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Preface

This book is the final result of a number of incidents that occurred to us while 
discussing location issues with colleagues at conferences. Frequently we attended 
presentations, in which the authors quoted the well-known references that helped 
to make the discipline what it is today. Upon further inquiry, though, it turned out 
that some of these colleagues had never actually read the original papers. We then 
discussed among ourselves which contributions could be credited with shaping the 
field. And, lo and behold, we found that we, too, had neglected to read some of the 
papers that form the foundation of our science. Whether it was laziness or other 
things that got in the way, it had become clear that something had to be done.

Our first thought was to collect the original contributions (once we could agree 
on what they were) and reprint them. When discussing this possibility with a pub-
lisher, we immediately ran into a roadblock in the form of copyright. While this 
appeared to have stopped our enthusiastic effort dead in its tracks, we kept on col-
lecting and reading what we considered original contributions.

This went on until we met Camille Price, who suggested that, rather than reprint-
ing the original contributions, we should invite some of the leaders in our field and 
ask them to describe the original contribution, explain and interpret it, and comment 
on the impact that it had to the field. This was, of course, an excellent idea, and the 
response by our colleagues to our pertinent requests was equally enthusiastic. What 
you hold in your hands is the result of this effort.

In other words, the purpose of this book is to provide easy access to the main 
contributions to location theory. The book is organized as follows. The introductory 
chapter provides an overview of some of the many facets of location analysis. This 
is followed by contributions in the main three fields of inquiry: minisum, mini-
max, and covering problems. The next chapters are part of an ever-growing list of 
nonstandard location models: models including competitive components, those that 
locate undesirable facilities, those with probabilistic features, and those that allow 
interactions between facilities. The following chapters discuss solution techniques: 
after a discussion of exact and heuristic techniques, we devote an entire chapter to 
Weiszfeld’s method, and another to Lagrangean techniques. The last chapters of this 
book deal with the spheres of influence that the facilities generate and that attract 
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customers to them, and the last chapter delves back into the origins of location sci-
ence, when geographers discussed central places.

Since the book is written by different individuals, the style and notations differ. 
Initial attempts to unify the notation were nipped in the bud. It is apparent that some 
chapters will be accessible to the laymen, others require substantial mathematical 
knowledge. However, all are written by competent individuals, who have made a 
major effort to not only popularize the original work, but also to assess its impact 
on the field and its implications for theory and practice.

With great sadness we have to report the untimely death of one of our contribu-
tors, Professor Roberto Galvão. His chapter is certainly one of the highlights of this 
book. In order to publish his contribution, it was required to have the usual consent 
form signed by a relative of his. Alas, none was to be found. Since we are certain 
that it would have been Professor Galvão’s will to see his work in print, Professor 
Marianov now formally appears as coauthor (and, as such, being able to sign the 
necessary form), while the chapter was and remains entirely that of Roberto.

Last, but certainly not least, it is our great pleasure to thank all individuals who 
have contributed to this work and helped to make it reality. First and foremost, there 
are the contributors to this volume, who have devoted their time and talents to the 
cause of making the original contributions in our field accessible to those interested 
in the area. Then, of course, there is Camille Price, without whose suggestions and 
encouragement this book would never have seen the light of day. Thanks also go 
to Professor Hillier for his patience, and to Mr. Amboy for his timely help with the 
preparation of a camera-ready copy of the manuscript.

� H. A. Eiselt 
� Vladimir Marianov

Preface
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1.1 � Location Problems: Its Problem Statement, 
Its Components, and Applications

A mathematician would probably define a location problem as solving the follow-
ing question: “given some metric space and a set of known points, determine a num-
ber of additional points so as to optimize a function of the distance between new and 
existing points.” A geographer’s explanation might be that “given some region in 
which some market places or communities are known, the task is to determine the 
sites of a number of centers that serve the market places or communities.” Students 
of business administration will want to determine “the location of plants and market 
catchment areas in the presence of potential customers,” while computer scientists 
(or, more specifically, analysts in computational geometry) may want to determine 
“the minimum number of equal geometrical shapes that are required to cover a cer-
tain area, and the positions of their centroids.”

All these views have in common the basic components of a location problem: a 
space, in which a distance measure is defined, a set of given points, and candidate 
locations for a fixed or variable number of new points. We refer to the known points 
as “customers” or “demands,” and the new points to be located as “facilities.”

As far as the space is concerned in which customers are and facilities are to be lo- 
cated, we distinguish between a subset of the d-dimensional real space (most promi-
nently, the two-dimensional plane) and networks. Each of these two categories has 
two subcategories: one, in which the location of the facilities is continuous, and 
the other, in which it is discrete. These two subcategories will determine the toolkit 
needed by the researcher to solve problems. In discrete problems, the decision is 
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whether or not to locate a facility at that spot, thus modeling the decision with a 
binary variable is obvious. The result is a (mixed-)integer linear programming prob-
lem. On the other hand, continuous problems will have continuous variables asso-
ciated with them, indicating the coordinates of the facilities that are to be located. 
Since functions of the distance are typically nonlinear, a nonlinear optimization 
problem will follow in this case. With the tools for the solution of the different types 
of problems being so different, it is little surprise that most researchers have decided 
to either work with continuous or with discrete models. Both types of models are 
represented in this book.

The space commonly corresponds to a geographical region. An obvious choice 
for representing such a region is the two-dimensional plane. In some cases, a one-
dimensional space is a used to simplify the analysis of complicated problems, as 
in the case that includes competition between firms. Location problems can also 
be defined over non-geographical spaces. For example, an issue space in which 
potential voters for a presidential election are located according to their positions 
in relation to the issues. The problem would be to optimally locate a candidate so 
to maximize his vote count in the presence of competing candidates, assuming that 
voters will vote for the candidate whose position is closest to them. Or consider a 
skill space in which a number of tasks (demands) have known locations, each loca-
tion representing the combination of skills required to successfully accomplish the 
task. The location problem would be to locate company employees in such a way 
that all tasks are performed by sufficiently skilled employees, and no employee is 
overloaded with work.

In this book we deal with location problems, which are defined as models, in 
which the facilities and demands are very small as compared to the space they are 
located in. Examples of facility location problems are finding the location of an 
assembly plant within a country; or selecting the site of a school in one of several 
candidate points in a city. In these cases, the facilities can be considered dimension-
less points. A generalization would be the location of lines in a plane, where the 
lines represent a new road. In some cases, location problems can be cast as geo-
metrical problems: an example is finding the smallest circle that contains a known 
set of points on a plane, which is equivalent to locating a facility (the center of the 
circle) in such a way that the largest distance (the radius of the circle) between any 
customer (the given points) and the facility (the center of the circle) is minimized. 
In contrast to location problems, layout problems feature facilities, whose size is 
significant in comparison to the space the facility is to be located in. Examples of 
layout problems include the siting of a drilling machine in a workshop, the location 
of tables in a fast-food restaurant, or the location of supply rooms in a hospital. 
Other things being equal, layout problems are more difficult than location problems 
with similar features. One reason is that layout problems must consider the shape of 
the facility to be located, which is unnecessary in location models, where facilities 
are just points. Layout models are not discussed in this book.

Location problems can be formulated to answer to several different questions. 
Not only can the location of the facilities be unknown, but also the number of fa-
cilities and their capacities. Furthermore, when there is more than one facility, the 
solution of the location problem also requires finding the assignment of demands to 
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facilities, called the “allocation” problem. Examples of this problem are the assign-
ment of individual customers to a particular warehouse from which grocery is to be 
delivered by a phone-order company, or the dispatching of specific ambulances to 
emergency sites. In these cases, the owner or operator of the facilities does the al-
location, but there are other cases in which users decide what facility to patronize, 
such as the decision which theater to patronize or at what fast-food store to have 
lunch.

For the location problem to make sense, customers and facilities must be related 
by distance. Again, this distance can be measured either over a geographical region 
or over any kind of space. Typical goals are to minimize the distance between fa-
cilities and their assigned customers (minisum problems) or maximize the amount 
of demand (number of customers) that is within a previously specified distance 
from their assigned facilities. When all the demand is to be served, a goal could 
be to minimize the number of facilities needed for all the customers to be within a 
distance from their facility. If competing facilities are involved and distance is an 
issue for customers, the planner’s objective will be to locate his facilities closer than 
competitors’ facilities to as many customers as possible.

Proximity to facilities is, however, not always desirable. When locating a new 
landfill, most people will object if the facility is to be located close to their homes—
the usual NIMBY (not in my back yard) argument applies, even though they usu-
ally understand that locating the landfill too far away will cost them, as they are, 
directly or indirectly, charged for the collection and transportation costs of the solid 
waste. In this case, the problem could be formulated with conflicting objectives: 
the landfill should be not too far from the area it serves, but most of the population 
should be as far as possible from it. These objectives have been described as “push” 
and “pull”.

Besides distances between facilities and demands, there are other factors that can 
be relevant when seeking good locations. Availability of services and skilled tech-
nicians at the candidate locations, land cost, existence of competitors and regional 
taxes are some examples. While such factors are maybe as important as or possibly 
even more important than proximity, most standard location problems do not con-
sider them. This stresses the importance of considering the output of the standard 
location models as an input for the decision maker, who can then include any of the 
features that were ignored by the mathematical model.

Most of the applications of location models involve, decisions on the strate-
gic level. As such, the decisions tend to be long-term, which implies that many of 
the data used in the decision-making process, will be quite uncertain. While there 
usually are few changes concerning distances, future demand tends to be highly 
uncertain. This problem is exacerbated by the high cost of locating and relocating a 
facility, meaning that once a location is chosen, it can only be changed at great ex-
pense. This argument implies that probabilistic and/or robust models are most likely 
to result in facility locations that are acceptable to decision makers.

Applications of location models are found in many different fields. Some of 
these applications are fairly straightforward, such as the locations of trucking ter-
minals, blood banks, ambulances, motels and solid waste transfer points. Others are 
nontraditional and not at all obvious. Good examples are the location of measuring 
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points for glaucoma detection, the location of new employees in skill space, the 
location of advertisements in media and many others.

1.2 � A Short History of the Early Developments  
in Location Analysis

In the early seventeenth century, a question was posed about how to solve the fol-
lowing puzzle: “Given three points in a plane, find a fourth point such that the sum 
of its distances to the three given points is as small as possible.” This question is 
credited to Fermat (1601–1665), who used to tease his contemporary mathema-
ticians with tricky problems. The earliest (geometrical) solution is probably due 
to Torricelli (1598–1647), Fermat’s pupil and the discoverer of the barometer, al-
though due to the many discoveries and rediscoveries of the problem and its solu-
tion, there are different opinions about the true origin of the problem and who solved 
it first. Because of the many scientists involved in the process, the problem has been 
called the Fermat problem, the Fermat-Torricelli problem, the Steiner problem, the 
Steiner-Weber problem, the Weber problem, and many variation thereof. The inclu-
sion of Weber’s name follows his generalization of the problem by assigning dif-
ferent weights to the known points, so transforming the mathematical puzzle into 
an industrial problem, in which a plant is to be located (the unknown point) so to 
minimize transportation costs from suppliers and to customers (the known points) 
requiring different amounts of products (the weights). Weber’s name stuck, even 
though the formulation of the model in Weber’s book is in an appendix written by 
Pick. Even if the first formal occurrence of a location problem were due to Fermat 
or one of his contemporaries, location analysis must be much older than that. For 
centuries before, people may have wondered in which cave to live, where to build 
houses, villages, churches, and other “facilities.” And they solved these problems 
using some sort of heuristic method.

Location problems frequently require solving an associated allocation or assign-
ment problem: if locations for more than one facility are known, which facility will 
serve what customers? A step towards the solution of the allocation problem was 
taken very early in the seventeenth century. Descartes imagined the universe as a 
set of vortices around each star—the “heavens”—and illustrated his theory with a 
drawing that made an informal use of what later would become known as Voronoi 
polygons and Voronoi diagrams. This concept was subsequently used by Dirichlet 
in 1850, extended to higher dimensions by Voronoi and rediscovered by Thiessen, 
both in the early twentieth century. While Thiessen’s application involves an im-
proved estimate of precipitation averages, Voronoi diagrams are generally useful 
tools when consumers have to be assigned to their closest facilities.

Between the 1600s and the 1800s, there was no registered activity related to 
location problems other than a puzzle in the Ladies Diary or Woman’s Almanack in 
1755 as reported in a book edited by Drezner and Hamacher in 2002. In 1826, the 
geographer von Thünen developed a theory concerning the allocation of crops on 
the land that surrounds a town. His point was that the agricultural activity should 
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be organized around the town according to transportation costs and value of the 
products. This theory results in crops cultivated in concentric circles about the town. 
Clearly, a location issue, although it could also be considered a land layout problem, 
as the areas or rings to be located around the central place are sizeable in compari-
son to the space considered.

In 1857, Sylvester asked another location-related question: “It is required to find 
the least circle which shall contain a given system of points in a plane.” This ques-
tion was later answered by Sylvester himself in 1860 and by Chrystal in 1885. 
Nowadays, we would call this a one-center problem in the plane.

As in many other fields, the pace of discoveries increased dramatically in the 
twentieth century. In the late 1920s, the mathematical statistician-turned economist 
Hotelling wrote a seminal paper on competitive location models that spawned a 
rich diversity of models that are still under active discussion today. Also during that 
time, Reilly introduced gravity models into the fray as a way customers gravitate 
to facilities The 1930s saw contributions by Christaller, who founded central place 
theory, and Weiszfeld, who developed his famed algorithm that solved Weber prob-
lems with an arbitrary number of customers.

Later important contributions included those by Lösch and the regional scientists 
Isard and Alonso. The birth of modern quantitative location theory occurred in the 
mid-1960s, when Hakimi wrote his path-breaking analysis of a location model on 
networks, which, in today’s parlance, is a p-median problem. Following Hakimi’s 
papers, ReVelle, Church, Drezner, Berman, and many others have made important 
contributions to location science. Some of those have also contributed to this book.

1.3 � Some Standard Location Problems

Facility location problems can take a variety of forms, depending on the particular 
context, objectives and constraints. It is common to classify location problems in 
minisum, covering and minimax problems. Most of the numerous remaining facil-
ity location problems can be seen as combinations or modified versions of these 
key problems. We present here prototypes of these basic classes, as well as an as-
sortment of other models that we consider of importance, either from a theoretical 
viewpoint, or because of their practical interest. This list of models is also a guide 
for understanding the following chapters and a way to introduce some standard 
notation, since in most of the chapters of this book, the original notation of the re-
viewed papers is preserved.

We first state a base formulation, which is used throughout this section to present 
some of the different problems and models for location on networks. This formula-
tion applies only when demands lie at the nodes and facilities are to be located only 
at nodes of the network. The problem can be formulated as follows.

� (1.1)Min σ




∑

i,j

cij yij +
∑

j

fjxj + gz




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� (1.2)

�
(1.3)

�
(1.4)

where the variables are:

xj:	� a location variable that equals 1, if a facility is located at node j, and 0 otherwise,
yij:	� an allocation variable that equals 1, if customer i is assigned to a facility at j, 

and 0 otherwise, and
z:	� a continuous variable that takes the value of a maximum or a minimum dis-

tance, depending on the problem being solved.

The subscripts are

i, j:	� a subscript that indicates customers and potential facility sites, respectively,
Ni:	� is the set of nodes. Its definition depends on the problem, and n and m denote 

the total number of customers and potential facility locations, respectively.

Finally, the parameters are

:	� a parameter that takes the value 1 or (−1), depending on whether the 
objective is minimized or maximized, and

cij, fj, g:	� parameters that depend on the problem being solved.

The objective (1.1) of the base problem optimizes linear combinations of the loca-
tion and allocation variables and the distance variable. Depending on the problem, 
these linear combinations represent maximum, minimum or average distances, in-
vestment or transportation and manufacturing costs. The set of constraints (1.2) 
state that each customer’s demand must be satisfied, and that all of it is satisfied 
from one facility. In other words, that each customer or demand node is assigned to 
or served by exactly one facility. The set of constraints (1.3) allows demand node 
i to be assigned or allocated to a facility at j only if there is an open facility in that 
location i.e., xj = 1. Constraints (1.4) define the nature of all variables as continuous 
or binary. Note that these constraints define a feasible set of solutions of the prob-
lem of locating a (yet) undetermined number of facilities, choosing their sites from 
a number of known candidate locations, and finding the right assignment of demand 
nodes or customers to these facilities.

1.3.1  �Minisum Problems

Minisum problems owe their name to the fact that a sum of facility-customer dis-
tances is minimized. These problems include single-facility, multiple-facility and 

s.t.
∑

j∈Ni

yij = 1 i = 1, 2, . . . n

yij ≤ xj i = 1, 2, . . . n, j = 1, 2, . . . m.

yij , xj ∈ {0, 1}, z∈ R+ i = 1, 2, . . . n, j = 1, 2, . . . m,

H. A. Eiselt and V. Marianov
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weighted versions of the Weber problem; the simple plant location problem SPLP 
and the p-median problem PMP.

1.3.1.1 � Minisum Problems on the Plane: The Weber Problem

The Weber problem consists in finding the coordinates ( x, y) of a single facility X 
that minimizes the sum of its distances to n known customer or demand points with 
coordinates ( ai, bi) and weights wi, i = 1, 2, … n, all of them lying on the same plane. 
This is an unconstrained nonlinear optimization problem, and its general formula-
tion is

where d( X, Pi) is the distance between the facility and demand i. If Euclidean dis-

tances are used, this distance is d(X, Pi) =
√

(x − ai)
2 + (y − bi)

2 .
An application of this problem is locating a single warehouse (the facility) that 

supplies different amounts (weights) of products to a number of dealers (the de-
mands), in such a way that the total transportation cost is minimized, assuming that 
this cost depends on the distance and amount of transported product.

The solution of this problem is easily found using differential calculus. However, 
the coordinates of the optimal facility location turn out to be a function of the dis-
tance d( X, Pi), which is unknown. The practical solution of this problem, found by 
Weiszfeld, involves the use of an iterative algorithm that takes as an initial solution 
the point that minimizes the sum of the squares of the distances.

A natural generalization of the Weber problem is its multiple-facility version. 
As more than one facility is to be located, an allocation problem must be solved 
together with the location problem, which makes the problem far more difficult. In 
the simplest case, the assumption is made that each demand is assigned to its closest 
facility. This problem was described and a heuristic proposed by Cooper in 1963.

1.3.1.2 � Minisum Problems on Networks: Plant Location  
and Median Problems

The Simple Plant Location Problem

The simple plant location problem, sometimes also referred to as the uncapacitated 
facility location problem seeks minimizing production, transportation and site-relat-
ed investment costs. The model assumes that the costs of opening the facilities de-
pend on their location, and that the investment budget is not a constraint. Then, the 
number of facilities to be opened is left for the model to decide. Its integer program-
ming formulation is the base model (1.1)–(1.4), with σ = +1, cij = (ej + c̃ij dij )wi, 

Min z(X) =
n∑

i=1

wid(X, Pi),

1  Pioneering Developments in Location Analysis
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where ej denotes the production cost per unit, c̃ij  are the transportation costs from 
node i to j per unit, dij symbolizes the shortest distance between i and j, the param-
eters wi denote the quantity of the product that must be shipped to customer i, the 
parameters fj are the fixed costs of opening a facility at node j, and g equals zero. 
The set Ni in constraints (1.2) contains all possible candidates to location of facili-
ties. The objective to be minimized, representing the total sum of variable and fixed 
costs, is now:

Since the costs of locating facilities are included in the objective, the solution of the 
model prescribes the number of facilities to be located, depending on the tradeoff 
between transportation and fixed costs.

There is also a “weak” formulation of this problem that uses an aggregated ver-
sion of constraints (1.3) for each facility location j, 

∑
j yij ≤ nxj .

There is an important body of literature focusing on this problem, because of its 
versatility and practical interest. Due to its difficulty, many solution methods have 
been proposed. In Chap. 2 of this book, Verter describes this problem, and reviews 
in detail the classical dual ascent method by Erlenkotter, as well as the heuristic 
proposed by Kuehn and Hamburger.

The 1-Median Problem

The network equivalent of the single-facility Weber problem on the plane is the 
1-median problem, whose formulation is exactly the same as that of the single-
facility Weber problem. However, in the 1-median problem the demands occurs at 
the nodes of a network. Hakimi proved that there is always an optimal location of 
the facility at a node of the network. As a consequence, finding the solution reduces 
to searching the nodes of the network, and the problem can be stated as follows: find 
a node v* such that for all nodes vk, k = 1, 2, … n,

This problem has been solved for locations on tree networks in the 1960s by Hua-
Lo Keng, who was looking for the optimal location of a threshing floor for wheat 
fields, and rediscovered by Goldman in 1971.

The p-Median Problem

The p-median problem is a p-facility generalization of the 1-median problem, in 
which it is assumed that the decision maker knows how many facilities are to be lo-

Min
∑

i,j

cij yij +
∑

j

fjxj .

n∑

i=1

wid(v∗, vi) ≤
n∑

i=1

wid(vk , vi).
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cated, and that the cost of locating the facilities is the same no matter where they are 
located. As in the continuous case, the allocation problem must be solved together 
with the location problem, i.e., not only the location of the p facilities needs to be 
found, but also, for each demand, the facility to which this demand is assigned. Let 
Xp be a set of p points x1, x2, … xp. Define distance of a node vi to its closest point 
in Xp as

Then the set Xp
* is a “p-median” of the network, if for every Xp on the network,

i.e. Xp
* is the set of p points on the graph such that, if facilities are open at these 

points, the total weighted distance between the demands and their closest facility 
would be minimized. For this problem, Hakimi proved that there is always a solu-
tion set containing only nodes of the network.

ReVelle and Swain formulated this problem as a linear integer programming 
problem. Their model uses the same equations (1.1)–(1.4) of the basic formula-
tion above, and an additional constraint that requires exactly p facilities to be 
located:

In their formulation of the p-median, the objective minimizes the sum of the weight-
ed facility-demand distances, i.e., in the objective (1.1) of the basic formulation, 
the parameters become σ = +1 , cij = widij, where wi is the weight associated to 
each demand node (demand volume or number of customers) and dij is the shortest 
distance between nodes i and j, measured along routes on the network, fj = 0, and 
g = 0. The objective (1.1) becomes

Also, the set Ni in constraint (1.2) contains all possible candidates to location of 
facilities. Note that this formulation assumes that each demand is assigned to its 
closest facility.

In Chap. 3 of this book, Marianov and Serra review the classic contributions of 
Hakimi, made in 1964 and 1965, including the definitions of the absolute median 
and the absolute p-medians of a network. Also, they review the paper in which the 
first integer programming formulation of the p-median problem was proposed by 
ReVelle and Swain in 1970.

d
(
vi , Xp

)
= min

{
d(vi , x1), d(vi , x2), ..., d(vi , xp)

}
.

n∑

i=1

wid
(
vi , X∗

p

)
≤

n∑

i=1

wid
(
vi , Xp

)

∑

j

xj = p.

Min
∑

i,j

widij yij .
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1.3.2  �Minimax Problems

The idea behind minimax problems is to minimize the longest distance between a 
customer and its assigned facility, expecting that a maximum equity or justice will 
be achieved. As before, these problems have been defined both on a plane and on 
a network.

1.3.2.1 � Continuous Minimax Problems: Single and Multiple-Facility  
Center Problems on the Plane

The oldest known single-facility minimax problem was formulated by Sylvester 
in 1857 in a one-sentence reference. The problem consists in finding the small-
est circle containing a set of given points. Finding the solution of this problem is 
equivalent to finding the location of the center of a circle that encloses all given 
points, in such a way that its radius is minimized. If a facility is located at the center 
of the circle, and the points represent demands, the maximum distance between the 
facility and a demand will be minimized. This problem is now known as the 1-cen-
ter on the plane or the continuous 1-center. Several geometrical solution methods 
have been proposed to solve this problem, the first one due to the same Sylvester 
and rediscovered by Chrystal in 1885.

A natural extension of the 1-center problem is the p-center on the plane. Its for-
mulation is as follows. Let Xp be a set of p points x1, x2, … xp on the plane. Define 
distance of a customer ci to its closest point in Xp as

Then the set Xp
* is a “p-center”, if for every Xp on the plane,

In other words, Xp
* is the set of p points on the plane such that, if these points were 

facilities, the maximum distance between a demand and its closest facility would 
be minimized. Minimax problems on the plane, as well as their solution methods 
are analyzed in Chap. 4 of this book. In that chapter, Drezner describes the early 
research done in the nineteenth century, shows how geometrical methods were used 
to solve the continuous minimax problems, describes the algorithmic contributions 
by Elzinga and Hearn in the 1970s, and compares both approaches through new 
unpublished computational experience.

1.3.2.2 � The 1-Center and p-Center Problems on Networks

The 1-center on a network has been first formulated and solved by Hakimi in 1964 
and the solution method improved by Goldman in 1970 and in 1972. Hakimi for-

d
(
ci , Xp

)
= min

{
d(ci , x1), d(ci , x2), ..., d(ci , xp)

}
.

max d
(
ci , X∗

p

)
= max d

(
ci , Xp

)
.
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mulates the problem as follows: Let vi be a node, wi its potential demand, and x any 
point on the network. Define d( vi, x) as the minimum distance between vi and x. 
Find a point x* on the network such that for x,

This point is called the “absolute center” of the network. Hakimi proved that his 
result for minisum problems does not apply to the 1-center problem. In other words, 
the solution can be on an arc of the network, which is even true if all demands are 
equal.

Later, the 1-center was extended to a multiple-facility problem: the p-center: let 
Xp be a set of p points x1, x2, … xp anywhere on the network. Define the distance 
between a node vi and its closest point in Xp as

Then the set Xp
* is a “p-center”, if for every Xp on the network,

In other words, Xp
* is the set of p points on the network such that, if these points 

were facilities, the maximum distance between a demand and its closest facility 
would be minimized.

If facility locations are restricted to the nodes of the network, the p-center prob-
lem can be formulated as an integer programming problem using the base formula-
tion (1.1)–(1.4), and setting σ = +1, cij = 0, fj = 0, and g = 1. Variable z is the maxi-
mum distance between a demand and its assigned facility. Two extra constraints 
must be added:

� (1.5)

�
(1.6)

Constraint (1.5) requires z, the variable to be minimized, to take the value of the 
maximum distance between any customer and its assigned (closest) facility. Since 
constraint (1.2) forces assignment of each customer to exactly one facility, con-
straint (1.5) can take the aggregated form

Constraint (1.6) sets the number of facilities to be located to p. Pioneering devel-
opments on center problems on a network, specifically the works by Hakimi in 
1964, Goldman in 1972, and Minieka in 1970 are the subject of Chap. 5 of this 

max
i

wid(x∗, vi) ≤ max
i

wid(x, vi).

d
(
vi , Xp

)
= min

{
d(vi , x1), d(vi , x2), ..., d(vi , xp)

}
.

max
i

d
(
vi , Xp

)
≤ max

i
d
(
vi , Xp

)
.

dijyij ≤ z for i= 1, 2, . . . n, j = 1, 2, . . . m, and

∑

j

xj = p.

∑

j

dij yij ≤ z for i= 1, 2, . . . n.
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book by Tansel. The chapter first defines the single facility p-center problem and its 
multiple-facility version and then describes their properties. Later, the three classic 
contributions are reviewed: Hakimi’s definition of the absolute center, Goldman’s 
algorithm for locating the center and Minieka’s method for finding the p-centers on 
a network when locations are restricted to nodes.

1.3.3  �Covering Problems

In minisum and minimax location models, the distance between each and every 
customer and his closest facility is explicitly considered. While minisum problems 
minimize the average distance between a customer and its closest facility, mini-
max problems minimize the longest customer-facility distance. In contrast, covering 
models do not explicitly include customer—facility distances in the model and these 
distances only matter if they exceed a preset value D̄. A common example appears in 
emergency medical services: service is considered adequate if an ambulance reaches 
the site of the emergency in no more than, say 8 minutes. In the food business, a piz-
za parlor could offer free pizzas when the delivery time exceeds 30 minutes. In syn-
thesis, the concept of coverage implies that a customer can and will be adequately 
served (“covered”) when a facility is located within a preset distance or travel time. 
Distance is no longer included in the objective function, but appears as a constraint.

1.3.3.1 � The Location Set Covering Problem

The location set covering problem LSCP was first introduced by Hakimi, and for-
mulated as an integer programming problem by Toregas et al. in 1971. Its goal is to 
find the minimum number of facilities and their locations, so that all customers are 
covered, meaning that all customers are no farther than a preset distance D̄ of their 
closest facility. Although the original formulation uses only location variables xj, 
the problem can be reformulated using the base model (1.1)–(1.4). To reproduce the 
LSCP with this base model, we set σ = +1, cij = 0 ∀ i, j, fj = 1 ∀ j, g = 0, and the set 
Ni in constraint (1.2) contains all candidates to location of facilities that are within 
distance D̄, i.e., Ni = {j : dij D̄}. The objective is now

The formulation provided by Toregas et  al. is simpler. In that formulation, only 
location variables are used and the allocation problem is not solved, i.e. the model 
does not prescribe which facility provides the service, which can be provided by 
any of the facilities within range. In consequence, it does not matter if a customer 
has more than one facility within covering distance.

Min
∑

j

xj .
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Although at first sight there is no apparent relation between minimax and cover-
ing problems, Minieka found that the solution of the node constrained p-center can 
be found by solving a sequence of location set covering problems.

1.3.3.2 � The Maximal Covering Location Problem (MCLP)

If the minimum number of facilities needed to cover all the demand cannot be 
achieved, because of a limited budget or any other constraints on the total number 
of facilities, the maximal covering location problem of Church and ReVelle solves 
the problem of maximizing covered demand when there are a limited number of 
facilities to be sited. In terms of the base model (1.1)–(1.4)  = − 1, cij = hi if dij ≤  D̄ 
and 0 otherwise, where hi is the demand volume of customer i, the fixed costs fj = 0 
∀ j, the value of g = 0, and the set Ni in constraint (1.2) contains all candidates to 
location of facilities. The objective is now

This objective maximizes the demand-weighted number of customers that have at 
least one facility located within distance D̄.

Church and ReVelle’s model was formulated using only location variables and 
covering variables. Again, the allocation or assignment problem is not solved by 
this model.

Seminal contributions on covering problems are reviewed in Chap.  6 of this 
book. In that chapter, Snyder thoroughly reviews the contributions by Hakimi in 
1965, in which the location set covering problem is defined, the work by Toregas 
et al. in 1971 with the first integer programming formulation of the same problem, 
and the contribution by Church and ReVelle in 1974, which defines the maximum 
covering location problem and formulates it as an integer programming problem. 
The author of the chapter then adds some insight into these problems by running 
new computational experiments on variants of the original problems, including 
tradeoff between coverage and number of facilities; Lagrangean approach as a so-
lution method; inclusion of budget constraints; and relationship to the p-median 
problem.

1.3.4  �Other Relevant Location Problems

Minimax, minisum and covering models are considered the key formulations 
from which the remaining location problems are descendants. There are some 
nonstandard location problems and models that have attracted considerable atten-
tion from researchers. We briefly review some of these in the remainder of this 
section.

Max
∑

i,j

cij yij .
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1.3.4.1 � Competitive and Conditional Location Problems

None of the key location problems considers the existence of other facilities, either 
previously located or to be located in the same region by a competing firm. If this 
is the case, a whole new range of problems can be posed, in which the relation-
ship between facilities plays an important role: competitive and conditional location 
problems.

In order to analyze the locational pattern of the competing firms, assumptions 
need to be made about consumers’ behavior. A typical assumption is that customers 
prefer closest facilities over more distant ones, and facilities at which the goods or 
service can be obtained at a lower price over the more expensive facilities.

Competitive Location: Equilibrium Problems

Suppose a market over which the demand is distributed, either continuously or at 
discrete points. Two firms are entering the market, each one with one facility that 
can move at any time without incurring costs. There are two fundamental ques-
tions. The first asks that given that customers patronize the facility at which they 
can satisfy their demand for the lowest full price (i.e., mill price plus transporta-
tion costs), is there an equilibrium? In other words, is there a situation, in which 
both facilities have decided on a location and a price, so that neither facility has an 
incentive to unilaterally change its price and/or its location? The second question 
is then, what the location and price situation in such an equilibrium is, given that 
it exists.

These questions—whose answer is now known as Nash equilibrium—were first 
answered for two competing facilities by Hotelling in 1929, who studied the prob-
lem in its simplest form: a linear market (i.e., a simple line segment) with uniformly 
distributed customers. Each of the two firms locates a single branch, and both firms 
use mill pricing.

In Chap. 7, Eiselt discusses the details and applications of the problem of find-
ing a locational equilibrium on a linear market; he provides a detailed review of 
Hotelling’s seminal paper, assesses its impact and describes subsequent work on 
the subject, including the article by d’Aspremont et al. Their paper was published 
no less than fifty years after Hotelling’s findings, and it invalidated some of Hotel-
ling’s results.

Conditional Location Problems

When facilities can move freely without costs, the search for Nash equilibrium 
is the natural approach. However, this is not always the case. Most facilities stay 
where they were first located, as relocation costs are significant. If a firm is plan-
ning to enter a market with immobile facilities, there are two different aspects to be 
considered. The first aspect concerns firms that intend to locate in the presence of 
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already existing competitors. this is a conditional location problems, i.e., the loca-
tion of facilities, given that other facilities are already located in the region. This is 
the follower’s problem, who will make his location choice based on whatever profit 
or revenue-maximizing objective he has.

On the other hand, the already existing firms are the leaders in the location game. 
The leader’s problem is to locate under the consideration that after he has decided 
where to locate his branch(es) under the consideration that a follower will locate his 
own competing branches later. This means that the leader will have to take a cau-
tious approach and guard against future entrants onto the market.

Solutions of this location game are usually referred to as von Stackelberg solu-
tions, named after the German economist of that name. The main feature of the 
game is its sequential nature. In Chap. 8, Younies and Eiselt describe sequential 
location problems and explain the von Stackelberg concept of leader and follower 
firms. this is followed by a review of the classic application of these concepts in 
location analysis, made by Prescott and Visscher (1977), where they extend Hotell-
ing results on a line to the sequential case.

In Chap. 9, Dasci discusses the conditional problems in a plane and a network, 
and offers a thoroughful revision of the seminal works by Drezner in 1982 and 
Hakimi in 1983. In these works, the follower’s problem (resulting in what is now 
known as an ( r|Xp)-medianoid) and the leader’s problem (dubbed an ( r|p)-centroid) 
are defined on the plane and a network, respectively, given that the leader locates p 
facilities and the follower locates r facilities.

1.3.4.2 � Location of Undesirable or Semi-obnoxious Facilities

In many everyday situations, customers want to be as close as possible to the fa-
cilities that are to be located. It is the case of grocery stores and shopping centers, 
schools, primary care centers, and similar facilities. However, the situation changes 
when considering facilities such as prisons, landfills, or power plants. Facilities 
of this nature are considered undesirable by most people. In the early days, they 
were referred to as noxious and obnoxious. Some people nowadays refer to these 
facilities as semi-obnoxious, because although nobody wants them in the neighbor-
hood, they cannot be too far away, because their operation becomes too expensive. 
However, while realistic solutions should incorporate desirable and undesirable 
features in a model, undesirable facility location models push facilities as far away 
from customers as possible. More realistic models will have to balance some of the 
usual criteria (minisum, minimax, and covering) with either distance maximization 
(maximin or maxisum), coverage minimization, or a minimization of the costs of 
compensating all the affected population.

An example of a maximin formulation of undesirable facility location problems 
is, again, derived from the base model (1.1)–(1.4), by setting the variable z to be 
the minimum distance between a demand and its assigned facility, cij = 0, fj = 0, and 
g = 1, and maximizing the objective, which becomes simply z. The following two 
constraints must be added:
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� (1.7)

� (1.8)

Constraint (1.7) forces z to take the value of the smallest distance between a cus-
tomer and his closest facility.

Early contributions on undesirable facility location are the subject of Chap. 10 
by Melachrinoudis. The classical contribution of Church and Garfinkel 1978 (maxi-
mizing the sum of the distances from the closest facility) is reviewed, as well as the 
string of papers by Shamos published in 1975, Shamos and Hoey’s work from 1975, 
Dasarathy and White’s paper from 1980, and Drezner and Wesolowski’s contribu-
tion from 1980, all of them dealing with the maximin problem, i.e., maximizing the 
shortest distance between a customer and its closest facility.

1.3.4.3 � Probabilistic or Stochastic Location Problems

The pool of location problems would not be complete without the consideration 
of uncertainty. Future demand, the time of appearance of emergency calls, service 
times at the facilities, and travel times between demand nodes and facilities tend to 
be non-deterministic. Disruptions of facilities and connecting routes are also every-
day random occurrences.

There is a large body of literature dealing with problems that include one or more 
of these sources of uncertainty. The design of emergency services is a popular appli-
cation, as well as the location of immobile facilities that can become congested. For 
instance, service may be refused because the facility is busy, or lines are formed in 
which customers have to wait until they can be served. After the 9/11 events and the 
destruction of New Orleans by hurricane Kathrina, many researchers have turned 
their attention to the location of facilities so as to mitigate such catastrophic effects, 
or to the search for robust locations in the sense that disruptions do not interrupt 
their functioning.

Chapter 11 by Berman, Krass and Wang is devoted to the description of these 
problems. The original contribution by Frank from 1966 is reviewed in detail, and 
its impact analyzed. Generalizations of Frank’s work are presented, and open prob-
lems are discussed.

1.3.4.4 � Hub Location Problems

Hub location problems occur mainly in transportation and telecommunications net-
works. A hub is a transfer point at which either traffic from several origins is added 
up and forwarded to another hub, or disaggregated into several streams that are 
forwarded to their destination. Airlines use hub airports because they allow tak-

dij yij ≥ z i = 1, 2, . . . n, j = 1, 2, . . . m.

∑

j

xj = p.
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ing advantage of economies of scale, by using high capacity planes in high traffic 
routes, as opposed to using only small planes between every origin and destination 
city. Computer networks are frequently organized as a set of small hub-and-spoke 
networks, joined together by a backbone network.

Naturally, hub location problems have been formulated having in mind the same 
principles as the remaining location problems. Thus, there are p-hub location prob-
lems, median-hub location problems, uncapacitated hub location problems, p-hub-
center location problems, and so on. The first formulation of a hub location prob-
lem by O’Kelly in 1982 was nonlinear. Later, different linearizations have been 
proposed. The base model (1.1)–(1.4) needs to be modified to represent an unca-
pacitated hub location problem (analogous to the uncapacitated facility location 
problem) as follows. Facilities are now hubs, and customers need to be assigned to 
hubs for both their incoming and outgoing traffic. We assume each customer is as-
signed to his closest hub. The traffic between two customers, hij, starts at a node i, 
first goes to the assigned hub k, continues from there to another hub m, and finally 
to the destination node j. The traffic into the opposite direction uses the same path. 
Both hubs could be the same, i.e., traffic could move through only one hub. We use 
constraints (1.2)–(1.4), but the objective is now:

�

(1.9)

where hij is the traffic between customers or demand nodes i and j, cij is the unit 
traffic cost on the arc ( i, j), i.e. on the leg of the trip that goes between nodes i and 
j, and  is a factor <1, accounting for economies of scale. Note that the first term in 
parentheses in the objective function is the cost of sending traffic from the origin to 
the first hub. The second term in the cost of carrying traffic between hubs, where 
because of the traffic concentration, it is assumed that the cost is reduced by a factor 
(1 − ). The third term is the cost of sending the traffic from the second hub to the 
destination, and the last term is the cost of opening hubs. This objective is nonlinear, 
but different linear versions have been proposed in the literature.

Chapter 12 of this book, written by Kara and Taner, focuses on hub location 
problems. O’Kelly’s seminal paper is reviewed and its contribution assessed.

1.4 � An Outline of Classic Solution Methods

Most of the problems related to facility location are known to NP-hard. It is natural 
then to look for procedures that can find adequate optimal or approximate solutions 
to these problems. Many solution methods have been proposed in the literature. It 
is important to describe some of these methods, either because they have a broader 
applicability or because they led the way to the discovery of a whole line of solution 
procedures. This book presents some of the more important techniques.

Min
∑

i

∑

j

hij

(
∑

k

cikyik + α
∑

k

∑
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ckmyikyjm +
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m
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)
+

∑

j

fjxj
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1.4.1  �Exact Techniques

The best known exact solution technique for location problems written as integer 
programming problems is branch-and-bound. The technique was first proposed by 
Land and Doig in 1960. The first two contributions that apply this technique to the 
location field are those by Gavett and Plyter in 1966, who solve the quadratic as-
signment problem, and Efroymson and Ray in 1966, who solved the uncapacitated 
facility location problem or, as it is frequently called today, the simple plant location 
problem. These two contributions are reviewed in Chap. 13 by Lowe and Wendell. 
The authors describe the principles behind the branch-and-bound technique, viz., 
partitioning the set of solution into smaller subsets, and provide a detailed descrip-
tion of the two seminal papers. They also show other techniques to solve the qua-
dratic assignment problem. The Efroymson and Ray approach to solving the SPLP 
is complemented by other branch-and-bound techniques discovered later. One sec-
tion of their contribution is devoted to branching strategies.

When the problem has a special structure, as is the case when the space is a 
tree-shaped network, efficient techniques can be developed to find solutions to the 
location problems more efficiently. An example of these techniques is the method 
for finding the 1-median on a tree. In Chap. 14, Kincaid first defines some graph 
theory concepts, presents a notation for location problems, and reviews three classi-
cal contributions: the Harary and Norman article of 1953, where central points on a 
tree are defined, the paper by Hua Lo-Keng and others in 1962—although known at 
an earlier date in Chinese—where the first method for location of a 1-median on a 
tree (and on networks with some cycles) is proposed and proven to be optimal, and 
the paper by Goldman in 1971, who rediscovered Hua Lo-Keng’s findings.

1.4.2  �Heuristic Solution Methods

Although the maximum size of the problems that can be solved using exact meth-
ods has increased in time almost like Moore’s law for semiconductors (that states 
that the number of transistors in an integrated chip doubles every two years), exact 
methods are still not capable of finding a solution in many realistic cases, in which 
the number of variables is too large. Heuristics are methods that find a good solu-
tion, although optimality is not guaranteed or even sought. Many of these heuristics 
are built on principles that have been proposed a long time ago, but are still valid. 
Some of these, for location both in the plane and on networks, were sketched in a 
single paper by Cooper in 1963, and extended later by other authors. For facility 
location problems in the plane, a giant step forward was the heuristic for the Weber 
problem, which was discovered by Weiszfeld in the 1930s.

The heuristics by Cooper, and their formalization by Maranzana and by Teitz 
and Bart, are the subject of Chap. 15 of this book, by Brimberg and Hodgson. In 
that chapter, the authors describe in detail the several methods proposed by Cooper 
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for the continuous minisum problem, as well as the rediscoveries of these methods 
and their application to the discrete problem, made by Maranzana and by Teitz and 
Bart. Then, they assess the impact these early discoveries had, their application to 
other problems and the current status of the heuristic methods for the continuous 
and discrete p-median problem.

In Chap. 16, Plastria first offers a short history of the Weber problem, a brief list-
ing of different methods that have been proposed to solve it, and a description of its 
optimality conditions. As a way to introducing the Weiszfeld algorithm, the problem 
is presented of finding the point at which the weighted squares of the distances to 
the given points is minimum. Then, the author describes in detail the method found 
by Weiszfeld, together with its properties and proofs of convergence. After that, he 
presents a modern view of Weiszfeld’s algorithm and the rediscoveries, additions 
and improvements made by the researchers that followed Weiszfeld. The author 
then focuses on applications of the algorithm in other areas of knowledge.

Finally, there are heuristics that not only find a solution, but tell the user how 
far could be this solution from the real optimum. One such heuristic is Lagrangean 
Relaxation. As Galvão outlines in Chap. 17, this technique was first used in the field 
of location by Bilde and Krarup in 1967. Later, Diehr, and also Marsten, applied 
this technique also to location problems. the author then offers a brief review of the 
technique, surveys the seminal papers by Bilde and Krarup, Diehr and Marsten, and 
provides an account of the works that followed them.

1.5 � Customer Choice and Location Patterns

Most location models that allow customers to choose among a number of facilities 
assume that customers patronize the closest facility or the facility they can satisfy 
their demand from most cheaply. However, these simplifying assumptions are not 
always true in practice. In fact, customers at a demand point can patronize different 
facilities at different times; or different customers at the same demand point can 
have different patterns of behavior, when choosing a facility. This phenomenon is 
the subject of a number of studies, and the problems that include a consideration to 
it, have been called models with customer choice.

Some studies are oriented to describe in the best possible form the behavior of 
customers. Some others, focus on the locational patterns and their interaction with 
markets and customer concentration.

1.5.1  �Gravity Models or Spheres of Influence

Joseph and Kuby address gravity modeling in Chap. 18. In other words, they study 
models that include choice rules other than simple proximity or price. In particular, 
their focus is on that customers are attracted to facilities according to laws whose 
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expression resembles that of Newton’s laws of physics. The authors describe the 
contribution by Reilly in 1931, who introduced the so-called law of retail gravita-
tion and validated this model with an empirical study. They also review the contri-
bution by Huff in 1963, who proposes a method to determine trade areas for retail, 
later known as the Huff model. In the chapter, other techniques are also sketched, 
and applications to location-allocation models are described.

1.5.2  �Voronoi Diagrams

As mentioned above, Voronoi diagrams are a tool that allows modelers to allocate 
customers to facilities based on proximity. In Chap. 19, Burkey et al. first review 
the original work by Thiessen written in 1911. They then formally define Voronoi 
diagrams and explore some of their properties and extensions. This is followed by a 
case study of the Triad Region in North Carolina. Here, a number of weighted and 
unweighted Voronoi diagrams are constructed and compared using concentration 
indices and statistical tests.

1.5.3  �Central Places

In the nineteenth and the first half of twentieth centuries, some authors attempted 
to explain why and how economic activities are located in relation to the markets. 
These contributions by von Thünen in 1826, Christaller in 1933 and Lösch in 1940, 
began long strings of work on land use, central places theory and regional plan-
ning. Truly, these must be considered as major works in the facility location field. 
In Chap. 20, Fischer synthesizes these works and assesses their contribution to the 
field.
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2.1 � Introduction

The uncapacitated facility location problem ( UFLP) involves locating an undeter-
mined number of facilities to minimize the sum of the (annualized) fixed setup costs 
and the variable costs of serving the market demand from these facilities. UFLP is 
also known as the “simple” facility location problem SFLP, where both the alterna-
tive facility locations and the customer zones are considered discrete points on a 
plane or a road network. This assumes that the alternative sites have been predeter-
mined and the demand in each customer zone is concentrated at the point represent-
ing that region. UFLP focuses on the production and distribution of a single com-
modity over a single time period (e.g., one year that is representative of the firm’s 
long-run demand and cost structure), during which the demand is assumed to be 
known with certainty. The distinguishing feature of this basic discrete location prob-
lem, however, is the decision maker’s ability to determine the size of each facility 
without any budgetary, technological, or physical restrictions. Krarup and Pruzan 
(1983) provided a comprehensive survey of the early literature on UFLP, including 
its solution properties. By demonstrating the relationships between UFLP and the 
set packing-covering-partitioning problems, they established its NP-completeness.

The seminal paper of Erlenkotter (1978), which is reviewed in Sect. 2.2 of this 
chapter, presents a dual-based algorithm for solving the UFLP that remains as one of 
the most efficient solution techniques for this problem. Prior to Erlenkotter (1978), 
the best-known approaches for solving the UFLP were the branch-and-bound al-
gorithm developed by Efroymson and Ray (1966) and the implicit enumeration 
technique of Spielberg (1969). Efroymson and Ray (1966) use a compact formula-
tion of UFLP to take advantage of the fact that its linear programming relaxation 
can be solved by inspection. Nonetheless, this linear programming relaxation does 
not provide tight lower bounds for UFLP; Efroymson and Ray’s model is therefore 
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known as the “weak formulation.” Khumawala (1972) developed efficient branching 
and separation strategies for the branch-and-bound algorithm. Erlenkotter (1978), 
however, uses the “tight formulation” of UFLP that is known to often produce natu-
ral integer solutions. This property of the tight formulation was first highlighted by 
Schrage (1975) and was used effectively by Cornuejols et al. (1977). Here, it is im-
portant to credit the work of Bilde and Krarup (1977), which led to the development 
of a dual-based algorithm for UFLP that is quite similar to Erlenkotter’s procedure.

In many cases, it is more realistic to incorporate the capacity limitations on the 
facilities to be established. This version of UFLP is called the capacitated facil-
ity location problem ( CFLP). Section 2.3 reviews the contribution by Kuehn and 
Hamburger (1963). Their paper presents one of the earliest models and a heuristic 
procedure for the CFLP. Branch-and-bound procedures for this problem were devel-
oped by Akinc and Khumawala (1977) using linear programming relaxation, and by 
Nauss (1978) through Lagrangean relaxation. The cross-decomposition algorithm of 
Van Roy (1986) and the Lagrangean-based approach of Beasley (1988) are among 
the most effective techniques that were subsequently devised for solving the CFLP. 
The basic idea of Van Roy’s algorithm is to obtain a UFLP structure by dualizing 
the capacity constraints. This Lagrangean relaxation provides values for the location 
and allocation variables given a set of multipliers. The location decisions are then 
used to fix the integer variables and solve the CFLP as a transportation problem, 
obtaining improved multiplier values. It is necessary, however, to solve an appro-
priately defined linear program at some of the iterations to update the multipliers.

The UFLP and CFLP constitute the basic discrete facility location formula-
tions, and there is an abundance of papers based on their extensions by relaxing one 
or more of the underlying assumptions mentioned above. Section 2.4 presents an 
overview of the prevailing literature. Aikens (1985) presented a survey of the early 
work on discrete location models for distribution planning. He reviewed 23 models 
covering a wide range of problems from the single-commodity UFLP to the multi-
commodity, capacitated, multi-echelon versions. Although the UFLP and CFLP 
formulations have been used for tackling a wide range of problems, the most com-
mon context for their use has been the production-distribution network (i.e., supply 
chain) design problem. In a supply chain that comprises suppliers, plants, distri-
bution centers, warehouses and customers, these basic formulations are relevant 
for making location decisions involving two consecutive echelons. For example, 
notwithstanding the focus of a majority of the literature on warehouse location, the 
UFLP and CFLP formulations are equally relevant for choosing suppliers to satisfy 
the needs of a firm’s plants (Gutierrez and Kouvelis 1995). The next two sections 
review two classical papers that form the basis of this chapter.

2.2 � Erlenkotter 1978: A Dual-Based Procedure  
for the UFLP

Let I denote the set of m alternative facility locations, indexed by i, and J denote the 
set of n customer zones, indexed by j. The UFLP has two sets of decision variables:
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xij:	� the fraction of customer zone j’s demand satisfied by the facility at i, and
yi:	� binary variables that assume a value of 1, if a facility is to be established at 

location i, and 0 otherwise.

Note that the demand data pertaining to each customer zone j is implicit in the defi-
nition of the facility-customer allocation variables xij. The cost data is represented 
by the following notation:

fi:	� the (annualized) fixed cost of establishing a facility at location i, and
cij:	� the total capacity, production and distribution cost for supplying all of cus-

tomer zone j’s demand by the facility at i.

The variable costs cij are assumed to be linear functions of the quantities produced 
and shipped at each facility, thus ignoring any possible economies of scale in the 
variable costs. Erlenkotter (1978) presents the following formulation of UFLP:

� (2.1)

�
(2.2)

� (2.3)

The objective function (2.1) represents the total fixed and variable costs, whereas 
constraints (2.2) ensure that the demand at each customer zone is satisfied. Con-
straints (2.3) guarantee that customer demand can be produced and shipped only 
from the locations where a facility is established, i.e., if yi = 1, and in such a case, the 
firm incurs the associated fixed costs. The weak formulation of UFLP uses a more 
compact formulation of these constraints by aggregating the constraints (2.3) into a 
single constraint for each facility location i:

In developing the solution approach, Erlenkotter (1978) utilizes a condensed dual 
formulation to the linear programming relaxation of UFLP. To this end, let vj and 
wij represent the dual variables associated with constraints (2.2) and (2.3), respec-
tively. By relaxing yi as non-negative variables, the dual problem can be formulated 
as follows:

� (2.4)

�
(2.5)

Max
∑

i

∑

j

cij xij +
∑

i

fiyi

s.t.
∑

i

xij = 1 for all j

xij ≤ yi for all i, j

xij ≥ 0, yi ∈ {0, 1} for all i, j.

∑

j

xij ≤ nyi for all i.

Max
∑

j

vj

s.t.
∑

j

wij ≤ fi for all i
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� (2.6)

Note that the wij variables are not part of the dual objective, and hence can be safely 
fixed at the minimum levels permitted by the values of vj. Erlenkotter assumes that 
wij = max {0, vj − cij} and develops the condensed dual formulation below that has a 
single set of decision variables:

�

(2.7)

The dual ascent procedure that constitutes the core of Erlenkotter’s algorithm aims 
at increasing the values of vj so as to maximize their sum. The idea is to use a quick 
and simple heuristic for solving the condensed dual rather than searching for an 
exact solution. To this end, the heuristic starts by setting the vj values to the small-
est cij for each customer zone j. At each iteration of the dual ascent procedure, the 
customer zones are processed one by one and the vj value at each zone is raised to 
the next higher cij value, unless such an increase is constrained by (2.7). When the 
inequality (2.7) becomes binding during this process, the vj value is increased to the 
highest level allowed by the constraint. The heuristic terminates when no further 
increase is possible for the vj values.

To illustrate the dual ascent procedure, consider a UFLP instance with eight 
customer zones and five alternative facility sites, which was also used by Erlen-
kotter. Table 2.1 depicts the variable costs cij and fixed costs fi for this problem 
instance. At the initialization, the vj values are set at the lowest cij value at each 
column in Table 2.1. As a result, si, the slack of constraint (2.7), is equal to the 
fixed cost fi at each location. The initialization step is denoted as Iteration 0 in 
Tables 2.2 and 2.3, which depict the progress of the vj and si values during the 
course of the algorithm.

The bolded entries in Table 2.2 indicate the vj values blocked by (2.7) from fur-
ther increase. Note that in iteration 1, all vj values are raised to the next higher cij 
value (under column j in Table 2.1), except v8. We would normally raise v8 from 120 

vj − wij ≤ cij for all i, j

wij ≥ 0 for all i, j

Max
∑

j

vj

s.t.
∑

j

max{0, vj − cij } ≤ fi for all i

Table 2.1   Cost data for the illustrative example
i/j Variable cost Fixed cost

1 2 3 4 5 6 7 8
1 120 180 100 – 60 – 180 – 100
2 210 – 150 240 55 210 110 165   70
3 180 190 110 195 50 – – 195   60
4 210 190 150 180 65 120 160 120 110
5 170 150 110 150 70 195 200 –   80
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to 165, but this would violate (2.7). Therefore, the value of v8 is raised to 155 reduc-
ing the dual slack s4 to zero, as indicated in Table 2.3 under Iteration 1.

At Iteration 2, the dual variables for customer zones 3, 4, 6 and 7 are blocked, 
and the heuristic terminates after Iteration 3 when no further increase is possible. 
Table 2.3 indicates that the dual constraints for locations 4 and 5 are binding at the 
end of the dual ascent procedure.

It is helpful to analyze the complementary slackness conditions for the con-
densed dual and the linear programming relaxation at this point. The bolded terms 
in (8) and (9) indicate the optimal values of the primal and dual decision variables.

