—k to x—k + n at the 2nd most recent census
(t—k), and

k is the number of years between the most recent census at time ¢ and the one
preceding it at time —k.

Unlike a CCR, a CCD has no lower boundary. That is, it can become negative, not
bounded on the lower end by zero. In terms of comparisons, when a CCR is greater
than 1.00, its corresponding CCD will be positive and when a given CCR is less
than 1.00, its corresponding CCD will be negative (less than zero). Given this and
other properties (e.g., neither division nor subtraction is associative and commuta-
tive in terms of their mathematical properties), there is no major advantage in using
a CCD compared to its corresponding CCR. However, the conventional approach
that can be directly traced to Hamilton and Perry (1962) is to use a CCR.

1.4 Reverse CCRs

As illustrated in Chapter 10, it is possible to construct CCRs that go backward in
time. Not surprisingly, these are known as Reverse CCRs (RCCRs) and can
generally be described as:

nRCCRxfk,tfk - anfk,tfk/an,t (15)

where,
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#Py 18 the population aged x to x + n at the most recent census (f),

#Px—rk.r—i 18 the population aged x—k to x—k + n at the 2nd most recent census (1—k),
and

k is the number of years between the most recent census at time ¢ and the one
preceding it at time 7—k.

As is the case with a CCR, there are special conditions that need to be taken into
account when calculating an RCCR, which are discussed in Chapter 10. However,
there is no major reason why a Reverse Cohort Change Difference could not be
computed and used, other than following convention.

1.5 Census Survival Ratios

A Census Survival Ratio (CSR) is a special case of a CCR where 0 < ,,CSR, < 1.0.
With the upper limit of a CSR established as 1.0, we interpret that to mean that no
migration is present. Although the lack of migration in a population is uncommon,
non-migration does occur (or nearly so) in some actual populations; and it is an
important idea in the analysis of mortality via a life table, whereby a CSR can be
viewed as the probability of a member of a given cohort surviving into the future.
These and related issues are covered in detail in Chapter 11.

1.6 Some Applications of Cohort Change Ratios

As you will see in this book, cohort change ratios (CCRs) have a wide range of
applications. Many applications relate to the construction and evaluation of popu-
lation forecasts and current and historical population estimates." CCRs are very
valuable when one wants to forecast or estimate the population of a small area, such
as a census tract or school district, and other sub-county units (e.g., townships, fire
districts, legislative districts), or statistical geographies (e.g., block group, block).
Their value stems from the fact that there is a minimal amount of input data
required to generate them and the forecasts and estimates they are used to make.
Small area population projections and estimates are a major staple in both the
private and public sectors (Swanson 2015, Swanson and Pol 2004, Swanson and Pol
2008, Swanson et al. 2010, Yusuf and Swanson 2010). Private sector uses include
determining housing demand, business site location, market valuation, assessing
profitability, and assembling consumer profiles. Public sector uses are often in

"In general, an estimate refers to information for a current or past date in the absence of a census,
whereas a projection refers to information to a time beyond the current date. A forecast is a
projection deemed or judged most likely to occur. Chapter 2 discusses these concepts in greater
detail.
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regard to transportation and strategic planning, land use zoning, and economic
development.

CCRs are also useful in forecasting school enrollments and as the basis for
forecasting a wide range of social, economic, and health outcome related charac-
teristics. The utility of CCRs extends beyond general estimation and forecasting
applications into other areas of demography such as the determination of life
expectancy and stable population theory. CCRs can also be proxies for survival
rates in places lacking vital statistic data of age-specific mortality as discussed in
Chapter 11.

In summary, we believe that there are several theoretical and practical reasons to
use cohort change ratios as measures of cohort change. One of them is that they are
preferable to cohort change differences in terms of a measure of cohort change.
Among other benefits, ratios will not fall below zero, which is not the case for
differences. This issue is not a minor one, as has been pointed out by Swanson
(2004) in regard to using the ratio-correlation method of population estimation,
which yields a time-based regression model that meets the general condition of
“stationarity,” an important feature in constructing valid and reliable population
models that incorporate temporal change. Another feature of cohort change ratios is
they are non-linear whereas cohort change differences are essentially linear, and
cohort change ratios have a natural affinity to probability and, by extension, to
measures such as the odds ratio and relative risk, issues discussed in Chapter 2.

1.7 About This Book

Now that we know something about CCRs and have an overview of their uses, it is
natural to ask what specifically can be done with them. In providing an answer to
this question, this book is organized into 16 chapters (including this one) along with
two appendices, an author index, and a subject index. Even if you are an experi-
enced demographer, we suggest reading Chapters 2, 3, and 4 before moving on to
the other chapters, which depending on your experience, can be read in any order.
Chapter 2 covers basic demographic concepts and terms while Chapter 3 describes
sources of data that can be used to develop CCRs. Chapter 4 shows how to forecast
the size and composition of a population from two census counts. It is the founda-
tion for the other chapters, which generally progress from basic to more advanced
applications.

Chapter 5 shows how CCRs can be modified in order to more fully capture the
dynamics of demographic change while Chapter 6 describes a method for generat-
ing formal measures of uncertainty for population forecasts made using CCRs.
Using CCRs to develop both short-term and long-term school (K-12) enrollment
forecasts is the subject of Chapter 7. Chapter 8 shows how CCRs can be used to
generate forecasts of a wide range of characteristics of interest (health outcomes,
labor force, and so forth), while Chapter 9 shows how CCRs can be used to generate
population size, composition, and characteristics for a current point in time. In
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Chapter 10, the use of CCRs for purposes of estimation is extended to developing
population size, composition, and characteristics for the past. In Chapter 1, we show
how CCRs can be used to develop a standard demographic measure, life
expectancy.

An advanced application is found in Chapter 12, which applies the CCR
approach to a major canon of formal demography, stable population theory. The
theoretical aspects of CCRs are explored in Chapter 13, which deals with
decomposing the factors making up differences in CCRs. Chapter 14 provides an
overview of how CCRs can used in spatial applications while Chapters 15 and 16
offer summary remarks, with the former providing a discussion of the utility of the
CCR approach and the latter providing concluding remarks, including some ideas
about the future of the CCR approach.

A short, but important, proof is given in the Appendix whereby the CCR
approach is shown to be consistent with the fundamental demographic theorem.
Author and subject indices follow the appendix.

For someone who is interested in using this book in the classroom, it is organized
so that the chapters proceed from basic ideas to applications to advanced applica-
tions, which fits the lecture format for a full term course. The writing style also fits
this approach. In the event it is used as a supplemental textbook, both the organi-
zation and writing style should work for this purpose as well. As a textbook, Cohort
Change Ratios and Their Applications is designed to accommodate the trend
toward graded assignments as a form of student assessment rather than closed-
book and other forms of examinations. The examples in this book can be assigned
to students to replicate as tutorial (non-graded) assignments, with graded assign-
ments being similar but using different data (e.g., a tutorial assignment would
involve forecasting the multi-race population of California, while a graded assign-
ment would involve forecasting the multi-race population of the U.S., for which the
excel file for California can be used as a template for the U.S.). As already noted,
Chapter 3 contains the URL for an online site where you can find excel templates
and files containing the data and computational statements used to generate the
book’s examples.

If used in a class, learning outcomes can be derived from the book’s general
objectives, which are to provide (1) basic demographic and measurement concepts
without requiring prior major demographic, mathematical or statistical skills;
(2) useful analytical frameworks and tools; (3) a basic understanding of demo-
graphic factors that affect a wide range of applications, such as current or future
market size and segments; (4) theoretical and conceptual foundations of the cohort
perspective and its implementation in the form of cohort change ratios; and
(5) examples that can be used as the basis for case studies (Swanson and Morrison
2010).
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Chapter 2
Basic Demographic Concepts

2.1 Introduction

We begin this chapter by discussing estimates, projections, and forecasts and
continue with discussions of the size of the population; its distribution across
geographic areas; its composition (e.g., age, sex, race, and other characteristics);
and changes in population size, distribution, and composition over time. We also
define a number of basic demographic concepts, define some commonly used terms,
describe a number of statistical measures used in demography, and present the
participation rate method for doing forecasts of population-related characteristics.
This chapter is designed to give readers with little training or experience in
demography a brief introduction to the field and sets the stage for the topics covered
in the remainder of the book.

2.2 Estimates, Projections, and Forecasts

An important distinction is made between estimates, on the one hand, and on the
other, projections and forecasts. The most fundamental difference is that estimates
refer to the present or the past while projections and forecasts refer to the future. In
addition, estimates are often based on data for corresponding points in time. For
example, estimates for 2016 made in 2015 can be based on data (e.g., births, deaths,
building permits, school enrollments, and Medicare enrollees) reflecting population
growth through 2015. However, such data do not yet exist for forecasts for 2025
made in 2016.

The distinction between estimates and forecasts is not always clear-cut. Some-
times no data are available for constructing population estimates. For example,
calculations of a city’s age-sex composition in 2016 made in 2015 may have to be
based on the extrapolation of 2000-2010 trends because data series reflecting post-
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2010 changes in age-sex composition may not be available. Should these calcula-
tions be called estimates or forecasts? In this book, we refer to calculations
extending beyond the date of the last observed data point as forecasts or projections
and calculations for all prior dates as estimates.

A population projection is the numerical outcome of a particular set of assump-
tions regarding future population trends (Isserman 1985; Keyfitz 1972; Weeks
2014). Some projections refer to total population while others provide breakdowns
by age, sex, race, and other characteristics. Some focus solely on changes in total
population while others distinguish among the individual components of growth—
births, deaths, and migration. Population projections are conditional statements
about the future. They show what the population would be if particular assumptions
were to hold true, but make no predictions as to whether those assumptions actually
will hold true. Population projections are always “right,” barring a mathematical
error in their calculation, and can never be proven wrong by future events. A
population forecast, on the other hand, is the projection the analyst (i.e., the person
or agency making the projection) believes is most likely to occur in the future.
Unlike projections, forecasts are explicitly judgmental. They are unconditional
statements reflecting the analyst’s views regarding the optimal combination of
data sources, projection techniques, and methodological assumptions, leavened
by personal judgment. Population forecasts can be proven right or wrong by future
events and can be found to have relatively small or large errors.

Demographers have traditionally and typically use the term projection to
describe calculations of the future population. There are several reasons for choos-
ing this terminology. Projection is a more inclusive term than forecast. A forecast is
a particular type of projection; namely, the projection the analyst believes is most
likely to provide an accurate prediction of the future population. Given this
distinction, all forecasts are projections but not all projections are forecasts. Also,
demographers often intend their calculations of future population to be merely
illustrative rather than predictive; projection fits more closely with this intention
than forecast. In this book we use the term forecast when discussing calculations of
future events, in part for simplicity, but also because most users view prognostica-
tion about the future as forecasts (rather than projections) regardless of the intent of
the producer (Smith et al. 2013: 323)

2.3 Demographic Concepts

2.3.1 Size

Population estimates and forecasts start with the same basic consideration as a
census: What is the size of a population? The concept of population size refers to
the number of people residing in a specific area at a specific time (the de jure
approach). According to January 1, 2014 population estimates, Loving County,
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Texas had a population of 82, whereas Harris County, Texas had a population of
4,365,601 (Texas State Data Center 2015). These were the largest and smallest
counties in Texas in terms of population size. However, the concept of population
size can also refer to the number of people actually present in a given area at a given
time (the de facto approach). Under a de facto count, all tourists, business travelers,
seasonal residents, and workers in downtown Boston, MA would be counted along
with usual residents who are also in downtown that day (Swanson and Tayman
2011). Usual residents of downtown Boston who were out of town would not be
counted. De facto population estimates have many uses including dealing with
potential traffic congestion, long commuting times, or disaster and relief activities
to know the number of people that may be affected in an emergency.

The de jure concept is more ambiguous in that it comprises all of the people who
“belong” to a given area by virtue of legal residence, usual residence, or some
similar criterion (Wilmoth 2004: 65). However, the de jure concept is used as the
census definition of population in the United States, Canada, and most other
developed countries and, as such, becomes the dominant concept in population
estimation and forecasting. The methods covered in this book use the de jure
concept. A discussion of methods for estimating de facto populations is found in
(Swanson and Tayman 2012: 313-327).

2.3.2 Distribution

The distribution of a population refers to its geographic location; there are two
major ways in which geographic areas have been identified. The first is the
administrative approach, where areas are defined according to administrative or
political criteria. Examples include states, counties, cities, U.S. congressional dis-
tricts, and a wide variety of state and local administrative and political delineations
(e.g., city council, water, and school districts). For many purposes these are the
most important types of geographic areas that can be defined (Plane 2004). How-
ever, administrative areas also have several limitations. Their boundaries may not
account for important economic, cultural, and social considerations. For example,
Gary, Indiana is administratively distinct from the city of Chicago, Illinois, but it is
economically, culturally, and socially linked to it. Another problem is that admin-
istrative boundaries may not remain constant over time—annexations by a city are a
case in point—and changing boundaries make it difficult not only to make compar-
isons over time, but to produce consistent estimates and forecasts.

One way to avoid some of the limitations imposed by administrative definitions
is to define geographic areas specifically for purposes of identifying areas that are
economically, socially, and culturally linked. These so-called statistically defined
areas are used in many countries, including the United States (Plane 2004).

In the United States, important statistical areas are based on geography used in
the census—blocks, block groups, and census tracts. Blocks are small areas
bounded on all sides by visible features such as streets or railroad tracks or by
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WWW.CEnsus.gov/geo/www))

invisible boundaries such as city or township limits; they are the smallest geo-
graphic unit for which census data are tabulated. Block groups are clusters of blocks
and generally contain 250-550 housing units; block groups do not cross census tract
boundaries. Census tracts are small, relatively permanent areas that do not cross
county boundaries. These areas generally contain between 2,500 and 8,000 persons
and are designed to be relatively homogeneous with respect to population charac-
teristics, living conditions, and economic status. Figure 2.1 shows a hierarchy of
geographic areas built from the 2010 U.S. census geography. Geographic areas may
work in a hierarchical fashion, with smaller areas nesting in larger ones (e.g., census
tracts within counties, counties within states, and states within the U.S.), while
others like Core Based Statistical Areas do not cover all of the U.S.

Geographic boundaries can also be defined according to other criteria. In the
United States, for example, one can obtain census data for Postal ZIP code areas and
data for market areas that are important for businesses. It is not uncommon to
produce estimates and forecasts for a combination of administrative and statistical
areas. Figure 2.2 shows an example of one such system used in San Diego County,
California. Master Geographic Reference Areas combine census geography,
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political boundaries, and zip codes into a spatially detailed spatial system that
supports a wide range of uses.

2.3.3 Composition

Composition refers to the characteristics of the population. For population esti-
mates and forecasts the most commonly used characteristics are age, sex, race, and
Hispanic origin. For many purposes, age is the most important demographic charac-
teristic because it has such a large impact on so many aspects of life, for individuals as
well as for society as a whole. The age structure of a population affects its birth,
death, and migration rates, and the demand for public education, health care, and
nursing home care. It also impacts the housing market, the labor market, and the
marriage market. No other characteristic is more valuable for a wide variety of
planning and analytical purposes than the age composition of the population (Smith
etal. 2013: 23). Sex composition also is important for many purposes. It is often used
in combination with age to show a population’s age-sex structure.

The age-sex structure is often illustrated using population pyramids (Hobbs
2004: 161-166). Population pyramids are graphic representations showing the
number (or proportion) of the population. The basic pyramid form consists of
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bars, representing age groups in ascending order from the lowest to the highest,
pyramided horizontally on one another. The bars for males are given on the left of a
central vertical axis and the bars for females on the right of the axis. The charac-
teristics of pyramids (e.g., the length of a bar compared to others, the steepness and
regularity of its slope) for different populations quickly reveal any differences in the
proportion of the sexes, the proportion of the population in any particular age class
or classes, and the general age structure of the population.

Figure 2.3 shows pyramids for four populations with different age—sex struc-
tures. The pyramid for Yemen has a very broad base and narrows very rapidly. This
pyramid illustrates an age—sex structure with a very large proportion of children, a
very small proportion of elderly persons, and a low median age. It reflects a
“young” population with relatively high fertility rates. The pyramid for Japan is
very different. It has a relatively narrow base and a somewhat larger middle section.
It illustrates an age—sex structure with a very small proportion of children, a very
large proportion of elderly persons, and a high median age. It reflects an “old”
population and relatively low fertility rates. The pyramid for Singapore has a very
narrow base indicative of its very low fertility rate (less than one child per woman
on average), but it has relatively few elderly and a large number of young adults
aged 20 to 34 due to the migration of workers into this country. The U.S. pyramid
has a fairly uniform look for the population aged 0-59 with variations due to the
large baby boom cohort (aged 50-59) that was followed by the much smaller baby
bust cohort (aged 35-49), and then the larger baby boomlet cohort (aged 20-34).

One pattern is the same in every country shown in Fig. 2.3. Females outnumber
males at the older ages due to the cumulative effect of higher male mortality rates at
virtually every age (Wisser and Vaupel 2014). For the population aged 65 years and
older in 2015, the relative number of males to females ranges from 77.1 males per
100 females in Japan to 86.6 males per 100 females in Yemen (U.S. Census Bureau
2015).

Race and ethnicity are two other widely used demographic characteristics. For
example, the U.S. Census Bureau uses five broadly defined racial categories: African
American, American Indian or Alaska Native, Asian, Native Hawaiian or other
Pacific Islander, and White. Starting with the 2000 census, there was an important
change to the collection of racial data. The Census Bureau for the first time allowed
respondents to list themselves as belonging to more than one racial category; prior to
that time, respondents could list only a single category (McKibben 2004). In addition
to race, the census uses an ethnic dimension, with two general categories: Hispanic
and non-Hispanic. It should be noted that “Hispanic” is not a racial category; that is,
people are classified both by race and by Hispanic origin. Composition also can refer
to other characteristics such as employment and marital status, income, education,
and occupation (O’Hare et al. 2004).

As illustrated in Table 2.1, Hispanics and race groups often have different
demographic characteristics and patterns of growth that influence population esti-
mation and forecasting. Between 2000 and 2010 in Los Angeles County, California,
the percentage change in the Hispanic population is more than triple that of the
overall population. Consequently, the Hispanic share of the total population
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Fig. 2.3 Percent distribution by age and sex of the 2015 population of Japan, Singapore, United
States, and Yemen (Source: U.S. Census Bureau International Data Base 2015)

increased from 44.5% in 2000 to 47.7% in 2010. Asians are the fastest growing race
group, increasing by 18.4%, and their share of the total population rose from 11.9%
in 2000 to 13.7% in 2010. Almost 2,141,000 people in Los Angeles County
identified themselves as belonging to two or more race groups in 2010, almost
100,000 less than 10 years prior. Blacks, American Indians, and Native Hawaiians
all lost population during the first decade of the twenty-first century in Los Angeles
County. Non-Hispanic Whites, another widely used distinction, lost over 230,000
persons between 2000 and 2010, causing its share of the total population to drop
from 31.3 to 27.8%.

Non-Hispanic Whites have the oldest age structure with a median age of
44.5 years in 2010, almost 16 years older than the Hispanic median age (see
Fig. 2.4). Asians also have a relatively old population with a median age
approaching 40 years. Other races and two or more races have the lowest median
ages (27.4 and 25.2, respectively), indicative of their younger age structures.

2.3.4 Change

Population change is measured as the difference in population size between two
points in time. A point in time can correspond to the date of a census or to the date
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Table 2.1 Population by race and Hispanic origin, Los Angeles County, California, 2000
and 2010

Change
2000 2010 Number Percent
All Races 9,519,338 9,818,605 299,267 3.1%
White 4,637,062 4,936,599 299,537 6.5%
Black or African American 930,957 856,874 —74,083 —8.0%
American Indian and Alaska Native 76,988 72,828 —4,160 —5.4%
Asian 1,137,500 1,346,865 209,365 18.4%
Native Hawaiian and Other Pac. Is. 27,053 26,094 —959 —3.5%
Other Races 2,239,997 2,140,632 —99,365 —4.4%
Two or More Races 469,781 438,713 —31,068 —6.6%
Hispanic or Latino 4,242.213 4,687,889 445,676 10.5%
Non-Hispanic White 2,959,614 2,728,321 —231,293 —7.8%
Source: U.S. Census Bureau (http://factfinder2.census.gov)
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Fig. 2.4 Median age by race and Hispanic origin, Los Angeles County, California, 2010 (Source:
U.S. Census Bureau, 2010 census (http://factfinder2.census.gov))

of a population estimate. Measures of population change always refer to a specific
population and a specific period of time; in most instances, they refer to a specific
geographic area as well. Population change can also be measured for various
subgroups of the population (e.g., females, Asians, teenagers, etc.), different geo-
graphic areas (e.g., counties, cities), and different time periods (e.g., 2010-2015,
2000-2015). In other words, population change can refer to changes in size,
distribution, or composition, or to any combination of the three.
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Population change can be expressed in either numeric or percentage terms.
Numeric change is computed by subtracting the population at the earlier date
from the population of the later date. A percentage change is computed by dividing
the numeric change by the population at the earlier date and multiplying by 100.
Population change is often expressed in terms of an annual average. Average annual
numeric change is computed by dividing the numeric difference by the number of
years between the two endpoints. Average annual percentage changes or growth
rates can be computed assuming discrete compounding (geometric) or assuming
continuous compounding (exponential).

Measuring population change is simple and straightforward in many instances.
However, changes in geographic boundaries, changes in the accuracy of base data,
and changes in definitions makes measuring change difficult. Consistent measures
of change are possible only if geographic boundaries are constant over time. This is
generally the cases for states and counties, but may not be the case for many
subcounty geographic areas. Changes in definition can also be problematic, such
as comparing race in 1990 (where the respondents could choose only one racial
category) with race in 2000 (where respondents could select multiple race catego-
ries). A more detailed discussion of population change is found in Smith et al.
(2013: 25-27) and Perz (2004).

2.3.4.1 Components of Population Change

There are three components of population change: births, deaths, and migration. A
population grows through the addition of births and migrants moving in, and
declines through the subtraction of deaths and migrants moving out. Understanding
these three demographic processes is essential to understanding the nature and
causes of population change. Fertility is the reproductive performance of a
woman, man, couple, or group; it also is a general term for the incidence of births
in a population or group (Swanson and Stephan 2004: 760). Although fertility rates
are generally low in the United States and other developed countries, they can vary
substantially from place to place and from one race, ethnic or socioeconomic group
within a given country. In 2013, the total fertility rate (average number of children a
cohort of women will have during their lifetime) for states ranged from 1.6 in
Vermont to 2.3 in Utah (Martin et al. 2015: Table 12). Mortality is a general term
for the incidence of deaths in a population or group (Swanson and Stephan 2004:
767). While mortality rates do not vary greatly within high income countries, there
are differences between race, ethnic and socioeconomic groups. In 2011, there was
a 17.3 year difference in life expectancy at birth (average number of years of
remaining life) between Black Males (69.5 years) and Asian Females (86.8 years)
in Los Angeles County, CA (Los Angeles County Department of Public Health
2015).

Migration is a general term for the incidence of movement by individuals,
groups, or populations seeking to make permanent changes of residence (Swanson
and Stephan 2004: 766). It refers to changes in usual place of reference and
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excludes short-term temporary movements such as commuting, visiting friends or
relatives, or taking a business trip. Migration levels and rates can vary considerably
from place to place and from country to country and can undergo large sudden
changes, making migration often the most difficult component of change to esti-
mate and forecast (Smith et al. 2013: 103-104).

Migration can be viewed from several perspectives (Smith et al. 2013: 106—-109).
Gross migration refers to the total number of migrants into or out of an area
(e.g. 500 migrants; 200 in-migrants plus 300 out-migrants). Net migration is the
difference between the two (e.g., a net outflow of 100 persons); it shows the net
effect of migration on the change in population. It is often useful to make the
distinction between migration that occurs within a country and migration that
occurs between countries. Internal or domestic migration refers to changes of
residence within a country, while foreign or international migration refers to
changes of residence from one country to another. The terms in-migrant and
out-migrant refer to domestic migration. People leaving a country are known as
emigrants and those entering a country are known as immigrants.

2.3.4.2 Fundamental Demographic Equation

The overall change in a population is formalized in the fundamental demographic
equation:

P,—P,=B—-D+IM—OM (2.1)

where,

P, is the population at the end of the time period,

P, is the population at the beginning of the time period, and

B, D, IM, OM are the number of births, deaths, in-migrants, and out-migrants during
the time period.'

The difference between births and deaths (B — D) is called natural change coming
from the population itself. It may be either positive (natural increase) or negative
(natural decrease) depending on whether births exceed deaths or deaths exceed
births. The difference between IM and OM reflects the change in population due to
migration and can be either positive or negative depending on whether in-migrants
exceed out-migrants or out-migrants exceed in-migrants. The demographic
balancing equation is a basic formula in demography and has other uses including
deriving estimates of population and net migration (Smith et al. 2013: 30).

To illustrate the fundamental demographic equation, Table 2.2 shows births,
deaths, natural change, and estimates of net domestic and net international migra-
tion from 2010 to 2014 for the 15 counties in Arizona. Natural increase accounts for

'The IM and OM terms include both domestic and foreign migrants. If information is only
available on net migration the /M and OM terms would be replaced by £ NM (net migration).
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Table 2.2 Components of population change, Arizona counties, 2010-2014

Net Migration

Population®  Natural Inter-

Change Increase Births  Deaths Total national.® Domestic
Apache 310 1,974 4,371 2,397 —1,608 49  —1,657
Cochise —3,909 2,040 7,194 5,154 —-5955 1,463 —7418
Coconino 3,245 4,218 7,353 3,135 —1,134 503 —1,637
Gila —478 —385 2,650 3,035 —120 119 —239
Graham 737 1,269 2,413 1,144 —543 1 —544
Greenlee 909 263 501 238 644 71 573
La Paz —258 —66 841 907 —166 11 -177
Maricopa 269,834 118,394 232,032 113,638 146,372 38,922 107,450
Mohave 3,175 —2,949 8,005 10,954 5464 2 5,462
Navajo 607 3,070 7,011 3,941 —2,465 148 —-2,613
Pima 24,253 13,771 51,183 37,412 9,905 9,141 764
Pinal 26,148 9,435 20,023 10,588 14,917 3,088 11,829
Santa Cruz —725 1,693 2,876 1,183 —2,485 339  -2,824
Yavapai 7,829 -3417 7,763 11,180 10,862 637 10,225
Yuma County 7,497 7,713 13,509 5,796 —840 1,999 —2,839
Arizona 339,174 157,023 367,725 210,702 172,848 56,493 116,355

Source: U.S. Census Bureau, Population Division, March 2015. (http://www.census.gov/popest/
data/counties/totals/2014/CO-EST2014-02.html)

“Total population change includes a residual. This residual represents the change in population that
cannot be attributed to any specific demographic component

PNet international migration for the United States includes the international migration of both
native and foreign-born populations. Specifically, it includes: (a) the net international migration of
the foreign born, (b) the net migration between the United States and Puerto Rico, (c) the net
migration of natives to and from the United States, and (d) the net movement of the Armed Forces
population between the United States and overseas.

48% of the population change in Arizona, followed by domestic net migration
(35%) and international net migration (17%). There is substantial variability in the
demographic reasons for population growth among these counties. Eleven counties
show natural increase, while deaths exceed births in Gila, La Paz, Mohave, and
Yavapai Counties. All counties show positive growth due to international migra-
tion, but nine counties (60%) lose population as the result of domestic migration.
Cochise County has the largest loss from domestic migration as well as the largest
loss in total population of any county. In Pima County, the second largest county
and home to Tucson, growth due to international migration is 11 times greater than
the positive growth due to domestic migration. Growth due to domestic migration is
substantially larger than growth due to international migration in Maricopa County,
the largest county and home to Phoenix, and the adjacent Pinal County. The same
pattern is seen in Mohave and Yavapai Counties. In the five counties with positive
natural increase and positive total migration, the share of growth due to natural
increase ranges from 29 to 59%.
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2.4 Statistical Measures

Absolute measures focus on single numbers such as shown in Table 2.2. Relative
measures emphasize the relationship between two numbers; they are typically
expressed as ratios, proportions, percentages, rates, or probabilities. All the relative
measures are similar to each other, but each has a distinct meaning.

2.4.1 Ratios

A ratio is simply one number divided by another. These could be any two numbers
and do not need to have any particular relationship to each other. For example, one
could calculate the ratio of storks to babies, the ratio of sunspots to gross domestic
product, or the ratio of public transportation riders to automobile passengers in a
major traffic corridor. To be useful, a ratio should provide some type of meaningful
information.’

A commonly used ratio in demography is the sex ratio, which is the number of
males divided by the number of females and is usually multiplied by 100. A sex
ratio below 100 indicates an excess of females, while a sex ratio above 100 indicates
an excess of males. Table 2.3 shows that sex ratios by age vary between the United
States, Japan, Singapore, and Yemen in 2015. Sex ratios for ages 0—4 reflect the fact
more males are born than females. Sex ratios at birth typically range from 103 to
106. However, China, India, and some other Asian countries have shown abnor-
mally high sex ratios at birth since the 1980s (Poston and Bouvier 2010: 252). For
example, in 2015, China’s and India’s sex ratios at age O are 114.9and 112.1,
respectively (U.S. Census Bureau 2015). Sex ratios under 100 occur in every
country for the population 60 years and older, with the ratios declining consistently
to ages 85 years and older. The greatest excess of males in the U.S. is in ages 15-24;
in Japan in ages 0-9; in Singapore in ages 15-24; and in Yemen in ages 35-39. In
the U.S. and Yemen, there are more males in ages 25-34 compared to females than
in Japan and Singapore. For ages 50-59 the pattern reverses, Japan and Singapore
have more males and the U.S. and Yemen have more females. In all countries
except Yemen, the total population contains more females than males.

Dependency ratios also are widely used measures in demography (Siegel
2002:12). They measure the pressure of those typically not in the labor force on
the productive (or working-age) population, and are usually split into youth and

2A proportion is a type of ratio where the numerator is a subset of the denominator, such as the
portion of the population aged 65 years and older, males, employed, or married. Proportions have a
range from zero to one. A percentage is a proportion multiplied by 100.
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Table 2.3 Sex ratio by age, Japan, Singapore, United States, and Yemen, 2015

Age U.S. Japan Singapore Yemen
04 104.7 106.0 105.5 103.9
5-9 104.3 104.1 105.6 103.4
10-14 104.3 104.0 108.6 103.1
15-19 104.8 102.8 1134 103.0
20-24 105.6 93.2 106.8 103.0
25-29 103.8 92.7 97.6 102.3
30-34 101.4 90.4 95.5 112.1
35-39 100.1 95.7 95.4 114.4
4044 98.7 96.0 97.6 102.9
4549 98.4 98.1 99.4 92.7
50-54 96.5 102.4 101.3 87.1
55-59 94.6 101.2 101.5 84.7
60-64 91.7 98.9 99.2 88.6
65-69 89.7 93.9 95.7 90.4
70-74 85.7 86.1 89.5 87.0
75-79 80.1 78.9 79.7 83.7
80-84 71.3 72.0 66.8 80.8
85+ 52.9 66.2 43.6 73.6
Total 97.1 96.0 94.3 102.5

Source: U.S. Census Bureau International Data Base (2015)

elderly dependency ratios. The youth dependency ratio (YDR) is the population
aged 18 and younger divided by the population aged 18-64, and the elderly
dependency ratio (EDR) is the population aged 65 and older divided by the
population aged 18-64. There is not universal agreement on the age groups that
defines youth, workers, and retirees. For example, Poston and Bouvier (2010: 245)
use ages under 15 and ages 15-64 to define youths and workers; and Meyers (2007:
46) uses ages 25-64 to define workers. For a discussion of the strengths and
weaknesses of dependency ratios based solely on age, see Donoghue (2003),
Ervik (2009), and Siegel (2002: 595-598).

The last ratio we cover in this chapter is the child-woman ratio (CWR), a
surrogate way to examine the level of fertility, computed by dividing the population
in young ages by the female population in childbearing years. The CWR is usually
computed for ages 0—4 and ages 5-9 by dividing the population in these age groups
by the female population aged 15-44 and 20-49, respectively (Smith et al. 2013:
178). The CWR is influenced by past mortality and migration, as well as by past
fertility behavior. However, the CWR does not require any information on births
making it useful in areas lacking vital statistics information and when making
forecasts with the Hamilton-Perry (H-P) method (see Chapter 4).3

3 Another important ratio used in the H-P method is the cohort change ratio (CCR), which is the
population aged x at time ¢ divided by the population aged x-# at time #-n, where n is the number of
years between the two time points of the population data (e.g., n = 10 if the CCR is based on the
previous two decennial censuses). Chapters 1 and 4 discuss CCRs in detail.
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Table 2.4 Selected demographic ratios, Japan, Singapore, United States,and Yemen, 2015

U.S. Japan Singapore Yemen
Youth Dependency Ratio® 39.8 25.6 30.1 106.8
Elderly Dependency Ratio® 24.4 47.1 12.2 5.7
Child-Woman Ratio, Females® 0.1537 0.0696 0.1165 0.3077
Child-Woman Ratio, Males? 0.1609 0.0738 0.1230 0.3197

Source: U.S. Census Bureau International Data Base (2015)
“Pop < 18/Pop 18-64

"Pop 65+/Pop 18-64

“Fpop 0—4/Fpop 15-44

“Mpop 0—4/Fpop 15—44

Table 2.4 shows considerable variation in the YDR, EDR, and CWR ages 0—4
for United States, Japan, Singapore, and Yemen in 2015. Japan and Singapore have
the lowest YDRs, consistent with their low fertility rates. Strikingly, Yemen has
more children aged 18 and under compared to its working-age population. Not
surprising, the EDR is highest in Japan and lowest in Yemen, reflecting the effects
of low and high fertility rates, respectively. However, Singapore’s EDR is much
smaller than the EDRs of the U.S. and Japan. Despite Singapore’s low fertility rate,
the impact of a high level of immigration of the working-age population is evident
in its EDR. The CWRs correspond with the fertility rates in each country; Yemen
has by far the highest CWRs and the Japan and Singapore have has the lowest
CWRs. In each country, the male CWR is higher than the female CWR, reflecting
the slightly higher likelihood of having a male child.

2.4.2 Rates and Probabilities

A rate is the number of events occurring during a given time period divided by the
population at risk of the occurrence of those events. For example, the death rate is
the number of deaths divided by the population exposed to the risk of dying and the
birth rate is the number of births divided by the population exposed to the risk of
giving birth. Strictly speaking, the population at risk to the occurrence of an event is
the number of person-years of exposure experienced by the population during the
period under consideration (typically one-year) (Newell 1988: 7). It is very difficult
to develop an exact measure of the population at risk to the occurrence of an event
and the mid-period population is often used as an approximation of the population
at risk. This approximation assumes that births, deaths, and migration occur evenly
throughout the year.

Demographers make a distinction between crude rates and refined rates. For
example, the crude birth rate (CBR) is calculated by dividing the number of births
during the year by the mid-year total population. It is often multiplied by 1,000 to
express the CBR as the number of births per 1,000 persons. The crude death rate
(CDR) is similarly defined replacing births with deaths in the numerator. These
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rates are called crude because their denominators are only a rough approximation of
the population at risk. For the CBR, the denominator includes males and females
outside the childbearing years; and for the CDR not everyone in the denominator
has the same chance of dying (i.e., males have higher death rates than females and
older people have higher death rates than younger people). To overcome the
problem with crude rates, rates are refined to reflect specific age-sex groups (racial
and ethnic groups can be used as well). For age groups, the general formula for an
age specific rate is (ASR):

+ASR, = ,E,/.P, (2.2)

where,

x is the youngest age in the age interval,

n is the number of years in the age interval,
E 1s the number of events, and

Py 1s the mid-year population.

For example, if x = 35 and n = 5, the ASR would be based on data for the
population aged 35-39, or if x = 35 and n = 1, the ASR would refer to the
population aged 35.

Figure 2.5 contains age-specific fertility (ASFR) and death rates (ASDR) for the
United States in 1990 and 2013. The age pattern of ASFR has changed from 1990 to
2013. In the earlier year, the highest rates occur in ages 20-29 with a substantial
drop after the age of 30. By 2013, the effects of a drop in the overall fertility level
and of delayed childbearing are evident. The fertility rate for ages 30-34 is now
higher that the rate for ages 20-24 and much closer to the rate for ages 25-29. The
rates for all ages below 30 have declined and the rates for all ages above 30 have
increased over the 23 year period. These changes are reflected in the total fertility
rate, which declined from 2.08 in 1990 to 1.86 in 2013 (Martin et al. 2015).

ASDRs show a J-shaped pattern that reflects relatively high death rates for
newborns, considerably lower rates for young children, slowly increasing rates
for the middle ages, and rapidly increasing rates for the older population. The
pattern of the ASDRs is very similar for the 2 years and is found for virtually all
population and population subgroups throughout the world (Smith et al. 2013: 54).
Death rates in 2013 are lower in every age group compared to the 1990 rates. The
percentage declines range from —11% for ages 85 years and older to —49% for ages
15-19. As a result, the life expectancy at birth for both sexes increased from
75.4 years in 1990 to 78.8 years in 2013 (National Center for Health Statistics
1990, 2015).

In addition to the distinction between crude and age-specific rates, a distinction
is also made between probabilities and central rates. A probability is a special type
of rate that measures the chance or likelihood that a population will experience a
given event over a given time period (Siegel 2002: 11). In a central rate, the
denominator is an area’s population at the midpoint of a time period (typically,
the middle of a year) and the numerator is the number of events occurring in the
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Fig. 2.5 Age-specific birth and death rates, United States, 1990 and 2013 (Sources: National
Center for Health Statistics 1990, 2015)

area during the time period. The denominator is meant to represent the average
population during the time period, or the total number of person-years of exposure
to the risk of an event. The CBR, CDR, and ASR defined above are all central rates.
In a probability, the denominator is the population at the beginning of the time
period and the numerator is the number of events occurring to that population
during the time period (Rowland 2011: 32).

For example, a single-year probability for a death rate can be computed by
dividing the deaths occurring over the year by the population at the beginning of the
year. However, some deaths will be missed for people who leave the area and then
die and deaths will be improperly included for people who died after moving into
the area. Consequently, it is next to impossible to construct true probabilities for
demographic measures and central rates are often used to approximate their prob-
abilities (Smith et al. 2013: 35).
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2.4.3 The Odds Ratio

Given that a Census Survival Ratio (discussed briefly in Chapter 1 and in detail in
Chapter 11) can be defined as the probability of survival, it is natural to ask if it is
related to other measures that are based on probability. One such notable measure is
the “odds ratio,” which provides the odds of an event occurring among those
exposed to a condition that is related to the event in question divided by the odds
of the event in question occurring among those not exposed to the condition. One
example would be the odds of those being diagnosed with asbestos who were
exposed to asbestos relative to those diagnosed with asbestos who were not exposed
to asbestos. The Odds Ratio is defined as:

Odds ratio = (Pe/(1 — P.))/(P/(1 — Py)) (2.3)

where,

P, is the probability (condition | exposed), and
P, is the probability (condition | not exposed).

If we substitute the concept of “dying” for the concept of “condition” and the
concept “cohort” for the concept of “exposed”, we can see that the idea of an odds
ratio can be used to measure the “odds of dying” among members of a given cohort
during a given period of time divided by the “odds of dying” for the same period of
time among those who are members of a different cohort:

Odds Ratio = (Pyy, /(1 — Pay1))/ (Pay.e/ (1 — Pay.i)) (2:4)

where,

P ., 1s the probability of dying among those in cohort x during time t, and
P4y, is the probability of dying among those in cohort y during time t.

Note that the probability of dying during the time period defined by ¢ by members of
cohort x is given by P, , and that the probability of surviving during the time period
defined by ¢ for those in cohort x is given by (1 — P, ,). These respective values
have the same interpretation when applied to cohort y.

As an example of using the odds ratio in this way, we use a 2010 complete USA
life table (both sexes combined) taken from the Human Mortality Database (2009)
and compare the odds of a person dying in the next year who has reached his or her
10th birthday relative to a person dying in the next year who has reached his or her
65th birthday. In the life table, there are: (1) 99,221 persons in cohort “y” who
reached their 10th birthday of whom 10 died before reaching their 11th birthday;
and 84,492 persons in cohort “x” who reached their 65th birthday of whom 1079
died before reaching their 66th birthday. Inserting these numbers into Eq. 2.4, we
have the odds ratio for those who reached their 65th birthday (cohort x) and dying
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before reaching their 66th birthday relative to those who reached their 10th birthday
(cohort y) and dying before reaching their 11th birthday:

Pyss.. = 0.01277 (1.079/84,492),
Pgi0.. = 0.00010 (10/99,221), and

odds ratio = (0.01277/(1—0.1227))/(0.00010/(1—0.00010))
= (0.01277/0.98723)/(0.00010,/0.99990)
= 0.01294/0.00010
=129.4.

Thus, the odds of a member of the cohort of people reaching his or her 65th
birthday and dying before reaching the 66th birthday are about 129 times higher
than that of a member of the cohort of people reaching the 10th birthday and dying
before reaching his or her 11th birthday. Alternatively, we can state that the risk of
dying in the next year is about 129 times higher for those who reached their 65th
birthday than it is for those who reached their 10th birthday.

2.5 Participation-Rate Method

2.5.1 Logic and Formulas

In the participation-rate method, current and historical data are used to construct
rates reflecting the proportion or prevalence of the population having the attribute
of interest (e.g., in the labor force). Rates are typically stratified by demographic
characteristics rather than being defined using the total population. They are
constructed separately for each age group and can be further stratified by sex and
racial/ethnic groups as well. Rates can be forecast into the future by holding them
constant, extrapolating recent trends, tying them to forecast changes in other places,
using structural models, or relying on expert judgment. The forecast rates are then
applied to forecasts with the matching demographic characteristics to obtain fore-
casts of the attribute of interest:

Launch year participation rate PR, q.¢ = Pa,d,t/Pa (2.5)
Forecasted participation rate PR, 4 ¢+i

Forecasted characteristic P, g +i = PRa,q,1+iXPd, 1+ (2.7

where,

PR is the participation rate,

P is the population,

a is the attribute of interest (e.g., in the labor force),

d is the demographic characteristic (e.g., an age cohort),



References 31

t is the launch year; and
i is the length of forecast interval.

These computations are followed for each demographic group and for each interval
over the forecast horizon.

2.5.2 Implementation Issues

What issues must be addressed when preparing population-related forecasts? Per-
haps the most fundamental is obtaining the necessary data. The participation-rate
method requires age-specific data on the variable of interest, and perhaps sex- and
race/ethnicity-specific data as well. These data are often available from adminis-
trative records (e.g., labor force status) or surveys (e.g., the ACS and health
surveys). Clearly, the availability of reliable data is essential for the production of
reasonable forecasts.

The participation-rate method requires population data for constructing rates and
a set of population forecasts to which the projected rates can be applied. Population
data from the decennial census or post-censal estimates can generally be used as
denominators in the rates. If reliable data for either the numerator or denominator
are not available for a particular area, rates from similar areas can be used as proxies
(e.g., county rate forecasts used for census tract rate forecasts). If independently
produced population forecasts are not available, they can be constructed using the
H-P method described in Chapter 4 or other techniques (Smith et al. 2013).

The participation-rate method requires that rates be forecast into the future.
Making reasonable choices regarding future rates is crucial to the reliability of
the forecasts but is largely a subjective process. Thorough knowledge of historical
trends and the factors affecting the variable of interest are essential. In some
circumstances, it may be advisable to consult an expert in the field before making
these choices and to apply several alternative assumptions in order to provide a
range of forecasts. Reasonable forecasts of population-related variables can be
made only if the analyst makes reasonable choices regarding future participation
rates. Thorough knowledge of the population-related variables—and how they are
related to the stages of the life cycle—are essential (Martins et al. 2012: 8§3-938;
Modigliani 1970; O’Rand and Krecker 1990).
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Chapter 3
Sources of Demographic Information

3.1 Introduction

Several sources of data to make cohort change ratios (CCRs) are available. We
cover four major sources for data that can be used in conjunction with CCR
methods: (1) demographic data for the United States; (2) administrative records
data for the United States (2) demographic data for other countries and (4) other
data sources that can be used in conjunction with CCR methods.

In terms of U.S. demographic data, the Census Bureau is the primary supplier,
with the decennial census being the most important. However, the Census Bureau
also produces population estimates and conducts regular surveys, so we also
provide an overview of data from these sources that can be used in conjunction
with CCR methods. These data cover a wide range of geographic areas, including:
(1) administrative areas such as states, counties, cities, townships, legislative
districts; and (2) statistical areas, such as census tracts and block groups. Our
primary need is the data by age (and sex, ethnicity, and race if desired) for the
U.S. and its geographic subdivisions. The most common application of CCR
methods uses 5-year age groups.

In terms of administrative records, the most widely used in terms of CCR
methods are school enrollment and related data, as shown in Chapter 7, but also
as is shown in Chapters 12 and 13 vital statistics can be useful. Hence, we briefly
cover these types of administrative data.

For demographic data in other countries, we first cover the U.S. Census Bureau’s
International Data Base (IDB) that provides the basic data for CCR construction for
countries of the world. We describe this resource in some detail, but also give links
to data available from the national statistical offices of several countries.

The fourth source we consider is largely made up of the collections assembled
under the auspices of the University of Minnesota. We also describe data found
elsewhere that can be useful for CCR methods, such as the University of Michigan
(ICPSR program) and the University of California Berkeley/Max Planck Institute
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for Demographic Research (The Human Mortality data Base). Useful data can also
be obtained from provincial and state demographic agencies (e.g., British Columbia
Stats (BC Stats), California Department of Finance, and the Washington State
Office of Financial Management) and the private sector (e.g., ESRI).

3.2 United States Census Bureau

The U.S. Census Bureau is the “go to” source of data for making CCRs. Data by age
(and sex, ethnicity, and race) are readily available for no cost to anyone with an
internet connection using American FactFinder, which is discussed below. Keep in
mind that the Census Bureau produces a wide range of data beyond demographics
and generates these data through different programs, including the decennial
census, estimates, and surveys.

In addition to programs used to generate and disseminate data, the Census
Bureau sponsors the State Data Center (SDC) Program; one of its longest and
most successful partnerships. Started in 1978, the SDC is a partnership between the
50 states, the District of Columbia, Puerto Rico, the island areas and the Census
Bureau. This partnership has made data readily available locally to the public
through a network of state agencies, universities, libraries, and regional and local
governments. The SDC lead organization is appointed by the Governor of each
state/commonwealth, Puerto Rico, island area (American Samoa, Guam, The
Commonwealth of the Northern Mariana Islands, Virgin Islands), and the Mayor
of the District of Columbia. Since the beginning, the SDC has provided access and
education on Census Bureau data and products as well as other statistical resources
to millions of data users. For access to the data to make CCRs, the SDC in each state
is a first stop source. Current contact information for the SDC program lead and
affiliate agencies is available at: http://www.census.gov/about/partners/sdc/mem-
ber-network.html.

3.3 Decennial Census

Decennial censuses are by far the most important source of demographic data
produced by the Census Bureau. They form the basis for the CCR population
estimates and forecasts described throughout this book. No other source of data is
as comprehensive or used for as many purposes.

Decennial Census data were used to compute the CCRs found in Chapter 1 for
Riverside County, California. The CCRs found in Table 1.1, for example, were
computed using data drawn from the quick Tables (QT-P1) for the 2000 and 2010
censuses, a feature of the “Advanced Search” facility of the American Factfinder
data extraction system. American Factfinder can be found at http://factfinder.
census.gov/faces/nav/jsf/pages/index.xhtml. The Riverside County data were
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found by entering the preceding site, opening the “Advanced Search” tab, and then
clicking on the “show me all” tab, which led to two selection features, “topic or
table name” and “state, county or place (optional).” Under the “topic or table
name,” we typed “QT-P1” and under “State, County or place (optional),” we
typed “Riverside County, California,” and then clicked on the “GO” tab. This
opened up a dropdown list that showed six sources of data, each from a decennial
census. We opened up “QT-P1, Age Groups and Sex 2010, 2010 SF1 100% data”
by clicking on “Age Groups and Sex 2010.” This led to the display of a table from
the 2010 census that showed, along with other information the 2010 population of
Riverside County, California by 5 year age groups. We then clicked on the
download tab and selected the option to download the table as an Excel file.

Once the 2010 data were downloaded, we returned to the original display of the
table, where a box can be seen that states “versions of this table are available for the
following years, 2010 and 2000.” Because we had the 2010 data, we clicked on the
“2000” tab, which opened the 2000 census version of this same table for Riverside
County, California, which we downloaded as an Excel file. From the two
downloaded files, we copied and pasted the 2000 and 2010 counts by age (both
sexes combined) into an excel template set up to construct CCRs for any two
decennial censuses; the 2000-2010 CCRs were automatically calculated. We
could have found these same two tables via several routes available from American
Factfinder, including the “Guided Search” feature and the “Download” feature.

