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Preface

Jean Lemaitre, French Mechanician and Engineer, is one of the founders of modern damage mechanics.
Sometimes, he starts his books congratulating the reader for opening them. As this book is indebted in
many ways to his work and ideas, we would like to start likewise. So, please, read the next paragraph
with a Jacques Cousteau accent.

Bravo, dear reader, you have had the courage to open this manuscript! And you were right because
you have earned some explanations:

(We suggest that from now on you change your reading accent to that of Sofia Vergara or Ruben Blades)

This is a book on the structural analysis of frames.

Many civil engineering structures such as buildings, bridges, or cranes are modeled as frames. Thus,
frame analysis has always been one of the most important themes in structural and earthquake engineer-
ing. There is a large number of textbooks on the subject, most of them consider only elastic frames. A
more reduced, but still significant, number of books deal with elasto-plastic frames.

Fracture mechanics is also an important branch of engineering mechanics. Many textbooks for many
different materials, metals, concrete, rocks, have been written on the subject too. All of them, probably,
consider the point of view of continuum mechanics. Damage mechanics is a more recent branch of the
engineering mechanics; fewer books on the subject can be found, but, again, they are written in the
framework of continuum mechanics.

Frame analysis in the framework of fracture and damage mechanics is a logical development of both
subjects. It is also the most recent major extension from both points of view. Paradoxically, even if this
is the latest development of damage mechanics, the state of the art on the subject is the more mature for
industrial applications.

The primary goal of this book is to describe the structural analysis of frames from the point of view
of damage and fracture mechanics; it is intended to be a link between basic knowledge and practical
applications, a synthesis between experimental and theoretical results.

However, damage mechanics grew out of fracture mechanics, elasticity, and plasticity and includes
them as particular cases. Thus, this book also presents a coherent and comprehensive view of the elastic
and plastic analysis of framed structures.

As in any other contemporary engineering field, the computational implementation of the damage
models is a priority. Some academic software for the analysis of damaged frames is already available;
however, at the time when this book was written, reliable and user-friendly industrial software is still
lacking.

This book is also intended as a reference manual for those readers who want to develop computer
programs on the subject.



Preface

We have assumed that the readers of this book have at least a good knowledge of strength of materials,
calculus, matrix analysis, and computer programming, as they are taught in standard courses for under-
graduate engineering students. Additional courses on structural analysis, reinforced concrete, theory of
elasticity (or advanced strength of materials), and design of steel structures would also be very useful.

This book grew out of courses in the Master’s and Doctoral programs on Applied Mechanics or
Structural Engineering at the University of Los Andes and the Lisandro Alvarado University in Ven-
ezuela. Many of the results that are included in the book were developed in the framework of theses at
these universities.

HISTORICAL SKETCH

The need to analyze and predict the failure of structures has been a common preoccupation of humanity
since immemorial times. However, the first works of structural engineering in the modern sense of the
word are probably due to the Italian scientist Galileo Galilei (1564-1642). He investigated the strength
of rods in tension as well as in cantilever beams.

The English scientist Robert Hooke (1635-1703) established the foundations of linear elasticity when
he discovered that for many materials displacement under a load is proportional to force. Hooke did not
use mathematical language to formulate his law but enunciated it in Latin: “Ut tension sic vis.” Edne
Mariotte (1620-1684) in France published similar discoveries in 1680 and applied this concept to the
analysis of beams subjected to bending; he remarked that some fibers in the beam elongate while others
shorten. He concluded that the limit between both effects corresponds to the middle of the cross-section.
The contributions of Sir Issac Newton (1642-1727) changed the history of the science by stating the laws
of motion and establishing the basis of infinitesimal calculus in his book Principia.

The theory of beams discussed in the textbooks of strength of materials is due to the works of James
Bernoulli (1654-1795), Daniel Bernoulli (1700-1782), members of a distinguished family of Swiss
mechanicians and mathematicians, and Leonhard Euler (1707-1783). Other important contributions, the
equations for normal stresses in a beam subjected to bending, are due to the French scientists Charles
Agustine Coulomb (1736-1806) and Louis Marie Henri Navier. Barre de Saint Venant (1797-1886)
analyzed the shear stress distribution in beams subjected to bending and also formulated a general theory
of torsion that included elements of non-circular cross-sections. The theory of beams was perfected by
the Ukrainian engineer Stephen Timoshenko (1878-1972); this improved theory permitted the analysis
of short beams, which were not correctly described by the classic one.

The theory of indeterminate structures started with the work of the Scottish physicist James Clerk
Maxwell (1830-1879) and the German engineer Otto Mohr (1835-1918); in their procedure, that both
of them proposed independently, the problem consisted in the solution of a system of equations; these
equations describe the geometrical compatibility of displacements in terms of reactions and internal
stresses. The Italian engineer Alberto Castigliano (1847-1884) and the German professor Heinrich Miil-
ler Breslau (1851-1925) improved and generalized the results presented by Maxwell and Mohr. The US
structural engineer Hardy Cross (1885-1959) developed the moment distribution method that allowed for
the first time the analysis of large structures. In 1969, the US professor H. G. Powell proposed a general
formulation for nonlinear elastic frames that is also amendable to the general inelastic case. With the

Xi
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advent of cheap and powerful digital computers, the analysis of framed structures became the analysis
by the finite element method. Its development started in the 1950s with the works of M. J. Turner, R. W.
Clough, H. C. Martin, and L. J. Topp in the United States, and by J. H. Argyris and S. Kelsey in Britain.

The general theory of tridimensional elasticity is based on the work of the French mathematician
Augustin Louis Cauchy (1789-1857). Within this framework, G. Kirsh obtained in 1898 the stress dis-
tribution in a large plate with a circular hole subjected to tractions far from the hole. He showed that
the maximum normal stress in this case is equal to three times the nominal value, exposing for the first
time the so-called stress concentration phenomenon. Later, the Russian mathematician G. Kolosov (in
1907) and the British engineer Charles Inglis (in 1914) extended these results to the case of elliptical
holes. They showed that the maximum normal stress augments when the relationship between the minor
and mayor axis decreases. Areas with large stress concentration factors are prone to the development of
cracks. The solution of a plate with an elliptical hole was used by the British aeronautical engineer Alan
Arnold Griffith (1893-1963) to develop a theory of crack growth that constitutes the basis of fracture
mechanics. Other scientists with significant contributions to this theory are the US engineer George R.
Irwin (1907-1998) and the US mechanician James Robert Rice.

The theory of plasticity has a history as old as that of elasticity. As early as 1773, Coulomb enunciated
the conditions for yielding of soils under normal and shear stresses. The first practical applications of
the theory of plasticity are attributed to the French engineer Jean Victor Poncelot (1788-1867) and the
Scottish engineer William John Macquorn Rankine (1820-1872). The French engineer Henry Edouard
Tresca (1814-1885) studied the conditions for plastic yielding in metals. An improved criterion for
plasticity in metals was proposed by the Austrian mathematician Richard von Mises (1883-1953). The
mathematical theory of plasticity is due to the contributions of Ludwig Prandtl (1875-1953), Heinrich
Hencky (1885-1951), Daniel C. Drucker (1918-2001), William Prager (1903-1980), and Rodney Hill.

Rupture, from the point of view of the fracture mechanics and the theory of plasticity, is considered
as a two-state process, failure or no failure, related to critical values of load, stress, strain, or number
of cycles. A. Palmgree in 1924 proposed for the first time the use of a variable related to the progres-
sive deterioration of the material preceding to failure. Two decades later, A. M. Miner popularized this
approach as a practical tool for design. But it was in 1958 that the Russian scientist L. M. Kachanov
published a very famous paper that is considered the cornerstone of damage mechanics. A second sig-
nificant contribution on damage mechanics, the effective stress concept, appeared a decade later due to
the Russian scientist Y. N. Rabotnov. During the 1970s, damage mechanics received a vigorous impulse
thanks to the works of the French engineer Jean Lemaitre who introduced the idea of equivalence in
strain and several experimental procedures for measuring damage.

ORGANIZATION OF THE BOOK

The chapters are organized as follows: first, the relevant concepts on the subject of the chapter are pre-
sented; then, a summary of the equations are listed so that they can be located easily when reading the
following chapters and for solving exercises; some examples are solved next to illustrate with simple
academic cases the concepts introduced in the chapter. Even if all the examples are presented together
in this special section, we suggest the reader look at them when they are referred to in the body of the
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chapter; some unsolved problems are proposed next; those readers who would like to test their compre-
hension of the chapter should solve them; finally, some projects are proposed; the purpose is to guide the
reader interested in the numerical implementation in writing his/her own computer programs; the projects
are related to themselves, so they may become a sophisticated software if all of them are carried out.

Chapter 1 is an introduction to structural mechanics.

Chapter 2 contains a compendium of the relevant concepts of the strength of materials for the subjects
treated in the book.

Chapters 3 and 4 present the theory of elastic frames. They include not only the classic theory of the
structures but also a presentation of the analysis of dual system. These chapters introduce a new notation
for the analysis of structures. It differs from the one used in the classic books of structural analysis, but
it significantly simplifies the description of the inelastic models.

Chapter 5 introduces the fundamental concepts of the theory of plasticity. Chapters 6 to 8 describe
the theory of elasto-plastic frames and dual systems.

Chapter 9 resumes the fundamental concepts of fracture and damage mechanics, while Chapters 10
to 12 present the theory of lumped damage mechanics for reinforced concrete structures.

Chapter 13 shows how these mathematical models can be used in some industrial applications.

Finally, Chapter 14 describes lumped damage mechanics for tubular steel structures.

Julio Florez-Lopez
University of Los Andes, Venezuela

Maria Eugenia Marante
Lisandro Alvarado University, Venezuela

Ricardo Picon
Lisandro Alvarado University, Venezuela
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Chapter 1

Introduction to Structural
Mechanics

ABSTRACT

Foreign visitors discovering a new country usually start by looking at a map of the place; they identify its
regions and their characteristics; they try to acquire a mental chart of the new country. Naturally, they
have to choose a city or cities in which they are going to spend long stays. Only in those specific places,
the visitors will try to learn about the specifics: street names, places of interests, public transportation
network, convenience stores, and so on. In this chapter, a general map of the structural mechanics (the
“country” in which the reader of this book is going to “reside”) is first presented. Next, the theory of
frames (the “city” that the reader of the book is going to know very well) is placed in this general con-
text. After reading the chapter, the reader will slowly improve his/her knowledge of the specific topic
until becoming an expert in the theme. It is fair to say that the theory of frames is equivalent to a Rio de
Janeiro in Brazil or a Paris in France or a Saint Petersburg in Russia.

1.1 STRUCTURAL MECHANICS, ITS GOALS, AND WAYS

The goal of structural engineering is to certify the structural integrity of machines, buildings and other
solids during its normal operation and, also, during possible accidents or overloads. Structural engineering
can be divided into two different but connected sub fields: structural design and structural mechanics.
The former consists in the development and application of guidelines and rules that allow for the design
of safe structures for a specific use. The latter has as a goal determining how the external forces and ac-
tions are distributed among the structural components of an object when its dimensions and properties
are known. It is evident that it is not possible to design a structural component if the loads that it has
to withstand are unknown. On the other hand, usually, the dimensions and properties of the structural
components are not known if the structure has not been designed previously. Thus, in many cases, the
process of structural certification is an iterative one where the techniques of the structural design and
the structural mechanics are applied successively.
The present is a book on structural mechanics exclusively.

DOI: 10.4018/978-1-4666-6379-4.ch001
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Introduction to Structural Mechanics

Structural mechanics can also be used as a tool for the “diagnosis” of existing structures, in the
same way as medical imagenology techniques, such as computerized tomography, are used to diagnose
a human patient (see Figure 1). This diagnose is sometimes called structural vulnerability assessment.

In the engineering practice, structural mechanics concepts are usually applied through structural
analysis programs. This field has two aspects. The first one is about the mathematical models or equa-
tions that describe the behavior of structures under mechanical loading; the second one is about the
numerical procedures used to solve these equations. This book deals mainly with the former aspect
although the basic notions of the latter are also considered. Table 1 presents a summary of the models
used in the structural analysis.

A structural analysis is normally composed choosing one item of every column; for instance, a plastic
plate can be analyzed assuming small strains and under dynamic loadings; or a fracture mechanics analysis
can be carried out in a solid under a quasi-static loading; any combination is possible. The meaning of
each element of the table is explained in the following sections.

Figure 1. “Diagnose” of (a, b) A human patient, (c, d) A structure

la. MRI-Philips.JPG. (n.d.). Retrieved April 13, 2014 from http://en.wikipedia.org/wiki/File:MRI-Philips.JPG

1b PET-image.jpg. (n.d.). Retrieved April 13, 2014 from http://commons.wikimedia.org/wiki/File: PET-image.jpg

1c Skyscrapercity.com. (n.d.). Retrieved July 25, 2010 from http://www.skyscrapercity.com/showthread.php ?t=321267 &page=17

Table 1. Summary of structural mechanics models

Representation of the Representation of the Material Representation of the Representation of the
Structure Deformation Loading
Solid theory Theory of elasticity Small strains and deformations Quasi-static loadings
Beam and arc theory Theory of plasticity Large strain and deformations Dynamic loadings
Plate and shell theory Fracture Mechanics
Frame theory Damage Mechanics
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1.2 APPROACHES FOR THE GEOMETRICAL
REPRESENTATION OF A STRUCTURE

1.2.1 Theory of Solids

A structure is always assumed to be the assemblage of a set of basic structural components. The type of
the basic unit distinguishes the theories of the first column in Table 1. In the theory of solids, the basic
structural component is the solid differential element that is identical to the differential volume element
that is introduced in calculus (see Figure 2).

Each solid element is identified using its coordinates X, Y, Z in a known initial configuration, often
this is the blueprint of the structure. Then, some variables for each element are introduced. These are
classified into two categories: kinematic variables and dynamic variables. The former define the move-
ment of the solid element (the displacement vector) and its deformation (the strain tensor). The dynam-
ics variables are used to characterize external forces (body or surface vector forces) and the “share” of
the external loading that each solid differential element has to withstand (the stress tensor). All these
variables depend on the three spatial coordinates that identify each element and, possibly, time.

The analysis of a solid is formulated by introducing three sets of equations; the first one is the ki-
nematic equations that relate the strain field with the displacements, the second one is the equilibrium
equation between the external forces and the stress field. The last one is the constitutive equation that
relates stresses and strains (see Figure 3). In the general case, those are partial differential equations of
the three spatial variables and time.

Figure 2. Basic structural component in theory of solids: the solid differential element

7(x,
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Figure 3. Summary of variables and equations for solids

KINEMATIC VARIABLES DYNAMIC VARIABLES
DISPLACEMENT FIELD EXTERNAL FORCES
Kinematic Equilibrium
equation equation
Constitutive|equations
STRAIN FIELD <mmm) STRESS FIELD

1.2.2 Theory of Beams

The basic structural component in this case is the beam differential element (see Figure 4). Any structure
that can be considered as the assemblage of beam elements linked together by an axis, denoted neutral
axis, could be analyzed as a beam. Only one independent variable is needed to identify each beam ele-
ment; this is the distance between the element and the origin of the axis in the initial configuration. In
theories of beam, the structural behavior in the cross-section is assumed to be known, thus only variables
of the neutral axis are unknowns of the problem. Beam theories are the core of the strength of materials
courses and textbooks.

There are several beam theories; the type of behavior of the cross-section differentiates them. In the
context of this book, two of them are especially important: the one based on the Euler-Bernoulli hypoth-
esis and another based on the Timoshenko hypothesis. The latter states that a cross-section moves as a
rigid body (see Figure 5a); the former indicates that the cross-section not only behaves as a rigid body
but that it remains perpendicular to the neutral axis too (see Figure 5b).

The variables in the beam theory can also be grouped as kinematic (deflections or curvatures for
instance) and dynamic (moments, axial forces, shear forces, and so on). All these variables depend on
the only spatial variable x and, in some cases, time. The same three set of equations: kinematic, equilib-
rium and constitutive laws are introduced in order to formulate the beam problem too; but in this case
they are ordinary differential equations in simple cases. The scheme shown in Figure 3 is still valid with
little modifications.

1.2.3 Plate and Shell Theories

The basic structural component of the plate theory, the plate differential element, is shown in Figure 6.
Any structure that can be considered as the assemblage of these filaments linked together by a plane,
denoted neutral plane, can be analyzed as a plate. Two independent variables are needed to identify
each plate element. In this case, the behavior of each filament element is known and only variables of
the neutral plane are introduced.

This book is not concerned with plate theory.
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Figure 4. Basic structural component in the theory of beams: the beam differential element
4 Michael_Schumacher_Ferrari_2004.jpg. (n.d) Retrieved April 13, 2014 from http://commons.wikimedia.org/wiki/File:Michael _

Schumacher_Ferrari_2004.jpg
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Figure 6. Basic structural component in the theory of plates: the plate differential element

Centroidal Plane

1.2.4 Frame Theories

The basic structural component of a frame is the frame element with finite dimensions shown in Figure
7. Only natural numbers are needed to identify each element. Beam and frame theories can be unified
in the elastic case, but they are completely different in the inelastic ones: frame theories are based on
the concept of plastic hinge, beam theories on the so called multilayer approach.

The goal of this book is to present a general theory of frames.

Figure 7. Basic structural component in the theory of frames
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1.3 APPROACHES FOR MATERIAL MODELING

Material behavior (second column in Table 1) is characterized through the constitutive equations that
relate stresses and strains. The simplest model is the elastic one that assumes a one to one relationship
between stress and strain. A classic example is the Hooke’s law that postulates a linear relationship
between these variables (see Figure 8a). Elastic models assume that the material response is invariable
no matter how high are the forces applied on the structure; they do not consider that the material may
degrade or the structure bends permanently. Thus, they are used only to analyze structures under service
conditions or for design purposes.

Consider now a paper clip; if it is used to hold together a limited number of paper sheets, the clip
will recover its original form as soon as the pages are removed: it is then said that its behavior is basi-
cally elastic. The paper clip can be used in this way for a big number of cycles. However, if it is used
with a large number of pages, the clip will not recover its initial form once the sheets are removed: the
two parts of the clip will remain partially open. It is then said that this structure has experienced plastic
or permanent deformations. The theory of plasticity, the second item in the second column of Table 1,
has as a goal the determination of the structure state when plastic deformations have taken place. As in
the example of the paper clip, plasticity theory is often used to evaluate the effect of overloads in the
structures. The simplest approach in this case is the model of perfect plasticity that is shown in Figure 8b.

Fracture and damage mechanics deal with the propagation of cracks and structural defects under
mechanical loadings. The former theory studies the conditions for the propagation of a single or a small
number of cracks as in the case of the structure shown in Figure 9a, the latter considers massive or gen-
eralized arrays of meso or micro cracks and defects (Figure 9b).

The most noticeable consequences of these processes are the degradation of strength and stiffness
observed in the stress-strain relationships as shown in Figure 8c. The term “stiffness degradation” means
reduction of the elastic modulus; “strength degradation” is the term used to indicate that the maximum
of the curve strain vs. stress has been over passed.

This book describes the behavior of framed structures from the point of view of all these theories and
itis organized following the order indicated in the second column of Table 1: the theory of elastic frames
is the object of chapters 2-4, plastic frames are considered in chapters 5-8, models based on fracture and
damage mechanics for framed structures are described in chapters 9-14.

Figure 8. Stress —strain relationships for different material models a) Elastic behavior b) Perfect elastic
plastic behavior c) Typical damage mechanics behavior

A A A

o A fol B o C

vy
v

N,
v



Introduction to Structural Mechanics

Figure 9. a) Single crack propagation in a floor slab b) Schematic representation of generalized crack-

ing based on Larrylawson (2005)
9b Larrylawson (2005) Retrieved January 17, 2013 from http://www.larrylawson.net/pix5/Fig5.jpg

1.4 SMALL AND LARGE DEFORMATIONS, QUASI-
STATIC AND DYNAMIC LOADINGS

Consider a simply supported beam as the one shown in Figure 10a. The forces applied on the beam
produce the deformation indicated in Figure 10b. The equilibrium of moments gives the maximum
flexural moment:

M =%+N.§m (1.1)

This mathematical operation is not immediate since the value of the deflectiond must be com-

puted first and the deflection of the beam depends on the flexural moment distribution on it.
A much simpler analysis can be carried out if the deflections of the beam are so small that the term

N.6 . can be neglected when compared with

P.L

2
in Equation (1). In that case, the computation of the maximum moment of the beam becomes immediate:
P.L

It can be noticed that this result is obtained if the equilibrium of moments is considered in the initial
configuration of the beam (Figure 10a).
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Figure 10. Simply supported beam under vertical and horizontal loads a) Initial configuration b) De-
formed configuration
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The latter approach, application of the equilibrium equations in the initial configuration, is called
geometrically-linear and corresponds to the first item in the third column of Table 1. The more exact but
more complex procedure of considering the deformed configuration corresponds to the second item of
column three; in the latter case, the equilibrium equation may become nonlinear. The kinematic equa-
tion can also be linear or nonlinear if, respectively, small or large deformations are chosen. This book
describes the both cases of equilibrium and kinematic equations for framed structures.

Finally, the last column of Table 1 is also related to the equilibrium equation. In the quasi static case,
the inertia forces are neglected. These are the forces that are felt in a bus when it accelerates brusquely. In
some cases, earthquake loadings for instance, they are the most significant input and cannot be ignored;
this is the dynamic loading case indicated in the second row of column four. This book also considers
both forms of the equilibrium equation for framed structures.
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Chapter 2

Fundamental Concepts of
Strength of Materials

ABSTRACT

This chapter presents the concepts of strength of materials that are relevant to the analysis of frames.
These are the modified Timoshenko theory of elastic beams (Sections 2.1-2.3) and the Euler-Bernoulli
one (Section 2.4). These concepts are not presented as in the conventional textbooks of strength of
materials. Instead, the formulations are described using the scheme that is customary in the theory of
elasticity and that was described in Chapter 1 (Section 1.1.1) (i.e. in terms of kinematics, statics, and
constitutive equations). Kinematics is the branch of mechanics that studies the movement of solids and
structures without considering its causes. Statics studies the equilibrium of forces, the basic tool for this
analysis is the principle of virtual work. The constitutive model that describes a one-to-one relationship
between stresses and deformations completes the formulation of the elastic beam problem. Finally, in
Section 2.5, some concepts of the elementary theory of torsion needed for the formulation of tridimen-
sional frames are recalled.

2.1 KINEMATICS OF TIMOSHENKO BEAMS
2.1.1 Generalized Displacements of Planar Beams

Consider a beam that displaces only in the plane X-Z as shown in Figure 1. The axis X is chosen so that
it passes through the centroid of the beam’s cross-section; i.e. X coincides with the centroidal axis of
the beam. The fundamental hypothesis of the theory of beams states that a cross-section of the beam
moves only as a rigid body.

The movement of a cross-section at a distance x of the origin is defined by the matrix of generalized
displacements { U(x)}:

DOI: 10.4018/978-1-4666-6379-4.ch002
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Figure 1. Graphical representation of the fundamental hypothesis of the theory of beams

z

{U(z)} = |w(z) 2.1.1)

where u(x) is the displacement in the direction of the axis X of the particle in the centroid of the cross-
section; w(x) is the displacement of the same point in the direction of the axis Z and B(x) is the rotation
of the cross-section.

2.1.2 Generalized Deformations of Planar Beams

Consider now a beam differential element as the one shown in Figure 1; the modification of its shape is
characterized by the following matrix of generalized deformations{e(z)} :

{e(@)} = | x(z) (2.12)
v(z)

where ¢ is the normal strain of the fiber in the centroidal axis; y is the curvature and y the distortion or
angular strain (see Figure 2). Notice that the curvature y measures the amount by which the centroidal

11
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Figure 2. Generalized deformations in a beam a) Normal strain b) Curvature c) Angular

A

Controidal Axis

&n y4 7

axis deviates from being straight; the normal strain ¢ is related to the elongation of that axis; and the
distortion y measures the modifications in the angle between the centroidal axis and the transversal fibers
of the beam differential element.

2.1.3 Kinematic Equations

Generalized deformations and displacements are related by a set of expressions called kinematic equations.

Consider an infinitesimal increment of the displacement du as shown in Figure 3a; notice that as a
result, there is an elongation of the centroidal axis; however, it continues being a straight line, i.e. there
1s no modification in the curvature; and the vertical and horizontal fibers of the cross-section remain
perpendicular, i.e. there is no increment of the distortion:

5TLZW:Z_§;XZQWZO (2.1.3)

Consider now an increment of the displacement dw as indicated in Figure 3b; notice that the length
of the centroidal axis does not change; the cross-sections of both sides of the beam differential element
are still parallel (no curvature); but, the vertical and horizontal fibers of the differential element are no
longer perpendicular:

12
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Figure 3. Graphical representation of the kinematic equations a) Deformations due to a displacement
du b) Deformations due to a displacement dw c) Deformations due to a rotation  d) Deformations due
to an increment of rotation df

B

/’(fentroidal Axis

aw

_|Centroidal Axis

Centroidal Axis

Notice that a rotation S, even if it is the same in both sides of the differential element (Figure 3c),
produces an angular deformation; however, the cross-sections are again parallel:

Finally, if there is an increment of rotation df, then the cross-sections of the beam differential element
are no longer parallel, i.e. df modifies the curvature:

€7L:0;X:—%;7:0 (2.1.6)

In the general case, that is considering all displacements simultaneously, the kinematic equation is
obtained by adding all the aforementioned contributions:

13
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8,,,($):—x;x(w):——;’Y(w):———ﬂ (2.1.7)

Additionally, it is also useful to measure the normal strain € of any fiber of the beam differential ele-
ment (and not only that of the centroidal axis) as a function of the generalized deformations. According
to Figures 3a and 3d, the normal strain is:

(dz + du) — dx n (dz +dB.z) — dx
dx dzr

=c —x2 (2.1.8)

where z is the coordinate of the fiber under consideration.
Notice that the angular strain or distortion of any solid differential element of the beam element is
constant and equal to y.

2.2 STATICS OF TIMOSHENKO BEAMS
2.2.1 Principle of Virtual Work

Consider a particle subjected to a set of concurrent forces as the one shown in Figure 4. Newton’s second
law states that the particle is in dynamic equilibrium if:

ST{F}, ={F}, + {F}, +..... = Mass{A} (2.2.1)

where Mass is, evidently, the mass of the particle and {11} is its acceleration. A scalar multiplication of

this vector equation for any arbitrary infinitesimal displacement {I_J"* }, called virtual displacement, results
in:

ST{U Y {F}, =Mass{U"} {A}V{U'}; (2.2.2)

The left hand term of (2.2.2) is denoted virtual work of the external forces or external work and the
right hand term is the virtual work of the inertial forces or inertial work. Therefore, Newton’s second
law leads to the following theorem; the virtual external work is always equal to the virtual inertial work
in a particle in dynamic equilibrium:

*

w W

*
ext ine

v{U"} (2.2.3)

Alternatively, a state of dynamic equilibrium can be defined by postulating the expression (2.2.3) as
a principle (i.e. without need of demonstration) and developing expression (2.2.1) as a theorem. This
is the procedure that is followed in this book to define the dynamic equilibrium of a beam or a frame.

14
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Figure 4. Particle subjected to a set of forces in dynamic equilibrium
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A difference between a particle and a structure is that the elements in the latter can experience defor-
mations; thus an additional term, that is denoted deformation work, appears in the work equation. The
principle of virtual work for a deformable structure is stated as follows:

M/dpf + M/mp = I/V;IIV{U } (224)
where W; ; is the virtual deformation work of the structure, W;m is the inertial work We; is the external

work and {U"} is the matrix of generalized virtual infinitesimal displacements. A structure is said to be
in a state of quasi-static equilibrium if the inertial work is negligible with respect to any of the two
other terms in the work equation.

2.2.2 Generalized Stresses of Planar Beams

The deformation work of a planar beam is defined as:

N(z)

w, = [ " (e} {o)dz; where; {o(z)} = | M(z) (2.2.5)
V(z)

The matrix {6} is called matrix of generalized stresses. The term N represents the axial force, M is
the bending moment and V is the shear force (see Figure 5).

Generalized stresses can also be defined in terms of the stress components of the fibers or solid dif-
ferential elements of a beam element (see Figure 6):

15
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Figure 5. Generalized stresses in a beam a) Axial force b) Bending moment c) Shear force

+®
D1

Figure 6. Generalized stresses as functions of stress components a) Axial force b) Bending moment c)
Shear force
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N = f fA odA M = — f fA o2 dAV = f fA T.dA 2.2.6)

where A is the area of the cross-section of the beam. Therefore, the axial force N is the sum of the con-
tributions of each longitudinal fiber (o.dA ) in the direction of centroidal axis. The bending moment M
is computed integrating the moment produced by these infinitesimal forces with respect to the centroi-
dal axis (o.2.dA). Finally the shear force V is the sum of all the transversal forces (7.dA) in the cross-
section.

2.2.3 Quasi-Static Equilibrium Equations of a Planar Beam

Consider the external forces on a beam represented in Figure 7; they are the concentrated external
forces {P,}' = (p,,, p,,™m,) and {P,} = (p,,,p,, m,) applied at both ends of the beam and a distrib-
uted force Q(x) in the direction of axis Z. The external work corresponding to these forces is:

W, = {UOY B} + U}y {p}+ [ " wQds 2.2.7)

If the inertial term is neglected, the principle of virtual work leads to:

*

L * L * L * * *
W, = [ eNdo+ [* X' Mdo+ [ 5 Vdw = u'(0).p,, +w'(0)p,,

(2.2.8)
* * * * L * *
+/B (O)mo + +'U/ (L)'puL + w (L)'pr + 5 (L>mL + L w de = VVEW/

Substitution of the kinematic equations (2.1.7) into (2.2.8) and application of the integration by parts
rule on the left part term gives:

Figure 7. External forces on a beam
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—u"(0).(p,, + N(0)) — w (0).(p,, + V(0)) — B (0).(m, — M(0)) + (2.2.9)
—u'(L).(p,, —N(L))—w (L).(p,, —V(L))— B (L).(m, + M(L)) = 0;Vu',w, 3

L . dN L |dM v, (dV
fo —u -(d—)dﬂwf0 B8 {E‘V]dg”fo w-[EQ]dm+

L

This expression must be verified for any set of virtual displacements; the only way that this can be
accomplished is if every parenthesis in (2.2.9) is nil; in mathematical textbooks, this is called the fun-
damental lemma of calculus of variations. Therefore, the following quasi-static equilibrium equations
derive from the principle of virtual work:

AN 0y 0V o (2.2.10)
dx dx dx

With the boundary conditions:

N(0) = —p,;V(0) = —p,,;; M(0)=m;N(L)=p,;V(L)=p, ;ML) =—m (2.2.11)

L

Notice that Equations (2.2.10) are the conventional relationship between load, shear force and bend-
ing moment defined in the textbooks of statics. In the general case, for any kind of solid or structure, the
equilibrium equations represent a relationship between external forces and internal stresses.

2.3 CONSTITUTIVE EQUATIONS OF TIMOSHENKO BEAMS

It is assumed in this section that the beam is elastic and that the normal stress obeys the Hooke’s law
o = F.e¢ ; therefore, the combination of (2.2.6) and (2.1.8) leads to:

N=[[ ocdd= [[ Bedd= [[ B(c, —x2)dA=c¢, [[ BdA—x[[ BzdA 23.1)

The axis X was chosen so that it intersects the beam’s cross-section at its centroid, therefore the
second integral at the right hand term of Equation (2.3.1) is equal to zero if the beam is homogeneous.
The constitutive equation for the axial force is:

N = EAe_ = A% (2.3.2)

dx

The constitutive equation of the bending moment is obtained in the same way:

M=— f fA ozdAd=— f fA EerdA=— f fA E.(c, —x.2).2dA = E.x f L 22dA (2.3.3)
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Thus

M= By ——m Y (2.3.4)

dx

where [ is the moment of inertia of the cross-section: I = f f 2dA.
A

Finally, the constitutive equation of the shear force is obtained by assuming that shear stress and
strain are related by the elastic relationship 7 = G.v, where G is the transverse elastic modulus, thus:

V= f fA T.dA = f fA GydA =~ f fA G.dA (2.3.5)

Notice that shear stresses in the cross-section are constant. Again, if the beam is homogeneous the
constitutive equation for the shear force is:

d
V =GA~y =—-GA [—“’ + 5] (2.3.6)
dx
The analysis of a beam using the modified Timoshenko model is described in section 2.7.1.

2.4 EULER-BERNOULLI BEAM THEORY
2.4.1 Planar Beams

The Euler-Bernoulli beam theory is based on the hypothesis that cross-sections move as rigid bodies
and remain perpendicular to the centroidal axis (see Figure 8).
Rotation S is no longer an independent variable but depends on the deflection w exclusively:

_dw

=—— 2.4.1
A= (24.1)

According to the kinematic Equations (2.1.6) the angular strain y is always equal to zero. It is then
said that the Euler-Bernoulli beam theory neglects shear deformations. This hypothesis is accurate for
slender beams with high length/height ratio (see the examples in section 2.7); this relationship is also
called “aspect ratio”. The kinematic equations are in this case:

d 4
e (z)= ﬁ;x(af) = ﬁ;v(l‘) =0 (2.4.2)

The shear force can be eliminated from the equilibrium Equations (2.2.10) that can now be rewritten as:
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Figure 8. Graphical representation of the Euler-Bernoulli’s hypothesis
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The constitutive equations become:

du d*w

N =FAe =FA—;M = El.x = E] — (2.4.4)
" dx o

The analysis of a beam using Euler-Bernoulli model is described in section 2.7.2.
2.4.2 Tridimensional Beams

Consider now a beam whose external forces and displacements are not restricted to the X Z plane. The
coordinate axes of the beam are chosen so that X still matches the centroidal axis. Y and Z coincide
with the principal axes of the cross-section; in most practical cases, they are the symmetry axes of the
section (see Figure 9).

The problem can now be decomposed into several simpler cases. The first one corresponds to the beam
subjected to forces and displacements along the axial axe; this case is characterized by the equations:

N o= pade (2.4.5)
dx dx

The second problem is that of bending around the axis Y; this case was already treated in the prec-
edent section:

20



Fundamental Concepts of Strength of Materials

Figure 9. Tridimensional beam

d*M 2w

dxzy _ Qz;My — Efy = (2.4.6)

where M_and / are the bending moment and the moment of inertia of the cross-section around the axis

Y: Iy = YLzzydA.

The third problem corresponds to bending around the axis Z:

d*M d*v
I + Qu =0; MZ = —EIZ E 2.4.7)

where M_and /_are the bending moment and the moment of inertia of the cross-section around the axis
Z. I = f f Y dA.
? A
The fourth and last problem corresponds to a beam subjected to torsion that is discussed in the next
section.

2.5 TORSION

Consider a frame element of circular cross-section subjected to torsion. Let ¢ be the relative rotation
between the ends of the element, or angle of twist. The term m_represents the torque. The fundamental
hypothesis of the theory of beams, i.e. the cross-section of the beam moves as a rigid body, is still ac-
cepted (see Figure 10).

The element can be considered conformed of concentric rings of infinitesimal width. The angular
strain of the solid differential elements that constitute a ring is given by (see Figure 11).

0.1 2.5.1)

7:L

The torque m_can be related to the resulting shear stresses and subsequently with the angle of twist as:
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Figure 10. Angle of twist and torque in a frame element of circular cross-section

e

m = TrdA = GryrdA= &9, r’dA, ie. m = ﬂqﬁ (2.5.2)
=) rraa= ] il =,

where J is the polar moment of inertia: J = f fA r’dA.

If the cross-section is not circular, the beam hypothesis is no longer valid; however Equation (2.5.2b)
can still be used. In that case, the term GJ is called torsional rigidity but J is not anymore the polar mo-
ment of inertia. For instance, in the case of a rectangular cross-section, J is equal to:
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L1 b bt
J =db* 5—0.215 1—1 = d>b (2.5.3)

where d and b are the dimensions of the cross-section.

2.6. SUMMARY AND EQUATIONS QUICK REFERENCE

The theory of beams is the main subject of the strength of materials. In the beams theory, variables
can be classified into two sets: kinematic and static. The former, is composed by variables that define
the movement (longitudinal displacements, deflections and rotations) and deformations (normal strain,
curvature, distortion, angle of twist); the set of static variables includes the external forces (concentrate
forces, distributed forces) and generalized stresses (axial force, bending moment, shear force, torque).
Displacements and deformations are related by kinematic equations, generalized stresses and external
forces by equilibrium equations; the constitutive equations link the generalized deformations with stresses.

Two beam theories were discussed in this chapter. The first one, denoted Euller-Bernoulli theory of
beams, was introduced in the planar case and the tridimensional one. The second one, the Timoshenko
theory was discussed only the planar case. The difference between both theories is that the former ne-
glects shear deformations. Mathematically, only the constitutive equations are different in both theories
(See Table 1).

Table 1.

KINEMATICS OF TIMOSHENKO BEAMS

Generalized Displacements of Planar Beams

Matrix of generalized displacements
u()

{U(2)} = |w(z)| @1.1)
A(z)

u(x) = displacement in the direction X of the particle in the centroid of the cross-section
w(x) = displacement of the same point in the direction of the axis Z
B(x) = rotation of the cross-section

Generalized Deformations of Planar Beams

Matrix of generalized deformations
e (7)
{e(z)} = | x(z) | @12
(z)
en(x) = normal strain of the neutral fiber in the cross-section.

x(X) = curvature
y(x) = distortion or angular strain

continued on following page
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Table 1. Continued

Kinematic Equations

Kinematic equations

du dg dw
€ (x)=—;x(2)=——v(x)=——— 0 @17
" dz dz dz
E=E —XZ (2.1.8)
€ = normal strain
z = coordinate of the fiber under consideration

STATICS OF TIMOSHENKO BEAMS

Generalized Stresses of Planar Beams

Matrix of generalized stresses
N(z)

{o(2)} = |M(z)| 225
V(z)

N = axial force

M = bending moment
V = shear force

Quasi Static Equilibrium Equations of a Planar Beam

Quasi static equilibrium equations

d_N: o;d_MfV = Q;d—VfQ =0 2.10)
dx dx dx

CONSTITUTIVE EQUATIONS OF TIMOSHENKO BEAMS

Constitutive Equation for the Axial Force

N =EAe =FA™

dx (2.3.2)

Constitutive equation of the bending moment

M= By = -1 %8
dr (234

I:ffAszA

Constitutive equation for the shear force

V =GA~ry=-GA d—w—i-ﬁ
dx

I: cross-section’s moment of inertia:

(2.3.6)
A: area of the cross-section of the beam
G: transverse elastic modulus

EULER-BERNOULLI BEAM THEORY

Planar Beams

Rotation f

continued on following page
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Table 1. Continued

Kinematic equations
2
_du d"w

e, (@)= Zhix() =~ () = 0

Equilibrium equations

dN *M
o0t =Q

dz dz (2.4.3)

Constitutive equations

2
N = FAe = EAZ—U;M — Bl =B Y
) T

dz (2.4.4)

Tridimensional Beams

Beam subjected to axial forces and displacements

N _ o = pade

dx dx (2.4.5)

Beam subjected to bending around the axis Y
d*M d*w

2y :QZ;MU :EIU 2

dx ’ Y dx (2.4.6)

My:bending moment around the axis Y
Iy: cross-section’s moment of inertia around the axis Y:

Iy = ffAZQdA

Beam subjected to bending around the axis Z
d°M d*v
4 Q =0M =—EI =
dz? v ‘ ° da?
2.4.7)

Mz: bending moment around the axis Z
Iz:cross-section’s moment of inertia around the axis Z

]Z:fLdeA

TORSION

v

Angular strain

o1
v =

L sy

Torque m
GJ
mz D T
L 7 as2

J= [[ rda
J: moment of inertia: A

GJ: torsional rigidity

continued on following page
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Table 1. Continued

For rectangular cross-section

4
J:dbg[%—o.ﬂé[l— b ]} d>b

d 12d*

d and b are the dimensions of the cross-section

2.7 EXAMPLES

2.7.1 Determination of the Maximum Deflection in
a Simply Supported Timoshenko Beam

Consider the beam shown in Figure 12a. The beam supports a distributed force Q = -fthat produces the
deformation that is indicated in Figure 12b.

Under the load condition, the maximum deflection occurs in the middle of the span as can be ap-
preciated in the Figure 12b. The boundary conditions are: my=m, =0and w, =w, =0.

The expressions for the shear force and bending moment are obtained by the integration of the equi-
librium Equations (2.2.10). The resultant expressions are the following:

V(z)=—fz+C1 (2.7.1)

M(z) = —ga:Q + Clz + C2 (2.7.2)

Cly C2 are obtained using the boundary conditions m,=m, = 0:

Cl= %;02 =0 (2.7.3)

Figure 12. Simply-supported beam subjected to vertical loading a) Initial configuration b) Deformed
configuration
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Using the Timoshenko theory, the expression of the rotation f is obtained by the integration of the
Equation (2.3.4):

B(z) =

! [—i v I (2.7.4)

—— 2’ +=2"+C3
EI| 6 4

Finally, the expression of the deflection along the beam’s length is obtained by the substitution of the
rotation f into the constitutive equation of the shear force Equation (2.3.6) and integrating,

w(x) L[iac2 —f—Lx]+i

— —izfl —i—f—LxB +C3z |+ C4 (2.1.5)
GA|2 2 EI

24 12

(3 y C4 are obtained using the boundary conditions w =w, = 0:
L3
C3= —f—;C4 =0 (2.7.6)
24
The deflection at the middle of the span is obtained when the Equation (2.7.5) is evaluated at x = L/2.

_ L 1/ 1 277
we=2)="G1s " 3m @7.7)

2.7.2 Determination of the Maximum Deflection in a
Simply Supported Euler-Bernoulli Beam

The same beam shown in Figure 12 is solved now using the Euler-Bernoulli theory. Taking into ac-
count that the equilibrium equations are the same in both theories, Timoshenko and Euler-Bernoulli,
the expressions for the shear force and bending moment are also identical (Equations 2.7.1 and 2.7.2).

The expression for the deflection along the beam length is obtained by the introduction of the Equa-
tion (2.7.2) into the constitutive equation of the bending moment Equation (2.4.4b),

d’w L[_im2 n f_Lx] (2.7.8)

i EIl 2 2

Integrating twice it is obtained the expression for the deflection along the beam length,

w(z) = %[ / Tt + f—L:c3 +Clz 4+ C2 (2.7.9)

o4 12
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C1y C2 are obtained using the boundary conditions w, = w, = 0:

I

Cl=———;
24F1

C2=0 (2.7.10)

when the Equation (2.7.9) is evaluated at x = L/2 it is obtained the deflection at the middle of the span,
resulting

5L

wie =L/ = -0

(2.7.11)

Notice that this expression is identical to the second term of the Equation (2.7.7). The only difference
between both results (Equations 2.7.7 and 2.7.11) is the first term of (2.7.7).

2.7.3 Analysis of the Maximum Deflection as a
Function of the Beam Aspect Ratio

Consider now the particular case of a beam with rectangular cross-section. Let be b the base of the
cross-section and / the height:

3
A1 = 2.7.12)
12
The aspect ratio of this element is defined as L/h. If the material is isotropic,
G = £ (2.7.13)
20+v)

where v is the Poisson’s ratio that is a material property. The maximum deflection according to the
Timoshenko theory can be written as

5L
384EI

(I+v)
(L/hy

wx=1L/2)=— (2.7.14)

8
_l’__
5

Notice that this expression is the maximum deflection of the Euler-Bernoulli theory multiplied by
an amplifying factor

P+§G+W.
5(L/hy
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Figure 13 shows a graph of the amplifying factor in function of the aspect ratio (L/h) for a Poisson’s
constant of 0.20.

For reinforced concrete elements, a beam with aspect ratio larger than 6.5 is called slender; the mag-
nifying factor in this case varies between 1 and 1.05. If the beam has an aspect ratio between 2.5 and 6.5
is called intermediate and the magnifying factor varies between 1.05 and 1.31. Finally, for aspect ratios
less than 2.5 the element is called squat and the magnifying factor increases exponentially; for instance,
if the aspect ratio is equal to 1, then the magnifying factor is 2.92.

Notice that in the case of slender beams, the Euler-Bernoulli theory gives almost the same result
than the Timoshenko theory; for squat elements, the Euler-Bernoulli theory should not be used since it
underestimates significantly the deflection value. For intermediate beams the error is not that large but
the Euler-Bernoulli theory is still inappropriate for the analysis.

Figure 13. Graph of Amplifying factor vs. Aspect ratio
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Figure 14. a) Cantilever beam subjected to a concentrated force b) Simply supported beam subjected a
linearly distributed force

A B o
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2.8. PROBLEMS
2.8.1 Cantilever Beam Subjected to a Concentrated Force

Consider the beam shown in Figure 14a. With the help of an algebraic manipulation program do the
following: a) Determine the maximum deflection using the Timoshenko theory and Euler-Bernoulli
theory, b) Compute the amplifying factor c) Plot the amplifying factor for aspect ratios between 1 to 10.

2.8.2 Simply Supported Beam Subjected to a Linearly Distributed Force

Solve the problem 2.8.1 considering the beam shown in Figure 14b.
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Chapter 3
Elastic Frames

ABSTRACT

This chapter describes the mathematical models for the analysis of elastic frames. Again, these theories
are not presented as in the conventional textbooks of structural analysis but using the scheme of continuum
mechanics and the theory of elasticity that was described in Chapter 1 (Section 1.1.1). The reason is
that the conventional presentation is not suitable for generalization of the case of inelastic structures,
specifically for fracture and damage mechanics of frames. Several classes of elastic frames are described
in this chapter: planar (Sections 3.1-3.4), tridimensional (Section 3.5), linear, nonlinear, based on the
Euler-Bernoulli beam theory (Section 3.3), based on the formulation of Timoshenko (Section 3.4), and
under quasi-static or dynamic forces.

3.1 KINEMATICS OF PLANAR FRAMES
3.1.1 Tridimensional and Planar Frames

A frame is defined as a set of m beam-column elements connected by n nodes. For instance, a chair
like the one shown in Figure 1a can be represented by the tridimensional frame with 26 elements and
20 nodes as indicated in Figure 1b. In the general case, the nodes of the frame can have displacement
components in any direction.

However, another possibility is the decomposition of structures like this into several two-dimensional
frames as shown in Figure 1c; those two-dimensional structures are also called planar frames. It is as-
sumed that this kind of structures can move only in their own plane. Thus, some aspects of the behavior
are neglected, for instance torsion effects; but the analysis is considerably simpler. Both kinds of formu-
lations are considered in this book, first the planar frame case, then the general one.

3.1.2 Generalized Displacements of a Planar Frame

Consider a planar frame as the one shown in Figure 2. A set of coordinate axis X Z is introduced. Its
initial configuration, i.e. the coordinates of the nodes and the table that indicates how they are con-
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Figure 1. a) A chair as a structure b) Tridimensional frame representation c) Planar frames representation
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nected by beam column elements, is known. Each node and each element of the frame is labeled using
natural numbers as shown in Figure 2. Consider now a node i of the frame. The movement of this node
is characterized by the displacements u, in the direction X, the displacement w, in the direction Z and the
rotation €. as shown in Figure 2. Clockwise rotations of a node are positive, positive displacements fol-
low the conventional rule. The generalized displacement matrix of the frame {U} includes the displace-

ment of all the nodes of the frame:

{U} =

32

&

8 B

(3.1.1)
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Figure 2. Planar frame and generalized displacements of node
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The elements of the frame are also labeled using natural numbers as shown in Figure 2. The general-
ized displacement matrix of a frame element b between nodes i and j is defined as follows:

> & ®

{a}, = (3.1.2)

< & . ®

[

One of the goals of a structural analysis is the determination of the generalized displacements as a
function of time and the external loading; its computation allows the graphical representation of the
frame movement.

Some of the components of this matrix are not computed but must be defined by the analyst in order
to formulate a problem with a unique solution. The components of the matrix {U} with known values
are called restricted displacements; the remaining ones are denoted free displacements. The nodes that
have one or more restricted displacements are called supports of the frame. The restricted displacements
must be chosen so that arbitrary rigid body movements of the frame are impossible. It is customary to
represent graphically the supports and their displacements as shown in the Table 1. Often, the restricted
displacements are equal to zero; it is then assumed that the foundations of the structure are rigid. How-
ever, this is not always the case; non-nil values are sometimes chosen in order to represent settlement of
supports or seismic effects on the structure.
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Table 1. Graphic representation of frame supports

Type of support Restricted Type of support Restricted
displacement displacement

] t w
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Fixed guided support Fixed support

3.1.3 Generalized Deformation Matrix

The generalized displacement matrix does not characterize shape modifications of the frame. A second
set of variables, denoted generalized deformation matrices, is then needed. Consider a frame element b
between nodes i and j as shown in Figure 3a. The generalized deformation matrix of the frame element
b is defined as:

b

&
{2}, =%, (3.1.3)
5

b

S

Notice that the deformation qﬁf is the angle between the cord i-j and the normal to the cross-section
at the end i; i.e. gbf is the relative rotation of this cross-section with respect to the cord. Positive relative
rotations go clockwise.. The deformation ¢;’ corresponds to a relative rotation at the end j with the same
sign convention. The deformations ¢f’ and ¢j? are closely related with the concept of story drift ratio.

This concept is introduced in structural design textbooks and is discussed in section 3.1.5. Finally, the
deformation 6, is the elongation of the cord.
The matrix {@}b is nil for a rigid body movement of the frame element and vice versa: zero deforma-

tions indicate that the element displaces as a rigid body. If the terms ¢f and qub. have the same sign, then

the frame element shows a “snake-like”” deformed shape (see Figures 3.3b and 3.3c); if those deforma-
tions have different sign, the element presents a “hammock-like” final form (see Figure 3d).

The theory of structural design considers that large drift ratios and structural damage are related ef-
fects; therefore, a second goal of a structural analysis is the computation of the m deformation matrices,
one for each element of the frame. The kinematics of the structure is completely determined when the
free displacements and the deformation matrices have been computed.
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Figure 3. a) Generalized deformations of a frame element b) Element shape for positive relative rotations
c) Element shape for negative relative rotations d) Element shape for relative rotations of different signs
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3.1.4 Kinematic Equations

A relationship between deformations and displacements can be established by simple geometrical con-
siderations. This expression is called kinematic equation. Consider a frame element b between nodes i

and j. In its initial configuration, the element forms an angle al? with respect the axis X and the length
of the cord is L;’ .Cord angle and length vary with the displacements when the frame moves: a, = o, (q),
L =1L(q).

A set of local coordinate axes X’, Z’, is also introduced; its origin is fixed at the end i of the element
and the axis X, is “glued” to the cord i-j (see Figure 4).

The nodal displacements can also be expressed in local coordinate axes:
{a'} = (', w '50',u',w' 6" (see Figure 4a). Both sets of displacements, {q'}, and {q},are re-
lated by the following expressions:

— 4 . " 3 LAY — .
u' =wu cosa, +w sina;w' = —u sina, +w, cosq,;0' =0;

' =wu.cosa +w.sina;w' =—u sina +w cosa;0' =0 (3.1.4)
J J b J b J b J b7

J
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Figure 4. a) Local coordinate axes b) Displacements in the local coordinate axes

Global axis

Equation (3.1.4) is based on the well-known relationship between the components of a vector in two
different coordinate systems. In matrix notation, Equation (3.1.4) can be written as:

cosa, sinqa, 0 0 0 0

—sinq, cosa, 0 0 0 0

' 0 0 1 0 0 0
fa'}, = [T]b {q}b;[T]b o 0 0 cosq, sine, 0 (3-1.5)

0 0 0 —sinq, cosa, 0

0 0 0 0 0 1

[T] is called geometrical transformation matrix.

The relationships between displacements and deformations are easily obtained in the local-coordinate
axes. Consider an infinitesimal increment of displacement of the node i in the direction of the axis X,
du; , as indicated in Figure 5a. Notice that there are no increments of relative rotations, only modifica-

tion of the cord length. Therefore, the following infinitesimal deformations are obtained from this dis-
placement:

dg! = 0;d¢) = 0;d6, = —du', (3.1.6)

An infinitesimal displacement dw7 (Figure 5b) produces relative rotations of the cross-sections at i

and j with respect to the cord but no modification of its length; thus, the corresponding deformations
are:

d¢) =d¢! =——=;d5, =0 (3.1.7)
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Figure 5. Increment of deformations due to infinitesimal displacements at the node i and j a) Displace-
ment of node i in the X', axis b) Displacement of node i in the Z’, axis c) Rotation of node i d) Displace-
ment of node j in the X’, direction e) Displacement of node j in the Z’, direction f) Rotation of node j.
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An infinitesimal rotation dc9; (Figure 5c) produces only an increment of the relative rotation at the
end i of the element:

d¢! = db';d¢’ = 0;d6, =0 (3.1.8)
Considering infinitesimal displacements du; , dw; and dG; too (Figures 5d, Se, 5f) and adding all the
deformation terms, it is obtained the following kinematic relationships:

! dw'

dw', w'
ot = — 2ty dfr 4 —
) )

o dw'
d¢’ = ——L + LJ +df', (3.1.9)

dé, = —du' + du "7.

Substitution of (3.1.4) into (3.1.9) gives the kinematic equations in the global coordinate axes; these
equations can be expressed in matrix form:
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sin a Ccos v, 1 sin a  cosq,
. Lb Lb ) Lb Lb
sin o cos & sino, cosa
{d®} = [B(q)]{da};[B(q)] = S 50— =1 (3.1.10)
Lb Lb Lb Lb
—cosq,  — sin a, 0 cos a, sin a, 0

The matrix [B],is called kinematic transformation matrix of the element . Equation (3.1.10) is

nonlinear in the general case; however in many engineering problems, the structure is so rigid that the
modifications of length and orientation of the elements during the frame movement are small and can
be neglected when computing the transformation matrix. In these cases, the kinematic relationship can
be approximated by the following linear expression:

(R

o, =o)L, = [j;{e} =[B’| {a}, 3.1.11)

where {BO} is the kinematic transformation matrix in the initial configuration of the frame.

b

The kinematic equation can also be written in terms of the displacement matrix of the frame instead
of the element displacements:

{¢@} =[B,(U)] {aU}; or {®} = [BOEL {u} (3.1.12)

Where B, (q)], is denoted enlarged transformation matrix and it is built by adding columns of zeros in

the positions that do not correspond to the displacements of the element, i.e.:

sin « cos « sin « cos «

0 0 : — L1 0 ... — L L0

L L L L

b b b b
B ()] 0 0 sin a cos o, 0 0 sin a,  cosa )

q)] = — e —
. L L L L (3.1.13)

0 0 ... —cos a - sin a, 0 0 ... cos a, sin o, 0
u, W U w 9’ U U w 0

Equation (3.1.12) is used for a formal presentation of the equilibrium equations (section 3.2) and the
direct stiffness method (section 4.1). An example of application of the kinematic equations is presented
in the section 3.7.1.

38



Elastic Frames

3.1.5 Simplified Analysis of Deformations: Story Drift Ratio

Consider a frame composed exclusively of horizontal beams and vertical columns as the one shown in
Figure 6a. Assume that beams are very rigid (they often are linked to plates) so that their deformation can
be neglected; axial deformations of the columns are also neglected; then movement of the frame under
lateral loadings (that represent, for instance, earthquake loads) is similar to the one shown in Fig 6b.
The generalized deformation matrices of all the columns in a single floor are equal and can be ob-

tained by the kinematic equation 3.1.11b) with @, = /2, L=L ,w,=w,=0,=0.=0,u=u, . u=u, .
It is then obtained the following expression:
(utop - ubottan)
col L
¢b0t]tun (U _C(jli )
. col _ top botton
{(I)}wz - d)fvp - I (3.1.14)
col
5, 0

The deformation A = ‘d)““l in Equation (3.1.14) is called story drift ratio. It is used in a

botton

O
failure criterion for frame columns: the column deformation or drift ratio must not exceed some norma-
tive limit, otherwise severe damage of the columns or the other components of the structure such as brick
walls can be expected; typical values of maximum allowed drift ratio for reinforced concrete columns
varies between 0.010 and 0.025 depending on the use and type of the structure.

If the frame is not regular or the beams are not stiff enough, the drift notion must be substituted by
the more general concept of generalized deformation.

Figure 6. a) Regular frame b) Movement under lateral loading

utop

Lcol
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3.2 DYNAMICS OF PLANAR FRAMES

3.2.1 Deformation Work of a Frame and Generalized
Stress Matrix of a Frame Element

According to the principle of virtual work formulated in chapter 2 (section 2.2.1), a structure in dynamic
equilibrium verifies the equation:

M/dpf + M/ine

=W_v{U} (3.2.1)

Taking into account the characteristics of the deformation matrix {<I>}Z , the following generalized

stress matrix {M}, is introduced in order to obtain the expression of the deformation work of a frame

element:
mf
b
{M}b =|m, (3.2.2)
n

b

where mf is the bending moment at the i end of the element, mf is the bending moment at the end j and
n, is average axial force on the element, as shown in Figure 7. In the continuum mechanics literature, it
is said that stresses and deformations are conjugated variables; where the stresses are the driving force
of the element deformations.

The deformation work of a frame is then given by:

Figure 7. Generalized stresses on a frame element

£S
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W, => {®}{M}, (3.2.3)
b=1

where {®"}, is a virtual, i.e. arbitrary and infinitesimal, deformation matrix.

As in the case of generalized deformations, the stress components are also used in failure criteria. In
the engineering practice, the failure criterion of a beam column element is usually presented in graphi-
cal form: the interaction diagram. An interaction diagram describes a surface in the moment axial force
space (see for instance Figure 8) and depends on the element material (reinforced concrete, steel, etc.)
and cross-section. If any of the two points that represent the stress state of the element at each end, i.e.
(m!,n,)and (mj’, n, ), are outside the surface, failure of the element can be expected.

The determination of interaction diagrams is described in chapter 6.
3.2.2 Inertia Work of a Frame and Matrix of Masses

Let Mass, be the mass of the element b of a frame. The matrix of masses of the element is defined as

follows:
M “5% 0 0 0 0 0
0 M ‘w% 0 0 0 0
0 0 0 0 0 0
[Mass], = (3.2.4)

o o
o o
o o
§
o &
M
§
S
o O o

Figure 8. Interaction diagram for a reinforced concrete column with a rectangular cross-section
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2
The inertia force on an element b of the frame is given by [Mass] {G}, where {q} = {Z—?} is the
t

generalized acceleration matrix of the element. Alternatively, the inertial work of the element can be
expressed as a function of the generalized acceleration matrix of the frame by using the enlarged mass
matrix of the element: [Mass ], {U} . This matrix is built adding rows and columns of zeros in the po-
sitions that do not correspond to the displacements of the element, in the same way as the enlarged
transformation matrix described in section 3.1.4.

The inertial work is now defined in the following way:

W= {Uy i Mass_ | {0} = (U} [Mass] {7} (3.2.5)

m

where [Mass] = Z [Mass, | is the matrix of masses of the frame. The mass of each element of the
b=1
frame must be included in the data of the problem.

3.2.3 External work of a Frame and Matrix of Generalized External Forces

In the engineering practice, two kinds of external forces are considered. The first one corresponds to
forces or moments directly applied on the nodes, the second class represents forces distributed over the
elements (see Figure 9).

On the other hand, the movement of the frame is characterized by the matrix {U} that includes only
nodal displacements; therefore, forces distributed on the elements must be taken into account through
equivalent nodal forces. The external work is then defined as follows:

W, ={U} {P} (3.2.6)
where {P}is the matrix of generalized external forces:

pul

(P} = (3.2.7)

p wn
p On

The term p . is the force that corresponds to the displacement u,, i.e. a force on the node i and in the
X direction, p, is the moment on the node i, and so on.
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Figure 9. External forces on a frame
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The external forces applied on the nodes can be classified into two categories. Those that correspond
to the free displacements of the frame are data that must be supplied by the analyst. The forces that cor-
respond to the restricted displacements are called reactions and are computed during the analysis (see
the example 3.7.2).

The forces applied on the nodes of the frame can be included directly in the matrix of external forces.
The nodal static forces equivalent of the distributed forces are obtained using the expressions indicated
in Table 2.

Therefore, the matrix of external forces can be split into two terms; one with the forces applied directly
on the nodes and another with the equivalent forces:

{P}={P"} +{P"} (3.2.8)

The last variables that must be computed during an elastic analysis are the reaction forces and reac-
tion moments.
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Table 2. Nodal equivalent forces for some cases of forces distributed on the elements

Solicitation Nodal equivalent Solicitation Nodal equivalent
forces forces
g o oL /(rrl/g o oL
Y44 v 2 lz = ol 6 l 13
- " 24 L@‘ = Wl A £ V////l//é |KW‘ ,I
{ | v/ . ' ' 70 Lz

0]
[ Qa(L +b) 0d® m o or
2L 25
|@ ] l l 0. —
Vo L////////// 5 ] v T o ]

(0] | | P %
i i 707, TN 1 L T “ -

3.2.4 Dynamic and Quasi-Static Equilibrium Equations

The principle of virtual work (3.2.1) states that:
> (@} {M}, + {U'} [Mass]{U} = {U"} {P}v{U"} (3.2.9)
b=1

Taking into account the kinematic equation (3.1.12), the principle of virtual work leads to:

m

{U} > °[B,I{M}, + [Mass|{U} — {P}| = 0v{U"} (3.2.10)

b=1

Considering that this expression is verified for any virtual displacement matrix, then the term into
the parenthesis must be again nil, and the following dynamic equilibrium equation is obtained:

m

> [B, ] {M}, + [Mass|{U} = {P} 32.11)

b=1

This equation depends on the actual displacements of the structure as the kinematic transformation

matrices [B E]; so do. If displacements are small, the current transformation matrices can be substituted
by the initial ones and the following linear expression is obtained:

m

> B} {M}, + [Mass]{U} = {P} (3.2.12)

b=1
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If inertial forces are neglected (quasi-static analysis) the equilibrium equations for, respectively linear
and nonlinear cases, become:

m

> By {M}, = {P} (3.2.13)

b=1

m

[B,],{M}, = {P} (3.2.14)

b=1

An application example of the equilibrium equations is presented in section 3.7.2.

3.3 CONSTITUTIVE EQUATIONS FOR A SLENDER FRAME MEMBER
3.3.1 Summary of Variables and Equations in an Elastic Analysis

As aforementioned, the variables and equations of the elastic problem can be summarized as shown in
Figure 10.

There are 6n (n number of nodes in the frame) plus 6m variables (m number of elements); i.e. 3n
displacements, 3n external forces, 3m deformations and 3m stresses. 3n of these variables are part of
the data of the problem (the restricted displacements and known external forces); the remaining 3n (free
displacements and reaction forces) and 6m variables are unknowns of the problem.

So far, 3m kinematic equations (represented by the descending arrow in Figure 10) and 3m equilib-
rium equations (represented by the ascending arrow in Figure 10) have been defined. The former group
allows the computation of the deformations from displacements, the latter permits the calculation of
the external forces from stresses and, if the problem is nonlinear, displacements. Clearly, there is still
a deficit of 3m equations; these relate deformations and stresses and are called constitutive equations.
They are represented by the horizontal double arrow in Figure 10.

Figure 10. Summary of variables and equations for an elastic structure

KINEMATIC VARIABLES DYNAMIC VARIABLES
DISPLACEMENT MATRIX {U} EXTERNAL FORCES MATRIX {P}
Kinematic Equilibrium
equation Constitutive|equations equation

DEFORMATION MATRICES {®}5 % STRESS MATRICES {M}s
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3.3.2 Constitutive Equations Based on the Theory of Euler-Bernoulli Beams

The nonlinear terms in the kinematic and equilibrium equations can be, in some practical problems (tall
buildings for instance), very important. This is not the case of the elastic constitutive equations which
have nonlinear terms that are, in almost all cases of practical interest, very small. Therefore, only the
linear cases are analyzed in this chapter. It is also assumed that the material of the cross-section and
properties are constant along the element.

Consider a frame element b between nodes i and j. Again, the local set of local coordinate axes X’,
Z’, is introduced (See Figure 11).

According to the Euler-Bernoulli beam theory (see section 2.4), the behavior of a frame element is
defined by the following equations:

d’w (r,) M () du, (x,)
— z); b b\"v/ b\"b i) n, = EA b\"h
@(2,):0) da? EI ) " dr

b b

a) (3.3.1)

dQMb (xb )
dxf

Where M, (x,) is the bending moment distribution on the element, Q,(x,) represents the distributed ex-
ternal forces, w,(x,) is the deflection, El, is the elasticity modulus multiplied by the inertia moment of
the cross-section, n, is the axial force, A, is the area of the cross-section and u,(x,) is the displacement
in the direction of the cord. The cross-section and material properties (EI, and A,) are considered data
of the problem. The bending and axial effects are assumed uncoupled. The Euler-Bernoulli beam theory
does not take into account shear deformations, which makes it only valid for slender frame members
where those deformations are indeed small.
The general solution of (3.3.1a) is:

M, (z,) = Q2(x,) + C\zx, + C,; where Q2(z,) = fo ) Jdzdz (3.3.2)

If stresses {M}, are applied, the constants C, and C, can be computed by the boundary conditions:

b b . ..
m; = M,(0) and m; = —M,(L,). The general solution to (3.3.1b) is:

Figure 11. Forces and deflections on an element b in the coordinate axes
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3 2 T r r T

Elw(z,) = Q4(z,) + C, % +C, % + C,z, + O ; where Q4(z,) = fffo(xb)dxdzdxdx (3.3.3)
0o 0 0 0

The constants C, and C, can be computed by the boundary conditions w(0) = 0and w(L,) = 0. The

constitutive equation for the deformation d)f is then given by:

dw,(0) L, , L

b P = gyt T ;b 4+ 40 where 334
% de,  3EI, ' GEI ' % G349
o 1 L @Q2(0) LhQ2(L[) 4(0 Q4(Lb)
0} =2l 73 R 7 —Q3(0)—QL—()+L—;Q3(%)
C e ' ' (3.3.5)
= fff@(xb)dxdxdx
The constitutive equation for the deformation ¢f is:
dw, (L L L
¢ =— w, () =——m' +—m’ +¢"; where (3.3.6)
4 da, 6EI, ' 3EI 0
LQ2(0 LQ2L 4(L,
o0 — L | LQA0) | LQAL) —Q3(Lb)—Q4(O) | Q4L) (3.3.7)
' EL| 6 3 L, L,

The resolution of the differential equation (3.3.1c) with the boundary conditions w,(0) = 0and

u,(L,) = 6, gives the constitutive equation for the axial force:

n =-—-t§ (3.3.8)

Lb Lb 0
3EI,  GEI "
L L '
{8}, = [F},{M}, + {2"},; where [F,| = ST {2} =|e (33.9)
b b
I
0 0 ;
AE,
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[Ff ], is denoted flexibility matrix of the element b and {®° },1s the matrix of initial deformations.

Alternatively, the constitutive equation can be expressed in terms of stresses as a function of deforma-

tions:
{M}, = [E] {®}, +{M"}, ; where (3.3.10)
AEI, 2FI,
0
Lb Lb
-1 |2EI  4EI
B, =[F,] ==/ —* 0 |and {M}, =B} {8}, (3.3.11)
b
AE
0 0 b
Lb

[E], is called elasticity matrix of the element b and {M"}, is the matrix of initial stresses. Table 3

shows the expressions of the initial stresses and deformations computed with Equations (3.3.5-3.3.7 and
3.3.11, for the most common cases.
An example of application of these constitutive equations is presented in section 3.7.3.

3.4 CONSTITUTIVE EQUATIONS FOR FRAME
MEMBERS OF ANY ASPECT RATIO

3.4.1 Dual Structures

In chapter 2, it was shown (see example 2.7.3) that Euler-Bernoulli beam theory is not valid for squat
structural elements. In that case, shear deformations are significant and are not taken into account in
this theory.

In the engineering practice, it is common the use of dual structures, as the one represented in Figure
12, that include slender frame elements and walls sometimes connected by very short beams.

The constitutive equations formulated in the previous section do not represent adequately the behav-
ior of the walls and the short elements. A more general constitutive equation valid for all the elements,
no matter its aspect ratio, is then needed. The new constitutive equations are based on the modified
Timoshenko beam theory instead of Euler-Bernoulli beam theory. This is the subject of the next section.

3.4.2 Constitutive Equations Based on the Theory
of Modified Timoshenko Beams

Consider again a frame element b between nodes i and j. It is introduced the same local set of coordinate
axes X’,-Z’, (see Figure 11).

According to the modified Timoshenko beam theory, the behavior of a frame element is defined by
the following equations:

48



Elastic Frames

Table 3. Initial stresses and deformations for some cases of forces on the elements

Initial deformations Initial stresses

Loading condition
[ or ] [_or’]
Q 24E] 12
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. z L
0 0
[ 1013 | [_ g2
360 EJ 30
Q 3 5
7 ,/./;rr I I L o or? 0 or?
_ : o 45E] bk 20
1 = l
0 0
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Figure 12. Dual structures
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n, = EA, ‘h‘(;—a(fb) (3.4.3)

where V, is the shear force on the element, f3, is the rotation of the cross-section and G is the transverse
elastic modulus. The remaining variables have the meaning indicated in the previous section.
The solution of the differential equations 3.4.1 is:

V.(z,) = Ql(z,) + C|; where Q1(z,) = ]‘Q(xb)dx;

M, (z,) = Q2(x,) + Cz, + C, (3.44)

The constants C, and C, can be computed by the same boundary conditions indicated in the previous
section (m; = M,(0) and m;’ = —M,(L,)). The general solutions of the differential equations (3.4.2)

are:

2

X
EL B (z,) = @3(z,) + C, EZ’ +Cyz, +C,; (3.4.5)

2

GA z’ x
GAw,(z,) = —Q2(z,) — C\z, + —[Q4(mb) +C, Eb +C, ?b +C,z, |+ C, (3.4.6)

EI

b

Constants C, and C, can be computed, again, by the boundary conditions indicated in the previous
section (w(0) = 0 and w(L,) = 0). The constitutive equation for deformations <Z>:’ and <Z>;? are then given
by:

L L m’ m’
V= _B(0)=|——m! — 2yt + 4 j + Q;
o, 8,(0) 351 GEL LG LG o)
¢ =-B(L)=|- L m’ + L m’ |+ : + m; + ¢’ (3.4.7)
’ e 6EI, ' 3EI | |LGA LGA| s

where the initial deformations (;5? and qS](.J have the same expressions of the previous section, i.e. Equa-

tions (3.3.5) and (3.3.7). The constitutive equation for the elongation is the same in both theories, that
is, Equation (3.3.8). Writing the constitutive equations in matrix form gives:
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{®}, = ([Ff |, +[F],){M}, +{®"}, ; where (3.4.8)
L B L 11 0
3 Egb G‘SLElb Lb GAI) Ll) GA77
Bl =l = R = : Lo (3.4.9)
T 6EI,  3EI b |LGA  LGA
L, 0 0 0
0 0
AE,

Notice that the matrix [Ff ], has the same expression obtained in the previous section for the flexibil-

ity matrix, Equation (3.3.9). Thus, the only difference between the constitutive equation based on the
Euler-Bernoulli theory and the one derived from the modified Timoshenko theory is the shear flexibil-

ity matrix [F ] . For slender frame elements, that is with large aspect ratios, the shear flexibility matrix

S

[F, ], becomes very small with respect to the flexure flexibility term [F, ], and the additional shear defor-

mations [F | {M}, can indeed be neglected. For short or squat elements this is not the case and both

flexibility matrices should be taken into account.
Again, the constitutive equation can also be expressed in terms of stresses as a function of deformations:

{M}, = [E] {®}, +{M"}, ; where (3.4.10)
A(LGA, +3EL)EI,  2(L;GA, —6EI )EI
L(LGA +12E1) L (LGA +12EI)
-1 |2(LGA —6EL)EI,  A(LGA, + 3EI,)EI
[E]b = ({Ff]b —I—[FSL) — ( b 2‘41; b) b ( b 2A1> b) b (3.4.11)
L(LGA +12E1) L (LGA +12EI)
AE
0 0 :
Lb
M}, = —[E]{2"}, (3.4.12)

Notice that even if the initial deformations are the same for both theories, the initial stresses may be

different. Table 4 shows the expressions of the initial stresses for some frequent cases.
An example of application of these constitutive equations is presented in example 3.7.4.
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Table 4. Initial stresses for some cases of forces on the elements

Loading condition Initial stresses
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3.5 TRIDIMENSIONAL ELASTIC FRAMES
3.5.1 Kinematic of Tridimensional Frames

As mentioned in section 3.1.1, structures can be analyzed as two-dimensional or tridimensional frames.
The former option, although simpler, neglects some significant effects. In some important practical
cases, such as irregular buildings or structures, the tridimensional effects should not be ignored. This is
the subject of the present section.

Consider a tridimensional frame as the one shown in Figure 13. It is introduced a set of coordinate
axes X Y Z. The movement of a node i of the frame is now characterized by six values. They are the
displacements u,, v, w, in the directions of the three coordinate axes and the corresponding rotations ¢,
0.y ¢. The matrix of generalized displacements of an element b is now:

{q}z = (ul‘7vai’(pi?ei’{i?u]‘?Uj)w]‘?(pjﬂejﬁcj‘) (3'51)

The matrix of generalized displacements of the frame is also obtained including the displacements
and rotations of all nodes; thus, it has now 6n components.

In order to define the matrix of generalized deformations of a tridimensional element, a set of lo-
cal coordinate axes X’,, Y7, Z”, is also introduced; the origin of the local axes is fixed on the node i of
the element and the axis X, remains adhered to the element’s cord; the axes Y*,, Z”, coincide with the
principal axes of the cross-section.

The matrix of generalized deformations of a tridimensional frame element is:

(@), = (4,9 ,6,,0.,0.,0,) (3.5.2)

Figure 13. Generalized displacements of a node in a tridimensional frame
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where gzﬁfy and qb]b.y are the rotations relative to the cord around the local axis ¥, i.e. the same as in the
two dimensional case; J, is again the cord’s elongation; qﬁfz and (,25;; are the relative rotations around the

local axis Z’; finally, qﬁf is the torsion deformation of the element, see Figure 14.

The kinematic equation has the same general form, but with the following kinematic transformation
matrix:

{d®}, = [B] {da}, (3.5.3)
m b b mb b
L L L L L”b L,
m m m’ m’ m m!
-—— - —— 0 0 0 L = on) nz n,
L L L I, I, L,
B] ~t, .~ 0 0 0 & t # 0 0 0 (35.4)
b = b N b oI
n_l; ﬂ n_i’ mt mt m _ M _ﬂ _n_i’ 0 0 0
Lb Li Lb ' ! ’ Lb LII; Lb
b b b b
n n n n n n
- o —= 0 0 0 -—= —-=x ——= mf mz mi’
L L L L ; L,
0 0 0t =t —t 0 0 o o ot
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where {t}; = (t/,1',1"), {n}, = (n,n’,n!);{m}, = (m],m’,m) are, respectively, unit vectors in the

directions of the local coordinate axes X’,, Y’,, Z’,; the components of these vectors are expressed with
respect to the coordinate global axes. The demonstration of (3.5.4) is given in the next section.

3.5.2 Kinematic Transformation Matrix in the Tridimensional Case

Consider a frame element in the local coordinates as shown in Figure 15. Let {q '}, be the matrix of
generalized displacements with respect to the local coordinate system:

{q'}; = (u'”,U'Z'Jw'i?so'i?e‘ﬂc'ﬂu‘j?U'J‘Jw']'7%0']'70']'7<']') (3‘5‘5)

The generalized displacements in the local coordinates and the global coordinates are related by the
following expressions:

&, 0 0 0
t t t 0 0 O
0t 0 0 SR
{a'}, = [T] {qa},; where [T], = 0 0 t 0 it,=|n, n n ;0=10 0 0 (3.5.6)
! m.m m 0 0 0
0 0 0 t ! v :

Again, Equation (3.5.6) is based on the well-known relationship between the components of a vector
in two different coordinate systems.

The kinematic equations for the generalized deformations in the coordinate local axes can be obtained
by simple inspection of the diagrams included in Figure 15; they are:

, dw' dw' , dw' dw'

dp) = ———L+—2L+db';dp’ = ———+ L4 d' ;do, = —du' +du' ;
v L L v L I ! Y

d¢;, = . +d¢' ;dg) = v, _ &, +dC';de) = —dp' + dp' (357
iz_L L i’ iz_L L i’ z SO;I 90';' e

b b b b

In matrix notation, the kinematic equations are written as:

{d®}, =B {dq'},;
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Figure 15. Kinematic equations in local coordinates: a-b) Displacement of node i and j in the X', local
axis. c-d) Displacement in the Z’, local axis and relative rotation around the Y’, local axis of node i. e-f)
Displacement in the Z’, direction and relative rotation around the Y’ local axis of node j. g-h) Displace-
ment in the Y’, local axis and relative rotation around the Z’, local axis of node i. i-j) Displacement in
the Y’, direction and relative rotation around the Z’, local axis of node j. k-1) Relative rotation around
the X’ , local axis of node i and j

<

1
[
e
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0o 0 - L 0 1 00 O L 0 00
L, L
0O 0 - i 0 00 0 O i 01 0
L, L
-1 0 0 0 0 0 1 0 0 0 0O
B u]b _ ) . (3.5.8)
0o — 0 0 01 0 —— 0 0O00O0
L, L,
1 1
0 — 0 0O 000 —— 0 001
Lb Lb
0 O 0O -1 000 O 0 1 00

The substitution of (3.5.6) into (3.5.8) leads to the kinematic Equation (3.5.3) with [B], = [B'],[T],;
it can be verified that the latter equation gives, indeed, expression (3.5.4).

3.5.3 Dynamic of Tridimensional Frames

The matrix of generalized stresses conjugated to the deformations introduced in the previous section is:

t b b b b b
{M}, = (miy,mjy,nll,m,iz,mjz,mz) (3.5.9)
where mfy and m?y are the flexural moments around the local axis Y ’b, i.e. the same of the two dimen-
sional case; n, is again the average axial force; mf’z and m;z are the flexural moments around the local
mi’ is the average torque (see Figure 16).

axis Z’,;

Figure 16. Generalized stresses in a tridimensional frame element

Zp A
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The matrix of generalized external forces is composed, as in the planar case, with forces and moments
that correspond to the generalized displacements introduced in the previous section:

{P}t = (puppvppwl7p¢1’pgl7p<1’ """ 7p0n’p<n) (3510)

Thus, the general form of the equilibrium equation does not change:

B, ], {M}, + [Mass] {0} = (P} (35.11)

b=1

Where the mass matrix has now the following expression:

t
[Mass| = [T] (T]
b b Mass b
0 0 0 0 0 0 b 0 0 0 0 0
2

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

(3.5.12)

where J, is the polar moment of inertia and [T}, is the geometric transformation matrix of the element
b (3.5.6).

3.5.4 Constitutive Equations for Tridimensional Frame Element

The procedure for the determination of the constitutive equations does not change in the tridimensional
case. For instance if the shear deformations are neglected, the constitutive equation is:

M}, = {M,}, +[E]{®}, (3.5.13)
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With
AEI" 2FEI"
—r —¥ 9 0 0 0
Lb Lb
2E /b 4E /h
L —Y 0 0 0 0
b Lb
AFE
0 0 i b 0 0 0
[E] = b PP (3.5.14)
0 0 0 = 0
Lb Lb
2FEI" 4ET’
0 0 0 2 =0
Lb Lb
GJ
0 0 0 0 0 b
Lb

where [ ;’ is the moment of inertia of the element’s cross-section around the local axis Y,; [ i’ is the mo-

ment of inertia around the axis Y’,; GJ, is torsional rigidity of the cross-section.

3.6. SUMMARY AND EQUATIONS QUICK REFERENCE

The kinematic of frames is defined by the matrix of displacements and m deformation matrices, one for
each element of the frame. Statics of frames is described by the external forces matrix and m generalized
stresses matrices. There is a kinematic equation for each frame element that relates the corresponding
deformation matrix with displacements. The equilibrium equation permits the computation of the external
forces from the generalized stresses. Finally, the elastic constitutive equation relates stresses with defor-
mation or vice versa. All these equations have been defined for planar frames, tridimensional frames and
dual systems. External forces can be applied directly on the nodes or along the elements. The algorithms
for including both kind of external actions are discussed in the chapter. Set of external displacements
have to be imposed in the analysis in order to ensure the stability of the structure (See Table 5).
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Table 5.

KINEMATICS OF PLANAR FRAMES

Generalized Displacements of a Planar Frame

Generalized displacement matrix of the frame

Uy

> &

£

{Ul=| 7| aiy

ul = displacement in the direction X of the node 1.
w1l = displacement in the direction Z of the node 1.
01 = rotation of the node 1.

un = displacement in the direction X of the node n.
wn = displacement in the direction Z of the node n.
On = rotation of the node n.

Generalized displacement matrix of a frame element b between nodes i and j

U

i

> 8

{d}, =| "|G12

> =

ui = displacement in the direction X of the node i.
wi = displacement in the direction Z of the node i.
0i = rotation of the node i.
uj = displacement in the direction X of the node j.
wj = displacement in the direction Z of the node j.
0j = rotation of the node j.

Generalized Deformation Matrix

Generalized deformation matrix of the frame element b
¢b
i
{@} = 9" 3.13)
b J
6

b
b .. . .
¢i = angle between the cord i-j and the normal to the cross-section at the end i.

b .. . .
(ﬁ; = angle between the cord i-j and the normal to the cross-section at the end j.

db = elongation of the cord.

continued on following page
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Elastic Frames

Kinematic Equations

nt ! ! ! ! ! !
=(u',w',0' u' w'. 0"
Nodal displacement in local coordinate axes {q }b ( A L 7’ J)

1
Relationship between {q }b and {q}b

{a'}, =|T] {a},;

[B,(q)]

b is denoted enlarged transformation matrix

3.1.5)
cosq, sing, 0 0 0 0
—sinq, cosa, 0 0 0 0
0 0 1 0 0 0
), = '
b 0 0 0 cosq, singg O
0 0 0 —sinq, cosa, 0
0 0 0 0 0 1
[T]b: geometrical transformation matrix
Kinematic equations
o G = (@) L =L(q)
sin q, cosq, sinq,  cosa,
b Lb b Lb
sin o cos sino, cos«
{d®} = [B(q)/{da};[B(q)] = - — :
Lb Lb Lb Lb
—cosa, —sina, 0 cosq, sina,
;(3.1.10)
[B b is called kinematic transformation matrix of the element b
0 0 0
a ~ao'sL =1 {® ;{B} q
For ° b b7{ }b b{ }b(3.1.11)
B
b is the kinematic transformation matrix
~ . ~ 0
{d@}b = [BE (U>]b {dU}’ or {(I)}b = [BEL {U} L G.1.12)
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Table 5. Continued

sin o cos sina, cosa,
0 0 — -1 0 ... — 0
Lb Lb Lb Lb
sin o cos « sina, cosa
B,(q), =|0 0 e 2% g g L, o b
Lb Lb Lb Lb
0 0 —cosq, —sing, 0 0 cos sinco, 0
u, w, u, w, Hi U, u, w, 6’}

(3.1.13)

Simplified Analysis of Deformations: Story Drift Ratio

Kinematic equation

(utop - ubotton)
¢col col
botton
{@} — ¢col _ (utop B ubotton)
col top L
6 col
b 0
(3.1.14)
_ col _ col
A - ¢botton - ('btop

: story drift ratio

DYNAMICS OF PLANAR FRAMES

Deformation Work of a Frame and Generalized Stress Matrix of a Frame Element

A structure in dynamic equilibrium verifies the equation:

I/I/def + IJ/ine = W.Lt A {U }

(3.2.1)

Generalized stress matrix:
m’
1
_ b
{M}b - m]'
nb
(3.2.2)
b
i bending moment at the i end of the element b,
b

7 bending moment at the end j
nb:average axial force on the element b

Deformation work of a frame:
m
* * t
VVdef = Z {® }b {M}b
b=1
(@},

(3.2.3)

: a virtual, i.e. arbitrary and infinitesimal, deformation matrix

continued on following page
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Elastic Frames

Inertia Work of a Frame and Matrix of Masses

The matrix of masses of the element b

M “‘9% 0 0 0 0 0

[Mass], =

=

0 0 0 0 M “5%

0 0 0 0 0

(3.2.4)
Massb: mass of the element b

[Mass|, {d}

. d’q
{d} = o

: inertia force on an element b

: generalized acceleration matrix of element b the

Inertia work

W), = (U} D [Mass, ], {0} = (U} [Mass] (0}

(3.2.5)

is the matrix of masses of the frame

External Work of a Frame and Matrix of Generalized External Forces

External work:

W, ={UY{R}

Generalized external forces matrix of a frame:
p ul
Dy
Dy
p u2

{P} =

p wn

Pon (2.7

Pul = external force in direction X on the node 1.
Pw1 = external force in direction Z on the node 1.
PO1 = external bending moment on the node 1.

P wn = external force in direction Z on the node n.
POn = external bending moment on the node n.
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Table 5. Continued

Matrix of external forces

(P} ={P"} +{P"} 5,4

Dynamic and Quasi Static Equilibrium Equations

The principle of virtual work (3.2.1) states that:

S{@'} (M}, + (U} [Mass|{U} = {U'} {P}w{U"}

(3.2.9)
The principle of virtual work leads to:
{U'} | > [B,],{M}, + [Mass|{U} - {P}| = 0v{U"}
b=1
(3.2.10)

Dynamic equilibrium equation
ror @ = @ (@)L = L(a),
Z[BE]Z{M}b + [Mass]{U} = {P}

b1 (3.2.11)

~o 0. ~ 0
o O = o, L, = Lb;

m

> [BL],{M}, +[Mass|{U} = {P}

b=1 (3.2.12)

Quasi static equilibrium equations

o, =, (q);Lb =1L, (@)

For ;
> [BLL{M}, = {P}
b=1 (3.2.13)
For Y ~ af;Lb ~ Lg;
> [B,{M}, = {P}
b=1 (3.2.14)

CONSTITUTIVE EQUATIONS FOR A SLENDER FRAME MEMBER

Summary of Variables and Equations in an Elastic Analysis

EINEMATIC VARIABLES DYNAMIC VARIABLES
DISPLACEMENT MATRIOM (L7 EXTERMAL FORCES MATREX {5}
Kinematic Equilibrium
e [ CorstEutivefaguations l Pt

DEFORMATION MATRICES (@), ﬁ STRESS MATRICES [M],

continued on following page
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Table 5. Continued

Constitutive Equations Based on the Theory of Euler-Bernoulli Beams

Constitutive equations

dQMb(J)b) Q) deb(xb) _ M, (z,) 0 — EA du, (z,)
b b -
dxf ; da:j EI ; b dz, Gan)

Mb(xb): bending moment distribution on the element Qb(xb): distributed external forces,
wb(xb): deflection

Elb: elasticity modulus multiplied by the inertia moment of the cross-section

nb: axial force

Ab: area of the cross-section

ub(xb): displacement in the direction of the cord

The general solution of (3.3.1a) is:

Mb(xb) = QQ(II,) + Clxb +C QQ(%) - [{Q(wbﬁxdx

2 . where (3.3.2)

m.
The constants C1 and C2 can be computed by the boundary conditions: ~ *

The general solution to (3.3.1b) is:

3 2 y
FlLo(z)= Qiz)+C 2+C, 2y +0, Q)= Il
6 2 ; where 0

(3.3.3)

The constants C3 and C4 can be computed by the boundary conditions w

b
The constitutive equation for the deformation ' is then given by:
dw (0) L L
Qbib:_ b — b mf_ b m;/+¢20
dr,  3EI, GEI,
b ;(3.3.4)

.1 50 LA P
8! = | 3()— 6( )—Q3(0)— PR Q3(xb):[[[Q(xb)d$dmdx

(3.3.5)

where

The constitutive equation for the deformation T is:

¢§:_dwb(Lb):_ L mb+imb+¢0
! dz 6£I ' 3FEI

J
b b b : (3.3.6)

oo L [BQO | LQAL) o Qi0) | QUE)

where

' EL| 6 3 I L
(3.3.7)
The constitutive equation for the axial force:
AE,
n’) = L 6b
b (3.3.8)

continued on following page
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Table 5. Continued

Constitutive equations in matrix form

L L 0
3EI 6E1
L L
{F} T b 0
Iy 6EI,  3EI
Lb
®! =[F]{M &’ : ’ AE
{®}, =1 f]b{ L AR, where b1:3.3.9)
@’
0 o 0
{(I) }b - (bj
0
[F,]

b, flexibility matrix of the element b
{®"}
Constitutive equations, expressed in terms of stresses as a function of deformations, in matrix form:

{M}, = [E] {®}, +{M}

b : matrix of initial deformations

b (3.3.10)

ABI, 28I,
Lb Lb
- 2EI 4FI

B =[] =15 0
b Iy Lb Lb

0 0 AEb

L and M}, = —[E] {2}, (3.3.11)

E
[ ]b : elasticity matrix of the element b

{M’}

b : matrix of initial stresses.