� (2.8)

� (2.9)

The dual ascent produces a feasible solution vj with at least one binding constraint 
(2.7). For each associated location i, the slack of the dual constraint is zero, and us-
ing (2.8) it is possible to set yi = 1. Examining (2.9) for these open facilities, we hope 
that there is only one facility i with cij  ≤  vj for all j, because in this case it is possible 
to set xij = yi = 1 and obtain a primal integer solution that satisfies both complemen-
tary slackness conditions. It is likely, however, that the dual ascent procedure termi-
nates with a solution where, among open facilities, there is more than one facility i 
with cij ≤ vj for some j. This would violate (2.9), since each customer zone must be 
served from the lowest-cost open facility. Therefore it is possible to set xij = yj = 1 for 
only the smallest value of cij, and the primal integer solution is not optimal.

In the illustrative example, customer zones 1, 2, 3, and 4 are served from facility 
5 and zones 5, 6, 7, and 8 are served from facility 4. A comparison of the vj values 
at Iteration 3 of Table 2.2 with the cij values in Table 2.1 reveals that there are no 

yi



fi −
∑

j

max{0, vj − cij}



 = 0 for all i

[yi − xij] max{0, vj − cij} = 0 for all i, j

Table 2.2   The values of the dual variables vj

Iter/vj 1 2 3 4 5 6 7 8

0 120 150 100 150 50 120 110 120
1 170 180 110 180 55 195 160 155
2 180 190 110 180 60 195 160 155
3 180 190 110 180 65 195 160 155

2  Uncapacitated and Capacitated Facility Location Problems

si /iter 0 1 2 3
1 100 40 20 15
2 70 20 15 10
3 60 55 50 45
4 110 0 0 0
5 80 20 0 0

Table 2.3   The values of the 
slack of (2.7)
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complementary slackness violations and the solution produced by the dual ascent 
procedure is optimal. Consider another instance with fixed costs fi  = (200, 200, 200, 
400, 300) and the same variable costs. At the termination of the dual ascent pro-
cedure, s2 = s5 = 0 and v6 = 285 (the other vj values are irrelevant here). Given that 
c26 = 210 and c56 = 195 (see Table 2.1), there is more than one cij with a smaller value 
than vj, and hence (2.9) would be violated.

To close the duality gap in such cases, Erlenkotter first uses a dual adjustment 
procedure, and if this does not suffice, he resorts to a simple branch-and-bound. The 
dual adjustment procedure focuses on a customer zone j for which (2.9) is violated. 
Reducing the value of vj can create slack for some of the binding dual constraints 
(2.7), which in turn can be used for increasing the value of other dual variables. As 
a result, the dual solution can be improved. Even if the dual solution remains the 
same, the associated primal integer solution would be altered because a different 
set of dual constraints would be binding after the adjustment. Continuing the above 
illustrative example, the value of v6 is reduced to 210 in the adjustment procedure, 
creating slacks for three of the dual constraints (2.7) that are then used for im-
proving the dual solution. The dual adjustment procedure processes each customer 
zone j associated with a complementary slackness violation and terminates when 
no further improvement to the dual solution is possible. If the duality gap persists, 
a standard branch-and-bound is utilized to identify the optimal solution. The solu-
tions generated by the dual ascent and dual adjustment procedures serve as bounds 
during this final phase of the algorithm.

Erlenkotter solved UFLPs of up to 100 alternative facility sites and 100 cus-
tomer zones, including the classical problem instances provided Kuehn and Ham-
burger (1963). In all but two of the instances, there was no duality gap at the end 
of the dual ascent and adjustment procedures and hence branch-and-bound was 
not necessary. Among the largest problem instances, two required branching and 
21 nodal solutions were evaluated for the most challenging UFLP. Perhaps more 
importantly, the solution from the dual ascent procedure was within 1% of the 
optimal objective value in all reported instances. The quality of the lower bounds 
obtained from the condensed dual formulation, coupled with the ease of construct-
ing primal integer solutions from a dual solution, underlies the efficiency of Erlen-
kotter’s algorithm.

2.3 � Kuehn and Hamburger (1963): A Heuristic Program 
for Locating Warehouses

Kuehn and Hamburger’s classical paper presents, perhaps, the earliest heuristic so-
lution approach for discrete facility location and describes in detail a set of twelve 
problem instances. Focusing on warehouse location, they highlight the potential ad-
vantages of these facilities due to (1) economies of scale in transportation costs be-
tween factories and warehouses, (2) economies of scope from combining products 
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from different factories into a single shipment in serving customer demand, and (3) 
improved delivery times by increased proximity to customer locations. In determin-
ing the locations for a set of capacitated warehouses, Kuehn and Hamburger trade 
off these potential cost savings associated with the new facilities with the costs of 
establishing and operating them.

They state the following three principles concerning the proposed heuristic:

1.	 most geographical regions are not promising sites for a regional warehouse, as 
locations with promise will be at or near concentrations of demand,

2.	 near optimum warehousing systems can be developed by locating warehouses 
one at a time, adding at each stage of the analysis that warehouse which produces 
the greatest cost savings for the entire system; and

3.	 only a small subset of all possible warehouse locations needs to be evaluated 
in detail at each stage of the analysis to determine the next warehouse site to be 
added.

In essence, Kuehn and Hamburger assume that the set of M alternative facility sites 
is a subset of the set of demand locations. They adopt a myopic approach as the ba-
sis of their heuristic, and confine the detailed evaluation at each iteration of the heu-
ristic to a small subset of N location alternatives that they call the “buffer” (where 
N < M). The heuristic comprises a constructive phase (“the main program”) and an 
improvement phase (“the bump and shift routine”).

At the beginning of the constructive phase the buffer is initialized with the N 
sites, where serving the local demand with a local warehouse results in the highest 
cost savings. Then the N sites in the buffer are assessed one by one in terms of the 
system-wide cost savings that can be attained by opening a warehouse. The site that 
brings in the highest cost savings to the distribution network is assigned a ware-
house, while the sites that do not offer any cost savings are eliminated from further 
consideration. The algorithm cycles between re-constructing the buffer from the re-
maining sites and the detailed evaluation step until all the sites are either eliminated 
or assigned a warehouse. The resulting solution is evaluated in the improvement 
phase to determine whether it is possible to attain cost savings by closing any of 
the open warehouses and/or by shifting each warehouse to another alternative site 
within its service region.

Kuehn and Hamburger propose 12 problem instances comprising combinations 
of three sets of factory locations and four levels of warehouse setup costs. The 
sample problems involve a single commodity and the transportation costs are as-
sumed to be proportional to the railroad distances. The set of customer zones com-
prise 50 large cities across the United States, and 24 of these are also identified 
as alternative warehouse locations. The computational experiments were carried 
out with a buffer of 5 facilities. The Kuehn and Hamburger problem instances are 
available through the OR-Library at http://people.brunel.ac.uk/~mastjjb/jeb/info.
html (developed and maintained by J. Beasley). These problems still constitute 
benchmark instances for comparing computational efficiencies of different algo-
rithms for UFLP and CFLP.
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2.4 � Major Works that Followed

The classical UFLP and CFLP models have been extended in a number of ways by 
relaxing one or more of their underlying assumptions mentioned in Sect. 2.1. Here 
we provide an overview of the major works that extend the classical formulations 
by increasing the number of products, the number of facility echelons, and the num-
ber of time periods included in the model, as well as by more realistic representation 
of problem parameters through incorporation of possible scale and scope economies 
and uncertainties.

An immediate generalization of UFLP is the multi-commodity facility location 
problem that relaxes the single product assumption. Although Neebe and Khu-
mawala (1981) and Karkazis and Boffey (1981) offered alternative formulations 
for this problem, both papers assumed that each facility deals with a single product. 
Klincewicz and Luss (1987) was the first paper that studied a multi-commodity 
facility location model without any restrictions on the number of products at each 
facility.

Another important extension involves increasing the number of echelons incor-
porated in the problem formulation. One of the earliest multi-echelon formulations 
is by Kaufman et al. (1977), which determined the locations of a set of facilities and 
a set of warehouses simultaneously. Tcha and Lee (1984) presented a model that 
could represent an arbitrary number of echelons. Both of these papers ignored the 
cost implications of possible interactions among the facilities at different echelons. 
Generalizing Erlenkotter’s dual-based method, Gao and Robinson (1992) proposed 
an efficient dual-based branch-and-bound algorithm for the two-level facility loca-
tion problem. Barros and Labbe (1994) presented a profit maximization version of 
the same problem and developed a branch-and-bound procedure based on Lagrang-
ean relaxation as well as various heuristics.

Perhaps the most influential paper following the sketchy CFLP formulation in 
(the Appendix of) Kuehn and Hamburger (1963) was the contribution by Geoffrion 
and Graves (1974). Their model aimed at minimizing the total cost of transportation 
and warehousing over a distribution network comprising three echelons; factories, 
distribution centers ( DCs), and customers. Given the existing plant and customer 
locations, Geoffrion and Graves (1974) devised a Benders decomposition approach 
for determining the optimal number and locations of the distribution centers to be 
established. They assumed a single-sourcing policy that requires serving each cus-
tomer from a single DC. Their model contained both lower and upper bounds on DC 
throughput, which enabled modeling piecewise linear concave operation costs for 
the distribution centers. The differentiating feature of Geoffrion and Graves (1974) 
from earlier multi-echelon models was the way they modeled the flow variables. In 
earlier work, the flows between each pair of consecutive echelons were represented 
by a different set of decision variables, which required the use of flow conservation 
constraints at each facility. In contrast, Geoffrion and Graves (1974) used a single 
set of variables to represent the flows from the factories through the DCs to the 
customer zones. Although this leads to a considerable increase in the number of 
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decision variables, the resulting model is a tighter formulation of the problem that 
enables the development of efficient algorithms. Moon (1989) extended the model 
and solution procedure in order to incorporate possible economies of scale in DC 
throughput costs. To this end, he used general concave cost functions to represent 
the DC throughput costs. Pirkul and Jayaraman (1996) provided another extension 
that enables facility location decisions at both the DC and the plant echelons. How-
ever, they imposed limits on the number of DCs and plants that could be opened and 
relaxed the lower bound used by Geoffrion and Graves (1974) on DC throughput 
levels. In a subsequent paper, Jayaraman and Pirkul (2001) also incorporated sup-
plier selection in a multi-commodity problem setting. Both papers used Lagrangean 
relaxation as a solution framework. Recently, Elhedhli and Goffin (2005) highlight-
ed the efficiency of interior point techniques in solving multi-echelon formulations.

A number of researchers focused on relaxing the single period assumption of the 
UFLP and CFLP, and developed models and solutions for the dynamic facility loca-
tion problem. The objective was to determine the spatial distribution of the facilities 
at each time period so as to minimize the total discounted costs for meeting the 
customer demand over time. The earliest work on this problem is by Van Roy and 
Erlenkotter (1982), who extended the dual-based algorithm of Erlenkotter to handle 
multiple time periods. Lim and Kim (1999) and Canel et al. (2001) proposed alter-
native methods for solving the problem with capacity restrictions at the facilities. 
Recently, Melo et al. (2005) presented a dynamic and multi-commodity formulation 
as an extension of the CFLP and investigated the possible use of the model as a 
framework for strategic supply chain planning.

Another stream of research to extend the classical UFLP and CFLP formulations 
focuses on improving the realism of the cost representations in these models. These 
efforts are motivated by the possible economies of scale and scope in the fixed and 
variable costs, as well as the potential cost implications of the interactions between 
a plant’s location and the other structural decisions including capacity acquisition 
and technology selection. Soland (1974) is one of the earliest attempts to develop 
an extension of the UFLP that incorporates scale economies by representing the 
fixed facility costs as a concave function of facility size. Holmberg (1994) and Hol-
mberg and Ling (1997) extended the CFLP by formulating the capacity acquisition 
costs as arbitrary piecewise linear functions. Verter and Dincer (1995) proposed a 
model where the capacity costs are assumed to be general concave functions of the 
capacity acquired at each facility. Erlenkotter’s dual based algorithm is utilized as 
a subroutine during the progressive piecewise linear under-estimation technique 
developed in this paper. Dasci and Verter (2001) and Verter and Dasci (2002) 
provide extensions to a multi-product setting, where the firm is enabled to select 
among product-dedicated and flexible technology alternatives. At each alternative 
facility location, the technology options present different forms of scale and scope 
economies. More recently, a number of authors studied the integration of inventory 
control and logistics decisions with facility location. Shen (2005) used concave 
functions to represent economies of scale in the costs pertaining to the firm’s inven-
tories, whereas Snyder et al. (2007) and Sourirajan et al. (2007) presented facility 
location models that also considered the logistics costs.
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An important stream of efforts to extend the classical UFLP and CFLP models 
involves the incorporation of uncertainties in the problem parameters. This is par-
ticularly relevant for global manufacturing firms that diversify their operations and 
facilities across many countries. Globalization has many potential advantages: ac-
cess to cheap labor, raw material, and other production factors; presence at regional 
markets, and access to locally available technological resources and know-how. The 
resulting production-distribution networks are, however, increasingly exposed to 
price, exchange rate, and demand uncertainties in the international domain. The ear-
liest efforts to incorporate exchange rate uncertainty in the UFLP are by Hodder and 
Jucker (1985) and Hodder and Dincer (1986). They used scenario-based approaches 
in modeling a risk-averse decision maker’s structural choices. To this end, the ex-
pected profit is penalized by a term that corresponds to the constant portion of profit 
variability. Gutierrez and Kouvelis (1995) also used a scenario-based approach to 
find robust solutions under all possible scenario realizations. Canel and Khumawala 
(2001) and Kouvelis et al. (2004) studied the inclusion of subsidies and tariffs in 
international facility location models. Despite the popularity of the scenario-based 
approach in modeling the various types of uncertainties in the international domain, 
the prevailing papers show that the proliferation of the set of possible scenarios as 
a function of the problem size remains the major challenge from both academic and 
practical perspectives.

This section is an overview of the major works that followed the two classical 
papers reviewed in the preceding sections. The reader is referred to the recent re-
views by Goetschalckx et al. (2002), Klose and Drexl (2005), Meixell and Gargeya 
(2005), Snyder (2006), Sahin and Sural (2007), and Shen (2007) for more exhaus-
tive and comprehensive accounts of the state of the art in discrete facility location.

2.5 � Potential Future Research Directions

In line with the classical UFLP and CFLP formulations, an overwhelming major-
ity of the proposed extensions aim at minimizing the total fixed and variable costs 
relevant to the location problem under consideration. Using the categorization in 
Fisher (1997), these models are certainly suitable for designing efficient supply 
chains with functional products. The cost minimization objective, however, does 
not seem to be appropriate in the context of responsive supply chains that typically 
deal with innovative products. Note that many of the reported practical applications 
of discrete facility location models are associated with plant closure decisions, re-
sulting in improved efficiency but mostly ignoring the possible ramifications con-
cerning customer response. According to Ferdows (1997), the access to skills and 
knowledge and the proximity to markets are at least as important as the access to 
low-cost production factors in the firms’ plant location decisions. Among the list of 
factors provided in Ferdows (1997), improving customer service, preemption of po-
tential competitors, learning from supply chain partners, and attraction of a skilled 
workforce are typically not incorporated in the prevailing discrete facility location 
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models. It is necessary to improve the location modeling paradigms in order to bet-
ter represent all the factors deemed important by firms in current practice. The need 
to improve the realism of the objective functions utilized in location models is also 
highlighted in Avella et al. (1999), summarizing the personal views of 20 young 
location researchers.

There is a need for increased empirical research in order to develop a better 
understanding of the factors that impact the facility location decisions of manufac-
turing and service firms and their decision making processes. Based on the location 
decisions of foreign-owned manufacturing plants in the United States in the 1990s, 
three factors seem to be most significant: the presence of a skilled workforce; the 
existence of a manufacturing base comprising suppliers, competitors and relevant 
industries, and the quality of transportation infrastructure. Interestingly, some of the 
past research reported rather conflicting empirical findings. For example, based on 
a survey of 73 plant managers, Brush et al. (1999) identified proximity to markets 
as the most significant location determinant, and concluded that subsidies and free 
trade zones are among the least important factors. Other authors, however, have 
pointed out that firms have been quite sensitive to subsidies, free trade zones, taxes 
and labor costs in making their location decisions (Coughlin and Segev 2000; Head 
et al. 1994). This calls for more empirical research and is perhaps due to the dif-
ferences between the strategic priorities of the industries represented in the sample 
populations. If this observation can be confirmed through empirical studies, the 
development of industry-specific models rather than locating “generic” facilities 
would arise as a fruitful avenue for future research in location science.
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3.1 � Introduction

Suppose a number of geographically distributed customers are demanding a service 
or good, and facilities providing it need to be optimally located. Once facilities are 
deployed, either customers travel to the facilities to satisfy their needs, or vehicles 
travel from the facilities to customers’ locations, carrying the goods to be delivered. 
The p-median problem finds the optimal location of exactly p facilities, so that the 
sum of the distances between customers and their closest facilities, measured along 
the shortest paths, is minimized. Since the number n of customers is known, by 
dividing the objective by n, the minimum average distance between customers and 
facilities is obtained too.

The p-median problem has became one of the most well-known and studied 
problems in the field of facility location. Its uses include a large number of ap-
plications, both geographical (the location of schools and warehouses) and non-
geographical (defining the best clusters of objects, tasks, events, see Hansen and 
Jaumard 1997).

The p-median problem is a good model for many practical problems, provided 
some assumptions are made. The first assumption is that exactly p facilities are to 
be located. The decision on how many facilities are to be located either comes from 
political considerations, or simply because there is a fixed budget and the cost of 
locating a facility is the same no matter where it is located. In both cases, p is de-
cided exogenously to the model, although it could be made also endogenous, as in 
Marianov and Taborga (2001).

As we explain below, further assumptions need to be made when more than one 
facility is to be located, since two questions must be answered: where to locate 
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the p facilities (the “location” problem), and what customer or demand node is 
assigned to which facility (the “allocation” problem). Regarding the allocation 
problem, there are two clearly distinct cases of application of the p-median. In 
the first case, the planner decides the location of the facilities, the route between 
facilities and customers, and the facility-demand allocation. No assumptions need 
to be made in this case. An example of this “central planning” case is the deploy-
ment of telephone switching centers: the planner decides not only their location, 
but also to which facility each customer will be physically connected through a 
pair of wires, as well as the layout of the wires. As opposed to the switching cen-
ters case, there are some situations in which it is not the planner who decides the 
customer-facility allocation and the route the customers follow to reach a facility. 
When stores are located, it is the customers who decide which store to patronize 
and the route they will follow from their homes to the chosen stores. In this case, 
if the p-median is to be used, the assumption is made that customers will patronize 
their closest facilities, and in its integer-programming formulation, the p-median 
naturally chooses this allocation. However, the fact that multiple facilities are 
located allows for alternatives, including allocation of a demand to more than one 
facility, which could be optimal if facilities have a limited capacity, or a better 
representation of the situation in which customers patronize different facilities on 
different occasions.

A last assumption often made is that customers will travel along the shortest 
paths between their origins and the facilities. This assumption can be relaxed as 
long as the planner knows exactly what route each customer would follow to each 
potential facility location. In most cases, travel or connection costs are assumed to 
be linear with distance. In the integer programming formulation of the p-median, 
there is no need for the costs to be linear with distance, and any non-decreasing cost 
function of the distance can be used.

Some authors have identified the objective of the p-median with a “public sec-
tor” objective. From the point of view of public decision-making, the p-median 
maximizes accessibility, if this is defined as average proximity of customers to a fa-
cility. If a region is represented by a network whose nodes are patient locations, and 
whose edges are roads, locating p hospitals according to the solution of a p-median 
will minimize the total or average travel distance for patients attending those hospi-
tals. Ambulances will minimize their travel time or travel distance if p emergency 
rooms are located as determined by the p-median solution.

However, the p-median can also be used in the private sector. In this setting, 
the p-median objective represents minimization of transportation costs. A company 
that needs to locate a fixed number of warehouses and deliver its products from the 
warehouses to the customers will find the optimal solution to its problem using the 
p-median. If each node of a network represents a customer, and p maintenance cen-
ters housing each a vehicle have to be located, the p-median solution will provide 
the locations that minimize the total distance traveled by the vehicles when custom-
ers have to be served one at a time.

The name for the p-median first used by Hakimi, derives from the concept of 
a median vertex, which is the vertex of a network or graph for which the sum of 
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the lengths of the shortest paths to all other vertices is the smallest. On a network, 
finding the median vertex solves a problem similar to that posed by Fermat on an 
Euclidean plane in the 1600s, consisting of finding the location of the point on the 
plane that minimizes the sum of its distances to three known points. A first gener-
alization to the Fermat problem is the Weber problem, in which weights are added 
to the three known points to represent the amount of demand aggregated at them. 
Assuming that transportation costs are proportional to both distance and demand, if 
a facility is located at the weighted median, it will satisfy the demand of the three 
points with the minimal transportation cost. A further generalization of the Weber 
problem includes more than three demand points, and more than one facility. The 
version with multiple facilities became known as the Multi-Weber problem. In the 
twentieth century, Cooper (1963, 1964) provided heuristic solutions for it, which 
are discussed in Chap. 15 of this volume.

On a network, as opposed to the problem on a plane, the demand is located 
only on vertices or nodes, each of them having a weight representing the total 
amount of demand that it houses. In the most general version of the p-median, the 
facility can be located on a node or at a point on an edge of the network; this dis-
tinction does not exist when the problem lies on the plane. Hakimi proved, how-
ever, that there is always an optimal solution considering only nodes or vertices of 
the network. The problem consists of finding this optimal solution. The p-median 
objective, which minimizes the sum of the distances between the customer or de-
mand nodes and their closest facilities weighted by the amount of demand at the 
demand nodes, has been called a “minsum” or “minisum” objective, an objective 
also employed by the Simple Plant Location Problem, studied in Chap. 2 of this 
book.

Although now it seems a natural step, the p-median was not always formulated 
as an integer programming problem. The first formulation is due to ReVelle and 
Swain (1970) who, not being familiar with the results of Hakimi (1964, 1965), as-
sumed node-only locations for what they called central facilities. Their formulation 
is now well known and used profusely, in the following form:

� (3.1)

�
(3.2)

� (3.3)

� (3.4)

�
(3.5)

Min
∑

i, j

hidij xij

s.t.
∑

j

xij = 1, i = 1, 2, . . . n

xij ≤ yj , i = 1, 2, . . . n, j = 1, 2, . . . m

∑

j

yj =p

xij , yj ∈{0, 1}, i =1, 2, . . . n, j =1, 2, . . . m,
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where the subscripts, parameters, and variables are defined as follows:

i:	� index of customers,
j:	� index of potential facility sites,
m:	� total number of potential facility locations,
n:	� total number of customers,
p:	� total number of facilities to be located,
hi:	� weight associated to each demand node (demand or number of customers),
dij:	� distance between customer i and potential facility at j,
xij:	� allocation variable equal to 1 if customer i is assigned to a facility at j, and 0 

otherwise, and
yj:	� location variable equal to 1 if there is an open facility at j, and 0 otherwise.

The set of constraints (3.2) forces each demand node to be assigned to exactly one 
facility. The set of constraints (3.3) allows demand node i to be allocated to a facility 
at j only if there is an open facility in that location. Constraint (3.4) sets the number 
of facilities to be located, and constraint (3.5) states that all variables are integers 
(binary).

The set of constraints (3.3) is known as the Balinski constraints, since Balinski 
(1965) was the first to write them in this form when studying the Simple Plant Loca-
tion Problem. An alternative condensed version of the problem can be formulated 
by substituting the Balinski constraints with the following set:

� (3.6)

This constraint precludes customers being allocated to node j, unless there is an 
open facility on that node. While this set of constraints substantially reduces the size 
of the problem, when solving the linearly relaxed problem, by relaxing constraints 
(3.6), these constraints will tend to produce all fractional xij. On the other hand, the 
Balinski set of constraints increases the size of the problem in terms of the num-
ber of constraints, but when solving the linearly relaxed p-median problem, most 
variables xij tend to be integer in the solution. ReVelle and Swain (1970) observed 
that when branch-and-bound was required, the extent of branching and bounding 
needed was very small, always less than 6 nodes of a branch-and-bound tree. There-
fore, the expanded form of the constraint makes integer solutions far more likely. 
In fact, in this formulation, ReVelle and Swain demonstrated that only the location 
variables yj need to be declared binary, because once the facilities are located (and 
variables yj have a value zero or one), there is always an optimal allocation that 
considers each customer fully allocated to a single facility. We outline the reasoning 
in the section dedicated to ReVelle and Swain’s (1970) original contribution. Morris 
(1978) solved 600 randomly generated problems of the Simple Plant Location Prob-
lem (also a minsum problem) with the extended form of the constraint and found 
that only 4% required the use of branch-and-bound to obtain integer solutions. Ros-
ing et al. (1979) proposed several ways to reduce both the number of variables and 
constraints in order to make the p-median problem more tractable.

n∑

j=1

xij ≤ myj , i = 1, 2, . . . , m
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Many solution procedures have been proposed for the p-median problem. Heu-
ristic methods can be found in Chap. 15, and exact methods in Chaps. 13 and 14 
of this volume. In this chapter, we first review and synthesize the early work by 
ReVelle and Swain (1970). Although chronologically speaking it is not the first 
contribution to the p-median, it is the most natural formulation and it implicitly 
includes branch-and-bound as a solution method. Next, we review Hakimi (1964, 
1965) separately, following each section with an assessment of the impact these 
works had on the discipline. Finally, we review the major contributions that fol-
lowed the first papers and finish with conclusions.

3.2 � The Original Contributions to the p-Median Problem

This section will review three original contributions that have laid the foundations 
to what we now call the p-median problem, probably one of the best-known models 
in location science.

3.2.1  �ReVelle and Swain (1970): An Integer Formulation 
of the p-Median Problem

ReVelle and Swain (1970) addressed the problem they call “central facility loca-
tion,” consisting of designating p of n communities in a geographical region as 
centers, so that the average time or distance travelled by people to go to these cen-
ters is minimal. They also suggest that the formulation they use is applicable to the 
case in which the facilities are supply points from where goods are distributed to 
the communities.

The average distance travelled by people is

where i is the index of communities, n is the total number of communities and po-
tential facility locations, hi is the weight (demand) associated to each community, 
and d( vi, Vp

*) is the distance between the community (demand node) i and its closest 
center, belonging to the set of centers Vp

*.
Note that ReVelle and Swain never use the term “median” to denote the points 

that minimize the distance traveled by customers from communities to central fa-
cilities. As long as no confusion can arise, we will follow their lead. Also, ref-
erences are included to previous works in the incipient area of discrete location 
analysis, most of them on the Simple Plant Location Problem ( SPLP), also called 

d̄ =

n∑
i=1

hid(vi , V ∗
p )

n∑
i=1

hi

,
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Uncapacitated Facility Location Problem ( UFLP). Of particular interest is the ref-
erence to the work of Efroymson and Ray (1966), who used the Land and Doig 
(1960) method, which was later called branch-and-bound, applied to a new formu-
lation of the Simple Plant Location Problem.

Linear programming tools are used for solving the central facility location ( p-
median) problem and, in the unlikely event of a non-integer solution, a branch-
and-bound scheme is recommended. Also, using the same linear programming 
methods, the authors suggest that a heuristic solution can be tested for optimality. 
Alternatively, heuristic solutions can be used as a good starting point for the op-
timal solution.

The assumptions are: travel is performed using the shortest path between a com-
munity and a center, and allocation cannot be partial, i.e., a community (or demand 
node) is assigned fully to one and only one center (later proven to be an optimal 
choice, provided that communities with a center allocate to themselves). An ad-
ditional assumption is that all centers are located at communities, and there are no 
candidate locations other than communities.

Once the matrix of shortest distances d( vi, vj) between communities (vertices) vi 
and vj is computed for all i and j, and the allocation variables are defined as

the p-median problem can be formulated as a linear programming problem:

The last constraint requires that, if community i assigns to community j, the last one 
must be assigned to itself. Note that if a community j assigns to itself ( xjj = 1), then 
the community must house a facility or center. This constraint can be replaced by 
the simpler one

Finally, a constraint is added to enforce the required number of facilities ( p):

xij =
{

1, if community i is assigned to center j
0 otherwise

,

Min
∑

i, j

hid(vi , vj )xij

s.t.
∑

j

xij = 1, i = 1, 2, . . . n

xij +
∑

k �=j

xjk ≤ 1; i, j = 1, 2, . . . n, i �= j.

xij ∈{0, 1}; i, j = 1, 2, . . . , n.

xij ≤ xjj ; i, j = 1, 2, . . . n.

∑

j

xjj = p.
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If all self-assignments ( xjj) are either zero or one, then there is an optimal solution 
that considers each of the communities assigned fully to one facility (variables xij 
are either zero or one). The basic argument is that, if a community’s demand were 
divided among two or more facilities in the solution, this solution could not be opti-
mal. More specifically, unless the community is equidistant from these two or more 
facilities, that proportion of the demand assigned to the farther of the two facilities 
can be reassigned to the closer, and the objective will decrease. If a community is 
equidistant from two or more facilities in an optimal solution, then there exists an 
alternative optimum, and the present solution can be substituted by a solution with 
full assignment (integer variables xij). The consequence is that, if branch-and-bound 
is needed, only the self-assignment or location variables need to be declared integer.

In order to solve the problem, linear programming is recommended. In the event 
that there appears a fractional assignment, branch and bound is used on the xjj vari-
ables, and the variable to branch on is chosen by a rule that considers to branch first 
on the variable xkk for which the term (min j �=k{hkd(vk , vj )})  is the largest and vari-
able xkk has not been branched on.

The number of iterations needed to solve the problem using branch and bound 
may be favorably compared to enumeration, since the number of allocations that 

need to be evaluated by enumeration are 
(

n
p

)
, while the number of iterations in the 

branch and bound scheme can be estimated in this case to be around 2( n2 + 1), i.e. 
twice the number of constraints as estimated by Gass (1958). Since problems can 
grow large, cutting down on constraints is proposed by relaxing the constraints of 
the type

and solving the following problem:

This problem can be solved to optimality just by inspection:

1.	 Assign every community to its closest neighbor, without allowing self-assign-
ments.

2.	 Break the assignments of the p communities with the largest assignment costs 
and assign them to themselves.

xij ≤ xjj , i, j = 1, 2, . . .n

Min
∑

i,j

hid(vi , vj )xij

s.t.
∑

j

xij = 1, i = 1, 2, . . . n

∑

j

xjj = p

xij ∈{0, 1}; i, j = 1, 2, . . . , n.
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Once this solution is obtained, there will be some communities that receive as-
signments without being self-assigned. For these cases, add the corresponding con-
straints xij  ≤ xjj and solve, now using linear programming and branch-and-bound.

It was also suggested to start the process from a solution obtained by heuristic 
methods: set xij ≤ xjj for those communities j that could attract assignments by virtue 
of being closer to other communities than an existing center and solve. If the solu-
tion is optimal, there is no need for more processing.

Regarding location of centers which are not at communities but on the roads 
between them: if there is a reason to think that there is such a good location, a new 
node can be added on that road (represented by an edge or an arc in the network). 
For such nodes, the corresponding variables xjj and xij are added and the population 
or demand is set to zero, resulting in an empty node.

In many cases the decision on the number of facilities to locate is political. If a 
given maximum amount of funds is available, the total cost of a facility is given by

where bj is the fixed cost and cj the unitary expansion cost, which is multiplied by 
the amount of demand assigned to the center. The total cost is the sum of the costs 
of all the facilities, and this total cost must not exceed the amount of funds, M.

If both the fixed cost of establishing a center and the expansion cost of an already 
located facility are the same, independent of the site of the facility, then

Or, recalling that 
∑

j xij = 1

After this analysis, the problem can be solved with different values of p, providing 
insight into the tradeoff between the travel time (or distance) and the number of 
centers.

ReVelle and Swain report computational experience with a problem with ten 
communities and four facilities for which thirty four iterations were needed; they 

Lj = bjxjj + cj

∑

i

hixij ,

∑

j

bjxjj +
∑

j

cj

∑

i

hixij ≤ M.

b
∑

j

xjj + c
∑

i

hi

∑

j

xij ≤ M.

∑

j

xjj ≤
M − c

∑
i

hi

b
, i.e.,

p ≤


M − c

∑
i

hi

b

 .
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also report an execution time of 1.51 minutes and only 173 iterations of the linear 
programming code (as compared to 593,000 possibilities to be enumerated) for a 
30-community, 6-node problem.

Finally, although no fractional solutions were encountered while obtaining the 
computational experience, they may occur for certain cost matrices, such as a ma-
trix whose entries ( i, j) are equal to hid( vi, vj). In fact, the following example shows 
that fractional solutions could be optimal. Table 3.1 shows the weighted distances 
matrix from i to j, where M >> 0 denotes a sufficiently large constant.

The same cost patterns are shown in Fig. 3.1. In this figure, if node 2 houses a 
demand assigned to a facility at node 1, the objective increases in 4.5 units; if the 
demand at node 5 is assigned to a facility at node 6, the objective increases in 2.5 
units, while if it is assigned to node 4, the objective grows by 5.5 units. The process 
continues in this fashion.

Figure 3.2 shows the optimal assignment. At each node there is one half of a 
facility and one half of the demand at each node is assigned to itself, while the 

3  Median Problems in Networks

1 2 3 4 5 6
1 0 0.50 5.00 M M M
2 4.50 0 2.00 M M M
3 1.00 6.00 0 M M M
4 M M M 0 1.50 7.00
5 M M M 5.50 0 2.50
6 M M M 3.00 6.50 0

Table 3.1   Weighted distance 
matrix—fractional solution

Fig. 3.1   Cost patterns
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Fig. 3.2   Optimal (fractional) assignments
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remaining half is assigned to the closest node in terms of weighted distance. The 
optimal solution is then:

As the figures show, the appearance of fractional optimal solutions is associated 
with matrices that have what might be called “counter-cycles” of costs, i.e., cycles 
of costs running in opposite directions (a fact that is related to non-symmetric ma-
trices). However, counter-cycles are not sufficient, and no general set of conditions 
was found by the authors for the appearance of fractional solutions. The matrix with 
counter-cycles of Table 3.2, does not produce fractional solutions:

To close the paper, a paragraph is included on applications: clinics providing 
therapy for individuals with chronic diseases, warehouses, mail-sorting facilities, 
central schools and parks, and others.

By the time ReVelle and Swain published their paper, the p-median problem 
and some of its properties had been described by Hakimi (1964, 1965), and two 
heuristics had been proposed for the p-median on a network. The first was that of 
Maranzana (1964), who proposed a solution method for locating m supply points 
among n demand points, and the second was the vertex substitution method by 
Teitz and Bart (1968). Both are based on heuristic algorithms proposed by Cooper 
(1964) as starting solutions for the continuous version of the problem. None of these 
algorithms were optimal.

The main contribution of ReVelle and Swain was proposing a method for solv-
ing the problem to optimality, through formulating it as an integer programming 
problem. The analysis made by ReVelle and Swain showed that their method was 
much faster than enumeration, the only previously-known exact method, and one 
that grows tremendously with the size of the instance of the problem. Although they 
state the problem of not allowing locations on edges of the network (or having to 
create new nodes along the edges if such locations were desired), thanks to the Ha-
kimi property which we describe in the next section of this chapter, the ReVelle and 
Swain formulation solves the general problem optimally, using binary location and 
allocation variables and a branch-and-bound procedure that had then been recently 
proposed by Land and Doig (1960).

ReVelle and Swain’s contribution was not only the integer programming for-
mulation, but also the application to the location of central facilities by relating the 
p-median problem to that solved by Weber (Hakimi does not refer to the problem on 
the plane). Many applications of the p-median were found in the public sector, after 
ReVelle and Swain (1970) brought awareness to this problem.

xjj = 0.5∀j : x12 = x23 = x31 = x45 = x56 = x64 = 0.5

V. Marianov and D. Serra

1 2 3 4 5 6 
1 0 1.00 2.00 M M M
2 1.50 0.00 1.25 M M M
3 1.75 1.75 0 M M M
4 M M M 0 1.00 2.25
5 M M M 1.50 0 1.33
6 M M M 2.00 2.00 0

Table 3.2   Weighted distance 
matrix—integer solution
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A further contribution was likely bringing the problem to the attention of ge-
ographers, since all the previous research was published in operations research or 
mathematical journals.

3.2.2  �Hakimi (1964): General Location of a Median 
on a Network

The concept of the median vertex of a graph, as well as some methods for finding 
the solution for the Multi-Weber problem (including the case with node weights, 
representing the amounts of demand at the nodes), were known when Hakimi 
(1964) posed the problem of finding the “absolute median” of a graph. The absolute 
median was a generalization of the median, in which the facility can be located not 
only on nodes, but also at any point along an edge of the network. This generaliza-
tion makes sense only on a network.

Hakimi’s (1964) paper also extended the concept of the center vertex, which is 
the vertex whose maximum distance to any other node of the network is minimized. 
He defines the “absolute center,” which is located anywhere on the network. The 
center problem is addressed in a Chap. 5 on discrete center problems of this book.

The particular application of interest is that of locating a telephone switching 
center (or switch), S, in a communication network. This communications system is 
represented as a finite graph or network G. In such a graph, the switching center is 
directly connected through wires to each vertex vi. Any message or communication 
between two vertices must be established through this switch. Each vertex vi, con-
nected through a branch bi to the switch S, could need more than a pair of wires to 
evacuate its traffic. In a telephone network, this number of wires is associated to the 
number of subscribers at vertex vi. In other communications networks, it could rep-
resent the (discrete) capacity of the branch. The number of wires needed by vertex vi 
(its weight) is hi, and the cost or length of the branch bi is wi. Such a network has the 
shape of a star, having the switch at its center. The problem is to find the optimal loca-
tion of the switching center in such a way that the total length of the wires is minimal.

The usual concept of the median vertex does not apply to this problem, since 
the switch S could be located anywhere on the network, including both vertices 
and branches or edges. Define the distance d( x, y) on the network or graph between 
points x and y on the network as the length of the shortest path between x and y, 
where the length of a path is the sum of the weights of the branches on that path; 
i.e., the sum of the length of the segment of branch connecting the point x to the 
switch, multiplied by the weight of the branch (weighted length), plus the length of 
the segment of branch connecting y to the switch S, times the weight of that branch. 
If both points are on the same branch it is simply the length of the segment connect-
ing them times its weight.

Using this notation, the point y0 on an element of a weighted n-vertex graph G 
is defined as the absolute median of G if the sum of the weighted shortest distances 
between y0 and every point y on G, viz.,

3  Median Problems in Networks
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� (3.7)

This point is identified with the optimal location of the switch in the communica-
tions network.

After defining the absolute median, the following method for finding the loca-
tion of the median vertex can be used: write the [n × n]-dimensional distance matrix 
of the graph, adding up all the elements of each column j (distances between the 
node j and the remaining nodes), and choose as the median the node j corresponding 
to the column with the least value of the sum of distances.

The main median-related result of the paper is the following theorem, which is 
the generalization of an unpublished result by Goldstein at Bell Labs. In a private 
communication to Hakimi, Goldstein proved that an absolute median of a tree is 
always located at a vertex.

Theorem 1:  An absolute median of a graph is always at a vertex of the graph.
If x0 is an arbitrary point on the graph, not on a vertex, there always exist a vertex 

vm of G such that

� (3.8)

i.e. there is an absolute median at a vertex vm.
Rather than repeating the Hakimi (1964) proof, the rationale is explained, reduc-

ing the mathematics as much as possible. The point x0 is assumed to be located on 
an edge ( va, vb). Assume also that nodes are re-indexed in such a way that the fol-
lowing is true: the point x0 is now located on the edge ( vp, vp + 1), and for all nodes 
with indices smaller than or equal to p, the shortest path connecting the node and 
point x0 goes through node vp, (connected through the left of x0) while for all nodes 
with indices larger than p, the shortest path between the node and point x0 goes 
through node vp + 1 (through the right of x0). The total weighted distance can then be 
expressed as the sum of two terms, representing the sum of the weighted distances 
to the left-side nodes, and to the right-side nodes, respectively:

In turn, each distance can be decomposed in two as follows:

n∑

i=1

hid(viy0) ≤
n∑

i=1

hid(vi , y).

n∑

i=1

hid(vi , vm) ≤
n∑

i=1

hid(vi , x0)

n∑

i=1

hid(vi , x0) =
p∑

i=1

hid(vi , x0) +
n∑

i=p+1

hid(vi , x0)

n∑

i=1

hid(vi , x0) =
[

p∑

i=1

hid(vi , vp) +
p∑

i=1

hid(vp, x0)

]

+




n∑

i=p+1

hid(vi , vp+1) +
n∑

i=p+1

hid(vp+1, x0)



.
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Since 
∑n

i=p+1 hid(vp+1, x0) =
∑n

i=p+1 hid(vp+1, vp) −
∑n

i=p+1 hid(vp, x0), the full 
expression is

The first three terms are independent of x0. The term in square brackets is the sum 
of node weights “on the left,” minus the sum of the node weights “on the right” of 
the point x0. Without loss of generality, suppose that the sum of node weights on the 
left is larger than or equal to the sum on the right. Then, the term in square brackets 
is non-negative, and by reducing the distance d( vp, x0) that multiplies the square 
bracketed term, i.e., moving the point x0 to the left, the total sum is reduced or, at 
most, stays the same. The minimum value for this distance is zero, which happens 
when the median point x0 is located on the node vp.

The same argument can be repeated when the sum of the node weights on the 
right of x0 is strictly larger than the sum of node weights on the left. In that case, 
the term in square brackets is strictly negative, and moving the point x0 to the right 
strictly reduces the value of the total sum. The best value is obtained when x0 is 
located on top of vp + 1.

This proves that there is always a median point on a vertex of the graph, either on 
the left or the right of a point x0 on an edge. In other words, for any point x0,

and, although an absolute median can be defined, there is always one at a vertex 
median.

Note that the previous result does not preclude other absolute medians existing 
on the network; however, it can be concluded that a median vertex is an optimal 
location for a switch in a communications network. It also could be a good location 
for a police station if hi were the average number of daily automobile accidents in 

n∑

i=1

hid(vi, x0) =
[ p∑

i=1

hid(vi, vp) +
p∑

i=1

hid(vp, x0)

]

+




n∑

i=p+1

hid(vi, vp+1) +
n∑

i=p+1

hid(vp+1, vp)

−
n∑

i=p+1

hid(vp, x0)





=
p∑

i=1

hid(vi, vp) +
n∑

i=p+1

hid(vi, vp+1) +
n∑

i=p+1

hid(vp+1, vp)

+




p∑

i=1

hi −
n∑

i=p+1

hi



 d(vp, x0).

n∑

i=1

hid(vi , vm) ≤
n∑

i=1

hid(vi , x0),
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community i, and the police must visit the scene of each accident to make a report. 
A mixed approach could be used too, in which a combination between the median 
and the center points is sought.

3.2.3  �Hakimi (1965): Multiple Facilities and Vertex Optimality

The just described single median problem answers the question of the optimal loca-
tion of a single facility. When more than a facility is to be located (say p facilities), 
the problem becomes known as the “p-median” problem, a term that was first used 
by Hakimi (1965) in the sequel to his 1964 paper. As before, Hakimi studies the 
p-median as a model that solves the problem of locating p switching centers on a 
communications network. Also, in this paper he studies a related problem, which 
we now know as the Location Set Coverage Problem (Toregas et al. 1971), applied 
to finding the least number of policemen to be deployed on a highway network in 
such a way that nobody is farther away from a policeman than a preset distance. 
Although the paper breaks ground for two of the most well-known location models, 
we concentrate on the p-median, while the covering problem is analyzed in Chap. 6 
of this book.

When two or more facilities need to be located, on the plane or on a network, 
there is an extra degree of difficulty as compared to the location of a single facility: 
the optimal allocation or assignment of demands to facilities must be determined. 
This decision is to answer the question which facility is to serve the demand at any 
of the demand points in the problem. The p-median assumes that demands are as-
signed to their closest facilities.

Following the same lines as in the single facility case, the definition of the mul-
tiple median of a graph is generalized. If Xp is a set of p points x1, x2, … xp, and the 
distance of a node vi to Xp is

i.e. the distance between the node vi and its closest point xk in Xp, then the set Xp
* is 

a “p-median” of the graph G, if for every Xp on G,

In other words, Xp
* is the set of p points on the graph such that, if these points were 

facilities of some sort, the total weighted distance between the demands and their 
closest facility would be minimized. The p-median is then the optimum locations of 
p switching centers in a communications network.

The main result of the paper is the extension of the validity of the all-node solu-
tion to the p-median case.

d(vi, Xp) = min {d(vi, x1), d(vi, x2), . . . , d(vi, xp)},

n∑

i=1

hid(vi , X∗
p) ≤

n∑

i=1

hid(vi , Xp).
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Theorem 2:  There exists a subset V ∗
p

 of the set of vertices, containing p vertices 
such that for every set of p points X on G

For the proof, let us assume that the allocation problem has been solved, so that 
there are p clusters of demand points, each cluster j consisting of a point xj in X and 
a set of demands for which xj is the closest point in X. Then, if the point xj is on an 
edge, by the theorem in Hakimi (1964), there is always a vertex v∗

j  such that

The same inequality can be derived for each cluster. Note that the allocation of 
demands has not changed; the demands that were in cluster j are still in the same 
cluster. Adding up all these inequalities results in

The left hand side of this inequality consists of the sum of p terms, one for each one 
of the original clusters. However, as the median point in each cluster moves toward 
a vertex, a demand node might become reassigned to a different node in V ∗

p . This 
only happens if the re-allocation contributes to decrease still more the total sum, so 
that

and

The suggested method for finding the p-median of a graph is enumerating all pos-
sible locations and allocating, for every location set, the demands to their closest 
facilities.

The impact of Hakimi’s two contributions is hard to overstate. A common opin-
ion among location researchers is that the paper by Hakimi (1964) strongly con-
tributed to trigger the interest in location theory and analysis, and started a long 
string of related publications that does not seem to be decreasing. This opinion 
is somehow confirmed by the increasing yearly frequency of papers on location 

n∑

i=1

hid(vi , V ∗
p ) ≤

n∑

i=1

hid(vi , X).

∑

i∈cluster j

hid(vi , v∗
j ) ≤

∑

i∈cluster j

hid(vi , xj ).

∑

j

∑

i∈cluster j

hid(vi , v∗
j ) ≤

n∑

i=1

hid(vi , X).

n∑

i=1

hid(vi , V ∗
j ) ≤

∑

j

∑

i∈cluster j

hid(vi , v∗
j )

n∑

i=1

hid(vi , V ∗
j ) ≤

n∑

i=1

hid(vi , X).
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since 1964 (Tansel et al. 1983a). Even if this were not the case, it can be safely 
stated that, at the very least, Hakimi (1964, 1965) brought awareness to the p-me-
dian problem. Other pioneering works are due to Kuehn and Hamburger (1963), 
who addressed the heuristic solution of the Simple Plant Location Problem, and 
Maranzana (1964).

Hakimi first generalized the problem of finding the median of a graph, as 
known up to the date of the publication of his papers, by defining the generalized 
median. This concept of a median located anywhere on the network, at least when 
there is a single median to be found, proved later (in the same paper of 1964) not 
to be too useful, since there is always an optimal location of the facility at a node. 
However, the question is important, since there are indeed some other problems 
for which the same property does not hold. Typical examples include the center 
point problem, addressed in the same Hakimi (1964) paper, the general absolute 
median problem of Minieka (1977), and the gravity p-median of Drezner and 
Drezner (2007). In these cases, location restricted to nodes could lead to sub-op-
timal solutions, while in the case of the p-median, the property proved by Hakimi 
(sometimes referred to as “Hakimi property”) of existence of optimal solutions 
on vertices allowed looking for the optimal solution of the problem over a finite 
set (the nodes), instead of having to search over an infinite and continuous set 
(anywhere on the network).

Many researchers have focused on the Hakimi property and its applicability to 
different cases. Levy (1972) proved that the Hakimi property holds when the weights 
are concave functions of the distance, and Mirchandani and Odoni (1979) do the 
same when the cost of a path is a concave, nondecreasing function of its total dis-
tance and both demands and transportation costs are uncertain. Later, Mirchandani 
(1980) extends these results for stochastic problems with different assumptions. 
Goldman (1972) extended the validity of the property for multiple hops between 
an origin and a destination to what is now known as the hub location problem. 
Church and Meadows (1979) prove that the Hakimi property holds for covering 
problems (the Location Set Covering Problem and the Maximum Covering Location 
Problem) when the set of nodes is augmented with a set of network intersect points 
( NIPs) located along the arcs. The augmented set is called a Finite Dominating Set. 
Hooker et al. (1991) further developed the applications of finite dominating sets. A 
problem for which a finite dominating set is found becomes a problem for which 
a finite set of solutions must be checked, as opposed to a problem with an infinite 
number of solutions. In other words, finding a finite dominating set is equivalent 
to proving the Hakimi property for the problem, defined over an augmented set of 
nodes. Berman and Odoni (1982) proved that the Hakimi property also holds for 
the single facility location problem, when travel times are stochastic and the facility 
can be relocated according to the conditions of different scenarios. Finally, Shiode 
and Drezner (2003) showed that in a competitive facility location problem on a 
tree, when the leader faces stochastic demands, the Hakimi property holds for the 
leader’s problem.
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3.3 � Other Major Contributions to the Field and Extensions

Credit for pioneering work on the p-median must be given to Hua Lo-Keng et al. 
(1962) who proposed an algorithm for locating the 1-median on trees (and networks 
with cycles), and proved that locating median points on vertices is better than lo-
cating them somewhere along the edges. Their paper was intended for practitio-
ners who needed to set up threshing floors for dispersed wheat fields, so it did not 
include much mathematical insight. Their work was apparently not known in the 
western world until much later, since Hakimi did not reference it in 1964, and both 
Goldman (1971) and Kariv and Hakimi (1979) rediscovered the same algorithm 
several years later (see Chap. 14 of this volume).

An also frequently forgotten contribution is that by Gülicher (1965), who found 
results similar to those of Hakimi, but in a more restricted context. He was (and cur-
rently it is) known better among economists, rather than being a reference among 
location scientists.

There are several major works presenting generalizations of the original p-medi-
an problem. Goldman (1969) generalized the p-median, defining what is currently 
known as the hub location problem whereby commodities are transported over a 
path between origin and destination nodes, and the total transportation costs are 
minimized. The path goes through one or two medians. The problem addressed by 
Goldman (1969) has been frequently addressed, and it is now known as the p-hub 
median location problem. In turn, this result was generalized by Hakimi and Ma-
heshwari (1972) to multiple commodities and multiple intermediate medians case. 

Holmes et al. (1972) introduced two interesting generalizations of the p-median. 
The first generalization considers elasticity of demand, i.e., situations in which cus-
tomers lose interest in the service or goods if these are located beyond a threshold 
distance. This generalization is useful in the case of non-essential goods or services, 
which are probably more common in practice than strictly essential goods. The 
second generalization considers a constraint on the capacity of the facilities, such as

where bi denotes the demand at node i and Cj is the potential capacity of a facility 
located at j.

This constraint makes the problem much more difficult, since it leads to the ap-
pearance of many fractional-valued location and allocation variables in the solution 
if the integer-programming problem is solved in a linearly relaxed version. A further 
consequence of a limited capacity of facilities is the allocation of customers to fa-
cilities that are not the closest. If closest assignment needs to be forced, the Rojeski 
and ReVelle (1970) constraints can be used:

where the set Nij = {potential facility sites closer to i than to j}.

∑

i

bixij ≤ Cjyj ∀j ,

xij ≥ yj −
∑

k∈Nij

yk ,
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An interesting extension of the p-median model was its application to hierarchi-
cal systems, i.e., systems composed by more than one category of facilities. Calvo 
and Marks (1973) appear to be the first to explore this type of setting. Their re-
sulting model has multiple objectives. Further work with hierarchical systems was 
performed by Narula (1984).

Probabilistic behavior has also been included in the p-median models: Frank 
(1966), in an early response to Hakimi’s contributions, discussed the effect of prob-
abilistic demands on the location problem. Drezner (1987) addressed the “unreli-
able p-median” in which a facility has a certain probability of becoming inactive, 
and offered a heuristic for solving this problem. Berman et al. (1985) formulated 
the Stochastic Queue Median, which locates a single facility operating as a M/G/1 
queue on any point of a network. Finally, Marianov and Serra (1998, 2001) investi-
gated the effect of adding a probabilistic constraint to models that have a p-median 
type structure, and Marianov (2003) modified the objective of a p-median model to 
maximize a demand that is elastic to distance and congestion at the facilities.

Wesolowsky and Truscott (1975) introduced the multiperiod p-median problem, 
in which the facilities are relocated in response to predicted changes in demand, 
considering that relocating facilities has a cost. A loosely related problem is solved 
by Serra and Marianov (1998), who determined the best locations for p facilities 
when the demand changes through the day.

Very relevant is the analysis of the applicability of the p-median problem to prac-
tice. A first contribution was that of Hillsman and Rhoda (1978), who studied the 
effects of data aggregation in the p-median, considering the fact that customers are 
concentrated at the demand nodes. In their paper, the authors identified three classes 
of aggregation errors: source A, B, and C errors. Source A errors arise due to the 
approximation of the actual values of distance, source B errors are a particular case 
that occurs when a demand point coincides with a candidate location and the dis-
tance between the demand and the potential facility is considered equal to zero, and 
source C errors correspond to an incorrect assignment of the demands to facilities.

Another contribution to the analysis of the p-median was that of Kariv and Haki-
mi (1979), who proved that the general p-median, where p is a variable, is NP-hard 
even in the case of a planar network of maximum vertex degree 3, with vertices of 
weight 1 and edges of length 1. Also, they rediscovered once again Hua-Lo Keng 
et al. (1962) algorithm (see Chap. 14 of this volume) for locating one median on a 
network, and proposed an O( n2p2) algorithm to find more than one median on trees.

There are several reviews of results related to the p-median. The first review fo-
cusing on the p-center and the p-median problems was that of Tansel et al. (1983a, 
b). After a classification of the location problems on networks, the authors describe 
different variants of the problem, as well as solution techniques, and end with re-
sults specific to tree networks. Generalizations and extensions of the p-median are 
covered in the excellent review by Mirchandani (1990). They include the multi-
commodity p-median of Hakimi and Maheshwari (1972), in which there are differ-
ent amounts of demand for different products or commodities, as well as different 
routes for each product; generalizations that consider some type of constraint (facil-
ity capacity, arc capacity, distance constraints and implementation constraints); gen-
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eralizations considering probabilistic travel distances and demands; oriented and 
non-oriented networks; nonlinear transportation costs; and hierarchical p-medians. 
Later, Marianov and Serra (2002) reviewed some of the applications of the p-me-
dian model, focusing on those in the public sector. Two other reviews are oriented 
specifically to solution methods: Reese (2006) presents an annotated bibliography 
of solution methods, while Mladenović et al. (2007) survey metaheuristic approach-
es to the solution of the p-median. 

Finally, the reviews of location problems by Brandeau and Chiu (1989), Hale 
and Moberg (2003), and Snyder (2006) include material about the p-median, al-
though the goal of the former two is to overview the research on location problems, 
while Snyder synthesized the work available on facility location under uncertainty.

3.4 � Conclusions

Since the early works of Hakimi and ReVelle and Swain, the p-median problem has 
been, and still is, one of the most studied models in the facility location-allocation 
academic literature, not only to characterize its properties, but also because it re-
quires sophisticated solution methods when the instances grow large. The p-median 
problem is being used to solve a large variety of applied location problems and also 
as a decision support tool to make decisions on locations. Unfortunately, only a few 
real world applications can be found published in the academic literature, compared 
to the large number of existing theoretical papers.