The historical U.S. Census data (1910, 1920, and 1930) used to generate the
estimate of the Native Hawaiian population in 1778 described in Chapter 10 were
not found using American Factfinder, which does not include decennial census data
prior to the year 2000. Instead, the data were taken from online copies of census
reports (.pdf files) that the Census Bureau makes available online at https://www.
census.gov/prod/www/decennial.html. Once at this site scroll down and you will
see tabs for each of the decennial census counts starting with the most recent (2010)
and ending with the first (1790). If you click on the 1910 census, for example, a
window will open that provides several choices, including: (1) information about
the 1910 census; (2) abstracts; (3) bulletins; (4) final reports; and (5) other 1910
census documents. If you click on the fourth choice, “final reports,” another
window will open showing each of the 11 volumes of the 1910 census reports.
The 1910 data found in Chapter 10 were taken from Volume 3. If you click on this
choice, you can click either on “title page” or a “full document (a condensed file).”
If you open the “title page” you will see where the data for Hawai’i are located in
Volume 3, which is “clickable” and will lead you to the data for Hawai’i. Unfor-
tunately like all of the pre-2000 historical decennial data from the Census Bureau,
the source files are all in .pdf format, which means data extraction is time-
consuming and more error prone. Fortunately, there is an alternative data source,
which allows for direct downloads into a file that can be analyzed by Excel and
statistical packages such as SPSS and STATA. We discuss this source in Sect. 3.6.

Like any method requiring data from two time points, the areas used in CCR
methods must be based on constant geographic boundaries. Boundary changes,
while uncommon at the county level and higher geographies, are common in many


http://dx.doi.org/10.1007/978-3-319-53745-0_10
https://www.census.gov/prod/www/decennial.html
https://www.census.gov/prod/www/decennial.html
http://dx.doi.org/10.1007/978-3-319-53745-0_10

38 3 Sources of Demographic Information

subcounty areas such as cities and census tracts. Since the CCR method is often
used for forecasting subcounty populations by age, sex, and other demographic
characteristics, the data for such application must be adjusted for changes in
geographic boundaries. Although we discuss information on tracking these changes
over time and assembling data sets with common geographical definitions in
Chapter 14, here we give an overview of the available information from the Census
Bureau for making such adjustments.

The Census Bureau’s Geography Division tracks boundary changes for all levels
of geography in several resources. One is “Geographic Change Notes (GCN),” and
can be found at the following website: http://www.census.gov/geo/reference/bound
ary-changes.html. The GCN lists selected changes to incorporated places (cities and
towns), census designated places, county subdivisions, counties and equivalent
areas, and American Indian, Alaska Native, and Native Hawaiian areas, as recog-
nized by the Census Bureau, within the 50 States, the District of Columbia, Puerto
Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the
Northern Mariana Islands, and the U.S. Virgin Islands). Once at this website, you
use a selection tab that starts with the state (or its equivalent) in which the
geography of interest is located. Once a state is selected, a popup appears that
shows a description of changes subsequent to the 2000 census up to a current point
in time (which, as of the writing of this book was 2013) by area and effective data.

The preceding website is useful for determining if a boundary change took place
for a city or town of interest, but it does not provide detailed information on the land
area (in acres) affected. To obtain this detail, you need to use the Geography
Division’s “Boundary and Annexation Survey” data, which can be found at:
https://www.census.gov/geo/partnerships/bas.html. Once at this site, open the tab
marked “Legal Boundary Change/Annexation Data,” which will take you to a site
that shows the years for which data are available and a tab identified by “Download
Legal and Boundary Change Files,” with the tab itself identified by state. This will
take you to a set of files identified by year. Here, you have a choice of downloading
text files, .pdf files, or Excel files.

Like the “Geographic Change Notes,” the “Boundary and Annexation Survey”
are limited in that the latter only provides the land area affected. When a more exact
description of boundary changes over time is needed, we can turn to a third resource
available from the Geography Division, namely, the relationship files. These files
(for block, census tracts, places, counties, and urban areas) show precise relation-
ships between 2000 boundary definitions and 2010 boundary definitions and can be
found at: https://www.census.gov/geo/maps-data/data/relationship.html. Relation-
ship files can be downloaded as compressed Excel files, decompressed, and read by
following the file record layout guidelines available at this website. At this same
website, one can identify the geographic relationships between types of geography
(e.g. a city and one or more census tracts) at the same point in time. Also useful in
this regard are the Topologically Integrated Geographic Encoding Referencing
(TIGER) tools, including shapefiles and geodatabases. Again, Chapter 14 provides
more detail on these resources and the procedures needed to utilize them for
assembling data with the same geographical definitions over time.
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3.4 Population Estimates

A second source of demographic data is found in the Census Bureau’s population
estimates program (PEP), which produces annual population estimates by age and
sex for states and counties (http://www.census.gov/popest/). Population estimates
are not primary data in the same sense as the decennial census data just discussed;
rather, they are derived from (or based on) decennial census data. They play an
important role in supplementing and updating data from the decennial census in that
they are more current and cover years other than those ending in zero.

Population estimates are also produced by a variety of state and local govern-
ment agencies. Many state agencies participate with the Census Bureau in the
Federal-State Cooperative Program for Population Estimates (FSCPPE); this pro-
gram serves as a clearinghouse for demographic data and as a forum for discussing
methods and exchanging ideas related to population estimation (https://www.cen
sus.gov/popest/fscpe/). Some states produce independent population estimates at
the state, county, and/or city level (e.g., The Washington State Office of Financial
Management (http://www.ofm.wa.gov/pop/estimates.asp) and The California
Department of Finance, (http://www.dof.ca.gov/Forecasting/Demographics/Esti
mates). Some city and county governments—and Councils of Governments for
large metropolitan areas—also produce population estimates, often for small areas
such as census tracts and traffic analysis zones (e.g., The New York City Depart-
ment of City Planning (http://www 1.nyc.gov/site/planning/data-maps/nyc-popula
tion/current-future-populations.page) and The San Diego Association of
Governments (http://www.sandag.org/resources/demographics_and_other_data/
demographics/estimates/index.asp).

One issue to keep in mind in using population estimates is the point in time to
which they are referenced. The decennial census data are referenced to April 1st, as,
for example, are the annual estimates produced by the State of Washington, but the
Bureau’s PEP estimates are referenced to July 1st. These different reference points
could affect the integrity of CCRs constructed from a combination of decennial and
PEP data.

3.5 Surveys

The U. S. Census Bureau conducts a wide range of sample surveys, about 130 each
year  (http://www.census.gov/programs-surveys/are-you-in-a-survey/survey-list/
household-survey-list.html). Notable for purposes of this book is the American
Community Survey (ACS). The ACS is a nationwide, continuous survey designed
to provide communities with demographic, housing, social, and economic data
every year (U.S. Census Bureau 2008). The ACS samples nearly 3 million
addresses each year, resulting in nearly 2 million final interviews. For each area
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with an estimated population of 65,000 or more, the ACS provides single year
estimates, for each area with an estimated population of 20,000 or more, the ACS
provides estimates based on an aggregation of three years of sample data, and for all
areas, the ACS provides annual estimates based on an aggregation of five years of
sample data. The 3-year and 5-year aggregations are problematic in that the data
refer to a period of time rather than a point in time, which makes them inconsistent
with the 1-Year ACS data as well as the decennial and PEP data, which all are
referenced to a single year (Swanson 2010). Another issue is that the definition of a
resident is different than the definition used in the decennial census, which makes
the ACS data inconsistent with decennial data in locations that experience seasonal
variations in the de-facto population (Swanson 2010, Swanson and Tayman 2011).
This inconsistency can affect the integrity of CRRs constructed from a combination
of decennial and ACS data.

ACS data can also be a bit confounding in that one can obtain differences in the
1-year, 3-year, and 5-year estimates for the same period of time for an area with an
estimated population of 65,000 or more. For example, the 2013 total population of
Spokane, Washington is estimated at 210,722; 209,876; and 209,478, respectively,
by the 1-year (2013), 3-year (2011-2013), and 5-year (2009-2013) ACS samples.
Margins of error (90% confidence interval) are available from the ACS but the
choice of which to use as a 2013 estimate is up to the user. Another issue, even for
areas with populations estimated at 65,000 and over, is because of sampling error
the 1-year ACS can yield erratic annual values for some variables (e.g., average
number of persons per household) that is generally not subject to sudden change
(Swanson and Hough 2012). The ACS has been providing data for areas since 2010
and its data can be easily retrieved using American FactFinder.

Other surveys conducted by the Census Bureau that have potential relevance for
this book include the Current Population Survey (http://www.census.gov/pro
grams-surveys/cps.html), The American Housing Survey (http://www.census.gov/
programs-surveys/ahs.html), the National Health Interview Survey (http://www.
cdc.gov/nchs/nhis/index.htm), and the Consumer Expenditure Survey (http://
www.bls.gov/respondents/cex/).

One annual survey funded by the federal government, but specific to each state is
the Behavior Risk Factor Surveillance System (BRFSS), which was established in
1984 in 15 states (http://www.cdc.gov/brfss/). Funded by the Centers for Disease
Control (CDC), it now collects data in all 50 states as well as the District of
Columbia and three U.S. territories and completes more than 400,000 adult inter-
views each year on a wide range of health-related topics. CDC has set up a set of
interactive tools (http://www.cdc.gov/brfss/data_tools.htm) that can be used to
extract data that can be used to construct measures similar to the examples
discussed in Chapter 8.

There are other entities that also conduct regular surveys containing data that
may be useful. For example, the Survey Research Center at the University of
Michigan conducts the National Survey of Family Growth, the Survey of Consumer
Attitudes, and the Panel Study of Income Dynamics, among others (http://www.src.
isr.umich.edu/about/). The National Opinion Research Center (NORC) at the
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University of Chicago also conducts a wide range of surveys (http://www.norc.org/
Research/Topics/Pages/default.aspx).

3.6 Administrative Records

Administrative records are records kept by agencies of federal, state, and local
governments for purposes of registration, licensing, and program administration.
Although not always designed explicitly to do so, these records provide valuable
information on specific demographic events or subgroups of the population. In
terms of data that can be used either directly or in conjunction with the CCR
method, these sources include school enrollment and vital statistics. Other types
of administrative data include employment, voter registration, and property tax
records.

Administrative data can be used for various types of demographic analyses,
including the production of population estimates and projections. In Chapter 7, for
example, data from the California Department of Education are used in conjunction
with the CCR method to generate a short-term enrollment forecast for Riverside
County, California. These data were taken directly from the Department’s website
(http://www.cde.ca.gov). Once at the website, we clicked on the “Data and Statis-
tics” tab, which led to (http://www.cde.ca.gov/ds). At this site, one of the choices is
“DataQuest,” an interactive data query system used to obtain the (fall) enrollment
data by grade for Riverside County in 2013, 2014, and 2015. Because the site is
interactive it is rather tedious to describe the exact steps used to extract the data.
Fortunately, the DataQuest site is very well designed and easy to navigate, so we
invite you to use it to replicate the data we use in Chapter 10.

Data on events such as births, deaths, marriages, and divorces are called vital
statistics. In the United States, the collection of these data is the responsibility of
individual states and not the federal government. As early as 1639, the Massachu-
setts Bay Colony began reporting births, deaths, and marriages as part of its
administrative/legal system. Other states gradually began doing the same thing,
and today all states have complete (albeit imperfect) records of births, deaths, and
other vital events. The federal government sets standards for the collection and
reporting of the data, compiles summaries from data collected by each state, and
publishes a variety of reports based on these data. The quality of vital statistics data
is generally very good in the United States and other high-income countries.

Before 1945, vital statistics reports were published by the U.S. Census Bureau.
Beginning in 1945, this task was taken over by the U.S. Public Health Service,
National Office of Vital Statistics. In 1960, this office was reorganized and became
part of the National Center for Health Statistics (NCHS), which today is a branch of
the Centers for Disease Control (CDC). Annual and monthly reports on births,
deaths, marriages, and divorces are available from the NCHS. It should be noted
that some of the concepts and definitions used by the NCHS do not precisely match
those used by the Census Bureau. Consequently, adjustments may have to be made
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when combining population data from the Census Bureau with vital statistics data
from the NCHS.

Data from the NCHS are available only at the national and state levels; vital
statistics data for local areas must be obtained elsewhere. Most states tabulate data
at the county (or county-equivalent) level, but few go beyond that to develop
regular data series for subcounty areas. Although individual records generally
contain the information needed to allocate them to different types of subcounty
areas (e.g., cities, census tracts), actually doing so requires a substantial effort. In
addition, there are often errors in geocoding birth and death records at the
subcounty level (Flotow and Burson 1996). Analysts needing vital statistics data
for subcounty areas may have to develop those data themselves.

3.7 International Data

For the international data, the Census Bureau has an International Data Base (IDB)
program that contains data for many countries for a series of years. Located at
(http://www.census.gov/population/international/data/idb/informationGateway.php)
it is possible to download age data for two time periods for a host of countries
permitting CCR computations. Additional data if required for other geographies
within a particular country may be available at the respective statistical agencies
within each country. Many individual countries also have high quality data avail-
able online. Often, these population data are taken from a population registration
system, which is a common method for collecting demographic data in the Scan-
dinavian region. Statistics Finland has such data and has produced an English-
language report that documents the methods and quality found in its population
register (Statistics Finland 2004). The U.S. Census Bureau maintains a list of the
URLs for international statistical agencies, which can be found at (https://www.
census.gov/population/international/links/stat_int.html).

3.8 Other Data Sources

Another data source to make CCRs is compiled by Minnesota Population Center
(MPC) at the University of Minnesota. There are several collections assembled and
held by the MPC, including Integrated Public Use Microdata (IPUMS), which is
extensively used by researchers, policymakers, students, and faculty. The MPC is a
leading developer of demographic data resources. All data obtained through the
MPC are available over the internet at no cost (https://www.ipums.org/). The MPC
has both an IPUMS collection for the United States and the IPUMS-International
collection. According to the MPC website, the [PUMS-USA collection has harmo-
nized data on people in the U.S. census and American Community Survey from
1850 to the present. The IPUMS-International collection contains harmonized data
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for 1960 forward covering 560 million people in 258 censuses from around the
world.

Historical population data used in a study by Swanson and Verdugo (2016) on
the demographic effects of the Civil war on the former states of the Confederacy
(described in Chapter 10) were obtained from IPUMS files. Specifically, the
IPUMS data were taken from samples of the original census records from the
1850, 1860, and 1870 census counts, with a sampling ratio of approximately 1 in
every 100 records. There are several advantages to using these data in lieu of
hardcopy census reports. First, they are machine-readable and can be easily
imported into Excel or a statistical system, such as SPSS, SAS, or some other
analytical software package. Second, the IPUMS files have been cleaned, edited,
and assembled using high levels of quality control. Third, because they are indi-
vidual level data, the extracted sample data can be aggregated in different ways to
suit a given analysis and automatically weighted in order to reproduce the census
counts. Finally, MPC provides an online assembly and tabulation feature so that
aggregated data, properly weighted can be extracted from its IPUMS collections.

In the initial extraction, Swanson and Verdugo (2016) selected, non-Hispanic
white males by age and state for each of the three census counts, 1850, 1860, and
1870 along with their weights. They then used the recode, frequency, and filter
procedures provided by MPC to generate output that could be import directly into
Excel. The result was aggregated census counts for each of the 11 Confederate
states that contained the selected five-year age groups appropriately weighted:
(1) from 10-14 to 40—44 for the 1850 and 1860 census years; and (2) from 20-24
to 50-54 in the 1860 and 1870 census years.

MPC also manages The National Historical Geographic Information System
(NHGIS), which provides, free of charge, aggregate census data and GIS-compat-
ible boundary files for the United States between 1790 and 2015 (https://www.
nhgis.org/). Data of this type can be found in Chapter 14. Another useful data set is
the Human Mortality Database (University of California Berkeley). Data from this
site are used in Chapter 12. These and other mortality data can be accessed by
starting at (http://www.mortality.org).

There also are commercial databases, For example, ESRI provides market
segmentation data for the U.S. and other countries using its “Tapestry” market
segmentation system. Current data typically can only be obtained on a cost basis,
but older data are often made available at no cost. These data can be found at (http://
www.esri.com/landing-pages/tapestry/), which has an interactive query system.
These data can be used in conjunction with the methods described in Chapter 8.

3.9 On-line Location of Excel Files

All tables and most figures in this book have a corresponding Excel file, which can
be found at the “Applied Demographer’s Toolbox,” a website created and
maintained by Eddie Hunsinger. The toolbox is a collection of applied demography
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programs, scripts, spreadsheets, databases, and texts. As the title suggests, this
website contains far more than the excel files used in this book, but navigating to
the folder (zipped) containing our Excel files is straightforward. The starting point
is (http://u.demog.berkeley.edu/~eddieh/toolbox.html). Once there, scroll down
until you see “Excel files for the book, Cohort Change Ratios and Their Applica-
tions” which contains the zipped folder.

3.10 Conclusions

There are, of course, many sources of data available that are relevant to this book.
The list is obviously too large to provide in a single chapter, so we have given an
illustrative sample of data resources. Virtually all of the data we have described
herein are reliable and of good quality. The sample data resources we have
described, such as the American Community Survey, have in some cases reliability
issues, but the ACS variables have estimated margins of error, which are very useful
in gauging in reliability.
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Chapter 4
Forecasting Population Size and Composition

4.1 Introduction

In a seminal paper, Hamilton and Perry (1962) proposed cohort-change ratios
(CCRs) as a variant of the cohort-component method for purposes of short-term
population projections. The Hamilton-Perry (H-P) method has much smaller data
requirements than its more data-intensive cousin while still providing a forecast of
population by age (as well as sex, race, ethnicity, if so desired), which is the
hallmark of the cohort-component method. Instead of specific rates for the compo-
nents of population change, forecasts from the H-P method are based on cohort
change ratios and child-woman ratios (CWR) or more generally child-adult ratios
(CARs) as previously discussed in Chapter 1. CCRs and CWRs are most often
obtained from the two most recent censuses, but can be based on age distributions
from any two points in time.

Consequently, the H-P method requires much less time and resources to
implement than the full cohort-component model. Not surprisingly, it has mainly
been used for small geographic areas in which mortality, fertility, and migration
data are non-existent, unreliable, or very difficult to obtain (Baker et al. 2014;
Smith et al. 2013:176; Swanson et al. 2010). Although the H-P method has
primarily been used for small geographic areas, its minimal data input require-
ments combined with its capability for forecasting age and other characteristics
make it attractive for use at higher levels of geography such as states and
counties when detailed information on the components of population change is
not needed.

The H-P method has gained acceptance as research has demonstrated its prac-
tical value and accuracy in forecasting populations (Kodiko 2014; Smith and
Shahidullah 1995; Swanson and Tayman 2017; Swanson et al. 2010). Smith and
Tayman (2003) found for U.S. states and counties in Florida that the H-P and
cohort- component methods produced similar projections of the age-sex structure of
the population; neither approach consistently produced more accurate projections
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than the other for 10- and 20-year forecast horizons. Wilson (2016), however, found
that the H-P method had modestly larger errors compared to some variants of the
cohort-component method for local government areas in New South Wales,
Australia.

In this chapter, we present two step-by-step examples each based on commonly
used procedures to develop forecasts using CCRs and CWRs. These examples
illustrate forecasts by age and sex and by age only for the city of Bellingham,
Washington. We also show a one-year forecast of major league pitchers by con-
secutive years in the league developed from the H-P method. We next investigate
the impact of adjusting H-P forecasts to independent total population controls
because in rapidly growing (declining) areas CCRs applied to a beginning popula-
tion can lead to large forecast errors and a strong upward (downward) biases (Smith
etal. 2013: 180). Controlling also may be useful in other instances such a reaching a
capacity constraint in small areas or adhering to a previously established population
control. We end this chapter by discussing the strengths and weaknesses of the H-P
method.

Our strategy is to describe the simplest, straightforward, and most used appli-
cation of the H-P method; namely, holding CCRs and the CWRs constant over the
forecast horizon. In Chapter 5, we evaluate the accuracy of the H-P method using
modified ratios.

4.2 Hamilton-Perry Forecast

The H-P method is illustrated by producing 2020 forecasts for the city of Belling-
ham in Washington State based on data from the 2000 and 2010 censuses.
Bellingham’s 2016 population is estimated at 84,850 (State of Washington 2016).
Bellingham provides an interesting example because it is home to a large special
population of college students. Western Washington University, Whatcom Com-
munity College, and Bellingham Technical College enroll around 22,100 students,
or 26.2% of the 2016 total population (National Center for Educational Statistics
2016). We also show the adaptability of the H-P method by producing a one-year
forecast pertaining to pitchers according to their number of consecutive years in the
major leagues in this position.

4.2.1 Forecast by Age and Gender

The first example forecasts the 2020 population of Bellingham by age and gender.
CCRs are calculated by dividing the population aged x in year ¢ by the population
aged x—/0 in year —10 calculated separately for males and females, where ¢ is 2010
and 1—10 is 2000. These CCRs are applied to each age, gender group in year ¢ to
provide forecasts by age and gender in the year ¢ + /0 (i.e., 2020). Given the nature
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of the CCRs, 10-14 is the youngest five-year age group for which forecasts can be
made if there are 10 years between censuses. Children younger than age 10 are
forecast using CWRs from the launch year (i.e., males or females younger than
S/females aged 15-44 and males or females aged 5-9/females aged 20-45).
Egs. 4.1 through 4.3 represent the usual application of the H-P framework (i.e.,
holding CCRs and CWRs from the most recent 10-year period constant over the
horizon):

an+10,g,t+IO:nCCRx,g,lXan,g,l (Ages 1O+)’ (41)
4P0,g,1+10=4CWR ¢, X44FPi5 110 (Ages0—4),
oPs o 1110=0CWRs o ( X49FPy 110 (Ages5-9),

where,

n is the width of the age group;

x is the beginning of the age group,
g is gender,

t is the launch year,

P is the population,

CCR is the cohort change ratio,
CWR is the child-woman ratio, and.
FP is the female population.

Table 4.1 shows the 2020 forecast for Bellingham by age and gender using egs.
4.1-4.3. As the table shows, the H-P method requires only a limited set of calcu-
lations. For example, the male populations aged 0—4 and 40-44 in 2020 are
calculated as:

0.09219 x (3,993 + 7,459 + 3,683 + 2,907 + 2,976 + 2,601) = 2,177 Ages (0-4),
0.94521 x 2,644 = 2,499 Ages (40-44).

Forecasts of the oldest age group differ slightly from the forecasts of the other
age groups. The population aged 75 years and older in the launch year (2010) forms
the basis of the forecast for the population aged 85 years and older in 2020. For
example, females aged 85 years and older in 2020 are calculated as:

0.43982 x (998 + 1,028 + 1,374) = 1,495.

Remember, the CCRs for ages 10 years and older combine the effect of mortality
and migration. The large CCRs for ages 15-24 reflect the in-migration of college
students and the dramatic decrease in CCRs for ages 25-39, especially ages 3034,
reflect the out-migration of college students. The CCRs for ages 40-69 suggest
in-migration in these age groups, except for females aged 40—44. At the oldest ages,
the female CCRs are uniformly larger than the male CCRs reflecting, in part, the
higher survivorship of females. Unlike the cohort-component model, the H-P
method does not require adjustments for special population such as college students
(Smith et al. 2013: 251-258). As the table shows, the college age groups have not
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Table 4.1 Population forecast by age and sex, Bellingham, Washington, 2020

Female Male

Age 2000 2010 CCR? 2020°  Age 2000 2010 CCR? 2020°
04 1,738 1,808 0.08645 2,041 04 1,764 1,928 0.09219 2,177
5-9 1,603 1,667 0.08639 1,895 5-9 1,625 1,809 0.09375 2,056

10-14 1,547 1,652 0.95052 1,719  10-14 1,604 1,686 0.95578 1,843
15-19 3,544 3,840 2.39551 3993 15-19 2,829 3,339 205477 3,717
2024 5964 6985 451519 7459 2024 5,639 6950 4.33292 7,305
25-29 2,408 3,399 095909 3,683 25-29 2,935 3,868 136727 4,565
30-34 2,010 2482 041616 2,907 30-34 2,263 2,644 0.46888 3,259
3539 2,019 2,102 0.87292 2967 35-39 2,077 2274 0.77479 2,997
40-44 2,142 2,106 1.04776 2,601 4044 1,948 2,139 0.94521 2,499
45-49 2465 2,222 1.10054 2313 4549 2210 2,179 1.04911 2,386
50-54 2,057 2291 1.06956 2,252 50-54 1,958 2,073 1.06417 2,276
55-59 1,323 2,547 1.03327 2,296 55-59 1,261 2,236 101176 2,205
60-64 986 2,222 1.08021 2,475 60-64 895 2,053 1.04852 2,174
65-69 918 1,558 1.17763 2,999 65-69 805 1,356 1.07534 2,404
70-74 1,032 1,120 1.13590 2,524 70-74 782 899 1.00447 2,062
75-79 1,133 998  1.08715 1,694  75-79 744 741  0.92050 1,248
80-84 922 1,028  0.99612 1,116 80-84 493 637 0.81458 732
85+ 1,069 1,374 0.43982 1,495 85+ 459 673  0.39682 814
Total 34,880 41,401 48,429 Total 32,291 39,484 46,719

Source: 2000 and 2010, U.S. Census Bureau (http://factfinder2.census.gov)
4P g /30P15 gt Ages 0—4 (Child-Woman Ratio)

9P5,g,l /30P20,g:f,l Ages 5-9 (Child-Woman Ratio)

Px,g,l / Px—lO,g,t—lO Ages 10-84
bP85+‘g,t / P751 6110 Ages 85+

4CCRo g X 30P15,g=r1 +10 Ages 04

9CCRs o« X 30P20,g=f1+10 Ages 5-9

CCRy g X Py g Ages 10-84

CCR754g, / P75sgc Ages 85+

aged between 2010 and 2020, a desirable feature for this population and something
that the cohort-component method would usually require special adjustments to
accomplish.

4.2.2 Forecast by Age

The H-P method can also be implemented without regard to gender by modifying
Eq. 4.1:

an+10,l+10:nCCRx,tanX,t (Ages 10+) (44)
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The CCR and forecast calculations are now based to the population for both
genders. Instead of child-woman ratios, child-adult ratios (CARs) are used to
forecast the two youngest age groups. These ratios, computed separately for ages
0—4 and ages 5-9, relate young children to adults in the age groups most likely to be
their parents. In this chapter and other examples in the book, the population aged
0—4 is related to the population aged 20-35 and the population aged 5-9 is related to
the population aged 25-39. Of course other adult age groups could be used to
calculate CARs, such as the populations aged 15-44 and 20-49 following the
convention used in the CWR. The choice of the adult population age groups is
not critical as long as the same age groups used to compute the CARs are used in the
forecasting computations.

Table 4.2 shows a 2020 forecast for Bellingham by age using Eq. 4.4 and CARs
for ages 0—4 and 5-9. The CCRs for all genders shows the in- and out-migration of
college students and indicate net in-migration up to age 79, with CCRs above 1.0
even in ages 70—79, where mortality rates are relatively high. For comparison, the
table includes the forecast of males plus females from Table 4.1 (Bottom-Up
column). The two forecasts are quite similar in ages 10 years and older, but show
more variation in the youngest age groups. This variation is due to the different age
ranges used in the CWRs and CARs. We ran a forecast using CARs for ages 0—4
and 5-9 based on ages 1544 and 2049, respectively and found the difference
between the two forecasts drops to 28 persons (0.7%) for ages 0—4 and 11 persons
(0.3%) for ages 5-9.

4.2.3 Forecast of Major League Pitchers

The H-P method is not only applicable to human and other populations stratified by
age cohorts, but can be used to forecast other attributes that change in predictable
ways over time. In this example, we forecast major league pitchers according to the
number of consecutive years they have been in the major leagues. Years in the
majors are measured by consecutive integers ranging from 0-10+ years, making
them analogous to single-years of age. As such, we can construct CCRs using two
consecutive annual time points for each amount of time in the majors. In this
simulated forecast example, we use historical information for 1980 and 1981 to
develop a one-year (1982) forecast of major league pitchers by consecutive years in
the majors (see Table 4.3). These years were not affected by changes in the number

! Another approach for forecasting the youngest age groups is to take their ratios at two points in
time and apply that ratio to the launch year age group. This approach is used in Chapter 6 where
regression models are used to measure uncertainty in H-P forecasts. We prefer using CARs and
CWRs in point forecast applications of the H-P method because they can account for changes in
the at-risk population over the forecast horizon.
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Table 4.2 Population forecast by age, Bellingham, Washington, 2020

2020 2010-2020 Difference
Age 2000 2010 CCR* No Gender® Bottom-Up® Number  Percent (%)
04 3,502 3,736 0.14190 4,130 4218 —88 -2.1
5-9 3,228 3,476  0.20729 4,207 3,951 256 6.1
10-14 3,151 3,338 0.95317 3,561 3,562 —1 0.0
15-19 6,373 7,179  2.22398 7,731 7,710 21 0.3
2024 11,603 13,935 4.42241 14,762 14,764 -2 0.0
25-29 5,343 7,267 1.14028 8,186 8,248 —62 —0.8
30-34 4,273 5,126  0.44178 6,156 6,166 —-10 —-0.2
35-39 4,096 4,376  0.81902 5,952 5,964 —12 —-0.2
4044 4,090 4,245  0.99345 5,092 5,100 -8 -0.2
45-49 4,675 4,401 1.07446 4,702 4,699 3 0.1
50-54 4,015 4,364 1.06699 4,529 4,528 1 0.0
55-59 2,584 4,783  1.02310 4,503 4,501 2 0.0
60-64 1,881 4,275 1.06476 4,647 4,649 -2 0.0
65-69 1,723 2914 1.12771 5,394 5,403 -9 —-0.2
70-74 1,814 2,019 1.07337 4,589 4,586 3 0.1
75-79 1,877 1,739  1.00929 2,941 2,942 -1 0.0
80-84 1,415 1,665 0.91786 1,853 1,848 5 0.3
85+ 1,528 2,047  0.42469 2,315 2,309 6 0.3
Total 67,171 80,885 95,250 95,148 102 0.1

Source: 2000 and 2010, U.S. Census Bureau (http://factfinder2.census.gov)
“4Po /15P20, Ages 0—4 (Child-Adult Ratio)

9P5,l /15P25,l Ages 5-9 (Chl]d-Adu]t Ratlo)

Py« / Pxoc10 Ages 10-84
bp85+,1 / P75y 10 Ages 85+

4CCRo, X 15P20, +10 Ages 04

oCCRs X 15P2s 1410 Ages 5-9

CCRy, x Py, Ages 10-84

CCR7s4 X Ps, Ages 85+
“Male + female forecasts from Table 4.1

of major league teams (there were 26 in each of the three years) and the three-year
set allows us to compare the 1982 forecast to the recorded 1982 numbers to get an
idea of the accuracy of using the method for this purpose.

A traditional CCR cannot be computed for zero years in the majors, so we
averaged the ratio of pitchers with zero consecutive years in the league to pitchers
with one and two consecutive years in the league for 1980 and 1981. CCRs for the
other years spent in the league are analogous to traditional CCRs. For example, the
CCR for 4 consecutive years in the majors is computed by dividing number of
pitchers in the league for 4 consecutive years in 1981 by the number of pitchers in
the majors for 3 consecutive years in 1980 (0.93939 = 31/33). The CCR for the
open-ended category (10+ years) is the number of pitchers with 10 or more
consecutive years in the majors in 1981 divided by the number of pitchers with
9 or more consecutive years in 1980 (0.78571 = 44/(12 + 44)).
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Table 4.3 Forecast of pitchers by the number of consecutive years in the major leagues, 1982

1982

Years in League 1980 1981 CCR* Forecast® Actual Numeric Error Percent Error (%)
0 48 44 0.61884 40 48 -8 —16.7
1 41 40 0.83333 37 39 -2 —5.1
2 39 29 0.70732 28 33 -5 —15.2
3 33 30 0.76923 22 21 1 4.8
4 21 31 0.93939 28 28 0 0.0
5 21 18 0.85714 27 24 3 12.5
6 20 18 0.85714 15 15 0 0.0
7 18 18 0.90000 16 17 —1 -5.9
8 11 15 0.83333 15 12 3 25.0
9 12 9 0.81818 12 13 -1 -7.7
10+ 44 44 0.78571 42 43 -1 —2.3
Total 308 296 282 293 —11 -3.8

MAPE 8.7%

MALPE 1.0%

Source: Thorn (2004)

Note, the number of teams (26) was constant between 1980 and 1982
*Poc/ (Prys+Pa) +Pori / (Pr, 1 +Pa 1) X 0.5 Year 0

Pyt /P11 Years 1-9

P10+ / Poy 1 Years 10+

"CCRo, X (P41 + Pay 41) Year 0

CCRy, x Py, Years 1-9

CCRo,; X Po,, Years 10+

The 1982 forecast for the all pitchers is 11 lower than the actual count for an
error of-3.8%. There is a wide range of errors for the individual consecutive years in
the league, ranging in absolute terms from 0.0% to 25.0%. Errors for 7 categories
are less than 8.0%, with the other 4 categories showing double digit percentage
errors. On average, the forecast has a slight downward bias with a MALPE of
—1.0% and a lower degree of accuracy with a MAPE of 8.7%.

While we are not experts in baseball statistics, the data shown in Table 4.3
indicate that there is a high level of volatility in the major league career of a pitcher,
especially in the initial years. The factors likely include: (1) injuries that lead to one
or more missed seasons; (2) being sent down to the minors to gain more experience
(one common example is that in the initial season a pitcher is “called up” for a
couple of games at the end of the season to “have a cup of coffee,” followed by a
return to the minors); and (3) outright release. Given this volatility, this example
can be viewed as a rather strenuous test of how well the H-P method can perform in
subject areas where there is less stability year to year than found in large
populations of people. These areas would include any highly competitive activity
such as professional sports. In this regard, we note that while there is variation in the
accuracy of the 1982 forecast by number of consecutive years in the majors by
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pitchers, the overall forecast is reasonably accurate. Given this, other potential
applications might include forecasting the number of professional football players
by position (e.g., quarterback), as well as forecasting the numbers by position in
basketball, hockey, and soccer. The same idea (forgetting positions) might be
applied to NASCAR drivers and those in other racing circuits.

To assemble the data found in this illustration, we used a hardcopy of the eighth
edition of Total Baseball (Thorn 2004), which means that identifying the correct
data and transcribing it (into Excel) was subject to a high level of potential error,
given what we wanted to record. To minimize transcription error we developed and
used the following protocol. First, we identified all of the pitchers who played in
any one of the years of interest, 1980, 1981, and 1982 in the hardcopy edition. We
next weeded out those who played in those years but did not play consecutively in
prior years (In his 27 year career, Nolan Ryan, for example, was in the majors in
each of the three years but because he initially is listed in the majors in 1966 but
then is not listed again until 1968, as such he is not included in data found in
Table 4.3. Following these two steps we then did three separate counts for each of
the three years of interest. Between the first and second count we weeded out
additional errors (e.g., in the first pass we erroneously included Joey McLaughlin),
but by the second pass we realized that he first was listed in 1977 and then in 1979,
1980, 1981, and 1982, but he was not listed as being in the majors in 1978. As such
he was deleted because he did not have consecutive years in the majors between the
year he was first listed and any of the three years of interest. By the third count, the
number matched up with well with the second count and we were satisfied that the
data were of sufficient accuracy to use. As an additional test, we counted the
number of pitchers by year found in a third count that was separate from the
count by number of consecutive years played and then compared these counts
with the sum of the number by year and consecutive years played as found in the
third set of counts. For 1980, the counts matched at 308, as did the count for 1981
(296) and the count for 1982 (293).

4.3 Controlling a Hamilton-Perry Forecast

The H-P method is essentially a set of cohort growth rates applied to a launch year
population. It is well known that a set of constant growth rates can lead to large
forecast errors in places with rapid changes. We believe it is advisable to control
H-P forecasts to independent forecasts of total population in such instances (Smith
and Shahidullah 1995; Swanson et al. 2010). There may be other more general
reasons for controlling that are specific to any forecasting situation (Smith et al.
2013: 259). One is to make composition forecasts consistent with an “official”
forecast adopted or sanctioned by a government body or some decision making
unit. Another is to tie the demographic composition from an earlier forecast to an
updated forecast of total population. Finally, controlling will ensure forecasts are
consistent across demographic subgroups and geographic areas. For example, a
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forecast by age for census tracts will sum to the total population of each census tract
and the age distribution for the county. Controlling an H-P forecast will require a
single racking factor procedure if an age forecast is adjusted to the total population,
but will require an iterative proportional fitting procedure if an age forecast is
adjusted to total population and to an age distribution for a larger geographic area
(Smith et al. 2013: 260-261 and 266-272).

In this section, we examine the controlling issue relative to H-P forecasts in four
instances 1) Pinal County, a rapidly growing county in Arizona; 2) Gila County, a
slow growing county in Arizona; 3) Pacific Beach, a slow growing community in
San Diego, California and 4) Mission Valley, a fast growing community in San
Diego, California. Forecasts in Pacific Beach and Mission Valley are constrained by
a capacity limit. In all four examples, we prepared H-P forecasts by age for 2020
and 2030 based on the procedures discussed in section 4.2.2. This example uses
2000 and 2010 as the base period. We computed total population forecasts by
summing the age groups, compared them to the controls, and computed adjustment
factors needed to match the controls.

Table 4.4 shows the forecasts, independent population controls, and adjustment
factors for the two Arizona counties. The total population in Pinal County more
than doubled between 2000 and 2010. That rapid growth is reflected in CCRs for
ages 10—69 that range from 1.65 (ages 20-24) to 2.64 (ages 30-34). Growth is also
indicated is ages 70-79, where the CCRs are sizable despite of the relatively high
mortality in these age groups. As a result, the total population forecasts from the
H-P method are much higher than the controls taken from the “official” medium
series forecast produced by the State of Arizona (2015). Consequently, the adjust-
ment factors are substantially below 1.0 and decrease as the horizon length
increases from 10- to 20-years. The H-P forecasts are too high by 41% in 2020
and are too high by 64% in 2030 relative to the controls.

In contrast, Gila County’s total population grew slowly by about 0.4% per year
on average between 2000 and 2010. This slow growth is reflected in CCRs for ages
10-69 that range from 0.655 (ages 20-24) to 1.241 (ages 65-69) and imply
out-migration of young adults (ages 20-29) and in-migration of ages 30-69, with
the most rapid in-migration occurring in the retirement ages. As a result, the total
population forecasts from the H-P method align closely with the controls. The 2020
and 2030 total population forecasts are about 1% higher and about 1%, lower than
the controls, respectively.

Table 4.5 shows the forecasts, independent population controls, and adjustment
factors for the two communities in San Diego, California. Pacific Beach (PB) is a
beach community 10 miles north of downtown San Diego. It has grown very slowly
over the past 25 years and showed no change in the total population between 2000
and 2010. Historically, new houses in PB have come from small in-fill and
redevelopment projects. The age composition in PB has been very stable overtime
as illustrated in the 2000 and 2010 age distributions. PB is home to large number of
young adults (aged 20-29) that tend to leave the area once they reach their thirties.
This pattern is suggested in the large CCRs for ages 20-29 that drop dramatically to
below 1.00 for the ages (35-44).
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H-P forecasts for PB imply a decline in the total population after 2010, which is
at odds with the controls developed by the San Diego Association of Governments
(SANDAG) (2013). H-P forecasts are too low by 12% in 2020 and too low by 26%
in 2030 relative to the controls. SANDAG’s forecast assumes that substantial
redevelopment will occur in PB as envisioned in the City of San Diego’s City of
Villages Plan (2016).

Mission Valley (MV) is six miles northeast of downtown San Diego and is home
to Qualcomm stadium. For many years MV was largely developed with retail,
commercial, and hospitality services with relatively little residential activity. That
pattern started to change in the early 1990s, as MV began to attract large multi-
family residential developments and the City of San Diego updated the MV
Community Plan. MV grew substantially between 2000 and 2010, increasing by
57%. MV’s age structure is similar to PBs, with relatively few people either under
the age of 20 or over 64 and a concentration in the young adult ages (20-34). Young
adults tend to leave between the ages of (35-49), but MV seems to attract persons in
their 50s. This pattern is suggested in the very large CCRs for ages 20-29, a CCR of
1.47 for 30-34, CCRs below 1.00 for 35-49, and CCRs of 1.15 for those aged
50-59.

H-P forecasts for MV that assume continuation of the rapid growth seen from
2000-2010 are substantially higher than the controls. It is estimated that the MV
Community Plan has a capacity for around 36,000 people (San Diego Association
of Governments 2013); this capacity constraint is reflected in the controls. The H-P
age forecasts are too high by 23% in 2020 and too high by 39% in 2030 relative to
the controls.

4.4 Conclusions

The major advantage of the H-P method compared to the cohort-component method
is that it has much smaller data requirements. Consequently is it far less expensive,
much quicker to implement, and particularly useful for subcounty forecasts where
data on the components of population change are very limited, if they exist at all.
The 2000 U.S. census was the first to allow respondents to list themselves as
belonging to one or more racial categories, and as a result racial data are inconsis-
tent with racial data prior to 2000. In addition, racial classifications from the
decennial census and America Community Survey are not completely consistent
with the classification system used for vital statistics data, making it difficult to
develop reliable estimates of the components of change for racial groups. Because it
is based solely on data for two age distributions, the H-P method avoids these
complications and provides a viable alternative to the full cohort-component
method for forecasts of race, especially for forecasts of the multi-racial population
(Swanson 2013).

Another attractive feature of the H-P method is that the CCRs, which embody
both changes in mortality and migration, can handle special populations or unique
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age structures, like Pacific Beach and Mission Valley, without any adjustments to
the basic model. The same is not true for the cohort-component model, where in
these situations adjustments might be needed to the base population and/or to
fertility, mortality, and migration rates.

The H-P method does not provide information on the components of change and
will not be useful if this information is needed. (In Chapter 13, we present a
decomposition method of the CCR that yields forecasts of migration and deaths).
In rapidly changing areas, the H-P method can lead to large forecast errors and a
strong upward or downward bias depending on whether the change in population is
increasing or decreasing. We saw the strong upward bias in the rapidly increasing
areas of Pinal County, Arizona and the Mission Valley community in the City of
San Diego, California. To illustrate the impact of a large decline on H-P forecasts,
we chose census tract 9.0 in Curry County, New Mexico; home to Cannon AFB.
The population in that census tract dropped from 4,307 to 2,193 between 2000 and
2010, and H-P forecasts for 2020 and 2030 were 949 and 436, respectively. These
forecasts likely have unreasonably large downward biases.

Census enumerations are generally high quality, but are not perfect. Some
people are missed, others counted twice, and others counted in the wrong place.
Coverage rates that differ from one subgroup to another and change over time may
introduce error into the CCRs. While H-P calculations can be characterized as
“quick and easy,” application of this method can be anything but, especially dealing
with subcounty areas. As Swanson et al. (2010) point out in their census tract
forecasts for Clark County, Nevada, the H-P method required calibrations, many
adjustments, and knowledge of the growth patterns for specific areas to generate
plausible forecasts. One major effort, especially in subcounty areas, is creating data
for geographic areas with constant boundaries at both points in time.

Finally, the H-P method has been shown to produce accurate and reasonable
forecasts for 10- and 20-year forecast horizons relative to other forecasting
methods. We know of no studies that have evaluated the H-P method for longer
forecasting horizons.
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Chapter 5
Forecasting Using Modified Cohort Change
Ratios

5.1 Introduction

Assessments of the H-P method have been based on the usual assumption that
cohort change ratios (CCRs) developed over the base period (e.g., 2000 and 2010)
and child-woman ratios (CWRs) or, more generally, child-adult ratios, developed
for the launch year (e.g., 2010) are held constant over the forecast horizon (hori-
zon). This basic or constant model was presented in Chapter 4. Smith et al. (2013:
179) discuss the possibility of relaxing this assumption by averaging together CCRs
and CWRs from several recent censuses, by extrapolating historical trends, or using
a synthetic approach based on CCR and CWR forecasts from a population in a
larger geographic area. We are not aware of any studies that have evaluated the
accuracy of the H-P method using modified CCRs and CWRs.

In this chapter, we evaluate several approaches for modifying CCRs and CWRs
over the horizon. These approaches include: (1) averaging; (2) trending; (3) and a
synthetic method that generates changes in local CCRs and CWRs by linking them
to state-level changes. We evaluate three dimensions of error (accuracy, bias, and
allocation error) and compare forecasts using modified CCRs and CWRs against
forecasts holding them constant (the basic H-P framework). Our focus here is not on
the utility of the H-P method for population forecasting (something we discuss in
Chapter 15), but on the size of the errors of the modification alternatives relative to
basic H-P framework. Errors for two 10-year horizons and one 20-year horizon are
examined for counties in Washington State and a 10-year horizon is examined for
census tracts in New Mexico. This evaluation suggests that averaging or trending
CCRs and CWRs are not worthwhile strategies. However, we find that the synthetic
method has lower errors in comparison to the errors found using the basic H-P
framework.
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5.2 Modifying Cohort Change and Child-Woman Ratios

As described in Chapter 4, the H-P method uses CCRs, which are calculated by
dividing the population aged x in year ¢ by the population aged x—/0 in year —/0.
For the analysis conducted in this chapter, CCRs are calculated separately for males
and females. These CCRs are applied to each age, gender group in year ¢ to provide
forecasts by age and gender in the year ¢ + /0. Given the nature of the CCRs, 10-14
is the youngest 5-year age group for which forecasts can be made if there are
10 years between censuses. Children by gender younger than age 10 are forecast
using CWRs from the launch year (i.e., males or females younger than age
5/females aged 1544 and males or females aged 5-9/females aged 20 to 45).
Egs. 5.1, 5.2 and 5.3 represent the usual application of the H-P framework (i.e.,
holding CCRs and CWRs from the most recent 10-year period constant over the
horizon):

nPX-HO,g,t-HO == nCCRX,g,t X nPX,g,l (Ages 10+), (51)
4P g t+10 = 4CWR o ¢ X 44FPi5110 (Ages 0 —4), (5.2)
oPs g 1110 = gCWRs o ¢ X 4oFPy 1110 (Ages 5-9), (5.3)

where,

n is the width of the age group,

x is the beginning of the age group,
g is gender,

t is the launch year,

P is the population,

CCR is the cohort change ratio,
CWR is the child-woman ratio, and
FP is the female population.

What are the effects on the errors from H-P forecasts if the assumption of
constancy is relaxed? To study this question, we evaluate three approaches for
modifying CCRs and CWRs over the horizon. Following the suggestions the Smith
et al. (2013: 179), we create forecasts using averages and then produce them using
trends in the CCRs and CWRs. Our third approach uses a synthetic method that
links changes in the CCRs and CWRs for one area to the changes forecast for a
different area, which is usually a higher level of geography (e.g., county ratios
modified by forecast changes in state ratios). The synthetic method is frequently
used in state and local forecasting (Smith and Rayer 2012; Smith et al. 2013: 65)
and has a long history of use in population estimation (Swanson and Tayman 2012:
209-213).

The average alternative (AVG) combines two CCRs over the most recent
20-year period (e.g. 1990-2010) and two CWRs over the most recent 10-year
period (e.g. 2000 and 2010):
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4CCRy ot = nPy o.¢/nPx—k,a,t-10 (5.4)

+CCRy o.1-10 = nPx,g,t-10/nPx—k.g,t—20, (5.5)
AVG,CCR, ; = (,CCRy ¢ +,CCRy g.110) /2. (5.6)
AVG4CWRq, = (;CWRg g + ,CWRo g1 10)/2, (5.7)
AVGoCWR; ; = (5CWRs 4, + ¢CWRs 51— 10) /2. (5.8)

where,

AVGCCR is the average CCR over a 20-year period, and
AVGCWR is the average CWRs over10-year period.

Forecasts for AVG assume the averaged CCRs and CWRs stay constant over the
horizon. These forecasts are made by substituting AVG,CCR, ,, AVG,CWR, ,, and
AVGoCWRs , for the CCRs and CWRs into Egs. 5.1, 5.2 and 5.3, respectively.

The trend alternative (TREND) is based on the proportionate change (or ratio) in
the CCRs over the most recent 20-year period and the proportionate change in the
CWRs over the most recent 10-year period as follows:

RATIO,CCRy = (,CCRy 4.1/,CCRy 1-10). (5.9)
RATIO,CWRy , = (4CWRg g/4CWRg g (—10), (5.10)
RATIOGCWRs , = (4CWRs o (/gCWRs 4 (_10), (5.11)

where,

RATIOCCR is the ratio of the CCRs over a 20-year period, and
RATIOCWR is the ratio of CWRs over a 10-year period.