CONSTITUTIVE EQUATIONS FOR FRAME MEMBERS OF ANY ASPECT RATIO

Constitutive Equations Based on the Theory of Modified Timoshenko Beams

Constitutive equations:

dV dM
d[;(zb) — h(xb); db(xb) :V;(a?h)
T, Ly L (34.1)
g, (z,) dw,(z,)
Mh(xb) - EIb %’Vb(mb) = GAh ﬁb(xb) -
T i (3.4.2)
du, (x,)
n, = EA ——2*
b dxb (3.4.3)

Vb: shear force on the element
pb: rotation of the cross-section
G:transverse elastic modulus

continued on following page
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Table 5. Continued

T

ha) =i+, . O = A

1. where 0
(3.4.4)

M (z,) = Q2(z,) +Cz, +C,

The general solutions of the differential equations (3.4.2) are:
2

zb
BLA,(5,) = Q3(5,) + €, + O, +

;(3.4.5)
G z’ T’
GAw,(z,) = —Q2(z,) — Cx, —i—% Q4(mb)+01€b+02?”+03xb +C,
’ (3.4.6)
b b
The constitutive equation for deformations ' ¢ and 7 are:
L L m’ mb
6, = =B,(0) =| = m/ ——-mj |+ |+ — |+ )
3EI, 6EI, ') |LGA  LGA |
(3.4.7)
8 =00 = |- Tt || T T
! e 6EI, ' 3EI 7’| |LGA LGA|
Constitutive equations in matrix form
(@), = (5}, +[E})(M), +{@,
where
L L 0 1 L,
3EII} 6LEIb LGA LGA
Fl-lar w0 [EL-|mr Ter ¢
Tl 6EI, 3EI, v \LGA  LGA
I, 0 0 0
0 0
AE,
(3.4.9)
[Ff ]b : flexibility matrix of the element b
[F]

b : shear flexibility matrix of the element b

Constitutive equations in matrix form:

{M}b = [E]b{(ﬁ}b + {Mo}h (3.4.10)

continued on following page
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Table 5. Continued

A(L;GA, + 3EI)EI,  2(L;GA —6EI )EI,
L(LGA +12E1) L (LGA +12EI)
8] = ([F } V[ )—1 _ |2AL,GA, —6EI)EI,  A(LGA + 3EI,)EI,

’ ' ’ L(LGA +12EI) L (LGA +12EI)

AE
0 0 -

(34.11)
0 _ 0
M}, = —[E| {2}, (34.12)

{M’}

b = matrix of initial stresses by modified Timoshenko beam theory.

TRIDIMENSIONAL ELASTIC FRAMES

Kinematic of Tridimensional Frames
Generalized displacement matrix of a frame element b

t__
{q}b - (uﬂvi’wpsoz"gpgiﬂuj7vj7w]"80j79j7<j)

ui, vi, wi = displacements in directions X, Y, Z at the end i.
i, 01, i = rotations around the X, Y, Z axes at the end i.
uj, vj, wj = displacements in directions X, Y, Z at the end j.
®j, 0j, {j = rotation around the X, Y, Z axes at the end j.

3.5.1)

Generalized deformation matrix of a frame element b

{@}; = (¢,bya ¢jya 61,7 ¢fz’ qu;a ¢j)
ey

W "JY = relative rotations to the cord around the local axis Y’b.
db = cord’s elongation.

b ¢b
¢i , 7% = relative rotations to the cord around the local axis Z’b.
¢b

7 = torsion deformation.

35.2)

continued on following page

69



Table 5. Continued

Elastic Frames

Kinematic equation

{d'l’}b = [B]b{dq}b (3.5.3)

(3.5.4)
¢ bogb 4b
{t}b = (tzvtyvtz)
¢ bbb
{n}b = (nzvnyvnz)

{m}, = (m),m ,m))

= unit vector in the direction of the local coordinate axe X’b.

= unit vector in the direction of the local coordinate axe Y’b.

= unit vector in the direction of the local coordinate axe Z’b.

omymy, m! Wt om m,om, 0 0 0
L L L S N L L
bb bb bb bb bb bb
m m m m m
N (A R T
Lb Lb Lb Lb Lb Lb
-t - 0 0 0 t’ ¢ t’ 0 0 0
[B]b — bz bl/ bz T Y , z ,
n n n n n n
_z v —z m’ ms mi’ = v _ = 0 0
Lb Lb Lb ' Lb Lb Lb
ni TLZ ni 0 O O nz nz ni b b b
= ¥ = - —— ——= m,2 m_m,
L, I, I L L I '
0 0 0O —t -t/ & 0 0 0 & t

Kinematic Transformation Matrix in the Tridimensional Case

Matrix of generalized displacements with respect to the local coordinate system

{q'}z = (u’i)v'ﬂw'i)go‘ﬂe'l’?g'i?u‘j7v'j7w'j7cp'j79’j7c'j)

(3.5.5)
1
Relationship between {q }b and {q}b
t 0 0 0
0Ot 0 O t 13 t
[T] — b z y z
10 0t 0 t=In n n
T Y z
noo_ 0 0 0 ¢t m.m. m
{a'}, =[T],{a}, -where bl g Y “1(35.6)
0 00
0=0 0 O
0 0 0
Kinematic equations for the generalized deformations in the local coordinate axes:
, dw' —dw' , dw' — dw'
dg! = —— Ly df' dgh = —— L df"
iy Lb Lb z. 7y Lb Lb j . déb = —du '7;+ dulj
3.5.7) ,
ap = Py g ag = g
s Lb Lb i c Lb Lb i. dgbﬁ = _dSO 'i+ d(p 'j

continued on following page
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Table 5. Continued

Constitutive equations in matrix form

{d®}, =B, {da"},

00 -2 0100 0 X000
I, I,

0 0 -2 0000 0 = o010
Lb Lb

-1 0o 0 0001 0 0000
B, = 1 1

0 — 0 0 010 — 0 000
Lb Lb
1 1

0 — 0 0 000 — 0 001
Lb Lb

00 0 —-1000 0 0 100

Dynamic of Tridimensional Frames

Generalized stress matrix of a frame element b

t b b b b b
M}, = (mw,mjy7 nb,mm,mjz,mm) 359
b b
% Y = flexural moments around the local axis Y’b.
nb = average axial force.
b b

Som.

iz J% = flexural moment around the local axis Z’b.
b

T = average torsion moment.

Generalized external forces matrix

t
{P} = (pul’pvl7pw17p¢l7p91’p07 """ ’paw,’p@,) (3.5.10)

Pul, Pvl, Pwl = external forces in direction X, Y, Z global axes on the node 1.

Pul, Pvl, Pwl = external forces in direction of X, Y, Z global axes on the node n.

Pol, PO1, PC1 = external bending moments around of X, Y, Z global axes on the node 1.

Pol, PO1, PC1 = external bending moments around of X, Y, Z global axes on the node n.

continued on following page
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Table 5. Continued

Equilibrium equation

m
. .
[B,],{M}, + [Mass|{U} = {P}
b=1 (3.5.11)
Mass, / 0 0 0 00 0 0 0 0 00
0 Mass, 4 0 0 00 0 0 0 0 0 0
0 0 M‘“% 0 00 0 0 0 0 0 0
Massbe/
0 ou O 0 0 0 00
0 0 0 0 0 0 00
Mass],  [T] 0 0 0 0 0 0 O[T]
aSSb: b b
0 0 0 0 0 o Mass, ; 0 0 0 00
0 0 0 0 00 0 Mass, ; 0 0 00
0 0 0 0 00 0 0 Mass, 0 0 0
Mass,J,
b7 b
0 0 0 0 o
0 0 0
0 0 0 0 00 0 0 0 0 00
(3.5.12)
J,: polar moment of inertia
[T],

b is the geometric transformation matrix of the element b

Constitutive Equations for Tridimensional Frame Element

Constitutive equations

{M}, = {M_}, + [E]{®}, (3.5.13)

AFI" 2EI'
! ! 0 0 0 0
Lb Lb
2EI" AEI’
—r — 0 0 0 0
Lb Lb
AFE
0 0 7 b 0 0 0
[E] = b
4EI" 2EI'
0 0 0 £ 2 0
Lb Lb
2EI" 4Bl
0 0 0 = = 0
Lb Lb
GJ,
0 0 0 0 0 —
Lb
Ib
¥ = moment of inertia of the element’s cross-section around the local axis Y’b.
Ib

% = moment of inertia of the element’s cross-section around the local axis Z’b.

b = polar moment of inertia of the cross-section.
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3.7. EXAMPLES
3.7.1 Kinematic Equations of a Two Span Continuous Beam

In this example, the kinematic equations for the beam shown in Figure 17 are written considering small
displacements.

The structure has only 2 elements and 3 free displacements: the horizontal displacement (u,), the
vertical one (w,) and the rotation (0,) at the node 2. The remaining six displacements are all restricted
and correspond to the fixed supports at nodes 1 and 3.

For the element 1 between nodes 1 and 2 (L = 0.75 m and a = 0), the linear kinematic equation

{®}, = [B"] {a}, can be written as:

0
, 0
9 |0 —1333 1 0 1333 0|
¢,|=[0 -1333 0 0 1.333 1 (3.7.1)
U
& -1 0 01 0 o0|f°
wQ
02
ie.:
¢, =1.333w,;¢, =1.333w, +6,;6, = v, (3.7.2)

For the element 2 between nodes 2 and 3 (L =5 mand a =0), the kinematic equation {®}, = [B"],{q},
can be written as:

Figure 17. Two span beam

1200 N Material Properties:
E = 2.39x10'° N/m?
ﬂ%ﬁ
0.50 m
SIS
4|/ e 4|/ . /|l/ Cross-section
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U’?
2 w?
b, 0 020 1 0 020 0|
¢:|={0 —020 0 0 020 1 5 (3.7.3)
& |-1 0 01 0 o/
0
That is:
& =—0.2w, +60,;¢> =0.20w,;6, = —u (3.7.4)
2 2 2 3 2772 2

3.7.2 Equilibrium Equations of a Two Span Continuous Beam

Consider again the structure in Figure 17; in the case of quasi-static analysis, the equilibrium equation
is written as:

[B) ] {M}, + (B} ],{M}, = {P} (3.7.5)

where the generalized external forces matrix is (see Figure 18):

(P} = |-200 (3.7.6)

Figure 18. External nodal forces

200

Rul 1 I 2 3 Ru3
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For the element 1, the enlarged transformation matrix is obtained from the expression (3.7.1):

0 —1333 1 0 1333 0 0 0 0
[BEL: 0 —1.333 0 0 1333 1 0 0 0 (3.7.7)
-1 0 01 0 0000

And the generalized stress matrix is:

m,
M}, =|m, (3.7.8)

n

For element 2, the enlarged transformation matrix is obtained from the expression (3.7.3):

000 0 —0210 020
B, =0 00 0 <020 0 021 (3.7.9)
000 -1 0 01 0 0

And the generalized stress matrix is:

m,
M}, =|m; (3.7.10)
n?
In explicit form, Eq. (3.7.5) gives the following equilibrium equations:
R, =-n;R, = —1.333(m,, + mzl);R€] =m;
n, = n,;1.333(m,, +m, ) —0.20(m,, + m,,) = —200;m,, = —m,,
Ru‘ = nQ;R“,‘ = 020<m22 + m;;g);Rﬁ = m32 (371 1)

3
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3.7.3 Constitutive Equations of a Two Span Continuous
Beam using Euler-Bernoulli Theory

Consider again the beam that is shown in Figure 17. The initial stresses and deformations in the consti-
tutive equation (3.3.10) for this case are nil because there are not forces on the two elements:
{M}, = [E] {®}, for b=1, 2.

The elasticity matrices for elements 1 and 2 obtained from Eq. (3.3.11), with an elasticity modulus
of 2.39x104 MPa, are:

3.983710° 1.992210° 0
[EL: 1.992210°  3.983z10° 0 (3.7.12)
0 0 4.780210°
5.9752x10" 2.988210° 0
[E| = [2.9882107 5.975210" 0 (3.7.13)
0 0 7.170210°

Then the expressions of generalized stresses, in function of the generalized deformations, are for
element 1:

m; = 3.983210°¢, + 1.992210%¢,;m, = 1.992z10°}, + 3.983210°¢,;n, = 4.780210°¢,

2777

(3.7.14)
and for element 2:

m? = 5.9752107 ¢ + 2.9882107 ¢*;m’ = 2.9882107 ¢ + 5.975210" 0%;n, = 7.170210°8,

37772

(3.7.15)
3.7.4 Constitutive Equations of a Two Span Continuous
Beam using Modified Timoshenko Theory

In this case, the constitutive equations for the elements of the beam shown in Figure 17 are obtained
using the Eq. (3.3.10) with the elasticity matrices given in (3.4.11) and considering v = 0.20.

2.441210° 4.4972107 0
[EL: 4.4977107  2.441210° 0 (3.7.16)
0 0 4.780z10°
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5.870210" 2.882x10° 0
[EL —12.8822107 5.8702107 0 (3.7.17)
0 0 7.170210°

Therefore, the expressions of generalized stresses, in function of the generalized deformations, for
element 1 are:

m; = 2.441210° ¢ + 4.497210" ¢y;m, = 4.497x10" ¢, + 2.441210°¢;; n, = 4.780210%6

[ | 1

(3.7.18)
and for element 2, they are:

m) = 5.870210"¢; + 2.882210" ¢ ;m? = 2.882z10" ¢, 4 5.870x10" ¢2;n, = 7.170210%8

37°72 2

(3.7.19)

Notice that there is a small difference between in the elasticity matrices (3.7.13) and (3.7.17) corre-
sponding to the largest element and there is a big difference between the matrices (3.7.12) and (3.7.16).

3.7.5 Initial Deformations and Initial Stresses Computations for a
Fixed Beam under Constant Loading using Euler-Bernoulli Theory

The initial deformations for the beam shown in Figure 19 are determined using Equations (3.3.5 and
3.3.7 that are, respectively,

EI, 3 6 I, I,
' BL| 6 3 L, L,

Qz,) =—Q (3.7.20)
Then,
Q2(r,) = 5 ,Q3(z,) = Pt and Q4(z,) = 21 (3.7.21)
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Figure 19. Fixed beam subjected to a uniform load

0
b

The following expressions of initial deformations are obtained after the evaluation of these integrals
forz =0and z = L:

_ O e QL
24E1 "7/ 24K],

fox (3.7.22)

Therefore, the initial deformation matrix is:

QL
24EI
3
{<I>°} B —C (3.7.23)
b 24EI
0

The initial stresses are computed using Eq. (3.3.11): {M"}, = —[E],{®"}, . Then, the initial stresses
are obtained multiplying the elasticity matrix (3.3.11) and the computed initial deformations (3.7.23).

2 2
o QL = QL (3.7.24)
! 12 J 12
Thus, the initial stresses matrix is:
_er
1
0l _ | QL
r} = P (3.7.25)
0
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3.7.6 Initial Stresses Computation for a Fixed Beam under
Constant Loading using Modified Timoshenko Theory

The initial deformations are the same in both theories; then, the expressions obtained in the former
example are valid in this case too. The initial stresses are computed using again the expression (3.4.12)
but this time, the expression for the elasticity matrix (3.4.11).

Theinitial stresses are obtained by the multiplication of the elasticity matrix and the initial deformations,

0o_ _QL .m0 = QL (3.7.26)

. m,
12 7 12
Notice that these expressions are identical to the ones computed in the former example.

3.7.7 Initial deformations and Initial Stresses Computations for a Fixed
Beam under a Partial Constant Loading using Euler-Bernoulli Theory

The initial deformations for the beam shown in Figure 20 are determined using Equations (3.3.5 and
3.3.7 in the same way as in the example 3.7.5,
For the beam shown in Figure 20, the load can be expressed as:

—Qifx<a
Qz,) = (3.7.27)

|0 otherwise

A Heaviside step function is used in order to obtain only one expression to define the load along the
beam. This function is defined as:

0 if x<0
Heaviside(r) = {undefined if x=0 (3.7.28)
1 if x>0

Figure 20. Fixed beam subjected to a partial uniform load

| O
1]
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Then, the load expression is:

Q(z,) = —Q + QHeaviside(x — a) (3.7.29)

Using an algebraic manipulating program in order to obtain the terms indicated in (3.3.2b), (3.3.5b),
(3.3.3b) give

Q2(0) = 0:Q2(L) = Qa (5~ 1):Q3(0) = K:Q3(L) = - é Qa* + %QazL - %Qaﬁ

) ] ] 1 (3.7.30)
4(0) = 0:Q4(L) = — Qa' —=Qa’L +=Qa’L’ — =Qal’
Q4(0) Q4(L) 51 Q o Q 1 Q 5 Q
Finally the substitution of (3.7.30) in (3.3.5a and 3.3.7a), gives:
o — Qa’(—4al + 4L +a’) B = - 2QL'a’ — Qa' (3.7.31)
' 24LEI T 24LEI
Therefore, the initial deformation matrix is:
Qad’(—4aL + AL +a”)
HLET
{@0} =| 2k —Oo (3.7.32)
b 24LET
0

The initial stresses matrix is obtained by the multiplication of the elasticity matrix (3.3.11) and the
initial deformation matrix (3.7.32):

 Qad*(—8aL 4 6L + 3a”)
1217
3 —
{Mo}h = M (3.7.33)

1207
0
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3.7.8 Initial Stresses Computation for a Fixed Beam under a Partial
Constant Loading using Modified Timoshenko Theory

In this case, the initial stresses are defined by the multiplication of the elasticity matrix (3.4.11) and the
initial deformation matrix (3.7.32). Thus, the initial stresses matrix is:

Qa’(—8I'GAa + 6L’GA + 3LGAa®> — 24Ela + 36LEI)
- 12L(I2GA + 12EI)
{MO} _ Qa*(4'GAa — 3LGAa®> —24Ela + 36LEI)
b 12L(’GA +12EI)
0

(3.7.34)

Notice that if the loading is not symmetric, the initial stresses are different in the two theories.

3.8. PROBLEMS

3.8.1 Define the Kinematic, Equilibrium and Constitutive Equations for the Planar Frame Shown
in Figure 21 Using Modified Timoshenko Theory and Euler-Bernoulli Theory

3.8.2 Compute Initial Deformations and Initial Stresses for the Beam Shown in Figure 22 Using
Euler-Bernoulli Theory and Modified Timoshenko Theory

Figure 21. Planar frame
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3.8.3 Compute the Initial Deformations and Stresses for the Beam Shown in Figure 23 Using Euler-
Bernoulli Theory and Modified Timoshenko Theory

3.8.4 Demonstrate That Both Theories Give Different the Initial Stresses If the Loading on a Beam
Is Unsymmetrical

3.8.5 In Section 3.4.2, the Constitutive Equations Were Developed for the Case of a Planar Element
with Any Aspect Ratio

Generalize the formulation to the case of a tridimensional frame element.

Figure 22. Fixed beam subjected to a triangular central load

0

Figure 23. A fixed beam subjected to a triangular load

\»

\
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Chapter 4
Analysis of Elastic Frames

ABSTRACT

The formulation of a mathematical model that describes some physical phenomenon is just a first step;
a second one, equally important, is the development of numerical procedures that transform this model
into a potentially predictive tool with practical engineering applications; no computer software can be
developed without robust numerical algorithms. This chapter describes some of these procedures in the
case of elastic frames. First, it considers the direct stiffness method that permits the analysis of linear
elastic and quasi static structures (Section 4.1); then, the procedure is extended to the more complex
cases of nonlinear structures (Section 4.2) and dynamic loading (Section 4.3).

4.1 THE DIRECT STIFFNESS METHOD
4.1.1 Stiffness Matrix of a Frame and Matrix of Total Forces

Consider the particular case of a structure under quasi-static loading; assume that nonlinear terms can
be neglected. Then, the problem is formulated as follows:

1. Compute: The free displacements, reaction forces, deformations and stresses.

2. With the Following Data: the initial configuration of the structure, the restricted displacements,
the external forces corresponding to the free displacements and those applied over the elements;
finally, the material and cross-section properties (E, v, I, A).

3. Such that they verify:

a.  The Kinematic Equation: {®}, = [B' ] {U}

m

b.  The Equilibrium Equation: Z [B)]{M}, ={P"} +{P“} (4.1.1)
b=1

c.  The Constitutive Equation: {M}, = [E] {®}, +{M"},

The problem can now be resolved as follows; the combination of Equations (4.1.1) leads to:

DOI: 10.4018/978-1-4666-6379-4.ch004
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K]{U} = {F) 4.12)
where
K] = > [BLL[B][BY]cor [K] = Y[k, ]:fk, ], = [BYL[B][BY) : (4.1.3)

b=1 b=1

m

{F} = {P"} + {P'};{P"} = (P} Z (B}, ], {M"}, (4.1.4)

The matrix [K]is called stiffness matrix of the structure; [k, ], is denoted expanded stiffness matrix
of element b. The elasticity matrix [E], used for the computation of the stiffness matrix of the element
b can be based on the Euler-Bernoulli beam theory (Equation 3.3.11), if the element is slender, or on
the Timoshenko theory (Equation 3.4.11) in all cases.

The term {F} is called matrix of total forces. It is decomposed into two terms; the first one, {P"},
includes external forces applied directly on the nodes; the second matrix, {P‘}, depends exclusively on
the external forces distributed over the element. The terms {P"} and {P“’} were defined in the previous
chapter (section 3.2.3).

Notice that (4.1.2) is again an equilibrium equation but this time it is expressed in function of dis-
placements instead of stresses; the left hand term gives the internal forces, the right hand one includes
the external forces.

The resolution of the linear equation (4.1.2), by any conventional method, gives the values of the
unknown displacements and reaction forces. Then, element deformations can be computed by the kine-

matic equation (4.1.1a), finally the element stresses are calculated by the constitutive law (4.1.1c); (see
examples 4.4.1 and 4.4.2).

4.1.2 Assemblage of the Stiffness Matrix of the Structure.

The expanded stiffness matrices are square, symmetric and of the same size as the frame’s stiffness
matrix, however they are mainly composed of zeros; for instance in a planar frame, the expanded stift-
ness matrices are 3n*3n (n is the number of nodes) but only 6*6 terms can be no nil. In academic ex-
amples with few elements the use of expanded matrices is the best option; they define clearly the total
stiffness of the structure as the sum of the contributions of each element. In the engineering practice,
with structures that may have hundreds or thousands of elements, these matrices are not computed; in-
stead, the non-expanded stiffness matrices [k], are calculated:

k], = [B"][E],[B], (4.1.5)

Notice the use of the non-expanded transformation matrix instead of the expanded in (4.1.5). The
terms [k|, include all the possibly non nil components of the expanded stiffness matrices; its dimensions
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are 6*6 for planar frames and 12*12 for tridimensional ones. As opposed to the expanded stiffness
matrices, they cannot be added directly since they are related to different generalized displacements;
instead they are processed using the so called assemblage algorithm that is shown in Figure 2 (see ex-
ample 4.4.3 too).

In the assemblage algorithm, the stiffness matrix of an element is decomposed into four blocks as
shown in Figure 1 for the case of planar frames. The block 1 is constituted by positions with rows and
columns corresponding to node i; the block 2 includes positions whose rows still correspond to node i
but the columns are related to node j and so forth.

Let (f,, c,) be the position of a component of the stiffness matrix [k], of the element; if this position
corresponds to one of the block 1 (node i-node i), then this component must be added to the component
in the position (f,,, c¢,,) of the structure stiffness matrix [K], where:

f,=3i+(f, —3)ic, =3i+(c, —3); (4.1.6)

For the positions of block 2 (node i-node j):

f,=3i+(f, —3);c, =37 +(c, —6); 4.1.7)

In the block 3 (node j-node i):

f.=3j+(f, —6);c, =3i+(c, —3); (4.1.8)

Figure 1. Decomposition of the stiffness matrix of an element
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Figure 2. Assemblage algorithm for the stiffness matrix for a planar frame

Initialize [K]
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Compute [k:]

Assembly Block 1

|

Assembly Block 2

Assembly Block 3

l

Assembly Block 4

=3+ (- 6)

ce=3i+ (CL—S)

I

Block 1
Next fz

Nextc:

fo= 30+ (-3)
ce=3i+(cz—-3)

|
Kl(fs,cc) = Klfs, cc) + kslfz, c2)

Block 2
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Finally, for the block 4 (node j-node j):

f, =357+ (f, —6);c, =35+ (c, —6) (4.1.9)

Notice that it is not necessary the assemblage of the entire matrix, specially the block 3, since stiff-
ness matrices are symmetric. The stiffness matrix of the structure has also a special configuration: it is
a band matrix; this means that the non-zero components of the matrix are confined to a diagonal band.
Thus, it is not necessary neither the computation nor the storage of all its values, only those within the
upper part of the band. In general finite element analysis, where structures with millions of elements are
not uncommon, the consideration of these properties is very important; in framed structures, where tens
of thousands elements are rare, this aspect of the numerical implementation is not so crucial.

4.1.3 Assemblage of the Matrix of Total Forces

Consider a frame element in the local coordinate system of reference as shown in Figure 3. Let {p'},

be the non-expanded contribution of this element to the matrix of total forces in the local system of
reference:

{p"}, = {p""},-[B [ {M’}, =| "7 (4.1.10)

!
Dy,

Figure 3. Frame element subjected to distributed forces

P
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The components of the matrix {p’}can be pre-computed for the most frequent types of distributed
forces; they are included in Table 1 for the particular case of planar frames.

As aforementioned, the forces and moments in {p '}, are expressed in the local system of reference;
in the global system, they are given by:

Table 1. Contributions to the total force matrix for typical cases of distributed forces on an element in
a planar frame

Loading condition Euler-Bernoulli Beams Timoshenko Beams
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{p}, =T, {p"}, 4.1.11)

where [T}, is the geometrical transformation matrix introduced in chapter 3: Equation(3.1.5) for the
planar case and Equation (3.5.6) for the tridimensional one.

This local contribution can be included into the matrix of total forces using the algorithm indicated in
Figure 5 (see also example 4.5.4); in it, the matrix of the element forces is decomposed into two blocks,
the first one includes the forces on node i, the second block those applied on node j (see Figure 4).

Let NL be the position of a component of the matrix {p“}, ; if this position corresponds to one of the

block 1 (node i), then this component must be added to the component NG of the matrix of total forces
{F}, where:

NG = 3i+ (NL—3) (4.1.12)

For the positions of block 2 (node j):

NG =3 j+ (NL—6) (4.1.13)

4.1.4 Penalization Algorithm

In the conventional numerical analysis, there are several methods to solve linear system of equations in
the form [A]{X} = {B}if all the unknown are in the matrix {X}. However the equations obtained by
the direct stiffness method are not in this form since both, the matrix of generalized displacements and
the matrix of generalized forces, include unknowns: respectively the free displacements and the reaction
forces. In order to use the standards algorithms and routines to solve the frame problem, it is therefore
necessary to transform the equilibrium equation [K]{U} = {F}into the standard form. The simplest
method to do so is the penalization algorithm.

Figure 4. Decomposition of the matrix of forces of an element
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Figure 5. Assemblage algorithm for the external forces
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|
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|
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5

&
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|
NG =3i+ (NL-3)

|
F(NG) = F(NG) + p*(NL)

5

Assembly Block 2 of Element Forces

Forces of end j
NL=41t06
|
NG=3j+(NL-6)

Il
F(NG) = F(NG) + p*(NL)

5

Be G a very large number and u; the imposed displacement in a support. This algorithm consists in

modifying the stiffness matrix and force matrix in the following form:
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Kll Klz KU ul Ful
K, « K. +G - K,/|{u}= u.G 4.1.14)
Knl Kli Kll 9/ F’Ql

This manipulation of the system must be repeated for each one of the restricted displacements. Now,
solving u, when G tends to infinite gives:

u G—K u —... —Kiﬂl

u, = Lim =, (4.1.15)

In practice it is sufficient to choose a value for G very large, typically G = 10" 'K .

Once the unknown displacements have been obtained, the reactions can be computed with the un-
modified equilibrium equation.

4.2 STATIC ANALYSIS OF NONLINEAR ELASTIC FRAMES
4.2.1 Step by Step Procedures

Structures are subjected to external actions that are not constant in time. For instance, a building may be
subjected first to service loads, then to the actions of an unusually strong wind and after that, to seismic
forces.

In this section, the problem is again formulated in terms of the same variables but, unlike section 4.1,
they are now considered as functions of time; in this way it is possible to consider the variations of the
external actions in a single analysis. The variables are defined in a time interval that is arbitrarily fixed
between zero and a final instant 7

{U} = {U@®)}:{®}, = {®8(1)},:{P} = {P(t)};{M}, = {M(t)},; )
for 0 <t < T3 {®}, = {®(1)}, 2.

It is postulated that the values of the free displacements, deformations, reaction forces and stresses
are known at the time ¢ = 0.

The kinematic equations, equilibrium equations and constitutive law are now written in the more
general nonlinear form:

{d®}, = [B,(U)],{dU}
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m

[B(U), J,{M}, = {P}

M}, = [E] {®}, +{M"}, (4.2.2)

This problem can be solved using a step by step procedure; this means that the continuum time inter-
val [0,77] is substituted by a set of particular instants chosen by the analyst: (0,7, ¢,, ..... ¢, ... T). Then,
instead of computing the functions (4.2.1), only the values of the variables for these particular instants
are calculated. This algorithm is called step by step because the values are computed sequentially; that s,
the unknowns are first calculated at the instant 7 , then at 7, and so on until that the final time 7'is reached.

The kinematic equation (4.2.2a) is discretized using a finite difference scheme, i.e. this differential
equation is substituted by the following algebraic one:

{A®}, ={®_, -®_, }=[B,(U_ ), {AU} (4.2.3)

In this expression the terms at the instant 7_ are known, they were computed at the precedent step,
and only the values at the instant 7 have to be calculated. Notice that the kinematic transformation matrix
is not known since it depends on the unknown displacements; in the numerical analysis textbooks, this
kind of procedure is called implicit.

Notice that the approximation (4.2.3) improves as the size of the time step (At =t —¢ ) de-
creases; i.e. for tiny time steps, the differential equation (4.2.2a) and the algebraic one (4.2.3) give almost
the same results; on the other hand, large time steps may produce significant differences between both
expressions. The analyst must find a satisfactory compromise between precision and computer cost for
each specific application.

4.2.2 The Nonlinear Incremental Equilibrium Equation in Displacements

In most practical applications, distributed forces on the elements represent the so called service loads;
they are used to characterize the dead weight and the live loads of the structure. Exceptional overloads
such as earthquake forces (in the static equivalent method), settlement of foundations, explosions, wind
loads, and so on, are frequently represented as nodal forces or displacements. Usually, a structure un-
der service loads only does not need nonlinear analysis; on the other hand, overloads may represent a
significant demand on the structure that may require not only nonlinear but inelastic analyses as well.

Starting from this section and in the rest of the book, the distributed forces are assumed to be relatively
small, applied in the first step and kept constant throughout the rest of the analysis. For the subsequent
steps, the constitutive law (4.2.2¢) can be written as:

{AM}, = {M_, -M,_, }=[E]{A®}, =[E][B,(U_ )] {AU}for r>1 (4.2.4)

Substitution of (4.2.4) into (4.2.2b) gives:
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[K(U,_, )J{AU} = {AF(U,_, )} (4.2.5)

where

K(U, )= [BU, , ), LELBU, ), ] {AF} = {B_ } S [BU,, ), LM, , },:

b=1

Notice that Equation (4.2.5) is quite similar to its equivalent in the direct stiffness method except that
the stiffness matrix and the increment of total forces cannot be computed directly since they depend on
the unknown displacements.

4.2.3 Resolution of the Nonlinear Equilibrium
Equation by the Direct Iteration Method

The direct iteration method is a well-known algorithm for solving nonlinear equations. First, a provi-
sional or trial solution {U ,} is chosen by some adequate criterion. Then, approximations of the stiffness
matrices and the increment of total forces are computed using the same assemblage algorithms described
in section (4.1). Next, an improved solution {U, }is obtained by solving the following linear approxima-
tion of (4.2.5):

K(U){U, ~U,_, }={AFU,)} (4.2.6)

This process must be repeated using as provisional solution the improved solution of the previous
iteration. The process can be stopped when improved and provisional solutions are indistinguishable;
when this happens, it is said that the process has converged. Possible convergence criteria can be:

{U,} —{U,} = 0;and/or [K(U){U, - U,_, }—{AF(U,)}=0; 4.2.7)

The left hand term in the second expression in (4.2.7) is called residual forces and corresponds to
the difference between internal and external forces. The exact solution has been found when the residual
forces are equal to zero. Again, the acceptable difference between both solutions in (4.2.7a) and/or the
tolerable values in the residual forces (4.2.7b) must be decided by the user for each specific application.

A flux diagram of this algorithm is shown in Figure 7. See also example 4.5.5.

A graphical interpretation in the case of a structure with only one displacement and without distrib-
uted forces is included in Figure 6. In this figure two iterations are presented. In the first one (Figure 6a)
a trial displacement U, far away from the solution is chosen, then the slope K{( U, ) is computed and the
improved displacement U, is obtained. Notice that the improved displacement is closer to the solution
than the trial displacement. In the second iteration (Figure 6b), the new trial displacement is the improved
one obtained in the precedent iteration. A new slope is computed and a new improved displacement is
obtained and so on.
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Figure 6. Graphical interpretation of the direct iteration method
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Figure 7. Flux diagram of the direct iteration method
ResdinpuEls Solve the problem
[K(UH,)] {Ur=¢, _Ut=t,_1}= {AFQ)}
|
Initialize » =0 Select a provisional solution {Up}
=0 Iteration > Ir=1
not convergence
s and
FEpEd It < Jtnae
Choose tr
| . | {Up} = {U;}
Compute [K(UP)] using the It=It+1
Solve the problem assemblage algorithm 4.2

[K(Ut=t,)]{Ur=t, _Ut=t,_1}= {AFU)} L
[ Define the force matrix {AF(U)} using the

Compute deformations {®,}; using kinematic equation. assemblage algorithm 4.5
Compute stresses {M,.},, using constitutive equation. T

Compute the improved solution {Uy}

] | and {AF(U)} solving the linear equation
f‘””‘e (U} {@,}, (M, [K(U){U; - U, ,} = {AF(U)}

{I,'l } = {L'P }< Tolerance

Then convergence

END

This procedure is not always convergent; i.e. not always “improved” displacements are closer to the
solution than the provisional ones. This may be the case if the size of the time steps (¢ -¢ ) is too large.
Thus, the analyst must establish a maximum number of iterations in order to avoid an infinite loop. If this
limit is reached, it is necessary to restart the process with a smaller time step. Instead of asking the user
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for a new time step, computer programs for nonlinear analysis of structures should have implemented
this process automatically. That is, if the iteration process fails to converge, then the program should
reduce automatically the time step and it should try to solve the incremental equilibrium equation again.
The user can control this process by fixing the reduction percentage of the time step. This process of
time step reduction must be repeated until convergence is achieved. Again, the analyst must establish a
maximum number of time step reductions in order to avoid another infinite loop; if that limit is reached
the program should renounce solving the problem and so inform the analyst. Very often failure of con-
vergence is due to errors in the data of the problem.

If the algorithm converges adequately after a time step reduction, then the program should auto-
matically augment progressively the step sizes until the original value chosen by the analyst is reached.
An algorithm of time steps adjustment is shown in Figure 8. In this figure, fact is the factor of increment
or reduction of the time increment step; naturally fact > 1. At and At _ are the limits established
by the user for admissible time step sizes.

4.2.4 Criteria for Selecting Provisional Solutions

Notice that the first action in the flux diagram of Figure 7b is choosing the first provisional solution;
there are several possibilities for that. The simplest criterion is to choose the last convergent solution;
i.e. let  be the current time step, then: {U,} ={U,_, }.

=ho

A better option is to use a quadratic predictor from the three last steps. Let w! be any component of
the first provisional solution at the instant t, then:

Figure 8. Flux diagram of time steps adjustments

Choose ¢,

Convergence

At=fact. At

Error message

At= At

At= At [ fact

At = Atin
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w’ = at’ +bt +c (4.2.8)

where the parameters a, b, and ¢ are computed by the resolution of the following system of linear equations:

wi(trfl) = a.t271 + b'trfl tc a tf71 t? —1 1 w1 (trfl)

w(t )=at’ , +bt ,+ciie |b|=[2, ¢, 1 |w(t_,) (4.2.9)
2 2

wi (tr—S) = a“trffi + b'trfB +c ¢ tr73 tr%} 1 wi (t7‘*3)

Remember that the precedent values of displacement at times ¢_, ¢ , and 7 _, are already known when
the first provisional solution {U ,} at time ¢ is needed. In the three first steps of the analysis, where three
previous values of displacements are not available, a linear predictor or the last result can be used.

4.2.5 The Newton-Raphson method

The Newton-Raphson method is another well-known iterative algorithm for solving nonlinear equations.
Consider again the equilibrium equation at the instant ¢ :

{L(U_ )} = {P,_ } where {L(U, , )} = Z B(U,.,),1{M(U,_, )}, (4.2.10)

Notice that, as shown in the precedent sections, the internal forces {L(U)} in the left hand term of
(4.2.10) can be expressed as a function of the displacements. In the Newton-Raphson method, the in-
ternal forces {L(U)} are linearized around the provisional solution; i.e. they are approximated by the
closest linear function of displacements:

{LU)}

1é

[2{} (U-Uu,} 4.2.11)

U=U
p

Then the improved solution {U, } is obtained by solving the linear approximation of Equation (4.2.10):

-1
OL OL
{L(U)}glﬁ {U, —UP}—{P}é{UI}—lﬁl {P}+{U,} (4.2.12)
U=u, U=u,
The term |—|is the tangent stiffness matrix of the structure and its computation is described in the

next section; in mathematics textbook, this kind of matrix is called the Jacobian of the operator {L(U)}.
Notice that in the linear case, the Jacobian is equal to the stiffness matrix [K]. A flux diagram of this
algorithm is shown in Figure 9 and a graphical interpretation in Figure 10.

97



Analysis of Elastic Frames

4.2.6 Computation of the Tangent Stiffness Matrix

The contribution of a single element to the internal forces {L(U)} in the non-expanded form is given

Figure 9. Flux diagram of the NewtonRaphson method

= [B(g),{M(a)},

Compute the first | U,,}
using the equation 4.2.8

Compute the intgrnal forces matrix
v, )}

{L(U,) } - {P,} <{Tol}

Compute the Global Tangent Stiffness Matrix

oL
ou U

P

Compute {U,} solving

L | 1
U,-U_ l={p
L‘U]r WU, -U, ;={P}

Assign
i
{Up }={LIJ
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Compute LU p)

b: element
b=1tom

(4.2.13)

Compute the transformation matrix
B(u,)1

1
Compute the stresses ‘:M[UPH
using the constitutive equation

Compute the local internal forces
[B(v,)] tm(u,)}

|

the assemblage algorithm of Figure 4

Assembly the element internal forces matrix into
the global internal forces matrix :I.(UP H using

5

o

Compute the Global Tangent Stiffness Matrix

aL
U],

b: element
b=1tom

”

P

au

[,-([Bu:,,)]'{n(cp)})}

Compute the local tangent stiffness matrix

(use the algorithm described in Figure 4.

Compute the Global tangent stiffness matrix
assembling the local tangent stiffness matrix

2)
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Figure 10. Graphical interpretation of the NewtonRaphson method
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where the column matrix {Q(q)}, has six components for a planar frame member and twelve for a tri-
dimensional one. Therefore, the contribution of the element to the Jacobian in non-expanded form is:

9Q

Jq |,
putation is to use a finite difference approximation; let Q . be any component of the matrix {Q(q)}, and

. This matrix is called tangent stiffness matrix of element b. The simplest procedure for its com-

w, any displacement of the matrix {q},, then:

8 Ui~ Qm (u“ """ ) w] + Aw’ ) - Qm (q)

~ Zuill 42.14
8wj Aw ( )

where Aw is any “small” increment of displacement. Good values for Aw are 10 or 10* times any
typical displacement of the frame.

Once the local tangent stiffness matrix has been computed, it can be assembled into the Jacobian
using the algorithm described in section 4.1.2.

The local tangent stiffness matrix can also be determined in an exact way by carrying out analyti-

0Q

cally the derivatives
dq

b

4.3 DYNAMIC ANALYSIS OF ELASTIC FRAMES

In the case of structures subjected to earthquake loadings, impacts or explosions on a structure, the
external actions are of dynamical nature; this means that the inertial forces are no longer negligible and
must also be taken into consideration. In this case the problem is formulated as follows:
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{d®}, = [B,(U)],{dU}

m

Z[BF]Z M}, + [Mass]{U} = {P}

M}, = [E] {®}, +{M"}, 4.3.1)

The problem is solved using again a step by step procedure. The kinematic equation is also discretized
as described in section 4.2.1 (Equation 4.2.3); but now the equilibrium equation includes the generalized
acceleration matrix {U} . This equation can be discretized using the Constant Average Acceleration
algorithm that is described next.

Consider a component 1 of the generalized acceleration matrix; the history of acceleration is ap-
proximate by a piecewise constant function as shown in Figure 11. Each value of the function is com-
puted as the average of the values at the ends of the actual acceleration function:

U —i—iil:

t=t,
2

13

ii(t)

112

it <t<t 43.2)

Thus, the velocity and displacement at the end of the interval ¢ =~ <¢ <t can be computed after
integration in time of (4.3.2) by:

Figure 11. Approximation of an acceleration history by a piecewise constant function

A
u

[ S ——

: 7:ir-I
t(t)-......].-.

iy poe

_—————_—

sssssssssssSsss =g

\ 4

100



Analysis of Elastic Frames

(4.3.3)

i, = (v, —u, )m—— i, (4.3.4)

Taking into account the nature of the step by step procedure, all the quantities at the instant of time
¢, have already been computed when the structure is analyzed at the instant ¢ ; thus, the acceleration
matrix at that instant can be expressed as a function of the displacement at ¢ by the use of (4.3.4) for
each component of the matrix. Therefore, the discretized form of the equilibrium equation does not
depend on the acceleration but only on the displacements, stresses and external forces at the instant 7 :

(LU, )} = {P,., } where {L(U,_,)} = SO[B(U, ), L {M(U,_,)}, +Mass{B(U,_ )} @35

Notice that the left hand term of (4.3.5) corresponds now to the internal plus the inertia forces. This
nonlinear equation can be solved using the Newton-Raphson method again; the Jacobian matrix does
not correspond to the tangent stiffness in this case because an additional term related to the inertia forces
has to be included. This supplementary term is a diagonal matrix whose components can be computed
easily by the analytical determination of the corresponding derivatives.

Notice that the intervals [z |, 7 ] should be chosen sufficiently small because of the approximations
made to discretize the kinematic and equilibrium equations.

4.4 SUMMARY AND EQUATIONS QUICK REFERENCE

The method of the direct stiffness is obtained by the combination of the linear versions of the kinematic,
equilibrium and constitutive equations. As a result, it is obtained a stiffness matrix and a external forces
matrix. The generalized displacements and reactions can be computed by the resolution of this linear
matrix equation.

A more precise analysis derives from the use of the nonlinear version of kinematic and equilibrium
equations. If such is the case, some numerical algorithm such as the direct iteration or the Newton-
Raphson methods have to be used.

In the case of nonlinear dynamic analysis, a step by step procedure is needed. Then, accelerations
are approximated using values of displacements at the beginning and the end of each step. Again the
Newton-Raphson method is needed to solve the problem (See Table 2).
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Table 2.

THE DIRECT STIFFNESS METHOD

Stiffness Matrix of a Frame and Matrix of Total Forces

Kinematic equation

{®}, = [B],{U} @110

Equilibrium equation
m

[BLL (M}, = (P} + (P} 1n)

b=1

Constitutive equation

{M}, = [E] {®}, +{M’}, @110

Problem to solve:
K|{U} = {F} 412
{U} : displacements matrix [ ]{ }m { } ¢ ) "
[K] : stiffness matrix of the structure [K] = z [B; ]Z [E]b [BOE ]b = Z [kE ]b (4.13a-b)
[k B ] b stiffness matrix of element b b=1 b=1

[kE]b [BOE]Z [E]b[BOE]b (4.1.3¢)

{F} : matrix of total forces {F} = {Pn} + {P‘)} (4.1.4 a)

{Pn} : external forces applied directly on the {Pe} _ {Peq} -Z [B(;; ];) {MO }b @it
b=1

[E]b : elasticity matrix of the element b

nodes;

{PC} : external forces distributed over the The terms {P"} and {Peq} were defined in the previous chapter (section
element 3.2.3)

Assemblage of the Stiffness Matrix of the Structure

: non-expanded stiffness matrix

k],
[k], = [B"},[E],[B"], @15

Assemblage of the Matrix of Total Forces

{p * }b : non-expanded contribution of this p:i
element to the matrix of total forces in the local !
system of reference Dy
e . . . !
{p }b : non-expanded contribution of this element ley Jeq 101t 0oy Py,
to the matrix of total forces in the global system of {p }b - {p }b _[B ]b {M }b - p/ @.1.10)
reference 1;1'
[T]b : geometry transformation matrix p wj
/
Dy,

{p}, = [T {p"}, @11

continued on following page
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Table 2. Continued

STATIC ANALYSIS OF NONLINEAR ELASTIC FRAME

Step by Step Procedures

Variables expressed as functions of time

[U} = {U()} (@}, = {8},

4.2.1)
{P} = {P()}_ (M}, ={(M(t)},, 0<i<T

Kinematic equation

{d®}, = [B,(U)],{dU} (4.2.2a)

Equilibrium equation
m

[B(U),],{M}, = {P}
b=1 (4.2.2b)

Constitutive Law

{M}, = [E] {®}, + {Mo}b (42.2¢)

Kinematic equation discretized using a finite difference scheme

(ae) —{e, -2 )=[B,U._ ) a0}

The Nonlinear Incremental Equilibrium Equation in Displacements

Constitutive law

{AM}b = {Mt:tT - Mt:twl} = [E]b {A@}b = [E]b[Bb (Ut:t' )]b {AU}

sforr>1(4.2.4)

Equation to solve

[K(U,_, ){AU} = {AF(U_, )} 42.5)

K(U,_,)l=>_[B(U,_,),LELBU_),IL:{AF} = {P_} i BU,_ )M, 1

m

b=1

Resolution of the Nonlinear Equilibrium Equation by The Direct Iteration Method

. o 10}
4) Choose a provisional solution . Compute
approximations of stiffness matrices and total

forces. [K(U[)]{U] - Ut:tr,l } - {AF(UI)} =0
5) Determination of an improved solution {UI} {U } — {U } ~(0

solving: ! P (4.2.72)

6) Repeat this procedure using the convergence

criteria:

KU ){U, ~U_, }={AFU,)}

(4.2.6)

(4.2.7b)

Criteria for Selecting Provisional Solutions

Criterion 1: Choose a first trial solution to use the last convergent solution

U)=1{U_ )

Criterion 2: Use a quadratic predictor from the three last steps.

continued on following page
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Table 2. Continued

p
¢ = any component of the first provisional solution at the instant 7,

P_
w! at +bt +c(4.2.8)

The parameters a, b, and ¢ are computed by the resolution of:

w(t )=at’ +bt  +c al (£, t. 1 |w(t )
wt ,)=at’,+bt ,+c;ie b=, t , 1 |w(t )
w(t )=at’ , +bt_ +c el £, t o 1 |w( )
(4.2.9)
L ,zandt are known
The Newton-Raphson Method
Equilibrium equation at the instant ¢,
{L(U,_, )} ={P_, }; where {L(U _, )} = Z MU )3,
; (4.2.10)
Internal Forces
OL
{LU)} = | {U-U,}
8U U=U
e 4.2.11)
-1
OL oL
{LU)} =|—| {U,-U,}={P}={U}= {P}+{UP}
ou| au|,
=Y Y ;(4.2.12)

oL
{U}

: tangent stiffness matrix

Computation of the Tangent Stiffness Matrix

: Improved solution

Internal forces in the non-expanded form

{Q(Q)}b = [B(q)]:{M(q)}b (4.2.13)

an N Q (u,.... W, + Aw,...)
8w‘7 Aw

{Q(a)},

w, = any displacement of matrix {q}b
Aw = any small increment of displacement (10 or
10** times any typical displacement of the frame).

2Q
dq |,

- Q. (q)

(4.2.14)

Q,, = any component of matrix

oL
ouU
o)

a b : Tangent stiffness matrix of element b (contribution of the element b to the jacobian in non-expanded form)

is obtained by the assemblage of

continued on following page
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Table 2. Continued

DYNAMIC ANALYSIS OF ELASTIC FRAMES

Kinematic equation formulated in the nonlinear form

{d®}, = [B,(U)],{dU}

S [B, ]/ {M}, + [Mass| {7} = {P}
b=1 4.3.1)
M}, = [E], {@}, + (M},

Mass]{U} :

Inertial forces = [

{ } = generalized acceleration matrix

Discretization using the Constant Average Acceleration algorithm

u(t) ~ ﬁt:t, + ’iit:tH

N 2 o ST 30
Velocity and displacement at the end of the interval t"*l <t< tT

2

U= %WH + i, ); where At=t —t su_ = u_, + At i, + ATt(u'i:t
(43.3)
Acceleration at the end of the interval
L4 da,_,
Uy = INE (ut:t’k o ut:zH) o At U

434

The problem is solve by a step by step procedure:
All the quantities at the instant ¢, are known when the structure is analyzed at the instant 7 .
Discretized form of the equilibrium equation:

LU, )} ={P_)

4.3.5)

m

(LU, )} = SO[BU, ), 1{M(U,, )}, + Mass{O(U,_, )}

4.5 EXAMPLES

4.5.1 Analysis of a Two Span Continuous Euler-Bernoulli Beam
Shown in Figure 12 using the Direct Stiffness Method

The matrices of generalized displacements and nodal forces are, respectively,

105




Analysis of Elastic Frames

Figure 12. Two-span beam

»
»

7
800kN Material Properties:
1 E = 2.39x10°N/m? j%ﬁ
\ v =0.20 S
\ \
\ X 0.50
N 15 &E\§ 0
; 0'75@ 5.,00m @ o
1 1 A Cross-section
Z
800000,w,
Ra,o R83}0
Rubo 1 l2 3 Ru3,0 <
A | | —
R wbo Rw3, 0
O Rul
0 Rwl
0 R91
u2 O
{U} = |w, |;{F} = [—800000 wsh
02 0
0 u3
0 w3
0 R03

where u,, w, are the horizontal and vertical displacements at the node 2 and 0, is the rotation of the same
node; R ,R , R o Ru3, Rw3 and R 43 Are the reaction forces at the ends 1 and 3. Notice that in this case

there are no forces over the element, then {F} = {P"} :

ul’> “twl?

For element 1 between nodes 1 and 2, the expanded transformation matrix is computed by Equation
(3.1.13):

0 —-1333 1 0 1333 O

00 0
{B“EL: 0 —1.333 0 0 1333 1 0 0 0 (4.5.2)
1 0 01 0 0000
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And the elasticity matrix is calculated using Equation (3.3.11):

3.983210° 1.992210° 0
[EL: 1.992710°  3.983z10° 0 (4.5.3)
0 0 4.780210°

Using Equation (4.1.3c): [k, ], = [B}][E],[B}],, it is obtained the expanded stiffness matrix for

element 1
4.78x10’ 0 0 -4.78 710’ 0 0 0 0 0
0 2.12210°  —7.97210° 0 —2.12210° —7.97210° 0 0 0
0 —7.97210°  3.98x10° 0 7.97210°  1.99z10° 0 0 0
-4.78 10’ 0 0 4.78 210’ 0 0 000
k,| = 0 —2.12210°  7.97210° 0 2.12210° 797210 0 0 0
0 —7.97710°  1.99z10° 0 7.97010°  3.98<10° 0 0o o #5D
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

For element 2 between nodes 2 and 3, the expanded transformation matrix is:

0 0 —-02 10 02 0
0 0 —02 0 0 02 1 (4.5.5)
0 -1 0 01 0 O

B:, =

o O O
o O O

And the elasticity matrix is:

5.9752107  2.988z107 0
[EL — [2.9882107 5.975107 0 (4.5.6)
0 0 7.170210°

Using Equation (4.1.3c¢), it is obtained the expanded stiffness matrix of the element 2:
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0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 71710° 0 0 —7.17 10° 0 0
=10 0 0 0 717 10° —1.79z10° 0 2717 10°  —1.792107
kp, ) w0 @57
000 0 —1.79210"  5.97x10’ 0 1.79210"  2.99z10°
0 0 0 —71710° 0 0 7.17 10° 0 0
0 0 0 0 -7.1710°  1.79z10° 0 7.17 10°  1.79210°
0 0 0 0 —1.79210"  2.99z10° 0 1.79210"  5.97x10°
The stiffness matrix of the structure is obtained as the sum of [k,], and [Kk,],,
4A78x109 0 0 -4.78 109 0 0 0 0 0
0 2.121109 77.971108 0 72.1273109 77.9773108 0 0 0
0 77.97z108 3‘98x1()8 0 7.97%108 1.99315108 0 0 0
-4.78 1()9 0 0 5.5 109 0 0 77.171‘108 0 0
[K] = 0 72121-109 7971-108 0 241395'109 779:1:108 0 77.171'106 71.79x107 (458)
8 8 8 8 7 7
0 —7.97210 1.99210 0 7.79210 4.58x10 0 1.79210 2.99210
8 ) 8
0 0 0 —7.17210 0 0 7.17210 0 0
0 0 0 0 77.171106 1.7937;1()7 0 Tl?xlOG 1.79;01()7
0 0 0 0 —1479:):107 2.9991:107 0 1.791:107 5981:107

Free displacements and reactions forces are obtained solving Equation (4.1.2) [K]{U} = {F}

u, =0, w, =-9.9040z10"" m, 0, =1.6837210"° rad

2

R =0, R =176272210° N, R = —4.5369z10" N.m,

u

R,=0, R, =37281210" N, R  =6.8053z10" N.m 4.5.9)

u3 w

Now, the generalized deformation matrices are computed using Equation (3.1.12): {®}, = [B} ] {U}
and the generalized stress matrices by Equation (3.3.10): {M}, = [E] {®}, :

108



Analysis of Elastic Frames

—0.001320 —4.5369 z 10° 0.00188 1.1835 2 10°
{®} =| 0.00036 |{M} =|-1.1835 z 10°|{®} = |0.00020|{M} = 0.6805 z 10’ (4.5.10)
0 0 0 0

In Figure 13, it is shown the vertical displacement along the beam length. In Figure 14a, it is shown
the moment diagram which is drawn in the side of the beam subjected to tension and in Figure 14b, the
shear forces diagram. The shear forces are computed by considering static equilibrium of the element
subjected to moments mf and mf

b b
proyr oy = T
1 ] L

b

(4.5.11)

4.5.2 Analysis of a Two Span Continuous Timoshenko Beam
Shown in Figure 12 using the Direct Stiffness Method

The matrices of the generalized displacements and nodal forces matrices are the same of the previous

example (see Equation 4.5.1). The expanded transformation matrices of elements 1 and 2, [BOEL and

[B%L, are the ones shown in Equations (4.5.2) and (4.5.5).

For element 1, the elasticity matrix is computed using Equation (3.4.11):

Figure 13. Vertical displacements (along the beam length)

L (m)
N NS S . .

0.001-

0.0015
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Figure 14. (aMoment diagram (b) Shear forces diagram

M (N-m) V(N)
GO0000 -
300000
200000 4000001
100000
200000
ol
100000 0
0 1 2 3 4 5 0 1 2 3 4 5
L (m) L (m)
2.441210°  4.4972107 0
[EL: 4.4972107  2.441210° 0 (4.5.12)
0 0 4.780210°

The expanded stiffness matrix is obtained by the Equation (4.1.3c) using the expanded transforma-
tion matrix (4.5.2)

4.78x10° 0 0 -4.78 10° 0 0 0 0 0
0 1.03710"  —3.85210° 0 —1.03210" —3.85z10° 0 0 0
0 —3.85210°  2.44x10° 0 3.85210°  4.50z100 0 0 0
-4.78 10’ 0 0 4.78 10’ 0 0 0 0 0
k] = o —10310" 385010 0 1.03210°  3.85210° 0 0 0 4.5.13)
0 —3.85210"  4.50210° 0 3.85z10°  2.44x10° 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
For element 2, the elasticity matrix is:
5.870z10° 2.882z107 0
[E| =|2.8822107 5.870210° 0 (4.5.14)

0 0 7.17210°

And the expanded stiffness matrix is obtained from Equation (4.1.3c) using the expanded transfor-
mation matrix (4.5.5)
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0 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 7.1710° 0 0 —7.17 10° 0 0
[kE], =0 0 0 0 7.0010°  —1.75210 0 —7.00 10° —1.75210" 45.15)
0 0 0 0 —1.75210"  5.87x10’ 0 1.75210°  2.88z10°
0 0 0 —71710° 0 0 7.17 10° 0 0
0 0 0 0 —7.0010°  1.75210° 0 7.00 10°  1.75210
0 0 0 0 —1.75210"  2.88210° 0 1.75210"  5.87x10’
Then, the stiffness matrix of the structure is [K] = [k EL + [k EL:
4.78}(109 0 0 -4.78 1()9 0 0 0 0 0
0 LOSIIO9 73.851108 0 71.031109 73.8511()8 0 0 0
0 73.8511()8 2,44)(1()8 0 3.85z1()8 4.5()%1()7 0 0 0
-4.78 109 0 0 5.5 109 0 0 77.171108 0 0
[K] = 0 71.031109 3.85315108 0 1.03z109 3.68z108 0 77.001106 71.751107
0 73.85z108 4.50310107 0 3468151()8 3.03)(108 0 1.75315107 2.881107
0 0 0 77.171108 0 0 7.17315108 0 0
0 0 0 0 77.001106 1.751107 0 7.()01:106 1.75951(]7
0 0 0 0 71.751-107 2.881-107 0 1.75)1*1()7 5.8795107
(4.5.16)

Solving Equation (4.1.2): [K]{U} = {F} the displacements and reaction forces are obtained:

u, =0, w,=-1361 2z 107 m, 02 =1.6537 z 10~ rad

2

R =0, R =76152210° N, R, =-4.5025 210" N.m

R,=0, R, =38476 210’ N, R =7.1490 z10° N.m (4.5.17)

The matrices of generalized deformations and generalized stresses are:
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—0.00181 —4.5025 z 10° 0.00193 1.2089 = 10°
{®} =|-0.00016{M} =|-1.2089 z 10" |{®}, =|0.00027{M}, = |0.7149 z 10’ (4.5.18)
0 0 0 0

In Figure 15 it is shown the vertical displacement along the beam length, in Figure 16a the diagram
of moments and in Figure 16b the corresponding shear force one.

Notice that the vertical displacement of node 2 is larger with the Timoshenko model (37%). However,
the differences in the diagrams of moments and shear forces do not exceed 1%.

4.5.3 Assemblage of the Stiffness Matrix for the Frame
Shown in Figure 17 using Timoshenko Theory

For element 1 between nodes 1 and 3 the non-expanded transformation matrix is:

0.16 -0.12 1 —-0.16 0.12 0
B J,=10.16 —-0.12 0 —-0.16 0.12 1 (4.5.19)
-06 —-08 0 0.6 0.8 0

The elasticity matrix is computed using Equation (3.4.11):

5.84210"7 2.88z107 0
[EL: 2.887107 5.842107 0 (4.5.20)
0 0 7.16210°

Figure 15. Vertical displacements (w) along the beam length
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Figure 16. a) Moment diagram; (b) Shear forces diagram
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0 1 2 3 4 5 0 1 2 3 4 3
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Figure 17. Planar Frame subjected to several external loads

Material Properties:

100 N/m - 5
, %??_I\i/in ¢ ¢ l L ¢ ¢ ¢ ¢ ¢ soon  E=239x10"" Nim
K 4 v =0.20
2.0m 0.30m
7/__ ___________________ pusssmssmasann '
3 i 0.50
. z z
E : i Cross-section
i/ 3.0m fl/ 4.0m i/
A / /A

The stiffness matrix is:

2.62210°  3.41z10°  1.40210" —2.62z10° —3.41210° 1.402107
3.412z10°  4.62210° —1.05210" —3.41210° —4.62210° —1.05210"
[k] _ 1.40210" —1.05210" 5.87z10° —1.40210" 1.05z10°  2.88z107 @521)
1 1-2.62210° —3.41210° —1.40210" 2.62z10°  3.41210° —1.40z10° o

—3.41210° —4.62210° 1.05z10"  3.41z10°  4.62z10°  1.05z107

1.40210"  —1.05z10" 2.88z10" —1.40z10" 1.05z10"  5.87z107

The assemblage of the matrix [kL in the stiffness matrix of the structure [K] results in:
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2.621‘108 3.4156108 1.40%107 0 0 0 72.621'108 73.411108 1.401‘107

0 0
3.41210° 4620100 1052100 0 0 0 3412100 —4.62210° —1.052100 0 0
1402107 —1.05z100 5872100 0 0 0 —1.40210"  1.05z100 28810 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

[K]: 8 8 7 8 8 7
—2.62210°  —3.41210° —1.40z10° 0 0 0  2.62210 3.41210°  —1.40z10° 0 0
—341210°  —4.62210° 1052100 0 0 0 3412100 4622100 1.05z100 0 0
1402107 —1.052107  2.88210° 0 0 0 —140210°  1.05210° 5872100 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
For element 2 between nodes 2 and 4 the transformation matrix is:
05 0 1 =05 0 0
B°],=(05 0 0 —05 0 1
0 -1 0 0 10
The elasticity matrix is computed using Equation (3.4.11):
1.35210°  6.00210° 0
[EL: 6.00210" 1.35z10° 0
0 0 1.79210°
The stiffness matrix is:
9.76210" 0 9.75210°  —9.76x10" 0 9.75210"
0 1.79210° 0 0 —1.79210° 0
[k] 9.75210" 0 1.35210°  —9.75210" 0 6.01210°
2 |—9.76210 0 —9.75210"  9.76210" 0 —9.75210"
0 —1.79210° 0 0 1.79210° 0
9.75210" 0 6.01210"  —9.75z10" 0 1.35210°

(4.5.22)

(4.5.23)

(4.5.24)

(4.5.25)

The assemblage of the matrix [kL in the stiffness matrix of the structure [K]results in (See Box 1):

For element 3 between nodes 3 and 4 the transformation matrix is:
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0 —025 1 0 025 0
B°],=/0 —025 0 0 025 1 (4.5.27)
-1 0 01 0 O

The elasticity matrix is:

7.24210"  3.54210° 0
[EL: 3.542107 7.24210 0 (4.5.28)
0 0 8.95710°

The stiffness matrix is:

8.95210° 0 0 —8.95210° 0 0
0 1.35210"  —2.702107 0 —1.35210" —2.702107
[k} _ 0 —2.70210"  7.24z10" 0 2.70210"  3.542107 (4.5.29)
3 |—8.95210° 0 0 8.95210° 0 0 o
0 —1.35210"  2.70z10" 0 1.35210"  2.70z10"
0 —2.70210"  3.54z107 0 2.70210"  7.242107

The assemblage of the matrix [kL in the stiffness matrix of the structure [K]results in (See Box 2):

4.5.4 Analysis of the Frame Shown in Figure 17 using
Timoshenko Theory and the Direct Stiffness Method

The matrices of generalized displacements and nodal forces for the frame are, respectively,

0 Ru1
O Rurl
0 Rﬁ1
0 Ru2
O Rw?
0 , R
U= | [i{P}= 52 4.5.31)

3

w, 0
03 0
u, 200
w, 0
94 0
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Note that there are distributed-loads along the elements 1 and 3 thus, it is necessary the computation
of equivalent nodal forces and moments. The nodal equivalent forces in local coordinates are calculated
using Table 1, then for element 1 between nodes 1 and 3 it is obtained:

0
—112.793
125.732
0
—262.207
—186.768

"} = (4.5.32)

To transform {p "}, to the global coordinate system, it is used the Equation (4.1.11). The geometri-
cal transformation matrix for this element is computed using Equation (3.1.5):

06 08 0 0 0
—-08 0.6 0 0 0
0 0 1 0 0 0
T="16 o 0 06 080 (43.35)
0 0 0 —-0.8 06 0
0 0o 0 O 0 1
Then, the equivalent nodal forces expressed in global coordinates are:
90.234
—67.676
125.732
= 509766 i
—157.324
—186.768

The expanded equivalent nodal forces matrix is:
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90.234
—67.676
125.732

P} = (4.5.35)

209.766
—157.324
—186.768

0
0
0

For element 3, between nodes 3 and 4 the equivalent nodal forces are:

0
—200
. 133.333
), = 0 (4.5.36)
—200

—133.333

The expanded equivalent nodal forces matrix is:

o O O o o o

{P}, = 0 (4.5.37)

—200
133.333
0
—200
—133.333
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For this element, the local coordinate system coincides with the global one, thus: {p’}, = {p*“},
The nodal forces {F} are:

R, +90.234
R, —67.676
R, +125.732

u2

R

w2

)= () P = 538)

—357.324

—53.434
200
—200

—133.333

Solving Equation (4.1.2): [K]{U} = {F}, where [K]has the expression (4.4.31), the following dis-
placements and reaction forces are obtained:

u, = 74616210 m, w, = —6.0237210" m, 0, = —8.9667210 " rad,
u, =7.1372210° m, w, = —1.7376210"" m, 6, =2.1006z10"° rad
R, =-9336N, R =3135388 N, R, =—319.3363 N.m,
R, =-490.6639 N , R, =311.4611 N, R, = —569.1077 N.m (4.5.39)

Now, the generalized deformation matrices are computed using Equation (3.1.11): {®} = [B"], {q}, ,

where [B"], [B"],, [B’], have,respectively, theexpressions (4.5.19),(4.5.23)and (4.5.27); {q},,{a},. {a},
are the displacement matrices for elements 1, 2 and 3.

—1.917210°° —3.569210°° 5.658 107"
{®}, =|—-2.813210"° |;{®}, = |—1.468210°|{®}, = | 3.563 2 10° (4.5.40)
—3.420210°7 —1.738z107" —3.243 z 107"

120



Analysis of Elastic Frames

The matrices of generalized stresses are obtained by Equation (3.3.10): {M}, = [E],{®} where

[E],, [E],, [E],have, respectively, the expressions (4.5.20), (4.5.24) and (4.5.28):
—319.3363 —569.1077 33.6245

(M}, = | —33.6245 | {M}, = |—412.2201|{{M}, = | 412.2201 (4.5.41)
—245.229 —311.4611 —290.6639

In Figure 18 it is shown the deformed shape of the frame.
In Figure 19 it is shown the shear forces diagram and in Figure 20 the moment diagram.

4.5.5 Analysis of the Cantilever Column Shown in Figure 21
Including Nonlinear Effects using the Direct Iteration Method

The problem is solved using two steps with increments of force equal to 50 KN each one. It is supposed
that at r = O the free displacements, deformations, reaction forces and stresses are nil.

In the first step, the increments of the generalized displacements and nodal forces of the element
are, respectively,

Figure 18. Deformed frame
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Figure 19. Shear forces diagram

88.5388
0.8854
490.6639
179.4078
311.4612
3.6110 m 490.6639
195.5921
Figure 20. Moment diagram
412.2201
0.8854
> 4122201

72.8201

151.5220

569.1077
319.3363
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Figure 21. Cantilever column

Z
100 KN
100 KN . .
:
—p Material Properties
E =2.39x10!° Nm?
v=0.20
5.00m LELL
0.30mI
Cross-Section
v X
] g
O Rutl
O thl
fau}= | 3 [ar} = {o ) - )= |
|Auf ~ U g ") 1 50000
Aw —50000
AO 0

It is chosen the provisional solution:

(4.5.42)
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{U}= (4.5.43)

£ o o o
S © © o © o

> 8

=

In order to consider the nonlinear effects, the element length and the sine and cosine are computed as:

. . ] S+ w u
L=\Ju +5B+w) =5:sina= L =lcosa=-L=0 (4.5.44)
p P L L

Then, the transformation matrix is:

02 0 1 —02 0 0
BU,)|=l02 0 0 02 0 1 (4.5.45)
0 =10 0 10

And the elasticity matrix using Euler-Bernoulli theory is:

5.975002107  2.987502107 0
[E]: 2.98750210"  5.975002107 0 (4.5.46)
0 0 7.17000210"

The stiffness matrix of the structure is computed as [K(U, )] = [B(U, )|'[E][B(U, )] (See Box 3)
ThedisplacementsandreactionforcesareobtainedsolvingEquation(4.2.5) [K(U, )[{AU} = {AF(U, )},
where {AF(U, )} is (4.5.42b).

Au = 0.027894 m, Aw = —0.00006973 m, A§ = 0.008368 rad
R, =-50000 N , R =50000 N, R, =—250000 N.m (4.5.48)

The actualization of the displacements gives:
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Box 3.
0.71722107 0 0.1793210° —0.7172210" 0 0.1793210°
0 0.7170210° 0 0 —0.7170210° 0
K(U 0.1793z10° 0 0.5975210° —0.1793z10° 0 0.2988210°
| '1)] 071722107 0 —0.1793210°  0.71722107 0 —0.1793210°
0 —0.7170210° 0 0 0.7170210° 0
0.1793210° 0 0.2988210°  —0.1793210° 0 0.5975210°
(4.5.47)
0 0 0 0
0 0 0 0
{U} {U}+{AU} 0 0, 0 0 4.5.49)
wf T e |0 0.02789 | | 0.02789 (4.
w, 0| |—0.00006973 —0.00006973
0, 0 0.008368 0.008368
The convergence criterion used is:
u —u g (W, — W 3 (91‘—9 3
LI <107%;——2{ <107 and |——2| <10~ (4.5.50)
ut wt t
. . . . .. . ut - up wt - wp |0f - 0}) _3
In this first iteration, it is obtained |— = | = |- =1.00>10".
EekEae

t

All these values are larger than the tolerance; then, it is necessary continue with the iterations in
order to obtain an accurate result. For the second iteration, it is chosen as provisional solution the values
obtained in the first one, thus:

0

0

0

0.02789 (4.5.51)

—0.00006973
0.008368

{U,}=

125



For this iteration:

L =5.000008 m, sina=0.99998, cosa = 0.005578

Analysis of Elastic Frames

with the new values for L, sin «vand cos «, the transformation matrix is:

2.00z10"  —1.11z10° 1.00 —2.00z10°"
B(U )]=| 2.00z10 "' —1.11z10°* 0 —2.00z10"
[B(U,

—5.58210* —1.00 0  5.582107°

The stiffness matrix of the structure is:

0.7192.v107 0.3960.E107 0.1792:v108 70,7192.1107 70,3960.1107

7 9 4 7 9
0.3960210 0.7170210 —9.9999210 —0.3960210 —0.7170210
8 4 8 8 4
0.1792210 —9.9999210 0.5975210 —0.1792210 9.9999210

KU, )] =

1 7 7 8 7 7
—0.7192210 —0.3960210 —0.1792210 0.7192210 0.3960210

70439601107 70.71701t109 ,9‘9999.10104 043960m107 07170.70109

0.1792:th8 79,9999:t104 0A2988x108 70.1792x108 9‘9999%104

The following displacements and reaction forces are obtained solving Equation (4.2.5):

A = 0.02804845076 m, Aw = —0.0002258248590 m, Af = 0.008414768649 rad

ut,

The resultant displacements are:

0
0
0
0.02804845076
—0.0002258248590
0.008414768649

o o O©

)= {uf+{av}=|, =

o O O O O O
+

The convergence criterion checking, gives:
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1.11z10% 0
1.11z210™* 1.00
1.00 0

0.1792210°
~9.9999210"
0.2088¢10°
~0.1792710°

9.9999.10104

(15975910108

R, =-50000 N, R =50000 N, R =-251391.2134 N.m

0
0
0
0.02804845076
—0.0002258248590
0.008414768649

(4.5.52)

(4.5.53)

(4.5.54)

(4.5.55)

(4.5.56)
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0 —0

t P t p b P

=5.51210"° > 10°; =0.69 >107; =0.55210% < 10°* 4.5.57)

Thus, the iterations must continue. For the third iteration, it is chosen as provisional solution the
values obtained in the second one,

0
0

0

{UP} | 0.02804845076 (4.5.58)

—0.0002258248590
0.008414768649

In this case:

L =4.99985 m,sin o = 0.999984, cos a = 0.0056099 (4.5.59)
The transformation matrix is:

2.002z10" —1.122z10° 1.00 —2.00z10" 1.11z10°* 0
B(U )= 2.00z10" —1.12z10°* 0 —2.00z10""' 1.11z10™* 1.00 (4.5.60)
t
—5.61z107° —1.00 0 5.61210°° 1.00 0

The stiffness matrix is:

0.7193x107 0.3982x107 0.179230108 —0.7193w107 —0.i’>9823v1()7 0.179230108
7 9 4 7 9 4

0.3982210 0.7170210 —10.0560210 —0.3982210 —0.7170z10 —10.0560210
8 4 8 8 4 8

0.1792210 —10.0560210 0.5975210 —0.1792210 10.0560210 0.2988z10

K(U, )] =
1 7 7 8 7 7 8

—0.7193210 —0.3982210 —0.1792210 0.7193210 0.3982210 —0.1792210

70.3982‘1107 70.71701’109 10.05603:104 0.398258107 0.7170:L’109 10.0560x104 (4561)
8 . 4 8 8 4 8

0.1793z10 —10.0560210 0.2988210 —0.1792210 10.0560210 0.5975210

Solving Equation (4.2.5), the following displacements and reaction forces are obtained:
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Ay = 0.0280m, Aw = —0.0002267 m, A = 0.008415 rad

R, =-50000 N , R, =50000 N, R, =—251391.1317 N.m (4.5.62)
Then,
0 0 0 0
0 0 0 0
0 0 0 0
vl lulafami=| _ 4563
{u,}={u,}+{av} u, 0 7| 0.02805 0.02805 (4363
w, 0| [-0.0002267| |-0.0002267
0, 0| | 0.008415 0.008415

The convergence criterion checking, gives:

0 -6

u —u
i P

i P

w o —w
/l P

=3.16210" < 10™; = 3.81210" > 107; =-3.25210" <10”° (4.5.64)

U
/’l

w
/'A

1

In order to improve the value of the vertical displacement, the process is repeated once again. For
the fourth iteration, the provisional solution is:

0
0
U, } = 0 4.5.65
(U} = 0.02805 (4.5.65)
—0.0002267
0.008415
In this case
L =4.99985 m, sina = 0.999984, cos a = 0.0056097 (4.5.66)

The transformation matrix is:

2.00z10°"  —1.12210° 1.00 —2.00z10" 1.12210° 0
[B(U, )] =1 2.00z10" —1.12210° 0 —2.00z10"" 1.12210”° 1.00 (4.5.67)
—5.61210~" —-1.00 0 5.61z10°° 1.00 0
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The stiffness matrix of the structure:

071932107 0.3982210°  0.1792210°  —0.7193210°  —0.3982¢107  0.1792¢10°
7 9 4 7 9 4
0.3982z10 0.7170z10 —10.0560210°  —0.3982z10°  —0.7170z10° —10.0560z10
8 4 8 8 4 8
0.1792z10 —10.0560z10 0.5975210 —0.1792210°  10.0560z10 0.2988z10
[K(Uﬁ = 7 7 8 7 7 8
—0.7193210 —0.3982210 —0.1792210 0.7193210 0.3982210 —0.1792210 (4.5.68)

—0.3982&n107 —0.7170.’)3109 10.0560.%104 0.3982.%107 0.7170.7:109 1().05’)6016104

0.1793:17108 710.056Ox104 0.29881:108 —0.17921'108 10.05601:104 0.59751:108

Solving Equation (4.2.5), the following displacements and reaction forces are obtained:

Au = 0.02804754924 m, Aw = —0.0002266840291 m, Af = 0.008414762972 rad
R, =-50000 N , R =50000 N, R = —251391.0438 N.m (4.5.69)

The resultant displacements are:

0 0 0 0
0 0 0 0
0 0 0 0
{U } - {U } N - (4.5.70)
b f u, 0 0.02804754924 0.02804754924
w, 0 —0.0002266840291 —0.0002266840291
9t 0 0.008414762972 0.008414762972

The convergence criterion is checked again:

u o —u w, —w ] ' Hrf(-)P
‘ = 5222107 < 10%;|— =221210" < 107;|—

U w
'w 'w 'A

= —3.50210" < 10°° 4.5.71)

It is not necessary to continue with the process since the three displacements satisfy the convergence
criterion.
The displacements and reactions at the final of the first step are:
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0 —50000
0 50000
0 ~951391.0438
{U,}={U }+{av} = 0.02804754924 {F} = 50000 (45.72)
~0.0002266840291 ~50000
0.008414762972 0

The deformations and stresses at the final of the step are:

—0.00560984 —251391.0438
{®,} = [B(U,)] {Utl} = 0.00280492 |;{M, } =[E] {® } =|  0.00000 4.5.73)
—0.00006934 —49718.72938

In the second step, the increments of the generalized displacements and nodal forces of the element
are, respectively,

0 R

ut

0 R

wt,

. —251391.0438
AU} = AAF  ={P L —BU )'{M {=| " [=[BU )| 0.00000 (4.5.74)
{au} {ar}={p } - B0 {m }

Au 100000
—49718.72938
Aw —100000

Af 0

As provisional solution it is chosen the displacements obtained at the final of the step 1.

0
0
0
U= 1 000804751924 @.5.75)
—0.0002266840291

0.008414762972

In this case

L =4.99985m, sina = 0.999984, cos a = 0.0056097 (4.5.76)

The transformation matrix is:
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2.00z107"  —1.12z10° 1.00 —2.00z10" 1.12210° 0
[B(U, )] =|2.00z10" —1.1210" 0 —2.00z10"" 1.122107 1.00 (4.5.77)
—5.61210~" —1.00 0  5.61z107° 1.00 0

The stiffness matrix of the structure is computed as [K(U, )] = [B(U, )] [E][B(U, )]

2 2 2

0.7193%107 0.3982I107 0.179210108 —0.719320107 —O.3982w107 0.1792x108
7 9 4 7 9 4
0.3982z10 0.7170210 —10.0560210 —0.3982210 —0.7170z10 —10.0560210
8 4 8 8 4 8
0.1792210 —10.0560210 0.5975210 —0.1792210 10.0560210 0.2988z10
K(U, )] =
o) 7 7 8 7 7 8
—0.7193210 —0.3982210 —0.1792z210 0.7193z10 0.3982210 —0.1792210

—0.3982210°  —0.7170210°  10.0560z10° 039822107 0.7170210°  10.0560z10°

0.1793210°  —10.0560z10%  0.2088210°  —0.1792210°  10.0560210°  0.5975210° (4.5.78)
and the increment of the forces {AF} is
ut, R, ; + 50000.00008
R, R, — 49999.99989
2 —251391.0438 2
B ¢ | Ry, " _|Ry, +251391.0438
{ar} = {PtZ } ~[B(U, )] {M ! } = 2 |~[B(U, )| 000000 | =70t (4.5.79)
100000 _A49718.72938 49999.99992
—100000 —50000.00011
0 0

The following displacements and reaction forces are obtained with the resolution of Equation (4.2.5):

Ay = 0.02804754917 m; Aw = —0.0002266839468 m; Af = 0.008414762941 rad

R, =—100000N,R , =100000N, R, = —502782.0867 N.m (4.5.80)

ut,

The displacements are:
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0 0 0 0

0 0 0 0

0 0 0 0

{U }:{U }+{AU}: = 4 _
¢, t “t 0.02804754924 0.02804754917 0.05609509841 (4.5.81)
w, —0.0002266840291|  [—0.0002266839468|  |—0.0004533679759
2
6, 0.008414762972 0.008414762941 0.01682952591

The convergence criterion checking, gives:

0 -0

I,l P

w —w

i P t P

= 0.49999 > 107; = 0.49999 > 10°; =0.49999 > 10"° (4.5.82)

w
/'1

Thus, it is necessary to continue with the iterations. Taking the final displacements of the first itera-
tion as provisional solution:

0
0
U} = 0 4.5.83
(U} = 0.02789400279 (4.5.:83)
—0.00006973500697
0.008368200837
The new length, sina and cosa are computed:
L =4.999861317 m, sin o= 0.9999370613, cos a = 0.01121933087 (4.5.84)
With these values, the transformation matrix is:
2.007107"  —2.24210° 1.00 —2.00z10°" 2.24210° 0
[B(U, )] =] 2.00210 " —2.24z10° 0 —2.00z10"" 2.24z10° 1.00 (4.5.85)

2

—1.12710* —1.00 0 1.12210°° 1.00 0

The stiffness matrix of the structure is:
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0.7260210" 0.7963210" 017920105 —0.7260210°  —0.7963210"  0.1792210°
0.7963210" 071692107 —20.11122107  —0.7963210"  —0.7169210°  —20.1112210"
017922105 2011122107 059752105 —0.1792210°  20.1112210°  0.2088210°
KU, )] =
b 072602107 —0.79632107  —0.1792210°  0.7260z10°  0.7963z10'  —0.1792210°
(4.5.86)
—0.7963210"  —0.7169210° 2011120107 079632107 0.7169210°  20.1112410%
017920105 2011122107 0.2088210°  —0.1792210°  20.1112210°  0.5975210°
The increments of the forces are:
R, +49718.62794
R, —50279.70366
R +251391.0438
{aF) = (4.5.87)
50281.37206
—49720.29634
0
Solving Equation (4.2.5), the following displacements and reaction forces are obtained:
Au = 0.02835628328 m, Aw = —0.0003867166206 m,Af = 0.008507887161 rad
R, =—100000N,R =100000N,R, = —505564.1727 N.m (4.5.88)
The resultant displacements are:
0
0
U U, t+{au} 0 4.5.89
{ tz}_{ n}+ ~ | 0.05640383252 (4:5-89)
—0.0006134006497
0.01692265013

The convergence criterion checking, gives:
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0 —06

w —w
t p t » t »

= 5.4742107 > 10*%; =0.2609 >10% = 0.5503 2107 < 10 (4.5.90)

w

t

1 1

Therefore, it is required to continue with the iterations again. For the third iteration, it is chosen as
provisional solution the values obtained in the second one, then

0

0

0
{u,}= 0.05640383252 (4.5.91)
—0.0006134006497

0.01692265013

The new length, sina and cosa are computed:

L =4.999704767 m, sin o = 0.9999363626, cos = 0.01128143263 (4.5.92)
With these values, the transformation matrix is:

2.00z10" —2.23z10° 1.00 —2.00z10' 2.23z10° 0
[B(U, )] =| 2.00210"" —2.23210° 0 —2.00210"" 2.23z107° 1.00 (4.5.93)
—1.1221072 —1.00 0 1.13z1072 1.00 0

The stiffness matrix of the structure is:

0.7261$107 0.8007$107 0.17921108 —0.726110107 —0.8007.17107 0.1792$108
7 9 4 7 9 4

0.8007z10 0.7169210 —20.2231z10 —0.8007x10 —0.7169210 —20.2231z10
8 4 8 8 4 8

0.1792210 —20.2231210 0.5975210 —0.1792210 20.2231x10 0.2988210

K(U, )] =
9 7 7 8 7 7 8

—0.7261x10 —0.8007z10 —0.1792210 0.7261z10 0.8007z10 —0.1792210
7 9 4 7 9 4

—0.8007z10 —0.7169210 20.2231210 0.8007z10 0.7169210 20.2231210 (4,5,94)
8 4 8 8 4 8

0.1792210 —20.2231210 0.2988210 —0.1792210 20.2231210 0.5975210

The increments of the forces are:
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R, +49717.07943
R, —50282.80913
R,, +251391.0438
AF} ="
aF) 50282.92057 (4.5.95)
—49717.19087
0

Solving Equation (4.2.5), the following displacements and reaction forces are obtained:

Avu = 0.02835703041m, Aw = —0.0003884776480 m,Af = 0.008508384923 rad

R, =—100000N,R , =100000N, R, = —505579.0434 N.m (4.5.96)

ut,

The resultant displacements are:

0
0
0
{v}={uv}+{av}= 0.05640457965 (4.5.97)
—0.0006151616771
0.01692314790

The convergence criterion checking, gives:

— 1.325210° > 107, 3 3

= 2.863z10 ° >10";

! p‘ = 2941210 ° <1073 (4.5.98)

In order to improve the vertical displacement, other iteration is required. Again, it is chosen as pro-
visional solution, the values obtained in the former iteration, thus
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0

0

0
{u.}= 0.05640457965 (4.5.99)
—0.0006151616771

0.01692314790

The new length, sina and cosa are computed:

L =4.999703015 m, sin a = 0.9999363608, cosa = 0.01128158602 (4.5.100)
With these values, the transformation matrix is:

2.00z107"  —2.26710° 1.00 —2.00z107" 2.26x10° 0
[B(U, )] =|2.00210"" —2.26210° 0 —2.00210"" 2.26210"° 1.00 (4.5.101)
—1.132107° —1.00 0 1.132107° 1.00 0

Figure 22. Planar frame
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The stiffness matrix of the structure is:

0.7261.@107 04800730107 0.1792$108 70.7261x107 70.8007x107 0.1792.@108
7 9 4 7 9 4
0.8007x10 0.7169210 —20.2234210 —0.8007z10 —0.7169210 —20.2234210
8 4 8 8 4 8
0.1792210 —20.2234210 0.5975210 —0.1792210 20.2234x10 0.2988210
K(U, )] =
2 7 7 8 7 7 8
—0.7261210 —0.8007z10 —0.1792210 0.7261210 0.8007210 —0.1792210

70.800735107 70.716995109 20.22343v1()4 0.80073&107 0.716910109 20.22343r1()4

017922100 —20.2234210%  0.2088210° 017924105 20.2234210 0.5975210° (4.5.102)
The increments of the forces are:
RM + 49717.08933
R —50282.81695
R, +251391.0438
{aF) = (4.5.103)

50282.91067
—49717.18305
0

Figure 23. Planar frame
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Solving Equation (4.2.5), the following displacements and reaction forces are obtained:

Ay = 0.02835700909 m, Aw = —0.0003884817364 m, Af = 0.008508381520 rad

R, = —100000N, R =100000N, R, = —505579.0434N.m (4.5.104)

ut,

The resultant displacements are:

0
0
0
{U’z} B {Uﬂ } +{av} = 0.05640455833 (4.5.105)
—0.0006151657655

0.01692314449

The convergence criterion checking, gives:

t D
L P 70T < 10— P 0650100 < 107 2| = 020101076 < 1073
ut wt at
(4.5.106)
Therefore, the final displacements and nodal forces are:
0 —100000
0 100000
0 —505579.0434
ul=1u {= F! = 4.5.107
{ } { t2} 0.05640455833 { } 100000 ( )
—0.0006151657655 —100000
0.01692314449 0
And the final deformations and stresses are:
—0.01128225190 —505592.8849
{tI)t‘ } = [B(Ut )] {Ut’ } =1 0.00564089259 ;{Mn } =[E] {(I)t‘ }=| —13.9432 (4.5.108)
—0.0000212062599 15204.88835

As shown, the bending moment at the free end has a value of -13.9432 with is negligible compared
with 505592.8849.
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4.6 PROBLEMS
4.6.1 Planar Frame Subjected to Several Force
Solve the frame shown in Figure 22 using Timoshenko theory and the direct stiffness method.
4.6.2 Assemblage of the Stiffness and the Total Forces Matrices
For the frame shown in Figure 22, assemble the stiffness matrix and total forces.
4.6.3 Analysis of a Cantilever Column
Solve the cantilever column shown in Figure 19 using the Newton-Raphson method.
4.6.4 Analysis of a Planar Frame Considering Nonlinear Effects

Solve the frame shown in Figure 23 by the direct iteration method, using any algebraic manipulation
program.

4.6.5 Analysis of a Planar Frame Considering Nonlinear Effects

Solve the frame shown in Figure 23 by the Newton-Raphson method using any algebraic manipula-
tion program.

4.6.6 Tridimensional Stiffness Matrix

Deduce the stiffness matrix corresponding to the tridimensional case using any algebraic manipula-
tion program.

4.6.7 Algorithms of Assemblage

Generalize the algorithms for the assemblage of the stiffness and total forces matrices (sections: 4.1.2
and 4.1.3) to the tridimensional case.

4.7 PROJECTS

4.7.1 Write a Program Based on the Direct Stiffness Algorithm Using Any Computer Programming
Language (Fortran, Visual Basic, Matlab, Maple, Pascal, Python, Etc.)

4.7.2 Generalize the Program Written in Section 4.7.1 including the Analysis of Nonlinear Frames
Using the Direct Iteration Method

4.7.3 Generalize the Program Written in Section 4.7.1 including the Analysis of Nonlinear Frames
Using the Newton-Raphson Method

4.7.4 Generalize the Program Written in Section 4.7.3 to the Tridimensional Case
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Chapter 5

Fundamental Concepts
of Plasticity

ABSTRACT

This chapter introduces some fundamental concepts of plasticity that are used in Chapter 6 to formulate
the concept of plastic hinge and in Chapter 7 to describe elasto-plastic models for frames; in the pres-
ent one, only the uniaxial behavior of the material is considered. In this chapter, the key concepts of
perfect plasticity, yield function, and plastic hardening are introduced. The two alternative formulations
for plastic hardening, isotropic and kinematic, are discussed in detail. Plasticity is presented as a way
to mathematically represent the experimental behavior of ductile materials; the limits of plasticity for
describing reality are also established.