Among the real world situations that have been reported, interested readers can 
find studies concerning the location of industrial plants, warehouses and public fa-
cilities. A list of applications is provided by Christofides (1975). The p-median prob-
lem has also be used for cluster analysis, where locations of users are replaced by 
points in an m-dimensional space. Hansen and Jaumard (1997) provide a survey of 
cluster analysis from the point of view of mathematical programming. Cluster analy-
sis may thus offer a powerful tool for data mining applications, see, e.g., Ng and Han 
(1994). Other applications of the p-median problem are related to the formation of 
cells (Won 2000), to the detection of glaucoma tests (Kolesar 1980), to the optimal 
sampling of biodiversity (Hortel and Lobo 2005), and to the assortment and trim loss 
minimization in the glass industry (Arbib and Marinelli 2004), among others. There 
is no doubt that many more applications will be found for this problem in the future.

Future work on this problem should include new solution methods for larger 
problems; theoretical research on the validity of the Hakimi property under dif-
ferent conditions; further relaxation of the assumption of closest assignment so to 
include different user preferences; and p-median models for multiple commodities 
and different routing policies.
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4.1 � Introduction

The minimax facility location problem (also called the one center problem) seeks 
to locate a facility so that the maximum distance to a set of demand points is mini-
mized. Using Euclidean distances in the plane, this problem is equivalent to finding 
the center of the smallest circle enclosing all points, hence the term “center” regard-
ing this problem. When other metrics are used, the 1-center problem is equivalent to 
covering all points with a shape similar to the unit ball of the metric. For example, 
when rectilinear distances are used, the problem is to cover all points with the small-
est possible diamond.

Locating several ( p > 1) facilities two problems are discussed in the literature. 
One formulation, the minimax multifacility problem incorporates distances between 
the facilities into the objective function. A more commonly investigated problem 
is termed the minimax location-allocation problem or the p-center problem. Each 
demand point is allocated to the closest facility and the maximum distance to the 
closest facility need to be minimized. Another popular objective of the location-
allocation type is minimizing the (weighted) sum of distances to the closest facility. 
Such problems are also called p-median problems and are discussed in Chap. 3 of 
this volume.

In this chapter, we review the one center and p-center problems in the plane. Ear-
ly papers investigate the unweighted one center problem using Euclidean distances 
in the plane. More recent research expands the investigation to weighted problems, 
multiple facilities location, different distance metrics, and different environments; 
we, however, restrict our review to continuous spaces. There exists a significant 
body of literature dealing with discrete location (when there exists a finite set of 
possible sites for the facilities) and, in particular, location in a network environment.

Chapter 4
Continuous Center Problems
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4.2 � Early Research in the Nineteenth Century

The one center unweighted location problem applying Euclidean distances was first 
suggested by the renowned English mathematician James Joseph Sylvester (1814–
1897), who, in 1857, asked the following question in a one sentence “manuscript:”

It is required to find the least circle which shall contain a given system of points in the plane 
(Sylvester 1857).

Three years later, Sylvester (1860) published the analysis of this and other related 
problems.

Sylvester starts with a general discussion of linear approximations to a square 
root of sum of squares of terms like 

√
x2 + y2 + z2  as approximated by a linear 

function of the structure αx + by + cz. On page 212, he then proceeds to solve the 
problem of finding the smallest circle enclosing a set of points, observing that 
points which are not vertices of the convex hull will not be part of the solution. He 
then notes that the optimal solution involves two or three points. He writes

If a circle is drawn through three points, then two cases arise. If the three points do not lie 
on the same semicircle, no smaller circle than this one can be drawn that contain the three 
points. If the points do lie in the same semicircle, it is obvious that a circle described upon 
the line joining the outer two as a diameter will be smaller than the circle passing through 
all three and will contain them all.

This distinction is the same as determining whether the triangle based on three 
points is acute or obtuse. He then proceeds to describe his algorithm in quite a 
complicated fashion based on a solution method of Professor Peirce with no cita-
tion. The editors of this volume searched for a mathematician named Peirce and 
found the scholar Benjamin Peirce (1809–1880), a professor at Harvard University, 
whose scholarly work spanned the techniques needed for Sylvester’s approach. His 
book Linear Associative Algebra (1882) contains an analysis of two-dimensional 
algebras which are the basis of Sylvester’s approach. We therefore believe that Syl-
vester referred to Benjamin Peirce’s work. Here, we prefer to describe the almost 
identical algorithm provided in the Chrystal (1885) paper because it is explained 
more simply.

Chrystal (1885) unknowingly reinvented Sylvester’s method. Towards the end 
of his paper Chrystal writes

I learned a day or two before communicating it to the Mathematical Society of Edinburgh 
that the problem had originally been proposed by Professor Sylvester ( Quarterly Journal of 
Mathematics, 1, p. 79) and that a solution had been given by him in an article in the Philo-
sophical Magazine more than twenty years ago (1860, Fourth Series, vol. 20, pp. 206–212). 
I have since consulted this paper, and find that the solution there given is due to Peirce. It 
is only briefly indicated, but appears to be substantially identical with the one I have given 
above.

Note that the last page number of the citation of Sylvester (1860) is wrong in this 
quote. It should be 206–222.

Chrystal observed several properties of the smallest possible circle enclosing 
a set of points. First, if a circle encloses all the vertices of the convex hull of the 
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set of points, it encloses all the points in the set. Therefore, all points that are not 
vertices of the convex hull can be eliminated from consideration, and only vertices 
of the boundary of the convex hull need to be included in the problem. This may 
significantly reduce the number of demand points defining the problem. Second, a 
circle passing through the vertices of an acute triangle, is the smallest possible circle 
enclosing the three points. However, if there is an obtuse angle to that triangle, the 
smallest circle is instead centered at the center of the side opposite the obtuse angle 
(which is the longest side of the triangle). For a right triangle, the two circles de-
scribed above are actually the same circle. He then concludes that the smallest circle 
is either based on the most distant pair of points as a diameter, or the largest circle 
passing through three points which form an acute triangle.

Chrystal’s algorithm starts with a “large” circle that encloses all the points and 
reduces the radius of the circle iteratively until the smallest circle is obtained. With 
each iteration, a pair of vertices of the convex hull are examined. The algorithm 
starts with an arbitrary side of the convex hull; at each iteration the demand point 
subtending the smallest angle to the selected pair of points is identified. If the 
smallest angle is obtuse or a right angle, the center of the segment is the center of 
the minimum circle, because all the points are in the circle defined by the pair of 
points as the ends of its diameter. If the smallest angle is acute, the other two angles 
of the triangle are evaluated. If both of them are acute (or if one of them is a right 
angle), the circle through these three points is the minimum circle. If one angle is 
obtuse, the side opposite that angle is selected for the next iteration. If there is no 
obtuse angle, the optimal circle has been found. The process must end with either 
two or three points defining the minimum circle, because the radius declines at 
each iteration and therefore the same pair of points cannot be examined again. 
Even though the concept of complexity was not defined yet in 1885, Chrystal was 
interested in the maximum possible number of iterations. He determined that the 
bound on the number of iterations is ½m( m − 1) (where m is the number of vertices 
in the convex hull of the demand points) because there are m( m − 1)/2 possible seg-
ments connecting vertices of the convex hull and a segment cannot be considered 
more than once.

We illustrate the Chrystal-Sylvester algorithm in Fig.  4.1. The problem is to 
cover 6 points marked with full black dots. Two points, A and B are selected as two 
consecutive points on the convex hull. The angles subtended from each of the other 
four points are drawn, with the smallest angle subtended from point C. The circle 
passing through A, B, and C is centered at the empty dot and is drawn as a thick 
line. The circle is centered at (2, 3.667) with a radius of 3.8006. Note that the center 
of the circle and its radius need not be calculated. Since the angle ABC is obtuse, 
points A and C are kept, and all the angles subtended on the segment AC are calcu-
lated (not shown in the Fig. 4.1). Only the angle subtended from D is acute, thus the 
smallest, and therefore the points ACD are selected. They form an acute triangle and 
therefore the circle passing through them (the thinner line centered at the triangle 
in the figure) is the solution. The solution is at (2.5, 3.333) with a radius of 3.6553. 
Again, these values need not be calculated throughout the iterations. One can calcu-
late the center and radius of the optimal circle once the two or three points defining 
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it are obtained. Note that the new center is closer to the segment AC, and thus all 
the points “on the other side of the segment” that were covered before are covered 
following the shift; the part of the new circle on the other side of AC contains the 
points covered by the thick circle. The sequence of circles is decreasing and each 
circle contains all the points.

Chrystal (1885) was also interested in other problems but did not offer solution 
algorithms for them. He suggested the problem of the minimum possible three di-
mensional sphere that encloses all points in a three dimensional space. He observed 
that in three dimensions, the minimum sphere is constructed by two, three, or four 
points. This result can be derived by Helly’s Theorem (Radon 1921). Helly’s Theo-
rem states

Given a finite collection of convex sets in Rn. If the intersection of every n + 1 of these sets 
is nonempty, then the whole collection has a nonempty intersection.

For a general discussion see Drezner (1982), who shows that any minimax problem 
based on convex functions in a k-dimensional space can be determined by solv-
ing the minimax problem based on a set of up to k + 1 functions. The minimum 
k-dimensional sphere is therefore constructed based on up to k + 1 points. Chrystal 
(1885) also suggested the problem of finding an ellipse with the minimum area 
that encloses a set of points in the plane. We are unaware of a paper addressing this 
problem.

In order to implement the Sylvester-Chrystal algorithm on a computer, certain 
derivations are needed. Finding two consecutive vertices of the convex hull to start 
the algorithm, we can select the first vertex as the one with smallest value of x, and 
finding the adjacent vertex as the one with the largest slope (positive or negative) 
of the line connecting the first vertex with all other points. This requires an O( n) 

Fig. 4.1   The Chrystal-
Sylvester algorithm
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effort, where n is the number of points. For implementing the iterations, we need to 
find the point that subtends the smallest angle on a segment connecting two points. 
This is done by the following observation: let a be the length of the segment, and b 
and c be the distances between a third point and the end points of the segment. The 
law of cosines is a2 = b2 + c2 − 2bc cos  (Beyer 1981). For completeness, we provide 
the simple proof here. Consider Fig. 4.2, where a2 = ( c − b cos )2 + b2 sin2 , which 
leads to the law of cosines.

The angle  opposite side a fulfills

Therefore, the smallest angle among all points is the largest value of cosα. Since 
we are interested only in acute or right angles (because we already have found the 
solution if none of the angles is acute), when b2 + c2 − a2 < 0 the point is ignored. To 
avoid the need to calculate a square root which may increase the run time of the 
algorithm, the quantity f = b2 + c2 − a2 is calculated and only if f > 0 we proceed to 
calculate the maximum among f 2/( b2c2). This way, only squares of distances need 
to be calculated. This approach is very fast and easy to implement. In order to de-
termine whether a triangle is acute or obtuse, a simple rule applies: if a2 + b2 + c2 > 2 
max{a2, b2, c2} the triangle is acute. In case of equality, it is a right triangle; if the 
inequality is reversed, the triangle is obtuse.

4.3 � The Elzinga-Hearn Algorithm (1972)

Elzinga and Hearn (1972a) proposed and solved four different problems. All are 
based on the following basic formulation. Let n points be located at xi with as-
sociated constants ki ≥ 0 for i = 1,…, n, be given. We need to find a location X that 
minimizes

cos α =
b2 + c2 − a2

2bc
.

max
1≤ i ≤ n

{di(X) + ki}

Fig. 4.2   The law of cosines
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where di( X) is the distance between point i and the unknown solution point X. Note 
that the requirement that ki ≥ 0 is not necessary, because adding a constant to all ki does 
not change the problem and all negative ki can be converted to nonnegative values.

The unweighted 1-center problem ( ki = 0) is called the Delivery Boy Problem; 
when a possibly different constant is added to each distance in the minimax for-
mulation, the problem is called the Messenger Boy Problem. The first is called the 
Delivery Boy Problem since we wish to minimize the maximum distance a delivery 
boy will need to travel to make deliveries to a set of points. The second is called 
the Messenger Boy Problem because once the messenger boy reaches the point, he 
needs to travel an extra distance in order to deliver the message. These names did 
not catch on and are not repeated in subsequent research papers. Each of these prob-
lems is formulated and solved using Euclidean or rectilinear distances.

The algorithm for the Euclidean 1-center (also called single-facility minimax 
location) is as follows:

Algorithm 1: The Euclidean 1-Center 

Step 1:	� Pick any two points.
Step 2:	� Construct a circle based on the segment connecting two points as 

a diameter. If the circle covers all points, then stop, a solution has 
been found. Otherwise add a point outside the circle to the pair of 
points to form a set of three points.

Step 3:	� If the triangle with the three points at its vertices has an angle of at 
least 90°, drop the point on the obtuse angle and go to Step 2.

Step 4:	� If the circle passing through the three points covers all points, stop, 
a solution has been found. If there is a point outside the circle, 
choose such a point, D, and add it as a fourth point. One of the 
original three points ( A, B, C) must be discarded. The new point 
D and the farthest point from it, A, remain in the set. To determine 
the third point, extend the diameter of the current circle through 
A defining two half planes. Select the point (of the remaining two 
points B or C) which is not on the same half plane as D. 

For the Elzinga-Hearn algorithm, we need a formula for the center of a circle enclos-
ing an acute triangle. Such a formula is given in Drezner and Wesolowsky (1980). 
We simplify it further by translating the system of coordinates so that the first point 
is at (0, 0) and then add the original coordinates of the first point to the result. 
This way the three dimensional determinants (Drezner and Wesolowsky 1980) are 
reduced to two-dimensional ones. Let ( x2, y2) and ( x3, y3) be the coordinates of the 
second and third point following a translation of the system of coordinates so that 
the first point is translated to (0, 0). Three quantities are calculated:

� = x2y3 − y2x3,

�1=
(
x2

2 + y2
2

)
y3 −

(
x2

3 + y2
3

)
y2, and �2 =

(
x2

3 + y2
3

)
x2 −

(
x2

2 + y2
2

)
x3.
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The center is then at ( x0, y0) with x0 =Δ1/2Δ and y0 = Δ2/2Δ, and the radius of the 

circle is the distance from the center to the point (0, 0), which equals 
√

�2
1+�2

2
2�

.
We can now make the following observations:

1.	 The same method described in the last paragraph of Sect.  4.2 can be used to 
determine whether a triangle is acute or not.

2.	 Most of the computer time in one iteration is spent on finding a point outside 
the circle (which is of complexity O( n)). All other components are of complex-
ity O(1). Therefore, it may be simpler to check all three points as candidates for 
removal in Step 4, and select the one which results in the largest radius of the 
remaining three points rather than the geometric scheme suggested by Elzinga 
and Hearn (1972a).

3.	 One can choose the point farthest from the center of the circle rather than any 
point outside the circle. This guarantees that the newly selected point is a vertex 
of the convex hull.

4.	 Convergence of the algorithm is guaranteed because the radii of the circles in 
consecutive iterations increase.

The algorithm is illustrated using the same six points shown in Fig. 4.1. Suppose 
that points A and B are selected at the start of the solution algorithm. The center 
of the smallest circle covering A and B is at the middle of the segment AB and its 
diameter is the length of AB. The farthest point outside this circle (i.e., the farthest 
point from the center of the segment) is point C. Since the triangle ABC is obtuse, 
point B is discarded and the next iteration uses points A and C. The farthest point 
from the midpoint between A and C is point D, so point D is added to the set. The 
triangle ACD is acute, so it defines the next iteration with a circle centered at the 
location marked as a triangle in the figure. All points are enclosed by this circle so 
the algorithm terminates.

When a different ki ≥ 0 is added to the minimax problem (the messenger boy 
problem, as Elzinga and Hearn (1972a) termed it), the problem can be viewed geo-
metrically as replacing the points with circles centered at the points with radii of 
ki ≥ 0. The problem therefore turns to finding the smallest circle that encloses all 
circles. The solution is either one circle if there exists a circle that encloses all other 
circles or a circle that is tangent externally to two or three circles. The proposed 
algorithm is similar to the algorithm described above for the unweighted 1-center 
problem. The only difference is that a procedure is designed to find the smallest 
circle enclosing two or three other circles (rather than points).

Note that the weighted version of this problem, where the distances are multi-
plied by weights and ki  ≥ 0 added, is solved in Drezner (1991) by using an Elzinga-
Hearn type algorithm. The only issue is finding the solution based on two or three 
points. While the solution to a two point problem is an explicit formula, an iterative 
procedure is suggested for the solution of the three points problem.

When distances are rectilinear, the problem is to find the smallest diamond the 
covers all points. This problem does not require an iterative procedure. As outlined 
in Elzinga and Hearn (1972a) and Drezner (1987), we must find the maximum and 
minimum of ai + bi and ai − bi, where ( ai, bi) are the coordinates of the points. These 
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four values define four lines inclined by 45° to the system of coordinates. Two have 
a positive slope and two have a negative slope. The solution is the center of the 
diamond defined by these four lines. This can be done in O( n) time. Usually, when 
not all the sides of the diamond are equal to one another there are multiple solu-
tions to this problem. When constants ki ≥ 0 are added to the distances, the points 
are replaced by diamonds. The problem turns to finding the smallest diamond that 
encloses all diamonds. The solution is very similar to the unweighted 1-center rec-
tilinear problem and is also solved in O( n) time.

Recall that the Sylvester and Chrystal algorithm starts from a “big” circle that 
encloses all points and the circle is iteratively shrunk until the optimal circle is 
obtained. Conversely, Elzinga and Hearn start with a small circle and iteratively 
increase it by adding points outside the circle until all points are covered. The re-
mainder of this section provides a computational comparison of the two approaches.

The complexities of the Elzinga and Hearn (1972a) or the Sylvester-Chrystal 
algorithms are not clear. In experiments they seem to behave like O( n) because 
the number of iterations is quite stable. Drezner and Shelah (1987) constructed a 
contrived example where the number of iterations of the Elzinga-Hearn algorithm 
is O( n) and thus the complexity of the algorithm is at least O( n2). The crude upper 
bound suggested in Chrystal (1885) leads to a bound of O( n3) on the complexity of 
that algorithm.

In their 1972 paper, Elzinga and Hearn claim that the Sylvester-Crystal proce-
dure “was, naturally enough, designed for solving the problem by hand. Our pro-
cedure is quite different and is more efficient for implementation on a computer.” 
Actually, it is very easy to code the Sylvester-Chrystal algorithm on a computer as 
detailed above. Therefore, we tested the relative efficiency of both algorithms.

As indicated, the two or three points defining the smallest circle enclosing all 
points must be vertices on the boundary of the convex hull. Both algorithms select as 
the next point in the process a point on the boundary of the convex hull (if in the Elz-
inga-Hearn algorithm we select the farthest point in Step 2 or 4 of the algorithm) so in 
both algorithms starting from the first iteration in the Sylvester-Chrystal algorithm, 
and from the third iteration in the Elzinga-Hearn algorithm, all two or three points 
defining the circle considered in each iteration are vertices of the convex hull. It 
may therefore be beneficial to extract the vertices of the convex hull before applying 
any of the algorithms. This can be done in O( n log n) time (Graham 1972; Graham 
and Yao 1983). This may require more effort than the O( n) effort required for each 
iteration, if the number of iterations is less than O(log n). In our computational ex-
periments this is not the case. Testing this option is beyond the scope of this chapter.

We evaluated both algorithms for problems with up to 10,000 demand points. 
First we generated points in a unit square, and then we constructed somewhat harder 
problems with points uniformly generated in a ring of inner radius of 0.999 and out-
er radius of 1. These problems have a higher percentage of points that are vertices 
of the convex hull. Each problem was solved one million times by each algorithm. 
It turns out that generating the problems themselves required longer computational 
time than solving them. Therefore, we ran programs that just generated the prob-
lems without solving them and reported the extra time needed for the solution pro-
cess. Programs were coded in Fortran using double precision arithmetic, compiled 
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by an Intel 9.0 Fortran compiler and run on a 2.8  GHz desk top computer with 
256 MB of RAM. The results are summarized in Table 4.1. Note that the run time 
in seconds is the time required to solve a million problems.

It took about one millionth of a second to solve one problem with n = 10 demand 
points. The Elzinga-Hearn algorithm is more efficient than the Sylvester-Chrystal 
algorithm, mainly because one iteration of the Sylvester-Chrystal algorithm con-
sumes more computer time than one iteration of the Elzinga-Hearn algorithm. How-
ever, the two algorithms are quite comparable, especially for smaller problems.

4.4 � More Recent Papers

Proposed algorithms for the unweighted one center problem using Euclidean dis-
tances and others have improved complexities over the years. Drezner and Shelah 
(1987) showed that the complexity of the Elzinga-Hearn algorithm is at least O( n2). 
Shamos and Hoey (1975) proposed an O( n log n) algorithm based on Voronoi dia-
grams (for a discussion of Voronoi diagrams the reader is referred to Suzuki and 
Okabe 1995, Okabe et al. 2000, and Chap. 19 of this volume). Megiddo (1983a) 

Table 4.1   Comparing the Elzinga-Hearn and the Chrystal-Sylvester algorithm
n Elzinga-Hearn Chrystal-Sylvester

Points in a square
Iterations Time (s) Iterations Time (s)
Min Max Aver Min Max Aver

10 1 7 2.94 1.10 1 7 2.18 0.89
20 1 8 3.46 1.58 1 8 2.58 1.73
50 1 8 3.77 2.42 1 9 3.14 4.48
100 1 8 3.90 3.45 1 9 3.59 9.46
200 1 8 4.00 5.59 1 11 4.04 20.64
500 1 8 4.10 11.83 1 11 4.64 58.17
1,000 1 8 4.16 23.31 1 12 5.10 127.86
2,000 2 8 4.20 45.41 1 14 5.56 278.54
5,000 2 8 4.23 111.67 1 15 6.17 774.78
10,000 2 8 4.26 222.75 1 16 6.63 1,668.69

Points in a ring
10 1 8 3.62 1.43 1 9 2.81 1.07
20 1 9 4.51 2.16 1 10 3.90 2.44
50 1 10 5.24 3.46 1 13 5.38 7.04
100 1 11 5.68 5.24 1 15 6.42 15.70
200 2 11 6.06 8.64 1 16 7.28 34.15
500 2 11 6.49 19.03 1 18 8.02 91.66
1,000 2 12 6.77 38.26 2 20 8.42 190.56
2,000 2 12 7.03 76.32 2 20 8.82 395.46
5,000 3 13 7.31 193.25 2 21 9.35 1,037.69
10,000 3 12 7.51 393.41 2 21 9.75 2,143.30
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constructed an algorithm that solves the unweighted 1-center problem in O( n) time, 
which clearly cannot be improved.

Elzinga and Hearn (1972b) constructed an algorithm to solve the unweighted 
1-center problem in m-dimensional space. The problem is formulated as a quadratic 
programming problem and solved by the simplex method for solving quadratic pro-
grams.

The rectilinear unweighted 1-center problem can be solved in O( n) time (Elzinga 
and Hearn 1972a; Drezner 1987). Drezner (1987) also constructed an O( n) algo-
rithm for the 2-center problem and an O( n log n) algorithm for the 3-center problem.

The weighted one center problem has also received attention in the literature 
even though it is more difficult to find applications that incorporate weights into 
the objective function. Dearing (1977) was probably the first one to introduce the 
weighted 1-center problem in the plane. Following his presentation, Drezner and 
Wesolowsky (1980) proposed an iterative solution approach similar to the Elzinga 
and Hearn (1972a) algorithm for the Euclidean, the rectilinear, and the general �p 
distances problems. Jacobsen (1981) solved the Euclidean weighted 1-center prob-
lem by formulating it as a nonlinear programming problem. Hearn and Vijay (1982) 
suggested a solution approach based on the Elzinga and Hearn (1972a) algorithm, 
Megiddo (1983b) developed an O( n log2 n) algorithm, and Zemel (1983) developed 
an O( n log n) algorithm for its solution. Finally, Dyer (1986) proposed an O( n) 
time algorithm for the solution of the weighted one center problem using Euclidean 
distances. He also showed that an O( n) time algorithm exists for the solution of the 
weighted 1-center problem in a space of any dimensionality. However, the com-
plexity increases exponentially with the dimensionality. For a problem in k dimen-
sions the complexity is O(3(k+2)2

n).
The weighted 1-center rectilinear problem can be solved in O( n) time by em-

ploying the technique suggested by Megiddo (1983a). Megiddo showed how to 
solve linear programs with two or three variables in time linear in the number of 
the constraints. The weighted 1-center problem in k dimensions can be decomposed 
into k single dimension problems. Each single dimension problem can be formulat-
ed as a linear program with two variables and 2n constraints. Let L be the maximum 
weighted distance from the facility and x the location of the facility on a line. Let xi 
be the locations of the demand points on the line and wi be their associated weights. 
The linear program is to minimize L subject to the 2n constraints −L ≤ wi( x − xi) ≤ L. 
Therefore, the task of solving the weighted rectilinear 1-center problem in k dimen-
sional space can be performed in O( kn) time.

4.5 � Extensions to the 1-Center Problem

There are a few single facility location problems related to the 1-center problem. The 
k-centrum objective (Andreatta and Mason 1985; Tamir 2001) is to minimize the 
average of the k largest distances. When k = 1, the problem reduces to the 1-center 
problem. These papers investigate the problem in a network environment. Drezner 
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and Nickel (2009a, b) are the only references we are familiar with that solve this 
problem in the plane. Another objective is to minimize the k-th largest objective. 
This is equivalent to finding the smallest circle that covers a certain proportion of 
the points. These problems can be solved by employing the ordered median objec-
tive (Nickel and Puerto 2005). The ordered median objective is defined by a se-
quence of constants λ1, …, λn. The objective function is a sum of the distances each 
multiplied by a λ. The smallest distance is multiplied by λ1, the second smallest by 
λ2, and so on, while the largest distance is multiplied by λn. Many location problems 
can be formulated as ordered median problems. The 1-center problem is defined 
by the vector (0, 0, …, 0, 1). The k-centrum problem is defined by n − k zeroes fol-
lowed by k ones. The k-th largest objective is defined by all zeroes except for a “1” 
at the position n − k. Drezner and Nickel (2009a, b) suggested a general and efficient 
approach for optimally solving any single-facility ordered median problem. This 
general approach can be applied for solving these problems.

4.5.1  �Location of Multiple Facilities

There are two main approaches to modeling the location of multiple facilities. The 
first type of models are called multi-facility location models. Here, the distanc-
es between the facilities are included in the objective function, and it is assumed 
that some interaction exists between facilities. Most papers in this area deal with 
the minisum objective. Miehle (1958) was the first to define this problem in the 
minisum context. In the minimax context, the first paper is by Love et al. (1973) us-
ing Euclidean distances, and Dearing and Francis (1974) using rectilinear distances. 
Other early papers on the subject are Drezner and Wesolowsky (1978) for rectilin-
ear, Euclidean, and general �p  distances, and Elzinga et al. (1976) for Euclidean 
distances.

The second type of models for the location of multiple facilities is the p-center 
location problem. In this formulation each demand point is serviced by its closest 
facility and there is no interaction between facilities. The set of demand point is 
allocated among the facilities and each facility is located at the optimum location 
for its service set. In early years this problem was termed the location-allocation 
problem. The minisum version of this problem ( p-median) was first suggested 
by Cooper (1963, 1964). The first reference to the p-center problem is Kariv and 
Hakimi (1979) in a network environment. The first paper on the p-center problem 
in the plane is Chen (1983). Other early papers are Drezner (1984a, b) and Vijay 
(1985). Drezner (1984a) proposes heuristic algorithms that are improvements on 
the basic ideas suggested by Cooper (1963, 1964). The optimal algorithm pro-
posed in Drezner (1984a) is based on creating a set covering problem and solving 
it. A solution to a 1-center problem is based on 2 or 3 points. Therefore, all can-
didate locations are the solutions to the n( n2 − 1)/6 possible pairs, and triplets of 
demand points. Many of these solutions can be eliminated from the set if they are 
inferior to another set. For example, all triplets forming right or obtuse triangles 
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can be eliminated because the two vertices forming the longest side of the triangle 
are superior.

Drezner (1984b) develops optimal algorithms for the 2-median and 2-center 
problems in the plane using Euclidean distances. The algorithms are based on the 
observation that once the facilities are located, the demand points are separated 
by the perpendicular bisector to the segment joining the two facilities. Therefore, 
there are at most n( n − 1)/2 partitions of the set of demand points and the algorithm 
evaluates all these partitions in a branch and bound algorithm. Vijay (1985) solves 
the p-center problem by solving a sequence of set covering problems assuming a 
given radius. Once the radius is given, a set covering problem is created and solved 
by a zero-one integer programming code. A binary search on the value of the radius 
determines the optimal solution to the p-center problem. The computational results 
reported in Vijay (1985) are excellent for the era of 1985 computers. A recent paper 
by Chen and Chen (2009) provides the best available techniques to date to solve p-
center problems either in discrete space or in the plane.

The p-center problem when demand is generated in an area (defined by a den-
sity function depicting the population) is proposed by Suzuki and Drezner (1996). 
The actual density of demand does not affect the solution as long as the demand is 
positive at all the points in the area. The problem is equivalent to covering the area 
with p circles of the minimum possible radius. Suzuki and Drezner (1996) specifi-
cally solved the problem to cover a square area, but some of the configurations are 
surprising in that they resemble hexagonal patterns rather than a grid pattern, see 
Fig. 4.3 for the configuration for p = 30. For p = 1, the best location is clearly at the 
center of the square. The solution for p = 4 is to locate the four facilities at the cen-

Fig. 4.3   Solution to the 
30-center problem
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ters of the four small squares obtained by dividing the square vertically and horizon-
tally in the middle. One might expect that the solution for p = 9 is to locate the nine 
facilities in three rows, with three facilities in each row forming a three by three 
grid, but such a solution is not optimal. The radius required for full coverage by this 
solution is 

√
2

6 ≈ 0.23570. However, a solution of 0.23064 does exist (see Fig. 4.4). 
By pushing the middle column down and adjusting the left and right columns, a 
smaller radius is required for a full coverage of the square. There is a large body of 
literature about circle packing and circle covering. The p-center problem in an area 
is called the “circle covering” problem, while the continuous p-dispersion problem 
is called the “circle packing” problem. The latter problem was solved by Drezner 
and Erkut (1995) and Maranas et al. (1995). Both papers applied a nonconvex math-
ematical programming formulation to heuristically solve the problem).

Researchers in the fields of covering and packing are generally not familiar with 
the location literature and were surprised to find out that their research is done in 
parallel by location researchers. A recent book on circle packing is Szabó et  al. 
(2007), and http://www.stetson.edu/~efriedma/packing.html is an excellent website 
that depicts solutions to many continuous problems. The solution for the p-center 
with p = 9 is attributed to Nurmela and Östergård (2000). The authors (and the cre-
ators of the website) are not aware of the previous results in Suzuki and Drezner 
(1996).

4.5.2  �Conditional Problems

When several facilities exist in the area and p new facilities need to be located, 
the problem is called the conditional p-center problem (and, for the minisum ob-
jective, the conditional p-median problem). Each point is assigned to the closest 
facility, whether existing or new. The objective of the conditional p-center problem 

Fig. 4.4   A Solution to the 
continuous 9-center problem
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remains to minimize the maximum distance. The problem is mainly investigated in 
a network environment (Minieka 1980), and the problem using Euclidean distances 
was first suggested by Chen (1988). Drezner (1989) showed that any conditional p-
center problem in any environment (plane, network, globe, or k-dimensional space) 
can be solved by a sequence of O(log n) p-center problems. The following obser-
vation can be used to determine whether or not there is a solution whose longest 
customer-facility distance is ≤C for any given C: first, all customer points for which 
there is a distance no larger than C to an existing facility, can be eliminated from 
consideration. The p-center based only on points for which no distance ≤C to an 
existing facility exists, is solved. If the solution to the p-center problem is ≤C, a 
solution to the conditional p-center ≤C exists, otherwise, it does not. A binary search 
is conducted as follows: the points are ranked in decreasing order of their distance 
(can be weighted) to the closest existing facility, D1 ≥ D2  ≥ … ≥ Dn. A binary search 
for this vector of distances on the index 1 ≤ r ≤ n using the rule above requires O(log 
n) solutions of p-center problems.

Berman and Drezner (2008) showed that the conditional p-center or p-median 
problem in a network environment can be solved by solving one p-center (or p-
median) problem. They demonstrated that the distance matrix can be modified by 
incorporating distances to existing facilities leading to an equivalent p-center prob-
lem.

4.6 � Conclusions

Most location problems are interesting mathematical problems and thus were of 
interest to mathematicians for many years. Therefore, facility location is the old-
est topic of Operations Research. The basic Weber problem (finding a point that 
minimizes the weighted sum of distances from a given set of points) was posed by 
the famous French mathematician Pierre de Fermat in the early 1600s (Wesolowsky 
1993; Drezner et al. 2002). Fermat posed the question of finding a point such that 
the sum of the distances to three given points is minimum. The great English math-
ematician Sylvester (1857) posed the question of the smallest circle enclosing a 
set of points which is the one-center problem and proposed a solution approach in 
Sylvester (1860). The one-center problem is sometimes called the minimax facil-
ity location problem because the solution is the point that minimizes the maximum 
distance to a set of points. The solution method was actually an algorithm which is 
very unusual for solving mathematical problems. Chrystal (1885) that solved the 
problem in a similar way was concerned with the limit on the number of iterations 
of the algorithm, probably the first instance of complexity analysis.

In more recent years research recognized applications to these basic models in 
the context of Operations Research. Weber (1909) recognized that the minisum 
model is applicable to the location of industries such as warehouses. The one-center 
model was recognized as the suitable model for the location of an emergency facil-
ity because we would like to minimize the distance to the farthest facility. These 
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models were further extended in many ways following their use in solving differ-
ent applications. The most common extension is the location of multiple facilities 
which is extensively investigated in recent years.
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5.1 � Introduction

Our focus in this chapter is on discrete center location problems. This class of prob-
lems involves locating one or more facilities on a network to service a set of demand 
points at known locations in such a way that every demand receives its service from 
a closest facility, and the maximum distance between a demand and a closest facility 
is as small as possible. This leads to a minimax type of objective function, which is 
intrinsically different from the minisum objective that is more widely encountered 
in location models, for which the primary concern is to minimize the total trans-
portation cost. The term discrete in the title refers to a finite set of demand points, 
while continuous versions of center location problems are also possible if the set of 
demand points to be served constitutes a continuum of points on the network under 
consideration.

Center location problems most commonly arise in emergency service location, 
where the concern for saving human life is far more important than any transporta-
tion costs that may be incurred in providing that service. Consider, for example, 
locating a fire station to serve a number of communities interconnected by a road 
network. If a fire breaks out in any one of these communities, it is crucial for equip-
ment to arrive at the fire as quickly as possible. Similarly, quick delivery of an emer-
gency service is significantly more important in optimally placing, for example, 
ambulances and police patrol units, than the cost of delivering that service. The 
common denominator in all of these circumstances is that there is a time delay 
between the call for service and the actual time of beginning to provide that service 
that is a direct consequence of the time spent during transportation. All other factors 
being constant, it makes sense to model such circumstances so that the maximum 
distance traversed during transportation is as small as possible.
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5.1.1  �The Single Facility Case: The Absolute Center Problem

To define the center location problem, let us first consider the single facility prob-
lem that involves optimally placing an emergency service facility on a road network 
that interconnects n communities requiring the services of the facility. It is conve-
nient to represent the road network of interest by an undirected connected network 
G = ( V ′, E) with vertex set V ′ = {v1, . . . , vn, . . . , vn′ } and edge set E consisting of 
undirected edges of the form eij = [vi, vj] with edge lengths Lij > 0. Without loss of 
generality, we assume that the vertex set includes the n ≤ n′ communities requiring 
the services of the facility. We further assume, with re-indexing if necessary, that the 
first n vertices are the vertices that demand service from the facility. Let V = {v1,…, 
vn} ⊆ V ′ be the demand set. Vertices not in V, if any, may represent, for example, 
intersections of roads. Edges represent road segments connecting pairs of vertices, 
and their lengths are positive. We take each edge of the network as an infinite set of 
points (a continuum) connecting the end-vertices of the edge under consideration 
and refer to each point along an edge as an interior point of that edge if the point 
is not one of the end-vertices. We take the network G as the union of its edges and 
write x ∈ G to mean x is any point along any edge of G.

For any pair of vertices vi and vj in the network, a path P = P( vi, vj) connecting 
vi and vj is a sequence of alternating vertices and edges that begin at vi and end at 
vj. We define the length of a path P to be the sum of the lengths of the edges con-
tained in the path. A shortest path connecting vi and vj, denoted by SP( vi, vj), is a 
path whose length is the smallest among all paths connecting vi and vj. Due to the 
positivity of edge lengths, every shortest path between a pair of vertices is a simple 
path; meaning no vertex in the path is repeated. In general, there may be many 
shortest paths between a pair of vertices, each having the same length. We define 
dij = d( vi, vj) to be the length of a shortest path connecting vi and vj, and refer to dij 
as the distance between vi and vj. Vertex-to-vertex distances are computed via well 
known all-pairs shortest path algorithms, see, e.g., Floyd (1962) or Dantzig (1967). 
We extend the definition of the shortest path distance to any pair of points x, y ∈ G, 
vertex or not, by defining the length of a path to be the sum of lengths of edges and 
subedges contained in the path and defining d( x, y) to be the length of a shortest path 
connecting x and y. The function d(•, •) satisfies the properties of nonnegativity, 
symmetry, and triangle inequality which are as follows:

•	 Nonnegativity: d( x, y) ≥ 0; d( x, y) = 0 iff x = y;
•	 Symmetry: d( x, y) = d( y, x);
•	 Triangle Inequality: d( x, y) ≤ d( x, u) + d( u, y) ∀ u ∈ G.

The single facility center location problem is referred to as the Absolute Center 
Problem, a term coined by Hakimi (1964) who introduced this problem to the lit-
erature. To define the problem, we associate nonnegative constants wi and ai with 

∀x, y ∈ G,
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each vertex vi, i = 1,…, n. We refer to each wi as a weight and each ai as an addend. 
Vertex weights are used as scaling factors to assign relative values of importance 
to demand vertices based, for example, on population densities. A vertex represent-
ing a densely populated business district during work hours may require a more 
amplified protection against emergency than a vertex representing a rather sparsely 
populated residential area. Such differences may be reflected into the model by a 
judicious choice of weights. The addend ai can be interpreted as preparation time 
for a fire-fighting squad to get the equipment ready to work at vi. This preparation 
time depends in general on the local conditions at a vertex (including access to a fire 
hydrant, space available for fire engines to position themselves), so that having dif-
ferent addends at different vertices is meaningful. For ambulance services, we may 
interpret ai as the time spent transporting the patient from vi to the closest hospital. 
If hospital locations are known, this transportation time is a fixed constant that de-
pends only upon the vertex under consideration and a hospital closest to that vertex.

Given wi, ai ≥ 0 ( i = 1,…, n), define the function f for every x ∈ G by

� (5.1)

and consider the optimization problem

� (5.2)

Any point x* ∈ G that solves (5.2) is referred to as an absolute center of G, and the 
minimum objective value r1 is referred to as the 1-radius of G. If x is restricted to 
V in (5.1) and (5.2), the resulting problem is called the vertex-restricted problem, 
and its solution is referred to as a vertex-restricted center. If the demand set V in 
relation (5.1) is replaced by the continuum of all points in G, then the definition of 
f (•) becomes f ( x) = max{d( x, y): y ∈ G} and any point in G that minimizes this func-
tion is referred to as a continuous center (see Frank 1967). A different continuous 
demand version of the center problem is also formulated by Minieka (1977). In his 
formulation, the objective is to minimize the maximum distance from the facility 
to a farthest point on each edge. A point in G that minimizes this objective func-
tion is referred to as a general center. Our focus in this chapter is on the absolute 
center problem. The continuous and general center problems are briefly discussed 
in Sect. 5.4.

The absolute center problem is referred to as the weighted problem if at least 
one of the weights is different from one and the weighted problem with addends if, 
additionally, at least one addend is nonzero. The case with wi = 1 ∀ i ∈ I ≡ {1,…, n} 
is referred to as the unweighted problem or the unweighted problem with addends, 
respectively, depending on if all ai or not all ai are zero.

In the unweighted case, the definition of f ( x) becomes f ( x) = min{d( x, vi): x ∈ G} 
so that f ( x) identifies a farthest community and its distance from a facility at x. With 
d( x, vi) ≤ f ( x) ∀ i ∈ I, all communities are covered within a distance of f ( x), while 
there is at least one community whose distance from x is exactly f ( x). The optimiza-
tion in (5.2) seeks to place the facility in such a way that the farthest distance from 

f (x) = max{wid (x, vi ) + ai: i = 1, . . . , n}

r1 ≡ min{f (x): x ∈ G}.

5  Discrete Center Problems
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it to any community is as small as possible. If x* achieves this, then f ( x*) supplies 
the value r1, which is the smallest possible coverage radius from a facility anywhere 
on the network. Generally, with weights and addends, each community vi is covered 
by a facility at x within a distance of [  f ( x) − ai]/wi, while at least one community 
achieves this bound.

5.1.2  �The Multi-facility Case: The Absolute p-Center Problem

Multiple facilities are needed in emergency service location when a single facility 
is not enough to cover all communities within acceptable distance limits. To model 
the multi-facility version of the problem, let p be a positive integer representing the 
number of facilities to be placed on the network. Assume that the p facilities under 
consideration are identical in their service characteristics and that each is uncapaci-
tated so that communities are indifferent as to which particular facility they receive 
their services from (provided that the service is given in the quickest possible way). 
Accordingly, if x1,…, xp are the locations of the p facilities, then each community 
prefers to receive its service from the facility closest to it.

Let X = {x1,…, xp} and define D( X, vi) to be the distance of vertex vi to a nearest 
element of the point set X. That is,

� (5.3)

Let Sp( G ) be the family of point sets X in G such that |X| = p. Hence, X ∈ Sp( G ) im-
plies X = {x1,…, xp} for some choice of p distinct points x1,…, xp of G. We extend 
the definition of f ( x) to the multi-facility case as follows: For each X ∈ Sp( G ), define

� (5.4)

The definition in (5.4) reduces to definition (5.2) for the case of p = 1.
The Absolute p-Center Problem, introduced by Hakimi (1965), is the problem of 

finding a point set X* ∈ Sp( G ) such that

� (5.5)

Any point set X* = {x1
*,…, xp

*} ∈ Sp( G) that solves (5.5) is called an absolute p-
center of G and each location xj

* in X* is referred to as a center. The minimum 
objective value rp is called the p-radius of G. If X is restricted to p-element subsets 
of V, the resulting problem is referred to as a vertex restricted p-center problem 
and its solution is called a vertex-restricted p-center. If each point in the network 
is a demand point as opposed only to vertices, the resulting problem is called the 
continuous p-center problem. If the maximum distance to a farthest point in each 
edge is minimized, the resulting problem is the general p-center problem. While the 

D(X, vi ) = min
{
d (x1, vi ) , . . . , d(xp, vi)

}
.

f (X) = max{wiD(X, vi ) + ai: i = 1, . . . , n}.

rp ≡ f
(
X∗) = min{f (X): X ∈ Sp(G)}.
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continuous and general center problems are equivalent for p = 1, different problems 
result for p > 1.

Our focus is on the absolute p-center problem. The definition of f ( X) in (5.4) 
implies that wi D( X, vi) + ai ≤ f ( X ) ∀ i, so that every community vi is covered by at 
least one center in X within a distance of [  f ( X ) − ai]/wi. Note also that there is at 
least one community which achieves this bound. The optimization in (5.5) seeks to 
place the p facilities on the network such that the farthest weighted distance of any 
community from the nearest facility is as small as possible.

Now that we have a clear idea of the type of location models dealt with in this 
chapter, we focus next on three classical papers that have had significant impact on 
the literature in this area of research.

5.2 � Three Classical Contributions on Discrete Center 
Location

We give in this section an overview of three early and fundamental papers that had 
a significant impact on subsequent research in discrete center location. Each of the 
Sects. 5.2.1, 5.2.2, and 5.2.3 is devoted to one of these papers. The first work that 
we investigate is the contribution by Hakimi (1964). This is a seminal paper in that 
it has led to a whole new area of research that we know of today as network loca-
tion. Hakimi poses two problems in his paper, assuming nonnegative weights and 
zero addends, and calls them the absolute median and the absolute center problems. 
Both problems are posed on a network whose edges are viewed as continua of 
points. The objective in the absolute median problem is to minimize the weighted 
sum of distances from the facility to all vertices, while the objective in the absolute 
center problem is to minimize the maximum of such distances. Hakimi provides an 
insightful analysis for both problems. One consequence of his analysis is the well 
known vertex optimality theorem for the absolute median problem. Hakimi’s analy-
sis for the absolute center problem has led to a methodology that relies on identi-
fying local minima on edges by inspecting piece-wise linear functions. Hakimi’s 
paper is investigated in Sect. 5.2.1.

A second classical contribution is a paper by Goldman (1972). In his work, Gold-
man gives a localization theorem for the absolute center problem that helps to lo-
calize the search for an optimal location to a subset of the network whenever the 
network has a certain exploitable structure. Repeated application of the theorem 
results in an algorithm that either finds an optimal location or reduces the prob-
lem to a single cyclic component of the network. Goldman’s paper is examined in 
Sect. 5.2.2.

Minieka (1970) focuses on the multi-facility case and gives a well conceived so-
lution strategy for the unweighted absolute p-center problem, which relies on solv-
ing a sequence of set covering problems. Minieka’s method is directly extendible to 
the weighted version. Minieka’s paper is covered in Sect. 5.2.3.

5  Discrete Center Problems
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5.2.1  �Hakimi (1964): The Absolute Center Problem

Hakimi’s paper is historically the first paper that considers the absolute center prob-
lem on a network. The vertex-restricted version of the 1-center problem is posed as 
early as 1869 by Jordan (1869), and is directly solved by evaluating the objective 
function at each vertex. The absolute center problem, on the other hand, requires an 
infinite search over the continua of points on edges and calls for a deeper analysis 
than simple vertex enumeration.

Hakimi viewed each edge as a continuum of points. This marks a significant 
departure from the traditionally accepted view of classical graph theory that takes 
each undirected edge as an unordered pair of vertices. The kind of network Hakimi 
had in mind is what we refer to today as an embedded network where each edge 
[vi, vj] is the image of a one-to-one continuous mapping Tij of the unit interval [0, 1]
into some space S (e.g. the plane) such that Tij(0) = vi, Tij(1) = vj, and each point x in 
the interior of [vi, vj] is the image Tij(α) of a real number α in the open interval (0,1). 
A formal definition of an embedded network can be found in Dearing, Francis, and 
Lowe (1976); for details, also see Dearing and Francis (1974). For our purposes, 
it suffices to view the network of interest as an embedding in the plane with verti-
ces corresponding to distinct points and edges corresponding to continuous curves 
connecting pairs of vertices. We assume that, whenever two edges intersect, they 
intersect only at a vertex. A point x in edge [vi, vj] induces two subedges [vi, x] and 
[x, vj] with [vi, x] ∪ [x, vj] = [vi, vj] and [vi, x] ∩ [x, vj] = {x}.

Hakimi observed that the optimization problem min{f ( x): x ∈ G}, where 
f ( x) ≡ max{wid( x, vi): i ∈ I}, can be solved by minimizing f (•) on each edge sepa-
rately and then choosing the best of the edge-restricted minima. This is an immedi-
ate consequence of the fact that the graph G is the union of its edges. It then suffices 
to develop a solution procedure for the edge restricted problem.

Let e = [vp, vq] be an edge of the network. The edge restricted problem regarding 
this edge can then be written as

� (5.6)

Let L = Lpq be the length of the edge e. Observe that as x varies in the edge e, the 
length of the subedge [vp, x] varies in the interval [0, L]. If we denote by xλ the 
unique point x in e for which the subedge [vp, x] has length λ, then we may redefine 
the edge restricted problem in the equivalent form

� (5.7)

The form defined by (5.7) is particularly useful for analyzing the structure of f(•) 
as a function of the real variable λ. We begin the analysis of f (•) by first examining 
the distance d( xλ, vi) for a fixed vertex vi as λ varies in the interval [0, L]. Define 
the function gi by gi(λ) = d( xλ, vi) ∀ λ ∈ [0, L]. Observe that a shortest path from an 
interior point xλ to vertex vi must include either the subedge [vp, xλ] or the subedge 
[xλ, vq]. Accordingly, SP( xλ, vi) is either [vp, xλ] ∪ SP( vp, vi) or [xλ, vq] ∪ SP( vq, vi). 
Figure 5.1 illustrates these two possibilities. It follows that gi(λ) is the minimum of 

Min{f (x): x ∈ e}.

Min{f (xλ): λ ∈ [0, L]}.

B. Ç. Tansel
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the two path lengths λ + dpi and L − λ + dqi corresponding, respectively, to the paths 
[vp, xλ] ∪ SP( vp, vi) and [xλ, vq] ∪ SP( vq, vi). Accordingly, we have

� (5.8)

Observe that all quantities in the right side of (5.8) are constants except λ. With this 
observation, gi(λ) is the pointwise minimum of the two linear functions λ + dpi and 
L − λ + dqi in the interval [0, L]. The fact that the distance from a fixed vertex vi to 
a variable point in a given edge is the pointwise minimum of two linear functions 
is a key element, observed by Hakimi, that has led to a well-structured theory and 
solution method.

In general, the pointwise minimum of a finite number of linear functions is a 
concave piecewise linear function that has, at most, as many pieces as there are lin-
ear functions under consideration. Figure 5.2 illustrates a concave piece-wise linear 
function h( x) that consists of 4 pieces.

gi(λ) = min{λ + dpi , L − λ + dqi}∀λ ∈ [0, L] .

Fig. 5.1   Illustration of short-
est path connecting vi and xλ

vi

SP (vi , vq)SP (vi , vp)

vp

[vp ,vλ] [xλ,vq]

vλ vq
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In our case, gi is the minimum of two linear functions, so it is either linear or 
two-piece linear. If gi is linear, then it is an increasing linear function with a slope 
of +1 whenever λ + dpi ≤ L − λ + dqi ∀ λ ∈ [0, L], while it is a decreasing linear func-
tion with slope of −1 if the reverse inequality holds. If gi is a two-piece linear func-
tion, then the two linear functions of interest attain the same value at some interior 
point λ′ of the interval [0, L], so that the linear piece in the subinterval [0, λ′] is 
increasing while the linear piece in the subinterval [λ′, L] is decreasing. Figure 5.3 
illustrates the three possible forms of gi. Note that the two linear functions λ + dpi 
and L − λ + dqi always intersect at an end-vertex if they do not intersect at an interior 
point. For example, they intersect at vp in Fig. 5.3a and at vq in Fig. 5.3b. In the 
case of Fig. 5.3a, the linear function dqi + L − λ is the smaller of the two linear func-
tions over the entire edge so that dqi + L ≤ dpi at λ = 0. However, dpi is the shortest 
path length between vi and vp while dqi + L is the length of a path connecting vi and 
vp via vq. This implies that dpi ≤ dqi + L. The two inequalities result in the equality 
dqi + L = dpi.

Consider now the weighted distance wid( xλ, vi) = wigi(λ) as λ varies in [0, L]. 
Since wi is positive and gi is the minimum of two linear functions with slopes ±1, 
wigi(•) is a concave piecewise linear function with at most two pieces and with 
slopes of ±wi. The only difference from the previous case is that the slopes are now 
±wi rather than ±1.

Let us now focus on the analysis of the function f (•) on edge e. By definition, 
f ( x) is the maximum over i ∈ I of the weighted distances wid( x, vi). Using again the 
variable point xλ ∈ e as λ varies in [0, L], we have

� (5.9)

Since each wigi(•) is a concave piecewise linear function with at most two pieces, 
f(•) is the pointwise maximum of n such functions. Accordingly, the restriction of 

f (xλ) = max{wigi(λ): i ∈ I }.

Fig. 5.3   Three possible forms of the function gi(λ) = min {dpi + λ, dqi + L − λ}. a Decreasing. b Increas-
ing. c Two-piece

vp vq vp vq vqvp

dqi + L – λ

dpi + λ

dpi

dqi

dpi

dqi

dpi + λ

dpi + L – λ

dpi

dpi + L
dpi + L – λ

dpi + L

dpi + λ

a b c

dqi
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f (•) to an edge results in a piecewise linear function. Figure 5.4 illustrates this for 
the case of n = 3. In general, the maximum of concave functions is not concave, so 
the only exploitable property of f (•) is piecewise linearity. It is quite clear that the 
minimum of a piecewise linear function on a closed interval either occurs at a break 
point or at an end point of the interval. Hakimi’s method searches for break points 
where the slopes to the left and to the right of the point are oppositely signed. The 
functions wigi(•) are plotted for i ∈ I on each edge and f (•) is constructed by taking 
their pointwise maximum. The minimum of f (•) on a given edge is found by in-
specting the qualifying break-points of the resulting graph.

Hakimi demonstrates his method on a network with six vertices and eight edges. 
We reproduce his network from Hakimi (1964) in Fig. 5.5. The edge lengths are 
shown next to the edges. The vertex-to-vertex distances are shown in Table 5.1.

Let the edges be numbered e1,…, e8 as shown in Fig. 5.5. The plots of the func-
tions gi(•) and f (•) on each edge ej are shown in Fig. 5.6, assuming that all vertex 
weights are equal to one. The plots of f (•) are in bold. The edge-restricted optimum 
on edge e1 = [v6, v5] shown in Fig. 5.6a is at point x1, at a distance of 1.5 from v6 
with f ( x1) = 5.5. For edge e2 = [v5, v3] shown in Fig. 5.6b, there are two local optima, 
one at v5 and the other at v3, with f ( v5) = f ( v3) = 6. For edge e3 = [v1, v6] shown in 
Fig. 5.6c, there is an edge restricted optimum at point x3, which is at a distance of 
2.5 units from v1 with f ( x3) = 5.5.

For edge e4 = [v1, v4] shown in Fig. 5.6d, there are two edge-restricted optima, one 
at v1 and the other at point x4, at a distance of 2 units from v1 with f ( v1) = f ( x4) = 6. 
For edge e5 = [v1, v2] shown in Fig. 5.6e, there are two edge restricted optima, one at 
v1 and the other at x5, at a distance of 2 units from v1 with f ( v1) = f ( x5) = 6. For edge 
e6 = [v2, v4] shown in Fig. 5.6f, the two edge-restricted optima are at end-vertices v2 

Fig. 5.4   f (•) as the maxi-
mum of three concave two-
piece linear functions wigi

vp vq

w1g1

w2g2

w3g3

f
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and v4 with f ( v2) = f ( v4) = 7. For edge e7 = [v3, v4] shown in Fig. 5.6g, the edge-re-
stricted optimum is at point x7, at a distance of 1 unit from v3 with f ( x7) = 5. Finally, 
for edge e8 = [v3, v2] shown in Fig. 5.6h, the edge-restricted optimum is at point x8, 
at a distance of 1 unit from v3 with f ( x8) = 5. Accordingly, there are two absolute 
centers for the network of Fig. 5.5, one at x7 and the other at x8 with f ( x7) = f ( x8) = 5.