Forecasts based on TREND are computed by:
WPxi10,8.1410 = (,CCRy gt X RATIOZCCRy ) X Py (Ages 10+), (5.12)
4Po.g. 1110 = (4CWRg g, X RATIO4CWRq ;) X 44FPys 110 (Ages 0—4),and (5.13)

oPs 0.1+10 = ((CWRs gt X RATIO9CWRs ¢) X 4oFP 110 (Ages 5-9). (5.14)

AVG and TREND make individual adjustments to the CCRs and CWRs. That is,
the average and proportionate adjustments are specific to each area being forecast.
The synthetic method (SYN) does not make area-specific adjustments, but applies
the same proportionate change to each area based on a forecast for a larger
geographic area (i.e., state changes applied to each county). Including SYN allows
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examination of the efficacy of using area-specific modifications to the CCRs and
CWRs as compared to a more global approach to modification. Unlike AVG and
TREND, SYN requires an independent forecast of CCRs and CWRs for the larger
area. The synthetic method globally incorporates information pertinent to the
horizon, which may be an advantage over the average and trend alternatives,
which rely solely on historical patterns.

For the CCRs, the proportionate adjustments for the larger area are based on
CCRs from times ¢t and t-10 and CCRs from times ¢ + /0 and t; that is, from the
decades prior and subsequent to the launch year. For the CWRs, the adjustments
represent CWRs from times ¢ and t + 10; that is, from beginning and end of the
decade after the launch year. Forecasts using SYN are computed by (bold indicates
the larger area):

SYN,CCRy z = (nCCRy g,t:10/nCCRy g ¢), (5.15)
SYN4CWRy ; = (4CWRy g 1110/4CWRy 4 (), (5.16)
SYNyCWRs ;s = (90CWRs .¢110/9CWRs 4 ¢), (5.17)
WPxi10,g,0010 = (,CCRy gt X SYNZCCRyg) x ,Px.g.t (Ages 10+),  (5.18)
4Pog1+10 = (4CWRg o« X SYNJCWRy g) X 4, FPis i10 (Ages0-4), (5.19)
9Ps g 1110 = (9CWRs o X SYNgCWRs o) X 4oFPy 110 (Ages 5-9), (5.20)

where,

SYNCCR is the CCR adjustments for the larger area, and
SYNCWR is the CWR adjustments for the larger area.

5.3 Measures of Forecast Error

We employ several commonly used measures that capture three dimensions of
forecast error—accuracy, bias, and allocation error (Swanson 2015; Swanson et al.
2011). Error is defined as the difference between the simulated forecast and a
census count. The mean algebraic percent error (MALPE) measures bias in which
positive and negative values offset each other. A positive MALPE reflects the
tendency for the forecasts to be too high on average and a negative MALPE reflect
the tendency for the forecasts to be too low on average. The mean absolute percent
error (MAPE) measures forecast accuracy in which positive and negative errors do
not offset each other. It shows the average percentage difference between the
forecast and observed population, ignoring the sign of the error.

The error distribution underlying the MAPE is often asymmetrical and right-
skewed, causing the MAPE to overstate the error represented by most of the
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observations. MAPE-R and the median absolute percent error (MEDAPE) are two
measures of accuracy that can be used when the error distribution underlying the
MAPE is highly asymmetrical (Swanson et al. 2011; Swanson et al. 2012). Because
forecast errors are generally stable across a variety of error measures (Rayer 2007),
we forego using MEDAPE and MAPE-R in this study.

MAPE and MALPE are based on forecast errors for a particular geographic area.
Another perspective views the misallocation of the forecast across geographic
space or across a given variable such as age. Our focus here is not on geographic
misallocation, but on the accuracy of the age distribution forecast. A number of
measures can be used to measure allocation error (Duncan et al. 1961; Massey and
Denton 1988). We use the Index of Dissimilarity (IOD) that compares the percent-
age distribution of the forecast population by age group with the corresponding
percentage distribution in the census. The IOD calculates the percentage that the
forecast distribution would have to change to match the census distribution. The
10D ranges from 0 to 100, with 0 indicating identical percentage distributions and
100 indicating complete disparity between the forecast and census distributions.

5.4 Empirical Data

Our samples consist of: (1) the 39 counties in Washington State; and (2) census
tracts in New Mexico. Data were collected for 18 age groups (04, 5-9,. . ., 80-84,
and 85+) for males and females. For the counties, we assembled census data for
each decade from 1970 to 2010. Boundary changes are an issue when using
longitudinal data for census tracts and limited how far back in time we could get
data with consistent boundary definitions. As a result, we used census data from
1990, 2000, and 2010 for 471 of the 499 census tracts in New Mexico. Census tract
boundaries for 2010 formed the basis of this data set. Census 1990 and 2000 data
were extracted at the block level and then re-aggregated to census 2010 census tract
boundaries.

Aside from boundary changes, implementing the H-P method in census tracts is
effected by zero and small non-zero population counts. A CCR is undefined if the
earlier census count (the denominator) is zero. The variability inherent in small
population counts can also lead to abnormally large or abnormally small CCRs
when percentage changes increase or decrease by large amounts. For this study, we
made some general adjustments to the census tract data to deal with these issues.
We excluded 28 census tracts that contained zero population in any age and sex
group in 1990 and 2000. These excluded census tracts accounted for around 5% of
the total males and females in the state, with a range from 2.4% for males and
females aged 85 and older to 8.1% for males aged 20-24.

CCRs were also set at a maximum value of 3.0 and a minimum value of 0.4. The
minimum and maximum values were applied to 5.6% and 7.0% of the 15,072
1990-2000 CCRs, respectively. Remember, the objective here is to compare the
errors from the basic H-P model to modification alternatives and not to produce the
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most accurate H-P forecast. In the latter case, different adjustments strategies and a
much closer inspection of the census tract CCRs would be necessary. Such adjust-
ment strategies could include using county-level CCRs, using CCRs from an
aggregation of census tracts around the census tract in question, and/or setting
upper and lower limits on the total population size (Swanson et al. 2010).

For Washington State counties, we constructed H-P models for the four alter-
natives: (1) CONST (holding CCRs and CWRs constant), (2) AVG (averaging
CCRs and CWRs and holding the averages constant; (3) TREND (proportionate
changes applied to CCRs and CWRs; and (4) SYN (county CCRs and CWRs
adjusted by a forecast of state trends in CCRs and CWRs). We prepared forecasts
for three launch year and target year combinations, which yielded two 10-year
horizons and one 20-year horizon: (1) 1990 launch year and 2000 horizon year;
(2) 2000 launch year and 2010 horizon year; and (3) 1990 launch year and 2010
horizon year.

For the 10-year forecast with the 1990 launch year, CONST used CCRs from the
1980-1990 decade and CWRs from 1990; AVG and TREND used CCRs from the
1970-1980 and 1980-1990 decades and CWRs from 1980 and 1990; and SYN used
CCRs from the 1980-1990 decade, CWRs from 1990, state-level CCRs from the
19801990 and 1990-2000 decades, and state-level CWRs from 1990 and 2000.
For the 20-year horizon, SYN used state-level CCRs from the 1990-2000 and
2000-2010 decades and state-level CWRs for 2000 and 2010.

For the 2000 launch year, CONST used CCRs from the 1990-2000 decade and
CWRs from 2000; AVG and TREND used CCRs from the 1980-1990 and
1990-2000 decades and CWRs from 1990 and 2000; and SYN used CCRs based
on the 1990-2000 decade, CWRs from 2000, state-level CCRs from the 1990-2000
and 2000-2010 decades, and state-level CWRs for 2000 and 2010.

Because the census tract data started in 1990, fewer alternatives and only one
10-year horizon was analyzed. We prepared forecasts for CONST and SYN using
the 2000 launch year and the 2010 horizon year (1980 data would have been needed
for the average and trend alternatives). CONST used CCRs from the 1990-2000
decade and CWRs from 2000; and the SYN used CCRs from the 1990-2000
decade, CWRs from 2000, state-level CCRs from the 1990-2000 and 2000-2010
decades, and state-level CWRs for 2000 and 2010.

To test the synthetic alternatives for counties, we would like to have 2000 and
2010 forecasts by age and sex for Washington State based on a 1990 launch year
and a 2010 forecast by age and sex based on a 2000 launch year. For the census tract
synthetic alternative, we would like to have a 2010 forecast by age and sex for New
Mexico based on a 2000 launch year. We were only able to obtain a 2010 forecast
for Washington State based on a 2000 launch year (Office of Financial Management
2002). So for this analysis, we used state-level census data for all synthetic
alternatives.

We do not believe the use of state-level census data, in place of state-level
forecasts contemporaneous with the launch and target years examined, has a
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significant impact on the forecasts from SYN. To examine this claim, we compared
2010 forecasts (from a 2000 launch year) based on the SYN alternative using 2010
census data and the 2010 forecast for Washington State. The patterns and levels of
bias and accuracy for age groups and total population were quite similar for both
forecasts. Differences in MALPEs were less than 2% points and the differences in
MAPESs were less than 1% point. The errors using state-level census data were not
uniformly lower than errors using the state-level forecast, and misallocation errors
were virtually identical in both forecasts.

Some applications control H-P forecasts to an independent forecast of total
population (Smith et al. 2013: 180—181; Swanson et al. 2010)." We opted not to
control the Hamilton-Perry forecasts by age because we wanted to evaluate the total
population forecast error derived directly from the method itself for each alterna-
tive. Total population forecasts are derived by summing the forecast over all age
groups.

5.5 Empirical Results®

5.5.1 Total Population Forecast Error
5.5.1.1 Washington State Counties

We begin the analysis by examining forecast error for the total population (sum of
the age group forecasts) for Washington State counties. Table 5.1 contains the
average bias and accuracy for the four alternatives and the three launch and
horizon year combinations. In terms of bias, TREND clearly performs the worst
in all launch year and horizon years. Its MALPEs range from —41.8% to 24.5%,
compared to the largest and smallest MALPESs (ignoring signs) of the other alter-
natives (0.8% and 20.8%). For 10-year horizons, AVG performs the best, followed
by the SYN, and then CONST. For the 20-year horizon, SYN has the lowest bias
(—8.7%), followed by CONST (—14.4%). The biases in AVG and TREND, espe-
cially TREND, are considerably larger than the biases in CONST and SYN for the
20-year horizon.

In terms of accuracy, SYN has the least error of any alternative for all but one
launch and horizon year combination; SYN’s MAPE (5.7%) is slightly larger than

'Smith and Tayman (2003) found that while uncontrolled H-P forecasts generally had larger errors
than the controlled forecasts for all states and counties in Florida, the patterns of errors by age
groups was generally very similar for both the controlled and uncontrolled forecasts.

*We analyzed separate projections for males and females, but do not report the results here
because of space limitations. Forecast errors for males and females were similar for most age
groups and the total population. For ages 65 years and older, females generally had greater
accuracy and lower bias.
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Table 5.1 Forecast bias and accuracy for total population by alternative, Washington State
counties

MALPE
Launch year Horizon year Constant Average Trend Synthetic
1990 2000 —10.4% 4.5% —24.5% —5.9%
2000 2010 6.3% 0.8% 20.7% 2.4%
1990 2000 —14.4% 20.8% —41.8% —8.7%
MAPE
Launch year Horizon year Constant Average Trend Synthetic
1990 2000 11.2% 12.3% 25.2% 8.3%
2000 2010 7.6% 5.6% 20.7% 5.7%
1990 2000 17.7% 31.3% 47.3% 15.3%

AVG’s MAPE (5.6%) for the 2010 horizon using the 2000 launch year. TREND
universally has the lowest accuracy of any alternative, with MAPEs ranging from
20.7% to 47.3%. For 10-year horizons, CONST has greater accuracy (11.2%) than
AVG (12.3) using the 1990 launch year, but AVG (5.6%) has greater accuracy than
CONST (7.6%) using the 2000 launch year. For the 20-year horizon, the AVG
MAPE (31.3%) is now considerably larger than the CONST MAPE (17.7%), which
is somewhat higher than the SYN MAPE (15.3%).

5.5.1.2 New Mexico Census Tracts

Turning to the forecast errors for the total populations of New Mexico census tracts,
Fig. 5.1 shows bias is lower in SYN (29.2%) compared to CONST (34.7%); a
difference of almost 19%. Accuracy is greater in SYN (48.3% vs 51.3%), but the
difference of just over 6% is less than the improvement in bias. The distribution of
absolute percent errors (APEs) is similar for SYN and CONST (see Fig. 5.2). SYN
does have more relatively small APEs under 25% (52.9% vs 50.7%) and fewer
extreme APEs greater than or equal to 100% (13.8% vs. 15.5%).

To provide a more detailed geographic perspective on the total population
forecast error in New Mexico’s census tracts, Table 5.2 shows the MALPE and
MAPE for census tracts in each of New Mexico’s 34 counties. SYN has lower bias
in 29 counties (85.3%). The percentage improvement in bias in these counties
ranges from 8.5% in Sierra County to 91.4% in Chaves County. In the other
counties, excluding Curry, the bias in SYN is between 29% and 41% larger than
the bias in CONST. In Curry County the MALPEs for CONST and SYN are 0.1%
and —4.0%, respectively, leading to a large percentage increase in bias in SYN
(3,900%). SYN has greater accuracy in 28 counties (82.3%). The percentage
improvement in accuracy in these counties ranges from 0.7% in Cibola County to
46.3% in Debaca County. The percentage loss in accuracy in SYN compared to
CONST ranges from 1.6% in Roosevelt County to 41.5% in Union County.
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5.5.2 Forecast Error by Age Group
5.5.2.1 Washington State Counties

We continue the analysis by examining forecast error by age group for Washington
State counties. We constructed the forecasts using 5-year age groups and a terminal
age group of 85 years and older, but evaluate forecast errors using a reduced set of
seven categories that cover the full age spectrum, adequately capture the
age-specific performance of the alternatives, and make the analysis easier to follow.
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Table 5.2 Forecast accuracy and bias for total population by alternative, census tracts within New
Mexico counties, 2010

MALPE MAPE
County Constant Synthetic % Diff.*> Constant Synthetic % Diff.*
Bernalillo 20.3% 15.4% 24.1% 40.0% 37.9% 5.3%
Catron 35.6% 31.9% 10.4% 35.6% 31.9% 10.4%
Chaves 3.9% —0.3% 92.3% 10.4% 10.1% 2.9%
Cibola 39.5% 33.9% 14.2% 64.3% 63.8% 0.8%
Colfax 14.3% 10.2% 28.7% 14.5% 15.1% —4.1%
Curry 0.1% —4.0% —3900.0% 12.9% 13.3% —3.1%
Debaca 8.2% 4.4% 46.3% 8.2% 4.4% 46.3%
Dona Ana 69.5% 62.2% 10.5% 106.7% 101.7% 4.7%
Eddy 41.3% 35.6% 13.8% 76.7% 72.9% 5.0%
Grant 48.2% 43.1% 10.6% 51.3% 47.0% 8.4%
Guadalupe 12.8% 8.3% 35.2% 12.8% 8.3% 35.2%
Harding —-9.6% —12.4% —29.2% 9.6% 12.4% —29.2%
Hidalgo 18.2% 13.6% 25.3% 18.2% 16.7% 8.2%
Lea —11.4% —15.2% —33.3% 13.7% 15.4% —12.4%
Lincoln 44.0% 39.3% 10.7% 44.0% 39.3% 10.7%
Los Alamos 1.7% —2.3% —35.3% 7.8% 7.6% 2.6%
Luna 40.7% 35.0% 14.0% 45.0% 40.4% 10.2%
Mckinley 119.4% 108.9% 8.8% 130.1% 121.3% 6.8%
Mora 26.2% 21.6% 17.6% 26.2% 21.6% 17.6%
Otero 53.6% 47.4% 11.6% 76.2% 72.1% 5.4%
Quay 58.5% 53.3% 8.9% 62.0% 59.5% 4.0%
Rio Arriba 31.2% 25.9% 17.0% 44 8% 40.8% 8.9%
Roosevelt 11.2% 6.4% 42.9% 41.6% 42.3% —1.7%
Sandoval 48.9% 42.7% 12.7% 68.9% 64.8% 6.0%
San Juan 54.9% 48.2% 12.2% 62.0% 56.6% 8.7%
San Miguel 87.2% 79.6% 8.7% 101.5% 97.6% 3.8%
Santa Fe 22.2% 17.4% 21.6% 31.9% 29.6% 7.2%
Sierra 56.0% 51.2% 8.6% 56.0% 51.2% 8.6%
Socorro 57.9% 51.4% 11.2% 78.2% 73.1% 6.5%
Taos 17.2% 12.8% 25.6% 20.2% 17.0% 15.8%
Torrance 60.6% 53.6% 11.6% 60.6% 54.7% 9.7%
Union —8.2% —11.6% —41.5% 8.2% 11.6% —41.5%
Valencia 48.0% 41.6% 13.3% 48.3% 42.7% 11.6%
New Mexico 34.7% 29.2% 15.9% 51.5% 48.3% 6.2%

“(Constant — synthetic ) / constant x 100
PCalculated using the absolute value of the MALPE

The seven age groups are: younger than age 10, 10-19, 20-34, 35-54, 55-64,
65-74, and 75 years and older.

Table 5.3 contains the level of bias by age group along with the average across
age groups for the four alternatives and the three launch and horizon year
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Table 5.3 Forecast bias (MALPE) by age group and alternative, Washington State counties

Launch Year 1990 and Horizon Year 2000

Age Group Constant Average Trend Synthetic
<10 —6.4% 16.8% —28.3% —-3.3%
10-19 —13.3% —10.0% —13.4% —8.4%
20-34 —10.5% 25.9% —44.6% —1.7%
35-54 —12.3% —-3.2% —20.3% —8.3%
55-64 —8.7% 0.1% —19.3% —6.9%
65-74 —7.0% 8.0% —26.6% —5.5%
75+ —-5.9% 2.6% —15.1% —0.4%
Average —9.2% 5.7% —23.9% —4.9%
Launch Year 2000 and Horizon Year 2010
Age Group Constant Average Trend Synthetic
<10 8.9% 6.0% 18.9% 3.0%
10-19 9.3% 1.9% 28.9% 3.6%
20-34 10.9% 5.0% 27.3% 1.7%
35-54 7.2% 0.7% 24.1% 2.4%
55-64 4.6% 0.0% 16.2% 4.0%
65-74 —2.4% —-5.9% 6.1% 1.0%
75+ -3.3% —6.3% 4.2% 0.7%
Average 5.0% 0.2% 18.0% 2.4%
Launch Year 1990 and Horizon Year 2010
Age Group Constant Average Trend Synthetic
<10 —-9.5% 46.8% —53.1% —4.9%
10-19 —10.8% 17.5% —20.3% —7.9%
20-34 —12.3% 40.2% —60.9% —6.6%
35-54 —18.1% 24.0% —44.0% —11.2%
55-64 —13.2% —1.9% —24.6% —9.2%
65-74 —16.7% 8.3% —50.4% —10.6%
75+ —15.1% 7.9% —38.0% —3.6%
Average —13.7% 20.4% —41.6% —7.7%

combinations. SYN has lower bias than TREND and CONST in every age group for
all launch and target year combinations. SYN’s bias over the age groups is roughly
50% lower than CONST and four to five times lower than TREND. SYN has lower
bias than AVE in 14 of 21 comparisons (7 age groups and 3 launch and target
years). SYN’s average bias across age groups is substantially smaller than AVE in
the 20-year horizon, slightly lower than AVE in the 10-year horizon using the 1990
launch year, and low (2.4%), but larger than AVE (0.2%) in the 10-year horizon
using the 2000 launch year.

TREND shows the largest bias of any alternative in all but one comparison. In
only one instance (ages 75 years and older, launch year 2000 and horizon year
2010) does TREND have a smaller (in absolute value) MALPE compared to AVE
(4.2% vs —6.3%). The performance related to bias is less clear comparing CONST
and AVE. AVE has lower bias than in CONST in 12 of 21 comparisons and a lower
average bias across age groups in the 10-year horizons, but CONST has a decidedly
lower average bias across age groups in the 20-year horizon (—13.7 vs 20.4). Also,
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Table 5.4 Forecast accuracy (MAPE) by age group and alternative, Washington State counties
Launch Year 1990 and Horizon Year 2000

Age Group Constant Average Trend Synthetic
<10 10.3% 21.2% 29.2% 9.3%
10-19 14.1% 15.6% 21.6% 11.1%
20-34 13.9% 28.5% 45.5% 10.2%
35-54 12.9% 12.4% 23.2% 10.1%
55-64 9.4% 12.8% 20.4% 8.3%
65-74 8.0% 13.0% 26.6% 7.0%
75+ 6.4% 9.0% 17.8% 4.1%
Average 10.7% 16.1% 26.3% 8.8%
Launch Year 2000 and Horizon Year 2010
Age Group Constant Average Trend Synthetic
<10 10.6% 9.5% 20.2% 7.6%
10-19 10.6% 6.9% 29.7% 6.9%
20-34 12.7% 9.4% 28.2% 8.2%
35-54 8.6% 5.2% 24.3% 5.2%
55-64 6.9% 5.8% 16.8% 6.7%
65-74 5.3% 7.3% 9.4% 4.5%
75+ 5.6% 7.2% 8.5% 4.7%
Average 8.6% 7.3% 19.6% 6.3%
Launch Year 1990 and Horizon Year 2010
Age Group Constant Average Trend Synthetic
<10 18.6% 53.1% 57.8% 17.3%
10-19 18.1% 31.6% 50.2% 17.4%
20-34 19.6% 47.5% 64.9% 18.1%
35-54 21.0% 34.7% 53.7% 17.7%
55-64 16.0% 25.8% 37.2% 14.3%
65-74 18.5% 26.4% 50.4% 15.0%
75+ 15.3% 19.9% 41.6% 8.3%
Average 18.1% 34.1% 50.8% 15.4%

AVE has more large outlying MALPEs than CONST; 25.9% in the 10-year horizon
using the 1990 launch year and 46.8% and 40.2% in the 20-year horizon.

Table 5.4 contains the level of accuracy by age group along with the average
across age groups for the four alternatives and the three launch and horizon year
combinations. SYN has greater accuracy than TREND and CONST in every age
group for all launch and horizon year combinations. SYN’s average accuracy across
age groups is roughly 20% lower than CONST and three times lower than TREND.
SYN has a greater accuracy than AVE in 19 of 21 comparisons and its average
accuracy across age groups is substantially smaller than AVE in the 20-year horizon
and in the 10-year horizon using the 1990 launch year, and somewhat lower than
AVE in the 10-year horizon using the 2000 launch year (6.3% vs 7.3%).

TREND shows the lowest accuracy of any alternative in all 21 comparisons.
TREND’s average across age groups range from 150% higher to 372% higher
compared to the corresponding figures for the other alternatives. In general,
CONST performs better than AVE regarding accuracy as compared to bias.
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CONST has a greater accuracy than AVE in 15 of 21 comparisons, a lower average
across age groups in the 10-year horizon using the 1990 launch year, and a
decidedly lower average across age groups in the 20-year horizon (18.1% vs
34.1). AVE does show greater accuracy than CONST in the 10-year horizon
using the 2000 launch year. AVG has smaller MAPEs in 6 of 7 age groups, (the
sole exception is for the age group 65-74), and a smaller average across age groups
(7.3% vs 8.6%).

We now turn to the last forecast error evaluation criterion, misallocation error
across age groups. Table 5.5 contains the average of the IODs across counties for
the four alternatives and the three launch and horizon year combinations. Under this
criterion, SYN once again shows the smallest allocation errors of any alternative;
although the differences with CONST are relatively small. CONST generally out-
performs AVE; its average IODs are roughly half the size of those for AVE in two
of three launch and horizon year combinations and its average IOD is only 0.1%
larger than the AVE value for 2010 forecast using the 2000 launch year. TREND by
far has the largest allocation errors of any alternative.

We conclude this section by looking at the relative performance of the alterna-
tives in individual counties. We use a non-parametric approach that measures the
percentage of counties where one alternative has a smaller absolute percent error
(APE) or IOD than another, regardless of the magnitude of the difference. We
compare SYN against CONST stratified by launch and horizon year combinations
for age groups and the total population.’

SYN has a smaller APE than CONST in at least 61% of counties in all age
groups and for the total population for each launch year and horizon year combi-
nation (See Fig. 5.3). SYN generally performs the best, according to this criterion,
in the 2000 forecast using the 1990 launch year. The percentage of counties with
smaller APEs for SYN ranges from 74.4% to 89.7% and 84.6% for the total
population. For the 2010 forecast using the 1990 launch year, the percentages for
age groups range from 69.2% to 82.1%, and 76.9% for the total population. For the
2010 forecast using the 2000 launch year, the percentages for age groups range
from 61.5% to 82.1%, and 74.6% for the total population.

IODs for SYN are smaller than CONST in all launch and horizon year combi-
nations, with percentages ranging from 59.0% of counties for the 2010 forecast

3To conserve space we do not present comparisons of SYN with AVE and SYN with TREND. To
summarize these results, SYN had smaller APEs than AVE in more counties in 20 of the
21 combinations, with percentages in the age groups that ranged from 51.3% to 84.6%. For ages
10 to 19 in the 2010 forecast using the 2000 launch year, SYN had a lower MAPE in 48.7% of the
counties. SYN also had smaller IODs than AVE in more counties, with percentages that ranged
from 64.1% for the 2010 forecast using the 2000 launch year to 97.4% of counties for the 2000
forecast using the 1990 launch. SYN had smaller APEs than TREND in more counties in all age
groups and launch year and horizon year combinations, with percentages that ranged from 69.2%
to 100%. In terms of allocation error, SYN had a lower IOD than TREND ranged from 92.3% of
the counties in both 10-year horizons and 100% in the 20-year horizon.
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Table 5.5 Forecast allocation error across age groups by alternative, Washington State counties

Mean index of dissimilarity

Launch year Horizon year Constant Average Trend Synthetic
1990 2000 2.6% 5.6% 7.2% 2.5%
2000 2010 2.3% 2.2% 4.0% 1.8%
1990 2010 3.7% 6.5% 15.5% 3.6%

100.0%

80.0%

60.0%

1990 to 2000
= 2000 to 2010
= 1990 to 2010

40.0%

Percent of Counties

20.0%

0.0%

<10 10-19  20-34 35-54 55-64 65-74 75+ Total
Age

Fig. 5.3 Synthetic APE lower than constant APE by age group and total population by launch and
horizon years, Washington State counties

using the 1990 launch year to 76.9% for the 2010 forecast using the 2000
launch year.

5.5.2.2 New Mexico Census Tracts

Turning to the analysis by age group for New Mexico census tracts, Table 5.6
contains the level of bias and accuracy by age group along with the average across
age groups for the 2010 forecasts from SYN and CONST. Across all age groups,
SYN has 13.1% less bias than CONST. SYN has lower bias than CONST in all age
groups, but especially in age groups under 65 years of age. Bias is between 8.5%
and 21.1% lower in SYN in these age groups, compared to around 2% lower for
ages 65 and older.

A similar pattern is seen for forecast accuracy. Across all age groups, SYN has
4.7% greater accuracy than CONST. SYN has greater accuracy than CONST in all
age groups, but especially in age groups less than 65 years of age. Accuracy is
between 2.1% and 8.3% greater in these age groups, compared to less than 1% for
ages 65 years and older. While SYN does lower bias and raise accuracy compared
to CONST, SYN has a greater impact on lowering bias than on increasing accuracy.
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Table 5.6 Forecast accuracy and bias by age group and alternative, New Mexico census
tracts, 2010

MALPE MAPE
Age group  Constant  Synthetic  Pct.*” Diff. Constant ~ Synthetic  Pct.™” Diff.
<10 43.1% 37.4% 13.3% 65.8% 62.6% 4.8%
10-19 42.7% 33.7% 21.1% 63.4% 58.2% 8.3%
20-34 51.4% 41.7% 18.9% 73.0% 67.1% 8.1%
35-54 28.1% 22.8% 19.0% 46.3% 43.6% 5.9%
55-64 22.8% 20.9% 8.5% 42.2% 41.3% 2.1%
65-74 21.5% 21.1% 1.8% 40.9% 40.7% 0.5%
75+ 42.6% 41.8% 1.9% 62.6% 62.0% 0.9%
Average 36.1% 31.3% 13.1% 56.3% 53.6% 4.7%

(Constant — synthetic) / constant x 100
°Calculated using the absolute value of the MALPE

70.0%

60.0%
50.0% -
40.0% -
30.0%
20.0%
10.0% -
0.0% -

10-19 20-34 35-54 55-64 65-74 Total
Age

Percent of Census Tracts

Fig. 5.4 Synthetic APE lower than constant APE by age group and total population, New Mexico
census tracts, 2010

There is no difference in allocation error across age groups between SYN and
CONST. The average 10D is 9.0% for both alternatives. The distribution of IODs
by IOD size was virtually identical as well (data not shown).

We conclude this section by looking at the relative performance of SYN and
CONST in individual census tracts using the same non-parametric technique used
for Washington State counties. Figure 5.4 shows the percentage of census tracts
where SYN has a smaller APE than CONST by age group and for the total
population. The difference in forecast error between SYN and CONST is more
muted using this criterion. In all age groups less than 65 years of age and for the
total population, SYN has a smaller APE in more than 50% of the census tracts. For
these age groups, the percentages are quite similar ranging from 56.7% to 59.9%
and 59.4% for the total population. In age range of 65-74, SYN has a smaller APE
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in 46.1% of the census tracts. The percentage is 50.1% for ages 75 years and older
showing almost no advantage for either SYN or CONST. Regarding allocation
error; SYN has a smaller IOD than CONST in 54.1% of the census tracts.

5.5.3 Total Population Forecast Error by Population Size
and Growth Rate”

5.5.3.1 Washington State Counties

In this section we analyze county total population forecast errors by county
population size and growth rate for CONST and SYN. Size represents the popula-
tion at the launch year and growth rate represents the percentage change over the
decade prior to the launch year. We present detailed tables for only launch year
2000 and horizon year 2010, but discuss any major differences with the other two
launch year and target year combinations. We begin by taking an aggregate look at
the MALPE, MAPE, and IOD by four size categories and three growth rate
categories (see Table 5.7). We use three categories for growth rate because it had
much less variation compared to size. These results should be viewed with caution
given the relatively small samples sizes in each category (9 or 10 for size and
10 to 15 for growth rate).

In terms of bias, the MALPE for SYN is lower than the MALPE for CONST in
every size and growth rate category by an appreciable amount. For size, SYN has
between 37.5% and 81.8% less bias and for growth rate SYN has between 44.0%
and 97.1% less bias. These results are generally similar to those for the other launch
and horizon year combinations. However in the forecast with a 20-year horizon, the
MALPE for SYN is larger than the MALPE for CONST in the largest counties
(4.2% vs —2.1%) and in the fastest growing counties (8.9% vs 2.1%).

A similar pattern by size and growth rate is seen for the MAPE, except the
percentage differences are considerably smaller than those for the MALPE. In fact,
for the slowest growing counties, the MAPEs for SYN and CONST are almost
identical. These results are generally similar to those for the other launch and
horizon year combinations with a few exceptions. In the forecast with a 20-year
horizon, the MAPE for SYN is larger than the MAPE for CONST in the largest
counties (13.0% vs 11.0%) and in the fastest growing counties (13.4% vs 10.6%).
Similarly, in the 10-year forecast using the 1990 launch year, the SYN MAPE
(6.5%) is a larger than the CONST MAPE (5.5%) in the largest counties and
slightly larger in the fastest growing counties (6.9% vs 6.8%).

In terms of allocation error, the IODs for all size and growth rate categories are
very low for both SYN and CONST. Except for counties with between 20,000 and

“We analyzed forecast errors by size and growth rate for each age group, but do not present these
results to save space. The results for all groups were very similar to those for total population.
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Table 5.8 Absolute percent errors for total population by size and growth rate, synthetic alter-
native (launch year 2000 and horizon year 2010), Washington State counties

2000 Population

Size < 20,000 20,000-49,999 50,000-141,999 142,000+ Total
Synthetic lower® 90.0% 70.0% 66.7% 70.0% 74.4%
Odds ratio® 3.857 1.000 0.857 n/a

Sample size 10 10 9 10 39
Chi square 1.762 p = 0.623

Kendal’s Tau-c —0.150

1990-2000 Growth rate

Growth rate < 15% 15% to 24.9% 25+ % Total
Synthetic lower* 50.0% 80.0% 85.7% 74.4%
Qdds ratio® 0.167 0.667 n/a

Sample size 10 15 14 39
Chi square 4.309 p=0.116

Kendal’s Tau-c 0.281

“Compared to the absolute percent error from the constant model
142,000+ is the reference group
€25 + % is the reference group

50,000 people, the IOD for SYN is lower than the IOD for CONST in all other size
and growth rate categories. These percentage differences range between 23.8% and
35.0% for size and between 10.7% and 25.0% for growth rate. In counties with
between 20,000 and 50,000 people, the IOD for SYN is 0.1 of a percentage point
larger than the IOD for CONST (2.6% vs 2.5%). These results are nearly identical
to those for the other launch and horizon year combinations.

We now look at individual counties where the APEs for SYN are lower than the
APEs for CONST by the size and growth rate of the counties (see Table 5.8). There
is no discernable relationship between population size and a lower SYN APE. In all
size groups, the APE for SYN is lower in over 60% of the counties. These figures
are very close for populations above 20,000 (66.7% to 70.0%), and SYN most
outperforms CONST in the smallest counties (90.0%). The relationship between a
lower SYN APE with size is not statistically significant and weak (Kendal’s
Tau-c = —0.150).

The relationship between population size and a lower SYN APE is similar in the
other combinations using the 1990 launch year, and quite different from these
results. The relationship with size is now statistically significant, moderate in
strength (Kendal’s Tau-c of —0.379 and —0.396), and negative in direction. As
growth rates increase, the percent of counties where SYN has greater accuracy
decreases. For example, in the forecast with a 20-year horizon, SYN has a lower
APE than CONST in 91.7% of the smallest counties. That percentage decreases to
37.5% in the largest counties.

There is a stronger and positive relationship between growth rate and a lower
SYN APE. For counties in the lowest growth rate category, SYN is lower than
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CONST just as often as CONST is lower than SYN. As growth rates increase, SYN
has a lower APE in a larger percent of the counties. While this relationship is still
not significant, the Kendal’s Tau-c = 0.281 is almost double the figure for size. The
relationship between population growth rate and a lower SYN is similar in the
combinations using the 1990 launch year, and quite different from these results. The
relationship with growth rate is now statistically significant, considerably larger in
strength (Kendal’s Tau-c’s of —0.365 and —0.570), and negative in direction. As
growth rates increase the percent of counties where SYN has a lower APE than
CONST decreases. For example, in the forecast with a 20-year horizon, SYN has a
lower APE in 100% of the counties with the lowest growth rate. That percentage
decreases to 30.0% in the fastest growing counties.

5.5.3.2 New Mexico Census Tracts

We now turn to the analysis of total population forecast errors for SYN and CONST
by population size and population growth rate for New Mexico census tracts. The
number of census tracts enabled a more detailed breakdown of size and growth rate
into five groupings for these characteristics. Table 5.9 provides an aggregate look at
the MALPE, MAPE, and IOD by size and growth rate.

In terms of bias, the MALPE for SYN is between 9.5% and 31.2% lower than the
MALPE for CONST in every size category. A different pattern related to bias
occurs for growth rate. For census tracts that grow by more than 10%, SYN has a
lower MALPE than CONST by between 7.2% and 24.8%. The MALPEs for SYN
and CONST are —34.0% and —31.4%, respectively, in declining census tracts. In
the most stable census tracts (growth rate between —10% to 9.9%), the MALPE:s for
SYN and CONST are —5.8% vs —1.9%, respectively.

Similar patterns by size and growth rate are seen for the MAPE, except the
percentage differences are generally smaller than those for the MALPE. For size,
the SYN MAPEs are in a tight range and lower than the CONST MAPEs by
between 4.2% and 6.8%. For growth rate, CONST has greater accuracy than
SYN for the declining and relatively stable census tracts, with the MAPEs for
SYN around 6.0% higher. For census tracts that grow by 10% or more, SYN has
greater accuracy than CONST, with MAPEs between 6.9% and 12.7% lower.

In terms of allocation error, there is not much difference between SYN and
CONST across size and growth rate categories. For size, the IODs for SYN and
CONST are identical for census tracts with 3,000 or more people. For smaller
census tracts, IODs for SYN are smaller by only trivial amounts. IODs for census
tracts with between 2,000 and 2,999 people differ by 0.2 of a percentage point and
for census tracts with less than 2000 people they differ by 0.1 of a percentage point.
For growth rate, IODs for CONST are smaller than IODs for SYN in declining and
stable census tracts. For the faster growing census tracts (growth rates of 10% or
more), SYN has slightly less allocation error. But the largest difference in IOD
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Table 5.10 Absolute percent errors for total population by size and growth rate, synthetic
alternative, New Mexico census tracts, 2010

2000 Population
Size < 2,000 2,000-2,999 3,000-3,999 4,000-4,999 5,000+ Total
Synthetic lower® 55.9% 52.9% 49.6% 64.1% 757% 59.4%
0dds ratio® 0.407 0.361 0.315 0.573 n/a
Sample size 59 102 125 78 107 471
Chi square 19.548 p = 0.001
Kendal’s Tau-c 0.177

1990-2000 Growth rate

—10% to 10% to 50% to

Growth rate <—10% 9.9% 49.9% 99.9% 100.0%+  Total
Synthetic lower® 5.2% 34.7% 79.0% 89.0% 95.9%  59.4%
Odds ratio® 0.002 0.023 0.162 0.348 n/a
Sample size 77 124 124 73 73 471
Chi square 212.036 P < 0.001

Kendal’s Tau-c 0.717

“Compared to the absolute percent error from the constant model
5000+ is the reference group
€100.0% + is the reference group

between SYN and CONST across growth rate categories is only 0.2 of a percentage
point.

In looking at individual census tracts, we find that the APEs for SYN are lower
than the APEs for CONST by the size and growth rate (see Table 5.10). There is a
weak positive and statistically significant relationship between population size and
a lower SYN APE (Kendal’s Tau-c of 0.177). The percent of census tracts with
lower SYN APE:s is relatively close for census tracts with less than 4,000 people,
ranging from 49.6% to 55.9%. SYN does outperform CONST in census tracts with
4,000 or more people. SYN has a lower APE in 64.1% of census tracts with between
4,000 and 5,000 persons and 75.7% of the census tracts with more than 5,000
persons.

Compared to size, there is a much stronger and statistically significant positive
relationship between growth rate and a lower SYN APE (Kendal’s Tau-c of 0.717).
For declining areas, SYN is lower than CONST in only 5.2% of census tracts, and
for stable areas SYN is lower than CONST in 34.7% of census tracts. As growth
rates increase, SYN has a lower APE in a larger percentage of the census tracts. For
census tracts that grow from between 10% and 50%, SYN has a lower APE in 79%
of them. The percentage steadily increases, reaching 95.9% in census tracts that
more than doubled in size.
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5.6 Conclusions

Assessments of the H-P method have been based on the basic H-P framework in
which CCRs developed over the base period and CWRs developed for the launch
year are held constant over the forecast horizon. In this chapter, we evaluated
several alternatives to modifying CCRs and CWRs and compared the errors from
those forecasts to errors from forecasts using the basic H-P framework. These
alternatives included: (1) averaging; (2) trending; and (3) and a synthetic method
that based local CCRs and CWRs changes on state-level changes in the
corresponding CCRs and CWRs. We evaluated three dimensions of forecast error
(accuracy, bias, and allocation error) from forecasts created for counties in
Washington State (10-year and 20-year horizons) and census tracts in New Mexico
(10-year horizon). Forecast errors were computed by comparing the simulated
forecasts to results from the 2000 and 2010 censuses.

How did the basic H-P framework (CONST) stack up against the alternatives
(AVE, TREND, and SYN)? The short answer is very well against AVE and
TREND in Washington State counties. Forecasts from CONST were almost uni-
versally better (lower error) than forecasts (total population and population by age)
from TREND for all forecast launch year and target year combinations, and
generally better than forecasts from AVE. AVE forecasts had lower forecast errors
than CONST in the one of the forecasts with a 10-year horizon (launch year 2000
and horizon year 2010), but for the 20-year horizon AVE had much larger forecast
errors than CONST. Incorporating historical information for 20-years for CCRs and
10-years for the CWRs did not lower forecast errors, but in fact increased them
compared to the basic H-P framework.

Incorporating forecast information from a larger geographic area outperformed
the basic H-P framework for Washington State counties. County forecasts from
SYN had less bias, greater accuracy, and less allocation error than forecasts than
CONST. This finding was very pervasive. It held for total population and popula-
tion by age group for all launch and horizon year combinations based on an
aggregate analysis of MALPEs, MAPEs, and IODs and analysis of the relative
sizes of the APEs and IODs in individual counties. The advantage of SYN over
CONST was greater in forecasts with a 10-year horizon than it was in the forecast
with a 20-year horizon. Total population forecasts from SYN were also better than
forecasts from CONST across virtually all size and growth rate categories. In
counties with 20,000-50,000 persons, however, CONST’s average 10D (2.2%)
was marginally lower than SYN’s average IOD (2.3%). These results by size and
growth rate were based on rather small samples and should be viewed with caution.

Because of limited historical data with comparable boundaries, we were able to
evaluate only SYN and CONST for census tracts. Like counties, census tract
forecasts based on SYN had less bias, greater accuracy, and less allocation error
than forecasts based on CONST, but the advantages of SYN were less dramatic and
not quite as universal for census tracts. For example in the 2010 county total
population forecast using a 2000 launch year, SYN had a lower MALPE and
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MAPE than CONST by 62% and 25%, respectively. For the total population in
census tracts, SYN had 18.8% less bias and 6.2% greater accuracy. While SYN had
less bias and greater accuracy than CONST in all age groups, SYN’s advantage was
least in age groups 65 years and older. Forecasts from SYN were also better than
forecasts from CONST across size and growth rate categories with a few excep-
tions. For census tracts with 3,000 or more people, there was no difference in
averages IOD between SYN and CONST. The most noticeable exception was in
declining or stable census tracts where CONST has less bias and allocation error
and greater accuracy than SYN.

This analysis has shown that a synthetic approach is a viable alternative to the
basic H-P framework in Washington State counties and New Mexico census tracts.
We have shown that applying methods that altered CCRs and CWRs based on their
history was not an effective strategy in Washington State counties. There is more to
be gained by applying a global (the same) adjustment covering the horizon being
forecast rather than basing adjustments on county-specific historical changes. Even
though we did not test averaging or trending of CCRs and CRWs in the census tract
forecasts, we believe these alternatives would not be useful at this level of geog-
raphy. Assembling the necessary data would be daunting and costly, and historical
variations in CCRs and CWRs for individual census tracts would be much more
volatile and inconsistent than the county-level ratios analyzed here. Perhaps,
averaging and trending CCRs and CWRs might be more viable strategies for states
and other geographic areas larger than counties.

Although not as apparent in the county forecasts, the census tract forecasts
suggest the basic H-P framework may produce forecasts with less error than a
synthetic method in declining or stable census tracts. More study is needed to
determine the generality of this finding. Perhaps this finding was not as apparent
in Washington State counties because of a lack of variation in growth rates, which
were almost always positive. It could also be an artifact of the way we applied the
synthetic adjustment. We used state-level forecasts for both the counties and census
tracts. This is how a synthetic forecast for counties would likely be implemented,
but application of state-level changes to census tracts throughout the state might
ignore important substate variation in CCRs and CWRs over the forecast horizon,
affecting the performance of the synthetic approach.

Our results are conclusive enough to recommend using the synthetic approach
when implementing the H-P forecasting method. In most forecasting situations a
forecast for the higher level of geography would be available, so the synthetic
approach would be a low cost alternative to the basic H-P framework. These
findings are also conclusive enough warrant additional research into the efficacy
of the synthetic alternative. Evaluating counties with more varied size and growth
rate characteristics might shed additional light on the performance of the synthetic
alternative, especially in declining or stable counties or in counties with small
populations. It would be useful to examine whether more geographically-specific
CCR and CWR forecasts as global adjustments is a better synthetic strategy for
census tracts. Perhaps, the synthetic approach may have an even greater advantage
over the basic H-P framework using such a strategy. Finally, we only examined
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uncontrolled forecasts. Would forecast errors and their patterns change for the
synthetic alternative and the basic H-P framework, if the forecasts by age were
adjusted to the total population for each geographic area?
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Chapter 6
Forecasting Uncertainty

6.1 Introduction

This chapter explores the idea of creating statistical intervals for population fore-
casts based on stochastic forecasts of the cohort-change ratios (CCR). We provide
an overview of the three approaches that have been used to assess population
forecast uncertainty, judgment and personal opinion, a range of forecasts based
on alternative scenarios, and statistical forecast intervals. This chapter focuses on
the latter approach. We describe and evaluate a method for developing statistical
intervals around population forecasts by age and for the total population. The
method combines regression modeling of the cohort change ratios used in the
Hamilton-Perry (H-P) method. The evaluation of state-level forecasts shows the
intervals are neither so wide to be meaningless nor too narrow to be overly
restrictive and that, overall, the percent of the forecasts contained within the
intervals is consistent with the uncertainly level of the intervals. We make some
observations regarding the limitations of this approach to measuring forecast
uncertainty, and conclude with suggestions for further work.

6.2 Forecast Uncertainty

Although they are widely used, population forecasts entail an amount of uncer-
tainty, especially for long time horizons and for places with small or rapidly
changing populations (Alho 1984; Alho and Spencer 1985, 1990, 1997, 2005;
Lutz et al. 1999; Smith et al. 2013: 365; Tayman et al. 2007, 2011; Wilson 2012).
As such, virtually every forecast is wrong, making the task of an accurate forecast
impossible, but the task is unavoidable (Keyfitz 1987: 236). It is impossible in that
the forecasted numbers turn out to be different from what actually occurs, but
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unavoidable in that forecasts must be done in the modern world. Swanson and
Tayman (1995) describe this irony as the “rock” and the “hard place.”

Demographers have developed several strategies for dealing with the “irony” of
forecasting. They include the use of the term “projection” rather than “forecast,”
(Keyfitz 1972; Pittenger 1978; Smith and Bayya 1992; Smith et al. 2013: 323),
“normative” forecasting (Moen 1984), and providing measures of forecast uncer-
tainty. One way to assess forecast uncertainty is to use judgment and methods based
on judgment (Linstone and Turoff 1975, Sevéikova et al. 2013). A second way is to
produce several alternative forecasts or scenarios based on different sets of assump-
tions (Campbell 1996; Cheeseman-Day 1992; Spencer 1989; Tayman 2011;
Thompson and Whelpton 1933). A third approach is to develop statistical forecast
intervals (Alho and Spencer 2005; Rayer et al. 2009; Stoto 1983; Swanson and
Beck 1994).

6.3 Statistical Forecast Intervals

Forecast intervals based on statistical theory and data on error distributions provide
an explicit estimate of the probability that a given range will contain the future
population. These intervals are sometimes called prediction intervals, probability
intervals, confidence intervals, or confidence limits. We call them forecast intervals
to distinguish them from traditional confidence intervals, which—strictly speak-
ing—apply only to sample data.

Two approaches have been used to develop statistical forecast intervals. The first
is based on the development of statistical (or stochastic) models of population
growth, and the second is based on empirical analyses of errors from past popula-
tion forecasts. Both rely on the assumption that historical or simulated error
distributions can be used to predict future error distributions. To a large extent,
the two approaches complement one another, but neither is fully satisfactory. On
the one hand, model-based intervals tend to exploit the theories and underlying
inferential statistics, but can fall short in utilizing the information available in
historical data. On the other hand, empirically-based intervals must utilize infor-
mation from historical data and forecasts, but fall short in exploiting the theories
underlying inferential statistics. Our method for developing statistical intervals
around population forecasts uses a model-based approach enhanced with informa-
tion in historical data, a feature found in the empirically-based approach.

6.3.1 Model-Based Intervals

Model-based forecast intervals capitalize on the stochastic (or random) nature of
population processes and offer one important benefit: they provide explicit proba-
bility statements to accompany point forecasts and provide consistency among
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demographic trajectories and parameters. These intervals often exceed the low and
high projections produced using alternative scenarios (McNees 1992). Given that
many data users (and producers) tend to overestimate the accuracy of population
forecasts, model-based probability intervals can provide an important reality check.
However, model-based forecast intervals are valid only to the extent that the
assumptions underlying the models are valid. In spite of their objective appearance,
they are strongly influenced by the analyst’s judgment. The models themselves are
often complex and require a substantial amount of base data. They are subject to
errors in the base data, errors in specifying the model, errors in estimating the
model’s parameters, and future structural changes invalidating the model’s param-
eter estimates (Lee 1992). In addition, it is the case that many alternative forecast-
ing models can be specified, each providing different (perhaps dramatically
different) forecast intervals (Cohen 1986; Lee 1974; Tayman et al. 2007).

Model-based intervals can be developed in a number of ways. Past applications
have included maximum likelihood estimators of population growth rates (Cohen
1986), Monte Carlo simulations of fertility and migration rates (Pflaumer 1988),
simulations incorporating uncertainty from other methods (Wilson and Terblanche
2017); regression-based forecasting models (Swanson and Beck 1994), Bayesian
forecasting models (Alkema et al. 2011; Raftery et al. 2013), models based on the
opinions of a group of experts (Lutz et al. 1999; San Diego County Water Authority
2002), and time series models covering mortality rates (Lee and Carter 1992), life
expectancy (Torri and Vaupel 2012), fertility rates (Lee 1993), net migration
(De Beer 1993), and total population size (Alders et al. 2007; Hyndman and
Booth 2008). Although much of the research on model-based intervals has focused
on national or regional forecasts, research has extended the analysis to subnational
forecasts as well (Cameron and Poot 2011; Tayman et al. 2007; Wilson and Bell
2004). Providing a detailed description of model-based forecast intervals is beyond
the scope of this chapter, but we can give several examples of the intervals
produced by these models and compare them to the high and low projection series
produced using alternative scenarios.