5.1 EXPERIMENTAL BEHAVIOR OF DUCTILE MATERIALS

Consider again the example of the paper clip used in chapter 1. The loading process consists in imposed
displacements that represent the actions of the paper sheets on the clip (see Figure 1). If a limited number
of pages is used, the clip recovers its initial form once they are removed. If the clip is used with an exces-
sive number of sheets, it will not recuperate its original shape. It is evident that a computer analysis that
does not predict structural modifications or deterioration of the clip, no matter how many paper sheets
are used, is not very useful. That would be the case if only elastic analyses of the paper clip are carried
out: no permanent deformations can be predicted in that case.

Elastic models as the ones described in chapter 3 should be used with extreme precautions and always
with some elastic limit criterion at hand. If that limit is exceeded, then more sophisticated models are
needed. This chapter describes a step in that direction; the elasto-plastic models differ from the elastic
ones because they consider the possibility of permanent deformations, as the ones that occur when an
excessive number of pages are held together.

Figure 2 shows the experimental response of a metallic specimen during a tension test with unloading:
the specimen is stretched in a testing machine so that the material is subjected to the strain history shown

DOI: 10.4018/978-1-4666-6379-4.ch005
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Figure 1. Paper clip as a structure
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Figure 2. Experimental behavior of a metallic specimen in a mono-sign test
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in Figure 2a. This kind of tests is called mono-sign traction test in this book. Notice that the number and
the instant of the unloadings are arbitrarily fixed by the experimenter. The behavior of metallic materials

observed in these tests is summarized in table 1.
Notice that during the test, the material behavior changes with the loading: first, it is elastic and then

permanent strains appear; this is called plastic behavior. The strength to plasticity grows with permanent
strains and then decreases; the material stiffness is first constant and then starts to decrease with large

plastic strains.
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Table 1. Phenomena observed during mono-sign tests

a) | Existence of a zone that can be characterized as linear elastic

b) | Presence of plastic strains; i.e. strains that do not disappear after unloading if a limit in stress is reached

c) | Zone of constant elasticity modulus

d) | Zone of plastic hardening, which is an increase in the elastic limit with plastic strain

e) | Existence of an ultimate or maximum stress

f) | Zone of plastic softening or strength degradation; i.e. a decrease in the elastic limit with plastic strain

g) | Zone of stiffness degradation; i.e. a decrease of the elastic modulus with plastic strain

h) | Existence of a maximum or failure strain

€690 €6 9

The goal of plasticity theory is to model some of these behaviors, specifically phenomena “a” to “e”.
The rest of them are taken into account in the framework of the theory of damage mechanics described
in chapter 9.

5.2 ELASTO-PERFECT PLASTIC CONSTITUTIVE MODEL
5.2.1 Idealization of the Mono-Sign Test

The elasto-perfect plastic model idealizes the behavior of metallic specimens in mono sign tests as shown
in Figure 3. This idealization takes into account only phenomena “a”, “b”, “c” and “e” in Table 1.

In this model, there is a zone of elastic behavior while the stress does not reach the elastic limit o, i.e.
strains are reversible in that case. When the stress reaches the elastic limit o,, the material starts yielding
with constant stress; i.e. permanent strains appear. The value ¢ is called yield stress.

During any elastic unloading, stress and strain decrease following straight lines of slope E. The remain-
ing strain for a o equal to zero is the plastic strain value ¢ . If a reloading process follows the unloading,

Figure 3. Elasto-perfect plastic model

o
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the strain stress points continue in the same straight line until the elastic limit o is reached again, then
the material starts yielding once more.

5.2.2 Elasticity Law

It is now necessary to express the behavior represented in Figure 3 in mathematical language. Notice
that a single mathematical relationship such as ¢ = o(¢) cannot describe it since an indefinite number
of stresses can correspond to a given strain value: one for each elastic unloading. As aforementioned,
during a mono-sign test, the number and occurrence of elastic unloadings is arbitrary; therefore, in
plasticity, stress does not depend on the current strain value exclusively (as in elasticity) but on the his-
tory of strain. An elasto-plastic constitutive equation must describe this relationship.

In this chapter, a general procedure called “method of the local state” is used to describe constitutive
equations that involve strain or deformation histories. This method assumes that the effects of the history
of strains on the material can be registered in a set of additional parameters, called internal variables;
these are a record of the modifications experienced by the material. The values of the internal variables
indicate how the material will react to future loading. The state of the material is characterized by the
current values of the strain and the internal variables. Thus, instead of using the history of strain, the
constitutive equations are written in terms of the current values of stress, strain, internal variables, and
its increments.

A first step in the method of the local state is the introduction of the internal variables that define
unambiguously the current value of stress; i.e. the set conformed by strain and the internal variables
must be related to a unique value of stress. The equation that relates those variables is called elasticity
law. The elasticity law describes the equation of the branches of unloading/reloading shown in Figure 3.

In order to characterize a straight line, only two parameters are needed, one is the slope of the line
which in this case is the constant elastic modulus; the second one is its intersection with the horizontal
axis which in this case is variable: the plastic strain. Plastic strain is, therefore, the first internal variable
in plasticity and the corresponding elasticity law is:

oc=EEe—¢) (5.2.1)

However, the elasticity law does not represent by itself a constitutive equation since the current val-
ues of the internal variables are not a priori known. New equations that complement the elasticity law
are thus needed; they are called evolution laws of internal variables and, usually, they are expressed as
differential equations.

5.2.3 Plastic Strain Evolution Law and Yield Function

The perfectly plastic model states that there is no plastic strain if the stress is less than the yield stress.
In mathematical language this can be expressed as:

de, =0if f(0) <0 (elastic behavior)

5.2.2
f(o)=01if de, =0 (plastic behavior) ( )
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where

flo)=lo] o, <0 (5.2.3)

Equation (5.2.2) is the plastic strain evolution law, the term f{o) in (5.2.3) is called yield function.
The yield function can only be negative or nil since the stress value cannot exceed the yield stress in
the perfectly plastic model. The first line in Equation (5.2.2) indicates that there is no increment of the
plastic strain if the absolute value of the stress is less than the yield stress; the absolute value of the stress
is used because plasticity can appear in compression as well as in traction. This first line corresponds to
an elastic behavior of the material. The second line in (5.2.2) states that stress, in absolute value, has to
be equal to the yield stress if there are increments of the plastic strain; this line corresponds to a plastic
behavior of the material.

The elasticity law (5.2.1), the plastic strain evolution law (5.2.2) and the yield function (5.2.3) form
the constitutive equations of the perfectly plastic model; i.e. this set of equations defines a unique re-
lationship between the stress value and the history of strain. The elastic modulus and yield stress are
properties of the material and are considered data of the problem.

5.2.4 Example

Consider the strain history that is shown in Figure 4; it can be considered as a loading history chosen
by an experimenter for the test. The goal of this example is to obtain the corresponding stress history
according to the perfectly plastic constitutive equations.

The strain history consists, first, in a loading with constant strain velocity m up to the time ¢,; the
instant 7_corresponds to the first time when the material experiences plasticity; then an elastic unload-
ing, at constant velocity m too, is carried out until zero stress is reached at the instant 7,; a second and
final loading, with the same velocity, ends at the instant z,; during this interval, the material experiences
plasticity again at some instant 7 .

The analysis is carried out step by step. The first step corresponds to the time interval 0 <¢ <t .In

this step, the material behaves elastically; thus, the first line of Equation (5.2.2) applies:

de =0=¢ =0 (5.2.4)
P P

The elasticity law (5.2.1) gives now the value of the stress:

o= Fe=FEmt (5.2.5)

The behavior remains elastic while the yield function is negative. Thus, this step ends when:

o
flo)=0-— o, =0 for t=t_; therefore ¢t = I;n ; (5.2.6)
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Figure 4. History of strain
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The histories of stress and plastic strain defined by expressions (5.2.4) and (5.2.5) are shown in
Figure 5a.

The second step corresponds to the interval? < ¢ <t . It is assumed that the behavior in this step
is plastic; thus the second line in the evolution law (5.2.2) applies:

flo)=0=0=0, (5.2.7)

The elasticity law (5.2.1) can now be used to compute the plastic strain:
o
=mt——+ (5.2.8)

The histories of stress and plastic strain of the first and second steps are shown in Figure 5b.
The third step corresponds to the interval ¢, <1 < t, . Since this is an unloading, it is assumed that
the behavior in this step is elastic; thus the first line in the evolution law (5.2.2) applies:

g
de =0=¢ =ml —— (5.2.9)
P P E

And the elasticity law (5.2.1) can be used to compute the stress:
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o-l
o=FE(E—¢)=E(-mt+e + EJ) (5.2.10)

The third step ends with the total unloading of the specimen (¢ = 0); thus, the instant 7, is:

o o
o= E(—mt+¢ +—L) =0 for t =t ; therefore t, = Sy ; (5.2.11)
E ’ " m  Em

The histories of stress and plastic strain (5.2.9) and (5.2.10) are shown in Figure Sc.
The fourth step (¢, < ¢ <t ) corresponds to the elastic reloading, thus the first line of the evolution
law and the elasticity law give again:

de, =0=¢ =mt ——;0=Ele—¢)=Emt—¢)—o, (5.2.12)
This elastic part of the reloading ends when the yield function is equal to zero:
g 20
f(o)=0—0 =0 for t =t; therefore, t =+ + —2 (5.2.13)
Y ‘ C m  Em

The histories of strains, stresses and plastic strains in this interval are shown in Figure 5c.
The last step is the plastic part of the reloading (¢, < <, ); the second line of the evolution law
and the elasticity law lead to:

flo)=0=0=0;e =c——=mt—3 (5.2.14)

Uy

E E

At time 7, the history of the variables ends.

Notice that the adequate choice of the evolution law line allows for the computation of one variable:
the plastic strain if the behavior is elastic or the stress if the behavior is plastic; the elasticity law gives
the remaining variable. The set composed by the elasticity law (5.2.1), evolution law of the plastic strain
(5.2.2) and the yield function (5.2.3) represent, indeed, a constitutive equation.

The combination of the strain and stress histories shown in Figures 5c permits the construction of
the stress as a function of strain curve that is shown in Figure 6; notice that, in fact, it corresponds to
the perfect plastic idealization.
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5.3 ELASTO-PLASTIC MODEL WITH LINEAR ISOTROPIC HARDENING
5.3.1 Idealization of the Mono-Sign Test

As aforementioned, the perfect plasticity model considers only some of the phenomena listed in Table
1. In this section, a new plasticity model that takes into account the plastic hardening effect is presented.
In the case of the so called linear hardening, the experimental behavior in a mono-sign test is idealized
as shown in Figure 7.

5.3.2 Constitutive Equations

Notice that this new model does not change the representation of branches of the elastic unloading/
reloading; therefore the same elasticity law applies in this case. The general form of the plastic strain
evolution law is also kept unmodified. However in the perfect plastic model, the elastic limit is constant
and equal to the yield stress. This cannot be the case anymore; in the new model the elastic limit aug-
ments with the plastic strain. As the transition from the elastic behavior to the plastic one depends on
the yield function, this has to be modified. The new model has the following general form:

|de, = 0if f(o,p) <0 (elastic behavior)

= FE(e — 5.3.1
’ (E-e); f(o,p)=01if de =0 (plastic behavior) (>3.1)
with the yield function:
flo.p)=lo] (o, +cp) <0 (5.3.2)

Figure 6. Stress as a function of strain in the example
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Figure 7. Elasto-plastic model with linear hardening
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In this yield function, the elastic limit corresponds to the term (au + c.p) where c is a material pa-

rameter (as it is the yield stress or the elastic modulus) constant and positive; and p is a variable that
measures the total amount of plasticity experienced by the material. The variable p can be defined in
two different ways. The first one is the accumulated plastic strain that can be interpreted as a “plastic
odometer”. The new evolution law for p is in this case:

dp = ‘dsp‘ (5.3.3)

Notice the variable p always increases with plasticity no matter the sign of the plastic strain, in the
same way as the mileage in an odometer can only increase regardless driving northward or southward.

A second alternative is the use of the maximum plastic strain; the corresponding evolution law for
p is in this case:

dp =0 if
‘EZZ‘ ) plif‘d2L<0p; or p= Mcw‘s:p‘ (5.3.4)

Equation (5.3.4a) indicates that the variable p does not increase if the plastic strain is less than the
current value of p; and p cannot be less than the plastic strain. A much simpler way to describe this evo-
Iution law is indicated in Equation (5.3.4b): the variable p at a time ¢ is equal to the maximum absolute
value of the plastic strain during its history up to that instant.

The variable p has to be always positive since in uniaxial compression as well as in uniaxial tension
tests, the hardening represents an increase in the elastic limit.
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Thus, in this model, a new internal variable was introduced: the accumulated plastic strain or the
maximum plastic strain. Although p is not included in the elasticity law, it is an internal variable since
it is necessary to define the nature of the material behavior: elastic or plastic.

Notice that even if the stress can now have larger values than the yield stress, the yield function is
still negative or nil.

Consider, as an example, a monotonic loading; i.e. a history of constantly increasing values of strains
from zero to some final value and no unloading. During the elastic part of the behavior:

€, = 0 and 0 = E¢ (5.3.5)

In the plastic part:

(5.3.6)

o D Eo,
p=¢ =0=0 +cC€ ;€ =e——=0= e+
p Y p’p E E+C E+C

Equations (5.3.5-5.3.6) give the stress as a function of strain that is represented in Figure 8; this curve
is called envelope of the model. The model (5.3.1)-(5.3.2) is indeed a mathematical representation of
the idealization of Figure 7. The model is said to have linear isotropic hardening because the strength
increment over the yield stress, i.e. the hardening term Q(p)=c.p, is a linear function of p.

5.4 ELASTO-PLASTIC MODEL WITH NONLINEAR ISOTROPIC HARDENING
5.4.1 Constitutive Equations

On one hand, the model described in the previous section represents an improvement with respect to
the perfect plastic one because it takes into account plastic hardening; on the other hand, it loses the
capacity to establish an ultimate stress value: the plastic branch increases the stress indefinitely. The
goal of the model in this section is to improve the preceding ones taking into account phenomena “a”,
“b”, “c”, “d” and “e” of Table 1 simultaneously; i.e. it will include plastic hardening and the existence
of an ultimate stress resistance as well.

In this model the same elasticity law (5.3.1a), the same two internal variables ( €, and p) and internal
variable evolution laws (5.3.1.b and 5.3.3 or 5.3.4) are used; however the yield function is now modified
in the following way:

f(o,p) =|o| = (o, + Q(p)) < 0 where Q(p) = (0, =0, )(1 =) (54.1)

The new elastic limit is the term (aq + (o, — o, Y1 —e )) ;where o_and aare constant and positive

material parameters, specifically o 1is the ultimate stress or last strength of the material.
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Figure 8. Envelope of the elasto-plastic model with linear isotropic hardening
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5.4.2 ldentification of the Material Parameters

Notice that the elastic limit in this model is equal to the yield stress at the beginning of a plasticity pro-
cess (p = 0) and tends exponentially to the ultimate stress o when the plastic strain tends to infinity.
The rapidity of the transition between o, and o depends on the value of parameter a. The envelope of
this model is shown in Figure 9a.

Another interpretation of the parameter a can be given as follows. Consider the part of a monotonic
loading with plastic deformation, then:

f=0- (% +(0, —0,)(1- 6)) —0s e (5.4.2)

g —0
u y

Taking logarithms in both sides of Equation (5.4.2b) leads to:

In(e, —0)=—ae, +In(o, —0,) (5.4.3)

Therefore, the parameter «a is the slope of the resulting line in a graph of In(o, — o) vs. €,as shown
in Figure 9b.

The material parameters can be easily identified in a mono-sign test. Notice that the parameter « is
related to the hardening velocity as it is shown in Figure 10.

The example 5.9.1 shows how to plot a curve strain vs. stress using this model and a spreadsheet.
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Figure 9. a) Envelope of the elasto-plastic model with nonlinear isotropic hardening b) In(o, — o) vs.
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5.5 ELASTO-PLASTIC MODEL WITH LINEAR KINEMATIC HARDENING

5.5.1 The Bauschinger Effect

Reversal of loading often has a devastating effect on structures as, for example, in earthquakes; thus the
study of the behavior of materials under such conditions is very important. The most significant test
for this purpose is the cyclic test in which the specimens are subjected to traction and compression suc-
cessively, usually the maximum and minimum strain of each cycle increases. Figure 11 shows a typical
result for a metallic specimen in a cyclic test.

In the first cycle, as in mono-sign tests, a zone of plastic behavior with hardening follows to an elastic
one; when the load is reversed and stress changes the sign, the same sequence is observed but the elastic
limit appears to be significantly lower. Then, the process of plastic hardening restarts and the elastic limit
recovers its initial value and even increases it. If the loading is reversed again, the same events repeat:
elastic unloading, elastic reloading and plastic behavior with hardening; but once more, the elastic limit
is much lower than the previous one. This phenomenon: decrease of elastic limit in compression when
there has been a plastic hardening in traction, and vice versa, is called Bauschinger effect.

The perfect plastic model cannot describe this effect since the elastic limit is always constant; nor can
the models with isotropic hardening because once the elastic limit increases in traction the same effect
appears in compression and vice versa (see Figure 12).

5.5.2 The Elastic Domain

The elastic domain of a material is defined as the set of stress values such that the material behavior is
elastic. In mathematical language this is written as:

o) f<0 (5.5.1)
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Figure 10. Increase of hardening velocity with parameter a
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Equation (5.5.1) is read as follows: the elastic domain is the set of stress values so that the yield
function is strictly negative.

In the theory of plasticity, it is said that the elastic domain is always an open convex set. In the uniaxial
case, this means that the elastic domain can be expressed as a single open interval in the stress axis, i.e.:

o|L, <o<L, (5.5.2)

where L, is the inferior limit of the elastic interval and LSup is the superior limit. For instance, in the
perfect plastic model the elastic domain is given by: o | —0,<0<o0, since for any stress value great-
er than minus the yield stress and less than the yield stress, the yield function is negative.

In the case of perfect plasticity, the elastic domain is invariant; that is its inferior and superior limits
are unvarying because the yield stress is constant.

In the models with isotropic hardening the elastic domain is: o | — (ay +Q( p)) <o < (ay +Q( p)) ;

where Q(p) = c.pin the case of linear hardening and ((p) = (0, — o, )(1 — e *") for nonlinear harden-
ing. In this case, the elastic domain is not invariant: it depends on the amount of plasticity experienced
by the material, but the interval can only increase its boundaries.

The size of the elastic domain Sz, is defined as the difference between the maximum and minimum
limits of the elastic domain:

Sz = L (5.5.3)

sup inf
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Figure 11. Stress vs. strain in a cyclic test on a steel specimen
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Figure 12. a) Simulation of a cyclic test with the perfect plastic model b) Simulation of a cyclic test with
the model of plasticity with nonlinear isotropic hardening
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For instance, in the perfectly plastic model, the size of the elastic domain is: Sz = 2.01/ , which is con-
stant. In models with isotropic hardening, the size of the elastic domain is not constant and it can only
increase: Sz = 2.(07/ + Q(p)).

The center of the elastic domain, Ct, corresponds to the mid-point of the interval: o /L. <o <L

sup

and it is given by:

L. +L,,
Ct = PT (5.5.4)

In all the models described so far the center of the elastic domain is always constant and equal to
zero: Ct = 0; i.e. even if the elastic domain is growing up, its center does not move across the stress
axis.

The Bauschinger effect can now be explained in a very simple way: it corresponds to displacements
(instead of growth) of the elastic domain in the stress space; when the elastic domain moves in the posi-
tive direction of the stress axis, there is an increment in the tensile elastic limit and simultaneously a
reduction of the compression one; if the elastic domain displaces in the negative direction, the opposite
effects are observed.

The goal of the models with kinematic hardening is the characterization of this movement.

5.5.3 Constitutive Equations
The elasticity law is not related with the characteristics of the elastic domain, only with the elastic branches
of unloading/reloading; thus, the expression (5.2.1) is still used. The general form of the evolution law

of the plastic strain is also the same, except that the yield function depends now on the plastic strain
directly, instead of the variable p:

de, =0if f(o,e ) <0 (elastic behavior)

= F(e — 5.5.5
? S f(o,e,)=0if de = 0 (plastic behavior) ( )
with the following expression for the yield function:
floe) = ‘a - c.sp‘ ~0,<0 (5.5.6)

where c is a material parameter as in the model of isotropic hardening.
Notice that the new elastic domain is now given by: o | —0,+ce, <o <o tce; its size is

Sz = 2.0, , as in the perfectly plastic model, but its center is not longer equal to zero: Ct = ce, . There-

fore, for positive plastic strains, the elastic domain displaces in the positive direction of the stress axis
and vice-versa. The simulation of a cyclic test with this model is presented in Figure 13.
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Notice that isotropic hardening is obtained by including a term Q outside the absolute value in the
yield function; for kinematic hardening, the additional term is placed inside the absolute value; i.e. an
additional term within the absolute value modifies the position of the elastic domain center; an outside
term changes its size.

5.6 ELASTO-PLASTIC MODEL WITH NONLINEAR KINEMATIC HARDENING

The drawback of the model described in the previous section is the same as in the model with linear
isotropic hardening: it loses the description of the effect “e” in table 1 (the ultimate stress resistance).

[IPR1} 69

A model that includes the phenomena “a” to “e” and the Bauschinger effect is:

de, = 01if f(o,z) <0 (elastic behavior)

e, 5.6.1
o (e &€, f(o,2) =0 if de, =0 (plastic behavior) ( .
where

f(o)=lo—a|-0,<0 (5.6.2)

The new internal variable x is called kinematic hardening stress or back stress. The evolution law of
the back stress is given by:

dz =a((0, - 0,)de, —z.|de ) (5.6.3)

Notice that for x equal to zero, the position of the elastic domain center displaces in the positive di-
rection of the stress axis if the plastic strain increments are positive and vice versa. For positive plastic
strain augmentations, the back stress increments tend to zero as this variable tends to (o, — ay) ; there-

fore the total stress o can never be greater than o . For negative plastic strain, the back stress increments
tend to zero as x tends to —(o, — ay) , therefore the stress o can never be less than —o .

A cycle using the plastic model with nonlinear kinematic hardening gives the behavior indicated in
Figure 14.

The improvement in the representation of the material behavior requires an increment of the com-
plexity of the models as can be noticed comparing Figures 14 and 13 with 11.

The example 5.9.2 shows how to plot a curve strain vs. stress using an algebraic manipulation pro-
gram and a spreadsheet.

An analogy between mathematical modeling of physical phenomena and art can also be noticed;
the models can be seen as “paintings” of the material behavior observed in the experimental tests. In
structural analysis, mathematical language is used to describe a physical phenomenon in a way not too
different as painting or sculpture is used to represent a person, landscape or object. A model is just a
representation and never an exact explanation of the actual phenomenon which is infinitely complex.
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Figure 13. Material behavior according to the elasto-plastic model with linear kinematic hardening
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Figure 14. Material behavior according to the elasto-plastic model with nonlinear kinematic hardening
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5.7 ELASTO-PLASTIC SHEAR STRESS-STRAIN RELATIONSHIP

Consider a thin walled cylindrical tube of average radio, R and thickness e subjected to torsion as shown
in Figure 15. This can be considered as an isostatic problem; i.e. its stress distribution does not depend
on the material behavior. The shear stress in the structure is approximately constant and can be computed
by considering equilibrium of moments around the axis of the tube; the angular shear strain in the solid
elements of the tube is also constant and can be determined from kinematic considerations (see section
2.5). They can be computed as a function of the moment and torsion rotation as:
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Figure 15. Thin walled cylindrical tube subjected to torque force T

Figure 16. Shear stress vs. angular shear strain in aluminum
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et . _F0 (5.7.1)
2em R? L

where 7 is the shear stress, y is the angular shear strain or distortion; 7 is the torque, ¢ is the angle of
twist and L is the length of the element (see Figure 15).

Thus, the experimental behavior of a material subjected to shear effects can be observed and mea-
sured in a test with this kind of specimens. Figure 16 shows the experimental results corresponding to
an aluminum specimen represented in a graph of distortion vs. shear stress.

Notice that this is the same kind of behavior observed in the tension tests; thus, similar models can
be used to describe the behavior under shear stresses:

dy,=0if f(7,p,z ) <0 (elastic behavior)

Gl ) 5.7.2
T (v 'Yp)v f(r,p,z)=0 if dy, =0 (plastic behavior) ( )

where 7, is the plastic angular strain and G is again the transverse elastic modulus. The shear yield func-
tion f may have isotropic and/or kinematic hardening terms:

f(rp,e)=|r—=|-(r, +Qp,)) <0 (5.7.3)

where 7_is the yield shear stress, that is assumed to be a material property and the hardening terms x,
and Q(p ) may have the linear or nonlinear expressions already defined. The material parameters have
not the same values in the o-¢ relationship than in the 7—y one.

5.8 SUMMARY AND EQUATIONS QUICK REFERENCE

The most important inelastic phenomena in ductile materials can be identified in uniaxial tests. Those
are: presence of permanent strains, plastic hardening, stiffness degradation and plastic softening or
strength degradation.

In order to model the inelastic behavior, the equations relate histories of displacements and general-
ized deformations with histories of external forces and generalized stresses. The simplest way to describe
this kind of relationship is introducing internal variables that describe the modification of the state of
the material. Next, the constitutive equations are divided into two sets of relationships: the elasticity law
and the evolution law of the internal variables.

The simplest model is called perfectly plastic. In this model only one internal variable is introduced:
the plastic strain. The evolution law is defined using a yield function. The perfectly plastic model is
characterized by a maximum constant stress.

In order to describe those inelastic phenomena two concepts were introduced: the size of the elastic
domain and its position. The subsequent models describe the hardening process. They are denoted as
elasto-plastic models with isotropic and kinematic hardening. In the first one the size of the elastic
domain increases with plastic strains. The kinematic hardening model displaces of the elastic domain.

Finally, the elasto-plastic shear stress-strain relationship is presented (See Table 2).
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Table 2.
ELASTO-PERFECT PLASTIC CONSTITUTIVE MODEL
Idealization of the Mono Sign Test
Elasticity law oc=El—¢)c2

Plastic Strain Evolution Law and Yield Function

Plastic strain evolution law
de, =0 if f(o) <0 (elastic behavior)

f(o)=0if dsp = 0 (plastic behavior) (522

Yield function

flo)=lo|—0, <0623

ELASTO-PLASTIC MODEL WITH LINEAR ISOTROPIC HARDENING

Idealization of the Mono Sign Test

Constitutive Equations

Elasticity law
oc=E(E- 5p) (5.3.1a)

Plastic strain evolution law
de, =0 if f(o,p) <0 (elastic behavior)

5.3.1b
f(o,p)=0if de, = 0 (plastic behavior) G310

Yield function

flo,p) = ‘U‘ - (ay +ecp) <0632

Evolution law for p, the accumulated plastic strain

dp = dep‘ (5.3.3)

Evolution law for p, the maximum plastic strain
dp = 0 if ep‘ <p
‘sp‘:pif dp = 0

or p= Max‘sp‘ (5.3.4)

Envelope of the elasto-plastic model with linear isotropic hardening with a monotonic loading:
During the elastic part of the behavior

€, = 0 and 0 = Fe(53.5)

In the plastic part
o cl Eo,
p=¢ =0=0 +CE ;€ —E——=>0= €+
u Y L E EF+ec E+c

(5.3.6)

continued on following page
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Table 2. Continued

ELASTO-PLASTIC MODEL WITH NONLINEAR ISOTROPIC HARDENING

Constitutive Equations

Elasticity law

oc=FEE—¢)
?’ (52.1,53.1a)

Plastic strain evolution law

de, = 0if f(o,p) <0 (elastic behavior)
flo,p)=0if de, =0 (plastic behavior)

(5.3.1b)
Evolution law for p, the accumulated plastic strain
dp = |de
Pl (533)

Evolution law for p, the maximum plastic strain

dp=0if | e ‘ <p

oy or p= Max‘e ‘
‘8,?‘:p1fdp¢0 r
! (5.3.4)

Yield function
fo:) = o]~ (0, + QW) <0 Q) = (0, o)1 =)

Identification of the Material Parameters

g o
The rapidity of the transition between Y and ~ * depends on the value of parameter a.
From the yield function

—ae o —0 —ae
f=o0—loc +(c —c)l—-e ")|=0=>—"—-=¢ "
y u y
o —0
“ Y (542
In(o, —0)=—ae, +1n(o, —0,) 543
Parameter « is the slope of the resulting line in a graph of

1n(o-“ N U) Vs. 81’.

Elasto-plastic model with kinematic hardening

The Bauschinger effect can be explained in a very simple way: when the elastic domain moves in the positive direction of the stress
axis, the elastic limit increases in traction and, simultaneously, decreases in compression; if the elastic domain displaces in the negative
direction the opposite effects are observed.

The Elastic Domain
Elastic domain of a material
ol f<0 5.5.1)
o| L, <o<L_ 552

L, ;- inferior limit of the elastic interval
L., is the superior limit

Size of the elastic domain, Sz

Sz= L_ -L
sup inf (5.5.3)

continued on following page
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Table 2. Continued

Center of the elastic domain, Ct

Ct — Lsup + Linf

2 (5.5.4)

Constitutive Equations

Elasticity law

pu— E —_
7 (8 €p) (5.55a)

Plastic strain evolution law
de, = 0if f(o,e ) <0 (elastic behavior)

f(o,e )=0if de = 0 (plastic behavior)
! ! (555b)

Yield function

flo,e ):‘a—c.e ‘—aq <0
» » y (5.5.6)
¢: material parameter

ELASTO-PLASTIC MODEL WITH NONLINEAR KINEMATIC HARDENING

Elasticity law

= Ble —
7 (8 6”) (5.6.1a)

Plastic strain evolution law
de, =0 if f(o,z) <0 (elastic behavior)

f(o,z) =0 if de = 0 (plastic behavior)
r (5.6.1b)

Yield function
o) = ‘a —zl—0c <0
f(o) v S0 e

x: kinematic hardening stress or back stress

The back stress evolution law

dz = Ol((% —o0,)de, — x"de}”‘) (5.6.3)

ELASTO-PLASTIC SHEAR STRESS STRAIN RELATIONSHIP

Shear stress (t)

T

T=——F
2em R (57.1a)

Angular shear strain (y)

_Be

L 71

Elasticity law of elasto-plastic shear model
T=G(y—
(7 pr) (572 )

G:transverse elastic modulus
7,: plastic angular strain

continued on following page
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Table 2. Continued

Plastic angular strain evolution law
dy,=0if f(7,p,z ) <0 (elastic behavior)
f(mp,r)=0if dy, =0 (plastic behavior)

(5.72b)
f:: shear yield function

Shear yield function with isotropic and kinematic hardening
Lrpae)=[r—z|~(r, +Qp)) <0

7, is the yield shear stress

(5.7.3)

5.9 EXAMPLES

5.9.1 Plot the Stress Strain Curve for a Material with Nonlinear

Isotropic Hardening Using an Elastic Modulus E = 100000 MPa,

Y|eld Stress o, = 900 MPa, Ultimate Stress o, = 1200 MPa and
=100, for a Monotonic Loading Using a Spreadsheet

The best way to solve this problem is to choose the plastic strain as the independent variable. In Figure
17 it is shown the way as this problem is programmed in a spreadsheet. In column A several values for
the plastic strain were chosen, then the variable p is computed using Equation (5.3.3), the hardening term
is determined using Equation (5.4.1). The stress is obtained making the yield function equal to zero and
the strain is computed by the elasticity law (5.2.1).

In Figure 18 the values obtained for the example are shown and Figure 19 presents the resulting stress
strain curve. Notice that first there is an elastic behavior and then a plastic one.

Figure 17. Equations programmed in the spreadsheet

A B C D E F G H I
1 5 p Q(p) (Mpa) G (Mpa) s
200 =A2 0 =D2/$HS$3+A2 Start Step 1 (Elastic behavior)
30 =A3 =(SHS5-SH$4) *(1-EXP(-SHS6*B3)) =SHS$A+C3 =D3/$H$3+A3 End Step 1 (Elastic behavior) E = 100000 Mpa
4 |=A3+0.001  =A4 =($H$5-$HS$4) *(1-EXP(-SHS6°B4)) =$H$A+CA =D4/$HS3+A4 Start Step 2 (Plastic behavior) oy = 900 Mpa
5 =A4+0.001 =A5 =(SHSS5-SHS4) *(1-EXP(-SHS6*B5)) =SHS$4+C5 =D5/S$HS3+A5 ou = 1200 Mpa
6 =A5+0.001 =A6 =(SHSS5-SHS4) *(1-EXP(-SHS6%B6)) =SHS$4+C6 =D6/SHS3+A6 a=100
7 =A6+0.001  =A7 =($HS5-$H$4) *(1-EXP(-$H$6*B7)) =$H$A+CT =D7/$H$3+A7
8 |=A7+0.001  =AS =($H$5-$H$4)*(1-EXP(-$HS688)) =$HS4+C8 =D8/$H$3+AS
9 =A8+0.001  =A9 =($H$5-$H$4)*(1-EXP(-$HS6B9)) =$H$4+C9 =D9/$H$3+A9
10 |=A9+0.001  =A10 =($H$5-SH$4) *(1-EXP(-$HS6¥B10)) =$H$4+C10 =D10/$H$3+A10
11 =A10+40.001  =All =(SH$S-$HSA) *(1-EXP(-$HS67B11))  =$H$A+CI1 =D11/$H$3+A11
12 =A11:0.001  =A12 =($HSS5-SH$A)*(1-EXP(-$HS6%B12))  =$H$A+C12 =D12/$H$3+A12
13 |=A12+0.001  =A13 =($H$5-SHSA)*(1-EXP(-SHS6°B13))  =$H$A+C13 =D13/$H$3+A13
14 |=A13+0.001  =Ald =($H$5-SH$4) *(1-EXP(-$HS6*B14)) =$H$4+C14 =D14/$H$3+A14
15 |=A14+0.001 =A15 =(SHSS5-SHS4) *(1-EXP(-SHS6*B15)) =SHS$4+C15 =D15/$HS$3+A15
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Figure 18. Stresses and strains computed with the spreadsheet

A
1| ¢

2 0
3 0
4 | 0.001
5 | 0.002
6 | 0.003
7 | 0.004
8 | 0.005
9 | 0.006
10| 0.007
11| 0.008
12| 0.009
13| o0.01
14| o.011
15| 0.012

B
p
0
0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01
0.011
0.012

Figure 19. Stress strain curve

Stress o (Mpa)

C D E G
Q(p) (Mpa) G (Mpa) £
0 0  Start Step 1 (Elastic behavior)
0 900 0.009  End Step 1 (Elastic behavior) E=
28.54877459 928.5487746 0.010285488  Start Step 2 (Plastic behavior) oy=
54.38077408 954.3807741 0.011543808 ou=
77.7545338 977.7545338 0.012777545 a=
98.90398619 998.9039862 0.01398904
118.0408021 1018.040802 0.015180408
135.3565092 1035.356509 0.016353565
151.0244089 1051.024409 0.017510244
165.2013108 1065.201311 0.018652013
178.0291021 1078.029102 0.019780291
189.6361676 1089.636168 0.020896362
200.1386749 1100.138675 0.022001387
209.6417364 1109.641736 0.023096417
1400
1200 i
1000
800
600
400
200
0
0 0.01 0.02 0.03 0.04 0.05 0.06
Strain ¢

100000 Mpa
900 Mpa
1200 Mpa

100
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Figure 20. Strain history
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5.9.2 Plot the Stress Strain Curve for a Material with Nonlinear
Kinematic Hardening for the Loading Path That Is Shown in Figure 20
with E = 100000 Mpa, , Yield Stress o, = 900 MPa, Ultimate Stress o =
1200 and a =100, Using an Algebraic Manipulation Program to Solve
the Differential Equation and a Spreadsheet to Plot the Curve.

The problem s solved using a step by step procedure. The first step corresponds to the interval 0 < ¢ <,
where the material behaves elastically; the strain is computed using the elasticity law with plastic strain
equal to zero. The strain at the last elastic point is:

oc=Eec—¢c)=>ec= M0 _ 0.009 (5.9.1)
r 100000

Therefore, the corresponding point (&, 0)in the stress strain curve is (0.009, 900).
The second step corresponds to the interval ¢ <t < {, where it is assumed that the material behaves
plastically; thus the second line of the evolution law (5.6.1b) applies:

flo)=0 = o= o, +1; (5.9.2)

In order to obtain the expression for the hardening term x, the Equation (5.6.3) is integrated, using
an algebraic manipulation program. It is considered that the hardening term, x is nil for a plastic strain
equal to zero. The procedure is shown in Figure 21.
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This expression for x is used to compute the stress using the Equation (5.9.2). This computation was
performed using a spreadsheet as it is shown in Figure 22.
The values obtained are shown in Figure 23.
This step ends at 7, that corresponds to a strain equal to 0.05. Notice that an approximate value of

0.049932888 was obtained for a stress equal to 1193.2887668. (See Figure 26).

The third step corresponds to the unloading in the interval {, <t <t .Itis assumed that the behavior

in this step is elastic; thus the first line in the evolution law (5.2.2) applies. In this step the plastic strain

Figure 21. Computation of the hardening term, for the first positive yielding, using an algebraic ma-
nipulation program

Atchivo (F) Editar_Ver Insestar. Formato Tabls Dibujo Gréfico (7) Hojs de Calculo
DSBS LB S5¢ TP EE = M1 O%H
ot @D obae .

(L mput ) ( Tmes tew Roman .

|> restart;

—

-

€p

=A3+0.001
=A4+0.001
=A5+0.001
=A6+0.001
=A7+0.001
=A8+0.001

W KNSV s W N

> jc = x(0) =0;

> dsolve( {eql, ic});

C

) BIU EEa B =i

_d
eql :—?x
»

X(ep) (Mpa)

=$HSS5-SHSA+EXP(-SHS6*A3)* (-SHS5+5HS4)
=SHS5-SHSA+EXP(-SHS6*A4) *(-SHS5+SHS4)
=SHS$5-SHSA+EXP(-SHS6%A5) *(-SHS5+5HS4)
=SHS5-SHSA+EXP(-SHS6"AB) *(-SHSS+SHSA)
=$HS5-SHSA+EXP(-SHS6* A7) *(-SHS5+SHS4)
=SHSS5-SHSA+EXP(-SHS6AB) *(-SHS5+SHSA)
=SHS5-SHEA+EXP(-SHS6™A9) *(-SHE5+5HSA)

S) Hemamientas (T)  Ventana (W) Ayuda

& v Rax 2 @

>eql = diff(x(sp), sp) =alpha- (ou — cy) — alpha~x(sp);

(gp) - (Gu_ Gy) - ocx(sp)

ic:=x(0) =0

E F

€
0 Start Step 1 (Elastic behavior)
=D3/$HS$3+A3 End Step 1 (Elastic behavior)
=D4/SHS3+A4 Start Step 2 (Nonlinear behavior)
=DS/SHS3+AS
=D6/SHS3+A6
=D7/SH$3+A7
=D8/SHS3+A8
=D9/SHS3+A9

Figure 23. Stresses and strains computed for the first positive yielding of the material

(O]

@

(€]

E=100000 Mpa
oy = 900 Mpa
ou = 1200 Mpa

a= 100

[ A B C D E F G H |
W sp X(ep) (Mpa) G (Mpa) >
2 0 0 Start Step 1 (Elastic behavior)
3 0 0 900 0.009 End Step 1 (Elastic behavior) E= 100000 Mpa
4 0.001 28.54877459 928.5487746 0.010285488 Start Step 2 (Nonlinear behavior) oy= 900.0000 Mpa
5 0.002 54.38077408 954.3807741 0.011543808 cu 1200.0000 Mpa
6 0.003 77.7545338 977.7545338 0.012777545 a 100.0000
7 | 0.004 98.90398619  998.9039862 0.01398904
8 0.005 118.0408021 1018.040802 0.015180408
9 0.006 135.3565092 1035.356509 0.016353565
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Figure 24. Hardening term computation for the negative yielding using an algebraic manipulation program

Archivo (F) Editar Ver Insertar Formato  Tabla Dibujo Grifico (P) Hoja de Célculo (S) ig (T) Ventana(W) Ayuda

DB2BSY XBB S TP EE &= NIO0%pe v K& 2 @

{[rote GIEETD owuie et Avimacin oaitar |
Bry e B =i

|> restart;

>eq2 = diff(x(sp), Sp) =alpha- (O'u— csy) + alpha~x(ep);

_.d =
eq2:= = x(ep) o (Gu ()'y) + ax(ap) @
P
>ic2 == x(0.038) =293.2887684; §
ic2 :=x(0.038) =293.2887684 ®

> dsolve( {eq2, ic2});

% (733221921
2500000 u' Yy
o ©
e500

x(sp) =g k5=

Figure 25. Equations programmed in spreadsheet for the negative yielding of the material

A 8 © D E | E
1 € X(ep) (Mpa) G (Mpa) €
41 =A40+0.001 =$H$5-SHSA+EXP(-SH$6* Ad1) *(-SHS5+5HS4) =$H$4+Ca1 =D41/$HS$3+A41 End Step 2 - Start Step 3
42 /0.038 =-$H$5+SHSA-EXP($HS6° A42)*(-733221921/2500000-$HS5+$HS4) /EXP((19/500) * SHS6) =-$H$4+C42 =D42/$H$3+A42 End Step 3 (Elastic behavior - Unloading)
43 =A42-0.001 =$H$5+8H$A-EXP(SH$6*AG3)* (-733221921/2500000-$H$5+$HS4)/EXP((19/500) *$H$6) =$H$a+Ca3 =D43/$H$3+A43 Start Step 4 (Nonlinear behavior)
44 |=A43-0.001 =-$H$5+$H$A-EXP($H$6°AG4)*(-733221921/2500000-$H$5+$HS4)/EXP((19/500) * SH$6) =$H$a+Caa =D44/$H$3+Ad4
45 |=A44-0.001 =-$H$5+$H$4-EXP($H$6* AdS) *(-733221921/2500000-SH$5+5HS4)/EXP((19/500) * $HS6) =-$H$4+Cas =D45/$H$3+A4S
46 |=A45-0.001 =-$H$5+5H$A-EXP($SHS6Ad6) " (-733221921/2500000-SHS5+5HS4)/EXP((19/500)* SHS6) =$H$4+Ca6 =D46/$HS3+A46
47 |=A46-0.001 =-$H$5+5H$4-EXP(SHS6*AA7)*(-733221921/2500000-SH$5+$H$4)/EXP((19/500)* $H$6) =-$H$asca7 =D47/$H$3+A47
48 |=A47-0.001 =-$H$5+$H$4-EXP(SH$6* Ad8) *(-733221921/2500000-SHS5+$HS4)/EXP((19/500)* $HS6) =-$H$4a+Ca8 =D48/$HS3+AA8
49 |=A48-0.001 =-$H$5+5HS4-EXP(SHS6* Ad9)*(-733221921/2500000-5HS5+5HS4)/EXP((19/500)* $HS6) =$H$4+Ca9 =D49/$HS3+A49
50 =A49-0.001 =-$H$5+5HS4-EXP(SHS6*A50)*(-733221921/2500000-SHS5+$HS4) /EXP((19/500) * SHS6) =-$H$4+C50 =D50/$H$3+A50
51 |=A50-0.001 =-$H$5+SHSA-EXP(SHS6" A51) *(-733221921/2500000-SHS5+$HS4) /EXP((19/500)* SHS6) =-$H$4+C51 =D51/$H$3+AS1

Figure 26. Stresses and strains computed for the negative yielding of the material

1A |8 ¢ D E F G

|l €, X(gp) (Mpa) G (Mpa) €

41| 0.038 293.2887684  1193.288768  0.049932888 End Step 2 - Start Step 3

42| 0.038 293.2887684 -606.7112316  0.031932888 End Step 3 (Elastic behavior - Unloading)
43| 0.037 236.8298773 -663.1701227  0.030368299 Start Step 4 (Nonlinear behavior)

44| 0.036 185.7437601 -714.2562399  0.028857438

45 0.035 139.5191298 -760.4808702  0.027395191

46 0.034 97.69335455 -802.3066455  0.025976934

47| 0.033 59.8478281 -840.1521719  0.024598478

48| 0.032 25.60377966 -874.3962203  0.023256038

45| 0.031 -5.381516708 -905.3815167  0.021946185

50 0.03 -33.41817227 -933.4181723  0.020665818

51| 0.029 -58.7867873 -958.7867873  0.019412132
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is constant and equal to the value at 7, i.e. €, = 0.038. ¢z, corresponds to the beginning of the plastic
behavior of the material (see Figure 26).

The fourth step (¢, <t <t,)corresponds to a negative yielding of the material. Again, the yield
function is equal to zero and the stress is computed by Equation (5.5.8):

flo)=0=0=x—0; (5.9.3)

Y

The hardening term x, is obtained through the integration of Equation (5.6.3) considering that the
hardening term x is equal to 293.2887684 for a plastic strain equal to 0.038. The equations are shown
in Figure 24.

The expression of the hardening term is used to compute the stress using Equation (5.9.3). This
calculation is shown in Figure 25.

The corresponding values are shown in Figure 26.

This step ends at 7, that corresponds to a strain equal to -0.05.

The fifthstep (£, < ¢ <t ) corresponds to the elastic reloading; thus, the plastic strain is kept constant
and equal to -0.039 (see Figure 29). This step finishes at z, when the positive yielding initiates (sixth

Figure 27. Hardening term computation for the second positive yielding using an algebraic manipula-
tion program

Archivo (F) Editer Ver Insertar Formato  Tabla Dibujo Gréfico () Hoja de Calculo (S) Herramientas (T) Ventana (W) Ayuda

DE2BSS XBE S5¢ TP EE =2 NIO%pe ¢ BRXK 2 @

o prra
(C o
|> restart;
>eq3 = diff(x(¢€_), € ) =alpha- = —alpha-x(€ );
4 ( ( p)’ p) P (Gu Gy) P ( p)’
d
eqi=——3x(e | =0 |G —¢ | —ax(|e
B = X(%) T (%) ~ox(%) @
P
>ic3 = x(-0.039) =-299.7313427,
ic3:=x(-0.039) = -299.7313427 ®
> dsolve( {eq3, ic3});
T8, (2997313427
e e +0.—0
(e =6 — 0 — 10000000 u y M
( p) u Ty 39 .
8 1000
Figure 28. Equations programmed in spreadsheet for the second positive yielding of the material
A B C D E F
1 € X(gp) (Mpa) G (Mpa) €
119/ =A118-0.001 =S$HS$5+$HS4-EXP(SHS6*A119)*(-733221921/2500000-SH$5+$HS$4) /EXP((19/500)* SHS6) =-$H$4+C119 =D119/$H$3+A119 End Step 4 - Start Step 5
120 -0.039 =$H$5-$H$4-EXP(-$HS6* A120)*(2997313427/10000000+$HS5-$HS4) /EXP((39/1000) * SH$6) =$H$4+C120 =D120/$H$3+A120 End Step 5 (Elastic behavior - Unloading)
121/=A120+0.001 =$H$5-SHSA-EXP(-SHS6*A121)*(2997313427/10000000+ $H$S5-SHS4)/EXP((39/1000)*SH$6) =$H$4+C121 =D121/$HS$3+A121 Start Step 6 (Nonlinear behavior)
122 =A121+0.001 =5H$5-$HS4-EXP(-SHS6%A122) *(2997313427/10000000+5HS5-$HS4)/EXP((39/1000) * $H$6) =SH$4+C122 =D122/$HS3+A122
123 =A122+0.001 =$H$5-$HSA-EXP(-SH$6* A123)*(2997313427/10000000+$HS5-SHS4) /EXP((39/1000)* $H$6) =SH$4+C123 =D123/$H$3+A123
124 =A123+0.001 =$HS$5-$H$4-EXP(-$H$6*A124)* (2997313427/10000000+ $H$5-$H$4)/EXP((39/1000) * $H$6) =SH$4+C124 =D124/$H$3+A124
125 =A124+0.001 =$H$5-5H$A-EXP(-$HS6°A125)* (2997313427/10000000+ SH$5-$H$4)/EXP((39/1000) * $H$6) =SH$4+C125 =D125/$H$3+A125
126 =A125+0.001 =$H$5-SH$4-EXP(-$HS6*A126)*(2997313427/10000000+ $H$S-SH$4)/EXP((39/1000) * $HS6) =SH$4+C126 =D126/$H$3+A126
127/=A126+0.001 =$H$5-SHS$4-EXP(-$H$6" A127)*(2997313427/10000000+$HS5-SHS$4) /EXP((39/1000) *$HS6) =SH$4+C127 =D127/$H$3+A127
128 =A127+0.001 =$H$5-$H$4-EXP(-$HS6° A128)*(2997313427/10000000+ $H$5-$H$A)/EXP((39/1000) * $HS6) =$H$4+C128 =D128/$H$3+A128
129/=A128+0.001 =$H$5-SHSA-EXP(-$SHS6+A129)*(2997313427/10000000+ SHS5-SHS4)/EXP((39/1000)*$H$6) =$H$4+C129 =D129/$H$3+A129
130 =A129+0.001 =$H$5-$H$4-EXP(-$HS6°A130) *(2997313427/10000000+ $H$5-$H$A)/EXP((39/1000) * $H$6) =$H$4+C130 =D130/$H$3+A130
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Figure 29. Stresses and strains computed for the second positive yielding of the material

A B C D E F
Nl & X(gp) (Mpa) G (Mpa) €
119 -0.039 -299.7313427 -1199.731343 -0.050997313 End Step 4 - Start Step 5
120 -0.039 -299.7313427  600.2686573 -0.032997313 End Step 5 (Elastic behavior - Unloading)
121 -0.038 -242.6593596  657.3406404 -0.0314265%4 Start Step 6 (Nonlinear behavior)
122| -0.037 -191.0184939  708.9815061 -0.029910185
123 -0.036 -144.2919062  755.7080938 -0.028442919
124 -0.035 -102.0119412  797.9880588 -0.027020119
125 -0.034 -63.75544694  836.2445531 -0.025637554
126/ -0.033 -29.1395394  870.8604606 -0.024291395
127 -0.032 2.182228992 902.182229 -0.022978178
128/ -0.031 30.52333704 930.523337 -0.021694767
129 -0.03 56.16743206  956.1674321 -0.020438326
130/ -0.029 79.37116879  979.3711688 -0.019206288

Figure 30. Stress strain curve
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step, (t, <t <t f) ). In order to determine ¢, the yield function is made equal to zero and the stress is
computed using again Equation (5.9.2), i.e. 0 = o, + z.For the determination of the hardening term

the Equation (5.6.3) is integrated considering x equal to -299.7313427 for a plastic strain equal to -0.039.
(See Figure 27). The formulation is shown in Figure 28 and the corresponding values in Figure 29.
Figure 30 shows the resulting stress-strain curve.

5.10 PROBLEMS

5.10.1 Repeat the Example 5.2.4 Using the Strain History That Is Indicated in the Example 5.9.2

5.10.2 Propose a Plasticity Model with Both, Linear Isotropic and Kinematic Hardening

5.10.3 Plot the Stress-Strain Curve of the Model Proposed in the Problem 5.10.2 Using the History
of Strain of the Problem 5.2.4

5.10.4 Plot the Stress-Strain Curve of the Model Proposed in the Problem 5.10.2 Using the History
of Strain of the Problem 5.9.2

5.10.5 Propose a Model with Both, Nonlinear Isotropic and Kinematic Hardening

5.10.6 Plot the Stress-Strain Curve of the Model Proposed in the Problem 5.10.5 Using the History
of Strain of the Problem 5.2.4

5.10.7 Plot the Stress-Strain Curve of the Model Proposed in the Problem 5.10.5 Using the History
of Strain of the Problem 5.9.2
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Chapter 6
The Plastic Hinge

ABSTRACT

The plastic hinge is a key concept of the theory of frames that differentiates this theory from the remaining
models for structural analysis. This chapter is exclusively dedicated to define this concept and describe
the different models of plastic hinges. It also discusses the differences of implementation between plastic
hinges in steel frames (Sections 6.1-6.4) and those in reinforced concrete structures (Sections 6.5-6.6).
This chapter is based on the ideas presented in Chapter 5 and it allows formulating the models for
elasto-plastic frames that are introduced in the next chapter.

6.1 ELASTO-PLASTIC MOMENT VS. CURVATURE RELATIONSHIP

Consider a simply supported beam, as the one shown in Figure 1a, subjected to a concentrated force at
its mid-section; the force is monotonically increased until total collapse of the structure. The beam has a
symmetric cross-section of height 4, it is homogeneous and its material follows the elasto-perfect plastic
constitutive model described in section 5.2. The bending moment distribution along the beam and the
stress and strain distributions in the mid-section B (the most loaded) are shown in Figures 1b, 1c and 1d.

According to the fundamental hypothesis of the beam theory, the strain distribution in the cross-
section is always linear, even if the behavior is not elastic:

€ = X.2 (6.1.1)

where y is the curvature and z is the coordinate of the fiber under consideration as shown Figure 1b (see
chapter 2). The elastic relationship between moment and curvature is:

m = Ely (6.1.2)

This last expression does not apply if the behavior is elasto-plastic. Elastic behavior in the beam ends
when the maximum stress at the mid-section is equal to the yield stress as shown in Figure 1b. The
normal stress distribution is still linear at this instant, and according to the Hooke’s law, it is propor-
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The Plastic Hinge

Figure 1. a) Simply supported beam; Flexural moment distribution along the beam, strain distribution
in the mid-cross-section and stress distribution at: b) Last elastic stress, c) Elasto-plastic stress, d)
Ultimate stress
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tional to the strain values: ¢ = F.x.z .The bending moment in the section corresponding to this load is
called first plastic moment M :

M = 8.0 ;where S = 2 (6.1.3)

S is called elastic section modulus. For larger values of the force (Figure 1c), some of the fibers in the
cross-section begin yielding at constant stress. As the force and curvature increase, more and more fibers
yield. As the curvature tends to infinity the bending moment tends to the ultimate bending strength of
the section; this value is called ultimate moment M and can be computed assuming that all the fibers
in the cross-section have plastic behavior (Figure 1d):

h/2

M, =o H ;where H = 2f b(z) z dz (6.1.4)
0
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His called plastic section modulus. Examples of computation of the first plastic moment and the ultimate
one for different cross-sections are presented in section 6.8.

The moment curvature relationship in the mid-section of the beam is shown in Figure 2.

The mid-section of the beam is not the only one that may experience plastic strains. According to the
moment-curvature relationship depicted in Figure 2, any section subjected to bending moments larger than
M is partially plasticized (Figure 3b); the curvature distribution along the beam is indicated in Figure 3c.

Notice that the maximum curvature value in Figure 3c rapidly tends to infinite as the load tends to

2M,
L

6.2 THE PERFECT PLASTIC HINGE

The structure analyzed in the previous section is one of the simplest examples of a problem in plasticity
solved in the framework of the beam theory; in more complex cases, hyperstatic beams for instance, the
analyses have to be carried out using structural analysis computer programs. The determination of the
plastic zone requires the discretization of the beam in short fibers, in two or three dimensions. In large
frames, this is a process complex, time consuming and unnecessary. The goal of this section is to introduce
the fundamental concept for a simplified analysis in plasticity of beams and frames: the plastic hinge.

Consider again the moment-curvature relationship indicated in Figure 2, the first step for a simplified
analysis is the substitution of the exact solution by an approximate one that has the two branches of the
elastic perfect plastic model such as it is shown in Figure 4.

The value M _ is called yield moment. The yield moment can be made equal to the ultimate moment
of the cross-section M, or, for a more conservative analysis, it can be chosen equal to the first plastic
moment Mp.

Assume that M is the ultimate moment and consider again the simply supported beam of Figure 1a;
suppose now that the moment at the mid-section has reached its ultimate value as it is shown in Figure
1d; the perfectly plastic approximation (Figure 4) would result in the curvature distribution indicated
in Figure 5 b.

Figure 2. Moment-curvature relationship at the mid-section of the beam
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Figure 3. a) Distribution of bending moment along the beam b) Plastic zone in the beam c) Curvature
distribution along the beam
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Figure 4. Elasto-perfect plastic idealization of the moment curvature relationship
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The curvature in all the sections of the beam, except the mid-one, is equal to M/EI, as in the elastic
curvature distribution. In the mid-section there is a discontinuity; at this point the curvature is indeter-
minate. In mathematical language, it is said that the curvature at the unique plasticized section of the
beam can be represented by a Dirac delta function multiplied by a term denoted plastic rotation ¢”. The
plastic rotation is the value of the hatched area in the exact curvature distribution that is indicated in
Figure 5a. The mathematical expressions of the bending moment distribution that is shown in Figure 1d
and the curvature distribution that is shown in Figure 5b are:

m=M 1—H :>X:% 1—M + Dirac (z)p” (6.2.1)
v L ET L

where the Dirac delta function is defined as (see a textbook on theory of distributions, for instance the
one included in the bibliography of this chapter):

| Dirac(z)dz =1 (6.2.2)

As aforementioned in section 2.3, the kinematic equation of the beam theory that relates curvature
and rotation is:

Figure 5. Curvature distribution along a simply supported beam a) Exact distribution b) Approximate
distribution
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_dp
dx

(6.2.3)

Integration of Equation (6.2.3), considering Equation (6.2.1b), gives the relative rotation between
both ends of the beam 5H .

=L

ﬂi_j = —f::_LL xdz = —L_L% 1 —@ dr — ¢”f;:_i Dirac (x)dx (6.2.4)

L
Taking into account that f Dirac(z)dz =1, it is obtained:
—L
L
B, =——7r—9¢ (6.2.5)

A physical interpretation of the plastic rotation can be given by considering the structure as repre-
sented by two elastic elements connected by a sort of flexural plastic spring, as shown in Figure 6a. This
rotational spring is called plastic hinge and, initially, it has zero length. The angle between both ends of
the plastic hinge is the plastic rotation (¢” ). The first term in Equation (6.2.5) is the relative rotation
due to the elastic bending of the two elements adjacent to the plastic hinge. The behavior of the plastic
hinge is characterized in terms of moment vs. plastic rotation as indicated in Figure 6b.

A plastic hinge can be imagined as a rusty hinge of a door. If the door is pushed just slightly, a mo-
ment on the hinge is generated but the door will not open. The door has to be pushed hard enough so
that the moment on the hinge equals the yield moment M . At this point, the door will open at a uniform
rate as far as the moment is kept constant; if the force decreases, the hinge will lock again and the door
would not open or close anymore.

In mathematical terms, the constitutive equation of the perfect plastic hinge has the same general
form of the evolution law of the plastic strain that is described in chapter 5.

Figure 6. a) Plastic hinge connecting two elastic elements b) Moment vs. plastic rotation in a perfect
plastic hinge
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d¢” = 0 if f(m) < 0 (locked hinge)

f(m) =0 if d¢” = 0 (active hinge) (6.2.6)
where
fm) = | =, <0 6.2.7)

The term f{m) is the yield function of the plastic hinge. An example of the analysis of a hyperstatic
beam using plastic hinges is analyzed in chapter 8.

The plastic hinge approximation is a good one if the loads applied on the structure are mainly due
to concentrated forces. In this case, the plastic zones have small areas compared with the dimensions
of the structure. Otherwise, the procedure based on beam theory has to be used; however this is a more
cumbersome and time-consuming alternative.

6.3 PLASTIC HINGE WITH HARDENING
6.3.1 Plastic Hinge with Isotropic Hardening

A better approximation to the exact solution can be obtained by introducing hardening terms into the yield
function of the plastic hinge. For instance, a plastic hinge with isotropic hardening is characterized by:

d¢” =0 if f(m,p) <0 (locked hinge)

f(m,p) =01if d¢” = 0 (active hinge) Jm,p) = ‘m‘ - <Mp * Q(p)) =0 (631

where p can be the accumulated plastic rotation:

dp = |do* (6.3.2)

or the maximum plastic rotation:

p = Mazx|p” (6.3.3)
The isotropic term can be linear (see Figure 7a):

Qp)=cp (6.3.4)

where c is, again, a member-dependent constant. The isotropic term can also be nonlinear (see Figure 7b):
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Figure 7. Moment vs. plastic rotation in plastic hinge with isotropic hardening a) Linear hardening b)
Nonlinear hardening c) Multi-linear hardening with two plastic segments
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Qp) =M, —M )1—e") (6.3.5)

where a is also a member-dependent parameter that characterizes the transition from the first plastic
moment to the ultimate moment of the cross-section.

This approximation represents a behavior that is very close to the exact one (Figure 2) because, un-
like the perfect plastic hinge, it includes the first plastic moment and ultimate moment in the behavior;
additionally, it is much simpler to compute than the exact approach.

Another kind of nonlinear hardening that is frequently used in practice is the so-called “multi-linear”
models; in this case, the behavior is approximated by several straight lines as shown in Figure 7c. For
instance, in the case of two plastic segments, the model is given by:

M, —M,) if 0<p<g
Qp) = X PRET=P=4 (6.3.6)

u

M, — M if p>¢'

The constant ¢ is a member-dependent property that is denoted ultimate plastic rotation; notice that
it has the same role of a in Equation (6.3.5), i.e. it is related to the velocity of the transition between the
first plastic moment and the ultimate moment.

6.3.2 Plastic Hinge with Kinematic Hardening

The Bauschinger effect is also observed in the case of cyclic loading on a beam or column; plastic hinges
with kinematic hardening can represent this phenomenon; they are defined by the evolution law:

d¢” =0 if f(m,z) <0 (locked hinge)

s f(myz)=|m—z|-M, <0 6.3.7
f(m,z) =0 if d¢” =0 (active hinge) () =|m —a| = 0, (6.3.7)
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Where the kinematic hardening term or back moment x can be a linear function or a nonlinear function
of the plastic rotation. In the linear kinematic hardening case (see Figure 8a):

z=co’ (6.3.8)
The evolution law of nonlinear kinematic hardening is defined by:

dx::a«ﬂLJ—AQ)d¢p—aﬂd¢p

) (6.3.9)

and the resulting response is indicated in Figure 8b. Alternatively, nonlinear kinematic hardening can
also be given by the following multi-linear model (see Figure 8c):

(M, - M)
dz = ¢
0 if jm| = M,

de? if |m| < M, (6.3.10)

6.3.3 Kinematic and Isotropic Nonlinear Hardening Simultaneously

In most cases, particularly in reinforced concrete and steel frame elements, displacement and growth
of the elastic domain are observed simultaneously. This behavior can be modeled by introducing both
hardening variables into the yield function:

f=|m—a|-(M +Q) <0 (6.3.11)

Figure 8. Moment vs. plastic rotation in a plastic hinge with kinematic hardening: a) Linear hardening
b) Nonlinear hardening c) Multi linear hardening with two segments
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As aforementioned, the total amount of hardening is: M, -M . This quantity must be split into the two
mechanisms. Assuming that there is a constant ratio between isotropic hardening and kinematic harden-
ing, the corresponding evolution laws are given by:

Qzu—mwg—Mﬁa—awmmzang—Mpmﬂﬂqu

%ogrgl (6.3.12)

The value » = 0 represents isotropic hardening only, » = 1 kinematic hardening exclusively; intermedi-
ate values give combined hardening. The parameter r must be chosen so that the best approximation of
experimental results is observed; for instance, in the case of reinforced concrete elements r takes values
around 0.7. The same approach can be followed in the formulation of a plastic hinge with kinematic and
isotropic hardening that could be linear or multi-linear.

6.4 PERFECTLY PLASTIC HINGE SUBJECTED
TO BENDING AND AXIAL FORCES

6.4.1 Simply Supported Beam-Column Subjected to Bending and Axial Force

Consider a simply supported beam-column with a rectangular cross-section of height /2 and base b as the
one shown in Figure 9; the beam-column is subjected to a concentrated force P at its mid-section and
an axial force n. Its material follows the elastic-perfectly plastic model that is described in section 5.2.

The elastic stress distribution at the mid-section is obtained by adding the one resulting from bending
plus the other that depends on the axial force. Notice that there is an arbitrary number of stress distribution
that reach the elastic limit, unlike the example presented in section 6.1, there is an arbitrary number of
stress distributions that reach the elastic limit; all these distributions depend on the distance, z,, between
the fibers with zero stress (neutral axis) and the centroid of the cross-section (centroidal axis) (see Figure
10a). Similarly, the cross-section can be fully plasticized in an infinity number of ways; each one of
them is in equilibrium with a different combination of bending moment and axial force (see Figure 10c).
These values can be expressed as a function of z, decomposing the stress distribution into two parts,
one that only generates axial force and another related to the bending moment as shown in Figure 10c.

In a beam theory analysis, the cross-section shows a gradual evolution from an elastic stress distribu-
tion to a fully plastic one passing through intermediate states such as the one shown in Figure 10b. In a
frame analysis with perfectly plastic hinges, this process will be ignored and it is assumed that the cross-
section becomes fully plastic without passing through any intermediate state. In the beam analysis there
is a plastic zone that covers not only the mid-section but also the adjacent ones. In the frame analysis, a
plastic hinge is generated in the mid-section and the rest of the structure remains elastic as in the case
of the beam without axial force; however, the behavior of the plastic hinge is not exactly the same. As
shown in Figure 11b, the plastic hinge presents now two different deformations: a plastic rotation ¢”

and a plastic elongation 6p .
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Figure 9. a) Simply supported beam subjected to bending and axial forces b) Bending moment distribu-
tion c) Axial force distribution
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Figure 10. Stress distributions in a beam subjected to bending and axial force a) First elasto-plastic
stress distribution b) Intermediate elasto-plastic stress distribution c) Fully plastic stress distribution
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6.4.2 Yield Function of a Plastic Hinge Subjected to Bending and Axial Force

According to the stress distribution shown in Figure 10c, the moment and the axial forces are given by:

b2 B 2 2,
m =20, f " 2bdz=20) [§ - ?]n =20, fo bdz =20 bz, (6.4.1)

Obtaining the expression of z from Equation (6.4.1b) and introducing it into (6.4.1a) gives:

2

m .
u —1=0; where M = y4 ;N =obh (6.4.2)

M

Y

o
N

Y

+

Notice that M is the yield moment of the cross-section without axial forces and N, produces the total
plasticization of the element when there is no bending moments. Equation (6.4.2) describes a surface (see
Figure 12) in the m-n space that encloses the elastic domain of the plastic hinge; i.e. any combination of
axial force and bending moment that represents a stress point inside the surface, corresponds to an elastic
state. A plastic hinge appears or becomes active only if the stress point lies on the surface; a stress point
outside the surface cannot be withstood by the beam according to the perfectly plastic model. The yield
function of a perfectly plastic hinge corresponding to a rectangular cross-section is therefore given by:

2

-1<0 (6.4.3)

Figure 11. a) Plastic hinge subjected to bending b) Plastic hinge subjected to bending and axial force
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Figure 12. Yield surface, elastic domain and normality rule for a rectangular cross-section

A

Elastic Domain N

The elastic domain is defined as:

(m, n)\f <0 (6.4.4)

The border of the elastic domain is also called yield surface; in the reinforced concrete structures and
steel structures textbooks it is named interaction diagram.

The yield functions, f = f(m,n) <0, of different cross-sections can be obtained using the same
procedure.

Alternatively, approximate expressions of the yield function are postulated instead of computed
exactly; this is often the procedure followed for the design of steel structural frames. For instance, an
empirical expression for any symmetric cross-section is:

vl

_|_

n

f(m7 n) = [F

Y

v2
m

— -1 6.4.5
v ] (6.4.5)

Y

Often the coefficients v1 and 2 are chosen equal to 2 and the elastic domain becomes an ellipse in
the m-n space.

6.4.3 The Normality Rule

The yield function (6.4.3) indicates again if the plastic hinge is locked or active; however it does not
determines which plastic state is happening in the hinge. As opposed to the case of bending only, now

184



The Plastic Hinge

plasticity is represented by two different components as shown in Figure 11b: plastic rotation and plastic
elongation; the yield function does not establish their relative contributions. Intuition suggests that in an
element with large axial forces and low bending moments, the plastic elongation should be dominant in
the hinge and vice-versa, small axial forces and large bending moments should lead to relatively larger
plastic rotations. This general idea can be formulated precisely by introducing an additional equation
called normality rule. This expression completes the mathematical description of the behavior of a plastic
hinge. The normality rule is stated as follows:

d¢’ = d)\ﬁ;dé = d)\ﬁ (6.4.6)
om * on

The new variable A is called plastic multiplier and it is defined as:

d\ =0 if f(m,n) <0 (locked hinge)

6.4.7
f(m,n) = 0if d\ > 0 (active hinge) (6.4.7)

In the case of a perfect plastic hinge in a rectangular cross-section, the normality rule can be formally
proved. According to the yield function (6.4.3), the normality rule gives:

do" = dx 1.sign(m)

- 4
N L) B S R W (6.4.8)
o b.h ! N o bh

Y Y Y
The elimination of the plastic multiplier by combining expressions (6.4.8) gives:

b, = sign(m)z d¢" (6.4.9)

It can be verified by inspection of Figure 11b that this is indeed the relationship between the plastic
rotation and the plastic elongation in the hinge.

The normality rule cannot be proved in the general case of cross-sections of arbitrary shape and
elasto-plastic constitutive equations with hardening; however, it is assumed that expressions (6.4.5) are
always valid: the normality rule becomes the normality law.

Equations (6.4.5) are called normality rule or normality law because similar expressions correspond
to the components of a vector normal to a surface; i.e. be f{x,y)=0 a curve in the x - y plane, a vector of

components [? ) g—f] is perpendicular to the curve at the point of coordinates (x,y) (see any calculus
z 0y

textbook). Note, that although dA [;—f , g—f] is not a vector (the components do not even have the same
m On
units), the plastic deformation matrix (d¢”, dép) can be imagined, by analogy, as a vector normal to the

yield surface at the point (mm,n) that activates the plastic hinge (see Figure 12). The rapport between the
derivatives gives the direction of this plastic “vector”. For instance, in the case of a rectangular cross-
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section, this vector is horizontal if there is no axial force; i.e. there is no plastic elongation of the hinge
only rotation; for negative axial forces, the normal vector is inclined downward: the plastic elongation
component is negative, and so on. The plastic multiplier is related to the “size” of the plastic “vector”;
that is, it characterizes the amount of deformation experienced by the plastic hinge. Note that the plastic
multiplier can only be positive and always increases when the plastic hinge is active.

6.4.4 Perfect Plastic Hinge Subjected to Biaxial
Bending Moments and Axial Force

Consider now a tridimensional frame element. Be Y and Z the principal axes of the cross-section; a
plastic hinge in this case presents three plastic deformations:

(8),0!.6,) (6.4.10)

where qﬁ;’ is the plastic rotation around the local axis Y and ¢” is the component around the local axis Z.

The behavior of a plastic hinge in this condition can be easily generalized from the case discussed in the
precedent sections; the normality law is:

dqﬁp:d)\ﬁ;dqﬁp:d)\i;dé :d)\ﬁ (6.4.11)
v amy : om_ " n

d\ =0 if ,m_,n) <0 (locked hinge
{ it f(m,,m,,n) <0 ( inge) (6.4.12)

ftm ,m_,n)=0if dXA> 0 (active hinge)

In practical cases, the explicit form of the yield function is postulated instead of computed exactly
for each particular cross-section; for instance, the expression (6.4.5) can be generalized as:

vl
m,
+ [
[ M

uy

v2

+

flm,,m_,n) = [Ni

Uu

m, | 1 (6.4.13)
= 4

uz

Again v1, 12 and v3 can be chosen equal to 2 and the elastic domain becomes an ellipsoid.

6.5 PLASTIC HINGES IN REINFORCED CONCRETE ELEMENTS
6.5.1 Typical Geometry of a Reinforced Concrete Cross-Section

In the previous sections only structures composed by a unique material were considered; for instance,
this is the case of steel frames. In the civil engineering practice, reinforced concrete (RC) structures
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are a very important construction alternative. In these structures, the elements are composed by two
materials: concrete and steel bars.

Rectangular shapes are the most common cross-sections used in the design of reinforced concrete
elements. The sections are reinforced with at least two layers of longitudinal steel. They are placed very
near the opposite faces of the sections as it is shown in Figure 13; A and A" are the areas of reinforce-
ment at the opposed faces of the cross-section. The longitudinal steel is kept in place through transversal
reinforcement. The design hypothesis states that compression forces are mainly supported by concrete, the
longitudinal reinforcement is in charge of tension stresses and the transversal one resists the shear forces.

6.5.2 Behavior of the Materials

The compressive strength of concrete is obtained experimentally; for this purpose, cylinders with a
specific height/diameter ratio, made and cured in accordance with standardized procedures, are sub-
jected to longitudinal loads at a slow strain rate until they reach the maximum stress in a compression
testing machine. The compressive strength is obtained by the division of the failure load over the cross-
section area and reported in units of megapascals (MPa) in SI units or pound force per square inch (psi)
in the US customary units. A test result is the average of at least two specimens made from the same
concrete and tested at the same age. The strength of concrete at an age of 28 days is denoted f' . This
value can vary from 17 MPa (2500 psi) to 28 MPa (4000 psi). The strength can even reach and exceed
70 MPa (10000 psi) for some special applications.

It is assumed that the concrete behavior is described by a nonlinear elastic model; one of the most

cited was proposed by Hognestad and it is shown in Figure 14. In this figure f = —o is the compression
stress in the concrete and €, = —¢is the compression strain. f" is the maximum stress reached in the
concrete; .in this model, it is assumed that this value may differ from the cylinder strength f' because
of the difference in size and shape of the compressed concrete; f" may be taken as 0.85f' . The be-
havior is almost linear until half the concrete resistance and then it is assumed parabolic. The strain

Figure 13. Typical cross-section of a RC element
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Figure 14. Stress-Strain curve proposed by Hognestad
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corresponding to the maximum stress is called € ; unlike the strength, this value is approximately constant
for any kind of concrete; many codes state that this strain is equal to 0.002. The failure deformation of
the concrete fibers is denoted &  and can vary from 0.003 to 0.004 depending on the concrete resistance,
for lower values of strength, larger €  can be observed; as a result, the peak of the curve is relatively
sharp for high resistance concrete and plane for low resistance one.

The modulus of elasticity, i.e. the slope of the initial straight part in the curve of stress vs. strain
increases with the concrete strength. The ACI (American Concrete Institute) proposes the following
empirical expressions:

for concretes of unit weight w between 90 and 160 1b/ft* and, for normal weight concrete, the modulus
of elasticity can be taken as

E, = 57000,/f' (psi)=4700,/f' (MPa) (6.5.2)

c

In practice, the concrete is confined by lateral reinforcement. The uniaxial behavior of the concrete
is different in the confined and non confined cases. For confined concretes, many researchers have
proposed a modification of the Hognestad model. One of the most used curves is the model proposed
by Kent and Park that is shown in Figure 15. Notice that in this model the maximum stress reached by

the concrete does correspond to f' . The concrete resistance in tension is neglected
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Figure 15. Stress vs. Strain curve proposed by Kent and Park (1971).
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behavior with nonlinear hardening as the one shown in Figure 16.

In the RC theory, the yield stress of the reinforcement is denoted as f, and the ultimate one f ; the
strain that corresponds to the yield stress is called yield strain €.

6.5.3 Plastic Hinge in RC Planar Frame Elements

All the models described in sections 6.2 and 6.3 can be used for reinforced concrete elements. However,
in this case, the plastic elongations are usually neglected; therefore, unlike steel frames, these models
can be used even in the presence of high compressive axial forces. The only modification of the model
presented in those sections is that the properties M, M, and ¢ are functions of the axial force. For in-
stance, a plastic hinge in a reinforced concrete element subjected to planar forces may be characterized

by the following expressions:

Figure 16. Behavior curve of steel bar
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d¢’ =0 if f <0 (locked hinge)
. s =|me—a =M (n) <0;6" =0 (6.5.3)
f=0if d¢” = 0 (active hinge) i

(M, (n) — M (n))

dz = ¢, (n)
0 if‘m‘ =M (n)

de" if [m| < M, (n) 654

The functions M (n), M (n) and @’ (n) are usually presented graphically and this representation is
denoted interaction diagrams.

6.5.4 Computation of the Interaction Diagram for the
First Plastic Moment M_ of a RC Cross-Section

An interaction diagram is defined by at least the following conditions:

Pure compression

Pure tension

Pure bending

Maximum bending resistance, which is called, balanced condition.

B

The interaction diagram can have as many additional points as decided by the analyst. All these points
may be joined by straight lines as shown in Figure 17.

Pure Compression Point

The axial force in the pure compression condition is computed as it is illustrated in the Figure 18. Notice
that there is a constant strain distribution across the section equal to the yield strain £, therefore the

axial force is:

N =C'+C +C, where C' = —]‘;/A'S,C’a =

r

. , (6.5.5)
~f (b*h—A'~A)and C, = —f A

[.is the maximum stress in the concrete. For this point of the iteration diagram, it is assumed that rein-
forcement bars yield in compression at the same time as concrete reaches its maximum strength.

Pure Tension Point

In this case, the axial force in plastic condition is shown in the Figure 19. Note that it is assumed that
the strain at the reinforcement bars is €, therefore the axial force is equal to:
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Figure 17. Interaction diagram

*N | Puretension load

.\\ Pure bending m

M,
—

Balanced condition

e

Pure compression load

N

Figure 18. Strain and Stress distributions in a RC cross-section subjected axial force of pure compres-
sion for plastic condition
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Notice that, as aforementioned, the strength of the concrete in tension is neglected.
Pure Bending Point
The general theory of bending for reinforced concrete sections is based on the Euler- Bernoulli theory
that is described in section 2.4. This assumption implies a linear distribution of the strain.

In the case of pure bending (see Figure 20), the following equilibrium equation must be satisfied in
orderto determine the location of the neutral axis assuming that the strain in the tension reinforcement is 2
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Figure 19. Strain and concentrated loads distributions in a RC cross-section subjected to pure tension

for plastic condition
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Figure 20. Strain and Stress distributions in a RC cross-section subjected pure bending for plastic condition
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N, =C'+C +T =0 where C' = —f A" ,C. = b [ fdz and T, = A, 6.5.7)
0
M, is determined computing the moment around the centroidal axis of the cross-section as:
h b , h
M =C, 5—(zNA—zCU) +C s(g_d)"‘TS(d_E) (6.5.8)

where 2z, is the location of the force in the concrete (see Figure 20).
Maximum Bending Resistance Point (Balanced Condition)

In this case, it is assumed that the tension and compression reinforcements yield simultaneously (see
Figure 21); thus, the neutral axis depth is obtained as:
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Figure 21. Strain and Stress distributions in a RC cross-section subjected to bending and axial force in

an element subjected to the maximum bending resistance (balanced condition)

y b y
L/l Z4 7 v Ecu> &> &o . Je
K o J) o :I/d : 5 \ . gt
A% Es= & J_C
ZNA €
ZCc
. h Neutral Axis <
) ); d Centroid axis
o > és - L,
- Stra(ig;: 9 Stress distribution and
v disteibution concentrate loads
d+d
2, =200 (6.5.9)
2
Therefore, the strain at the extreme compression fiber can be determined and the loads C’, C and T,
computed. The balanced load N ) is obtained by the equilibrium equation:
N, =C'+C +T,where C', = —f A' , C, =~b [ fdzand T = 4 f, (6.5.10)
0
[.is the stress in the extreme compression fiber on the concrete. The bending moment is:
h R | h
Mp :Cﬂ E—(ZNA—ZCC) +Cs(5—d)+Tg(d—§) (6511)

An example of the computation of interaction diagram of M, is presented in section 6.8. For unsym-
metrically reinforced elements, the procedure so far described has to be slightly modified as indicated

in the bibliography indicated at the final of the chapter.

6.5.5 Computation of the Interaction Diagram for the
Ultimate Moment of a RC Cross-Section

For the ultimate condition, the interaction diagram points can be computed as:

Pure compression point: In this condition, it is assumed that the ultimate axial force and the first

plastic axial force are approximately the same (see Figure 22):
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Figure 22. Strain and Stress distributions in a RC cross-section subjected axial force of pure compres-
sion for ultimate condition

v b y
_L/l Z4 1 » &= & . f‘:'
o J) o :[/(] ’ Es=& . «—
A’ L €%
h R d Centroid axis N P Ce <
J/’ < - Nu
o Iés Es = &Eo : o Cs
7L (|> . 4 5 o .
Il Strain Stress distribution and
distribution concentrate loads
~ el " !
N, =N, =C"+C, +C,, where C', = fyAS, 6.5.12)

C,=—f(b*h—A —A)and C,=—fA

J.is the maximum stress in the concrete.
Pure tension point: In this case it is taken into account the hardening of the steel reinforcement bars;
thus, the ultimate tension resistance is given by (see Figure 23):

N =T'+T,where T'.=f A" and T = [ A (6.5.13).

v =

Pure bending point: In the case of pure bending, itis assumed that the strain in the extreme compression
fiber is equal to ¢_; thus, the following equilibrium equation gives the location of the neutral axis Z ,:

Figure 23. Strain and Concentrate loads distribution in a RC cross-section subjected axial force of pure
tension for ultimate condition

Strain  Concentrate loads
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p b ¥
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N,=C'+C,+T,=0, where C',=—A", f'

S

“NA
(6.5.14)
CC:—bf fdz and T,=A,f,
0
The moment for pure bending condition can be computed as:
M =C [g — (2, — zcv)] + C'S(g —d)+T(d— g) (6.5.15)

where 2, is the location of the force in the concrete (see Figure 24).
‘C

Maximum bending resistance point (balanced condition): For balanced condition point, it is consid-
ered that the strain in the extreme compression fiber is equal to e and the strain in the reinforcement
steel in tension is equal to & (see Figure 25). The neutral axis depth is obtained as:

€
Z.. = “—d (6.5.16)
NA . "‘51,

Now, the strain at the extreme compression fiber can be determined and the loads C ’S, CC, and f

computed. The ultimate load N is obtained by the equilibrium equation:

z

N,=C'+C +T, where C', = ~A' f.C =b[ fdzand T =4 f (6.5.17)

0

Then, the bending moment for this case can be computed as:

h
Mu = C{: [5 - (ZNA - Z(/'(,)

+C's(g—d')+11(d—g) (6.5.18)

An example of the computation of the interaction diagram of M is presented in section 6.8. As
aforementioned, for an unsymmetrically reinforced element all the moments must be computed around
plastic centroid of the cross-section.

6.5.6 Computation of the Interaction Diagram for the
Ultimate Plastic Rotation of a RC Cross-Section

The ultimate plastic rotation can be defined as:
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Figure 24. Strain and Stress distributions in a RC cross-section subjected pure bending ultimate condition

v b v
_L/I Z4 1 i Ec = Eeu ﬁ
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Figure 25. Strain and Stress distributions in a RC cross-section subjected to bending and axial force for
an element subjected to the ultimate moment (balanced condition)

v b v
L/| ZA 1 y & = &Eeu y fé
K o) °) o j/d’ \ ¢ \ fcj&
A% J €'\ yu 4 2 B
L |Z C
Neutral Axis .
h | ——— d_._._. LA, N b 728>
h ); Centroid axis <
As E&=& Is
o > o ,
A Strain Stress distribution and
v distribution concentrate loads
P Ez'u 8!/
o) =(x,(n) = x,(n)L;x,(n) = —==:x,(n) = T (6.5.19)
z,,(n) —z,,(n)

where x, is the ultimate curvature and X, is the plastic curvature (see Figures 24, 25, 20 and 21). The

term (X, — X, )is called ultimate plastic curvature.

L, is called “plastic hinge length” in the reinforced concrete literature and it represents a measure
of the zone where the reinforcement bars that are subjected to plastic deformations. Usually, the plastic
hinge length is computed using empirical expressions; the simplest of them is:

L, = 0.5d +0.05,, (6.5.20)

z, 1s the distance from the critical section to the point of inflection. The interaction diagram of the ul-

timate plastic rotation can be computed as:
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1. For pure compression and pure tension conditions the curvatures are nil; thus, for these two points
only the axial forces are computed.

2. For the pure bending and balanced conditions, the ultimate plastic rotation are determined with
Equation (6.5.19) using the corresponding curvatures as it is shown in the example 6.8.4.

The interaction diagram of the ultimate plastic rotation has the shape shown in Figure 26. An ex-
ample of the computation of the ¢ interaction diagram is presented in section 6.8.

6.5.7 Plastic Hinges in RC Frame Elements Subject to Biaxial Bending

Consider again a tridimensional beam-column. Neglecting plastic elongations as customary in reinforced
concrete elements, the deformations of the plastic hinge are given by

0 0
do; = d)\#;dqﬁf = d)\#;ép =0 (6.5.21)

y z
The evolution law of the plastic multiplier remains unchanged.

dA=0if f <0 (locked hinge)
: . (6.5.22)
f=01if d\ >0 (active hinge)

An expression of the yield function for a RC plastic hinge is:

Figure 26. Typical ultimate plastic rotation interaction diagram
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—-1<0 (6.5.23)

M, ~and M _are the ultimate resistant moments with respect to the principal axes of the cross-section.
These propertles can be computed using twice the same procedure described in section 6.5.5. It is also
possible the introduction of hardening terms into the yield function. For example:

2
|m — T
_ Y

| M, )]

<

—+

f ~1<0 (6.5.24)

where M, and M are first plastic moments with respect to the principal axes of the cross-section. These
properties can also be computed using twice the same procedure describe in section 6.5.4. X, and x_are
the components of the back moment. The corresponding evolution laws are:

Muy (n)— MW (n)

dg! ifm | < M, (n)

do, = ¢, (n) ! ! -
0 if‘m, ‘ =M (n)
y uy (6.5.25)
M, (n)— Mpz n)

=

is = T de? if[m_ | < M, (n)
0 if jm_| = M, (n)

6.6 PLASTIC HINGE WITH PINCHING EFFECT DUE TO SLIP
6.6.1 Slip of Steel Reinforcement in a RC Beam-Column Joint

The inelastic response of RC structures to cyclic loading, like during an earthquake, is a very complex
phenomenon that is influenced by many parameters of the material and the structure. Besides the Baus-
chinger effect, another phenomenon that may appear is the pinching of the load-deformation hysteretic
loops (see Figure 27b); the so called pinching is the constriction of the cycles observed in that figure.
This effect is mainly due to cyclic bond deterioration between reinforcing steel and concrete. This type
of behavior is not always present in RC structures but it is typical in connections of wide-beam to col-
umn (Figure 27a).

In these connections a significant part of the longitudinal reinforcement of the beam passes outside
the column core thus originating bond condition poorer than for normal beam connections.

Figure 28 depicts an interior joint between a wide-beam and a column with a low level of axial load
on the column and a high level of lateral load. In this case, the lower reinforcement is subjected to trac-
tions on the right hand side and to compressions on the left one. In this situation, for low values of the
beam bending moment, the compression stresses on the interface between concrete and reinforcement
in the beam are very low and so is the slip resistance. Additionally, the beam hoops are not contribut-
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Figure 27. a) Connection of an interior wide-beam to a column. b) Experimental behavior curve of
interior joint of reinforced concrete

\»~\ /
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Figure 28. Stress distribution in a connection of an interior wide-beam and a column subjected to lateral
load
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ing yet to the confinement of the concrete due to the little volumetric strains in the material; therefore,
small traction forces can produce slip of the reinforcement. For higher values of the moment, the hoops
start to confine the concrete around the reinforcement and the compression stresses on the interface
increase rapidly. The slip resistance grows faster than the tractions on the reinforcement and eventually,
slip stops. Notice that in the case of an interior connection of a wide beam and a column, the parts of the
beam at the sides of the column do not have the column axial compression at all; thus, the phenomenon
described above applies entirely.

The hypothesis of plastic hinge can be used again to model bond deterioration between concrete
and steel reinforcement. This particular kind of plastic hinge is called slip hinge. A slip hinge permits
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only permanent deformations by slipping between concrete and steel reinforcement. Beams can present
permanent strains by steel yielding and by slipping between both materials, while the columns can only
present permanent strains by yielding of the steel (Figure 29).

6.6.2 Interfaces with Coulomb Friction Plasticity

Consider an interface between two different continua as shown in the Figure 30a. Let ¢ and 7 be the
normal and shear stresses on the interface. If the surface is characterized by a Coulomb friction criterion,
the relative horizontal displacement / between the blocks obeys the following law:

dh > 0 if H =T (0) =

0
dh = 0 if \T\ —7 0 66.1)

A

()

where the term T is the slip resistance that depends on the normal stress: larger values of ¢ implies

higher slip resistances. The domain of non-slip, assuming an arbitrary resistance, is represented as a
shaded area in the Figure 30b; slip occurs when the shear stress reaches the value of the slip resistance.

Figure 29. a) Interior wide-beam and a column with slipping real zone. b) Model of slip hinges

Slip hinges
[ ]
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] B
Figure 30. a) Interface between two media b) Non-slip domain
ContactInterface
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The Coulomb theory can be used to describe the behavior of the interface between concrete and
reinforcing steel in RC elements (see Figure 31). The term 7, in that figure represents the force needed
to produce slip in the bar.