5.2.2  �Goldman (1972): A Localization Theorem 
for the Absolute Center

In this section, we continue with a localization theorem for the absolute center prob-
lem studied by Goldman (1972). Goldman’s localization theorem for the absolute 
center problem is motivated by a similar localization theorem introduced earlier by 
Goldman (1971) for the absolute median problem. Goldman’s earlier result for the 
median problem led to a very efficient tree-trimming algorithm for computing opti-
mal medians of tree networks. His result for the absolute center problem is similarly 

Fig. 5.5   An illustrative 
network. (Taken from Hakimi 
1964)
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v1 v2 v3 v4 v5 v6

v1 0 3 6 3 6 4
v2 3 0 3 4 5 7
v3 6 3 0 3 2 4
v4 3 4 3 0 5 7
v5 6 5 2 5 0 2
v6 4 7 4 7 2 0

Table 5.1   Vertex-to-vertex 
distances for the example 
network
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structured and either finds an optimum solution or reduces the problem to a cyclic 
component of the network.

To begin the analysis, consider the unweighted absolute center problem with 
addends on a network G = ( V′, E). We assume again the first n vertices in V′ are the 
demand vertices and constitute the demand set V. For any point x ∈ G, the objective 

5  Discrete Center Problems

Fig. 5.6   Determining local 
centers of edges of the net-
work shown in Fig. 5.5
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function is defined by f ( x) ≡ max{ai + d( vi, x): i ∈ I}, and the objective is to find a 
point x* ∈ G for which f ( x*) ≤ f ( x) ∀ x ∈ G.

Goldman’s localization theorem works best in networks that have edges that are 
not contained in any simple cycles. Goldman refers to any such edge as an “isth-
mus.” An isthmus of G is an edge [vp, vq] whereby deleting the interior of this edge 
results in two disconnected components P and Q. Here, we assume that vp is in P 
and vq is in Q. Figure 5.7 illustrates the definition. An isthmus cannot be contained 
in any simple cycle of G, otherwise there is a path from a vertex in P to a vertex in 
Q that does not pass through the edge [vp, vq]. This, of course, implies that deleting 
the interior of the edge [vp, vq] does not result in two disconnected subsets of G.

Consider an isthmus e = [vp, vq] and the associated components P and Q of G 
where P ∪ e ∪ Q = G, P ∩ e = {vp}, Q ∩ e = {vq}, and P ∩ Q = ∅. Let vi and vj be a 
pair of vertices with vi ∈ P and vj ∈ Q. All paths connecting vi and vj pass through 
e so that dij = dip + L + dqj, where L ≡ Lpq is the length of e. Consider a variable point 
xλ that moves from vp to vq along the edge e as λ varies in the interval [0, L]. With 
λ being the length of the subedge [vp, xλ] and L − λ being the length of the subedge 
[xλ, vq], we have gi(λ) ≡ d( vi, xλ) = dip + λ. Hence, gi(•) is a linear increasing function 
that begins with value dip at vp and ends with value dip + L at vq. Similarly, for vj ∈ Q, 
we have gj(λ) = d( vj, xλ) = djq + L − λ so that gj(•) is a linear decreasing function that 
begins with the value djq + L at vp and ends with the value djq at vq.

Consider now the edge restricted problem min {f ( xλ): xλ ∈ e}. We may partition 
the demand vertices into the disjoint vertex subsets V ∩ P and V ∩ Q so that the 
definition of f ( xλ) becomes

�
(5.10)

where

� (5.11)

and

� (5.12)

Since each gi is a linear increasing function with identical slopes for vertices 
vi ∈ V ∩ P, the functions ai + gi(λ) are also linear increasing with identical slopes and 

f (xλ) = max
{
fp (xλ), fq (xλ)

}

fp (xλ) ≡ max{ai + gi(λ): vi ∈ V ∩ P }

fq (xλ) ≡ max{aj + gj (λ): vj ∈ V ∩ Q}.

Fig. 5.7   An isthmus [vp, vq] 
with subnetworks P and Q

P Q

vp vq

isthmus
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with intercepts of ai + dip and ai + dip + L at vp and vq, respectively. Because the slopes 
are identical, the largest intercept defines fp(•) on the entire edge. That is, there is a 
vertex vi* ∈ V ∩ P such that ai* + di*p = max{ai + dip: vi ∈ V ∩ P} and fp( xλ) = ai* + di*p + λ 
for λ ∈ [0, L]. Similarly, there is a vertex vj* ∈ V ∩ Q such that aj* + dj*q = max{aj + djq: 
vj ∈ V ∩ Q} and fq( xλ) = aj* + dj*q + L − λ. Figure 5.8 illustrates the functions fp( xλ) and 
fq( xλ) as the maximum of increasing and decreasing linear functions, respectively, 
with identical slopes.

Let A( p, e) and A( q, e) be the highest intercepts at vp and vq, respectively. That is,

� (5.13)

and

� (5.14)

We then have A( p, e) = ai* + di*p and A( q, e) = aj* + dj*q where the indices i* and j* are 
as defined before. Additionally, we have

� (5.15)

� (5.16)
and

� (5.17)

A (p, e) = max{ai + dip: vi ∈ V ∩ P }

A (q, e) = max{aj + djq: vj ∈ V ∩ Q}.

fp(xλ) = A(p, e) + λ ∀ λ ∈ [0, L] ,

fq (xλ) = A(q, e) + L − λ ∀ λ ∈ [0, L] ,

f (xλ) = max{A(p, e) + λ, A(q, e) + L − λ} ∀ λ ∈ [0, L] .

Fig. 5.8   The functions fp and fq

vp vq

A(p,e) = ai * + di *p

aj * + dj *q = A(q,e)

ai * + di *p + L = A(p,e) + L

A(q,e) + L = aj * + dj *q

fq

fp
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Goldman’s localization theorem can then be stated as follows.

Theorem 1 (Localization Theorem):  Exactly one of three cases applies:

(a)	 A( q, e) − A( p, e) ≥ L: Then the problem can be reduced to Q, with aq replaced by 
max{aq, A( p, e) + L}.

(b)	 A( p, e) − A( q, e) ≥ L: Then the problem can be reduced to P, with ap replaced by 
max{ap, A( q, e) + L}.

(c)	 |A( p, e) – A( q, e)| < L. Then the optimal location is in the interior of edge e.

In case (a), the lowest value A( q, e) of the linear decreasing function is at least 
as large as the highest value L + A( p, e) of the linear increasing function so that 
the value of f( xλ) is defined by the linear decreasing function A( q, e) + L − λ on the 
entire edge. This is sufficient to conclude that any point in P ∪ e − {vq}cannot be 
an optimal location. A more formal justification for this is as follows. Suppose 
x ∈ P ∪ e − {vq}. Then, we have:

This proves that f ( x) > f ( vq) for all x in P ∪ e − {vq}, so this set cannot contain an 
optimum. We confine the search for an optimum to the subset Q by deleting all 
points in P and all points in e except vq. Replacing the addend aq by the larger of 
aq or A( p, e) + L is needed because for any candidate point x ∈ Q, if f ( x) is defined 
by a vertex in P, then f ( x) = d ( x, vq) + L + A( p, e) where the quantity L + A( p, e) 
is the new value of aq. Note that if aq > A( p, e) + L, then no demand vertex in P 
can supply the value of f ( x) for x ∈ Q (since f ( x) ≥ wqd( x, vq) + aq > wqd( x, vq) + L + 
A( p, e) ≥ max{wid( x, vi) + ai: vi ∈ V ∩ P}).

Case (b) is similar to case (a) with function A( p, e) + λ being at least as large as 
the function A( q, e) + L − λ on the entire edge so that f ( xλ) is defined now by A( p, e) + 
λ for λ ∈ [0, L]. Using similar arguments as in case (a), it is apparent in case (b) 
that f ( x) > f ( vp) = A( p, e) ∀ x ∈ Q ∪ e − {vp} implying that no point in Q ∪ e − {vp} 
qualifies as an optimal location. Replacing ap by max{ap, A( q, e) + L} is needed to 
account for the largest aj + djq value that can be supplied by demand vertices vj in 
Q ∪ e − {vp} which is the deleted portion of the network.

In case (c), the linear functions A( p, e) + λ and A( q, e) + L − λ intersect at an inte-
rior point xλ* of the edge with λ* defined by λ* = 0.5[A( q, e) + L − A( p, e)]. Evaluating 
f at xλ*, we obtain f ( xλ*) = 0.5[A( p, e) + A( q, e) + L] = fp(λ

*) = fq(λ
*) and letting i* and j* 

be the indices of the two critical vertices in V ∩ P and V ∩ Q, respectively, such that 
A( p, e) = ai* + di*p and A( q, e) = aj* + dj*q, we obtain f ( xλ*) = 0.5[ai* + di*p + aj* + dj*q]. 
Whenever case (c) occurs, xλ* is the unique optimal location.

f (x) = max{aj + d(vj , x): j ∈ I }
≥ max{aj + d(vj , x): vj ∈ V ∩ Q}
= max{aj + djq + L + d(vp, x): vj ∈ V ∩ Q}
= d(vp, x) + L + A(q, e)

> A(q, e)

= f (vq).

B. Ç. Tansel
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The localization theorem offers a direct computational advantage for tree net-
works because every edge in a tree network is an isthmus. Let T be a tree network. 
Any vertex vt of the tree that is adjacent to exactly one vertex vs is referred to as a 
tip. It is well known that every tree has at least two tip vertices. The following algo-
rithm uses the localization theorem repeatedly, “trimming” the tree successively by 
deleting each time a selected tip and the interior of the edge that connects it to the 
unique adjacent vertex, unless the localization theorem concludes that the optimal 
location occurs at the selected tip or in the interior of the connecting edge (cases (a) 
or (c) in the theorem). The process is described in the procedure below.

Algorithm 1: Tree Trimming Procedure 

Step 1:	� If T consists of a single vertex, stop; that vertex is an optimal 
solution.

Step 2:	� Select a tip vp and let vq be the vertex adjacent to vp. Let e = [vp, vq] 
and L be the length of e. Take A( p, e) = ap and calculate A( q, e) = 
max{wjdqj + aj: j ∈ I, j ≠ p}. If A( p, e) ≥ A( q, e) + L, then tip vp is 
optimal; stop. If |A( q, e) − ap| < L, then the optimal solution is the 
interior point xλ* of e with the length of subedge [vp, xλ*] given by 
λ* = 0.5[A( q, e) + L − ap]; stop.

Step 3:	� Delete tip vp and the interior of edge e from T. Delete p from I. 
Replace aq with max{aq, ap + L} and return to Step 1. 

If the network G under consideration is not a tree, then the localization theorem can 
be repeatedly used for each isthmus of G, one at a time. Termination occurs when 
either an optimal location is found or the problem is reduced to a single cyclic com-
ponent. In the latter case, Hakimi’s method is used to solve the reduced problem on 
the last cyclic component that has persisted. The only computational gain in this 
case is the reduction of the problem from the initial network with many cycles to a 
single cyclic component. The number of edge restricted problems that need to be 
solved is smaller than would have resulted from a direct application of the method 
on the original network.

An extension of the localization theorem to the weighted case with addends is 
possible, but its algorithmic utility is limited, because the computational advantages 
gained in the unweighted case from the updating of the addends do not occur in the 
weighted case. To outline the weighted version, consider an isthmus e = [vp, vq] with 
associated components P and Q as defined before. In the weighted case, for xλ ∈ e, 
we have f ( xλ) = max{fp( xλ), fq( xλ)} where fp( xλ) = max{wi( dip + λ) + ai: vi ∈ V ∩ P} and 
fq( xλ) = max{wj( djq + L − λ + aj: vj ∈ V ∩ Q}. It follows that fp( xλ) is the maximum of 
increasing linear functions with slopes wi corresponding to demand vertices vi in 
P and fq( xλ) is the maximum of decreasing linear functions with slopes −wj cor-
responding to demand vertices vj in Q. It follows that fp( xλ) is a convex piecewise 
linear increasing function and fq( xλ) is a convex piecewise linear decreasing func-
tion. Define A( p, e) = max{ai + widip: vi ∈ V ∩ P} and A′( p, e) = max{ai + wi( dip + L): 

5  Discrete Center Problems
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vi ∈ V ∩ P}. Because it is monotone increasing, fp(•) has its lowest value at vp and 
its highest value at vq with fp( vp) = A( p, e) and fp( vq) = A′( p, e). Similarly, define A( q, 
e) = max{aj + wjdjq: vj ∈ V ∩ Q} and A′( q, e) = max{aj + wj( djq + L): vj ∈ V ∩ Q}. Be-
cause it is monotone decreasing, fq has its highest value at vp with f ( vp) = A′( q, e) and 
its lowest value at vq with f ( vq) = A( q, e). The analogous version of the localization 
theorem for the weighted case is as follows:

Theorem 2 (Localization Theorem for Weighted Case):  Exactly one of the three 
cases apply:

(a)	 A( q, e) ≥ A′( p, e): Then, the optimum lies in Q.
(b)	 A( p, e) ≥ A′( q, e): Then, the optimum lies in P.
(c)	 A( q, e) < A′( p, e) and A( p, e) < A′( q, e): Then the optimum is located in the 

interior of e.

The assertion in part (a) is a direct consequence of the fact that fq( xλ) ≥  fp( xλ) on 
the entire edge because the lowest value of the decreasing function fq(•) is at least 
as high as the highest value of the increasing function fp(•). Part (b) is similar, with 
fp( xλ) being at least as large as fq( xλ) on the entire edge. In part (c), the functions fp(•) 
and fq(•) intersect at an interior point of the edge, and the point of intersection is the 
minimizer of f. The power of the theorem is partly lost now due to the fact that, even 
though the optimum can be localized to subsets Q or P, respectively, in parts (a) or 
(b), the computational advantages available in the unweighted case are no longer 
available in the weighted case, as the computations of the parameters A(•, •) and 
A′(•, •) now require the data of the entire network.

5.2.3  �Minieka (1970): Solving p-Center Problems via a Sequence 
of Set Covering Problems

We now focus on the absolute p-center problem where 1 < p < n. The case p ≥ n is 
trivially solved by placing a center at each of the n demand vertices. Minieka (1970) 
has solved this problem in a clever way by solving a sequence of set covering prob-
lems.

With Sp( G ) ≡ set of all subsets of G consisting of p points, X ∈ Sp( G ), D( X, vi)
 ≡ min{d( xj, vi): xj ∈ X}, and f( X) ≡ max{wiD( X, vi): i ∈ I}, to solve the absolute 
p-center problem, we look for a point set X* ∈ Sp( G ) such that f ( X*) ≤ f ( X ) ∀ X ∈ 
Sp( G ). Because each facility can be located anywhere on the network, this calls for 
an infinite search.

Minieka (1970) considers the unweighted version of the problem, but his ap-
proach can be directly extended to the weighted version; see, e.g., Kariv and Hakimi 
(1979). Minieka reduces the infinite search in Sp( G ) to a finite search, by observing 
that the absolute 1-center of the network occurs at one of a finite number of break 
points of f (•). Consider an edge e = [vp, vq]. If xλ* is an edge-restricted minimum of 
f (•) in the interior of e, then xλ* is a break point of f (•) defined by the intersection of 
two piecewise linear functions associated with a pair of vertices. With this motiva-

B. Ç. Tansel
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tion, we define U to be the set of all points u in G that qualify for en edge-restricted 
minimum. That is, U is the set of points u ∈ G such that u is the unique point in its 
edge for which d( vi, u) = d( u, vj) for a pair of vertices vi, vj  ∈ V with i ≠ j. Because 
the piecewise linear functions have slopes of ±1, the uniqueness requirement in the 
definition implies that the slopes of the two intersecting linear pieces are oppositely 
signed. There exists an absolute 1-center in the set P ≡ V ∪ U. Clearly, there can 
be at most n( n − 1)/2 intersection points in an edge, implying that U has at most 
|E|n( n − 1)/2 elements in it. Hence, P is a finite dominating set (i.e., a finite set that 
supplies an optimum solution) for the unweighted absolute 1-center problem.

Minieka (1970) observed that P is also a finite dominating set for the unweighted 
absolute p-center problem. To justify this, suppose we have an absolute p-center 
X* = {x1

*,…, xp
*}. If not all points of X* are in P, we may construct an absolute p-

center X′ from X* that fulfills this requirement. To do so, partition the demand set V 
into subset V1,…, Vp such that all vertices in subset Vi have the i-th element xi* of X* 
as their closest center (ties are broken arbitrarily). Let xi′ be an optimal solution in P 
to the absolute 1-center problem defined with respect to the demand set Vi. This im-
plies that max{d( xi′, vr): vr ∈ Vi} ≤ max{d( xi

*, vr): vr ∈ Vi}. Define X′ = {x1′,…, xp′}. 
Since D( X′, vr) ≤ d( xi′, vr) ∀ vr ∈ V and ∀ i ∈ {1,…, p}, we have

which proves that X′ is an absolute p-center solution with X′ ⊂ P.
With P supplying an optimal solution to the absolute p-center problem, we may 

now transform it to a sequence of set covering problems. Given a zero-one matrix 
A and a cost vector c, the binary program

� (5.18)

� (5.19)

� (5.20)

is known to be the set covering problem. This problem arises when a given set needs 
to be covered by the union of a collection of its subsets at minimum cost. Let S be 
a given set with h elements and let S1,…, Sk be a collection of nonempty subsets of 
S. Suppose given costs ci, i ∈ K ≡ {1,…, k}, where ci is the cost of using subset Si. 
If we choose a subset K′ of K, the corresponding subcollection {Si: i ∈ K′} is said 
to cover S if ∪{Si: i ∈ K′} = S. The object is to choose a subset K* of K, such that 
the corresponding subcollection 

⋃
i∈K∗

Si  covers S, and its cost, 
∑

i∈K∗
ci , is as small as 

f (X ′) = max{D(X ′, vr): vr ∈ V }
≤ max{max{d(x′

1, vr): vr ∈ V1}, . . . ,
max{d(x′

p, vr): vr ∈ Vp}}
≤ max{max{d(x∗

1, vr): vr ∈ V1}, . . . ,
max{d(x∗

p , vr): vr ∈ Vp}}
= max{D(X ∗, vr): vr ∈ V }
= f (X ∗)

Min cy

s.t. Ay ≥ 1

y ∈ {0, 1}n
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possible among all subcollections that cover S. To convert the problem to the binary 
program defined by (5.18)–(5.20), define the h by k matrix A with elements aij = 1, if 
the i-th element of S is an element of the subset Sj, and aij = 0 if not. Let yj be a binary 
variable with yj = 1 if subset Sj is selected and yj = 0 if not. To cover all elements of 
S, we impose the constraint

� (5.21)

which requires at least one yj for which aij = 1 is set equal to 1. This ensures that at 
least one subset Sj, which contains the i-th element of S is selected by the i-th con-
straint. The summation on the left side of (5.21) is the dot product of the i-th row of 
A with the column vector y and, accordingly, (5.19) is nothing but a more compact 
form of the h constraints in (5.21).

In the above formulation, the h rows of A correspond to the h elements of S. 
These are the elements that need to be covered. The columns of A correspond to 
the k given subsets of S. To make the connection of the set covering problem to the 
p-center problem, we take S to be V. That is, the elements that need to be covered 
are the demand vertices v1,…, vn. The subsets Sj of S are determined on the basis 
of the finite dominating set P that we identified. Let p1,…, pk be an enumeration of 
the elements of P and let r > 0 be a selected radius of coverage. Define Sj, j = 1,…, 
|P|, to be the set of vertices vi ∈ V for which d( pj, vi) ≤ r. Accordingly, the matrix A 
in our case has n rows and k ≡ |P| columns and the subsets Sj are defined by the set 
of demand vertices that are accessible by a facility at pj within a distance of at most 
r units. We define the costs cj = 1 ∀ j ∈ {1,…, k} and define aij = 1 if d( vi, pj) ≤ r and 
aij = 0 if d( vi, pj) > r.

The resulting set covering problem with A = [aij], c = (1,…, 1), and y = ( y1,…, yk)
T 

selects the fewest possible points from P such that every demand vertex has at least 
one selected point within a distance of at most r units. If the resulting number of 
points from the set covering solution for a given value of r is at most p while it is 
strictly greater than p relative to a new radius r′ < r, then r is, in fact, the p-radius rp 
and any optimal solution to the set covering problem relative to this r identifies an 
absolute p-center solution (by appending as many arbitrarily selected points from P 
as needed if the set covering solution outputs less than p points). One major ques-
tion that remains unanswered is how to pick the correct value for r (i.e., the value of 
r that results in a set covering solution of at most p while any reduction in r results in 
a set covering solution of more than p points). Minieka has given a well conceived 
method for accomplishing this. His method relies on modifying A appropriately and 
is described in the next paragraph.

Consider a set X = {x1,…, xp} of p points from P. Put r = f( X) and construct the 
matrix A with respect to this choice of r. The resulting set covering problem has a 
feasible solution y = ( y1,…, yk) with yj = 1 if pj ∈ X and yj = 0 if pj ∉ X. The objective 

value defined by 
∑
j

yj  is equal to p. Suppose now we modify the matrix A by re-

defining aij to be equal to 1 if d( vi, pj) < r and aij = 0, otherwise. The new version of 

k∑

j=1

aij yj ≥ 1 ∀ i = 1, ..., h

B. Ç. Tansel
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A is identical to the old version except that all entries aij that were one before due 
to d( vi, pj) being equal to r are now replaced by zeroes while aij = 1 are retained for 
all index pairs ij for which d( vi, pj) < r. Let A′ be the modified version of A. Clearly, 
the new matrix A′ is defined relative to a new radius r′ < r, but the value of r′ is not 
specified. Even though Minieka does not discuss this issue, some reflection on it 
reveals that r′ is any real number such that α ≤ r′ < r where α is the largest entry in 
the list of distances {d( pj, vi): pj ∈ P, vi ∈ V} that is smaller than r. Solve the set cov-
ering problem with matrix A′. Let y′ be an optimal solution and p′ be the optimal 
objective value. If p′ > p, then clearly X is an absolute p-center since more than p 
points from P are required to cover each demand vertex within a distance of less 
than r. This is equivalent to saying that there does not exist a point set X′ in P such 
that |X′| ≤ p and f( X′) < r = f ( X ).

The same conclusion is also valid if there is no feasible solution to the set cov-
ering problem with matrix A′. In the remaining case, there is an optimal solution 
y′ to the set covering problem of matrix A′ with optimal objective value of p′ ≤ p. 
In this case, X is not optimal because y′ induces a solution X′ ⊂ P with |X′| = p′ ≤ p 
and f ( X′) < r = f ( X ). When this happens, we repeat the process once again with X′, 
A′, and r′ ≡ f( X′), replacing the roles of X, A, and r = f ( X ), respectively. That is, we 
modify A′ to obtain a new matrix A″, such that the elements aij are set equal to 1 if 
d( vi, pj) < r′, and 0 otherwise. The set covering problem is re-solved with the new 
matrix A″ to obtain an optimal solution y″, if it exists, with optimal objective value 
p″. The optimality of X′ is concluded if the set covering problem admits no feasible 
solution or if it has an optimal solution y″ with optimal value p″ > p. In the remain-
ing case, y″ induces a new solution X″ ⊂ P with |X″| = p″ ≤ p, and the procedure must 
be repeated. The process must eventually terminate with an optimal p-center solu-
tion when either an infeasible set covering problem is encountered or a feasible 
set covering problem, whose optimal objective value is strictly greater than p, is 
encountered. The number of repetitions that can occur until termination is at most 
n|P|, since the set of ones in each modified version of A is a proper subset of the 
immediately preceding version of A.

5.3 � The Impact of the Classical Contributions

Among the three classical papers discussed in the previous section, Hakimi’s (1964) 
contribution is viewed by many, including this author, as a seminal work that has 
led to the birth and growth of the research area known today as network location. 

Hakimi was the first researcher to pose and analyze the absolute center and me-
dian problems in the context of a transportation/communication network, where 
each edge is a continuum of points. Travel occurs in a network along paths com-
posed of sequences of edges, which is intrinsically different from travel paths avail-
able in analogous planar location problems. This feature leads to distances on a 
network defined by shortest path lengths. Hakimi’s first fundamental contribution 
is his concise analysis of the shortest path distance from a fixed point in the network 

5  Discrete Center Problems



98

to a variable point in an edge. The fact that this distance is the minimum of two 
linear functions results in a concave one or two-piece linear function in a network 
context, while normed distances in analogous planar location problems are convex. 
Convexity is a desirable property that leads to strong theory and efficient algorithms 
in many optimization problems, but it fails in the context of network location unless 
the network is a tree, as pointed out by Dearing et al. (1976). The theory and algo-
rithms in network location, with certain exceptions of tree location problems, had to 
be developed with new viewpoints not readily available in analogous planar prob-
lems and Hakimi’s concave two-piece linear characterization of the edge-restricted 
distance has provided a foundation for subsequent work.

An immediate consequence of concave piecewise linearity is that multiplica-
tion by a positive weight preserves this property. The sum of convex functions is 
also convex which leads to the well known vertex-optimality theorem for median 
problems by Hakimi (1964). For the absolute center problem, however, the objec-
tive function is defined by the maximum of concave piecewise linear functions and 
this does not preserve concavity as in the case of the median problem. Even though 
concavity is lost, piecewise linearity is still retained. This leads to a large, but finite, 
number of candidate points for local optima on any edge, defined by intersections 
of pairs of linear pieces with oppositely signed slopes (i.e., directional derivatives). 
The restriction of local optima to finitely many breakpoints is a fundamental re-
sult, initially conceived and used by Hakimi (1964), and exploited later by Minieka 
(1970) for solving the multi-facility unweighted problem through the solution of 
finitely many set covering problems. Extensions are given later by Kariv and Ha-
kimi (1979) for the weighted case and by Hooker et al. (1991) for convex nonlinear 
cost functions.

All subsequent work on 1-centers and p-centers have used this result in one way 
or another. Most of the focus for solving the 1-center problem has been on develop-
ing more efficient computational methods that eliminate unnecessary breakpoints 
or edges during the search for local optima; some pertinent results can be found 
in Kariv and Hakimi (1979), Handler (1974), Odoni (1974), Halpern (1979), and 
Sforza (1990). Algorithms for solving p-center problems are in one of two catego-
ries: set covering based or enumeration base. The set covering approach of Minieka 
(1970) has initiated a series of contributions on the same or related themes by other 
researchers including Christofides and Viola (1971), Garfinkel et al. (1977), Tore-
gas et al. (1971), and Elloumi et al. (2004). Enumeration based methods enumerate 
in different ways p-element subsets of the set P; see, e.g., Kariv and Hakimi (1979), 
Moreno (1986), Tamir (1988), and Hooker (1989).

Goldman’s paper, discussed in Sect. 5.2.2, focuses on exploiting the structure 
of the network under consideration. The particular topological element Goldman 
(1972) has focused on is the type of edge whose removal from the network, except 
its end-points, results in two disconnected components. Such an edge is referred 
to as an isthmus by Goldman. An isthmus has a very special feature: Every path 
originating in one of the resulting components and terminating in the other compo-
nent must pass through the isthmus. This has an important consequence for the un-
weighted case. The longest of the shortest paths connecting a pair of vertices, one in 
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each component, passes through the isthmus under consideration, and its mid-point 
is either in the isthmus, in which case it is optimum, or in one of the components, in 
which case the search can be reduced to that component.

The most visible impact of Goldman’s paper is that it has drawn attention to 
special structures in solving location problems on networks, primarily trees. Every 
edge in a tree is an isthmus. Goldman’s algorithm for unweighted trees requires a 
quadratic number of arithmetic operations in the number of vertices. Handler (1973) 
and Halfin (1974) developed more efficient linear time algorithms for the unweight-
ed case. The weighted case for tree networks is analyzed and efficiently solved by 
Dearing and Francis (1974), Hakimi et al. (1978), Hedetniemi et al. (1981), Kariv 
and Hakimi (1979), and Megiddo (1983). Dearing (1977) and Francis (1977) have 
extended the problem to incorporate nonlinear monotonic functions of distances 
and have described efficient solutions methods for tree networks. Goldman’s paper 
has also directed attention to more general structures than trees, but not much can 
be done unless the cyclic portions of a network (blocks) induce a tree structure 
when each such component is represented by a single node; see, e.g., the work by 
Chen et al. (1988), and Kincaid and Lowe (1990). Special structure in multi-facility 
minimax problems have also led to many elegant results and efficient algorithms 
for tree networks. Some of the contributions are those by Handler (1978), Hakimi 
et al. (1978), Kariv and Hakimi (1979), Tansel et al. (1982), Megiddo and Tamir 
(1983), Frederickson and Johnson (1983), Megiddo et al. (1983), Jaeger and Kariv 
(1985), and Shaw (1999). As Dearing et al. (1976) point out, convexity of distance 
is an important property for tree networks and has a significant part in developing 
theory and efficient algorithms for the single facility case. Convexity does not ex-
plain, however, why absolute p-center location problems are so efficiently solvable 
on tree networks, since the p-center objective function is not convex even on a tree 
network.

5.4 � Subsequent Work in Discrete Center Location

In this section, we survey the subsequent work in discrete center location. We first 
focus on the single facility case on general networks, followed by problems on 
tree networks, and finally we consider other specially structured networks. Then 
the multi-facility problem is covered, again, first on general networks, and then on 
trees.

5.4.1  �The Absolute 1-Center on General Networks

Hakimi’s (1964) method requires solving an edge-restricted problem on each edge 
by inspecting break points that are oppositely signed in either direction. There are 
at most n( n − 1)/2 breakpoints per edge which requires evaluating the objective 
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function at O( n2|E|) points. This makes Hakimi’s method an O( n3m) algorithm 
where m ≡ |E|. Later, Hakimi et  al. (1978) presented an O( mn2 log n) version of 
the same algorithm. This bound is improved to O( mn log n) for the unweighted 
case. Kariv and Hakimi (1979) solved the weighted case in O( mn log n) and the 
unweighted case in O( mn) time. This is the best known bound for the absolute 
1-center problem. The O( mn log n) bound for the unweighted case is also achieved 
by Sforza (1990), whose algorithm for the weighted case is O( kmn log n), where k 
is a factor that depends on the precision level and weight distribution. This bound 
does not improve the bound of Kariv and Hakimi (1979), but Sforza’s algorithm is 
more effective in CPU time.

Edge elimination techniques rely on devising lower bounds for each edge and 
eliminating those edges whose lower bounds are larger than the best objective value 
attained during the search for optimum. Handler (1974), Odoni (1974), Christofides 
(1975), and Halpern (1979) made use of edge elimination techniques that have re-
sulted in improved CPU times, where Halpern’s bound is stronger than the others. 
Sforza’s (1990) edge elimination technique has been found to be quite successful in 
practice due to its ability to eliminate 80% of edges in many problems.

All the algorithms mentioned above are improved versions of Hakimi’s original 
technique. Minieka (1981)’s O( n3) algorithm, on the other hand, only makes use of 
the distance matrix without using the vertex-to-point cost functions.

An important theoretical contribution is due to Hooker (1986) who analyzed the 
nonlinear version of the 1-center problem for the problem with convex cost func-
tions and proposed a general purpose algorithm. His analysis is based on decompos-
ing the network into tree-like segments and solving a convex programming problem 
on each segment. The objective function defined by maximum of convex functions 
of distances is convex on any tree-like segment, and a local minimum can be found 
by solving a convex programming problem. Hooker (1986) proved that there are 
O( n) tree-like segments on an edge.

Shier and Dearing (1983) made another important theoretical contribution in 
their study of a family of nonlinear single facility location problems on a network 
that includes, as special cases, the absolute 1-center and absolute 1-median prob-
lems. They characterize locally optimal solutions by means of directional deriva-
tives. This characterization is equivalent, in the case of the absolute 1-center prob-
lem, for the point under consideration to be a breakpoint of f (•) such that f increases 
in every “moveable” direction at that point. If the point under consideration is an 
interior point of some edge, then there are only two directions of movement out of 
that point. Hence, an interior point is a local optimum if and only if it is a break 
point of f defined by the intersection of two weighted distance functions associated 
with a pair of distinct vertices, such that the increase in one of the functions is ac-
companied by a decrease in the other one if one moves slightly away from the point 
in either direction.

Continuous demand versions of the absolute 1-center problem are also consid-
ered. There are two versions. Minieka (1970) defines the general absolute center of 
a network G as a point whose maximum distance to a farthest point on each edge is 
minimized. In contrast, Frank (1967) defines a continuous center of a network as a 
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point whose maximum distance to any point on the network is minimized. The two 
definitions are equivalent for the case of 1-centers. Minieka (1977) showed that Ha-
kimi’s algorithm for the absolute 1-center can be used to find the general absolute 
1-center if one replaces the distance function d( x, y) with a new distance function 
d′( x, e) which denotes the distance between x and a farthest point in edge e. Frank 
(1967) defined the continuous 1-center problem and showed that it can be solved 
via Hakimi’s algorithm.

5.4.2  �The Absolute 1-Center on Trees and Other Special 
Structured Networks

Beginning with Goldman’s localization theorem, considerable attention has been 
given to tree networks. Other special structures have also received some attention.

An important property that has led to efficient algorithms for trees has to do, at 
least in good part, with the convexity of distance on tree networks. Dearing et al. 
(1976) generalized in a theoretical framework the earlier convexity observations of 
Goldman and Witzgall (1970) and Handler (1973), as well as nonconvexity obser-
vations of Goldman (1971) and Hakimi (1964). Dearing et al. (1976) prove that the 
function d( x, y) as a function of x alone, or as a function of x and y, is convex if and 
only if the network is a tree network. This implies that the objective function in the 
absolute p-center problem is convex on a tree and nonconvex on a cyclic network. 
Convexity implies that any local minimum on a tree network is also a global mini-
mum.

Goldman’s (1972) localization theorem, when applied to a tree, finds an opti-
mum in O( n2) time. Handler (1973) proves for the unweighted case that the abso-
lute center of a tree is the midpoint of a longest path in the tree and gave an O( n) 
algorithm. Halfin (1974) modifies Goldman’s algorithm and turns it into an O( n) 
algorithm for trees with unit weights and any addends. Lin (1975) shows that the 
unweighted problem on a network with addends is equivalent to the unweighted 
problem on a new network with no addends, where the new network has the same 
structure as the old one except that for every vertex vi for which the addend ai > 0, a 
new vertex vi′ and a new edge [vi, vi′] is added with length ai. Hence, addends do not 
increase the time bounds of proposed algorithms.

Dearing and Francis (1974) analyze the weighted problem on trees and prove 
that the maximum of the n( n + 1)/2 numbers αij ≡ ( dij + ai/wi + aj/wj)/(1/wi + 1/wj), 
1 ≤ i ≤ j ≤ n is a lower bound for the optimum value of the objective function for any 
network, and is an attainable lower bound for tree networks. The absolute 1-cen-
ter of a tree occurs at the point x on the path P( vs, vt}, identified by αst = max{αij: 
1 ≤ i ≤ j ≤ n}, such that wsd( vs, x) + as = wtd( vt, x) + at. The computation of αst takes 
O( n2) time. Hakimi et al. (1978) propose an O( n( r + 1)) algorithm for this problem 
where r ≤ n. Kariv and Hakimi (1979) describe an algorithm that reduces the tree 
to subtrees until a single edge remains. The local center on the last edge solves the 
weighted absolute 1-center problem while one of its end-vertices solves the ver-
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tex restricted 1-center problem. The time bound is O( n log n) for weighted trees. 
Megiddo (1983) solves the weighted absolute 1-center problem on tree networks 
in O( n) time, which is the best known time bound for this problem. The nonlinear 
version of the absolute 1-center problem on tree networks, where each weighted 
distance is replaced by a monotone increasing loss function is considered by Dear-
ing (1977) and Francis (1977). They prove that the maximum of the n( n + 1)/2 
numbers βij ≡ ( fi

−1 + fj
−1)−1[dij], 1 ≤ i ≤ j ≤ n, is a lower bound for the minimum objec-

tive value of any network, and that this bound is attainable for tree networks. A 
maximizing pair vs and vt identify a path P( vs, vt), such that the optimum point is 
the point x on the path where fs[d( vs, x)] = ft[d( x, vt)]. If s = t, this implies vs is the 
optimum point.

For special structured networks that are more general than trees, Chen et al. 
(1988) propose an algorithm, similar in spirit to Goldman’s, for linear and nonlin-
ear cost functions. They construct the block diagram of the network in which each 
block (a maximally connected subgraph that cannot be made disconnected by 
removing a vertex with its adjacent edges) is represented by a vertex. A block dia-
gram is always a tree. The algorithm either finds an optimum or reduces the prob-
lem to a single block. The time bound of the algorithm is O( n min{b, α log b}) 
for the linear case, where α is the maximum number of cut points in any block 
and b is the number of blocks. If the algorithm ends with a block, the algorithms 
of Kariv and Hakimi (1979) or Sforza (1990) may be used to locate the absolute 
1-center in the block for the case of linear costs. For nonlinear monotonically in-
creasing convex cost functions, Hooker’s (1986 algorithm based on tree-like seg-
ments may be used. The time bound of Chen et al.’s (1988) reduction algorithm 
is O( n log n) for cactus networks. A more efficient O( n) algorithm is devised for 
cactus networks that are homemorphic to a 3-cactus by Kincaid and Lowe (1990) 
that transforms these special networks to trees in which point-to-point distances 
are preserved.

5.4.3  �Absolute p-Centers of General Networks

Kariv and Hakimi (1979) prove that the absolute p-center problem on a network is 
NP-Hard even if the network is planar, unweighted, with unit edge lengths and a 
maximum vertex degree of 3. Solution approaches are based on the existence of a 
finite dominating set, initially motivated by Hakimi’s (1964) method, formalized 
by Minieka (1970) for the unweighted case, and extended directly to the weighted 
case by Kariv and Hakimi (1979). This result is further generalized by Hooker et al. 
(1991) and a unifying approach is given for identifying finite dominating sets in a 
rather general setting.

All solution approaches proposed for the absolute p-center problem on general 
networks are based on the existence of a finite dominating set P = V ∪ U, where the 
definition of U is revised for the weighted case to include every interior point x such 
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that wid( vi, x) = wjd( x, vj) for a pair of vertices vi and vj, i ≠ j, and moving in either 
direction increases one of the functions while decreasing the other one. Solution ap-
proaches are either based on solving a sequence of set covering problems, suggested 
first by Minieka (1970), or enumerating p element subsets of the set P.

Minieka’s (1970) algorithm solves the unweighted version by solving a se-
quence of set covering problems with successively decreasing values of the cover-
ing radius r. Garfinkel et al. (1977) also solve a sequence of set covering problems, 
but they first reduced the search space by finding a heuristic solution X and elimi-
nating from P all those points whose relative radius is greater than r ≡ f( X). This re-
duces the number of variables in the set covering problem. Christofides and Viola 
(1971) solve the weighted problem by first generating the set of all feasible regions 
in the network reachable by at least one vertex within a distance of r, where r is 
a fixed parameter, and solving a set covering problem that selects the smallest 
number of points from these regions. This approach is essentially the same as 
that of Minieka (1970), except that Christofides and Viola do not make use of the 
finite dominating set P. Toregas et al. (1971) solve the vertex restricted p-center 
problem by solving the linear programming relaxation of the associated set cover-
ing problem, and adding a cut whenever termination occurred with a fractional 
solution. Elloumi et al. (2004) devise a new integer programming formulation of 
the problem based on the set covering idea. The linear programming relaxation 
of their formulation generates better lower bounds for the problem than those of 
previous models.

Kariv and Hakimi (1979) propose an O( mpn2p − 1 log n) enumeration algorithm 
for weighted networks. Their algorithm uses the fact that each center in an opti-
mal solution is the 1-center of a subnetwork. They choose p − 1 arbitrary centers 
and solve for the p-th one using a 1-center approach. Moreno (1986) provides an 
algorithm of time bound O( mpnp  +  1 log n). Tamir (1988) combines the algorithms of 
Kariv and Hakimi (1979) and Moreno (1986) to obtain an algorithm with improved 
time bounds of O( mpnp log2 n) for the weighted case and O( mpnp log n) for the un-
weighted case. Further improvements are made by using dynamic data structures 
resulting in a time bound of O( mpn p − 1 log3 n). For the case of nonlinear convex cost 
functions, Hooker (1989) proposes an enumeration algorithm based on tree-like 
segments, which is practical for small values of p. The algorithm locates p centers 
for each combination of p tree-like segments by solving linear and convex problems 
on each segment. The algorithm becomes intractable when p exceeds 4.

5.4.4  �Absolute p-Centers of Tree Networks

The minimum distance D( X, vi) from a vertex to a collection of p points is not con-
vex even though the distance d( x, vi) is convex for each x ∈ X. Despite the loss of 
convexity, the absolute p-center problem in tree networks is solved in polynomial 
time by various algorithms.
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Handler (1978) solves the absolute 2-center and the continuous absolute 2-cen-
ter problems in O( n) time by solving three 1-center problems. His algorithm does 
not seem to be extendible to larger values of p. Hakimi et al. (1978) describe an 
O( np − 1) algorithm for unweighted tree networks. Kariv and Hakimi (1979) propose 
an O( n2 log n) algorithm for absolute and vertex restricted weighted and unweighted 
problems on trees. For the unweighted case, they also develop an O( n logp − 2n) al-
gorithm for the absolute p-center problem and O( n logp − 2n) algorithm for the vertex 
restricted case. Megiddo and Tamir (1983) propose an O( n log2 n loglog n) algorithm 
for the weighted absolute p-center problem on trees. An O( n log n) algorithm is pre-
sented by Frederickson and Johnson (1983) for the unweighted case. Megiddo et al. 
(1981) solve the vertex restricted problem in O( n log2 n) time. Jaeger and Kariv 
(1985) devise an O( pn log n) algorithm for vertex restricted and absolute p-centers 
on weighted trees for relatively small values of p. If p < log n for the vertex restricted 
p-center and p < log n loglog n for the absolute p-center, then this time bound is better 
than the previous ones. Shaw (1999) presents a unified column generation approach 
for a general class of facility location problems on trees that includes the absolute p-
center problem as a special case. The complexity of his algorithm for the weighted 
p-center problem on trees is O( n2 log n). A nonlinear version of the problem, in 
which each weighted distance is replaced by a monotonic increasing function of the 
distance, is considered by Tansel et al. (1982) and solved in O( n4 log n) time, which 
is improved to O( n3 log n) by the modification given in Chap. 8 of Mirchandani and 
Francis (1990). For various duality results, see also Shier (1977).

5.5 � Future Directions

Tree network absolute p-center problems are well solved in polynomial time both 
for linear and nonlinear monotonic cost functions. Bozkaya and Tansel (1998) show 
that there exists a spanning tree of every connected network, such that solving the 
absolute p-center problem on the tree solves the p-center problem on the network. 
Trying to find such a tree is a worthwhile undertaking, since solving the problem on 
it also solves the problem on the original network.

Nonlinear versions with monotonic increasing functions of distances are more 
realistic versions of p-center problems that may find applications in a wide variety 
of contexts. Multi-facility versions of such models on general networks have not 
been considered in the literature and demand attention.

There is an acute need for more realistic models of emergency or covering type 
of location problems that address major issues of terrorism, pollution, disaster fight-
ing, and fast depletion of natural resources (such as water). Present models seem to 
be quite short of capturing important aspects of such problems.

Most often, we assume that data for our problems are available in a nice and 
clean form whereas, large scale realistic applications often require massive amounts 
of data that are difficult to obtain and process. Methods need to be developed for 
constructing and maintaining accurate data bases for large-scale applications.
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6.1 � Introduction

The mail-order DVD rental company Netflix chooses distribution center locations 
so that most of its customers receive their DVDs within one business day via first-
class U.S. Mail. Similarly, many municipalities aim to have fire crews reach 911 
callers within a specified time, such as four minutes. Both of these are examples of 
the notion of coverage, a concept central to several classes of facility location mod-
els; it indicates whether a demand location is within a pre-specified radius (mea-
sured by distance, travel time, cost, or another metric) of its assigned facility. Hom-
eowners are covered if they are within four minutes of the nearest fire station, and 
Netflix customers are covered if they are within one mailing day of a distribution 
center. Note that in the fire-station example, municipalities typically want to cover 
all residents (while minimizing the number of service stations to open), whereas 
Netflix wants to cover as many customers as possible (subject to a limit on the num-
ber of warehouses it may operate at any time, as specified by its capital budget). The 
fire-station problem is an example of the set covering location problem ( SCLP), 
while Netflix’s problem is an example of the maximal covering location problem 
( MCLP). This chapter discusses both problems.

The set covering location problem was first introduced by Hakimi (1965) and 
was later formulated as an integer programming problem by Toregas et al. (1971). 
The maximal covering location problem was introduced by Church and ReVelle 
(1974). Both models, and their variants, have been applied extensively to public-
sector facility location problems, such as the location of emergency medical service 
vehicles (Eaton et al. 1985), fire stations (Schilling et al. 1980), bus stops (Gleason 
1975), wildlife reserves (Church et al. 1996), and emergency air services (Flynn and 
Ratick 1988). They have been applied in a much more limited extent in the private 
sector; see, e.g., Nozick and Turnquist (2001).
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The set covering location problem and the maximal covering location problem 
are closely related to the p-center problem, which aims to locate at most p facilities 
to minimize the maximum distance, among all customers, between the customer 
and its assigned facility. In the p-center problem, the coverage radius itself consti-
tutes the objective function. The Introduction of this book provides a more thorough 
discussion of the relationships among these classical models.

Like most location problems, the SCLP and MCLP may be defined as continuous 
problems (in which facilities may be located anywhere on the plane) or as discrete 
problems (in which they may be located only at the nodes of a network). In this 
chapter we consider the latter approach.

The remainder of this chapter is organized as follows. In Sect. 6.2, we discuss 
classical papers on the set covering location problem (in Sect. 6.2.1) and the maxi-
mal covering location problem (in Sect. 6.2.2), present the results of computational 
experiments, and discuss more recent variations. Section 6.3 discusses the impact 
that these models have had and the bodies of research they have inspired, focusing 
on generalized notions of coverage. Finally, we conclude with Sect. 6.4, suggesting 
some possible future research directions.

6.2 � Historical Contributions

This section first presents the classical models for the set covering location prob-
lem by Hakimi (1965) and Toregas et al. (1971). It then continues with a discus-
sion of the maximal covering location problem by Church and ReVelle (1974) in 
Sect. 6.2.2.

6.2.1  �The Set Covering Location Problem

Although the generic (non-location) set-covering problem had been formulated pri-
or to Hakimi’s (1965) seminal paper on the set covering location problem, Hakimi’s 
work is important for, among other things, introducing the notion of coverage into 
facility location models. Hakimi’s proposed solution method, which involved the 
use of Boolean functions, never proved to be efficient enough to warrant its use in 
practice; rather, the set covering location problem is generally solved using inte-
ger programming techniques, first proposed by Toregas et al. (1971). We discuss 
Hakimi’s model and briefly outline the Boolean-function approach in Sect. 6.2.1.1. 
Section 6.2.1.2 presents the integer programming method of Toregas et al.

6.2.1.1 � The Contribution by Hakimi (1965)

We consider a graph G = ( V, A) and assume that every node in V is both a customer 
(demand) node and a potential site for a facility. (However, one can easily extend 
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the models below to handle the cases in which some customers are not facilities or 
some facilities are not customers and therefore do not need to be covered. Below, we 
use terms like “customer i” and “facility j” as shorthand for “the customer located at 
node i” and “the facility located at node j.”) Let n = |V |. The distance between nodes 
i and j is given by dij, and the maximum allowable distance between a customer and 
its nearest opened facility—the “coverage distance”—is given by s. If ( i, j) ∈ A, 
then dij is the length of the arc ( i, j), and otherwise it is the shortest distance from i 
to j on the graph. (We use the term “distance” throughout, but the parameters dij and 
s may just as well represent travel times, costs, or another measure of proximity.) 
Therefore, facility j covers customer i if dji ≤ s. We define

that is, Vi is the set of nodes that cover customer i. Note that every Vi is nonempty, 
assuming that dii = 0 for all i.

The objective of the set covering location problem is to find the minimum-cost 
(or minimum-cardinality) set of locations such that every node in V is covered by 
some node in the set. The application that Hakimi cites for the set covering location 
problem is that of locating policemen along a highway network so that every inter-
section (vertex of the graph) is within one distance unit of a policeman. Subsequent-
ly, the problem has found a much broader range of applications, as discussed earlier.

We will assume that facilities may be located only at the nodes of the network, 
not along the edges. Note that it may be optimal to locate along edges, since the 
well known “Hakimi property”—which states that an optimal solution always exists 
in which facilities are located at the nodes, rather than along the edges, of the net-
work—does not apply to the set covering location problem. (Hakimi introduced his 
famous property in an earlier paper (Hakimi 1964) in the context of the p-median 
problem, not of the SCLP.) A very simple counterexample consists of two nodes 
connected by a single edge of length 1 and a coverage distance of 0.5. If facilities 
are allowed on the edges, the unique optimal solution consists of one facility (lo-
cated in the middle of the edge), whereas the optimal nodal solution consists of two 
facilities, one at each node. On the other hand, a problem in which facilities may 
be located on edges may be converted to a node-only problem by inserting dummy 
nodes onto the edges, taking advantage of the fact that there are only a finite num-
ber of possible optimal locations along edges. Readers are referred to Church and 
Meadows (1979) for details.

In some applications, it is desirable to use a different coverage distance for each 
customer—for example, if customers have service agreements that specify different 
response times. In this case, the coverage distance is customer dependent, si, and 
the set Vi is given by Vi = {j ∈ V: dji ≤ si}. The analysis below changes in only minor 
ways.

The set covering location problem is closely related to the graph-theoretic vertex 
cover problem, whose objective is to find a subset of nodes in the graph such that 
every node in the graph is adjacent to some node in the set and such that no strict 
subset of the set has the same property. Such a set of nodes is called a cover. The 
optimization version of the vertex cover problem seeks the minimum-cardinality 
cover, and this problem is a special case of the SCLP in which s = 1 and dij = 1 for 

Vi = {j ∈ V : dji ≤ s},

6  Covering Problems
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all ( i, j) ∈ A. Indeed, although he is usually credited for introducing the more gen-
eral SCLP, this special case is the problem considered by Hakimi (1965), since he 
presented the problem explicitly in a facility location context. In this section we will 
assume, following Hakimi, that s = dij = 1, though in subsequent sections we will 
allow s and dij to be arbitrary. Hakimi notes that the assumption that dij = 1 is not 
too restrictive, since if the arc lengths are greater than 1, one could simply introduce 
dummy nodes along the arcs one unit apart, assuming that the arc lengths are inte-
gers. Of course, this modeling trick comes at considerable computational expense, 
especially since Hakimi’s method relies on an enumerative approach whose compu-
tational complexity increases exponentially with the number of nodes.

In the remainder of this section, we describe Hakimi’s (1965) approach to solv-
ing the set covering location problem. As noted earlier, this method is not com-
monly used today and is discussed here primarily for its historical interest.

Recall that Vi is the set of nodes that cover node i; given the assumption of unit 
arc-lengths and unit coverage distance, Vi is simply the set of nodes that are adja-
cent to i, plus i itself. Let S be a subset of the node set V. For each node i, we define 
a Boolean (binary) variable xi that equals 1 if i ∈ S and 0 otherwise. With a slight 
abuse of notation, we can write

where xii is taken to equal the set {i} if xi = 1 and the null set otherwise. We also 
define Xi as the sum of the Boolean variables for the nodes in Vi; that is,

Here, ∑ represents Boolean summation, analogous to the “or” operator, in which 
1 + 1 = 1. Then Xi = 1 if and only if S contains a node that covers node i. Finally, we 
define the Boolean function f, which takes as inputs the vector of Boolean variables 
for the nodes and returns a single Boolean value:

Since node i is covered if and only if Xi = 1, we have the following theorem:

Theorem 1:  S contains a covering of V if and only if f ( x1,…, xn) = 1.
The advantage of using the function f is that it allows us to use Boolean algebra 

to construct coverings of V. Although this approach still involves enumerating all 
coverings, it allows us to do so without enumerating all subsets of V to identify 
them. In particular, we will create a “minimum sum of products,” i.e., the smallest 
possible sum of products of xi variables that is logically equivalent to f ( x1,…, xn). 
This method involves eliminating terms that are implied by others, then using Bool-
ean algebra to simplify the resulting formula until we have an expression consisting 

S =
⋃

i∈V

xii,

Xi =
∑

j∈Vi

xj .

f (x1, . . . , xn) =
∏

i∈V

Xi.
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of the sum of simple products of variables such that no product is implied by (con-
tains) any other. The method is best explained by use of an example.

Example 1:  We illustrate the method using the sample network in Fig. 6.1.
Using the adjacencies depicted in Fig. 6.1, X1 = x1 + x3, X2 = x2 + x4, and so on. 

Therefore,

Using Theorem 1 to find all coverings of the graph, we need to find all possible 
values of {x1,…, x5} that make f ( x1,…, xn) = 1, meaning that all terms in the above 
product equal 1.

To begin, note that the first term is contained in the third. Since we need each 
term to equal 1, the third term equals 1 if the first does; we can therefore eliminate 
the third term. Similarly, the fourth term contains the fifth, so we can eliminate the 
fourth term. The resulting expression is

Boolean algebra contains two distributive laws. One says that, for any Boolean 
variables x, y, and z,

Applying this law to the last two terms, we get

The other Boolean distributive law says that

Applying this law to multiply the two terms, and repeatedly applying both Boolean 
identity laws (which say that x + x = x and that xx = x), we obtain

f (x1, . . . , xn) = (x1 + x3)(x2 + x4)(x3 + x1 + x2 + x4 + x5)

(x4 + x2 + x3 + x5)(x5 + x3 + x4).

f (x1, . . . , xn) = (x1 + x3)(x2 + x4)(x3 + x4 + x5).

x + (yz) = (x + y)(x + z).

f (x1, . . . , xn) = (x1 + x3)(x4 + x2x3 + x2x5).

x(y + z) = xy + xz.

f (x1, . . . , xn) = x1x4 + x1x2x3 + x1x2x5 + x3x4 + x2x3 + x2x3x5.

Fig. 6.1   Sample network
1

2

3

4

5
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Finally, by the Boolean redundancy law ( x + xy = x), we can remove the second and 
last terms:

Therefore, the covers for the graph in Fig. 6.1 are

All but {1, 2, 5} are minimum covers.
Hakimi was optimistic that this enumerative approach would prove to be practi-

cal: “…since the subject of simplification of Boolean functions has been widely 
studied and there are efficient digital computer programs for such a purpose, the 
above formulation is feasible.” Twenty-first century readers, however, will recog-
nize that the enumerative approach is impractical for large instances. Moreover, 
since the vertex cover problem is NP-complete (Garey and Johnson 1979), no poly-
nomial-time exact algorithm for the set covering location problem is known to exist. 
However, more efficient approaches than Hakimi’s exist; we discuss a mathemati-
cal-programming-based approach in the next section.

6.2.1.2 � The Contribution by Toregas et al. (1971)

Toregas et al. (1971) formulate the set covering location problem as an integer pro-
gramming problem and use standard mathematical programming methods to solve 
it. We discuss their approach next.

The integer programming problem has one set of decision variables:

for j ∈ V. Note that variable xj has no relation to the Boolean variables xi defined in 
Sect. 6.2.1.1.

The integer programming problem is formulated as follows:

� (6.1)

�
(6.2)

� (6.3)

The objective function (6.1) computes the total number of facilities opened. Con-
straints (6.2) require at least one node from the coverage set Vi to be opened for 

f (x1, . . . , xn) = x1x4 + x1x2x5 + x3x4 + x2x3.

{1, 4}, {1, 2, 5}, {3, 4}, {2, 3}.

xj =
{

1, if a facility is opened at node j
0, otherwise

SCLP: min z =
∑

j∈V

xj

s.t.
∑

j∈Vi

xj ≥ 1 ∀i ∈ V

xj ∈ {0, 1} ∀j ∈ J
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each node i. Constraints (6.3) are standard integrality constraints. Here, we do not 
assume that s = dij = 1 (as we did in Sect. 6.2.1.1); any values for these parameters 
may be used in determining the coverage sets Vi.