Lee and Tuljapurkar (1994) forecast a population of 398 million for the United
States in 2065, with a 95% forecast interval of 259-609 million. This range is
considerably wider than the spread between the low and high projections produced
by the Census Bureau at about the same time; those projections ranged from
276-507 million in 2050, with a medium projection of 383 million (Cheeseman-
Day 1992). The previous set of Census Bureau projections reported much lower
numbers and a slightly smaller range, with a medium projection of 300 million and
a range of 230—414 million for 2050 (Spencer 1989).

Pflaumer (1992) made two time series forecasts of the U.S. population: one
based on population size and the other based on the natural logarithm of population
size. The first model produced a medium forecast of 402 million in 2050, with a
95% forecast interval of 277-527 million. These numbers are similar to the Census
Bureau’s projections from the same time. The second model produced a medium
forecast of 557 million, with a 95% forecast interval of 465-666 million. These
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numbers are much higher and provide a narrower range than the Census Bureau’s
projections.

McNown et al. (1995) made time series forecasts of the components of growth
for the U.S. population, as well as total population size. For 2050, they forecasted a
total population of 373 million; with a 95% forecast interval ranging from 243 mil-
lion to 736 million. The total fertility rate was forecasted to be 2.46 in 2050, with a
95% forecast interval ranging from 0.91 to 5.53. Life expectancy at birth for males
was forecasted to be 75.5, with a 95% forecast interval ranging from 68.5 to 82.8.
For fertility, these intervals are much larger than those found in the Census Bureau
projections, which assumed that the total fertility rate would range only from 1.83
to 2.52 in 2050 (Cheeseman-Day 1992). For mortality, the interval widths are not
much different than those reported by the Census Bureau, in which life expectancy
at birth was projected to range between 75.3 and 87.6 in 2050.

Swanson and Beck (1994) developed a regression-based model for making
short-term county population forecasts in the state of Washington. They compared
the 2/3 forecast intervals associated with this model to census counts of
Washington’s 39 counties in 1970, 1980, and 1990. They found the forecast
intervals to contain the 1970 census count in 30 counties (77%), the 1980 census
count in 24 counties (62%), and the 1990 census count in 31 counties (79%). These
results suggest that Swanson and Beck’s 2/3 forecast intervals provided a reason-
ably accurate view of forecast uncertainty.

6.3.2 Empirically-Based Intervals

The second type of forecast interval is based on empirical analyses of errors from
past forecasts rather than on an explicit stochastic model (Keyfitz 1981; Smith and
Sincich 1988; Stoto 1983; Smith and Rayer 2012; Tayman et al. 1998). The
empirical approach has some advantages over models that incorporate the stochas-
tic nature of change and may generally be more useful for small areas. This
approach is much less complex and within the capabilities of most agencies
preparing forecasts. The problems implementing stochastic models for small
areas are even more difficult because of the lack of time-series data and the lower
reliability of rates and statistical parameters based on relatively small areal sizes.
However, empirically-based probability intervals require past forecasts whose
availability/usability may be an issue.

Keyfitz (1981) took approximately 1,100 national forecasts made between 1939
and 1968 and calculated the difference between the forecast annual growth rate and
the rate actually occurring over time. He found this difference to be largely
independent of the length of horizon over which the forecasts were made. He
calculated the RMSE for the entire sample to be approximately 0.4% points and
developed 2/3 forecast intervals by applying that error to the growth rates fore-
casted for each country. For example, if a country were forecast to grow by 2% per
year for the next 20 years, the probability would be approximately 2/3 that the
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actual growth rate would be somewhere between 1.6 and 2.4%. He refined his
analysis and found RMSE of 0.60 for rapidly growing countries, 0.48 for moder-
ately growing countries, and 0.29 for slowly growing countries. He applied the 0.29
RMSE to U.S. growth rate of 0.79% per year projected by the Census Bureau,
yielding a range of 245-275 million in 2000. He concluded that the odds were about
2 to 1 that this range would contain the U.S. population in that year.

Stoto (1983) followed a similar approach, but analyzed forecasts containing
more temporal and geographic diversity. He differentiated between two compo-
nents of error, one related to the launch year of the forecast and the other to
seemingly random events (the residual). For more developed countries, he found
the launch-year component to have a distribution that was stable over time and
centered on zero, implying that the forecasts were unbiased. For less developed
countries, he found the variance of the launch-year component to be stable, but that
earlier sets of forecasts had a strong downward bias (although recent sets had little
bias). The second component (the residual) was found to have a stable distribution
but with occasional outliers. For both components, the variance was larger for less
developed countries than more developed countries. He calculated the standard
deviations for these two components of error and constructed forecast intervals of
the U.S. population and estimated that there was about a 2/3 probability that an
interval of 241-280 million would contain the actual population in 2000, and a 95%
probability that an interval of 224-302 million would contain the population. He
compared his results to projections produced by the Census Bureau, concluding that
the Census Bureau’s low and high series were very similar to a 2/3 forecast interval.

Smith and Sincich (1988) also used the distribution of past forecast errors to
construct forecast intervals, but followed a different approach. They modified a
technique developed by Williams and Goodman (1971), in which the predicted
distribution of future forecast errors was based directly on the distribution of past
forecast errors. An important characteristic of this technique is that it can accom-
modate any error distribution, including the asymmetric and truncated distributions
typically found for absolute percent errors.

Using population data for states from 1900 to 1980, Smith and Sincich (1988)
used four simple extrapolation methods to make a series of forecasts covering 10-
and 20-year horizons. They calculated absolute percent errors for each target year
by comparing forecasts with census counts, focusing on the 90% intervals for each
set of forecasts (i.e., the absolute percent error larger than exactly 90% of all
absolute percent errors). They investigated two approaches to constructing 90%
forecast intervals, one using the 90% interval from the previous set of forecasts and
the other using the 90% interval from all other sets of forecasts. They found both
approaches to provide relatively accurate forecast intervals. For most individual
target years, 88—94% of state forecast errors fell within the forecasted 90% interval.
Summing over all target years, 91% of all forecast errors fell within the forecasted
90% interval. They concluded that stability in the distribution of absolute percent
errors over time made it possible to construct useful forecast intervals for state
forecasts.
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Rayer, et al. (2009) constructed and tested forecast intervals for a large sample of
counties in the U.S. using the Williams and Goodman (1971) approach. They
constructed county forecasts covering 10-, 20-, and 30-year horizons and calculated
forecast errors for target years covering decades from 1900 to 2000. Although the
center of the error distributions shifted considerably from one decade to the next,
their shape remained relatively constant over time. They evaluated the performance
of 90% forecast intervals based on the distribution of absolute percent errors and
found over all decades errors for 91% of the counties fell within the forecast
intervals for all three horizons. Although there was some decade to decade varia-
tion, the proportion of errors falling within the intervals was usually between 88%
and 93% and never varied by more than 10% points.

Smith and Rayer (2012) also constructed and tested forecast intervals for
counties in Florida. Using forecast errors for target years 1985, 1990, and 1995,
they constructed 2/3 forecast intervals for forecasts with launch years 1995, 2000,
and 2005 and counted the number of counties in which the subsequent population
counts or estimates fell within the forecast intervals. They found that 43 counties
(64%) fell within the forecasted range for 5-year horizons and 49 counties (73%) for
both 10- and 15-year horizons. These numbers were fairly close to the 45 counties
implied by the forecast intervals. Given the year-to-year volatility of Florida’s
population growth, this reflects a reasonably good forecasting performance.

Tayman et al. (1998) developed statistically-based forecast intervals for
subcounty population forecasts in San Diego County. They started by forecasting
the population residing in 2000 ft. by 2000 ft. grid cells. These forecasts had 1980 as
a launch year and 1990 as a target year. Using repeated sampling techniques and
randomly selected grid cells, they developed forecasts for a large number of areas
varying in size from 500 to 50,000. Forecast errors were calculated by comparing
the 1990 forecasts with 1990 census counts. Rather than constructing forecast
intervals for the population forecasts per se, they developed forecast intervals for
the mean errors implied by those forecasts. Empirical forecast intervals for MAPEs
and MALPEs were developed using an approach similar to that used by Williams
and Goodman (1971) and Smith and Sincich (1988). For areas with 500 persons,
they found a 95% forecast interval of 67.4%—-80.3% for the MAPE. For areas with
50,000 or more, the interval was 9.7%—11.5%. For MALPE, the intervals were
wider, but centered closer to zero.



6.4 Statistical Intervals for Cohort Change Ratios and Population Forecasts 89

6.4 Statistical Intervals for Cohort Change Ratios
and Population Forecasts

6.4.1 Statistical Inference and the Concept of a Super-
Population

The approach underlying the discussion of uncertainty found in this chapter is based
on the concept of a super-population rather than a random sample. This concept can
be traced at least back to 1941 in a paper entitled “On the interpretation of censuses
as samples” (Deming and Stephan 1941). Although the concept of a super-
population has been refined (Graubard and Korn 2002), the definition provided by
Deming and Stephan (1941: 48) remains relevant:

Even a complete census, for scientific generalizations, describes a population that is but one
of the infinity of populations that will result by chance from the same underlying social and
economic cause systems. The infinity of populations may itself be thought of as a popula-
tion, and might possibly be called a super-population. A sample inquiry is then only a
sample of a sample, a so-called 100 percent sample is simply a larger sample, but still only a
sample. In order to study the underlying cause systems, it is necessary to study several
members of this infinity of populations. . .

Not surprisingly, the idea of a super-population gained ground since 1941,
largely due to the increased use of samples and other data to guide decision making.
It has found a home in wildlife studies and other areas of research where sampling is
widely used (because conducting a complete enumeration is either too costly or
simply not feasible), but without the benefit of a sample frame. For example, a
super-population represents the theoretical foundation underlying the statistical
inference applied to capture/recapture studies used to estimate the size of a finite
population. This type of study is also applied to evaluations of census accuracy and
other forms of estimates involving human populations, where it is known, among
other names, as “dual system estimation” (Andridge and Little 2010, Brown et al.
2011, and Wolter 1986).

6.4.2 Hamilton-Perry Method

As described in Chapter 4, the H-P method moves a population by age from time
t to time ¢ + k using cohort change ratios (CCR) computed from data in the two
most recent censuses:

nCCRx,l = an,l/anfk,lka (61)

where,

#P., + 1s the population aged x to x 4 n at the most recent census (f),
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2Py —x 1s the population aged x — k to x — k + n at the 2nd most recent census
(t — k), and

k is the number of years between the most recent census at time ¢ and the one
preceding it at time ¢ — k.

The formula for moving the age cohorts of a population into the future is then:
an+k,t+k = nCCRx,t X an,t (62)

where,

2Pk, 11k 1 the population aged x + k to x + k + n at time ¢ + k, and
2CCR, ,and ,P, . are as defined in Eq. 6.1.

Given the nature of the CCRs, 10-14 is the youngest 5-year age group for which
forecasts can be made if there are 10 years between censuses. To forecast the
populations aged 0—4 and 5-9 one can use the Child-Woman Ratio or more
generally as a Child-Adult Ratio as previously discussed in Chapters 1 and 4.
Another way to forecast the youngest age groups is to take their ratios (R) at two
points in time and apply that ratio to the launch year age group. In the first step, the
ratios are:

Population 0—4 : sRo = 5P¢./5Po,t—«k (6.3)
Population 5-9 : 5Rs5 = 5R5./5P5

In the second step, the forecast population at ¢ + k is found by:

Population 0—4 : 5Po. i1k = sPo.t X 5Ro¢ (65)

Population 5—9 : 5Ps 1k = sPs5; X 5Rs

We prefer the ratio method since it is better suited for the regression-based method
for creating intervals around forecasts for the two youngest age groups. It is better
suited because the CAR values are substantially different than the CCRs, whereas
the ratios are not. This means that the CAR values are potential outliers that could
serve as influential observations that adversely affect model construction (Fox
1991).

Forecasts of the oldest open-ended age group also differ slightly from the fore-
casts for the age groups beyond age 10 up to the oldest open-ended age group. If for
example the final closed age group is 70-74, with 75 years and older as the terminal
open-ended age group, then calculations for the CCR,., , require the summation of
the three oldest age groups to get the population aged 65 years and older at time
t—k

«CCR7s5.t = P75,1/00Pes5.1—k- (6.7)
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The formula for forecasting the population aged 75 years and older for the year
t+ kis:

0oP754, 14k = 00CCR75,¢ X oo Pss 1 (6.8)

6.4.3 Incorporating Uncertainty into the Hamilton-Perry
Method

It is not surprising that the H-P Method is deterministic given its consistency with
the fundamental demographic equation (See Appendix at the end of this chapter),
which by its nature is an accounting method. However, we also know that popula-
tion forecasting is subject to uncertainty since we do not precisely know the future
components making up the fundamental equation. So, the question is how to
introduce an element of statistical uncertainty into a forecasting method that is
inherently deterministic. One answer to this question is found by employing a
simple regression method to estimate CCRs and then applying the regression-
estimated CCRs to the launch-year age groups to obtain forecasts by age group.
Text was changed to explictily reference the Appendix at the end of this chapter

The CCRs for the most current census period (,CCR,,) was given in Eq. 6.1 and
we define the CCRs for the preceding census period as:

2CCRy -k = nPx t—k/yPx—k -2k (6.9)

We construct a regression model with ,CCR,, as the dependent variable and
«CCR,, _  as the independent variable. We note that for age groups 0—4, 5-9,
and the terminal open-ended age group that the dependent and independent obser-
vations follow the equations provided earlier. The estimated CCRs at time ¢ are as
follows:

WECCR,, =a+bx ,CCRy, ¢ (6.10)

We then multiply ,ECCR,, and the corresponding population by age at time ¢ to
forecast the CCR at time ¢ + k:

nCCR, 1 = sECCR, ( X 1Py . (6.11)

Utilizing the regression measure of statistical uncertainty (the standard error of
estimate) for the model along with the sample size and other characteristics of the
data, we can generate forecast intervals around ,CCR, ;. The approximate margin
of error associated with a regression-based forecast is given by Hyndman and
Athanasopoulos (2012):
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1 (x-X)?
moe = tnzse\/l +H +m (6.12)

where

n is the total number of observations,

t, _ o is the t-distribution value corresponding to the probability level,
X is the mean of the observed x values,

s,(2 is the variance of the observed x values, and

Se 18 the standard error of the regression.

These forecasts intervals around ,CCR,,,, are translated directly to the actual
population numbers forecasted for each age group (Espenshade and Tayman
1982; Swanson and Beck 1994).

We use data from 1980-2010 for Minnesota to illustrate the derivation of point
and interval forecasts using regression combined with the H-P method. We begin by
computing the CCRs and ratios for the two youngest age groups for 1980-1990 and
1990-2000 as shown in Table 6.1. We then estimate the these values for 1990-2000
by regressing the observed 1990-2000 values against the observed 1980-1990
values for each age group and solving the regression as follows:

»ECCRy 19902000 = 0.1676667 + (0.8644256 x ,CCRy 1950-1990)

adj.r? = 0.755 and s, = 0.07124. (6.13)

Under usual assumption in the H-P method that the launch year ratios are held
constant, point forecasts in 2010 are computed by:

nPop, 2010 = ,ECCRy 1990-2000 X Popy 2000, Where x (0 —4 and 5 —9), (6.14)

HPOpx,ZOlO = nECCRx,199072000 X POpX710’2000, where x (10 — 74), and (615)

ﬂPOpx,ZOlO = nECCRX, 1990—2000 X P0p65+,2000’ where x (75+) (616)

The 1990-2000 ,ECCR, and point forecasts for population by age are shown in
Table 6.1.

Table 6.2 shows the 66% forecast intervals for both the 1990-2000 ,ECCR, and
2010 population. We first develop intervals around the 1990-2000 ,ECCR, by:

nECCR x, 19902000 £ moe (6.17)
where,

moe is the margin of error at a given probability level.

Equation 6.12 shows the forecast interval is wider when x is farther from X
(or the average of the 1980-1990 CCRs). That is, we are more certain about our
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Table 6.2 66% forecast intervals, Minnesota, 2010

1990-2000 Cohort change ratios 2010 Population forecast

Point Margin of Lower Upper Lower Upper
Age forecast” error’ limit® limit? limit® limit®
04 1.11501 0.07615 1.03886 1.19116 342,402 392,599
5-9 1.17641 0.07909 1.09732 1.25550 390,530 446,825
10-14 1.04890 0.07415 0.97475 1.12305 321,272 370,151
15-19 1.03572 0.07390 0.96182 1.10962 342,306 394,907
20-24 0.98696 0.07344 0.91352 1.06040 342,565 397,645
25-29 0.99286 0.07346 0.91940 1.06632 344,188 399,190
30-34 1.04160 0.07400 0.96760 1.11560 312,035 359,762
35-39 1.02675 0.07376 0.95299 1.10051 304,791 351,972
40-44 1.00900 0.07356 0.93544 1.08256 330,502 382,481
45-49 0.99925 0.07349 0.92576 1.07274 381,867 442,495
50-54 0.98312 0.07343 0.90969 1.05655 374,512 434,973
55-59 0.96727 0.07346 0.89381 1.04073 325,568 379,083
60-64 0.93358 0.07377 0.85981 1.00735 259,189 303,665
65-69 0.89769 0.07447 0.82322 0.97216 186,753 220,541
70-74 0.84880 0.07603 0.77277 0.92483 137,562 164,631
75+ 0.62254 0.09091 0.53163 0.71345 315,930 423,979

“From Table 6.1

"Based on Eq. 6.12, using a t-value of 1.00 for a 66% forecast interval
“Point forecast — margin of error

9Point forecast + margin of error

2000 population x upper and lower limits of the ,ECCR 19902000

forecasts when values of the predictor variable are close to its sample mean. For
example, the largest margin of error is for ages 75 years and older (0.09091). The
1980-1990 CCR for that group (0.52634) is 44% below the average CCR. We then
translate the intervals around the 1990-2000 ,ECCR, into population forecast
intervals by applying Eqs. 6.14, 6.15 and 6.16 to the lower and upper limits
determined by Eq. 6.17.

6.5 Evaluation

To test the regression-based method for developing intervals around population
forecasts by age generated from the H-P Method, we selected a sample made up of
one state from each of the four census regions in the United States. The states
selected are Georgia (South Region), Minnesota (Midwest Region), New Jersey
(Northeast Region) and Washington (West Region). We then assembled census
data for these four states for each census year from 1900 to 2010 (U.S. Census
Bureau 1973, 1982, 1992, 2000, 2010). The data provide nine points in time
at which the forecast intervals can be evaluated 1930, 1940, 1950, 1960, 1970,
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Table 6.3 Total population 1900 and 2010 and annual rate of change by decade, sample states

Census year Georgia Minnesota New Jersey Washington
1900* 2,209,974 1,747,292 1,879,890 511,844
1900-1910 1.64% 1.70% 2.99% 7.97%
1910-1920 1.05% 1.41% 2.19% 1.75%
1920-1930 0.05% 0.72% 2.47% 1.44%
1930-1940 0.72% 0.86% 0.30% 1.06%
1940-1950 0.98% 0.66% 1.50% 3.14%
1950-1960 1.35% 1.35% 2.27% 1.83%
1960-1970 1.52% 1.08% 1.67% 1.78%
1970-1980 1.74% 0.69% 0.27% 1.92%
1980-1990 1.70% 0.71% 0.48% 1.64%
1990-2000 2.34% 1.17% 0.85% 1.92%
2000-2010 1.68% 0.75% 0.44% 1.32%
2010 9,687,653 5,303,925 8,791,894 6,724,540

“The 1900 population totals exclude those for whom age was not reported

1980, 1990, 2000, and 2010. The terminal open-ended age group is reported
differently over the period for which we assembled census data, so we used
75 years and older since it was the common denominator. This means there are
16 age groups used in the evaluation (04, 5-9,..., 70-74, and 75 years and
older).

This sample provides a wide range of demographic characteristics in terms of
variation in population size, age-composition, and rates of change. Table 6.3 pro-
vides an overview of this range by displaying the population of each state in 1900
and in 2010 and decennial rates of population change from 1900 to 2010. Although
we do not show a summary of the changes in age composition by state and census
year, they are extensive.

We proceed by constructing CCRs over two successive decennial periods (e.g.,
1910-1920/1900-1910) over the entire period, using regression to estimate the
CCR in the more current period (e.g., 1910-1920) from the CCR in the earlier
period (e.g., 1900-1910). We then use the regression-based estimate of the CCR of
the “current period” (e.g., 1910-1920) to forecast the CCRs to the next period, the
“launch year” (e.g., 1920-1930) and develop forecast intervals around the fore-
casted CCRs, which are then translated into the forecasted age groups for the “target
year” (e.g., 1930). The forecast intervals are then examined to see if they contain
the census age groups for the target year.

6.5.1 Age Groups

How well does the regression approach based on the H-P method perform in its
ability to predict the uncertainty of population forecasts? One way to address this



96 6 Forecasting Uncertainty

Table 6.4 Number of population counts falling within the 66% forecast intervals by state and
target year, 2010

Target year Georgia Minnesota New Jersey = Washington Total Percent (N/64)
1930 9 12 8 13 42 67%
1940 3 5 11 12 31 48%
1950 10 14 4 3 31 47%
1960 13 14 14 8 49 86%
1970 6 12 14 13 45 77%
1980 7 12 12 10 41 67%
1990 13 14 14 14 55 83%
2000 8 15 14 15 52 81%
2010 7 15 15 14 51 81%
Total 76 113 106 102 397
Percent 53% 78% 74% 71% 69%

Percent Percent Percent Percent  Percent

(N/144) (N/144) (N/144) (N/144)  (N/576)

question is to determine the number of population counts that fall inside the forecast
intervals (Tayman et al. 2007). In terms of the forecast interval probability, we
selected 0.66 or 66% because of prior research indicating that “low” and “high”
scenarios constructed for the cohort-component method corresponded empirically
to 66% confidence intervals (Stoto 1983), as well as findings by Swanson and
Beck (1994).

Table 6.4 provides a summary of the results for all four states at each of the nine
census test points. The table shows the number of times (out of 16) that the 66%
forecast interval contained the corresponding census number for a given age group.
If the forecast intervals provide a valid measure of uncertainty, they will contain
approximately 11 of the 16 observed population counts. The table also shows
percent of the counts falling within the forecast intervals for all target years for
each state (144 intervals), the percent falling within all states for each target year
(64 intervals), and the single percent falling within all states for all target years
(576 intervals).

In Georgia (South Census Region), we find that its population increased by
almost fivefold between 1900 and 2010. In 1900 it had the largest population of any
of the four sample states and it retains that position in 2010. Its annual average
growth rates (by decade) ranged from 0.05% between 1920 and 1930 to 2.34%
between 1990 and 2000. Changes in its age composition are substantial with large
impacts associated with the great depression, World War II, the baby boom, and
immigration to the Sunbelt states more recently. The 66% forecast intervals contain
their corresponding age groups 76 times out of 144 observations, or 53%. Overall,
Georgia has the lowest percent of census age groups within the 66% forecast
intervals.

The population of Minnesota tripled from 1900 to 2010. Its average annual
growth rates ranged from a low of 0.66% between 1940 and 1950 to a high of 1.70%
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between 1900 and 1910, a period when the state was still receiving large numbers of
immigrants from Europe. As is the case for Georgia, changes in its age composition
are extensive, with big impacts associated with the restrictions placed on immigra-
tion during World War I and the great depression, World War II, the baby boom,
and out-migration to Sunbelt states in more recent decades. The 66% forecast
intervals contain their corresponding age groups 113 times out of 144 observations,
or 78%. Overall, Minnesota has the highest percent of census age groups within the
66% forecast intervals.

For New Jersey, its population grew from 1,879,890 in 1900 to 8,791,894 in
2010. New Jersey had the second highest population in 1900 and again in 2010. Its
average annual growth rates ranged from a low of 0.27% between 1970 and 1980 to
a high of 2.99% between 1900 and 1910. As is the case for Georgia and Minnesota,
changes in its age composition are extensive, with big impacts associated with the
restrictions placed on immigration during World War I and the great depression,
World War II, the baby boom, and out-migration to Sunbelt states in more recent
decades. The 66% forecast intervals contain their corresponding census age groups
106 times out of 144 observations, or 74%. Overall, New Jersey has the second-
highest percent of census age groups within the 66% forecast interval.

In 1900, Washington was largely a frontier state. It had the smallest population
(511,844) of any of the four states in the sample. However, by 2010 it had grown to
6,724,540 which surpassed the population of Minnesota in 2010. Its annual rates of
population change are somewhat more dramatic than the other states. Between
1900 and 1910 it posted an annual rate of 7.97%, the highest of any of the decennial
growth rates in the sample. It also posted the second highest rate. Between 1940 and
1950 the state grew at an annual rate of 3.14%. The lowest rate of annual population
change (1.06%) is found between 1930 and 1940. The 66% forecast intervals
contain their corresponding census age groups 102 times, which represents 71%
of the 144 observations.

6.5.2 Total Population

It should be clear that we are primarily interested in measuring uncertainty in
forecasts of age groups. This is an important topic due to the role that the absolute
and relative sizes of age groups play in both commerce (Gauthier et al. 2006;
Martins et al. 2012, Murdock et al. 1997) and public policy (Bongaarts and Bulatao
2000, Murdock et al. 1997, Smith et al. 2013: 23, Tuljapurkar et al. 2005). We are
aware that levels of uncertainty related to forecasts of the total population are
important as well. In this regard, we note that technically the forecast intervals
we generated here apply only to the age groups.

There are two ways in which intervals around age group forecasts can be used to
place intervals around the total population forecast; one is informal while the other
is formal. In the informal approach, we obtain 66% forecast intervals for the total
population by adding the lower and upper boundaries of the intervals for each age
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group. We found that in 28 of the 36 forecasts (four states at each of nine time
points) the summed lower and upper boundaries contained the actual total popula-
tion, or 78%. By state, we find: Georgia’s total population is contained in 5 of the
9 time points (56%); Minnesota’s in 9 of the 9 time points; New Jersey’s in 6 of the
9 time points (67%); and Washington’s total population is contained in 8 of the
9 time points (89%). By target year, we find: 4 of 4 were contained in the 1960,
1970, and 1990 years; 3 of 4 were contained in the 1930, 1980, 2000, and
2010 years; and 2 of 4 in the 1940 and 1950 years.

The formal approach is called the “error propagation method” by Deming (1950:
127-134). In different forms it has been used by Alho and Spencer (2005),
Espenshade and Tayman (1982), and Hansen et al. (1953), among others. In this
application, the error propagation method involves summing the squared values of
the forecast intervals by age, finding the square root of the summed forecast interval
values and dividing this square root of the sample size (n = 16) to obtain an estimate
of the standard error for the total population forecast. This standard error is then
multiplied by the total population forecast (found by summing the point forecast for
each age group) to obtain the margin of error. The margin of error is added to and
subtracted from the total population forecast to obtain its 66% forecast interval.
This approach assumes a simplifying assumption that the 16 age groups are
independent (Espenshade and Tayman 1982). Using this approach, we found that
in 29 of the 36 forecasts (four states at each of nine time points) the error
propagation intervals contained the actual total population, or 81%. By state, we
find: Georgia’s total population is contained in 6 of the 9 time points (67%);
Minnesota’s is in 9 of the 9 time points; New Jersey’s is in 6 of the 9 (67%), and
Washington’s is in 8 of the 9 time points (§9%). By time point, we find: 4 of 4 were
contained in the 1960, 1970, 1990, and 2010 target years; 3 of 4 were contained in
the 1930, 1980, and 2000 target years; and 2 of 4 in the 1940 and 1950 target years.

6.6 Conclusions

Overall, the 66% intervals contain their corresponding census age groups in
397 cases, which represent 69% of the 576 total observations. In terms of the
nine census target years, the overall results show that in five of them (1960, 1970,
1990, 2000, and 2010) the forecast intervals contain the census age groups sub-
stantially more than 66% of the time. In two target years (1930 and 1980), the
intervals contain the census age groups 67% of the time. In the remaining two target
years, 1940 and 1950, the intervals contain the census age groups 48% and 47% of
the time, respectively. We note that the 1940 test point encompasses the economic
boom experienced in the 1920s, the economic depression during the 1930s, and the
large scale “baby bust” associated with it. The 1950 point encompasses the depres-
sion and baby bust period of the 1930s, the economic recovery stimulated by World
War II, and the initial part of the large scale “baby boom” from 1946 to 1950.
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Table 6.5 Number of Age Number Percent (N/36)

population counts falling 04 9 25%

within the 66% forecast

interval by age group, all ?6914 22 3;2//0

states and target years, 2010 1 5:1 9 27 75 ‘VZ
20-24 24 67%
25-29 21 58%
30-34 19 53%
35-39 22 61%
40-44 26 72%
45-49 28 78%
50-54 30 83%
55-59 31 86%
60-64 30 83%
65-69 31 86%
70-74 33 92%
75+ 31 86%
Total 397 69%

Table 6.5 contains a summary of the results by age group across all of the nine
census target years and the four states. The table shows the number of times (out of
36) that the 66% forecast interval contained the corresponding census number for a
given age group. If the forecast intervals provide a valid measure of uncertainty,
they will contain approximately 24 of the 36 observed population counts. In
general, the forecast intervals capture the population count at least 66% of the
time for age groups 10-14, 15-19, 20-24, and 40-44 through 75 years and older.
For age groups 0—4 and 5-9, the forecast intervals only encompass the population
counts 25% of time. For age group 30-34 the count is encompassed 53% of the
time, while for age group 25-29 the count is encompassed 58% of the time. The
population counts are captured by the forecast intervals 61% of the time for age
group 35-39.

Perhaps it should not be surprising that the cohort change method is better able to
capture older age groups than the very youngest since births are not part of a cohort
change ratio. In addition, migration likely comes into play because the population
in the two youngest age groups (0—4 and 5-9) would be moving with their parents,
who are likely to be in age range 25-39, the other age groups for which the forecast
intervals encompassed the population counts less than 66% of the time. Overall, we
find that these effects are consistent with theory regarding migration; that is, those
who tend to move are less socially integrated into communities than those who tend
not to move, and the aging of those who tend not to move increases community
social integration (Goldscheider 1978).

Although not shown here, the average width of the forecast intervals appears to
us to be reasonable at the 66% level in that they are neither so wide as to be
meaningless nor too narrow to be overly-restrictive. This is largely consistent with
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prior work by Swanson and Beck (1994) on forecast intervals derived from regres-
sion-based forecasts, which found that the forecast intervals contained the actual
numbers by age in 69% of the 576 observations; providing further support that 66%
forecast intervals based on an regression-estimated CCR approach are both useful
and feasible. We find these results encouraging.

At this point, we suggest caution using this method beyond a 10-year forecast
horizon. This is consistent with observations about the use of the H-P method in
general (Swanson et al. 2010) and as such is not a major limitation." We also
suggest that this approach to developing uncertainty measures be used with care
when applied to small populations, such as those found at the county and subcounty
levels. While our sample provides a wide range of demographic behavior in terms
of size, age composition, and population changes, it is a sample of states, which
means that greater variability in demographic characteristics found at substate
levels is not present (Swanson et al. 2010). We suggest that further research using
this approach would be useful by examining both longer forecast horizons and
smaller populations and different probability intervals. Another area for further
research would be to utilize root mean square errors in conjunction with the H-P
Method (Keyfitz 1981).

The fact that the forecast intervals do not contain the population counts at least
66% of the time for neither the two youngest age groups (0—4 and 5-9) nor the age
groups associated with those most likely to be the parents of these children
(ages 25-39) should not be surprising. The dynamics of birth and migration are
difficult to capture in the cohort-component method forecast and the H-P Method is
a variant of this method (Smith et al. 2013: 177; Smith and Tayman 2003). Thus,
work on these issues in regard to one of these two methods should be of use to the
other.

Appendix

Cohort Change Ratios and the Fundamental Demographic
Equation

It is important that a demographic technique satisfy various mathematical identities
and, in particular, the demographic accounting identity known as the fundamental
demographic equation:

P:.; = P, + Births—Deaths 4+ In—migrants — Out—migrants (A.1)

"The ten-year horizon is also consistent with accuracy evaluations of the H-P method, which show
that the method performs well for ten year forecasts (Smith and Tayman 2003; Swanson and
Tayman 2013) and even 20 year forecasts (Smith and Tayman 2003).
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This equation states that the population at a given point in time, P, must be equal
to the population at an earlier time, P,, plus the births and in-migrants and minus the
deaths and out-migrants that occur between time ¢ and time ¢ + k.

The Cohort Change Ratio method moves a population by age from time ¢ to time
t + k using cohort-change ratios (CCRs) computed from data in the two most recent
censuses. It consists of two steps. The first step uses existing data to develop CCRs
and the second step applies the CCRs to the cohorts of the launch year population to
move them into the future. The formula for the first step, the development of a CCR
is:

nCCRx,t:an,l/an—k,l—k (A2>

where,

#P.., 1s the population aged x to x 4 n at the most recent census (f),

#Px _ ks _ i 1s the population aged x — k to x — k + n at the 2nd most recent census (7 —
k), and

k is the number of years between the most recent census at time ¢ and the one
preceding it at time 7-k.

The basic formula for the second step, moving the cohorts of a population into the
future is:

an+k,l+k:nCCRx,l Xan,l (A3)

where,

#Pxiksai 1 the population aged x + k to x + k + n at time ¢ 4 k, and
2CCR,,and ,P,, are as defined in Eq. (6.2).

In terms of the CCR Method satisfying the fundamental demographic equation, let
nCCRX,t == (an—k,t—k + B-D + I_O)/(an—k,l—k) (A4)

where,

2Pt 1 the population aged x — k to x — k + n at the 2nd most recent census
(t =k,

B = Births between time ¢t — k and ¢,

D = Deaths between time ¢t — k and t,

I = In-migrants between time ¢ — k and ¢, and

Out-migrants between time ¢t — k and ¢.
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Since,

nPxik ik = ((nPx—k,t—k + B=D +1-0)/(:Px—k,i—k)) X (aPx.0)- (AS)
then,
nCCRy 1 = (nPx—k,t—k—D +1-0)/(aPxsx, 14x)> (A.6)

where, x + k > = 10.

Thus, the CCR method expresses the individual components of change—births,
deaths, and migration—in terms of cohort change ratios and satisfies the funda-
mental demographic equation.
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Chapter 7
Forecasting School Enrollment Size
and Composition

7.1 Introduction

Demographics drive all aspects of school district management, and student popu-
lation and enrollment forecasts represent integral components of the management
process. In this chapter, we briefly review the history of the development of
methods used for student population and enrollment forecasting before describing
how cohort change ratios can be used in this process. We cover both short-term and
long-term forecasting needs and describe methods that can be used in conjunction
with the cohort change ratio approach, giving examples. We conclude the chapter
with a discussion on the accuracy and utility of the CCR method regarding its use
for forecasting student populations and enrollment.

“For reasons understood by every school administrator, a primary demographic
concern centers on the size of a school district’s student population. Size drives
planning from every perspective relating to budget, program, staffing, space, and so
forth.” (Wood et al. 1995: 5-17). This observation says it all in regard to the
importance of demographic information to school districts planning, and because
planning is about the future one can see the importance of student population and
enrollment forecasting to school districts. In this chapter, we show how the cohort
change ratio (CCR) method can be used to forecast student populations and
enrollments for school districts. In general, the chapter is aimed at public
schools, grades kindergarten to twelve (K-12). We note, however, these methods
can be used for private schools as well as post-secondary institutions such as
community colleges and universities, both public and private. However, unlike
the latter, which are not mandated to accept students, the K-12 system is mandated
to accept students because of compulsory attendance laws and regulations. That is,
in the K-12 system enrollments are virtually determined by student demographics,
whereas enrollment in private schools and post-secondary institutions stop short of
being virtually determined by student demographics because of admission policies.

© Springer International Publishing AG 2017 107
J. Baker et al., Cohort Change Ratios and their Applications,
DOI 10.1007/978-3-319-53745-0_7



108 7 Forecasting School Enrollment Size and Composition

These policies add an additional factor to the enrollment forecasting task (Swanson
2016: 25-34).

Student population and enrollment forecasting using demographic methods in
use today can be traced to the early 1950s in the states of Washington (Swanson
2016: 23) and California (California Department of Finance 1954). Today, these
methods and variants of them are used in school districts throughout the
U.S. (Demographics Research Group 2014; Hussar and Bailey 2011; Lapkoff
2008; Rynerson and Chun 2015).

7.2 Short-Term Enrollment Forecasting by Grade

One useful method for short-term (year to year) enrollment forecasting is known as
the Grade Progression Ratio (GPR). This method is basically the CCR method
applied to grade levels in the K-12 system—those in 2nd grade this year were part
of the cohort of first graders last year and so on. This method has a long history of
use. Hauser and Kitagawa (1961) describe it as being simple to use and capable of
yielding good short-range forecasts.

This method consists of two steps. In the first step, GPRs from the prior year to
the current year are calculated; and in the second step, the GPRs are applied to
enrollments by grade for the most current year to get a forecast by grade for next
year. Typically, fall enrollments are used.

GPRy = Gy.1/Gx-1.1-1 (Step 1) (7.1)

where,

G, is the (fall) enrollment in grade x for the current year, and
G,_;, (—; is the (fall) enrollment in grade x — / for the prior year.

Assuming that the school or school district in question offers Kindergarten, First
Grade is typically the lowest grade for which a GPR can be calculated as shown in
Eq. 7.1. We will address this issue shortly, but for now, we move on to the second
step, forecasting

Gyi1,041 = GPR4 (xGy ¢ (Step 2) (7.2)

where,

G, is the (fall) enrollment in grade x for the current year, and
G171, 1+ 18 the forecasted (fall) enrollment in grade x + I for the next year.

Several methods are typically employed to forecast Kindergarten enrollment.
One approach is to find the ratio of current Kindergarten enrollment to the number
of births reported in the same area (e.g., the school district) 6 years ago. Then apply
this ratio to the births reported 5 years ago to obtain a forecast of Kindergarten
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enrollment for next year. A variation on this approach is to compute an average of
these ratios over the past 5 years (in terms of Kindergarten enrollment) and apply
the average to births 5 years ago to obtain a forecast of Kindergarten enrollment for
next year.

Another approach is to “look backwards” and compute a ratio composed
of the Kindergarten enrollment in the current year (the numerator) to the first
grade enrollment in the current year (the denominator). This ratio can then be
applied to the number of first graders forecast for next year to obtain a
forecast of Kindergarten enrollment for next year. Conceptually, this approach
is similar to using a “Child-Adult Ratio” to forecast those in the age groups born
since the last census. We use this approach to illustrate the GPR method
discussed later.

Yet another approach is to take the ratio of current year Kindergarten enrollment
(the numerator) to prior year Kindergarten enrollment (the denominator) and then
apply this ratio to the current year’s Kindergarten enrollment to obtain a forecast of
Kindergarten enrollment for the next year. Without exhausting all of the possibil-
ities for obtaining a forecast of Kindergarten enrollment, it also is possible to use
more than one of the approaches and average the results.

In many schools and school districts, there are special categories of students who
do not fall in one of the grades from Kindergarten through twelfth grade. They are
often classified as ungraded. In order to deal with these students, ratios such as
described for forecasting Kindergarten enrollment may be used.

An empirical example of the GPR method is found in Table 7.1, where the
K-12 enrollment by Grade of the Riverside (California) Unified School District
is forecasted for fall 2015 (using fall 2013 and fall 2014 enrollment data). The
GPRs are very close to one in grades 2 through 4, 8, and 9 through 12. The
largest GPR shows there are 5.4% more Kindergarteners than first graders in
2014, the current year of this illustration. Most of the other GPRs show changes
of between one and two percent. The enrollment forecast for 2015 for all grades
increases by only 2 students from 2014 to 2015. Six grades show enrollment
declines and six show enrollment increases, excluding the ungraded category.
The largest decline (—84 students) occurs in grade 8 due in large part to the
smaller number of students in grade 7 compared to grade 8 in 2014. The largest
change (199 students) occurs in grade 4 as there are 178 more students in grade
3 than in grade 4 in 2014.

While the GPR method works well in the short-term, it addresses neither the
long-term nor the student population from which enrollment is drawn. To deal
with these issues, we turn to the CCR method, which can handle long-term student
population forecasts and, with some augmentation, long term enrollment
forecasts.
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Table 7.1 Public school enrollment forecast, Riverside, California Unified School District, Fall
2015

Change 2014-2015

Grade Fall 2013 Fall 2014 GPR 2013-2014* Fall 2015° Numeric Percent
Pre K & K 3,251 3,278 1.05436 3,305 27 0.8%
First 3,162 3,109 0.95632 3,135 26 0.8%
Second 3,251 3,163 1.00032 3,110 -53 —1.7%
Third 3,082 3,280 1.00892 3,191 -89 —2.7%
Fourth 3,023 3,102 1.00649 3,301 199 6.4%
Fifth 3,147 3,054 1.01025 3,134 80 2.6%
Sixth 3,168 3,195 1.01525 3,101 —94 —2.9%
Seventh 3,326 3,242 1.02336 3,270 28 0.9%
Eighth 3,327 3,322 0.99880 3,238 —84 —2.5%
Ninth 3,370 3,389 1.01864 3,384 -5 —0.1%
Tenth 3,406 3,366 0.99881 3,385 19 0.6%
Eleventh 3,389 3,358 0.98591 3,319 -39 —1.2%
Twelfth 3,638 3,420 1.00915 3,389 -31 —0.9%
Ungraded (9-12) 47 61 1.29787 79 18 29.5%
Total 42,587 42,339 42,341 2 0.0%

Source: California Department of Education DataQuest (http://dq.cde.ca.gov/dataquest)
G /Gx_1,_1 Grades 1-12

Gy /Gy Grade K

Gy/Gy—1 Ungraded

"Gys1e1 — Gy x GPR , Grades 1-12

G +1 = Gy 1 X GPRg Grade K

Gyr1 = Gy X GPR, Ungraded

7.3 Long-Term Student Population and Enrollment
Forecasting by Grade

By using the CCR method to forecast a population by age, the student population of
a given area (e.g., a school district) can be generated. Because the age groups
generated by the CCR method are associated with K—12 enrollments, the latter can
then be generated using an “enrollment rate” approach (Swanson and Tayman
2012: 127-128). In turn, future enrollment rates can be generated using several
methods, including the shift method, which forecasts changes in the rates into the
future (Swanson and Tayman 2012: 128-130). Because we describe the CCR
method in detail elsewhere (Chapters 1, 4 and 8 for example) and give examples
of population forecasts generated by it, we will move directly to a discussion of the
participation rate method and then to the shift method. Next, we provide an example
that illustrates all of the combined elements, the CCR method, the enrollment rate
method, and the shift method.

By itself, the CCR method does not directly generate enrollment forecasts.
However, by embedding “enrollment rates” in a CCR method forecast, enrollment
forecasting is easily done (George et al. 2004). In the “Enrollment Rate” approach,
current and historical data are used to construct proportions (the rate) of the
population that have the characteristic of interest (e.g., enrollment in a given
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grade level). These ratios are forecast into the future. The forecast rates are then
applied to population forecasts by age (and other characteristics) to obtain enroll-
ment forecasts. Chapter 2 provides more detail on the participation rate forecasting
method. The first step is to obtain an enrollment “rate.” Because we are discussing
enrollment by grade, we will simply use it as the characteristic in question:

Ri(=Ei/Pi: (7.3)

where,

R; is the Enrollment Rate for grade i,

P; is the population age i (the age group most closely associated with the grade in
question),

E; is enrollment in grade i (the grade most closely associated with the correspond-
ing population age group), and

t is time.

It is important to note that when 5 year age groups are used, the enrollment rate
generated is for the set of grades with which given age groups correspond. We
illustrate this point in the example given later for the Memphis, Tennessee School
District.

With a set of participation rates, we are ready to generate a forecast. One
assumption is to hold the rates constant, but this often yields less satisfactory results
than using the shift method. The approach we show here is perhaps the simplest way
to implement the shift method (Smith et al. 2013: 2006-211; Swanson and Tayman
2012: 128-131) as shown below:

Si.t = Rit/Ri ik (7.4)

where,

S; . is the shift in the Enrollment Rate for grade i between time ¢ — k and time ¢,

R;; is the Enrollment Rate for grade i at time ¢ (the most recent census),

R, ,_1 is the Enrollment Rate for grade i at time ¢ — k (the 2nd most recent census),
and

k is the number of years between the years of the most recent census and 2nd most
recent census.

Using the shift in the Enrollment Rate, we forecast the enrollment rate by:
Ri ik = Si,exXRiy (7.3)

where,

R; ;41 1s the forecasted enrollment rate for grade i at time ¢ + k, and
S;:and R;, are defined as before.
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Finally, enrollment is forecast by applying the forecast enrollment rate for a given
grade to its corresponding age group generated by the CCR forecast:

Ei ik = Ry ek X Py 1k (7.6)

where,

E; .+« 1s the forecast enrollment in grade i at time ¢ + £k,

R; ;1 1s the forecast enrollment rate for grade i at time 7 + £,

P; .1 1s the forecast population age i (the age group most closely associated with the
grade in question) at time ¢ + k, and

t and k are as defined before.

As an example of the CCR participation rate and shift methods, we use
public school enrollment in Memphis, Tennessee School District. These
data consist of three grade groups for school years 1989-1990 and 1999-2000:
(1) pre-kindergarten and kindergarten (PreK&K); (2) grades 1-8; and (3) grades
9-12. Fall public school enrollments represent the school years. That is, for
1989-1990 we have fall 1989 enrollment and for 1999-2000 we have fall 1999
enrollment. The fall enrollments work well with the census data since the latter
are as of April 1st the following year. The CCR method uses population in
5 year age groups for the Memphis School District in 1990 and 2000. Age groups
04, 5-14, and 15-19 are associated with grades PreK&K, 1-8, and 9-12,
respectively. Using these data and the CCR and enrollment rate methods, we
forecast the population by age and enrollment by grade group to 2010. Selecting
this “historical” forecast for 2010 allows us to conduct an ex post facto evalu-
ation of the accuracy of the population and enrollment forecasts by comparing
them to the corresponding 2010 data, respectively. This is done in the following
Sect. 7.4.

First, we forecast the population of the Memphis, Tennessee School District by
age. The 1990 and 2000 input data as well as the CCRs and forecast population for
2010 are shown in Table 7.2. The total population increased by 13.8% between
2000 and 2010. Growth in the school-age groups exceeds the percentage increase in
the total population, except for ages 0—4. The fastest growing age group is 45-59,
reflecting the aging of the baby boom cohorts.

Second, we calculate enrollment participation rates by grade group for fall 1989
and fall 1999 using the corresponding age groups from the 1990 and 2000 censuses.
We use the shift method, described earlier, to forecast these rates to 2010 based on
trends in the previous decade. Finally, we convert enrollments into expected 2010
enrollment levels by grade using the 2010 forecast for the school-age population.
The results are shown in Table 7.3

We use grades 1-8 to illustrate the enrollment forecasting method. The enroll-
ment rate for the population aged 5-14 found in grades 1 through 8 in 1990 is
0.67155 and by 2000 this rate increases to 0.70221. The ratio of these two rates
(1.04566) is multiplied by the 2000 rate to obtain the forecast 2010 enrollment rate
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Table 7.2 Population forecast, Mempbhis, Tennessee School District, 2010
Change 2000-2010

1990 2000 2010

Age Population Population CCR? Populationb Number Percent
04 49,394 50,175 0.32991 54,548 4,373 10.4%
5-9 45,864 52,315 0.34670 53,425 1,110 16.5%
10-14 42,989 50,620 1.02482 51,420 800 19.6%
15-19 44,945 47,180 1.02869 53,816 6,636 19.7%
20-24 49,093 50,720 1.17984 59,724 9,004 21.7%
25-29 55,132 53,960 1.20058 56,643 2,683 2.7%
30-34 55,054 47,405 0.96562 48,976 1,571 —11.0%
35-39 47,060 49,530 0.89839 48,477 —1,053 3.0%
40-44 39,358 49,520 0.89948 42,640 —6,880 8.3%
45-49 29,722 44,745 0.95081 47,094 2,349 58.4%
50-54 26,256 35,690 0.90680 44,905 9,215 71.0%
55-59 24,275 26,240 0.88285 39,503 13,263 62.7%
60-64 26,747 20,780 0.79144 28,246 7,466 5.6%
65-69 24,813 19,185 0.79032 20,738 1,553 —16.4%
70-74 18,803 17,215 0.64362 13,374 —3,841 —28.9%
75-79 14,349 16,310 0.65732 12,611 —3,699 —12.1%
80-84 9,126 9,710 0.51641 8,890 —820 —2.6%
85+ 7,357 8,530 0.27666 9,559 1,029 29.9%
Total 610,337 649,830 694,589 44,759 13.8%
Annual growth rate 0.63% 0.67%

Source: 1990 and 2000, National Center for Education Statistics, Special Census Tabulation for
School Districts (https://nces.ed.gov/datatools/index.asp?DataToolSectionID=4)

“4Po/15P20, Ages 04

oPs,1/15P2s ¢ Ages 5-9

Py /Px_101—10 Ages 10-84

bP 85+,/P75+.1-10 Ages 85+

4CCRo X 15P20, 410 Ages 04

9CCRs ;¢ X 15Pas4110 Ages 5-9

CCRy; x Py, Ages 10-84

CCRgs.q X Prsyy Ages 85+

(0.73427). This forecast rate is then multiplied by the forecast population aged 5-14
in 2010 (104,845) to obtain the forecasted enrollment in grades 1 through
8 (76,985).