6.6.3 Slip Function of a Plastic Hinge

A slip hinge is defined as follows:

. do? = 0 if £ < 0 (no slip: locked hinge
£ =m| -k, <0 ¢ f (no slip g°) (6.6.2)

= f(my ) = 0 if d¢” = 0 (slip: active hinge)

The expression (6.6.2) must be interpreted as follows: there are increments of the plastic rotations
due to slip of the reinforcement if the moment in the hinge reaches the critical value km_p, otherwise these
increments are nil.

In the case of plasticity of Coulomb friction, it is accepted that the slip critical value depends on the
normal stress on the interface. For a slip hinge it is assumed that the critical value, ksz,-,,’ corresponds to
a hardening function. An appropriate expression for ksh.p is:

k _ M e(sign(’m,)nd)“) (663)

An exponential function of the plastic rotation has been chosen so that the typical pinched curves
are obtained when slip is present in the hinge. The term M is called “slip resistance” and it is a con-
cept similar to the yield moment in plasticity, i.e., M is the moment that produces slip when no plastic
rotations have occurred yet; the parameter n characterizes the recovery velocity of the slip resistance.
The computation of the parameters M and 7 is discussed in, respectively, sections 6.6.5 and 6.6.6. The
behavior of this slip hinge is shown in the Figure 32.

Figure 31. Contact interface between concrete and the reinforcement steel bar

‘T'slip (Tslip)
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6.6.4 The Plasticity Criterion in a Plastic Hinge with Slip or Yielding

A yield function with kinematic hardening, such as Equation (6.5.3), describes the plasticity criterion of
a plastic hinge whose physical mechanism is the yield of the reinforcement. The slip function (Equations
6.6.2 and 6.6.3) corresponds to a plasticity criterion of a plastic hinge whose rotations are due to slipping
reinforcement. However, in a RC element both mechanisms are possible and may occur one after the
other (the physical evidence indicates that they do not occur at the same time); therefore, the following
evolution law for the rotations of a plastic hinge that integrates both phenomena is:

d¢’ =01if f<0

Fo0if o = 0; where f = Max(f’, f) (6.6.4)

Note that the new criterion of plasticity determines what mechanism of plastic rotations is active,
yield or slip, by the evaluation of the maximum value of both inelastic functions. If the maximum value
is that of the yielding function f, the plastic behavior will obey the kinematic hardening function de-
fined by Equation(6.5.3 and 6.5.4. On the other hand, if the maximum value is that of the slip function
S the behavior will follow the exponential hardening function Equation(6.6.3). This criterion auto-
matically changes from one mechanism to the other as a function of the value of the moment, the plas-
tic rotation and the specific properties of the cross-section. Figure 33 shows the behavior of a plastic
hinge changing from slip to yielding.

6.6.5 Determination of the Slip Resistance M_

Consider again the beam-column joint of Figure 28. The strain distribution in the cross-section of the
beam is assumed to follow the conventional linear one. The stress distribution also follows the usual
parabolic diagram. Assuming that the reinforcement in tension is subjected for the first time to the force
T, that produces slip and that no previous yielding has happened, the following equilibrium equation

gives the location of the neutral axis ( z,;, ):
Figure 32. Behavior of a slip hinge
m
M,
By
.¢P | ¢p

-Mo

-n
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Figure 33. Behavior of an inelastic hinge with slip and yielding

v

¢P

C +C'—T, =0 (6.6.5)

slip

ZNA

where CC =) f fc dz, C’ is the compression force in A’ and ];lip is the maximum load by sliding of the
0

steel bars that depends on the average bond stress and contact area. T,, can be computed as:

T wlf nb

sl
T, = prZ; d,, (6.6.6)

where T is the average slip stress, nb is the number of bars, d, is the diameter of the bar and I the slip

i

length. The slip resistance M can now be computed by the following expression:

M =T (d—g)—i—CC(g—zM+zC[V)+C'S(g—d') (6.6.7)

0 slip

where z_, is the location of the force in the concrete. An example of computation of M is presented in
C

section 6.7.
6.6.6 Determination of Parameter n

The other parameter of the slip model is #. This parameter determines the point of intersection between
the curves of slip (Equation 6.6.2) and yielding (Equation 6.5.3), see Figure 33.

fy — fslip =0 (6.6.8)
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As aresult, the term # can be obtained from Equation (6.6.8):

rM, ="M+ M

M()
(6.6.9)

sli
rs ip ¢ 5

In

where 7* is again a parameter that can take values between 0 and 1; a good value for 7" is 0.4. A
hysteretic loop of an inelastic hinge with slip and yielding effects is shown in the Figure 34.
Figure 35 shows hysteresis loops for several ratios M /M with """ equal to 0.40. Notice that the
pinching effect decreases when M tends to M . If M is greater than M then there is no pinching at all.
An example of computation of 7 is presented in section 6.8.

Figure 34. Hysteretic loop of an inelastic hinge with slip and yielding
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Figure 35. Hysteresis loops of an inelastic hinge with slip and yielding
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6.7 SUMMARY AND EQUATIONS QUICK REFERENCE

The concepts of plasticity that were presented in the previous chapters can be used for the analysis of
frame structures in two different ways. The first one characterizes the theory of elasto-plastic beams
and combines the plasticity concepts with the fundamental hypothesis of beams. The second alternative
is based on the concept of plastic hinge and characterizes the theory of elasto-plastic frames. A plastic
hinge represents an approximation of the moment-curvature relationship. It can be shown that plastic
hinge requires the introduction of the concept of the plastic rotation. A plastic hinge is defined by the
yield function and the evolution law of the plastic rotation. Several kinds of plastic rotations can be
defined: perfectly plastic, and with kinematic or isotropic hardening.

In the case of steel columns, axial forces generate plastic contractions that cannot be neglected. There-
fore the concept of plastic hinge is generalized including a second deformation: the plastic elongation. In
this case the plastic hinge is defined by the yield function, the normality rule and the plastic multiplier
evolution law. The normality law establishes that plastic deformations represent a vector that is normal
to the elastic domain in the space of bending moments and axial forces.

For RC structures the same concepts of plastic hinge can be used. However the determination of
the elastic domain for interaction curves requires the use of special techniques: the classic RC theory.

Plastic hinges in tridimensional frames need the introduction of an additional deformation. Plastic
rotation has components in the two principal planes of the frame element. Mathematically, the plastic
hinge is defined in the same way; i.e. with a yield function, normality rules and evolution laws of the
plastic multipliers.

RC wide-beams constitute a particular case. Plastic rotations can be produced by two different mecha-
nisms: yield or slip of the reinforcement. This phenomenon is taken into account by a modification of
the yield function of the plastic hinge (See Table 1).

Table 1.

ELASTIC PLASTIC MOMENT VS. CURVATURE RELATIONSHIP

The strain distribution in the cross-section
€ = X.z (6.1.1)
X curvature
Z: coordinate of the fiber under consideration

The elastic relationship m vs. y

m = FElx 6.12)

First plastic moment M,
21
M =80 ;58=— @613
P y h
S: elastic section modulus

Ultimate moment M
h/2

M =0 H:H, = be(z) z dz (6.14)
0

H_: plastic section modulus

continued on following page
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The Plastic Hinge

The Perfect Plastic Hinge

Evolution law of the plastic rotation ¢p
d¢" =01if f(m) <0 (locked hinge)

6.2.6
f(m)=0if d¢” = 0 (active hinge) ©20

Yield function f( m)
f(m) = m‘ - M <0@©27)

M : yield moment of the section

Plastic Hinge with Hardening

Plastic Hinge with Isotropic Hardening

Evolution law of the plastic rotation ¢p

d¢” = 0 if f(m,p) < 0 (locked hinge)
f(m,p) =0 if d¢" = 0 (active hinge)’f(m7 P)= |m| a (M” * Q(p)) = 063D

Cumulated plastic rotation p

dp = |d¢"| 6.32)

Maximum plastic rotation p

p = Maz|p”| 6.3.3)

Linear isotropic term

Q(p) = c.p 634

¢: member dependent constant

Nonlinear isotropic term
Qp) = (M, =M )1 —e")

a: member dependent parameter

(6.3.5)

Multilinear isotropic term
M, - M,) _M”)p if0<p<g
Q(p) = ¢! I

u
: P
M, —Mp if p>¢!
(6.3.6)
p
% is a member dependent property
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Table 1. Continued

Plastic Hinge with Kinematic Hardening

Evolution law of the plastic rotation
d¢? =0 if f(m,z) <0 (locked hinge
¢ f(m, z) ( g)'f(m,x):‘m—m‘—Mng

f(m,x) =0 if d¢” = 0 (active hinge) ’
(6.3.7)

Linear kinematic term

— P
T =co (6.3.8)

Nonlinear kinematic term

dz — a((Mu — M, )d¢" — x|dg’ ) oo
Multi-linear kinematic term
o <M¢+M’) dg” if [m| < M,

0 if m| = M, .

¢,

: ultimate plastic rotation (member dependent property)

Kinematic and Isotropic Nonlinear Hardening Simultaneously

Yield function f{m)
—|m—2—(M +Q)<0
fm) =|m 2| = (M, +Q) <0
Evolution laws of x and p
Q=(1-r)(M, —M)(1—e")dz = a(r(Mu — M )d¢" —a.|dg” );0 srst oo

If =0 represents isotropic hardening only, =1 kinematic hardening exclusively. The r value can be 0.70 for RC elements.

Perfect Plastic Hinge Subjected to Bending and Axial Forces

Plastic deformations

¢P

: plastic rotation; ? : plastic elongation

Yield Function of a Plastic Hinge Subjected to Bending and Axial Force

Moment and axial force (rectangular cross-section)
2

hi2 2 z
sza,f/z.b.dz:QUbh——z—“;n:QUfob.dz:2ab.z
Y z, Y 8 2 vJo y o

(6.4.1)
Elastic domain of the plastic hinge
2 2
‘m‘ n ob.
il 2 c1=00M =X N =obh
M N y 4 Yy y
Y Y 6.4.2)

M: yield moment of the cross-section without axial forces
N axial force that produces the total plasticization of the element when there is no bending moments

continued on following page
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Table 1. Continued

Yield function corresponding to a rectangular cross-section
2

Flm,n) ) 1<
m,n)=—+|—| —1<

M N
v v (6.4.3)

Elastic domain

F<0
6.4.4)

(m,n)

Yield function for any symmetric cross-section
vl v2

n m
m,n)=|—| +|—| -1
/t ) N M
v Y (6.4.5)

Often the coefficients v1 and 12 are chosen equal to 2

The Normality Rule

Normality rule

dr = ix L as = an L
om r on (6.4.6)
A: plastic multiplier

Plastic multiplier A evolution law
d\ = 0if f(m,n) <0 (locked hinge)

f(m,n) =0 1if d\ = 0 (active hinge)
(6.47)

Normality rule of a perfect plastic hinge in a rectangular cross-section
1.sign(m 4.sign(m n 4z
Lsign(m) _ gy Asigmlm) g5 gp 1 — gy
) o bh N o b.h
Y v v v (6.4.8)

b, = sign(m)z,d¢”

do? = d\

(6.4.9)

Perfect Plastic Hinge Subjected to Biaxial Bending Moments and Axial Force

Plastic deformations P

Y . plastic rotation around the local axis ¥

¢P

% : plastic rotation around the local axis Z (6.4.10)

P plastic elongation

Normality rule

d¢” :d/\ﬁ;dw :d)\i;dé :d)\ﬁ
v 8my ? om_ " n(64”)

Evolution law of plastic multiplier A
dA=01if f(m ,m_n)<O0 (locked hinge)
ftm,,m_n)=0if d\> 0 (active hinge)

(6.4.12)

continued on following page
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Table 1. Continued

Yield function
vl v2 v3

Uu uy uz

(6.4.13)
v1l, v2 and v3 can be chosen equal to 2

Plastic Hinges in Reinforced Concrete Elements

Behavior of the Materials

Modulus of elasticity of the concrete for concretes of unit weight w between 90 and 160 1b/ft?

E = w" 33,f (psi) = w"® 0.043,/f (MP
e =Y \/z(pSI) v \/Z( 2) 6.5.1)

Modulus of elasticity of the concrete for normal weight concrete

E.=57000,f' (psi) = 4700,/f' (MPa)
(6.5.2)

Plastic Hinge in RC Planar Frame Elements

Plastic deformations
" 6 =0

is the plastic rotation; P

Properties of element Mp( n): first plastic moment
M (n): ultimate moment

¢P

“ (n): ultimate plastic rotation

Plastic deformation evolution law

d¢" = 0if f <0 (locked hinge)

. i =|m—a] =M () <0
f=0if d¢” =0 (active hinge) ?
(6.5.3)

Kinematic hardening term evolution law

M (n)—M (n

(1, () — M, () de? if [m| < M (n)
dx = ¢’ (n) !

0 if [m| = M, (n)

(6.5.4)

continued on following page
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Table 1. Continued

Computation of the Interaction Diagram for the First Plastic Moment (M ) of a RC Cross-Section

A
+N o
Pure tension load
555
Strain
distribution ]77
0 Pure bending =322 -
&,<g)
ZNA
Stra'r; )
dstribution
Balanced condition
Eu2 &>
&= &)
Z Nt
ey
&=g Strain
&=z distribution
Pure compression load
=N g=g
v
Strain
distribution

e) Pure compression point

N, 20 +C +C,where 0! = —[A',C = ~f (b*h—A' ~A)and C = —fA

y s c c
fc : maximum stress in the concrete
fy : yield stress of steel bars

M =0

p

f) Pure tension point

N, =T'+T, where T :fyA'S and T = f A

Y% (6.5.6)
Mp =0
2) Pure bending point:
Location of the neutral axis
N, =C'+C +T =0, where C' =—f A',C :—bffcdz and T :]‘;As
0 (6.5.7)

S : stress in the compression reinforcement

¢: stress in the extreme compression fiber on the concrete

continued on following page
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Table 1. Continued

Plastic moment

h

h | h
Mp :Cc __(ZNA_Z(}(V) +C's(§_d>+Ts(d_§)

z

CU

2
(6.5.8)

is the location of the force in the concrete

h) Maximum bending resistance point (balanced condition)

_d+d

ZN A 2
Neutral axis depth (6.5.9)

Balanced load P

N, =C'+C +T,where C' = —f A" ,C =~b [ fdsand T = 4 f
0

(6.5.10)

¢: stress in the extreme compression fiber on the concrete
Jf,: yield stress of steel bars

Bending moment

h

h ) h
Mp =C ——(zNA—zC(‘) —i—C"S(E—d)—I—fZ;(d—E)

2
(6.5.11)

Computation of the Interaction Diagram for the Ultimate Moment of a RC Cross-Section

+N

h

555
Pure tension load

3

Strain
gistribution m

Pure bending <5

M, A

Strain
distribution

Balanced condition

e

Strain
distribution

Pure compression load  #=%

Strain
distribution

continued on following page
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C =—f(0*h-

AN

: maximum stress in

1.

: yield stress of steel

M =0

Uu

a) Pure compression point

N, =N =C'+C +C, where C' =—f A

Y 5 (6.5.12)
A —A) and C, =—fA
the concrete

bars

b) Pure tension point:

M =0

u

N =T'+T, where T' =f A' and T =f A

/[, ultimate stress of reinforcement steel

Su

¥ (6.5.13)

c) Pure bending point:

NU = C'S—"_C{f +

Location of the neutral axis Z,

2y

T =0, where C' = —A' f',C, ==b [ fdz and T. = A f

0 (6.5.14)
Ultimate moment
h h | h
M, =C |=— (2, =2, )|+C'(z=d)+T(d—~)
e 2 9 g
(6.5.15)
ZCC

is the location of the force in the concrete

z S 6{:1}, d
NA T
e +e¢
cu

d) Maximum bending resistance point (balanced condition):
Location of the neutral axis depth

Y (6.5.16)

Ultimate load

NU = C'S—"_CC —"_

2N,

T, whete C' = ~A' ', € =b[ fdeand T =4

c

0 (6.5.17)
Ultimate bending moment
h h h
M'I/,:Cc 5_(ZNA_ZC(,) +C'5(§_d)+7;(d_5)
/ (6.5.18)
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Table 1. Continued

Computation of the Interaction Diagram for the Ultimate Plastic Rotation of a RC Cross-Section

A
+N
< Pure tension load

Pure bending

b’

0 >

Balanced condition

L )
Pure compression load

-N

Ultimate plastic rotation

¢ = (x, () = X, ()L s x, (n) = —=—;x (n) = —

d = zy,(n) (6.5.19)

X” : ultimate curvature

Xp : plastic curvature (see Figures 6.24, 6.25, 6.20 and 6.21).

(X“ Xp ) :ultimate plastic curvature.
L, plastic hinge length

Plastic hinge length

L =0.5d + 0.05z
P “ (6.5.20)

T
¢s : distance from the critical section to the point of inflection

¢) Pure compression point
Axial load

N =N =C'+C +C,where C' =—fA,C =—f 0*h—A —A)and C = —fA 651
f,

¢: maximum stress in the concrete

Y . yield stress of steel bars

P —

Ultimate plastic rotation " “

d) Pure tension point
Axial load
N =2T'+T,where T' =f A' and T =f A
u S S S Su S S Su S (6.5.13)
f,,; ultimate stress of reinforcement steel
p =
Ultimate plastic rotation " %

continued on following page
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¢) Pure bending point

. N =0
Axial load ¥

Ultimate plastic rotation

0 = () = X ) (n) = i ) = s

d—zy,(n) (6.5.19)
X

“ ; ultimate curvature

=

P plastic curvature (see Figures 6.24, 6.25, 6.20 and 6.21).
(x, —x,)

P ultimate plastic curvature.
L, plastic hinge length
Plastic hinge length

L =0.5d + 0.05z
P < (6.5.20)

¢s : distance from the critical section to the point of inflection

e) Balanced condition point
Neutral axis depth

€

2y, =—+—d

NA e +e
T (65.16)

Ultimate load

AN,

0

N, =C'+C +T, where €', = ~A' f.C.=~b[ fdzand T = A ]

(6.5.17)

Ultimate curvature

R e
™ NANT (6.5.19)

X

% : ultimate curvature

X” : plastic curvature (see Figures 6.24, 6.25, 6.20 and 6.21).

(X“ Xy ) : ultimate plastic curvature.
L : plastic hinge length

Plastic hinge length

L =0.5d +0.05z
? “ (6.5.20)

¢s : distance from the critical section to the point of inflection
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Table 1. Continued

Plastic Hinges in RC Frame Elements Subject to Biaxial Bending

Deformations in the plastic hinge

do’ :d)\a—f;dgbp :d)\a—f;& ~0
v om ? om 7

y ? (6.5.21)
Plastic multiplier evolution law
d\=01if f <0 (locked hinge)
f=0if d\> 0 (active hinge)
(6.5.22)
Yield function of perfect plastic hinge
2
fe | 2 1<0
= + 2 —-1<
M, ()| " |M, (n)
(6.5.23)

M, and M : ultimate resistant moments with respect to the principal axes of the cross-section.

[

Yield function of plastic hinge with multi linear kinematic hardening

2
m —x

f — Y Y
M, (n)

o |m-a
~1<0
M (n) \

(6.5.24)
M, and M first plastic moments with respect to the principal axes of the cross-section.
x, and x: components of the back moment

Evolution laws

M, (n)—M, (n) :
- dg! it|m | < M, (n)
dz, = ¢, (n) ‘
0 if‘my =M, (n)

¢£(ﬂ)ﬂz de? if|m_ | < M, (n)
»Oif‘mz‘ =M _(n)

(6.5.25)

Plastic Hinge with Pinching Effect due to Slip

Interfaces with Coulomb Friction Plasticity (z: Shear Stress)

Evolution law relative displacement between two blocks

dh > 0 if ‘7‘ -7, .(0)=0
slip

dh =0 if ‘T‘—T‘. (0)<0
slip

Tt slip resistance (6.6.1)

Slip Function of a Plastic Hinge

Slip function
d¢” = 0if f*” <0 (no slip: locked hinge)

Flr — ‘m‘ —k,. <0 |f(m,z)=0if d¢’” = 0 (slip: active hinge)

slip —

(6.6.2)

continued on following page
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Slip critical value

(sign(m)ne?)
k. =Me
stip 0 (6.6.3)

M and n are parameters of cross-section of element
M is slip resistance

n characterizes the recovery velocity of the slip resistance

The Plasticity Criterion in an in a Plastic Hinge with Slip or Yielding

Evolution law of plastic hinge with slip or yielding
d¢? =0if f <0

F=0if d¢’ =0’ where f = Maa(f", f')

(6.6.4)

Determination of the Slip Resistance M,

. A
Location of the neutral axis ~ VA

Cc +C'5_7_;Zi = 0
» e <eg ande < g (6.6.5)
ZNA
C =b[ fd
where 0 ,C 'Szcompression force in A’
T, maximum load by sliding of the steel bars

The maximum load by sliding

n

Ts_h.pw.f
7i;lip = 2 Z dbar
bar=1 (6.6.6)
Ty is the average slip stress

sl
n is the number of bars

d, is the diameter of the bar

bar

1 the slip length

Slip resistance M

M, =1 <d—§>+00<§—zm b2 )+ C ()

0 slip 66.7)

z
C, . . .
where ¢ is the location of the force in the concrete

Determination of Parameter 1

Point of intersection between the slip and yielding curves 7

y _ pslip __
fr=r"=0 (6.6.8)

Parameter 5
rM =M+ M
M

0

,r‘slip ¢ D
u

In

’)7 =
;(6.6.9)
O S ,r,slip <

slip
— ~; agood value for ™ is04
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6.8 EXAMPLES

6.8.1 Compute the Expressions of the First Plastic and Ultimate Moments for
the H-Shaped Cross-Section with Respect to the Horizontal Axis (Figure 36)

The first plastic moment can be computed using Equation (6.1.3a); since the cross-section is symmetric,
the locations of the elastic and plastic neutral axes correspond to the symmetry axis of the cross-section.
The elastic section modulus is given by:

g2 (6.8.1)

h
The expression of moment of inertia / is:

2b,t; bt B’ t,h* ot Rt 2t t]
- TR e ——— +t bt — (6.8.2)
3 2 I 12 2 v 3

I = 7

The first plastic moment is (see Figure 37a):

3 2 2 3 2 2 3
B Sbf tf + 6bf tf h® —12 bf tf h + t, h’ — Gtw h tf +12 t, htf — 8tw Iff 683
p 6 I g, (6.8.3)

The ultimate moment is computed as the moment produced by the forces on the flanges and web
(see Figure 37b), thus:

bt

2
M, =0, |20t [5—5 +t [——tf] (6.8.4)

Figure 36. Homogeneous H-shape cross-section

A
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Figure 37. a) Stress distribution for the first plastic moment b) Stress distribution for the ultimate moment

.~ Elastic neutral axis

57 Plastic neutralaxis ™\

3

—
—
2

P
o~ Elasticneutral axis
Y Plastic neutralaxis

6.8.2 Compute the Expressions of the First Plastic and Ultimate Moments with
Respect to the Horizontal Axis of the Hollow Circular Cross-Section (Figure 38)

In this case, the location of the elastic and plastic neutral axes corresponds to the symmetry axis of the
cross-section. The moment of inertia for this cross-section is:

e (6.8.5)

1o m(R —r")
M == (6.8.6)
LI R
The semi area of the cross-section is:
A 1
—="g(R*—1* 6.8.7
5 =3 ( ) ( )
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Figure 38. Homogeneous hollow circular cross-section

ZA

A
v

Figure 39. a) Stress distribution for the first plastic moment b) Stress distribution for the ultimate moment

Elastic neutral axis
T : 2 2
Plastic neutral axis —a(R*-r) o
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And the centroid of this semi area is:

2 2
zgw 6.8.8)

(R+r)m

Then the ultimate moment is:

w4
3 3

M, =0, [ (6.8.9)

6.8.3 Compute the Expressions of the First Plastic and Ultimate Moments
with Respect to the Horizontal Axis of the T Cross-Section (Figure 40)

In this case, the cross-section is asymmetric; therefore, neither the elastic nor plastic neutral axis are

h . . . . .
located at 5 The location of the elastic neutral axis corresponds to the centroid of the cross-section
(see Figure 41a) which is:

t| t(h—t)
bt |h—L +7“’( 2
2 2

2 = (6.8.10)
bt +t, (h—t)

The moment of inertia is (Box 1):
As shown in Figure 41a the first fibers that reach the yield stress are the bottom ones. The elastic
section modulus is:

Box 1.
t] th—t)y| t] th—t)
( bt |h— |+ " ‘ bt [h——|+——
bt t o 2 2 t (h—1t) e 2 2 hot
I=——+bt|h-—+- + +t(h—1t) ——+ =
12 2 bt +t (h—t) 12 ’ bt +t (h—t) 2 2
(6.8.11)

220



The Plastic Hinge

Figure 40. Homogeneous T cross-section

»l
=

ir§| ] %

A
>

A

w

Figure41. a) Stress distribution for the first plastic moment b) Stress distribution for the ultimate moment

Plastic neutral axis

(38}
>

LA(-1r-2,)/2
< Cr=0;y brty

Cy= Gy tw(h'{f'zp)
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~
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5 == (6.8.12)

and the first plastic moment can be computed as:

M =08 (6.8.13)

p

The plastic neutral axis does not coincide with the elastic one as can be observed in Figure 41a; this
axis divides the cross-section in two equal areas. Assuming that the plastic neutral axis is located in the
web of the beam:

bt, +th—tt,
bt, +t,(h—t —z )=tz therefore z = ” (6.8.14)

The ultimate moment is computed as (see Figure 41b)

?

h—t —z
M :Cf(h——f -z )+C
2 4 w

z
L R ') (6.8.15)

Uu

6.8.4 Compute the Interaction Diagram for the First Plastic Moment for
the Cross-Section Shown in Figure 42; Consider Unconfined Concrete

For the first plastic moment, four points corresponding to the pure compression, pure tension, pure
bending and balanced conditions are computed.

1. For the case of pure compression, it is used Equation (6.5.5) in order to obtain the axial force. Thus,

>~ —085f(b*h—A —A)—[(A +A)

N
p
N, =-0.85 #2070 * (30 * 60 — 18.00 — 18.00) — 40000 * (18.00 + 18.00)

N, = —-4543.76 KN (6.8.16)

2. For the case of pure tension, it is used Equation (6.5.6):

N = fy(Aq + A,) = 40000 * (18.004-18.00) N, =1440.00 KN (6.8.17)
3. For pure bending, an iterative procedure has to be carried out in order to obtain the neutral axis

location. Thus, the strain in the tension reinforcement level is fixed to £ = 0.002 and the equilib-
rium of forces is satisfied when the neutral axis is located at 19.10 cm from the most compressed
fiber; the resulting forces in the concrete and steel are:
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Figure 42. Unconfined typical concrete cross-section

L 30 cm L
_L/I 416 i Material Properties:
Jcm
Q S O Steel: Jy=40000 N/cm?
Jfsu= 60000 N/em?
A’s=18.00 cm’ E=2.0x10" N/em?
60cm 5= 0.002
45=18.00 cm? Concrete: fe =0 3(8720 N/em?
&o=0.
Q @) O -
Y 163 cm &u=0.0038
—
C =456.24 KN;C =263.76 KN;T =720.00 KN (6.8.18)

The position of the force in the concrete is z, = 12.37 cm from the neutral axis. Then, the bending

moment computed with the Equation (6.5.8) results in:

h

M:c[
P 02

(20 — 7, )] + cs(g —d)+T(d - g) — 33735688.94 = 337.36 KN.m

(6.8.19)

4.  For the balanced condition, it is necessary to carry out an iterative procedure, but in this case the
strains at the level of both steel areas (A and A’) are fixed to a value ¢ . Thus, in order to satisfy

the equilibrium of forces the neutral axis must be located at a depth z,, =29.88 cm. The resulting

forces are:

C =1154.44 KN;C =T712.79KN;T =720KN = Np =1147.23 KN (6.8.20)

The location of the compression force in the concrete is z, = 18.13 cm from the neutral axis. The
e

bending moment is computed using Equation (6.5.10):

h
__(Zm e )

M =C
» ap N/ ;

hoo h
+C. (5 —d)+T(d - 5) =54731936.40 N.cm =547.32KN.m  (6.8.21)

The resulting interaction diagram is shown in Figure 43.
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Figure 43. Interaction diagram for plastic and ultimate moment
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6.8.5 Compute the Interaction Diagram of the Ultimate Moment for the
Cross-Section Shown in Figure 42; Consider Unconfined Concrete
The following points are computed:

1. The first point, i.e. pure compression, is the same of the first plastic moment. Thus, the axial force
is equal to:

N =~-—4543.76 KN (6.8.22)

2. For the case of pure tension, it is used Equation (6.5.12):

N, = (A + A)=60000* (18.00 +18.00); N, = 2160.00 KN (6.8.23)

U

3. For the pure bending condition, the strain in the extreme compression fiber is fixed to e, = 0.0038.
The neutral axis is located at 8.77 cm from the extreme compression fiber; the resulting forces in
the concrete and steel are:

C =365.44KN;C. =354.56 KN; T =720.00 KN (6.8.24)
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The location of the force in the concrete is z, = 5.03 cm from the neutral axis. Thus, the bending
"

moment computed with Equation (6.5.14) results in:

h
2

(ZNA o ZC‘(, )

MU = C(f [

ho h
+C (5 ~d)+T(d~- E) —34848205.10 N.cm = 348.48 KN . m (6.8.25)

4.  As aforementioned, for the balanced condition the strain in the most compressed fiber is equal to
¢, and the strain in the reinforcement steel in tension is equal to ¢ . Thus, to satisfy the equilibrium
of forces, the neutral axis must be located at a depth z, , = 35.05 cm. The resulting forces are:

C =1459.76 KN;C =720.00 KN;T =720.00 KN = N =1459.76 KN (6.8.26)

The location of the compression force in the concrete is z, = 20.11 cm from the neutral axis. The
8

bending moment is computed using Equation (6.5.16):

h h h
M =C (5 —(z,, — 2. )+ C (5 —d)+T(d- 5) =55818409.76 N.cm =558.18 KN. m (6.8.27)

5. Additional points can be computed considering that the strain in the most compressed fiber is equal
to e  and that the axial force takes different values larger than the balanced one. For example,
considering N, =1100.00 KN the neutral axis is located at 26.41 cm from the extreme compres-

sion fiber and the forces in the concrete and steel are:

C =1100.00KN;C =720.00KN;T =720.00 KN (6.8.28)
The location of compression force in the concrete is z, = 15.15 cm from the neutral axis. The cor-
responding bending moment is:

M, :CC[Q—(Z

2 NA

~z, )] + Cs(g —d)+T(d - g) = 544.52KN.m (6.8.29)

The interaction diagram is presented in Figure 43.
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6.8.6. Compute the Interaction Diagram of the Ultimate Plastic Curvature
for the Cross-Section Shown in Figure 42; Consider Unconfined Concrete

cu Y

(Equations

The ultimate plastic curvature is determined by (x, — x,), where x, = —*and x = y

x -z
6.5.19b y c). For pure compression and pure tension the curvatures are nil; the ultimate and plastic
curvatures for pure bending condition are shown in Box 2.

For the balanced condition they are shown in Box 3.

The interaction diagram is shown in Figure 44.

Box 2.

e, 0.002 e 0.0038 B
X = = =581z10" 1/cm and y =~ =——=4.332z10" 1/cm
" d—=z 53.5-19.10 ! z 8.77

¢ .
then (y —x )=—=3.75210" 1/cm
" » I

P

(6.8.30)

Box 3.

€ 0.002 5 € 0.0038
X =—2—= =847x10" 1/cm and y = -+ =
" d—z 53.5—29.88 ! 35.04
r

then (x, —x,) = f =2.37210" 1/cm

P

=1.08z10" 1/cm

(6.8.31)

Figure 44. Interaction diagram for ultimate plastic curvature
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6.8.7. Compute the Plastic Length of the Hinge for the Bending Moment
Diagram Shown in the Figure 45 and the Cross-Section Presented in Figure 42

From the Figure 45 it is obtained x that is the distance from the critical section to the point of inflec-

tion.

g =3 (6.8.32)

The plastic hinge length L is computed with the Equation (6.5.20)

L, = 0.5d +0.05z, = 0.5(53.5) + 0.05 [%] = 26.75 + 0.03L (6.8.33)

6.8.8. Compute the Slip Resistance M_ and the Parameter
n for the Beam-Column Joint Shown in Figure 46

Following the same procedure used in the previous examples, the properties of the wide-beam shown
in Figure 46 are obtained. The properties for pure bending condition are:

Mp =219.68 KN.m;M = 227.62KN.m; (6.8.34)

For this joint, 1 = slip length = column width =40 cm, 7, = the average slip stress = 303.60 N/cm?,
d = 3/47~1.905 cm, thus:

b

Figure 45. Bending moment diagram
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Figure 46. RC wide-beam-column joint; wide-beam cross-section

Column
o . .
et Material Properties:
ﬁ Wide beam
C D Steel: £=40000 N/em?
| 'o" | | o= 60000 N/cm?
E=2.0x107 N/em?
LV : |
I —— =
S | £=0.002
. i . . 2
RC Wide beam-column joint Mot = SRS Dy
&= 0.002
&4=0.0038
| 90 cm L
A 4423 G Slipresistance:  7;=303.6 N/cm?

® 9 8 0 © B
30 cm A’=8¢3/4”=22.80 cm
A;=843/47=22.80.cn?

@ e e e & @

j{fs.() cm
Wide beam cross-section
T wh n ]2 4
v, =Tt 23882 T A0g g 905) = 20092510 N = 200.93 KN (6.8.35)
slip 2 S~ ar 2

Solving Equation (6.6.5) C, +C —T, =0, itis obtained the neutral axis depth z,, =7.98 cm

and the location of compression force in the concrete z, = 5.29 cm. Then, the slip resistance M, is

C

computed as:

h h h
MO :Tslip(d_g)"i_c (E_ZNA +Z0C>+Cs(5—d')

c

M, =290925.10(27 — 15) + 214514.33(15-7.98 + 5.29) + 76200.11(15-3) = 7046173.92 N .cm
M, =70.46 KN.m

(6.8.36)
The parameter 7 is computed with a value of r = 0.4 as:
rM —rM + M 0.4 z 227.68 — 0.4 z 219.68 + 219.68
= “ M P P . 70.46
n = g - _ _ 288 (6.8.37)
re; 0.4¢" O,
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6.9 PROBLEMS

6.9.1 Plot the Elastic Domains and Develop the Normality Rules for a Rectangular Cross-Section
Using the Exact Solution Equation (6.4.5) and the Approximated One Equation (6.4.13) with
vi=1v2=2andvl =12 =2/2

6.9.2 Compute the First Plastic and Ultimate Moments for a Homogeneous T Cross-Section As-
suming That the Plastic Neutral Axis Is Located in the Flange of the Beam

6.9.3 Compute the First Plastic and Ultimate Moments for a Homogeneous Equilateral Triangle
Cross-Section

6.9.4 For the Column Shown in Figure 47 Compute the Properties Considering the Biaxial Effects.

6.9.5 Propose a Model for a RC Plastic Hinge with Multi-Linear Isotropic Hardening

6.9.6 Propose a Model for a RC Plastic Hinge with Multi-Linear Kinematic and Isotropic Hardening

Figure 47. RC Column element

40 cm

30 cm
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Chapter 7
Elasto-Plastic Frames

ABSTRACT

The goal of this chapter is to describe how the concepts presented in Chapters 5 and 6 can be included
in the mathematical models for the elastic plastic analysis of frame structures. The numerical imple-
mentation of such an analysis is described in Chapter 8. The models presented in this chapter cover
applications for reinforced concrete frames, shear walls, wide beams, and dual systems, as well as steel
structures. Both cases, planar and tridimensional analyses, are considered. However, this chapter does
not yet describe the numerical and computational analysis of elasto-plastic structures; this is the subject
of the next chapter.

7.1 ELASTO-PLASTIC CONSTITUTIVE MODEL FOR A
SLENDER ELEMENT OF A PLANAR FRAME

Buildings in seismic zones must be designed so that there is no structural damage at all under service
loads or earthquakes of small intensity; the latter are defined as those events that may occur frequently
during the life time of the structure. In mathematical terms, no structural damage means that the struc-
tures must behave elastically under such conditions. In the case of earthquakes of intermediate intensity,
i.e. those that are expected to occur at most once or twice during the life time of the structure, it is al-
lowed some structural damage provided that it is repairable. In mathematical terms, repairable structural
damage means a limited amount of plastic deformations or, the formation of a small number of plastic
hinges in the structure. Taking into account that an earthquake of intermediate intensity is considered
an event of high probability during the expected life time of the structure, a plastic analysis of such kind
of structures should be mandatory.

Earthquake loading is the main cause of structural damage in the practice; however, frame structures
may also enter into the plastic range in the case of other kind of overloads. For instance, those due to
displacements of its supports (because of the failure of the soil underneath) or impacts or explosions.

DOI: 10.4018/978-1-4666-6379-4.ch007
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7.1.1 Lumped Plasticity Model

As mentioned in Chapter 4, distributed forces on the elements are used to characterize service loads;
they are assumed to be small compared with exceptional overloads such as earthquake forces, settlement
of foundations, explosions or others; these exceptional overloads can be represented as nodal forces or
displacements. As aforementioned, a structure only under service loads does not need inelastic analysis;
it is therefore assumed that nodal forces are the main cause of plastic deformations in the elements. Typi-
cally, the moment distribution in these cases (small distributed forces and relatively large nodal forces)
presents maximums at the ends of the elements such as indicated in Figure 1.

The simplest way to consider the presence of plasticity in a frame structure under these conditions is
the lumped plasticity model that consists in assuming that a slender frame element can be represented
as the assemblage of an elastic beam-column and two plastic hinges at the ends i and j such as shown
in Figure 2.

In the lumped plasticity model, the deformations of a frame member can be decomposed into two terms:

{®}, ={®"}, +{®"}, (7.1.1)

where {®"}, is the matrix of generalized deformations of the elastic beam-column and {®”}, is called
matrix of plastic deformations; the latter contains the rotations and elongations of the plastic hinges:

o
{) =l (7.12)
6?

Figure 1. Typical distribution of moments in a frame with large nodal forces and small distributed forces
on the elements
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Figure 2. Lumped plasticity model of a slender frame member

Plastic hinges
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The terms ¢, qu’.’ correspond, respectively, to the rotation of plastic hinges i and j; 6" is the plastic

elongation of the element chord; the latter is equal to the sum of the plastic elongations of each hinge:

§ =6+ (7.1.3)

7.1.2 Elasticity law

The lumped plasticity model is the basis of all the models for slender frame elements that are presented in
this chapter. The elasticity law of an elasto-plastic frame element can be obtained as follows. Introducing
the constitutive equation of the elastic beam-column (Equation 3.3.9a) into (7.1.1) gives:

{®}, =[F | {M}, +{®"}, +{2"}, (7.1.4)

The terms [F, ], {M},, {®"}, are, of course, the flexibility matrix, the generalized stresses and the

initial deformations such as defined in chapter 3 (Equations 3.3.9b, 3.2.2 and Table 3 in Chapter 3);
Equation (7.1.4) can also be written as:

{M}, = [E],{®—®"}, + {M’}, (7.1.5)

where [E], = [F, J,"is the same elasticity matrix defined in chapter 3 and {M"}, = —[E] {®°}, is the
matrix of initial stresses (Equation 3.3.11b and Table 3 in Chapter 3). The expression (7.1.5), or (7.1.4),
is the elasticity law of a slender elasto-plastic frame element.

The constitutive equations of this kind of elements can now be defined by combining this elasticity
law with one of the plastic hinges introduced in chapter 6. The sections 7.1.4-7 describe the different

models obtained in this way.
7.1.3 Selection of the Rigidity Term El in the Elasticity Law

For frame elements made of homogenous materials, like aluminum or steel, the moment of inertia of the
cross-section is computed as is presented in the textbooks of strength of materials; the elastic modulus
is identified in a simple tension test, as the slope of the initial linear part of the stress-strain curve.

In the case of reinforced concrete elements, the issue is more complicated due to the presence of two
materials and the nonlinear behavior of the concrete. In compression, the initial behavior of the concrete
is approximately linear elastic but it changes to a parabolic relation rapidly. Thus, it is not easy to identify
a unique slope for the initial stress-strain curve. The ACI (American Concrete Institute) has proposed
empirical expressions for the elastic modulus (Equations 6.5.1 and 6.5.2) for the initial linear stage but
the use of these values conduces to a stiffness much larger than the values observed in experimental
tests on RC elements. The simplest solution to obtain results near the values observed experimentally
is the use of the following expression:
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B -7 (7.1.6)

where ¢, = 0.002 is the strain in the concrete when the stress is equal to f’, . For this material the mo-

ment of inertia is computed using the total area of the cross-section, making no deductions for the pres-
ence of the steel bars.

7.1.4 Elastic Perfectly Plastic Constitutive Model
In the case of perfect plasticity, the evolution laws of the plastic deformations are obtained by introduc-

ing the constitutive equations of the plastic hinges i and j, such as defined in the section 6.2. Let f, and
]3. be the yield functions of, respectively, plastic hinges at the ends i and j:

f=1m,n) <0 f = f(m,n) <0 (7.1.7)

The model of a slender elastic perfectly plastic frame element is given by the elasticity law (7.1.5)
or (7.1.4), the normality rule:

of of, of of,
dp’ = d\ ——:;d¢? = d\ —L;d6 =d\ — +d\ —~ 7.1.8
9 tom, ¢] J (9mj r "on 7 On ( )

and the plastic multipliers evolution laws:

dX, = 0 if f(m n) <0 (hinge i is locked) |d\, =0 if f(m ,n) <0

7.1.9
f(m;,n)=0if d\ =0 (hinge i is active)’ fi(m,n)=0if dA =0 ( )

A and )\j are the plastic multipliers of hinges i and j. The yield functions f (m_,n)and f] ( m;, n) depend,
of course, on the cross-section of the element and may be computed by any of the procedures described
in the precedent chapter.

7.1.5 Elastic Perfectly Plastic Constitutive Model
Neglecting Plastic Elongations

In the cases where plastic elongations can be neglected, typically in reinforced concrete frames, the

constitutive equation is composed by the same elasticity law (7.1.5) or (7.1.4) and the following simpli-
fied evolution laws:

d¢? = 0 if f(m ) < 0 (hinge 7 locked
0, fl( ) ( . g . ‘ );f(m,):‘m,‘—MH.SO;
f(m)=0if d¢” = 0 (hinge i active) ™ ' v
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6 =0

P

d¢? =0 if f(m,) <0 (hinge j locked)

fm)=|m|-M <o; 7.1.10
fi(m,)=01if d¢? = 0 (hinge j active) fi(m,) ‘m]‘ ! ( )

v

Notice that, for the sake of generality, different yield moments M, and M are introduced in the model;
this might be the case of RC frame elements since the reinforcement can be dissimilar at its ends. The
ultimate moment of the cross-section M, or the first plastic one M, can be used as yield moments in
(7.1.10). Frequently, the yield moment is assumed to be constant; however, a better model is obtained
if a function of the axial force is selected such as described in the previous chapter.

7.1.6 Elasto-Plastic Constitutive Model with Hardening
A more accurate model that includes both values, M, and M , can be obtained by using plastic hinges

with hardening. In this case, the same elasticity law (7.1.5) or (7.1.4) is combined with the plastic de-
formation evolution laws derived from the yield functions presented in section 6.3.3:

d¢! = 0if f(m,p,x ) <0 (hinge i locked)
f(m,p,z)=0if d¢’ = 0 (hinge 7 active)

6 =0

p

d¢? =0 if]i(mj,;'pj,sz)} <0 (hi‘nge j. lock‘ed) G.L1D)
fj(m].,pj,:c].) =0 if d¢? =0 (hinge j active)

fmppz)=|m —x|— (M, +Qp)) < 0:f(m,p.z)=|m —z|-(M +Q@p))<0  (7.112)

where p, and p;can be the accumulated plastic rotations of, respectively, hinges i and j as defined in the
Equation (6.3.2) of the precedent chapter:

dp, = \dgﬁ; and dp, = ‘dq&f (7.1.13)
Alternatively, p; and p; may represent the maximum plastic rotations as in (6.3.3):
p, = Mazx|p’| and p, = Max qu (7.1.14)
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The isotropic hardening term Q can be nonlinear (7.1.15a), multilinear (7.1.15b) or linear (7.1.15c):

Qp)=Q1=r)(M, =M )1-e"")

l-r)M, —M
(1—r)(M, m)pi if0<p <o

Qp,) = o
(1 - T)(Mm. - Mpi) if p, > QSS@

Qp,) = (1—r)c,.p, (7.1.15)

with the same choices for the kinematic hardening term:

|

dz, = a(r(Mm. —M )d¢! — 1z, ‘dgbip

M, =M,
. p” 1S dg! it |m, | < M,
0 if ‘mi‘:Mm.
T, =rce’ (7.1.16)

The values of r were discussed in section 6.3.3. The expressions for the isotropic and kinematic harden-
ing terms corresponding to the hinge j can be written in the same way changing only the subscript i by j.

7.1.7 Constitutive Equations for Inelastic Hinges with
Slip in RC Wide Beam-Column Connections

As discussed in section 6.6, some RC structures subjected to cyclic loads can show pinching of the
loops. The pinching is mainly due to cyclic bond deterioration between longitudinal reinforcing steel
and concrete. This type of behavior is typical in wide beam-to-column connections but it is not always
relevant in RC structures.

A model with slip hinge includes the “slip resistance”, M . This model combines the elasticity law
(7.1.5) or (7.1.4) with the plastic deformation evolution laws derived from slip functions presented in
the section 6.6.3:

d¢? =0 if £ <0 (hinge ¢ locked)
[ =0if d¢’ = 0 (hinge i active)
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6 =0
p
d¢? = 0 if £ <0 (hinge j locked) (7.1.17)
£ = 0if dg? = 0 (hinge j active B
f J
f;slip _ ‘m[‘ B M()i e(sign(ml)ﬂmﬁlp) < 0; fjsli,p _ ‘mj‘ _ Mo]‘ e(Sz‘gn(my)n,?f) <0 (7.1.18)

where the parameters 77, and 77, can be computed using the Equation (6.6.9) of precedent chapter:

0.4M, —0.4M, + M

04M —04M + M
ln ln wy pj pj
Moi Muj
= = (7.1.19)
£ 0.4¢" g 0.4¢"

ui uj

A more complex model that combines the slip and yielding mechanisms can be obtained by the same
elasticity laws (7.1.5) or (7.1.4), the plastic deformation evolution laws (7.1.11) and (7.1.17). Both mecha-
nisms are possible and may occur one after the other in RC structures. Then, the following evolution laws
for the plastic deformations in plastic hinges with yielding and slip for RC elements can be written as:

d¢! = 0 if f <0 (hinge i locked)
[ =0if dgp” = 0 (hinge 7 active)

5 =0

p

d¢? = 0if f, <0 (hinge j locked) (7.1.20)
f=0if d¢! =0 (hinge j active) o

[ = Max(f", [); f = Maa:(ﬁ’,fjﬁ”“’) (7.1.21)

where f’and f]“ are respectively, the yield functions in the hinges i and j (Equations 7.1.12aand 7.1.12b).
fi“"”p and f;’”p are respectively, the slip functions in the hinges i and j (Equations 7.1.18a and 7.1.18b). A

behavior curve that represents this complex model is shown in Figure 3.
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Figure 3. Plastic behavior curve of a inelastic hinge with slip and yielding
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7.2 ELASTO-PLASTIC CONSTITUTIVE MODEL FOR SQUAT RC ELEMENTS
7.2.1 Elasticity Law

In chapter 4, slender frame elements were defined as those with high aspect ratio; in these cases, deforma-
tions due to shear forces are negligible when compared with the bending ones. Under this condition, the
constitutive law derived from the Euler-Bernoulli theory of beams is accurate enough and a considerably
simpler alternative. Plasticity in slender frame elements is only due to bending and can be lumped at
plastic hinges as discussed in the precedent section.

On the other hand, squat reinforced concrete elements are defined as those with a very low aspectratio.
These elements need elasticity equations based on the Timoshenko beam theory as the one introduced
in section 3.4. Examples of squat elements are RC walls and very short columns.

As in the previous section, it is assumed that distributed forces on the element are small compared
with the nodal forces. Shear forces and distortions are, therefore, approximately constants along the ele-
ment as shown in Figure 4a. Assume that the state of plastic deformation in a squat element under this
condition is represented as in Figure 4b.

Mathematically, this state of deformation is characterized by the following matrix of plastic defor-
mations:

{,yp}b = |y’ (7.2.1)

238



Elasto-Plastic Frames

Figure 4. a) Distribution of shear forces in a squat element under low distributed forces b) Approximate
plastic deformation state in a squat element under low distributed forces
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The elasticity law for a squat element with plasticity can be obtained by modification of the constitu-
tive equation (3.4.8): the total deformations are now obtained adding the plastic deformation matrix to
this equation:

{®}, = ([F], +[E]){M}, +{®"}, +{+"}, (7.2.2)

where the flexibility matrices [F, ], and [F ], are the same that were introduced in section 3.4.2 (Equation

3.4.9). Alternatively, the elasticity law can also be written as:

M}, = [E]{®—~"}, +{M"}, (7.2.3)

where [E], and {M"}, are the same elasticity matrix and initial stresses introduced in section 3.3.2 (Equa-
tions 3.3.11a and 3.3.11b).

7.2.2 Evolution Law of Plastic Distortion

The same evolution law of plastic distortion introduced in section 5.7 (Equation 5.7.2) can be used in this
case; the integration of the yield function over the cross-section of the element completes the evolution law:

dy" =0if f(V,p,z ) <0 (elastic behavior)
f(V,p,x)=0if dy" = 0 (plastic behavior) !
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where the shear force V is approximated as:

b b
m, +m7
L

b

V

12

(7.2.5)

Again, there are at least two options for the variable p , the accumulated plastic distortion as defined
in (7.2.6a) or the maximum plastic distortion as in (7.2.6b):

dp, = ‘d’yp or p, = Maz|y’ (7.2.6)

As in the previous case, the shear yield function f, can have isotropic and/or kinematic hardening
terms; those terms can be nonlinear, multilinear or linear:

Qp,) =A—-r)(V, =V)A—-e™")

Q=r)V,=V)
Qp,) = v
A=)V, =V )if p, >~)

p, if0<p <A

Q(p,) =1 —r)c.p, (7.2.7)

dxs = a(rg(vu _ Vp)d,yp _ xﬂ_‘d,yp

)

r(V.-V)
= 4y if ‘x“<r,(V -V)
dxs — ’75 s s u P
0 if |z|=r(V,-V)
T, =r.c." (7.2.8)

In the case of shear plasticity in RC elements, the recommended value of r. is 0.6.

7.3 SHEAR PROPERTIES OF RC ELEMENTS

Consider the squat RC elements shown in Figure 5; in it, the geometrical characteristics, the longitudinal
and transversal reinforcement are detailed.
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The shear properties of a squat RC element needed for the elasto-plastic analysis of squat element are
the first plastic shear force, the ultimate shear force and the ultimate plastic distortion that are indicated
in Figure 6.

The first plastic shear force V' is defined as the level of force that initiates yielding of the stirrups or
ties in the element. This parameter can be computed using a simplified design method called “Strut-and-
Tie Model”. The description of this method is outside the scope of this book and the interested reader
should consult, for instance, the references indicated in the bibliography of this chapter. A simple equa-
tion that gives the value of the plastic shear force is:

Ashjzh [cot (9) + cot (ﬂ)} sen (ﬂ)

S

V =k

p p

d (7.3.1)

where A, is the area of stirrups, jjh is the yield strength of the stirrups and the meaning of the terms s
and d is indicated in Figure 5. f is the angle between the transversal and longitudinal reinforcement. 0
is the angle of inclination of the compression strut in the concrete that can be computed approximately
assuming cracking patterns as the ones shown in Figure 7. kp is a dimensionless coefficient that consid-

ers the efficiency of transversal reinforcement; it takes values between 0.40 for 5 = 90°and 0.70 for
B = 45°. As it can be observed in this figure, in the case of a beam-column element § = 45° and for a
wall element this angle can be computed as:

cot (0) = % (7.3.2)

where a is the shear span, i.e., for a cantilever element ¢ = L and for a doubled fixed element a = —

For the most frequent case, # = 90°, the plastic shear force becomes:

Aufy oot (0)

S

V =k

p p

d (7.3.3)

A possibility for obtaining the ultimate shear force consists in using the following semi-empirical
expression:

A .
V =k — I ‘f (7.3.4)

s g a/ 05\/7/1

K is a dimensionless coefficient that takes the value of 1 for elements with aspect ratio less than 5
and 0.7 otherwise. Notice that, in (7.2.12), the ultimate shear force depends on the axial force n and the
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Figure 5. Reinforcement and geometrical details in squat elements: a) wall b) beam-column
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aspect ratio a/d; f’ is, as usual, the strength of the concrete cylinder in compression in MPa; notice that

the term 0.5\/f7 is expressed in terms of force over area, i.e. 0.5 is not dimensionless; A is the total area

of the cross-section.

The ultimate plastic shear distortion can be computed by the expression:
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Figure 7. Inclination of the compression strut in the concrete for: a) a wall element b) a beam-column
element
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where Lps is a coefficient that can take values between 0.1L to L; a simple rule to choose an adequate
value is using LW = 0.25L for high aspect ratios (i.e. larger than 5) and Lps =L for low aspect ratios. f, ,
is the ultimate strength of the transversal reinforcement; E_and E_are, respectively, the elasticity mod-
ulus of steel and concrete; € is the ultimate strain in the concrete (¢ = 0.004 for non-confined concrete
and ¢, = 0.0084 for confined concrete), p , is the volumetric ratio between transversal reinforcement
and the concrete (see examples 7.7.1 and 7.7.2).

7.4 AN ELASTO-PLASTIC CONSTITUTIVE MODEL
FOR ELEMENTS OF ANY ASPECT RATIO

RC elements with an aspect ratio less than 2.5 can be classified as squat; for aspect ratios larger than 6.5
they are slender; between those limits, plastic hinges and shear plasticity may appear simultaneously. In
this section it is presented a model that includes the previous ones as particular cases.

The elasticity law is now obtained on the basis of the lumped/distributed plasticity model shown in
Figure 8. The frame element is therefore assumed to be the assemblage of an elasto-plastic component
with shear plasticity and two plastic hinges at the ends of the element.

The frame deformations can be decomposed as:

{®}, ={2"}, +{2"}, (7.4.1)
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Figure 8. Lumped/distributed plasticity model

Plastic hinges
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where {®'"}, is the matrix of generalized deformations of the elasto-plastic component and {®”}, is
the matrix of rotations of the plastic hinges neglecting plastic elongation. In the lumped/distributed
plasticity model, the elasto-plastic component obeys the Equation (7.2.2); thus, the elasticity law derived
from (7.3.1) is:

{®}, = ([F], +[F]){M}, +{2"}, +{+"}, +{2"}, (7.4.2)
Alternatively:
{M}, = [E|{® —®" —~"}, +{M"},; where [E], = ([F,], +[F])" (7.4.3)

The evolution laws of the plastic deformations, those of the hinges and the one due to shear, are exactly
the same that were introduced in the two previous sections, that is (7.1.9-16) and (7.2.4-8).
The behavior described by this constitutive equation is shown in the examples 7.6.4 and 7.6.5.

7.5 TRIDIMENSIONAL ELASTO-PLASTIC FRAMES
7.5.1 Constitutive Equations

Consider atridimensional frame composed by slender elements; the generalized deformations and stresses
are now defined as in (3.5.2) and (3.5.9):

{8}, = (4,9 ,6,,0.,6.,6,):{M}, = (m, ,m’ ,n,,m; ,m m) (7.5.1)

The elasticity law in this case is based on a lumped/distributed model similar to the one used in sec-
tion 7.3 except that in this case, it is the plastic deformation due to torsion the one that is assumed as
uniformly distributed along the element. A consequence of this simplifying assumption is the uncoupling
between torsion and bending.

The elasticity law is now given by:

M}, = [E|{® - "}, +{M"}; {®"}, = (¢],0",6,,0.,0",0]) (7.5.2)

j?/’ p7 iz ? jZ’
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Figure 9. Lumped/distributed model of a tridimensional frame element
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Where the elasticity matrix [E], has the same expression introduced in chapter 3 (3.5.14). The evolution
laws of the plastic deformations are based again on three yield functions, one for plastic hinge i:
f(m: ,m’,n,) <0, another for plastic hinge j: f (m],m’,n,) < 0and a third one for plastic torsion:

L( mi) < 0. The yield functions of the plastic hinges may have the same expressions introduced in sec-
tions 6.4.4 or 6.5.7. The simplest form of the yield function for plastic torsion is:

f(m)=|m|-M,_ <0 (75.3)

where M _is the ultimate torque of the cross-section of the element.
The evolution laws of plastic deformations are now formulated as described in chapter 6:

af. of. of of.
d¢? = d\ —f’;dgb”, =d\ i;dgb? =d\ i;d(j)”. =d\. i
v ’ 8myi i I 8mw. # "om, 7 J 8mz]_
of of.
dd =d\ —j; +d\ i
p " on T on

dX\, = 0if f(m,n) <0 |d\ =0if f(m ,n)<0
f(m,n)=0if d\ >0"|f(m ,n)=0if d\ >0’

' Y ! (7.5.4)
{dq&f =0if f(m ) <0

f(m)=0if d¢’ >0

Every one of the already described variations is, of course, possible. For instance, in the case of RC
elements, plastic elongations can be neglected; the three yield functions can also be modified including
isotropic and kinematic terms.

7.5.2 Computation of the Ultimate Plastic Torque
for Thin-Walled Steel Elements

In section 5.7 it was indicated that thin-walled tubes with hollow circular shapes subjected to torsion
can be considered as an isostatic problem. In fact, any thin-walled tube no matter the form of the cross-
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section can also be considered as isostatic; shear stresses are approximately constant across the walls
and they point in the direction tangent to them as shown in Figure 10.

The magnitude of the shear stresses can now be computed considering an equilibrium equation be-
tween torque and shear stress. It is thus obtained:

= (7.5.5)

where e is in this case the wall width and A is the mean of the areas enclosed by the outer and the inner
boundaries of the cross-section of the tube (see Figure 10). If the steel hardening is considered, the ul-
timate torque 7’ can be computed as:

T =27 Ae (7.5.6)

where 7 is the ultimate shear stress that can be experimentally identify as is shown in Figure 16 in

5

7.5.3 Computation of the Ultimate Torque for Reinforced Concrete Elements

Chapter 5. Alternatively 7 can be computed as: 7, =

Figure 11 a shows a concrete element with rectangular cross-section subjected to a torque 7.
The ultimate torque of a rectangular cross-section can be calculated based on the strut-and-tie model:

’ Af A
T :QAO Mﬁ (7.5.7)
P S

where A is the area enclosed by the line connecting the longitudinal corner bars (b d ), pis the pe-
rimeter of A (20 + 2d ), sis the spacing of hoops (stirrups or ties), A fy . 1s the yield force of one

hoop, Z A fy , 1s the yield force of all longitudinal steel in a symmetrically reinforced section.

Figure 10. Shear stresses in a thin-walled tube

Cross-section
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Figure 11. a) RC member subjected to a torque T. b) Definition of A

7.6 SUMMARY AND EQUATIONS QUICK REFERENCE

Plasticity models for frame elements are based on the lumped plasticity hypothesis that consist in as-
suming that a slender frame element can be represented as the assemblage of an elastic beam-column
and two plastic hinges at the ends of the element. A family of models can be obtained combining the
lumped plasticity model with the plastic hinges described in chapter 6.

In dual systems, the elastic beam-column is substituted by an elasto-plastic component based on the
theory of Timoshenko.

Models for tridimensional frame elements are obtained in the same way except that the elasto-plastic
component describe torsion plasticity instead of shear plasticity (See Table 1).

Table 1.

ELASTO-PLASTIC CONSTITUTIVE MODEL FOR A SLENDER ELEMENT OF A PLANAR FRAME

Lumped Plasticity Model

Deformations of a frame member
_ be »
{@}, ={®"}, +{®"}, 7.1
{‘Pbc } b matrix of generalized deformations of the elastic beam-column

{i’p } b " matrix of plastic deformations

Matrix of plastic deformations
¢!
i
{*I)p} = <;57’,’ (7.12)
b p
of
¢Z¢ : rotation of plastic hinges i
(Zﬁjp : rotation of plastic hinges j

6” :plastic elongation of the element chord

continued on following page
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Table 1. Continued

Plastic elongation of the element

o = 6;’ + (5;’ (7.1.3)

Elasticity Law

{®}, =[F [ {M}, +{2°}, +{®"}, 019
{M}, = [E]{® - ®"}, +{M"}, 7.1.5)

[Ff ]b : flexibility matrix

{M}b : generalized stresses matrix

q)o : initial deformations matrix

@,

E| =|F - : elasticity matrix

[ b o

{MO }b = _[E]b {‘1)0 }b matrix of initial stresses

Selection of the Rigidity Term EI in the Elasticity Law

Elastic modulus of concrete

)

E =

o

) .
f . - maximum strength of concrete

g, = 0.002 : strain in the concrete when the stress is f’(,

Perfectly Plastic Constitutive Model

Elasticity law

{®}, =[F ] {M}, +{2°}, +{®"}
{M}b = [E]b {¢ — P’ }b + {MO}

b (7.1.4)

b (7.1.5)

Yield functions plastic hinges at the ends i and j
f=Fmn) < 0:f = fi(m,m) <0

Normality rule

dg; =

(7.1.7)

0
8f f d5 =d\ ﬁ + dA, —f
m. ‘On 7 9n
g (7.1.8)

Plastic multipliers evolution laws

dX, = 0if f(m;,n) <0 (hinge @ is locked) |d\, =0 if f(m ,n) <0

f(m.,n)=01if d\ =0 (hinge i is active)’ f(m n)=0if dA =0
(7.1.9)

where 7 and 7 are plastic multipliers of hinges i and j

continued on following page
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Table 1. Continued

Elastic Perfect Plastic Constitutive Model Neglecting Plastic Elongations

Elasticity law
{®}, = [Ff]b{M}b + {‘I’O}b +{e7}, (7.1.4)

{M}b = [E]b{q’ o ‘I’p}b + {Mo}b (7.1.5)

Evolution law
do? =0 if f(m.) < 0 (hinge ¢ locked
or=0itifm) <O (hinge tocked) oy 1 o
f(m,) = 0if d¢! = 0 (hinge i active) ™" ' ' "

d¢? =0 if f(m. ) <0 (hinge j locked

=0 <O ik

) 0 f(m) =0if dgbp =0 (hlnge] actlve) AR J Y

! Y ! (7.1.10)

Elasto-Plastic Constitutive Model with Hardening

Elasticity law

{®}, =[F]{M}, +{2}, +{®
{M}b = [E]b {(I) — P’ }b + {MO

14
}b (7.1.4)

}b (7.1.5)

Evolution laws
do¢! =0 if f(m,p,,x,) <0 (hinge 7 locked)
f(m,p,z)=0if d¢” = 0 (hinge i active)

|d¢;’ =0if f(m,p,z,) <0 (hinge j locked)
, =0 ]‘;(mj,pj,xj) =0if dgbj’.’ = 0 (hinge j active)

(7.1.11)

Yield functions
fm.p.x)=|m —z|-(M +Qp)) <0 f(m.p.x)=|m —a|-(M +Q@p)) <0

p, and p; accumulated plastic rotations or maximum plastic rotations

(7.1.12)

The accumulated plastic rotations

dp, = ‘dqﬁf “dp = ‘dqﬁ’?

' ! T (1.113)
Maximum plastic rotations
p, = Maz|]|;p, = Maz|¢;

(7.1.14)

Isotropic hardening terms

Qp,)=Q0-r) (M, —M )1- e )

A-nM, -M,)
ui pr pi if 0 S pl < (255[
Qp,) = < | |
(=r)(M, = M,)if p,>¢]

Nonlinear:

Multilinear:

Q(R) = (1 - r)cyf'pvf

(7.1.15)

Linear:

continued on following page
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Table 1. Continued

Kinematic hardening terms

dz, = a(r(M,, — M, )dg! — = |do;

Nonlinear:
T( ui pz) »
de! if |m, | <M,
dex. = ol :
u
0 if ‘m‘ =M.
Multilinear: ' " (7.1.16)
. =rco’
Linear: ' e

Constitutive Equations for Inelastic Hinges with Slip in RC Wide Beam-Column Connection
Model with Slip Hinges

Elasticity law
(@), = [F| (M}, + (&'}, + (&),

{M}b = [E]b{‘I’ B (I’p}b + {Mo}b (7.1.5)

Evolution laws
dg? = 0 if f*” < 0 (hinge 7 locked)
£ =0if d¢’ = 0 (hinge i active)

6 =0

P
{dgbf =0 if £ <0 (hinge j locked)

% =0 if d¢” = 0 (hinge j active)
! ! (7.1.17)

Slip functions
i = mv‘—M e
1 K3 o0

1
Parameters 5, and 1,

(siyn(m, )m@‘f) (siyn(m] ey )

S O;f;hp = ‘m]‘ — MO] e S 0

(7.1.18)

0.4M —0.4M + M 04M —04M +M
ln ui i i ].Il uj P yzj
Mui Moj
n, = 1, =
0.4¢" g 0.4¢"
“ W (7.1.19)
Model that combines the slip and yielding mechanisms
Elasticity law
{(I)}zy = [Ff]b{M}b + {(I)O}b + {(I)p}b (7.1.4)

{M}b = [E]b{(b B ‘I’p}b + {Mo}b (7.1.5)

continued on following page
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Table 1. Continued

Evolution laws
d¢! = 0 if f <0 (hinge i locked)
f =0if d¢! = 0 (hinge 7 active)

6 =0

P

d¢? =0 if f <0 (hinge j locked)
f,=0if d¢? = 0 (hinge j active)

(7.1.20)

Inelastic functions

]L: = Max(f;?y7ﬁ;s”p);f;‘ — Max(‘]t;y’]t;slip)
£ o

and *J : yield functions in the hinges i and j

fslip fSIiP
i and "/ :slip functions in the hinges i and j

(7.1.21)

ELASTO-PLASTIC CONSTITUTIVE MODEL FOR SQUAT RC ELEMENTS

Elasticity Law
Matrix of plastic deformations
%
ok =
0

(7.2.1)
Y

: plastic distortion or plastic angular strain

(@), = (B, + L), + {8, + (7}
™M), = Bl {@ "), + (M),

¥
¥ ]

s : shear flexibility matrix

{®"}

[E]b -elasticit i
K Yy matrix

{Mm’}

b (12.2)

b flexure flexibility matrix

b : matrix of initial deformations

b : matrix of initial stresses

continued on following page
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Evolution Law of Plastic Distortion

Evolution law
dy,=0if f(V,p,z ) <0 (elastic behavior)
L(V,p,x)=0if dy, =0 (plastic behavior)

ﬂmAJQ:W—%L{%+Q@JSOOM)

Shear force
m’ +m’
Vet
L
b (7.2.5)

Accumulated plastic distortion

d~”

dp, =
(7.2.6)

Maximum plastic distortion
p

p, = Max |y

(7.2.6b)

Isotropic hardening terms

Qp) = A=)V, =V)1-e"")

Nonlinear:
1—-7r)(V =V
4=, p)ps if 0<p <~/
Qp,) = o ‘
1—r)V =V if p >~*
Multilinear: o P : " (7.2.7)
Linear: Q(ps) - (1 o ’/“S)Csps
Kinematic hardening terms
dr = a(r(V —V)dy' —z .‘d”yp )
Nonlinear: : o p :
r(V,-V) .
I dy"if ‘z ‘<T(V -V)
dil?s g fyZ s s v p
0 if ‘xs‘ =r(V -V)
Multilinear: ’ (7.2.8)
_ P
Linear: :L‘s B C.CS a

The recommended value of r, is 0.6
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Table 1. Continued

SHEAR PROPERTIES OF RC ELEMENTS

First plastic shear
Vg Ashfyh [cot (0) —i—cot(ﬁ)] sen(ﬁ) ;
! ' s (7.3.1)

A ,: area of stirrups

Jf e+ yield strength of the stirrups

s: center-to-center spacing of transverse reinforcement

d: distance from extreme compression fiber to

centroid of longitudinal tension reinforcement

B is the angle between the transversal and longitudinal reinforcement

kp: dimensionless coefficient = 0.40 for 5 =90 and 0.70 for B =45 .
_ o

6: of inclination of the compression strut in the concrete. For a beam-column element 0 =45 , for a wall element:

a
cot (9) =—

d (7.3.2)

Aehj;/h {COt <0)]
V= ———=-4d
p P

If f = 90° S (7.3.3)

Ultimate shear

Ash ’ fyh ’

A : total area of the cross-section
a/d: aspect ratio
K : dimensionless coefficient = 1 for elements with a/d < 5 and 0.7 otherwise.
[’ : strength of the concrete cylinder in compression in MPa
n: axial force.

The ultimate plastic shear distortion

p_d fe_uh_i_ e 1 4 2E, Fal

7,
‘ L IE, sin” @ p, E sin*’@|E bs
‘ ‘ ’ ¢ (7.3.5)

P . coefficient that can take values between 0.1L to L.

L L
( p“=0.25Lfora/d = 5, P$ =L for a/d < 5).

f.,; ultimate strength of the transversal reinforcement

E: elasticity modulus of steel
E : elasticity modulus of the concrete
Py volumetric ratio between transversal reinforcement and the concrete

g
¢t ultimate strain in the concrete
(¢ =0.004 for non-confined concrete)

IS
(¢ =0.0084 for confined concrete)

continued on following page
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AN ELASTO-PLASTIC CONSTITUTIVE MODEL FOR ELEMENTS OF ANY ASPECT RATIO

Lumped/Distributed Plasticity Model

Frame deformations

{‘i’}b = {‘I’bcw }b +{®’ }b (7.4.1)
{@)

{®"}

b : matrix of generalized deformations of the elastic beam-column-wall

b : matrix of rotations of the plastic hinges neglecting plastic elongation

Elasticity law
{®}, = ([F], +[E]){M}, +{2"}, +{v"}, +{@
{M}, = [E]{® - @" —~"}, +{M'}

[E], = ([F,], +[E],)"

V4
}b (7.4.2)

b (7.4.3)

TRIDIMENSIONAL ELASTO-PLASTIC FRAMES

Constitutive Equations

Generalized deformations

(@) = (8,).5,0),0",¢)

7.5.1a)

Generalized stress

¢ b b b b b
{M}b = (miy’mjy’nb’miz’mfz’mz) (7.5.1b)

Elasticity law

{M}b = [E]b {2 }b + {Mo}b (7.5.2a)

Generalized plastic deformations

t
{@p}b :( LI;, fy’(sp’ i: }ia f) (7.5.2b)

Yield function for plastic hinge i
b b
f;'(myi’ mzi’ nb) <0

(see chapter 6)

Yield function for plastic hinge j

f(m' . m! n)<0
Jrowme A (see chapter 6)

The yield function for plastic torsion
f.(m,) =
R (7.5.3)

M, : ultimate torque of the element cross-section

m
T

ur —
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Table 1. Continued

The plastic deformation evolution laws

8f
9 Of, del=dx 2 B
de!, = d) — J CWZCML 40 L dg! = )
om, v om s om,

B

0 of.
dép =d\ — f +d)\ —f
" on a71(754)

d\ =0 if f(m,n) <0 dA. = 0if f,(m;,n) <0
f(m;,n)=0if d\ >0 fi(m,n)=0if dA, >0

dg? = 0if f (m ) <0
f(m)=0if d¢’ >0

Computation of the Ultimate Plastic Torque for Thin-Walled Steel Elements

Shear stress

T
2A€ (7.5.5)

e: wall width
A:mean of the areas enclosed by the outer and the inner boundaries of the cross-section of the tube

Ultimate torque ~ “

T =271 Ae
u w7 (7.5.6)

T
“ : ultimate shear stress

( It can be experimentally identify or computed as:

Computation of the Ultimate Torque for Reinforced Concrete Elements

Ultimate torque of a rectangular section
Z A a yh

p 5 (7.5.7)

b d

o : area enclosed by the line connecting the longitudinal corner bars ( ° )
» A 2b + 2d

: perimeter of  © (
S . spacing of hoops (stirrups or tles)

Al

vh . yield force of one hoop

> AL,

: yield force of all longitudinal steel in a symmetrically reinforced section
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7.7 EXAMPLES

7.7.1 Compute the Shear Properties of the Element Shown
in Figure 12. Consider an Aspect Ratio Equal to 1.26, a
Non-Confined Concrete and Nil Axial Force.

The first plastic shear is computed using Equation (7.2.11). The aspect ratio is a / d = cot(#) = 1.26,
k, =0.4and as it can be observed in the Figure 12, A =1.42 10* m*, s=0.30m, and
d = 0.475m, thus,

Ashfuh [cot (0)]

S

V =k

p p

d = 46.673 KN (7.7.1)

The ultimate shear force is computed by Equation (7.2.12) with A = b.h=0.520.125=0.0625m?,
k, =1land n = 0. Therefore:

A, f, 0.5
vV o=k Jo + ‘F 0.84= 172.906 KN (7.7.2)

s a/ 05\/7/1

The last shear property is the ultimate plastic shear distortion. It can be computed using Equation
(7.2.13), where ¢, =0.004 for non-confined concrete, # = tan ™ (d / a)z 0.671 rad, the volumetric

ratio between transversal reinforcement and concrete is computed as:

Figure 12. RC wall element

0.125m

14 \
—l
[ T =
b\“”‘ Longitudinal steel 0.012m
reinforcement -
, \ 12 $3/4”
G
K Transversal steel 1
0.30m X. reinforcement |
$3/8” @0.30m
[ C
. : | -
0.025m 0.475m Section B-B
B Jin=411.88 MPa
Longitudinal steel foun= 576.63 MPa
Tra.nsversal steel /\ Teinforcement E; =2.06x 10° MPa
reinforcement 0.50m
7L\
3 = z ‘¢ =16.38 MPa
0.12. I
Y T o E. = 8188.55 MPa
1
T

0.475m

Cross-Section C-C
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Vol A, /2xL B 0.71 10" z 1.154

p, =—"= LT = 0.00437 (7.7.3)
" Vol, bhs 0.125 z 0.5 z 0.30
where L, = 2[0.125-2(0.012)| + 2 0.5 - 2(0.012)| =1.154 m Therefore:
2F A
Mg f—’+€—2 L4 x Jua | _ ) 00827612 rad (7.7.4)
' Lps E  sin 6 p, Esin"0)E bs

where Lps =L=a=1.26 2 0475 =0.5985 m

7.7.2 Compute the Shear Properties of the Element Shown in Figure 13.
Consider an Aspect Ratio Equal to 7.11, Confined Concrete and Nil Axial Force.

Again, the first plastic shear is computed using Equation (7.2.11), but in the case, § = 45° because it is
a slender element, A, =1.42 2 10" m”, k =04,5=0.08 mand d = 0.225 m, then,

A, [cot (6)

S

V =k

p p

d = 65.798 KN (7.7.5)

Figure 13. RC beam-column element

0.0294m 0.0]2m
0.25m ;
T +—{-
| Longitudinal steel T |
7“ reinforcement ®3¢5/8
b 8 $5/8” 0.25m
~Stirrups ¢ 3/8”
Transversal steel @0.08m

reinforcement
—*| ¢3/8” @ 0.08m ﬂ—”xm

Cross-section A-A
a IO. 08 m

fon=411.88 MPa
fon=576.63 MPa
E,=2.06x 10° MPa

f.=31.09 MPa
_ __ E. = 15850 MPa
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The ultimate shear force is computed by Equation (7.2.12), where A = b.h=0.2520.25=0.0625m?,
k, =0.7and n = 0.

. 0.5
yh -|- \/7 0.84= 128.870 KN (7.7.6)

=R “|al/ 05\/714

The ultimate plastic shear distortion can be computed using Equation (7.2.13), where €, =0.008

2 -1
for confined concrete, 8 = tan

T . . .
Z] =0.7854 rad ; the volumetric ratio between transversal reinforce-

ment and concrete is computed as:

Vol A, /2$Lst’i7"r'up B 0.71 2 10" z 0.904

p, =— = = = 0.01284 (7.7.7)
o Volc bhs 0.25 z 0.25 z 0.08
where L, = 4(0.25—2(0.012)) =0.904 m
stirrups
2F A
o _ ][ 6_2 _|L o Ju =9.539 E — 03rad (7.7.8)
Lm E  sin"0 p, Esin"0|E bs

where I, = 0.25L=025a=0.25z (7.11 z 0.225) = 0.3999375 m
7.7.3 Compute the Ultimate Plastic Torque for the Element Shown in Figure 13

In this case, b= d = 0.1912 m, A =0.0366 m’, A =8 (1.9792z10™") = 15.832210"" m”
A =0.713210" m®, f,= f, =411.88210° N/ m®, p =0.7648 mand s = 0.08 m. Thus,
s Ui yn

r a4 [ AL
u [ p 5
15.832 z 10" 2 411.88 z 10° 0.713z10" z 411.88 z 10°
T =2 (0.0366) = 40952 .04 Nm (7.7.9)
! 0.7648 0.08
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7.7.4 Obtain the Force-Displacement Curve for the RC Wall Element
Shown in Figure 12 using the Multi-Linear Elasto-Plastic Model
Described in Section 7.3. Neglect Kinematic Hardening, Consider
Aspect Ratios a/d Equal to 1.26, 1.68 and 2.11 and nil axial force.

First, the bending properties M , M, and ¢! are computed according to the procedures described in sec-
tion 6.5.4; next, the shear ones, vV, V, and 75 , are determined as it is described in section 7.2.3. These

values are presented in Table 2.
The problem is then solved considering a monotonic lateral load that increase from O to V , each 1.25
KN. For any load level, the corresponding displacement (u) is computed as:

u=9 a (7.7.10)

¢, is calculated with the first term of the elasticity law (7.3.2), where ¢’ is equal to zero because

there are no loads along the element. Thus,

b

1
+
3EI,  L,GA

¢, = m, + 5" + ¢’ (7.7.11)

0.12520.5°

12
The plastic rotation ¢’is computed with the plastic deformation evolution laws (7.1.1), the yield

where [, = a,[, = = 0.00130208 m*, Ab =0.125 z 0.5 = 0.0625 m” and m, = Va.

function (7.1.12), the isotropic hardening term (7.1.15) and the maximum plastic rotation (7.1.14) with-
out considering the kinematic hardening term:

d¢! = 0 if f(m ,p.) <0 (hinge i locked)
' L i myp) = |m |~ (M, +Qp,)) < 0;
f(m.,p.)=0if d¢” = 0 (hinge i active) !

(Muz.—Mpi)p f0<p <o
Q(pz): ¢5l i — i = Tw

Muz: 7Mpi if D, > ¢5i

; (7.7.12)

;p, = Maz|¢/

Table 2. Bending and shear properties for the walls with aspect ratios a/d equal to 1.26, 1.68 and 2.11.

a/d M, (KN m) M, (KN m) o V (KN) vV (KN) o

1.26 208.00 212.00 0.046 46.673 172.906 8.276E-03
1.68 208.00 212.00 0.046 62.230 152.831 8.869E-03
2.11 208.00 212.00 0.046 78.158 140.557 9.857 E-03
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The plastic distortion ~” is computed with the shear distortion evolution laws (7.2.4), the isotropic

hardening term (7.2.7b) and the maximum plastic distortion as in (7.2.6b); again, it is not considered
the kinematic hardening term:

dy, =0if f(V,p,) <0 (elastic behavior) v vl (v <0 .
£(V,p,)=0if dy, =0 (plastic behavior)’f“( p) = ‘ ‘_( » T Q(p‘)) - ’

FV.p)=V|-(V, +Qp,)) <0

) =1 7 PEOEREN e

vV,-V, if p.>~"

7 (7.7.13)

Tables 3, 4 and 5 show the spreadsheet used for the solution with an aspect ratio equal to 1.26. Column
A presents the chosen lateral loads. Columns B and C show respectively, the computed maximum plastic
shear distortion and the maximum plastic rotation. In columns D and E, the shear and bending yield
functions are presented. In column F and G, the rotation and the resultant displacement are shown. Notice
that in the first steps, while both yield functions are negative, the maximum plastic shear distortion and
maximum plastic rotation are nil and the rotation is computed with the first term of the Equation (7.6.11).

This procedure continues until the shear yield function become positive for a V = 47.50 KN (see
Table 4). After that, the maximum plastic distortion p_is computed as follows:

W) =V]=(v, + Q) = 0:Q(p) = WV resutting p, = 77 = (v-v.) (7.7.14)
o o v (v, -V)

u

Thus, the rotation is computed with Equation (7.6.11) and the displacement with Equation (7.6.10).

This procedure continues until V, is reached (see Table 5). Then the behavior is represented by a
horizontal line as it is shown in Figure 14.

The force displacement curves corresponding to aspect radios equal to 1.68 and 2.11 were computed
following the same procedure. Table 6 shows the first steps of the computation with an aspect ratio
equal to 1.68.

The shear yield function become positive, for a V= 62.23 KN; from this instant, the maximum plastic
distortion p_is computed with Equation (7.6.13) as it is shown in Table 7.

Table 8. includes the steps when V is reached.

Table 9 presents the first steps of the computation with an aspect ratio equal to 2.11.

The shear yield function become positive, for a V = 78.16 KN and, again, from this instant, the
maximum plastic distortion p is computed with Equation (7.6.13) as it is shown in Table 10.

Table 11 includes the steps when V is reached.

Figure 14. shows the force-displacement curves for the three aspect ratios. Figure 15 presents the
plastic distortion and plastic rotation evolution for the three aspect ratios.
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Table 3. First steps of the solution of the wall with an aspect ratio equal to 1.26

A B C D E F G
V (KN) " ¢! £ (KN) f, (KN-m) ®, u (m)
0.000 0.000 0.000 -46.670 -208.000 0.000E+00 0.000E+00
1.250 0.000 0.000 -45.420 -207.252 1.791E-05 1.072E-05
2.500 0.000 0.000 -44.170 -206.504 3.581E-05 2.143E-05

Table 4. Steps near the instant when the shear yield function becomes zero with an aspect ratio equal

to 1.26
A B C D E F G
V (KN) v? o! f. (KN) f, (KN-m) 0} u (m)
45.000 0.000E+00 0.000 -1.670 -181.068 6.446E-04 3.858E-04
46.250 0.000E+00 0.000 -0.420 -180.319 6.625E-04 3.965E-04
47.500 5.442E-05 0.000 0.000 -179.571 7.347E-04 4.397E-04
48.750 1.364E-04 0.000 0.000 -178.823 8.344E-04 4.994E-04
Table 5. Final part of the solution with an aspect ratio equal to 1.26
A B C D E F G
V (KN) " oy f (KN) /, (KN-m) ®, u (m)
171.250 8.168E-03 0.000 0.000 -109.507 1.062E-02 6.356E-03
172.500 8.250E-03 0.000 0.000 -108.759 1.072E-02 6.416E-03
172.906 8.276E-03 0.000 0.000 -108.516 1.075E-02 6.436E-03
172.906 1.423E-02 0.000 0.000 -108.516 1.671E-02 1.000E-02

7.7.5 Obtain the Force- Displacement Curve for the RC Element
Shown in Figure 13 Using the Multi-Linear Elasto-Plastic Model
Described in Section 7.3. Neglect Kinematic Hardening and
Consider Aspect Ratios a/d Equal to 1.78, 3.55 and 7.11.

First, the bending properties M , M, and ¢! are computed according to the procedures described in sec-
tion 6.5.4; the shear ones, Vp, V and fyf , are determined as described in section 7.2.3. These values are

presented in Table 12.
In the present case, the problem is solved in a similar way than in the former example using Equations
(7.7.10 to 7.7.13) again; a monotonic lateral loading is applied with increments of 1.25 KN.
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Figure 14. Force-displacement curves with aspect ratios equal to 1.26, 1.68 and 2.11

200

180

160 /

140 e

120 -
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60

e+ese Aspectratio 1.68
40

== Aspectratio 2.11

20 -

0 - T T T
0 0.005 0.01 0.015 0.02 0.025

Displacement u (m)

Table 6. First steps of the solution with an aspect ratio equal to 1.68

A B C D E F G
V (KN) P fox £ (KN) f, (KN-m) ®, u (m)
0.000 0.000 0.000 -62.230 -208.000 0.000E+00 0.000E+00
1.250 0.000 0.000 -60.980 -207.003 2.879E-05 2.298E-05
2.500 0.000 0.000 -59.730 -206.005 5.759E-05 4.595E-05
Table 7. Steps when the shear yield function becomes zero with an aspect ratio equal to 1.68
A B C D E F G
V (KN) o o’ f. (KN) f, (KN-m) o} u (m)
60.000 0.000 0.000 -2.230 -160.120 1.382E-03 1.103E-03
61.250 0.000 0.000 -0.980 -159.123 1.411E-03 1.126E-03
62.500 2.643E-05 0.000 0.000 -158.125 1.466E-03 1.170E-03
63.750 1.488E-04 0.000 0.000 -157.128 1.617E-03 1.291E-03
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Table 8. Final part of the solution with an aspect ratio equal to 1.68

A B C D E F G
V (KN) v? ol 1. (KN) f, (KN-m) o, u (m)
151.250 8.714E-03 0.000 0.000 -87.303 1.220E-02 9.734E-03
152.500 8.837E-03 0.000 0.000 -86.305 1.235E-02 9.855E-03
152.830 8.869E-03 0.000 0.000 -86.041 1.239E-02 9.887E-03
152.830 1.653E-02 0.000 0.000 -86.041 2.005E-02 1.600E-02
Table 9. First steps of the solution with an aspect ratio equal to 2.11
A B C D E F G
V (KN) v’ oy f (KN) f, (KN-m) &, u (m)
0.000 0.000 0.000 -78.158 -208.000 0.000E+00 0.000E+00
1.250 0.000 0.000 -76.908 -206.747 4.316E-05 4.326E-05
2.500 0.000 0.000 -75.658 -205.494 8.633E-05 8.652E-05

Table 10. Steps when the shear yield function becomes zero with an aspect ratio equal to 2.11

A B c D E F G
V (KN) P ¢! 1. (KN) f, (KN-m) o, u (m)
76.250 0.000 0.000 -1.908 -131.578 2.633E-03 2.639E-03
77.500 0.000 0.000 -0.658 -130.326 2.676E-03 2.682E-03
78.750 9.352E-05 0.000 0.000 -129.073 2.813E-03 2.819E-03
80.000 2.910E-04 0.000 0.000 -127.820 3.053E-03 3.060E-03

Table 11. Final part of the solution with an aspect ratio equal to 2.11

A B c D E F G
V (KN) v? 0l f. (KN) f, (KN-m) o, u (m)
138.750 9.571E-03 0.000 0.000 -68.938 1.436E-02 1.439E-02
140.000 9.769E-03 0.000 0.000 -67.685 1.460E-02 1.464E-02
140.560 9.857E-03 0.000 0.000 -67.127 1.471E-02 1.474E-02
140.560 1.510E-02 0.000 0.000 -67.127 1.996E-02 2.000E-02
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Tables 13 to 15 present the solution with an aspect ratio equal to 1.78. In the first steps, the bending
and shear yield function are negative and the ~" and ¢ are nil, thus the behavior is elastic.

This procedure continues until the shear yield function become positive, for a V = 65.798 KN. From
this instant, the maximum plastic distortion p_is computed with Equation (7.7.13), the rotation with
Equation (7.7.11) and the corresponding displacement with Equation (7.7.10). Table 14 shows the steps
near the instant when the shear yield function becomes equal to zero.

When the bending yield function changes to zero, the plastic rotation starts to evolve. Notice that the
plastic shear distortion keeps increasing; see Table 15.