This formulation is virtually identical to that of the classical set covering prob-
lem; here it is discussed in the context of location theory in particular. It is well 
known that the set-covering problem typically has a small integrality gap; that is, 
the optimal objective value of the linear programming relaxation (denoted by zLP) is 
close to that of the integer program itself (Bramel and Simchi-Levi 1997), and often 
the linear programming relaxation even has all-integer solutions. In fact, ReVelle 
(1993) argues that many facility location problems have this property and discusses 
“integer-friendly programming” techniques for several classical problems. How-
ever, there do exist instances of the set covering location problem whose linear 
programming relaxations do not have all-integer optimal solutions (otherwise the 
problem would not be NP-hard). An example follows.

Example 2:  Consider the network depicted in Fig.  6.2. In this example, s  =  1. 
An optimal solution to the linear programming relaxation of SCLP is given by 
x1 = x2 = x3 = 0.5, x4 = 0, with an objective value of zLP = 1.5.

Since the coefficient of each xj is 1 in the objective function of SCLP, it is clear 
that the objective function value is integer for any solution to the integer program. 
Since zLP is a lower bound on z*, the optimal objective function value for the integer 
program, and since z* must be integer, we can assert that

where �a�  denotes the smallest integer greater than or equal to a. Therefore, Tore-
gas et al. propose adding the following cut to SCLP:

� (6.4)

We denote the resulting problem SCLP-C. The new cut may eliminate some frac-
tional solutions, and the linear programming relaxation to SCLP-C may have an 
all-integer solution as a result.

z∗ ≥ �zLP� ,

∑

j∈J

x ≥ �zLP� .

Fig. 6.2   Network for 
Example 2
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For the example in Fig. 6.2, the problem SCLP-C does indeed have an integer so-
lution: x1 = x2 = 1, x3 = x4 = 0, for example, with z* = 2. (It also has optimal fractional 
solutions, e.g., xj = 0.5 for all j, but the simplex method would find integer solutions 
since these represent extreme points of the feasible region.)

Toregas et al. therefore propose a two-step solution procedure for the set cover-
ing location problem.

Step 1:	� Solve the linear programming relaxation of SCLP. If the optimal solution 
is integer, STOP.

Step 2:	� Otherwise, solve the linear programming relaxation of SCLP-C using the 
optimal objective value from step 1 in the right-hand side of (6.4).

Even with constraint (6.4), the linear programming relaxation may not have an inte-
ger solution. Toregas et al. report that they found no such instance in their computa-
tional experiments, though we found several such instances in ours, see Sect. 6.2.1.3 
“Computational Experiment”. In fact, Rao (1974) gives two counterexamples: in 
one, the addition of cut (6.4) results in a fractional solution; in the other, the addi-
tion of cut (6.4) results in an integer but non-optimal solution. (See also the reply to 
Rao’s note by Toregas et al. 1974).

Toregas et  al. also discuss the relationship between the set covering location 
problem and a variant of the p-median problem in which each customer may only 
be served by facilities that are within a distance of s. The formulation is obtained 
simply by forcing the assignment variable to be 0 for facility–customer pairs that 
are more than s units apart, or, alternately, by indexing the assignment variables for 
each customer i over facilities j in Vi, as opposed to all facilities j in V. (We omit the 
formulation here.)

The optimal objective value of this p-median variant changes with s. For suf-
ficiently large s, the objective function value is no different from the p-median 
without distance constraints; as s decreases, the objective function value increases 
as a step function; and for sufficiently small s, the problem is infeasible. Toregas 
et al. argue that the solution to the set covering location problem provides some 
information about the feasibility of this problem. In particular, for a given value 
of p, the smallest value of s for which the p-median variant is feasible is equal to 
the smallest value of s for which SCLP has an optimal objective value of p. On the 
other hand, the solution to a set covering location problem does not provide any 
information about the breakpoints of the step function that relates the p-median 
objective to s.

6.2.1.3 � Experiments and Variants

In the “Computational Experiment” section below, we discuss the results of our 
computational experiment related to SCLP. In “Row and Column Reduction”, we 
discuss a technique for reducing the problem size of the set covering location prob-
lem, and in “Facility Fixed Costs”, we discuss a variant involving fixed costs.
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Computational Experiment

We performed a computational experiment to confirm the results reported by Tore-
gas et al.—namely, that the linear programming gap for SCLP is small, and that cut 
(6.4) produces integer solutions. For each value of n = 50, 100, 200, 400, 800, we 
generated 100 random instances of the set covering location problem. Parameters 
were generated as follows:

•	 x- and y-coordinates were drawn from U[0,100],
•	 distances were calculated using the Euclidean metric, and
•	 the coverage distance s was drawn from U[0,140] (140 ≈ maximum possible dis-

tance between two points in 100 × 100 grid).

For each instance, we solved the linear programming relaxation of SCLP using 
CPLEX v. 10.2.0 to obtain zLP. If the optimal solution to the linear program was 
not integer, we added cut (6.4) and solved the linear programming relaxation to 
SCLP-C to obtain zLP - C. If the optimal solution was still not integer, we solved 
SCLP as an integer program to obtain z*. (If either of the linear programming relax-
ations resulted in integer solutions, their objective values give us z*.)

The results are shown in Table 6.1. The columns labeled “% Integer” list the 
percentage of instances for which the linear programming relaxation produced an 
integer optimal solution. The columns labeled “Avg LP Gap” and “Max LP Gap” 
list the average and maximum, respectively, of the linear programming gap, mea-
sured as ( zLP − z*)/z* for SCLP and ( zLP - C − z*)/z* for SCLP-C.

The linear programming gap for SCLP is small and tends to decrease with low- 
er values of n. The largest gap we found was 33.5% for a problem with n = 800. 
The addition of cut (6.4) reduces the linear programming gap substantially (from 
0.0132 to 0.0004, on average), but does not guarantee integer solutions—even 
with the cut, 11.2% of instances had fractional optimal solutions. Several of these 
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n % Integer Avg LP Gap Max LP Gap

SCLP
50 94.0 0.0068 0.2500
100 87.0 0.0104 0.1667
200 88.0 0.0074 0.2500
400 73.0 0.0217 0.3350
800 76.0 0.0195 0.2500
Total 83.6 0.0132 0.3350
SCLP-C
50 98.0 0.0000 0.0000
100 92.0 0.0000 0.0000
200 90.0 0.0000 0.0000
400 82.0 0.0003 0.0250
800 82.0 0.0017 0.0714
Total 88.8 0.0004 0.0714

Table 6.1   Performance of 
linear programming relax-
ations of SCLP and SCLP-C
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instances also had integer optimal solutions, though CPLEX did not find these. In 
general, CPLEX solved the integer programming problem in well under one minute 
on a laptop computer, even for the largest problems.

Row and Column Reduction

The size of SCLP can often be reduced substantially by using row- and column-
reduction techniques. These methods exploit the coverage structure by eliminating 
rows and columns that are dominated by others. In particular:

•	 A facility j1 dominates another facility j2 if it covers all of the customers that j2 
does; that is, if j2 ∈ Vi implies j1 ∈ Vi for all i ∈ V. In this case, there is no rea-
son to open facility j2 since j1 covers all the same customers and possibly more. 
Therefore we can set xj2 = 0, or equivalently, eliminate the column correspond-
ing to j2.

•	 A customer i1 dominates another customer i2 if every facility that covers i1 also 
covers i2; that is, if Vi1 ⊆ Vi2

. In this case, if constraint (6.2) holds for i1 it also 
holds for i2, and therefore we can eliminate the row corresponding to i2.

Row and column reduction techniques are appropriate for the SCLP because of the 
binary nature of coverage. Most facility location problems with distance objectives 
cannot generally accommodate these techniques, except heuristically, since under 
most metrics it is impossible for a facility to dominate another, i.e., to be closer to 
every customer than another facility is.

These techniques were proposed by Toregas and ReVelle (1972). See also Daskin 
(1995) and Eiselt and Sandblom (2004) for thorough discussions and examples of 
row- and column-reduction techniques.

Facility Fixed Costs

If the facilities each have a different fixed cost fj, then the problem becomes 
choosing facilities to cover all demands at minimum possible cost. This problem 
can be formulated simply by replacing the objective function (6.1) with the ob-
jective

The set covering location problem as formulated above is a special case in which fj = 1 
for all j. The linear-programming-based solution methods described in Sect. 6.2.3 
can easily accommodate this variation. So can the Boolean-function approach: at the 
final step, we simply choose the cover that has the smallest total fixed cost.

Minimize z =
∑

j∈V

fjxj .
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6.2.2  �The Maximal Covering Location Problem

Whereas the set covering location problem has the form

SCLP:	   � minimize the number of facilities opened, 
	    s.t. cover all demand,

the Maximal Covering Location Problem MCLP has the inverse form:

MCLP:	� maximize the demand covered, 
	 s.t. a limit on number of facilities opened.

The set covering location problem treats all demand nodes as equivalent since the 
coverage constraint applies equally to all. In contrast, in the maximal covering loca-
tion problem nodes are weighted by the demand that they generate, and the objective 
favors coverage of larger demands over smaller ones. As the number of allowable 
facilities increases, the demand covered naturally increases as well. The modeler can 
plot a tradeoff curve depicting the performance of a range of solutions along these 
two dimensions; the decision maker can then choose a solution based on this tradeoff.

In Sect. 6.2.2.1, we discuss the maximal covering location problem as formu-
lated by Church and ReVelle (1974). Section 6.2.2.2 then describes some computa-
tional experiments and several variants of the model.

6.2.2.1 � Church and ReVelle (1974)

This section commences with a formal statement of the maximal covering location 
problem as a mathematical programming model. The next section discusses heuris-
tics, followed by an exact algorithm in “Linear Programming Approach”. “Manda-
tory Closeness Constraints” investigates the effects of a constraint that enforces an 
additional level of coverage.

Introduction and Formulation

Our notation in this section is identical to that in Sect. 6.2.1, with the addition of 
two new parameters: ai is the demand at node i per unit time, and p is the maximum 
allowable number of facilities. We also introduce a new set of decision variables:

The maximal covering location problem is formulated by Church and ReVelle 
(1974) as follows:

� (6.5)

yi =
{

1, if customer i is covered by some facility
0, otherwise

MCLP: Max z =
∑

i∈V

aiyi
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� (6.6)

�
(6.7)

�
(6.8)

�
(6.9)

The objective function (6.5) computes the total demand covered. Constraints (6.6) 
prohibit a customer from counting as “covered” unless some facility that covers it 
has been opened. Constraint (6.7) requires exactly p facilities to be opened. Con-
straints (6.8) and (6.9) are standard integrality constraints. (In fact, it suffices to 
relax constraints (6.9) to 0 ≤ yi ≤ 1, since integer values for the yi are optimal if the 
xj are integer.)

Church and ReVelle cite White and Case (1973) as formulating a similar model 
to MCLP that maximizes the number of demand nodes covered, rather than the total 
demand. Case and White’s model is therefore a special case of the maximal cover-
ing location problem in which ai = 1 for all i.

Church and ReVelle also present an alternate formulation that uses a new deci-
sion variable ȳi  defined as ȳi = 1 − yi ; that is,

In the alternate formulation, constraints (6.6) are replaced by

The revised constraints state that if node i is not covered by any facility (i.e., ∑
j∈Vi

xj = 0 ), then ȳi  must equal 1. The objective function (6.5) can be rewritten 
as

� (6.10)

or equivalently,

� (6.11)

since the first term in (6.10) is a constant. The revised objective (6.11) minimizes 
the uncovered demand. The revised formulation is then given by

s.t.
∑

j∈Vi

xj ≥ yi ∀i ∈ V

∑

j∈V

xj = p

xj ∈ {0, 1} ∀j ∈ V

yi ∈ {0, 1} ∀i ∈ V

ȳi =
{

1, if customer i is not covered by any facility
0, otherwise

∑

j∈Vi

xj + ȳi ≥ 1 ∀i ∈ V.

maximize
∑

i∈V

ai(1 − ȳi) =
∑

i∈V

ai −
∑

i∈V

aiȳi,

minimize
∑

i∈V

ai ȳi ,
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�
(6.12)

� (6.13)

� (6.14)

� (6.15)

� (6.16)

The two formulations are mathematically equivalent, as are their linear program-
ming relaxations.

Megiddo et al. (1983) proved that the maximal covering location problem is NP-
hard. The next two sections describe heuristic and exact approaches to solving the 
problem, all of which are discussed by Church and ReVelle (1974).

Heuristic Solution Methods

Like many facility location problems, the maximal covering location problem 
lends itself nicely to greedy heuristics such as the Greedy Adding heuristic, which 
Church and ReVelle (1974) credit to Church’s (1974) doctoral dissertation. The 
Greedy Adding heuristic begins with all facilities closed, then opens p facilities in 
sequence, choosing at each iteration the facility that increases coverage the most. 
For a discussion of greedy and other heuristics for facility location problems, see 
Current et al. (2002).

Solutions obtained with the Greedy Adding heuristic are nested in the sense that 
all of the facilities in the solution to the p-facility problem are also opened in the 
solution to the ( p + 1)-facility problem. Optimal solutions to the maximal covering 
location problem are not, in general, nested in this way. Therefore, Church and 
ReVelle also suggest an alternate heuristic, called the Greedy Adding with Substitu-
tion heuristic, which attempts to rectify this problem by allowing an open facility 
to be closed and a closed facility to be opened at each iteration. Like any heuristic, 
Greedy Adding and the Greedy Adding with Substitution are not guaranteed to find 
the optimal solution. The latter, however, tends to perform well in practice, and both 
heuristics execute very quickly.

MCLP2: Min z =
∑

i∈V

aiȳi

s.t.
∑

j∈Vi

xj + ȳi ≥ 1 ∀i ∈ V

∑

j∈V

xj = p

xj ∈ {0, 1} ∀j ∈ V

yi ∈ {0, 1} ∀i ∈ V.
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Linear Programming Approach

Church and ReVelle propose solving MCLP2 directly using linear programming and 
branch-and-bound. Like the set covering location problem, the linear programming 
relaxation of the maximal covering location problem often yields all-integer solu-
tions: Church and ReVelle report that approximately 80% of their test instances had 
integer solutions; we found an even higher percentage in our computational tests 
(Sect. 6.2.2.2 “Computational Experiment”). Branch-and-bound may be applied to 
resolve fractional solutions to the linear programming relaxation, but Church and 
ReVelle also suggest a method that is effective when solving the same problem for 
consecutive values of p.

The method takes as input a fractional solution to the p-facility problem and an 
integer solution to the ( p − 1)-facility problem. It is effective when the ( p − 1)-facil-
ity solution covers all but a few nodes. We illustrate the method using an example.

Example 3:  Consider an instance of the maximal covering location problem for 
which the total demand across all nodes is 100 units. Suppose we have found an 
integer solution to the 4-facility problem and that it covers all but two nodes, for a 
total of 91 demand units covered. These two uncovered nodes (we will call them 1 
and 2) have demands of 3 and 6, respectively. Suppose further that the linear pro-
gramming relaxation to the 5-facility problem is fractional and covers 98 demand 
units. Finally, suppose that the minimum ai among all nodes i is 3.

The optimal integer solution with p = 5 cannot cover all of the nodes, since the 
linear programming relaxation has an objective value of 98. In fact, the integer solu-
tion may cover at most 97 demand units, since at best it leaves the 3-demand node 
uncovered. We can create an integer solution to the p = 5 problem by adding node 
2 to the p = 4 solution. Since the p = 4 solution covered 91 demands, not including 
node 2, this new solution covers 91 + 6 = 97 demands. This solution must be optimal 
for p = 5 since 97 is an upper bound on the objective value. An optimal solution for 
the problem with p = 6 can now be found by adding node 1 to the p = 5 solution; the 
resulting solution covers all demands.

Church and ReVelle refer to this method as the “inspection” method. It can be 
summarized as follows. Let zIP( p) be the optimal p-facility objective value of MCLP, 
that is, the optimal demand covered by p facilities, and let zLP( p) be the optimal p-
facility objective value of the linear programming relaxation of MCLP. We assume 
that we know the integer optimal solution with p − 1 facilities and that the optimal 
solution to the linear programming relaxation with p facilities is not integer. Let 
amin = min{ai: i ∈ V} and  a� =

∑
i∈V ai . We summarize the inspection method in 

the following theorem. (Church and ReVelle illustrate this method with an example, 
rather than stating it formally as a theorem.)

Theorem 2:  Suppose the following conditions hold:

1.	 ZLP( p) < a�, and
2.	 ZIP( p − 1) + ai = a� − amin  for some node i that is not covered in the optimal 

solution to the ( p − 1)-facility problem,
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then an optimal solution to the p-facility problem consists of the optimal solution to 
the ( p −1)-facility problem plus node i.

Church and ReVelle report that, of the 20% of their test instances where linear pro-
gramming relaxations did not have integer solutions, half could be solved using the 
inspection method. The other half was solved via branch-and-bound.

Mandatory Closeness Constraints

Church and ReVelle discuss a variant of the maximal covering location problem 
in which we require that all customers be covered within a secondary coverage 
distance t ( t ≥ s). For example, we might want to maximize the demand covered 
within 50 miles but require all demands to be covered within 100 miles. This model, 
known as the MCLP with Mandatory Closeness Constraints, can be viewed as a 
hybrid between the maximal covering location problem and the set covering loca-
tion problem, since it has a max-coverage objective plus a hard coverage constraint.

The problem can be formulated simply by adding the following constraint to 
either formulation of the MCLP:

where Ui = {j ∈ V: dji ≤ t}. The resulting model can be solved using linear program-
ming and branch-and-bound.

Suppose we solve SCLP and find that, for a given instance, the minimum number 
of facilities that covers all demand nodes with a coverage distance of t is p*. Gener-
ally there are many optimal solutions to this problem. The maximal covering loca-
tion problem with mandatory closeness constraints gives us a mechanism for choos-
ing among these, by selecting the solution that also maximizes the demands covered 
within some distance s. In particular, we solve MCLP with mandatory closeness 
constraints using p* as the number of facilities to open and t as the secondary cover-
age distance.

6.2.2.2 � Experiments and Variants

Computational Experiment

We performed a computational experiment to verify Church and ReVelle’s claim 
that the MCLP often results in all-integer solutions. We set n = 50, 100, 200, 400, 
800. For each value of n, we generated 100 random instances and tested three differ-
ent values of p. The random instances were generated as described in Sect. 6.2.1.3 
“Computational Experiment”, with one additional parameter: Demands ai were 
drawn from U[0,100].

∑

j∈Ui

xj ≥ 1 ∀i ∈ V ,

6  Covering Problems



124

We solved the linear programming relaxation of MCLP2 using CPLEX v. 10.2.0 
and, if the solution was not all integer, we solved the integer program. The results 
are displayed in Table 6.2. The column labeled “p” gives the value of p in MCLP2. 
The column labeled “Avg LP Gap > 0” gives the average integrality gap among 
only those instances with a positive integrality gap, or “—” if there were no such 
instances. All other columns are interpreted as in Table 6.1.

The linear programming relaxation of MCLP seems to generate integer solutions 
even more frequently than the relaxation of SCLP (at least for our test instances): 
an average of 95.3% of the time. When it fails to do so, the integrality gap can be 
quite large, though this is partly a function of the minimization objective, which 
may have optimal values near zero and hence any suboptimal solution may have a 
large error on a percentage basis.

Note that for some instances the linear programming relaxation had fractional 
solutions but an integrality gap of 0, as evidenced by the fact that some rows have 
“% Integer” <100% but an average linear programming gap of 0. For these in-
stances, an optimal integer solution exists for the linear programming relaxation but 
CPLEX returned a fractional optimal solution instead.

Tradeoff Curve

Figure 6.3 displays the optimal objective function value of MCLP2—the number of 
demand units uncovered—as p varies for a particular random instance with n = 100 
and s = 15. As expected, the uncovered demand decreases as p increases. For p ≥ 18, 
all demands are covered. The convex shape is typical of tradeoff curves for the 
maximal covering location problem, meaning that additional facilities provide de-
creasing marginal returns in terms of additional coverage.

Table 6.2   Performance of linear programming relaxation of MCLP2
n p % Integer Avg LP Gap Avg LP Gap > 0 Max LP Gap
50 2

5
8

95.0
96.0
99.0

0.0011
0.0019
0.0000

0.0542
0.0635
–

0.0646
0.1109
0.0000

100 2
5
8

100.0
98.0
98.0

0.0000
0.0002
0.0000

–
0.0232
–

0.0000
0.0232
0.0000

200 4
10
16

96.0
93.0
92.0

0.0016
0.0092
0.0028

0.0540
0.1308
0.0699

0.1293
0.3957
0.1296

400 4
10
16

98.0
92.0
92.0

0.0000
0.0006
0.0158

–
0.0190
0.5254

0.0000
0.0280
0.9632

800 4
10
16

100.0
91.0
89.0

0.0000
0.0002
0.0195

–
0.0089
0.4865

0.0000
0.0089
0.9704

Total 95.3 0.0035 0.9704
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Lagrangian Relaxation Approach

The maximal covering location problem can also be solved using Lagrangian relax-
ation. The key idea is to remove a set of constraints and add a penalty to the objec-
tive function for violating the constraints. The resulting problem is easier to solve 
but may produce solutions that are infeasible for MCLP. By adjusting the objective-
function penalties iteratively, the solutions found approach the optimal solution for 
the maximal cover location problem. The use of Lagrangian relaxation for MCLP 
was detailed by Galvão and ReVelle (1996), although Daskin et  al. (1989) also 
report computational results from a similar method without providing details. See 
Fisher (1981, 1985) for an excellent overview of Lagrangian relaxation.

We illustrate the Lagrangian relaxation method using formulation MCLP, though 
it can also be applied to MCLP2. We relax constraints (6.6) using Lagrangian mul-
tipliers λi to obtain the following Lagrangian subproblem:

� (6.17)

� (6.18)

� (6.19)

MCLP-LR: Max z =
∑

i∈V

aiyi +
∑

i∈V

λi




∑

j∈Vi

xj − yi





=
∑

i∈V

(ai − λi)yi +
∑

j∈V




∑

i∈V :j∈Vi

λi



xj

s.t.
∑

j∈V

xj = p

xj ∈ {0, 1} ∀j ∈ V

Fig. 6.3   Tradeoff curve: demands uncovered vs. p
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� (6.20)

This problem decouples by x and y since there are no constraints involving both 
sets of variables. As a result, it can be solved easily. The optimal y-values are 
given by

To find the optimal x-values, we set xj = 1 for the p facilities with the largest val-
ues of 

∑
i∈V :j∈Vi

λi . The optimal objective value of MCLP-LR provides an upper 
bound on that of MCLP. Feasible (lower bound) solutions can be found by setting 
xj = 1 for the p facilities that are opened in the upper-bound solution and setting 
yi = 1 for each customer i that is covered by some existing facility. Lagrange mul-
tipliers can be updated using subgradient optimization, and branch-and-bound can 
be used if the Lagrangian procedure fails to yield a suitably small optimality gap; 
see Daskin (1995) for more details. Daskin et al. (1989) report that the procedure 
works quite well, especially when the lower-bound heuristic is supplemented by a 
substitution heuristic.

Budget Constraints

We can incorporate fixed costs into the model in a similar manner as we did for the 
set covering location problem in “Facility Fixed Costs”. Here, the fixed cost ap-
pears in the constraints rather than the objective function. In particular, we replace 
constraint (6.7) or (6.14) with

where B is a budget imposed exogenously on the total fixed costs. This constraint 
can be easily handled by the linear programming approach discussed in Sect. 
6.2.2.1, but it somewhat complicates the Lagrangian approach in Sect. 6.2.2.2 since 
determining the optimal x values now requires us to solve the following knapsack 
problem:

yi ∈ {0, 1} ∀i ∈ V

yi =
{

1, if ai − λi > 0,
0, otherwise.

∑

j∈V

fjxj ≤ B,

Max
∑

j∈V




∑

i∈V :j∈Vi

λi



xj

s.t.
∑

j∈V

fjxj ≤ B
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Although this problem can be solved quite quickly using modern codes, it is still 
NP-hard, and it may slow the Lagrangian procedure significantly.

Relationship to p-Median Problem

The maximal covering location problem can be formulated as a special case of the 
p-median problem through a simple transformation of the distance matrix. In par-
ticular, we set

That is, we redefine the distance metric so that the distance from node j to node i is 
0 if j covers i and 1 otherwise. The p-median problem is then formulated as usual 
(see, e.g., Daskin 1995). The optimal solution will cover as many demand units as 
possible using p facilities. Any algorithm for the p-median problem can then be ap-
plied to solve the maximal covering location problem.

6.3 � Extensions

The literature contains many enhancements to the set covering and maximal cover-
ing location problems. In this section, we focus in particular on generalizations of the 
notion of coverage. One common criticism of the two types of problems is that they 
assume that all customers within a facility’s coverage radius can be served by the fa-
cility, and served equally. In practice, facilities are not always available when needed, 
especially in the public-sector arena where facilities may represent such essential ser-
vices as ambulances and fire crews. One approach to this issue is backup coverage, 
in which customers are required or encouraged to be covered by more than one open 
facility. Another approach is expected coverage, which accounts for probabilistic in-
formation. Moreover, in many cases the coverage benefit changes as the distance 
between a customer and its assigned facility changes. This dependency is captured 
by the notion of gradual coverage. We briefly discuss models for backup, expected, 
and gradual coverage in the next three subsections. For thorough reviews of backup 
and expected coverage models, see Daskin et al. (1988) or Berman and Krass (2002).

6.3.1  �Backup Coverage Models

Both the set covering location problem and the maximal covering location problem 
have been extended to consider solutions in which customers are covered by more 

xj ∈ {0, 1} ∀j ∈ V.

dji =
{

0, if j ∈ Ni

1, otherwise.
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than one facility. One may require backup coverage in order for a customer to count 
as “covered,” or one may simply reward solutions for backup coverage.

6.3.1.1 � Required Backup Coverage

It is simple to formulate a required-backup version of either covering problem. In 
the set covering location problem, we simply modify constraints (6.2) to read

where m is the desired number of times that each customer is to be covered. In the 
maximal covering location problem, we can replace constraints (6.6) with

where yi must equal 0 unless at least m facilities that cover customer i are open. 
This constraint is likely to weaken the linear programming relaxation of MCLP, 
however.

6.3.1.2 � Rewards for Backup Coverage

We focus on models in which m = 2. Extensions to these models to consider m > 2 
are straightforward but often yield weaker linear programming relaxations, as dis-
cussed above. Let

The models formulated below contain a reward in the objective function for each 
customer who is covered twice. However, the backup coverage reward is strictly a 
secondary objective; in no case should a solution with more facilities have a better 
objective than one with fewer facilities, even if it has better backup coverage.

Daskin and Stern (1981) propose the following model for the set covering loca-
tion problem with backup coverage:

� (6.21)

�
(6.22)

∑

j∈Vi

xj ≥ m ∀i ∈ V ,

∑

j∈Vi

xj ≥ myi ∀i ∈ V ,

wi =
{

1, if customer i is covered by two or more facilities
0, otherwise.

SCLP-BC: Min z = (|V | + 1)
∑

j∈V

xj −
∑

i∈V

wi

s.t.
∑

j∈Vi

xj − wi ≥ 1 ∀i ∈ V
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� (6.23)

� (6.24)

The objective function (6.21) enforces the hierarchical nature of the primary 
objective (minimizing the number of facilities) and the secondary one (maxi-
mizing twice-covered customers). It does so by multiplying the primary objec-
tive by a constant large enough that even if the primary objective is as small as 
possible (equal to 1), the secondary objective can never exceed it. Therefore, 
the solution will never open more facilities than necessary solely to improve the 
secondary objective. Constraints (6.22) require each customer to be covered at 
least once, and prohibit wi from equaling 1 unless customer i is covered at least 
twice.

Another advantage of this formulation is that its solutions avoid facilities that 
are dominated by others in the sense described in “Row and Column Reduction”. 
As a result, the linear programming relaxation to SCLP-BC is more likely to have 
all-integer solutions than that of SCLP is. Readers are referred to Daskin and Stern 
(1981) for justifications for both of these claims.

A similar hierarchical version of the maximal covering location problem was 
introduced by Storbeck (1982) and reformulated by Daskin et al. (1988). We modify 
their formulation somewhat in what follows.

� (6.25)

� (6.26)

�

(6.27)

� (6.28)

� (6.29)

� (6.30)

The objective function (6.25) maximizes a sum of the primary coverage (first term) 
and backup coverage (second term); the weight on the first term ensures that pri-
mary coverage will never be sacrificed in order to achieve backup coverage. Note 
that the secondary coverage objective considers nodes covered, rather than demand 
units covered. This is required in order for the weighting to achieve the desired 
hierarchy. Constraints (6.26) stipulate that customer i may be considered covered 
( yi = 1) only if at least one facility in Vi is open, and may be considered twice cov-
ered ( wi = 1) only if two such facilities are open. Since the objective function coef-

xj ∈ {0, 1} ∀j ∈ V

wi ∈ {0, 1} ∀i ∈ V.

MCLP-BC: Max z = (|V | + 1)
∑

i∈V

aiyi +
∑

i∈V

wi

s.t.
∑

j∈Vi

xj − yi − wi ≥ 0 ∀i ∈ V

∑

j∈V

xj = p

xj ∈ {0, 1} ∀j ∈ V

yj ∈ {0, 1} ∀i ∈ V

wj ∈ {0, 1} ∀i ∈ V.
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ficient for yi is greater than that for wi, the model will always set yi = 1 before it sets 
wi = 1, thus ensuring the desired coverage hierarchy.

6.3.2  �Expected Coverage Models

The class of expected coverage models is descended primarily from the Maximum 
Expected Covering Location Problem (MEXCLP ) introduced by Daskin (1982). 
Daskin’s primary application is in the siting of emergency medical service vehicles. 
The MEXCLP maximizes the expected coverage of each node, defined using proba-
bilistic information about facility availability, subject to a constraint on the number 
of facilities.

The MEXCLP assumes that the average system-wide probability that a given 
facility (vehicle) is busy is given by q. If a customer is covered by k facilities, then 
the probability that all those facilities are busy at a given point in time is given by 
qk, and the probability that at least one facility is available is 1 − qk. The maximum 
expected covering location problem defines new variables to keep track of the num-
ber of covering facilities for each customer. Define variables

for all i ∈ V and m = 1,…, p. Note that if customer i is covered by exactly k facilities, 
then yim = 1 for m = 1,…, k and yim = 0 for m = k + 1,…, p. Then

using a standard formula for geometric sums. In other words, the first summation 
in the equation above expresses the probability that customer i is covered by an 
available facility in terms of the decision variables yim. Using this approach, Daskin 
formulates the MEXCLP as follows:

� (6.31)

� (6.32)

� (6.33)

yim =
{

1, if customer i is covered by at least m facilities
0, otherwise

p∑

m=1

(1 − q)qm−1yim =
k−1∑

m=0

(1 − q)qm = 1 − qk

MEXCLP : Max z =
∑

i∈V

p∑

m=1

(1 − q)qm−1aiyim

s.t.
p∑

m=1

yim −
∑

j∈Vi

xj ≤ 0 ∀i ∈ V

∑

j∈V

xj = p
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� (6.34)

� (6.35)

The objective function (6.31) calculates the expected coverage. Constraints (6.32) 
allow the total number of yim variables, for fixed i, to be no more than the total 
number of opened facilities that cover i. At first it may seem that the model needs a 
constraint of the form

in order to ensure that yim is set to 1 for the correct values of m; that is, for the k 
smallest values of m, where k is the number of opened facilities that cover i. How-
ever, such a constraint is not necessary since the objective function coefficient is 
larger for smaller values of m; the model will automatically set yim = 1 for the k 
smallest values of m.

Daskin (1983) proposes a heuristic for MEXCLP based on node exchanges, and 
several metaheuristics have been proposed subsequently; see, e.g., Aytug and Say-
dam (2002), and Rajagopalan et al. (2007).

The primary criticism that has been leveled at the MEXCLP concerns the as-
sumption of a uniform system-wide availability probability, since availability might 
vary based on geographic area or on the demand assigned to each facility. ReVelle 
and Hogan (1989) address this concern in the Maximum Availability Location Prob-
lem (MALP), a chance-constrained version of MCLP. They formulate two versions 
of the model, one in which the availability probability is assumed to be the same 
throughout the system; the main difference between this model and MEXCLP is 
that MALP maximizes the number of demand units that are covered with at least 
a certain probability, whereas MEXCLP includes the expected coverage in the ob-
jective. ReVelle and Hogan’s second MALP model estimates the busy probability 
separately for each customer by assuming that facilities within the coverage radius 
of a given customer are available only to that customer. Obviously this assumption 
is not true, but it provides an easy, and fairly accurate, estimate of the availability 
probability. The two models are nearly identical once the availability probabili-
ties are calculated. Galvão et al. (2005) present a framework that attempts to unify 
MEXCLP and MALP.

Batta et al. (1989) embed Larson’s (1974, 1975) hypercube queuing model into 
MEXCLP to compute the availability probabilities endogenously. They find that 
their model disagrees substantially with MEXCLP in terms of the expected cover-
age predicted, but nevertheless results in similar sets of facilities chosen. Marianov 
and ReVelle (1996) formulate a version of the MEXCLP that endogenously calcu-
lates the availability property using a queuing model at each facility. The region 
around each customer node is treated as an M/M/s/s queue, where s is the number of 
servers located within the coverage radius. Their model implicitly assumes that that 
the call rate in the neighborhood is not substantially different from that in adjacent 
neighborhoods. The resulting model is structurally similar to the MALP but uses 
different (but pre-computable) values for the coverage radius.

xj ∈ {0, 1} ∀j ∈ V

yj ∈ {0, 1} ∀i ∈ V.

yim ≤ yi,m+1 ∀i ∈ V , m = 1, . . . , p − 1
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6.3.3  �Gradual Covering Models

The models discussed in this chapter so far all assume that coverage is a binary 
concept: either a customer is covered or it is not, and the distance from the customer 
to the covering facility is irrelevant. In practice, though, customers who are located 
very close to a facility such as a fire station may be served better than those located 
farther away, even if both customers are within the nominal coverage radius. In this 
case, the benefit from coverage decreases with the customer–facility distance, as 
illustrated in Fig. 6.4a. Moreover, some facilities such as garbage dumps are most 
beneficial when they are close (to reduce transportation costs) but not too close (to 
reduce odors and truck traffic), as illustrated in Fig. 6.4b.

Church and Roberts (1983) introduce the Weighted Benefit Maximal Coverage 
(WBMC ) Model, which extends the maximal covering location problem to accom-
modate non-binary coverage benefits. The objective is to maximize the sum of all 
customers’ coverage benefits (defined as the benefit per unit of demand times the 
demand of that customer) subject to a constraint on the number of facilities located. 
The formulation is a relatively straightforward modification of MCLP and includes 
a coverage variable ( y) and a constraint for each customer–distance pair. (Each 
“distance” is really a range of distances, as in Fig. 6.4.) The number of variables 
and constraints therefore grows linearly with the number of distance ranges. If the 
benefits are not monotonically decreasing with the distance, as in Fig. 6.4b, then an 
additional set of constraints is required to ensure that customers are assigned to their 
nearest opened facilities, a property that is automatic if benefits are monotonically 
decreasing. The resulting formulations are more complex than MCLP, but Church 
and Roberts find that they still retain their “integer-friendliness:” the linear pro-
gramming relaxation is generally very tight and often all-integer.

6.4 � Conclusions and Future Research Directions

In this chapter we have discussed two classical models for locating facilities 
to ensure coverage of customer nodes. One model, the set covering location 
problem, requires every customer to be covered and does so with the minimum 

Fig. 6.4   Benefit of coverage versus distance: a strictly decreasing, b non-monotonic
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number of facilities, while the other, the maximal covering location problem 
maximizes the demand covered subject to a limit on the number of facilities. 
Both models have garnered considerable attention in the location theory litera-
ture, and both models (and their extensions) have been widely applied in prac-
tice, especially in public-sector applications such as the location of emergency 
medical services.

Both covering problems are reasonably easy to solve, in the sense that modern 
general-purpose integer programming solvers such as CPLEX can solve problems 
with hundreds or thousands of nodes to optimality in a few minutes on a desktop 
computer. This stems in part from the fact that the linear programming relaxations 
of both problems tend to be tight, and even yield integer optimal solutions for a 
large percentage of instances. Therefore, although these problems are NP-hard, they 
are among the easiest problems in that class.

On the other hand, many of the extensions of these models are much more com-
putationally challenging. Daskin’s (1982) MEXCLP model, for example, or the 
queuing-based congestion models discussed by Berman and Krass (2002), have 
more complex structures than SCLP or MCLP and therefore cannot be solved using 
off-the-shelf solvers, except for small instances. One important direction for future 
research, therefore, is the development of effective, accurate algorithms and heuris-
tics for extensions of SCLP and MCLP.

Of particular interest are stochastic and robust variants of coverage models. Al-
though the literature on stochastic facility location models is extensive (see, e.g., 
Snyder 2006 for a review), most such models consider cost-based objectives rather 
than coverage-based ones. (Notable exceptions are the expected-coverage models 
described in Sect. 6.3.2, and their variants.) An important topic for future study is 
therefore the incorporation of stochastic elements—such as demands, travel times, 
server availabilities, and supply disruptions—into coverage models. The resulting 
models are likely to be significantly more complex than their deterministic counter-
parts, but the stochastic programming and robust optimization literatures are vast, 
and many of their more sophisticated tools have yet to be tapped by the location 
science community.

The distinction between cost- and coverage-based models made in the previ-
ous paragraph is an important one since it is often equivalent to the distinction 
between private- and public-sector applications—the former is primarily con-
cerned with cost minimization while the latter is often encouraged or mandated 
to provide adequate coverage to all demand locations (ReVelle et  al. 1970). 
Public-sector and humanitarian applications have gained increased attention in 
the operations research community in recent years—for example, the 2008 IN-
FORMS Annual Meeting featured “Doing Good with OR” as a central theme, 
as did the February 2008 issue of OR/MS Today. The application of coverage 
models to emergency medical services and other services has been a success 
story in public operations research for decades, and recent renewed interest pro-
vides an opportunity for existing and new coverage models to be applied for the 
public good.

6  Covering Problems
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7.1 � Introduction

Whereas the usual location models locate facilities based on the wishes and objec-
tives of a single decision maker, competitive location models consider the loca-
tion of facilities that are under the jurisdiction of more than one decision maker. 
The economist Hotelling (1929) was the first to introduce competition into loca-
tion models. His results stood unchallenged for fifty years, until d’Aspremont et al. 
(1979) corrected an inconsistency that invalidated Hotelling’s main result. Nonethe-
less, this has not diminished the originality and importance of the original contribu-
tion, and it is also the reason why the present paper reviews Hotelling’s contribution 
and its impact on location models with multiple decision makers.

Arguably, the best way to deal with competitive location models is to assess their 
components. Most prominent among them are the number of decision makers in-
volved, the pricing policy, the rules of the game, and the behavior of the customers. 
Eiselt et al. (1993) provide a taxonomy and annotated bibliography that includes 
these features. Rather than restating their description, I will only very briefly sum-
marize the main features. The most prominent pricing policies include mill pricing, 
where the price at each branch is fixed by the decision maker and customers provide 
for their own transportation, spatial price discrimination, where the firm sets the 
price a customer will be charged for the goods that are delivered to his place, and 
uniform delivered pricing, in which case all customers will receive the good for the 
same price (which typically means that customers located closer to a branch of the 
firm will subsidize those farther away). Other policies such as zone pricing may 
also be investigated.

The rules of the game are more complex. They essentially include rules that 
govern the process of decision making. In particular, they specify whether the firms’ 
decisions are made sequentially or simultaneously. In case of pure location competi-
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tion, i.e., the case in which all firms compete only in terms of locations, a sequential 
process would indicate that, say, firm A locates first, followed by firm B, then firm 
C, and so forth. This location with foresight is discussed in Chap. 8 of this volume. 
The distinguishing feature of the sequential location process is its asymmetry. The 
first firm, being aware of the fact that other firms will locate after it has chosen 
locations for its own branches, will take this knowledge into account and use what 
Teitz (1968) called “conservative maximization.” Subsequent firms will also at-
tempt to guard themselves against firms that follow but, at the same time, will take 
the locations of already existing firms into account. This chapter deals exclusively 
with simultaneous location.

The situation becomes more complex when variables other than location exist. 
Many authors, including Hotelling (1929) in his seminal work, allow the firms to 
not only choose locations for their branches, but also to determine their prices. 
One possibility is to require that all firms make their choices simultaneously. Most 
authors, however (including Hotelling) use a two-stage process: in the first stage, 
all firms simultaneously choose their respective locations. Once these choices have 
been made, they are revealed to all firms. In the second stage, all firms then simulta-
neously determine the prices they want to charge. This sequence has been chosen as 
the much more permanent location decision comes first, followed by the price deci-
sion, which can easily be adjusted or modified later on. Furthermore, when making 
a decision in Stage 1, firms will anticipate the price competition in Stage 2. Such a 
game will be solved by backward recursion: for each pair of locations, the two firms 
will independently determine their optimal prices. Given those prices, firms will 
then—again independently—determine their optimal locations.

One question that arises rather naturally in all of these models is whether or 
not the set of locations that arises from such a process is stable. The concept ap-
plied here is the Nash (sometimes also referred to as Cournot-Nash) equilibrium. 
Loosely speaking, a Nash equilibrium is a situation in which none of the firms has 
an incentive (meaning can improve its objective) by unilaterally changing any of 
its parameters, be it location, price, quantity, or any of the other variables in the 
model. Most papers, especially in the economic literature, investigate whether such 
an equilibrium exists in the model under considerations, and, if so, if it is unique. 
While simple Nash equilibria can be determined in pure location competition, the 
two-stage “first location, then price” game requires a refinement of the equilibrium 
concept. The optimality concept that applies in such a procedure is Selten’s (1975) 
subgame perfect Nash equilibrium.

In addition to locating facilities such as warehouses, retail stores, fast food out-
lets, gas stations, or other facilities of this nature, it has also been suggested to use 
location models for seemingly unrelated problems such as the design of brands, 
the determination of positions for political candidates, or the allocation of tasks to 
employees. The main features of these nonphysical location models are described 
below.

First consider the design of products, which is typically referred to as the brand 
positioning problem. In this application, we first define a continuous “feature 
space,” in which each dimension represents a specific feature of the class of prod-
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ucts under consideration. For example, in the case of automobiles these features 
could include horsepower, maximal speed (or, alternatively, acceleration), and gas 
mileage. Clearly, it is required that each feature under consideration be quantitative. 
Also note the correlation between some of the factors, e.g., horsepower and gas 
mileage. The products are then also mapped into space according to their features. 
This is followed by the mapping of (potential) customers, who are also mapped 
into the feature space by their respective ideal points, i.e., the product features they 
would like best. It then stands to reason that a customer will evaluate a product 
based on the distance between his own ideal point and the location of the product. 
The reason is that, just like physical distances, the distance between potential cus-
tomer and product in a feature space expresses the disutility of a customer for that 
product. And, continuing that line of argument, a potential customer will choose 
the product that is closest to his own ideal point. One problem associated with this 
model is the existence of features such as price and gas consumption, which have 
an ideal point that is zero (or, if you will, negative infinity). Anderson et al. (1982) 
suggest an “outside game,” a construct that allows the meaningful inclusion of such 
features in the model.

Another somewhat similar application is found in the area of political science. 
While the spatial analysis of political scenarios is not at all new—consider the clas-
sical contributions by Downs (1957) and Black (1958)—advances in location anal-
ysis helped tremendously to improve modeling and the solution of political models. 
Models of this nature first construct an “issue space,” an n-dimensional space in 
which each dimension represents a political issue that is deemed relevant in an elec-
tion. One of the key problems of the analysis is the quantification and measurability 
of issues, such as domestic policies, economic policies, etc. Candidates and likely 
voters are then mapped into this space by way of their ideal point (for the voters) 
and their stand on the issues (for the candidates) respectively, and assuming that—
following some metric—voters will vote for the candidate closest to their own ideal 
point. That way, it is possible to determine the number of voters that will vote for 
each of the candidates and, more importantly, how each of the candidates should 
redefine his stand on the issues so as to maximize the number of votes he will ob-
tain. In addition to the aforementioned difficulty of measurability there is also the 
determination of the ideal points of millions of voters. In their seminal contribution 
on the subject, Rusk and Weisberg (1976) used more or less well-defined groups 
such as “policemen,” “urban rioters,” “Republicans,” “Democrats,” and others to 
determine their average ideal point and, with the help of the variance determined by 
a sample, define a “cloud” around this ideal point that will then represent the voters 
in this group. The authors get around the problem of measurability of the axes by 
applying a multidimensional scaling technique (see, for example, Kruskal 1964). 
Additional contributions can be found in the other papers in the edited volume by 
Niemi and Weisberg (1976). It is also worth pointing out that one of the few features 
of this model that makes the political positioning simpler than the Hotelling’s origi-
nal scenario is the absence of prices in the model.

The workload allocation problem follows a similar logic. Here, tasks and em-
ployees are mapped into an ability space that expresses their requirements and abili-
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ties, respectively. The idea is to allocate tasks to employees so as to minimize the 
distance between employee and task, matching the requirements of the tasks and 
the employees’ abilities as closely as possible. A close match may be desired to 
increase job satisfaction and hence avoid high job turnovers, absenteeism, and other 
work-related problems. Again, some of the main problems related to these applica-
tions are the quantifications of the abilities and the determination of an appropriate 
distance function. Readers are referred to Schmalensee and Thisse (1988) for their 
survey on applications in feature spaces and ability spaces. For a recent reference, 
see Eiselt and Marianov (2008a).

The contributions surveyed in this paper all have one feature in common: they all 
emphasize the analysis of equilibria in competitive location models. Other aspects 
of competitive location models are dealt with in Chaps. 8 and 9 of this volume.

7.2 � Hotelling (1929): Competitive Location on a Linear 
Market

Hotelling starts his paper with a critical evaluation of past contributions. Of interest 
are particularly the embedding of his own work into the framework provided by 
Bertrand and Cournot. The discussion of a duopoly dates back to Cournot (1838). 
In his model, Cournot considers a duopoly with both firms competing on the same 
market with the same product. The variable costs have been normalized to zero (we 
may assume that they have been deducted from the price that the firms charge), and 
the two firms face a common demand function. The duopolists compete in quanti-
ties and the resulting solution is a Cournot-Nash equilibrium. Bertrand (1883), on 
the other hand, has duopolists competing in prices. Such competition is very in-
tense, as even a slight undercutting will revert the entire market to the cheaper firm. 
While Hotelling’s contribution is in the footsteps of these two (and other) predeces-
sors, its novelty is that he includes competition in space, while his predecessors’ 
models were set in a spaceless economy.

Hotelling’s basic model includes a space in the form of a closed line segment of 
length ℓ. It is worth noting that Hotelling justified the choice of a line segment by 
referring to it as “main street” or a stretch of a transcontinental railroad. Later au-
thors have claimed that Hotelling’s “justification” of the “linear market” was based 
on “two ice cream vendors on a beach,” an example never envisaged by Hotelling 
but put forth by later contributors.

Customer demand is distributed uniformly along the line at a unit density, so 
that the total demand equals ℓ. The demand is assumed to be completely inelastic. 
Two competing firms face the task of simultaneously locating one facility each 
and setting the price for a homogeneous product. Both firms use mill pricing, so 
that customers have to drive to the facility of their choice, pay for the product at 
the facility, and then ship it home: their full price includes the mill price charged 
at the facility and the transportation costs for shipping the good from the facility to 
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their home. Given a homogeneous (standardized) good, customers are indifferent 
between purchasing the good from either facility, so that they will choose the facil-
ity from which they can obtain the good for the lower full price, regardless of how 
distant the closest facility is. The transportation costs are assumed to be linear in the 
distance. The two firms are assumed to have equal cost functions, which have been 
normalized to zero.

Formally, define the market as a line segment of length ℓ and assume that firm 
A is located a units from the left end of the market, while firm B is located at a 
distance of b from the right end of the market. The only condition is that firm A is 
located to the left of firm B (which does not restrict generality, as this situation, if 
violated, can always been achieved by exchanging the names of the facilities). The 
facilities charge mill prices of pA and pB, respectively, and the unit transportation 
costs are c. Figure 7.1 shows the present situation. Each of the Y-shaped functions 
shows the full price (the mill price plus transportation costs) customers have to pay 
if they purchase from the facility in question: the stem of the “Y” is the mill price, 
and the slope of the two branches of the “Y” is the unit transportation cost c. Given 
that the good is homogeneous, customers will purchase from the source with the 
lower full price, i.e., the lower envelope of the branches of the two “Ys.” This re-
sults in a marginal customer X (Hotelling did not use the expression), who is defined 
as a customer indifferent between purchasing from firm A or from firm B. Clearly, 
all customers to the left of the marginal customer can buy the good more cheaply 
from firm A, while those to the right of X can purchase the good more cheaply from 
firm B. This will define firm A’s market area from the left end of the market to the 
marginal customer, while firm B’s market area extends from the marginal customer 
to the right end of the market.

Authors who followed Hotelling usually refer to the region to the left of A as “A’s 
hinterland,” the region to the right of B as “B’s hinterland,” and the area between 
firms A and B as the “competitive region.” (It appears that Smithies (1941) was the 
first author to use these terms.) The two hinterlands are of length a and b, and the 
competitive region is divided by the marginal customer X into pieces of lengths x 
and y, respectively. Formally, we have

� (7.1)a + x + y + b = �,

Fig. 7.1   Price functions of 
duopolists on a line segment
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and the marginal customer X is defined as a place at which prices are equal, i.e., 
pA + cx = pB + cy with unit transportation costs c. Solving this system of two equa-
tions for x and y, we obtain

� (7.2)

and

� (7.3)

so that the profits are

� (7.4)

and

� (7.5)

For any given values of ℓ, a, b, and πi, i = A, B, iso-profit lines can be plotted in 
pA, pB space as hyperbolas. Since each duopolist will adjust his own price so as to 
maximize his profit, we can take partial derivatives

� (7.6a)

or

� (7.6b)

and

� (7.7a)

or

� (7.7b)

(Note that ∂2πA

∂p2
A

< 0  and ∂2πB

∂p2
B

< 0,  so that these conditions determine a local maxi-

mum).
The expressions (7.6b) and (7.7b) are usually (although not by Hotelling) re-

ferred to as reaction functions of the two firms. In particular, if firm B were to set 
any price pB, then firm A would react by setting its price to a level specified by rela-
tion (7.6b). Similarly, firm B will react by using relation (7.7b) to any price pA set 
by its competitor A.

x = 1/2[� − a − b + 1
c
(pB − pA)]

y = 1/2[� − a − b + 1
c
(pA − pB)],

πA = pAqA = pA(a + x) = 1/2(� + a − b)pA + pB

2c
pA − 1

2c
p2

A

πB = pBqB = pB(b + y) = 1/2(� − a + b)pB + pA

2c
pB − 1

2c
p2

B.

∂πA

∂pA

= 1/2(� + a − b) +
pB

2c
− 1

c
pA = 0

p∗
A = 1/2c(� + a − b) + 1/2pB

∂πB

∂pB

= 1/2(� − a + b) +
pA

2c
− 1

c
pB = 0

p∗
B = 1/2c(� − a + b) + 1/2pA.
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Solving for the prices pA and pB results in the equilibrium prices

� (7.8a)

and

� (7.8b)

and the quantities at equilibrium are

� (7.9a)

and

� (7.9b)

This can best be explained graphically. Hotelling’s original example involves val-
ues of ℓ = 35, a = 4, b = 1, c = 1, and it is shown in Fig. 7.2. Given his numerical 
example, the optimality conditions result in the reaction functions p∗

A = 19 + 1/2pB

and p∗
B = 16 + 1/2pA, respectively. Solving the two linear equations results in the 

equilibrium prices p̄A = 36 and p̄B = 34.

p̄A = c

(
� +

a − b

3

)

p̄B = c

(
� −

a − b

3

)
,

q̄A = a + x = 1/2

(
� +

a − b

3

)

q̄B = b + y = 1/2

(
� −

a − b

3

)
.
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The lines with short dashes define a “corridor” between the lines pB ≤ pA + 30 and 
pB ≥ pA − 30. This corridor is the set of price combinations in which the price differ-
ence is no larger than the cost of shipping one unit from one facility to the other. In 
other words, it is the area within which neither competitor cuts out its opponent. The 
solid lines represent the reaction functions that result from the optimality condi-
tions. The steeper line is firm A’s reaction function, while the flatter line is firm B’s 
reaction function. The broken line with long dashes denotes the set of price combi-
nations that result in πA = 648 (the profit that results from the equilibrium prices at 
point E, viz., pA = 36 and pB = 34). Finally, the broken and dotted line is the set of 
price combinations that result in πB = 578.

Hotelling then describes a procedure in which the two firms start with non-equi-
librium prices that they subsequently adjust in sequential fashion. For simplicity, 
the two reaction functions are shown again in Fig. 7.3, where E again denotes the 
equilibrium point. Suppose now that the two firms charge prices so as to realize 
point Q. Given this combination of (below equilibrium) prices, either of the firms 
has an incentive to change (here: raise) its price. Suppose that firm A will react first. 
Firm A will assume that, at least for some time, its competitor will not react. This 
assumption was later referred to as “zero conjectural variation” by Eaton and Lipsey 
(1975). Furthermore, firm A will act without any foresight and consequently move 
from point Q to the point on firm A’s reaction function, which is point R. Once this 
has been accomplished, firm B will react and move to the point on its reaction func-
tion, viz., point S. Then firm A reacts again by moving to point T, and so on. The 
price adjustment from points in any of the three other cones is similar. Note also 
the similarity of the adjustment process here to that in the famed cobweb theorem 
in economic theory.

At this point, Hotelling remarks in a footnote that the above conclusions are true 
only as long as the difference in price does not exceed the cost of shipping one unit 
from A to B or vice versa. Formally, the condition is

� (7.10)

If this condition is not satisfied, the equilibrium is not point E but some other point. 
It is important to note that Hotelling does indeed realize that his computations are 

|pA − pB | ≤ c(� − a − b).

Fig. 7.3   Price adjustments 
over time
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valid only for a certain range of prices (price differences, to be exact). However, he 
does not elaborate. Hotelling’s result, the clustering of the duopolists at the center 
of the market has also been referred to as the principle of minimal differentiation (in 
reference to product design and the political model introduced in the beginning of 
this paper) or Hotelling’s law.

An interesting case of cooperation results. Starting again at the equilibrium point 
E in Fig. 7.2, assume that firm A is willing to forego profits in the near future and 
moves out of point E by raising its price, and moving to the right. Behaving optimal-
ly, firm B will again move towards its point on its reaction function by increasing 
its price as well. As long as firm A’s price increase was modest, the point that will 
be realized will be located on firm B’s reaction function to the left of point K. This 
point does provide both firm A and firm B with higher profits than at equilibrium. 
However, the solution is inherently unstable (similar to the well-known Prisoner’s 
dilemma), as firm A has an incentive to increase its profit even more by moving 
onto its own reaction function. Such a move will, however, result in sequential price 
adjustments that ultimately lead back to the equilibrium solution E.

Part II of Hotelling’s paper deals with a variety of extensions of his basic model, 
as well as alternative explanations. He first notes that the profits at equilibrium are

� (7.11a)

and

� (7.11b)

Given that, it is apparent that the profit of both firms increases with increasing 
unit transportation costs c. In other words, rather than promoting better means of 
transportation, the two firms would fare better if transportation were to be made 
more difficult. The reason is that if transportation were very difficult, each firm 
could behave as a local monopolist and charge monopolist’s prices. It is important 
to point out that while higher transportation costs as applied to shipments from the 
firms to their customers do, in fact, increase profits, they will have a detrimental 
effect on the variable costs as they also apply to shipments from the firms’ suppliers 
to the firms. These costs were neglected in the model. This means that the argument 
regarding the parameter c is better explained by the existence of tariffs.