Public school enrollment increases by 9,740 students between 1990 and 2000, an
increase of 8.9%. The school-age population (student population) increases at a
slower pace (6.5%). This difference is due to grades under 9, which show increasing
participation rates between 1990 and 2000 that are assumed to continue for the next
10 years. Conversely, the participation rates for grades 9 through 12 declines by
2.4%, and its enrollment growth is slower than the population growth in the
corresponding age group (15-19).

This example shows how both the student population by age and the enrollment
by grade can be forecast using the CCR method in conjunction with participation
rates by grade/age group and the shift method. To get individual age groups (e.g.,
age 6, age 7, age 8, and so forth) the same ‘“age-splitting” methods cited in
Chapter 9 and elsewhere (Smith et al. 2013:279-284; Judson and Popoff 2004)
can be applied. These same methods can also create enrollment by individual
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grade level (e.g., grade 1, grade 2, grade 3, and so forth). Similarly, interpolation
methods can be applied to obtain age groups and grade levels for the years between
the launch year and the horizon year, which in this example would be 2001, 2002,
and so on to 2010 (Smith et al. 2013: 273-278; Judson and Popoff 2004).

7.4 Evaluation

In this section we provide two evaluation examples. The first is for the 2015
forecast of enrollment by individual grade we prepared for the Riverside, California
Unified School District. To evaluate this short-term enrollment forecast, we com-
pared 2015 actual enrollments by grade to the forecast enrollments by grade for
2015. Table 7.4 provides this summary.

As can be seen in Table 7.4, the GPR method provides highly accurate results.
For all grades, the forecast is low by only 121 students or —0.3%. In terms of the
K-12 enrollments (excluding the ungraded and adult learners), the MAPE is 1. 9,
indicating that on average the GPR method errs by only 1.9%. In terms of basis
(tendency to over-forecast or under-forecast), the MALPE is —0.2%, which indi-
cates a very slight overall under-forecast of the actual fall 2015 enrollment.

Table 7.4 Public school enrollment forecast error, Riverside, California Unified School District,
Fall 2015

Fall 2015 Error

Grade Actual® Forecast® Number Percent
Pre K & K 3,393 3,305 —88 —2.6%
First 2,891 3,135 244 8.4%
Second 3,105 3,110 5 0.2%
Third 3,193 3,191 -2 —-0.1%
Fourth 3,323 3,301 —-22 —0.7%
Fifth 3,191 3,134 —-57 —1.8%
Sixth 3,129 3,101 —28 —0.9%
Seventh 3,351 3,270 —81 —2.4%
Eighth 3,342 3,238 —104 —-3.1%
Ninth 3,445 3,384 —61 —1.8%
Tenth 3,413 3,385 —28 —0.8%
Eleventh 3,292 3,319 27 0.8%
Twelfth 3,332 3,389 57 1.7%
Ungraded (9-12) 62 79 17 27.4%
Total 42,462 42,341 —121 —-0.3%
MALPE (K-12 only) —0.2%

MAPE (K-12 only) 1.9%

“California Department of Education DataQuest (http://dq.cde.ca.gov/dataquest/)
"From Table 7.1
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Table 7.5 School-age population forecast error, Memphis, Tennessee School District, 2010

2010 Error

Age Actual® Forecast” Number Percent
5-9 44,404 53,425 9,021 20.3%
10-14 45,249 51,420 6,171 13.6%
15-19 49,833 53,816 3,983 8.0%
Total 139,486 158,661 19,175 13.7%
MALPE 14.0%

MAPE 14.0%

Special tabulation of the 2010 census by Cropper GIS (croppergis.com)
From Table 7.2

Table 7.6 Public school enrollment forecast error, Memphis, Tennessee School District,
2009-2010

2009-2010 Error

Grade Actual® Forecast® Number Percent
Pre K & K 10,521 11,314 793 7.5%
1-8 65,664 76,985 11,321 17.2%
9-12 33,115 30,926 —2,189 —6.6%
Total 109,300 119,225 9,925 9.1%
MALPE 6.0%

MAPE 10.4%

“National Center for Education Statistics, ELSi tableGenerator (http://nces.ed.gov/ccd/elsi/
tableGenerator.aspx)
°From Table 7.3

For the long-term forecast, we first look at the forecast of the school-age
population of the Memphis School District for the fall of 2010. This result is
found in Table 7.5

Overall, the forecast of the student population (people aged 5-19) is reasonably
accurate, being high by 13.7%. One item of interest is that all three age groups
(5-9, 10-14, and 15-19) are over-forecast. Thus the MALPE is the same as the
MAPE, indicating that the average error over the three age groups is 13.7%
too high.

Table 7.6 shows the public school enrollment forecast for the three grade
groups, PreK&K, grades 1-8, and grades 9-12. The MAPE is 10.4%, which
indicates that on average, the forecast by grade level errs by about 10%. Unlike
the forecast of the population age groups, not all of the grade groups are over-
forecast. The forecast of grades 9-12 is —6.6% less than the actual enrollment. The
other two grade groups are, however, over-forecast. Grades 1-8 are over-forecast
by 17.2% and PreK&K by 7.5%. Taken as a whole, total public school enrollment is
over-forecasted by 9.1%.


http://croppergis.com
http://nces.ed.gov/ccd/elsi/tableGenerator.aspx
http://nces.ed.gov/ccd/elsi/tableGenerator.aspx
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7.5 Conclusions

In this chapter, we provide examples of how the Cohort Change Ratio method can
be used for both short- and long-term student population and enrollment forecasts.
There is a great deal of work that goes into a good enrollment forecast and we have
only touched the surface. A good source for details on methods is Hussar and Bailey
(2011). Other sources include materials at the websites of demographic organiza-
tions that specialize in school enrollment and related forecasts. Four examples, two
in the private sector and two in the public sector, are given below:

1. Lapkoff and Gobalet Demographic Research Inc.
(http://www.demographers.com/about_us.htm);

2. McKibben Demographic Research, LLC
(http://www.mckibbendemographics.com);

3. Population Research Center, Portland State University
(https://www.pdx.edu/prc/about-prc); and

4. Demographic Research Unit, California Department of Finance
(http://www.dof.ca.gov/Forecasting/Demographics/).
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Chapter 8
Forecasting Other Characteristics

8.1 Introduction

Chapter 7 focused on forecasts of school enrollment size and composition using a
grade progression rate variant of the cohort change rate and participation rates. Our
focus now turns to forecasts of other population-related characteristics like house-
holds, family structure, labor force, poverty, obesity, and disability needed for
planning, budgeting, policy analysis, and program administration. Socioeconomic
and health characteristics possess a feature that distinguishes them from strictly
demographic characteristics; namely, they are “achieved” rather than “ascribed.”
Ascribed characteristics such as age, sex, and race/ethnicity are largely set at birth,
while achieved characteristics such as marital status, labor force status, and health
status change over time (Stark 2007). This distinction is not totally clear-cut,
however, because a person’s sex or gender classification can be altered and his/her
racial and ethnic identity may vary according to the prevailing social context (Alba
and Islam 2009; Kaneshiro et al. 2011).

Because achieved characteristics can change substantially over time they are
more difficult to forecast accurately than strictly demographic characteristics. Many
achieved characteristics are strongly affected by population size and demographic
composition, but they are influenced by other factors as well. Forecasts of a
population’s age structure (and, to a lesser extent, its sex and race/ethnicity struc-
ture) provide a basis for forecasting achieved characteristics. This chapter uses the
participation-rate (or prevalence-rate method) in which forecasts of achieved char-
acteristics are derived from forecasts of demographic characteristics through the
use of rates. The participation rate method is discussed in Chapter 2. We present
several studies that have used the participation-rate method to develop forecasts of
the U.S. population with disabilities, obesity, and cardiovascular disease. We then
develop, using the participation-rate method, population-related forecasts of alco-
hol consumption, diabetes, cigarette use and consumption, labor force, and house-
holds and related variables.

© Springer International Publishing AG 2017 119
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8.2 Studies Using the Participation-Rate Method

8.2.1 Disability in the United States

The older population in the U.S. is large and growing rapidly. There were 48 million
persons aged 65 and older in 2015, representing 15% of the total population. This
population is forecast to reach almost 88 million by 2050, or 22% of the total
population (U.S. Census Bureau 2014). Since many types of disability rates rise
with age, the aging of the population is likely to bring substantial increases in the
number of disabled persons and associated costs (Bhattacharya et al. 2004).

Smith, Rayer, and Smith (2008) used the participation-rate method to forecast
the number of persons with a particular type of disability; namely, mobility
limitations. First, they constructed mobility limitation rates by age and sex using
population data from the 2000 census and data on mobility limitations from the
2000 census microdata files. Two definitions of disability were analyzed. One
definition related to persons with long-lasting conditions that substantially limit
one or more physical activities (DIS-1); and the other related to persons with self-
care limitations lasting 6 months or more (DIS-2). They developed three scenarios
regarding changes in those rates between 2000 and 2050. Under the medium
scenario, rates were forecast to remain constant through 2050. Under the low and
high scenarios, they were forecast to fall or rise by 5% per decade, respectively.
They applied the forecasted rates to forecasts of the U.S. population and households
by age and sex developed from the ProFamy model (Zeng et al. 2006).

Under the medium scenario, the number of persons with mobility limitations
was forecast to grow by 106% (DIS-1) and 127% (DIS-2) between 2000 and 2050.
Even under the low scenario, the number of disabled persons grew more rapidly
than the total population (46%); 59% for DIS-1 and 76% for DIS-2. Under the high
scenario, the number of disabled persons grew by 163% (DIS-1) and 190% (DIS-2).
They also forecasted an increase in length of time at least one disabled person will
reside in a single family residence; rising from an average of 17.6 years in 2000 to
an average of 21.2 years in 2050.

8.2.2 Obesity in the United States

Obesity is a common health issue associated with poorer mental health outcomes,
diabetes, heart disease, strokes, and some types of cancer. Obesity rates for adults
aged 20 rose from 22.9% between 1988 and 1994 to 34.9% between 2011 and 2012
and the extremely obese rate more than doubled from 2.8% to 6.4% over the same
period (Fryar et al. 2014). Roughly 17% of children aged 2—19 were obese in

'Obese is defined as a body mass index greater than or equal to 30.0 kg/mz. Extremely obese is a
body mass index greater than or equal to 40 kg/m>.
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2011-2012 (Ogden et al. 2014). Childhood obesity rates have stabilized in the last
decade, but no stabilization has occurred in adult rates. There is a link between
rising obesity rates and rising medical expenses. In 1998 medical costs of obesity
were estimated to be $78.5 billion and may have reached $147 billion a decade later
(Finkelstein et al. 2009); although, these estimates may be far too low (Cawley and
Meyerhoefer 2012). Some believe that current trends in obesity could lessen future
gains in life expectancy or cause life expectancy to decline in the United States
(Olshansky et al. 2005; Walls et al. 2012).

Arterburn et al. (2004) used the participation-rate method to develop short-term
forecasts of obesity in elderly (ages 60 years and older) Americans for 2010. Age-
and sex- specific estimates of obesity prevalence were obtained from national
surveys conducted from 1960 to 2000, which enabled them to track changes in
the prevalence rates by four birth cohorts over time.” Three scenarios were used to
provide a range of forecast obesity prevalence: 1) the Best-Case scenario assumed
the obesity prevalence would change at the lowest absolute rate observed over the
four birth cohorts; 2) the Middle-Case scenario assumed the obesity prevalence
would change at the mean rate over the four birth cohorts; and 3) the Worst-Case
scenario assumed that the dramatic changes occurring in the 1990s would continue
until 2010. To conduct sensitivity analyses, the above scenarios were applied to
low, middle, and high 2010 national population forecasts developed by the
U.S. Census Bureau.

Thirty-two percent of the population aged 60 years and older was obese in 2000.
By 2010 the obesity prevalence increased to between 33.6% (Best-Case) and 39.6%
(Worst-Case). Using middle series population projections, the number of obese
Americans increased from 14.6 million in 2000 to 18.8 million (Best-Case) and
22.2 million (Worst-Case) in 2010. Even under the best case scenario the number of
obese elderly increased by more than four million. The Worst-Case scenario for
obesity prevalence (39.6%) turned out to be a very accurate forecast for 2010 when
compared to the estimated prevalence for 2009-2010 of 39.7% (Ogden et al. 2012).

8.2.3 Cardiovascular Disease in the United States

Death rates from cardiovascular disease (CVD) have declined precipitously; the
rate (per 100,000) decreased from 520.4 in 1969 to 169.1 in 2013, a drop of 67.5%
(Ma et al. 2015). Despite this progress, cardiovascular disease remains the number
one cause of death for both men and women. Around 610,000 people die of CVD
each year in the United States (about 1 in every 4 deaths), and each year 735,000

>The birth cohorts were: 191 1-1920, 1921-1930, 1931-1940, and 1941-1950. The surveys
analyzed were the National Health Examination Survey 1959-1962, National Health and Nutrition
Examination Survey (NHANES) I 1971-1973, NHANES II 1976-1980, NHANES III 1988-1994,
and NHANES 1999-2000.
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Americans have a heart attack (Centers for Disease Control and Prevention 2015a;
Mozaffarian et al. 2015). Since the prevalence of CVD is heavily concentrated in
those aged 60 and over (especially those aged 80 years and older) (Mozaffarian
et al. 2015), the aging of the population is likely to bring substantial increases in the
number of persons affected by CVD and the associated costs.

Heidenreich et al. (2011) used the participation-rate method to forecast the
future of CVD in the United States for both prevalence and cost to the year 2030.
They generated historical estimates of CVD prevalence by age (18-44 years,
45-64 years, 65-79 years, and 80 years and older), sex, and race/ethnicity (white
non-Hispanic, white Hispanic, black, and other) using data from the 1996 to 2006
National Health and Nutrition surveys. CVD prevalence rates were held constant
over the forecast horizon. These rates were applied against the 2008 U.S. Census
Bureau forecast for the years 2010-2030 to forecast the number of people with
CVD by age, sex, and race/ethnicity.

Forecasts were prepared for both direct and indirect expenses of CVD. The main
data sources for direct medical expenses were the 2001-2005 Medical Panel
Surveys (MEPS). Logistic regression was used to estimate per capita medical
expenses by age, sex, and race/ethnicity (from MEPS) stratified by CVD condition
(e.g., hypertension, congestive heart failure). Adjustments were made to remove
double counting of expenses (e.g., when more than one condition is treated during a
visit) and to account for nursing home expenses (from the 2004 National Nursing
Home Survey and National Health Accounts). Per capita direct expenses were
adjusted by assuming the same future growth rate (annual rate of 3.6%) to 2030
in health care expenses above and beyond those due to aging and population growth
forecasted by the Congressional Budget Office. Future direct expenses for CVD
were obtained by applying forecasted per capita expenses against the forecasted
number of people with CVD.

Indirect costs represented the value of foregone earnings due to lost productivity
from morbidity and premature mortality by age, sex, and race/ethnicity. Morbidity
expenses included three components: 1) work loss among employed persons; 2)
home productivity loss; and 3) work loss among people too sick to work. Work loss
expenses were derived from per capita work loss days due to CVD (from MEPS),
adjusted for double counting. Per capita work loss days multiplied by the proba-
bility of employment given CVD (from MEPS) and the mean per capita earning per
day (from the Current Population Survey) provided estimates of the work loss
expenses. Home loss expenses were derived from per days in bed due to CVD
(from MEPS) multiplied by the dollar value of a day of housework. Work loss
expenses for sickness due to CVD were derived from estimates of the number of
people too sick to work who would have been employed except for their CVD
multiplied by their mean annual earnings.

Mortality costs were based on 2006 death rates due to CVD by age, sex, and
race/ethnicity. These rates multiplied by population forecasts determined the num-
ber of deaths due to CVD to 2030. Total mortality expenses were based on the
forecast deaths multiplied by remaining life time earnings by age, sex, and race/
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ethnicity. Indirect expenses of CVD were assumed to grow at the assumed annual
rate of real earnings growth to 2030 (1.4%).

By 2030, 116 million people are forecasted to have some form of CVD, an
increase of 42 million from 2010 (36%). The crude prevalence rate increased from
36.9% of U.S. adults having CVD in 2010 to 40.5% in 2030. This forecast assumed
no change in CVD prevalence rates but reflected the demographics of an aging
population. Direct expenses are forecasted to triple from $272.5 billion in 2010 to
$818.1 billion in 2030. The aging of the population had less impact on indirect
expenses than on direct expenses because of lower employment rates among
persons aged 60 years and older. Indirect expenses are forecast to increase by
61% from 171.7 billion in 2010 to $275.8 billion in 2030. By 2030, the forecast
total expenses for CVD exceeded $1 trillion.

8.3 Developing Population-Related Forecasts

8.3.1 Alcohol Consumption in the United States

Alcohol use is very common and can increase the risk of many harmful health
conditions. Excessive alcohol consumption either in the form of heavy drinking or
binge drinking leads to an average of 80,000 deaths in the United States each year
and cost $223.5 billion in 2006 (Sacks et al. 2013). The prevalence of binge
drinking in the United States has been relatively stable, remaining in a range of
14-17% of adults from 1993 to 2013, while the prevalence of heavy drinking rose
from 3% to 6% of adults from 1993 to 2002 and has been stable since that time
(Centers for Disease Control and Prevention (2015b).

We prepare a forecast of alcohol use in the United States for the year 2025 based
on 2013 prevalence use rates by age for current users, binge users, and heavy users
(U.S. Department of Health and Human Services (2014).3 The prevalence use rates
represent the percent of the population in each age group that falls into each alcohol
user category. The binge and current use categories are not mutually exclusive;
heavy use is included in the estimates of binge use, and heavy use and binge use are
included in the estimate of current use. To avoid double and triple counting of
alcohol users, we create a mutually exclusive set of prevalence use rate. Binge users
are separated by subtracting the heavy use rate from the published binge use rate,
and current users are separated by subtracting the adjusted binge use and heavy use
rates from the published current use rate.

3Current use is at least one drink in the past 30 days. Binge use is five or more drinks on the same
occasion (i.e., at the same time or within a couple of hours of each other) on at least one day in the
past 30 days. Heavy use is five or more drinks on the same occasion each of five or more days in the
past 30 days.
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The 2013 current use rates are shown in Table 8.1. The binge and heavy use rates
have similar age-specific patterns. They both peak at ages 21-25 and decline
consistently for ages above 25 years. The current use rate is similar in magnitude
to the binge use rate to ages 21-25, but the current use rate shows a continuing
increase until ages 60 to 64 and then declines for the oldest age group (65 years and
older). Table 8.1 shows the alcohol use forecast for 2025, which is derived by
applying the 2013 mutually exclusive prevalence rates to the most recent
U.S. population forecast (U.S. Census Bureau 2014). Since the prevalence rates
are held constant, this forecast shows the impact of the aging population on alcohol
use.

There are 139.7 million alcohol users in 2013 (52.2% of the population aged
12 years or older).4 In 2025, there are 153.8 million users of alcohol, an increase of
10.1% from 2013. By comparison, the total population increases by 11.1%. Current
alcohol users increase the fastest by 12.3% between 2013 and 2025, while binge and
heavy users show similar and lower increases of 7.4% and 7.1%, respectively.
Prevalence rates for current users are relatively high in ages 60 years and older
which show the fastest population growth, while the population declines or grows
much slower in the age groups (21-29) with the highest binge and heavy use
prevalence rates. Consequently, 51.7% of the population aged 12 years and older
uses alcohol in 2025, down slightly from 52.2% in 2013; the percentage of current
users rises from 29.3% in 2013 to 29.6% in 2025; and the percentage of binge and
heavy use decreases from 22.9% to 22.1%.

8.3.2 Diabetes in the United States

There are significant personal impacts in terms of reduced quality of life and
suffering of people with diabetes. Additionally diabetes places a substantial eco-
nomic burden in the form of direct medical costs and indirect costs from work-
related absenteeism, reduced productivity and labor force participation, and pre-
mature mortality. In 2012, the total economic cost in the U.S. from diabetes was
estimated at $245 billion, including $176 billion in direct expenses and $69 billion
in indirect costs (American Diabetes Association 2013). As Fig. 8.1 shows, the
prevalence of the population with diagnosed diabetes continues to rise. The prev-
alence rate was relatively stable in each age group from 1980 to 1990, but it has
shown a substantial increase over the last 20 years. On average, the prevalence rate
grew by around 4% annually from 1990 to 2011 in every age group.

“The number of alcohol users from the 2013 Drug Survey (136.9 million) is about two percent
lower than our estimate. The Drug Survey estimate is based on the non-institutional population,
whereas our estimate is based on the total population. The total population in the United States is
roughly two percent higher than the non-institutional population.
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Fig. 8.1 Diagnosed diabetes prevalence rate by age, United States, 1980-2011 (Source: National
Center for Health Statistics 2015)

We prepare a forecast of persons with diagnosed diabetes in the United States for
the year 2025 based on prevalence rates by age (National Center for Health
Statistics 2015). The prevalence rate represents the percent of the population
diagnosed with diabetes in each age group. We create two scenarios based on
different assumptions about the prevalence rate. The first scenario (Constant)
holds the prevalence rate constant for each age group at their 2013 level.” The
second scenario (Trend) assumes the prevalence rate changes linearly from 2013 to
2025 based on the 1980-2013 base period:

2025PR, = 2013PR, x (1 + ((PR2013, — PR1980,) x 12/33) (8.1)

where,

PR is the prevalence rate,

a is the age group,

12 is the length of the forecast horizon (2013-2025), and
33 is the length of the base period (1980-2013).

As Table 8.2 shows, persons diagnosed with diabetes continues to increase in the
United States to the year 2025, increasing by almost 4.4 million (20.3%) in the
Constant scenario and nearly doubling in the Trend scenario (93.1%). By far the

S5The latest prevalence rates provided by the National Center for Health Statistics were for 2011.
To estimate rates for 2013, we adjusted the 2011 prevalence rates so when applied to the 2013
population by age the result would match the latest estimate of the number of persons diagnosed
with diabetes in the United States from the Centers for Disease Control and Prevention (CDCP),
adjusted upward for the difference in population definition (21.6 million). CDCP numbers are
based on non-institutional population and we are using total population.
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largest increase in persons diagnosed with diabetes occurs in the elderly population
(ages 65 years and older). In the Constant scenario, 98.5% of the increase occurs in
the elderly population, while in the Trend scenario the corresponding figure is
62.1%. In 2013 6.2% of the total population is diagnosed with diabetes, rising to
7.5% and 12.0% by 2025 in the Constant and Trend scenarios, respectively. By
2025, roughly 20% of the elderly population will be diagnosed with diabetes in the
Constant scenario. In the Trend scenario that percentage increases to almost
one-third.

8.3.3 Cigarette Use and Consumption in the United States

Cigarette consumption in the U.S. grew from 2.5 billion in 1900 to a peak of
640 billion in 1981, and then declined to a level of under 300 billion in 2013
(ISH Global Inc. 2014). The decline over the last four decades is due to a number of
factors including the increased recognition of the adverse health impacts of
smoking (including second-hand smoke), proliferation of programs and treatments
to help people quit smoking, indoor smoking bans that spread across the United
States, and increases in federal and state taxes on cigarettes. Both the percent of the
population using cigarettes and daily cigarette volume varies by age (see Fig. 8.2).
For cigarette use the pattern is N-shaped; the percentage reaches a peak at ages
20 and 21, stays relatively stable until ages 2629, and then declines steadily to ages
65 years and older. For daily consumption, there is a direct relationship with age,
with the highest consumption at ages 50-64. From 2003 to 2013 both usage and
volume declined in every age group, with the greatest declines occurring in ages
18-25.

Our 2025 forecast of persons using cigarettes and cigarette consumption in the
U.S. is based on prevalence use rates by age and daily cigarette volume by age
(Substance Abuse and Mental Health Services Administration 2014). The preva-
lence use rate represents the percent of the population using cigarettes in the last
month. The consumption rate represents the average daily number of cigarettes
(or sticks) consumed by cigarette users. We create two scenarios based on different
assumptions about the prevalence and consumption rates. The first scenario (Con-
stant) holds the prevalence and consumption rates constant for each age group at
their 2013 level. The second scenario (Trend) assumes the prevalence rate and
consumption rate changes linearly from 2013 to 2025 based on the 2003-2013
trend, using the same logic shown in Eq. 8.1, except the base period is now 10 years
while the forecast horizon is still 12 years. We prepare the forecast in two stages.
First, we forecast the number of cigarette users from the assumed prevalence rate
and the 2025 forecast of the U.S. population. Second, we forecast 2025 cigarette
consumption using the cigarette use forecast from the first stage and the assumed
consumption rate.

Assuming no change in the prevalence rate, cigarette users increase from 55.6
million in 2013 to 60.0 million in 2025 (see Table 8.3). This increase offsets the
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Fig. 8.2 Cigarette use and consumption by age, United States, 2003 and 2013 (Source: Substance
Abuse and Mental Health Services Administration 2014)

decline in cigarette users from 2003 to 2013. The Trend scenario shows a continued
decline in cigarette users, reaching 52.6 million in 2025. In both scenarios, the
change in cigarette users varies by age group, with declines generally seen for ages
under 30 years and with the largest increases in cigarette users 65 years and older.
One-fifth (20.8%) of the population aged 12 and older uses cigarettes in 2013. By
2025, the percentage declines slightly to 20.2% in the Constant scenario and more
steeply to17.7% in the Trend scenario.

The Constant scenario shows a reversal to declining trend of cigarette consump-
tion, with consumption rising by 23 billion cigarettes (9%) between 2013 and 2025
(see Table 8.4). Over one-half of the increase is due to smokers aged 65 and older.
The Trend scenario shows continued decline in cigarette consumption from 254.9
billion in 2013 to 221.5 billion in 2025 (17%). In this scenario, cigarette consump-
tion declines in every age group, except for those aged 65 years and older.
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Table 8.4 Cigarette Consumption, United States, 2025

Constant Scenario

2025 Consumption (in 000’s)
Pct. Chg.
Ages Rate® Users® 2013°¢ 20254 2013-2025
12-17 2.28 1,393,166 1,163,332 1,159,393 —0.4%
18 5.53 905,006 1,808,150 1,826,709 1.0%
19 6.18 1,231,668 2,809,172 2,778,274 —1.1%
20 6.60 1,413,311 3,481,828 3,404,666 —22%
21 6.73 1,443,951 3,693,707 3,546,993 —4.0%
22-23 8.06 2,923,965 9,102,920 8,602,013 —5.5%
24-25 8.84 3,046,830 9,488,391 9,830,902 3.6%
26-29 10.42 5,925,996 20,997,200 22,538,341 7.3%
30-34 12.28 6,798,659 26,504,785 30,472,949 15.0%
35-49 14.32 16,128,335 78,187,100 84,299,581 7.8%
50-64 16.41 12,031,478 72,344,800 72,064,342 —0.4%
65+ 15.23 6,721,843 25,342,600 37,366,389 47.4%
Ages 12+ 59,964,208 254,924,485 277,890,552 9.0%
Trend Scenario
2025 Consumption (in 000’s)
Pct. Chg.
Ages Rate® Users” 2013¢ 2025¢ 2013-2025
0 1.27 597,071 1,163,332 276,772 —76.2%
12-17 3.09 554,425 1,808,150 625,308 —65.4%
18 3.80 934,611 2,809,172 1,296,305 —53.9%
19 422 1,064,998 3,481,828 1,640,416 —52.9%
20 4.30 1,110,562 3,693,707 1,743,027 —52.8%
21 5.90 2,288,404 9,102,920 4,928,078 —45.9%
22-23 7.09 2,502,930 9,488,391 6,477,207 —-31.7%
24-25 8.71 5,283,482 20,997,200 16,796,982 —20.0%
26-29 10.49 6,185,818 26,504,785 23,684,569 —10.6%
30-34 12.18 14,561,262 78,187,100 64,735,002 —17.2%
3549 14.05 11,030,310 72,344,800 56,566,187 —21.8%
50-64 13.74 6,526,036 25,342,600 32,728,723 29.1%
Ages 12+ 52,639,909 254,924,485 211,498,576 —17.0%

Source: Substance Abuse and Mental Health Services Administration (2014)
Trend is the linear extrapolation of the 2003—2013 trend applied to the 2013 rate.
“Constant is the 2013 daily consumption rate of cigarettes.

°From Table 8.3

2013 daily consumption rate x 2013 users x 365

92025 daily consumption rate x 2025 users x 365

8.3.4 Civilian Labor Force Forecast for San Diego County,
California

The U.S. civilian labor force has gone through substantial changes in its size and
demographic composition. The labor force grew rapidly from 1970 to 1990 due to
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rising female labor force participation and the baby boom generation entering the
labor market. Since then, demographic changes and social forces have dampened
labor force growth. The female labor force participation rate (LFPR) peaked in
1999 and baby boomers are starting to exit the workforce due to retirement.
Moreover, the severe economic impacts of the 2007—2009 recession caused dis-
ruptions in the labor market. Going forward, the aging of the population poses
challenges for Social Security, Medicare, and pension programs as the working
population is expected to grow much slower than the non-working elderly popula-
tion. Forecasts of the size and composition of the labor force are useful for
understanding the future impacts of these challenges and for other types of eco-
nomic planning.

Most long-term labor force forecasts use the participation-rate method (Frees,
2006; Loichinger 2015). The Bureau of Labor Statistics (BLS) uses the
participation-rate method to forecast the labor force in the United States (Toossi,
2013) from population forecasts developed by the U.S. Census Bureau in conjunc-
tion with labor force participation rates developed by BLS. The same method can
be used for state and local labor force forecasts. We illustrate this method by
preparing a 2025 labor force forecast by age for San Diego County, California.
We derive LFPRs by age in 2014 from civilian population in the denominator (San
Diego Association of Governments 2014) and persons in the labor force in the
numerator (U.S. Census Bureau 2015). We create two scenarios based on different
assumptions about the LFPR. The first scenario (Constant) holds the LFPR constant
for each age group at its 2014 level. The second scenario (Trend) uses the synthetic
method (Smith et al. 2013: 65), which assumes San Diego’s LFPR changes at the
same rate as the national LFPR (forecast by the BLS from 2012 to 2022).

Comparing the Constant and Trend LFPRs found in Table 8.5, between 2014 and
2025 the LFPR rate declines in all age groups under the age of 55 years, with the
largest percentage declines in the ages 15-19 and 20-24 (—22.3% and —5.5%,
respectively). LFPRs increase in all ages 55 years and older, with larger percentage
increases as the labor force ages. The LFPR in ages 55-59 increases by 4.6% and it
increases by 41.3% in ages 85 years and older.

The total labor force increases by 8.1% in the Constant scenario and 9.0% in the
Trend scenario. Percentage changes in the labor force show a similar pattern in
terms of direction across ages in both scenarios, but are generally of greater
magnitude (ignoring the sign) in the Trend scenario. The impacts of changes on
the labor force age composition from changes in the civilian population age
composition are seen by looking at the Constant scenario. In that scenario, the
labor force increases in all age groups, except for 15-24 and 50-59. As expected the
largest increases in the labor force occur in the older ages. The median age of the
labor force increases from 40.9 years in 2014 to 41.0 years in the Constant scenario
and to 42.4 years in the Trend scenario.
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8.3.5 Other Population and Housing Variables for San Diego
County, California

Households (occupied housing units) and their populations are important con-
sumers in the goods and services markets and are an important determinant of
housing market trends. Forecasts can show the extent to which households and their
occupants will change in the future in both number and composition. As such, they
provide basis for other forecasts such consumer durables, the need for in-home
nursing care services and assisted living, and the need for municipal services.
Persons per household (PPH) can be derived from forecasts of households and
household population; and housing units (or supply) forecasts can be derived from
household forecasts. Uses for these other population and housing variables might
include developing economic strategies, designing service delivery programs,
evaluating future housing and transportation needs, and preparing marketing and
business plans.

Our approach begins with a participation-rate method for developing group
quarters and household population forecasts. The household population forecast is
then combined with householder rates to forecast households. From households,
household population, and assumptions about the housing vacancy rate, we derive
forecasts of PPH and housing units. The general formulae for this approach are:

GQPop, = TPop,xGQR,, (8.2)
HHPop, = Tpop,—GQPop,, (8.3)
HH, = HHPop, xHHR, (8.4)
PPH = ) "HHPop,/ » _ HH., (8.5)
HU = HH/(1—VR), (8.6)

where,

¢ is the demographic characteristic

GOQpop is population living in group quarters,

Tpop is the total population,

GOR is the group quarters population participation rate,
HHPOP is the population living in households,

HH is the number of households,

HHR is the householder rate,

PPH is the average number of persons per household,

HU is the number of housing units (occupied and vacant), and
VR is the housing vacancy rate.

Housing units can also be forecast directly from data on housing trends, zoning
requirements, the amount of buildable land, and other relevant factors (Smith et al.
2013: 296-297). A population forecast can be derived from the housing unit
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forecast by applying the widely-used housing unit method (Swanson and Tayman
2012: 137-164):

8.3.5.1 Group Quarters and Household Population

We prepare 2025 group quarters and household population forecasts by age for San
Diego County, California. We split the group quarters population into civilian and
military. In places with a large military presence, like San Diego County, it is useful
to make this division. Not only do the demographic characteristics differ between
the military and civilian group quarters populations, but the military group quarters
population is not likely to be affected by changes in demographic composition of
the local population like, say, the nursing home population.® Civilian group quarters
participation rates (CivGQR) by age in 2014 are developed from the civilian
population in the denominator (San Diego Association of Governments 2014) and
persons living in civilian group quarters in the numerator (U.S. Census Bureau
2015). The 2014 military group quarters population and CivGQR are held constant
in this forecast.

Table 8.6 shows the CIVGQR is relatively similar in size for most ages,
generally between 1.5% and 2.5% of the civilian population. The highest rates
occur in ages 75 years and older, reflecting the population in elder care facilities.
The civilian group quarters population increases by 9,014 (14.2%) from 2014 to
2025, slightly faster than the 12.5% increase for the civilian population. Most of this
increase (7,499) occurs in ages 65 years and older, reflecting the aging of the
civilian population. The household population reaches 3.49 million in 2025, up
from 3.11 million in 2014.

8.3.5.2 Households, Household Size, and Housing Units

We conclude our examples by preparing 2025 forecasts of households by age, PPH,
and housing units for San Diego County, California. When a participation-rate is
used to forecast households, it is often called the headship or householder rate
(HHR) since the principal person (or householder) is usually reported by age
(as well as by sex and by ethnicity and race, and so on). The HHR approach is
widely used to develop forecasts of households (Goodman et al. 2015; Holmans
2012; Kono 1987; McCue 2014; Reardon and Hari 2014: Appendix B). We derive

SIf an area has large college group quarters or prison/jail populations, they should be forecast
separately from other civilian group quarters for the same reasons the military and civilian group
quarters populations handled distinctly.
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HHR by age in 2014 from household population in the denominator (San Diego
Association of Governments 2014) and householders in the numerator (U.S. Census
Bureau 2015). We create two scenarios based on different assumptions about the
HHR. The first scenario (Constant) holds the HHR constant for each age group at its
2014 level. The second scenario (Trend) uses the synthetic method (Smith et al.
2013: 65), which assumes San Diego’s HHR changes at the same rate as the
national HHR (forecast by Goodman et al. (2015) from 2010 to 2025). To derive
housing units in 2025, we assume that the 2014 vacancy rate (San Diego Associ-
ation of Governments 2014) does not change.

HHR are lowest in ages under 30 years, then rise until ages 45-49, stay
relatively constant through ages 75-79, and then decline for ages 80 years and
older (see Table 8.7). Comparing the Constant and Trend HHR, between 2014 and
2025, the HHR rate declines in all age groups, with the largest percentage declines
in the ages 15-19 and 20-24 (—13.0%), 25-29 (—7.3%), and 30-34 (6.3%). The
slowest declines (around 2%) occur in ages 35-54 and the decline increases to
around 3% for those 55 years and older. More households are formed under the
Constant scenario between 2014 and 2024. Households increase by 165,198
(14.8%) in the Constant scenario compared to 115,578 (10.3%) in the Trend
scenario. As a result, under the Constant scenario the PPH in 2025 is —2.3%
lower than it is in 2014, but the PPH increases by 1.7% in the Trend scenario.
Roughly 52,000 more housing units would have to be built in San Diego County
to accommodate the demand under the Constant scenario (173,747) compared to
the Trend scenario (121,559).

8.4 Conclusions

Population-related forecasts can be used to address a broad array of socioeconomic
and health-related issues. They play an important role in many types of real-world
decision making. The participation-rate method described in this chapter is con-
ceptually simple and relatively easy to apply. More complex methods for forecast-
ing households, health status, employment, and other population-related variables
have also been developed (Barnichon and Nekarda 2012; Christiansen and Keilman
2013; THS Global Inc. 2014; Finkelstein et al. 2012; Huang et al. 2009; Lindh and
Malmberg 2007; Rowley and Bezold 2012; Zeng et al. 2006). Complex methods
draw on a greater variety of inter-relationships among variables and provide a richer
array of detailed characteristics than simpler methods; for some purposes, they will
be more useful than the methods described here. However, the methods presented in
this chapter require considerably less data and can be applied more easily than
complex methods. These are important advantages when resources are scarce and
time is short. Their relatively small data requirements are particularly important for
small-area forecasts because many types of data are not available for them.
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We believe there are many circumstances in which the methods described here will
provide useful forecasts of population-related variables.

Although the participation-rate method is widely used, the usefulness of the
forecast it produces will depend on the validity of its underlying assumptions. The
illustrations presented in this chapter depict several different approaches to fore-
casting future participation rates. In the alcohol consumption and group quarters
population forecasts, we assumed constant launch year rates. Launch year rates
were also held constant in the other forecasts (cigarette use and consumption,
diabetes, labor force and other population and housing), but an alternate assumption
regarding future rates was also applied for these variables. In the labor force and
household forecasts, county rates were assumed to change at the same rate as
national rates; and in the other projections, historical changes in the rates were
extrapolated into the future. Regardless of the approach, developing reasonable
assumptions regarding future participation rates is an important part of the devel-
opment of any set of population-related forecasts. Thorough knowledge of histor-
ical trends and the factors affecting the variables of interest is essential. Although
the participation-rate method is capable of producing reasonably accurate forecasts,
there is no guarantee that it will actually do so.
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Chapter 9
Estimating Population Size and Composition

9.1 Introduction

In a sense, population estimates are like population forecasts in that they are done in
lieu of a census. For both future and past populations it is not possible to conduct a
census; and while it may be possible in principle to conduct a census for a current
point in time, it may not be feasible. In this chapter, we explore the use of the CCR
method for generating estimates for a current point in time (In the following
chapter, we will extend this discussion to past points in time). Before proceeding,
recall the definition from Chapter 2 of a population estimate: the determination of
the size or the characteristics of a population at a current or past date in the absence
of census data for the same date.

When used to make population estimates, the CCR method falls into the second
of three categories of estimation identified by Swanson and Tayman (2012: 3-4),
namely that of “mathematical models that use census data.” Methods falling into
this category have generally been developed by and for academic demographers,
most of whom work at universities and research institutes. To a large extent, this is
not the case for the CCR method, in that it has become widely known and used
among applied demographers as a forecasting method. This chapter shows that the
CCR method can be used to generate current estimates (and the following chapter
shows that the CCR method can be used to generate historical estimates). In order to
accomplish this, however, the CCR method needs to be used in conjunction with a
general class of demographic methods known as interpolation, the subject to which
we now turn.
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9.2 Interpolation Methods

Interpolation methods are a well-established technique in the field of demography
and have a wide range of uses (Judson and Popoff 2004). In a sense, they are
methods of estimation, in and of themselves. Here, we focus on a general class of
interpolation methods that have two uses: (1) splitting age groups in to single years
of age; and (2) assembling an annual series of numbers between the last census and
a current point in time. We note at the outset that there is a wide range of
interpolation methods in this class that could be used, but we focus on only three
of them: (1) Waring’s formula (Judson and Popoff 2004: 685-686, 2) The Karup-
King method (Judson and Popoff 2004: 688, 726); and (3) Interpolation by Prorat-
ing (Judson and Popoff 2004 696—697). In the examples provided later, we show
how to use each of these methods in conjunction with the CCR method and at the
same time illustrate how two of them may be combined for use in conjunction with
the CCR method.

Waring’s formula (Judson and Popoff 2004: 685-686) is a form of polynomial
interpolation based on four known points. Simpler forms of it can be used, however,
with three and two known points, respectively. We use the version that is based on
two known points. This allows us to generate a current estimate using only data
from the last census and a forecast made using the CCR method. Interpolation
methods can also be used to develop a forecast for point in time that is between a
current estimate and the target year for a given CCR method forecast (e.g., if we
have a 2020 forecast and the current point in time is 2017, we can use interpolation
to obtain 2018 and 2019 data).

In general terms, this version of Waring’s formula is defined as:

Piix = P, x (k—x/k)+Pik x (x/K) (9.1)

where,

x is the point in time for which an estimate is desired and ¢ &I¢; x &It; t + k,

t is the year of the most recent census (from which the CCR method
forecast was launched),

k is the horizon length of the CCR method forecast (typically 10 years), and
P is the population.

Equation 9.1 can be applied to age groups, age groups by sex, age groups by age,
race and sex, and whatever other characteristics that the CCR method forecast
generated.

The Karup-King method (Judson and Popoff 2004: 688, 726) is also a form of
polynomial interpolation, but it is an “osculatory” approach. This means that it can
create a smooth junction at the point where two ranges of interpolated numbers meet
(e.g., if we interpolate age group 5-9 and age group 10-14 into single years of age,
respectively, then the number for age 9 will intersect smoothly with the number for
age 10). This method is implemented using coefficients (Judson and Popoff 2004:
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726). It can be used with four known “points” or three." We provide an example
using three. The method disaggregates grouped data into fifths, which makes it
well-suited for obtaining single years of age from five-year age groups.

The third method, “Interpolation by Prorating” (Judson and Popoff 2004:
696—697) uses applicable known data to subdivide grouped data. For example,
we could take a distribution of enrollment for grades 9, 10, 11, and 12, and apply it
to an estimate of enrollment in grades 9-12 to obtain enrollment in grades 9, 10,
11, and 12 consistent with the estimate. We show a variation of this approach in
regard to disaggregating enrollment by groups based on single years of age obtained
using the Karup-King method.

9.3 Examples

Our first example uses a 2020 forecast of the population by age of Riverside
County, California by age using the CCR method (see Table 9.1). We then use
Waring’s 2 point formula and produce “current” estimates of this population by age
for each year from 2011 to 2019 (see Table 9.2).

As specific examples, here is how the 2011, 2015, and 2019 estimates for age
group 10-14 were generated, respectively. For 2011, the estimated number of
183, 604 = ((0.9 x 177,644) +0.1 x 237,247)), where 177,644 is the population
aged 10-14 in 2010 and 237, 247 is the forecasted population aged 10—14 in 2020.
For 2015, the estimated number of 207,446 = ((0.5 x 177,644) + (0.5 x 237,247)),
where 177,644 and 237,247 are previously defined. For 2019 the estimated number
is 231,287 = ((0.1 x 177,644) + (0.9 x 237,247)), where 177,644 and 237,247 are
previously defined.

Waring’s 2-point formula weights each endpoint, with the sum of the weights
equal to 1.0. Estimates closer to the census point receive larger weights on the
census number, which diminish as the estimates get closer to the forecast number.
As can be seen in Table 9.2, the estimated numbers across the years from 2010 to
2020 are consistent with one another, as are the numbers across the age groups
within a given year and across all of the years. This is a highly desirable feature that
is an outcome of using the CCR method in conjunction with Waring’s 2-point
formula.

Figure 9.1 shows the population in selected 5 year age groups (04, 5-9, 10-14,
15-19, and 20-24) forecasted by the CCR method developed in Chapter 7 for the
Memphis School District in 2010. Table 9.3 shows the population by individual
year of age from 5 to 19 using the Karup-King method for interpolating grouped

"First and last interval coefficients are available for interpolating the youngest (0—4) and terminal
age groups (e.g., 85 years and older). Interpolation for these age groups is not as reliable as
interpolation for other age groups because they use information from only one side of the relevant
age group.
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Table 9.1 Population forecast by age, Riverside County, California, 2020
Change 2010-20

Age 2000 2010 CCR* 2020° Number Percent
04 121,629 162,438 0.37171 242,421 79,983 49.2%
5-9 139,468 167,065 0.39184 260,112 93,047 55.7%
10-14 133,886 177,644 1.46054 237,247 59,603 33.6%
15-19 119,725 187,125 1.34171 224,153 37,028 19.8%
20-24 96,374 154,572 1.15450 205,090 50,518 32.7%
25-29 95,621 143,992 1.20269 225,053 81,061 56.3%
30-34 108,602 138,437 1.43646 222,036 83,599 60.4%
35-39 124,260 143,926 1.50517 216,732 72,806 50.6%
40-44 117,910 149,379 1.37547 190,416 41,037 27.5%
45-49 96,484 152,722 1.22905 176,892 24,170 15.8%
50-54 79,538 140,016 1.18748 177,385 37,369 26.7%
55-59 61,880 114,765 1.18947 181,658 66,893 58.3%
60-64 54,046 98,974 1.24436 174,230 75,256 76.0%
65-69 52,309 78,495 1.26850 145,579 67,084 85.5%
70-74 50,845 62,103 1.14908 113,729 51,626 83.1%
75-79 44,184 49,003 0.93680 73,534 24,531 50.1%
80-84 27,542 36,793 0.72363 44,940 8,147 22.1%
85-89 14,399 22,399 0.50695 24,842 2,443 10.9%
90+ 6,685 9,793 0.20139 13,893 4,100 41.9%
Total 1,545,387 2,189,641 3,149,942 960,301 43.9%

Source: 2000 and 2010, U.S. Census Bureau (http://factfinder2.census.gov)
a4]:)0,1/15])20J Ages 04

oPs/1sPasy  Ages 5-9

Py /Py 10410 Ages 10-89

bP 90+4/Pgora—10  Ages 90+
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9CCRs X 15P2s5 410 Ages 5-9
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data, which requires the population in the age groups shown in Fig. 9.1. In
implementing the Karup-King method for this purpose, we took each age group
5-9, 10-14, and 15-19, as the “middle panel,” respectively (Judson and Popoff
2004: 726, Table C.13.b).

As examples of how we use the Karup-King method: (1) the number in Table 9.3
forthoseaged5is 10,789 =(0.064 x 54,548)+(0.152 x 53,425)+(—0.016 x 51,420),
where 0.064, 0.152, and —0.016 are middle panel Karup-King coefficients from
Table C13.b, respectively applied to the total number aged 0—4 (54,548), 5-9
(53,425), and 10-14 (51,420); (2) the number shown for age 12 is
10,178 = (—0.024 x 53,425) 4+ (0.248 x 51,420) + (—0.024 x 53,816), where
—0.024, 0.248, and —0.024 are the Karup-King coefficients respectively applied
to the total number aged 5-9 (53,425), 10-14 (51,420), and 15-19 (53,816);
and (3) the number shown for age 16 is 10,555 = (0.008 x 51,420)
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Fig. 9.1 Population forecast by selected age groups, Memphis, Tennessee School District, 2010
(Source: Chapter 7, Table 7.2)

Table 9.3 School age population forecast by single years of age, Memphis, Tennessee School
District, 2010?

Associated Grade Age Population
Pre K 5 10,789
K 6 10,758
1 7 10,706
2 8 10,633
3 9 10,539 53,425 Ages 5-9
4 10 10,374
5 11 10,223
6 12 10,178
7 13 10,239
8 14 10,405 51,419 Ages10-14
9 15 10,515
10 16 10,555
11 17 10,679
12 18 10,887
19 11,180 53,816 Ages 15-19

?Age splitting based on the Karup-King middle panel coefficients

+ (0.224 x 53,816) + (—0.032 x 59,724), where 0.008, 0.224, and —0.032 are the
Karup-King coefficients respectively applied to the total number aged 10-14
(51,420), 15-19 (53,816), and 20-24 (59,724).