Finally, Table 16 presents the steps when V is reached. Notice that the element failed by shear be-
cause V is less than M /a:

M
V = —% = 220.474KN >V, =169.965 KN (7.7.15)

a

Tables 17 to 19 present the solution for the element with an aspect ratio equal to 3.55 and Tables 19
to 21 show the results corresponding to an aspect ratio equal to 7.11.
Notice that this element failed by bending effect because the force that corresponds to M, is smaller

M
than V,, i.e.,V = —* = 110.548KN <V, =142.633KN.
a

Figure 15. Plastic distortion and plastic rotation evolution with aspect ratios equal to 1.26, 1.68 and 2.11

0.018
0.016
o* 4
0.014 , 4
c
o 7/
'g 0.012 7
7/
£
= 0.01
o
[T} — 7P Aspect ratio 1.26
T 0.008
S Y R N 7° Aspect ratio 1.68
=
% 0.006 = == 7P Aspect ratio 2.11 —
(= — P Aspect ratio 1.26
0.004
— » P Aspect ratio 1.68
0.002 - = @P Aspect ratio 2.11 =
0

0 0.005 0.01 0.015 0.02 0.025

Displacement u (m)

264



Elasto-Plastic Frames

Table 12. Bending and shear properties for the beam-column with aspect ratios a/d equal to 1.78, 3.55
and 7.11
a/d M (KNm) M, (KN m) o3 V (KN) V, (KN) fyf
1.78 53.400 88.300 8.010E-02 65.798 169.965 9.525E-03
3.55 53.400 88.300 8.010E-02 65.798 142.633 4.776E-03
7.11 53.400 88.300 8.010E-02 65.798 128.870 9.539E-03
Table 13. First steps of the solution with an aspect ratio equal to 1.78
A B C D E F G
V (KN) v? 03 1. (KN) f, (KN m) o, u (m)
0.000 0.000E-+00 0.000E+00 -65.798 -53.400 0.000E-+-00 0.000E-+00
1.250 0.000E+00 0.000E+00 -64.548 -52.899 1.497E-04 5.996E-05
2.500 0.000E+00 0.000E-+00 -63.298 -52.399 2.994E-04 1.199E-04

Table 14. Steps near the instant when the shear yield function becomes equal to zero with an aspect
ratio equal to 1.78

A B C D E F G
V (KN) ~P q&f f.(KN) f, (KN m) qﬁi u (m)
63.750 0.000E+00 0.000E+00 -2.048 -27.868 7.636E-03 3.058E-03
65.000 0.000E+00 0.000E+00 -0.798 -27.368 7.786E-03 3.118E-03
66.250 4.135E-05 0.000E+00 0.000 -26.867 7.977E-03 3.195E-03
67.500 1.557E-04 0.000E+00 0.000 -26.366 8.241E-03 3.300E-03

Table 15. Steps when the bending yield function becomes nil for the element with an aspect ratio equal

to 1.78
A B (o D E F G
p »
V (KN) Y o 1. (KN) f, (KN m) o, u (m)
131.250 5.985E-03 0.000E+00 0.000 -0.834 2.171E-02 8.693E-03
132.500 6.100E-03 0.000E+00 0.000 -0.334 2.197E-02 8.799E-03
133.750 6.214E-03 3.830E-04 0.000 0.000 2.262E-02 9.058E-03
135.000 6.328E-03 1.532E-03 0.000 0.000 2.403E-02 9.624E-03
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Again this element failed by bending effects. Figure 16 shows the force-displacement curves for the
three aspect ratios. Figure 17 presents the plastic distortion and plastic rotation evolution for the three
aspect ratios.

7.7.6 Obtain the Force Displacement Curve for the RC Element Shown in
Figure 18a. Consider the Variable Axial Loading Presented in Figure 18b.
Use the Multi-Linear Elasto-Plastic Model Described in Section 7.4. Neglect
Kinematic Hardening. The Interaction Diagrams are Indicated in Figure 18c.

According to section 7.4, if the aspect ratio a/d is equal to 8 bending dominates the behavior; therefore
in the solution of the problem, shear effects are going to be neglected. The bending properties M, M,
and qu of the element for the different levels of axial force are shown in Table 23; they were obtained
from Figure 18c.

In this case, a monotonic lateral load is applied with increments of 1.00 KN. The Equations (7.7.10 to
7.7.12) are used for the solution (see Tables 24 to 27). Column A shows the lateral loads. Columns B and
C present, respectively, the plastic rotation and maximum plastic rotation. Column D includes bending
yield function. Column E presents the rotation and finally, column F shows the resultant displacement.
Initially the axial force is equal to zero, then, the first line of the Table 22 is used for the analysis.

Table 16. Instant when V is reached for the element with an aspect ratio equal to 1.78

A B C D E F G
V (KN) ok 03 1. (KN) f, (KN m) 0} u (m)
167.500 9.300E-03 3.141E-02 0.000 0.000 6.077E-02 2.434E-02
168.750 9.414E-03 3.255E-02 0.000 0.000 6.218E-02 2.490E-02
169.965 9.525E-03 3.367E-02 0.000 0.000 6.356E-02 2.545E-02
169.965 3.205E-01 3.367E-02 0.000 0.000 3.745E-01 1.500E-01
Table 17. First steps of the solution for the element with an aspect ratio equal to 3.55
A B C D E F G
V (KN) v? ¢! 1. (KN) f,(KN'm) ¢, u (m)
0.000 0.000E+00 0.000E+00 -65.798 -53.400 0.000E+00 0.000E+00
1.250 0.000E+00 0.000E+00 -64.548 -52.402 5.354E-04 4.277E-04
2.500 0.000E+00 0.000E+00 -63.298 -51.403 1.071E-03 8.553E-04
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Table 18. Steps when the shear and bending yield functions become equal to zero for an aspect ratio

equal to 3.55
A B C D E F G
p
V (KN) o gbf f.(KN) £, (KN m) gbi u (m)
63.750 0.000E+00 0.000E+00 -2.048 -2.480 2.731E-02 2.181E-02
65.000 0.000E+00 0.000E+00 -0.798 -1.481 2.784E-02 2.224E-02
66.250 2.811E-05 0.000E+00 0.000 -0.483 2.841E-02 2.269E-02
67.500 1.058E-04 1.477E-03 0.000 0.000 3.050E-02 2.436E-02
68.750 1.835E-04 4.338E-03 0.000 0.000 3.397E-02 2.713E-02
Table 19. Steps near the instant when 'V is reached for an aspect ratio equal to 3.55
A B C D E F G
p p

V (KN) vy o) f (KN) / (KN m) ) u (m)

108.750 2.670E-03 9.589E-02 0.000 0.000 1.451E-01 1.159E-01

110.000 2.748E-03 9.875E-02 0.000 0.000 1.486E-01 1.187E-01

110.548 2.782E-03 1.000E-01 0.000 0.000 1.501E-01 1.199E-01

110.548 2.782E-03 2.629E-01 0.000 0.000 3.130E-01 2.500E-01

Figure 16. Force-displacement curves for aspect ratios equal to 1.78, 3.55 and 7.11
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Figure 17. a)Plastic distortion and b) plastic rotation evolution for aspect ratios equal to 1.78, 3.55
and 7.11
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Table 20. First steps of the solution for an aspect ratio equal to 7.11
A B C D E F G
p p
V (KN) Y ¢! . (KN) f,(KN'm) o, u (m)
0.000 0.000E+00 0.000E+00 -65.798 -53.400 0.000E+00 0.000E-+00
1.250 0.000E+00 0.000E+00 -64.548 -51.400 2.087E-03 3.339E-03
2.500 0.000E+00 0.000E+00 -63.298 -49.401 4.174E-03 6.677E-03

Table 21. Steps near the bending yield function becomes equal to zero for an aspect ratio equal to 7.11

A B C D E F G
V (KN) ¥? o! f. (KN) £, (KN m) o, u (m)
31.250 0.000E+00 0.000E+00 -34.548 -3.408 5.217E-02 8.346E-02
32.500 0.000E+00 0.000E+00 -33.298 -1.408 5.426E-02 8.680E-02
33.750 0.000E+00 1.985E-03 -32.048 0.000 5.833E-02 9.332E-02
35.000 0.000E+00 8.694E-03 -30.798 0.000 6.713E-02 1.074E-01

Table 22. Steps when V. is reached for an aspect ratio equal to 7.11

A B C D E F G
V (KN) ¥? ¢! f. (KN) £, (KN-m) 0} u (m)
53.750 0.000E+00 1.093E-01 -12.048 0.000 1.991E-01 3.185E-01
55.000 0.000E+00 1.160E-01 -10.798 0.000 2.079E-01 3.325E-01
55.196 0.000E+00 1.171E-01 -10.602 0.000 2.093E-01 3.348E-01
55.196 0.000E+00 1.579E-01 -10.602 0.000 2.500E-01 4.000E-01
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The plastic moment is reached for a V = 42.315 KN and the yield function become zero; from this
instant, the plastic rotation starts to evolve (see Table 23).

When the displacement reaches the value of 0.05 m the axial load changes to -300 KN and the pa-
rameters must be modified in the Equation (7.7.12) to the corresponding values presented in Table 22.
As it can be observed, once the parameters change, the yield function becomes negative again and the
plastic rotation evolution, stops. When the force takes the value of 54.949 KN the plasticization process
continues as it can be observed in Table 26.

The force continues evolving until the displacement is equal to 0.10 m; then the parameters must be
modified again because the axial load changes to -600 KN. After that, the evolution of the plastic rota-
tion stops, until the force reaches the value of 67.583 KN; when that force is reached, the plasticization
initiates once again as it can be noticed in Table 27.

When the displacement reaches the value of 0.15 m with a force of 79.33 KN, the parameters are
changed for the corresponding to an axial force of -800 KN. As it can be noticed in Table 28, the plastic
rotation continues evolving despite the new parameters until the final displacement of 0.20 m is reached.

Notice that the ultimate moment is reached for a displacement of 1.898E-01 m; then, displacement
evolution does not produce increments of the lateral force. Figure 19 presents all force-displacement
curves for constant axial forces (0 KN, -300 KN, -600 KN and -800 KN) and variable ones.

Figure 20 and Figure 21 show, respectively, the plastic rotation and displacement evolution during
the analysis.

Figure 18. a) RC beam-column element, b) Displacement-axial load path, c) Interaction diagrams of
plastic and ultimate moments and ultimate plastic rotation
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Table 23. Bending properties

Elasto-Plastic Frames

n(KN) M, (KN m) M, (KN m) o!
0.00 62.626 91.603 0.067
-300.00 81.325 106.099 0.051
-600.00 100.024 120.595 0.035
-800.00 112.489 130.259 0.024
Table 24. First steps of the analysis
A B c D E F
V (KN) o/ P J,(KNm) 9, u (m)
0.000 0.000E+00 0.000E+00 -62.626 0.000E+00 0.000E+00
1.000 0.000E+00 0.000E+00 -61.146 2.804E-04 4.149E-04
2.000 0.000E+00 0.000E+00 -59.666 5.607E-04 8.299E-04
Table 25. Steps near the instant when the plastic rotation starts to evolve
A B c D E F
V (KN) ¢>Z,” p £, (KN m) ¢’¢ u (m)
41.000 0.000E+00 0.000E+00 -1.946 1.150E-02 1.701E-02
42.000 0.000E+00 0.000E+00 -0.466 1.178E-02 1.743E-02
43.000 2.641E-03 2.641E-03 0.000 1.440E-02 2.131E-02
44.000 5.754E-03 5.754E-03 0.000 1.809E-02 2.677E-02
Table 26. Steps near the instant when plastic rotation evolution stops and starts again
A B c D E F
V (KN) o! p f,(KN'm) b, u (m)
48.247 2.026E-02 2.026E-02 0 3.378E-02 5.000E-02
49.247 0.000E+00 2.026E-02 -8.44E+00 3.406E-02 5.041E-02
50.247 0.000E+00 2.026E-02 -6.96E+00 3.434E-02 5.083E-02
51.247 0.000E+00 2.026E-02 -5.48E+00 3.462E-02 5.124E-02
52.247 0.000E+00 2.026E-02 -4.00E+00 3.491E-02 5.166E-02
53.247 0.000E+00 2.026E-02 -2.52E+00 3.519E-02 5.207E-02
54.247 0.000E+00 2.026E-02 -1.04E+00 3.547E-02 5.249E-02
55.247 9.067E-04 2.116E-02 0.00E+00 3.665E-02 5.425E-02
56.247 3.951E-03 2.421E-02 0.00E+00 3.998E-02 5.917E-02
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7.8. PROBLEMS

7.8.1. Compute and Plot the Force-Displacement Curve for the Thin Walled Steel Beam Shown in
Figure 22. Consider an Elasto-Plastic Model with Nonlinear Isotropic Hardening.

7.8.2. Compute and Plot the Torque-Twist Angle Curve for the RC Element Shown in Figure 23

7.8.3. Compute and Plot the Force-Displacement Curve for the Element Shown in Figure 12 Con-
sidering an Axial Force Equal to 100 KN

7.8.4. Compute and Plot the Force-Displacement Curve for the Element Shown in Figure 12 Con-
sidering the Axial Loading Path Shown in Figure 24

7.8.5. Compute and Plot the Force-Displacement Curve for the Element Shown in Figure 13. Consider
Axial Loads Equal to 0.25Pb, 0.5Pb and the Variable Axial Load History Shown in Figure 25

Table 27. Steps when plastic rotation evolution stops and starts again

A B C D E F

V (KN) ¢! p f,(KN'm) ¢, u (m)

64.546 2.921E-02 4.947E-02 0.00E+00 6.757E-02 1.000E-01
65.546 0.000E+00 4.947E-02 -3.02E+00 6.785E-02 1.004E-01
66.546 0.000E-+00 4.947E-02 -1.54E+00 6.813E-02 1.00SE-01
67.546 0.000E+00 4.947E-02 -5.62E-02 6.841E-02 1.012E-01
68.546 2.427E-03 5.190E-02 0.00E+00 7.111E-02 1.052E-01
69.546 4.949E-03 5.442E-02 0.00E+00 7.392E-02 1.094E-01

Table 28. Final part of the analysis
A B C D E F

V (KN) o’ p £, (KN'm) b, u (m)

79.334 2.964E-02 7.911E-02 0.00E+00 1.014E-01 1.500E-01
80.334 8.816E-03 8.792E-02 0.00E+00 1.104E-01 1.635E-01
81.334 1.085E-02 8.996E-02 0.00E+00 1.128E-01 1.669E-01
82.334 1.289E-02 9.200E-02 0.00E+00 L.151E-01 1.703E-01
83.334 1.493E-02 9.404E-02 0.00E+00 1.174E-01 1.738E-01
84.334 1.697E-02 9.607E-02 0.00E+00 1.197E-01 1.772E-01
85.334 1.900E-02 9.811E-02 0.00E+00 1.220E-01 1.806E-01
86.334 2.104E-02 1.001E-01 0.00E+00 1.244E-01 1.840E-01
87.334 2.308E-02 1.022E-01 0.00E+00 1.267E-01 1.875E-01
88.013 2.446E-02 1.036E-01 0.00E+00 1.282E-01 1.898E-01
88.013 1.105E-01 1.105E-01 0.000E+00 1.351E-01 2.000E-01
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Figure 19. Force-displacement curve
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Figure 21. Displacement evolution
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Figure 23. RC element subjected to torsion effect
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Chapter 8

Analysis of Elasto-
Plastic Frames

ABSTRACT

This chapter, as well as Chapter 4, deals with the algorithms for the analysis of frames; specifically, it
shows how the models for elasto-plastic elements presented in Chapter 7 can be used in a structural
analysis. In the first section, a particularly efficient algorithm is presented: the hinge-by-hinge method;
in this case, the analysis of an elasto-plastic frame can be treated as a sequence of linear problems;
this analysis also allows for an estimation of the ultimate resistance forces of the structure; on the other
hand, the hinge-by-hinge procedure can only be used in very particular cases. A general procedure for
the analysis of any kind of elasto-plastic frames under quasi-static forces is presented in Sections 8.2
and 8.3; this method is based on an algorithm called elastic predictor-plastic corrector that is a key
concept for most of the inelastic structural analyses, even for the damage and fracture models that are
described in the next chapters. The same algorithm can also be used for the dynamic analysis of elasto-
plastic frames as discussed in Section 8.3.4.

8.1 THE HINGE-BY-HINGE METHOD FOR PERFECTLY PLASTIC FRAMES
8.1.1 Formulation of the Problem

Consider a perfectly plastic two dimensional frame, the generalized deformation and generalized stress
measures are thus given by (3.1.3) and (3.2.2); the elements of the frame are slender, the plastic elonga-
tions are neglected and nonlinear geometrical effects are not considered.

The structure is subjected to the following loading system: first, a set of distributed loads is applied
for a time t that is arbitrarily defined as zero; it is assumed that these loads do not produce plastic de-
formations of the frame elements and, as it is usual, that they remain constant for the subsequent steps;
these forces generate the matrix {P“} . Then, a second set of concentrated loads on the frame nodes is
applied; itis assumed that these forces can be written as: (¢){P _ } ; where {P_ } is a matrix of reference

forces and /(¢) is a loading parameter; the reference forces matrix may have non zero terms only in the

DOI: 10.4018/978-1-4666-6379-4.ch008
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locations corresponding to the free displacements and these terms are constant during the entire analy-

sis. The term /(1) represents a monotonically increasing function of time; that is: for a z, > 7, then [(z,) >

l(t,); the loading parameter takes the value zero for 7 = 0; next, it increases until collapse of the structure

is achieved. All these external forces produce reactions that will be grouped into a matrix denoted {R} .
Therefore, the problem to be solved can be defined as:

1.  Compute: the free displacements, reaction forces, generalized deformations, plastic rotations and
stresses.

2. With the Following Data: the initial configuration of the structure, the restricted displacements,
the reference forces {P_ } and those applied over the elements {P*} and, finally, the material and
cross-section properties (E, 1, A, Mv).

3. Such that they verify: “

a.  The linear kinematic equation: {®}, = [B} ] {U}

b.  The linear equilibrium equation: » " [B) ' {M}, = {P“} + [{P S+ {R}

b=1
c.  The elasticity law:

{2 - @}, =[F,] {M}, +{2"}, (8.1.1)

d¢! = 0 if f(m,) <0 (hinge locked)

d. The plastic rotations evolution laws: : ) )
f(m.) =0 if d¢” = 0 (active hinge)

d¢? =0 if f(m.) <0 (hinge locked)
fi(m,)=01if d¢? =0 (active hinge)
e.  The yield functions: f(m, ) = ‘mi‘ -M, <0 f(m)= ‘mj‘ -M, <0;

Y

8.1.2 Formulation of the Problem in Incremental Form

As in the case of the nonlinear elastic problems, the analysis of elasto-plastic frames is carried out
incrementally; however in the former case, the size of each step is fixed and the instants 7, ,,..., T are
chosen by the analyst; in the hinge-by-hinge method the end of each step, after the first one, is not fixed;
it corresponds to the appearance of a new plastic hinge.

The first step determines the state of the structure after the application of the distributed forces on the
elements; as this problem is linear and elastic, it can be solved by the direct stiffness method described
in chapter 4 (section 4.1). For the subsequent steps, the increments of the variables can be expressed as:

{A®}, = [B, ] {AU} (8.1.2)
S B {AM}, = AUP"};where {P"} = {P_ } + Ail{AR} (8.1.3)
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{A® — A$"}, =[F,] {AM],

A¢" = 0 if hinge i is locked

Am:’ = 0 if hinge i is active’

Aqb;] = 0 if hinge j is locked

Amj = 0 if hinge j is active

Once a plastic hinge has been formed, it remains active since only increasing of external forces are
considered. Thus, the evolution laws of the plastic rotations (8.1.4b-c) can be written in this particular
case as:

o =0if [m!| <M, |or =0if <M,
) ! NI B g (8.1.5)
Am’ =0 if ‘m.":M. Am’ =0 if ‘m.":M,
i T y J J JY
8.1.3 Tangent Elasticity Matrix of a Frame Element
The elasticity law (8.1.4a) in explicit form is:
L L
A’ — Ap" = ——Am' ——Am’
' ' 3EI " G6EI !
L L
AP — Ap" = ———Am' +—L-Am’
! ! 6LI, " 3EI, !
L
A§ = —An (8.1.6)

b EAb b

In an element with two plastic hinges (Amf =0, Am? = 0), the elasticity law (8.1.6) becomes:

00 0
{AM}, = [S,] {A®}5[S,], =|0 0 0 [;A¢  =A¢;A8" = A¢) (8.1.7)
AE
0 0 b
Lb

If there is only one plastic hinge at the end i of the element ( Amf =0, gb;’ = 0), the Equations (8.1.6)

give:
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0 0 0
3EI 1
b
AE
0 0 -
L

If there is one plastic hinge, but this time at the end j (Am? =0,¢’

0), then:

3EI,

L, 1
{AM}, =[S J{A®}5[S, ], =| 0 0 0 [;A¢  =A¢ +§A¢f;¢f’ =0
AE
0 0 -
Lb
Finally, if there are no plastic hinges,
4EI,  2FEI

Lb Lb
2B 4EI
{AM}, = (5, {A®};[S,} =| =+ == 0 fio] =09 =0

b b

0 0o —t

Equations (8.1.7-10) can be summarized as:
{AM}, = [S] {A®},

Where the tangent elasticity matrix [S] is equal to:

[S,], if there are no plastic hinges
S| [S,,], if there is a plastic hinge at the end i
*|[8,.], if there is a plastic hinge at the end j
[

j
S,], if there are two plastic hinges

24y

(8.1.8)

(8.1.9)

(8.1.10)

(8.1.11)

(8.1.12)
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8.1.4 The Hinge-by-Hinge Algorithm

The combination of Equation (8.1.2-3) and Equation (8.1.11) gives the following expression:

NgE

=
I

1

[BOE];[S]b[BOE]b]{AU / Al} = {P"} (8.1.13)

This expression can be written in a similar way to the direct stiffness Equation (4.1.2):

K, [{V}={P"}; where K, |= S [BLY[S) B, {v}= ALZ{AU} (8.1.14)

Thus, the assemblage algorithm described in sections 4.1.2 and 4.1.3 can also be used.

As aforementioned, the known components of the matrix {P”} remain constant during the entire
analysis; on the other hand, the tangent stiffness matrix [K t} changes at each step.

The hinge-by-hinge algorithm is described in Figure 1. The first step consists in the determination
of the state of the structure under the distributed forces. This state is defined by: {U} .= {UO},

t=
(@}  ={®}.{M} ={M} withi©o)=o.
In the second step, the equation (8.1.14) is solved by the direct stiffness method. The tangent stiffness
matrix [K t] is computed considering that there are no plastic hinges in the structure. Displacements,

strains and stresses in this step are given by:
{ul={u}+ar{v};

(@, }b +ALB)], {V,}

—
o
o>
I

{M}b - {Mt:() }b + Al[s]b[BUE]b {Vl} (8.1.15)

This second step ends with the appearance of the first plastic hinge. The location of the first plastic
hinge to become active is determined subtracting the yield moment from the corresponding absolute value
of the moment on all the hinges of the structure and searching for their maximum; when this value is
equal to zero, this plastic hinge is unlocked. The value of the loading parameter at the end of the second
step is computed solving the Equation (8.1.16):

Maz ( |[m (AD|-M, )=0 (8.1.16)
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Figure 1. Hinge-by-hinge algorithm

~\

Initial configuration of the structure, cross-

section properties, the restricted
displacements, the reference forces|P__|.

s=0, Is)=0
s : step counter
I(s): loading parameter

v

Assemble {P"}, {R }and {P_}

v

Compute the displacement :U} solving
KLU -F: F-R3+P) fe—

Compute:

Assemble:

K] -2®LsLEL: (8], -[S.),

@}, -1B) LU, }

M, ], —18),18] ],{U,}

Do while not
structural

collapse
[{Ur]=ee

Determine

s=s+1
.

1
} = F {U L } solving
K1V =75 ) - fp, oo faR

Compute:fromb=1to m:

Compute the matrix 1\

%

A

Al | Max (|m|-M, )0

(M}, =M, ), + aL1S)IBS )V, )

Compute:
¢ Fromb=1tom:
M}, —iM, L, + AL IS)IB7 AV, |

o U=, ALY

o I(s)=1s-1) + AL

assemble [K, ] =Y IBY 18,18 ),

—» HS,J |, i there is no plastic hinges
S| iIS o b 1 there is a plastic hinge al the end
o “Sl i i “there is a plastic hinge at the end §

US|, i there are two plastic hinges

} = :’P‘

{ entlapse $

+1(s){P .}
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In the third step, the Equation (8.1.14) is solved again taking into account the plastic hinge, or hinges,
that appeared at the end of the second step. In the fourth step, there are at least two plastic hinges and
so on for any subsequent step s.

Notice that the global tangent stiffness of the structure decreases with each step; eventually, the dis-
placements tend to infinite: this is a mathematical definition of structural collapse.

The example 8.5.1 shows a practical application of hinge-by-hinge method.

8.1.5 Tangent Stiffness Matrix of a Frame Element
Each step of the hinge-by-hinge method can be solved by the direct stiffness method; only the tangent

stiffness matrix has to be changed. It is therefore convenient to precompute the four possible expressions
for the tangent stiffness matrix of an element; that is:

k| =[B"][S],[B"], 8.1.17)

where [B'], is the non expanded kinematic transformation matrix defined in section 3.1.4.

For [S], =[S, ], . the tangent stiffness matrix is:

12EI 4 EA o 12E1 EA 6EI 12ET o EA 12E1 EA 6EI
— s + —c¢ - + — | sc s — s — ¢ — — —|sc s
LB L L3 L L2 L3 L LS L LQ
12E1 EA 12E1 o EA o 6EI 12E1 EA 12EI o EA o 6EI
—— + —|sc c +—s — c — — —|sc ———¢ ——s — c
2 2 : 2
LJ L LS L I LS L L‘S L I
6EI 6E1 4EI 6EI 6E1 2E1
s —-—c¢ — - s c —
2 2 2 2
L L L L L L
[k, ] =
12E1 4 EA o 12E1 EA 6EI 12EI o EA o 12E1 EA 6EI
———s ——c¢ — — —|sc - s s +—c¢ - + — | sc - s
2 2 2 R : 2
LJ L LJ L I LJ L L} L I
12E1 EA 12E1 o EA o 6EI 12E1 EA 12E1 o EA o 6EI
— — —|sc ———~¢c¢ ——s —c - + —|sc — ¢ +—s c
p 2 R : 2
L3 L L3 L I L& L L& L I
6EI 6EI 2FEI 6EI 6EI 4FEI
s — c e - s c e
LZ L2 L LQ L2 L

(8.1.18)

where s = sin Q, and ¢ = cos «

For [S]b = [SU]

, > @, 1s the angle of the chord with respect the global axis X.

b
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3EI 5 EA o [ 3EI  FA
—s 4+ —c —— + —|sc 0
LS L L3 L
[ 3EI EA] SEI o EA 4
—— + —|sc —c¢ +—s 0
L3 L L3 L
0 0 0
k=1 sm 5 EA 4 [3E] FA
— — — — — | s8¢ 0
L3 L L3 L
3EI EA 3EI o EA 5
— — —|sc ——c ——3S§ 0
L3 L L3 L
3EI 3EI
—s ——c 0
r I
For [S]b = [Slj]b
3EI 9 FA o [ 3EI  EA
E— —c —— + —| 8¢
L3 L L3 L
3EI EA 3EI 9 EA o
——— 4+ —|sc — —
r r
3EI 3EI
—s —-—c
_ 2 2
[kt] = L L
3EI o EA o [3EI EA
——s ——c — — —|sc
L3 L L3 L
3EI  EA 3EI 9 EA o
— — —|sc - ——s
L3 L L3 L
0 0

Finally, for [S], =[S, ],

3EI 9 EA 4 3EI 3EI
- s ——c - — — | s¢ - S§
Ld L L3 LZ
[3EI EA 3EI 9 EA o  3EI
— - —|sc ——c ——Ss ——c
L3 L L3 L L2
0 0
3B o FEA o 3EI  EA 3EI (8.1.19)
—s + —c —— + —|sc ——Ss
L3 L L3 L L2
3EI EA 3B 9 FA o 3EI
—— + —|sc —c¢ +—s —c
LS L L3 L L2
3EI 3EI 3EI
—— S— -
I L2 L
3EI 3EI 9 FEA o 3EI EA
—s ——s ——c — ——|sc 0
L2 L3 L L3 L
3EI 3EI EA 3EI 9 EA 9
—-—c — ——|sc ——c ——35" 0
L2 L3 L L3 L
3EI 3EI 3EI
— ——s —c
L L2 LZ
3EI 3EI 9 FEA 9 3EI FEA
-——s —3 —c ———+—|s¢ O
L2 L3 L L3 L
3EI 3EI FEA 3EI 9 FEA 9
—c ——+—|s¢ —c —s 0
L2 L3 L3 L
0 0 0 0
(8.1.20)
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FEA EA EA EA
—0c —sc 0 ——— ——3sc O
L L L
EA EA EA EA
—sc —3s ——3sc ———s~ 0
L L L
K 0 0 0 0 0 0 8121
H_ FA , EA EA , EA @.121)
- ——sc 0 —c¢ —sc 0
L L L L
EFA EA EA EA
——8c ——38 —sc —s 0
L L L L
0 0 0 0 0 0

8.2 ELASTIC PREDICTOR - PLASTIC CORRECTOR ALGORITHM
8.2.1 Formulation of the Problem

In more general cases, the hinge-by-hinge algorithm is no longer valid; more complex procedures are
needed. As an example, consider the case of an elastic perfectly plastic structure, still geometrically
linear, but including plastic elongations. Therefore, the problem is now defined as:

1.  Compute: the free displacements, reaction forces, deformations, plastic deformations and stresses.

2. With the following data: the initial configuration of the structure, the restricted displacements,
the nodal forces corresponding to the free displacements and those applied over the elements, the
material and cross-section properties and yield functions.

3. Such that they verify:
a.  The linear kinematic equation: {®}, = B’ ] {U}
b.  The linear equilibrium equation:
> Byl {M}, = {P} 8.2.1)

b=1

c.  The elasticity law: {M}, = [E] {® —®"}, +{M"},
of of. of of.
d.  The normality laws: d¢’ = d\ —Ji;dqb?’ =d\ i 1dd = d\ —f7 + dA. i;
' "om, Om, " "on " on
d\ = 0if f(m,n)<0
f(m,n)=0if dx =0’
e.  The plastic multipliers evolution laws: ¢ = :
dA, =0if f(m,n)<0
fi(m;,m)=0if dx =0

8.2.2 Global and Local Problems

The analysis is still carried out step by step, however as in the case of nonlinear elastic frames, and un-
like the hinge-by-hinge algorithm, the size of the steps is chosen by the analyst.
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At any time ¢, the equations (8.2.1) are separated into two groups, the kinematic and constitutive
equations on one hand and the equilibrium equation on the other. These two sets of equations will be
solved separately; the equilibrium equation and its boundary conditions are called “global problem”
because it involves all the elements of the frame; the kinematic and constitutive equations are called
“local problem for the element b because they relate variables of only one element b.

Specifically, a local problem is formulated as follows:

1. Compute: the generalized deformations, plastic deformations and stresses of an element b at the
time ¢..

2. With the following data: the displacements of the element and the forces applied over the elements
at the time 7 ; the material and cross-section properties and yield functions.

3. Such that they verify:
a.  The linear kinematic equation: {&_ } =[B}]{U,_, }

b.  The elasticity law: {M,_, }, = [E]{®_, —®’ _, } +{M"},

, of of of of
c.  The normality laws: Ap’ = AN ——| ;A@" = AN ——| ;A§ = AN —| + AN —
’ Som | ' L Om ) ! on| " On L

d.  The plastic multipliers evolution laws:
AN =0if f| <0
[l =0if A =0
Hi=tr ‘ / (8.2.2)
AN =0 if f,‘ <0

J T t=tr
fj,_f. =0if AX =0

Notice that, implicitly, the resolution of the local problems relates the stresses at the end of the step
with the displacements: {M,_, }, = {M(U_, )}, , therefore the equilibrium equation can be written as
in the case of nonlinear elastic frames:

{LU,_,)} ={P_, {LU_, )} = Z B(U,_,),L{MU,_,)}, (8.2.3)

This is the global problem that can be solved using the Newton-Raphson algorithm that is described
in section 4.2.5. For each iteration of the Newton-Raphson procedure, it is needed the resolution of the
m local problems, one for each element of the frame. An algorithm for solving the local problems is
described in the next section.

8.2.3 Numerical Resolution of the Local Problem

The local problem may be solved using an algorithm called elastic predictor - plastic corrector that is
shown in Figure 2(a-e).
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The main difficulty for solving the local problem is to know which one plastic hinge is active. It is
first assumed that none is active: this is the elastic predictor phase of the algorithm; therefore a provi-
sional stress matrix {M”“'} is given by:

{‘ﬁt:tr}b = [B% ]b {Uf,:tr};{Mpmv}b = [E]b{ét:tr - @pt:trfl}b + {Mo}b (824)

Notice that the provisional stresses at the end of the step are computed using the plastic deformations
at the end of the precedent step. The elastic assumption can now be verified; this is carried out comput-
ing the provisional value of the yield functions with the provisional stress matrix:

f;p,,.m) — f;(m{p’m’u’ n[ﬂ'()’u); f}[)’r'{)’v — .f}(mfy-gt" n[ﬂ'{m) (8.2'5)

7

If both yield functions are negative or zero, then the local problem is indeed elastic and the provisional
stresses are the solution of the local problem:

M™M,_, }, ={M"}, (8.2.6)

If one or all yield functions are positive then a plastic correction is needed (remember that yield
functions are negative or nil by definition). There are three different kinds of plastic corrections possible:
one with the plastic hinge i active, another with the plastic hinge j active and, finally, a plastic correction

Figure 2a. Elastic predictor - plastic corrector algorithm

Compute:

@}, =[B1,{U,, };
M7}, = [E]{®,;, — @ =}, + (M},
]pi prov _ f; ( m ;m'ov, n prov)

f] prov _ fj (m j]_)rov g prov)

B nP ) <0

fj ( m}zyrov} % prov) <0 v

fi (m iprov’ 5 prot) <0

f}(mj?rov,nprov)>0 ‘

f;' (mipFOV, nprm) > 0

fj ( mj?rov,nprov) £
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where both plastic hinges are active. The appropriate plastic correction is chosen considering the sign
of the values of the functions. For instance, if f"” > Oand ff”’” < Othen, a new provisional stress
matrix is obtained solving:

M), = (B (@, — @7}, + (M} [ =0

prov

of 0
Ao =ax P as =AY
i [ am p ?

v lprov

A (8.2.7)

J

i
n

prov

prov

This new provisional solution should also be verified. This is carried out by computing the new
value of the yield function j and the increment of the plastic multiplier i. If they are, respectively, nega-
tive and positive ( fj’”“” <0and A\

> 0 ) then, the new provisional stresses are indeed the solution
prov

of the local problem.

The second possible correction consists in assuming an active plastic hinge at the end j; this is the
case if f"* < 0Oand fj””’” > 0, therefore:

{Mpmv}b = [E]b{(I)f,:tr B (I)pm'm:}b + {Mo}b;fipmﬂ = O’

of of. 8.2.8
A’ = 0;A¢>f = A)\j fJ ;A(Sp = AAj i ( )
prov E J
mj prov n prov
And the corresponding verification is: f"* < Oand A)\j >0.
prov
The last possible plastic correction consists in assuming that both plastic hinges are active:
{Mprm'}b — [E]b{(ﬁt:tr _ @ppmv}b + {MU}b;f;py-m,v — 0’ f;.pm” — 07
Of of. of of 8.2.9
AP = AN —f; (AP = AN f7 A0 = AN —f‘ + AN i ( )
! " Om, ! T Om. P "on 7 on
v lprov J lprov prov prov
In this case, the verification is: A\ >0 and A)\j >0.
prov J

prov

Notice that plastic corrections are, in most cases, nonlinear problems; they can be solved by any
conventional method; for instance, the Newton-Raphson method but at the local level. The verifications
can be carried out after convergence of the plastic correction or even after a local iteration. An example
of resolution of a local problem using this algorithm is presented in the section 8.5.2.
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Figure 2b. Elastic predictor - plastic corrector algorithm: elastic behavior

{(I)t=tr}b - [B%]b {Ur=tr};
M?” =[E],{®,_, —®Fp1}, +{M°},

I=tr

M,_, }, = {Mpmv}b

Figure 2c. Elastic predictor - plastic corrector algorithm: inelastic behavior at hinge i

M7}, = [E],{®,_, — ®prov}, +{M"},
f;prov =

A¢Z_P = A,@_% a_fl

i

. AdF

prov

=0

prov

™,_,}, = {M*”‘”},,l
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Figure 2d. Elastic predictor - plastic corrector algorithm: inelastic behavior at hinge j

{Mprov 3, =[EL{®,_, — (I)Pp;,ov}b + {MO 8

fjprov = O

of ;
ij P _ . J
mv:o; A5p=MjE ; Aqﬁj _Aij—am‘
P prov J

agf

prov

Figure 2e. Elastic predictor - plastic corrector algorithm: inelastic behavior at hinges i and j

{Mt=tr }b = {Mpmv}b

AP = A%,

M7}, = [E],{®@,_;. — @7 prov}, +{M’},

) prov _
fz‘ prov _q . fj =

7
i

of.
AgY = MML
cm ;

o
+AL——
O

b

prov prov prov prov

{Mt=tr }b = {Mpmv}b
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8.3 GENERAL ANALYSIS OF ELASTO-PLASTIC FRAMES
8.3.1 Formulation of the Quasi-Static Problem

Consider now a more general case that includes geometrically nonlinear effects and/or plastic harden-
ing. The problem is solved, again, step by step using a generalized form of the elastic predictor - plastic
corrector algorithm. The kinematic and equilibrium equations at a time ¢, are:

{A®}, = [B,(U_,),{AU};

f (8.3.1)
{LU,_,)} ={P_ h{LU_,)} = 2 _[B(U_,) [, {MU_,)},

b=1

The constitutive equations will now be written in a somewhat abstract way that has the advantage of
including, as particular cases, all the models presented in chapter 7, as well as the tridimensional ones
and those with shear plasticity. The variables of the local problems will be grouped into four sets: the
generalized deformations {®,_, } , the stresses {M,_, },, a set of internal variables with yield functions

that are denoted VWflL—t' , VszL_t‘ N VWMH , and a matrix of internal variables without yield

functions {VWo,_, }, ; the examples 8.5.3 and 8.5.4 show how specific plasticity models fit into this
general framework. The elasticity law is presented in abstract way as:

(EL(®,M, VW[ ,..., VW[, VWo)}

_0 (8.3.2)

t=tr
The yield functions are:

Yf.(M, VWf,..., VW[, VWo)| <0 ... Y£(M, VW[, ..., VW[, VWo)

t=tr

<0 (8.3.3)

t=tr

Finally, the normality laws and remaining equations of the model are written as:

-0 (8.3.4)

t=tr

(RM(M, VWF,..., VIWf, VWo)}

8.3.2 Elastic Predictor and Plastic Correctors

The global problem is again defined by the nonlinear equilibrium equation and it is solved by the Newton
method. The elastic predictor - plastic corrector algorithm is generalized as follows:
Elastic predictor phase:

e VWE,

{BL(®,_, M, VIV L VWo_, )}=0
t=tn—l (8.3.5)

Y= V(M VWE| L VW] VW

lt=tr—1

t=tr—1 ’

f=f,r71)
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The plastic correction phase:

{(EL(® M, VW[,..., VW[, VWo)}| =0
t=tr
YE(M, VWS, VIS, VWo)| = 0/if Y[ >0
t=tr
A VWE,..., AVWf = 0 otherwise
{(RM(M,VWF, ..., VWfk,VWO)}‘ —0 (8.3.6)

t=tr

8.3.3 Verification Phase

The verifications depend on which line of (8.3.6b) is being actually used. If the increment of the internal
variable VWY, is zero, then it must be verified that the corresponding yield function is indeed negative:

It AVWS,..., AVW =0 verify Yf.(M,VWf,..., VIWf, VWo)

<0 (8.3.7)

t=tr

Notice that the set of variables V'WWf, includes plastic multipliers and/or isolated plastic rotations. In
the former case, i.e., VIWJ, is a plastic multiplier; its increments have to be positive since the plastic
vector is always pointing outward the elastic domain (see Figure 12 in Chapter 6):

If AX =0 verify A\ >0 (8.3.8)

Consider now the case of an isolated plastic rotation as for instance a plastic hinge without plastic
elongation or shear plasticity. The elastic domain is in that case an open interval (see Figure 3). Notice
that, according to the normality law, if the generalized stress point lies on the right end of the interval,
then the increment of the corresponding plastic deformation has to be positive; if it is on the left one the
increment should be negative; thus:

If Ag} = 0 verify (m, — 1z, )A¢; > 0;

(8.3.9)
If Ay" = 0 verify (V —z )Ay" >0

Figure 3. Elastic domain and plastic increments in the case of a single plastic deformation according
to the normality law

Elastic Domain Elastic Domain

-V / ,LJ ,\Zb +V -m My, Liﬂ > +m

\ (I) ' 7/A_}/; g;{ ' |

0
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8.3.4 Dynamic Analysis of Elasto-Plastic Frames

If the inertia forces cannot be neglected, the constant average acceleration method described in section
4.3 can be used for the discretization of the equilibrium equation; therefore, the global problem can be
written as in the case of nonlinear elastic frames subjected to dynamic forces:

m

{L(U_,)} = {B_ } where {L(U_)} = D [B(U, ), ] {M(U,_, )}, + [Mass]{U(U, )} (8.3.10)

b=1

The global problem can also be solved by the Newton method; the local problems remain unmodified.

8.4 SUMMARY AND EQUATIONS QUICK REFERENCE

This chapter presents two methods for the elasto-plastic analysis of frame structures. The first one is
called hinge-by-hinge method. It consists in the resolution of a sequence of linear problems; however,
it can only be used in the simplest case of plasticity. The second one is based on the elastic predictor
— plastic corrector algorithm. In this case, the equations are separated into two groups. These two sets
of equations are solved separately: the global problem and the local problem; both of them could be
nonlinear. Therefore, they are solved using an iterative method. The local problem requires also the use
of the elastic predictor — plastic corrector algorithm. This algorithm represents a systematic procedure
to determine which plastic hinges are active at any step (See Table 1).

Table 1.
THE HINGE-BY-HINGE METHOD FOR PERFECT PLASTIC FRAMES
Formulation of the Problem
Variables to determine: Data:
o Free displacements e Initial configuration of the structure
e Reaction forces o Restricted displacements

o Generalized deformations
o Plastic rotations
o Stresses

Reference forces {PT8 " }

Forces applied over the elements {Peq}
e Material and cross-section properties (E, I, A, M‘_)

The structure is subjected to:
Set of distributed loads that not produce plastic deformations: {PF}
Set of concentrated loads on the frame: [ (t) {PW f}

® [(1): loading parameter (monotonically strict increasing function of time)

° {PTC f} : references forces that remain constant during the entire analysis

continued on following page
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Table 1. Continued

Linear kinematic equation

{®}, = [B)],{U} 6110

Linear equilibrium equation

[BLL (M}, = {P7}+ P} + (R} s11h

b=1

Elasticity law

{2 —®"}, =[F ] {M}, +{®"}, G110

Plastic rotations evolution laws
dg! = 0 if f(m ) < 0 (hinge locked
f(m,) =0 if d¢! = 0 (active hinge
@®.1.1d)
d¢! =0 if f(m ) <0 (hinge locked)
fi(m;)=0if d¢? =0 (active hinge)

I

).
)

Yield functions

fi(m,) = ml‘ -M, <0 f(m)= ‘mj‘ M, <0@lLle

K3

Formulation of the Problem in Incremental Form

Linear kinematic equation

{A®}, = [B)] {AU} .12

Linear equilibrium equation

S [BL{AM}, = AUP"}; where {P"} = {P, } + - {AR}
= A (8.1.3)

Elasticity law

o P —
{A® - AP }b = [Ff]b{AM}l’ (8.14a)

A¢" =0 if hinge 7 is locked Agb]’.’ = 0 if hinge j is locked

Amf =0 if hinge 7 is active’ Am;? = 0 if hinge j is active

Plastic rotations evolution laws
o' =0 if |m|< M qS’.’:Oif‘mb.‘<M.
i y )T J 7y
. ) .
Am’ =0 if ‘m.b‘:MA Am’ =0 if ‘mb.‘:M.
i i iy J J ¥

m’
i

(8.1.5)

continued on following page
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Tangent Elasticity Matrix of a Frame Element
Elasticity law
L L
A — AdP = 1 Am) — = Amt
1 ©3EL T 6EI
L L
AP — A" = ——Am’ +——"—Am’
i S eEI ' 3EI
L
A§, = ——An,
AE,
(8.1.6)
Am’ =0 Am’ =0
Element with two plastic hinges ( ! s J )
0 0 0
AE
0 0 -
Lb
(8.1.7)
_ o CAm' =0 ¢ =0
Element with plastic hinge at the end i ( v , 7 )
0 0 0
3EI, 1
{AM}, =[5, L {A®};[8,], =|0 —+ 0 [;A¢" = Ad + 2 Ad0] =0
b
AFE
0 0 -
Lb
(8.1.8)
Am' =0 ¢ =0
Element with plastic hinge at the end j ( J , ! )
3EI,
L, 1
{AM}, =[S, [ {A®};[S,,= 0 0 0 ;Agbf - Agb;.’ +§A¢f;¢ip =0
AE
0 0o —*
Lb
(8.1.9)
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Table 1. Continued

Element without plastic hinges

AEI, 2EI,
0
Lb Lb
2EI,  AFI
{AM}, =[S, {A®} 58], =|—" —" 0 ¢ =09 =0
Lb Lb
AFE
0 0 :
Lb
(8.1.10)
Equations (8.1.7-10) can be summarized as:
(AN, =[S (a0},
[S,], if there are no plastic hinges

[S,], |if there is a plastic hinge at the end i
S|b=
[ ] [Sl ; ]b if there is a plastic hinge at the end j

[S,], if there are two plastic hinges
(8.1.12)

The Hinge-by-Hinge Algorithm

Stiffness matrix

m

> [BLLISLBY, [{AU/ At} = {P1)
b=t (8.1.13)
K, [{V}={P"}; where [K |=>"[B}][S]B}]:{V}= é {au}
b=1 (8.1.14)

Displacements, strains and stresses

{u}={u}_, +ai{v}
{o} ={®_} +aBy] {v} .
M} ={™m_} +Ars],B)] {V}

Resolution of the hinge-by-hinge method
First step: Determination of the state of the structure under the distributed forces

v, ={u} {e}, ={a} M} ={m} 0,
K |{V}={P"}

Second step: equation is solved by the direct stiffness method

Kt] - Zm:[B?V]lf» [So]b[B??]b {V} = E{AU}

Plastic hinge is unlocked, second step is therefore computed solving

Maz ( -M, )=0

my,

(8.1.16)

continued on following page
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Table 1. Continued

Tangent Stiffness Matrix of a Frame Element
Tangent stiffness matrix of an element
k |=[B’]'[S] [B’
J=BILISLB, (8.1.17)
[ 0
b : non expanded kinematic transformation matrix
S|, =[S
For [ ]b [ O]b : tangent stiffness matrix
12E1 9 EA o 12EI FEA 6ET 12EI 9 FEA o 12EI  FA 6E1
—s +—c¢ —— + —|sc —Ss ——s ——c¢ — — —|sc —s
L& L L3 L L2 L3 L LS L L2
12EI EA 12EI 9 EA o 6ET [IQEI EA 12EI 9 EA o 6EI
—— + —|sc c +—s - C - — ——|Ss¢C ———— ¢ — —8 -~ C
L3 L L3 L L2 L3 L L3 L L2
6EI 6EI 4FE1 6EI 6E1 2FI
—s ——c — ——s —c —
] - 2 2 L 2 2 L
¢ 12EI 9 EA o 12E1 EA] 6ET 12EI 9 EA o [ 12EI  EA 6ET
-——s ——c — - —|sc —-——s s +—c —— +—|sc ——s
L3 L LS L L2 L3 L L3 L LQ
[12EI EA 12EI 9 FEA o 6EI 12EI  FEA 12EI 9 FA o 6E1
— — —|sc ——c ——s —c —— 4+ —|sc c +—s —c
L3 L L3 L L2 L& L L3 L L2
6EI 6EI 2E1 6EI 6EI 4E1
—_— S ——cC — _—— S —cC —
LZ LQ L LQ L2 L
(8.1.18)
§=sin q, ¢=cos q,
; ;  ?is the angle with respect the global axis X
18], =18,
3EI , EA , 3EI EA 3EI , EA , 3EI EA 3EI
$ —c - + —|sc ——s ——¢ ——|sc s
r L r L r L r L L
3EI FEA 3EI , FA | 3EI  FEA 3EI , FA , 3EI
—— +—]sc —c +—35 0 — ——|s¢ ———c ——85 - ¢
Ld L L& L Li L Ei L LZ
0 0 0 0 0 0
[kt] = 3EI , EA , 3EI  EA 3Kl , FEA , 3EI FEA 3EI
——s — c — — —|scC —s —c ——— +—|s¢ ——s
r L r L L L L L L
3EI FEA 3EI , FEA , 3EI EA 3Kl , EA , 3EI
——|sc - c ——s —— 4+ —sc c —s c
r L r L r L r L r
3EI 3EI 3EI 3EI 3EI
—s ——c 0 - —c —
L L L L L Js1.19)

continued on following page
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Table 1. Continued

(8], =15,],
3EI 9 FEA o 3EI EA 3EI 3EI 9 FEA o 3EI EA
—s +—c¢ —— 4+ —|sc s ——s ——c¢ — — —|sc 0
LS L LS L L2 LS L L3 L
3EI  FA 3EI 9 FEA o 3EI 3EI EA 3EI 9 FA »
—— 4+ —|sc —c +—s —-—c — ——|sc ——c¢ ——s 0
L3 L L3 L L2 L3 L LS L
3EI 3EI 3EI 3EI 3EI
—s —-——c e ——s —c 0
[k,] = I i L i I
3EI 9 FEA o 3EI FA 3EI 3EI 9 FA o 3EI FEA
——s ——c — — —|sc ——3s —s + —c¢ —— + —|sc 0
LS L L3 L LQ L3 L L3 L
3EI  EA 3EI 9 FA o 3EI 3EI EA 3EI 9 EA o
— — —|sc —c ——s —c —— 4+ —|sc —c +—s 0
LS L L3 L L2 L3 L L3 L
0 0 0 0 0 0
(8.1.20)
8], =18,],
EA , EA EA , EA
—c —sc 0 ——c¢ ——sc 0
L L L
EA EA EA EA
—sc —3s 0 ——sc ——s 0
L L
[k ] 0 0 0 0 0 0
| EA, EA EA , EA
——0c ——3sc 0 —c —sc 0
L L
EA EA EA EA
——sc ————s 0 —sc —35 0
L L L L
0 0 0 0 0 0
(8.1.21)
ELASTIC PREDICTOR - PLASTIC CORRECTOR ALGORITHM
Formulation of the Problem
Variables to determine: Data:
o Free displacements, e Initial configuration of the structure
e Reaction forces o Restricted displacements
e Generalized deformations {Peq }
o Plastic rotations Forces applied over the elements
e Stresses e Material and cross-section properties (E, I, A, M)
e Yield functions i
Linear kinematic equation
®} =[B']{U
{ }b [ E]b{ } (8:2.1a)
Linear equilibrium equation
m
01t .
b=1 (8.2.1b)

continued on following page
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Table 1. Continued

Elasticity law

{M}b = [E]b{i’ - (I’p}b + {Mo}b (82.1¢)

The normality laws

of of

dg! = d\ —;d¢" = d\ %
Z‘ “om, 79

J

of
) :d)\.—f’—l—d)\.
m. 7 ' on T on
J (8.2.14d)

Evolution laws of plastic multipliers
d\ =0if f(m,n)<0 |d\ =0if f(m, n)<0

‘(m.,n)=0if d\ =0 "|f(m.,n)=0if d\ =0
Jifm;,m) ! Jy(m;>m) ! 82.1¢)

Global and Local Problems

Global Problem: Resolution of the equilibrium equation and its boundary conditions (it involves all the elements of the frame)
Local Problem: Resolution of the kinematic and constitutive equations (they relate variables of only one element b)

Formulation of the Local Problem (At Any Time t,)

Variables to determine: Data:

o Generalized deformations o Displacements of the element

o Plastic rotations e Forces applied over the elements at time t

o Stresses e Material and cross-section properties (E, I, A, Mv)
o Yield functions

Linear kinematic equation

_ 0
{@t:tm }b - [BE ]b {Ut:tr} (822 a)
Elasticity law

{Mt:tr }b = [E]b {(I)t:tr - (I,pt:tr }b + {MO }b (8.2.2b)

Normality laws

of of, of of.
Agr = A 2 ;Aw:m.i VDN U AN
' " Om, ! ! . v "on 7 on
ili=tr I i=tr t=tr t=tr (8.22¢)
Plastic multipliers evolution laws
AN =0if f| <0 [Ax =0if f| <0
£l =0if AN =0"|f| =0if AN =0
t=tr =t ! (8.2.2d)

Formulation of the Global Problem (At Any Time t,)

Equilibrium equation
Newton-Raphson algorithm

{LU,_)} = {P_, }{LU,_ )} = 2 [BU,_,) L {MU,_ )} {LU_, )} = {P_,}

1 (8.2.3)

m
b=

Numerical Resolution of the Local Problem

Provisional stress matrix

{Qt:tr}b - [BOE][){U,;ZH-};{MZ]MU}b = [E]b{(bt:tr - ¢pt:tr71}b + {Mo}b (8_2_4)

continued on following page
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Table 1. Continued

Yield functions

prov __ prov provy, pprov __ prov prov
f; - f;(ml y 1 )af7 - f7(m] y 1 ) (8.2.5)
If both yield functions are negative or zero

{Mt:tr}b = {Mpmv}b (8.2.6)

prov ‘]77'07) < O
It f; > Oand fj -

{Mpmv }b = [E]b {(ﬁt:tr - (ﬁpp’rou }b + {MD }b;f;pmv = 07

of of.
Ag’ Y A8 = AN J APl =0
' " om, ? "on 7 prov
v Iprov prov (8.2.7)

prov < .PW”/ > 0
If f7 <0 and ff

M}, = [El{®_, — @

va}b + {MD}b;'f}pmv = 07
of af,

m n

J prov

Ap?

3

= O;Acpf = A)\j ;A&p = A)\j

prov
prov (8.2.8)
>0

P <o B
an

The corresponding verification is: ¢ prov

prov .[)7‘07/ > 0
If f7 > 0and ff

(), =B, @7, M =0 =0

of
m

t prov T 1prov prov

AN >0 A\

s =
The verification is:

af
A8 = AN 2L 4 AN —L

r " on 7 0n
prov (8.2.9)

prov

>0

DTOV
7 and

GENERAL ANALYSIS OF ELASTIC PLASTIC FRAMES

Formulation of the Quasi-Static Problem

. - {®_,}
Generalized deformations t=trlb

M
Generalized stresses { t=tr }b
o Set of internal variables with yield functions:

VWf VWY, VWY,

o A matrix of internal variables without yield function

{VWOt:tr }b

Variables

t=tr t=tr ,. t=tr

continued on following page
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Table 1. Continued

Linear kinematic equation
{A®}, =[B,(U_)|{AUL{LU,_ )} = {P_ }{LU,_, )} =) [BU_) [ {MU_ )},
b=1 (8.3.1)
Elasticity law is presented in abstract way
(EL(® M, VWf,..., VWf,,VWo)}| =0
t=tr (832)
Yield functions
Y (M, VWf,..., VW[, VWo) <0 Yf(M, VW[, ..., VW[, VWo)| <0
' t=tr . ' t=tr (8.3.3)

Normality laws
(RMM, VWf,..., VWf,,VWo)}| =0

t=tr (834

Elastic Predictor and Plastic Correctors
Elastic predictor phase
{EL(®,_, .M, VWf| .., VIVf|  .VWo,_, )} =0
(8.3.5)
Y = Y (M VWfl‘L:/H e VWE| VWo_, )
Plastic correction phase
{EL(®,M, VWf,..., VW[, VWo)}| =0;

t=tr
YE (M, VW, ..., VWL,VWO)‘ =0 if Y£"" >0
t=tr ;
A VWE,..., AVWf, = 0 otherwise

(RM(M,VWf,..., VWf,,VWo)}| =0

t=tr (8.3.6)

Verification Phase
Yield functions
If AVWS,..., AVWf. = 0 verify Yf.(M,VWf,..., VW[, VWo)| <0
t=tr (8.3.7)
Plastic multiplier
If AN =0 verify A\ >0 83.8)
Elastic domain
If Ag] = 0 verify (m, —x )A¢! > 0;1f Ay” = 0 verify (V — 2 )Ay" >0 339)
Dynamic Analysis of Elasto-Plastic Frames
Equilibrium equation
{L(U,_,)}={P_, } where {L(U_,)} = > J[B(U,_, ).} {M(U,_, )}, +Mass|{U(U,_, )}
b=1 (8.3.10)
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8.5 EXAMPLES

8.5.1. Analyze the Frame Shown in Figure 4 Using the Hinge-by-Hinge Method

The structure is analyzed following the procedure presented in section 8.1.4.

e  First Step: (state of the structure after the application of the distributed forces on the elements)

s =0, 1(0)=0.

0 0 R, 0

O 0 R[)wl 0

0 0 R, 0

(O 0 0 1
w,, 0 0 0

0y, 0 0 0

(™ 0 0 2
{u,}=u, ,{Pe}: —6/;{R,} =] 0 [;{p }=]0
6’03 6 0 0

Uy, 0 0 0
w,, —6 0 0

«904 —6 0 0

0 R0115 0

0 R0w5 0

0 0 R, 0

Figure 4. RC frame subjected to horizontal and vertical loads

2 KN/m
U 2L bty
A — 5 -
3m @ ®
2 I_>2 5_
3m o

Properties of elements:

E=8x10°KN/m*
Inertia=3.2x10"*m*
Area=0.0625m?

My=62KN-m

(8.5.1)
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Computation of the tangent elasticity matrices:
Element 1 between nodes 1 and 2:

033 0 1 033 00000000000
[BUELZ 033 0 0 —033 01 00000000 0 (8.5.2)
0 -10 0 10000000000
3472.00 1736.00 0
[S,], =[1736.00 3472.00 0 (8.5.3)
0 0 1.667z10°
1157.33 0 1736.00 —1157.33 0 1736.00 o 0 O O o 0 O 0 o0
0 1.671105 0 0 71.67z105 0 o 0 0O O o0 o0 0 0 o0
1736.00 0 3472.00 —1736.00 0 1736.00 o 0 O O O o0 O 0 o0
—1157.33 0 —1736.00 1157.33 0 —-1736.00 0 O O O O O O 0 0
0 71.67.7,105 0 0 1,671105 0 o 0 0 O O O 0 0 o
1736.00 0 1736.00 —1736.00 0 3472.00 o 0 0 O o o0 O 0 o0
0 0 0 0 0 0 o 0 0O O o 0 O 0 o0
k| = o 0 0 0 0 0 00 0 0 0 0 0 0 0[(854)
' 0 0 0 0 0 0 o 0 O O o o0 O 0 o0
0 0 0 0 0 0 o 0 0 O O O 0 0 o0
0 0 0 0 0 0 o 0 0O O o o0 0 0 o0
0 0 0 0 0 0 o 0 O O O o0 0 0 o0
0 0 0 0 0 0 o 0 o0 o0 O O 0 0 o0
0 0 0 0 0 0 o 0 O O o0 o0 o0 0 O
0 0 0 0 0 0 o 0 O O o0 o0 o0 0 o0
Element 2 between nodes 2 and 3:
00003 0 1 -033 00000000
By =0 0003 0 003301000000 (8.5.5)
000 0 -10 0 10000000
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mes

3472.00 1736.00 0
S,], =[1736.00 3472.00 0
0 0 1.667210°
00 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1157.33 0 1736.00 —1157.33 0 1736.00
0 0 0 0 1.67210° 0 0 ~1.67210° 0
0 0 0 1736.00 0 3472.00  —1736.00 0 1736.00
0 0 0 —1157.33 0 ~1736.00  1157.33 0 —1736.00
L Ml 0 ~1.67210° 0 0 1.67210° 0
0 0 0 1736.00 0 1736.00  —1736.00 0 3472.00
0 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
Element 3 between nodes 3 and 4:
000 O0OO0OO0O O —-0167 1 0 0167 0 0 0 0
By =0 00000 0 —0167 00 0167 1 0 0 0
O 0 0 000 -1 0 0 1 0 00 0 O
1736.00 &68.00 0
s, =|s68.00 1736.00 0
0 0 83333.33

(8.5.6)

(8.5.7)

(8.5.8)

(8.5.9)
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00 0 0 0 O 0 0 0 0 0 0 0 0 O

0 0 0 0 0 O 0 0 0 0 0 0 0 0 O

0 0 0 0 0 O 0 0 0 0 0 0 0 0 O

0 0 0 0 0 O 0 0 0 0 0 0 0 0 O
00 0 0 0 O 0 0 0 0 0 0 0 0 O
00 0 0 0 O 0 0 0 0 0 0 0 0 O

0 0 0 0 0 0 83333.33 0 0 —83333.33 0 0 0 0 O
[k”] =0 0 0 0 0 O 0 144.67  —434.00 0 —144.67 —434.00 0 0 O
J 00 0 0 0 O 0 —434.00 1736.00 0 434.00 868.00 0 0 O
0 0 0 0 0 0 -—83333.33 0 0 83333.33 0 0 0 0 O

0 0 0 0 0 O 0 —144.67  434.00 0 144.67 43400 0 0 O

0 0 0 0 0 O 0 —434.00  868.00 0 434.00 1736.00 0 0 O
00 0 0 0 O 0 0 0 0 0 0 0 0 O
00 0 0 0 O 0 0 0 0 0 0 0 0 O
00 0 0 0 O 0 0 0 0 0 0 0 0 O

(8.5.10)

Element 4 between nodes 4 and 5:

000000000 0330103 0 0
By =0 00000000 030003 0 1 (8.5.11)
000000000 0 10 0 —10
3472.00 1736.00 0
[S,], =|1736.00 347200 0 (8.5.12)

0 0 1.67210°
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0000 000 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 O 0 0 0 0 0 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0
0000 O0O0O0O0 O 0 0 0 0 0 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 O 0 0 0 0 0 0
K| = 00 0 0 0 0 0 0 O 0 0 0 0 0 0
4 o 0000 0 0 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0 115733 0.00 ~1736.00 —1157.33 0.00 —1736.00
00 0 0 0 0 0 0 0 000 1.67210° 0.00 000  —1.67210° 0.00
00 0 0 0 0 0 0 0 —1736.00 0.00 3472.00  1736.00 0.00 1736.00
000 00O 0 0 0 0 —1157.33 0.00 1736.00  1157.33 0.00 1736.00
00 000000 0 000 —167z10° 0.00 0.00 1.67210° 0.00
00 0 0 0 0 0 0 0 —1736.00 0.00 1736.00  1736.00 0.00 3472.00
(8.5.13)
The tangent stiffness matrix of the structure is (See Box 1): [Kt]o =k, 1 + 1k, , ) +1k,, ; +k,, )

The structure is solved by the direct stiffness method; therefore, solving the expression
K, {U,}={F} ={P°} + {RO} , the free displacements and reaction forces are obtained:
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00°eLPE 0 0006LT  00'9ELT 0 00°98LT~ 0 0 0 0 0 0 0 0 0
0 01229 T 0 0 01229 T~ 0 0 0 0 0 0 0 0 0 0
g g
00°9€LT 0 €ELGTT  00°0€LT 0 £E°LGTT— 0 0 0 0 0 0 0 0 0
00°9€LT 0 000ELT  00'802¢ 00'7EY 0096LT~ 00’898 00°vEp— 0 0 0 0 0 0 0
0 LT 0 00'7EY LT 0 00'7ER L9TVT- 0 0 0 0 0 0 0
g
00°98LT~ 0 €ELTI—  00'98LT— 0 O 0 0 SOIEEs 0 0 0 0 0 0
0 0 0 00'398 00'7Ep 0 008025 00FEF—  00'9ELT—  00'9ELT 0 00°9€LT 0 0 0
F158)| O 0 0 00FEr—  L9TFT- 0 00TEP= 0T 0 0 ROE2Eu 0 0 0 0 oﬁ ui
g
0 0 0 0 0 SOETEES 009ELT 0 OIS 00962 0 €861~ 0 0 0
0 0 0 0 0 0 009821 0 009ELT—  00°FF69 0 0 00'9€L1 0 00°98LT
0 0 0 0 0 0 0 0T2L9'T— 0 0 0ToEEE 0 0 0TzL9T~ 0
g g g
0 0 0 0 0 0 00°9€LT 0 £E°LGTT— 0 0 LOTIEL 00°9ELT— 0 £E°LGTT—
0 0 0 0 0 0 0 0 0 00'98LT 0 0006LT—  00°2L7E 0 00°96LT
0 0 0 0 0 0 0 0 0 0 T 0 0 U 0
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0 1.209

0 6.117

0 2.759
—2.6792107° 0
—3.670210° 0
—1.090x10* 0
—2.3612107° 0

{UO}: —7.3402107° ;{RO}: 0 (8.5.15)

1.9982107" 0
—2.376210° 0
—3.5232107° 0
—2.28210°° 0

0 —1.209

0 5.883

0 0.166

The generalized deformation matrices are computed by {<I>0 }b = [BOE]]) {Uo}and the generalized
stress matrices by {MO }b = [S],[B}], {UO}:

8.931z10°* —1.196 z 10°* 2.004z107° —1.488 z10°°
{®,}, =|-1.9682107" |{®,}, =| 1.892 2 107 |{®,}, =|-2.2742107°|{® } =| 7.919 210"
—3.670210°° —3.670210°° —1.4512107° —3.530210°°
2.759 —0.867 —4.494 —3.792
{M,}, =| 0.867 |{{M }, =| 4.494 |;{M }, =| 3.792 [;{M }, = 0.166 (8.5.16)
—6.117 —6.117 —1.209 —5.883

e  Second Step: s =1

In this step, the following equation is solved:

K] {(v.}=®" (8.5.17)
where [K t] = [K t]o assuming that there are no active plastic hinges in the structure,
{vi}= ﬁ {au } (8.5.18)
1
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{pr}={r,} +ﬁ AR} =

AR /AL
Alel / All
AR, | Al

S O O O O N O O -

AR /Al

1ub

AR /AL

1wb

AR, | Al

Analysis of Elasto-Plastic Frames

(8.5.19)

After the resolution, the following increments of the displacements and reactions are obtained:
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0
0
0
2.217210° Al
2.823210° Al
8.836x107 Al
3.462210° Al
5.647210° Al
—7.189210° Al
3.434210° Al
—2.823210° Al
1.1592107° Al
0
0
0

f:'H
>
=
—
——
I
o O O O O O O

—1.032A1

—0.470Al

~2.315A1,
0

0
~1.968A,
0.470A1
—3.958A,

(8.5.20)
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The stresses in the elements are computed by:

{Ml }b - {Mo }b + Al [So}b[BOE]b {Vl} (8.5.21)

A [, is obtained from the maximum moment that occurs in the hinge j of the element 4; therefore, this
is the location of the first plastic hinge that becomes active. For this element:

—3.792| |~1.946A1
(M}, = 0.166 | +|—3.958A[, (8.5.22)
—5.883| | —0.470AL

Then, Al is computed solving Equation (8.1.16): Mazx (‘mk‘ -M ky) = 0, resulting:

0.166 — 3.958A1 | — 62 = 0 = Al =15.707 or Al, = —15.623 (8.5.23)

The positive value is chosen. The maximum moment is not always easy to determine; therefore, it
could be easier the computation of the expression (8.5.23) for all hinges and the selection of the small-
est value of Al. At the end of the second step, the stresses in the elements are:

—33.604 11.403 9.289 —34.356
(M}, = |—11.403;{M,}, = |—9.289|;{M }, =| 34.356 [;{M,}, =|—62.000 (8.5.24)
1.274 1.274 —32.119 —13.274

and the displacements:
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0
0
0
3.214210°°
7.646x107°
1.279210 7
5.202210
{u}={u,}+a1{v}=]| 1529210 (8.5.25)
8.690210*
5.164210*
—7.9642107°
1.592210*
0
0
0

The loading parameter is:

I(1) = 1(0) + Al = 15.701 (8.5.26)

Figure 5 shows the structural configuration after the first plastic hinge and the plot of horizontal
displacements at nodes 4 vs. loading parameter.

The new tangent stiffness matrix of the structure for the next step is computed changing the matrix

k = [Bg ]: [Su ]4 [BOEL ,where:

corresponding to the element 4 that now must be calculated as |k, ,
4

Figure 5. a) Location of the first plastic hinge in the RC frame; b) Plot of horizontal displacements at
nodes 4 vs. loading parameter
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2604.00 0 0
[SUL: 0 0 0 (8.5.27)
0 0 1.67z10°

then,
0 0 0000 0 0 O 0 0 0 0 0 0
0 0000 0 0 0 O 0 0 0 0 0 0
o 0 0 0 0 0 0 0 O 0 0 0 0 0 0
00 0 0 0 0 0 0 O 0 0 0 0 0 0
0 0o 000 0 0 0 O 0 0 0 0 0 0
0 0000 0O 0 0 O 0 0 0 0 0 0
0 0000 0 0 0 O 0 0 0 0 0 0
00 0 0 0 0 0 0 O 0 0 0 0 0 0
[ktEL; =
0 0000 0O 0 0 O 0 0 0 0 0 0
0 0000 0 0 0 0 28933 0 —868.00 —289.33 0 0
0 0 0 0000 0 1.67210° 0 0 —167210° 0
0 0 0 0 —86800 0 2604.00  868.00 0 0
0 0000 0 0 0 0 —289.33 0 868.00 289.33 0 0
0000000O0GO0GO0 0  —167210° 0 0 1.67510° 0
00 0 0 0 0 0 0 O 0 0 0 0 0 0
(8.5.28)
and the tangent stiffness matrix of the structure for the next step is (Box 2):
e  Third Step: s =2
This analysis starts with solving the expression:
. R
K], {V.} =2} (8.5.30)
where, as aforementioned, [K tL considers that the hinge j of the element 4 is active,
1
v,}= H{AUZ} (8.5.31)

2

and
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AR?ul /Al‘z
ARZuxl /AZZ
AR, /Al

(8.5.32)

—
T
——
|
I
—r
;U
&

——
+
|-
—
>
=
)

——
I

o O O O O v o o -

AR?US / AZZ
ARQWS / Al?
AR, /Al

Once Equation (8.5.30) is solved, the increments of the displacements and reactions can be written as:

0 ~1.723A,

0 —1.083A,

0 —4.671Al,
5.0942107° Al 0
6.498210 " Al 0
2.4032107° Al, 0
1.019210 " Al 0

(AU} =| 12992107 AL, [;{AR,}=| 0 (8.5.33)

5.803z107" Al 0
1.018z107° Al, 0
—6.498210 " A, 0
1.922210°° Al 0

0 —1.277Al,

0 1.083A,

0 0

Al, is computed from the maximum moment of the structure. It occurs in the hinge 7 of the element 1;
therefore, this is the location of the second plastic hinge that becomes active. For this element:
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—33.604| |—4.671A]
(M}, =|~11.403| + |-0.498A, (8.5.34)
1.274 1.083Al,

then, Al is computed by solving:

—33.604 —4.671AL| - 62 = 0 = Al, = 6.08 or Al, = —20.469 (8.5.35)

It is chosen again the positive value. At the end of the third step, the stresses in the elements are:

—62.000 14.432 25.503 —57.649
(M, }, = |~14.432[{{M,}, = |-25.503|;{M, }, =| 57.649 |;{M,}, = |-62.000 (8.5.36)
7.859 7.859 —39.883 —19.859

and the displacements:

0

0

0
6.311210*
4.715210°°
2.740210°*
1.140210°"
{u,}={u}+a,{v,}=|9430s10" (8.5.37)
4.397210°°
1.135210°"
—1.191z107"
2.7612107*

0

0

0

The loading parameter is:

I2) = I(1) + AL, = 21.787 (8.5.38)
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Figure 6. a) Location of the plastic hinges in the RC frame; b) Horizontal displacements at nodes 4 vs.
loading parameter graph

—~ 25
~
3
8 2
£
£ .19
3
e
— £ 1w
=1
©
o
a
s
0
.B 0 01 0.2 03 04 05 06 07
— Horizontal displacement of node 4 (m)

Figure 6 shows the location of the plastic hinges in the frame and the plot of horizontal displacements
at nodes 4 vs. loading parameter.
The tangent stiffness matrix of the structure is computed after changing the matrix corresponding to

the element 1. It must be computed as [ku; ]1 = [B?EK [S,.], [B% L , where:
0 0 0

[SML =0 2604.00 0 (8.5.39)
0 0 1.67210°

then,
289.33 0 0 —289.33 0 868.00 0 0 0 0 0 0 0 0 0
0 1.67210° 0 0  —1.67210° 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0000000O0GO0O
—289.33 0 0 289.33 0 ~868.00 0 0 0 0 0 0 0 0 0
0  —1.67210° 0 0 1.67210° 0 00000000 O
868.00 0 0 —868.00 0 260400 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0000000GO0O
k) =] 0 0 0 0 0 0 0000000O0O0O
0 0 0 0 0 0O 000000000
0 0 0 0 0 0 0000000O0GOO
0 0 0 0 0 0O 000000000
0 0 0 0 0 0O 00000000 O
0 0 0 0 0 0 0000000O0GO0O
0 0 0 0 0 0 0000000O0GO0O
0 0 0 0 0 0 00000000 O
(8.5.40)
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and the tangent stiffness matrix of the structure is (Box 3):
e  Fourth step: s =3

This step starts solving the expression:

K] {v.}= 1’} (8.5.42)
where [K tL considers that the hinge i of the element 1 and the hinge j of the element 4 are active.

{v,} = ﬁ {au,} (8.5.43)

3

and

AR, /Al
ARIS’wl /AZJ
AR%‘l /Al:%

(8.5.44)

w
bl
——
|
|
—r
p-U

3,
——
+
>
=
w
——
Il
oo B s B e B e B e S N B e S S

AR?)ZLS / A13

AR311/5 /Als
ARBQS / Al%

After solving Equation (8.5.42), the increments of the displacements and reactions are:
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0 —0.978A,

0 —1.489Al,
0 0
1.3052107° Al 0
8.9352107° Al 0
3.224210° Al 0
1.7692107* Al 0
{au}=| Lwstzi07AL [{AR}=| 0
—1.200210" A, 0
17672107 Al 0
—8.935210 ° Al 0
3.560210° AL, 0

0 —2.022A,

0 1.489AL,
0 0

(8.5.45)

The maximum moments occur simultaneously at the hinge j of the element 3 and hinge i of element
4; therefore, these are the locations of the third and fourth plastic hinges that become active. For these

elements:
25.503 2.870Al, —57.649| |—6.065A1,
{M}, =| 57.649 |+| 6.065Al, |;{M}, =| —62.00 |+ 0 (8.5.46)
—39.883| |-2.022A], —19.859 | -1.489Al,
Al,is computed by solving:
57.649 + 6.065A1,| —62 = 0 = Al, = 0.717 (8.5.47)
At the end of the fourth step, the stresses in the elements are:
—62.000 16.537 27.562 —62.000
{M,}, =[-16.537;{M, }, = |—27.562|{M, }, = | 62.000 |;{M,}, = |—-62.000 (8.5.48)
8.927 8.927 —41.333 —20.927

and the displacements are:
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0
0
0
7.25210°°
5.3562107°
2.971210°*
1.2672107"
{u}={u,}+a,{v,}=| 1071210 (8.5.49)
4.311210°°
1.2622107"
—1.2562107"
3.016210*
0
0
0

The loading parameter is:

I(3) = I(2) + Al, = 22.504 (8.5.50)

Figure 7 shows the location of the plastic hinges in the frame and the plot of horizontal displacements
at nodes 4 vs. loading parameter.

Figure 7. a) Location of the plastic hinges in the RC frame; b) Plot of horizontal displacement at node
4 vs. loading parameter
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The tangent stiffness matrix of the structure is computed after changing the matrices corresponding

to the elements 3 and 4. They must be computed, respectively, as [ktEL = {Bzr [Su]z {Bz] .and
3 3

[ktE L = {B(}]«;E [82 ]4 [[BOEL , where:
1302.00 0 0

[sl,_] = 0 0 0 (8.5.51)
713
0 0 833z10*

then,
000000 0 0 0 0 0 00 0 0
00000 0 0 0 0 0 0 00 0 0
00000 0 0 0 0 0 0O 00 0 0
0000 00 0 0 0 0 0O 00 0 0
000000 0 0 0 0 0O 00 0 0
000000 0 0 0 0 0 00 0 0
00 0 0 0 0 83333.33 0 0 ~8333333 0 0 0 0 0

[LEL—O 0000 O 0 36.17  —217.00 0 ~3617 0 0 0 0
0000 00 0 —217.00  1302.00 0 21700 0 0 0 0
00 0 0 0 0 -83333.33 0 0 83333.33 0 00 0 0
000000 0 ~36.17  217.00 0 3617 0 0 0 0
0000 00 0 0 0 0 0O 00 0 0
000000 0 0 0 0 0 00 0 0
000000 0 0 0 0 0 00 0 0
00000 0 0 0 0 0 0O 00 0 0

(8.5.52)

00 0

[S,],=]0 0 0 (8.5.53)

1.67210°

SO,
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000O0O0OO0ODOTO0ODOTO 0 00 0 0
000O0O0O0OO0OO0OTO0OTP O 0 0 0 0 0
000O0O0O0OO0OO0OO0OTO 0 0 0 0 0
00 0O0OO0OO0DOTO0OO OO O 0 0 0 0 0
000O0O0OO0OO0OTO0OOQ OO 0 0 0 0 0
00 0O0O0O0OO0OTO0OTO 0O 0 0 0 0 0
00 0O0O0OO0ODO0OTO0OTO OO 0 0 0 0 0
[ktEL: 00000O0OTO0O0O 0 0 0 0 0 (8.5.54)
0000 O0OO0OO0OTU ODOTO 0 0 0 0 0
0000 O0OO0OO0OO0DTO0TP O 0 0 0 0 0
000O0OGOOOUO0O0 1672100 0 0 —1.67210° 0
0000 O0OO0OO0OTU O0DOTO 0 0 0 0 0
0000 O0OO0O0OTO0DTO 0O 0 0 0 0 0
000O0O0OOOOGO0O0 —167210° 0 0 1.67210° 0
0000 O0OO0O0OTO0DOTP O 0 0 0 0 0
And the tangent stiffness matrix of the structure is (Box 4):
e  Fifth step: s =4
This step starts solving the expression:
K, {v.} =P} (8.5.56)

where [KtL was computed considering that the hinge i of the element 1, the hinge j of the element 3

and the hinges i and j of the element 4 are active.

{V4} - ﬁ AU4} (8.5.57)
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AR, /AL
A}zf-iwl / Al4
ARMI / Al4
1
0
0
2
{pi}=={p } +§{AR4} = 0 (8.5.58)
i 0
0
0
0
AR, /AL
AR, /Al
AR, /Al
The increments of the displacements and reactions are:
0 —3.000A,
0 —2.500A1,
0 0
8.643z10° Al 0
1.500210° AL, 0
2.535210° Al 0
1.4352107" AL, 0
{au,}=|3.000z10°AL [{AR }=| 0 (8.5.59)
1.153z10* Al, 0
1.435210" A, 0
~1.500210 ° Al 0
AG, 0
0
2.500A1,
0 0

The maximum moments occur simultaneously in the hinge j of the element 2 and in the hinge i of
the element 3; therefore, these are the locations of the fifth and sixth plastic hinges that become active.
For these elements:
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16.537 9.000A, 27.562 15.000A1,
{M}, = |—27.562| +|—15.000Al,|;{M}, =| 62.000 |+ 0 (8.5.60)
8.927 2.500A1, —41.333 0

Al,is computed by solving:

27.562 + 15.000AL | — 62 = 0 = Al, = 2.296 (8.5.61)

At the end of the fifth step, the stresses in the elements are:

—62.000 37.200 62.000 —62.000
{M,}, =|-37.200[{M,}, = |—62.000};{M,}, = | 62.000 |;{{M,}, =|—62.000 (8.5.62)
14.667 14.667 —41.333 —26.667

and the displacements are:

0
0
0
2.709x107"
8.800210°°
8.792210
4.561210""
ful={u}+ar{v}=| 1760210 (8.5.63)
3.078210°
4.556210™"
—1.600210"
3.0162107 + A6,
0
0
0

The loading parameter is:

I(4) = I(3) + Al, = 24.800 (8.5.64)
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In Figure 8a it is shown the localization of the plastic hinges in the frame and in Figure 8b the plot
horizontal displacement of the node 4 vs. the loading parameter. In the later, it can be observed the
change of the tangent stiffness with the progressive plasticization of the frame.

8.5.2. Solve the Local Problem for the Column Shown in Figure
6a Considering the Interaction Diagram of Figure 6b

The displacement matrix of the element is:

0
0
0
{UH} =| 0024 (8.5.65)
-0.00042
0.03

Based on Figure 6b the yield function is defined as:For

‘n‘<0.1N,f:M—1;O.lN < ‘n‘ <N;f:0.9M+M—1 (8.5.66)

Y Y Y

e  Elastic predictor phase: It is assumed that none of the plastic hinges is active. The generalized
deformations are obtained by the kinematic equation:

0
0
033 0 1 —-033 0 O 0 —0.008
{@z‘:l}l:[BUE]I{Ut:I}ZO'33 0 0 —-033 0 1 0024 | = 0.022 (8.5.67)
0 -1 0 0 10 —0.00042
—0.00042
0.03
The provisional stress matrix is computed as:
3472 1736 0 —0.008 10.416
M} =[E]{®_ —®"_}, =|1736 3472 0 0.022 |=]| 62.496 (8.5.68)

0 0 1.67x10°||—0.00042 —70.000

325



Analysis of Elasto-Plastic Frames

Figure 8. a) Location of then plastic hinges in the RC frame; b) Plot of horizontal displacement at node
4 vs. loading parameter
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Figure 9. a) RC element subjected to displacements; b) Elastic domain of the element cross-section

620
A B 95

l4.19x10"m 372

248 4

1072 ) g
240x10°m_Y_ \2.925x107 rad 2 o1 - .
g o Elastic
®  0-
2 .
Properties of element: p— DO main
T -124 -
= 2106 2 3
E = 8x10° KN/m' < g |
m tia =32x10" m*
3 @ Inertia=32x10" m 372 -
Area=0.0625m* -496
My= -1
fy=62 KN-m el
-70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70
1 .
e Moment (KN-m)

In order to verify the elastic assumption, the yield functions (8.5.66) are computed:

‘ 10.416 ‘ ‘ 70 ‘
0.9 + -

m| || = 1=—0.7359
n=-70KN>N = f=09—+-——1= 62 620
y M N, 62496 | | 70 |
£ =109 + —1=10.0201
62 620

(8.5.69)
As the yield function at node 2 is positive, a plastic correction is needed.
e  Plastic correction

The provisional plastic deformation matrix is:
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0

{® L =% (8.5.70)
s

p

and the provisional stress matrix is:

m
1
{MZ}N)’U}I — [E]I{@f:o _ @Ppmv}l — m2 (8571)
n
3472 1736 0 —0.008 m, —10.416 + 1736 (;5:
M) = 1736 3472 0 || 0.022—¢! |=|m, —62.496 + 3472 ¢ (8.5.72)

0 0 1.67z10°||—0.00042 — 8 n+ 70 + 1.67210° 8

The provisional yield functions are defined as:

- 0_9M+M_1.pr01’ _ O.QM—FM—l: 0 (8.5.73)
! 62 620 " 62 ' 620 o

And the provisional normality rule is:

) )
= 0;A¢" = AN, 8"2 = 0.01452A0 ;A6 = AN, a—é = —0.001613A), (8.5.74)
’ m

2 prov prov

Ag/

prov

Solving the set of equations conformed by Equation (8.5.73) and (8.5.74), it is obtained the follow-
ing solution:

9.9812 0
(M7} =1 61.6264 [;{®" 1} =| 0.00025045 [; A\, = 0.017253 (8.5.75)
—65.3620 —0.00002783

The necessary verifications are:

‘9.9812‘ \—65.3620\
0.9 + -

prov. _ __
h 62 620

1= -0.7497 < 0;A\, = 0.017253 > 0 (8.5.76)
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Therefore, it can be concluded that the provisional values obtained in the plastic correction are the
definitive ones.

8.5.3. Adjust the Model for Elements of any Aspect Ratio of Section 7.4
to the General Formulation for the Analysis of Elasto-Plastic Frames

1.  The variables are:

u]
wl
01
a.  Generalized displacements: {U,_, }, = uz
wn
071
m’
b.  Generalized stresses: {M,_, } = m;’
nb
¢
c.  Generalized deformations: {®,_, }, = ngj?
5})

d.  Tnternal variables with yield functions: VWf| —=~",VWE| —=¢7,VWE| =¢
e. Internal variables without yield functions: {VWo,_, }, : {xﬁ, T, xy.}

2. The equations are:
a.  Kinematic equations: {A®} = [BE(Ut:tr)L {AU}

m

b.  Equilibrium equations: {L(U, _, )} = {P_, };{L(U,_, )} = Z[B(Ut:h)E]Z{M(Ut:”)}b :
b=1
i.  Elasticity laws:

{EL(@,M, VW,..., VW[, VWo)}| = {®}, —([F,], +[E]){M}, —{&"}, - {7}, - {@}, = 0

t=

ii.  Yield functions:

Yf (M, VWF,..., VWfk,VWo)‘ = f(m'mz) = |——2

t=tr J

YE(M, VWS,..., VWF, VWo)| = f(m!,z)=|m! —z |- M, <0

t=tr
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(M, VWE,..., VWf,, VWo)| = f(m',z )= \mj —a:j‘—Mw. <0

t=tr

iii. Remaining equations:

T, —r.c.y’
{RM(M, VWL, ..., VWfk,VWO)} =|z - rcigﬁf’ =0
t=tr s
T, - chﬁj’.’

8.5.4. Adjust the Tridimensional Model of Section 7.5 to the General
Formulation for the Analysis of Elasto-Plastic Frames

1.  The variables are:

. . . t
a.  Generalized displacements: {U}, = (u,v,w,¢.,0,(,....;u v ,w ¢ ,0 ()

b.  Generalized stresses: {M}, = (m; ,m’ ;n,,m. m’

jy? Y iz

27

c.  Generalized deformations: {®;_, }Z = (¢iy,¢ iy ,0 D, iz jz:¢x )

d. Internal variables with yield functions: VWJ?‘H. = ¢!, VW]‘;L#” =\, VWJ‘;)‘ = )\j

t=tr

e. Internal variables without yield functions: {VWot:tr}Z = (gb.p , P 6}71 P d)i )

iy’ Ty’ iz?
2.  The equations are:
a.  Kinematic equations: {A®}, = [BE(Uf:”)L {AU}

m

B(U,_, ) L{MU_)},

b=1

b.  Equilibrium equations: {L(U,_, )} = {P_, };{L(U,_, )}

i.  Elasticity laws:

{EL(®, M, VWf,..., VWfk_,VWO)}‘ L= {M}, —[E]|{® - ®"}, — {Mo}b =0

t=

ii.  Yield functions:

vl v2 V3
n iy m.
cee = = —_— - 1z _ <
Yfi (M7 VWfi, 3 VWf};, VWO) - f; [Nu + Muy + Muz] 1 0
vl v2 v3
Yi (M, VWf VWf,VWo) =f = n + Jy + & 1<0
Y v k - N M
u uy uz

Yf,(M, VW,..., VWf,, VWo)

=f(m)= ‘mx‘ -M <0

i—tr ur —
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iii. Remaining equations:

af
dgt — dx 2
Y K3 8myl
af
dor —ax
uj T Om
)
(RM(M, VIVf,.... VW, VWOl =|  dg? —ax aaj; —0
f=tr 2 i mi
of
a6 — an, 2
7 P om
2
of . of
i —in 2y
! "on 7 0n

8.6 PROBLEMS

8.6.1 Analyze the Frame Shown in Figure 10 Using the Hinge-by-Hinge Method
8.6.2 Solve the Local and Global Problems for the Column Shown in Figure 11 Using the Displace-

ment History and Constant Axial Load
8.6.3 Adjust the Model for Elements of Any Aspect Ratio to the General Formulation. Consider

Multi-Linear Isotropic and Kinematic Terms.

Figure 10. Beam subjected to transversal loads

Properties of element:

E = 8x10° KN/m?
Inertia =3.2x10* m*
Area=0.0625 m?

My =62 KN-m

4 KN/m
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Figure 11. Column subjected to constant axial load and variable lateral displacements

n
n(KN) 4
u
—_—
5] T Time(sec)
3m
u(m) 4
21 R
e N
] )
] T Time(sec)

8.7 PROJECTS

8.7.1 Generalize the Program Written in Project 4.7.1 including a Hinge-by-Hinge Analysis
8.7.2 Generalize the Program Written in Project 4.7.3 to the Case of Elasto-Plastic Frames
8.7.3 Generalize the Program Written in Project 4.7.4 to the Case of Elasto-Plastic Frames

REFERENCES

Chen, W. F., & Sohal, 1. (1995). Plastic design and second-order analysis of steel frames. New York:
Springer-Verlag. doi:10.1007/978-1-4613-8428-1

Corradi, L., De Donato, O., & Maier, G. (1974). Inelastic analysis of reinforced concrete frames. Journal
of the Structural Division, 100(9), 1925-1942.