The paper then examines the case in which one firm’s location (without loss of 
generality assume this is firm A) has fixed its location and firm B now chooses its 
own location. Given its profit at equilibrium as shown in relation (7.11b), it is ap-
parent that firm B’s profit increases with increasing value of b. In other words, it 
will pay firm B to locate as close to its competitor as possible. This is again the “ag-
glomeration result” (or “principle of minimum differentiation” as it became known 
later). However, Hotelling again notes the problem that occurs when the two facili-
ties are sufficiently close so that one firm can cut out its opponent.

π̄A = 1/2c

(
� +

a − b

3

)2

π̄B = 1/2c

(
� −

a − b

3

)2

.
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Another interesting result relates to the total profit of the two firms, which are, 
say, governed by a central planner. Formally, we have

� (7.12)

indicating that it would benefit the planner to have the two facilities locate at sites 
that are as different from each other as possible, i.e., maximizing a − b.

The next few paragraphs of the paper examine the relationship between the so-
lution arrived at by profit maximization as opposed to the solution that optimizes 
some social objective. The social objective chosen is the minimization of total trans-
portation costs. For simplicity, consider the left end of the market between 0 and 
A an interval of length a. The transportation costs in this interval for all shipments 
to the facility at point A are

∫ a

t =0 ctdt = 1/2ca
2. Applying this result to all intervals, 

viz., those from 0 to A (an interval of length a), from A to the marginal customer X 
(an interval of length x), from the marginal customer X to facility B (an interval of 
length y), and finally the interval from facility B to the end of the market (an interval 
of length b), results in total transportation costs

� (7.13)

Given fixed locations of the facilities A and B, the values of a and b are fixed as 
well, and so is x + y. Then x2 + y2 is minimized, if x = y. This, in turn, is only sat-
isfied, if pA = pB, which, while entirely possible under the direction of a central 
planner or commissar, is an outcome that is highly unlikely under competition. It 
does, however, indicate that social planners will prefer equal prices charged at the 
facilities. Assume now that a ≠ b. Without loss of generality, let a > b, which, given 
individual profit maximization, implies that at equilibrium, p̄A > p̄B , see relation 
(7.8a). This means that some customers in the competitive region, although they 
are located closer to facility A, will make their purchases and resulting shipments 
from facility B. This results in higher transportation costs as if they were to make 
their purchases at facility A, which renders this solution not “socially optimal.” In 
fact, Hotelling states, “Consequently some buyers will ship their purchases from 
B’s store, though they are closer to A’s and socially it would be more economical 
for them to buy from A.” This clearly indicates Hotelling’s allocation rule assumes 
that customers purchase their goods from the source that offers the lowest full price 
(even though he may not advocate this practice). This is worth pointing out since 
some authors use the term “Hotelling’s allocation” to mean the allocation of a cus-
tomer to his closest facility, which is not correct.

If the facilities can be moved at will, the social optimum again minimizes the 
function shown in (7.13) with a, b, x, and y all variable and the single constraint 
that a + b + x + y = ℓ plus the nonnegativity constraints. At optimum, all variables 
assume equal values ( a = b = x = y = ¼ℓ), so that the two facilities are located at the 
quartiles of the market. The highest transportation cost paid by any customer in this 

πA + πB = c

[
�2

(
a − b

3

)2
]

,

T T C = 1/2c
(
a2 + b2 + x2 + y2) .
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arrangement is then ¼ℓ. In contrast, competition will have the two facilities cluster 
at the center of the market (Hotelling again notes the “unimportant qualification” 
that deals with the possibility of one competitor cutting out its opponent), so the 
highest possible full price is ½ℓ. The author uses this as an example of “wasteful-
ness of private profit-seeking management.”

Another extension deals with additional firms. In the case of individual profit 
maximization, Hotelling notes that the third firm will locate “close to A and B, but 
not between them.” In some sense, this anticipates the analyses performed later by 
Lerner and Singer (1937) and subsequently by Eaton and Lipsey (1975). For more 
facilities, Hotelling asserts that clustering will occur, but no specifics are given. The 
case of social optimization for three facilities is again easy: the facilities locate sym-
metrically at 16�, 3

6�, and 56�, respectively.
Hotelling then extends the range of applicability of his model from scenarios 

that involve the physical transportation of items to multidimensional spaces (today 
referred to as feature spaces), in which each dimension symbolizes a (quantifiable) 
feature of (a class of) products. He uses one dimension to distinguish between dif-
ferent brands of cider, and the attribute of the cider that identifies the particular 
brand is its sweetness. What used to be facilities in the competitive location model 
discussed above now represents brands of cider. Customers are again distributed 
along the line segment, such that each customer is represented by its “most preferred 
point” (or “ideal point”) on the line, such as the point that represents the sweetness 
of cider that this customer desires most. The distance between a customer’s ideal 
point and a brand is then a measure that expresses the customer’s disutility associ-
ated with buying and consuming that particular brand of cider.

The results of the preceding analysis, viz., the clustering in case of individual 
profit maximization, then imply “excessive sameness.” Hotelling credits this in part 
to standardization and economies-of-scale in the production process, but also to 
the results derived in this study. The main lesson for a firm that intends to enter the 
market with a new product is not to make the product identical to existing products 
(in which case Bertrand price competition would ensue, driving down prices), but 
design a product that differs slightly from existing products by locating the brand in 
feature space close, but not too close, to existing brands. Hotelling’s assertion that 
the similarities of political platforms of Republican and Democratic parties (which 
are again represented by their main issues in issue space) can also be attributed 
to the effects studied here are not valid per se, as political models do not involve 
prices, thus reducing the model to a much simpler version. Some remarks regarding 
political models are provided in the next section in this chapter as well as Chap. 19 
in this volume.

Some further generalization and extensions are discussed. First, Hotelling af-
firms that demand densities other than the uniform demand distribution used in his 
analysis provide “no essential change in conclusion.” In the case of buyers being 
located in a two-dimensional plane, the market areas of the two firms are divided by 
a hyperbola. In case of more than two facilities, the market areas will be bounded by 
arcs of hyperbolas. In multidimensional spaces (such as feature spaces), the demand 
density is typically not uniform and it occurs within a finite bounded region. Here, 
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not all facilities need to belong to the same firm. There is a general tendency among 
outsiders to move inward and approach the cluster, which is again the agglomera-
tion result of this paper. This result is asserted, but not proven. For more on market 
areas and their use in location planning, see the Chaps. 18 and 19 in this volume.

An important extension concerns the elasticity of demand. So far, it has been 
assumed that firms offer a product for which the demand is fixed, i.e., completely 
inelastic. While this may occur in the case of essential goods, it is highly unlikely 
for most products. One of the central questions is whether the price or the quantity 
should be a variable. So far in the analysis, the quantities have been restricted to 
the constant ℓ. Given elastic demand, this limitation no longer applies and prices 
or quantities can be used as independent variables. Hotelling asserts that even with 
elastic demand, the results derived above will remain “qualitatively true,” even 
though there will be less of a tendency to cluster.

7.3 � The Impact of Hotelling’s Contribution

Hotelling’s original paper has sparked controversy, as well as a flurry of papers 
written about his model and similar scenarios. In their survey and taxonomy, Eiselt 
et al. (1993) already list about a hundred papers on the subject. Since then, at least 
another hundred contributions have been published. It is possible to broadly distin-
guish between two types of contributions: those that deal with the existence of Nash 
equilibria, and those that examine von Stackelberg solutions. There is no doubt that 
the impact of Hotelling’s paper has been felt by both streams. However, this chap-
ter will only survey those papers that deal with Nash equilibria; von Stackelberg 
solutions are examined in detail in Chaps. 8 and 9 of this volume. This chapter will 
follow the developments of those works that can be considered continuations and 
refinements of Hotelling’s work. Most contributions in this area are made by econo-
mists, and their tool of choice is game theory.

Those who followed in Hotelling’s footsteps generalized his model in various 
directions. These directions include (but are by no means limited to)

•	 different spaces
•	 n > 2 facilities,
•	 different assumptions about competitors’ behavior
•	 different transport cost functions and different pricing policies,
•	 different assumptions concerning customer behavior,

and other generalizations. A few of the many milestones are highlighted below.
Probably the earliest contribution to deal with Hotelling models is put forward 

by Lerner and Singer (1937). The authors point to Hotelling’s assumption of fixed 
demand and the customers’ willingness to pay any amount to satisfy their demand as 
one of the main deficiencies of his model, particularly when applying his argument 
to favor a social/socialist solution as more efficient than a capitalist solution. The 
authors thus introduce a “demand price,” defined as the highest amount customers 
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are prepared to pay to satisfy their demand. The authors also criticize Hotelling’s 
assumption that stipulates that a facility planner uses more information when choos-
ing a location than when setting a price. The reason is that the location decision in 
stage 1 of the two-stage “first location, then price” game is made with the assump-
tion that the opponent’s price will be what results from a long line of price adapta-
tions. However, in stage 2 this knowledge is no longer assumed to exist. In contrast, 
Lerner and Singer assumed that a firm’s planner will not react when his opponent 
moves closer and takes a part of his customers, but he will react when undercut so 
that all of his customers are not supplied by his opponent. This is a concept, a vari-
ant of which Eaton and Lipsey (1975) referred to as “zero conjectural variation.” 
This assumption leads to locations at about 3/8 away from the respective ends of the 
market. A further analysis in the paper assumed again that a firm, whose competitor 
is in the process of relocating, does not react except if undercut. The last part of the 
paper dealt with a Hotelling model with fixed and equal prices, resulting in pure 
location competition. The authors identified a large number of equilibrium locations 
for n ≥ 2 facilities. Two competing firms will have a unique equilibrium solution by 
clustering at the center of the market; this is the “minimum differentiation” result 
Hotelling envisaged for his own model. The case of three firms is interesting: the 
two peripheral firms crowd in on the firm between them in order to gain a higher 
market share until the central firm has no market share left. It then “leapfrogs” to 
the outside, becomes a peripheral facility itself, and starts moving inwards as well. 
Teitz (1968) referred to this later as “dancing equilibria,” which really means that 
this case has no equilibrium. For four or more firms locating on the linear market, 
their locations are at 1

2�n� , 3
2�n� , . . . , 2�n�−1

2�n� .Finally, in their analysis of the model 
with price discrimination, the equilibrium locations are at 1

2n
, 3

2n
, . . . , 2n−1

2n
, which 

happens to be socially optimal in that it minimizes the total transportation costs. An 
interesting feature of this result is that a customer closer to a facility will have to 
pay more than one that is more remote from a firm. The reason is that the level of 
competition close to a firm is fairly low, which increases the price.

Smithies (1941) continued where Lerner and Singer (1937) left off. His particu-
lar interest were the assumptions concerning the behavior of the competitors. In 
particular, Smithies did not believe that competitive price cutting was a reasonable 
policy, as it would lead to an all-out price war. Given a price-quantity relation, his 
model included three cases that exhibited different levels of cooperation. In the 
first case, facilities would charge the same price and would locate symmetrically. 
This “full quasi-cooperation,” as the author called it. This case includes little, if any 
competition, and it is not surprising that the results would be the same as if a mo-
nopolist were to locate two plants. The second behavioral assumption was for both 
firms to charge identical prices but compete in locations. Finally, case 3 exhibited 
“full competition” in the sense that both firms independently optimized their prices 
and locations. The results were examined according to their dependence on freight 
rates and changes in marginal costs. Kohlberg and Novshek’s (1982) contribution 
followed Smithies in many respects in that each relocating facility would assume 
that its competitors would keep their locations and prices at the present level, except 
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if undercutting occurred, in which case the firm that was undercut would reduce its 
price to its marginal cost. The main result was that there exists a certain length of 
market below which there is no equilibrium, while in case of longer markets, there 
exists a unique location-price Nash equilibrium for which the authors provide a 
necessary and sufficient condition. Along similar lines is the analysis by Stevens 
(1961), who was probably the first author to use matrix games for a discretized ver-
sion of Hotelling’s game. Given elastic demand similar to Smithies, the result was 
still central agglomeration.

Another generalization concerns locations on a circle. While the space may ap-
pear somewhat contrived, the results indicated not only the fragility of Hotelling 
equilibria, but also some of the special features of the linear market that are lost on 
a circle: hinterlands, for instance, are specific to linear markets (and tree networks, 
for that matter), but they do not exist on circles or on general networks. On a circle, 
multiple equilibria exist for all cases with two or more facilities, given rectangular 
demand density functions. Finally, some locational patterns on a disk were investi-
gated regarding their equilibrium status. Based on simulation attempts, the authors 
conjectured that there is no equilibrium for n > 2 facilities.

The aforementioned contribution by Eaton and Lipsey is one of the papers most 
frequently referred to in the context of Hotelling’s result, even though their model 
is quite different from Hotelling’s contribution. Their work first restated the results 
obtained by Lerner and Singer (1937) before performing a variety of sensitivity 
analyses on the problem. Their first model was Hotelling’s linear market with uni-
form demand density and the zero conjectural variation, i.e., no foresight. Model 2 
was the same as Model 1, but with no zero conjectural variation. It results in mini-
max strategies, and as such anticipates the results by Prescott and Visscher (1977) 
that are presented in Chap.  8 of this volume. Finally, their third model is again 
similar to Model 1, but with the assumption of uniform demand density relaxed. 
The result for two firms was similar (the facilities will cluster at the median of the 
density function), and there was no equilibrium for three firms, and there may not 
be equilibria for more than three firms either, given a condition on the demand func-
tion. In particular, the authors proved that for an equilibrium to exist, it is necessary 
that the number of firms on the market is no more than twice the number of modes 
in the demand distribution.

The authors then tackled the much more complex problem of equilibria in two-
dimensional space. Again, they avoided boundary problems by considering a disk. 
Due to the difficulty of the problem even with fixed and equal prices, they investi-
gated a number of patterns that are potential candidates for equilibria and determine 
whether or not they are indeed equilibria. The first pattern has facilities located on 
a circle around the center of the disk. This pattern self-destructs immediately as 
soon as individual firms (re-) optimize their location. Pattern 2 is similar, except 
with one facility at the center of the disk. This pattern also turn out to be unstable. 
Finally, pattern 3 is the Löschian honeycomb pattern that consists of hexagons. (De-
tails concerning Lösch’s work are found in Chap. 20 of this volume.) This pattern 
also self-destructs immediately as individual firms optimize their locations, thus 
the authors conjectured that there exists no equilibrium pattern on a disk with n > 2 
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facilities. (The case of n = 2 facilities is easily dispensed of: the two facilities cluster 
at the center of the market, a simple pairing observed on the linear market for n ≥ 4 
facilities.) For a discussion of the case of competition in bounded two-dimensional 
space, readers are referred to Chap. 19 of this volume.

Probably the most important contribution following Hotelling’s work is the short 
paper by d’Aspremont et al. (1979), published fifty years after the original work 
appeared. It first pointed out an error in Hotelling’s original work that resulted in 
the wrong conclusion: not only does the duopoly model described by Hotelling not 
have an equilibrium at the center of the market (central agglomeration), but the 
model does not have an equilibrium anywhere. Hotelling was aware that his results 
would need some refinements (see his footnote referred to above), but he was not 
aware of the severity of the consequences. Actually, the equilibrium he computed 
for facilities that are located closely together is wrong. However, d’Aspremont et al. 
(1979) were not the first to recognize that there were problems with Hotelling’s 
analysis. To quote the earlier work by Prescott and Visscher (1977):

The difficulty with this solution concept, as others have noted (Smithies 1941, Eaton 1976, 
and Salop 1979) is that when locations in Nash are sufficiently close, Nash equilibrium 
prices will not exist.

Without resorting to formalities, the lack of an equilibrium can readily be seen by the 
following arguments. Consider any locational arrangement that has the two facilities 
not clustered together. First of all, there is an incentive for firm A to move closer to 
its opponent until the right branch of its Y-shaped full price function coincides with 
that of firm B. Similarly, firm B has an incentive to move to the left until the left arm 
of its Y-shaped full price function coincides with that of firm A. Once that has been 
achieved (note that there is no clustering of the facilities yet), the firm with the lower 
mill price could lower its price by an arbitrarily small amount and, in doing so, be 
cheaper on the entire market. In doing so, its profit would jump up, meaning that the 
cheaper facility certainly has an incentive to undercut its opponent. The more ex-
pensive facility could now react by lowering its price so as to undercut its opponent 
(which is Bertrand’s price competition). Once prices have reached a very low level, 
it would benefit either of the two facilities to move significantly far away from its 
opponent so as to enjoy a local monopoly and the associated positive profits.

D’Aspremont et al. (1979) used a more formal argument. The authors first proved 
that any equilibrium if it exists at all, it either has a + b = ℓ (both facilities locate at 
the center at the market), in which case both prices are equal to zero (the Bertrand 
solution), or a + b < ℓ, in which case the price difference must satisfy

� (7.14)

Condition (7.14) expresses the requirement that the difference in prices is less than 
the cost required to ship one unit from one facility to another. If this condition were 
violated, it would imply that the lower-price facility is able to cut out its opponent 
and capture the entire market. Clearly, this cannot be an equilibrium solution as the 
higher-priced facility would be left without a zero profit that it could increase by 
undercutting its opponent in turn.

|p̄A − p̄B | < c(� − a − b).
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We are now able to present a formal expression for the existence of an equilib-
rium. Recall that the equilibrium profits were determined in relations (7.11a) and 
(7.11b) as

An equilibrium can then only exist if and only if a firm’s equilibrium profit is larger 
than the profit it would obtain if it were to slightly undercut its opponent by some 
small value ε. If for instance, firm A were to undercut firm B, then its profit would 
be pAℓ, as it captures the entire market. Assuming that firm A undercuts firm B 
by setting its price to pA = pB − c( ℓ − a − b) − ε with some ε > 0, while firm B 
charges its equilibrium price p̄B specified in relation (7.8b), firm A’s profit would 
be πA = [p̄B − c(� − a − b) − ε]�.Clearly, an equilibrium can only exist if under-
cutting does not result in a higher profit than the equilibrium profit. Formally, an 
equilibrium will exist, if π̄A ≥ πA, or, equivalently,

Applying some standard algebraic transformations and repeating the process for 
firm B, undercutting firm A, we obtain the necessary and sufficient existence condi-
tions for equilibria as

� (7.15a)

and

� (7.15b)

Note that for symmetric equilibria a = b, so that the conditions (7.15a) and (7.15b) 
reduce to a = b ≤ ¼ℓ. This means that the condition requires the two facilities be-
ing located outside the first and third quartiles, which is, of course, not satisfied by 
Hotelling’s “central agglomeration” result.

The authors continued to examine a model that is identical to that investigated by 
Hotelling, except that it uses quadratic transportation costs of the type c(distance)2. 
While physical transportation is unlikely to exhibit such cost function, models with 
nonphysical spaces very well may. The result is not only that this model does have 
a unique equilibrium, but that at equilibrium, we have maximum (rather than mini-
mum) differentiation with both firms locating at the respective ends of the mar-
ket. This is but one indication of the instability of Hotelling models in general. 
This point was driven home even further by Anderson (1988), who considered a 
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Hotelling model with a linear quadratic transportation cost function of the type 
c1(distance) + c2(distance)2. This type of cost function was first introduced by Gab-
szewicz and Thisse (1986). With this cost function, there exists an equilibrium only 
if c1 = 0, i.e., the function has no linear part at all, regardless how small. However, 
for certain pairs of locations with the duopolists located close together, there is a 
price equilibrium. In case only pure strategies are allowed in stage 1 but mixed 
strategies are permitted in stage 2, an equilibrium exists only if the transport costs 
are “sufficiently” convex as expressed by the relation of parameters a and b. The 
Hotelling model with linear-quadratic transportation costs was picked up again by 
Hamoudi and Moral (2005).

Shaked (1982) considered a mixed strategy version the Hotelling model with 
fixed and equal prices and three competitors. Customers were uniformly distrib-
uted on the line. Following the result by Dasgupta and Maskin (1986), the solution 
would be doubly symmetric: both firms use the same mixed strategies, and the 
strategy is symmetric about ½ℓ. In particular, firms avoid locations in the extreme 
quartiles and choose locations instead in the central half of the market with equal 
probability. Osborne and Pitchik (1986) followed this line of investigation. Their 
model has fixed and equal prices, allows nonuniform demand distributions, and let 
the firms use mixed strategies. The authors first noted the well-known sensitivity of 
the model. For instance, for n ≥ 5 facilities, the model does not have an equilibrium 
if the customer distribution is either strictly convex or strictly concave, regardless 
how close the distribution is to uniformity. The main results are: for n  ≥  3, the 
game has a symmetric mixed strategy equilibrium and if the customer distribution 
is symmetric about the center of the market, so is the mixed strategy equilibrium; 
for n = 3, a unique equilibrium exists with one firm at the center of the market and 
the other two firms using mixed strategies for their locations.

The contribution by Kohlberg (1983) is different, as this appears to be the first 
paper that includes factors other than price and location. In particular, Kohlberg’s 
model included not only the transportation cost (here interpreted as travel time), but 
also the time spent waiting at a facility. The waiting time is assumed to be increasing 
with the facility’s market share. The author then proved that, while there is a unique 
equilibrium in the case of duopolists with both of them locating at the center of the 
market, there exist no equilibria for n > 2 facilities. Silva and Serra (2007) picked 
up the model but solved an optimization problem in discrete space; however, they 
do not investigate equilibria.

De Palma et al. (1985) took a different route. In their analysis, they employed 
Hotelling’s original model with locations and prices variable, a linear market of 
length ℓ, and a uniform demand, but their model included n facilities and a random 
utility function that expresses the customers’ evaluation of customer preferences. 
The authors put their model in the context of product placement with n products 
to be located on a line segment that determines the products’ feature. A customer’s 
(dis-) like of a product is expressed as a function of the distance between the cus-
tomer’s ideal point on the line and the product’s location. The main assumption of 
their paper was that products and customers are heterogeneous. In particular, cus-
tomers value purchasing a product according to the function
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where  > 0 denotes the degree of heterogeneity of customer tastes (so that  = 0 
equals homogeneous tastes), and the random variable ε that has a zero mean and 
unit variance. It turns out that heterogeneity in the logit function removes disconti-
nuities in the products’ profit functions.

After first considering only the location and then only the price model, the au-
thors proved that in the location-price model, for n > 2 products and a degree of 
heterogeneity of  < ½cℓ(1–2/n), there is no agglomerated Nash equilibrium, mean-
ing an equilibrium with all facilities locating at the same point. However, if  ≥ cℓ, 
central agglomeration with equal prices is a Nash equilibrium. In other words, large 
values of /cℓ lead to clustering, whereas small values of /cℓ result in dispersion. 
There are no results regarding the existence and the nature of other equilibria. Some 
tests revealed that equilibria may exist for n = 3. In summary, if all customers have 
very similar tastes, then there exists no equilibrium with similar products, while in 
case of very diversified customer tastes, products will tend to be the same. One may 
look at the result from the following angle: if tastes are very similar, then the firms 
have to diversify the products to appeal to different segments of the customer base, 
while in case of significantly diverse tastes, all products can occupy a similar posi-
tion in feature space.

A follow-up of their 1985 paper was provided by De Palma et al. (1987a). The 
assumptions were again a linear market, fixed and equal prices, a linear transporta-
tion cost function, and the same random utility function shown above with  again 
denoting the degree of heterogeneity in customers’ tastes. Numerical computations 
reveal the following results: for /c  <  0.157, no symmetric equilibria exist; for 
/c ∈ [0.157; 1/6], only symmetric dispersed equilibria exist; for /c ∈ [1/6; 0.27], 
agglomerated and symmetric dispersed equilibria exist; for /c  ≥  0.27, only ag-
glomerated equilibria exist. As far as an interpretation goes, consider a competitive 
location model in product (or feature) space. Here, less wealthy customers tend to 
be nondiscriminating, meaning that they tend not to care that much if a product is 
not exactly as they would like it to be. This implies that the value of c is small for 
this group, implying more heterogeneity and a larger value of μ. We can therefore 
associate a large value of μ/c for less affluent groups, while wealthier groups may 
be characterized by a small value of μ/c. The results of this study then indicate that 
less affluent customers with a large μ/c value will end up with products that are very 
similar to each other, while wealthy customers will face a market segment whose 
products are significantly different. This can, for instance, be observed in the auto-
mobile market, though to a much lesser extent today than ten or twenty years ago.

De Palma et  al. (1987b) considered a competitive location model on a linear 
market that uses uniform delivered pricing. Apart from this feature, the usual Hotel-
ling assumptions apply. Given the reasonable assumption that consumers purchase 
the product from the firm that offers the lowest delivered price and assuming that 
the products are perfectly homogeneous, the analysis indicates that there is no lo-
cation—price equilibrium. The authors then changed the assumption concerning 

(random utility) = (valuation of product) − (price) − (unit disutility cost c)

× (distance) + µεi,
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customer behavior. First of all, they assumed that customer tastes are homogeneous 
with a degree μ, which is taken as the standard deviation of the distribution of con-
sumer tastes. This is the same assumption made in their earlier papers. The authors 
then proved that the model has indeed an equilibrium, as long as the degree of het-
erogeneity is sufficiently large, viz., μ ≥ cℓ/8. At that equilibrium, central agglom-
eration occurs. It was also shown that the result generalizes to n firms, in which case 
the existence condition is μ ≥ [( n−1)/n]( cℓ/4). At equilibrium, all firms are clustered 
at the center of the market and the equilibrium prices are independent of the number 
of facilities. Comparing the results with those obtained by De Palma et al. (1985) 
for mill pricing, it turns out that the mill price charged at the facility plus the trans-
portation cost equals the uniform delivered price in this model, and that customers 
close to the facilities (in particular those inside the first and third quartiles) prefer 
mill pricing over uniform delivered pricing. The firms’ profits are identical in both 
cases.

The paper by Labbé and Hakimi (1991) considered a network with customers 
located at the nodes. The delivered prices charged by the firms and paid at the nodes 
depend on the total quantity of the homogeneous good supplied by the duopolists 
at the node. The demand-price function is linear and has a negative slope. The au-
thors use a two-stage procedure: in the first stage, firms choose their locations; in 
the second stage, they determine their production quantities. This feature was quite 
distinct from other contributions that use locations and prices as variables, whereas 
this work considers competition in locations and quantities (which is thus much 
closer to Cournot’s original work, rather than Bertrand’s unstable price competi-
tion). Employing the usual recursion, the authors prove that for any fixed pair of 
locations, the quantity game has an equilibrium. Under a condition that requires that 
it is always profitable to supply any market on the graph with a positive quantity of 
goods, a locational Nash equilibrium exists at the nodes of the graph. If this condi-
tion is not satisfied, the authors provided examples demonstrating that a locational 
Nash equilibrium either does not exist at all, or may exist on the edges of the graph.

The competitive location model investigated by Eiselt and Laporte (1993) in-
cluded three firms, each attempting to maximize its own market share. The demand 
is located at the vertices of a tree. Contrary to the linear market, in which three 
market-share maximizing facilities end up without ever finding an equilibrium, the 
paper outlined under what conditions equilibria exist. In particular, there may be 
an agglomerated equilibrium with all facilities locating at the median of the tree, a 
semi-agglomerated equilibrium with two facilities locating at the median, while the 
third facility chooses an adjacent site, a dispersed equilibrium, in which the three 
facilities locate at three mutually adjacent vertices (one of which is the median), or 
no equilibrium. Loosely speaking, the more evenly the weights are distributed on 
the tree, the more likely it is that an equilibrium exists.

The focus of the contribution by Bhadury and Eiselt (1995) was the usual equi-
librium—no equilibrium dichotomy. The paper proposed a measure that indicates 
not only whether or not an equilibrium exists, but how stable or unstable the solu-
tion is. While the paper demonstrated the computation of the measure in a tree 
network, it applies to all competitive location models. There are two cases to be 
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considered. In the first case, at least one Nash equilibrium exists. The measure then 
determines the effort that is required to convince at least one of the firms to move 
out of its equilibrium location. Clearly, if it takes a large subsidy to make a firm 
move out of its present location, the situation can be considered very stable. On the 
other hand, in case no equilibria exist, a tax for any moves (or, alternatively, moving 
costs) will indicate how much it takes to stop a firm from relocating. If this amount 
is substantial, it indicates that much effort is needed to stop the firms from relocat-
ing, so that the situation is far from an equilibrium and as such is highly unstable. A 
continuous measure of this nature contains much more information than the usual 
existence/non-existence analysis.

Eiselt and Bhadury (1998) considered the problem of reachability of equilibria, 
given that they actually exist. Their space is a tree network with demand occurring 
at the nodes. Two competing firms locate one branch each at the nodes of a tree. 
They charge fixed, but not necessarily equal, mill prices. The authors developed 
necessary and sufficient criteria for the existence of equilibrium locations on a tree. 
Given that equilibrium locations exist, the paper then examined whether or not a 
sequential and repeated relocation procedure that starts at an arbitrary location will 
eventually lead to the equilibrium. The authors first demonstrated that, in general bi-
matrix games with an arbitrary starting point, a Nash equilibrium, even if its exists, 
may not be reached. They then described a “reasonable” optimization procedure. In 
this process, one of the duopolists optimizes his own location, given his opponents 
present location. The assumption is that his opponent does not react, at least not for 
some time, so that the planner can reap the benefit of his own relocation. In the next 
step, the firm that relocated is now fixed at the site it chose and its opponent opti-
mizes his location. This sequential process terminates when repeated reoptimization 
does not change the locations. The main result of the paper was that an equilibrium 
will be reached in this process, provided a proper tie-breaking rule is used. Table 7.1 
summarizes some of the highlights in the analysis of Hotelling models.

Table 7.1   Some of the major contributions to Hotelling’s model
Authors Year Major aspect of the model
Hotelling 1929 The basic model
Lerner and Singer 1937 Hotelling results for n > 2
Smithies 1941 Different behavioral assumptions
Eaton and Lipsey 1975 Equilibria with n > 2, 2-D results
d’Aspremont et al. 1979 Hotelling was wrong, quadratic cost function
Shaked 1982 Firms use mixed strategies
Kohlberg 1983 A model with waiting time
De Palma et al. 1985, 1987a Customers use probabilistic choice rule
De Palma et al. 1987b The model with uniform delivered pricing
Andersson 1988 Linear-quadratic transportation costs
Labbé and Hakimi 1991 Equilibria on networks
Eiselt and Laporte 1993 Three facilities on a tree
Bhadury and Eiselt 1995 Stability of equilibria
Eiselt and Bhadury 1998 Reachability of equilibria
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In summary then, what has Hotelling’s contribution done for location science? 
First and foremost, it has alerted the location science community (by which I in-
clude all interested parties from regional scientists to mathematicians, engineers, 
and computer scientists) to the interdependencies of different factors of location 
planning, and it has provided insight into location models. While, for instance, it 
will be virtually impossible to compute Nash equilibria for any real location sce-
narios, the decision makers now know which factors are required to stabilize a solu-
tion and which will lead to instability. Similarly, decision makers know that com-
petition means having to look over their shoulders and anticipate a reaction, and 
the hundreds of contributions that have followed Hotelling’s original analysis have 
enabled decision makers to know what to look for: adaptations of prices, quantities, 
attractiveness of their facilities, and many others. Another area in which Hotell-
ing’s work has impacted the field is in the—still somewhat underdeveloped—area 
of nonphysical location. Much more work is needed to develop brand positioning 
models, the assignment of tasks to employees in ability space, and the positioning 
of political candidates in issue space to a point where they become viable tools for 
practical location problems.

7.4 � Future Work

As highlighted in the above sections, much work has been done in the field of com-
petitive location models. Below, I will list a few of the areas that appear to offer 
promising research leads.

1.	 Models with additional parameters. While in the original contributions firms 
were competing in location and price, additional factors exist that may be taken 
into consideration. One such possibility is weights that symbolize the attractive-
ness of firms or brands. In the retail context, the attractiveness of a store may be 
expressed in terms of floor space, opening hours, (perceived) friendliness of staff, 
and similar factors. Attraction functions have been used for a long time, such 
as in the original work by Huff (1964). In the locational context, models with 
attraction functions are also not new, as witnessed by the contributions by Eiselt 
and Laporte (1988, 1989), Drezner (1994), and Eiselt and Marianov (2008b). 
Another recent contribution that uses repeated optimization with a Huff-style 
attraction function is put forward by Fernández et al. (2007). However, none of 
these models discusses equilibrium issues. Another feature that may be included 
is the choice of technology.

2.	 An interesting aspect is asymmetric models, i.e., models in which competing 
firms have either different objective functions, use different pricing policies, or 
have different perceptions of existing demand structures. The paper by Thisse 
and Wildasin (1995) is a step in this direction, as it includes not only competing 
duopolists, but also a public facility. A model with different pricing policies on a 
linear market has been put forward by Eiselt (1991).
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3.	 An obvious extension concerns the discussion of competitive location in 2- or 
higher-dimensional spaces. It is questionable, though, if this is a promising 
route: experience with two-dimensional models, even if price competition is 
ignored altogether, has shown it to be very difficult. Some results with have been 
obtained by Irmen and Thisse (1998). More details concerning pure location 
competition can be found in Chap. 19 of this volume.

4.	 A different angle concerns the product with market segmentation. It refers to 
firms competing in different markets. Again, these markets could either be sepa-
rated in physical space or in abstract feature or issue spaces in nonphysical appli-
cations. Especially in the context of product design, it would be very interesting 
to see whether or not there are instances in which a firm will decide not to com-
pete in some of market.

5.	 The issue of data aggregation in the context of competitive location models has 
recently been put forward by Plastria and Vanhaverbeke (2007). The discussion is 
still in its infancy and it remains to be seen if conclusive results can be obtained.

Acknowledgments  This work was in part supported by a grant from the Natural Sciences and 
Engineering Research Council of Canada. This support is gratefully acknowledged. Thanks are 
also due to an anonymous referee whose comments helped to streamline the paper.

References

Anderson SP (1988) Equilibrium existence in a linear model of spatial competition. Economica 
55:479–491

Anderson SP, DePalma A, Thisse J-F (1992) Discrete choice theory of product differentiation. The 
MIT Press, Cambridge

Bertrand J (1883) Theorie mathematique de la richesse sociale. J savants 67:499–508
Bhadury J, Eiselt HA  (1995) Stability of Nash equilibria in locational games. Oper Res 29:19–33 

(Recherche opérationnelle)
Black D (1958) The theory of committees and elections. Cambridge University Press, Cambridge
Cournot AA (1838) Recherches sur les principes mathématiques de la théorie des richesses. Ha-

chette, Paris (English translation by N.T. Bacon in 1897)
d’Aspremont C, Gabszewicz JJ, Thisse J-F (1979) On Hotelling’s ‘stability in competition.’ 

Econometrica 47:1145–1150
Dasgupta P, Maskin E (1986) The existence of equilibrium in discontinuous economic games, I: 

theory. Rev of Econ Stud 53(1):1–26
De Palma A, Ginsburgh V, Papageorgiou YY, Thisse J-F (1985) The principle of minimum differ-

entiation holds under sufficient heterogeneity. Econometrica 53:767–781
De Palma A, Ginsburgh V, Thisse J-F (1987a) On existence of location equilibria in the 3-firm 

Hotelling problem. J Ind Econ 36:245–252
De Palma A, Pontes JP, Thisse J-F (1987b) Spatial competition under uniform delivered pricing. 

Reg Sci Urban Econ 17:441–449
Downs A (1957) An economic theory of democracy. Harper & Row, New York
Drezner T (1994) Locating a single new facility among existing, unequally attractive facilities. J 

Reg Sci 34:237–252
Eaton BC (1976) Free entry in one-dimensional models: pure profits and multiple equilibria. J 

Reg Sci 16:31–33 

H. A. Eiselt



161

Eaton BC, Lipsey RG (1975) The principle of minimum differentiation reconsidered: some new 
developments in the theory of spatial competition. Rev Econ Stud 42:27–49

Eiselt HA (1991) Different pricing policies in Hotelling’s duopoly model. Cahiers du C.E.R.O. 
33:195–205

Eiselt HA, Bhadury J (1998) Reachability of locational Nash equilibria. Oper Res Spektrum 
20:101–107

Eiselt HA, Laporte G (1988) Location of a new facility on a linear market in the presence of 
weights. Asia-Pac J Oper Res 5:160–165

Eiselt HA, Laporte G (1989) The maximum capture problem in a weighted network. J Reg Sci 
29:433–439

Eiselt HA, Laporte G (1993) The existence of equilibria in the 3-facility Hotelling model in a tree. 
Transp Sci 27:39–43

Eiselt HA, Marianov V (2008a) Workload assignment with training, hiring, and firing. Eng Optim 
40:1051–1066

Eiselt HA, Marianov V (2008b) A conditional p-hub location problem with attraction functions. 
Comp Oper Res 36:3128–3135

Eiselt HA, Laporte G, Thisse J-F (1993) Competitive location models: a framework and bibliog-
raphy. Transp Sci 27:44–54

Fernández J, Pelegrín B, Plastria F, Tóth B (2007) Solving a Huff-like competitive location and 
design model for profit maximization in the plane. Eur J Oper Res 179:1274–1287

Gabszewicz JJ, Thisse J-F (1986) Spatial competition and the location of firms. Fundam Pure Appl 
Econ 5:1–71

Hamoudi H, Moral MJ (2005) Equilibrium existence in the linear model: concave versus convex 
transportation costs. Pap Reg Sci 84:201–219

Hotelling H (1929) Stability in competition. Econ J 39:41–57
Huff DL (1964) Defining and estimating a trade area. J Mark 28:34–38
Irmen A, Thisse J-F (1998) Competition in multi-characteristic spaces: Hotelling was almost right. 

J Econ Theory 78:76–102
Kohlberg E (1983) Equilibrium store locations when consumers minimize travel time plus waiting 

time. Econ Lett 11:211–216
Kohlberg E, Novshek W (1982) Equilibrium in a simple price-location model. Econ Lett 9:7–15
Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypoth-

esis. Psychometrica 29:1–27
Labbé M, Hakimi SL (1991) Market and locational equilibrium for two competitors. Oper Res 

39:749–756
Lerner AP, Singer HW (1937) Some notes on duopoly and spatial competition. J Polit Econ 

45:145–186
Niemi RG, Weisberg HF (1976) Controversies in American voting behavior. WH Freeman, San 

Francisco
Osborne MJ, Pitchik C (1986) The nature of equilibrium in a location model. Int Econ Rev 

27:223–237
Plastria F, Vanhaverbeke L (2007) Aggregation without loss of optimality in competitive location 

models. Netw Spat Econ 7:3–18
Prescott E, Visscher M (1977) Sequential location among firms with foresight. Bell J Econ 8:378–

393
Rusk JG, Weisberg HF (1976) Perceptions of presidential candidates: implications for electoral 

change. In: Niemi RG, Weisberg HF (eds) Controversies in American voting behavior. WH 
Freeman, San Francisco

Salop SC (1979) Monopolistic competition with outside goods. Bell J Econ 10:141–156
Schmalensee R, Thisse J-F (1988) Perceptual maps and the optimal location of new products. Int 

J Res Mark 5:225–249
Selten R (1975) Re-examination of the perfectness concept for equilibrium points in extensive 

games. Int J Game Theory 4:25–55

7  Equilibria in Competitive Location Models



162

Shaked A (1982) Existence and computation of mixed strategy Nash equilibrium for 3-firms loca-
tion problems. J Ind Econ 31:93–96

Silva F, Serra D (2007) Incorporating waiting time in competitive location models. Netw Spat 
Econ 7:63–76

Smithies A (1941) Optimum location in spatial competition. J Polit Econ 49:423–439
Stevens BH (1961) An application of game theory to a problem in location strategy. Pap Proc Reg 

Sci Assoc 7:143–157
Teitz MB (1968) Locational strategies for competitive systems. J Reg Sci 8:135–148
Thisse J-F, Wildasin DE (1995) Optimal transportation policy with strategic locational choice. Reg 

Sci Urban Econ 25:395–410

H. A. Eiselt



163

8.1 � Introduction

Competitive location models have been discussed in the location literature since 
Hotelling’s (1929) seminal paper. As other location contributions, his model in-
cludes customers, who are located in some metric space and who have a demand 
for some good. This demand may be satisfied by firms that offer the product, given 
some pricing policy. The difference between standard location problems and com-
petitive location models is that in the competitive case, there are at least two com-
peting firms, who offer the same product. Depending on the complexity of the mod-
el under consideration, the differences between the firms may include their different 
locations, prices, pricing policies, or the attractiveness of their respective facilities.

In their simplest form, competitive location models are based on the assumption 
that customers will patronize the firm that offers them the best value, in terms of 
price, transportation costs, and general attractiveness. Given some objective func-
tion, each firm will then attempt to determine the optimal value of the variables that 
are under their respective jurisdictions, such as its location, price, and possibly other 
features. Models including some of these features can be found in literature, see, 
e.g., Eiselt and Laporte (1996) and Plastria (2001).

There are two main types of analyses that have been performed on competitive 
location models. The first asks whether or not there exists a stable situation for the 
model, i.e., an equilibrium. Depending on the tools available to the decision makers 
of the firms, we may have location equilibria, price equilibria, etc. In the context 
of location, the equilibrium question was first addressed by Hotelling (1929) and 
a summary of his contribution can be found in Chap. 7 in this volume. His analy-
sis assumes that the competitors play a simultaneous game, in the sense that they 
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choose their strategies at the same time. Another type of analysis involves sequen-
tial moves, i.e., the competitors make their choices one after the other in a pre-
scribed sequence. For simplicity, this chapter will concentrate on location choices, 
assuming that the firms’ prices are set at a fixed and equal level.

One type of analysis starts with an arbitrary locational arrangement of the firms 
on the market and applies short-term optimization by allowing them to relocate one 
by one so as to maximize their profit. The main question is what location pattern 
will result from such a process, and whether or not it is stable. The first to investi-
gate such process appears to be Teitz (1968), which is the first paper reviewed in 
this chapter.

Another type of analysis that employs a sequential location process was first 
proposed by the economist Freiherr von Stackelberg (1943). His analysis assumed 
that in any industry, there are firms that lead (in innovation, product development, 
or in any other way), while there are others that follow. This concept was later ex-
tensively used in marketing, where leaders and followers were referred to as “first 
movers” and “second movers.” In our analysis, we will consider a firm the leader, if 
it acts (most prominently: locates) first, while a follower is a firm that acts after the 
leader has chosen his strategy.

Note the asymmetry in the decision making processes of leaders and followers: 
The follower faces a situation in which the values of his opponent’s decision vari-
ables are known to him, so that he faces possibly a number of restrictions, but deals 
with certainty, at least in regard to his competitor’s key decisions. On the other 
hand, taking into account his opponent’s decision, the leader faces uncertainty, 
as he usually does not know what his competitor’s objectives are. Even if he did, 
he first has to establish what is known as a reaction function, i.e., for each of his 
own potential decisions, the leader must establish the reaction of his competitor 
and determine the outcome based on this pair of decisions. Given the complete 
reaction function, i.e., having established his competitor’s reactions to each of his 
own possible actions, the leader can then choose the course of action that benefits 
him most. The setting here is a straightforward application of bilevel programming 
problems, (see, e.g., Dempe 2002), in which the follower’s solution becomes the 
input in the leader’s problem. If the model setting is simple, there may be a (closed-
form) description of the reaction function. However, in most practical cases, the 
reaction function consists of solutions that are much more complex, e.g., solutions 
of integer programming problems, making the leader’s problem very difficult, to 
say the last.

Another aspect of von Stackelberg solutions is that firms are not necessarily 
designed to be leaders or followers. As a matter of fact, this choice may be up to 
the firm as part of the decision-making process. In order to be a leader, there are 
essentially two requirements: First, a firm must have the capability to be a leader, 
and secondly, it must have an incentive to become a leader. For instance, the capa-
bility could require a firm to have a large research and development lab, to have a 
foothold in a country they want to compete in, or similar advantages in the indus-
try. Typically, only firms that have significant capital can possibly be leaders. The 
second requirement has nothing to do with the firms themselves, but with the way 
the process is structured. For instance, if the system does not protect the leader, it 
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may not be beneficial to become a leader. As an example, take the pharmaceutical 
industry. A leader would be a firm that develops new drugs for certain illnesses. 
The requirement of capability is clear. Consider now the need for appropriate pro-
tection. In this example, protection is provided in the form of patenting laws. In case 
a patent lasts for a very long time, then there is a strong incentive for a capable firm 
to develop all sorts of new medicines, as they will be able to reap the benefits for 
a very long time. On the other hand, if the time of a patent elapses after only a few 
years, the firm will have little time to introduce the drug, publicize it, and recover 
some of its costs before the patent runs out, allowing other firms to produce ge-
neric versions of the drug, thus dramatically cutting down the leader’s market share. 
Knowing this in advance, the leader may not consider the time sufficient to recover 
costs and make a profit, so that he may not conduct the research and consequently 
will not introduce the product. In other words, the leader-follower game will not be 
played. Another aspect concerns the existence of more than two firms in the market. 
It has been suggested that in such a case, there will be a waiting line of firms, the 
first being the leader, the second will follow thereafter, and so forth. However, the 
question is why any firm would accept to take an specific place in line rather than 
choose what is most beneficial for his firm (other than may be first in line, which 
requires special capabilities). It is much rather likely that the firm will group into 
leaders and followers, depending on their abilities and the system’s incentives.

The major assumptions of the sequential location model are that

1.	 Location decisions are costly and are made once and for all. Relocating is con-
sidered prohibitively costly and is not permitted.

2.	 Firms enter in sequence, one after another.
3.	 The leader and the follower have full and complete knowledge about the system, 

and the follower will have complete knowledge about the leader’s decisions, 
once they have been made.

Among the first to propose the sequential entry of firms to the market are Teitz 
(1968), Rothschild (1976) and Prescott and Visscher (1977). The paper by Prescott 
and Visscher (1977) introduced the sequential entry of firms in a competitive loca-
tion model from the perspective of operations research. Their ideas are illustrated 
through a set of examples, which are covered in this chapter.

Prior to von Stackelberg’s work, other theories regarding market competition 
were known, mainly the one by Cournot. In his analysis two firms A and B are 
competing to supply the market with a homogeneous product at the same price. The 
two firms compete in the amounts of the product that they will put on the market. 
Each firm’s objective is to determine the amount of the product it will make and sell 
in order to maximize its profit. In order to do so, each firm will determine its own 
supply reaction to the other firm’s supply. Cournot stability assumes that each firm 
will move along its reaction curve. Cournot asserts that if each supplier takes the 
amount offered by his rival as a parameter of action, then the two firms can reach 
a point of equilibrium as the point of intersection of the firm’s reaction curve to its 
competitor’s supply. While these contributions provide the basic ideas for sequen-
tial location problems, their main emphasis is in economics, which is why we have 
chosen not to review them in detail.
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The remainder of this contribution is organized as follows. Section 8.2 will re-
view two classic contributions that use sequential location processes: one by Teitz 
(1968), and the other by Prescott and Visscher (1977). Section 8.3 will then assess 
the major impact of these contribution and outlines some directions of future re-
search.

8.2 � Classic Contributions

In this paper, we have chosen to survey two of the major contributions to the field. 
The first is a paper by Teitz (1968), in which he discusses a sequential relocation 
problem for two firms, one of which locates a single facility, while the other lo-
cates multiple facilities. The stability of the locational arrangement is investigated. 
The second paper is by Prescott and Visscher (1977). Its main contribution is the 
description of the sequential location of three facilities with foresight. This paper 
was the first to use von Stackelberg solutions in the context of competitive location 
models. Many contributions have used the basic ideas put forward in this work and 
extended them.

8.2.1  �Teitz (1968): Competition of Two Firms on a Linear Market

While Prescott and Visscher (1977) are usually credited as the pioneers of sequen-
tial location, the contribution by Teitz (1968) predated their work by more than a 
decade. Teitz’s paper considers the usual competitive system on a linear market, 
but with fixed and equal prices. In contrast to other contributors, the author does 
not consider simple competition between firms that locate one branch or facility 
each, but competition, in which each firm locates a given number of branches. The 
main thrust of the paper deals with repeated short-term optimization of the facili-
ties’ locations. For simplicity, the space customers and firms are to be located in a 
“linear market” of length 1, i.e. a line segment, on which customers are uniformly 
distributed.

The paper starts with the simple case of each firm locating a single branch each 
and, starting with initial random locations, use “short-term optimization” to relo-
cate. This is done in order to maximize the firm’s maximal profit, which, given 
fixed prices and fixed demand, reduces to the maximization of market share. The 
author uses sequential and repeated optimization by the two firms. In each step, the 
relocating firm takes the location of its competitor as fixed and optimizes. Given 
short-term maximization of market share, the relocation rule is to locate next to the 
competitor on the “longer” side of the market. Once this is accomplished, the other 
firm relocates in the same fashion. In this way, the two firms will cluster in each 
step and slowly move towards the center of the market, where neither of them has 
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any more incentive to relocate further. This central agglomeration solution recreates 
Hotelling’s “central agglomeration.”

The paper then investigates the case of firm A locating two facilities A1 and A2 
and firm B locating a single facility by the same name. Either firm has two choices: 
either locate directly next to one of the other two branches on the outside and thus 
capture the hinterland of that branch, or locate between the two branches and cap-
ture half of what is called the “competitive region.” Clearly, if a branch were to 
relocate to the outside, it would chose the branch with the larger hinterland and 
locate right next to it.

In our example shown in Fig. 8.1, the branches relocate in the sequence B, A1, 
A2, B, and so forth. At first, the two branches of firm A are located arbitrarily on 
the market. Then firm B locates its firm. It does so directly to the left of A2, as its 
hinterland is larger than that of A1 or half the competitive region. In the next step, 

Fig. 8.1   Repeated relocation 
of two firms
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branch A1 relocates by moving directly to the left of B, even though A1 has a larger 
hinterland. The reason is that both branches belong to the same firm, and by locating 
next to B on its outside, firm A will capture almost the entire market with both of its 
branches. Thus, when it is branch A2’s turn, it will not move as it is already located 
in its optimal place.

The next round of relocations starts again with B. It will move to the right of A1, 
as this is the longer side of the two outside branches. Branch A1 will then counter by 
moving just outside of B, reducing its market share again to a very small segment 
of the market. Branch A2 will then move just a bit to the right towards B, so as to 
almost reduce its market share to zero again. The relocation process will continue in 
this fashion until all three branches are clustered at or near the center of the market.

At the center, the branch at the center will move to the outside; if it is branch 
B, it moves to the longer of the two hinterlands, if it is one of firm A’s branches, it 
will move next to branch B and locate on its outside. Teitz referred to this reloca-
tion process as a “dancing equilibrium.” The market shares of the two firms can be 
determined as follows. Firm A captures the entire market after one of its branches 
relocated, while it gets half the market after firm B relocates. Assuming equal re-
location speed, firm A captures an average of ¾ of the market, while B obtains an 
average of ¼ of the market.

The instability of the solution leads to the author’s conclusion that short-
term optimization may not be the best solution. Instead, he suggests “long-term 
or conservative maximization.” This can be explained as follows. Suppose that 
firm A locates both of its facilities at the first and third quartiles. Firm B can then 
either locate adjacent to either of A’s branches on the outside (thus capturing the 
entire hinterland), or anywhere in between A’s branches and capture half of the 
central region. Either way, firm B will capture ¼ of the market. Once this has 
happened, the author suggests that A does not relocate his branches (although 
such a relocation would benefit firm A in the short run), but stay put, thus ending 
the location process. That way, firm A will capture ¾ of the market, while firm B 
obtains the remaining ¼. This, incidentally, is the same market share that the two 
firms had obtained if they engaged in short-term optimization, giving the two 
firms an incentive to behave in this manner (especially when relocation costs 
are introduced, which are ignored in this discussion). While the author mentions 
that firm A uses a minimax objective, there is no mention of von Stackelberg 
and his leader-follower model. There is also no mention of what would happen 
if firm B were to locate first (which will always result in firm A capturing the 
entire market, as the two branches of A would “sandwich” firm B regardless of 
its location).

The analysis is then extended to include one facility of firm B, but 3 branches 
of firm A. As long as firm A knows that its competitor will locate only a single 
branch, it is aware that the branches will either follow the pattern BAAA or ABAA, 
all other location patterns reduce to these two based on symmetry. If firm A locates 
its branches at the first, third, and fifth sextiles, firm B will again either locate adja-
cent to either of the two outside facilities and capture the hinterland of length ¼6, or 
anywhere between any of firm A’s branches and capture also ¼6.
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This result can be further generalized to the case in which firm B locates a single 
facility, while firm A locates nA branches. Firm A will then subdivide the market, 
so that the two hinterlands are half as long each as the region between any two of 
its branches, so that it will locate at 1/2nA, 3/2nA, 5/2nA, …, (2nA − 1)/2nA, while 
firm B will locate its single facility again either adjacent to A’s outside facilities in 
one of the two hinterlands, or anywhere between A’s facilities. With that locational 
arrangement, firm B will capture 1/2nA, while firm A will capture the remaining 
1 − 1/2nA of the market.

The next step in the analysis is to allow firm B to locate more than one facility. 
In general, we now allow firm B to locate nB branches, so that nB < nA. Following a 
reasoning similar to that above, we find that firm A locates again at the odd 2nA-tile 
points, while firm B locates its branches in the same manner prescribed above. The 
results are market shares of M( B) = 1/2nA for firm B and M( A) = 1 − nB /2nA, for firm 
A. Figure 8.2 plots Firm A’s market share against the number of facilities it locates. 
Even though nA must obviously be an integer, we plot for all values for improved 
visibility. The solid, broken, dashed-and-dotted, dashed-and-double-dotted, and 
dotted lines show firm A’s capture for nB = 1, 2, 3, 4, and 10.

A bit of elementary algebra leads to another interesting result. We can rewrite firm 
A’s capture function M( A) = 1 − nB /2nA as nA = nB

2[1−M(A)]  and then determine the 
number of branches firm A must locate in order to obtain the desired market share. 
For instance, for M( A) = 0.5, we obtain nA = nB (an obvious result), for M( A) = 0.75, 
we obtain nA = 2nB, for M( A) = 0.99, nA = 50nB, and so forth. One of the author’s 
conclusions of this process is that the results do not exhibit agglomeration, but are 
quite similar to the social optima that minimize overall transportation costs. As Teitz 
put it, “Even a small gadfly can keep the big operator ‘honest’.” The remainder of 
the contribution deals with an investigation into equilibria for models for firms with 
fixed locations and variables prices, which is not of interest in this context.

Fig. 8.2   Firm A’s market 
share against the number of 
facilities

M(A)

nA
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8.2.2  �Prescott and Visscher (1977): Extensions of the Model 
on a Linear Market

The paper by Prescott and Visscher examines a number of different scenarios by 
way of five examples. Each such “example” relates to a competitive location model. 
Of specific interest in the context of sequential location models is Example 1, which 
demonstrates the complexities of the process for the case of three facilities that enter 
the market sequentially.

The novelty of Prescott and Visscher’s approach is the use of foresight. In other 
words, the leader of the location game locates first, knowing that the follower will 
locate, so that its profit will be optimized. Such sequential location problems are 
typically solved in recursive fashion. If, for instance, n facilities are to be located 
by n independent decision makers, we first assume that n − 1 facilities already are 
located and we are to locate the last facility. This will result in some general loca-
tion rules. These rules, commonly called “reaction function,” will then be used as 
input by the ( n − 2)nd facility. In particular, the decision maker at that facility will 
consider all possible location configurations of the first ( n − 3) facilities and plan 
his location, taking into account the reaction function of the n-th facility. It is ap-
parent that this process will get exceedingly tedious once the number of facilities 
increases.