The Karup-King method is self-normalizing in that the sum of the populations
for the single years of age within an age group will sum to the population of that age
group. This occurs because the weights for the age group being interpolated
(e.g. 5-9) sum to 1.0 and the weights for the younger age group (e.g., 0—4) and
older age group (e.g. 10-14) sum to zero.
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Table 9.4 Public school enrollment by individual grade, Memphis, Tennessee School
District, 2010

b

Grade Population Share® Enrollment

Pre K & K n/a 11,314

1 0.12853 9,895

2 0.12765 9,827

3 0.12652 9,740

4 0.12454 9,588

5 0.12273 9,448

6 0.12219 9,407

7 0.12292 9,463

8 0.12492 9,617 76,985 Grades 1-8
9 0.24662 7,627

10 0.24756 7,656

11 0.25047 7,746

12 0.25535 7,897 30,926 Grades 9-12
Total 119,225

“Derived from Table 9.3

Grades 1-8 represent shares of the population aged 7-14

Grades 9-12 represent shares of the population aged 15-18

®Grades 1-8 are the population share times the total enrollment in grades 1-8
Grades 9-12 are the population shares times the total enrollment in grades 9-12

Our third example uses “Interpolation by Prorating” (Judson and Popoff 2004:
696—697) to estimate public school enrollment by individual grades (1-12) in the
Memphis, Tennessee School District based on enrollment forecasts by grade groups
(1-8 and 9-12) developed in Chapter 7. The Pre-Kindergarten and Kindergarten
group does not require any further disaggregation. In prorating, a distribution is
taken from a similar group (i.e., population) that has satisfactory detail to split a
known total for a given group (i.e., enrollment by grade group).

The first step is to find the school age population by single years of age, which
we did in Table 9.3. In the second step, we develop population shares that based
on two aggregated age groups (7-14) and (15-18), which are associated with
grades 1-8 and 912, respectively. These shares are shown in Table 9.4 in which
the sum of the population shares associated with grades 1-8 and grades 9-12
each sum to 1.0. In the third step, we split the aggregated enrollment into
individual grades by multiplying the proportion at given age by the aggregated
enrollment in the group with which it is associated. For example, the 10,706
children aged 7 shown in Table 9.3 are associated with grade 1 and represent
0.12853 of the total children aged 7-14 (10,706/83,297). Multiplying this pro-
portion by the total number enrolled in grades 1-8 provides the estimated
number of first graders, 9895 = 0.12853 x 76,985. This same logic was used
to obtain the estimated enrollment for grade levels 1 thru 12. These estimates
along with the “forecasted” number for Pre-Kindergarten/Kindergarten are
displayed in Table 9.4.
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9.4 Conclusions

In this chapter we have shown several examples to illustrate a few of the many
applications there are for estimating “current ““ populations and their characteristics
by combining the CCR method with interpolation methods. Of course, these same
interpolation methods can be applied to populations forecasted using the CCR
method in order to obtain detailed information such as the population by individual
age group and enrollments by individual grade level (Smith et al. 2013: 272-284).
By extension, the same approach can be used to estimate (or forecast) a very wide
range of demographic, social, and economic characteristics. In the next chapter we
provide several examples, one of which uses interpolation and the CCR method run
in reverse, to create historical estimates.
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Chapter 10
Estimating Historical Populations

10.1 Introduction

Using the discussion of developing current estimates via the CCR method found in
Chapter 9 as a point of departure, in this chapter we show how the CCR method can
be run in reverse to generate historical population estimates, a procedure known as
backcasting. This is followed by a section that provides three examples and also
shows how life table survival rates are related to CCRs. The chapter concludes with
a brief discussion and summary.

10.2 Reverse Cohort Change Ratios

Running the Cohort Change Ratio method in reverse provides a way to generate
historical estimates using data from the two relevant censuses so that we can move a
population by age (and sex) backwards, from time ¢ to time 7—k using reverse
cohort-change ratios (RCCR). This takes place in two steps. First, we calculate an
RCCR:

nRCCRx,t:an,t/an+k,l+k (Stepl) (101)

where,

#Px . 1s the population aged x to x + n at the time of the census (¢) just following the
period for which an historical estimate is desired, and

#Prirrx 18 the population aged x + & to x + k + n at the time of the census (¢ + k),
which follows the census at time (¢), and

k is the number of years between the two censuses.

In the second step, we move the population into the past:
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oPx—k.i—k = nRCCRy (x,Px(  (Step2) (10.2)

where,
2RCCR,, and ,P, , are defined above.

One advantage of RCCRs is that we can backcast age groups 0—4 and 5-9 (from
those aged 1014 to 15-19, 10 years later, respectively). This is not possible for the
forward-looking CCR method discussed in Chapters 1 and 4. A backcast of the
oldest age group (the terminal, open-ended age group, e.g., 75 years and older),
however, requires some adjustments. The initial two steps are straightforward, but
as one goes back in time an important adjustment is required. As an example,
suppose the final closed age group is 80-84, with 85 years and older as the terminal
open-ended age group in the census following the earliest census, then calculating
the terminal age group RCCR is:

RCCRgs ¢ = P7sy.¢/Pss tik- (10.3)
The formula for estimating the population 75+ for the year t—k is:

P754,1-k = RCCRgs5, XPgsy ;. (10.4)

Notice that the population aged 85 years and older in the census used to launch
the backcast becomes 75 years and older in the target year given that k = 10. If we
apply the RCCRs to our initial backcast in order to backcast another k years, the
terminal, open-ended age group would be 65+. Every 10 years we went back in
time, the terminal, open-ended age group would be 10 years younger until, finally,
we would be left with 5 years and older as the only population age group. For
example, if one takes the ratio of the population aged 80 years and older in the 2000
census to the population aged 90 years and older in the 2010 census and applies this
to the population aged 90 years and older in the 2000, the population aged 80 years
and older is backcasted for the year 1990. This is now the “new” terminal open-
ended age group, so an RCCR for 80+/70+ must be applied to this age group, which
in turn, generates the population 70 years and older for the year 1980. By the time
the backcasting process reaches 1910, the only age information would be for the
total population aged 0 and above and 1910 would be the terminal point of the
backcast.

As the preceding discussion indicates, an adjustment is needed for the terminal
open-ended age group because every 10 years in the past (in the U.S. Census
context) this group would be 10 years younger and, as such, successively providing
less information about the age structure of the population in question. To avoid this,
proportions of the closed age groups that make up a given open-ended age group are
calculated and applied to the backcasted number in the terminal open-ended age
group. For example, in the 2010 census one can redefine the terminal open-ended
age group not only as 90 years and older but also as 80 years and older, and the latter
would have three associated age groups, 80—84, 85-89 and 90 years and older.
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These proportions are used to maintain a constant definition of the terminal open-
ended age group as the backcast proceeds. That is, as soon as one backcasts the
population 80 years and older for the year 2000 from the population aged 90 years
and older in 2010, the proportions can be applied to the backcasted 80 years and
older population so that the 2000 population aged 80—84, 85—89 and 90 years and
older can be estimated.

10.3 Examples

10.3.1 1910 Native Hawaiian Population Estimates
in Hawai’i

In our first example, we show an estimate taken from Swanson and Tayman (2012:
348-351). It uses 1930 and 1920 age-sex census data on Native Hawaiians in
Hawai’i to develop RCCRs and then backcasts the 1920 Native Hawaiian popula-
tion to generate population estimates by age and sex for Native Hawaiians in
Hawai’i for 1910. The input data, calculations, and results are shown in Table 10.1.

Because Native Hawaiians were counted in the 1910 census, we can compare
our estimates of them to the enumerated numbers to get an idea of the method’s
accuracy. These comparisons are found in Table 10.2. The RCCR method under-
estimates the total population of Native Hawaiians in 1910 by 930 people (—3.6%).
The total numbers of males and females are underestimated by the same percentage.
The MAPE is 7.1 for the estimates by age group for both sexes combined, with the
estimates for males being less accurate than the estimates for females. The absolute
percent error distributions are right-skewed as the MEDAPE (median APE) is
substantially less than the MAPE for both sexes combined and separately. The
average level of downward bias is similar, with MALPEs ranging for —4.1 to —3.5.

10.3.2 1770 to 1900 Native Hawaiian Population Estimates
in Hawai’i

Our second example extends the historical estimates of the Native Hawaiian
population in Hawai’i back to 1778, the year of first European contact. Here, we
provide estimates by age for both sexes combined. In this example, the 1920 and
1910 U.S. Census data are used to define the RCCRs using 5 year age groups, 04,
5-9,10-14,. . .,70-74, with a terminal open-ended age group of 75 years and older.
This means that the ratio of the population aged 65 years and older in 1910 to the
population aged 75 years and older in 1920 is used to generate the terminal open-
ended age group of 65 years and older, with the latter having 65-69, 70-74 and
75 years and older as its three associated age groups. The proportions for these three
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Table 10.1 Native Hawaiian population estimates by age and sex, Hawai’i, 1910*

Age in 1930 Age in 1920 Age in 1910*
1930 Male 1920 Male RCCR® 1910 Male
10-14 1,161 04 1,266 1.09044 04 1,223
15-19 1,127 5-9 1,219 1.08163 5-9 1,180
2024 952 10-14 1,122 1.17857 10-14 1,223
25-29 760 15-19 1,091 1.43553 15-19 1,380
30-34 728 20-24 1,038 1.42582 20-24 1,098
35-39 748 25-29 961 1.28562 25-29 1,196
40-44 710 30-34 770 1.08527 30-34 665
45-49 631 35-39 930 1.47444 35-39 1,255
50-54 553 4044 613 1.10800 40-44 573
55-59 466 45-49 851 1.82496 45-49 878
60-64 371 50-54 517 1.39471 50-54 633
65-69 266 55-59 481 1.80700 55-59 669
70-74 153 60-64 454 2.97096 60-64 371
75+ 197 65-69 370 3.41624 65+ 601

70-74 127

75+ 176

Total 11,299¢ 11,986 12,951
Age in 1930 Age in 1920 Age in 1910° 1910 Total
1930 Female 1920 Female RCCR" 1910 Female Population
10-14 1,222 04 1,298 1.06219 04 1,282 2,505
15-19 1,071 5-9 1,209 1.12885 5-9 1,242 2,422
2024 1,031 10-14 1,207 1.17071 10-14 1,290 2,513
25-29 915 15-19 1,100 1.20219 15-19 1,273 2,653
30-34 794 20-24 1,102 1.38791 20-24 1,137 2,235
35-39 876 25-29 1,059 1.20890 25-29 1,059 2,255
40-44 642 30-34 819 1.27570 30-34 856 1,521
45-49 625 35-39 876 1.40174 35-39 1,036 2,291
50-54 522 4044 671 1.28529 40-44 598 1,171
55-59 399 45-49 739 1.85126 45-49 718 1,596
60-64 296 50-54 465 1.57194 50-54 486 1,119
65-69 202 55-59 388 1.92020 55-59 413 1,082
70-74 118 60-64 309 2.62003 60-64 296 673
75+ 166 65-69 215 2.92169 65+ 459 1,060

70-74 113

75+ 157

Total 11,308" 11,727 12,145 25,096

Sources: The Bureau of the Census (1922, 1932)

“Based on the reverse cohort change ratio method and 1930 to 1920 CCRs.
bP x,t/P x+k,t+k Ages 0-64

Pes+i/P754 14k Ages 65+

‘RCCRy X Pyy Ages 0-64

RCCR75. ¢ X Pysyy Ages 65+

“Includes 2477 males aged 0-9 not shown in table

Includes 2429 females aged 0-9 not shown in table
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Table 10.3 RCCRs and 1920 1910
allocat19n propomp ns for Age in  Population Age in Population RCCR*®
generating decennial
estimates of the Native 10-14 2,329 0-4 2,713 1.16488
Hawaiian population, 15-19 2,191 5-9 2,509 1.14514
Hawai’i, 1920-1910 20-24 2,140 10-14 2,528 1.18131
25-29 2,020 15-19 2,657 1.31535
30-34 1,589 20-24 2,267 1.42668
35-39 1,806 25-29 2,213 1.22536
40-44 1,284 30-34 1,784 1.38941
45-49 1,590 35-39 2,049 1.28868
50-54 982 40-44 1,468 1.49491
55-59 869 45-49 1,575 1.81243
60-64 763 50-54 1,242 1.62779
65-69 585 55-59 1,049 1.79316
70-74 240 60-64 651 2.71250
75+ 333 65+ 1,320 3.96396
Proportions for Allocating Pop 65+°
65-69 0.42518
70-74 0.23684
75+ 0.33798
1.00000

Sources: The Bureau of the Census (1913, 1922)
Pei/Prskir  Ages 0-64
PPess/Prssk Ages 65+

age groups were found by averaging the proportions for them found in the 1930,
1920, and 1910 census counts for Native Hawaiians in Hawai’i.

The RCCRs and the adjustments were initially applied to the 1910 census by age
to generate a set of backcasted 1900 estimates by age for the Native Hawaiian
population in Hawai’i. The same RCCRs were then applied to the 1900 estimates by
age to generate a set of backcasted 1890 estimates by age. This process was
repeated until the 1770 population of Native Hawaiians by age was generated for
Hawai’i. As should be clear, the backcasting proceeded in decennial cycles from
1900 to 1770. The 1920 and 1910 input data and the 1920-1910 RCCRs used to
generate the estimates are shown in Table 10.3.

As shown in Table 10.4, the total population estimates of Native Hawaiians track
well with the 1900 U.S. census count, two census counts done by the Kingdom of
Hawai’i for 1890 and 1860, and a carefully prepared estimate done by Adams et al.
(1925) for1850. The estimate of 683,200 for 1778 is found by calculating the rate of
change between 1770 and 1780 and then applying that rate of change to the 1770
estimate. As mentioned at the end of Chapter 9, the estimate for 1778 is found using
an interpolation method.

In addition to tracking well with the census counts, it also is important to note
that the RCCRs are all in excess of one. This means that their corresponding
reciprocals, the CCRs, are all less than one. This makes sense for Native Hawaiians
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Table 10.4 Total population vequr Estimate Census?
’ 1890 33,457 34,436
1880 39,711 n/a

1870 48,579 n/a

1860 61,931 67,084°

1850 80,574 82,035°¢

1840 110,948 n/a

1830 149,297 n/a

1820 200,018 n/a

1810 267,971 n/a

1800 359,010 n/a

1790 480,978 n/a

1780 644,383 n/a

1778¢ 683,200 n/a

1770 863,302 n/a

4Schmitt (1968)

“Included Chinese living in Honolulu and part Hawaiians
(Schmitt 1968:74)

“Estimate by Adams (Schmitt 1968:43)

683,200 = 863,302 x e”*® where r = —0.02925 = [In(644,383/
863,302)]/10

since there is virtually no migration into Hawai’i of Native Hawaiians, which
means the CCRs are generated only by out migration and mortality. Evidence
suggests that while out-migration did occur, it was not extensive among Native
Hawaiians. To the extent any appreciable out-migration—and return
in-migration— occurred, it was largely confined to young adult males (Adams
et al. 1925: 10-12; Kana’iupuni and Malone 2006; Schmitt 1968: 38—40; Schmitt
1977: 90-91; Schmitt and Nordyke 2001: 5).

These RCCRs also indicate high levels of mortality in the Native Hawaiian
population in the early part of the twentieth century. In this regard, the RCCRs are
consistent with survival rates generated from the life tables constructed for Native
Hawaiians in the early part of the twentieth century by Park et al. (1979: 14), who
estimate Native Hawaiian male and female life expectancy at birth in 1920 as 34.21
and 32.90 years, respectively.

Although we do not go into details here, it is worth noting that there is a link
between the application of RCCRs and the subject of Chapter 12 that uses CCRs to
analyze stable population theory. The major point in Chapter 12 is that when a
constant set of CCRs is applied to a given population, a stable population will
eventually result (whereby once stability is achieved, the relative age distribution of
the population remains constant over time). Given this, the application of a constant
set of RCCRs to a given population should also yield a stable population at some
point in time. In fact, this was found for the Native Hawaiian population in Hawai ‘i,
which reached stability by 1820. Also worth noting is that the relative 1820 age
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structure not only remains constant back to 1770 (and will do so beyond), but that it
is different than the 1910 relative age structure. This finding also is consistent with
stable population theory in that the initial 1910 age structure is “forgotten” by the
time stability is reached in 1820.

10.3.3 CCRs and Life Table Survival Rates

In this section, we build on the idea that the RCCRs used in the preceding example
approximate the inverse of survival rates. In the context of a life table (Kintner
2004: 322-324), a CCR is known as a “survivorship ratio.” We discuss the
application of the CCR method to life tables and survivorship in Chapter 11, but
the context in that chapter is on developing life expectancy and mortality estimates
rather than population estimates. The latter topic is our focus here. In preparation
for this example, we note that the survivorship rates computed from the “ L,”
column (years lived in a given age interval) of a life table are equivalent to the
CCRs calculated for age groups of a specific width, while the survivorship rates
computed from the “Ty” column (years lived at this and all subsequent ages) are
equivalent to the CCRs calculated for open-ended terminal age groups (for a
discussion of L and Ty, see Kintner 2004: 322-323). The relationship between
survivorship rates calculated from T, and CCRs calculated from open-ended,
terminal age intervals brings up a way in which the RCCR method can be used to
estimate an historical population.
We first consider the relationship between T, and Ty in a life table as follows:

XSO :TX/TO (105)

where,

o 1s the survivorship rate from birth to the open-ended terminal age group, x
T, is the years lived in the open-ended, terminal age group, and
T, is the years lived at birth and all subsequent age groups.

Re-arranging the terms in Eq. 9.5, we see that:

Tx = xSoxTo, (10.6)
and further that:

To = (Tx/,So), (10.7)

The preceding equations suggest that a RCCR can be constructed such that a
total population can be estimated. First, note that:
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RCCRk+’t - P()+,t/Pk+,t+k~ (108)

Second, that the formula for estimating the total population 0+ of area i for the year
t—k is:

P0+’t-k = RCCRk+ XPk+’[. (109)

To illustrate how Eq. 10.8 and Eq. 10.9 can be used to estimate a population, we
again turn to the historical data on the Native Hawaiian population in Hawai’i using
an example from Swanson and Tayman (2012: 350-351). Here, 1930 and 1910 data
for Native Hawaiians is used to estimate a RCCR for age group 20 years and older.
We then apply this RCCR to the Native Hawaiian population aged 20 years and
older in 1910 in order to estimate the total number of Native Hawaiians in 1890.
There are 13,120 Native Hawaiians aged 20 years and over in 1930, while in 1910
there are 25,095 Native Hawaiians in total, of whom 15,001 are aged 20 and over.
From these data, we find:

RCCR20+’191() =1.9127 (25,095/13, 120),and
P0+’1890 = 28,693 (19127 X 15,001)

So, our 1890 estimate of the Native Hawaiian population of Hawai’i is 28,693.
This estimate is 16.7% less than the number reported by Schmitt (1977: 25) from
the Hawaiian Kingdom’s 1890 census (34,436). Given that migration of Native
Hawaiians was not a major factor of its population change (Schmitt, 1968: 183), it
appears that mortality rates were dramatically higher for this population between
1890 and 1910 than they were between 1910 and 1930, which the available
evidence suggests was the case (Nordyke 1989; Schmitt 1968; and Schmitt 1977).
The correct RCCR ), for estimating the total number of Native Hawaiians in 1890
from those aged 20 and over in 1910 would be 2.2956.

10.3.4 Multi-racial Population Estimates for San Bernardino
and Riverside Counties

The third example uses the RCCR method to estimate the 1990 multi-racial
population of Riverside and San Bernardino Counties, California. This estimate is
of interest because the U.S. Census Bureau started the practice of providing multi-
racial respondents with the opportunity to identify themselves as multi-racial in the
2000 census. In 1990, respondents had to choose which single race category best fit
them. The RCCR method provides an opportunity to construct RCCRs for a multi-
racial category of interest (e.g., Asian and one or more other races) found in the
2000 and 2010 censuses in order to estimate the number of people in the category of
interest for 1990.
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Table 10.5 Estimation of the multi-racial population by age, Riverside and San Bernardino
counties, California, 1990

2010 2000 1990
Age in Population Age in Population RCCR? Age in Populationb
10-14 26,522 04 21,266 0.80183 04 13,165
15-19 24,268 5-9 20,271 0.83528 5-9 11,288
20-24 17,040 10-14 16,418 0.96352 10-14 9,788
25-29 13,461 15-19 13,514 1.00395 15-19 8,988
30-34 12,073 20-24 10,159 0.84144 20-24 6,623
35-39 10,880 25-29 8,952 0.82281 25-29 6,557
4044 10,319 30-34 7,871 0.76276 30-34 5,380
4549 9,525 35-39 7,969 0.83668 35-39 4,499
50-54 7914 40-44 7,053 0.89122 40-44 3,668
55-59 5,955 45-49 5,377 0.90293 45-49 2,534
60-64 7914 50-54 4,116 0.52008 50-54 1,107
65-69 4,115 55-59 2,806 0.68196 55-59 1,183
70-74 1,982 60-64 2,128 1.07356 60-64 1,397
75+ 3,105 65-69 1,735 1.58758 65+ 3,006
70-74 1,301 65-69 1,201
75+ 1,894 70-74 720
75+ 1,085
Total 212,132¢ 132,830 79,183
Proportions for allocating population 65+9
65-69 0.39956
70-74 0.23966
75+ 0.36078
1.00000

Sources: 2000 and 2010, U.S. Census Bureau (http://factfinder2.census.gov)
an,t/Px+k,t+k AgCS 0-64

Pose /P75 Ages 65+
PRCCRy; X Py Ages 0-64

RCCR75+Y[ X P75+,l Ages 65+

1990 P65+ x proportions Ages 65-69, 70-74, and 75+
“Includes 57,059 population aged 0-9 not shown in table.
dAverage of the share of the population 65+ from 2000 and 2010

The 2010 and 2000 input, the RCCRs calculated from them, and the 1990
estimates of the multi-racial population of these two counties are shown in
Table 10.5. The multi-racial population has increased substantially in San
Bernardino and Riverside counties since 1990 (132,949 persons and 68%).
Between 2000 and 2010 the multi-racial population increased by 79,302 or
59.7%. From 1990 to 2010, the largest percentage changes are seen in the
population aged 45 years and older. However, almost 70% of the numeric change
in the multi-racial population occurs in persons younger than 45 years of age (data
not shown).
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The change in the multi-racial population of these two counties between 2000
and 2010 is not only due to demographic factors (births, deaths, and migration), but
also social factors. As a great deal of research shows, ethnicity and race are social
constructs and fluid (Cornell and Hartmann 2007; Goldstein and Morning 2000;
Nagel 1994, 1995; Omi and Winant 2015; Perez and Hirschman 2009; Yamashiro
2011). As such, a population defined on the basis of race or ethnicity is subject to
change from factors that are not demographic. One desirable feature of the CCR
method is that both demographic and non-demographic changes affecting race and
other social constructs are captured across censuses.

10.4 Conclusions

In addition to the RCCR method, the CCR method itself can be used to construct
certain types of historical population data. For example, by using 1850 and 1860
census counts to construct CCRs, the 1860 white male population aged, say, 15-44
(by 5 year age groups) of a given state such as Virginia could be projected to 1870
and compared with the 1870 census count of white males aged 25-54 (by 5 year age
groups) to estimate the demographic impact of the Civil War on this population.
This population would, of course, been most likely to have served in the Confed-
erate army during the Civil War so the comparison would provide an estimate not
only of casualties, but of migration as well. Casualty counts are available for the
Civil War, but for the Confederate army they are widely believed to be understated
(Hacker 2011).

Swanson and Verdugo (2016) conducted this type of analysis and estimated that
there were nearly 25% fewer white males aged 20-54 than expected in the 1870
census results for all of the 11 Confederate states due to the combined effects of
mortality and net out-migration between 1860 and 1870. They obtained this esti-
mate by subtracting the 1870 expected number (1,393,125) for age group 20-54
generated by the CCR method (using 1950-1860 cohort change ratios) from the
1870 actual (census) number (1,047,323). Swanson et al. (2009) used this type of
approach to estimate the demographic impact of Hurricane Katrina by zip code and
found that by 2007 there were 311,250 people fewer than expected in the absence of
Katrina, which struck in August of 2005. Swanson (2009) used the same approach
to estimate the effect of Hurricane Katrina on the potential client populations in the
service area associated with two medical facilities on the Mississippi Gulf Coast.
The results showed that Katrina had an adverse impact on the client base of the two
facilities.

Both the CCR method and the RCCR method could be used and averages could
be taken across the CCR and RCCR results in a manner similar to what is done
when one uses the “forward-reverse survival rate procedure” to estimate an inter-
censal population (Bryan 2004: 537-538). Thus, either the CCR and RCCR
approaches, or a combination of the two, can be used to provide new perspectives
on the demographic impact of wars and other forms of human conflict, as well as
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natural and man-made disasters. Whether one is using RCCRs, CCRs or both to
generate historical estimates, keep in mind what was covered in Chapter 9, namely,
that when CCRs (or RCCRs) are used in conjunction with interpolation methods, a
wide range of possibilities opens up.

In this chapter we have provided several examples to illustrate the many
applications for estimating “historical” populations and their characteristics using
the RCCR method. In addition, the interpolation methods described and discussed
in Chapter 9 also can applied to population’s backcasted using the RCCR method in
order to obtain a very wide range of historical demographic, social, and economic
characteristics.
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Chapter 11
Estimating Life Expectancy

11.1 Introduction

Census survival methods are the oldest and most widely applicable methods of
estimating mortality, and for populations with negligible migration they can pro-
vide accurate estimates. As opposed to other data and analytically intensive
methods, CCR methods have minimal data requirements; use available census
data; and do not require a great deal of judgment or “data-fitting” techniques to
implement. In this chapter we demonstrate that life expectancy at birth can be
computed by using CCRs in combination with a protocol in which the life table
radix set to one. We compare our estimates of life expectancy at birth using CCRs
against U.S. Census Bureau estimates and find the CCR method works reasonably
well. We discuss the benefits of the CCR method for estimating life expectancy and
believe that it is a viable alternative in populations that experience negligible
migration.

11.2 Estimating Life Expectancy

As noted in Methods for Estimating Adult Mortality from Census Data (United
Nations 2002: 5), “Census survival methods are the oldest and most widely
applicable methods of estimating adult mortality... and can provide excellent
results for populations that experience negligible migration. . .” The reason for the
ubiquity of this approach is threefold: (1) data requirements are minimal in that only
two successive age distributions are needed; (2) the two successive age distributions
are usually easily obtained from census counts; and (3) the method is straight-
forward in that it requires neither a great deal of judgment nor “data-fitting”
techniques to implement. This ubiquity is in contrast to other methods, such as
“Model Life Tables,” which require more data as well as judgment and, often, data
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fitting (United Nations 1982: 16-27). Our purpose in this chapter, however, is not to
debate the relative merits of these and other approaches (e.g., Swanson 1989;
Swanson and Palmore 1976; Swanson and Stanford 2012; Swanson et al. 1977,
2009), but to demonstrate another way of calculating life expectancy from census
survival rates that is less involved than existing methods.

11.3 Life Expectancy: The United Nations Census Survival
Method

Census survival methods require two population age distributions at two points in
time (generally, two successive census enumerations). Ideally, the interval between
the census enumerations (e.g., 10 years) is either equal to the width of the age
groups (e.g., the age groups are given in 10 year increments, 0-9, 10-19,. . .,75-84,
85 years and older) or a whole number multiple thereof (e.g., age groups given in
5 year increments, 0—4, 5-9,...,80-84, through the final open-ended age group
(e.g., 85 years and older).

The United Nations (2002: 6) shows that using the census survival method,
expectation of life at age x can be computed as:

ex = (Tx/lwn/2))/(x/lnj2)) = T /I (11.1)

where,

e, = life expectancy (average years remaining) at age Xx,

X is age,

n is the width of the age groups (up to, but not including the terminal, open-ended
age group)

T, is the total person years remaining to persons age X,

I, is the number reaching age x, and

lins2) are persons aged x to x + n assumed to be concentrated at the mid-point of the
age group, and

Lixn/2)/lx=n/2) = P2(xn)/Pl(x—nn) (11.2)

where,

P2, are the number of persons counted in the second census in age group

xtox + n, and

P1_, ) are the number of persons counted in the first census in age group
X — nton.

In general, then, the life-table probability of surviving from the mid-point of one
age group to the next (lx4n/2)/lix—n/2)) 1s approximated by the census survival ratio
(P2(xn)/Pl(x—nny). The cumulative multiplication of the probabilities shown in
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Eq. 11.2 gives the conditional survival schedule (l/l,2)) (United Nations 2002:
5-6). From the conditional 1, values given by Eq. 11.2, the conditional estimates of
the number of person years lived in each age group (,Lx) can be calculated as:

Ly /1nj2) = (0/2) % [(I/1n/2)) + (Iixsn) /1n/2))] (11.3)

where,
#L, s the number of person years lived in each age group.

Given a value of T,//,,,, for some initial age x, the United Nations (2002) shows
that total remaining years expected at age x (Tx) can be calculated as:

Ticn)/ln/2) = Tx/Ln2)FoLoix—n) /Liny2)» (11.4)

or Eq. 11.1 for the expectation of life at age x.

11.4 Estimating Life Expectancy from Cohort Change
Ratios

In the proposed CCR method, we start with the radix of a life table (/,) equal to one
and life expectancy at birth can be computed directly from the expression:

ep =Sy + (S()XS]) + (S()XS] XS2) + ...+ (S()XSQ(Sz. .. X SX) (115)

where,

ep is life expectancy at birth,

So is the survivorship from t = 0 (e.g., birth) tot = 1 (e.g., age 1), S; = survivorship
fromt =1 (e.g.,age 1) tot = 2 (e.g., age 2), and so on through S,, and

Sx = an/nL(x—n)-

Equation 11.5 represents single years of age. However, we can generalize that
equation to other age groups (,Sx = nLx/nL(x—n)), SO that:

ey = nSO + (nSOXnSl) + (nSOXnSI XnSZ) +...
+(nS()><nS1><nS2...><,le). (116)

As Egs. 11.5 and 11.6 imply, the fundamental life table function is inherent in our
method; that is, via the S, values, we have ,q, values. The Appendix at the end of
this chapter shows a derivation of the relationship between survivorship rates and
life expectancy shown in Eq. 11.5 and generalized in Eq. 11.6.
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We also use census survival rates, although we prefer to use the more general
term “cohort change ratios” (CCRs). Following Smith et al. (2013: 177) and using
notation from Eq. 11.2, a CCR can be generally defined as:

CCR = P2, 1 /Pl x - (11.7)

Survivorship rates can approximated by CCRs as follows:

nSx:an/nL(x_n) ~ PZ(X’H)/PI(X_H,H). (118)

We can determine life expectancy at birth by substituting CCR values for S, values
in either Eq. 11.5 (for single years of age) or Eq. 11.6 (for age groups).

As with the more involved United Nations (2002) approach, or methods will
only work for populations for which migration is negligible, but there are many
areas around the world where this is the case, or approximately so (United Nations
2002). The world as a whole meets this requirement. Countries with negligible
migration include North Korea and Burma, among others. Other such populations
are found in the historical record—the former Soviet Union, Albania from 1950 to
1980, and the Peoples Republic of China from 1950 through 1970, for example.
Still others may be defined by race and ethnicity or other ‘rules’ of membership
(e.g., Indigenous populations in Australia and Canada, Native Hawaiians; native-
born populations).

Broadly speaking, the method can be applied to any population subject to
renewal through a single increment (birth) and extinction through a single decre-
ment (death), where there are at least two successive census counts that provide the
population by age and other characteristics if desired. We also note that unlike the
United Nations’ method, the CCR method can be used to yield estimates of life
expectancy at birth. Our method is also not subject to the limitations imposed by
stationary or even stable population requirements.

11.5 Empirical Examples and Evaluation

We developed life expectancy estimates directly from cohort change ratios
constructed for the world as a whole and Burma, using 5 year age groups. We
compare the CCR-based life expectancy at birth estimates to U.S. Census Bureau
(CB) estimates for the period 1950-1955 to 2045-2050 for the world and
1975-1980 to 2010-2015 for Burma. The data for implementing the CCR method
and the CB ¢, estimates were obtained from the international database (U.S. Census
Bureau 2010). We computed e, estimates by male, female, and both sexes, but we
only present and evaluate the estimates for both sexes.'

"The absolute and relative differences by sex are similar to the results for both sexes combined.
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Table 11.1 World life expectancy at birth estimates for both sexes, 1950-1955 to 2045-2050

Difference
CCR €o CB Coa

Years Estimate Estimate Number® Percent®
1950-1955 51.8 46.6 5.2 11.2%
1955-1960 54.0 49.5 4.5 9.1%
1960-1965 56.0 524 3.6 6.9%
1965-1970 58.4 56.1 2.3 4.1%
1970-1975 60.4 58.2 2.2 3.8%
1975-1980 61.8 60.2 1.6 2.7%
1980-1985 62.6 61.7 0.9 1.5%
1985-1990 63.5 63.2 0.3 0.5%
1990-1995 64.1 64.0 0.1 0.2%
1995-2000 64.9 65.2 -0.3 —0.5%
2000-2005 65.8 66.4 —0.6 —0.9%
2005-2010 66.7 67.6 —0.9 —1.3%
20102015 67.7 68.9 —1.2 —1.7%
2015-2020 68.6 70.1 —-1.5 —2.1%
2020-2025 69.4 71.1 —1.7 —2.4%
2025-2030 70.1 72.1 —-2.0 —2.8%
2030-2035 70.8 73.1 —-2.3 —-3.1%
2035-2040 71.4 73.9 —2.5 —3.4%
2040-2045 72.0 74.8 —2.8 —3.7%
2045-2050 72.6 75.5 -2.9 —3.8%

MALPD 0.7%

MAPD 3.3%

#U.S. Census Bureau (2010)
"CCR est. — CB est.
¢(CCR est.— CB est.)/CB est. x 100

Table 11.1 contains the CCR and CB estimates of world ¢, for both sexes for the
period 1950-1955 to 2045-2050. The Mean Absolute Percent Difference (MAPD)
between our estimates and those made by the CB over the entire period is 3.3%,
while the Mean Algebraic Percent Difference (MALPD) is 0.7% indicating only a
slight upward bias compared to the CB estimates. During the first 50 years
(1950-2000), the CCR estimates have a distinct upward bias relative to the CB
estimates (MALPD of 4.0%). From the year 2000 forward, however, all CCR
estimates are lower than the CB estimates (MALPD of —2.5%). These summary
measures of difference indicate rather close agreement between the two sets of
estimates.

Table 11.2 shows eq estimates for Burma for the period 1975-1980 to
2005-2010. As the Table shows, all but one of the CCR e estimates are less than
those produced by the CB, which means the MALPD of —4.1 percent is the same as
the MAPD ignoring the sign. The one exception is the 1985—-1990 period when the
CCR and CB estimates are the same. The CCR estimates of ¢, remain almost
constant at age 60 from 1995-2000 to 2005-2010, while the CB estimates increase
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Table 11.2 Life expectancy at birth estimates for both sexes, Burma, 1950-1955 to 2045-2050

Difference
CCR €o CB Coa
Years Estimate Estimate Number® Percent®
1975-1980 50.0 54.0 —4.0 —7.4%
1980-1985 52.0 56.0 —-4.0 —7.1%
1985-1990 56.0 56.0 0.0 0.0%
1990-1995 57.0 59.0 —-2.0 —3.4%
1995-2000 60.0 61.0 —-1.0 —1.6%
20002005 61.0 63.0 —-2.0 —3.2%
2005-2010 61.0 65.0 —4.0 —6.2%
MALPD —4.1%
MAPD 4.1%

#U.S. Census Bureau (2010)
®CCR est. — CB est.
°(CCR est.— CB est.)/CB est. x 100

from 61 to 65 years. However, we again find that the summary measures suggest
reasonably close agreement.

11.6 Conclusions

Despite some nuances (e.g., converting CCRs into survival ratios may require
additional refinements) and cautions (e.g., the population data by age may be
faulty), we find benefits in using this approach to estimate life expectancy, includ-
ing the ability to develop estimates of average remaining life at any age (not shown
here). We suggest that the technique is worthy of consideration for use in estimating
life expectancy in populations experiencing negligible migration, given the cau-
tions we discuss. As such, we believe that this approach adds another dimension to
census survival methods—which, as we noted at the outset, are . .. the oldest and
most widely applicable methods of estimating adult mortality. . . (and can) provide
excellent results (for) populations that experience negligible migration. ..” (United
Nations 2002: 5).

Appendix

Relation Between Survival Rates and Life Expectancy

Any particular set of age-specific survival rates implies a specific life expectancy.
As an example using a complete life table where x is a single age, the relationship
between a set of survival rates (S,) and, the corresponding entries in the “years
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lived” column of the life table (L,) is Sy = L,/L,_; for ages 1 and over, while
So = Ly for survivors from birth to the age zero. Thus, in a life table with a
radix = 1.0, life expectancy at birth can be expressed aseg = L; + L, + L3 +,.. .,
+ L,. That is, life expectancy can be expressed as the sum of the L, values. It is
readily seen that:

Lo = So.
L] :S()xsl,and.
Lz = SoXS]XSz, ...LX = S()XSIXSQ, ...,SX,IXSX.

Substituting S, for L, in the preceding yields Eq. 11.5:
ey = So + (S()XS]) + (SoXSl><SZ) +, ..., + (SoXSl><52, o, X Sx).

Equation 11.5 can be generalized to apply to an abridged life table and expressed as
Eq. 11.5a:

eo = nSo + (nSOXnSI) + (nSOXn51Xn82) +, ..., + (nSOXnSIXnSZ7 . anx)-
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Chapter 12
Stable Population Theory

12.1 Introduction

Stable population theory underpins much of our intuition about population dynam-
ics and it continues to have a fundamental influence on research in demography.
Classical presentations of the theory focused upon analyzing the long-term impli-
cations of a stable set of vital rates within a closed population. Under these
conditions, it has been shown that any population—regardless of its initial popula-
tion structure and growth rate—will converge upon a stable equilibrium over time
characterized by a constant rate of growth and a stable proportional age-structure
(Fisher 1930; Keyfitz and Caswell 2005; Lotka 1956; Schoen 2010). Any popula-
tion characterized by stable vital rates may be considered to be in the process of
converging upon a stable equilibrium (Kim and Schoen 1993; Schoen 2010). Once
this convergence is reached, the population will change smoothly in step with an
exponential birth series dictated by a constant fertility regime and a consistent
proportion of the population comprised of women of reproductive age (Coale 1972;
Coale and Demeny 1966). More recently, it has been demonstrated that these
findings also hold under conditions of migration (Espenshade 1986; Espenshade
et al. 1982; Mitra and Cerone 1986; Schoen 2010), thus suggesting the use of cohort
change ratios to consider questions in stable population theory (Swanson et al.
2016).

In this chapter, we present the classical stable population model in terms of
cohort change ratios (CCRs), illustrate the classical findings of the theory using
CCR-based demographic forecasts, demonstrate how these findings continue to
hold when net-migration is considered within cohort change ratios, and evaluate the
effect of the components of population change on convergence to a stable popula-
tion. We conclude by showing how CCRs ratios can lead to novel analyses aimed at
traditional questions in stable population theory.
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12.2 Cohort Change Ratios and the Stable Population
Model

The classical stable population model applies a constant set of age-specific fertility
and survival rates to any age-specific population. If enough time passes that initial
population reaches a stable state with a constant rate of change and stable propor-
tionate age structure. This classical model has been extended to show that even with
the inclusion of a constant set of age-specific migration rates a population will
eventually reach a stable state. Cohort change ratios (CCRs) combine the effects of
mortality and migration. As such they provide a tool for examining the transient
dynamics of a population as it moves toward the stable equivalent captured in most
formal demographic models based on asymptotic population dynamics (Swanson
et al. 2016). This application uses a Leslie matrix containing an initial population,
an invariant set of CCRs and an invariant set of age-specific fertility rates.

CCRs are calculated by dividing the population aged x in year ¢ by the population
aged x—k in year t—k. For the analysis conducted in this chapter, kK = 5, indicating a
5-year time period between censuses. Given the nature of the CCRs in this instance,
0 to 4 is the youngest five-year age group for which a forecast can be made.
Children younger than age 5 are forecast using age-specific fertility rates (ASFR).
Equations 12.1 and 12.2" show the forecast calculation sequence:

2Px15.045=nCCRx Xn,Px: and (Ages5+) (12.1)
4P0,l+5 = Z30P15’tX3OASFR]5 (Ages 0— 4) (122)

A convenient way to express these equations to employ a matrix population
model (Caswell 2001; Cushing 1998; Lefkovitch 1971; Leslie 1945, 1948; Schoen
2010; Sykes 1969) to further develop these relationships and to relate cohort change
ratios to stable population theory (Swanson et al. 2016). To accomplish this, let us
consider , P, , as the initial population count vector, the ASFRs are contained in a
single top row of the matrix and the CCRs are in the sub-diagonal to create a
forecasting matrix (A) that is conformable for multiplication with the population
count vector. Thus, Egs. 12.1 and 12.2 and be recast into forecasting equation based
on a matrix population model:

an+5,t+5 - Aan,t~ (123)

Using Eq. 12.3, a population can be sequentially forecast in 5-year time intervals. If
the initial population , P, , is multiplied against the matrix A for a significant number
of iterations, ,P,, will converge upon a stable population with a constant rate of
growth and unchanging proportional age structure (Caswell 2001; Swanson et al.
2016). This has been shown to be true in cases including assumptions of

"The births are adjusted for infant and child survivorship probabilities.
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no-migration (in which the cohort change ratio is equivalent to a survival rate) as
well as under conditions where this assumption is relaxed (Cerone 1987;
Espenshade 1986; Espenshade et al. 1982; Mitra 1983, 1990; Swanson et al.
2016). The Perron-Frobenius theorem (Gantmacher 1959; Shores 2007) implies
that any forecasting matrix for which all entries are non-zero and positive will
converge into a stable population equilibrium. CCRs, which are always positive,
meet the requirements of the Perron-Frobenius theorem.

12.3 Illustration of Stable Populations with and without
Migration

Demographic forecasts in which rates are held constant over a sufficiently long time
provide a method for gaining insights about stable population models (Cushing
1998; Swanson et al. 2016). To arrive at a stable population, we successively apply
Eq. 12.3 to the base population producing a forecast every 5-years until stability is
reached. We define stability as the point in time where the change from one forecast
interval (five years) to the next produces no measurable impact in either the
proportion of persons in any specific age category or the observed five-year
exponential growth rate. In this illustration a population is deemed stable when
the Index of Stability (S) (Index of Dissimilarity), introduced by Swanson et al.
(2016), between two successive age structures in time (e.g., 2100 and 2105) equals
0.000, or a less than a 0.04% difference.

We show two alternative paths to stability. One uses fertility and survival rates
and assumes zero migration, while the other uses fertility rates and CCRs that
combine the effect of mortality and net effect of migration. The first alternative
(NoMig) holds the ASFRs and 5-year life-table survival rates constant until stability
is reached, assuming zero population change due to migration. The 5-year survival
rates are in the sub-diagonal of the Leslie matrix. The second alternative (MIG)
allows for migration and holds the ASFRs and CCRs constant until stability is
reached. The CCRs replace the 5-year survival rates in the sub-diagonal of the
Leslie matrix used in the NoMig alternative.

We illustrate these alternatives using data from Greece starting in 2005 (see
Table 12.1). The female population of Greece in 2005 is 5.4 million and has a slow
growth rate. Between 2000 and 2005 the population increased by 71,300, or an
average of only 0.3% per year. Females in Greece have a relatively old age
structure. Their median age is 41.6 years; 20.6% of the population is 65 years and
older; and 13.7% of the population is under the age of 20. These characteristics are
indicative of a very low total fertility rate (1.33). Female life expectancy at birth is
81.8 years. For the forecasts, the two adjustments are made to the ASFR rates. First,
male births are removed using the 2005 proportion of births that are female (0.484)
(Hellenic Statistical Authority 2016); and second, these adjusted rates are
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Table 12.1 Female demographics, Greece, 2005

Fertility rate

5-year”
Population 2005/2000 survival
Age Population® share CCR rate Intital® Adjusted®
Child 0.995180
04 248,465 4.6% 1.0024 0.999311
5-9 244,554 4.5% 1.0039 0.999489
10-14 251,159 4.6% 1.0086  0.999179
15-19 275,802 5.1% 1.0313 0.998675 0.0116 0.0281
20-24 344,984 6.4% 1.0453 0.998571 0.0554 0.1341
25-29 396,902 7.3% 1.0324  0.998298 0.0957 0.2316
30-34 410,594 7.6% 1.0167  0.997541 0.0791 0.1914
35-39 416,009 7.6% 1.0090 0.996370 0.0301 0.0728
4044 385,419 7.1% 1.0035 0.993940 0.0058 0.0014
45-49 373,201 6.9% 0.9986  0.990749
50-54 343,818 6.3% 0.9917 0.986085 TFR 1.39
55-59 331,449 6.1% 0.9817 0.979553
60-64 286,497 5.3% 0.9624 0.965937
65-69 312,159 5.7% 0.9262 0.936690
70-74 293,305 5.4% 0.8644 0.875901
75-79 246,909 4.5% 0.7683 0.768619
80-84 149,470 2.8% 0.5332  0.486671
85+ 120,245 2.2%
Total 5,430,941 100.0%
Median Age 41.6 e 81.8

#U.S. Census Bureau International Data Base (http://www.census.gov/population/international/
data/idb/informationGateway.php)

®2000-2004 Female Life Table for Greece. Human Mortality Database (http://www.mortality.org)
“Adjusted to remove male births and to represent a 5-year period (2005ASFR x 0.484 X 5).

multiplied by 5 to reflect the number of births that occur over the 5-year forecast
horizon. Forecasted female births are reduced by the child survival rate shown in
Table 12.1.

Table 12.2 compares the number and share of the population by age in 2005 and
2290, the year in which stability is reached. The absence of migration does not impact
the year stability is reached, which for both alternatives is the year 2290. Between
2000 and 2005, net migration of females was only 68,314 or a total population
net migration rate of (0.013 per person).” This low level of migration is embedded
in the CCRs used in the migration alternative. As such, it is not surprising that

2Net migration from 2000 to 2005 was computed using the residual method by subtracting female
natural increase from the female population change. Births and deaths were obtained from the
Hellenic Statistical Authority (2016).
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migration does not affect the time to stability in Greek females. This finding is not
universal and is a function of the particular characteristics of this population.
However, given the same fertility and mortality conditions, high levels (positive/
negative) of migration will lengthen / shorten the time to stability (Swanson et al.
2016).

In the NoMig alternative, the population of Greek women shrinks from
5,430,941 in 2005 to 177,636 in 2290, a decline of —96.7%. The population growth
rate has stabilized at —1.3% per year, down from 0.2% in 2005.There is also a
remarkable shift is the female age structure. Median age rises from 41.6 in 2005 to
52.5 in 2290, caused by drop in the share of the population under 20 years of age
(13.7% vs 11.1%) and an even more dramatic increase in the population 65 years an
older (20.6% vs 33.0%). The overall absolute average difference in the population
shares in 2290 and 2005 across the age groups is 1.7 percentage points, but the
differences in the populations aged 80 to 84 and 85 years and older are 2.8% and
3.8%, respectively.

Allowing for migration, the population of Greek women shrinks from 5,430,941
persons in 2005 to 552,750 in 2290, a decline of —89.8%. The population growth
rate has stabilized at —0.9% per year, 0.4% higher (lower rate of decline) compared
to the NoMig alternative. The effect of migration results in 375,114 more Greek
females in 2290. As shown in Table 12.1, net-migration is positive in the 20 to
34 year age groups because the CCRs are above 1.00 and mortality rates are very
low in these ages. These ages also have the highest fertility rates, indicating that
migration is reinforcing the impact of fertility on convergence. Although migration
has a sizable impact on the total population size, the stable age composition is
similar in both alternatives. In 2290, the median age is 1.3 years higher, the percent
of the population 65 years and older is 1.8 percentage points higher, and the percent
of the population under age 20 is 0.3 percentage point lower than the corresponding
figures in the NoMig alternative. We compared the two stable age distribution using
the Index of Dissimilarity and find a value of 2.0%, indicating a very close match. In
15 age groups the difference is 0.3 percentage points or less and in 3 age groups
(70 to 84) the differences range between 0.5 and 0.6 percentage points.

The results for the NoMig alternative are consistent with stable population
theory and would occur in any population subjected to constant birth and survival
rates. However, the stable age structure and growth rate that results is uniquely
determined by the specific observed rates involved. This finding reflects the prin-
ciple of ergodicity in which the long-term, asymptotic population dynamics are
guaranteed to occur indifferent of the initial population age structure or growth rate
(Cushing 1998; Tuljapurkar 1982; Wachter 2014). We have demonstrated ergodic-
ity is the context of a forecast, but ergodicity may also be demonstrated analytically
using the eigenvalues of the forecast matrix (Cohen 1979; Caswell 2000, 2001;
Schoen 2010).