Simo, J. C., Kennedy, J. G., & Govindjee, S. (1988). Non-smooth multisurface plasticity and viscoplas-
ticity: Loading/unloading conditions and numerical algorithms. International Journal for Numerical
Methods in Engineering, 26(10), 2161-2185. doi:10.1002/nme.1620261003

331


http://dx.doi.org/10.1007/978-1-4613-8428-1
http://dx.doi.org/10.1002/nme.1620261003

332

Chapter 9

Fundamental Concepts of
Fracture and Continuum
Damage Mechanics

ABSTRACT

Some fundamental concepts of fracture mechanics, those needed for the description of concrete cracking
in framed structures, are presented in a simplified way in the first section of this chapter. The second
section introduces the fundamentals of continuum damage mechanics. The third section describes a
physical phenomenon called localization, this is a very important effect during the process of structural
collapse. In this section, it is shown that damage mechanics can lead to ill-posed mathematical problems.
Finally, the relationship between localization and ill-posedness is discussed. In this chapter, fracture
and damage mechanics or localization concepts are not yet applied to the analysis of framed structures;
that is the subject of the following chapters.

9.1 GRIFFITH CRITERION AND FRACTURE MECHANICS

In the theories of elasticity and plasticity, it is assumed that the boundaries of the solid are fixed and
non-modifiable; they cannot be changed during an analysis. This simplifying hypothesis eliminates the
possibility of representing crack propagation in solids; however, this phenomenon is one of the main
causes of structural failure. Fracture mechanics differs from the aforementioned theories because it does
not discard the possibility of modifications in the boundaries of a solid due to cracks propagation. Spe-
cifically, the primary goal of fracture mechanics is the determination of conditions for crack propagation
in elastic or elasto-plastic solids.
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9.1.1 Stress Concentration Factors in Solids

It is often necessary to drill holes in structural components. When the structural modifications occur in
this way (see Figure 1), the local stresses are increased. The ratio of the local maximum stress and the
average stress in the structure is called “stress concentration factors” SCF-:

SCF = 2w je o =SCFo,

ma
g

avg

9.1.1)

9

Animportant subject of the theories of elasticity and strength of materials is the determination of these
factors for changes in the cross-section, structures with holes and other discontinuities. A particularly
relevant case in fracture mechanics is the one shown in Fig 1: Consider an infinite plate of thickness ¢
with an elliptic hole of mayor diameter 2a and minor diameter 2 in its center; the plate is subjected to
constant stresses o, far away from the hole as shown in Figure 1. It can be shown that the stress con-
centration factor in a linear elastic case is given by:

o
SCF = —max (9.1.2)

g

avg

Mathematically, a crack can be defined as an infinitesimally narrow ellipse; notice that the local
maximum stress tends to infinite when the shorter semi-axis b tends to zero, regardless of the magnitude
of the tensile force applied to the plate. It can also be shown that this is always the case at any crack tip
for any kind of structure.

Figure 1. Infinite plate with elliptical hole

I

SN
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Therefore, even if the stress concentration factors are a common and useful concept in the design of
structural components, they cannot be used as a condition for crack propagation. Furthermore, it must
now be explained why there are cracks in brittle solids that do not propagate at all if elastic stresses at
the crack tips tend to infinite; the answer to this question can be found in an energy balance as presented
in the following sections.

9.1.2 Energy Balance in a Cracked Structure

The potential energy PE of a force P is given by:

PE=-PA (9.1.3)

where A is the displacement of the force. Consider, for instance, a rigid solid of mass M; the gravita-
tional force of the solid is: -M.g (positive direction upwards), where g is the acceleration of gravity; if
the body is elevated a distance A the potential energy is given by: M g A; thatis PE = —P A.

Consider now an elastic solid of stiffness S subjected to the force P. This force induce elongations
in the solid denoted by A:

P=SA 9.1.4)

The total work done to deform the structure is stored in the solid; this new term of energy is called
the “deformation energy” U (see Figure 2):

U= deA — %S.AQ = %P.A (9.1.5)

0

Another area can be appreciated in the curve of force vs. elongation of Figure 2; this corresponds to
the so called “complementary deformation energy” W:

W:fAdP:%PZZ%FPZ (9.1.6)

where F' = — is the flexibility of the solid. In a linear elastic solid, the two energy terms are equal.

The total energy TE in an elastic solid is now defined as the sum of the potential energy plus the
deformation energy:

TE =U + PE 9.1.7)
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Figure 2. Deformation energy in a solid subjected to a force P

Force 4
P ]

A Elongation

Consider an elastic solid with a crack area equal to 4a.t; a new energy term must now be considered;
this is called the surface energy SE and it is assumed to be proportional to the surface of the crack; thus,
the surface energy increases with crack propagation:

SE =4T at 9.1.8)

St

where I" is the surface energy per unit area.
sup

The total energy of an elastic solid with a crack is therefore given by:

TE =U+ PE+ SE (9.1.9)

9.1.3 The Energy Release Rate and the Griffith Criterion

Consider again the infinite plate of section 9.1.1; it can be shown that the total energy is given by:

2
e
TE:U+PE+SE:UD—$a2+4P (9.1.10)

sup

where U, is the deformation energy of a similar plate but without the crack. Notice that the curve of
total energy vs. crack length corresponds to a concave parabola (see Figure 3). This curve explains why
there are cracks that do not propagate, even if the stress concentration factor tends to infinite. Consider
the case of a “small crack™ a , i.e. a crack whose length is at the left of the peak in the curve in Figure 3.
Suppose that this crack propagates, that is, its length increases from a to a +da. The total energy should
also increase; however, this process is physically impossible since the external forces represented by the
term o, are constant in this analysis. Therefore, no additional work is being added to the structure; no
matter how high the stress concentration factor is, crack propagation cannot occur under such conditions.
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Figure 3. Total energy as a function of the crack length

TE] TE]

v

/

A da ' ' da
N a .

cr

Consider now the case of a “large crack™ a_, i.e. a crack whose length corresponds to the peak of
the curve. If the crack propagates, and its length increases to a_+da, then the total energy decreases
this time. This process is physically possible; the excess of energy can be transformed, for instance, into
kinetic energy as the structure breaks. If crack propagation is energetically possible, then it will occur
since the stress concentration factor tends to infinite.

This analysis indicates that there is a critical crack length for each set of the external forces: shorter
cracks do not grow up; larger cracks propagate

If the structure is not an infinite plate or if the loading is not the indicated in section 9.1.1, then Equa-
tion (9.1.10) is no longer valid; however, the reasoning is still applicable; the total energy is a concave
function of the crack length and it presents a maximum for a critical value. Thus, in the general case,
crack propagation is possible only if the derivative of the total energy with respect to the crack length
is equal to zero:

G = R; where G = _di(U + PE) and R = di(SE) (9.1.11)
a a

The term G is called “energy release rate” or “crack driving force” and R is denoted “crack resistance”.
If the crack driving force is less than the crack resistance, the crack cannot propagate; the propagation
can occur only if Equation (9.1.11) holds; this is the “Griffith criterion”. The energy release rate can be
computed in a structural analysis; the crack resistance can be measured in the course of an experimental
analysis.

9.1.4 Energy Release Rate Expression in Terms of Stiffness or Flexibility

Consider a structure with a crack subjected to an external force P (see Figure 4a). The flexibility of the
structure depends on the crack length and, therefore, the resulting displacement too. The energy release
rate is in this case:

d d {1 1 dF(a) .,
=_— PE)=——|=PA(a) — PA == P 1.12
¢ da v+ ) da[Z (a) (a)] 2 da N )

If the structure is subjected to an imposed displacement (see Figure 4b), then:
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Figure 4. a) Structure subjected to a concentrated force b) Structure subjected to a displacement A

F o A A B

d d [1 ] _1dS(a) 9.1.13)

G=——U+PE)=——|=Pla)A|=
da( * ) da (a) 2 da

Notice that both expressions of the energy release rate are equivalent: the substitution of F = 1/§ and
Equation (9.1.4) into (9.1.12) leads to (9.1.13) and vice versa. These equations show that the energy
release rate can be computed if the dependence of the structural stiffness, or flexibility, on the crack
length is known.

Chapters 10, 11 and 12 present simple expressions for the energy release rate and crack resistance
for RC frame members.

9.2 UNIAXIAL DAMAGE MECHANICS MODELS

Fracture mechanics is a powerful tool for structural vulnerability assessment; however, it presents some
limitations. Fracture mechanics analyses are computationally expensive; therefore, its methods are not
convenient in the cases of massive distributions of cracks propagating simultaneously. Additionally, even
if it describes global structural degradation by modification of boundaries, it still assumes an elastic or
elasto-plastic behavior of the material; however, it has been observed that an extensive local degradation
usually precedes crack propagation; this local degradation is not considered in elasticity or plasticity.
Continuum damage mechanics is a different theory that deals in a very efficient way with these two issues.
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9.2.1 The Damage Variable

The mechanical degradation of materials takes the form of micro cracks and/or micro voids. The goal of
continuum damage mechanics is to describe the evolution of these micro defects in structures subjected
to thermo-mechanical loadings, which was not considered at all in the analysis of section 9.1 or in the
elastic, neither the elastic plastic models of chapters 2 and 5.

Consider a damaged element as the one shown in Figure 5. Be A de total cross-section area of the
element and A, the area of micro defects. The damage of the bar is defined as:

w=L 9.2.1)

Notice that @ can take values between zero (intact material) and one (a broken bar).
9.2.2 The Equivalent Stress and the Hypothesis of Equivalence in Deformation

In order to carry out the computation of the damage, it is necessary the introduction of this variable into
the constitutive equations. One of simplest and most effective ways to do so is the use of an additional
stress measure called “equivalent stress”. Consider again the damaged bar subjected to an axial force P
as shown in Figure 5; the average normal stress o in the bar is given by: 0 = P / A . The effective stress
0 in the bar is defined as:

P
A—A

d

(9.2.2)

o=

Figure 5. Damaged bar
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Notice that in the computation of the effective stress, the effective resistance area A=A-A , s used

instead of the total area.
A relationship between the effective stress and the conventional normal stress is obtained by intro-
ducing the damage definition (9.2.1) into (9.2.2):

P o

_ 923
A—wA 1—w ( )

o =

Notice that the effective stress is equal to the normal stress for an intact material and that it tends to
infinite when the damage tends to one.

The hypothesis of equivalence in strains states that the behavior of a damaged material can be de-
scribed by the same equations of the intact one, if the normal stress measure o is substituted by the ef-
fective one o . Therefore, according to the hypothesis of equivalence in deformations, the elasticity law
for a damage material is given by:

0d=Fe=o0=(1-w)Ee (9.2.4)

Notice that damage decreases the effective stiffness E = (1 — w)E of the material.
The elasticity law (9.2.4) can be written also in terms of flexibility:

€= ;O' (9.2.5)

1-w)E

An alternative way of writing the elasticity law (9.2.5) is described next; this alternative is very use-
ful in the formulation of models for frame members. The strain ¢ is split into two terms, an elastic one
and an additional damage related term defined as follows:

e =¢"+¢', where ¢ = la and e’ = —% 4 (9.2.6)
E E(l-w)

Notice that (9.2.5) and (9.2.6) are indeed equivalent. The elasticity law can now be interpreted as
follows: the material presents an initial flexibility //E; the degradation process induces an increase in
the flexibility of the material 1o that results in an additional strain term ¢ denoted “damage

—w
strain”.
If the material is elasto-plastic, as in metallic materials, the elasticity law is:

g=Ec—-¢e")=0=(1—-w)E(E—¢£") (9.2.7)

or in terms of flexibility:
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e=¢c"+¢&" +¢” where e = la; and e’ = —2 4 (9.2.8)
E E(l—-w)

That is, the total strain can be decomposed into an elastic term that obeys the Hooke law, a damage
strain and the plastic one.

The yield functions can also be modified in the same way, for instance an elastic perfectly plastic
yield function becomes:

5 <0 (9.2.9)

9.2.3 Brittle Damage Model

In brittle materials, the damage takes the form of micro cracks, therefore, the elasticity law (9.2.4) or
(9.2.7) can be accompanied by a damage evolution law derived from the Griffith criterion introduced
in section 9.1.

Consider again a solid differential element subjected to a normal stress o. The strain energy of the
element is defined as:

U= %as (9.2.10)

According to the elasticity law (9.2.4), the strain energy of a damaged material is given by:

U_—ae_%u—@Eé (9.2.11)

A generalized form of the Griffith criterion is:

G — R <0; where G = _4v = 1Es2 (9.2.12)
m m m dw 2

G is the energy release rate of a damaged element and R _is the “damage resistance function”.

Notice that the energy release rate of a damaged element can also be expressed in an alternative way.
Be W the complementary strain energy defined as:

2

1
W==0e= g

1 o (9.2.13)
9 2 B(1—w)
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where the elasticity law is expressed in terms of flexibility, i.e. Equation (9.2.5), instead of stiffness.
Thus, as in the case of fracture mechanics:

_ow _ oU _ g (9.2.14)

c 9w 1 o
" Ow ow 2E(1- w)2 2

9.2.4 A Damage Mechanics Model for Concrete

As described in section 6.5.2, the strength of the concrete fibers in tension can be neglected and, in
compression, the behavior can be represented by a second-degree parabola. This kind of behavior can
be described by the following elasticity law:

c=(1-wE <5> (9.2.15)

where the term <e>_ is called “negative part of the strain” and it is defined as:
< > e ifte<O 92.16)
/- 710 otherwise o

The hypothesis of zero tension strength can be specified using the negative part of the strain; i.e.,
for any positive value of the strain, the stress is equal to zero according to the elasticity law (9.2.15).
Damage evolution in compression is described by the Griffith criterion:
dw=0if G <R, 9217
G =R ifdw>0 ©-217)

m

The term R is a constant in perfect brittle materials, but other models can be derived assuming that
the micro-crack resistance is a function of the damage. For instance a second-degree parabola in the
stress strain curve is obtained using the following crack resistance function:

S

9.2.18
m E ( )

where [ " is the concrete resistance in compression. This model gives the behavior shown in Figure 6.
/

C

The stress vs. strain curve reaches a maximum for a strain value of

and this stress is indeed equal

to Jil ; the demonstration is given in the example 9.5.1. For larger values of strain, the stress decreases
and tends to zero; this is called the softening stage of the material behavior.
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Figure 6. A damage mechanics model for concrete
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9.2.5 Ductile Damage Model

Consider now an elasto-plastic material; as aforementioned, the elasticity law is in this case given by:
c=(1-w)E(E—¢") (9.2.19)
If plastic hardening effects are neglected, the plastic strain evolution law is:

de, =0 if f<0
f=0if de, =0’

715 <0 (9.2.20)
1—w

In metallic materials, micro-defects consist, mainly, in micro-voids that may reproduce and grow;
therefore the Griffith criterion is not an adequate approach in this case. It has been observed experi-
mentally that micro-voids or damage evolution depends on the plastic strain; therefore, a simple and
effective model is given by:

w= /1<p - pcr> (9.2.21)

+

where k and p _are material constants, the term < p> is called “the positive part of the variable p” and
cr +

it is defined as:

p it p>0

= 9.2.22
<p>+ 0 otherwise ( )
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The variable p is, again, the accumulated plastic strain as defined in section 5.3:

dp = ‘dsp‘ (9.2.23)

p,, represents a critical value of the plastic strain that triggers the damage evolution. The behavior
described by this model is shown in Figure 7 (see also example 9.5.2).

Consider again Table 1 of chapter 5; notice that with this damage model all these phenomena, with
the exception of effect d, are represented, at least qualitatively. The plastic hardening can, of course, also
be included by modifying the yield function, for instance:

g

—o0, <0ydz = a((au —o, )de, — x.‘dep‘) (9.2.24)

— X

flo) = .

In this way, all the phenomena listed in chapter 5 are described in this last model.
9.2.6 Unilateral Damage

Consider again a brittle material, but this time subjected to cyclic loading; two sets of independent
micro-cracks appear in the element; one of them emerges under traction stresses, the other is associ-
ated to compressions (see Figure 8). When the load is reversed, say from compression to traction, the
cracks of compression tend to close while new traction cracks appear; thus, as most of them are closed,
compression cracks do not have a significant influence in the material behavior in traction; the opposite
effect occurs when the load changes its sign from traction to compression. This phenomenon is called
“unilateral behavior” because a particular kind of micro-cracks has an influence on the material behavior
only for loadings of a specific sign.

In order to model unilateral behavior, two different damage variables are introduced: w and w.
The former variable represents micro-defects due to positive stresses (tractions) and the latter is related

to damage due to negative (compression) stresses. The variable w' is called “positive damage” and the
term w’ is the “negative damage”. The effective stress can now be generalized as follows:

Figure 7. A damage mechanics model for ductile materials
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Figure 8. Unilateral cracks
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g if 0>0
1—w'
g =10 if =0 (9.2.25)
g if c0<0
1—w"

The application of the hypothesis of equivalence in strain for a brittle material gives the following
elasticity law:

jee= o). n (). (9.2.26)
El-w") El-w)

where the terms <a> and <a> are, respectively, the positive and negative part of the normal stress.
+ _

Notice that for a positive stress, the negative part of sigma is zero and the elastic modulus is reduced
only by the positive damage and vice versa.
The complementary strain energy is given by:

)
El-w") 2EQ1-w)

), 1 )

(9.2.27)
El-w") 2FE1-w")

W:lO'.E(O',w):l _1
2 2 2
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Two different energy release rates can now be defined: the energy release rate for positive damage
and the energy release rate for negative damage:

ow 1 f w1 ()

g =9"_1 e AL : (9.2.28)
" dw" 2E(1-w") - Ow 2E(l-w)
Two damage evolution laws are needed in this case, they are given by:
dv™ =0if GF <R" |dw” =0if G <R
T & (9.2.29)
G =R ifdv" >0 |G =R if do >0

where th and R are, respectively, the resistance function for positive and negative damage.

A better model for concrete can be obtained by using different damage resistance functions for posi-
tive and negative damage:

e 9.2.30
" (B-w') ( )

2
8(£)) (w,)Z R A
where A and B are material parameters. This model gives the curve stress vs. strain that is shown in
Figure 9 (see also the example 9.5.4).
The constants A and B can be computed so that positive damage and the softening behavior start
simultaneously for a tension strength f ; and the stress tends to zero for a given strain value ¢ (see the
demonstration in the example 9.5.3):

E(f )€ E
A EU)e, - £, (9.2.31)
2(Ee, — f) Ee, -,

9.3 STRAIN AND DAMAGE LOCALIZATION

As any other theory, continuum damage mechanics also presents limitations and drawbacks; an espe-
cially serious one is that it may lead to ill-posed mathematical problems, i.e. in some cases, an infinite
number of solutions may verify the equations of the damage mechanics theory; paradoxically, in practical
terms this means that the problem has not yet been fully solved: new concepts and ideas are needed in
order to choose the right solution. This mathematical feature is related to a physical phenomenon called
localization. Strain localization is another important failure mechanism in materials and structures. It
has been observed that previous to total structural collapse, often, strains tend to concentrate in some
narrow bands; this process accelerates structural failure.
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Figure 9. A model of unilateral damage for concrete
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Consider a bar divided into two elements of the same cross-section A and same material but with
lengths L, and L, as shown in Figure 10. The lower end of the structure is blocked and the upper one is
subjected to a displacement A that is a linear function of time as shown in the same figure.

The material behavior of the elements is described by the damage model presented in section 9.2.4.
The equilibrium equations give:

9.3.1)

where o and o, are the normal stress in the first and second element respectively; n is the axial force
which is constant along the bar. The kinematic equations of the two elements give:

el +el,=A 9.3.2)

where € and ¢, are the strains in the first and second element respectively. The equilibrium and consti-
tutive equations of this problem are represented in Figure 11; the former is the horizontal line that indi-
cates equal stresses in both elements, the latter are two parabolas as indicated in section 9.2.4. Thus, the
state of the structure at an instant ¢ is represented by two points on both parabolas that lie on the same
horizontal line.

Suppose that the points at the beginning of a step are at the left of the peak as shown in Figure 12a.
Consider an increment of the displacement so that the strain in the first element follows the loading
branch of the constitutive law. In that case, only one solution verifies the constitutive equation of the
second element and the equilibrium equation of the bar at the same time, and this solution imposes a strain
equal to that of the first element. This case shows identical stresses, strains and damage in both elements.
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Figure 10. a) Bar divided into two elements subjected to an imposed displacement b) Displacement history
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Figure 11. Equilibrium and constitutive equations
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Suppose now that the points at the beginning of the step are at the peak of the constitutive curves
or at its right (see Figure 12 b and c). Consider again an increment of displacement with an increment
in the strain of the first element too. As this element is entering in the softening phase there must be a
reduction in the stress of the second element as well. Notice that now there are two ways to verify the
equilibrium equation; in the first one, the state in both elements follows the loading branch with damage
increment (see Figure 12b). In this solution, strains and damage in both elements are still the same; this
is called “homogeneous solution”. In the second one (see Figure 12c), the point of the second element
follows the elastic unloading branch. In this alternative solution there is a reduction of the strain of the
second element even if the total displacement of the bar is increased. This second option is called “local-
ized solution” because strain and damage tend to concentrate only in a part of the bar (element 1) while
there is an elastic unloading in the remaining fraction (element 2).
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Figure 12. a) Unique solution before the peak b) Homogeneous solution after the peak c) Localized
solution after the peak
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The curve force P vs. displacement A for both solutions is shown in Figure 13. Observe that in the
/

¢

homogeneous solution the displacement tends to a maximum value of L while in the localized solu-

!/
tion this last displacement is E( L, . Notice too, that the lengths of the elements are arbitrary; the bar

can be divided into two elements of any length as long as their sum is equal to L. Thus, for each value
of L, a different localized solution is obtained; the problem presents an infinite number of different
solutions. The real solution, the one that effectively is observed experimentally, is always a localized
one with a given length L, that depends on the material. This length is called “width of the localization
band”. This phenomenon, the localization, appears not only in uniaxial problems but in any kind of
structure. Figure 14 shows the appearance of a localization bands in a sand specimen subjected to a plane
strain state.

When damage mechanics models are used to predict structural collapse, it is therefore necessary to
choose some criterion that allows selecting the most significant solution from the physical point of view.
The model of damage presented in chapter 10 assumes that the width of localization bands in a frame
element subjected to bending is so small, as compared to the length of the element, so that the damage
can be concentrated in the plastic hinges with zero length. This is the regularization criterion used in
the case of damage models for framed structures.
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Figure 13. Force vs. displacement curves

A

-P

\

Homogeneous solution

Localized solution /'I

\
\ >

Figure 14. Schematic representation of a triaxial test a) Before the localization, b) After the localization
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9.4 SUMMARY AND EQUATIONS QUICK REFERENCE

The fundamental goal of fracture mechanics is the determination of conditions for crack propagation.
The Griffith criterion is one of these conditions and is based on an energy balance. This criterion in-
troduces two essential concepts: the energy release rate (or crack driving force) and crack resistance.
The energy release rate can be computed as a function of the derivative of stiffness or flexibility with
respect to the crack length. The crack resistance might be a function of the crack extension and must be
identified from experimental results.

Continuum damage mechanics is a theory that describes the evolution of micro-defects in a material.
This theory is based on the introduction of four concepts: the continuum damage variable, the effective
stress, the hypothesis of equivalence in deformations and the unilateral damage. Within this framework
itis possible to develop model of damage for many kinds of materials; specifically, this chapter describes
models for concrete and steel.

The term localization may refer to a mathematical condition related to damage models and to a physi-
cal phenomenon. In the first case, it corresponds to the emergence of an infinite number of solutions
for the problem. In the second case, it refers to the appearance of a band where strain and damage are
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concentrated while the rest of the solid unloads elastically. In fact, both, infinite solutions and concentra-
tion of damage are related. After localization, the damage analysis of a solid requires the introduction of
some regularization procedure. Plastic hinges are used to regularize damage problems in the following
chapters (See Table 1).

Table 1.

GRIFFITH CRITERION AND FRACTURE MECHANICS

Stress Concentration Factors in Solids

Stress concentration factors

SCF = Jms o 5 = SCFo,, ©.1.1

max
(o
avg

Stress concentration factor in a linear elastic case

g
SCF = 2 (9.12)

avg

Energy Balance in a Cracked Structure

Potential energy of a force
PE =—-PA (9.13)

P: force
A: displacement of the force

Stiffness of an elastic solid
P=SA 9149

S: stiffness of an elastic solid

Deformation energy U

A
U= fpdé = %S.AQ = %P.A 9.1.5)
0

Complementary deformation energy W

P
1 1
W= |6dp=—P ==FP° 916
Jor=557=3

1
F = § flexibility of the solid

Total energy

TE =U+ PE 9.1.7)

Surface energy

SE = 4Fsup“-t 9.1.8)

Fmp : surface energy per unit area
4a.t: crack area

continued on following page
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Table 2. Continued

Total energy of an elastic solid with a crack

TE =U + PE + SE 9.1.9)

The Energy Release Rate and the Griffith Criterion

Total energy of infinite plate

2
YiYea
TE=U+PE+SE=U, - %cf +40 a ©.1.10)

U,: deformation energy

Energy release rate G and crack resistance R

G=R
d
G =-2 W+ PE)
da
r=-L(sp)
da ©.1.11)

Energy Release Rate Expression in Terms of Stiffness or Flexibility

Energy release rate

d d (1 1 dF(a)

G=——U+PE)=——|=PA(a)— PA(a)| == P?
da da|2 2 da
9.1.12)
G=—Lwsre =—L|Lpgal= L@ A
da da |2 2 da O.L13)

UNIAXIAL DAMAGE MECHANICS MODELS

The Damage Variable

Damage w

A
w=—

A 9.2.1)

A: Total Area
A, Area of micro defects

The Equivalent Stress and the Hypothesis of Equivalence in Deformation

Effective stress 7
_ P
o=—"-"
_ Ad
9.2.2)
_ P o
O’ =

A—QJA B 1—w 9.2.3)

Elasticity law for a damage material

g=FEe = a:(l—w)Ee(9_2_4)

Elasticity law in terms of flexibility

SR
(1-w)E

9.2.5)

continued on following page
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Table 2. Continued

Strain e
1 1
e=¢c¢" 4+l == =—0
E E (926

e
€ .elastic strain

d
€. damage related term

Elastic plastic material

gd=Ec—-¢e")=0=(1—-w)E(E—¢")

9.2.7)
Strain € in elastic plastic material
1 w
€:€8+€(1+€p;€€=EU;€d:—E1 o
L=w) (5,5
Elastic perfect plastic yield function
- g
f:‘o—a =|——/ -0 <0
y 1—w Yy
9.2.9)
Brittle Damage Model
Strain energy of the element U
1
U==-0¢
2 (9210
1 1
U=-0e=—(1-w)ke’
2 2 ©2.11)
Generalized Griffith criterion
av 1
G —R <0G =-2L =-F¢
w (9.2.12)
™ : Energy release rate
™ : Damage resistance function
Complementary strain energy
1 1 o
SRRy TR
(1-w) 9.2.13)
Energy release rate
ow oUu 1 o’ 1
= ow T e Tama o 2
w w 1-—w
( ) 9.2.14)

A Damage Mechanics Model for Concrete

Elasticity law

o= (1—w)E<f-:>

- (9.2.15)
< > e if e<0
£ g
- 0 otherwise
(9.2.16)
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Table 2. Continued

Damage evolution in compression
dw=0if G <R
m m
G =R if dw>0
n m

L

9.2.17)

™ : crack resistance function

Crack resistance function
8(f)’
_ c 2
R = —E w
(9.2.18)

f;l

is the strength resistance in compression

Ductile Damage Model

Elasticity law

o=[1-wBe=¢") 4,

Plastic strain evolution law
de, =0iff<0 | ¢
f=0ifde =0’ l—w| 7

:(9.2.20)

Damage evolution

w= "‘f<p - p”‘>+ 9.2.21)
if p>0

p
(v), = -
+ 0 otherwise
9.2.22)
Kp,;: material constants

()

T : positive part of the variable p

Cumulated plastic strain

de

p

dp =

9.2.23)

Yied function

o) =|;

o

—a|—o, < Oydz = a((au _Uy)d€P —x.‘dgp‘)

9.2.24)

Unilateral Damage

Effective stress

g if 0> 0
1—wt
g =10 if =0
2 ifo<0
l-w 9.2.25)

continued on following page
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Table 2. Continued

Elasticity law

@), , (o)

T El—w)  Bl-w)

=] Ql

(9.2.26)
(@)
()

Complementary strain energy

V[/:la.zs(a,w):l 0<0>+ _|_l 0<0>— :l
2 2E(1-w') 2BE(l-w) 2

+ . positive part of the normal stress

~ : negative part of the normal stress

(), 1 o)

El-w') 2El-w)

(9.2.27)

Energy release rate for positive damage
2
)
go_ow_1_ o),
"oowt 2EBE(1-wh)
Energy release rate for negative damage
2
Cow 1 o)
" fw 2E(1-—w )

(9.2.28a)

(9.2.28b)

Damage evolution law: (9.2.29)
dv* =0if G <R' |dw =0if G <R

G'=R'ifdw* >0 |G =R if dw >0
(9.2.29)
.

™ : resistance function for positive damage

™ : resistance function for negative damage

Crack resistances for concrete

A and B are material parameters

E(f)e B_ Ee,
20 T
AEe, — 1) Ee, — 9.2.31)

A=
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9.5 EXAMPLES

9.5.1. Plot Stress as a Function of the Strain for the Model Described in
Section 9.2.4. Consider ' = 30MPaand E = 28000 MPa

The energy release rate is defined by Equation (9.2.12): G = % E¢’ . Considering the crack resistance

E

proposed by Equation (9.2.18): R = w’, the Griffith criterion results in:

2 8 2
G,—R, = E; - —(? w =0 (9.5.1)

The expression of the damage variable is obtained from (9.5.1):

w=" andw=-=2 (9.5.2)

(9.5.2b) is chosen since damage is always positive and ¢ is negative. Substituting w in the elasticity
law (9.2.15), the relationship between stresses and strains is:

E
o=|1+==|Ee 9.5.3)
Af,
Plotting this expression, the curve shown in Figure 15 is obtained.
!/
As aforementioned, the maximum stress corresponds to a strain equal to —= since:
E(Ee -2 2f/
do _  E(Ee—2f) : L g2 (9.5.4)
de 2f E

9.5.2. Plot Stress as a Function of the Strain for the Model Described in
Section 9.2.5. Consider o =420 MPa, E =210000MPa, p = 0.005and « =130

The behavior of a ductile material is described considering three phases; first, an elastic behavior, then
a plastic one and finally a damage phase. The elastic part is defined by Equation (9.2.19) with

w =0 and €” = 0 thus:

o = Ee =210000¢ (9.5.5)
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Figure 15. Stress vs. strain curve for a brittle material
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This part finishes when the yield function is equal to zero (Equation 9.2.20b) and the plastic strain
starts growing; at this instant:

o =0, =420 MPa (9.5.6)

The plastic stage lasts until the plastic strain reaches the critical value p_ . At this time, the value of
the total strain can be computed with Equation (9.2.19) considering still w = 0 and

g
eh=p e=p + Ey = 0.007 (9.5.7)

After this instant, damage starts evolving. The introduction of Equations (9.2.21).and (9.5.7) into

the yield function (Equation 9.2.20b) gives the relationship between stress and strain for the last part
of the behavior:

(o
0 =—hoe+0,|l+r|T+p, ||=—54600< +802.2 (9.5.8)

Finally, the behavior for a ductile material can be described as:

o

c=Fefor0<e<-L
E
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o o
c=0 for L <e<-L+0p

o o
c=—kKkoe+o |1+k Ey—l—p forsZEy%—p” (9.5.9)

Expression (9.5.9) is plotted in Figure 16.

9.5.3 Deduct the Expressions (9.2.31)

The tension branch (<a>7 = 0) can be described considering two phases: first, an elastic behavior, then,

a damaged phase. The elastic part is defined by Equation (9.2.26) with w" = 0 thus:

(o) = Ee (9.5.10)
+
This part finishes when the material reaches the tension strength Ji , thus, the strain is:

f
_ N S.11
e = € )

At this instant, the damage in the material starts evolving. The stress tends to zero for a strain value
of ¢ . The equation of the line that describes this behavior is:

Figure 16. Stress vs. strain curve for a ductile material

450

400

350

w
[=]
(=]

Stress (MPa)
g8 g

0 0.002 0.004 0.006 0.008 0.01 0.012

Strain

357



Fundamental Concepts of Fracture and Continuum Damage Mechanics

1 A
o) =fl1- - 9.5.12
(o), =1 AN 9.5.12)
)
(o)
Introducing Equation (9.2.26) ¢ = E1—++ into (9.5.12), it is obtained the stress:
—w
2
E
PR
_ e, ~ L /E
p— (9.5.13)
A

1+(5u —f /E)B(-w)

Substituting (9.5.13) into the energy release rate (9.2.28a) and applying the Griffith criterion:

E 2 p2
G, = %/ ~=R! (9.5.14)
. E
2Ee, —f) T
(Egu - ftl)
Or:
El 2 2 E
R Z%where Ang“Q;Bzi (9.5.15)
(B—w*) 2(Ee, — f) Ee —

9.5.4 Plot Stress as a Function of Strain for the Model Described in Section
9.2.6. Consider f' =30 MPa, f =3 MPa, ¢, =0.002and E = 28000 MPa

The negative phase was described in example (9.5.1). As aforementioned, the tension part has two phases.
The elastic part is described with Equation (9.5.10) resulting in:

o = 28000e (9.5.16)

The last point of this phase corresponds to a stress equal to f, = 3 MPa and to a strain equal to:

€= i = 3 = 0.00010714 9.5.17)
E 28000

The damage phase is described by Equation (9.5.12)
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1
szt 1—
E i

[5—%] =3.17 —1584.93 ¢ (9.5.18)

Uu E

Figure 17 shows the unilateral behavior.

9.6 PROBLEMS
9.6.1 Plot Stress as a Function of the Strain for the Model Described by the Equations

o Elasticity Law: o = (1—w)Ee
2
g

E(l—w)

° Crack Resistance: R = 1 A

m 2 (1 _ w)

° Energy Release Rate: G = %

Consider that the behavior can be described considering two phases: first, an elastic one, then, a dam-

aged phase that starts at the point [%, ;|- Use the following numerical values f, =5 MPa and

E =5000 MPa.

Figure 17. Stress vs. strain curve for a ductile material
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9.6.2 Plot Stress as a Function of the Strain for the Model Described by the Equations

o Elasticity Law: 0 = (1 — w)E(s —¢”)

de =0if f<O0 o -
° Plastic Strain Evolution Law: L f= —A4 <0
f:01fd€p¢0 1—w Y
. —clp-p,) pif p>0
° D Evolution: w=1— ; = ;dp = |d
amage Evolution: w e ,<p>+ {0 otherwise’ p ‘ ap‘

Consider p = 0.005, ¢ =5, o, = 420 MPa, and F = 210000 MPa .

9.6.3 Plot the Force vs. Displacement Curve for the Two-Bar Structure Shown in Figure 18. Use
the Constitutive Law Described in Section 9.2.4. Consider F = 28000MPa,
fc’: 30 MPa,A = 0.05 m*, L =L, =1.0 m. Discuss What Happens When a Tends to

Zero.
9.6.4 Plot the Force vs. Displacement Curve for the Two-Bar Structure Shown in Figure 18. Use
the Constitutive Law Described in Section 9.2.5. Consider o, = 420 MPa, EF = 210000 MPa;

p, =0.005, K =130, A =18.65z10 'm”and L, = L, =1.0 m.

Figure 18. Two-bar element (a > 0)

A L;

A>=(1+a)A; Lz

360



Fundamental Concepts of Fracture and Continuum Damage Mechanics

REFERENCES

Anderson, T. L. (2005). Fracture mechanics: Fundamentals and applications. CRC Press.

Broek, D. (1986). Elementary engineering fracture mechanics. The Hague, The Netherlands: Martinus
Nijhoff Publishers; doi:10.1007/978-94-009-4333-9

Leckie,F. A., & Bello,D.J. (2009). Strength and stiffness of engineering systems. New York, NY: Springer.
Lemaitre, J. (1992). A course on damage mechanics. Springer-Verlag. doi:10.1007/978-3-662-02761-5
Lemaitre, J., & Chaboche, J. L. (1985). Mécanique des materiaux solides. Paris, France: Dunod Bordas.

Lemaitre, J., & Desmorat, R. (2005). Engineering damage mechanics, ductile, creep, fatigue and brittle
failures. Berlin: Springer.

Marante, M. E., Benallal, A., & Florez-Lopez, J. (2007). Anélisis de falla de sélidos inelasticos mediante
la teoria de localizacion. Acta Cientifica Venezolana, 58(2), 43-51.

Marante, M. E., & Florez-Lopez, J. (2004). Plastic localization revisited. Journal of Applied Mechanics,
71(2), 283-284. doi:10.1115/1.1636790

Whittaker, B. N., Singh, R. N., & Sun, G. (1992). Rock fracture mechanics: Principles, design, and ap-
plications. Amsterdam: Elsevier.

361


http://dx.doi.org/10.1007/978-94-009-4333-9
http://dx.doi.org/10.1007/978-3-662-02761-5
http://dx.doi.org/10.1115/1.1636790

362

Chapter 10

Lumped Damage Mechanics:
Reinforced Concrete Frames

ABSTRACT

As aforementioned, buildings in seismic zones must be designed to behave elastically under service
loads or earthquakes of small intensity, and they can enter in the plastic range for events of intermedi-
ate intensity. Severe earthquakes are defined as those that are improbable but not impossible to happen
during the lifetime of the structure. In these cases, structural damage, even damage that cannot be re-
paired, is allowed as long as there is no structural collapse. In order to design or certify safe structures,
it is necessary to have computational tools that allow for the quantification of structural damage and
that are able to describe structural behavior accurately near collapse. The elasto-plastic models pres-
ent serious limitations in this sense. Damage and fracture mechanics represent a more rational option.
The goal of this chapter is to describe how the concepts presented in Chapter 9 can be included in the
mathematical models for the analysis of framed structures and its numerical implementation in structural
analysis programs.

10.1 THE LUMPED DAMAGE MODEL

Consider a slender RC frame element in the planar case. It is assumed that not only yielding of the re-
inforcement, but concrete cracks are also localized at the extremes of the element. The lumped plastic-
ity model that is described in section 7.1.1 is modified by assuming that concrete cracks can be lumped
at the plastic hinges as well: plastic hinges become inelastic hinges and the “lumped plasticity model”
develops into the “lumped damage model”. In this and the following chapters, the terms “inelastic hinge”
or “plastic hinge with damage” are used indistinctly. In order to represent the appearance and propaga-

tion of these cracks, a new set of internal variables (D), = (d,,d,) is introduced. The term (D), is de-
noted “damage array” of the element b. The variables d, and dj are damage parameters that take values
between zero and one; however, they represent densities of macroscopic cracks, as in fracture mechan-
ics, instead of micro defects (see Figure 1a). The first variable in (D), characterizes the crack density
that can be lumped at the inelastic hinge i while the second one is related to cracking lumped at inelas-

tic hinge j (see Figure 1b).

DOI: 10.4018/978-1-4666-6379-4.ch010
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Figure 1. a) Cracks at the end of a frame member b) Lumped damage model
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The hypothesis of equivalence in deformation described in section 9.2.2, Equation (9.2.8) can be
written in the case of a frame element as:

{®}, = {@"}, + {2}, +{@"}, (10.1.1)

where {®"'}, is, again, the matrix of generalized deformations of the elastic beam-column. {®"}, is the
matrix of plastic deformations; the plastic elongations are neglected as it is usual in RC elements, thus
{®'} = (97, ¢!, 0). The last matrix, {®"},, contains the damage rotations; i.e. the additional rotations
due to concrete cracking.

The deformations of the elastic beam-column can be expressed as a function of the generalized
stresses using (Equation 3.3.9):

{@"}, =[F,]{M}, +{2"}, (10.1.2)

The terms [F, ], {M},, {®"}, are, again, the flexibility matrix of a slender element, the generalized

stresses and the initial deformations such as defined in chapter 3 (Equation 3.3.9, 3.2.2 and Table 3).
According to the hypothesis of equivalence in deformations (Equation 9.2.8c), the damage deforma-
tion matrix can be written as:

d
1—d " 0 0
' d
{®'}, = [C(D)],{M},; where [C(D)], = 0 ﬁF;‘Q 0 (10.1.3)
J
0 0 0

The term [C(D)}, is a matrix of additional flexibility due to concrete cracking and F’ represents the

(i,j) component of the elastic flexibility matrix. Substitution of (10.1.2-3) into (10.1.1) gives the elastic-
ity law, in terms of flexibility, of a damaged frame element:
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Fe i
11 F; 0
1 _ dl 12
{® @'}, = [F(D)], (M}, +{®'}, where [F(D)] =[F ]+ [C(D)] =| F; - ljﬁd 0 (10.1.4)
0 0 ] F};

[F(D)]is the flexibility matrix of a damaged frame member. Notice that there is no additional flex-
ibility if there is no concrete cracking, and that the diagonal components of the flexibility matrix tend
to infinity if the damage parameters tend to one.

The elasticity law in terms of stiffness is:

{M}, = [E(D)| {® - @'}, +{M"(D)}, (10.1.5)
where [E(D)], = [F(D)]" is the elasticity matrix of a damaged frame element:
120-d)  61-d)1—-d) 0

ED)], =k 6(17d)(1;d) 12(1’—d) , 0 |:k = L B

O, ’ ' ' Y4 (1-d)1-d) L (10.1.6)
EA : i

0 0 —

kL,

and {M'(D)}, = —[E(D)] {®'},

b

Notice that the matrix {M"(D)}, tends to zero as the damage variables tend to one. As the distrib-
uted forces are assumed small compared with the nodal forces, even for the uncracked stiffness, this
term can be neglected in many applications of structural analysis.

10.2 GENERALIZED GRIFFITH CRITERION FOR AN INELASTIC HINGE

As indicated in the previous section, damage in a RC element characterizes cracks in the concrete.
Thus, damage evolution can be described using the Griffith criterion presented in sections 9.1.3-4 of
the previous chapter. The complementary deformation energy of a damaged frame element is given by:

W, = - (M) (@ — @}, =~ {MY[F(D)} (M}, + 2 {M}'{3"}, 102.1)

Therefore, the energy release rates, or “damage driving moments”, G, and G, of, respectively, hinges
i and j are defined as:

364



Lumped Damage Mechanics

oW _ Em o ow _ Em (10.2.2)
boad 20-dy 7 0d 20-d)

And the damage evolution laws based on the Griffith criterion are:

Adi:Oif G¢<R¢ Adj:Oif G],<Rj

. ; . (10.2.3)
G =R if Ad>0'|G, =R if Ad>0

The terms R, and R, are the crack resistance functions of, respectively, inelastic hinges i and j.

10.3 CRACK RESISTANCE FUNCTION OF AN INELASTIC HINGE
10.3.1 Experimental Measure of the Damage in a Plastic Hinge

As indicated in the previous chapter (section 9.1.3), the crack resistance function must be identified with
an experimental analysis. Fracture mechanics introduces a straightforward variable: the crack length;
therefore its measurement is a direct procedure; the damage in a plastic hinge is a more ambiguous
concept. In this section it is described a method for the experimental determination of the damage of a
plastic hinge; this procedure is called “method of the stiffness variation” .

The specimen shown in Figure 2b represents a beam-column joint subjected to bending. Mono-sign
displacements are imposed to the column as it is indicated in Figure 2c. The experimental response of
the specimen is represented in the curve of force vs. displacement (see Figure 3d).

Consider now the mechanical representation of the test that is shown in Figure 2e. The specimen is
modeled as a two-element structure. A symmetric behavior is assumed, at least up the peak of the curve
of force vs. displacement. The second line of the elasticity law (Equation 10.1.4) for the first element is:

L L

- =———m +——m, 10.3.1
% =% 6EI ' 3EI(1-d,) °* ( )

The equilibrium and boundary conditions give:
m, = 0;m, = % (10.3.2)
and the kinematic equation (Equation 3.1.11):
6 =1 (10.3.3)

» =7 3.
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Figure 2. a) Planar frame b) Specimen representing a beam-column joint c) Loading history d) Experi-
mental response e) Mechanical representation of the test
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The combination of Equation (10.3.1-3) lead to:

6EI
P =2(d)(t~t,); where d = d,; 2(d) = (1= d)Z,; 7, = == and t, = ¢]L (10.3.4)

0
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Figure 3. a) Measurement of Z, b) Measurement of Z(d)
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Notice that this expression represents a straight line in the force-displacement space; the line has a
slope Z(d) and crosses the horizontal axis for ¢ = . Thus, this equation is a mathematical representation
of any elastic unloading/re-loadings shown in Figure 3a. The initial (undamaged) slope corresponds
to the value Z. Therefore this constant can be measured experimentally as shown in Figure 3a. The
experimental results indicate a reduction in the stiffness of the structure that can be appreciated in the
successive elastic unloading/re-loadings. The value of the damaged slopes Z(d) can also be measured
experimentally (see Figure 3b).

Therefore, the value of damage that corresponds to the force P, or moment m,, that is reached just
before the start of the elastic unloading, can be obtained as:

d=1-2% (10.3.5)

10.3.2 Experimental Identification of the Crack Resistance Function

The plot of energy release rate vs. damage of Figure 4 can be obtained with the values of damage and
moments measured experimentally using the procedures described in the previous section.
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Figure 4. Energy release rate as a function of damage in a RC specimen
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The energy release rates are computed with values of force during a stage of damage propagation;
thus, according to the Griffith criterion, they are equal to the values of the crack resistance function
R. Therefore, the graph of Figure 4 is also a plot of R vs. d; this graph allows choosing a mathemati-
cal expression that describes approximately these results. This approach to obtain the crack resistance
function is sometimes called “phenomenological”. A good alternative for the crack resistance function
consists in using the following expression:

In(1—d)
Rd)=R +q—2—"%Y
(d)=R, +q——

(10.3.6)
where R and g are parameters that depend on the characteristics of the element. Note that this function
includes an initial crack resistance R (for d = 0) and a hardening term (¢In(1 —d) / (1 —d)). Physi-
cally, hardening in the crack resistance is due to presence of the steel reinforcement that blocks crack
propagation in the concrete; thus, significant increments of moment are needed in order to pursue crack-
ing evolution in the plastic hinge region.

10.3.3 Computation of the parameters R and q

One advantage of the elasto-plastic models is that their parameters have a well-defined meaning in the
conventional theory of reinforced concrete theory; this is not the case of R and g. This section describes
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a procedure that permits the computation of these terms as a function of the first cracking moment M
and the ultimate moment M. These parameters are well established concepts in the RC theory.

Consider a monotonic loading on a RC element; during damage propagation the Griffith criterion
states that:

F _
G=R ie. —— =R +  nd=d (10.3.7)
2(1—d) 1—-d
Thus, Equation (10.3.7) relates moment and damage (see also Figure 5):
2(1—d) 2q
m* = (F—O)RO Fp (=i d) (10.3.8)

According to the conventional RC theory, cracking starts when the moment reaches a value called
first cracking moment (see next section), thus:

2
M? = = R, (10.3.9)

This equation allows for the computation of the initial crack resistance R . The RC theory establishes
that the first cracking moment depends on the axial force on the element; thus R, is in fact a function of
this force too. Therefore, the analysis of damaged RC columns requires the interaction diagram of the
first cracking moment.

Figure 5. Moment as a function of damage as stated in the Griffith criterion
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As shown in Figure 5, the moment reaches a maximum for a specific value of damage, d , called
“ultimate damage” because it corresponds to the ultimate moment M, (and not because it is the largest
possible value of damage). The computation of the ultimate moment of a RC cross-section is described
in section 6.5.5. When the variable d takes the value of the ultimate damage, the derivative of Equation
(10.3.6) with respect to the damage is equal to zero:

2R (1—d )+q(In(1—d)+1)=0 (10.3.10)

For d equal to d , the moment is equal to the ultimate moment M , thus:

21—4d ) 2q

0 u u

M =
u F

The expressions (10.3.10-11) constitute a system of two equations with two unknown variables whose
resolution gives the values of g and d . Thus, the computation of the parameter g for a RC column requires
an interaction diagram of the ultimate moment too.

An example of application of these procedures is presented in the section 10.9.1.

Itis important to underline that the value of d, varies in a small interval for common RC cross-sections:
in the majority of applications d  is within the interval [0.6 - 0.65].

10.3.4 Computation of the Interaction Diagram for the First Cracking Moment

As in the case of the interaction diagram for the first plastic moment (see section 6.5), the interaction
diagram of the first cracking moment can be defined by the pure compression, pure tension, pure bend-
ing and balanced conditions. The transformed section concept, well known in the strength of materials
theory, is used. This notion consists in the substitution of the steel area into an equivalent concrete one
(see Figure 6).

Figure 6. Transformed section, strain and stress distributions in pure compression condition for first
cracking
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Pure compression point: The axial force is computed as indicated in Figure 6. Notice that there is a
constant strain and stress distributions across the section. As it was described in section 6.5.2, it is sup-
posed that the concrete behavior is almost linear until near the half of the concrete resistance. Assuming
that this lost of linearity is due to concrete cracking, the corresponding axial force is:

N =—A_*045f (103.12)

cr

where Ats is the area of the transformed section.

Pure tension point: In this case, the axial force is computed as shown in Figure 7; notice that there
are constant distributions of strain and stress again. Assuming that cracking starts when the stress

reaches the value of the tension strength f , the corresponding axial force is equal to:

Figure 7. Transformed section, strain and stress distributions in pure tension condition for first cracking
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Figure 8. Transformed section, strain and stress distributions in pure bending condition for first cracking
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N =A*f (103.13)

C

Pure bending point: 1t is used the Euler-Bernoulli theory that is described in section 2.4; therefore,
linear distributions of stress and strain are assumed (see Figure 8).
The first cracking bending moment is obtained considering that maximum tension stress is equal to

cr Z(’{l I
f=—T"=>M =-+- (10.3.14)

where z_ is the distance between the extreme tension fiber and the centroidal axis, 1 N is the moment of
inertia of the transformed section.

Balanced condition point: In this case, it is assumed that a compression stress of 0.45f "and a tension
stress equal to f are reached simultaneously at the extreme fibers as shown in Figure 9.

This linear stress distribution is described by Equation (10.3.15):

Moz N 10.3.15
=4 3.
f 7 y ( )

ts ts

where z is the distance between the centroidal axis and the fiber under consideration.
The bending moment and the axial force are computed taking into account that the maximum com-

. . ! . . .
pressive stress is equal to f’ and the maximum tension stress is equal to f, .

Figure 9. Transformed section, strain and stress distributions in the balanced condition for first cracking
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/ cr (h o an) N
0.45f" = 4 —=
l ts Ats
(10.3.16)
f cr ca N{)‘r‘
t It's' Afﬁ
Solving the system of equations for the bending moment and the axial force gives:
2, (045f'+ f) = h f, 0.45f"+
N(:r = = - h, L L Ais’ M(IT' = # Its (10317)

10.4 YIELD FUNCTION OF A DAMAGED PLASTIC HINGE
10.4.1 Plastic Deformation Evolution Law
An evolution law for the plastic deformation must be added in order to complete the damage model.

Again, it is used the hypothesis of equivalence in deformation. The equivalent moment on a plastic hinge
i can be defined as:

m,
m = —— (104.1)

The yield function of a damaged plastic hinge can now be obtained after modification of a function
with linear kinematic hardening via the hypothesis of equivalence in deformations:

mi ¢I)
— — C.Q.
1_dL (A

Ny A

0i

—k, <0 (10.4.2)

]i = ‘mz o Ci¢1‘p

where ¢, and k, are parameters that depends on the characteristics of the element. Therefore, the plastic
deformation evolution laws are:

mj P
— ¢

do? =01if f <0 |do?! =01if f <O
¢ =0if £ <0 Jdo7 =0iff, <0 k<0 (10.4.3)
1—d]. !

f=0ifd¢ =0'|f =0if d¢’ =0

10.4.2 Computation of the Parameters c and k

Consider again a monotonic loading on a RC element; thus, Equation (10.3.11) relates the moment on
a plastic hinge i with its damage. It is assumed that the first plastic moment M, is larger than the first
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cracking moment M_; thus the value of damage d that corresponds to the former moment can be com-
puted by the resolution of the following equation:

201—d )
]‘4’2 :uRu_i_ 2q

) 70 (1-d)In(l1—d ) (10.4.4)

F 0 P P

The value dp represents the cracking state that corresponds to the first yielding of the reinforcement.
In most applications, this value is in the interval (0.3 — 0.4).

At this stage, the yield function is equal to zero with nil plastic rotation; thus, the parameter & is in
fact the effective plastic moment:

ko =—2t =M (10.4.5)
The yield function is also equal to zero when the moment reaches its ultimate value, thus, the last

parameter ¢ can be computed as:

1
C:E

M M, —M
=k == (10.4.6)

where ¢ is the ultimate plastic rotation that is introduced in chapter 6 (section 6.5.6). Notice that c is
equal to the difference between effective moments divided by the ultimate plastic rotation.

The use of concepts of fracture and damage mechanics in the analysis of framed structures does not
require the use of very advanced concepts of the theory of reinforced concrete; just the conventional
procedures for the computation of the first cracking moment, first plastic moment, ultimate moment and
ultimate plastic rotation are sufficient in any application.

10.5 SOME NUMERICAL SIMULATIONS WITH THE DAMAGE MODEL

10.5.1 Numerical Simulation of the Test that is Shown in
Figure 10 Using Experimentally Measured Parameters

This section presents the results of two simulations of the identification test shown in Figure 10.

This section presents the results of two simulations of the identification test that is shown in Figure 10.

The first simulation is carried out with the elasto-plastic constitutive equations presented in section
(7.1.6). In the second simulation, it is used the damage model described in this chapter. The following
values of the parameters are taken from the experimental results: EI =1025.373 KN.m*, M_= 4.004
KN.m, Mp = 24.220 KN.m, M = 29.034 KN.m and ¢! = 0.095. The experimental and the numerical
results with the elasto-plastic model are presented in Figure 11a; and the ones using the damage model
in Figure 11b.
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Figure 10. RC beam tested and material properties
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Figure 11. a) Comparison of the elasto-plastic model with experimental results b) Comparison of the
damage model with experimental results
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As the parameters were chosen to give the best results, the differences between theoretical and ex-
perimental results are due only to deficiencies of the model. The examples 10.10.2 and 10.10.3 show
the procedures used to obtain the curve that was plotted in Figure 11b.

Notice that the damage model used for the simulation presented in Figure 11b is essentially the elasto-
plastic of Figure 11a modified by the hypothesis of equivalence in deformations, adding the Griffith
criterion. There are no significant differences in the envelopes of both simulations, only a slight improve-
ment with the damage model. The main difference lays in the description of the stiffness degradation
and in the fact that the later model gives a rational measure of structural damage as well.
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Plastic models can also be modified including empirical rules of stiffness degradation as a function
of the plastic rotation in the hinges and adding the so called “damage indexes”. The latter are parameters
computed by postprocessors (that is, after the simulation was concluded without considering damage)
as a function of the plastic rotations again, the expressions for the determination of the damage indexes
are of semi empirical nature as well. The bibliography of this chapter includes some important refer-
ences in this field.

10.5.2 Numerical Simulation of the Test Described in
Figure 10 with Parameters Calculated Analytically

In a standard engineering application, the model parameters cannot be measured from experimental
results; they must be computed using RC theory. Thus, additionally to the deficiencies of the model, the
errors due to the simplifying assumptions of that theory must be added. In the simulations presented in
this section, the analysis was carried out as follows. First, the parameters are computed using the pro-
cedures described in the sections 10.3.4, 6.5 and the properties for concrete and steel presented in Figure
10; the following values were obtained: EI = 1765.80 KN.n?, M = 6.288 KN.m, Mp: 23.250 KN.m,
M =29.626 KN.m and ¢! = 0.0771; next, the analytical determination of the response is obtained using
the procedures described in the examples 10.10.2 and 10.10.3. The results are shown in Figure 12.

Notice that the main difference between the computed values and the best ones lies in the stiffness
modulus EI. The RC theory predicts a beam seventy two percent stiffer than the experimentally measured
value. The computed value of the ultimate plastic rotation is only eighty one percent of the observed
one. On the other hand, the theory gave very good estimates of the first plastic moment and ultimate
moment for this example.

10.5.3 Behavior of a RC Element under Different Axial Forces

Consider again the column in cantilever (Figure 10a) subjected to axial loads and lateral displacements, as
itis shown in Figure 13a. The interaction diagrams are presented in Figures 13b-c. Five loading histories
are considered; in four of the simulations, the loadings are applied in two steps: first (interval 0 - 7)) a
monotonic axial load is imposed and then (interval 7, — 7)) a monotonic lateral displacement according

Figure 12. a) Comparison of the elasto-plastic model with experimental results b) Comparison of the
damage model with experimental results
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Figure 13. a) Column subjected to an axial load and a lateral displacement b) Interaction diagram of
moments c) Interaction diagram of the ultimate plastic rotation
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to the histories shown in Figure 14a. In the last simulation, axial force and lateral displacement histories
are applied simultaneously as it is shown in Figure 14b. The behaviors of the column are presented in
Figure 14c. The histories of damage of the five simulations are shown in Figure 14d.

Notice that the history of axial forces modifies in a significant way the behavior of the column. This
is consequence of changes in ductility and strength at the critical sections. This phenomenon has been
observed experimentally and its consideration is fundamental for any realistic representation of the
behavior of frames subjected to severe lateral forces since they imply variations of the axial forces in
the columns.
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Figure 14. a) Loading histories in two steps: axial forces and lateral displacements b) Loading histories in
one step: axial forces and lateral displacements c) Force vs. displacement responses d) Damage histories
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Figure 15. a) Ultra-low cycle fatigue loading in displacements b) Force vs. displacement curve
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10.6 A MODEL OF DAMAGE FOR RC ELEMENTS CONSIDERING
ULTRA-LOW CYCLE FATIGUE EFFECTS

10.6.1 The Ultra-Low Cycle Fatigue Effect

Consider again a specimen like the one used for the numerical identification of the crack resistance
function (Figure 2b); but now a different kind of mono-sign loading was applied (see Figure 15a and
compare with Figure 2¢); imposed displacements are chosen but, unlike the test in Figure 2, the maximum
displacement of each cycle remains constant. It can be observed in the experimental response (Figure
15b) that even without increments of the loading, the stiffness and strength of the specimen decreases
after each cycle. In section 10.1.3 it is explained that these stiffness and strength degradations are caused
by crack propagation; therefore, there is damage evolution during each cycle even without increasing
their maximum solicitation. This phenomenon is called “ultra-low cycle fatigue effect”.

It has been observed experimentally that the ultra-low cycle fatigue effect is magnified by the current
state of damage: for reduced cracking, the fatigue effect can hardly be appreciated; for high cracking
densities, the damage increment after each cycle is considerable.

10.6.2 Modified Griffith Criterion

The Griffith criterion is unable to represent the ultra-low-cycle fatigue effects; in this criterion, cracking
extension is assumed to be a function of the maximum value of the energy release rate. Thus, in fatigue
tests with constant maximum force or displacement, the damage keeps the value reached at the end of
the first cycle.

This section describes a modification of the Griffith criterion that presents the following characteristics:

No additional variables are introduced.

The model relates damage evolution to energy release rate.

During a monotonic loading it gives the same response as the classic Griffith criterion.
It includes the Griffith criterion (without fatigue effects) as a particular case.

sl NS
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5. It assumes that there is no damage evolution during elastic unloading.

6. The damage increment is possible during loading phases even if the energy release rate is less than
the actual crack resistance; i.e. the damage evolution due to fatigue effects is described.

7. Itincludes only one additional parameter.

Consider the Griffith criterion during a phase of crack propagation:

if Ad.>0;G, = R(d);or G = R(d)"" fora >0 (10.6.1)

The differentiation of (10.6.1b) gives the modified Griffith criterion:

Ad =0 if G, <R,
G,

2

R

«

<A G, > otherwise

+

1 (10.6.2)

where « is the additional parameter.

During a monotonic loading, this evolution law and the Griffith criterion (10.2.3) predict the same
behavior regardless what value of « is used. In other cases, both laws may differ since with the modified
law, there is evolution of the damage even if the energy release rate has not yet reached the crack resis-

¢ |
R

tends to zero when « tends to infinite, unless G, = R; in that case both evolution laws give identical

tance. Notice that the fatigue law tends to the Griffith criterion for high values of «; the term

results. The constant o can be considered as a “fatigue brake”, the maximum effect of fatigue is obtained
for o = 0 and there is no fatigue, at all, for @ = oo . The experimental results show that a value of a =
2 is a good choice for any RC element. Figure 16 shows the numerical simulation of the test described
in section 10.6.1.

10.7 ANALYSIS OF DAMAGED FRAMES
10.7.1 Formulation of the problem
Consider a planar frame subjected to a mono-sign loading. The problem is defined as:

° Compute: The free displacements, reaction forces, stresses, deformations, plastic deformations
and damages.

o  With the Following Data: The initial configuration of the structure, the restricted displacements,
the nodal forces corresponding to the free displacements and those applied over the elements, the
material properties, cross-section properties and the yield functions.

e  Such that they verify the nonlinear kinematic and equilibrium equations:
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Figure 16. Numerical simulation of the experimental test described in section 10.6.1
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b=1

e  The elasticity law: {M}, = [E(D)] {® —®"}, +{M_},
e  The plastic deformation evolution laws:

|

d¢f201f]§<o‘[d¢;:mffj<o

e  With the yield functions:

o

f

f=0if dg¢? = 0"|f = 0if dg? = 0
m, P <0 f = mj P
ﬁ—clgbl _k()i _O,f; = 1—d —qub]. _k[)j SO
i J

e And the damage evolution laws:
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Ad =0if G, <R,

2

o G 5
Ad = S <A G, > otherwise
' OR/0d | R, e
Ad =0if G <R
J J J
2
d = = <AG,> otherwise
' OR Jod | R, I+

Notice that the damage constitutive law can be included in the framework described in section 8.3.1
with:

VWS = ¢!i VWS, = ¢!;{VWo}, = {d,d } (10.7.2)

Therefore the numerical algorithm in that section for elasto-plastic models can also be used with
the damage model. The problem can be analyzed step-by-step and at each step, it can be decomposed
in a global problem and local problems for each element; both kinds of problems are solved using the
Newton method. However, damage problems present a higher degree of nonlinearity as compared with
elasto-plastic ones and more serious convergence difficulties. The algorithms described in section 8.3.1
can be improved using the procedure that is described in the next section.

10.7.2 The Multi-Steps Version of the Step-By-Step Algorithm

The main drawback of the damage models in practical applications is the heavy computational costs
that they imply. This cost is due to convergence requirements that often impose tiny time steps during
the step-by-step resolution. Occasionally, the programs simply do not converge without apparent causes.

The conventional step-by-step algorithm can be modified and the performances of the programs be
improved noticeably; this modification is called “multi-steps version”. The idea of the multi-steps pro-
cedure is very simple: the step size of the global problem and those of the local ones do not necessarily
have to be the same.

As aforementioned, the global problem and local problems using damage models does not differ of
those formulated with elasto-plastic or nonlinear elastic ones; the global problem in the quasi-static case is:

{LU_, )t ={P_.} (10.7.3)

where {L(U,_, )} is the matrix of internal forces and {P,_, } are the external nodal forces for the global
problem. The local problems can be formulated as

M}, ={MU,_, )} forb=1tom (10.7.4)

Therefore, there is a total of m + 1 nonlinear problems to be solved by the Newton method, where m
is the number of elements of the structure. The convergence of the algorithm depends on “how close”
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is the first provisional displacement matrix {U} with respect to the exact solution. As indicated in sec-
tion 4.2.4, the provisional displacement matrix is derived from the displacements at the precedent step.
Therefore, the convergence of the method depends, amongst other things, on the size of the global step.

In the standard procedure, the global step is also used for the local problem. Thus this step must
satisfy the convergence requirements of the global problem and the m local problems. Therefore, if any
one of these m+1 problems fails to converge, the size of the time step must be reduced for all of them.

The conventional method would be optimum if the local problems had similar or softer convergence
requirements than the global one. However, for the damage models this is not the case. In general, the local
problems can be classified into two groups. The first one corresponds to the elements whose behavior
is elastic or inelastic but with convergence requirements equal or less strict than the global problem. In
the cases of severe overloads this group has 70%-95% of the local problems. The second group includes
the elements where damage effects concentrate. It has been observed that for these local problems, the
convergence requirements can be much stricter than that of the global problem. Often, they are needed
time steps 10, 100, 1000 or even 10000 times smaller than that of the minimum needed for the global
problem. With the conventional algorithm, all the m+1 problems for a given instant, 7, must be solved
with the smaller step needed: that of the most difficult problem. Therefore, it appears that the standard
algorithm is highly inefficient.

One possible modification of the step-by-step procedure is shown in Figure 17. In this algorithm,
the initial local step of any element is chosen equal to the global step. If the local problem is success-
fully solved then the program continues with the next local problem. If the Newton procedure fails to
find the solution, the local step size is divided by two, this is simply done by reducing accordingly of
the total deformation matrix of the element. An intermediate local problem is subsequently solved, if
convergence is still not achieved, the local step is halved again. This process is repeated until a local time
step is found so that an intermediate problem can be solved or until that some limit fixed by the user is
reached; in the latter case, there is no choice but reduce the global time step and to try again. If finally
an intermediate local problem is successfully solved, then the final local problem, i.e. the stresses at the
time ¢, is again try by using as initial provisional solution the one corresponding to the intermediate
problem; this is because the possibility of convergence has increased since the intermediate solution is
closer to the final one. Of course, convergence is not guaranteed even using an intermediate solution as
a starting point; if, in spite of the more favorable conditions, there is no success, a second intermediate
problem between the first one and the final local problem is attempted. This sequence of intermediate
local problems/ final local problems can be repeated as many times as allowed by the programmer.

Two simulations, one static and other dynamic, of a RC tridimensional building were carried out
in order to show the advantages of the use of multi-step modification. The building has four frames
of six levels in each orthogonal direction as it is shown in Figure 18. The geometry of the elements is
presented in the figure. Rigid diaphragms were considered at each story. The structure was analyzed
using the tridimensional damage model that is described in Chapter 12. Each simulation was performed
twice; one using the multi-step modification and the second one allowing changes only in the sizes of
the global steps.

For the static simulations, a displacement of 70 cms in the direction X was applied at the top of
the building. When the multi-step modification was used, only 32 of the 456 elements of the structure
required changes of its local size due to convergence problems.
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Figure 17. The multi-step version of the step-by-step algorithm
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Figure 18. a) Plan view b) Frames A, B, C, D, 1, 2, 3, 4 ¢) Cross-section of all elements and material
properties d) Acceleration record: El Centro earthquake
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Table 1. Comparison of computational effort for solving two damage problems

Simulation Type Step Algorithm | CPU Time Sec. Number of Total Number of Max Number of
Steps Iterations Iterations in a Step
Global Problems
Static Multi 230 10 28 3
Static Unique 962 66 109 4
Dynamic Multi 4413 524 1012 7
Dynamic Unique 20376 3664 4127 3
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Figure 19. a) Two stories frame b) Displacement histories applied to the frame
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For the dynamic analyses an acceleration record corresponding to the El Centro earthquake was
imposed in the base of the building (see Figure 18d). The first dynamic analysis was developed satis-
factorily but when only changes of global sizes were considered, the structure could be analyzed only
in the first 7 sec of the record due to convergence problems.
In Table 1 it is presented the comparison of the computational effort required for the solutions of
the static analyses and the first 7 sec of the dynamic analyses. As it can be appreciated, the CPU times
required for the static and dynamics analyses are, respectively, 24% and 22% smaller when the multi-
step modification is used.

Figure 20. Experimental and numerical force-displacement curves a) at level 1 b) at level 2
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Figure 21. Experimental and numerical test results
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In almost all the applications, the multi-step modification improves the efficiency of the program.

It is important to underline that in some situations, the global problem has no possible solution be-
cause the external forces {P} are higher than the maximum possible internal forces that the structure
can generate. If that is the case, no algorithm can, of course, converge. This absence of solution can be
interpreted as structural collapse.

10.7.3 Numerical Simulation of a Two Stories Framed Structure

The two stories frame that is shown in Figure 19a was experimentally tested and analyzed with the
described procedure. The frame was subjected to the displacement histories shown in Figure 19b. As
it can be appreciated in this figure, at the first level the frame was pushed and at the second one it was
pulled with mono-signs displacements. In Figure 20 are shown the experimental and numerical force-
displacement curves corresponding to the points where the loading was applied.

Figure 21 shows the damage in the frame at the final of the test and the damage map of the numerical
simulation. It can be appreciated how the size and color of the balls in the damage map clearly represent
the magnitude of the damage experimented by the elements of the frame.

10.8 LIMITATIONS OF THE DAMAGE MECHANICS MODEL

The model presented in this chapter describes in a simplified way three phenomena taking place in a
RC element: elastic deformations, plastic rotations due to yielding of the longitudinal reinforcement and
concrete cracking. The model also describes some interactions between these effects. The quantitative
accuracy of the model when compared with the experimental curves of force vs. displacement is quite
good for engineering applications.

However, some significant phenomena were not taken into account. One of them is that the model
only considers one kind of damage: bending cracking that may be lumped at the plastic hinges. In some
important engineering applications, a second damage mechanism, shear cracking, is a significant phe-
nomenon. This effect is considered in the next chapter.

Another damage mechanism that has not been taken into account is the buckling of the longitudinal
reinforcement. This phenomenon can be observed when there is a so severe state of cracking that lumps
of concrete fall down leaving the longitudinal reinforced without any confinement; consequently, steel
bars buckle when they are subjected to compression (see Figure 22).

This effect accelerates the stiffness and strength degradation of the element and, of course, cannot be
described by the Griffith criterion. It has been observed that this phenomenon does not yet occur when
the moment on the plastic hinges reaches its ultimate value M ; thus for values of damage less than or
equal to d_ this effect has not yet started. As aforementioned, d is slightly larger than 0.6 in any com-
mon application. The experimental observations indicate that the model can be used for damage values
up to 0.65, after that, it may underestimate significantly the damage state of the plastic hinge. Modeling
of damage for buckling of the reinforcement is not considered in this book and probably is not very
important from the point of view of engineering applications.
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Figure 22. Buckling of the longitudinal reinforcement in a RC element (Courtesy of NISEE-PEER,

University of California, Berkeley)
10.22 Steinbrugge, Karl V. (1960) Retrieved January, 29 2014 from http://nisee.berkeley.edu/elibrary/Image/S1686 .

r :

10.9 SUMMARY AND EQUATIONS QUICK REFERENCE

This chapter describes how the concepts of fracture and damage mechanics can be used for modeling
the behavior of RC structures. It is introduced a new internal variable for each hinge: the damage. Thus,
plastic hinges become inelastic hinges; the plastic rotations are not the only deformation on the hinge,
a second term related to concrete cracking is introduced. The elasticity and plasticity laws are obtained
based on the hypothesis of equivalence on deformations. The damage law is a generalized Griffith cri-
terion. It is deduced the energy release rate of an inelastic hinge and the crack resistance function of an
RC element is obtained experimentally. The parameters of the model can be computed using concepts of
the conventional RC theory. Griffith criterion can be modified to include ultra-low cycle fatigue effect.
The numerical analysis of damaged structures is similar to the one used for elasto-plastic structures.
However, as degree of nonlinearity of the problem increases one modification was introduced: the muti-
step algorithm. Essentially, it consists in using different time steps for the local and global problems
(See Table 2).
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Table 2.

THE LUMPED DAMAGE MODEL

Ty u))

Hypothesis of equivalence in deformation
b d
{@}, ={®"}, +{®"}, +{®"}, ao.1y

be . . . .
{CI) ¢ } p - matrix of generalized deformations of the elastic beam column.

{‘I’p } : matrix of plastic deformations.

{q)d } b damage rotations matrix.

Matrix of generalized deformations of the elastic beam column:
be _ 0

{@"}, = [Ff [, {M}, +{®"}, 012

[Ff ]b . flexibility matrix of a slender element.

{M}b . generalized stresses matrix.

0 s . .
{@ }b . the initial deformations matrix.

Damage deformation matrix

{®'}, =[C(D)],{M}, q0.1.3)

d .
1—d it 0 0
[C(D)] 0 % FS 0
h — 22
1—d
0 0 0

[C(D)] b matrix of additional flexibility due to concrete cracking.

]’7;; represents the (i,j) component of the elastic flexibility matrix.

continued on following page

390



Lumped Damage Mechanics

Table 2. Continued

Elasticity law in terms of flexibility

{<I> - P’ }b = [F(D)]h {M}h + {(I)O}

b (10.1.4)
[F(D)] : flexibility matrix of a damaged frame member.
FC
—qg
FO)=[F]+CD)=| F = 0
J
R
Elasticity law in terms of stiffness
{M}b = [E(D)]b {(I) —®’ }b + {MO (D) }b (10.1.5)

=[F(D)},"

[E(D)] b : elasticity matrix of a damaged frame element.
{M°(D)}, = —[E(D)],{®"},

Elasticity matrix of a damaged frame element.

b

120-d)  61-d)1—d) 0

i J

[E(D)], =k|6(1—d)(1—d) 12(1—d) 0
B4
0 0 —
kL,
(10.1.6)
_ 1 EIb
T 4-(1-d)1-d) L,

GENERALIZED GRIFFITH CRITERION FOR AN INELASTIC HINGE

Complementary Deformation Energy of a Damaged Frame Element

W = %{M}Z (@@} = %{M}Z [F(D)],{M}, + %{M}t{‘bo}b
(10.2.1)

Energy release rates of hinges 7 and j
0, 2
a — ow _ Ffjmf G = ow _ F22mj
i J 2
od,  201-d)y ' 0dd,  21-d)

T

; (10.2.2)
G, and G, : energy release rates, or “damage driving
moments”

continued on following page
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Table 2. Continued

Damage evolution laws

Lumped Damage Mechanics

Ad =0if G <R

Adj.:Oif G], <R
G, =R if Ad>0

G =R if Ad>0
J J J

(10.2.3)
R, and R; are the crack resistance functions of, respectively, inelastic hinges i and j.

B

CRACK RESISTANCE FUNCTION OF AN INELASTIC HINGE

Experimental Measure of the Damage in a Plastic Hinge
Experimental damage

T

0 (10.3.5)

Z(d): slope of an elastic unloading/re-loading
Z,: initial undamaged slope.

Experimental Identification of the Crack Resistance Function
Crack resistance function

In(l—d
R(d):ROJqu
1—d (1036

R, ¢: member dependent parameters

Determination of R,

2
M’ =—R
P
(10.3.9)
er " first cracking moment

Determination of q and d,: (solving the system of equations)

2R,(1—d,) + q(ln(l —d,) +1) =

(10.3.10)
e 21—d ) R o2

R = d ) (- d)

u

(10.3.11)

continued on following page
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Table 2. Continued

Computation of the Interaction Diagram for the First Cracking Moment

¢

h
+
Y
AIF Sl
Only tension load
\Pute bending == B
a - -
Balanced condition
.
l'.
"'-
dwr o
Only comprassion load
LT
B
— n
=M !

Pure compression point

N =—A_*04

C

51/

¢ (10.3.12)

s " area of the transformed section

Pure tension point
— *

cr ts

ft .

" tension strength

£(10.3.13)

Pure bending point:

_ L

M

cr

z
‘e (10.3.14)
z,,: distance between the extreme tension fiber and the centroidal axis.

ts * moment of inertia of the transformed section.

continued on following page
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Table 2. Continued

Balanced condition point

A5f! —h
2 O85L+f)=n

cr h ts
(10.3.17)
0.45f'+ f,
cr = Its

YIELD FUNCTION OF A DAMAGED PLASTIC HINGE

Plastic Deformation Evolution Law

Equivalent moment on a plastic hinge i

i (10.4.1)

Yield function of a damaged plastic hinge:

f=|m, =g

m, »
_km = m_ci¢i _km' <0

/ (10.4.2)
¢, k,;: member dependent parameters
Plastic deformation evolution laws
dop’ =0if f <0 do* =0if f <0 m.
¢z ‘ f7 ¢] ‘ f; f-: J —C.gﬁ‘? _k0~§0
f=0ifdg =0 |f=0ifds’ =0 Y |1-a |

; ; J (10.4.3)

Computation of the Parameters ¢ and k,

First plastic moment M,

20—d ) 2
MP=——""R +-L(1-d)n(l-d)
F F (10.4.4)

P first plastic moment.

M

P : value of damage that corresponds to P

Effective plastic moment 0

M _
k, = L =M
1-d u
4 (10.4.5)
Parameter ¢
1 Mu M“ B MP

C

T li—d @
¢P

 : the ultimate plastic rotation

(10.4.6)

continued on following page
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Table 2. Continued

A MODEL OF DAMAGE FOR RC ELEMENTS CONSIDERING ULTRA-LOW-CYCLE FATIGUE EFFECTS

Modified Griffith Criterion

Griffith criterion during a phase of cracking propagation:

if Ad. > 0;G, = R(d.) or G*' = R(d.)*"" for & >0

2

(10.6.1)

Modified Griffith criterion:
Ad =0 if G, <R,

1 G. .
Ad = ———|— <A G > otherwise
' OR/0d | R e
(10.6.2)
o: constant
ANALYSIS OF DAMAGED FRAMES
Formulation of the Problem
Variables to determine: Data:

o Free displacements, o Initial configuration of the structure
e Reaction forces o Restricted displacements
o Generalized deformations o Nodal forces
o Plastic rotations e Forces applied over the elements
o Stresses e Material and cross-section properties
e Damages o Yield functions.

Equations to verify: (10.7.1)
o The nonlinear kinematic equation

{A®}, = [B,(U_, ) {AU}

o The equilibrium equations

L, =P L, } = ; BU,_, s {M,_, },
o The elasticity law )
(M}, = [ED)]|{® -2}, +{M},
o The plastic deformation evolution laws
de? =0if f <0 [d¢’ =0if f <0
f=0ifdg?" =0"|f = 0if dg? =0
o The yield functions
m. m.
fi = ﬁ—cigbf _km SO;fj = 1—]d. _C‘j¢]1') _kOj <0

i J

e The damage evolution laws

AdiZOifGi<R0i AdeOiij<R0j
2 a 2
1 G. 1 ; .
— - |Z ; Ad =—|—L| (AG. )} otherwise
d 8Ri/8di R <A Gi >+ otherwise i 8R]./(9dj R]‘ < i >+

395



Lumped Damage Mechanics

Figure 23. Unconfined typical concrete cross-section
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10.10 EXAMPLES

10.10.1 Determination of the Interaction Diagram of the First
Cracking Moment for the Following Cross-Section

For the first cracking moment, four points corresponding to the pure compression, pure tension, pure
bending and balanced conditions are computed.

1. For the case of pure compression, it is used Equation (10.3.12): N = —A_*0.45 fc' . Thus,

. E
A, =bh+(n—1)(Ag+Ag):$n=E‘ (10.10.1)
/
E
E = L 2070 _ 1035000 N/ cm? = n = —* = 19.3237 (10.10.2)
e 0.002 b

0 ’ c

A =bh+(n—1)(A + A)=(30)60 + (19.3237 — 1)(28.90 + 55.29) = 3342.67cm®  (10.10.3)

N =—A_ *045* f' = —3342.67 * 0.45 * 2070 = —3113.697 510’ N = —3113.697 KN (10.10.4)

cr
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2. For the case of pure tension it is used Equation (10.3.13):

N =A_ *f =3342.67*207 = 691.933210° N = 691.933 KN (10.10.5)

C

3. For pure bending, the first cracking moment is computed using Equation (10.3.14)

2
% +(n— l)A; (h —rec) + (n — 1A (rec)
z = 3
ca .14t‘g
30 * 60
4 (19.3237 — 1) *28.90 * (60 — 6.5) + (19.3237 — 1) * 55.29* 6.5
P p— = 26.6004 cm
3342.67
(10.10.6)
bh’ h , , ) ,
I = E + bh(g -z ) +(n-—DA(h—rec—z ) +(n—-1A (2, — rec)’;
30 * 60° 60 s s
L= +30*60 * (; —26.6004)° + (19.3237 — 1) * 28.90 * (60 — 6.5 — 26.6004) (10.10.7)
+(19.3237 — 1) * 55.29 * (26.6004 — 6.5)° = 1353308 cm'
I *
M = I, _ 2077135308 10531223.44 N.cm = 105.312KN.m (10.10.8)

Tz 26.6004

ca

4.  For the balanced condition, the axial force and bending moment are obtaining using Equation
(10.3.17):

z (045f'+ f)—hf

) 4h ) . (10.10.9)
26. 4 . 2 2 — 2
= — 6-600 (0 > 06700 * 07) 60 7 207 3342.67 = —995255.22 N = —995.26 KN

L 04a5* 4 ; _ 0:45%2070 4 207

1353308 = 25670019.3 N cm = 256.79 KN.m (10.10.10)
h ¢ 60

The resulting interaction diagram is shown in Figure 24.
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Figure 24. Interaction diagram of the first cracking moment
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10.10.2 Obtain the Equations for the Numerical
Simulation Presented in Figure 11a

The numerical simulation corresponds to the cantilever beam that in Figure 10. The element is subjected
to a history of mono-sign lateral force.

The problem is simulated using the elasto-plastic constitutive model with a multi-linear isotropic
hardening that is described in section 7.1.

The section properties M, M, and ¢! are obtained from the experimental curve presented in Figure
11a.

Using kinematic equation (3.1.12), {d®} = [B(q)|{dq} , it is obtained:
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0
0
<;51 1/Lb 0 1 —1/Lb 0 0 0
¢2:1/Lb 0 O —1/Lb 01 "
8 0 —-10 0 1 0] °
w
2
02
Resulting:
_ u2. — ’lL2 . i
¢1__fﬂ¢2__L_+0275 wg

m

Applying the equilibrium equation (3.2.13), Z [B)],{M}, = {P}, it is obtained:
b=1

ul l/Lb l/Lb 0
wl 0 0 -1
P, 1 o o™
= m
“2:P —1/Lb —1/Lb 0 n2
PM:O 0 0 1
]39220 0 1 0
That is
m
P,=0=mkF,=0 m27Pu2:P:_L_1;
b
moom, m,
ul:_L +?__L_’Pw1:_n:0’Pal_m1

The elasticity law for the elasto-plastic element is:

LI LI
- __® 0
3EI 6E1
2 L L m| |9
= |— b b 0 m, |+ P!
%, 6EI  3EI 2| 7%
) b b n &7
L
0 0 b
AE,

(10.10.11)

(10.10.12)

(10.10.13)

(10.10.14)

(10.10.15)
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Resulting:

L
=—m +¢ 10.10.16

Introducing (10.10.12a) and (10.10.14c¢) into (10.10.16) it is obtained a relation between the force P
and the lateral displacement #:

3EI, t,

b b

P=1Z/(t—t);where Z =

In the plastic phase of the element behavior, the plastic rotation evolution law gives:

M,~-M t M M
u (10.10.18)

P =—2 otherwise
L

Combination of Equation (10.10.17-18) gives:

Z(M, —M) ZM L'
e i B ' (10.10.19)
LbZO(;S:L) + Mu - Mp LbZ(]qbf + Mu - Mp

Plotting this equation it is obtained the curve:

10.10.3 Plot the Curve Force vs. Displacement Using the Damage Model
for the Cantilever Beam that is Shown in Figure 10 and a Spreadsheet

The first step is the computation of the model parameters R, g, ¢ and k, using the procedures described
in sections 10.3.3 and 10.4.2. Considering the experimental values: EI =1025.373 KN.m*, M_= 4.004
KN.m, Mp = 24.220 KN.m, M, = 29.034 KN.m and gpl’: = 0.09, the parameters R, =0.003648, g=-0.52,
¢ =459.31 and k, = 34.88 were obtained.

The analysis starts assuming several damage values between 0 and a value slightly higher than
d ~0.64. With these damage values, the bending moment m, is computed with the Griffith criterion
(10.3.8) (see Table 3).

2(1—d )
mlz _ ( = ) R +%(1_dl)ln(1_dl) (10.10.20)
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Table 3. Force vs. displacement curve values in the case of imposed damage values

d, m, (KN 'm) & é £ (m) P (KN)
1 1

0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.00 4.0039 0.0000 0.0018 0.0026 2.8599
0.05 11.2169 0.0000 0.0054 0.0075 8.0121
0.10 15.1548 0.0000 0.0077 0.0107 10.8249
0.15 18.0901 0.0000 0.0097 0.0136 12.9215
0.20 20.4496 0.0000 0.0116 0.0163 14.6069
0.25 22.4066 0.0000 0.0136 0.0190 16.0047
0.30 24.0496 0.0000 0.0156 0.0219 17.1783
035 25.4288 0.0092 0.0270 0.0379 18.1634
0.40 26.5734 0.0205 0.0406 0.0569 18.9810
045 27.4994 0.0329 0.0557 0.0779 19.6424
0.50 28.2129 0.0469 0.0726 0.1016 20.1521
0.55 28.7115 0.0630 0.0920 0.1288 20.5082
0.60 28.9844 0.0818 0.1148 0.1607 20.7031
0.65 29.0103 0.1045 0.1422 0.1991 20.7217

The damage values and the corresponding bending moments are used to compute the plastic rotation
=

" 1-d

Then, the total deformations are determined with the elasticity law (Equation 10.1.4):

with the yield function (10.4.2): f, = |, — cg{ — |~k <0.

¢, = b + ¢! (10.10.21)
1 m / 10.
3EL (1—d,)

The displacement in the node 2 is computed with the kinematic Equation (3.1.1):

6 = _Li for ¢ = u, (10.10.22)

b

Finally the force P is obtained with the equilibrium Equation (3.2.13):
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Figure 25. Force vs. displacement curve
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The resulting curve is shown in Figure 26.
10.10.4 Solve Problem 10.10.3 Imposing Forces Instead of Damage

The values of force are increased until the ultimate moment is reached. Using the equilibrium Equation
(3.2.13), the bending moment is computed as:

m, = —PIL (10.10.24)

1 b

With the Griffith criterion (Equation 10.3.8), the corresponding damage values are obtained:

F'm? R In(1-4d,)
M Ry (10.10.25)
21—d) 1—d,

As in the former example, the plastic deformation is computed with the yield function (Equation
10.4.2), the total deformations with the elasticity law (Equation 10.1.4) and the displacement at the node 2
with the kinematic Equation (3.1.1). The resultant curve of force vs. displacement is shown in Figure 27.
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Figure 26. Force vs. displacement curve
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Figure 27. Force vs. displacement curve
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10.10.5 Develop a Model for a Frame Member Made out
of a Brittle Material without Plastic Deformation

In this case the elasticity law is written as:

{®}, = [F(D)| {M}, +{®"}, (10.10.26)

where [F(D)] is the flexibility matrix of a damaged frame member (Equation 10.1.4), {M},and {®"},
are the generalized stresses and the initial deformations such as defined in chapter 3 (Equation 3.2.2 and
Table 3).

As it can be observed, this equation do not consider the plastic deformation term. Therefore, no yield
function is needed.

The Griffith criterion (G(d) = R(d)) can be used as damage evolution law. The energy release rates
G, and Gj can be written like in Equation (10.2.2) and the crack resistance is a function of damage R(d).
Therefore, damage evolution is express as in Equation (10.2.3).

Therefore, a model for a frame member made out of a brittle material is composed by:

1. The Kinematic Equation: {®}, =B} ] {U}
2.  The Equilibrium Equation:

m

Yo [ByL M}, = {P"} + {P} (10.10.27)

b=1

3. The Constitutive Equation: {®}, = [F(D)]{M}, + {®"},
Ad =0if G, <R,

G =R ifAd>0’

Ad, =0if G, <R,

Gj = Rj if Adj >0

4.  Damage Evolution Laws:

10.10.6 Obtain a Crack Resistance Function for the Model of
the Example 10.10.4 so that there is a Parabolic Relationship
between Moment and Damage as Shown in Figure 28

In order to obtain a parabolic relationship between moment and damage, it is proposed the following
equation:

M=a+b*d+c*d (10.10.28)
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Figure 28. Lateral load vs. displacement curve
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where a, b and ¢ are parameters that are computed with the element properties M and M .by the
consideration of the following conditions:

. For M=M,_ ,d=0

2. For
M=M,6d=d (10.10.29)
3. ForM:M;dﬂzo

" dd

4, Ford=1M=0
The resultants expressions of the parameters are:
C’/ = M(7;b = _2 (MCT' - MU, - VMU, (M’Il - M(‘7));

b M —M +JM (M —M) (10.10.30)
€= M”' o 2Mu - 2 Mu (Mu - M(y)? du - = ~ 4 Y U cr
: : 2 M_—2M +2M (M — M)

Applying the Griffith criterion, the crack resistant function results in:

L(at+b*d+c*d)*F"
2 (1—ay

R(d) = (10.10.31)
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The curve of force vs. displacement for a cantilever beam element made out of a brittle material with
M, =392 KNm, L=1m, EI =5.23 KNm?* and M .=11.77 KNm,is:

10.10.7 Plot the Curve Force vs. Displacement Using the Damage
Model of Section 10.6 for the Cantilever Beam That Is Shown in Figure
29a and a Spreadsheet. Consider a Values of 2, 0.5 and 10.