For now, suppose there are two firms located somewhere on the market. With-
out loss of generality, assume that firm A is located to the left of firm B. As in our 
discussion of Teitz’s paper, the area to the left of A is called A’s hinterland, the 
area to the right of B is referred to B’s hinterland, and the region between A and B 
is called the competitive region. Finally, that part of the market that is closer to a 
facility is said to be captured by that facility. (Note that this phrase was coined later 
by ReVelle (1986).

Consider first the simple case of two firms that locate a single branch each. 
Suppose that firm A is the leader who locates at some point xA, while firm B is the 
follower who locates at xB. The recursive argument assumes for the time being that 
xA is fixed and that firm B’s task is to optimally locate its facility. Then there are two 
cases: either firm B (the follower) will now locate to the left of A (i.e., xB < xA), or 
it will locate to the right of A (i.e., xB > xA). In the former case, firm B will capture 
the hinterland on its left in its entirety and half of the competitive region between 
itself and its competitor, i.e., xB + ½( xA − xB) = ½( xA + xB). Since its capture depends 
positively on xB, firm B will choose the largest possible value of xB. Since its loca-
tion is only limited by xA, it will choose xB = xA − ε for some arbitrarily small ε > 0. In 
other words, firm B will locate directly to the left of the leader A. In doing so, firm 
B will capture xA, while firm A will capture the remaining 1 − xA of the market. A 
similar argument applies to the case, in which firm B locates directly to the right of 
its competitor A. In this case, firm B locates at xB = xA + ε and captures 1 − xA, while 
firm A captures the remaining xA.

In summary, firm B will now locate directly to the left of A, if xA > 1 − xA or, 
equivalently, xA > ½, while B will locate directly to the right of A, if xA < 1 − xA or 
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xA < ½. Or, even shorter, if xA < ½, then B locates at xA + ε and A will receive xA, 
while if xA > ½, then B will locate at xA − ε and A will receive 1 − xA. Knowing this to 
be firm B’s reaction function, firm A will then decide as follows. In the former case, 
firm A’s capture depends positively on its location, so that it will locate at xA = ½ − ε, 
while its capture in the latter case depends negatively on its location, so that it will 
locate at xA = ½ + ε. this means that the leader’s location is best chosen at the center 
of the market, and the follower will then locate to either side, so that both capture 
about half of the market each.

This is the type of argument employed by Prescott and Visscher in their contribu-
tion. Below, we discuss two examples that constitute the major contribution of their 
paper to sequential location theory.

Example 1:  Sequential location of three firms
This is example is a straightforward (albeit tedious) extension of the argument 

put forward above for two firms. Here, three facilities locate in sequential fashion. 
The facilities are A, B, and C, and their respective locations are xA, xB, and xC. 
The facilities are going to locate in the order A, B, and C. Again, the length of the 
market has been generalized to 1. All facilities charge fixed and equal prices, so 
that we deal with pure location competition. Without loss of generality, we assume 
that xA < ½. Starting with firm C, we note the C will either locate in one of the two 
hinterlands or in the competitive region, created by the already existing locations 
of firms A and B.

We now consider the following four cases.

Case 1:  Facility B is located in the left half of the market, i.e., xB < ½. This case 
allows two Subcases 1a and 1b: either B is located to the left of A, or B is located 
to the right of A.
Subcase 1a:  If B is located at some point to the left of A (i.e., xB < xA), then C can 
either locate directly to the left of B (and capture xB, which, by assumption, satisfies 
xB < xA ≤ ½), or C can locate between A and B (thus capturing ½( xB − xA), which, by 
virtue of the assumptions concerning xA and xB, is less than ¼), or locate immedi-
ately to the right of A, which results in C capturing 1 − xA > ½. Clearly, this option 
dominates, so that C will locate immediately to the right of A at xA + ε for some 
arbitrarily small ε > 0.
Subcase 1b:  Suppose now that B is located to the right of A at some point xB > xA, 
while still maintaining that xB ≤ ½. Again, facility C ’s best option is to locate di-
rectly to the right of firm B at xB + ε, thus capturing 1 − xB ≥ ½.

Summarizing Case 1, we find that Firm C will always locate at xC = max{xA, 
xB} + ε and capture about 1 – max{xA, xB} of the market. Incidentally, given firm 
C’s behavior, firms A and B capture ½( xA − xB) and ½( xA + xB) in Subcase 1a, and 
½( xA + xB) and ½( xB − xA) in Subcase 1b, respectively.

In the remaining three cases, we assume that firm B has located to the right 
of the mid-market point at xB > ½. The cases differ in that in Case 2, firm C best 
locates in A’s hinterland just to the left of firm A; in Case 3, Firm C best locates 
in B’s hinterland just to the right of firm B; and in Case 4, Firm C’s best option 
is to locate between the two firms A and B. The three cases establish the condi-
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tions that the chosen solution provides a larger capture to Firm C than the other 
two options.

Case 2:  Firm B locates at xB > ½, and xA > max{1 − xB, ½( xB − xA}. In this case, 
Firm C will locate at xA − ε, capturing somewhat less than xA. The three firms then 
capture:

Firm A captures ½( xB − xA),
firm B captures 1 − ½( xA + xB), and
firm C captures xA.

Case 3:  Firm B locates at xB > ½, and 1 − xB > max{xA, ½( xB − xA)}. Here, Firm C 
will locate at xB + ε and capture somewhat less than 1 − xB. The captures of the firms 
in this case are:

Firm A captures ½( xA + xB),
firm B captures ½( xB − xA), and
firm C captures 1 − xB.

Case 4:  Firm B locates at xB > ½, and ½( xB − xA) > max{xA, 1 − xB}. In this case, 
Firm C can locate anywhere between its competitors A and B and capture about half 
of the competitive region. Prescott and Visscher assume that Firm C will locate in 
the middle of the competitive region at xC = xA + ½( xB − xA) = ½( xA + xB) and capture 
½( xB − xA). The captures of the three firms are then:

Firm A captures ¾ xA + ¼xB,
firm B captures 1 − ¼xA − ¾xB, and
firm C captures ½( xB − xA).

This completes the reaction of firm C. Consider now the reaction of firm B, which 
will depend on what firm A has done (something that firm B can observe) and the 
anticipated reaction of firm C derived above. Note for firm B in Case 1, Subcase 1a 
dominates Subcase 1b. Table 8.1 shows firm B’s options, where LB and UB denote 
the bounds derived from the conditions imposed in the four cases.

Table 8.1   Summary of cases in example 1
Case 
#

Conditions (in addition to xA < ½) Firm B’s capture Strongest condition for xB

1 xB < xA < ½ ½( xA + xB) xB < xA
2 xA > 1 − xB or xB > 1 − xA

xA > ½( xB − xA) or xB < 3xA

1 − ½( xA + xB) xB∈[1 − xA, 3xA]
( xA ≥ ¼, as 3xA ≥ 1 − xA)

3 1 − xB > xA or xB < 1 − xA
1 − xB > ½( xB − xA) or
xB < ⅔ + ⅓ xA

½( xB − xA) xB < ⅔ + ⅓ xA, if xA ≤ ¼
xB < 1 − xA, if xA ≥ ¼
xB > ½ in both cases

4 ½( xB − xA) > xA or xB > 3xA
½( xB − xA) > 1 − xB or
xB > ⅔ + ⅓ xA

1 − ¼xA − ¾xB xB > ⅔ + ⅓ xA, if xA ≤ ¼
xB > 3xA, if xA ≥ ¼
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In Case 1, firm B’s capture is positively correlated with its location, so that B will 
choose as large a value of xB, which is achieved at xB = xA − ε. Firm B’s gain is then 
about xA, while firm A is wedged in between B and C and will get nothing.

Note that in Case 2, firm B’s capture is negatively correlated with its location, so 
that B will attempt to decrease xB as much as possible. The same argument applies 
in Case 4, while firm B will increase xB as much as possible in Case 3.

Assume now that xA < ¼. Then firm B’s choice is to either locate at xB = xA − ε and 
capture ½( xA + xB) ≈ xA (Case 1), at xB = ⅔  + ⅓ xA and capture ⅓(1 − xA) (Case 3), 
or at xB = xB =  ⅔ + ⅓xA and capture ½(1 − xA) (Case 4). Note that (Case 2) does not 
apply. Clearly, Case 4 dominates, so that

•	 if xA < ¼, firm B will locate at xB = ⅓(2 + xA) and capture ½(1 − xA).

In case xA > ¼, firm B can either locate at xB = xA − ε and capture xA (Case 1), locate 
at xB = 1 − xA and capture ½ (Case 2), locate at 1 − xA and capture ½ − xA (Case 3), or 
locate at 3xA and capture 1 − 2½xA (Case 4). As xA ≥ ¼ in case 4, firm B’s capture 
in that case cannot exceed ⅜, so that Case 2 dominates. This results in the location 
rule for firm B:

•	 If xA > ¼, firm B will locate at xB = 1 − xA and capture ½.

This now completely describes the reaction function of firm B.
On the last, and highest, level, consider now firm A’s planning. Note that firm A 

knows exactly how its two competitors will react to any of its own actions. In par-
ticular, our above discussion reveals that if firm A locates somewhere at xA < ¼, then 
firm B will locate at xB = ⅓(2 + xA) and firm C will locate at xB + ε or at ⅓(1 + 2xA). 
As for firm C, Cases 3 and 4 dominate. In both cases, firm A will maximize its own 
capture by choosing as large a value of xA as possible, so that xA = ¼ (resulting in 
xB = ¾ and xC = ¾ + ε or xC = ½).

As the former case requires some distance between firms B and C, firm C’s 
capture will be somewhat less than in the latter case, so that we assume that firm C 
locates at the center of the market. Given locations at ¼, ¾, and ½ for the firms A, 
B, and C, their captures are ⅜, ⅜, and ¼, respectively.

Suppose now that firm A locates at some point xA > ¼. As derived above, firm 
B will then locate at xB = 1 − xA, while firm C will either apply Case 2 and locate at 
xA − ε, or apply Case 3 and locate at 1 − xB + ε. Each of these two cases result in firm 
C capturing xA. Given that, firm A will capture ½( xB − xA) = ½(1 − 2xA) or ½( xA + xB).
In the former case, firm A’s best option is to choose xA as small as possible, so that 
xA = ¼ (resulting in xB = ¾ and xC = ½), given the same argument used above), while 
in the latter case, firms A and B will cluster about the center with firm C locating 
next to either one of them, cutting out one of the firms. This outcome is unlikely, 
leaving again the symmetric locations of the firms at the first and third quartile and 
the center respectively. As demonstrated above, the captures of the three firms are 
then ⅜, ⅜, and ¼ for the firms A, B, and C. One question not addressed by Prescott 
and Visscher is why firm C would agree to be the third firm to locate, given that its 
capture is one third less than that of the second firm.
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Example 2:  Sequential location of infinite number of firms
Prescott and Visscher’s second example considers the case in which an infinite 

number of firms, with a fixed cost of locating, can be potential entrants. Given that 
α is the market share needed to cover the fixed costs, then the largest number of 
firms that can enter the market with positive profit is 1/α, assuming again a market 
of length one. The authors describe three basic rules for the location. The first rule 
considers the case, in which two facilities are located at xA and xB, respectively, 
where, without loss of generality, xA is located to the left of xB. It is assumed that the 
two facilities are direct neighbors, i.e., there exists no facility between them.

Then, if the two facilities are no more than 2α apart, no new facility will ever 
locate between them, as the space is not sufficient to make a positive profit. If the 
space is more than 2α but no more than 4α, then a facility may profitably locate 
between xA and xB and, as in their previous example, the authors claim that the new 
facility would locate halfway between the two existing facilities. Finally, if there is 
more than 4α between the two existing facilities, the authors assert that a new facil-
ity would locate at a distance of 2α to the right of A or to the left of B with equal 
probability.

The second rule (and, by virtue of symmetry, the third rule) considers the situ-
ation that a facility exists at some point x and no other facility is located to its left. 
Clearly, if the space to the left of x is less than α, no facility will be able to profitably 
locate to the left of x. On the other hand, if the space left of x is larger than α, a new 
facility can locate there, which, as the authors assert, will happen at point α. This 
point, of course, guarantees that there will be no additional facility locating at any 
point in time to the left of the newly entering facility.

After some algebra, the authors determine that the model will locate facilities, so 
that the outside firms are α distance units from the two ends of the market, and each 
subsequent firm is located at a distance of 2α from its neighbor. The only disruption 
of the uniformity is the last interval that is either too short for an additional facility 
to locate in, or in which a facility will locate in the center.

Example 3:  Competitive location model with product quality as “location”
This example introduces a revised Hotelling problem, in which firms choose a 

level of product quality in addition to the price. The product quality characteristic 
in this example is waiting time. The introduction of such a product characteristic 
enables the authors to formulate the classical Hotelling problem without disconti-
nuities in the reaction function, thus avoiding the disequilibrium problem that is in-
herent to Hotelling’s classical model. The solution of the duopoly model is made by 
numerical models, in which the equilibrium is unique and, as opposed to Hotelling’s 
assertion of “minimal differentiation,” the locations are widely dispersed. Equilibria 
with more than two competitors cannot be guaranteed.

Example 4:  An extension of a competitive location model with product quality as 
“location”

This example expands the model introduced in Example 3. In particular, it is 
assumed that once the facilities have chosen their location, they can no longer be 
moved. First, the authors observe that if the duopolists were to choose location and 
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price simultaneously and irreversibly, then the follower firm always has an advan-
tage, as it can locate at the same site as the leader, but charge a slightly lower price, 
thus being guaranteed higher profits than the leader. This raises the questions if any 
location will actually take place at all, as both firms may wait for the other to lead, 
so they can have the advantage to follow.

However, prices are not very likely to be as inflexible as locations, so that while 
locations (waiting times) are chosen once and for all, prices can be determined sub-
sequently, so that they constitute a Nash equilibrium. The authors describe a recur-
sive procedure that includes the possibility that the leader firm decides not to enter 
the market. Given some specific parameters, the authors then compute equilibrium 
solutions. The authors obtain some interesting results.

•	 Fixed costs are a barrier to the entry of additional facilities.
•	 Increasing fixed costs allows duopoly firms to locate farther apart, thus realizing 

local monopolies, so that the firms’ profits actually increase.
•	 Earlier entrants hive higher profits.
•	 If the first firm to enter is allowed and has the resources to locate multiple 

branches, it will locate branches at all profitable locations, resulting in a mo-
nopoly.

Example 5:  A competitive location model with plant capacity as “location”
This final example assumes that the price of a good in an industry is determined 

by the total capacity of all firms in the industry. If the number of firms that enter the 
market is not set in advance, the first entrant will build just as much capacity so as 
to ensure that no subsequent firms enter the market, thus resulting in a monopoly. 
This case is reminiscent of the last observation in the previous example. The results 
are very different, if a predetermined number of firms will enter the market. In 
such a case, early entrants will chose smaller capacities, so that subsequent entrants 
increase the total capacity of the industry to a level that is beneficial to the early 
entrants.

8.3 � Impact of the Classic Contributions and Future Research

Competitive location models can be and have been applied to a variety of problems 
in marketing, political science, product positioning, and others. Sequential location 
procedures are appealing for many of these applications, so that it is not surpris-
ing that many researchers have discussed different aspects of sequential location 
models. In what he called the von Stackelberg equilibrium problem, Drezner (1982) 
introduced the planar sequential location problem and offered a polynomial time al-
gorithm for this problem. Macias and Perez (1995) used rectilinear distance for pla-
nar competitive problem with an O( n5) algorithm. The case of asymmetric distance 
was first studied by Nilssen (1997) and more recently by Lai (2001). Lai’s results 
show that equilibrium results cannot be attained in continuous location. Teraoka 
et al. (2003) considered the case of the two-firm planar von Stackelberg problem 
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with customers distributed continuously according to a random distribution with a 
probability that a customer would patronize a certain facility. Bhadury et al. (2003) 
describe heuristic solution methods for centroid and medianoid problems in the 
plane. Eiselt and Laporte (1996) studied the case where the facilities have different 
levels of attractiveness based on certain characteristics. Plastria (1997) introduced a 
competitive model based on location and attractiveness level.

Neven (1987) and Anderson (1987) investigate sequential location models from 
an economist’s perspective. Both authors determine—as Prescott and Visscher did 
before them—that locations are much more difficult to change than prices and are 
therefore much more likely to be permanent. Prices, on the other hand, can easily be 
changed without cost. This lead them to a “first location, then price” game. The con-
tribution by Ghosh and Buchanan (1988) allows duopoly firms to locate multiple 
facilities each. The authors also introduce the marketing concept of “first mover 
advantage” into the discussion.

Eiselt and Laporte’s review (1996) of the sequential location problem listed the 
major contributions that employ a linear market or two-dimensional real space. The 
authors identify three main research issues: different objectives for firms; endoge-
nizing the leader/follower choice; and the position of firms in a queue for entrance 
to the market.

One of the major contributions that uses the concept of sequential location 
choice is by Hakimi (1983). In his paper, the author defines centroid problems and 
medianoid problems, the former pertaining to the leader in the location game, while 
the latter is the decision problem by the follower. While his paper deals with the 
location of facilities on a network, the concepts easily translate to other spaces. In 
Hakimi (1990), the author further develops specific results given different custom-
er choice rules. For further details on Hakimi’s results and an in-depth discussion 
thereof, readers are referred to Chap. 9 of this volume.

One major assumption of the sequential location model is that the firms in the 
model enter the market at different points of time, an issue closely related to that of 
a firm’s position in the entry queue. The time between entries enables leader firms 
to gain more profit and market share for a certain period, while the followers decide 
on the timing of their entry. Important issues for future studies include the effects 
of changes of the cost of entry over time due to different factors such as fixed cost 
change, inflation or a reduction in the cost of technology.

Other factors to be included could be market penetration costs for followers 
and customer retention costs for leader firms. Models that take such factors into 
account should allow for uncertainty of these factors. A stochastic approach to 
the competitive environment was introduced by Choi et al. (1990), who produced 
a model with one leader and multiple followers and customers with a stochastic 
utility function.

Another open area of research is the incorporation of the concepts of competi-
tive location in the context of supply chain models. A model based on competition 
for customers can be considered as a model which is looking forward in the supply 
chain, while a model looking backward would consider competing for suppliers, 
e.g., manufacturers for retailers or natural resources such as oil. Sequential loca-
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tion problems will include location decisions with respect to both suppliers and 
customers.

An interesting aspect of competitive location models concerns cases, in which 
customers cannot arbitrarily switch between competitors without incurring an early 
termination fee. As an example, this situation applies to the cell phone industry. 
Other examples involve suppliers of mineral water or heating gas, where customers 
are bound by annual contracts with a supplier. Adding switching costs as well as 
binding contracts time to the models would create more realistic models for certain 
industries.

A sign of globalization is the tendency of competing firms to form bigger com-
panies through consolidations, acquisitions and mergers. Questions in this context 
include: what location factors would lead a firm to decide to consolidate with firm 
A and not firm B? What are the impacts of such mergers and acquisitions on the 
market and on present and future competitors?

Finally, an issue that could be included in competitive location models includes 
the privatization of services such as of waste management and disposal. While the 
location of undesirable facilities (for details, see Chap. 10 of this volume) is a well-
studied area of location theory, it has not been investigated in the context of com-
petitive location.
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9.1 � Introduction

Location decisions are of critical importance to all firms. Opening, closing, and 
relocating facilities require careful planning due to the strategic nature of these de-
cisions. When customers do not have physical contact with the facilities (such as 
plants, distribution centers, or call centers), demand for the products or services can 
be assumed to be relatively independent of location. However, location choices of 
some stores (such as coffee shops, supermarkets, bank branches, and restaurants) 
do have a direct impact on demand. Therefore, such decisions should not be made 
without consideration of consumer behavior and market conditions.

In this chapter I present a class of competitive location models that are inspired 
by three streams of historical developments in location analysis: retail location from 
marketing, spatial competition from economics, and location theory from opera-
tions research. Estimating trade areas and market shares of retail facilities are cen-
tral to strategic management of retail networks that involves decisions such as store 
location, relocation, or dismantling. Simple models such as Voronoi tessellations 
and Reilly’s law of retail gravitation have existed for much of the twentieth cen-
tury to assist marketing managers (see, e.g., Ghosh and McLafferty 1987). These 
methods and their various extensions have been used to delineate trade areas and 
locations for retail outlets but they usually lack formal optimization or equilibrium 
approaches. The paper by Hotelling (1929), which pioneered the field of spatial 
competition, considers the location and pricing decisions of two firms competing 
on a linear market. In his model, each firm simultaneously locates one facility and, 
after observing each other’s choices, they simultaneously decide on their prices. 
Hotelling’s model and many of its extensions are, however, usually stylized models 
whose primary purpose is to provide insights rather than to prescribe solutions to 
more realistic problems. The 1960s witnessed important strides towards modeling 
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and solving progressively more realistic location problems as a result of advances 
in operations research techniques. Much of the early works focus on plant or ware-
house location issues where competitive interactions are naturally neglected (see, 
e.g., Daskin 1995). The late 1970s and early 1980s witnessed a convergence of 
these historical developments towards competitive location models that consider 
more realistic market spaces and customer characteristics.

One might expect that the competitive framework proposed by Hotelling could 
be generalized and equilibria could be found, at least numerically. However, despite 
its simple formulation, the analysis of even Hotelling’s original simplistic problem 
is rather involved. Therefore, early works needed to make two key assumptions to 
obtain manageable models. First, they neglected the pricing decisions altogether, 
since the second stage competition in prices immensely complicated the analysis of 
the Hotelling’s model. Unfortunately, the problem could still be difficult or poorly 
defined because the equilibrium might be quite difficult to identify or it might not 
exist in general. Therefore, as a second simplification, the games are defined in a 
leader-follower framework, in which von Stackelberg solutions are sought, rather 
than scenarios with simultaneous moves and Nash equilibria.

Individually and separately, Zvi Drezner and Louis Hakimi presented a series 
of competitive location models along these lines at the International Symposium 
of Location Decisions ( ISOLDE) in Denmark in 1981. Subsequently, their works 
have appeared as Drezner (1982) and Hakimi (1983), which have become among 
the most influential works in the location literature. Although there are some con-
tributions that predate these papers (such as those by Wendell and Thorson 1974; 
Slater 1975; Wendell and McKelvey 1981; and Hansen and Thisse 1981), Drezner 
and Hakimi study these problems under fairly general conditions for the time and 
present a number of important constructs that have become a framework for sub-
stantial further study.

Their problems can briefly be described as follows: a number of customers, each 
endowed with a certain buying power, will purchase a homogeneous good at the 
closest facility. First, the leader establishes all of her facilities in the market and 
then, after observing her choices, the follower sets up his facilities. Under these as-
sumptions, both Hakimi and Drezner define two “conditional” problems.

The Follower’s problem [( r| Xp )-medianoid]: Given the locations Xp = {x1, x2, …, 
xp} of p existing (i.e., the leader’s) facilities serving the customers, find the loca-
tions of r new facilities that will capture the most buying power from the customers.

The Leader’s problem [( r| p) centroid]: Find the locations for p facilities such 
that they will retain the most buying power against the best possible locations of r 
competing facilities.

Their definitions are virtually identical, except for one fundamental difference: 
Drezner assumes that the location space is a plane while Hakimi assumes that it 
is a network. This difference leads to somewhat different models and solution ap-
proaches. The purpose here is to re-introduce the conditional locational models of 
Drezner and Hakimi and review subsequent developments. It is, however, impos-
sible to review all of the contributions in this growing literature, and therefore I re-
fer the interested reader to a series of survey papers published over the years such as 
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Hakimi (1990), Hansen et al. (1990), Eiselt et al. (1993), Eiselt and Laporte (1996), 
Plastria (2001), and Santos-Penate et al. (2007).

The remainder of this chapter is organized as follows. In the next section, I 
formally define the medianoid and centroid problems, and then present Drezner’s 
(1982) and Hakimi’s (1983) results in the following two sections. The three subse-
quent sections are devoted to a review of extensions of these works. First, I look 
at the extensions of medianoid problems along some important dimensions such 
as variable expenditure and unequal store attractiveness levels. I then review the 
centroid and some related problems such as those from voting theory and Voronoi 
games. Finally, the works that consider pricing will be reviewed. The chapter con-
cludes with possible future research directions.

9.2 � The Classical Contributions

In order to describe the main contributions, we will use the following conventions. 
Let there be n customers at locations V = {v1, v2, …, vn}, each endowed with a buy-
ing power or demand, w( vi). For any set Z of points on the space (either the plane or 
a network G( V, E ) with the node set V and edge set E) let D( v, Z ) = min{d( v, z)|z ∈ 
Z}, where d( v, z) is the distance between points v and z. If the problem is defined in 
the plane the distance will be Euclidean; if it is defined on a network, the distance 
will be the length of the shortest path from one point to another.

Let Xp = {x1, x2, …, xp} and Yr = {y1, y2, …, yr} be the locations of the leader’s and 
the follower’s facilities, respectively. Customers will buy from the closest follower 
facility if the Euclidean distance between this follower’s facility and the customer 
is less than the closest leader’s facility. Hence, the ties are assumed to be broken 
in favor of the leader. The customers that are captured by the new facilities are 
defined as V( Yr| Xp ) = {v ∈ V |D( v, Yr) < D( v, Xp )} and the total buying power is 
W (Yr |Xp) =

∑
w(v)|v ∈ V (Yr |Xp) .

Therefore, given V and Xp, Y ∗
r  is called an ( r| Xp ) medianoid if 

W (Y ∗
r |Xp) ≥ W (Yr |Xp)  for all feasible Yr in the space. Also, given V, X∗

p  is called 
an ( r| p) centroid if W (Y ∗

r (X∗
p)|X∗

p) ≤ W (Y ∗
r (Xp)|Xp)  for all sets of points Xp in the 

space. The implicit assumption in these definitions is that the demand is essential or 
inelastic, and hence minimizing the follower’s payoff is equivalent to maximizing 
the leader’s payoff. It is rather straightforward to extend these definitions to profit 
maximization under more general conditions.

9.2.1  �Drezner (1982)

Drezner begins his paper with an illustrative example in which both firms open a 
single facility. He then proposes solution algorithms for both problems and analyzes 
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several generalizations. Here, I follow his steps but also add a section for immediate 
generalizations that follow his work.

9.2.1.1 � An Illustrative Example

Consider an instance of six demand points with equal buying power located at the 
vertices of a hexagon, as depicted in Fig. 9.1. If the leader opens her facility at O, 
the center of the hexagon, she can retain three customers. To see this, consider any 
pairs of points that are diametrically opposite to each other. For example, if the fol-
lower opens his facility at G, he can attract F but the leader retains C. Similarly A 
and B are captured by the follower, but D and E are retained by the leader. Hence, 
the follower captures a buying power of three when the leader locates at the center. 
If the leader locates anywhere else in the hexagon, the follower will capture at least 
four demand points. For example, if the leader locates her facility at G, the best lo-
cation for the follower can be found by drawing a perpendicular line from G to one 
of the diagonals connecting opposite demand points. Location H captures demand 
points C, D, E, and F. As a result, the unique solution to the leader’s problem in this 
instance is to locate at the center of the hexagon.

Note also that wherever the leader locates her facility in the polygon, she retains 
at least one customer. Put differently, the follower can never capture all the buying 
power as long as the leader does not locate outside the polygon. This observation 
will later be utilized in the analysis of the problem.

Fig. 9.1   An example in the 
plane
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9.2.1.2 � The (1|X1) Medianoid

I now proceed with Drezner’s treatment of the follower’s problem when both firms 
locate a single facility. For the sake of notational simplicity, here I denote the facil-
ity locations of the leader and the follower as X and Y, respectively. Suppose Y is a 
candidate location in the plane to compete against the facility located at X as shown 
in Fig. 9.2a. The market can easily be divided between the firms by the perpendicu-
lar bisector of the line connecting X and Y. The open-half space containing Y is the 
follower’s market area and the closed half-space is the leader’s market area. Note 
that the follower can do no worse by moving his facility arbitrarily close to the 
leader’s, see Fig. 9.2b. However, he will avoid co-locating as the leader is assumed 
to have the advantage in case of a tie.

The above discussion shows that the optimal solution for the follower is to locate 
infinitesimally close to the leader. The only problem for the follower is to find the 
angle at which his location divides the market. This angle determines the set of 
customers and hence the buying power captured by each firm. The follower’s objec-
tive function will be a piecewise step function of the angle, at which discontinuities 
happen at angles where a customer is captured or lost. Therefore, all one needs to 
do is to search over a finite number of angles. The calculation of captured buying 
power can be performed in linear time, but the sorting part takes O( n log n), which 
determines the complexity of the overall procedure.

9.2.1.3 � The (1 | 1) Centroid

Having solved the follower’s problem, Drezner turns to the leader’s problem: Con-
sider a subset V0 of demand points, whose total buying power is at least w0. Un-
less the leader locates her facility outside the convex hull defined by these demand 
points, the follower cannot attract all the buying power (recall the earlier discus-
sion). As a result, if X = X1( w0) is inside the intersection of all convex hulls of the 
sets with the buying power of at least w0, then W( Y1| X = X1( w0)) < w0. This is because 
no new facility can attract all the buying powers from those sets. While providing 
a starting point, this observation is unlikely to lead to an efficient algorithm, as the 

Fig. 9.2   An illustration of the treatment of (1|X1) medianoid problem
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number of convex hulls to be considered grows exponentially with the number of 
customers. The following theorem presents a powerful result that greatly simplifies 
the analysis.

Theorem 1:  The intersection of all convex hulls for the sets with buying power of 
at least w0 is identical to the intersection of all halfplanes whose buying power is 
at least w0.

Proof  Suppose that a point z is not in the intersection of such convex hulls. Then 
there must be at least one convex hull to which this point does not belong. One can 
easily divide the plane into two parts: one containing the convex hull, the other 
containing the point z. The halfplane containing the convex hull will have a buying 
power of at least w0. Therefore, this point cannot be a member of the intersection of 
such half planes. Proving the converse is similar; if the point is not in the intersec-
tion of half-planes, then there is a convex hull whose buying power is at least w0 to 
which this point does not belong.� □

The following result then follows immediately.

Corollary 2:  The condition w( Y1| X1( w0)) < w0 holds for all Y1 ∈ R2
  if and only if 

X1( w0) belongs to ∩H ,  where ∩H  is the intersection of all closed half-planes H 
for which 

∑
{w(v)|v ∈ H } ≥ w0 .

In order to find a point X1( w0) such that W( Y1| X1( w0)) < w0 for all y1 ∈ R2, there-
fore, one needs to look at the intersection of all such closed half-planes. Fortunately, 
one can restrict the set of halfplanes to be considered to those that are defined by 
lines passing through at least two demand points. To see this, consider a closed half-
plane generated by a line L where the total buying power is at least w0. If there is 
no demand point on the line, it can be shifted back until it touches a demand point. 
Similarly, it later can be rotated once clockwise and once counter-clockwise until 
it touches two other points. All of the closed halfplanes defined by these lines is at 
least w0 and the intersection of them is a subset of the original half-plane defined 
by L.

After these observations, Drezner presents an algorithm, which is essentially a 
bisection on the buying power w0. The procedure is shown as Algorithm 1.

Algorithm 1: A Bisection Algorithm for the (1 | 1) Centroid Problem in 
the Plane

Step 1:	� Find the lines passing through all pairs of points and calculate all w0 
for all halfplanes.

Step 2:	� Sort w0 in decreasing order. Find wmin and wmax.
Step 3:	� Set w0 to the median value among all w0 such that wmin < w0 < wmax. 

If there is no such w0, go to Step 7.
Step 4:	� Find if there is feasible point at the intersection of all halfplanes 

with buying power w0.
Step 5:	� If there is a feasible solution X1 in Step 4, then W (Y ∗

1 (X1)|X1) < w0.  
Set wmax to w0 and go to Step 3.
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Step 6:	� Otherwise, W (Y ∗
1 (X∗

1)|X∗
1) ≥ w0. Set wmax to w0 and go to Step 3.

Step 7:	� The feasible point for the last wmax is an optimal solution and the 
value of the objective is W (Y ∗

1 (X∗
1)|X∗

1) < wmin.

Step 4 can be formulated as a linear program with two variables and O( n2) con-
straints. While numerous results on the complexity of linear programs are now 
known, Drezner provides a complexity result independent of them: he notes that the 
dual problem can solved in O( n4) and is repeated at each bisection step, which itself 
takes O(log n). Hence, the worst-case performance of this algorithm is bounded by 
O( n4 log n).

Drezner also presents an alternative algorithm. Since the solution must be at 
the intersection of half-planes, there must be a feasible point that is a vertex of that 
intersection. Obviously, such a vertex is at the intersection of two lines. Since there 
are O( n2) lines, the number of intersection points is bounded by O( n4). One then 
needs to solve a (1| X1) medianoid for each point, which takes O( n log n). Hence the 
overall complexity of the second algorithm is O( n5 log n).

9.2.1.4 � Extensions

The centroid problem when r > 1 and p ≥ 1 is quite difficult to solve and no analy-
sis is performed by Drezner, who concentrates on the other cases. When p = 1 and 
r > 1, the solution is rather simple. All the leader can retain is one customer since 
the follower can sandwich the leader’s store between his facilities and capture the 
rest of the buying power. Therefore, the leader locates at the customer with the most 
buying power. The medianoid problem with p > 1 and r > 1 is also not available, 
but Drezner provides an algorithm of complexity O( n2 log n) to solve the (1| Xp) 
medianoid problem.

Let B( v, Xp ) = {z ∈ R2 | d( v, z)  <  D( v, Xp )} be the circle containing the set of 
locations for the follower’s facility that captures the customer at v. For a given V ′ 
⊂ V, let B(V ′, Xp) = ∩{(Bv, Xp)|v ∈ V ′} . If B( V ′, Xp ) ≠ ∅, then any Y1 ∈ B( V ′, Xp ) 
captures all the buying power of V ′ . Now consider all the circles B( v, Xp ) centered 
at v = v1, v2, …, vn. Since any two of these circles intersect in at most two points, a 
circle may have at most 2( n − 1) intersection points. Over each circle then, there are 
at most 2( n − 1) intervals with location on one of the intervals (actually infinitesi-
mally inside the circle) that yields the maximum capture. One can easily sort the 
intersection points and compute the capture when the follower’s facility is located 
on different segments. This requires O( n log n) operations. Since this step has to be 
performed for each circle, the overall complexity of the algorithm is O( n2 log n).

Finally, Drezner analyzes the version p = r = 1 with a minimal distance require-
ment, whereby the follower is not allowed locate within a distance R from the lead-
er. One can replicate the analysis of the (1| X1) medianoid problem almost exactly 
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in this case. The follower’s best response will be to locate on the circle of radius R 
centered at X = X1. Let Y = Y1 be such a point. Then, as usual, the perpendicular bisec-
tor of the line segment connecting X and Y separates the market between the facili-
ties. This bisector is tangent to the circle centered at X with radius ½R as shown in 
Fig. 9.3a. Hence, all the follower needs to do is to find the best tangent line, which 
is the one that leads to the highest buying power for himself. Doing this is almost as 
easy as solving the original problem. If a demand point is inside the smaller circle, 
where it will never be captured by the follower. For all points outside a circle, two 
directions are calculated using the tangent lines passing through them as shown in 
Fig. 9.3b. Finally, one can go over all possible tangent lines and find the half-space 
with the highest buying power, which in turn gives the solution to the follower’s 
problem. There will be at most 2n lines, but due to sorting of the directions as in the 
original algorithm, this procedure has a complexity of O( n log n).

One may try to extend the original algorithm for the centroid problem to the 
modified version. The earlier convex hull idea can also be used here. However, 
now the convex hulls are smooth at the corners. Drezner notes that it seems difficult 
to generalize the earlier algorithm due to this problem. He, however, provides an 
immediate generalization of his second approach. That is, if the intersection of all 
convex hulls with buying power of at least w0 is a nonempty set, it must contain a 
vertex. Such a vertex is either an intersection of two lines, two circles, or a line and a 
circle. Since there are O( n2) such lines and n circles, we have at most O( n4) possible 
intersection points. Similarly, since a medianoid problem must be solved for each 
point, the overall complexity of this algorithm is also O( n5 log n).

9.2.1.5 � Immediate Generalizations and Algorithmic Developments

Two of the earlier works, Lee and Wu (1986) and Hakimi (1990), examine Drezner’s 
results for the (1| X1) medianoid and (1 | 1) centroid problems, respectively. Lee and 

Fig. 9.3   An illustration of the (1|X1)-Medianoid with minimum distance requirement
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Wu show that O( n log n) is indeed the lowest complexity bound to solve the (1| X1) 
medianoid problem. They prove this by showing the equivalence of the medianoid 
problem to the ε-Closeness problem, which is to determine whether any two of n 
real numbers {x1, x2, …, xn} are within a fixed ε of each other, i.e., if |xi − xj| < ε. The 
ε-Closeness problem is shown to have an established lower bound of O( n log n). 
Lee and Wu show that one can transform an instance of the (1| X1) medianoid prob-
lem to ε-Closeness in linear time, thereby establishing the lower-bound complexity.

Hakimi (1990), on the other hand, provides a more promising result on the (1 | 1) 
centroid problem. Recall that Drezner’s first algorithm for this problem requires 
solving a linear program with two variables and O( n2) constraints. Although Drezner 
points out that the dual of this problem can be solved in O( n4), subsequent results 
considerably improve this bound to O( n2). Since finding the set of constraints ac-
tually takes O( n2 log n) time and there is a search over w0, which takes O(log n), 
Hakimi shows that the worst-case complexity of the (1 | 1) centroid problem in the 
plane is O( n2 log2 n).

9.2.2  �Hakimi (1983)

Hakimi’s paper consists of mainly two parts. First, he presents a series of stylized 
examples to investigate properties of medianoid and centroid problems, such as 
node-optimality, or relationships to classical concepts such as p-median or p-center 
of networks. He then presents the complexity results to these problems. Here, I also 
add some comments on some immediate works.

9.2.2.1 � Illustrative Examples

One would expect that some of the earlier classical location results on medians or 
centers could be generalized or somehow related to the medianoid and the centroid 
concepts. Through a number of designed instances, Hakimi shows that no such re-
sult can be generalized in the conditional location problems. Figures 9.4, 9.5 and 9.6 
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depict some of the examples discussed in his paper. In all the networks in these fig-
ures, each edge has a unit length and each node has a unit weight or a buying power.

Figure 9.4a depicts an example where the solution to a (1| X1) medianoid problem 
might not be on a vertex. It is however easy to see that there exists an ( r| X1) media-
noid on vertices if the network is a tree and p = 1. Unfortunately, this result does not 
generalize to p > 1. The (1| X2) medianoid defined on the tree depicted in Fig. 9.4b, 
clearly does not possess a node solution that can capture any more than the four 
obtained by the current location.

Since the leader’s problem can be cast as a minmax problem, a p-center of the 
network could be a reasonably good choice for the leader’s facilities. Hakimi again 
provides a counterexample for the simplest case of (1 | 1) centroid, as depicted in 
Fig. 9.5. The solution x1 in (a) is the 1-center, and the leader retains three buying 
power after the follower’s best response, y1. It is, however, clear that the leader can 
retain four if she locates as in (b), which is indeed the (1 | 1) centroid solution. If 
the network is a tree, though, it is shown earlier by Slater (1975) that the 1-median 
and the (1 | 1) centroid coincide. Unfortunately, this result does not generalize either. 
Hakimi constructs another example, as depicted in Fig. 9.6, to show that an ( r | 1) 
centroid of a tree network with r > 1 is not necessarily at a 1-median. It is easy to see 
that at 1-median the leader retains two customers, while she retains three customers 
at the (2 | 1) centroid. Hakimi provides a number of other interesting and important 
instances and counterexamples to convincingly demonstrate that not much can be 
said for the general cases with p > 1 and r > 1 even for tree networks. All of this 
groundwork suggests that these problems are indeed very difficult, which is proved 
in the remainder of Hakimi’s paper.

9.2.2.2 � Complexity Results

Hakimi presents the complexity results of both medianoid and centroid problems 
and shows that these problems are NP-Hard. He reduces two problems from graph 
theory with known complexity, Dominating Set and Vertex Cover, to instances of 

Fig. 9.5   a x1 is the 1-Center 
but not a (1 | 1)-Centroid, 
while in b x1 is a (1 | 1)-Cen-
troid but not a 1-Center y1 x1 x1 y1

a b

Fig. 9.6   a x1 is the 1-Median 
but not a (1 | 2)-Centroid, 
while in b x1 is a (2 | 1)-Cen-
troid but not a 1-Median
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medianoid and centroid problems. I first define these problems and then present two 
of the theorems proved by Hakimi.

Dominating Set (DS) Problem:  Given a graph G( V, E ) and an integer r < |V |, is 
there a subset V ′ ⊂ V, such that |V ′| ≤ r and d( v, V ′ ) ≤ 1 for all v ∈ V ? In plain lan-
guage, is there a subset of nodes, such that all nodes not in this subset are directly 
connected to at least one of the selected nodes?

Vertex Cover (VC) Problem:  Given a graph G( V, E ) and an integer p < |V |, is 
there a subset V ′ ⊂ V, such that |V ′| ≤ p and each edge e ∈ E has at least one end 
vertex on V ′? In other words, is there a subset of nodes, such that all edges have at 
least one adjacent node among those selected?

Theorem 3:  The problem of finding an ( r| X1) medianoid of a network is NP-hard.

Proof:  Hakimi proves this theorem by reducing the dominating set problem to an 
instance of the ( r| Xp ) medianoid problem. Given an instance of the dominating set 
problem, construct a network G1 with vertex set V ∪ {x1} and edge set E ∪ {( x1, 
v)|v ∈ V }. The vertex weights, i.e., buying powers, are all equal to one and if an 
edge e ∈ E, then �(e) = 1.5,  while if e = ( x1, v), then �(e) = 2.  Hakimi shows that 
there exist a set of points Yr( x1) on G1, such that W( Yr( x1)| x1) ≥ |V |, if and only if the 
dominating set problem has a feasible solution. Roughly speaking, if it does, then 
all the original points are adjacent to a vertex in V ′, i.e., all the customers except 
the one at x1 are closer to one of the follower facilities on G1. Therefore it is easy to 
see that W( Yr( x1|x1) = |V |. On the other hand, suppose that there is an ( r| X1) media-
noid on G1, such that W( Yr( x1|x1) = |V | (keep in mind that Yr can be anywhere on the 
network). In this case, for each node except x1 the distance from a customer to the 
nearest follower location must be less than 2. If indeed all Yr are at vertices, then this 
would be a feasible solution to the dominating set problem in G. It is an easy matter 
to show that if a location is on the edges, an equivalent solution can be obtained by 
changing these locations with one of the adjacent nodes. This process eventually 
yields a feasible solution to the DS problem. � □

The above proof also shows that even if the locations are restricted to the nodes, 
the problem remains NP-hard.

Theorem 4:  The problem of finding a (1| p) centroid of a network is NP-hard.

Proof:  Hakimi proves this theorem by reducing the Vertex Cover ( VC ) problem 
to the (1| p) centroid problem. Given an instance of the vertex cover problem, 
we construct a network G1( V1, E1) from G by replacing each edge ei = ( u, v) in G 
with a diamond structure depicted in Fig. 9.7a. The lengths and weights in G1 are 
all equal to one. Note that |E1| = 5|E|, and |V1| = |V | + 2|E|. Hakimi then proceeds 
to show that there exist p points Xp on G1, such that W( Y1( Xp )| Xp ) ≤ 3 for every 
point Y1( Xp ) on G1 if and only if the vertex cover problem on G has a feasible 
solution.

Suppose V ′ with |V ′| = p is a solution to the vertex cover problem in G. Set 
now Xp = V ′ on G1. Then, for any diamond, the leader has a facility at either u or 
v, and W( Y1( Xp )| Xp ) ≤ 3 for any point Y1( Xp ) on G1. The follower can achieve the 
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upper bound if he locates anywhere inside the edge ( e′, e″) in any diamond struc-
ture depicted in Fig. 9.7a. While proving the converse is rather lengthy, one can 
replicate the steps of the earlier proof. For a given set of p points Xp on G1, such 
that W( Y1( Xp )| Xp ) ≤ 3 for every point Y1( Xp) on G1, there must be a leader facil-
ity located on each diamond; and these locations could be shifted either to u or v 
without violating feasibility, thus resulting in a feasible solution to the vertex cover 
problem. � □

Similarly, this problem also remains NP-hard even if the locations are restricted 
to the nodes. The centroid problem has proven to be substantially more difficult 
than the medianoid problem. In fact, Hakimi shows that even obtaining an approxi-
mate (1|p) centroid of a network is NP-hard. Here, I do not formally state the proof, 
which is similar to the earlier proof except the diamond structure shown in Fig. 9.7b 
is used.

9.2.2.3 � Immediate Generalizations and Algorithmic Developments

Hakimi’s paper has led to a number of extensions and generalizations in the litera-
ture. A solution algorithm for the ( r| Xp ) medianoid problem is provided by Megid-
do et al. (1983). Their solution approach is based upon the fact that there are a finite 
number of points at which facilities can be located in an optimal solution. Let G( V, 
E) be the network with |V | = n, |E| = m, and locations Xp already known. For each v ∈ 
V, let B( v, Xp ) = {z ∈ G|d( v, z) < D( v, Xp )}. The customer at v will use one of the new 
facilities, provided one of them is located in B( v, Xp ). Therefore, for a V ′ ⊂ V, if 
B( V ′, Xp ) = ∩{B( v, Xp )|v ∈ V ′ is nonempty, then there is a location that can capture 
all the customers in V ′. The endpoints of these sets B( V ′, Xp ) are therefore attractive 
points to locate the new facilities. One, however, need not consider all the subsets 
V ′, since an attractive location in any B( V ′, Xp ) is defined by one of B( v, Xp ) for v 
∈ V ′. All one has to consider, for each vertex in the graph, are those points that are 
just at the capture distance. Megiddo et al. show that there are O( nm) such points 
on networks (a number that reduces to O( n), if the network is a tree), which are 
subsequently used to develop an algorithm that runs in O( nrmr/r!) time and O( n2r) 
time, if the network is a tree). This implies that if r is fixed, these algorithms run 
in polynomial time. If r is a problem input then the algorithm runs in exponential 
time for general networks. Perhaps one of the most influential approaches to solv-
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ing the ( r| Xp ) medianoid problem was given by ReVelle (1986). In his maximum 
capture model he formulates a version of the problem with the pre-determined set 
of alternative location sites, similar to plant location problems. ReVelle’s model is 
technically more restrictive than the original problem, but one should keep in mind 
that despite nice discretization results, the general problem is still difficult to solve 
and this formulation provides a promising starting point for the solution process. As 
will be reviewed later, it is also one of the most extended models in the literature. 
ReVelle himself describes some of the extensions along pre-existing follower facili-
ties, elastic demand, and multiple objectives in his paper.

9.3 � Impact on Subsequent Work

In this section, I present an overview of the literature that follows these two influen-
tial works. Much of these developments are concerned with increasing the realism 
of the competitive models by relaxing some of the basic assumptions. Regardless 
of the settings however, centroid problems continue to be far more challenging than 
the medianoid problems and addressed by much fewer works. Therefore, in what 
follows, a major part is devoted to a systematic review of the medianoid problems. 
The section is followed by a review of the centroid problems and concludes with a 
short review of models that consider pricing issues.

9.3.1  �Extended Medianoid Problems

While the classical works and their immediate generalizations expand the boundar-
ies of solvable problems under basic assumptions, much of the subsequent contri-
butions focus on more realistic consumer choice processes and differential store 
characteristics. A considerable amount of works published especially within the 
past two decades focus on these extensions and therefore, they will be reviewed in 
the first part of this section. The medianoid problems have also been extended along 
other dimensions. The remaining parts are devoted to such models that consider 
threshold market and franchising issues, congestion and queuing effects, and flow 
interception.

9.3.1.1 � Varying Consumer Preferences and Store Characteristics

Both Drezner (1982) and Hakimi (1983) assume that customers spend their entire 
buying power at the closest facility. Hence, these models fall into the class of mod-
els where customer preferences are binary and the demand is essential, i.e., inelas-
tic. Hakimi (1986) is also among the first to consider cases where consumer prefer-
ences are not fixed and the demands may be inessential or elastic. In addition to the 
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binary preferences, he also considers partially binary and proportional preferences. 
In the former, consumers select their most preferred locations from both firms and 
spend their buying power proportionally between two rival facilities. Let wx( v) and 
wy( v) denote the buying powers the leader and the follower captures, respectively. 
Under partially binary rule, consumers split their buying power according to

where a( v, xj) = 1/fv( d( v, xj)) and fv(0) > 0 is a concave increasing function. Under 
proportional rule, the customers spread their purchases to all facilities, hence

where zi and zj could denote facilities of either firms. The partially binary case 
would be more suitable for firms with a high degree of standardization between its 
branches, while the proportional rule would be more suitable when facilities display 
differences.

Note that in Hakimi’s model, the only differentiation among the facilities is the 
proximity to customers. It is well established in the marketing literature that cus-
tomers usually consider distance and some other attributes of the facilities such as 
size, quality of products and services, and parking space when they make a deci-
sion. One of the most popular extensions is to consider more sophisticated customer 
preference schemes such as Huff-like preferences. In the model proposed by Huff 
(1964), there is an attraction function that each customer evaluates for each facil-
ity. In his model, the attraction is directly proportional to the size of the facility and 
inversely proportional to a power of the distance, that is, a customer at node v  will 
have an attraction towards a facility at xj.

where Aj is the size of facility j and d( v, xj) is the shortest distance between customer 
v and the facility xj. Later, I assume that Aj is a scalar measure of important facility 
characteristics such as service quality, size, product variety. Although this model 
has also been used in a few works, the attraction function

has been used more commonly due to its generality. Nakanishi and Cooper (1974) 
present a major improvement in their Multiplicative Competitive Interaction ( MCI) 
model, which replaces the floor area by a product of factors, each a component of 

wy(v)

wx(v)
=

max
yi

{a(v, yi)}

max
xj

{a(v, xj )}
,

wzi
(v)

wzj
(v)

=
a(v, zi)

a(v, zj )
,

a(v, xj ) =
Aj

d(v, xj )β
,

a(v, xj ) =
Aj

fv(d(v, xj ))
,

A. Dasci



193

attractiveness. For most of the models that are solved through numerical means, 
however, Huff attraction can easily be extended to the multiplicative competitive 
interaction model. Finally, few works consider these problems under random utility. 
Here, for each customer v, a utility for each open facility xi is defined as

where εiv is independently and identically distributed random variable. If the dis-
tribution is Normal, then the model is called probit and may be numerically quite 
demanding. Therefore, the most common form of this utility is the logit model, 
which assumes that the distribution of εiv is a double-exponential (Gumbel). Under 
the logit model, the probability that a customer will patronize a store at xj is given as

These extensions have been studied quite extensively in the past. To effectively re-
view this voluminous literature, I present them in three subsections as planar mod-
els, network models, and discrete models.

Planar Models

Much of the extensions of the early work on planar models is conducted by Tammy 
Drezner and her colleagues. Even the simplest case in which a single new facility 
with fixed attractiveness is located can be a difficult problem since a large num-
ber of local optima are observed in these problems. Therefore, much of the early 
work proposes heuristics. Recent years have witnessed a renewed interest in these 
problems with a bolder algorithmic agenda that aims to solve larger instances to 
optimality.

A series of papers, Drezner (1994a, b), Drezner and Drezner (1996), and Drezner 
et al. (1998), all study models that consider (1| Xp ) medianoid under unequal store 
attractiveness levels. Drezner (1994a) considers a model under binary preferences 
and extends Drezner’s (1982) algorithm to solve the problem. Drezner (1994b) con-
siders the Huff-like preferences, for which she proposes a Weiszfeld-like fixed-
point iteration solution procedure. Through computational experience, it is found 
that many local optimal solutions typically exist. Therefore, the solution obtained 
here is a local optimum solution. Finally, Drezner and Drezner (1996) study the 
problem under a specific random utility, i.e., the generalized probit. Dealing with 
this type of utilities might be computationally prohibitive because the objective 
function evaluation requires computing a p-dimensional integral. In a follow-up 
paper, Drezner et al. (1998) show that a simple logit model can accurately be used 
in place of a probit model. Again, an iterative Weiszfeld-type procedure is proposed 
for the model with the logit model, and a set of computational experiments are car-
ried out.

Uv(i) = ai − bd(v, xi) + εiv,

Pv(j ) =
exp (aj − bd(v, xj ))∑
i

exp (ai − bd(v, xi))
.
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An extension to multiple entering facilities, an ( r| Xp) medianoid problem with 
existing company owned facilities, is discussed by Drezner et al. (2002a). They pro-
pose and test five heuristic solution methods. They also observe that the accuracy 
of the market share estimate is enhanced by replacing the distance with the “cor-
rected” version 

√
d2 + ε . This distance correction is needed to avoid market shares 

being artificially inflated when the facilities locate at a demand point. It also assists 
the numerical methods, as it maintains the continuity of the objective function at 
customer locations. McGarvey and Cavalier (2005) present a gravity-based utility 
model, in which a facility’s capacity is used as its measure of its attractiveness. A 
new formulation of the ( r| Xp ) medianoid in the plane with elastic and gravity-based 
demand, including capacity, forbidden region and budget constraints, is given and 
solved by an exact branch-and-bound and a heuristic method.

Some models consider both locations and attraction levels as decision variables. 
Usually, attraction levels are modeled through a budgeted formulation or in a profit 
maximization framework. Although Drezner (1998) presents a fairly general ver-
sion of the problem, no special algorithm is provided. Recent years have witnessed 
a renewed interest in such problems. However, the problems are of considerable 
difficulty; only (1| Xp ) and (2| Xp ) medianoid problems that involve the location and 
the attractiveness criteria have been solved to optimality.

Fernandez et  al. (2007a, b) have reported the application of interval analysis 
tools in a branch and bound solution procedure for a series of single facility loca-
tion and attractiveness problems under Huff-like preferences. In Fernandez et al. 
(2007a), a profit maximization version of the problem is modeled and solved by 
a Weiszfeld-type heuristic algorithm and the interval analysis based branch and 
bound procedure. Their computational experiments suggest that the heuristic meth-
od does not yield consistent results (a further testament to the large number of local 
optimal solutions), whereas the global optimization method yields a solution within 
a guaranteed optimality after an acceptable computational effort. In a companion 
paper, Fernandez et al. (2007b) consider the same problem for a chain that likes to 
maximize its share as a primary objective and to minimize the cannibalization of the 
existing stores as a secondary objective.

More recently Toth et al. (2008) and Redondo et al. (2009a, b) study a (2|Xp) me-
dianoid problem that involves the location as well as the attractiveness criteria. In 
the former, the problem is solved by sequential and simultaneous approaches based 
on the exact interval analysis based branch-and-bound algorithm. The running time 
of this algorithm, however, might be impractical for a further generalization as it 
can take up from six to 140 hours for one instance. Later, Redondo et al., in two pa-
pers, investigate the effectiveness of several heuristic procedures for this problem.

Network Models

Most network models focus on obtaining discretization and node optimality results, 
which may subsequently be used in various search techniques such as those dem-
onstrated in Megiddo et al. (1983). The general conclusion that can be drawn from 
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these works is that most models under partially binary and proportional preferences 
show node optimality property. However, models under binary preferences do not 
posses this property, but instead display certain discretization results. The earlier 
works assume that all facilities have equal attractiveness. I first review those mod-
els, then shift the focus to more general cases.