The comparison between the NoMig and MIG alternatives also are in line with
expectations. With positive migration the population would be larger due to the
migration itself and its positive impact on births. The population would also age less
due to migration’s greater effect on younger adult age groups (ages 20 to 44). The



12.4 Impact of Demographic Components of Change on Convergence 179

total population in the MIG alternative is 211% larger than the total population in
the NoMig scenario. However in ages 25 to 44, the population is between 224% and
228% larger. The impact of migration of Greek females is not sufficient to offset the
effect of the continuation of very low fertility rates: as the MIG alternative shows,
the population also diminishes considerably.

12.4 TImpact of Demographic Components of Change
on Convergence

The focus of classical population stable population models on a closed population is
a simplifying assumption that allows ignores the complexities of migration, which
complicates the analysis of stable populations (Caswell 2001; Fisher 1930; Lotka
1907; Wilson and Bossert 1971). While classical stable population theory has
focused on the convergence toward a stable proportional age-structure and popu-
lation growth rate, a corollary prediction is the general fertility rate should stabilize
and the time-series of births should be exponentially increasing or decreasing in a
smooth manner. At stability, variation in fertility should be the primary determinant
of population growth (Cushing 1998; Preston et al. 2001; Wachter 2014).

In our example of Greek females, the observed convergence of the general
fertility rate, the time series of births, and exponential trajectory of population
growth rates are in accordance with the predictions of stable population. In
Fig. 12.1, we observe the stabilization of the general fertility rate (GFR) at each
forecast year to the year 2290.* While the amplitude of GFR fluctuations is strong in
the earliest portion of the forecast, over time the pattern of oscillation dampens
progressively, settling to a low that at stability is produced by rounding error in
calculations rather than real fluctuations. The MIG alternative has slightly higher
GFRs and births (shown below); suggesting that over the forecast horizon migration
would tend to add proportionately fewer females in the child-bearing ages than the
additional births they produce.

Figure 12.2 shows how convergence plays out in the time-series of births (over a
five- year period). While their numbers are falling throughout the period (indeed at
this rate Greek women are in danger of eventually going extinct!), they smooth to
an equilibrium decline that is similar whether migration is present or absent in the
forecast. The trend in births is much smoother compared to the trend in GFRs. This
equilibrium trend in births is at a higher level for the MIG alternative in accordance
with the slightly higher population growth rate (lower rate of loss), which is also
seen to stabilize similarly over time in both forecast alternatives (see Fig. 12.3). The
positive impact of migration itself and its impact of migration on births explains
why the MIG alternative has 375,114 more persons than the NoMig alternative in
the year 2290.

3The general fertility rate is computed by dividing female births by females aged 15 to 44.
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Fig. 12.1 Female general fertility rate, Greece, 2005-2290
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These results suggest that variation in demographic components impact the
process of convergence, both in terms of transient and long-term or asymptotic
dynamics (Caswell 2001; Schoen 2010; Swanson et al. 2016). Stable population
researchers have analyzed the time required for a population to converge to stability
in light of variation in fertility or survival rates (Coale 1972; Coale and Trussell
1974; Keyfitz 1977; Kim and Schoen 1993; Schoen 2010) and have considered how
patterns of oscillations are determined by them (Caswell and Werner 1978;
Lefkovitch 1971; Longstaff 1984; Rago and Goodyear 1987). By comparison
relatively few studies have focused on the role and impact of migration on the
path to population stability (Alho 2008; Bratadan 2016). To date, a discussion of the
complex, multidimensional interaction of a nearly infinite space occupied by
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Fig. 12.3 Annual rate of female population change, Greece, 2005-2290

combinations of fertility, mortality, and migration rates has been all but absent from
the literature (Swanson et al. 2016).

To address these issues, Swanson et al. (2016) examined the relationship
between fertility (total fertility rate), mortality (life-expectancy at birth), and
migration (the average CCR across the 20 to 34 year old age groups) and measures
of population convergence derived from CCR-based demographic forecasts. Using
CCRs from 2000 to 2005 or 2001 to 2006 and age-specific fertility rates at the
middle of the base period for 62 countries, they forecasted the base populations
forward to stability using the same approach previously described for the migration
alternative for Greek females, except they defined stability using a smaller S of
0.000000. Swanson et al. (2016) regressed the years to stability on the components
of change variables previously described.

These regression results showed that both life expectancy at birth and migration
are positively related to the time to stability, while fertility had an inverse relation-
ship. That is, increases in fertility hasten the time to convergence, while increases in
life expectancy and net-migration slow it. Using standardized regression coeffi-
cients, they found that migration plays the largest role in determining the time to
stability (beta = 0.428), fertility the second largest (beta = —0.333), and life
expectancy the least (beta = 0.238). These values suggest that the time to stability
is longer for a population with low mortality, low fertility, and high net in-migration
than it is for a population with high mortality, high fertility, and low net
in-migration.
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12.5 Other Strategies to Analyze Convergence

While developments in stable population theory suggest that relaxing assumptions
of population closed to migration do not invalidate the basic findings associated
with this theory, the widespread availability of cohort change ratios can be used to
further explore stable population theory. We believe that an important opportunity
exists to build upon the results of Swanson et al. (2016) and to compare and contrast
convergence paths associated with asymptotic and transient dynamics (Caswell
2001; Caswell and Werner 1978). This section outlines three strategies that may
prove useful for further research and that explore the use of cohort change ratios in
examining the impact of demographic components of change on population
convergence.

12.5.1 Clarifying Measures of Convergence: Transient or
Asymptotic Dynamics

As a general rule, measures of convergence may be either asymptotic (long-term) or
transient (short-term). Examples of asymptotic measures of convergence include
the damping ratio (Anderson and May 1979; Caswell 2001) and the force of
convergence (Kim and Schoen 1993; Schoen 2010). Both measures reflect a time
to stability that is determined solely by the rates contained in a projection matrix,
which is important because these rates are independent of the observed state of the
population (Caswell 2001; Schoen 2010). They also suggest that the process of
convergence should follow a path of exponential decay from a maximum difference
to a minimum. Using unpublished data from Swanson et al. (2016), Fig. 12.4
illustrates this exponential pattern of decay for Albania, Russia, and Tajikistan.
This figure shows showing the path of the Index of stability (S) to convergence over
a 290 year forecast horizon. The negative exponential decay to convergence shown
for these countries is not unique and occurs in the other 59 counties their study.
In cases where transient dynamics are to be studied through forecasts, variation
in the rate of convergence might be directly modeled as an exponential rate of decay
with observed oscillations in that overall rate considered as the population
approaches stability. For instance, S could be tracked over time and rates of
convergence at each time step recorded to establish these oscillations with a
baseline exponential decay model providing a basis for comparison. In this way,
a logically consistent set of asymptotic and transient measures of population
convergence could be considered in a single study from both perspectives (Caswell
2001; Caswell and Werner 1978). What asymptotic measures cannot tell us about
the specific trajectory of a population as it moves toward stability might be
observed using forecast-based (transient) measures of convergence (Caswell 200;
Swanson et al. 2016). However, forecast-based observations begin at a specific
point under a specific demographic structure. As such, we may expect differences
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Fig. 12.4 Exponential decay in population convergence to stability, Albania, Russia, and
Tajikistan

between transient measures because initial conditions may impact time to conver-
gence, and asymptotic ones that depend solely on the rates contained in a projection
matrix. What transient measures cannot tell us, due to limitations inherent to where
we begin observation of differences between current and forecasted stable struc-
tures, we may derive insights based on asymptotic measures.

We believe progress in studying stable population theory using data containing
CCRs would benefit from a clarification between the two types of convergence
measures. While both transient and asymptotic approaches should produce conver-
gence pathways that are distributed according to the negative exponential model,
the estimated rates of convergence for each approach may differ in important and
unknown ways. For example, Swanson et al. (2016) indicated a strong correlation
between forecasted and asymptotic estimates of the time to stability. However
non-trivial differences between these two solutions were observed, suggesting
that “jump-off bias” could be present and may be a confounding influence. We
believe that much can be learned from both asymptotic and forecasting approaches
using CCRs in the study of stable populations.

12.5.2 Components of Change: Interactions
and Convergence

To our knowledge, Swanson et al. (2016) was the first attempt to explore the
multidimensional space in which combinations of fertility, mortality, and migration
schedules interact to determine the timing of convergence as well as the amplitude
and frequency of oscillations experienced along the path to stability. Creating
usable referent categories of interactions for analyzing these dynamics occurring
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in such a complex space is a daunting challenge and subject to misclassification
biases (Agresti 2013; Christensen 1997; Hastie et al. 2009). In this section, we
suggest a scheme for organizing and analyzing these interactions using unpublished
data from the Swanson et al. (2016) study.

Imagine a simplified space in which countries are stratified into low or high life
expectancy. Within these groupings, countries are classified into combinations of
high or low fertility and low and high migration. Within each category of high and
low life expectancy, there are four separate categories of high-low fertility and
high-low migration. These eight combinations represent one simplification over the
alternative of using a continuous space. Table 12.3 defines this multidimensional
space where. Taking the order of letter options H (high) and L (low) as life
expectancy/fertility/net-migration, the 3-letter groups such as HLL (high life expec-
tancy, low fertility, and low migration) depict the eight combinations covering the
multidimensional space.

Using the unpublished data from the Swanson et al. (2016), we stratified the
62 countries based on their relationship to the averages for life expectancy at birth
(eg), fertility (TFR), and net-migration (meanCCR_20 t034).* Countries above the
mean on any indicator were considered “high” and those equal to or below the mean
were considered “low. Countries were assigned to the eight strata based on a binary
categorization for each component of change. In this example, the dependent
variable is the years required to reach stability (Years).

Table 12.4 shows the average of Years in relationship to the components of
change categories. The top panel shows these averages for the survivorship, fertil-
ity, and migration dichotomies separately. These averages not only are consistent
with the regression results previously discussed, they provide additional informa-
tion as to their numeric impact on Years. High survivorship increases Years;
countries with high life expectancy take on average 161 more Years than countries
with low life expectancy. The same directional relationship is seen for migration;
countries with high migration take on average of 158 more Years than countries
with low migration. The effect of fertility is in the opposite direction than that found
for migration; countries with high fertility take on average 83 fewer Years than
countries with low fertility.

The bottom panel of Table 12.4 shows the average of years for the 3-way, cross-
classification of the components of change to analyze their interaction on Years.
With a sample of 62, the cells contain relatively few observations; four cells contain
less than five countries and the other four cells contain between 11 and 14 countries.
In countries with low survivorship and low fertility, migration has a modest impact;
with high migration needing 33 more Years than low migration. This impact is
significantly reduced in countries with low survivorship and high fertility, with high

“Three countries had outlying TFRs greater than 3 (Tajikistan (3.28), Saudi Arabia (3.43), and
Guatemala (4.23)). We excluded these countries from the average used to classify the TFRs. This
resulted in a more even distribution between high and low TFR countries (28 High and 34 Low). If
the unadjusted average was used 6 countries would have been from High to Low TFR.
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Table 12.3 Multidimensional space combinations of components of change

185

Low Life Expectancy
High Life Expectancy

Low fertility

Low migration

LLL
HLL

High migration

LLH
HLH

High fertility

Low migration

LHL
HHL

High migration
LHH
HHH

Table 12.4 Average number of years to stability by components of change, selected countries

Surviorship® Fertility” Migration®
Low! 408 526 417
3D (34) (34)
High® 569 443 575
31 (28) (28)

Low fertility High fertility

Low migration

High migration

Low migration

High migration

Low survivorship 432 465 378 385
(14) @) a4 @

High survivorship 496 637 437 532

(G 14) @ dn

Sample sizes in parentheses

“Life expectancy at birth

"Total fertility rate

°CCR 20-24 to 30-34

9Less than or equal to the average rate for all countries
“Greater than the average rate for all countries

migration needing only 12 more Years or 1.8%; the smallest difference of any
comparison in the table.

Regardless of fertility level, migration has a large impact in high survivorship
countries. However, it is more noticeable in high survivorship countries when
fertility is low. In high survivorship countries with low fertility, those with high
migration need an average of 141 more Years than those with low migration.
However, in high survivorship countries with high fertility, those with high migra-
tion need an average of 95 more Years than those with low migration to reach
stability. The shortest average Years (378) occur in countries with low survivorship,
high fertility, and low migration, while the longest average Years (637) occurs in
countries with the opposite characteristics (high survivorship, low fertility, high
migration); a difference of 68.5% between these two extremes.

In classical stable population models, fertility will have a much more dramatic
impact on population structure, growth, and convergence than mortality (Coale and
Demeny 1966; Preston et al. 2001 Wachter 2014). CCRs play an important role in
this regard because they permit an evaluation of migration along with fertility and
mortality in the context of stable populations. In the preceding example, a much
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more complicated relationship is suggested in which all three components of
change interact in shaping both transient and asymptotic population dynamics.

A larger sample and finer grade cross-classifications will allow more precise
statements to be made about the levels of fertility, mortality, and migration and
their impacts on stable populations. Also, more rigorous statistics methods such
loglinear modeling (Agresti 2013) or regression models using continuous variables
and interaction terms (Mitchell 2012) may be useful analytical strategies in this
regard. In Chapter 13, we explore a decomposition of the components of change
that may provide a more comprehensive analysis of the referent categories useful
for additional investigation into population models based on cohort change ratios.

12.5.3 Perturbation Analysis and the Life Table Response
Experiment Framework

In seeking to understand the impact of demographic components of change on
stable population trajectories, one might consider an analytical approach using the
stable population mathematical framework. Using this framework, responses of a
population convergence measure, such as the damping ratio, could be measured in
light of changes in the (ij) elements of forecasting matrix using perturbation
analysis (Caswell 2000; de Kroon et al. 2000; McPeek and Kalisz 1993). One
such strategy would be to compute damping ratios associated with a forecast matrix
holding fertility and mortality levels constant and adjusting migration levels using
bootstrap resampling of the (ij) elements of the matrix (Baker et al. 2015; Brault and
Caswell 1993; Caswell 2000; Lewontin and Cohen 1969; Sykes 1969).

Perturbing the forecast in a pre-specified manner while considering the effects
across strata reflects different sets of referent categories would allow replication of
the Life Table Response Experiment (LTRE) Caswell (2000, 2010). The LTRE
measures the sensitivity of overall population growth to changes in each (ij)
element of a forecast matrix along meaningful “experimental” strata. In this
context, one might decompose CCRs into survivorship and net-migration compo-
nents (see Chapter 13), forecast these factors using stochastic simulation (Gardiner
1983; Graham and Talay 2013; Lemieux 2009; Taylor and Karlin 1998), reconsti-
tute the matrix, and re-compute the damping ratio. Although computationally
intensive, such an approach would measure the sensitivity of a measure of conver-
gence to shifts in components of change. These shifts could be formulated to test
specific hypotheses about the relationship between demographic components of
change and population convergence across relevant demographic factors.

The LTRE approach is well-established in population ecology (Brault and
Caswell 1993; Caswell 2000; Caswell and Kayne 2001) and similar simulation-
based alternatives have been proposed as well (Wisdom and Mills 1997; Wisdom
et al. 2000). At least one application of both LTRE and simulation-based studies has
been done in the field of anthropology (Baker et al. 2015), where the similar concept
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of natural experiments is widely utilized in studies of growth and development
(Bogin and Loucky 1997; Lasker 1969). Equivalent approaches have also been used
in the field of toxicology (Gentile et al. 1982; Marshall 1962) and in operations
research (Coleman and Montgomery 1993; Taguchi 1986).

12.6 Conclusions

In this chapter, we illustrate the principal findings of stable population theory using
CCR-based demographic forecasts, examined the role of demographic components
of change on population convergence, and sketched future possibilities for
expanding such research. We believe that the CCR-based demographic approach
provides new insights and capabilities for stable population analysis. The
CCR-based demographic approach is also more flexible than classical approaches
in dealing with migration. Because CCRs are always greater than zero and encom-
pass both net in-migration and net out-migration, they can be used in a Leslie matrix
with assurance that a given population will converge to stability. Other approaches
that have examined migration as part of the process to convergence have only
allowed for net in-migration in order to provide assurance that a given population
would converge (Espenshade 1986, Sivamurthy 1982). The CCR-based demo-
graphic forecast approach does not require the mathematical sophistication of
classical stable population theory making its implementation more widely
accessible.
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Chapter 13
Decompositions

13.1 Introduction

Decomposition methods in demography attempt to partition rates of population
change into constituent contributors such as population structure or other charac-
teristics that might confound an overall comparison (Canudas-Romo 2003). For
example, when comparing the change in the crude fertility rate over time, observed
differences might be due to changes in the female age-structure, changes in age-
specific rates of childbearing, or a combination of the two. A decomposition of the
crude birth rate can ascertain whether its change is due to increasing or decreasing
fertility rates or changes in the population age composition (Canudas-Romo 2003;
Das Gupta 1978; Kitagawa 1955). This form of decomposition is similar to
standardization methods in epidemiology and demography that attempt to adjust
comparisons of population-level indicators differences in demographic composi-
tion (Aschengrau and Seage 2003; Palmore and Gardner 1994).

Similarly, one might consider components of change within the fundamental
equation of demography (see Eq. 2.1 in Chapter 2 and the Appendix) to be a
decomposition of an overall rate of population change, such as the cohort change
ratio. This form of decomposition is directly related to the procedure of “control-
ling” for confounding variables in biostatistics (Agresti 2013; Aschengrau and
Seage 2003; Canudas-Romo 2003; Hastie et al. 2009) and to the analysis of
sensitivities in population ecology (Caswell 2000; de Kroon et al. 2000;
Tuljapurkar 1982). Decomposition, then, ought to be possible for cohort change
ratios (CCRs) in order to analyze subgroup contributions to growth or to decompose
population change into its components related to survivorship and migration. In this
chapter, we present algebraic derivations for these types of decompositions and
illustrate this architecture by analyzing 2010-2020 population change in the state of
California. We then discuss additional possibilities for applying decompositions to
demographic analyses involving CCRs.

© Springer International Publishing AG 2017 191
J. Baker et al., Cohort Change Ratios and their Applications,
DOI 10.1007/978-3-319-53745-0_13


http://dx.doi.org/10.1007/978-3-319-53745-0_2#Equ1
http://dx.doi.org/10.1007/978-3-319-53745-0_2

192 13 Decompositions

13.2 Decompositions

13.2.1 Subgroup Decomposition

Often in demographic analysis, one wants to assess the proportional contribution of
population growth in a specific subgroup or set of subgroups to overall population
change. A decomposition of the cohort change ratio into components contributed by
subgroups is one way to approach this question. We begin with the overall CCR:

nCCRx,t:an,t/anfk,lfk (131>

where,

#Py. + 1s the population aged x to x+n at the most recent census (f),

#Px_rk. +—i 1s the population aged x—k to x—k+n at the 2nd most recent census (1—k),
and

k is the number of years between the most recent census at time ¢ and the one
preceding it at time t—k.

The overall CCR can be represented as the weighted average of subgroup CCRs:

_t nCCR, _r 2CCR, e _« CCR,
_CCR,., _ Mk 1,0 T 12—k = 20Tt gk ot (13.2)
—k

where,

g is a subgroup;
n is the population for each subgroup at time t—k; and
N is the total population of that cohort at time t—k.

The weighting for each subgroup, then, is proportional to its contribution to the
entire cohort population (), such that we may rewrite this decomposition as the
convex combination of population weights (this means that the weights are all
positive and sum to 1.00) and CCRs as:

nCCRy ¢ = WinCCRy 1,1 + W CCRy 2 ¢ + ... + W CCRy (13.3)

where,
w is the population weight for a subgroup based on n / N.

The proportional contribution of each subgroup’s CCR to total population CCR is
captured in the weighting term. This relationship permits the decomposition of an
overall CCR into the contribution of its subgroup’s CCRs as:

Pg = Wg.nCCRy ¢.1/,CCRy ¢ X 100 (13.4)

where,

p is the relative contribution of a subgroup CCR to the overall CCR.
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13.2.2 Components of Change Decomposition

As discussed in Chapter 1, a CCR represents a geometric rate of change that
captures information on both mortality and migration in a single factor and as we
know from the Appendix, a CCR is algebraically equivalent to the fundamental
population theorem. As such, it may be decomposed into its constituent elements
using standard demographic approaches (Canudas-Romo 2003; Das Gupta 1978;
Kitagawa 1955). The numerator of the CCR (,P,, can be decomposed into
survivorship and net migration components as follows:

an,t = (anfk,tfk X nSRx, ) + (anfk,tfk X nNMRx) (13 5)

where,

SR is the survival rate,
NMR is the net migration rate.

The quantity inside the first set of parentheses is the survived population at time
t and quantity inside the second set of parentheses is the net migration from time
t—k to time t. Therefore, the CCR can be re expressed as:

nCCRx,t = ((an—k,t—k ><nSRx) + (an—k,l—kXnNMRx))/an—k,t—k- (136)

By dividing the right side of de of Eq. 13.6 by P4, we see that the CCR is the
sum of the survivorship rate and net migration rate:

2CCR, =, SR, +,NMRy. (13.7)

The net migration rate can then derived from by subtracting ,S, from both sides of
Eq. 13.7:

2NMR, =,CCR, —1SR. (13.8)

Deaths and net migration for persons aged x at time /—k who are aged x+k at time
t are found by:

an:anfk,tfk X (]—nSRx) and (139)
nNMx:anfk,t—anNMRx (1310)

where,

D is the deaths over the period between time r—k and time 7, and
NM is net migrants over the period between time —k and time .
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Equations 13.9 and 13.10 together are equivalent to the “forward-survival rate”
(FSR) method of indirect estimation of net migration (Siegel 2002: 22-23). These
equations measure the deaths and net migration of persons alive at time t—k. It does
not account for births, deaths, or net migration of persons born after time r—k. We
will show how these components of change in aggregate can be measured using
results from the CCR decomposition of survivorship and net migration. Like the
FSR method, any error in the census counts or survival rates is transmitted to the net
migration rates and numbers.

13.2.3 Subgroup and the Components of Change
Decomposition

In the preceding section, we presented a method for deriving the components of
total population change from the CCR and life table survival rates. Here, we
elaborate on this decomposition by proposing a method that determines the contri-
bution of the components of change within each subgroup to overall population
change reflected in the CCR. Specifically, our aim in this section is to determine the
relative contribution (RelCon) of subgroup specific deaths and migration to the total
population change.

We begin by calculating the components of change for each subgroup by
modifying Egs. 13.8, 13.9, and 13.10 to make them specific for each subgroup (g):

sNMR, ;=,CCR, | ;—SRy ¢, (13.11)
oDy e =nPy ki kg X (1—=nSRy,), and (13.12)
oNMy e =nPs i ke XaNMR . (13.13)

Therefore, the total population change is derived by:

2PChg, = ZHNMX, ¢—nDy, g, Where, Z is the sum across the subgroup (g).

(13.14)

The RelCon’s for deaths and migration are derived by:
nRelConDy , = —;Dy ,/+,PChg, and (Deaths) (13.15)
nRelConNMy , = £,NMy ,/+,PChg,. (Migration) (13.16)

Normally a RelCon would represent a proportion that ranges from zero to one, but
in this application some RelCons may be less than zero and others greater than one.
When the total population decreases, the RelCon for deaths and negative migration
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will be positive and the RelCon for positive migration will be negative. The
opposite occurs when the total population increases; the RelCon for deaths and
negative migration will be negative and the RelCon for positive migration will be
positive. In this application, the only condition where the RelCons will fall between
zero and one is if the total population decreases and the migration for all subgroups
is negative.

A RelCon smaller than —1.00 or larger than 1.00 means that changes in one or
more categories will have to overcompensate for changes in the other categories.
For example, Hispanic and non-Hispanic deaths of 1920 and 1760, respectively,
and Hispanic and non-Hispanic migration of 131,590 and —12,708, respectively,
leads to a total population change of 115,192 (131,590 — 12,708 — 1920 — 1760). In
this instance the RelCon for Hispanic migration is 1.142 (131,590 / 115,192), while
the RelCon’s for the other categories are all less than zero.

13.3 Applications

13.3.1 Contribution of Subgroup CCRs to the Total CCR

One often is confronted with questions about the proportional contribution of
different subgroups to overall population growth, such as the contribution of
Hispanics to overall population growth in the United States (Krogstad et al. 2015;
Passel and Cohn 2008). Between 2000 and 2010, Hispanics had the largest growth
of any ethnic minority in the Unites States (Passel et al. 2011). New Mexico had the
highest percentage of Hispanics in 2010 (46.3%) and California was the state with
the largest overall Hispanic population (14,013,719). A majority of the Hispanic
population growth between 2000 and 2010 has been attributed to increases in
Hispanic responses to the census (Ennis et al. 2011), raising questions about the
overstating the impact Hispanics on overall future U.S. population dynamics.

A decomposition of the cohort change ratio for the overall population into
Hispanic and non-Hispanic components provides a means for analyzing the ques-
tion in the context of CCRs. Table 13.1 provides this decomposition based on
Eq. 13.4 for the Hispanic and non-Hispanic populations of the State of California
from 2010 to 2020. The 2010 age-specific proportions (Hispanic proportion of the
total population) show the youth of the Hispanic population. There is a clear inverse
relationship between the Hispanic proportion and the age of the population; the
proportion ranges from 0.532 for ages 0 to 4 to 0.159 for ages 75 years and older.
For populations under the age of 35, the Hispanic proportion exceeds that for the
total Hispanic population (0.377). For Hispanics over the age of 35 years, the
proportion declines rapidly and is substantially below the proportion for the total
Hispanic population. In the oldest age group, Hispanics comprise just 0.159 of the
population aged 75 years and older compared to 0.377 for the total Hispanic
population.
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The age-specific proportion trends for the non-Hispanic population are the
reverse of those for the Hispanic population, which is expected since the Hispanic
and non-Hispanic proportions are complements. A clear direct relationship is seen
between the non-Hispanic proportion and the age of the population; the proportion
ranges from 0.468 for ages O to 4 to 0.841 for ages 75 years and older. For the
population over the age of 44 years, the non-Hispanic proportion exceeds that for
the total non-Hispanic population (0.623). For non-Hispanics under the age of
44 years, the proportion declines steadily and is below the proportion for the total
non-Hispanic population. In the youngest age group, non-Hispanics make up 0.468
of ages 0 to 4 population compared 0.623 for the total non-Hispanic population.

Hispanic CCRs are highest in the age groups 0 to 4 through 25 to 29, falling
below 1.0 (indicating a decline in the age cohort) at ages 30 to 44 years and for
subsequent age groups. Non-Hispanic CCRs are generally lower than Hispanic
CCRs, except for ages 20 to 24, which is not surprising because in California
non-Hispanics have lower survivorship and considerably less net migration than
Hispanics. Among non-Hispanics, we see the same general pattern across age
groups as for Hispanics. However, the non-Hispanic CCR is less than 1.0 in the
two youngest age groups and they fall below 1.0 at ages 25 to 29, 5 years earlier
than the Hispanic CCR.

These last two columns of Table 13.1, based on Eq. 13.4, show the relative
contributions (in percentage terms) of Hispanics and non-Hispanics to age-specific
total population change from 2010 to 2020 embedded in the total CCRs. The
contribution to the total CCR is greater for Hispanics than non-Hispanics in the
three youngest age group (ages 0 to14), and the contributions of the two subgroups
are roughly equal for ages 15 tol9. For the other age groups, the contribution of
Hispanics declines from 44.1% for ages 20 to 24 to 19.6% for ages 75 years and
older. Given that the Hispanic and non-Hispanic contribution are complements,
declines in the Hispanic contribution are reflected by increases in the non-Hispanic
contribution.

Because there are fewer Hispanics than non-Hispanics in each age-group, their
relative contribution declines with age despite the fact that Hispanic CCRs remain
higher than non-Hispanic CCRs for all age groups. However for each age group, the
Hispanic contribution to the total CCR between 2010 and 2020 is greater than their
share of the population in the year 2010. Conversely, the non-Hispanic contribution
is less than their share of the 2010 population.

13.3.2 Indirect Forecasts of the Components of Change

While the relative impact of Hispanic CCRs and non-Hispanic CCRs on total CCRs
is evident, it says nothing about the reasons for the age-specific population changes;
that is, changes due to survivorship and net migration. Of course, the survivorship
component will decrease the population and the net migration will either increase or
decrease the population. Some very general statements about net migration can be
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ascertained from the CCRs. A CCR of 1.0 suggests a positive net migration
sufficient enough to exactly offset any declines due to survivorship. A CCR
exceeding 1.0 suggests a positive net migration that offsets any declines due to
survivorship. The interpretation of a CCR less than 1.0 is not definitive about the
direction of the migration. A CCR less than one could indicate positive net
migration that is not sufficient to offset declines due to survivorship or a negative
net migration that accentuates the declines due to survivorship.

What can we say about net migration from the CCRs for Hispanics and
non-Hispanics in California? Net-migration is positive and large for Hispanics
during childhood and young adulthood (ages O to 24), which suggests family
migration in which young adults bring dependents (See Fig. 13.1). For
non-Hispanics, the CCRs suggest positive net-migration among young adults
aged 10 to 24, but without a corresponding positive migration of youngest
dependents (ages 0 to 9). The high survivorship probabilities for ages 30 to
59 suggest negative net migration in this age range for both Hispanics and
non-Hispanics, with non-Hispanics showing a greater loss due to migration.
Because of declining survivorship probabilities in the older age groups (e.g.,
ages 60 years and older), CCRs will generally be less than 1.0; this is the case for
both Hispanic and non-Hispanics." All that can be inferred about net migration in
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Fig. 13.1 Cohort change ratios by age and Hispanic origin, California, 2000-2010 (Source:
U.S. Census Bureau, 2000 and 2010 censuses (http://factfinder2.census.gov))

'The notable exception to this generalization will be in places with large retirement related
in-migration. For example in Maricopa County, Arizona, the CCRs are 1.10, 1.09, and 1.02 for
the five-year age groups from 60 to 74. Even the CCR of 0.87 for ages 75 to 79 suggests net
in-migration given the relatively low survivorship probabilities in this age group.
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these age groups is that any net migration will be greater (more positive or
less negative) for Hispanics because they have larger CCRs than the
non-Hispanics.

More precise statements about impact of components of change on the dynamics
of Hispanic versus non-Hispanic population growth could be made from a direct
estimate of the survivorship and net-migration components of growth using
Egs. 13.8, 13.9, and 13.10. These computations require age-specific survival
rates, ideally computed from a life table. Our example is uses a 10-year forecast
horizon, so 10-year survival rates are required. That is, the probability of those aged
0 to 4 surviving to ages 10 to 14, the probability of those aged 5 to 9 surviving to
ages 15 to19 and so forth until the last survival rate for the opened-end age group
(e.g., the probability of those aged 75 years and older surviving to ages 85 years and
older. Smith et al. (2013: 58—60) provide details for constructing life table survival
rates.

Survival rates for Hispanics and non-Hispanics were developed from 2010
abridged life tables for California. Life tables were created using age-specific
death rates (under 1 year of age, 1 to 4, 5 to 9,....., 80 to 84, and 85 years
and older) for Hispanics and non-Hispanics. The 2010 census furnished denom-
inators for the rates and the deaths were obtained from the California Depart-
ment of Public Health (2016: Tables 5-4 and 5-5). Non-Hispanic deaths were
obtained by subtracting Hispanic deaths from total deaths by age. The Hispanic
death data had broad ranges for some age groups (1 to 14, 15 to 24, 25 to 34, 35 to
44, and 45 to 54). Deaths for these age groups were partitioned into the finer
classification used shares from total deaths. We adjusted the 2010 age-specific
death rates so the life tables would conform to 2020 life expectancy assumptions
from the latest forecasts developed by the California Department of
Finance (2014).

Based on Eqgs. 13.8, 13.9, and 13.10, Table 13.2 provides information about the
components of change for the Hispanic population in the State of California from
2010 to 2020. Specific age ranges mentioned pertain to the 2020 age groups.
Hispanics alive in 2010 experienced 465,677 deaths and a net in-migration of
932,710, for a population gain of 457,033. With exception of age groups 50 to
54,75 t079, and 85 years and older net-migration is positive in the other age groups.
The highest net migration rates (0.180 and 0.193) are found in ages 20 to 29. These
age groups have a net migration of 497,757 or 53.4% of the total Hispanic net
migration. Net migration rates of around 0.10 seen in ages 10 tol19 and 30 to
34 indicate significant net in-migration of Hispanic children and teenagers as well
as other young adults. Positive net migration rates and numbers in other age groups
are small by comparison.

The positive net migration and relatively high survival rates results in positive
population change for ages 10 to 39. The population declines in the other age
groups as net migration is not enough to offset the impact of decreasing survival
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probabilities. Between 2010 and 2020, the Hispanic population grew by 3,761,528.%
Of that about 25% is due to net migration of persons alive in 2010 (932,710). The
gain due to migration is offset by 475,677 deaths. So, the net impact on total
Hispanic population growth from 2010 to 2020 of persons alive in 2010 is
457,033 (or 12.2%). Therefore, the bulk of the total population change in the
Hispanic population in California is due to persons born after the year 2010
(3,304,495 = 3,761,528 — 457,033). This figure includes births that occurred in
California, net migration of children ages 0 to 9, and population loss due to
mortality, so it is not a pure measure of the fertility component of change. However,
it seems clear that Hispanic fertility is the primary reason for growth in the Hispanic
population in California between 2010 and 2020.

Table 13.3 provides information about the components of change for the
non-Hispanic population in the State of California from 2010 to 2020.
Non-Hispanics alive in 2010 experienced 2,116,806 deaths and a net
out-migration of —182,692, for a population loss of —2,299,498. With exception
of those aged 10 to 24, net migration is negative in the other age groups. The highest
net migration rates (0.086 and 0.096) are found in ages 25 to 34. These age groups
have a net migration of 274,248, which is not enough to offset the net migration loss
in the other age groups. Non-Hispanic net in-migration rates in these age groups are
roughly 50% lower than the largest net in-migration rates seen in the Hispanic
population. Also, the peak positive net migration occurs 5 years later (ages 30 to 34)
in the non-Hispanic population. The largest non-Hispanic net-out migration occurs
in ages 75 to 79 (—85,339). The lowest amount of net out-migration (< —20,000 net
migrants) occurs in ages 10 to 19, 34 to 44, and 80 to 84.

The positive net migration and relatively high survival rates results in positive
population change for a narrow range of ages, 10 to 34. The population decreases in
the other age groups because the losses due to net migration are further accentuated
by deaths. This is especially evident in the population 50 years and older, where
deaths exceed the net out-migration in every age group. The population loss is
—79,491 for ages 50 to 54 and the population loss dramatically increases, reaching
—1,088,759 in persons 85 years and older. Between 2010 and 2020, the Hispanic
population grew by only 149,941. The net impact of migration (—182,692) and
deaths (—2,116,806) on persons alive in 2010 is —2,299,498. The only reason there
is a positive change in the non-Hispanic total population in California (149,941)
between 2010 and 2020 is due to the births after the year 2010, which offset
population loses due to net out-migration and deaths (2,449,439 = 149,941 —
(—2,299,498)).

*The 2020 Hispanic and non-Hispanic populations aged 0 to 9 were based on 2010 Child-Adult
Ratios (CADs). Chapter 5 illustrates the use of CADs in forecasting. The 2020 total population
forecasts were computed by adding the population aged O to 9 to the population aged 10 to 85 years
and older obtained using CCRs.
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13.3.3 Contribution of Subgroup Components of Change
to Total Population Change

In the prior section, we illustrated the effects of mortality and migration on the
population change by age group for Hispanic and non-Hispanic separately. In this
section, we illustrate the impact of the subgroup population dynamics on the total
population growth across the age intervals. Does the strong and positive migration
among young Hispanics drive strong total population growth among these age
groups? How does the relatively large numbers of non-Hispanic deaths in persons
aged 65 years and older impact the total population change in these age groups? The
greatest positive change due to migration for both Hispanics and non-Hispanics
occurs in ages 20 to 34, so which subgroup contributes the most to the total
population change in these age groups? To answer these and other similar types
of questions, we use the age-specific components of change for each subgroup
(Hispanic deaths, Hispanic migration, non-Hispanic deaths and non-Hispanic
migration) and relate them to the age-specific total population change rather than
the age- and subgroup-specific population change shown in Tables 13.2 and 13.3.
These relative contributions (RelCon) are expressed in proportionate terms that sum
to 1.0 over these four comparison categories or any mutually set of comparison
categories. In this illustration, we focus only on changes to the population alive in
the launch year (i.e., 2010) and not persons born over the forecast horizon (i.e.,
2010-2020).

Interpretation of the RelCon is somewhat involved because it may involve both
negative and positive population changes. Deaths always remove people, and
migration can either add or remove people depending on its direction, and total
population change can be either positive or negative. Since the RelCon sums to 1.00
across categories, some RelCon’s may be less than zero and others greater than
1.00, depending on the direction of the change in total population. As noted earlier,
the RelCon for deaths and losses due to migration will be positive if the total
population change is negative and negative if the total population change is
positive. Conversely, for gains due to migration the RelCon will be positive if the
total population change is positive and negative if the total population change is
negative.

We begin by examining the impact of the components of change and Hispanic
origin separately on the total population change by age group (see Table 13.4). For
reference, the table includes the total population change. We first examine the
relative impact of deaths and migration. The population for all ages decreases by
1.84 million persons due to 2.59 million deaths (1.407), which are offset by a
positive migration of 0.75 million (—0.407). Population growth is positive for
persons under 34 years of age (age refers to age in 2020) and migration has a
much greater influence than deaths. Like for all ages, population change in ages
35 to 39 is more heavily influenced by deaths than migration. Persons age 40 and
above show a decline in total population and a population loss due to migration.
With the exception of ages 45 to 49, deaths have a larger impact than migration,
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Table 13.4 Proportionate contribution of deaths, net-migration, and Hispanic origin to population
change, California, 2010-2020*

Population Net Non-

2010 age 2020 age change Deaths migration Hispanic Hispanic
04 10-14 115,192 —-0.032 1.032 1.125 —0.125
5-9 15-19 110,910 —0.037 1.036 1.143 —0.144
10-14 20-24 247,542 —0.042 1.042 0.930 0.070
15-19 25-29 371,307 —0.048 1.047 0.685 0.314
20-24 30-34 240,149 —0.079 1.079 0.431 0.569
25-29 35-39 —15,859 1.380 —0.381 —0.951 1.950
30-34 40-44 —41,969 0.658 0.342 0.235 0.765
35-39 4549 —97,148 0.425 0.575 0.082 0.918
40-44 50-54 —107,905 0.622 0.378 0.263 0.737
4549 55-59 —127,789 0.829 0.170 0.063 0.936
50-54 60-64 —163,605 0.921 0.079 0.164 0.836
55-59 65-69 —221,179 0.840 0.160 0.106 0.894
60-64 70-74 —269,904 0.829 0.171 0.123 0.877
65-69 75-79 —328,961 0.725 0.275 0.140 0.860
70-74 80-84 —287,612 0.944 0.056 0.145 0.855
75+ 85+ —1,265,634 0.952 0.049 0.140 0.861

Total —1,842,465 1.407 —0.407 —0.248 1.248

“Derived from Table 13.5

with proportions ranging from 0.622 for ages 50 to 54 to 0.952 for ages 85 years and
older. For ages 45 to 49, migration accounts for 0.575 of the total population loss.

We now look at the impact of Hispanics and non-Hispanics on total population
change. The population loss for all ages is due completely to the non-Hispanic
population, which declines by 2.30 million (1.248). This decline is offset by growth
in the Hispanic population of 0.46 million (—0.248). For persons under the age of
30 years, Hispanics contribute more to the total population growth than
non-Hispanics. However, for ages 30 to 34, the last age group with a population
increase, non-Hispanics contribute more (0.569) than Hispanics (0.431). For the
remaining age groups non-Hispanics are the major factor in their population losses.
For ages 35 to 39, non-Hispanics decline by 30,934, which is double the gain seen
in the Hispanic population (15,075). For persons 40 years and older, the outsized
role of the non-Hispanic population is evidence, with RelCon’s ranging from 0.737
for ages 50 to 54 to 0.936 for ages 55 to 59.

Table 13.5 presents the combined effects of the components of change specific to
each Hispanic origin subgroup on the total population change. Non-Hispanic deaths
are the primary reason for the population loss for all ages (1.149), followed by
Hispanic deaths (0.258). Non-Hispanic negative migration accounts for just under
1/10 of the total population loss. These three factors more than compensate for the
positive migration of Hispanics (932,710). Hispanic migration is the only reason
that the population under 20 years of age increases between 2010 and 2020,
offsetting the small loses due to deaths and a loss of 12,708 non-Hispanics due to
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Table 13.5 Proportionate contribution of deaths and net-migration by Hispanic origin to popu-
lation change, California, 2010-2020*

Deaths Net migration
Population Non- Non-

2010 age 2020 age change Hispanic Hispanic Hispanic Hispanic
04 10-14 115,192 —-0.017 —0.015 1.142 —0.110
5-9 15-19 110,910 —0.018 —0.019 1.161 —0.125
10-14 20-24 247,542 —0.020 —0.022 0.950 0.092
15-19 25-29 371,307 —0.022 —0.026 0.707 0.340
2024 30-34 240,149 —0.032 —0.047 0.463 0.616
25-29 35-39 —15,859 0.513 0.867 —1.464 1.083
30-34 4044 —41,969 0.236 0.422 —0.001 0.343
35-39 45-49 —97,148 0.144 0.281 —0.062 0.637
40-44 50-54 —107,905 0.192 0.430 0.071 0.307
45-49 55-59 —127,789 0.223 0.606 —0.160 0.330
50-54 60-64 —163,605 0.214 0.707 —0.050 0.129
55-59 65-69 —221,179 0.171 0.669 —0.065 0.225
60-64 70-74 —269,904 0.146 0.683 —0.023 0.194
65-69 75-79 —328,961 0.124 0.601 0.016 0.259
70-74 80-84 —287,612 0.157 0.787 —0.012 0.068
75+ 85+ —1,265,634 0.136 0.816 0.004 0.045

Total —1,842,465 0.258 1.149 —0.506 0.099

“Derived from Tables 13.2 and 13.3

migration. Hispanic positive migration (0.950 and 0.707) is more important that
non-Hispanic positive migration (0.092 and 0.340) in explaining the population
growth in ages 20 to 29. However, non-Hispanic positive migration (0.616) con-
tributes more than Hispanic positive migration (.463) to the population growth in
ages 30 to 34.

In general, for the population 35 years and older, non-Hispanic deaths and
migration are the largest contributors to the population losses in these age groups;
although there are some variations. Non-Hispanic negative migration is the most
important factor in ages 35 to 39 (1.083) and ages 45 to 49 (0.637), but
non-Hispanic deaths are most important in the other age groups. Hispanic migration
even when negative (positive RelCon) contributes little to the total population loss
in the population 35 years and older, with impacts ranging from 0.004 for the
population ages 85 years and older to 0.071 for ages 50 to 54. Hispanic deaths play a
modest role in the total population losses, with RelCon ranging from 0.136 for the
population ages 85 years and older to 0.223 for the population aged 55 to 59. For the
population 55 years and older, non-Hispanic deaths account for most of the
population loss in these ages, with RelCon ranging from 0.606 for ages 55 to
59 to 0.816 for the population 85 years and older. In the two oldest age groups,
Hispanic deaths have a greater impact on the total population loss (0.157 and 0.136)
than does the loss of population due to non-Hispanic migration (0.068 and 0.045).
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13.4 Conclusions

The decompositions presented here provide important insights into population
dynamics using CCRs. Certainly, these types of decompositions do not apply
where current or historical period CCRs are involved or in forecasts that use a
cohort component model where all components of change are explicitly
represented. So why use CCRs for this type of analysis? Perhaps the most compel-
ling reason for doing so revolves around the use of CCRs in demographic forecast-
ing where a complete cohort component model is not feasible or cannot be
implemented due to time and resource constraints (Smith et al. 2013; Smith and
Shahidullah 1995; Swanson et al. 2010). In these instances, CCR-based forecasts
have been used successfully with the caveat that no information was available on
the components of change.

The decomposition methods shown here may help address this shortcoming in
CCR-based forecasting models because they require only survival rates to accom-
pany the CCRs. From a practical standpoint, it is much easier and feasible to create
survival rates as opposed to fertility rates and, especially, migration rates for many
different forecasting applications. This is particularly relevant for areas with rela-
tively small populations where data availability is problematic. In this context, one
could produce scenario-based forecasts by adjusting the CCRs and survival rates
and analyze not only analyze the impact of population changes, but be able to make
statements about the causes of such changes. Information on the impact of shifts in
any subgroup’s cohort change ratio or an ability to decompose the impact of
survivorship and migration on forecasted population dynamics would be valuable
information to this end.

If one makes the additional leap to incorporate cohort change ratios into matrix-
based population models as shown in Chapter 12, the links between these decom-
positions and the analysis of demographic sensitivity becomes immediate as well
(Baker et al. 2015; Tuljapurkar 1982). A major goal behind decomposition appears
to be to gain an understanding into the sensitivity of overall population dynamics to
sub-dynamics (Canudas-Romo 2003; Das Gupta 1978; Keyfitz 1971); a question
that is directly related to examining the sensitivity of overall population change to
variation in the (ij) elements of a forecast matrix (Caswell 2000). In a forecasting
matrix encompassing multiple subgroups (Schoen 1986; Rogers 1995), the sensi-
tivity of an (ij) element in such a matrix provides direct information on the
proportional contribution of overall population growth to survivorship or migration
within any subgroup desired. By applying the decompositions presented here within
a forecast matrix model framework, one could efficiently describe and analyze both
the impact of population structure using decompositions and shifts in using elas-
ticity measures within a single analysis.

The difficulties of operationalizing combinations of sensitivity analysis and
population structure impacts (as in decompositions) is not trivial and has con-
founded demographic analyses in both human populations (Baker et al. 2015;
Preston and Coale 1982) and animal populations (Wisdom and Mills 1997; Wisdom
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et al. 2000). However, it has been shown that extensions of this analysis could link
decomposition and sensitivity analysis within a matrix framework without neces-
sarily resorting to complex computational and simulation-based frameworks (Baker
et al. 2015; Wisdom and Mills 1997; Wisdom et al. 2000).

The decompositions presented are easily generalizable in terms of numbers and
categorization schemes for subgroups. Provided that the subgroups are appropri-
ately defined, the methods presented in this chapter are scalable and can accom-
modate more than the two subgroups analyzed. The framework of contained in
Egs. 13.2, 13.3, and 13.4 is simply a weighted average. As such, there is no
limitation to the groups that might be compared as long as they are mutually
exclusive and exhaustive categories of the overall population (Agresti 2013;
Christensen 1997; Witmer and Samuels 1998). For example, one might imagine
expanding the decomposition to include gender or to further decompose Hispanic
ethnicity into the complex racial designations. This capability is, of course, tem-
pered by the quality and reliability of the available data.

Decomposition is a challenging, but important area of analysis within demog-
raphy (Canudas-Romo 2003). In the context of population analysis and forecasting
using CCRs, decomposition provides a means for analyzing important numerical
determinants of population dynamics including shifts in composition and compo-
nents of change (Das Gupta 1978; Keyfitz and Caswell 2005) as well as rates
(Caswell 2000; Caswell and Werner 1978; de Kroon et al. 2000; Tuljapurkar 1982).
The decompositions presented here explore both types of decompositions and
provide an example of how to combine them in a way that provides insights into
the basic components of population dynamics. Extensions outlined here, including
melding decomposition methods with sensitivity analysis, will likely provide fruit-
ful avenues for further research on the applications of CCRs in demographic
analysis.
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Chapter 14
Forecasting with Spatial Dependencies

14.1 Introduction

In terms of estimates and forecasts, applied demography can be viewed as essen-
tially a geographic field. Data utilized in producing estimates and forecasts are
nearly always reported in geographically-bounded summary units (Swanson and
Tayman 2012: 22-28 and 74-79; Voss 2007) and it is now well-known that
population data are spatially-dependent (Baker et al. 2014; Hogan and Tchernis
2004; Pace and Gilly 1997; Pattachini and Zenou 2007). As such, it has been
suggested that demographic estimation and forecasting methods move in the
direction of incorporating population dynamics across dimensions of both space
and time (Baker et al. 2008, 2012; Chi and Voss 2011; Chi and Zhu 2008; Tayman
1996). The explosion of computerized mapping technology over the last 30 years
has put this possibility within the grasp of many practitioners and has ushered in a
new era of applied spatial demography.

In this chapter, we examine both the promise and pitfalls associated with this
possibility and then present a coherent method for making spatially-explicit demo-
graphic forecasts using an extension of the Hamilton-Perry (H-P) method (Baker
et al. 2014). This method provides a simple way to leverage the power of spatial
dependencies in the forecasting process while avoiding the pitfalls associated with
using geocoded data to make small area forecasts (Baker et al. 2012, 2013, 2014).
Our approach in involves three steps: (1) constructing a spatial weighting matrix of
geographic neighbors that directly captures spatial dependencies to the geographic
area of interest; (2) creating weighted averages of cohort change ratios (CCRs); and
(3) using the weighted CCRs to produce a forecast for the geographic area of
interest using the H-P method (as described in Chapter 4 and elsewhere in
this book).