For this problem were chosen the parameters: R =0.003648, g=- 0.52, ¢ =459.31 and k, = 34.88, com-
puted from experimental results (section 10.10.3). The beam is subjected to the displacement history
that is shown in Figure 29b. The analysis is done considering three phases: the first one, where the beam
is subjected to a monotonic displacement; the second one where the specimen is unloaded and the last
phase where the beam is reloaded to the same displacement of the first step. In order to observe the
ultra-low cycle fatigue effect, the second and third phases are repeated several times. The procedure used
for the computation of the first cycle considering o = 2is described below and the values needed for
the curve of force vs. displacement are presented in Table 4.

The monotonic phase is solved in the same way that the problem 10.10.3. Then an elastic unload
is applied (phase 2). In this stage, the damage value and the plastic rotation remain constant and a dis-
placement equal to 0.06 is imposed (see displacement history). The total deformation is computed by
the kinematic equation (10.10.22):

for ¢t = u, and the bending moment with the elasticity law (10.10.21):

m =6, 01) 20 a).

b

Figure 29. a) Beam subjected to ultra-low cycle fatigue analysis b) Displacement history
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Table 4. Force vs. displacement curve values in the case of imposed forces

P (KN) m, (KN m) d, o é t (m)
1 1
0.0000 0.0000 0.00 0.0000 0.0000 0.0000
1.0000 1.4000 0.00 0.0000 0.0006 0.0009
2.0000 2.8000 0.00 0.0000 0.0013 0.0018
3.0000 4.2000 0.00 0.0000 0.0019 0.0027
5.0000 7.0000 0.01 0.0000 0.0032 0.0045
7.0000 9.8000 0.04 0.0000 0.0046 0.0065
9.0000 12.6000 0.07 0.0000 0.0061 0.0086
11.0000 15.4000 0.10 0.0000 0.0078 0.0109
13.0000 18.2000 0.15 0.0000 0.0098 0.0137
15.0000 21.0000 021 0.0000 0.0121 0.0170
17.0000 23.8000 0.29 0.0000 0.0153 0.0214
19.0000 26.6000 0.40 0.0208 0.0410 0.0574
20.0000 28.0000 0.48 0.0420 0.0667 0.0934
20.3300 28.4620 052 0.0537 0.0808 0.1131
20.6600 28.9240 0.58 0.0753 0.1069 0.1497
20.7387 29.0342 0.63 0.0950 0.1307 0.1830

Finally the force P is obtained with the equilibrium equation (10.10.23):

In the last phase of the first cycle, the displacement is increased from 0.06 to 0.078 m in three steps.
The total deformation and the bending moment are computed again, respectively, with the kinematic
equation (10.10.22) and elasticity law (10.10.21). The damage is computed with the modified Griffith
criterion (10.6.2) (See Table 5):

1 (6|
Ad@':aR/adZ. T 86

+
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Table 5. First cycle of the curve of force vs. displacement values considering ultra-low cycle fatigue with

=2
d, m, (KN m) (Z)p ¢ t(m) P (KN) Phase
1 1
0.000 0.000 0.000 0.000 0.000 0.000 1
0.000 4.004 0.000 0.002 0.003 2.860 1
0.050 11.218 0.000 0.005 0.008 8.013 1
0.100 15.156 0.000 0.008 0.011 10.826 1
0.150 18.092 0.000 0.010 0.014 12.923 1
0.200 20.452 0.000 0.012 0.016 14.608 1
0.250 22.409 0.000 0.014 0.019 16.006 1
0.300 24.052 0.000 0.016 0.022 17.180 1
0.350 25.431 0.009 0.027 0.038 18.165 1
0.400 26.576 0.020 0.041 0.057 18.983 1
0.450 27.502 0.033 0.056 0.078 19.644 1
0.450 11.964 0.033 0.043 0.060 8.546 2
0.456 16.965 0.033 0.047 0.066 12.118 3
0.473 21.385 0.033 0.051 0.072 15.275 3
0.505 24.764 0.033 0.056 0.078 17.689 3

Another eight cycles were computed following the described procedure and the resultant force vs.
displacement curve is shown in Figure 30. As it can be observe, even if the maximum displacement is
kept constant, there is evolution of the damage.

The curve of force vs. displacement corresponding, respectively, to a = 0.5and a = 10, are pre-
sented in Figure 31a and b.

Notice that the lower values of the parameter « accelerates the strength degradation.

10.11 PROBLEMS

10.11.1 For the Structure Shown in Figure 32 Compute the Properties of the Cross-Section and
Carry out the Numerical Simulation. Neglect the Influence of the Axial Load.
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Figure 30. Force vs. displacement curve for a = 2
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Figure 31. Force vs. displacement curves for a)a = 0.5 b) a =10
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10.12 PROJECTS

10.12.1 Write a Program for the Analysis of RC Elements Using the Lumped Damage Model. i.e.
Generalize the Program Written in Project 8.7.2 including Damage Effects

10.12.2 Include the Ultra-Low Cycle Fatigue Effects in the Project 10.12.1

10.12.3 Generalize the Program Written in Project 8.7.3 including Damage Effects
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Figure 32. a) Geometry of the structure b) Cross-section c) Material properties d) Displacement history
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Chapter 11

Damage Mechanics
of Dual Systems

ABSTRACT

This chapter begins with the presentation of some experimental results on RC specimens using a special
technique called “digital image correlation.” Then, it describes a damage model for RC walls. Next,
the model is generalized to include elements with any aspect ratio, finally, the analysis of dual system is
described and some numerical simulations are presented. Notice that Section 3.4 described the elastic
behavior of dual systems; in section 7.3 that model was extended to include plastic deformations. The
goal of this chapter is to generalize that model, including cracking propagation described by the Griffith
criterion or its modified version.

11.1 EXPERIMENTAL ANALYSIS OF RC ELEMENTS
OF VARIOUS ASPECT RATIOS

Dual systems are reinforced concrete structures composed by slender elements and walls. These systems
are often used as a good structural alternative for buildings and facilities in earthquake-prone areas.
Even in framed structures, short or intermediate columns and beams and, in general, RC elements of any
aspect ratio may appear as a result of inadequate disposition of masonry walls or other non-structural
components (see Figure 1).

11.1.1 Digital Image Correlation

In the digital image correlation technique (DIC), the surface of the specimen to be tested is prepared in
order to create a random texture. A first digital photo of reference is taken before the test (see Figure
2a). Next, further pictures are taking during the experiment while the chosen external forces are applied

(see Figure 2b). A computer program analyzes first the reference digital image; the software divides this
photo in small portions that may be imagined as small “finger prints”; subsequently, it identifies each

DOI: 10.4018/978-1-4666-6379-4.ch011
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Figure 1. Failure of a short column in a RC structure (Courtesy of Dr. Jiirg Hammer, DRM Disaster

Risk Management Switzerland SA)
11.1 Hammer, J. (2001). Retrieved February 28, 2014 from http://www.drmonline.net/drmlibrary/peru_photos.htm DRM

Disaster Risk Management Switzerland SA.

Figure 2. Representation of a displacement measurement with DIC a) Reference picture b) Deformed
configuration

413



Damage Mechanics of Dual Systems

of them. Then, the program processes the following picture, looking for the same “finger prints” and
determines their new position in the photo. This procedure gives the average displacement vector of each
specific portion. The same procedure is followed sequentially with each digital photograph of the test.

With the displacements, the program computes the strain field using the conventional expressions.
Cracks in the concrete appear as concentrations of strains.

11.1.2 Experimental Analysis of Beams with Different Aspect Ratios

Four specimens that represent RC beams in cantilever with different aspect ratios are shown in Figure
3a and Table 1. The variation of the aspect ratio is achieved changing the height of the applied lateral
force. The specimen labeled B4 in Figure 4 is a slender beam with an aspect ratio of 7.11 (see Figure13
in Chapter 2 for a classification of beams in terms of the aspect ratio); the specimen B1 is a very short
beam (aspect ratio 1.78); the specimens B2 and B3 represent intermediate beams with, respectively,
aspect ratios of 3.56 and 5.36. The specimens are subjected to the mono-sign solicitation that is shown
in Figure 3b. Figure 4 presents the results of the tests that show the variation of the cracking patterns
and of the quantity of diagonal tension by shear with the aspect ratio.

Horizontal cracks in the lowest part of the specimens can be appreciated in the four beams. They
are called flexural cracks because are located in the zone of the maximum bending moment. Diagonal
cracks along the entire element appear in specimens B1 and B2. They are called diagonal tension cracks
or shear cracks and are the result of the shear forces that in these tests are constant along the elements.
Notice that DIC not only indicates the appearance of each kind of cracks but also indicates its intensity.

In slender beams, for instance specimen B4, only flexural cracks are concentrated in the plastic hinge
zone. In squat beams, for instance specimen B1, diagonal tension cracks along the entire element are
dominant. Notice that intermediate beams exhibit mixed cracking patterns. The transition from flexural
dominant to shear dominant cracking with the aspect ratio appears to be progressive.

Figure 3. RC beam a) Geometry b) Loading history
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Table 1. Properties of RC Beams

Specimen | w (mm) t (mm) a(mm) d(mm) a/d v (%) s (%) (Mf‘ )
pa

Bl 250 250 400 225 1.78 2.53 1.03 26.7

B2 250 250 800 225 3.56 2.53 1.03 26.7

B3 250 250 1200 225 5.36 2.53 1.03 26.7

B4 250 250 1600 225 7.11 2.53 1.03 26.7

Figure4. Cracking patterns in beams with different aspect ratios and quantification of the diagonal tension

diagonal tension cracks by shear force
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It is important to underline that structural failure due to shear cracking is a much more brittle and
dangerous process than bending collapse. Therefore having a model that can differentiate and quantify
the two cracking processes is very important for the structural safety assessment.

11.1.3 Experimental Analysis of RC Walls

Figure 5 shows a RC wall with an aspect ratio of 1.26. The longitudinal reinforcement is over dimen-
sioned with the purpose of minimizing flexural damage as much as possible. The wall is subjected to a
mono-sign loading without.

Figure 6 shows the evolution of the cracking pattern in the wall. Figure 6a presents the first manifesta-
tion of diagonal tension at the peak of the first cycle of the loading. In Figure 6b it is appreciated many
shear cracks along the wall in the fifth cycle of loading. Finally Figure 6¢ shows the cracking pattern
corresponding to the ultimate force of the wall. Notice that flexural cracks are not appreciated in the wall.
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Figure 5. RC wall a) Geometry b) Loading history
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Figure 7 shows a RC wall with an aspect ratio equal to 1.26 subjected to lateral mono-sign loading
and axial force. An axial force equal to 314 KN is first applied and then kept constant while sequence
of lateral loading is applied. The axial force was applied using a post-tensioning technique.

Figure 8 presents evolution of the cracking pattern of the wall of Figure 7. Notice that the presence
of axial force on the specimen does not modify significantly the cracking pattern, just alters slightly the
orientation of the shear cracks.

11.1.4 Cracking Pattern in Short Columns

Figure 9 shows the reinforcement of a RC short column. Two levels of constant axial force (180 KN
and 420 KN) are applied. Again the axial force is first applied and kept constant while it is applied the
mono-sign lateral loading. Figure 10 shows the cracking pattern of the column subjected to 180 KN of
axial force and Figure 11, the corresponding to the axial force equal to 420 KN.

Notice that in these cases flexural cracks appear simultaneously with the shear ones. The diagonal
cracking pattern that is shown in Figure 10c is very similar to the one presented in Figurellc; again,
only the orientation of the shear cracks changes slightly.
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Figure 6. Cracking evolution in a wall subjected to lateral loading
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Figure 7. a) RC wall specimen with aspect ratio equal to 1.26 subjected to lateral loads and axial force
b) Lateral loading history
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11.2 ELASTICITY LAW FOR FRAME MEMBERS OF ANY ASPECT RATIO

The experimental analysis described in the previous section indicates that the cracking pattern in RC
elements can be schematized as follows:

There are two distinct sets of cracks that may be assumed to propagate independently.

One of them can be lumped at the plastic hinges because they are concentrated at the ends of the
element; they are called flexural cracks; they are assumed to be the result of bending moments
because they are present in specimens with high aspect ratios; i.e. with high levels of bending mo-
ments and relatively low values of shear forces.

The second one corresponds to the, so called, diagonal tension cracks or shear cracks. In squat ele-
ments, shear cracks almost cross the entire length of the element. They are assumed to be caused
by shear forces because they are characteristic of elements with intermediate or low aspect ratios;
i.e. with high levels of shear forces with respect to the bending moments.

In slender elements, shear cracks are scarce or non-existent.

The density of the shear cracking increases and may become predominant with respect to flexural
cracking as the aspect ratio of the element is reduced.

The observations a-c can be represented in mathematical terms by choosing an adequate expression

of the elasticity law; the remarks d-e can be characterized with the damage evolution laws that are the
subject of the next section.

The physical phenomena that may take place in a RC element subjected to lateral loads can be sum-

marized as follows:
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Figure 8. Cracking evolution in a wall subjected to lateral loading and axial force
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Figure 9. Short column
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e  Yield of the longitudinal reinforcement; this effect is represented by the matrix of plastic deforma-
tions {®"}, that was introduced in chapter 7.

e  Yield of the transverse reinforcement; this effect is represented by the plastic distortion ~” that
was introduced in the same chapter.

e  Flexural cracks that can be lumped at the plastic hinges. They are represented by the damage set
(D), that was introduced in chapter 10.

e  Finally, shear cracks along the element. A new damage variable (i.e. that takes values between
zero and one) denoted d_ is now introduced in order to represent this last inelastic phenomenon.

The lumped/ distributed plasticity model introduced in section 7.4 is used again as a basis for the
formulation of the elasticity law but, this time, damage is also included. Thus a frame element is as-
sumed to be the assemblage of an inelastic element with any aspect ratio and two plastic hinges with
damage (see Figure 12).

Total deformations are again decomposed into a term corresponding to the elasto-plastic component
{®""}, and the deformations of the inelastic hinges {®"}, ; the former term can be decomposed once
more into an elastic deformation, a plastic one and a damage related to distortion; the term correspond-
ing to the inelastic hinges can be decomposed, again, into a plastic deformations matrix and a damage
matrix:
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Figure 10. Cracking evolution in a short column with axial force equal to 180 KN
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Figure 11. Cracking evolution in a short column with axial force equal to 420 KN
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Figure 12. Lumped/distributed inelasticity model
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¥¥) ds q;

{®}, ={2""}, +{2"},

i , g (11.2.1)
(@}, = ([F], +[E],){M}, +{+'}, + {7}, +{@}, +{@"},

Notice that all these terms, with the exception of the damage related to distortion {~* }, » were intro-
duced in precedent chapters: Equation (3.4.8) for the elastic deformations, Equation (7.2.1) for the
plastic distortions {¥"}; = (7",7",0) and Equation (7.1.2) for the plastic rotations {®"}, = (¢/,¢,0).
The damage deformations lumped at the inelastic hinges can be expressed as in section 10.1:
{®"}, = [C(D)],{M}, . The application of the hypothesis of equivalence in deformation gives the fol-
lowing expression for the damage related to distortion:

1 1
] GAL GAL,
L - ) _a 1 1
{7}, =[C.(d)),{M},; where [Cs(ds)}—l_ds AL, AL " (1122)
0 0 0

The combination of all these equations gives the elasticity law in terms of flexibility:

(@}, — (B}, — (4"}, =[F(D.4,)] (M},

(11.2.3)
where [F(D.d )] | = [F,], + [}, +[CD)], +[C,(d,),
S 1 L 1 .
3Bl (1—d) GAL (1-d) 6B, GAL (1-d)
F(D.a)=| ——+ ! L. ! 0 (11.2.4)
: 6EI, GAL (1-d) 3B (1-d) GAL (1-d)
0 0 !
EA
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The elasticity law can also be presented as:

{Nub:{E(D¢4ﬂ{¢__¢p__7qw whme[E(D¢tﬂ:{F(D¢£ﬂ4 (11.2.5)

The term [E (D, d, )} is the elasticity matrix of a RC element of any aspect ratio that may be experi-

encing flexural and shear cracking simultaneously.

11.3 DAMAGE EVOLUTION LAWS
11.3.1 Energy Release Rates

The complementary deformation energy of a damaged frame element with flexural and shear cracking
is given by:

W, = {M{® - @' — '}, = - (MJ[FD.d)], (M}, (11.3.1)

Therefore, the energy release rates corresponding to flexural cracking at the plastic hinge i, plastic hinge
Jj and shear cracking are:

(M) (87}, = (MF[F(D.0 ), (M}, 1132

Notice that according to the Griffith theory, the flexural energy release rate depends indeed on the
bending moment while the shear damage driving force depends on the shear force.

If any interaction between flexural and shear cracks is neglected, all damage evolution can be de-
scribed by the successive application of the Griffith criterion:

Ad =0if G, <R
G =R ifAd>0"
Ad, =0if G, <R,
G =R if Ad >0
Ad =0 if G <R,
G, =R ifAd >0

(11.3.3)

with the same flexural crack resistance function that was presented in section 10.3; the shear crack
resistance expression is discussed in the next section.
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11.3.2 Experimental Measurement of the Shear Damage d_

The method of the stiffness variation described in section 10.3.1 can be used again for the experimental
identification of the shear crack resistance function. The experimental results chosen for this identifica-
tion correspond to the wall with a very low aspect ratio of section 11.3 (Figure 6). The cracking pattern
obtained using DIC shows that flexural cracking in that test is minimal. Figure 13 shows the experimental
results of that test in a curve of lateral force vs. deflection.

This test can be modeled using a single element in cantilever that is subjected to the displacements
history of Figure 14.

Assume that flexural cracks are negligible and that the longitudinal reinforcement does not yield;
then, the first line of the elasticity law (11.2.3) for this element is:

L 1 L 1
¢ =" = + m, +|— + m, (11.3.4)
3Bl GAL(1—d) 6EI  GAL(1-d)

The boundary conditions, the equilibrium equations and the kinematic equations for this problem are:

(11.3.5)

Figure 13. Experimental force vs. lateral displacement curve of the wall with aspect ratio equal to 1.26
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Figure 14. Modeling of the test presented in Figure 5
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where P and ¢ are, respectively, the force and lateral displacement on the node 2. The combination of
(11.3.4-5) gives:

P=2d)t—t)t =~4"L;Z(d) = 3EIGA<1—dS)
_ e (113.6)

S " L(IPGA—I?GAd_ + 3EI)

Notice that Equation (11.3.6) is quite similar to the expression (10.2.7); only the equation for the slope
Z is modified. Therefore, Equation (11.3.6a) represents again the straight lines of the elastic unloading/
reloading in Figure 13. An expression for the determination of the shear damage variable d_ as a func-
tion of the dimensions of the specimen, the material properties and the slopes of the elastic unloading/
reloading can be obtained from (11.3.6¢):

. 3GAEI —3Z LEI — Z[})GA
o GABBEI — I} 7)

11.3.7)

As the slope Z can be measured experimentally and the properties of the specimen can be determined
with a reasonable degree of precision, the Equation (11.3.7) permits the quantification of the shear crack-
ing density; it has been observed that the values of shear damage obtained in this way agrees, at least
qualitatively, with the experimental observations via DIC. The values of the shear damage computed
with Equation (11.3.7) can be compared with the cracking state determined via DIC in Figure 6.

11.3.3 Shear Crack Resistance Function

Figure 15. shows the plot of energy release rate, or shear crack resistance, as a function the damage
variable obtained with the procedures described in the previous section.
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Figure 15. Shear crack resistance as a function of shear damage in a RC specimen
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The same general expression of the flexural crack resistance function presented in section 10.3.2
can be used to describe to experimental results of Figure 15; of course, with others element dependent

parameters:

In(1—d
R(d)= R +qs—n1(_d“’) (11.3.8)

s

It appears that Equation (11.3.8) can be considered as a general expression for the crack resistance
function in any of its manifestations: so far, shear cracks or flexural cracks.

11.3.4 Computation of the Parameters R _ and q_

The computation of the parameters can be carried out using a procedure similar to the one described in
section 10.3.3; but in this case the parameters are determined as a function of the first shear cracking
force, V_and the ultimate shear force, V . The Griffith criterion states that:

R+ In(1-d)
0s qs 1—d

s

2
L?:ROS +qSM, ie. LV? :2@4(1_(13)2
2GA(1—d, ) 1—d

s

(11.3.9)
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The condition of cracking initiation (d  =0) for the first shear cracking force in (11.3.9) gives the
value of the initial crack resistance function:

2

LV? =2GAR ; ie. R, =—= (11.3.10)
cr s S 2GA

As in the case of flexural damage, the curve of shear force as a function of damage also presents a
maximum; thus, it is necessary to take the derivative of the Equation (11.3.9b) with respect to shear
damage. Then, it is made equal to zero:

2R d —2R_—q —qIn(l—d )=0 (11.3.11)

0s " su

The relation between the ultimate shear force and the ultimate shear damage gives a second equation:

R+ In(1-d)
0s qs 1 o d

Su

(11.3.12)

LV =2GA(1-d,)

The numerical resolution of (11.3.11-12) gives the values of the ultimate shear damage and the
parameter g_. Again, only conventional concepts of the theory of reinforced concrete are needed for the
prediction of the propagation of shear cracks: the ultimate shear force that was presented in section 7.3
and the first cracking shear force that is described in the next section.

11.3.5 Computation of the First Cracking Shear Force

The first cracking shear force V_is defined as the least value of shear force that produces inclined crack-
ing in the element. For members subjected to shear, bending and axial force, the first cracking shear
force can be computed with the following expression:

\/ZAQ (11.3.13)

LN
9

V. =0.17
“ 14A

where N is the axial force in N, Ag is the gross area of the concrete section in mm? and fc is the strength
of concrete in MPa.

11.3.6 Modified Griffith Criterion

The substitution of the damage evolution laws (11.3.3) by the modified Griffith criterion described in
section 10.6, allows for the consideration of the ultra-low cycle fatigue effects.
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[Ad =0if G <R,

2

1 G
Ad = 1 <AG > otherwise
" OR [od | R +
Ad =0 1fG.<R.
J J 0y
2
(11.3.14)
Ad = 1= <AG > otherwise
" R [0d | R +
Ad =0if G, < ROH
G
Ad = 1 <AG > otherwise
* OR /8d +

11.4 PLASTIC DEFORMATIONS EVOLUTION LAWS

Assuming again the uncoupling of inelasticity by shear and bending, the evolution laws of the plastic
rotations corresponding to the inelastic hinges remain as presented in section 10.4.1:

{d¢”—01ff<0[d¢p—01ff<0
—0if dp* =0'|f =0if dp” =0
f=0if dgl =0, =0t dg; = (11.4.1)
Mgl
1-d

f= oL‘SO;fj: _cj¢f_0]§0

1—-d.

J

The computation of the parameters c, c, k,, and koj is carried out using the same procedure presented
in section 10.4.2.

The plastic distortion evolution law can be obtained with a similar process. First, the effective shear
force can be defined as:

_ 174 m.+m,
V= =— - (11.4.2)
1—d  (1-d)L

Next, the application of the hypothesis of equivalence in deformations is used to modify a yield func-
tion for plastic distortion with linear kinematic hardening:

m, +m].

T la—d)L

p

|7 k<0 (11.43)

— Cg'y

0s

The plastic distortion evolution law has the usual expression:
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d’yszif [ <0

11.4.4
f=0if dyp =0 ( )

The computation of the member dependent parameters, ¢, and k,.1s also similar to the one described
in section 10.4.2 for bending effects as discussed in the following paragraphs.

Consider a monotonic loading on a RC element; The Equation (11.3.12) relates the shear force with
shear damage. The value of damage d, that corresponds to the first plastic force is given by the follow-
1ng equation:

2
LV’ =2GA(1-d_ ) |R, +q, (11.4.5)

: 1—-d

sp

In(1— dsp)]

The yield function is equal to zero for the plastic damage value dsp with no plastic distortion; thus,
the parameter, k_, is the effective plastic shear force:

> Mog?

k, =—= 11.4.6
. 7 ( )

The yield function is also equal to zero when the shear force reaches its ultimate value, thus, the last
parameter, ¢, can be computed as:

1-d

s

v
Vo _ ko‘g] (11.4.7)

where fyf is the ultimate plastic distortion (see section 7.3).

11.5 ANALYSIS OF DUAL SYSTEMS
11.5.1 Formulation of the Problem
Consider a planar frame subjected to an arbitrary mono-sign loading. The problem is defined as:

° Compute: the free displacements, reaction forces, stresses, deformations, plastic deformations and
damages.

e  With the following data: the initial configuration of the structure, the restricted displacements,
the nodal forces corresponding to the free displacements and those applied over the elements, the
material and cross-section properties and yield functions.

e  Such that they verify the nonlinear kinematic and equilibrium equations:
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{A®}, =[B,(U_,),{AU};

{Lt tr} {P t7} { t= tr} Z f fr {Mf fr}
e  The Elasticity Law:

{®), —{®'}, —{v'}, =[F(D.d )] {M}, or (11.5.1)
(M}, = [E(D,d )| {® - " — '},

° The Plastic Deformation Evolution Laws:
d¢f:01fﬁ<0 dd)f:Oiffj<0 d'yp:0if<0
f=0ifdg! =0"|f =0if dp? = 0"|f, =0if dy, =0 ~
° With the Yield Functions:
V
—_— — Cs’yp

1-d

S

f. =

— <
[ k. <0

Ojfof: kaSO;fS: 0s

1
1_dj —d

e  And the damage evolution laws:

Ad =0if G. <R_
J J 0j
2
Ad = 1 <AG > otherwise
7 HR. /8d -
Ad =01 G, < Rm
2
] G
Ad = 1 <AG > otherwise
" OR /6d +
Ad =01 G, < ROS
2
G,
Ad = _ <AG > otherwise
‘' OR /ad

These damage evolution laws can also be included in the framework described in section 8.3.1 with:

VW) = ¢! VW], = o7 VWS, = 7" {VWo}, ={d,d .d } (11.5.2)

Therefore the conventional numerical algorithms can also be used to analyze dual systems. The
problem can be solved with the multi-step version of the step-by-step method.

11.5.2 Numerical Simulation of the Tests Described in Section 11.1.2
The Figure 16a-b shows the experimental results and the numerical simulation of the slender column
(specimen B4 of Figure 3-4) in a graph of deflection vs. lateral force; notice that the numerical results

are very good. The Figure 16c indicates the histories of damage; the DIC analysis validates the large
value of flexural damage (0.58) and the negligible shear damage (0.03) obtained in the simulation.
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Figure 16. Behavior of a slender RC beam in cantilever a) Experimental deflection vs. lateral force b)
Numerical deflection vs. lateral force c) Damage evolution
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The Figure 17b shows the numerical simulation of the longer intermediate beam (specimen B3 in
Figure 3-4). The results of the numerical simulation are also very good. The histories of damage now
are different (Figure 17¢); the final value of flexural damage is also very large (0.74) but shear damage
is now not negligible (0.33). Again, DIC seems to validate this result (See specimen B3 in Figure 4).

The results for the shortest intermediate beam (specimen B2) are shown in Figure 18. The numerical
simulation is good and now the relationship between flexural damage and shear damage are reversed,
final values of 0.48 and 0.84 respectively. This is again true according to the DIC analysis (See speci-
men B2 in Figure 3-4).

The Figure 19 shows the results of the short beam (specimen B1). The numerical simulation is also
good, with low flexural damage (final value of 0.31) and high shear damage (final value of 0.85). The
DIC analysis perhaps indicates a more severe flexural damage than the one given by the model, but the
mechanism of failure appears to be clearly one of shear.

11.5.3 Numerical Simulation of the Tests Described in Section 11.1.3
The Figure 20 and 21 show the numerical simulations of the shear walls subjected to mono-sign lateral

loading and axial force equal to, respectively, 0 and 314 KN (Figure 5-8). In these walls, shear damage
is the main mechanism of failure while flexural damage is small or even negligible.
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Figure 17. Behavior of an intermediate RC beam in cantilever a) Experimental deflection vs. lateral
force b) Numerical deflection vs. lateral force c) Damage evolution
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Figure 18. Behavior of an intermediate RC beam in cantilever a) Experimental deflection vs. lateral
force b) Numerical deflection vs. lateral force c) Damage evolution
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Figure 19. Behavior of a short RC beam in cantilever a) Experimental deflection vs. lateral force b)
Numerical deflection vs. lateral force c) Damage evolution
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Figure 20. Behavior of a RC wall in cantilever subjected to lateral load without axial force a) Experi-
mental deflection vs. lateral force b) Numerical deflection vs. lateral force c) Damage evolution
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Figure21. Behavior of a RC wall in cantilever subjected to lateral load and an axial force equal to 340 KN
a) Experimental deflection vs. lateral force b) Numerical deflection vs. lateral force c) Damage evolution
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11.5.4 Numerical Simulation of the Tests Described in Section 11.1.4

The Figure 22 and 23 show the numerical simulations of RC short columns subjected to axial force
equal to, respectively, 180 KN and 420 KN (Figure 9-11). It is important to underline that the axial
force changes the values of the characteristic moments and shear forces: for first cracking, first yield and
ultimate. Thus, although the model is the same, the procedure for the computation of its parameters is
modified by the presence of the axial force. In the numerical simulation, the two damages reached very
high values simultaneously.

11.5.5 Numerical Simulation of a Test on a Dual Structure

The last validation was carried out using the structure shown in Figure 24. This is a continuous beam
of two elements, one short and one slender, separated by a chunk that represents a column; the beam is
embedded at its ends in two heavy RC blocks that represent fixed supports A mono-sign loading was
applied at the column. The goal of this test is to reproduce the short element effect that is shown in
Figure 1; and then to test the ability of the model to simulate it and recognize the different patterns of
cracking in the structure.
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Figure 22. Behavior of a short RC column in cantilever subjected to lateral loads and axial force equal
to 180 KN a) Experimental deflection vs. lateral force b) Numerical deflection vs. lateral force c) Dam-

age evolution
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Figure 23. Behavior of a short RC column in cantilever subjected to lateral loads and axial force equal
to 420 KN a) Experimental deflection vs. lateral force b) Numerical deflection vs. lateral force c) Dam-

age evolution
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Figure 24. Continuous two element beam
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As expected, the experimental results show moderate flexural damage in the plastic hinge regions of
both elements and severe shear damage in the short beam. The quality of the numerical simulation can
be evaluated in the graph of deflection vs. force for the column shown in Figure 25.

The histories of damage obtained numerically are presented in Figure 26. They can be compared
with the cracking patterns observed in the test. Notice that the simulation is good and that the computed
damage values seem to agree with the observed fracture state.

Figure 25. Deflection vs. force a) Experimental analysis b) Numerical simulation
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Figure 26. Cracking evolution in the continuous beam a) Short element and corresponding damage his-
tory b) Slender element and corresponding damage history
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11.6 SUMMARY AND EQUATIONS QUICK REFERENCE

In this chapter, lumped damage mechanics was extended to the case of dual systems and, in general, RC
structures with elements that have any aspect ratio. An experimental analysis using indicates that two
different sets of cracks appear in walls, squat elements or intermediate elements: one due to bending
moments and another due to shear forces; the former were considered in the previous chapter.

It is important to underline that structural failure due to shear cracking is a much more brittle and
dangerous process than bending collapse. Therefore having a model that can differentiate and quantify
the two cracking processes is very important for the structural safety assessment.

The generalization of the damage model was carried out by using the lumped/distributed plasticity
assumption of chapter 7 with the techniques presented in chapter 10. The numerical simulations of test
on elements with different aspect ratios prove that the new model describes the physical phenomena
(See Table 2).
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Table 2.

ELASTICITY LAW FOR FRAME MEMBERS OF ANY ASPECT RATIO

Lumped/distributed inelasticity model:
Inelastic hinges

Distributed inelastic component

7’ d

-
S

Elasticity law for frame members of any aspect ratio

{®}, ={2"}, +{2"},

p ! ) (11.2.1)
(@), = (B +EL) MY, + (7], + {3}, + (@), + {2,
{’Yd } , - damage related distortion

Damage related distortion

1 1
d G/]'bLb GAbLb
d _ o s 1 1
(') =1C.@N MY, where [C,(¢)] = =0\ e s 0z
0 0 0

Elasticity law in terms of flexibility
{®}, —{®'}, —{+"}, = [F (D, d )} {M}, a123)
[F(D,d)| , =[F],+[E], +[CD)], +[C,(d)], 129

A 1 L 1 .
3EI (l—d’> GAL (1-d) 6EI, GADL (1-4)
Foa)=| it :
’ 6EL, GAL (1—d)  3EI (1-d) GAL (1—d)
0 0 b
EA,

Elasticity law in terms of stiffness
00}, = [E(D.d {2 -2’ '}, [B(D.a | = [F(D.a )]
E(D,d,)

(11.2.5)

: elasticity matrix of a RC element of any aspect ratio

continued on following page
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Table 2. Continued

DAMAGE EVOLUTION LAWS

Energy Release Rates

Complementary deformation energy

W, = (MY {® — " — 5"}, = L {MJ[F(D,d )L {M),
(11.3.1)

The energy release rates
e oW Lm? G oW LmJQ_ G — ow _ LV?
‘T od 6EIQ—dy ' od  eEIG—dy 94 2cA(1-d)

(11.3.2)
vzm%+%yp

Damage evolution law by:
Ad =0if G, <R |Ad =0if G, <R,
G =R ifAd>0"|G =RifAd >0~

Ad =0if G, <R,
G, =R if Ad >0

(11.3.3)

Experimental Measurement of the Shear Damage d.

Deflection =
history 350
' 2 300
% N/ N
. A/ /) N
600 mm g 150 1
1 N L=

0 4 8 12 16 20 24
: : : : : : : :\ Deflection (mm)

First line of the elasticity law (11.2.3)

L 1 L 1

J -
R i aar(i—d)|™ | omr Taan(i—a)™
(11.3.4)
Boundary conditions
ot
mo=PLm, =0 %=

P: lateral force on node 2
t: lateral displacement on the node 2

continued on following page
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Table 2. Continued

Shear damage
BEIGA(1-d)
P=Zd)t—t) t =v'L "  L}GA— IGAd, + 3EI)

; (11.3.6)
p 3GAEI —3ZLEI - ZL'GA
5 = 3
GAB3EI — ' 7) .
Shear Crack Resistance Function
General expression for the crack resistance function
In(1—d
R(da) = ROS + qs %
% (113.8)
Computation of the Parameters R, and q_
Griffith criterion
Lv? _
2 0s s = — _ 5
2GA(1—d,) 1-d, 2
e § (11.3.9)
Parameter R

The condition of cracking initiation (d, =0):
2
cr

R(]s =
ie. 2GA (113.10)

Lv: =

Ci

2GAR,

Parameter g
The numerical resolution of (11.3.11-12) gives: g and d_,

2R[)sdsu B ZROS B qS o qs 111(1 o d‘m) =0 (11.3.11)
2 In(1—-d_ )
LV’ =2GA(1—d R e
u ( su) 0s qs 1 _ d ]
st (11.3.12)

Computation of The First Cracking Shear Force

Cracking shear force

N

V =01714 —— ‘A

(11.3.13)
N: Axial Load in N.

A,: gross area of the concrete section in mm>

{

£

¢ : strength of concrete in MPa.

continued on following page
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Modified Griffith Criteria

Modified Griffith criterion

(Ad =0 if G <R,
2
: G.
Ad = ; — <AG. > otherwise
" OR[0d | R ‘s
[Ad =0 if G <R
J J J
2
1 G,
Ad. = _ = <AG,> otherwise
' OR [0d | R, 74
S (11.3.14)
Ad =0 if G, <R,
2
. G
Ad = B <AG,> otherwise
© OR [0d | R, y

PLASTIC DEFORMATIONS EVOLUTION LAWS

The evolution laws of the plastic rotations corresponding to the inelastic hinges
P ()] P ()3
dp! =0if f <0 [dp? =0if f <0
—0; P —0; P
[ =0if d¢" =0 fj—Olfdngij

(11.4.1)

Cl1—d

J

1-d

m, ) . "Nk, <0
fi:—_cz¢i _ka‘SO f7 _ngbj U

s € k,; and ku,- parameters obtained using the same procedure presented in section 10.4.2.

Effective shear force
1-d  (1-d)L

(11.4.2)

Yield function for plastic distortion with linear kinematic hardening
_ m, +m.
f :‘V—cs'yp -k = T—d ]J;—cs'yp -k <0
(1—-d)

(11.4.3)
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Table 2. Continued

Plastic distortion evolution law
dy, =0 if f <0

f=0 if dy =0
5 P
(11.4.4)
¢, and k: parameters obtained using the same procedure presented in section 10.4.2.

Value of damage dsp that corresponds to V= v,

) > In(l-d)
LV’ =2GA(1-d ) |R, +q, -
» (11.4.5)

Parameter k

P (11.4.6)

Parameter ¢,

1 V

g [ E—

Cs y rl1— d 0s

u s (11.4.7)
p
“ : ultimate plastic distortion

v

ANALYSIS OF DUAL SYSTEMS

Formulation of the problem

- Compute: the free displacements, reaction forces, stresses, deformations, plastic deformations and damages.

- With the following data: the initial configuration of the structure, the restricted displacements, the nodal forces corresponding to the
free displacements and those applied over the elements, the material and cross-section properties and yield functions.

Such that they verify the following equations (11.5.1):

Nonlinear kinematic and Equilibrium equations

{A®}, =[B,(U_, ) {AU}

{L_}={P_} (L} =2 B ) LM,

Elasticity law

{®}, - (@'}, — {7}, =[F(D.d)| {M},
Plastic deformation evolution laws

dp? =0if f <0 [dg? =0if f <0 [dy, =0if <0
f=0ifdg’ =0 |f=0ifdp’ =0 |f=0ifdy, =0

Ay, = [E(D.d)[{® - -},

(o)

With the yield functions:

— m] P k <0 ’rn/7 » V )
fj_ 1—dj_cj¢j N = .f,':m—cigbi —k, <0 f=|—+—c"|—k, <0

1 . s
s

continued on following page

443




Damage Mechanics of Dual Systems

Table 2. Continued

and the damage evolution laws:

Ad =0 itG <R,
J J J
2
Ad = 1 |= <AG. > otherwise
' OR [0d | R, e
J J J
Ad =0 if G <R,
2
: G.
Ad = ; — <A G. > otherwise
' OR [0d | R iy
Ad =0 if G, <R,
] G
Ad = & <AG_> otherwise
" OR [0d R e

11.7 PROJECTS

11.7.1. Generalize the Program Developed in the Project 10.12.1 including the Case of RC Ele-
ments with Any Ratio Aspect
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Chapter 12

Unilateral Damage in
Reinforced Concrete Frames

ABSTRACT

One of the main applications of the lumped damage mechanics or the damage mechanics of dual systems
is the earthquake vulnerability assessment of structures. This means not only the consideration of the
inertia forces but, mainly, the adequate description of crack propagation under general cyclic loading.
Chapter 9 described the concept of unilateral damage (i.e. the appearance of distinct and independent
sets of cracks after loading reversals). This phenomenon can also be observed in RC structures, and the
models presented in Chapters 10 and 11 do not describe it; thus, they should be used only in the cases of
mono sign loadings. The first goal of this chapter is the generalization of the damage models, including
unilateral effects, the next one consists of the development of lumped damage models for tridimensional
analysis of RC frames. Finally, some guidelines for the use of the damage models in industrial applica-
tions are presented.

12.1 ELASTICITY LAW UNDER CYCLIC LOADING
12.1.1 Unilateral Damage in Reinforced Concrete Elements

Figure 1 shows the sequence of cracking patterns in a slender RC specimen subjected to cyclic loading.
The two images of the figure show the cracking pattern corresponding to external forces of different
sign. It can be observed clearly the two distinct set of cracks.
Figure 2 shows the same phenomenon in a wall, the two sets of shear cracks can also be appreciated.
These damage mechanisms can be characterized using unilateral damage arrays as in continuum
damage mechanics (see section 9.2.6): (D"), = (d",d), d’ and (D), =(d,d ), d_; the damage

parameters d; and d:’ represent crack density due to positive bending moments. The variable d:
measures shear cracking caused by positive shear forces. The damage parameters d_, d; and d_ rep-

resent, respectively, damage at plastic hinge i due to negative bending moments, flexure negative cracks
lumped at plastic hinges j and shear crack density caused by negative shear forces (see Figure 3).

DOI: 10.4018/978-1-4666-6379-4.ch012
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Unilateral Damage in Reinforced Concrete Frames

Figure 1. a) Cracking pattern in a slender frame element under negative lateral forces b) Cracking pat-
tern after load reversal

12.1.2 Elasticity Law of a RC Element with Unilateral Damage

Consider again the elasticity law in the case of mono-sign loadings only (see section 11.2):
{®}, —{2"}, - "}, = [F (D, d, )] {M} . The development of this matrix equation gives:

L L Vv
6, =0 =) = |, — o | ——
SEL(1—d) ' GBI | GA(1—d)
L
§=—mn
AE,
L L
¢, ¢!~ =|——Lm, + b——m, v (12.1.1)
6E1, 3EIb(1—d].) GA(1—d,)
m. —+m.
where V = ———~ 1is the shear force.
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Figure 2. a) Shear cracks under positive, nil and negative lateral forces b) Shear cracks after of several
cyclic loads

B A=35mm A= -35mm A=40 mm =-40 mm

Figure 3. Unilateral damage in a RC frame element of any aspect ratio under a) positive actions b)
negative actions
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Following the same procedure described in section 9.2.6, the elasticity law of a damaged RC element
of any aspect ratio under general cyclic loading is obtained by modifying (12.1.1) as follows:

6 — 9"~ = (m )
! ' : 3EIb(1—di+) t 3EIb(1—d;)
= Lb n

AE,
L L L
Qb (bw[ —m  + - <m>+—'
’ 6EI 3EI(1—d) 3EI (1-d)

In matrix notation, the equations (12.1.2) can be written as:

(@), — (@'}, —{+"}, = [Ff (D+)]<M>b + [Ff (D_)} (m)

where [Ff (D*)

and {Ff

+

Lb <V>+ <V>_
) f
- 6EI GA(—d') GA(—d )
(n ) ]+ ) ) (12.1.2)
GAQ-d) GAQ-d)
— " V) r———), (2.19)
Gy (1 —d) a1 —d)

(Df )} are matrices of elastic flexibility with damage but without shear effects;

. _
the terms <V>b and <V>b represent the positive and negative part of a shear matrix for element b:

L

b

3EI, (1-d*")

L
[Ff (D+/f)} _ _ 6EbIb

0

L

b

~6EI
)

b

3EI, (1-d*")

0

b

EA

b

(12.1.4)

The Equation (12.1.2) is again based on the assumption that negative cracks are completely closed
under positive stresses; thus, they have no influence at all on the behavior of the element and vice versa.
In the case of slender elements, where the shear terms can be neglected, the elasticity law becomes

a much simpler expression:

{2}, {2}, =|F,(D")
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12.2 INTERNAL VARIABLES EVOLUTION LAWS UNDER CYCLIC LOADING
12.2.1 Damage Evolution Laws

The same procedure used in chapters 9, 10 and 11 can also be followed in this case; i.e. the complemen-
tary deformation energy is given by:

W= é{M}Z{@ T l{M}' [F (D* )}<M>+ +

L e\ b (12.2.1)
5 O, [F (D )](M), +

1 . -
W{ L(V), eaa—d) V),

now the energy release rates can be obtained for the six different arrays of cracks defined so far:

2
o oW Lb <mi/j>+/, Gt — ow _ LbeF
i/j - N2 s - -
" od) GBI (1- d;") o’ 9a A (1 _ d:/f)z

(12.2.2)

Assuming again that there is no coupling between the different cracking mechanisms, the damage
evolution laws can be defined using six independent Griffith criteria, or their modified versions:

Adjl =0 if GY <R
i/j/s i/j/s i/j/s ; (1223)
GY- =R if Ad'/T >0

i/j/s i/j/s iljls

for the classic version, or

e : Yo pte
Adz/m =0 it G, < By
/_
1 Gi+' S .
AdS = — '/'7/7‘ <A G > otherwise (12.2.4)
/il OR"- R/ /ils
/s i/jls
+/—
9d i/j/s

for the modified one.

The parameters of the six functions of crack resistance can be computed by the repeated application
of the procedures indicated in sections 10.3 and 11.3.; consequently, it is possible to introduce into the
analysis different ultimate moments, under positive and negative actions. This is important in the case
of beams, which often have an asymmetric cross-section or an asymmetric reinforcement distribution
(see example 12.9.1).
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12.2.2 Plastic Deformations Evolution Laws

Consider again the yield function of a plastic hinge in the case of mono-sign loadings only (Equation
10.4.2). Notice that the absolute value of a variable “Y”’ can also be written in a more cumbersome but
completely equivalent way by choosing the maximum between Y and -Y; i.e. in mathematical notation:
‘Y‘ = Maz(Y,—Y) ; therefore, the yield function (10.4.2) can also be written as:

g <0 (12.2.5)
1—d ' - o

2

]::

ko= Maz| et —k N heg? —k
01 1 d R 04’ 1 d R 01

2

This expression can be modified so that unilateral damage is included in the following way:

f= Map|— g —pt — g g
i 1—d7+ (AR 017 1_d7 (A 01

<0 (12.2.6)

The computation of the four parameters c:r/ o k(;/ ~ can be carried out by applying twice the procedure

described in section 10.4.2. Again, these different parameters allow for the consideration of beams with
asymmetric cross section and different resistances under positive and negative bending moments.

Finally, in the Equation (12.2.6) only kinematic hardening is considered. However in section 7.1.6,
it was indicated that there are two hardening mechanism: kinematic and isotropic. In a monotonic load-
ing, any kind of hardening describes the same behavior; in a cyclic one, it is important establishing the
percentages that correspond to each effect. In section 6.3.3, it was indicated that in the case of bending,
about seventy percent can be assigned to kinematic hardening and the remaining thirty to the isotropic
one; the proportion is sixty / forty for shear. Therefore, the yield function of a plastic hinge with damage
and general cyclic moments is:

™ 0.7¢ ¢! — k. —0.3¢/p,
[ = Max : <0;p, = Max
m,
— — +0.7¢;¢" —k,, —0.3¢, p,

o! (12.2.7)

i

Unlike cracking patterns, the number of plastic rotations does not change in the case of cyclic loading,
there are still three of them: the plastic rotation of hinges i and j and the plastic distortion. Therefore,
only three yield functions and evolution laws are needed:

{d¢fzoifﬁ<0 [d¢f=0ifﬁ<0 [deZOifJi<0 (12.2.8)

f=0ifdg! =0"|f =0if dp’ =0 |f =0if dy" =0

with yield functions for inelastic hinge j and shear similar to Equation (12.2.7):
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™ o7 TP — kT —0.3¢"
G P T Ry TGP,

1—d’
f;‘ = Mazx J <0Op, = Max d)f (12.2.9)
j 4P - -
1 e +0.7c, ¢; — ko]' —0.3¢; p,
N 4 —— 0.6c. " —k,, —0.4c p,
f = Max _VS < 0;p, = Maz |y’ (12.2.10)
— 4+0.6c v —k —0.4c_ p
1 o d7 s ,}/s 0s sts

s

12.3 NUMERICAL SIMULATIONS OF THE BEHAVIOR OF
RC ELEMENTS OF DIFFERENT ASPECT RATIOS

12.3.1 Analysis of Frames with Unilateral Damage

The damage model is therefore composed by the elasticity law (12.1.2), the six damage evolution laws
(12.2.3) or (12.2.4) and the three plastic rotations evolution laws (12.2.7-10). This model also fits into
the scheme described in section 8.3. If the modified Griffith criterion is used, the variables of the model
are distributed as follows:

VW =¢'s VW, = ¢! s VWS, = p s VWf, = p, s VWL =775 VIWf, = p,
{VWo}, = (df,d;,dj*,dj’,d:,d;) (12.3.1)

Therefore the step-by-step algorithm applied in plasticity, with the multi-step modification, can be
used again in the numerical simulations. In the following sections, it is presented the comparison between
model and some experimental results.

12.3.2 Numerical Simulation of a Wall Element

Figure 4 shows a wall with an aspectratio equal to 1.27. The reinforcement and cross-section corresponds
to typical configurations for this kind of element (see Figure 4a). The wall is subjected to the deflection
history presented in Figure 4b. The graph of lateral displacement vs. force obtained experimentally is
presented in Figure 5a and the corresponding numerical simulation in Figure 5b.

The histories of shear and flexural damages obtained in the analysis are presented in Figure 6a and 6b.
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Figure 4. a) RC wall cross-section and reinforcement b) Deflection history
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Figure 5. Deflection vs. lateral force in a RC wall a) experimental results b) numerical simulation
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12.3.3 Numerical Simulation of a Slender Column

Figure 7a shows a slender column with an aspect ratio equal to 7.11. The specimen was first subjected
to an axial force of 250 KN and then to the cyclic lateral deflections history presented in Figure 7b; the
axial force was kept constant during the second part of the test. The experimentally curve of deflection
vs. lateral force obtained is indicated in Figure 8a and the numerical simulation in Figure 8b.

The histories of shear and flexural damages are shown in Figure 9. As expected, small values of shear
damage and very large flexural damages were obtained with the model.

12.3.4 Numerical Simulation of a RC Frame

The one span RC frame that is shown in Figure 10a was subjected to the lateral displacement history

presented in Figure 10b.
The graph of displacement vs. lateral force obtained experimentally is shown in Figurella and the

numerical simulation in Figure 11b.
The damage distribution at the final of the test is presented in Figure 12.

12.3.5 Numerical Simulation of a Four-Story RC Frame

Figure 13 shows a full-scale building that was subjected to pseudo-dynamic tests. The building con-
sisted of three frames of two spans in the two orthogonal directions and four storeys (Figure 14); it was
designed according to Eurocode 8.

Figure 7. a) RC slender column cross-section and reinforcement b) Deflection history
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Figure 8. Deflection vs. lateral force curves a) Experimental b) Numerical simulation
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The geometry of the structure and the reinforcement details of the elements are presented in Figures
14, 15, and 16.

The pseudo-dynamic tests were performed using an artificial accelerogram derived from the 1976
Friuli earthquake. The signal was generated to fit the elastic response spectrum of the Eurocode 8 with
a peak acceleration of 0.3g. Two tests were performed; in the first one, called low level pseudo-dynamic
test, it was used the reference signal multiplied by a factor of 0.4 and in the second one, the high level
test, an intensity factor of 1.5 was used. The peak ground accelerations were then, respectively, 0.4 x
0.3=0.12 gand 1.5 x 0.3 = 0.45 g. The resulting displacements of each level for the low and high level
tests are shown, respectively, in Figures 17 and 18.

The numerical simulations of the tests were performed using the model described in sections 12.1
and 12.2. Figure 19 shows the experimental and numerical histories of the base shear obtained for the
low level test and Figure 20 the corresponding to the high level test.

The experimental and numerical base shear vs. top displacement diagrams for the low and high level
tests are presented, respectively, in Figures 21 and 22.

454



Unilateral Damage in Reinforced Concrete Frames

Figure 10. a) RC frame b) Lateral displacement history
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Figure 12. Damage distribution at the final of the test
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Figure 13. RC building tested at the ELSA Laboratory of the Joint Research Centre (copyright © Eu-

ropean Union)
12.13. Negro, P.; Verzeletti, G.; Magonette, G.E., & Pinto, A.V. (1994). Retrieved January, 29 2014 from https.//lh4.ggpht.com/
TMiJOso-NTHNeqdUKkFYuD21qdm5ULIuxKnM-1eY _gxPPmtBqKUG60LENYnYjkPiZs8s9Uw=s130.
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Figure 14. a) Geometry of the structure b) Reinforcement details of the elements
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Figure 16. Longitudinal steel bar in beams of: a) Frame B and b) Frames A and C
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Figure 18. Displacement history applied at each level for the high level test
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Figure 21. Low level test: base shear vs. top displacement diagrams: a) Experimental b) Numerical
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The damage distribution at the final of the low level test is presented in Figure 23 and the results for
the high level test in Figure 24.

12.4 DAMAGE IN A RC WIDE BEAM-COLUMN JOINT

12.4.1 Constitutive Equations

Consider again the case of wide beams discussed in sections 6.6 and 7.1.7. In those previous sections
only two inelastic phenomena were taken into account: yield and slip of the longitudinal reinforcement.
In this section, the model presented in section 7.1.7 is generalized including of concrete cracking using
the damage concepts already discussed.

The elasticity law of an element representing a wide beam is given by (12.1.5); i.e. shear deforma-
tions are neglected in this case. The damage evolution laws are also defined by the classic or modified
Griffith’s criteria (12.2.3) or (12.2.4).

The yield functions of hinges i and j are the ones described in section 7.1.7 except that they are modi-
fied using the hypotheses of equivalence in deformations and of unilateral damage:
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Figure 23. Damage distribution at the final of the low level test a) Frame B b) Frames A and C
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f = Max(f’, f*); f, = Max(f", [") (12.4.1)

The yield functions f’ and ij are identical to those presented in (12.2.7) and (12.2.9); and the slip

functions with damage are derived from Equation (7.1.18) using again the concept of effective moment:
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M et L — Mt 6“7/‘ )
sl 1- d+ " sli 1- d+ N
" = Max i S = Max i (12.4.2)
om M o~ el o™ - o i)
1—d- ' 1—d- 0j

The four parameters nf/;* are determined assuming that concrete cracking evolution restarts only

when the reinforcement no longer slips and starts yielding again. In mathematical terms, this hypothesis
is stated as follows:

f''=f" =0for G = R(d) (12.4.3)
This condition leads to the following expression:

/7
R(d!")
i/j

1 (m -.F/._ )2 FO
0t (d ) == il (12.4.4)
P2 bRy - dY
i/j i/j —k +/- + d+/*k +/-
FO yi/j i/ yilj

¢ (11— d;j/._) In |2

The parameter 77 determines the point of intersection between the slipping curve and the yielding:
high values of n produce a more stiff behavior because slipping of the reinforcement stops faster (see
Figure 25a). On the other hand, 1 decreases with damage (see Figure 25b); thus, according to the
model, cracking of concrete produces an internal slipping of the reinforcement. That is, a slip hinge with
damage shows a slower recovery of the slip resistance during the process of confinement of the rein-
forcement.

Figure 25. a) Behavior of an inelastic hinge with slip and yielding b) Influence of the parameter n and
d
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12.4.2 Numerical Simulations of Interior Wide Beam-Column Connections

Figure 26 shows the geometry of two interior wide beam column joints called WB-1 and WB-4; the
dimensions of the elements and the reinforcement are presented in Table 1. The boundary conditions
and the applied drifts history are shown, respectively, in Figures 26b-c. Notice that the only difference
between WB-1 and WB-4 is the beam width.

In Figure 27 are shown the experimental and numerical simulation drift vs. load curves of the joint
WB-1 and the results of the WB-2 are presented in Figure 28. The damage distributions are presented
in Figure 29.

12.4.3 Numerical Simulations of Interior Normal Beam-Column Connection

Figure 30 shows an interior beam-column connection. Notice that the beam has typical cross-section
dimensions.

The experimental and numerical results of the test are presented in Figure 31. The damage distribu-
tion at the final of the test is shown in Figure 32.

Figure 26. a) Geometry of the wide beam-column connections b) Boundary conditions c) Applied drifts
history

Rigid Wall

A T
y WB-4
] Hydraull o geel Support 'WB-l i it Steel Suppc!t
o Pinnedjoiu.tf - v
A Column A . View A-A
]St_eel Support Steel Suppolﬁrt P
i Wide beam WB-1 and WB-4 ci|| 7250 by,
hc h
Pinned joint % 53 .
\ Ll Finnedjolnt Rigid Bese Cross-section Cross-section
of Column of wide beam
120.00 cm
Drift (%) _
B L C _s A
x 2 A A / \
z ! A A A
72.50 om -;CVA/\/\/\/\ [\ [ '\
g e A Ay
S 2
& 2 v V
b 0 00 200 300 400 500 600 700
e Time (sec)
% cm

463



Unilateral Damage in Reinforced Concrete Frames

Figure 27. Drift vs. load curves of joint WB-1 a) Experimental b) Numerical
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Figure 28. Drift vs. load curves of joint WB-2 a) Experimental b) Numerical
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Figure 30. a) Geometry of the normal beam-column connection. All dimensions are in cm. b) Boundary
conditions c) Applied drifts history
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Table 1. Dimensions and reinforcement of interior joints WB-1 and WB-2

Label Column Wide Beam Wide Beam Rebars Column Rebars
b, (cm) h_(cm) b, (cm) h, (cm) Long. (mm) Trans. (mm) Long. Trans.
(mm) (mm)
WB-1 20.00 20.00 17.60 12.50 4-D10 2-D4@50 20-D10 2-D6
WB-4 71.94 12.50 16-D10 8-D4@50
Figure 32. Damage distribution
00<d=0.2
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® 03<«<d=04

04 <d=0.5

05<d<0.6

®
®
@ 06<d<07
O d>07

12.4.4 Numerical Simulations of Exterior Wide Beam-Column Connection

Figure 33a shows the geometry of an exterior wide beam-column joint. Figure 33b shows reinforcement
details and in Figure 34 is presented the boundary conditions and the applied drifts history.

In Figure 35 are shown the experimental and numerical simulation drift vs. load curves and the dam-
age distribution are presented in Figure 36.

12.5 TORSION DAMAGE

12.5.1 Experimental Behavior of a RC Element under Mono-Sign Torsion

Figure 37 shows a square RC column built in cantilever and subjected to pure torsion. At the top of the
column was built a rigid beam where the torque, shown in Figure 38, was applied. Notice that the pure
torsion was generated by the application of opposite forces with the same magnitude on this beam.

Figure 39 shows the cracking pattern at the final of the test. Note that cracks with an inclination of
45 degrees are spread along the specimen in a uniform way.
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Figure 33. a) Geometry of the wide beam-column connections b) Reinforcement details. (All dimensions
are in cm.)
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12.5.2 Constitutive Equations for Mono-Sign Torsion

Following the conventional damage mechanics procedure, the angle of twist can be expressed as:

Lo
=m —+9¢ +¢’ 12.5.1
¢.’L‘ z GJ (b.L ¢z ( )
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Figure 35. Drift vs. force curves a) Experimental b) Numerical simulation
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where m_—— is the elastic rotation (see section 2.5), ¢” is the plastic twist due to reinforcement yield-

ing and qﬁj is the additional twist due to concrete cracking. If the distributed damage model is used and
according to the hypothesis of equivalence in deformations, the latter term can be written as:

dL

— "y (12.5.2)
(1—d)GJ

¢ =

where d_is the torsion damage. This variable takes values between zero and one as usual and represents
concrete cracking that is assumed to be evenly distributed along the element. The elasticity law of a
damaged RC element subjected to torsion only is therefore given by:
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Figure 37. Square RC column built in cantilever and subjected to pure torsion
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The deformation energy due to torsion is, therefore, given by:

1 o1
W—gmz(éﬁ ¢l)—2

(1-

m*L

xT

d)GJ

400 600 800

Time (sec)

1000

(12.5.3)

(12.5.4)
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Figure 39. Cracking pattern at the final of the test

and the energy release rate due to torsion is:

2
L
g oW _1_m- (12.5.5)
’ 8dz 21— dz) GJ
The Griffith criterion for torsion cracks is then:
G, < R(dz) (12.5.6)

where R(d ) is, again, the crack resistance to torsion. Notice that the elasticity law (12.4.3) and the rela-
tionship between force and deflection in a simply supported beam subjected to a concentrated load (see
section 10.3) are similar; therefore the method of stiffness variation can be used without modification.
The resulting graph of crack resistance against damage is presented in Figure 40.

Notice that these experimental results are also similar to those obtained in bending and shear; there-
fore, the same general expression of the crack resistance can be used once more:

In(1-d)
1—d

T

R(d)=R, +q, (12.5.7)
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Figure 40. Torsion damage vs. Energy release rate
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The yield function in torsion obtained from the hypothesis of equivalence in deformation is:

mr ¢P
——c¢
1—d *

x

— |l p
f=lm, —co!

—k, =

T

—k, <0 (12.5.8)

The parameters of the model (R,, g, ¢, and k,) can also be computed with the same procedures
described in the cases of bending and shear (see sections 10.3.3 and 10.4.2); therefore, the values of the
first cracking torque M _, ultimate torque M _, first plastic torque M, torque and ultimate plastic rotation
@” in torsion are needed.

The analysis of the ultimate plastic torque was already discussed in section 7.4.3. The determination
of the interaction diagrams for the remaining properties of the cross-section is described in next sections

12.5.3 Determination of the First Cracking Torque

The first cracking torque M is assumed to occur when the principal tensile stress reaches the value

\/fj . For members subjected to torsion and axial force, the first cracking shear force can be computed

with the following expression:

(12.5.9)
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where N is the axial force in N, Acp is the area enclosed by outside perimeter of concrete cross-section
in mm?, », is the outside perimeter of concrete cross section in mm, A, is the gross area of the concrete

section in mm? and f( is the strength of concrete in MPa.
12.5.4 Determination of the First Plastic Torque

The first plastic torque is defined as the level of torque that initiates yielding of the stirrups or ties in the
element can be computed with the expression:

M, =Q o*yf N.mm (125.10)

where x and y are the dimensions of the cross-section (for z < y), and 2 varies from0.166for y / z =1
t0 0.249 for y / x = o0.

12.5.5 Determination of the Ultimate Plastic Twist

The ultimate plastic twist ¢’ is computed as:

" =0 L

ur ur

0? — _ _ UL UL

0
ur ur er (GC)U GJ

4E A’A
(GO), = — (12.5.11)
16nA{,p 1 1
e S
Poty PPy

where (GC), is the ultimate torsional rigidity, GJ is the initial torsional rigidity, £ is the modulus of
elasticity of steel, A@p is the area enclosed by outside perimeter of concrete cross-section, A is the area
enclosed by the centerline of shear flow zone, p, is the perimeter of the centerline of the shear flow
zone, n = ES / Ec st is the thickness of shear flow zone, p, = Al / Aw 1s the total volumetric ratio of
longitudinal steel, p, = Astp / AC],S is the volumetric ratio of transverse hoop steel, ¢” is the ultimate

plastic unitary twist, 6 is the ultimate unitary twist and ¢  is the elastic unitary twist.
12.5.6 Experimental Behavior of a RC Element under Cyclic Loading

The column shown in Figure 37 was subjected to cyclic torsion loads. The loading path is presented in
Figure 41.
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Figure 42 shows the cracking pattern at the final of the test. Notice that the cracks with an inclination
of 45 degrees are distributed along the specimen in both directions.

12.5.7 General Constitutive Equations for Torsion Damage

The cracking patterns described in the previous section indicate the presence of the unilateral damage
phenomenon; thus the conventional damage mechanics procedure can be used again. Therefore, the
elasticity law with unilateral damage becomes:

L L
+ —)GJ <m>_ (12.5.12)

e

The energy release rates and the crack resistance functions for unilateral torsion cracks are:

2
L -
G- _1 <mz>+/_ R=R" 1 ¢ In(l—d”’")

= ; , , (12.5.13)
x ) (1_d:r/—)2GJ 0z z 1_d1+/,
The yield function is also similar to those used in bending and shear:
m 1
— - 0.8¢ ¢! —k, —0.2¢ p,
[, = Maz < 0;p, = Maz ¢ (12.5.14)

B 408~k —0.2¢"
_1 + 'Cz'('b:ﬂ_ 0z 'Czpz

T

12.5.8 Numerical Simulations

The tests described in sections 12.4.1 and 12.4.7 were simulated using the described model. In Figure
43 are shown the experimental and corresponding numerical simulation of the specimen subjected to
mono-sign loads and in Figure 44 the results of the column subjected to cyclic loads.

12.6 DAMAGE MODEL FOR TRIDIMENSIONAL FRAMES
12.6.1 Constitutive Equations

The tridimensional elasto-plastic model described in section 7.5 is generalized including concrete crack-
ing. Consider a slender element; the same lumped/distributed inelasticity model introduced in that sec-
tion is used again. Unilateral damage in the element can be characterized by the introduction of two sets

of damage for the element: (D*/") as in the planar case. Each set includes a torsion damage variable

b
and two bending damage measures for every plastic hinge; one due to moments around the local axis Y,

and the other related to bending around the axis Z,:
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Figure 41. Loading path
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where d;/ ~ represents concrete cracking densities lumped at the plastic hinge i due to positive/negative
bending moments around the local axis Y,. The variables djfy/ -, d;/ -, d;/ ~ must be interpreted likewise

(see Figure 45) and d:/ "~ are, again, torsion damages.

The elasticity law (12.1.5) may also be used to represent unilateral damage in this case, but with the
stress and deformation variables employed in section 7.5 and the following flexibility matrices:

Lb _Lb 0 0 0 0
31— da/ e 6EI"
Yy Yy Y
5 i 0 0 0 0
6EI" 30—t/ e
Y JY Y
AE
0 0 b 0 0 0
+/- b
[FD" )= I I
0 0 0 b b 0
s —dt/ et 61"
0 0 0 b ] 0
6£1° 30— dt/ ")
z jz 2
G,
0 0 0 0 0 /
+ —
a-d/ ),

(12.6.2)
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Figure 42. Cracking pattern in a square element subjected to cyclic loads

Figure 43. Torque vs. Angle of twist corresponding to the mono-sign loads a) Experimental b) Numeri-

cal simulation
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Unilateral Damage in Reinforced Concrete Frames

Figure 44. Torque vs. Angle of twist corresponding to the cyclic loads a) Experimental b) Numerical
simulation
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Figure 45. Damage variables in a tridimensional element
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The yield function of an inelastic hinge in a tridimensional frame is obtained by modifying the yield
function (6.5.24) with the unilateral damage concept and the hypothesis of equivalence in deformations,
therefore:

v

MNu 1 iy ) iy + » _ 1 iy /gy - P
fyyj = Moa R L )y MWy gy | _ ~ 7 iy gy ™ ™ iy y *
koo (nym ) \1—d. . koo (nym ) —-d. .
Oiy/jy~" "w iy/jy + O/jy e iy/jy +
14
1 77L’. - 1 *77&]. ; _
Maz i/ 52 —c.Jr . (n,m )a’)p . ; iz 52 +c. . (n,m ). . -1
N : iz] jz iz ) gz B B iz/ jz iz ) gz
ko (nym ) \1—d._,. ky. . (nym ) \1—d. ,.
iz/ jz T iz) jz n 0iz/ 52 T iz/ jz 4
(12.6.3)
The Griffith criteria for a tridimensional inelastic hinge are:
+/- =)t - — +/-.
Gi:l//jy - R(di,f//jy’n)’GiZ/jz - R(dif:/jz’n) (12.6.4)
where the energy release rates, or “damage driving moments” are:
L < ’ L ’
m,) (m.,,)
- ow _ AT e Gt = ow _ b\ izfgE [ (12.6.5)
iy/jy +/- _gt/=\2 Y Tiz/ gz +/- /2 o
8diy/j?/ 6E]b (1 diy/.i;l/) adiZ/jz GEIb(l diZ/J'z)
And the crack resistance functions:
In(1—d"7)
/=N /- +/— /gy’ .
R(diy/jy) - RUfy/jz/(n’ m:r:) + By iy (n’ m, 1-— d+/*) ’
i (12.6.6)
+/- +/= +/= ln(l B d;//;z)
R(dzz/Jz) = Rﬂiz/jz (n’ ml‘) + qiz/jz (n’ mf):) (1 _ d+/_)
iz/jz

The torsion and bending effects can be assumed to be uncoupled.

12.6.2 Numerical Simulations

Figure 46 shows a square RC column built in cantilever. The specimen was subjected to displacement
controlled in the Y-direction and force controlled in the Z-direction at the Joint Research Center in Ispra,
Italy. The constant level of Z-force is gradually increased, while in the orthogonal direction the same
set of three deflection cycles with linearly increasing amplitude is applied for each level of the Y-force.
The loading path is indicated in Figure 47a.
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Figure 46. Schematic representation of a RC column subjected to biaxial bending tested at the Joint

Research Center in Ispra, Italy
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Unilateral Damage in Reinforced Concrete Frames

In Figure 47b are presented the numerical responses. The experimental results can be found in the
seventh reference of the bibliography included at the final of the chapter.

The second example consists in the numerical simulation of a test carried out at the University of
California, Berkeley. The two-story framed structure represented in the Figure 48 was subjected several
times to ground displacements histories derived from the Taft earthquake record. The structure was
placed with an angle of 25° with respect to the axis of the shaking table motion. Thus, the structure was
subjected to biaxial solicitations. First two low intensity shakes, with peak acceleration amplitude of
0.06 g, were applied on the structure. The goal of this loading was to induce minor cracking in the virgin
frame to replicate the condition of a real structure which has seen service loading. Then the structure
was subjected to a severe shaking with a peak acceleration of 0.685 g.

The beams and columns of the structure were represented with the model described in this section.
Standard elastic plate elements (Kirchoff theory) were used to represent the first and second floor slabs.
The numerical results obtained after the severe shake are shown in Figures 49 and 12.50. In the Figure
49, the experimental and computed displacements of the first floor are presented. Figure 50 shows the
computed and observed local behavior of one of the columns of the first floor.

The damage state after the first low intensity shake can be observed in the Figure 51a. In this figure, the
maximum values of damage of each hinge (there are four values per hinge) are shown. It can be noticed
that no value exceeded 0.26. This corresponds indeed to minor cracking that does not need reparation.
The Figure 51b indicates the final state of damage after the numerical simulation.

Figure 48. Frame structure subjected to earthquake loading Courtesy of NISEE-PEER, University of
California, Berkeley
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Unilateral Damage in Reinforced Concrete Frames

Figure 49. Displacements of the first floor: a) longitudinal direction, experimental b) longitudinal axes,
numerical c) transversal axes, experimental d) transversal axes, numerical
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Unilateral Damage in Reinforced Concrete Frames

Figure 51. Damage distribution in the frame: a) after a low intensity shake b) after a severe shake
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12.7 SUMMARY AND EQUATIONS QUICK REFERENCE

B

@071

In this chapter, the unilateral damage concept was added to the procedures presented in chapters 10 and
11 in order to model the cyclic behavior of RC structures. As a result, models for planar frames, dual
systems, torsion and tridimensional frames were developed. The numerical implementation of those

models is the same to the one presented in sections 10.7 and 11.5 (See Table 2).

Table 2.

ELASTICITY LAW UNDER CYCLIC LOADING

Unilateral Damage in Reinforced Concrete Elements

continued on following page
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Table 2. Continued

L L V
Elasticity law in the case of mono sign loadings ¢1 — gbzp — ’75 = b m, — bm +
3EIL(1—d ) 6EI, '| GA(l—d)
L L
§ = bnqu_(b;)_,yf:_ bmi —bmj _i_L
AE, 6EI, 3EI(1—d) GA(1—d)
m. +m,
= L (12.1.1)
b
Elasticity law of a damaged RC element of any aspect ratio under general cyclic loading
(v
L L L Vv V
¢—¢”—7”:—b<m> +—"<m>— —m |+ AN + <>
' ' ) 3BI(1—d") " "'t 3EI(1-d) " 681 GA(1—-d') GA(1—-d)
L
§=—2-n
AE,
L L L Vv 14
PP SO S R S A PO U/ A 4
! ! ’ 6B 3EI(1—d)) Tl 3EI(1—d ) )eAQ-d) GA(-d)
(12.1.2)
Elasticity law of a damaged RC element of any aspect ratio under general cyclic loading
+ - + 1 -
(®} —{®"} —{+'} =|F (D)|(M) +|F (D )|(M) + —— (V) + v
b b b [f( )]< >b [f( )}< >b GAb(l—d:)< >b GAb(l_ds)< >b
(12.1.3)
Ll) Lb
31, (1-d*") 6EI, v
+/- Lb Lb - o
ED)=] - V), =)
! 6EI, 3EI, (1-d") b +-
b J 0
L
0 0 Eb
AZ’ (12.1.4)

Elasticity law of slender RC elements

(@}, — (@'}, = [Ff (D7)

(M),

+|F

f (Diﬂ <M>; (12.1.5)

INTERNAL VARIABLES EVOLUTION LAWS UNDER CYCLIC LOADING

Damage Evolution Laws

Complementary deformation energy

W= %{M}Z{q’ - 7"}, =
- %{M}; F, (D7) (M), + % {y; [E, (D) {n),

(12.2.1)

1
+ _
2GA(1—d))

M} (v

+ 1 :
b s ™

v,
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Table 2. Continued

The energy release rates

2 2
oW L <m7;/‘j>+/_ G:/— _ ow L(,V+/_

ili T - = od —atY
'ody GRI(-dj) : 2G4, (1 d")

(12.2.2)
Damage evolution laws
- : +/- +/-
Ad,, =0 it G, <Ry,
+/= _ pt/- : +/-
Gin = By if Ady;, >0 (1223)
for the classic version, or
- : +/- +/-
Ad,;, =0 it G <Ry
2
1 |G,
Ad?T = —— | b <AG.+/.7> otherwise
i/j/s 8R+/7 R+/— i/jls |,
i/j/s i/j/s
odi
#ils (12.2.4)

for the modified one

Plastic Deformations Evolution Laws

Yield function for mono sign loadings

f 7 p
==
’ 1-d e

i

— k= Maz| - —cd’ —k ,— ™ +co? —k |<0
0i 1 d i 077 1 d AN 0i | —

(12.2.5)

Yield function with unilateral damage

f = Maz 1m2z+ —cr —k _%+C;¢;’—k& <0

i 04’
S : (12.2.6)
Yield function of a plastic hinge with damage and general cyclic moments
1 mzﬁ —0.7¢7¢" — kT —0.3¢p,
[, = Max mi <0
. ldf +0.7¢, ¢! =k, —0.3¢, p, p. = Maz|¢’
v ; (12.2.7)
Evolution laws in the case of cyclic loadings
dg! =0if f <0 |d¢? =0if f <0 |dy" =0if f <0
f=0ifdp! =0"|f =0if dp! = 0"|f =0if dy" =0 a8,

continued on following page
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Unilateral Damage in Reinforced Concrete Frames

Yield functions and evolution laws with plastic rotation of hinges i and j and the plastic distortion

m.
- QF —0.7¢/¢7 — k:;] — 0.30‘j+p]v
fj:Maac g SO;P]-:MCW ¢jp
j — — —
14 +0.7¢, qﬁj’? _kOj —0.3¢; p,
J (12.2.9)
V__ 0.6c v —k —04cp
1_ d+ sfys 0s s s
f. = Maz ] VS <0;p, = Mazx y?
— —+0.6¢c,v" — k,, —0.4c p,
s (12.2.10)

NUMERICAL SIMULATIONS OF THE BEHAVIOR OF RC ELEMENTS OF DIFFERENT ASPECT RATIOS

Variables of the model

Analysis of Frames with Unilateral Damage

_ g D) =)
VWS, = ¢! , |

t_ gt - g+ g— gt -
{VWo}! = (d,d",d".d; d’,d)

1 0

(12.3.1)

VWi =p, VW, =~" VW[, = p,

DAMAGE IN A RC WIDE BEAM COLUMN JOINT

Constitutive Equations

J

Yield functions of hinges i and j by yield and slip effects

f; — Max(ﬁy’ﬁslip); f; — MGZE(f;_y,fSZip)

(12.4.1)
P
i and "/ are presented in (12.2.7) and (12.2.9)
m1 M+ (”+¢p> J _ +v e(”r#’f)
_ T 5 Mt iy 1— d; 07
ﬁslw — Maz i f] Mazx
__ M M- e i) - M e (n;¢})
1-d- " 1—d; '
i J (12.4.2)
+/—
- i/
Determination of parameters :
y _ psip __ _
fr=rr=0 for & = R(d) (12.4.3)
R(d'™)
cj/f(l - dj/f) In|2 7'/]2
I¥] I¥] m +/7 FO
b g 1 0i/j
n/ (diT) ==
i/j i/J 2 +/— +/—\2
OR(d" ) (1—d*/)

i/j i/j

FO

.t/ +/=1. +/—
kyi/]‘ +di/]’ kyi/j
(12.4.4)
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Table 2. Continued

TORSION DAMAGE

Constitutive Equations for Mono Sign Torsion

Angle of twist

L a
¢, =m,——+¢, +&
’ G T T aas

L

T
GJ : elastic rotation
¢p
T : plastic twist due to reinforcement yielding

g,

° : additional twist due to concrete cracking

Additional twist due to concrete cracking
] d.L
d).’l,‘ = mﬂ?
(1—d)GJ
T

d : torsion damage
«

(12.5.2)

Elasticity law of a damaged RC element subjected to torsion only

L
= GJ ,
S = e ™ m=-d) =6, 4
« ;o L (125.3)
Deformation energy due to torsion
1 1 mL
W=-m(p —¢)=-———
2 2 (1—d )GJ
z (12.5.4)

Energy release rate due to torsion
o oW _1 m’L

T 0d 2(1—-d )GJ

v z (12.5.5)

Griffith criterion for torsion cracks
G <R(d)

x z7 (12.5.6)
R(d ): crack resistance to torsion
Crack resistance for torsion cracks

In1—4d)
Rd)=R +q ——=
z (12.5.7)
Yield function in torsion
m

f:‘mﬂﬂ_cfd):_koz:l Id _cr(bf_k()ago

(12.5.8)

R, q,, c and k, can be computed with the same procedures described in the cases of bending and shear (see section 10.3.3 and 10.4.2.

continued on following page
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Table 2. Continued

Determination of the First Cracking Torque

First cracking torque

- A N
M, =033Jf |=2| I + —=——N.mm
Py )\ 0334 1

(12.5.9)
N: Axial force in N

P : area enclosed by outside perimeter of concrete cross section in mm?

P : outside perimeter of concrete cross section in mm
A,: gross area of the concrete section in mm?

{

¢ : strength of concrete in MPa.

Determination of the First Plastic Torque

First plastic torque

M =Q2 'N.mm
pe y\/E (12.5.10)

Ty,

x and y: dimensions of the cross-section (for

Q varies from 0.166 for Yy / =1 and 0.249 for 7 / T =00

Determination of the Ultimate Plastic Twist

Ultimate plastic twist

2
(GC), = 1645“4“4”
n cp 1 1
[— _ — Muz _ Muz p() @ _|_ I + R
¢r =0'L T T (GC), G Pt pop,

; ; (12.5.11)
GJ: initial torsional rigidity

s : modulus of elasticity of steel
P : area enclosed by outside perimeter of concrete cross section
0 : area enclosed by the centerline of shear flow zone

Py : perimeter of the centerline of the shear flow zone

n:ES'/EC

d : thickness of shear flow zone

p =474, o .-
: total volumetric ratio of longitudinal steel
p, =At | As

P yolumetric ratio of transverse hoop steel

General Constitutive Equations for Torsion Damage

Elasticity law with unilateral damage

oL m _ L m

(12.5.12)

continued on following page
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Table 2. Continued

Energy release rates and crack resistance functions for unilateral torsion cracks

2
L _
G — 1 <mz>+/, R=R" 44" 1n(1_dz+/ )
T2 -d7)yaJ v Too1-d
z ; T (12.5.13)

Yield function

m
L——0.8c ¢’ —k —0.2¢c p

gt
[, = Max v <0
’ m

7 ‘—+0.8¢c,¢" —k, —02c p,

—d p, = Maz|¢”

T T

(12.5.14)
DAMAGE MODEL FOR TRIDIMENSIONAL FRAMES

Unilateral damage

B e W B B e B B e B
(D7), = (=, dm,d " d7 ", dr)

T b (126.0)
+/= g+/-
: Concrete cracking densities lumped at the plastic hinge i and j due to positive/negative bending moments around the local

axis ¥,
ddr

,a,

” % . Concrete cracking densities lumped at the plastic hinge i and j due to positive/negative bending moments around the local
axis Z,
d-

T :torsion damages.

Flexibility matrices

L ~I
- - 0 0 0 0
3(1—d")El' 6EI"
iy Yy Yy
~L L
- : 0 0 0 0
6EI" 3(1—d)El
Y Jy Y
AE
0 0 : 0 0 0
F(D )] = g
Lb _Lb
0 0 0 0
3(1—d")EI 6EI'
7Lb Lb
0 0 0 0
6EI" 3(1—d")EI
GJ
0 0 0 0 0 ——
(1—d")L,

(12.6.2)

continued on following page
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Table 2. Continued

The yield functions on hinges i and j:

v
1 mu// 7y + P 1 _mu// 7y - P
f:/] = |Maz + + B Cw//v (TL, m'x )(bru/w ; - . + Cu///v (’ﬂ, m'z )(bu//]q +
k' (n)\1—d k- (n)\1—d
+ Oiy/ jy iy/jy +
v

Oiy/ gy iy/jy

1 ™ 1 -m,,
M(J,[L' iz/jz _ C'f/ ’ (n7 m )¢11/ : z[ + Cj/u(n7 m )Qbi’ ) o 1
kDo (m)\1-d’ )k, ) \1—=d v

0iz/j iz/ gz /42

(12.6.3)

The Griffith criteria for the tridimensional model

A - A +/-
Giy/.i;l/ o R(diym,n)' Gz‘z/]‘z o R(diz/jz,n) (12.6.4)

where the energy release rates:

2 2
/- ow B Lb <miy/jy>+/7 G+/_ B oW B Lz, <miz/j2 >+/7
Y gdr GEL(—d Y T ad 6EIL(1—d )
i/ y b : iz/ jz b

i/ jy #/727(12.6.5)

The crack resistance functions

R d+/f - R +/- +/- ln(l B d’:;f:) .
(dy)3) = Boyys, (o, ) + 4,5, (n, mz)m»
iy/.;y
In(1—d'/")
/- /- /- iz jz
R(d;r/jz) - RO;;/jz(n’ ml') + q;;/jz(n’ mz) (1 _ d+/_])
/32 (12.6.6)

12.8 EXAMPLES

12.8.1 For the Structure That Is Shown in Figure 52 Carry out the
Numerical Simulation Using the Unilateral Damage Model

The aspect ratio of the element is:

4 _ ﬂ(; —11.21> 6.5 (12.8.1)

This beam can be classified as slender (see Chapter 2, section 2.7.3) then, shear effects are neglected.
Section properties M ;/ .M ;/ .M :/ ~,and qﬁ: 7 are computed following the procedures described,

respectively, in sections 10.3.4, 6.5.4, 6.5.5 and 6.5.6. As the beam is asymmetrically reinforced, these
values are different for ends 1 and 2. These values are presented in Table 3. Positive properties at end 1

and negative at end 2 are computed considering A =5.7 cm’ and A ' =8.55 cm” ; the negative prop-
erties at end 1 and positive at end 2 are computed considering A =8.55 cm’ and A ' =57 cm’ . The

plastic hinge length is obtained with Equation (6.5.20) resulting a value L = 60cm.
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Figure 52. a) Structure geometry, section of element and material properties b) Displacement history
applied at the free end of the beam (node 2)

1 | Material Properties:
i m
Steel: £:=40000 N/em?
fou= 60000 N/em?
T " 650 em E=2.0x10" Nem?
® 6 &=0.002
o N otirrup # 3 Concrete: fe= 2070 Niem?
@0.08m &,=0.002
A 650 e &= 0.0038
fi=010f1"
30 em

Cross-section

Displacement (cm)

01 9 20 21 22 32 60 61

Increment

With these properties, model parameters R/, ¢*/~, ¢

/~ and kgr /~ are computed using the proce-
dures described in sections 10.3.3 and 10.4.2. The model parameters are presented in Table 4.

The generalized displacements and nodal forces matrices for the beam are, respectively,

O ult
O wl/’
0 R,
(U=, i{Pr= 0 (12.8.2)
2t
wQ[ Rer
6, 0
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Table 3. Section properties of the cross-section

Unilateral Damage in Reinforced Concrete Frames

M = M, = 4.62x10°N.em

crl c

Mt = M =481x10°Nem

cr2

M;l = Mp’2 = 1.11x10" N.cm

M*" = M~ =164x10'N.cm
P2 pl

M = M, =1.17x10'Nem

ul u

MY = M =171x10'Ncm
u2 ul

4 _
X1 = Xpo = 4.87x107 rad/cm

¥ _
X0 = X1 = 5.26x10° rad/cm

i _
Xy = X, = 6-12x10" rad/cm

+ _
Xy = X3 = 528x10"rad/cm

¢! =¢' =33E0

P+ p—
¢, =@, =285E-02

Table 4. Model parameters

+ -
R01 = R02 =3022.77652

+ -
R02 = RU1 —3272.56988

q = q, =-51549.7798

g, =gq, =-11116751

& :C; = 571404636

=

c; =, =1019721538

+ L
km = km = 19446406.2

+ e —
]‘%2 = km —30484928.9

The matrix of total deformation and stresses are:

gbn,y N _ M,
{q)}1 = 12, ;{M}l = <M>1 + <M>1 - let
1) n

1? t

(12.8.3)

The stresses are divided into a positive and a negative part. In an algebraic manipulation program

this can be carried out in the following way:

1 1 1 1

5 11, + 5 my,, gmn, - 5

+ 1 1 - 1 1
<M>1 - §m121 + 5 ml?/, ,<M>1 - Emmt, N 5
1 1 1 1

PR [ PR

2 v 200 2 v 2
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Unilateral Damage in Reinforced Concrete Frames

The plastic deformation is given by:

P
11,

for} =] 0 (12.8.5)
0

Two damages values are defined, df and d_, for the hinge at the end 1.

(DY), = (d,0) (D7), = (d,,0) (12.8.6)

The kinematic equation (3.1.12b) with a = 0, L = 600 cm: is

. 0
Sin « COS & sina  cosa
— 1 - 01l 0
o, L L L L 0
' sin av CoS (v sina  cosa
dd! =B ; >~ — 0 — 1 12.8.7
{49} = [B(o)){daki|o,, | =| = —= (N (1287
1) . . '
1, —cosa —sina 0 cosa sina O w,
02
where
0 —-0.00167 1 0 0.00167 O
[BOE]: 0 —-0.00167 0 0 0.00167 1 (12.8.8)
-1 0 01 0 0
then
ngH 0.00167w,
{@} =|¢,|=0.0016Tu, +6, (12.8.9)
1) U

1f Zf

The equilibrium equation (3.2.13) results in:
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sin o sin o
—Cos «
L L
_cosa cosa ul,
L L mll wl,
m 1 0 0 ' R
[BUE]Z{M}b = {P}; sine sina my, | = Slﬂ , (12.8.10)
b=t — — cosa || n
L L 1/ w2
Ccos & Ccos o . .
sin o 0
L L
0 1 0
ul, _nlr
- —0.00167m , —0.00167m,,
m
Slz = e (12.8.11)
n
1?
R, 0.00167m,, +0.00167m,,
0 my,
The elasticity law (12.1.5) is
N B _
(@), — (@, =[F, (07))(M); +[F, (D) (M) (128.12)
where from Equation (10.1.4)
L _L | Jo.28272107 B}
3EI(1—d7) 6EI — —0.1414210™ 0
1, (1—d')
[Ff(DJr)]: _6% 3% 0 |=|-0.1414210" 0.2827z107° 0 ;
0 0 L 0 0 0.2813210°°
AE
L L 0
- 0 0.2827210° »
—d ——  —0.1414210" 0
3E](1L d) iEI " d)
[F (D)= “om S 0 |=|-0.1414210" 0.2827210"° 0 (12.8.13)
L 0 0 0.2813210°°
0 0 —
AFE
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L L L L
— —— 0 -— 2
+ 6F1 1 1 _ 1 1
P 3BI(1—d ) -m.. +—|m 3EI1—d ) 6B —-m,, ——|m
¢11 n ¢11 L 9 L ol L o My oI
t
. ! L L . 1 1 L . 1 1
= - — —m + —m + - — -m ——|m
12, 6EI 3EI 2 2 ol 12 6EI 3EI 2 12, ol 12
él L 1 1 1 1
t 0 0 — - + —|n 0 0 —_— —-n ==y
AE 2 Tt 21 7 AE 2 Tt 21 7
(12.8.14)
then
—9|1 1 —9|1 1
0.2827x10 —m + —[m 0.2827x10 —m ——|m
2 11, 2| 11, g 2 11, 2| 11,
» — — 0.1414210 m12 + -
P11 _¢11 1-dt t 1—d1_
¢ t 1t '
o. ~ _ _
12, ~0.1414210 "m | + 02827210 9m12
t
61 t
t
—6
0.2813x10 ny
t
(12.8.15)

The problem is solved using a step-by-step procedure. Then, the solution is divided into 8 stages
according to the type of structural behavior.

Stage 1: Interval: 0 < ¢ < 1, elastic behavior = ¢’ =0, df =d =0

11,

This phase is completed in only one step and finishes when the cracking moment A/ is reached.
Solving Equations (12.8.9), (12.8.11) and (12.8.15):

O 0 ul 0
0 0 | [—9824.8611w,
0 0 R 0.5894210" w
Ul = = AP} = oL - & )
U} u, 0 P} 0 0
w, w, R, | | 9824.8611uw, (12.8.16)
0, | |—0.0025u, 0 0
S 0.00167uw, m, | |0.5895210"w,
{0} =6, |=|-8:333210""w, |;{M}, =|m,, |= 0
) 0 n 0

L L
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At the end of this interval at t =1, m , = M:Tl = 4.62210° N.cm and the displacement at the

end 2 is:

w, = 0.7844 cm (12.8.17)

The resulting force vs. displacement curve is presented in Figure 53a.