© Springer International Publishing AG 2017 209
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14.2 Issues with Georeferenced Data

Using georeferenced data (such as address points) in a computerized mapping
interface should allow demographic estimates and forecasts to be made for any
subcounty geographic level from municipalities (Cai 2007), to census tracts
(Swanson et al. 2010), to census block groups (Baker et al. 2015; Zandbergen and
Ignizio 2010), and even down to assessor parcels (Jarosz 2008; Waddell 2012).
This has, understandably, generated a considerable amount of excitement around
the possibilities of extending standard demographic methods to small geographic
units. However, known defects in the geocoding create missing data bias or
incorrect geographic assignments when using geocoded data (Flotow and Burson
1996; Karimi et al. 2004; Zandbergen 2009).

The general direction of this bias should be negative and the amount of bias
associated with incomplete geocoding may be considerable. Geocoding error might
be as high as 9% over a ten year period for total population estimates for block
groups in Albuquerque, New Mexico (Baker et al. 2012). This study indicated that
geocoding errors were associated with demographic and socioeconomic factors
related to ethnicity, income, education, and spatial residency dynamics, and that a
statistically-significant clustering of “missing data bias” was directly attributable to
defects in the geocoding process itself. Baker et al. (2013) suggested that even
larger errors are associated with age/sex-specific estimates made using geocoded
data. Other studies have found that geocoding-based errors are spatially clustered
along lines of race/ethnicity and rural/urban residence (Gilboa 2006; Goldberg et al.
2007; Oliver et al. 2005; Zandbergen 2009).

While the challenges associated with using geocoded data are not to be mini-
mized, it also is important to recognize that demographic data show spatially-
explicit clustering patterns (Vasan et al. 2015). As such, a perspective suggested
by Chi and Zhu (2008), Chi and Voss (2011) and Baker et al. (2014) is that patterns
of spatial dependencies and relationships might be leveraged to both improve
forecast accuracy and minimize bias (Fotheringham et al. 2002; Getis 2009;
Hogan and Tchernis 2004; Pace and Gilly 1997; Pattachini and Zenou 2007). Chi
and Zhu (2008), Chi and Voss (2011), and Chi and Wang (2017) have focused on
regression-based methods that incorporate spatial relationships, while Baker et al.
(2014) introduced spatial dependencies into standard demographic models; specif-
ically, the H-P method based on CCRs.

14.3 Modeling Spatial Dependencies: Spatial Weights
Matrices

Spatial dependency—the tendency of things close in space to have similar charac-
teristics—may be modeled in a variety of ways depending on the type of data
(Fotheringham et al. 2002; Tobler 1979, Turnbull 1976). Geographically-
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referenced data generally fall into three types: point, polygon, and raster (Getis
2009; Getis and Aldstadt 2004). Point data is straightforward—a good example
would be address points that capture latitude/longitude (xy) coordinates of a
housing unit; as they say, X marks the spot (along with Y in the case of a coordinate
system). Geographic units such as census tracts, block groups, and blocks are
typological examples of polygon data. Raster data refers to information captured
in pixel densities, such as aerial imagery, terrain maps, digital elevation models,
and the like. Our focus here is on modeling spatial dependency when individual
data are aggregated into geographic units represented by polygons, which is by far a
more common representation than either point or raster representations in terms of
small area demographic forecasts.

In the case of polygon-based data, spatial dependency is usually captured by one
of three processes: (1) defining “neighborhoods” based on contiguity (sharing of
boundaries), which is found by measuring distances between centroids (centers) of
the polygons (Fotheringham et al. 2000: 20-21); (2) by strategies of “overlaying”
viewing windows to define an alternative number of neighboring geographic units
(Kuldorff 1997, 1999; Turnbull 1976); and (3) by selecting a variable number of
nearest neighbors visually or algorithmically (Steinberg and Steinberg 2015:
278-279). In this example, we provide a relatively simple approach based on
contiguity. While we focus on visual selection for the small example presented
here, computerized mapping software such as ESRI’s Arc-GIS provides algorithms
for ready-automation of these approaches.

14.3.1 Defining a Geographic Neighborhood

Perhaps two of the simplest forms of spatial weighting revolve around the use of
rook and queen contiguity. In rook contiguity, polygons within a geographic
“neighborhood” share only sides, while in queen contiguity, the polygons may
share sides and/or corners (Getis 2009; Getis and Aldstadt 2004). A visual example
provides an aid for understanding the two relationships. We use adjacent sets of
census tracts within the city of Albuquerque to illustrate rook and queen contiguity.
Figure 14.1 shows rook contiguity using census tract 1.14 as the area for defining
adjacency. Rook contiguity defines the geographic neighborhood of census tract
1.14 to include census tracts 1.10 to the north, 1.21 to the west, 1.15 to the south,
and 1.13 to the east. In constructing a spatial weights matrix to reflect this relation-
ship, values from each of the four census tracts along with census tract 1.14 would
be utilized in the calculation of a smoothed value for census tract 1.14.

Figure 14.2 shows a more liberal definition is applied when using queen conti-
guity. The queen criterion for neighborhood membership adds three additional
census tracts to the neighborhood, 1.16 to the southeast, 1.11 to the northeast, and
1.20 to the northwest. While under rook contiguity only four neighbors were
included, relaxing the membership criteria to include corners as well resulted in a
total of eight census tracts within the neighborhood. In queen contiguity, the
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Fig. 14.1 Rook contiguity, census tract 1.14, Albuquerque, New Mexico (Sources: Google Earth
and Geospatial and Population Studies at the University of New Mexico (http://gps.unm.edu))

Fig. 14.2 Queen contiguity, census tract 1.14, Albuquerque, New Mexico (Sources: Google Earth
and Geospatial and Population Studies at the University of New Mexico (http://gps.unm.edu))

contribution of the focal census tract to its own value would be reduced in
comparison to the more restrictive rook contiguity. In constructing a “spatial
weights matrix” to reflect this relationship, values from each of the seven census
tracts neighbors along with census tract 1.14 would be utilized in the calculation of
a smoothed value for census tract 1.14. Baker et al. (2014) have noted that this
difference in neighborhood definition could impact forecast accuracy; a point
discussed in the Conclusion to this chapter.


http://gps.unm.edu
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14.3.2 Constructing and Using a Spatial Weights Matrix

The strategy for capturing spatial dependency through weighting is contained
within a spatial weights matrix that determines how the value of each geographic
area (e.g., census tracts) will contribute to the forecast of the focal census tract
(i.e. census tract 1.14). A spatial weights matrix is a rule for defining the
contribution of each census tract in the designated neighborhood to the variable
or variables of interest in the focal census tract. Such a matrix allows each census
tract to “share in one another’s fortune” in a specific way (Baker et al. 2014;
Fotheringham et al. 2002; Le Sage and Pace 2004; Pace and Gilly 1997). The
standard H-P forecast might be seen as inherently “ultra-local” because it tracks
trends specific to the geographic unit being examined. However, the geographic
patterning of population growth is regulated in some sense by housing unit
density-dependent effects (Baker et al. 2008; Herold et al. 2003; Ward et al.
2000). A spatially-weighted forecast allows the preservation of spatial dependen-
cies as well as incorporating hierarchical effects in which groups of census tracts
interact in terms of their growth patterns.

Table 14.1 presents how: (1) a spatial weights matrix is conceptualized;
(2) weights are determined and a corresponding matrix is constructed; and (3) the
weighted average CCR is determined based on rook contiguity. A total of five
census tracts (including the focal census tract of 1.14) contribute to a spatially
weighted forecast. The geographic configuration is presented in the upper left hand
portion of the table, while the corresponding weighting is captured in the upper
right hand portion. Typically, the weighting is equal across all of the census tracts,
dictating that each census tract will contribute 1/5th or 0.20 to the CCR of the focal
tract. Finally, the bottom section shows how the weighted average CCR for census
tract 1.14 is determined.

Table 14.2 presents the same set of representations for queen contiguity. The
main difference, of course, is that with queen contiguity a greater number of census
tracts is permitted to join the neighborhood, thus decreasing the “self-contribution”
of census tract 1.14 to its own forecast. Under queen contiguity, each census tract
would contribute 1/8th or 0.125 to the CCR of the focal tract.

In these examples (and in practice), non-weighted values are used in all calcu-
lations. That is, when a specific census tract contributes to its neighbor it does so
using its non-weighted value rather than its weighted value based on calculations
from nearby neighborhoods it also belongs to. This computational strategy ensures
independence of calculations and minimizes potential distortions propagating from
one neighborhood to another. The weighting also reflects an equal contribution of
each census tract in the defined neighborhood; however, Baker et al. (2014) suggest
that the weights could be defined through an optimization method where the
weights are chosen to minimize some loss function similar to the estimation of
portfolio weightings in quantitative finance (DeMiguel et al. 2009; Markowitz
1952).
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Table 14.1 Spatial weights matrix and weighted CCR under rook contiguity
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Census tract geographic configuration Census tract weights
1.10 0.20
1.21 1.14 1.13 0.20 0.20 0.20
1.15 0.20
Census tract Count Weight Weighted CCR
1.10 CCRy 10 0.20 CCRy .10 X W10
1.13 CCR i3 0.20 CCRy 13 X Wp13
1.14 CCR1.14 0.20 CCRy 14 X Wi1a
1.15 CCRy 5 0.20 CCRy 15 X Wy15
1.21 CCR, 2 0.20 CCRy2; X Wygg
> (CCR; x wy)
Weighted CCR
Table 14.2 Spatial weights matrix and weighted CCR under queen contiguity
Census tract geographic configuration Census tract weights
1.20 1.10 1.11 0.125 0.125 0.125
1.21 1.14 1.13 0.125 0.125 0.125
1.15 1.16 0.125 0.125
Census tract Count Weight Weighted CCR
1.10 CCRy 10 0.125 CCRy 10 X Wi.10
1.11 CCRy 0.125 CCRy 1 X Wi 1g
1.13 CCRy 3 0.125 CCRy 13 X W13
1.14 CCR;.14 0.125 CCRy 14 X Wi1a
1.15 CCRy 5 0.125 CCRy 15 X Wi15
1.16 CCRy 16 0.125 CCRy.16 X W1.16
1.20 CCR| 29 0.125 CCR20 X W10
1.21 CCR; 0.125 CCRy1 X Wygg
> (CCR; x wy)
Weighted CCR

In this process, keep in mind we weight the CCRs themselves rather than the
forecasted population values. The rationale for weighting the CCRs is provided by
Baker et al. (2014), who observed significant biases when the weights were applied
to the forecasts themselves where two “neighbor” census tracts had radically
different population sizes; larger census tracts were under-forecasted and small
census tracts were over-forecasted.
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14.4 Spatially-Weighted Hamilton-Perry Forecast

Using census tract 1.14, we illustrate the construction of a rook contiguity spatially
weighted forecast using the H-P method for the year 2010. This forecast uses CCRs
for the 1990-2000 decade shown in Table 14.3. Along with census tract 1.14, the
table contains CCRs for the four other census tracts defined by rook contiguity. The
weighted CCR represents the arithmetic average of the five census tracts and will be
used in the spatially weighted H-P forecast that borrows additional information
from adjacent census tracts. The last column of the table show there are substantial
differences in many age groups between the CCRs for census tract 1.14 and its
weighted average. The average absolute percent difference across age groups is
around 11.0% and they range from —22.1% for ages 30 to 44 to 0.4% for ages 25 to
29. Relative to the other census tracts, census tract 1.14 has decidedly lower CCRs

Table 14.3 Weighted total population cohort change ratios under rook contiguity, census tract
1.14, Albuquerque, New Mexico®

Census tract

Weighted®  Percent®

Age 1.10 1.13 1.14 1.15 1.21 CCR difference
04 0.21 0.34 0.28 0.29 0.33 0.29 2.1%
5-9 0.25 0.32 0.29 0.26 0.27 0.28 —4.3%
10-14 1.24 0.69 1.02 0.84 1.03 0.96 —6.1%
15-19 1.30 0.81 0.81 0.76 1.12 0.96 15.8%
20-24 1.35 0.88 0.67 1.15 1.19 1.05 35.7%
25-29 1.29 1.10 1.19 1.26 1.14 1.20 0.4%
30-34 0.92 0.94 1.26 0.95 1.08 1.03 —22.1%
35-39 0.81 0.88 0.96 0.77 0.95 0.87 —10.1%
40-44 0.85 0.74 0.68 0.71 0.86 0.77 11.2%
45-49 0.90 0.80 0.79 0.74 1.04 0.85 7.6%
50-54 0.87 0.82 0.75 0.75 0.98 0.83 9.7%
55-59 0.77 0.81 0.85 0.83 0.97 0.85 —0.5%
60-64 0.88 0.86 0.76 0.83 0.88 0.84 10.1%
65-69 0.89 0.73 0.76 0.73 0.81 0.79 3.0%
70-74 0.68 0.86 0.79 0.68 0.90 0.78 —1.6%
75-79 0.69 0.71 0.56 0.72 0.82 0.70 19.5%
80-84 0.62 0.63 0.48 0.63 0.65 0.60 19.6%
85+ 0.31 0.29 0.24 0.29 0.29 0.28 14.2%

Source: Geospatial and Population Studies, University of New Mexico. 1990 and 2000 data are
normalized to 2010 geographic boundaries.
4CCRs based on the 1990-2000 decade.
4P07‘/15P20’[ AgCS 04 (Chlld-Adult Ratio)
oPs1/15P2s Ages 5-9 (Child-Adult Ratio)
P, /Px_104-10 Ages 10-84
Pgs+ /P7s5+1-10 Ages 85+
Average of the CCRs for all census tracts, assuming equal weighting
¢(Weighted — standard)/weighted * 100
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in three age groups 15 to 24, ages40 to 44, and ages 75 years and older and
decidedly higher CCRs in age groups 30 to 39.

In preparing a 2010 forecast using the H-P method for census tract 1.14, we used
both the standard CCRs and spatially weighted CCRs, and evaluated them against
the 2010 census (see Table 14.4). Both forecasts show a decline in the total
population, but it is much steeper using standard CCRs. The total population
forecast error is more than double using the standard CCRs compared to spatially
weighted CCRs, and the spatially weighted CCRs also perform better in forecasting
the age composition. The spatially weighted forecast has less bias and greater
accuracy compared to forecast using standard CCRs with MALPEs of -7.8% vs
-12.5% and MAPE:s of 17.1% and 23.2%, respectively. Ignoring signs, the spatially
weighted forecast has lower errors in 13 of the 18 age groups.

It may be difficult to see from this simple example how one might make fore-
casts for a large set of census tracts (or other geographic) areas using spatial
weighting. However, ESRI’s Arc-GIS contains modules for constructing spatial
weights matrices under specified neighborhood inclusion rules such as the queen
and rook contiguity models presented here. These tools can create a spatial weights
matrix that can be overlaid over a larger section of census tracts simultaneously. A
key point is that the weighting scheme would yield weighted CCRs for census tracts
prior to any spatial weight-based adjustment being made on any census tract. As
noted earlier, calculations of neighborhoods are kept independent of each another,
which is thought to minimize distortions introduced by the order of calculations.

14.5 Alternative Spatial Approaches

The method presented in this chapter provides a relatively simple technique for
directly incorporating spatial effects into demographic forecasts using the H-P
method. There are, however, other techniques that include spatial relationships
into small area forecasts (Harper et al. 2003; Jarosz 2008; Smith et al. 2013:
203-207 and 228-237; Tayman 1996). Although these methods do not explicitly
incorporate spatial dependence into their algorithms, they are based on factors
known to be spatially-dependent such as housing, historical shares, employment,
or other socioeconomic factors (Hammer et al. 2004; Hauer et al. 2015;
Fotheringham et al. 2002; Hogan and Tchernis 2004; Pattachini and Zenou 2007).
Since these methods are based on a spatially-dependent pattern of symptomatic
indicators or historical ratios their forecasts are influenced, at least to some degree,
by spatial dependencies and relationships (Pagliara et al. 2010; Voss 2007; Waddell
2012; White et al. 2015). One of the most well-studied of methods with an
embedded spatial component is the ratio-correlation regression model (Swanson
and Tayman 2015), which links symptomatic indicators at a smaller geographic
scale to symptomatic indicators at a larger geographic scale within a regression
framework.
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Additionally, there are several new and very promising approaches that could be
applied in the context of a CCR-based model. Ordorica-Mellado and Garcia-
Guerrero (2016) have proposed Kalman filters as a small-area demographic model-
ing tool. A Kalman filter is an allocation model based on a stochastic process
estimated using a least-squares algorithm. As such, it introduces some degree of
spatial dependency through its use of the relationship between smaller and larger
geographic areas based on historical trends. This method could be applied to an H-P
forecast by relating the CCRs of smaller areas to those of larger ones and it has the
added advantage of simultaneously forecasting a small area’s population while
controlling it to a population for a larger geographic area. Kalman filters have been
utilized in a variety of settings ranging from aeronautics to economics (Grewal and
Andrews 1993), but to our knowledge the work of Ordorica-Mellado and Garcia-
Guerrero (2016) is the first attempt to utilize the method in demographic analysis.

In a similar vein to the method presented here, Inoue (2017) has proposed a
smoothing method for CCRs and child-woman ratios (CWRs) for use in the n
method. In particular, mean and median smoothing routines that use CCRs and
CWRs from neighborhoods or adjacent small areas. Unlike our method, which is
based solely on adjacency, his approach is based on two principles: (1) the demo-
graphic of a target area are similar to areas closest to it; and (2) if different areas are
the same distance from the target area the more populated area has greater influ-
ence. So the smoothing weight applied to the CCRs and CWWs in the target area
gets larger when neighboring areas are closer and more populated. Implementation
of these principals is implemented using a measure known as population potential
(PP) (Stewart 1947). Calculating PP requires detailed data on the distance between
the small areas and complex calculation. Inoue (2017) developed an approach to
simplify the calculations and make the implementation more practical. Simulations
were performed using a 2000 to 2005 base period and the H-P method to produce a
2010 forecast that was subsequently compared to the 2010 census for small areas in
the Shibuya Ward, Tokyo, Japan. These simulation shows that his method based on
PP outperformed a method where no smoothing was applied.

There is also the alternative of using spatial regression models in demographic
forecasting (Chi and Voss 2011; Chi and Wang 2017; Chi and Zhu 2008). Spatial
regression methods directly utilize spatial weighting algorithms (hence the
umbrella term of “geographically weighted least squares”) and provide another
way to incorporate spatial dependencies and relationships into demographic fore-
casts. Such models incorporate both space and time effects in a “spatial lag”
framework. Using this framework, CCRs could be forecasted using a spatial
regression model as another way to incorporate spatial dependencies into the H-P
model. Swanson and Tayman (2014) provide an example of using CCRs in a
non-spatial regression framework that could form a basis for investigating this
possibility.
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14.6 Boundary Changes

Like all demographic forecasts, those that utilize spatial weighting will be subject to
unavoidable sources of errors such as those in the decennial census (Fellegi 1968;
Hogan 1993, 2003; Hogan and Mulry 2015) or reversals in historical growth trends
that cannot easily be captured in methods using CCRs (Baker et al. 2013; Hoque
2010; Smith et al. 2013: 1-2). Spatially detailed demographic forecasts are also
prone to specific types of errors not always relevant when making small-area
demographic forecasts. The most important of these involves geographic normal-
ization, which is the process of harmonizing population counts when geographic
boundaries change over time (Lloyd 2017; Tobler 1979; Voss et al. 1999;
Zandbergen and Ignizio 2010). Generally, when the change involves adding up
smaller areas that have been subsumed into larger ones—such as a set of census
tracts that have been annexed by a municipality—the error is generally small
(Fisher and Langford 1995; Sadahiro 2000). When, however, a large geographic
area is split into smaller areas significant distortions in historical data can occur
(Baker et al. 2015; Simpson 2002; Zandbergen and Ignizio 2010). Unfortunately,
this latter form of geographic splitting is very common and geographic normaliza-
tion will frequently be required prior to making spatially detailed demographic
forecasts.

When such normalization is required, adjustments have relied upon various
methods of areal interpolation that assume the population is proportional to the
area split into a new geography (Flowerdrew and Green 1992; Tobler 1979; Voss
et al. 1999). This assumption has been shown to introduce large amounts of error,
perhaps as much as 47%, for example, when geocoding to streets (Zandbergen and
Ignizio 2010). Significant improvements to areal interpolation may be made by
using ancillary data on housing, such as may be garnered from aerial photography,
E911 structure points, or assessors’ parcel data (Baker et al. 2015; Jarosz 2008;
Sylvester 2013).

Where census data require adjustment for boundary changes, we can use the
Census Bureau’s “tract relationship files,” which are described in Chapter 3. These
relationship files provide areal weighting factors based on the Bureau’s Master
Address File (MAF). The MAF forms the basis for census data collection (NRC
2011) and while its quality is largely unknown (Dobson et al. 2011), it is likely at its
highest quality at the time of the decennial census when a block canvassing effort
has double-checked its completeness (GAO 2015; NRC 2011; Swanson and
Walashek 2011). Even at the time of a decennial census, the MAF may have
misallocation errors of between five and ten percent when aggregated to census
tracts (Ratcliffe 2001). However, that study is 15 years old and it is possible that the
MAF has improved since. Those seeking to create spatially detailed population
forecasts should be aware of errors due to spatial normalization and build review
tools and allow sufficient time to create geographically normalized datasets
(Swanson et al. 2010).
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14.7 Conclusions

The possibilities for incorporating spatial effects into demographic forecasting
models are promising, but there is little research on its effectiveness. We know of
only one study that has specifically compared the accuracy of forecasts with and
without spatial dependencies (Baker et al. 2014). That study, which used the H-P
model, found that introducing either form of contiguity (rook or queen) improved
forecast accuracy dramatically in total population forecasts as well as in forecasts of
age and sex composition in urban census tracts in Albuquerque, New Mexico. This
same study also found that queen contiguity reduced error even further than rook
contiguity-based weighting schemes, suggesting that incorporating larger neighbor-
hoods may be preferable to smaller ones. Importantly, it also found that either form
of spatial weighting cut errors in half in census tracts whose change was the greatest
either in terms of gains or loss; growth categories for which H-P and other forecast
methods tend to underperform (Smith and Shahidullah 1995; Swanson et al. 2010;
Baker et al. 2013).

These improvements strongly suggest the efficacy of introducing spatial dynam-
ics into small area forecasting models and those producing such forecasts should
consider these methods. The relatively simple contiguity models based on CCRs,
shown in this chapter provide a flexible, relatively inexpensive, and accessible
accurate method for modeling spatial population dynamics. There is, however, a
need for more research on forecast accuracy of models with and without spatial
dependencies. How would such models perform under different demographic
conditions in different parts of the county? At what geographic level, if any, does
the incorporation of spatial dependencies no longer impact forecast error? Are
spatial models better suited for subcounty forecasts or do they help lower forecast
errors in larger geographies such as counties, metropolitan areas or states? These
and other questions will help us learn more about the strengths and weakness of
spatial forecasting models.
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Chapter 15
The Utility of Cohort Change Ratios

15.1 Introduction

In this chapter we first describe the utility of cohort change ratios (CCRs) and relate
it to the field of demography, particularly to applied demography. Next ,we provide
a measure of utility relative to the cohort change ratio (CCR) method (also referred
to in this book as the Hamilton-Perry method) and provide examples of its use. We
conclude with a brief discussion that suggests how the concept of utility relative to
the CCR method can be extended.

15.2 The Concept of Utility

In preparation for our discussion of utility, we start with the argument by Swanson
et al. (1996) that the guiding principle in applied demography is to do only as much
as necessary for the immediate problem at hand. We note that properly applied, this
can lead to efficiency, but poorly applied, this principle and lead to mediocrity.
Underlying this principle is the “Triple Constraint” (TC) perspective (Rosenau
1981; Swanson et al. 1996), which consists of three dimensions:

1. a performance specification—the explanatory/predictive precision sufficient to
support a given decision-making situation (PS);

2. time—the scheduling requirements under which the performance specification
must be accomplished (TS); and

3. cost—the budget requirements under which the performance specification must
be accomplished (CS).

Using this perspective, for example, we can see that a high performance spec-
ification, such as a very high degree of accuracy for a total population number,
generally requires a great deal of time and a high cost, such as those required for a
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complete census. A lower performance specification requires much less time and
lower cost, such as those required to generate a population estimate.

The triple constraint (TC) perspective is embedded within a distinctly different
context when applied to basic (academic) demography. For basic demography, the
context involves the goal of maximizing the performance dimension. That is, the
goal is to maximize explanatory power and precision. Thus, on the one hand, basic
demography tends to view time and resources as barriers to surmount in order to
maximize explanatory power and precision; for applied demography, on the other
hand, the context is to set the performance dimension at a level that is just sufficient
to support a given decision-making process in order to minimize the use of time and
resources. Given this, we argue that utility is an important concept in applied
demography, but that it has less importance in basic demography.

One way in which utility can be examined is presented by Tayman and Swanson
(1996) who measured the utility of population forecasts as a complement to
measuring forecast accuracy. As a first step in developing this measure, they
asked how much “value added” knowledge is gained by a forecast over and
above the knowledge gained by either not doing a forecast or using a no-cost
alternative. Next, they asked if useful and valid generalizations could be made
about forecast utility in specific forecasting situations. In answering these two
questions, they argued that a proportionate reduction in error measure (PRE),
introduced by Costner (1965) and employed by Swanson and Tayman (1995),
could be used to quantify the “value added” component of a given forecast.

Using the basic idea of PRE, we propose to measure the performance dimension,
the time dimension, and the cost dimension is such a way that the three measures
can be simply (algebraically) combined to obtain an overall score or a composite
measure of utility. We start with the formula for PRE:

PRE = ((A — B)/A) (15.1)

where,

A is an Alternative method; and
B is the CCR method.

PRE will be positive if the TC dimension of the Alternative method is greater
than the TC dimension of the CCR method, and a larger value would indicate
greater value added by the CCR method. Conversely, PRE will be negative if the
TC dimension of the Alternative method is smaller than the TC dimension of the
CCR method, and a smaller value (larger negative) would indicate more value
added by the Alternative method. A PRE of zero would indicate that value of the
TC dimension is the same in the Alternative and CCR methods

In the case of the performance dimension (error), “A” would represent the error
level of an estimate or forecast generated by an Alternative method, while “B”
would represent the error of an estimate or forecast generated by the CCR method.
In terms of time, “A” would represent the time needed to generate the forecast or
estimate using the Alternative method, while “B” would represent the time needed



15.3 Utility and the Cohort Change Ratio Method 227

using the CCR method. Finally, in terms of the cost dimension, “A” would represent
the cost needed to generate the forecast or estimate using the Alternative method,
while “B” would represent the cost needed to use the CCR method. These dimen-
sions are averaged obtain a composite measure of utility over all TC dimensions:

U = (PRE, + PRE, + PRE) /3 (15.2)

where,

U is the TC or composite utility of the CCR method;

PRE,; is the performance (error) of the CCR method relative to an Alternative
method;

PRE,, is the time required to implement the CCR method relative to an Alternative
method; and

PRE_; is the cost of the CCR method relative to an Alternative method.

As a starting point each TC score is implicitly given a weight of 0.333. If we want to
place more importance on, say, cost compared to error, we could re-arrange the
weights. For example, we could give a weight of 0.363 to cost and remove 0.030
from the error weight.

As a hypothetical example (we will shortly provide real-life examples), suppose
that we have PRE,,; = 0.10, PRE; = 0.20 and PRE_; = 0.15. In this case, the U is
0.15 (0.45 / 3), indicating that the CCR method has more composite utility com-
pared to the Alternative method. A negative U would indicate that the Alternative
method has more composite utility than the CCR method. A zero U would indicate
that the CCR and Alternative methods have the same composite utility. Finally, a
positive U would indicate the CCR method provides more composite utility than the
Alternative method.

How should one evaluate the U itself relative to the performance of the CCR
method? For example, is a U of 0.60% “excellent”, or is it “good”? Is a U of 0.20
“poor”’? Swanson and Tayman (1995) suggest the following guidelines: less than
zero, bad; 0-0.25, poor; 0.26-0.50, average; 0.51-0.75, good; 0.76—1.00, excellent.
These guidelines are not cast in stone and are likely to be specific to the historical
context, size, and growth rate of the geographic areas under consideration.

15.3 Utility and the Cohort Change Ratio Method

We present two separate sets of examples. In the first set, we examine four ex post
tests of the TC dimensions of population forecasts using 2010 census counts as the
accuracy benchmark. In these examples, the accuracy of the total population is the
“performance specification.” Following this set, we look at the TC dimensions of
age group forecasts as the performance specification and present two assessments of
the accuracy of age group forecasts using 2010 census counts.
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In the first set, we compare a 2010 forecast of the total population for the state of
Nevada using 1990-2000 CCRs to a forecast from a cohort-component model. In
the second example of the first set, we compare the 2010 CCR forecast of the total
population to a simple exponential extrapolation forecast using 1990 and 2000
census data. In the third example, we repeat the first comparison, using Inyo
County, California. In the fourth comparison, we repeat the second comparison
using Inyo County. By using the state of Nevada and Inyo County, we can get a feel
for the utility assessments involving a relatively large population (Nevada) and a
relatively small population (Inyo County, California).

In regard to time and cost, the cohort-component forecasts took 20 person-hours
to assemble; the CCR method forecast took approximately 2 person-hours; and the
exponential extrapolation took 0.5 hour. The costs of these forecasting methods
were completely determined on the basis of personnel time, which was set at $100
per hour. Therefore, the costs were $2000, $200, and $50 for the cohort-component,
CCR method, and exponential extrapolation respectively.

Table 15.1 provides the 1990 and 2000 input data, the 1990-2000 CCRs, the
2010 forecast, the 2010 census counts, and the error statistics for the CCR forecast
of Nevada. Table 15.2 provides the 2010 forecast using the cohort-component
method along with the 2010 census data, and the error statistics for this forecast.
Details underlying the cohort-component method forecast for Nevada are provided
in Table A.1 at the end of the chapter.

As can be seen in Table 15.1, overall, the 2010 CCR forecast of the state of
Nevada is too high by 20.4%. Table 15.2 shows that the 2010 cohort-component
forecast is also too high by 23.5%. The U for the CCR method relative to the
Cohort-Component method for Nevada is:

0.644 = (0.132 4 0.900 + 0.900)/3

where,

PRE,, is 0.132 (0.235-0.204) / 0.235;
PRE,, is 0.900 (20-2) / 20; and
PRE,, is 0.900 ($2000 — $200) / $2000.

This U reveals that relative to the cohort-component method, the CCR method
has far more utility in this total population forecast for the State of Nevada. A U of
0.553 suggests a good performance of the CCR method in terms of its composite
utility relative to the cohort-component model.

The 2010 exponential extrapolation forecast of the total population for Nevada
yields a forecast error of 21.8% as follows:

PZOIO 3,289,281 — 1,988,257 X e ((In(1,988,257 / 1,201,833)) x 10)’
Census 2010 2,700,551, and
Pct. Error 21.8% = ((3,289,281-2,700,551)/2,700,551) x 100.
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Table 15.2 Population forecast error cohort-component method, Nevada, 2010

2010 Population Forecast error

Age Forecast Actual Number Percent Allocation®
04 202,591 187,478 15,113 8.1% 0.625%
5-9 166,171 183,077 —16,906 —9.2% 1.598%
10-14 181,216 183,173 —1,957 —1.1% 1.132%
15-19 179,509 182,600 —3,091 —-1.7% 1.164%
20-24 186,596 177,509 9,087 5.1% 0.755%
25-29 257,809 196,644 61,165 31.1% 0.757%
30-34 333,477 190,642 142,835 74.9% 3.339%
35-39 346,438 191,652 154,786 80.8% 3.706%
40-44 291,062 191,391 99,671 52.1% 1.989%
45-49 247,137 193,790 53,347 27.5% 0.530%
50-54 212,086 182,737 29,349 16.1% 0.154%
55-59 172,045 164,575 7,470 4.5% 0.730%
60-64 143,801 150,924 —7,123 —4.7% 1.105%
65+ 287,072 324,359 —37,287 —11.5% 3.060%

Total 3,207,010 2,700,551 506,459 18.8%

MAPE 23.5%

MALPE 19.4%

10D 10.3%

Source: 2010, U.S. Census Bureau ( http://factfinder2.census.gov)

abs((Py+10/2Px.1+10) — (Axir10/XAx 1+10))
"Index of Dissimilarity

Relative to the exponential extrapolation method, the U for the CCR method is:

—1.98 = (0.064 + —3.00 + —3.00)/3

where,

PRE,, is 0.064 (0.218-0.204)/0.218;
PRE,, is —3.00 (0.5-2.0)/0.5; and
PRE,, is —3.00 ($50 — $200)/$50.

Clearly, if we were only interested in a total population forecast of Nevada, the
exponential extrapolation method has far more utility than does the CCR method,
which performed poorly.

In regard to our example of a small population, Tables 15.3 and 15.4 provide the
same information for Inyo County, California that Tables 15.1 and 15.2 did for
Nevada. Details underlying the cohort-component method forecast for Inyo County
are provided in Appendix Table A.2 at the end of the chapter.

Table 15.3 shows that the 2010 CCR forecast of Inyo County is too low by 7.4%.
Table 15.4 shows us that the 2010 cohort-component forecast is also too low by
6.8%. This yields a PRE,,; of —0.088 ((—6.8 —(—7.4)) / —6.8). Using this PRE,,; in
conjunction with the time and cost PREs shown earlier, we find the U for the CCR
method relative to the cohort-component method for Inyo County is:


http://factfinder2.census.gov
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Table 15.4 Population forecast error cohort-component method, Inyo County, California, 2010

2010 Population Forecast error

Age Forecast Actual Number Percent Allocation®(%)
04 943 1,070 —127 —11.9 0.314
5-9 880 985 —105 —10.7 0.220
10-14 809 1,134 —325 —28.7 1.434
15-19 1,018 1,087 —69 —6.3 0.028
20-24 1,134 865 269 31.1 1.897
25-29 647 1,041 —394 —37.8 1.870
30-34 263 979 —716 —73.1 3.757
35-39 536 977 —441 —45.1 2.167
4044 1,282 992 290 29.2 2.068
4549 1,589 1,367 222 16.2 1.822
50-54 1,696 1,594 102 6.4 1.217
55-59 1,706 1,581 125 7.9 1.345
60-64 1,273 1,339 —66 —4.9 0.145
65+ 3,509 3,535 —26 -0.7 1.240

Total 17,285 18,546 —1,261 —6.8

MAPE 22.1%

MALPE —9.2%
10D° 9.8%

Source: 2010, U.S. Census Bureau ( http://factfinder2.census.gov)

abs((Py+10/2 Py.1+10) — (Axir1-/XAx 1+10))
"Index of Dissimilarity

0.571 = (—0.088 + 0.900 + 0.900) /3.

This U reveals that relative to the cohort-component method, the CCR method
has far more utility than the cohort-component methods in this forecast of Inyo
County, California. Like the Nevada example, the CCR has a good performance
relative to the cohort-component model in Inyo County.

The 2010 exponential extrapolation forecast of the total population for Nevada
yields a forecast error of —5.0% as follows:

P2010 17,615 = 17,945 x ¢ (n(17945/18.281) > 10)
Census 2010 18,546, and
Pct. Error —5.0% = ((17,615-18,546)/18,546) x 100.

With the CCR method having a percent error of —7.4%, the PRE, of the CCR
method relative to the exponential extrapolation method is —0.480 ((—5.0 —
(—=7.4))/ —5.0). Using this PRE,, in conjunction with the time and cost PREs
shown earlier, we find the U for the CCR method relative to the exponential
extrapolation method for Inyo County is:


http://factfinder2.census.gov
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~2.16 = ((—0.480) + (—3.00) + (—3.00))/3

If we were only interested in a total population forecast for Inyo County, the
exponential extrapolation method has far more utility than the CCR method. Like
for the Nevada example, however, the CCR method has a poor performance relative
to the extrapolation method.

In the second set, we set the performance specification as the accuracy of age
group forecasts, operationalized as the Mean Absolute Percent Error (MAPE). The
first example compares the age group accuracy of the CCR and cohort-component
methods for Nevada. In the second example, we do the same comparison for Inyo
County, California.

In regard to the Nevada 2010 forecast, the MAPE for the CCR method is 19.3%
while the MAPE for the same forecast resulting from the cohort-component method
is 23.5%. This yields a PRE,,; of 0.178 ((23.5-19.3) / 23.5). Using this PRE,, in
conjunction with the time and cost PRE’s shown earlier, we find that the U for the
CCR method relative to the cohort-component method is:

0.659 = ((0.178) + (.900) + (.900))/3.

This U reveals that relative to the cohort-component method the CCR method
has more utility in forecasting the 2010 population by age for the Nevada. Given the
U for total population was 0.591, the CCR method has greater utility than the
cohort-component method in forecasting the population by age than in forecasting
total population.

Looking at the comparison for Inyo County, the MAPE for the CCR method is
8.5% while the MAPE for the cohort-component method is 22. 1%. This yields a
PRE,s of 0.615 ((22.1-8.5) / 22.1). Using this PRE,,; in conjunction with the time
and cost PRE’s shown earlier, we find that the U for the CCR method relative to the
cohort-component method is:

0.805 = ((.615) + (.900) + (.900))/3.

This U reveals that relative to the cohort-component method the CCR method
has far more utility in forecasting the 2010 forecast of the population by age for
Inyo County, California. This represents the largest U of any example and indicates
an excellent performance of the CCR method compared to the cohort-component
method in term of composite utility.
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15.4 Conclusions

In this chapter we have discussed the concept of utility and applied an
operationalized definition of it to the CCR method. Using two sets of examples,
we illustrated how the utility can be measured and interpreted. There are, of course,
a number of variations that can be applied to the concept as identified, as well as
multiple ways to operationalize it.

The main objective of this chapter was to show that the CCR method can have a
great deal of utility relative to the information it provides. For example, if one is
interested in population forecasts by age (and sex and race, etc.), the CCR method
can have a much higher composite utility than the cohort-component method for
short-term forecasts, such as ten years. Smith and Tayman (2003) reported a similar
finding in their analysis of the 50 states and the 67 counties in Florida. In their
analysis, the CCR and cohort-component methods produced similar forecasts by
age and sex; neither approach consistently produced more accurate forecasts.
Although they did not measure composite utility, the much lower time and costs
of the CCR method would have increased its utility relative to the cohort-
component method along these two TC dimensions.

With modifications (discussed in the previous chapter), the CCR method has the
potential for higher utility than the cohort-component method for long-term fore-
casts as well. As discussed in Chapter 6, the CCR method can be used to generate
formal measures of uncertainty around the forecasts it produces. This feature is not
found in forecasts made using the cohort-component method, which requires much
more work and subtlety in order to generate measures of uncertainty around the
forecasts it produces (Alho and Spencer 2005; Hyndman and Booth 2008; Lutz
et al. 1999; Seviikovd et al. 2013). As illustrated in this analysis, if one is only
interested in the total number of people at some future date, the CCR method does
not have as much utility as a simple extrapolation method, all things equal.

We have used “accuracy” as a performance specification in this chapter. Other
performance specifications are possible, along with other methods of scoring this
dimension of utility. For example, it would be complicated and impractical to use a
cohort-component method to forecast the population of a set of census tracts by age,
something that is very feasible using the CCR method. In this case, the scoring for
the performance specification could be a numeric coding for “yes” and “no” in
regard to the ease of which each method could be implemented for a set of census
tract forecasts by age.
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Chapter 16
Concluding Remarks

16.1 Introduction

We hope that you now have a good idea of why we wrote a book about cohort
change ratios (CCRs) and trust that we have demonstrated that CCRs have a wide
range of uses and a high level of utility, features that are useful to applied
demographers. Taking a cue from David Letterman, the recently retired late night
TV personality, whose “top ten” lists became a mainstay of his show, we would like
to conclude this exposition of the CCR method with our “top ten reasons” for using
it (Swanson and Tedrow 2016). As did Letterman, we work through the list in
reverse order, starting with reason number 10 and ending (although without a drum
roll) with reason number 1. Following the initial list, we elaborate a bit on each
reason.

Exhibit 16.1 The Top Ten Reasons to Use the CCR Method
10. You only need two census counts of population by age to generate of
population forecast.
9. You can run it forward or backward, as a forecast or a backcast.
8. You can use it at virtually any level of geography.
7. You can use it for any population for which cohort data are available over
time, including institutionally or administratively defined populations.
6. You can use it to estimate life expectancy.
. It provides formal demography enthusiasts with an efficient numerical means
for generating stable population, incorporating both sexes and migration.
. It is a great method for doing multi-race population forecasts.
. With lagged regression models, it can provide forecast intervals.
. It is a re-expression of the fundamental demographic equation.
. The number one reason is that it is easy to explain and implement.
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16.2 Top Ten Reasons to Use the CCR Method

Reason # 10. You Only Need Two Census Counts of Population by Age
to Generate a Population Forecast As shown in Chapters 1, 2, 4, 8, and 9 you
only need data from two census counts of population by age to generate a popula-
tion forecast and locating data generally is easier than is the case for the cohort-
component method (see, Chapter 3, for example).

Reason # 9. You Can Run It Forward or Backward, as a Forecast or
a Backcast You can not only run the CCR method forward in time as a forecast,
but as shown in Chapter 10 also in reverse, as a backcast. Recall that this approach
was used to estimate the size of the Native Hawaiian population in 1778, the year of
first European contact. Evaluations of this approach supported the idea the CCR
method is capable of producing reasonably accurate historical estimates. Also,
Swanson (2016) also used reverse CCRs, in conjunction with other methods, to
reconstruct both the Hawaiian and part-Hawaiian populations by age of Hawaii
from 1778 to 1990 and then applied CCRs to estimate them to 2010 and forecast
them to 2030.

Reason # 8. You Can Use It at Virtually Any Level of Geography The CCR
method is well-suited for use in states and counties and as shown in Chapters 4 and
14, you can also do small area (i.e., subcounty) forecasts with this method. For
example, in Chapter 4 forecasts were produced for the city of Bellingham in
Washington and for the Pacific Beach and Mission Valley communities in San
Diego, California, while in Chapter 14, they were produced for census tracts in
Albuquerque, New Mexico.

Reason # 7. You Can Use It With Any Population for Which Cohort Data Are
Available Over Time, Including Institutionally or Administratively Defined
Populations You can also use the CCR method for populations such as school
enrollment by grade. You can do this in two ways, directly and “embedded” within
a CCR generated forecast by age, with the first method generally used for short-
term forecasts and the second, for long-term forecasts. As an example of the first
approach, Chapter 7 showed how the K-12 enrollment by grade of the Riverside
(California) Unified School District is forecast for fall 2015 (using fall 2013 and fall
2014 enrollment data). In terms of the second approach, Chapter 7 showed how the
embedded method generated a longer-term (10-year) public school enrollment
forecast by grade for the Memphis, Tennessee School District.

Reason # 6. You Can Use It to Estimate Life Expectancy In Chapter 11, the CCR
method is used to provide estimates of life expectancy at birth and other mortality-
related indicators. When used with populations that have negligible migration the
CCR approach can provide accurate estimates of these characteristics. As opposed to
more data and analytically intensive methods (e.g., life tables), the CCR method has
minimal data requirements in that it uses available census data and does not require a
great deal of judgment or “data-fitting” techniques to implement.
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Reason # 5. It Provides Formal Demography Enthusiasts with an Efficient
Numerical Means of Generating Stable Populations, Incorporating Both Sexes
and Migration In Chapter 12, the CCR method was used to generate stable
populations for Greece and over 60 other countries. That chapter also demonstrated
that the CCR results were consistent and in-line with results obtained using classical
stable population mathematics.

Reason # 4. It Is a Great Method for Doing Multi-race Population
Forecasts The 2000 census was the first to allow respondents to list themselves
as belonging to one or more racial categories, as a result racial data in and after the
2000 census are inconsistent with racial data prior to 2000. In addition, racial
classifications from the decennial census and America Community Survey are not
completely consistent with the classification used for vital statistics data, making it
difficult to develop reliable estimates of the components of change for racial and
ethnic groups. Because it is based solely on data for two age distributions, the CCR
method avoids these complications and provides a viable alternative to the full
cohort-component models for forecasts of race, especially for forecasts of the multi-
racial population (Swanson 2013). Given that the U.S. census only started counting
multi-race people in 2000, it would be very difficult, for example, to construct a
pre-2000 estimate of a given multi-race population in the absence of a CCR method
backcast. Such an example is shown in Chapter 10 where we used the CCR method
to estimate the 1990 multi-racial population in California’s Riverside and San
Bernardino counties (combined). Also, as mentioned under Reason # 9, Swanson
(2016) used reverse CCRs and forward CCRs to reconstruct both the Hawaiian and
part-Hawaiian populations by age of Hawaii from 1778 to 2010 and to provide a
forecast of these populations by age to 2030.

Reason # 3. With Lagged Regression Models, It Can Provide Forecast
Intervals In Chapter 6, the CCR method in conjunction with lagged regression
models was used to generate formal measures of uncertainty (i.e., forecast intervals)
for forecasts by age and for the total population for four states, Georgia, Minnesota,
New Jersey, and Washington. The forecast intervals generated for every 10-year
period from 1930 to 2010 were found to be both reasonable and informative.

Reason # 2. It Is a Re-Expression of the Fundamental Demographic
Equation As noted by Land (1986), any quantitative approach to forecasting is
constrained to satisfy various mathematical identities. Accordingly, a demographic
approach should ideally satisfy demographic accounting identities, which are
summarized in the identity known as the fundamental demographic equation:
P, = Py + Births — Deaths + In-migrants — Out-migrants. The Appendix shows
that the CCR method does, in fact, satisfy the fundamental demographic equation,
which provides the theoretical foundation that connects it to the Life Table
(Chapter 11) and Stable Population Theory (Chapter 12). This foundation also
facilitates the ability to decompose differences between CCRs into meaningful
factors (Chapter 13) and provides a conceptual basis for the substantive interpreta-
tion of CCRs and their characteristics (Chapter 1).
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Reason # 1. The Number One Reason Is That It Is Easy to Explain
and Implement As discussed throughout this book, the CCR Method can be
used in a variety of situations with minimal data requirements and, as such,
comes with an inherently high level of utility (see Chapter 15). The minimum
data needed is simply population data by age at two censuses. More detail is easily
added to yield more detailed results as is the case with multi-race projections.

One of the authors of this book (Swanson) was engaged as an expert witness in a
court case that involved population and enrollment projections for which he used
the CCR method. It made an economist serving as the opposition’s expert witness
grumble that the method was so simple that one of his children could understand
and operate this technique. The US Federal Judge hearing the case understood the
method and how it operated as well. The side the economist was representing lost
the case (Thomas 2012). We would like to think that Hamilton and Perry (1962) and
Hardy and Wyatt (1911) would be pleased at the Judge’s decision.
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Appendix

Cohort Change Ratios and the Fundamental Demographic
Equation

It is important that a demographic technique satisfy various mathematical identities
and, in particular, the demographic accounting identity known as the fundamental
demographic equation:

P = P, + Births — Deaths + In-migrants — Out-migrants. (A1)

This equation states that the population at a given point in time, P,,;, must be
equal to the population at an earlier time, P,, plus the births and in-migrants and
minus the deaths and out-migrants that occur between time = ¢ and time = ¢ + k.

The Cohort Change Ratio method moves a population by age from time ¢ to time
t + k using cohort-change ratios (CCRs) computed from data in the two most recent
censuses. It consists of two steps. The first step uses existing data to develop CCRs
and the second step applies the CCRs to the cohorts of the launch year population
to move them into the future. The formula for the first step, the development of a
CCR is:

nCCRx,l:an,l/nPX7k,t7k (AZ)

where,

#Py: 1s the population aged x to x + n at the most recent census (f),

2Pk 18 the population aged x—k to x—k + n at the 2nd most recent census (+—k),
and

k is the number of years between the most recent census at time ¢ and the one
preceding it at time 7.
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The basic formula for the second step, moving the cohorts of a population into the
future is:

an+k,t+k - nCCRx,t X an,t (A3)

where,

#Prvrr+k 18 the population aged x + k to x + k + n at time ¢ + &, and
2CCR,,and ,P,, are as defined in Eq. (A.2).
In terms of the CCR Method satisfying the fundamental demographic equation, let

nCCRy ¢ = (nPx—k,t—k + B =D +1—0)/(:Px—k,—k) (A4)

where,

#Pxkrx 18 the population aged x—k to x—k + n at the 2nd most recent census (¢-k),
B = Births between time 7~k and ¢

D = Deaths between time ¢~k and ¢

I = In-migrants between time /% and ¢, and

O = Out-migrants between time ¢—k and ¢. Since,

an+k,t+k = ((an—k,l—k +B-D+1- O)/(an—k,t—k)) X (an,t)- (AS)
then,
nCCRx,t = (an—k,t—k —D+1- O)/(an+k,t+k)’ (A6)

where, x + k£ > = 10.

Thus, we see that the CCR method expresses the individual components of
change—births, deaths, and migration—in terms of Cohort Change Ratios. As
such, it satisfies the fundamental demographic equation.
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