Stage 2: Interval: 1 < ¢ <9, inelastic behavior = ¢/ =0, d;’ >0, d =0

As the behavior is nonlinear, this phase is carried out in several steps and finishes when the first
plastic moment M;’l is reached. Solving Equations (12.8.9), (12.8.11) and (12.8.15) (See Table 5).

Notice that at the final of this interval at 1 =9, m , = Mp*1 =1.11x10" N.cm and the displace-

ment at the end 2 is:

w, = 3.18cm (12.8.18)

The force vs. displacement curve is presented in Figure 53b.

Stage 3: Interval: 9 < t < 20, inelastic behavior = ¢’ >0, df >0, d =0

11,

The structure behavior is still nonlinear, so this phase is carried out in several steps and finishes
before the moment M:l is reached. Solving Equations (12.8.9), (12.8.11) and (12.8.15) at each step
gives (See Table 6).

Figure 53. Force vs. Displacement a) Stage 1: 0 <t <1 b) Stage2: 1 <t <9

20 20
10 - 10
Z o / Z o
= ¥
@ @
o [
$ -10 Q10
-20 -+ -20
-30 -30
A -10 -5 ] - 2 0 2 a s 3 B -10 B - -4 2 0 2 a 5 5
Displacement {cm) Displacement (cm)
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Table 5. First plastic movement is reached

l wQz Hzt Rwlt Rﬁ)lt Rin <but <but mnt d;:
cm Rad N N.cm N N.cm
2 108 | -2.67x10° | -1.01x10* | 6.08x10° | 10126.80 | 1.81x10° | -8.59x10* | 6.08x10° | 4.95x10?
3 138 | -3.34x10° | -1.22x10* | 7.30x10° | 12173.00 | 2.31x10° | -1.03x10° | 7.30x10° | 1.05x10"
4 168 | -3.98x10° | -1.39x10* | 8.32x10° | 13860.00 | 2.81x10° | -1.18x10° | 832x10° | 1.62x10"
5 198 | -4.60x10° | -1.52x10* | 9.13x10° | 1522570 | 3.31x10° | -1.29x10° | 9.13x10° | 2.19x10"
6 228 | -5.19x10° | -1.63x10* | 9.79x10° | 1631590 | 3.81x10° | -1.38x10° | 9.79x10° | 2.73x10’
7 258 | -5.76x10° | -1.72x10* | 1.03x107 | 1717620 | 4.31x10° | -1.46x10° | 1.03x107 | 3.24x10"
8 2.88 | -6.32x10° | -1.78x10* | 1.07x107 | 17847.30 | 4.81x10° | -1.51x10° | 1.07x107 | 3.70x10"
9 3.8 | -6.86x10° | -1.84x10* | 1.10x107 | 18364.10 | 5.31x10° | -1.56x10° | L11x107 | 4.13x10"
Table 6.
T +
w2l 0% Rwll R@ll Rth ¢1lt ¢12! mlll dll ﬁt
cm Rad N N.cm N N.cm
10 358 | -7.55x10° | -18579.20 | 1.11x107 | 18579.20 | 5.97x10° | -1.58x10° | 1.11x10’ 0.43 4.10x10*
11 398 | -822x10° | -18649.30 | 1.12x107 | 18649.30 | 6.64x10° | -1.58x10° | 1.12x107 044 | 9.84x10*
12 438 | -8.89x10° | -18715.80 | 1.12x107 | 18715.80 | 7.31x10° | -1.59x10° | 1.12x107 045 1.56x10°
13 478 | -957x10° | -18778.70 | 1.13x107 | 18778.70 | 7.97x10° | -1.59x10° | 1.13x107 045 2.13x10°
14 518 | -1.02x107 | -18838.10 | 1.13x107 | 18838.10 | 8.64x10° | -1.60x10° | 1.13x10’ 046 | 2.71x10°
15 558 | -1.09x10? | -18894.20 | 1.13x107 | 18894.20 | 9.31x10° | -1.60x10° | 1.13x10’ 0.47 3.28x10°
16 598 | -1.16x107 | -18947.20 | 1.14x107 | 18947.20 | 9.97x10° | -1.61x10° | 1.14x10’ 0.47 3.85x10°
17 638 | -1.23x10% | -18997.00 | 1.14x107 | 18997.00 | 1.06x10> | -1.61x10° | 1.14x10’ 0.48 4.43x10°
18 6.78 | -1.29x107 | -19044.00 | 1.14x107 | 19044.00 | 1.13x107 | -1.62x10° | 1.14x10’ 049 | 5.00x10°
19 7.18 | -1.36x10% | -19088.00 | 1.15x107 | 19088.00 | 1.20x10? | -1.62x10° | 1.15x10’ 049 | 5.57x10°
20 7.58 | -143x10% | -19129.40 | 1.15x107 | 19129.40 | 1.26x10% | -1.62x10° | 1.15x107 050 | 6.15x10°
Notice that at the final of this interval at r = 20, m, = 1.15x10” N c¢m and the displacement at
the end 2 is:
w, = 7.58 cm (12.8.19)

1
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The force vs. displacement curve is presented in Figure 54.

Stage 4: Interval:20 < ¢ <21, corresponds to an unloading and the behavior is elastic, then
D -2 — —
1]1_“ = flw =1.26x107, dlz = dﬂw =0.5, c1121 = dlzu =0
This phase is completed in only one step and finishes when the force atend 1 is nil, i.e., B, =0.

Solving Equations (12.8.9), (12.8.11) and (12.8.15) (See Table 7).
The force vs. displacement curve is presented in Figure 54.

Stage 5: Interval: 21 <t <22, elastic behavior = ¢/ =¢/, = 6.15E-03, df =d! =05,
i =d- =0

121 20

Solving Equations (12.8.9), (12.8.11) and (12.8.15):

Figure 54. Force vs. Displacement a) Stage 3: 9 <1 <20 b) Stage 4: 20 <t <21
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Table 7.

t + P
wzl 92: Rwlt Rm[ szt ¢11z ¢12t mlll dlt 11,
cm Rad N N.cm N N.cm

21 3.69 -6.15x107 0.00 0.00 0.00 6.15x1073 0.00 0.00 0.50 6.15x1073
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0 0 0
0 0 | [9824.8611w, +36249.1488
Uy = 0 0 (P} = Rm: _|0.5894x10"w, —0.2174x10" |
u, 0 ’ 0 0 ’
w, w, R, 9824.8611w, — 36249.1488
0, | |—0.0025w, + 3.07x10° 0 0
¢, 1.67x10" w, m 0.5895 x10"w, — 0.2175x10"
{o} = ¢>u’ = |-8.333x10"w, +3.07x10" M}, = mlg = 0 (12.8.20)
0 n 0

This phase is completed in only one step and finishes when the cracking moment M is reached.
Attheend of thisinterval, at ¢ = 22, m,, = 0.5895210"w, —0.2175210° = M_ = —4.81x10°N.cm

and the resultant displacement at the end 2 is:

w, = 2.87cm (12.8.21)

2

The resulting force vs. displacement curve is presented in Figure 55a.
Solving Equations (12.8.9), (12.8.11) and (12.8.15) (See Table 8).
The force vs. displacement curve is presented in Figure 55b.

Stage 6: Interval: 22 < ¢ <32, inelastic behavior = ¢/ = ¢/ = 6.15x107, d; =d| =0.5,
d- >0

Figure 55. Force vs. Displacement a) Stage 5: 21 <1 <22 b) Stage 6: 22 <t < 32
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Table 8.
t 4 P
w2t 02: Rwlt R()lt Rth ¢1 L ¢12t mut dlt 11,
cm Rad N N.cm N N.cm
22 2.87 -4.11x103 | 8019.05 -4.81x10° | -8019.05 | 4.79x103 | 6.80x10* | -4.81x10° 0.50 6.15x1073
x10™

As the behavior is nonlinear, this phase is carried out in several steps and finishes when the first
plastic moment Mp_1 is reached. Solving Equations (12.8.9), (12.8.11) and (12.8.15) at each step gives
(See Table 9).

Notice that at the final of this interval at r = 23, m, = 1.50 x10” N.cm That is very closeto M ,;1 .
The corresponding displacement at the end 2 is:

w, = -0.13 cm (12.8.22)

1

The force vs. displacement curve is presented in Figure 55b.

Stage 7: Interval: 32 < ¢ < 60, inelastic behavior = ¢/ >0, df >0, d >0

Table 9.
t o » _
w2, ezt Rwlt Rmt Rth ¢11¢ ¢12¢ mn, dl, 11, dl,
cm Rad N N.cm N N.cm

23 2.57 | -3.38x10° | 10695.90 | -6.42x10° | -10695.90 | 4.29x10° | 9.07x10* | -6.42x10° | 0.50 | 6.15x10? 0.02

24 227 | -2.67x10° | 13156.60 | -7.89x10°¢ | -13156.60 | 3.79x10° | 1.12x10% | -7.89x10° | 0.50 | 6.15x103 0.05

25 1.97 | -1.98x10° | 15381.30 | -9.23x10° | -15381.30 | 3.29x10° | 1.30x10? | -9.23x10° | 0.50 | 6.15x10? 0.09

26 1.67 | -1.32x10° | 17365.10 | -1.04x107 | -17365.10 | 2.79x10° | 1.47x10° | -1.04x107 | 0.50 | 6.15x103 0.12

27 1.37 | -6.68x10* | 19114.40 | -1.15x107 | -19114.40 | 2.29x10° | 1.62x10* | -1.15x107 | 0.50 | 6.15x10? 0.16

28 1.07 | -3.80x10° | 20643.00 | -1.24x107 | -20643.00 | 1.79x10° | 1.75x10° | -1.24x107 | 0.50 | 6.15x103 0.20

29 0.77 | 5.74x10* | 21968.80 | -1.32x107 | -21968.80 | 1.29x10° | 1.86x10° | -1.32x10" | 0.50 | 6.15x10° 0.23

30 0.47 | 1.17x10° | 23111.40 | -1.39x107 | -23111.40 | 7.89x10* | 1.96x10° | -1.39x107 | 0.50 | 6.15x10° 0.27

31 0.17 | 1.75x10° | 24090.80 | -1.45x107 | -24090.80 | 2.89x10* | 2.04x10° | -1.45x10" | 0.50 | 6.15x10° 0.30

32 -0.13 | 2.33x10° | 24925.90 | -1.50x107 | -24925.90 | -2.11x10* | 2.11x10° | -1.50x107 | 0.50 | 6.15x107 0.34
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Table 10.
t + ,, _
wzt 0% Rwl, R&lt szt d)llr d)lzt mnt dlt 11, dlr
cm Rad N N.cm N N.cm
33 -0.43 | 2.88x10% | 25619.80 | -1.54x107 | -25619.80 | -7.11x10* | 2.17x10% | -1.54x107 0.50 6.14x1073 0.37
34 -0.73 | 3.40x10° | 25763.20 | -1.55x107 | -25763.20 | -1.21x10° | 2.19x10* | -1.55x107 0.50 5.75x1073 0.37
35 -1.03 | 3.91x10% | 25901.10 | -1.55x107 | -25901.10 | -1.71x10* | 2.20x10% | -1.55x107 0.50 5.36x1073 0.38
36 -1.33 | 4.42x10° | 26033.80 | -1.56x107 | -26033.80 | -2.21x10° | 2.21x10? | -1.56x107 0.50 4.97x103 0.39
37 -1.63 | 4.93x10° | 26161.40 | -1.57x107 | -26161.40 | -2.71x10° | 2.22x10% | -1.57x107 0.50 4.59x1073 0.39
38 -1.93 | 5.44x107° | 26284.00 | -1.58x107 | -26284.00 | -3.21x10° | 2.23x107 | -1.58x107 0.50 4.20x1073 0.40
39 -2.23 | 5.95x10% | 26401.90 | -1.58x107 | -26401.90 | -3.71x10° | 2.24x107 | -1.58x107 0.50 3.81x1073 0.40
40 -2.53 | 6.46x10° | 26515.20 | -1.59x107 | -26515.20 | -4.21x103 | 2.25x10* | -1.59x107 0.50 3.42x1073 0.41
41 -2.83 | 6.97x10% | 26623.90 | -1.60x107 | -26623.90 | -4.71x10° | 2.26x107 | -1.60x107 0.50 3.03x10°3 0.42
42 -3.13 | 7.48x107° | 26728.30 | -1.60x107 | -26728.30 | -5.21x103 | 2.27x10* | -1.60x107 0.50 2.65x1073 0.42
43 -3.43 | 7.99x10° | 26828.50 | -1.61x107 | -26828.50 | -5.71x10° | 2.28x10% | -1.61x107 0.50 2.26x1073 0.43
44 -3.73 | 8.49x107° | 26924.60 | -1.62x107 | -26924.60 | -6.21x103 | 2.28x10* | -1.62x107 0.50 1.87x1073 0.43
45 -4.03 | 9.00x10% | 27016.70 | -1.62x107 | -27016.70 | -6.71x10* | 2.29x10% | -1.62x107 0.50 1.48x1073 0.44
46 -4.33 | 9.51x10% | 27105.00 | -1.63x107 | -27105.00 | -7.21x10° | 2.30x10* | -1.63x107 0.50 1.09x1073 0.45
47 -4.63 | 1.00x10?% | 27189.50 | -1.63x107 | -27189.50 | -7.71x10* | 2.31x10% | -1.63x107 0.50 7.05x10+ 0.45
48 -4.93 | 1.05x102 | 27270.40 | -1.64x107 | -27270.40 | -8.21x103 | 2.31x10? | -1.64x107 0.50 3.17x10* 0.46
49 -5.23 | 1.10x10?% | 27347.80 | -1.64x107 | -27347.80 | -8.71x10° | 2.32x10% | -1.64x107 0.50 -7.15x10° | 0.46
50 -5.53 | 1.15x10?% | 27421.80 | -1.65x107 | -27421.80 | -9.21x103 | 2.33x10* | -1.65x107 0.50 -4.60x10* | 0.47
51 -5.83 | 1.20x10% | 27492.50 | -1.65x107 | -27492.50 | -9.71x107° | 2.33x10% | -1.65x107 0.50 -8.48x10* | 0.47
52 -6.13 | 1.25x10? | 27560.10 | -1.65x107 | -27560.10 | -1.02x10?2 | 2.34x10* | -1.65x107 0.50 -1.24x10° | 0.48
53 -6.43 | 1.31x10?% | 27624.50 | -1.66x107 | -27624.50 | -1.07x10? | 2.34x107 | -1.66x107 0.50 -1.62x103 | 0.48
54 -6.73 | 1.36x10?% | 27685.90 | -1.66x107 | -27685.90 | -1.12x10? | 2.35x10° | -1.66x107 0.50 -2.01x103 | 0.49
55 -7.03 | 1.41x10?% | 27744.40 | -1.66x107 | -27744.40 | -1.17x10? | 2.35x10% | -1.66x107 0.50 -2.40x103 | 0.49
56 -7.33 | 1.46x102% | 27800.10 | -1.67x107 | -27800.10 | -1.22x10?2 | 2.36x10° | -1.67x107 0.50 -2.79x103 | 0.50
57 -7.63 | 1.51x10?% | 27853.00 | -1.67x107 | -27853.00 | -1.27x10? | 2.36x10% | -1.67x107 0.50 -3.18x103 | 0.50
58 -7.93 | 1.56x10?% | 27903.30 | -1.67x107 | -27903.30 | -1.32x10? | 2.37x10? | -1.67x107 0.50 -3.56x10° | 0.51
59 -8.23 | 1.61x10?% | 27951.00 | -1.68x107 | -27951.00 | -1.37x10? | 2.37x10% | -1.68x107 0.50 -3.95x10° | 0.51
60 -8.53 | 1.66x107% | 27996.30 | -1.68x107 | -27996.30 | -1.42x10? | 2.37x10? | -1.68x107 0.50 -4.34x10° | 0.52
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The structure behavior is nonlinear and so this phase is carried out in several steps and finishes at an
instant close to the moment M is reached. Solving Equations (12.8.9), (12.8.11) and (12.8.15) at each
step gives (See Table 10).

Notice that at the final of this interval att = 60, m,, = -1.68 x10’ N cm and the displacement at
the end 2 is:
w, = -8.53 cm (12.8.23)

The force vs. displacement curve is presented in Figure 56a.

Stage 8: Interval:60 < ¢ <61, corresponds to an unloading and the behavior is elastic, then
Po=¢! =-434x10",d" =d} =05,d =d =0.52

This phase is completed in only one step and finishes when the force atend 1 is nil, i.e., B, =0.

Solving Equations (12.8.9), (12.8.11) and (12.8.15) (See Table 11):
The force vs. displacement curve at the final of the displacement history is presented in Figure 56b.

Figure 56. Force vs. Displacement a) Stage 7: 32 <t <60 b) Stage 8: 60 < t <61
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Table 11.

t + » _
w2ﬁ 9% Rwlt Rmﬁ szﬁ ¢11t ¢12t Ly 1, d1t 11, dlﬁ
cm Rad N N.cm N N.cm

61 -2.60 | 4.34x10° 0 0 0 -4.34x107 0 0 0.50 -4.34x10° | 0.52
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12.9 PROJECTS

12.9.1 Generalize the Damage Model Developed in Project 10.12.1 including Unilateral Effects.

12.9.2 Generalize the Damage Model Developed in Project 10.12.2 including Unilateral Effects.

12.9.3 Generalize the Damage Model Developed in Project 11.7.1 including Unilateral Effects.

12.9.4 Generalize the Damage Model of Project 10.12.3 including Unilateral Flexural and Torsional
Effects.
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Chapter 13
Industrial Applications

ABSTRACT

The application of structural analysis techniques to solve real engineering problems is an entirely inde-
pendent discipline by itself that cannot be properly presented in a book of structural mechanics. However,
it is important to give an overview of how mathematical models can help make engineering decisions.
This is the subject of the current chapter. The context of the presentation is that of earthquake safety
assessment. Of course, this is not the only industrial application of the fracture and damage mechan-
ics of frames, but it is a very representative one and a good example of it. The chapter is organized as
follows. First, the problem is presented and a protocol to solve it is described in Section 13.1. Then, an
academic software that can be accessed via Internet is described in Section 13.2. This program is used
to solve some examples of real structures in the last section of the chapter.

13.1 ANALYSIS AND DIAGNOSIS OF VULNERABLE STRUCTURES

Any structure, for instance a building, can be evaluated using static or dynamic analyses. Besides, any
of these studies may be performed considering linear or nonlinear behavior. The models, based on
Damage and Fracture Mechanics, described in the former chapter may be used with any of the currently
established nonlinear procedures for seismic structural assessment.

This chapter presents some industrial applications using nonlinear dynamic analysis. For this purpose,
a mathematical model of a structure is subjected to an earthquake shaking represented by ground mo-
tion time histories corresponding to an earthquake hazard. Commonly seismic hazard is assessed from
instrumental, historical and geological records. It varies from place to place because depends on the
magnitudes of likely earthquakes, how often they occur and the properties of the soil through which the
earthquake waves travel. In this chapter, three hazard levels are stated (see Table 1). They are defined
through the probability of exceeding a certain amount of ground shaking in 50 years, how often they
occurs (Mean Return Period) and a corresponding peak ground acceleration (PGA) that is defined as
the maximum acceleration experienced by a particle during the course of the earthquake motion. PGA
is expressed as a percentage of the acceleration of gravity (g). The greater an earthquake magnitude,
stronger is the ground motion it generates.
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Table 1. Earthquake Hazard Levels

Industrial Applications

Earthquake Probability of Exceedance (50 Mean Return Period (Years) Percentage of Peak Ground
Years) Acceleration (% PGA)
Frequent 50% 72 0.4
Severe 20% 225 0.8
Rare 10% 474 1.0

Since the calculated response can be highly sensitive to the characteristic of the ground motion, it
is recommendable the use of several ground motion records trying to cover all the potential shaking
movements in the zone. When several real ground motions are not available, simulated time history data
can be used. These records should have an equivalent duration and a spectral content corresponding
to the zone where the structure is placed. These simulated time history data can be obtained from the
general response spectrum, that is a plot of the peak acceleration, velocity or displacement of a series
of oscillators of different natural frequency that are forced to move by the same base vibration. The
description of the procedure for the calculation of simulated ground motions is out of the scope of this
book but it can be easily found related information in the technical literature, some of them are cited in
the references of this chapter. The analyses presented in the next sections were performed using only
one simulated time history data.

Once the structures are analyzed, the results are checked using acceptance criteria. These conditions
are stated using levels of damage that are indicative of the building condition after the event as it is
described in Table 2.

In general, for the seismic vulnerability assessments, the following methodology can be used:

e  The first step is the data collection. For this purpose it is necessary to determine the configuration
of the structural system, type, detailing, the uniaxial behaviors of the materials, etc. This data can
be obtained from the available drawings, specifications and any other documents. It would be very
convenient the verification of this information by on-site investigations including non-destructive
testing of the building materials. In order to determine the gravity loads and the lateral ones, it is
necessary to determine the actual use of the building (residential, commercial, educational, etc.),
the type and arrangement of existing structural elements and components. It is also very important
to know the foundation configuration, soil characterization and geotechnical information.

Table 2. Performance Level for flexural damage

Performance Max Expected Max Expected Description
Level Damage in Damage in
Beams Columns
1 030~d, 0.10 The elements do not require any intervention after the event.
2 0.40 0.30 = dp Some minor repairs may be needed.
3 0.50 0.40 The element requires reparation at reasonably costs.
4 0.6~d, 0.5 The structure requires a major rehabilitation process.
5 > 0.7 >06~d, Inacceptable structural behavior.
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e  The second step corresponds to the digitalization of the structure and loading, i.e., the construc-
tion of the input file to be analyzed with the Finite Element (FE) program. This file contains the
geometry of the structure, the properties and parameters for each element according to the model
to use, the service loads and lateral ones to apply.

e  The third step consists in the construction of the Dynamic Capacity Curve that is obtained by the
following procedure:

° Perform the dynamic analyses of the structure varying the peak ground acceleration (PGA)
from zero up to the level corresponding to the no convergence of the analysis that is an indi-
cation of structural collapse.

° For each level of acceleration, the maximum damage in beams and columns are plotted
against the corresponding acceleration. An example of a Dynamic Capacity Curve is shown
in Figure 1.

e  Once the Dynamic Capacity Curve is obtained, the vulnerability of the structure can be assessed
via the performance levels.

As it can be appreciated in Table 1, for each hazard level, a percentage of the PGA is specified. For
each of these values, corresponding to frequent, severe or rare earthquakes, maximum damages in beams
and columns can be determined from the Dynamic Capacity Curve. These values are used to determine
the performance level of the structure according to Table 2. If the analyzed building corresponds, for

Figure 1. Dynamic Capacity Curve
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example, to a residential use, for a rare earthquake it is expected a performance level of 4 or less; for a
severe one, a performance level of 3 can be reasonable and for a frequent earthquake a level of 1 or 2 may
be adequate. On the other hand, for an essential structure, considering the same hazards, performance
levels of respectively, 3, 2 and 1 should be expected.

For example, consider the Dynamic Capacity Curve presented in Figure 1. For a frequent earthquake
corresponding to a maximum acceleration of 0.4 PGA, damages values in respectively, beams and col-
umns, of 0.32 and 0.30 are obtained. According to the Table 2, these results correspond to a performance
level of 2. For a severe earthquake (0.8 PGA), the maximum damage in beams is 0.40 and in columns is
0.38. These results corresponds to a performance level of 3 and finally for a rare earthquake (1 PGA), a
performance level of 4 is obtained with damage values in beams of 0.45 and 0.44 in columns. These per-
formances are adequate for a residential building but are not satisfactory for a building with essential use.

13.2 PORTAL OF DAMAGE

Portal of damage is a web-based dynamic nonlinear finite element program where the model described
in section 12.1 for slender elements has been implemented. The portal can be accessed in the address
http://portalofdamage.ula.ve using any commercial browser. It allows to:

1. Create an account in a server.
Make use of a semi-graphic pre-processor to create an input file with a digitized version of the
structure.

3. Run a dynamic finite element program and monitor the state of the process

Download or upload input and output files in text format

5. Make use of a graphic post-processor.

>

The system has a data base, where the user has to register in the first visit. After registration, the
user has access to the five links of the system: pre-processor, processor, post-processor, user manual
and theory manual (see Figure 2).

Within the pre-processor, the user has different menus for the description of the frame geometry, the
boundary conditions, the dimensions of the elements’ cross-sections (only rectangular cross-sections are
included so far), the amount and location of the longitudinal and transversal reinforcement, the uniaxial
behavior of the concrete and the reinforcement and, finally, the loading. The user can impose distributed
forces on the elements, and displacements, accelerations and/or forces on the nodes.

However, as indicated in section 6.5, the model needs interaction diagrams of the first cracking
moment, first plastic moment, ultimate moment and ultimate plastic rotation. All these diagrams are
computed by a Fortran program embedded into the pre-processor called diagram generator. The diagram
generator uses as input the uniaxial behavior of the materials, the dimensions of the cross-section and
the amount of the reinforcement. This process is carried out by using standard methods of the classic
reinforced concrete theory for confined (Kent and Park model) or non-confined elements (Hognestad
model). The details of these procedures were presented in sections 6.5 and 10.3. The user instructs the
portal to perform the generation of the interaction diagrams in one of the menus of the pre-processor.
The results of these computations are shown, graphically, in the portal (see Figure 3). Notice that a table
with the coordinates of the diagrams is also created. The user can modify these values. This is useful
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Figure 2. Main page of the Portal of Damage
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for some special applications. Some errors can be expected in the diagrams calculated with the classical
theory of reinforced concrete. In the case of very important structures, it can be convenient the execution
of experimental tests on some typical elements of the frame. The experimental results can be inserted
directly in the analysis by the modification of the diagram tables. Numerical results for single elements
of other programs or procedures can also be used in this same way.

Two different kinds of data files are generated by the pre-processor. The first one has the raw data
of the frame including the uniaxial behavior of the materials and details of the cross-section. A second
data file is also generated; it has the values of the interaction diagrams of the model parameters instead
of the element details. Only the second kind of data files can be processed by the FE program.

The second link of the portal gives access to a page called processor. In this page, the user may select
a data file in her/his account and process it with the FE program. The user may also abort the analysis
or monitor the process (see Figure 4).

When the process is successfully finished (see Figure 5), the user may download the results file
in text format or may proceed to visualize them graphically with the third main link of the portal: the
PpOSt-processor.

With the post-processor (see Figure 6), the user may plot histories of element variables (damage,
generalized stresses or strains, plastic rotations) or node variables (forces, displacements, velocities,
accelerations) and graphs of variable vs. variable . Damage distribution over the frame at any instant of
the loading can also be plotted.
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Figure 3. Diagrams of interaction computed by the pre-processor
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Figure 5. Monitoring of an analysis in the portal
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13.3 INDUSTRIAL APPLICATIONS

In this section two analyses are presented. The first one corresponds to a residential building and the
second one to a structure of a school. For both structures, the dimensions of cross-sections of beams and
columns are expressed in cm and the longitudinal reinforcement in cm?. The diameters of the transversal
reinforcements are reported in mm and the separation in m.

13.3.1 Residential Building

Figures 7 to 31 show the geometry and details of a seven-story residential building. The frames of the
building were digitized and analyzed using the Portal of Damage. The loads applied on the frames are
indicated in Tables 3 and 4; they were subjected to the artificial earthquake presented in Figure 32a and
that was derived from the response spectrum of the Figure 32b.

As it can be appreciated in Figure 30b, the peak acceleration of the ground motion used in the analy-
ses is 0.30g. This acceleration corresponds to a zone with high seismic risk. The damage distributions
at the end of the event are presented in Figures 31 to 37.
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Figure 6. Graphic post-processor
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Figure 7. Residential building, floor geometry at level 0.00
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Figure 9. Residential building, geometry and reinforcement of frame 2 a) columns b) beams
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Figure 11. Residential building, geometry and reinforcement in beams of the frame 3
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Figure 13. Residential building, geometry and reinforcement in beams of the frame 4
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Figure 14. Residential building, geometry and reinforcement in columns of the frame 5
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Figure 15. Residential building, geometry and reinforcement in beams of the frame 5
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Figure 16. Residential building, geometry and reinforcement in columns of the frame 6
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Figure 17. Residential building, geometry and reinforcement in beams of the frame 6
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Figure 18. Residential building, geometry and reinforcement in columns of the frame 7
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Figure 19. Residential building, geometry and reinforcement in beams of the frame 7
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Figure 20. Residential building, geometry and reinforcement in columns of the frame 8
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Figure 21. Residential building, geometry and reinforcement in beams of the frame 8
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Figure 22. Residential building, geometry and reinforcement in columns of the frame A = frame B
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Figure 23. Residential building, geometry and reinforcement in beams of the frame A = frame B
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Figure 24. Residential building, geometry and reinforcement in columns of the frame C
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Figure 25. Residential building, geometry and reinforcement in beams of the frame C
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Figure 26. Residential building, geometry and reinforcement in columns of the frame D
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Figure 27. Residential building, geometry and reinforcement in beams of the frame D
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Figure 28. Residential building, geometry and reinforcement of the frame E a) columns b) beams

192m
.22
[Ce0xa0 260

Ll

N
8
3

|

N
&
3

1

75.06
oz

N
8
3

|

N
8
3

L

101.21 101.21 260
szl ozl I
75.06
esiviey e
g o w—Lé

g

20.27
10.12
B20X70]
260m
20.27
T0.13
.
260m
113 10.13 | 1520 15.20
X £ E 5% ..
280m
25.24 35.47 || 36547 20.40
20.27 2027 2027 20.27
& E30X70 ‘ E30X70 :
E=XT0) .
25.24 35.47 || 3647 20.490
—— — == —1~
2027 2027 2027 B0 2027
280m
25.24 35.47 | 36.47 20.40
A e == —I»
2027 2027 | 2027 B%550] 2027
280m
25.24 35.47 | 3647 20.40
= i S —— 4|»
2027 5355570] 2027 2027 E30X0] 20.27
260m
- v - P_L
@ 4
| 25@015 , 295@0.15 )
T T T T
29.5@0.10 29.5@0.101 29.5@0.10 29.5@0.10
1.20m 1.20m 120m 1.20m

521



Industrial Applications

Table 3. Loads applied over the elements of frames 1 to 8

Frame Level Load on Span (KN/m)
A-B B-C C-D D-E E-F
1 1-7 - - 40.18 40.18 -
Roof - - 31.85 31.85 -
2 1 - - 36.26 7.84 -
2-6 - - 36.26 - -
7 - - 31.26 - -
3 1-6 38.22 38.22 38.22 38.22 -
7 36.26 36.26 36.26 36.26 -
Roof - - 29.40 29.40 -
4 1-6 38.22 38.22 38.22 38.22 -
7 38.22 33.32 38.22 38.22 -
Roof 33.32 - 30.38 30.38 -
5 1-6 41.16 41.16 41.16 41.16 41.16
7 37.24 37.24 37.24 37.24 37.24
8 / Roof 34.30 - 33.32 33.32 -
9 36.26 - - - -
6 1-7 39.20 39.20 39.20 39.20 39.20
8 34.30 34.30 34.30 34.30 34.30
9 36.26 36.26 36.26 36.26 36.26
7 1-6 39.20 39.20 39.20 39.20 39.20
7 35.28 35.28 35.28 35.28 35.28
8 1 35.28 35.28 35.28 35.28 35.28
2-6 35.28 - - 35.28 35.28
7 31.36 - - 31.36 31.36

Figure 29. Residential building, geometry and reinforcement of the frame F a) columns b) beams
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Table 4. Loads applied over the elements of frames A to F

Frame Level Load on Span (KN/m)

1-2 2-3 3-4 4-5 5-6 6-7 7-8
A=B 1-4 - 44.10 44.10 44.10 44.10 44.10 44.10
5-6 - 43.12 43.12 43.12 43.12 43.12 43.12
7 - 5.10 5.10 5.10 5.10 5.10 5.10

Roof - - 1.47 4.410 1.47 1.47 -

C 1-6 41.16 41.16 41.16 41.16 41.16 41.16 -

7 35.28 35.28 41.16 35.28 41.16 41.16 -

Roof - - 1.47 - 1.47 1.47 -
D 1-4 40.18 40.18 40.18 40.18 40.18 40.18 40.18
5-17 39.20 39.20 39.20 39.20 39.20 39.20 39.20

Roof 0.98 0.98 0.98 0.98 1.47 1.47 -

E 1-6 38.22 38.22 38.22 - - - -

7 32.34 32.34 32.34 - - - -

Roof - - 29.40 - - - -
F 1-6 - - - - 37.24 37.24 37.24
7 - - - - 32.34 32.34 32.34

Roof - - - - 1.96 1.96 -

Figure 30. a) Response spectrum used for the ground motion derivation b) Artificial earthquake used
for the analysis
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Figure 31. Damage distributions at the final of the event a) Frame 1 b) Frame 2
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Figure 32. Damage distributions at the final of the event Frame 3
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Figure 33. Damage distributions at the final of the event a) Frame 4 b) Frame 5
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Figure 34. Damage distributions at the final of the event a) Frame 6 b) Frame 7
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As it can be appreciated the maximum damages occurred in the beams. This is in accordance with
the recommendations prescribed in the standards of earthquake engineering. Frames 7 and A = B pre-
sented the largest damage values. The Dynamic Capacity Curve of the frame 7 is presented in Figure 38.

As can be appreciated in Figure 38 for a frequent earthquake (0.4 PGA) the maximum damage in
beams and columns are, respectively, 0.263 and 0.32 that correspond to a performance level of 2. For
a severe earthquake (0.8 PGA) are obtained damages in beams and columns of respectively, 0.422 and
0.497. This corresponds to a performance level of 3 and finally for a rare earthquake (1 PGA), the maxi-
mum damages obtained are 0.53 and 0.549 that corresponds to a performance level of 4. These results
indicate that the structural behavior of the building is adequate.

13.3.2 Educational Facility

In Figure 39, it is presented the geometry of a typical edification built in Venezuela in the 60s. In Figures
40 to 58 it is presented the geometry and reinforcements details of beams and columns.

The loads applied on the frames are indicated in Tables 5 and 6; they were subjected to the artificial
earthquake presented in Figure 59a that was derived from the response spectrum of the Figure 59b.

In this case (see Figure 59b), the peak acceleration of the ground motion is 0.40g. This acceleration
corresponds to a zone with very high seismic risk. The frames were analyzed using the Portal of Dam-
ages but all the analyses stopped before finishing the earthquake record. The damage distributions at
the end of each analysis are presented in Figures 60 to 65.

As it can be appreciated in Figures 60 to 65, the values of the damages in columns were between a
value of 0.51 and 0.81 and in beams between 0.22 and 0.75, which are very high. In fact, collapse of
frames A, C, D and F could be expected. This behavior is not acceptable for any edification especially
for an essential one. This structure does not satisfy the criteria prescribed in the actual seismic codes.

After Cariaco Earthquake (Venezuela) in 1997, a school with this geometry collapsed as it is shown
in Figure 56. As evidenced by the results presented, even when the influence of the masonry was not
considered in the analyses, resulting behavior is similar to the real case.

Figure 36. Damage distributions at the final of the event a) Frame C b) Frame D
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Figure 37. Damage distributions at the final of the event a) Frame E b) Frame F
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Figure 38. Dynamic Capacity Curve of the frame 7

0.60

86
k2]
] ] 7
2 Ed E-3
7 72 74
25 N =
‘ ‘KI &
21 w2 24
&1 & &
17 « 2
57 59
13 ™ 16
1 52 54
9 s 12
a7 il
S % 8

0.10

0.00

- Ccam

- e Column

0.00

0.20

0.40

0.60
% PGA

0.80

1.00

1.20

527



Industrial Applications

Figure 39. Educational facility, geometry of floor at level 0.00
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Figure 40. Educational facility, geometry and reinforcement in columns of Frame A = Frame B
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Figure 41. Educational facility, geometry and reinforcement in beams of Frame A = Frame B
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Figure 42. Educational facility, geometry and reinforcement in columns of Frame B = Frame E

11.4n0 11.40 11.4¢ 11.40 :;E
Qe.5@0.10 Aom
18.32 14.40 11.40 11.40 15.52 18.32 18.32
9.5@0.1035%4s) C35%35 3a0m
) 16.32 552 15.52 38.16 53.68 38186 18.32 3.0
9.5@0.10535x55) 1
’ I 7.20m T 7.20 ’r 7.20 ’T’ 7.20m T 7.201 ’r 7.20 |
1 2 3 4 5 8 7
Figure 43. Educational facility, geometry and reinforcement in beams of Frame B = Frame E
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Figure 44. Educational facility, geometry and reinforcement of the Frame C (1-3)= Frame D (1-3) a)
columns b) beams
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Figure 45. Educational facility, geometry and reinforcement of the Frame C (5-7)= Frame D (5-7) a)
columns b) beams
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Figure 46. Educational facility, geometry and reinforcement in columns of the Frame 1
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Figure 47. Educational facility, geometry and reinforcement in beams of the Frame 1
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Figure 49. Educational facility, geometry and reinforcement in beams of the Frame 2
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Figure 50. Educational facility, geometry and reinforcement in columns of the Frame 3
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Figure 51. Educational facility, geometry and reinforcement in beams of the Frame 3
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Figure 52. Educational facility, geometry and reinforcement of the Frame 4 (A-B)= Frame 4 (E-F) a)

columns b) beams
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Figure 53. Educational facility, geometry and reinforcement in columns of the Frame 5
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Figure 54. Educational facility, geometry and reinforcement in beams of the Frame 5
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Figure 55. Educational facility, geometry and reinforcement in columns of the Frame 6
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Figure 56. Educational facility, geometry and reinforcement in beams of the Frame 6
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Figure 57. Educational facility, geometry and reinforcement in columns of the Frame 7
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Figure 58. Educational facility, geometry and reinforcement in beams of the Frame 7
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Figure 59. a) Response spectrum used for the ground motion derivation b) Artificial earthquake used

for the analysis
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Table 5. Loads applied over the elements of frames 1 to 7

30

Frame Level Load on Span (KN/m)
A-B B-C C-D D-E E-F
1=2=3 1-2 5.20 5.20 5.20 5.20 5.20
4 1-3 5.20 - - - 5.20
5=6=7 1-3 5.20 5.20 5.20 5.20 5.20
13.4 SUMMARY

This chapter proposes a protocol for the seismic assessment of frame structures. The protocol is resumed
in Tables 1, 2 and the concept of dynamic capacity curve. The first table summarizes the possible de-
mands on the structure in terms of the peak ground acceleration or PGA; the second table characterizes
the expected repairability state of the frame in terms of the damage values. The dynamic capacity curve
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Table 6. Loads applied over the elements of frames A to F
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Frame Level Load on Span (KN/m)
1-2 2-3 3-4 4-5 5-6 6-7
A=F 1-2 32.56 32.56 32.56 32.56 3256 32.56
3 - - - 27.46 27.46 27.46
B=E 1 45.82 45.82 45.82 45.82 45.82 45.82
2 36.50 36.50 36.50 45.82 45.82 45.82
3 - - - 36.50 36.50 36.50
D 1 45.82 45.82 - - 45.82 45.82
2 36.50 36.50 - 45.82 45.82
3 - - - - 36.50 36.50
Figure 60. Damage distributions at the final of the event a) Frame 1 b) Frame 2
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Figure 61. Damage distributions at the final of the event a) Frame 3 b) Frame 4(A-B)= 4(E-F)
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Figure 62. Damage distributions at the final of the event a) Frame 5 b) Frame 6
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Figure 63. Damage distributions at the final of the event a) Frame 7 b) Frame A = F
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Figure 64. Damage distributions at the final of the event a) Frame C = D (1-3) b) Frame C = D (5-7)
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Figure 65. Damage distributions at the final of the event a) Frame B = E
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Figure 66. Raimundo Martinez Centeno high school, collapsed during Cariaco Earthquake (Venezuela)

in 1997

is a plot of the maximum value of damage for beams and columns as a function of PGA. Thus, this curve
is the link between the two tables; through dynamic capacity curve, it is possible to establish what will
be the final state of a frame for a given loading and vice versa.
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In order to obtain the dynamic capacity curve some computational tool is needed. Ideally, the one
developed through the sequence of projects that were suggested in the book. Alternatively, a program
named Portal of Damage can be used.
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Chapter 14

Lumped Damage Mechanics:
Tubular Steel Structures

ABSTRACT

This chapter, the last of the book, describes how to use the concepts of damage mechanics for the de-
scription of the behavior of tubular frame structures. In the first section of this chapter, the concept of
damage of a plastic hinge is used to describe local buckling evolution. It also shows that the technique
of the variation of the elastic stiffness, described in Chapter 10, can be utilized to measure the degree of
local buckling in the metallic elements. This first section is restricted to the analysis of frames subjected
to mono-sign loadings. The second one deals with the behavior of the structures under general loadings
in the plane. It shows that in the case of cyclic loadings with reversal of sign a new phenomenon appears:
“counter-buckling”; in metaphoric terms, counter-buckling can be described as “ironing the wrinkles.”
In this section, this effect is characterized and modeled introducing the concept of “local buckling driving
rotation.” Finally, in the third section of the chapter, the analysis of tridimensional frames is addressed.

14.1 LOCAL BUCKLING DAMAGE MODEL FOR
PLANAR MONO-SIGN LOADINGS

The steel frame structure is the other major alternative in the civil engineering construction industry.
During test on both, tubular steel elements and RC frame members, the same phenomena: degradation
of stiffness and strength are observed when the specimens are subjected to overloads; however, their
fundamental causes are radically different in each case. As it has been discussed at length in the previ-
ous chapters, cracking is the phenomenon responsible for these effects in reinforced concrete structures;
this is not the case of steel structures. Tubular steel elements are usually built with relatively thin walls;
overloads on these components generate the appearance of small waves or wrinkles (see Figure 1a) that
do not disappear after unloading the element; this phenomenon is called local buckling. For instance,
Figure 1b shows the damage in a crane of the port of Kobe resulting from the 1995 great earthquake. In
the picture it can be clearly appreciated the presence of local buckling in its columns.
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Figure 1. a) Local buckling in a tubular steel member of square cross-section b) Buckled crane legs
after the 1995 Kobe earthquake Port Crane legs buckled due to soil spreading (UCB-EERC 1995/01)

Courtesy of NISEE-PEER, University of California, Berkeley
14.1b Crane legs buckled due to spreading. (1995). Kobe Geotechnical Collection, Japan. University of California, EERC
1995/01 Aug. 1995: 39. Retrieved February 28, 2014 from http://nisee.berkeley.edu/elibrary/Image/K0127 .
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Therefore, it must be concluded that the use of the Griffith criterion and the concepts of fracture
mechanics should not be used in the modeling of the behavior of tubular frame members since crack
propagation is not the main cause of structural degradation in this case. However, some of the other
ideas described in chapter 9 still apply.

14.1.1 Experimental Analysis of a Steel Tubular Element

Figure 2 shows the setup of a test on a tube of circular cross-section subjected to a mono-sign loading.
The structural response of the element is presented in Figure 3, first in the form of a curve of deflection
against force (Figure 3a). From this plot, the curve of plastic deflection vs. stiffness presented in Figure
3b can be built.

The curve 14.3a can be divided into three stages. The first one corresponds to an elastic phase of the
behavior. In this stage, the behavior is fully reversible and permanent deflections cannot be appreciated
after unloading. If a metallic framed structure is not loaded beyond this phase, the models and techniques
described in chapters 3 and 4 are sufficient for the analysis of the structure.

In the second stage, the element exhibits a behavior that can be characterized as elasto-plastic with
hardening. Plastic hardening fully develops and large plastic deformations evolve under approximately
constant forces. It can be noticed in Figure 3b, that the stiffness of the element is still constant in this phase.
Structures that enter this second stage can be modeled using the methods presented in chapters 6 to 8.

The third phase is characterized by significant degradation of the stiffness and strength. The begin-
ning of this last stage is triggered by the appearance of local buckling in the plastic hinge region. The
degradation of these mechanical properties increases with the evolution of local buckling. For instance,
in the structure shown in the Figure 1b, the columns of the frame have gone through all those phases
and their mechanical properties were severely compromised after the seismic event. It is clear that the
theory of elasto-plastic frames cannot be used to simulate the behavior of such a structure.
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Figure 2. Test on a tube of circular cross-section a) Set up of the test b) Deflection history
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It is important to note that not all metallic tubes are able to develop the three stages in the case of
overloads. Those that do, are said to have a “compact cross-section”. If the walls of the tube are too
thin with respect to the dimensions of the cross-section, the plastic phase without local buckling is not
fully developed or not present at all and local buckling appears more rapidly. Of course, elements with
non-compact cross-sections should not be used in the principal elements of any structure; but does not
necessarily mean that this is never done.

14.1.2 Elasticity Law of a Tubular Frame Element with Local Buckling
The fact that local buckling reduces the elastic limit of the tubular elements (see Figure 3a) as well as

the slope of the loading/reloading branches (see Figure 3b) suggests that the concept of plastic hinge
with damage can be used for its modeling. Therefore, a tubular frame element can be represented using
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the same lumped damage model that is described in section 10.1; however, in this case, the damage ar-
ray (D), = (d,,d,) measures the degree of local buckling at the ends of the tube instead of crack densi-
ties as illustrated in Figure 4.

Thus, the elasticity law presented in section 10.1, in any of its forms (Equations 10.1.4 or 10.1.5-6),
can also be used in this case:

Lb Lb
31—d)El,  GEI,
(B @), = FDLM, + @) FD)=| it s 0
b i b L
0 0 o
or
{M}b = [E(D)]b {<I) -’ }b + {MO (D) }b
121-d)  61-d)1-d) 0 , o
[E(D)], =k|6(1—d)(1—d) 12(1—d) 0 k= T
EAb i j b
0 0 "
kL,
{M’(D)}, = —[E(D)|,{®"}, (14.1.1)

The matrix {®’ }, has, again, the initial deformations defined in Table 3 of Chapter 3.

Figure 4. Characterization of local buckling in a tubular element using the lumped damage model
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14.1.3 Yield Function of a Plastic Hinge with Local Buckling

The second stage of the behavior, assuming that the section is compact, can be described using a yield
function with perfect plasticity (Equation 6.2.7) or nonlinear plastic hardening; that is Equations 6.3.1,
6.3.3 and 6.3.5 or 6.3.6 if axial deformations are neglected. If they are not, the perfectly plastic model
is defined by the expression (6.4.5).

The third phase, with strength degradation, can be represented assuming again the hypothesis of
equivalence in deformations. For instance, the plastic deformation evolution law derived from the yield
function (6.2.7) is:

d¢! = 0 if f(m ) <0 (hinge i locked) m, M <0
f(m.)=0if d¢’ = 0 (hinge i active) ™' B 1—-d v
65 =0
p
d¢? =0if f(m ) <0 (hinge j locked v
¢, f7( ,) ( ‘g j. ' ); |- M <o (14.1.2)
f](m]) =01if d¢! =0 (hinge j active) "/ |1 — d, !

where M is, as usual, the ultimate moment of the cross-section as defined in chapter 6. If the more
sophisticated model with plastic hardening is chosen, the yield functions become:

i

— (M, + (M, = M)(1—e"")) <0

—(Mp + (M, —M)1—e" p’)) <0 (14.1.3)

where M, is the first plastic moment and o is the plastic hardening parameter as defined in chapter 6.
The terms p, and p; represent in this case the accumulated plastic deformations:

dp, = \d¢;

and dp]. = ‘dd);’

(14.1.4)

The plastic deformation evolution laws remain the same.
Plastic elongations can be included in the model if desired, by introducing the following yield functions:

2 2

M 2 1 14.1.5
0 — (14.1.5)
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With the normality rules:

of of. of af.
de? = d\ ——;d¢” = d\ —;d6 =d\ —L+d\ — 14.1.6
% " Om, ¢ 7 Om ? "on ' ( )

J 8”

J
and the plastic multipliers evolution laws:

d\ =0if f <0 (hinge ¢ is locked)
M =0 if d\ = 0 (hinge i is active) ’

[3

dX, = 0if f <0 (hinge j is locked)

14.1.7
M = 0 if d\, = 0 (hinge j is active) ( )

A and )\]. are the plastic multipliers of hinges i and j.

Notice that in the last model, the influence of local buckling on the permanent elongation is not fully
taken into account; thus it should be used only when axial loads are relatively small with respect to the

bending moments.
14.1.4 Local Buckling Evolution Law

The experimental procedure to measure damage in a hinge presented in section 10.3.1 can also be used to
quantify the degree of local buckling in a tubular element. The curve of plastic rotation vs. local buckling
damage corresponding to the test of Figure 2 can be built from the data presented in the Figure 3a and
is shown in Figure 5; in that curve, the variables are computed as:

¢ =-Lid=1-— (14.1.8)

As usual, ¢”is the plastic rotation, t the plastic deflection, Z is the initial slope (without local

buckling) and Z(d) the damaged ones.
The simplest expression describing these results is:

d=x,{p-p,) (14.1.9)

543



Lumped Damage Mechanics

Figure 5. Plastic rotation vs. local buckling damage in the test of Figure 2
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where p_ is the critical plastic rotation that initiates local buckling and x  is the slope of the line as
indicated in Figure 5. Notice that this evolution law is similar to the one proposed for ductile materials
in the uniaxial case discussed in section 9.2.5.

The parameters p_ and x can be identified from the moment vs. rotation graph as it is shown in
Figure 6.

14.1.5 Numerical Simulations

The model introduced in this section is defined by the elasticity law (14.1.1), the plastic deformation
evolution law (14.1.2) with the yield functions (14.1.2-7) and the local buckling evolution law (14.1.9).
The test of Figure 2 was simulated with the model using the parameter values p_ = 0.152 rad and x =
2.05 obtained in the former section. The experimental and numerical deflection vs. force curves are
shown in Figure 7.

The test that is shown in Figure 8a was simulated using the described model too. The element has a
120 mm square cross-section, 4 mm thickness and is subjected to the loading path presented in Figure
8b. The model parameters p__and x were identified from the rotation vs. bending moment curve as it is
shown in Figure 9.

The experimental and numerical Displacement vs. force curves are shown in Figure 10.

In Figure 10b are indicated the damage values at the beginning of some elastic unloading.
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Figure 6. Parameter determination in test of Figure 2

3000 N
’ N | & #Mu= 20540

2500 -
£ \?\
£
2 r\
g 2000
Eod
o

1500
€
(o]
€
© 1000
-
x
2
Y% 500 /

N ] }

0.00 010 / 0.20 0.30 0.40
P=0.152rad Rotation (rad)

Figure 7. Deflection vs. force curves of the test of Figure 2 a) Experimental b) Numerical simulation

6 6

Bik el B NS

5 NG 5

Force (KN)
w £
——
—

Force (KN)

EINRINNN

A 0 40 80 120 160 200 B 0 40 20 120 160 200
Deflection (mm) Deflection (mm)

14.2 THE COUNTER-BUCKLING EFFECT AND A
MODEL FOR GENERAL PLANAR LOADINGS

14.2.1 Experimental Analysis of the Behavior of
Steel Tubes Subjected to Cyclic Loading

Consider the same experimental test presented in Figure 2. If a cyclic loading is applied (see Figure 11a),
the response of the element in a curve of deflection vs. force is the one shown in Figure 11b. For large
values of displacements, the local buckling phenomenon appears again but this time in a more complex
form. Asit can be appreciated in Figure 12 two distinct “wrinkled” zones emerge in the plastic hinge zone.
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Figure 8. Test on a tube of square cross-section a) Set up of the test b) Deflection history
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One of the wrinkled surfaces on the plastic hinge zone is produced by positive bending moments;
while the other, on the opposite face, is the result of the action of negative bending moments; those
wrinkled regions will be called, respectively, “positive local buckling” and “negative local buckling”.

Figure 13 shows only the isolated unloading branches of the graph of Figure 11b; this is a plot of
the absolute value of deflection vs. the absolute value of force during the unloading of the tube from
positive and negative forces.
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Figure 10. Displacement vs. force curves in the test of Figure 8 a) Experimental b) Numerical simulation
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The unloading branches under positive forces are called ‘‘positive’’; if the force is negative the
unloading will be called ‘‘negative’’. The unloading curves are labeled by pairs. One curve of the pair
corresponds to a positive unloading and the other to a negative one; in this way the elastic stiffness of
the tube under positive and negative forces can be compared.

Local buckling in the tube appeared after the occurrence of the unloading branches marked as number
2; the progressive loss of stiffness can be appreciated in the remaining pairs. On the other hand, notice
that the slope is the same in both branches of each pair regardless of the sign of the unloading. However,
physically, the phenomenon is not completely symmetric; i.e. positive local buckling appears or grows
first and the negative local buckling does the same but latter in the cycle. Thus, the positive unloading
branches occur with only the maximum positive local buckling of the cycle while each negative unload-
ing happens with both maximum degrees of local buckling, positive as well as negative. Therefore, it
appears that negative local buckling has little effects on the stiffness under positive forces. This obser-
vation allows concluding that the unilateral hypothesis presented in chapter 9 (section 9.2.6) and that is
used for the modeling of the behavior of reinforced concrete elements (chapter 12) can also be utilized
in the case of steel tubes with local buckling.
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Figure 12. Local buckling in a cyclic test

Figure 13. Absolute value of force against the absolute value of deflection during the unloading branches
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14.2.2 Unilateral Elasticity Law for Steel Frame
Elements with Hollow Cross-Sections

The experimental results described in the previous section show that the unilateral elasticity law can be
used to describe the behavior of steel tubes. Thus, two sets of local buckling damage (D"), = (d",d)")
and (D), = (d; ,d)are introduced; they characterize the state of local buckling in the element as is

represented in Figure 14.
Then, the unilateral elasticity law of a frame element of hollow cross-section is:

{@}, - {e'}, =|F(D")

(M), +[F(D )| (M), + {2,

Lb B Lb 0
3EI, (1-d") 6EI,
. L I,
[F(D+/ )}: 76Eblb o (;_d:/) 0 ; (14.2.1)
O 0 | Lb
B,

{®}, and {®"}, represent, respectively, the deformation and plastic deformation matrices in the

+ —
planar case, of course; the terms <M>b and <M>b correspond to the positive and negative parts of the

stress matrix, such as is defined in chapter 12.
14.2.3 Unilateral Yield Function

In order to evaluate the validity of the unilateral hypothesis on the yield function, a different type of
test is carried out. Again, the same set up of Figure 2 is used; but this time the loading is not mono-sign
or cyclic but a combination of both. It consists first in a mono-sign loading that produces a significant

Figure 14. Representation of the local buckling state in tubular frame element using damage variables
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amount of positive local buckling; then the load is reversed so the negative local buckling is achieved;
the test is finished with a cyclic loading. This kind of loading is called “mixed”. The results of this mixed
test on a tube of circular cross-section are presented in Figure 15.

Notice that the value of the force corresponding to the formation of positive local buckling (the first
one) is 5.30 KN. Then, the loading reversal produced negative local buckling with a value of 5.41 KN.
Thus, when the negative local buckling occurs, positive local buckling had already been formed and yet
the strength of the element has been not been modified. This result validates the hypothesis of unilat-
erality, not only at the level of stiffness degradation, but also for strength degradation. Of course, this
assumption, as any other one, has a limit of validity. For very high values of local buckling there seems
to be some degree of coupling between negative local buckling and positive strength and vice versa.
Therefore, the corresponding unilateral yield function derived from (14.1.2) is:

f=Ma| iy~ _pl<o (14.2.2)
‘ 1—d" U 1-d "

With, of course, the same plastic deformation evolution laws (14.1.2); i.e.:

d¢; = 0 if f <0 (hinge i locked)
f =0if d¢” = 0 (hinge i active)’

Figure 15. Deflection vs. force in a mixed test
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6 =0

!d(bf =0if f <0 (hinge j locked) (14.2.3)

fj =0 if dgzﬁj_’ = 0 (hinge j active)

The previous yield function neglects the plastic hardening and the Bauschinger effect observed during
the cyclic tests (see Figure 12b); however for most practical applications, this model should give good-
enough precision with engineering purposes. If desired, a more sophisticated, but much more complex,
model can be obtained by using unilateral the yield functions with nonlinear isotropic and kinematic
hardening described in chapter 7 (section 7.1.6):

f(m,p,x)= Max n m;* -z —(Mp +Q(p,));— " m;i’ + 1z, - (Mp +Q(p,))| <0 (14.2.4)

1 K3

where x; is the kinematic hardening term, Q(p,) the isotropic hardening term and M the yield moment
of the cross-section.

The plastic deformation evolution law (14.2.3) remains unchanged. All the options for the evolution
of the hardening parameters x, and Q(p )presented in section 7.1.6 can also be used unmodified; i.e.
nonlinear Equations (7.1.15a and 7.1.16a) or multilinear (7.1.15b and 7.1.16b).

14.2.4 The Local Buckling Driving Rotation and
the Local Buckling Evolution Laws

As aforementioned, during a cyclic loading occurs a new phenomenon denoted “counter-buckling” that
can be described as follows: in the process of local buckling, a wrinkle is formed on the compression
side of the tube in the plastic hinge region. When the load is reversed, that wrinkle is subjected to tension
stresses; metaphorically speaking, it can be said that these tractions tend to “iron” the wrinkle. Of course,
simultaneously the compression stresses resulting from the same bending moment create or increase
the wrinkle on the opposite side of the plastic hinge zone. This “ironing” process on the tension side
is the counter-buckling effect. Figure 12 shows the plastic hinge region of a tube with local buckling
produced by positive and negative bending moments of the same intensity; in the figure both buckled
surfaces can be appreciated; the result of the counter-buckling process on one of them, the upper part,
can also be noticed.

In order to model the counter-buckling process, new variables, called local buckling driving rotations,
are introduced. These variables are defined for positive and negative local buckling as:

db; = (dg?) +CBf(dg!) : if b7 = 0:db = 0 otherwise

db; = —(dg!) —CBf(de!) ;ifb = 0; db =0 otherwise (14.2.5)
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The term CBf'is denoted counter-buckling factor and can take values between zero and one. A value
of CBfthat can be used in many applications is:

CBf = 0.7 (14.2.6)

Notice that both local buckling driving rotations are always positive. bf increases with positive incre-
ments of the plastic rotation and decreases with the negative one. The opposite occurs with b ; that is,
it increases with negative increments of the plastic rotation and decreases with the positive one. The
counter-buckling process occurs slower that the buckling one by a factor 0.7.

Notice also that in the case of a mono-sign loading, for example, a positive one, one of the local
buckling driving rotation becomes the accumulated plastic rotation while the other is equal to zero:
b'=p,b =0.

Figure 16 shows a plot of the slope of the elastic unloading branches vs. the local buckling driving
rotation in two tests, one corresponding to a mono-sign loading, the other to a cyclic one. Notice that,
indeed, the loss of elastic stiffness can be correlated by the local buckling driving rotation.

Then, the local buckling evolution law can be written as:

Acl;r =0 if bf < R(dl.*) Ad- =0if b- < R(d) (14.2.7)
b" =R(d")if Ad" >0 "|b7 = R(d ) if Ad” >0 o
Figure 16. Local buckling driving rotation, with CBf = 0.7 vs. elastic stiffness
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where R(df/ ") is, this time, the local buckling resistance function. This resistance function can be iden-
tified using the results presented in Figure 16 by computing the local buckling damage again as indi-
cated in section 14.1.4. A graph of damage vs. driving rotation is presented in Figure 17.

From this graph, two expressions can be proposed for the local buckling resistance function. The
simplest one generalizes the evolution law for mono-sign loadings presented in section 14.1.4 to the case
of cyclic loading with counter-buckling:

+/-
R} )=p, + Kf—] (14.2.8)

m

A more accurate alternative for large values of damage consists in the use of logarithmic function:

R(d)/)=1p N 1—% (14.2.9)
" Tk, 0.9

Figure 18 shows the incorporation of the expressions (14.2.8) and (14.2.9) in the Figure 17 and 5.
The parameters p_ and k, were identified in section 14.1.4 and a value of k, = 2.60 is estimated from
the experimental results.

Figure 17. Local buckling damage vs. local buckling driving rotation
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Figure 18. Local buckling resistance functions
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In this figure it can be appreciated that the expression (14.2.9) represents in a better way the results
for the cyclic test.

14.2.5 Numerical Simulations

In this section the numerical simulations corresponding to the cyclic test presented in Figure 11 and the
mixed test of Figure 15 are presented. The experimental curves are shown again in order to facilitate
the comparison of the results. In the first case, the curve deflection vs. force is shown in Figure 19 and
for the second one, in Figure 20. The values of the constants used in these simulations are: p = 0.152
rad and k= 2.60.

14.3 DAMAGE MODEL FOR TRIDIMENSIONAL STEEL FRAMES

14.3.1 Experimental Analysis of a Steel Tubular
Element Subjected to Biaxial Loadings

Consider the experimental set up that is shown in Figure 21a. Notice that it is a tube fixed at its base but
subjected to two perpendicular lateral forces. The specimens consisted in steel hollow structural elements
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Figure 19. Deflection vs. force curves corresponding to a circular element subjected to the cyclic load-
ing path of Figure 11a a) Experimental curve b) Numerical simulation
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Figure 20. Deflection vs. force curves corresponding to a circular element subjected to mixed loading
a) Experimental curve b) Numerical simulation
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with 120 mm square cross-section, 4 mm thickness and a free length of 1.28 m. The loading history of
controlled displacement for the test is presented in Figure 21b. Notice that this experiment has many
aspects in common with the mono-sign test discussed in section 14.1.1, except that the displacements
in the Y and Z directions are applied sequentially; at the end of each cycle the corresponding force is
carried to zero.

The response of the element is presented in Figure 22 in the form of two graphs of displacement vs.
force, one in each direction. The aspect of the plastic hinge region of the tube at the end of the test is
shown in Figure 23.

Notice that again two distinct wrinkles can be appreciated in the element; but this time they are not
in opposite faces of the tube, as in the cyclic test of section 14.2.1, but in two adjacent ones.
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Figure 21. a) Experimental set up for biaxial loading b) Loading history

A X

Displacement

Hydraulic actuators,

Hydraulic actuator

Pinned joint
\ Square tube
Aa - A -
Section A-A
Rigid Frame &
1.28 m 140
E 120 -
£ |
~ 100 - |
Square tube =
e B i
x
Fix joint 3
Rigid Base n@n .ﬂ] — o 2 40 6 8 10 120 W0 150

Displacement Z (mm)
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14.3.2 Elasticity Law for a Tubular Element in Tridimensional Frame

In order to model a behavior such as the one described in the previous section it is necessary to con-
sider the tridimensional case. The matrix of damage that was defined in section 14.1.2 is extended to
(D), =(d,.d,.d,.,d,); where d_characterizes the local buckling resulting from the bending moment

w? Tiz? Tgy?

around the local axis Y at the end i of the element, dl,y is the local buckling damage due to bending mo-
ments around the local axis Z at the same extreme; d, and d,_represent the two damage variables at the
end j (see Figure 24).
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Figure 23. Local buckling in a biaxial test

The elasticity law has the same general form (Equation 14.1.1) but now all its terms correspond to
the tridimensional case:

{Q - ®’ }b = [F(D)]b {M}b =+ {QO }b 5

{®}, = (¢fy,¢;y,6b,¢fz,¢;z,d);));{M}Z = (mfy,miy,nb,mfz,m;’.z,mz) (14.3.1)
(@7}, = (9].90.6,,00.00.0!):{@"}, = (¢,.9,.0,8.,¢7,0) (14.3.2)

The initial deformations are computed by using twice Table 3 from Chapter 3. The flexibility matrix
is given by:
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Figure 24. Representation of local buckling in the biaxial case using damage variables
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Notice that this elasticity law does not take into account unilateral behavior (or torsion damage). It
is possible to inverse the relationship and to compute the elasticity matrix:

{M}, = [ED){® -2}, + {M'(D)}, (14.3.4)
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14.3.3 Yield Functions

The yield functions with damage can be obtained by using the hypothesis of equivalence in deformation
and the expression introduced for biaxial plasticity (Equation 6.4.13) without damage:

v2 v3

vl
fo=l— + Py + i —1 (14.3.6)
i/j Mw( _

M (1—d_ )

iy/ J’y) u iz/ jz

The parameters v1, v2 and ©3 can be taken equal to 2. The usual normality laws and plastic multiplier
evolution laws accompanying these yield functions allow for the description of the plastic state of the
element:

o1

on

o,

+d\,
J an

of of
g, =d\, —H—;de! =d\ —"—;ds =d)
iy/ jy i/j amiy/jy iz/ jz i/j amiz/jz p i

d\, =0 if f, (m, .n)<0 [dg’ =0if f(m,)<0

: ; . (14.3.7)
fmy,n) =0ifdX >0"1f(m)=0if dp’ >0
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14.3.4 Local Buckling Damage Function and Evolution Laws
A new concept, similar to the yield function, is now introduced: the local buckling damage function

for the inelastic hinge i, g. This function depends on two accumulated plastic rotations and the local
buckling damages:

9. =9/p,.p.,d,d)<0 (14.3.8)
where these accumulated plastic rotations are defined as follows:

dp and dp,_ = |de! (14.3.9)

- ‘d¢£

iy

The local buckling evolution of an inelastic hinge i is now determined assuming that local buckling
also obeys a normality law:

dg. ,
Ad = Ap, =2 Ad_ = Ap == (14.3.10)

The variable u is the damage multiplier whose evolution law is:

Ap, =0if g, <0

14.3.11
g, =0if Ap >0 ( )

14.3.5 Experimental Identification of the Local Buckling
Damage Function for a Tube of Square Cross-Section

Consider again the experimental set up shown in Figure 21. The determination of the damage function
for a tube of square cross-section is carried out by subjecting several elements of this characteristic to
the set of biaxial loadings defined in Figure 25.

Notice that these are displacement controlled loadings that are represented by straight lines in the
displacement space. These four lines form different angles with the horizontal axis: zero degrees, fifteen
degrees, thirty degrees and forty five degrees and they are denoted SBH-0°, SBH-15°, SBH-30° and
SBH-45°. The results of those tests are presented in Figures 26 in two graphs of deflection vs. force,
one for each local axis

As aforementioned, softening in these curves initiates with local buckling. The values of the plastic
deflection at the instant of local buckling initiation can be measured using the elastic stiffness identified
at the beginning of the tests and the total deflection corresponding to the point of maximum force. The
pairs of plastic deflection in the Y and Z directions at the moment of local buckling initiation for a tube
of square cross-section are represented in the plot of Figure 27.
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Figure 25. Loading paths in the displacement space
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Figure 26. Displacement vs. force in the SHB-0°, SHB-15 °, SHB-30 ° and SHB-45° tests a) in the Z
direction b) in the Y direction
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This graph shows that the domain of no local buckling forms a square region in the space. After lo-
cal buckling initiation in any of the local axes, this domain experiences a hardening process; i.e. larger
plastic rotations are needed in order to generate local buckling evolution. A generalization of the damage
evolution law presented in section 14.1.4 is obtained with the no buckling domain presented in Figure 28.

Notice that the normality and evolution laws (Equation 14.3.10-11) with the no local buckling do-
main of Figure 28 give the following relationship between damages and accumulated plastic rotations:

d, =nr{p, —p,):d =r{p —p,) (14.3.12)
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Figure 27. Experimental determination of the local buckling function
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14.3.6 Numerical Simulations
This section presents numerical simulations of tests carried out on square beams subjected to several

loading paths. The first one corresponds to the test presented in Figure 21. As it can be appreciated in
Figure 21b, uniaxial displacements in pairs of linearly increasing amplitude were alternatively applied
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in the two transverse directions. The model parameters p and ~_were identified from the rotation vs.
flexural moment curve that is shown in Figure 29. In Figure 30a the experimental deflection vs. force
curves are presented again and in Figure 30b the corresponding numerical simulations. The values of
damage computed at the beginning of some elastic unloadings are indicated in later figure.

The second and third numerical simulations correspond to square beams subjected to the loading
histories presented in Figures 31a-b. In the square shaped loading path, displacements of the same
magnitude were sequentially applied in the two orthogonal directions; then, the specimen was unloaded
to zero force in the same sequence. In the triangular-shaped loading path, displacements of the same
magnitude were sequentially applied in the two orthogonal directions but the specimen was unloaded
simultaneously to zero force.

In Figures 32a is presented the experimental force Z vs. force Y curves corresponding to the square-
shaped loading path and in Figure 32b the corresponding numerical simulation.

In Figures 33a is presented the experimental deflection vs. force curves in the Y direction correspond-
ing to the square-shaped loading path and in Figure 33b the numerical simulation. Values of damage
computed at the beginning of some elastic unloadings are indicated in the numerical simulation curve.

Finally in Figure 34 are shown the curves corresponding to Z direction.

The results of the simulation corresponding to the triangular-shaped loading path are presented in
Figure 35 b. The set of experimental curves are shown in Figure 35 a.

14.3.7 Experimental Identification of the Local Buckling Damage
Function for a Tube of Rectangular Cross-Section

Figures 36-39 show the results of the identification tests described in the previous section in the case of
a tube of 120 mm x 60 mm cross-section, 2.5 mm thickness and a free length of 1.28 m.

Notice that this time, the no local buckling domain can be represented by a rectangular area. Now, the
normality and evolution laws (Equation 14.3.10-11) with the no local buckling domain of Figure 40 give:

d, =&, <Piy - pcw>é d, =k, <piz - Pm> (14.3.13)

Figure 29. Parameter determination in test of Figure 21
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Figure 30. Deflection vs. force curves in the test shown in Figure 21 a) Experimental b) Numerical

simulation
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Same rectangular specimens were subjected to the square-shaped and triangular shaped loading paths
shown in Figure 41. Values of damage at the beginning of some elastic unloadings are indicated in the

numerical simulation curves.

In Figures 42a is presented the experimental force Z vs. force Y curves corresponding to the square-
shaped loading path and in Figure 42b the numerical simulation.
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Figure 31. Loading paths applied to 120 mm square beams a) Square-shaped b) Triangular-shaped
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Figure 32. Beam subjected to square-shaped loading path a) Experimental force Z vs. force Y b) Nu-
merical simulation
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Figure 33. Beam subjected to square-shaped loading path a) Experimental deflection vs. force in the Y
direction b) Numerical simulation
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Figure 34. Beam subjected to square-shaped loading path a) Experimental deflection vs. force in the Z
direction b) Numerical simulation
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In Figures 43a is presented the experimental deflection vs. force curve in the Y direction correspond-
ing to the square-shaped loading path and in Figure 43b the numerical simulation. Values of damage
computed at the beginning of the last elastic unloading are indicated in the numerical simulation curve.

In Figure 44 are presented the results corresponding to the Z direction.

The results of the simulation corresponding to the triangular-shaped loading path are presented in
Figure 45 b. The experimental curve is shown in Figure 45 a.

14.3.9 Local Buckling Damage Function for a Tube of Circular Cross-Section

Consider now a tubular element of circular cross-section; assuming a perfect radial symmetry in the
tube, the initial no local buckling domain is also a circle. In the particular case of an element subjected
only to actions in the local axes directions Y and Z, the circumference may become an ellipse with the
damage hardening process. The local buckling damage function is in this case:

2 2

P,
P, + diz/lﬁ

b,

pcr+diy K

g, = (14.3.14)

The representation of the no local buckling domain is shown in Figure 46.
14.3.10 Numerical Simulations

Circular specimens with 120 mm external diameter and 3 mm thickness were subjected to the loading
paths of the Figure 47.

The experimental results of the L-shaped loading path of Figure 47a are presented in the Figure 48a
and in Figure 48b the corresponding numerical simulations.
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Figure 35. Responses of square beam subjected to the triangular-shaped loading path a) Experimental
b) Numerical simulation
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The experimental results of the square-shaped loading path of Figure 47b are presented in the Figure
49a and in Figure 49b the corresponding numerical simulations.

The experimental results of the triangular-shaped loading path of Figure 47c are presented in the
Figure 50a and in Figure 50b the corresponding numerical simulations.
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Figure 37. Deflection vs. force in the Y direction

568

Force I (KN)

14

12

10 -

40 60 80 100 120
Deflection ¥ (mm)

140



Lumped Damage Mechanics

Figure 38. Deflection vs. force in the Z direction
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Figure 39. Experimental determination of the local buckling function
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Figure 40. Elastic domain of no local buckling for a tube of rectangular cross-section
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14.4 ANALYSIS OF STEEL FRAMES WITH LOCAL BUCKLING
14.4.1 Planar Frame Subjected to Mono-Sign Loading

The steel frame of two levels and two spans shown in Figure 51 is subjected to a mono-sign loading.
The elements had rectangular hollow cross-section and were welded at the joints. The frame is simulated
using the model described in section 14.1. Single elements of the frame were tested in order to identify
the parameters of the model and are presented in Table 1. The Figure 52 shows the comparison between
model and experimental results in the case of a frame. For the sake of clarity, only four of the elastic
unloadings are represented in the simulation.

The Figure 53 indicates the state of damage at the end of the four unloading. The numbers beside the
hinges represent the damage values. The first distribution presents six plastic hinges with no damage,
i.e. without local buckling. It can be noticed that this state corresponds to the plastic hardening phase of
the test. The maximum resistance of the frame is reached between the first and second elastic unloading
of the simulation where a sudden change of the tangent slope can be appreciated. In the simulation, this
modification of the tangent stiffness is due to the appearance of local buckling in the same six plastic
hinges. Four new plastic hinges appear in the frame without local buckling while damage continues to
evolve in the first six hinges. After the third unloading, local buckling appears also in the four remaining
hinges. In the simulation, a slight additional modification in the tangent stiffness can be appreciated when
that happens. The test was stopped after the fourth unloading and the computed final state of damage is
shown in the last of Figure 53.
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Figure 41. Loading paths applied rectangular cross-section beams
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14.4.2 Planar Frame Subjected to Cyclic Loading

The simulation of the frame, shown in Figure 51, subjected to cyclic loading is presented in this section.
This time it is used the model described in section 14.2 considering the parameters x, = 1.45, CBf =
0.60. In Figures 54 are presented the experimental and numerical force vs. deflection curves.

It can be appreciated that the predicted and observed levels of force in Figure 54 are very close. The
damage distribution at the end of the simulation is presented in the Figure 55. Local buckling could be
observed in the specimen in the locations predicted by the analysis.
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Figure 42. Rectangular beam subjected to square-shaped loading path a) Experimental force Z vs. force
Y b) Numerical simulation
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Figure 43. Deflection Y vs. force Y curves corresponding to the square-shaped loading path of Figure
41a a) Experimental b) Numerical simulation
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Figure 44. Deflection Z vs. force Z curves corresponding to the square-shaped loading path of Figure
41a a) Experimental b) Numerical simulation

3

2 A/ A

Force Z (KN)
Force Z (KN)

A
N

d,=054

>
o
.
o

-1
40 60 80 100 B 0 20 40 60 80 100
Deflection Z (mm) Deflection Z (mm)

572



Lumped Damage Mechanics

Figure 45. Responses of rectangular beam subjected to the triangular-shaped loading path a) Experi-
mental b) Numerical simulation
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14.4.3 Tridimensional Frames Subjected to Mono-Sign Loading

The tridimensional frame presented in Figure 56a is subjected to the loading path of the Figure 56b.

The frame was built with steel hollow elements of 120 mm square cross-section and 4 mm thickness.
The geometry of the structure is shown in Figure 57. The displacements were imposed in the middle of
this structure through a steel device specially designed for this purpose as can be appreciated in Figure
56a. The response was obtained in the displacement application point.
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Figure 46. Elastic domain of no local buckling for a tube of circular cross-section
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Table 1. Parameters of the elements

Element p., MP (kgf-cm.) M, (kgf-cm.) A
K/m
Beams 1.45 0.190 669.30 850.73 19.50
Columns 1.45 0.195 674.21 833.57 19.25
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Figure 48. Responses of a circular beam subjected to the L-shaped loading path a) Experimental b)

Numerical simulation
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Figure 49. Responses of a circular beam subjected to the square-shaped loading path a) Experimental
b) Numerical simulation

12 12
A B
10 | 10 N \
8 | 8 \
s : NN
B B \
g 8
G a |§ a ey
(¥ 9
2 2 |-
° [
=) -2
2 0 2 a 5 8 10 12 2 0 2 a 5 8 10 12
Force Z (KN) Force Z (KN)

: ANAAAAA : /////.111
a YV YyYvinal L LYV
AP RmanasaaasaiiLy
AVSNNs /)
VLSS
VVVVvvyvyvy o /////////////

= = = = 1 > o 0 ° » o = = - 20 10 20
Displacement ¥{mm) Displacement ¥ {nm)

\ \
-
-
¥

Force Y{KN)
S
]
s
l
\
Rl
=
\\
T
N
=
—
-
S

Y)Y/ 4444447270 e Wi/
\W/I104000 44470
\W/VAINaNaasssi
)/
o/////////////

Force Z(KN)

576



Lumped Damage Mechanics

Figure 50. Responses of circular beam subjected to the triangular-shaped loading path a) Experimental
b) Numerical simulation
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Figure 51. Steel frame subjected to mono-sign loading
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Figure 52. Force vs. displacement curve
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For the numerical simulation of the test, beams and columns of the structure were represented by the
finite element, described in section 14.3, one element for frame member (a total of eight elements). The

slab was represented by multiple elastic elements with high stiffness to asses a uniform distribution of
the displacements in the tridimensional frame.
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Figure 53. Damage distribution in the frame a) End Ist unloading b) End 2nd unloading c) End 3th
unloading d) End 4th unloading
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Figure 54. Deflection vs. force curves a) Experimental b) Numerical

25

20

15

=
15}

]

=)

——

Force (KN)
[l

-
1=}

-15

-20

-25

-60

20 0 20
Deflection (mm)

40

60

80

25

20

15; 7

10 -

5

0

Force (KN)

5 4

-10

-15

-20

25

B -80

-60 -40 -20

0 20 40 60

Deflection (mm

80

579



Lumped Damage Mechanics

Figure 55. Damage distribution in the frame a) Positive Local Buckling b) Negative Local Buckling
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Figure 56. a) Tridimensional Steel frame and b) the loading path
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In Figure 58a it is shown the experimental force Z vs. force Y curve and in Figure 58b the correspond-
ing numerical simulation. The experimental displacements vs. force curves are presented in Figures 58¢
and 58e and the corresponding numerical simulations in Figures 58d and 58f.

The damage values and the local buckling aspect in the most damaged column at the end of the test

are shown in Figure 59.

14.5 SUMMARY AND EQUATIONS QUICK REFERENCE

This chapter describes how the concepts of fracture and damage mechanics can be used for modeling
the behavior of tubular frame structures. Tubular steel elements are usually built with relatively thin
walls; overloads on these components generate the appearance of small waves or wrinkles that do not
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Figure 57. Geometry of the tridimensional frame
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disappear after unloading the element; this phenomenon is called local buckling. This phenomenon is
the responsible for the degradation of stiffness and strength in structures built with tubular elements
when are subjected to severe overloads.

Experimental tests on tubular columns subjected to mono-sign displacements shown that the buckling
reduces the elastic limit of the elements as well as the slope of the loading/reloading branches. This fact
allows using the concept of plastic hinge with damage for its modeling. In this case the damage variable
measures the degree of local buckling at the ends of the tube.

The elasticity and plasticity laws are obtained based on the hypothesis of equivalence on deforma-
tions as in the model for RC elements. It can be used a yield function with perfect plasticity or nonlinear
plastic hardening.
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Figure 58. Tridimensional frame structure: test and simulation. a) Experimental force Y vs. force Z curve.
b) Numerical simulation. c) Experimental displacements vs. force curve in Y direction. d) Numerical
simulation. e) Experimental displacements vs. force curve in Z direction. f) Numerical simulation.
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Figure 59. Damage values and local buckling aspect at the end of the test

A new concept, the counter-buckling, is introduced in order to represent the behavior of this kind
of structures when are subjected to cyclic loading with reversal of sign. Metaphorically, the counter-
buckling effect can be described as the ironing of the wrinkles. This effect is characterized and modeled
introducing the concept of “local buckling driving rotation” (See Table 2).

Table 2.

LOCAL BUCKLING DAMAGE MODEL FOR PLANAR MONO-SIGN LOADINGS

Elasticity Law of a Tubular Frame Element with Local Buckling

Steel tube

\ Local buckling M; .

continued on following page
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Table 2. Continued

Elasticity law

3(1— cz)E[b N 6EbIb
(B @), = FDLM), + (@) FD) = | o g 0
b b I
0 0 Aé
(14.1.1) '
o (M}, = [E(D)], (&~ '}, + (M'(D)},
120-d)  61-d)1-d) 0 1 o
[E(D)], = k|6(1—d)(1—d) 12(1—d) 0 |: k= 0 a4 )Tb;
EAb i fi b
0 0 —
KL,

{M°(D)}, = -[E(D)] {2},
{‘PO }b : initial deformations defined in Table 3 of Chapter 3

Yield Function of a Plastic Hinge with Local Buckling

Plastic deformation evolution law and yield function

‘dqﬁf =0 if f(m,) <0 (hinge i locked)

f(m.)=0if d¢! = 0 (hinge i active) J

B

0
» (14.12)
d¢? =0 if f(m ) <0 (hinge j locked)
fi(m )= 01if d¢? =0 (hinge j active) ~/

>

M ; ultimate moment of the cross-section

Yield functions with hardening

m,
L=

1-d _(Mp +(M, _Mp)(l—e*”%))go

f =
T l—d

J

~ (M, 41, = M)A -e ")) <0
(14.1.3)

M : first plastic moment
a:plastic hardening parameter
p,and p; accumulated plastic deformations

Accumulated plastic deformations

dp, = |ds;| dp, =|do!

(14.1.4)

continued on following page
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Table 2. Continued

Yield functions

2 2 2 2

: u J (14.1.5)

Normality rules

agr =y o ddf =dh S s gy Oy gy D
m, .o " on 70N (416

Plastic multipliers evolution laws
dX\, = 0if f <0 (hinge i is locked) |dA = 0if f, <0 (hinge j is locked)

f,=0if dX\ =0 (hinge ¢ is active) |f =0if dA, =0 (hinge j is active)
: (14.1.7)

A A
i, 7 plastic multipliers of hinges i and j.

Local Buckling Evolution Law

|Diso|acement

Hydraulic actuator

Pinned joint

Rigid Frame
489 mm

Circular tube
—

Fix joint

Riﬁid Base | dh dh |

Plastic rotation and damage

o=l d= _Z4)

L. 2, (14.1.8)

P :plastic deflection

0 :initial, un-buckled, slope of the deflection vs. force curve (Figure 3a)

Z(d) the damaged slopes

Damage

d =r, <pi a pCT> (14.1.9)

p,.:critical plastic rotation that initiates local buckling
K, : slope of the line as indicated in Figure 5.

continued on following page
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Lumped Damage Mechanics

THE COUNTER-BUCKLING EFFECT AND A MODEL FOR GENERAL PLANAR LOADINGS

Unilateral Elasticity Law for Steel Frame Elements with Hollow Cross-Sections

Z A
Steel tube
di+ >0 ; d,'_> 0
=" =
"= / =i X
= +
dr> 0\ocal buckling >0
+\ (gt g+ N (1
Local buckling damages: (D )b o (di ’dj )and (D )b a (d’ 7dj )
Unilateral elasticity law

+ _ —
(@}, —{@"}, =[F(D")|(m) +[F(D")[(m) +{@",
Lb _ Lb 0
3EI, (1-d*") 6EI,
L L
FD)| =] - d 0
6EI, 3EI, (1-d"")
J
0 0 E—”
Ab (14.2.1)
{(I)}b : deformation matrix
p
{(I) } b : plastic deformation matrix
+ _
M M
< >” s < >b : positive and negative parts of the stress matrix.
Unilateral Yield Function
Unilateral yield function

i

fi:Ma:r

d’

<0

(14.2.2)
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Table 2. Continued

Plastic deformation evolution laws

[d¢? = 0if f <0 (hinge i locked)
[, =0if d¢! = 0 (hinge 7 active)

d¢! =01if f. <0 (hinge j locked)

f, =01if d¢? = 0 (hinge j active)
! ! (14.2.3)
Yield functions with nonlinear isotropic and kinematic hardening

Y ) m, ( () m,
m,p,x )= Mazx -z —(M +Q(p));—
o 17d1_+ ! ? ' 17d1

—tx — (M +Q(p))| <0
(14.2.4)

x;: kinematic hardening term

O(p,): isotropic hardening term

M yield moment of the cross-section.

The Local Buckling Driving Rotation and the Local Buckling Evolution Laws

db; = (dg}) +CBf(dg}) ;if b" >0; db’ = 0 otherwise
Local buckling driving rotations + -
db =—(d¢!) —CBf{dg}) ; if b >0;db =0 otherwise
- +

(14.2.5)
CBYf: counter-buckling factor (Can take values between 0 and 1). Good value: 0.7
Local buckling evolution law

Ad' =0if b < R(d")

Ad-=0if b < R(d)
bt =R(d")if Ad" >0 |b7 =R(d )if Ad >0

; (14.2.7)
R(d")

: local buckling resistance function

Local buckling resistance function
+/-
R(d+/*):p + i/j
i/j cr
mo (14.2.8)
1 e
R(d)")=p, ——In|1-
/ K 0.9

(14.2.9)
Kk =2.60 is estimated from the experimental results.

continued on following page
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Table 2. Continued

Damage Model for Tridimensional Steel Frames

Steel tube dyy

y

Steel tube d;;

Matrix of Damage

(D)b = (diy7 diz’ d]'y’ djz)

d,-y: local buckling damage due to bending moment around the local axis Y at the end i
d,-y: local buckling damage due to bending moments around the local axis Z at the end i
d]y: local buckling damage due to bending moment around the local axis Y at the end j
dﬂ_: local buckling damage due to bending moments around the local axis Z at the end j

continued on following page
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Table 2. Continued

Elasticity law

[@ -}, = [FD){M}, +{®'}, .

{q)}t _( Zya ]Jv ba () ¢]Za¢> {M}t (m m 1 mw,m]z,m)
0

{(I,p}b _( iy’ ]y7 p? Zz> ]Zad)p) {@ }b - (¢1y7¢]y707 iz? szo)

(14.32)
Lb _Lb
- - 0 0 0 0
31—d )EI 6F1
Y Yy Y
_Lb Lb
- ; 0 0 0 0
6F1 31—d )EI
Yy JY Yy
Lb
0 0 v 0 0 0
[F(D)] = ’
Lb _Lb
0 0 0 - -
3( diz )EIZ 6LT
_Lz Lb
0 0 0 ’b -
6FEI 31—d )EI
L,
0 0 0 0 0
GJI
"1 (14.3.3)
, 0
{M}b = [E(D)]b {i, — P’ }b + {M (D) }b (14.3.4)
D)), = [FD)]," =
1281 1-d ) eEl” Q-4 )1-d
y ( iy Yy iy)( jy) 0 0 0 0
L 4-(-d)0-d) L 4-(-d)0-d)
b b
6B (L-d )1 -d ) 12E1, a-d,) . . . .
L A-Q-d)0-d) L 4-(-d)0-d)
4B,
0 0 — 0 0 0
L,
1281 a-d ) —epl” (- d,)1-d.)
O 0 0 z 1z Z 0
L, 4-(-d)A-d) L, 4-(-d)1-d)
opl (-d)0-d ) n2m 1-d )
0 0 0 Z Z 12 0
L 4—(-d)l—d) L 4-(-d)1-d)
GJ
0 0 0 0 0 —%
L
b
(14.3.5)

continued on following page
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Yield Functions
Yield functions
vl v2 v3
f;/' _| + Mgty + M) 1
’ Nu Mu (1 - du/ ) Muz( - iz/jz
Y v o (14.3.6)
Parameters v1, v2 and ©3 can be taken equal to 2.
Normality laws and plastic multiplier evolution laws
of . of .
de?, = d\ O dg?, = Oy of of
iy/ jy i Om iz/ jz i Om ds6 =d\ =L +d\ —
/gy /P ' On T on
d\,, =0if f, (m, ,n)<0 |dg’ =0if f(m )<0
J— 1 _ : D
() = 03 Xy, >0 [f(m,)=0if dg? >0

Local Buckling Damage Function and Evolution Laws

Local buckling damage function for the inelastic hinge i

=g (p. ,p_,d ,d )<
9 gz(pzy’pzﬂ iy’ 1z)—0 (143.8)

Accumulated plastic rotations

dp,, =|de!

p

dp i ‘d¢iz
d

an (14.3.9)

Local buckling evolution of an inelastic hinge i

891. 8gi
Adl,y = Ay, B Ad, = Ap,

K Pi (143,10
pu: damage multiplier

Damage multiplier whose evolution law
Ap, =0if g <0

g, =0if Ap, >0
(14.3.11)

Experimental Identification of the Local Buckling Damage Function for a Tube of Square Cross-Section

No local buckling domain
diy = H<piy _pcr> . diz = R<piz _pcr>

Experimental Identification of the Local Buckling Damage Function for a Tube of Rectangular Cross-Section

(14.3.12)

No local buckling domain
diy - K/y <p2y - pcry> diZ = K/Z <plz B pcrz>

Local Buckling Damage Function for a Tube of Circular Cross-Section

(14.3.13)

Local buckling damage function
2 2

D, | B
p, +d, [&| |p, +d [r

9, =

(14.3.14)
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