As mentioned earlier, Hakimi (1986) studies a series of problems on networks 
under binary, partially binary, and proportional preferences, as well as under essen-
tial and nonessential demands. Hakimi’s results for these problems are rather prom-
ising, as he proves node-optimality in all ( r| Xp ) medianoid problems except those 
with binary preferences. His proofs use the convexity of the objective function of 
the points along edges, which depends on the properties of the distance function, 
i.e., concave (linear, in case of proportional preferences and nonessential demand), 
nondecreasing, and fv(0) > 0 for all nodes. Suarez-Vega et al. (2004a) provide an al-
ternative treatment of the problems studied in Hakimi (1986). First, they extend the 
node optimality result of proportional preferences and nonessential demand for the 
general concave distance functions. Second, they provide a comprehensive compu-
tational study where they test three solution heuristic procedures.

An earlier attempt to include Huff-like preferences with unequal attractiveness 
is made by Peeters and Plastria (1998). First, they extend Hakimi’s node optimal-
ity results and then they analyze a further extension in which customers purchase 
from only those stores that lie in the Pareto frontier of the distance functions and the 
facility attractiveness. For this Pareto-Huff model, they show that the set of nodes 
can further be augmented to look for the best set of locations. Subsequently, Suarez-
Vega et al. (2004b) unify and extend the essential demand case. They show that 
respective discretization and node-optimality results continue to hold. Similarly, 
they provide discretization results for the facility attraction levels, if the locations 
are assumed to be given. Finally, Santos-Penate et  al. (2007) report that respec-
tive node-optimality results extend to cases with elastic demand under all customer 
preferences, and Suarez-Vega et al. (2007) extend the earlier node-optimality results 
to cases where customers proportionally spend their buying power at the facilities 
which exceed a specified attraction-distance threshold.

Discrete Models

As noted earlier, ReVelle’s (1986) maximum capture ( MAXCAP) model provides 
a workable integer programming formulation that is quite amenable to various 
extensions. In fact, discrete competitive location problems with Huff-like prefer-
ences predate even ReVelle’s work. For example, Achabal et al. (1982) present a 
problem of chain expansion under Multiplicative Competitive Interactions ( MCI) 
model. They formulate the problem as a nonlinear integer program and propose an 
interchange heuristic. Similarly, Ghosh and Craig (1983) present an earlier work 
in which they formulate both medianoid and centroid problems under proportional 
preferences, and propose an iterative heuristic solution procedure.

9  Conditional Location Problems on Networks and in the Plane



196

Subsequently, a number of works followed. Eiselt and Laporte (1989) extend the 
maximum capture formulation by including attraction functions. They then provide 
the solution method for (1| Xp ) medianoid, as well as the facility’s optimal attraction 
level. Karkazis (1989) includes two criteria that customers consider when deciding 
which facility to patronize. Serra et al. (1999b) and Serra and Colome (2001) formu-
late and solve maximum capture problems under partially binary and proportional 
preferences with essential demand. They have solved the problems exactly and ap-
proximately and present their numerical experiments. Benati (1999) and Benati and 
Hansen (2002) present a medianoid problem under a random utility model. Benati 
(1999) proves two important theoretical features of the problem; first he shows the 
submodularity of the objective function; second, he demonstrates that the problem 
can be formulated as a p-median type problem. He uses these properties to develop 
two exact solution methods. Benati and Hansen (2002) present further results and 
also discuss heuristic solution methods. Finally, Benati (2003) presents a version of 
MAXCAP in which the number of new facilities are endogenized through the intro-
duction of location dependent fixed costs.

Finally, Berman and Krass (2002) present a general modeling framework for the 
follower’s problem. In their framework, customers have Huff-like preferences and 
general expenditure functions, which imply generalized elastic demand functions. 
It is shown that the form of the total expenditure function profoundly effects the dif-
ficulty of the problem. For example, while cases with linear expenditure functions 
are easy to solve those with the bounded ones are rather difficult. Subsequently, 
Aboolian et al. (2007a) analyze a special case of the expenditure function, where 
the demand function satisfies certain concavity assumptions. The problem is then 
formulated as a nonlinear knapsack problem and solved by an approach based on 
a piecewise linear approximation scheme for the objective function. This leads to 
exact and near-optimal solution approaches capable of dealing with relatively large 
scale instances of the model. In a companion paper, Aboolian et al. (2007b) extend 
the problem to simultaneously optimize the locations and designs, i.e., attractive-
ness, of a set of new facilities under a budget constraint.

9.3.1.2 � Threshold Market and Franchising Issues

Most large retail firms give their franchisees some kind of territorial exclusivity. 
Even if contracts may vary in specifics, there are provisions that guarantee a level of 
revenue opportunity, i.e., the threshold market, to franchisees. This concept is also 
relevant for planning public services such as hospitals, schools, and post offices. 
Policymakers may need to consider the threshold market to have economically vi-
able facilities. There are a number of works that incorporate threshold market con-
cept into medianoid and capture models under varying assumptions.

Balakrishnan and Storbeck (1991) present a model in which franchise locations 
and individual franchise market areas selected so that market coverage is maxi-
mized and the required threshold level of demands are maintained for all sites. Serra 
et  al. (1999a) provide a mixed integer formulation and propose a metaheuristic. 
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Ghosh and Craig (1991) and Current and Storbeck (1994) realize that total market 
coverage and threshold market objectives might be in conflict, and therefore study 
the multi-objective version. Ghosh and Craig consider the effects of one new outlet 
on demand and on competition, and then develop a network optimization model to 
evaluate potential sites for their impact on total revenues and the revenues of the 
existing outlets. Current and Storbeck, on the other hand, formulate a multiobjective 
model that guarantees that all franchise locations were assigned at least a minimal 
threshold market area with sufficient demand to ensure economic survival.

The above works consider deterministic demand in which the threshold markets 
are also expressed deterministically. Drezner et al. (2002b) and Colome et al. (2003) 
present extensions along the stochastic demand. In both papers, customers are as-
sumed to have buying power distributed according to some statistical distribution. 
Drezner et al. present a single facility planar location problem with the gravitational 
attraction function and stochastic threshold. Their objective is to minimize the prob-
ability of falling short of the required threshold. Colome et al., on the other hand, 
present a model based on the discrete MAXCAP model by introducing a stochastic 
threshold constraint.

9.3.1.3 � Congestion Effects

In the majority of competitive location problems, the consumer utility (explicitly or 
implicitly) depends on exogenously given data such as distance or facility attrac-
tiveness level. When dealing with location decisions in practice, most firms need to 
consider quality of service and congestion effects, which are partly determined by 
the capacity of the facility and its market area. These issues are addressed by a fam-
ily of work that incorporate queuing aspects with location decisions.

Marianov and Serra (1998) present several probabilistic maximal covering mod-
els with constrained waiting time and queue length. Their basic model addresses the 
issue of the location of a given number of single-server centers, such that the maxi-
mum population is served within a standard distance and satisfy chance-constraints 
on average queue-length and waiting time. Marianov et al. (2004) later extend the 
model for public service centers competing with private companies. Recently, Silva 
and Serra (2007) present an extension of the maximum capture problem, in which 
customer’s choice depends on the traveling time plus the waiting time at the fa-
cilities. Finally, Zhang and Rushton (2008) present a more comprehensive discrete 
model that, in addition to the queuing effects, considers simultaneous facility open-
ing and closing as well as sizing decisions. They then present` a mathematical for-
mulation and propose a genetic algorithm to heuristically solve the problem.

9.3.1.4 � Flow Interception or Capture

In all models reviewed so far, the distance between a customer and a facility plays 
a primary role in competitive location models. The main premise of all these papers 
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is that customers make special trips to stores to make purchases, and therefore prox-
imity to facilities is important. However, in many cases, such as ATM machines, 
gasoline stations, and convenience stores, customers make purchases as part of their 
routine trips, such as those from home to work and return. These concerns are ad-
dressed in models with flow-interception, which considers not only distance con-
cerns of the customers but also their trip profiles.

Berman and Krass (1998) appear to be first to include flow capture in a com-
petitive location framework. Their model represents a direct generalization of 
the traditional spatial interaction models, and thus all results in the paper are 
immediately applicable to cases without flow interception. The new model is 
formulated as a nonlinear integer program, for which they develop both exact 
branch-and-bound and heuristic solution algorithms. Their computational results 
suggest that the heuristic method typically yields a solution within 1–2% of the 
optimal solution. Subsequently, Wu and Lin (2003) propose a new formulation 
and a greedy heuristic for the problem. They have tested their approach and 
model on some small problems and as well as on a network of the city of Yuanlin 
in Taiwan.

9.3.2  �Centroid and Related Problems

The general version of the centroid problem, whether defined in the plane or on 
networks, is substantially more difficult than its medianoid counterpart. To date, 
only (1 | 1) centroid problem is solved to optimality with an algorithm of known 
complexity. On networks, Hansen and Labbe (1988) propose an algorithm that runs 
in O( n2m2 log mn log D), where n is the number of nodes, m is the number of edg-
es, and D is the total buying power in the network. As mentioned earlier, Drezner 
(1982) originally proposed two polynomial algorithms for the planar version of the 
problem.

In this section, I review the progress on centroid problems, which is rather lim-
ited, but I also cover some related problems such as those from voting theory and 
Voronoi games, as they are related to the centroid concept. The next section re-
views algorithms to solve centroid problems on networks and in the plane, followed 
by problems from voting theory and Voronoi games. Finally, I review the location 
games with endogenous number of facilities and those with asymmetric informa-
tion.

9.3.2.1 � Algorithms for Centroid Problems

Among the earlier approaches, Serra and ReVelle (1994) propose two heuristics to 
solve these problems. While one of the heuristics is based on a search on leader’s 
locations and the optimal solution to the follower’s problem, the other is a heuristic 
at both levels. Around the same time, Benati and Laporte (1994) develop a tabu 
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search heuristic algorithm for the classical centroid and medianoid problems, which 
uses the lower bound computed for the capture function. They also show that the 
capture function is submodular and nondecreasing. This result is later replicated 
by Santos-Penate and Suarez-Vega (2003) for all cases of centroid and medianoid 
problems described in Hakimi (1986).

Not surprisingly, solving these problems in the plane is also difficult; to our 
knowledge, only one study attempts this. Bhadury et al. (2003) propose an alternat-
ing heuristic scheme where the leader and the follower repeatedly solve medianoid 
problems. They test two heuristic decision models by the follower: the first one is 
a greedy heuristic based on Drezner’s algorithm for solving the (1| Xp) medianoid 
problem. In the second, which is found to be better overall, the players try to locate 
as close to the leader facilities as possible. They also indicate, however, that solu-
tions appear to be very sensitive with respect to the assumptions of the model and 
the relocation process.

Drezner and Drezner (1998) consider a (1 | 1) centroid problem under Huff-like 
consumer preferences, for which they propose three solution procedures. Recently, 
Saiz et al. (2007) consider a version of the problem where both the leader and the 
follower have pre-existing stores with different qualities. They propose a branch-
and-bound algorithm that solves both problems up to a desired accuracy.

9.3.2.2 � Voting Theory

While the focus in voting theory is somewhat different, there are intimate con-
nections between the solutions of competitive location models and those of voting 
models. In voting theory, the main purpose is to locate one facility (such as a school 
or a hospital) as a result of a voting process. The same problem could be cast for a 
politician who likes to position on a platform that would win the election. One of the 
important issues in voting theory is to compare the quality of the voting solution to 
other plausible solutions, such as those that arise out of competition or, more com-
monly, to the benevolent dictator’s solution (the Weber solution), which minimizes 
the average distance that must be traveled by users.

A point is called a Condorcet point if no strict majority prefers another point 
to this point. Therefore, a Condorcet point gets at least 50% of the votes. It is an 
attractive definition, however, a Condorcet point does not necessarily exist un-
der general conditions. In the plane, a considerably earlier work by Wendell and 
Thorson (1974) shows that every Weber point is also a Condorcet point, if the 
distances are rectilinear. On networks, Hansen and Thisse (1981) as well as Wen-
dell and McKelvey (1981) show that every Condorcet point on a tree network is 
a Weber point. Hansen and Thisse also demonstrate that, on general networks, the 
average distance between users and a Condorcet point may be almost three times 
larger than that of a Weber location. This indeed indicates that sometimes voting 
solutions may lead to poor outcomes. Labbe (1985) and Bandelt (1985) describe 
other networks for which Condorcet points always exist or coincide with the We-
ber points.
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When a Condorcet point fails to exist, a natural alternative to look for is the 
least objectionable solution: a point minimizing the maximum number of users pre-
ferring another point. This is called the Simpson point in voting theory and it is 
precisely the (1 | 1) centroid of a network. Maximum relative rejection of a point is 
defined as the proportion of customers preferring another location, which is equiva-
lent to the follower’s market share. Bandelt and Labbe (1986) study the properties 
of the Simpson point and compare it to the Weber point. They show that in general 
networks, a Simpson point could indeed be very bad: the maximum relative rejec-
tion of a Simpson point could be made arbitrarily close to one, and a Simpson point 
could be as bad as any point on the network when average distance between the 
users and the facility are considered.

Subsequent works in voting theory consider various extensions. A recent paper 
by Campos-Rodriguez and Moreno-Perez (2003) relaxes the conditions for a Con-
dorcet point in two ways: first, by considering two locations as indifferent for every 
user if the difference of the distances to them is within a positive threshold; second, 
by considering that the proportion of users needed to reject a location could be more 
than one half. Noltemeier et al. (2007) study a multiple voting location problem on 
networks. Apart from a very efficient algorithm for tree networks, they prove a re-
sult towards lower bounds on the complexity of the single voting location problem.

9.3.2.3 � Voronoi Games

The Voronoi game is played on a bounded continuous area by two players who put 
p points alternately, and the continuous field is subdivided according to the nearest 
neighbor rule. The player who gets the larger area at the final step wins the game. It 
is a simplified model for a competitive facility location.

There are potentially large numbers of different games that can defined as Vor-
onoi games. For example, the classical ( p| p) centroid problem is a one-round Vo-
ronoi game, in which the leader locates p facilities followed by the follower’s p 
facilities. However, Voronoi games may be very difficult to solve in general and few 
special cases have been dealt with so far. Among those, Ahn et al. (2004) investigate 
the case where the market is a line segment with uniformly distributed customers. 
They have shown that the follower always has a winning strategy that would cap-
ture ½ + ε, ε > 0 of the market. But the leader also has a strategy that could make ε 
arbitrarily small.

On the other hand, Cheong et al. (2004) and Fekete and Meijer (2005) deal 
with a 2-dimensional cases, but they restrict themselves to the one-round game. 
The former paper extends Ahn et al.’s result in the following way: the follower 
still does have an advantage, but the leader does not have a strategy that would 
make ε arbitrarily small. In fact, after a threshold value of p, there is an ε that 
is independent of the number of stores. Fekete and Meijer contributes towards 
the complexity of the problem, showing that even the follower’s problem is 
NP-hard.
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9.3.2.4 � Endogenous Number of Facilities

Both medianoid and centroid problems are defined by prespecified numbers of fa-
cilities to be opened. In noncompetitive location models, the implicit understanding 
is that a decision maker solves a family of problems and then makes a decision on 
the number and locations of facilities. Its implication in a competitive environment 
however is not clear. Some works consider budgeted version but, in reality, firms 
could open facilities as long as it is profitable to do so, as they usually invest with 
borrowed money. Hence, fixed costs are introduced, which also act to endogenize 
the number of facilities that firms open.

The literature is rather scant in this area. Dobson and Karmarkar (1987) and Das-
ci and Laporte (2005) consider these problems with fixed costs, but this is where 
their similarities end. Dobson and Karmarkar consider the problem on networks, 
where firms have equal and identical fixed costs, and co-location by the follower 
is not permitted. Under these assumptions, the follower can never enter the market 
profitably, because if there were any profitable location left to the follower, the lead-
er would have taken it already as a worst case action. Hence, the authors focus on 
various stable set definitions, i.e., the sets of leader store locations that deter entry, 
and algorithms to find those sets. Dasci and Laporte (2005), on the other hand, treat 
the consumers as entities continuously spread over the plane according to a given 
density and consider any point as an alternative for location. They then transform 
the problem to a Voronoi-like game and analyze entry and entry deterrence condi-
tions under various fixed costs scenarios. Unlike Dobson and Karmarkar’s model, 
here firms can co-exist in the market.

9.3.2.5 � Uncertainty and Information

These topics have not attracted enough interest from the literature, partly because 
problems with different informational structures or uncertainty are quite involved. 
Eiselt (1998) studies the case of an information asymmetry on a tree network, where 
both the leader and the follower locate a single facility. He analyzes the problem 
under the assumption that firms locate at the nodes and investigates the impact of 
information asymmetry on firms’ relative advantages. For uncertainty, Shiode and 
Drezner (2003) consider a (1 | 1) centroid problem on a tree network, where custom-
ers are located at the nodes and are assumed to have stochastic demand. They have 
proven that the leader’s optimal solution is to locate at one of the nodes. Once the 
leader’s decision is made, the follower’s solution is characterized rather easily.

9.3.3  �Competitive Location with Pricing Issues

The discussion so far confirms that these problems are difficult even without pric-
ing decisions. Although the results are still scant, progressively more manageable 
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problems have been identified and presented. There are relatively more diverse sets 
of models that include pricing and therefore, I present these works in three broad 
classes: those that consider only the follower’s location and pricing decisions, those 
that deal with Hotelling’s problem on trees, and those of network and discrete mod-
els that consider location and some form of pricing decisions.

In the plane, Zhang (2001) extends the original (1|Xp ) medianoid problem with 
a price decision to be applied at the facility and presents a procedure with a worst-
case complexity of O( n3 log n). There are also works that incorporate pricing deci-
sions in discrete domain: Serra and ReVelle (1999) extend the maximum capture 
model with a price decision and study both the inelastic and elastic demand cases. 
Recently, Plastria and Vanhaverbeke (2009) introduce a version of a maximum cap-
ture model with inelastic demand. They have explored various properties of the 
optimal solution, which are later used in an efficient enumeration method.

Eiselt (1992) is among the first to consider the Hotelling’s problem on a tree 
network. He shows that if both competitors have price and location as decision 
variables, no equilibrium exists in pure strategies. If, however, prices are fixed in 
advance, equilibria may exist under certain conditions. Subsequently, Eiselt and 
Bhadury (1998) have shown that if equilibria exist, they could be reached as a result 
of a sequential location game played by the firms. Garcia-Perez and Pelegrin (2003) 
study the same problem and prove a few interesting node-optimality results. Under 
different prices, an optimal location for the follower at a node always exists, while 
for the leader optimal locations could only be in the interior of an edge. Under equal 
prices, an optimal location for the leader at a node always exists, but for the follower 
it might be on the interior of an edge.

A part of this literature also considers multi stage games that involve location 
and/or pricing decisions. For example, some earlier works such as Tobin and Friesz 
(1986), Friesz et al. (1989), and Miller et al. (1991) study a set of leader-follower 
problems where an entering firm(s) wishing to establish production facilities to 
maximize its profit, taking into account the changes in prices at each market that 
would result from the increase in supply provided by its new facilities and from the 
response of competing firms that are already established. More recently, Fischer 
(2002) and Pelegrin et al. (2006) study these problems on networks. In the latter, 
leader’s locations are fixed and once the follower sets up his facility, firms engage 
in a price competition. They study the equilibrium and optimization problems un-
der mill and spatial delivered pricing policies, and present extensive discretization 
results. Fischer, on the other hand, presents a series of leader-follower models with 
spatial discriminatory pricing, and develops bilevel programming formulations.

9.4 � Conclusion

This chapter provides an overview of conditional location problems with a spe-
cial emphasis on the works that pioneered this field. Both Drezner’s and Hakimi’s 
works are so central to this field that there are still open research issues that are 
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rather basic extensions of these works. I would like to point out that many of the 
works that are reviewed in earlier sections such as those with threshold market 
concepts, congestion and queuing effects, and flow-interception could be extended 
in various ways.

Perhaps two important weaknesses of conditional location problems are the des-
ignations of the leader and the follower and the exogenously set number of fa-
cilities. While in some settings these choices could arise naturally or these models 
could very well be useful in decision-making, it is not clear what makes one firm a 
leader and the other one a follower, or what really determines the number of facili-
ties they plan to open. Therefore, an important future research avenue is to develop 
models in which the leader and follower designations and/or the number of facilities 
arise endogenously as a result of competition and strategic interactions.

Most of the existing models assume that firms are identical in terms of the objec-
tives they pursue. However, there are a number of possible scenarios where they are 
not the same. For example, one of the firms could be a public or a quasi-public pro-
vider, or it might not have the ownership of all stores, or it might choose to pursue 
multiple objectives. Therefore, considering alternative objectives in these models is 
an important research avenue. Furthermore, including franchising contracts, such 
as those related to pricing and service delivery, may also be a related area of study.

Finally, today it is not uncommon for firms to own and operate a number of 
chains. For example, consider KFC, Pizza Hut, and Taco Bell, or KMart and Sears. 
Therefore, an integrated location planning approach is needed for the management 
of such intertwined retail networks. There are a number issues, ranging from market 
segmentation and cannibalization to brand management to economies of co-loca-
tion, that could be explored in a competitive location framework.
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10.1 � Introduction

Undesirable facilities are those facilities that have adverse effects on people or the 
environment. They generate some form of pollution, nuisance, potential health haz-
ard, or danger to nearby residents; they also may harm nearby ecosystems. Ex-
amples are incinerators, landfills or sewage plants, airports, stadia, repositories of 
hazardous wastes, nuclear or chemical plants, prisons, and military installations. 
Although they provide some disservice to nearby residents, these facilities are nec-
essary to society. In addition, there is often some travel involved to and from these 
facilities and an associated transportation cost that increases with distance from the 
population, which in turn suggests that they should be placed away but not very far 
away. The terms semi-obnoxious and semi-desirable have also been used for some 
of these facilities, but the undesirable features (perceived or real) of these facilities 
dominate the desirable ones. Since the analytical models used for locating these 
facilities do not change much with their degree of undesirability, as Erkut and Neu-
man (1989) suggested, we will use the term undesirable for all of them.

Since its inception, location theory has been dominated by models and meth-
ods for locating desirable facilities, such as warehouses, hospitals, and firehouses, 
which need to be placed close to the population centers receiving their services. This 
changed in the 1970s with the launching of undesirable facility location research. 
Several reasons are attributed to this late entry in the location literature, notably that 
most of the aforementioned undesirable facilities, such as airports, mega-stadia, 
and sewage, chemical, and nuclear plants, are the byproducts of the technological 
advances and industrialization of the second half of the twentieth century. In ad-
dition, both industrial waste and municipal waste increase with world population 
and economic development while the waste generated by some of these facilities is 
toxic and has to be disposed of safely.
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International Series in Operations Research & Management Science 155,
DOI 10.1007/978-1-4419-7572-0_10, © Springer Science+Business Media, LLC 2011

Chapter 10
The Location of Undesirable Facilities

Emanuel Melachrinoudis

E. Melachrinoudis ()
Department of Mechanical and Industrial Engineering, Northeastern University, 
360 Huntington Avenue, Boston, MA 02115, USA
e-mail: emelas@coe.neu.edu



208

In the early 1970s, public environmental concerns triggered federal legislation in 
the United States, which, in turn, enhanced awareness of the potential hazards and 
generated a need for the systematic placement of these facilities to minimize their 
undesirable effects. Prior to the 1970s, the protection of basic air and water supplies 
was a matter mainly left to each state. During the 1970s, responsibility for clean air 
and water shifted to the federal government. The Environmental Protection Agency 
was created in 1970, and during the ensuing decade several regulatory laws were 
passed to protect human health and the environment from potential hazards of pol-
lution and waste disposal. These included the Clean Air Act of 1970 and the Safe 
Drinking Water Act of 1974 for enforcing clean air and drinking water standards, 
the Resource Conservation and Recovery Act of 1976 for regulating the disposal of 
solid and hazardous wastes, the Clean Water Act of 1977 for eliminating releases of 
toxic substances into the water, and the Comprehensive Environmental Response, 
Compensation, and Liability Act of 1980 for protecting people from abandoned 
heavily contaminated toxic waste sites.

A suitable location objective for locating an undesirable facility is the maximi-
zation of some increasing function of the distance between the facility and the af-
fected customers. Analogous to the minisum and minimax objectives, most popular 
for locating desirable facilities, the maxisum and maximin objectives are estab-
lished for locating undesirable facilities; see, e.g., Eiselt and Laporte (1995). The 
maxisum objective maximizes the sum of distances (or average distance) between 
the facility and the customers, while the maximin objective maximizes the distance 
between the facility and the closest customer to it. Sometimes weights are assigned 
to customers to represent the relative incompatibility between a customer and the 
facility and weighted distances are used. The objectives for undesirable facilities 
are frequently referred to as push objectives, since they push the undesirable facili-
ty away from the customers, while the objectives for desirable (attractive) facilities 
are referred to as pull objectives, since they pull the facility closer to the customers. 
To avoid pushing the undesirable facility to an infinite distance from the custom-
ers, which does not make sense in a real life problem, the objectives for undesir-
able facilities have to be optimized within a bounded region, a distinct difference 
from the desirable facilities objectives. In addition, the optimization models for 
undesirable facility location are more difficult to solve. Unlike the desirable facil-
ity location models, undesirable facility location models are nonconvex, typically 
having many local optima.

Although Goldman and Dearing (1975) are credited with first discussing the 
concept of optimally locating “semi-desirable” or “partially noxious facilities” in 
a conference paper, Church and Garfinkel’s (1978) paper was the first published 
work on undesirable facility location. Their paper dealt with the maxisum location 
problem on a general network: they found a point of the network such that the 
sum of weighted shortest path distances from the nodes is maximized. They re-
duced the network solution space to a finite set of candidate points for optimality, 
consisting of the set of bottleneck points of the network and the leaf nodes of the 
network. Church and Garfinkel first showed that the maxisum objective renders 

E. Melachrinoudis



209

a nonconvex problem having many local optima, and that Hakimi’s principle of 
optimality at a node does not hold. Exploiting the structure of the problem and 
utilizing bounds, their algorithm found the global optimum by partially enumerat-
ing local maxima. Their algorithm was adapted later for other undesirable facil-
ity location problems. This pioneering work stimulated a large body of research 
in undesirable facility location that complemented the desirable facility location 
literature.

The maximin location problem first appeared in the works of Shamos (1975) and 
Shamos and Hoey (1975) who studied the complexity of several fundamental prob-
lems in computational geometry. One of these problems is finding the largest empty 
circle of a given set of points in the plane, i.e., the circle that contains no points of 
the set, yet whose center is in the convex hull of the given points. The center of that 
circle is the maximin point as it maximizes the Euclidean distance to the closest 
point in the set. The solution is found by constructing the Voronoi diagram for the 
set of points. The first papers on the maximin location problem were published five 
years later by Dasarathy and White (1980) and Drezner and Wesolowsky (1980).

Building on their earlier work on pattern recognition, Dasarathy and White 
(1980) first formulated and solved the maximin problem with Euclidean distances 
for a feasible region, which is a convex polyhedron in k-dimensional space. They 
delineated their general algorithm for a 3-dimensional space. For the 2-dimensional 
space, they expanded Shamos and Hoey’s Voronoi construction to account for op-
timality at the boundary of the feasible region. Their principal contributions are the 
characterization of the problem as nonlinear and nonconvex, the establishment of 
the properties of local optima using the Karush-Kuhn-Tucker optimality conditions, 
and the development of a general algorithm for solving the problem.

Drezner and Wesolowsky (1980) considered the same problem but with custom-
er weights and a convex planar region defined by maximum distance constraints, 
one for each point (customer). Equivalently, the customers want the facility as far 
away as possible but within certain distance from them, which in turn signifies the 
semi-obnoxious character of the facility. Their optimization procedure was different 
from the one in Dasarathy and White (1980). They used a bisection search based on 
a graphical approach to approximate the optimal solution.

The above classical contributions, which cast the foundation of undesirable facil-
ity location theory during the late 1970s, are presented in this chapter. The detail and 
illustrative examples are helpful to introduce a beginner into the basic concepts of 
undesirable facility location research but also there is sufficient depth for the vet-
eran researcher in the field to review and appreciate the classical contributions. An 
effort has been made to include major theoretical results, the thought process of the 
authors at the time, and the impact their work had on location literature. Although 
this is not a survey paper, major works that followed the classical contributions are 
surveyed.

This chapter is organized as follows: The classical contributions are presented in 
Sect. 10.2 and their impact is assessed in Sect. 10.3. The chapter ends with a sum-
mary and outlook of undesirable facility location research in Sect. 10.4.

10  The Location of Undesirable Facilities
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10.2 � The Classical Contributions

The classical contributions on the location of undesirable facilities can be classified 
according to the objective functions used in the respective optimization problems: 
maxisum and maximin. In an effort to minimize the adverse effects of the facility to 
be located, both of these objectives maximize some increasing function of the dis-
tance between the facility and the affected customers, namely the sum of distances 
and the minimum distance. The original papers appeared within a five-year period 
in the second half of the 1970s. We first present the classical contribution of Church 
and Garfinkel (1978) that utilizes the maxisum objective on a network. This work is 
followed by contributions that consider the maximin objective in continuous space: 
Shamos (1975) and Shamos and Hoey (1975), Dasarathy and White (1980), and 
Drezner and Wesolowsky (1980).

10.2.1  �The Maxisum Problem on a Network: Church and 
Garfinkel (1978)

Let G = ( N, A) be a connected and undirected graph with no loops or multiple arcs, 
where N is the set of n nodes and A is the set of m arcs. The nodes represent custom-
ers that exhibit some adverse interaction with the new facility. We want to find a 
point x, x ∈ G, for locating the facility that maximizes

� (10.1)

where wi ≥ 0 is the weight of node i and d( i, x) is the length of the shortest path 
between node i and x ∈ G.

Church and Garfinkel first formulated the above problem and named it maxian 
as it is identical to the median problem except that the objective is maximizing in-
stead of minimizing. Thus, the solutions of these two problems find the two extreme 
values of T( x). As they remark, this may help in evaluating how bad a given solution 
is with respect to any one of the two objectives.

Whereas the median problem attempts to find a location that is close to a given 
set of points, the maxian problem attempts to find a location that is as far as possible 
from these points. It should be noted that in the maxian problem, which is more 
often called maxisum problem, the type of facility to be located is not as important 
as is the adverse interaction between the given points and the new facility. In fact, 
Church and Garfinkel gave as an example of application the location of a house or 
a business—by no means undesirable—in a city among pockets of high crime inci-
dence concentrated at the nodes of the network. The interaction between the nodes 
and the facility results in danger or potential harm to the facility that decreases with 
its distance from the nodes. In this example, the weight wi represents the relative 
danger of node i to the facility.

T (x) =
∑

i∈N

wid(i, x),
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For median problems, Hakimi (1964) proved that there exists a node which is 
optimal. This suggests a straightforward procedure for finding the optimal solution: 
evaluate objective function (10.1) at all nodes of the network and select the node(s) 
with the minimum value. Changing the optimization operator to “max” results in a 
surprisingly more complicated problem, in which the optimal point cannot be only 
at the nodes but also on the arcs of the network. Moreover, the maxisum is a non-
convex problem, thus possessing many local optima. One of the key results of this 
work is that the search for the optimal solution is reduced from the infinite number 
of points of network G to a finite set of candidate points, often referred to as a Finite 
Dominating Set of points ( FDS). After a brief notation, the points of interest are 
introduced below and optimality properties are established.

An interior point x on an arc ( i, j) divides it into two arc segments ( i, x) and 
( j, x). Denote the lengths of the two segments c( i, x) and c( j, x), respectively, and 
denote point x by the arc ( i, j) is on and its distance from node i: [( i, j); c( i, x)]. 
For example, in Fig. 10.1 (slightly modified from Church and Garfinkel 1978), 
x1 = [(3, 4); 12)].

It is assumed that the shortest path distances between nodes are known. Ahuja 
et al. (1993) demonstrated that they can be effectively computed by several algo-
rithms. Table 10.1 contains the shortest path distances between the nodes of the 
above network, d( i, k), and the sum of distances from a node k to all nodes,

Let x be an interior point of arc ( i, j). If there exists a node k such that

� (10.2)

x is called arc bottleneck point with respect to node k and BA( k) denotes the set of 
bottleneck points generated by node k on A. This is illustrated in Fig. 10.2a, where 
the shortest paths from node k to i and j are shown as broken lines. Since c( i, x), 
c( j, x) > 0 and c( i, x) + c( j, x) = c( i, j), it follows from (10.2) that arc ( i, j) contains 
an arc bottleneck point with respect to node k if and only if |d( k, i) − d( k, j)| < c( i, j). 
By letting

� (10.3)

T (k) =
∑

i∈N

d(i, k).

d(k, i) + c(i, x) = d(k, j) + c(j , x),

p(k) = d(i, k) − d(j , k),

Fig. 10.1   A nine node 
network
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the condition for arc ( i, j) to contain an arc bottleneck point generated by node k 
can be written as

� (10.4)

Note that p( k) measures how much farther away node i is from k than from j. The 
range of values of p( k) can be found by the triangle inequality for shortest path 
distances. Since d( i, k) ≤ d( i, j) + d( j, k) and d( j, k) ≤ d( j, i) + d( i, k), substituting in 
(10.3) we obtain −d( i, j) ≤ p( k) ≤ d( i, j), or

� (10.5)

If d( i, j) < c( i, j), (10.4) and (10.5) imply that every node k ∈ N has an arc bottleneck 
point on arc ( i, j). This is later illustrated for arc (1, 2) of Fig. 10.1.

Inequality (10.4) implies that no shortest path from k to i or from k to j contains 
arc ( i, j). Clearly, a bottleneck point on arc ( i, j), with respect to node k, is associ-
ated with a cycle formed by the shortest path from node k to node i, arc ( i, j), and 
the shortest path from node j back to node k, as shown in Fig. 10.2a. The bottleneck 
point is the point in a cycle that is the farthest away from node k. For example, 
x1 ∈ BA( 6) in Fig. 10.1 as node 6 and point x1 are the endpoints of two equidistant 
paths, {(6, 3), (3, x1)} and {( x1, 4), (4, 5), (5, 6)}, and inequality (10.4) is satis-
fied as |5 − 12| < 17. By considering all cycles that contain node 6, in Fig. 10.1, 
and identifying arcs on those cycles containing bottleneck points using inequality 

|p(k)| < c(i, j).

|p (k)| ≤ d(i, j).

Table 10.1   Node-to-node shortest path distance matrix d( i, k) and T( k)
Node i Node k T( k)

1 2 3 4 5 6 7 8 9

1 0 14 21 7 15 19 11 20 22 129
2 14 0 9 7 15 14 11 20 17 107
3 21 9 0 14 6 5 18 11 8 92
4 7 7 14 0 8 12 4 13 15 80
5 15 15 6 8 0 4 12 5 7 72
6 19 14 5 12 4 0 16 9 3 82
7 11 11 18 4 12 16 0 17 19 108
8 20 20 11 13 5 9 17 0 12 107
9 22 17 8 15 7 3 19 12 0 103

Fig. 10.2   Bottleneck points
c (  j, x)

d(k, i) d(k, j )

k

i

a b

jxc (i, x)
i

k

d( , k)d( , j)

j
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(10.4), the complete set BA(6) can be derived: BA(6) = {[(3, 5); 2.5], [(3, 4); 12], 
[(2, 4); 2.5], [(1, 2); 5]}. Since there is a unique path between leaf node 9 and 
node 6, BA(9) = BA(6). Note that it is possible for arc ( i, j) to contain a bottleneck 
point with respect to each one of its vertices i and j. This happens if and only if 
d( i, j) < c( i, j), i.e., the shortest path between the end nodes of an arc is not that same 
arc. In Fig. 10.1, arc (1, 2) satisfies that condition, as d(1, 2) = 14 < c(1, 2) = 15 and 
the associated cycle is {(1, 2), (2, 4), (4, 1)}. Therefore, point [(1, 2); 14.5] is in 
BA(1) and point [(1, 2); 0.5] is in BA(2).

Bottleneck points can also appear on nodes. If there exist distinct arcs ( i, j) and 
( i, k) incident to node i and a node ℓ ≠ i such that d( ℓ, j) + c( j, i) = d( ℓ, k) + c( k, i), 
then node i is a node bottleneck point with respect to node ℓ, denoted by i∈BN( ℓ), 
and illustrated in Fig. 10.2b. For example, node 2 is in BN( 5) in Fig. 10.1. There are 
two equidistant paths from node 5 to node 2, one containing arc (2, 3) and the other 
(2, 4), whose union forms a cycle. Each arc or node bottleneck point is associated 
with a cycle in G that contains the point. Conversely, Church and Garfinkel show 
that every cycle in G contains a bottleneck point with respect to every node in the 
cycle. This result suggests a method for finding all bottleneck points of a network: 
find all cycles in G and for every node in a cycle identify the corresponding bottle-
neck point.

Let BA =
⋃

k∈N

BA(k)  denote the set of all arc bottleneck points, BN =
⋃

k∈N

BN (k) 

the set of all node bottleneck points, and B = BA ∪ BN the set of all bottleneck points 
of G. Let D denote the set of dangling (leaf) nodes of G. In the network of Fig. 10.1, 
for example, D = {7, 8, 9}. Since bottleneck points are defined by cycles, D and B 
have no elements in common. The following theorem reduces the solution space 
from an infinite set (network G) to a finite set of candidate points for optimality 
consisting of the set of leaf nodes and the set of bottleneck points of G.

Theorem 1:  There exists a point x̂  which maximizes (10.1) such that x̂  ∈ X* = 
D ∪ B.

Proof:  Church and Garfinkel show that for every point x ∈G, x ∉ D ∪ B, there 
exists an x ∈ D ∪ B with a better objective value. Consider first an interior point x 
of arc ( i, j), x ∉ BA. Then, within the ε-neighborhood of x, the sum in (10.1) can be 
decomposed into two, one over nodes k ∈ Ni( x) and one over k ∈ Nj( x), where Ni( x) 
and Nj( x) are nodes k ∈ N whose shortest path to x includes segment ( i, x) and ( j, 
x), respectively:

For a point xe in the interior of arc ( i, j), such that c( j, xe) = c( j, x) + ε, for ε > 0 and 
infinitesimal, Ni( x) and Nj( x) remain unchanged and therefore,

T (x) =
∑

k∈Ni(x)

wk d(k , x) +
∑

k∈Nj(x)

wk d(k , x).

T (xe) − T (x) =




∑

k∈Nj(x)

wk −
∑

k∈Ni(x)

wk



 ε = q(x)ε.
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Assuming without loss of generality that q( x) ≥ 0, it follows that T( xe) − T( x) in-
creases with ε until xe reaches an arc bottleneck point or node i.

Consider now a point x that is on a node and x ∉ D ∪ BN. Similarly, in this case 
a path from x can be found on G of increasing objective value until a point of D ∪ 
B is encountered. � □

On a given arc ( i, j) ∈ G, there exist at most n bottleneck points identified by cycles 
containing arc ( i, j) and each node k ∈ G. Therefore, there exist at most mn bottle-
neck points. Since the number of leaves in a network is at most n, the size of the set 
containing the optimal solution is O( mn).

Since bottleneck points occur only on cycles of G and a tree network has no 
cycles, the following corollary follows from Theorem 1.

Corollary 1:  If the network is a tree, there exists an optimal point which is a leaf 
node.

A straightforward approach for solving (10.1) is to find the best point on each 
edge, and then compare these points and select the optimal point in G.

The shortest path distance between a node k ∈ N and a point y ∈ ( i, j), is d( k, y) = 
min{d( i, k) + c( i, y), d( j, k) + c( j, y)}. It is maximized when d( i, k) + c( i, y) = 
d( j, k) + c( j, y). Substituting c( i, y) = c( i, j) − c( j, y), the point on arc ( i, j) with 
the maximum distance from node k, denoted by y( k), is at a distance from node j, 
c( j, y) = ½[d( i, k) − d( j, k) + c( i, j)]. After it is simplified using (10.3), it becomes:

� (10.6)

In other words, for a given arc ( i, j) the length of ( j, y) is increasing with p( k). The 
greater the value of p( k), the further y( k) is from node j. If p( k) = c( i, j), y( k) = i, 
while if p( k) = − c( i, j), y( k) = j. Therefore, if we reorder nodes k ∈ N in increasing 
magnitude of p( k) they will map to y( k) points in the same order on arc ( j, i), ac-
cording to (10.6). To reorder the nodes k ∈ N for arc ( i, j) we re-index them by r( k) 
in terms of increasing p( k), i.e., r( k2) > r( k1) → p( k2) ≥ p( k1). Clearly, p( i) = −d( i, j) 
and p( j) = d( i, j), and we can let r( i) = 1 and r( j) = n.

Table 10.2 contains p( k) and r( k), k ∈ N, for arc ( i, j) = (1, 2) of Fig. 10.1. The 
distance of point y( k) from node 2, c(2, y), is also computed according to (10.6). 
Note that d(1, 2) < c(1, 2) and therefore |p( k)| < c(1, 2) = 15 for every k ∈ N. Based 
on an earlier observation, every node has a bottleneck point on arc (1, 2) although 
not all of them are distinct.

We want to express the objective function (10.1) at some point y ∈ ( i, j). Consid-
er two consecutive y( k1) and y( k2) points, i.e., r( k1) = t and r( k2) = t + 1, t = 0, …, n, 

c (j , y) = 1/2
[
p(k) + c (i, j )

]
.

Table 10.2   Bottleneck points on arc (1, 2)
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where r( k) = 0 and r( k) = n + 1 are associated with  node j and i, respectively. For 
notational simplicity, use y = c( j, y). In other words, y represents both a point y ∈ ( i, j) 
and its distance from j on arc ( i, j). For y ∈ ( y( k1), y( k2)),

� (10.7)

and the objective function T( y) can now be expressed as

� (10.8)

where

� (10.9)

is the gradient of T( y). When y( k1) and y( k2) are distinct points, T( y) is a line segment 
with slope W( t). When y( k1) = y( k2), the line segment becomes a degenerate point. 
The number of different line segments of T( y) for y ∈ ( i, j) depends on the number 
of distinct numbers y( k). It can be as low as 1 (whole arc), when |p( k)| = c( i, j) 
for all k ∈ N, and as high as n + 1, when all values y( k) are distinct bottleneck points. 
The former happens for arc (4, 5) of Fig. 10.1. Clearly, the slope W( t) is nonincreas-
ing with increasing t, as one scans consecutive arc segments ( y( k1), y( k2)) from 
node j to node i on arc ( j, i). Since it is also continuous, T( y) is piecewise linear and 
concave, and the theorem below follows.

Theorem 2:  A best point y*( k) on arc ( i, j) satisfies r*( k) = min{r( k)|W( r( k)) ≤ 0, 
r( k) = 1, …, n}, and its distance from node j is given by (10.6).

It is possible that W( r( k)) = 0 at the best point y*( k). Then every point on the arc 
segment between y( k*) and {y( ℓ)|r( ℓ) = r*( k) + 1} maximizes T( y) on arc ( i, j).

Although Church and Garfinkel allude to the concavity property of the objective 
function on an arc, they do not explicitly state it. To illustrate the “piecewise linear 
and concave” property of the objective function T( y) over an arc, objective values 
at all y( k) ∈ (2, 1) are calculated using (10.8) and (10.9). Equal weights, wk = 1, 
k ∈ N, are assumed. The objective values T( y( k)) are displayed in the last row of 
Table 10.2. In Fig. 10.3, T( y) is plotted for arc (1, 2) using the data of Table 10.2. 
Point y = 0 and point y = 15 correspond to nodes 2 and 1, respectively. The objec-
tive value at node 2 and 1 is 107 and 129, respectively, taken from the last column 
of Table 10.1.

The unweighted maxian problem is the maxian problem in which all weights wi 
are equal to 1. As is shown below, the procedure for finding the best point on an arc 
can be greatly simplified when weights are equal.

Note in (10.9) that as point y on arc ( i, j) moves from one interval [y( k1), y( k2)] to 
the next [y( k2), y( k3)], such that r( k1) = t, r( k2) = t + 1 and r( k3) = t + 2, the gradient 

d(k , y) =
{

d(k , i) + c(i, j) − y, for {k|r(k) ≤ t}
d(k , j) + y, for {k|r(k) ≥ t + 1}

T (y) =
∑

k|r(k)≥t+1

wkd(k, j ) +
∑

k|r(k)≤t

wk[d(k, i) + c(i, j )] + W (t)y,

W (t) =
∑

k|r(k)≥t+1

wk −
∑

k|r(k)≤t

wk , t = 0, . . . , n
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W( t) decreases by 2wk2.  If all weights are equal to 1 the gradient decreases by 2. For 
our 9-node example, W( t) = 9 − 2t, t = 0, …, 9. The following corollary simplifies 
the procedure for finding the best point on an arc.

Corollary 2:  A best point y*( k) on arc ( i, j) satisfies

and its distance from node j is given by (10.6).
The best point on an arc can be found in O( n log n) time by sorting the n points 

with respect to increasing values of p( k). Therefore, the total time required to find 
the optimal maxisum point in an unweighted network is O( mn log n).

Consider again arc (1, 2) of the network of Fig. 10.1. Since n is odd, the best 
point y*( k) on arc (1, 2) is associated with r*( k) = ½( n + 1) = 5. From Table 10.2 we 
find that the arc bottleneck point y*( k) is generated by node k = 8 and is at distance 
y = 7.5 units from node 2 (see also Fig. 10.3). Note that, in addition to node 8, the 
best point on arc (1, 2) is the bottleneck point of nodes 4, 5 and 7.

Bounds of the objective function over an arc can be found as follows. Since T( y) 
is concave over each arc ( i, j), its minimum occurs at an endpoint, i.e., at one of the 
two nodes, i or j, or both. Therefore, a lower bound of T( y) over arc ( i, j), T (i, j),  
is specified in the following relation

� (10.10)

A good lower bound of the optimal objective value over G is T .  It is obtained by 
comparing the objective values of the nodes of G:

� (10.11)

r∗(k) =
{

1/2n, if n is even
1/2(n + 1), if n is odd

T (i, j ) = min

{
∑

k∈N

wkd(k, i),
∑

k∈N

wkd(k, j )

}
.

T = max
i∈N

∑

k∈N

wkd(k, i)

Fig. 10.3   Objective function value over arc (2, 1)
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To find an upper bound of T( y) over an arc ( i, j), T (i, j ),  we consider the upper 
bound of d( k, y), y ∈ ( i, j). The maximum distance point on arc ( i, j) from node k is 
point y( k), found earlier. Its distance from node k is d( k, j) + c( j, y), where c( j, y) is 
given by (10.6), such that

Multiplying both sides of this expression by wk, and taking the summation for all 
k ∈ N, we obtain

�

(10.12)

For the unweighted maxian problem (with wk = 1, k ∈ N), the upper bound reduces 
to

� (10.13)

The search for the optimal solution starts with the node x̂  associated with T .  This 
is the incumbent solution. Upper bounds on all arcs, T (i, j),  are used to eliminate at 
the outset as many arcs as possible. After finding the best point on an arc, the lower 
bound is updated and is used to eliminate additional arcs. When all remaining arcs 
have been considered, the incumbent is the optimal solution.

Algorithm 1: Maxisum Problem on a Network 

Step 1:	� Compute a lower bound on T( x*), T ,  using (10.11) and identify 
the point x̂ ∈ G  at which it occurs.

Step 2:	� Compute the upper bounds on all arcs ( i, j) ∈ A, T (i, j) ,  using 
(10.12).

Step 3:	� Eliminate every arc ( i, j) ∈ A for which T (i, j)< T  from further 
consideration. Let the set of remaining arcs be A′.

Step 4:	� Until A′ = ∅, repeat.
Step 4.1:	� Let the arc ( i, j) ∈ A′ with the largest T̄ (i, j) be ( u, v). Find the 

best point on arc ( u, v) and denote it by y* and its objective value 
by T( y*). Set A′ ← A ′− ( u, v).

Step 4.2:	� If T( y*) > T , update T ←T( y*) and x̂ ← y*, and eliminate remain-
ing arcs ( i, j) ∈ A′ for which T (i, j )< T .

Step 5:	� The optimal solution is x* =  x̂  and T( x*) =  T .

d(k, y) ≤ 1/2[c(i, j ) + d(k, i) + d(k, j )].

T (y) ≤ T (i, j ) = 1/2

[
c(i, j )

∑

k∈N

wk +
∑

k∈N

wkd(k, i) +
∑

k∈N

wkd(k, j )

]

= 1/2

[
c(i, j )

∑

k∈N

wk + T (i) + T (j )

]
.

T (i, j ) = 1/2
[
nc(i, j ) + T (i) + T (j )

]
.
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Algorithm 1 is illustrated for the unweighted maxian of the network of Fig. 10.1. 
Node 1 provides a lower bound T = T (1) = 129  from the last column of Ta-
ble  10.1. Upper bounds on the arcs T (i, j) have been calculated according to 
(10.13) and are shown in Table 10.3. According to Step 3 of the algorithm, all arcs 
except A′ = {(1, 2), (1, 4), (2, 3), (3, 4)} are eliminated. Of the remaining, arc (1, 2) 
is selected for its largest upper bound (185.5). The best point on arc (1, 2) was found 
earlier at its midpoint with objective value 160.5. The new T = 160.5  allows us to 
eliminate all remaining arcs except (3, 4).

To find the best point on arc (3, 4) we construct Table 10.4, from which r*( k) = 5 
occurs for k = 8. The best point is [(4, 3); 7.5] with objective value 125.5, calculated 
directly from (10.8) and (10.9). This is inferior to the incumbent point, which is op-
timal because there are no other remaining arcs to consider. Therefore, the optimal 
point is [(1, 2); 7.5] with objective value 160.5.

10.2.2  �The Maximin Location Problem in Continuous Space 
with Euclidean Distances

Analogous to minimax problem, the maximin objective attempts to find a location 
for an undesirable facility that minimizes the adverse impact on the most affected 
customer, which is the one closest to the facility. The maximin objective was first 
used in continuous space with Euclidean distances. Three original contributions for 
undesirable facility location are analyzed in this subsection. The earliest work by 
Shamos (1975) and Shamos and Hoey (1975) characterized the unweighted maxi-
min problem in the plane as an interesting problem of computational geometry, 
whose solution is the byproduct of the construction of a Voronoi diagram. Although 
they suggested the use of the maximin objective for undesirable facility location, 
Dasarathy and White (1980) and Drezner and Wesolowsky (1980) first formulated 
the maximin problem with practical feasible regions making it a suitable location 
model for undesirable facilities.

Table 10.3   Objective value upper bounds on arcs
Arc ( i, j) (1, 2) (1, 4) (2, 3) (2, 4) (3, 4) (3, 5)
T (i, j ) 185.5 136 140 125 162.5 109

Arc ( i, j) (3, 6) (4, 5) (4, 7) (5, 6) (5, 8) (6, 9)
T (i, j ) 109.5 112 112 95 112 106

Table 10.4   Bottleneck points on arc (3, 4)
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10.2.2.1 � Shamos (1975) and Shamos and Hoey (1975): 
The Origins of the Maximin Problem

The maximin location problem first appeared in the works of Shamos and Hoey, 
who studied the complexity of several fundamental problems in computational ge-
ometry. The maximin problem is stated as follows: Given a set N of n points ai in 
R2, find the largest empty circle that contains no points of the set yet whose center 
x is interior to the convex hull of the points, CH( N). Equivalently,

� (10.14)

where d(i, x) = ‖ai − x‖  is the Euclidean distance between point ai and x. The cen-
ter of such a circle is the unweighted maximin point. Since such a point is farthest 
away from the closest customer point, it is suitable for the location of an undesir-
able facility, such as a source of pollution. For the same reason, the maximin point 
is suitable for locating a new business—albeit a desirable facility—that does not 
wish to compete for territory with established outlets represented by existing points. 
The solution point is restricted to a bounded feasible region, CH( N), because other-
wise it is going to be at an infinite distance from the customers. Moreover, Shamos 
and Hoey characterized the new problem as the dual of the (unweighted) minimax 
problem, posed much earlier by Sylvester (1857), which found the smallest circle 
enclosing all points of set N. The minimax objective was thoroughly investigated 
during the 1970s as an alternative to the minisum objective for the location of “de-
sirable” facilities. Shamos and Hoey solved the maximin problem by constructing 
the Voronoi diagram of the ai points.

Associated with each point ai, 1  ≤  i  ≤  n, there exists a polygon Vi, 
called a Voronoi polygon, with the following property: if x ∈ Vi ,  then 
‖ai − x‖ ≤

∥∥aj − x
∥∥ , 1 ≤ j ≤ n. The polygon Vi is the intersection of halfplanes 

containing ai, where the halfplanes are determined by the perpendicular bisectors of 
the line segments joining ai and aj,  j ≠ i. The edges of the Voronoi polygons, some of 
which are unbounded halflines, are called Voronoi edges and their vertices Voronoi 
vertices. A Voronoi vertex is the common point of at least three Voronoi polygons, 
i.e., is equidistant from at least three ai points. The circle drawn with its center at 
a Voronoi vertex and its radius the distance to its equidistant points contains no ai 
points in its interior; it is an empty circle. The Voronoi vertex associated with the 
largest empty circle is the optimal solution to (10.14). The interior points of a Vo-
ronoi edge are equidistant from exactly two (neighboring) points ai. The union of 
the boundaries of the Voronoi polygons is called a Voronoi diagram. The union of 
the Voronoi diagram and the interior sets of all Voronoi polygons constitute R2. The 
Voronoi diagram uses all relevant proximity information and is constructed very 
efficiently in O( n log n) time. The maximin problem in one dimension reduces to 
finding a pair of two consecutive points on a line that are farthest apart. Shamos and 
Hoey observe that this problem is also solved in O( n log n) time.

max
x∈CH (N )

min
i∈N

d(i, x),
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10.2.2.2 � Dasarathy and White (1980): The Unweighted Maximin Problem in 
a Bounded Convex Region

Dasarathy and White (1980) first formulated the unweighted maximin problem for 
a general feasible region S that is a bounded and convex polyhedron in Rk ,

� (10.15)

where d(i, x) = ‖ai − x‖  is the Euclidean distance between point ai and x in Rk 
and S is described by a set of m linear constraints, so that S = {x|cjx ≤ bj, 1 ≤ j ≤ m}.

The authors described a number of applications of this problem, not necessarily 
all in location. Viewing (10.15) as the problem of finding the largest hypersphere 
centered in S, whose interior is free of points ai, they put forward some applications 
in information theory and in pattern recognition. It appears that these applications 
influenced the authors to cast the maximin problem in a higher dimensional space 
and not in the 2-dimensional space where most location applications are found. 
Needless to say, the location application of the maximin problem (10.15) had the 
greatest impact in future undesirable location literature. If the ai points represent 
n cities in a region S and a highly polluting industry is to be located within S, the 
maximin problem will find its location such that the amount of pollutants reaching 
any city is minimized. It is assumed that the pollutant dispersion is uniform in all 
directions and the amount of pollutants reaching each city is a monotonically de-
creasing function of the distance between the city and that industry. Modeling the 
spread of pollutants in conjunction with the facility that generates them was studied 
later by Karkazis and Papadimitriou (1992) and Karkazis and Boffey (1994). Note 
that unlike the maxisum objective, which attempts to minimize the unpleasant col-
lective impact to all customers, the maximin objective attempts to minimize the 
impact to the most adversely affected customer, making it an equity measure rela-
tive to that customer.

Dasarathy and White view the maximin problem also as a covering problem. 
Consider, for example, the ai points being the locations of n radar stations and the 
convex set S the region monitored by these stations. Then (10.15) finds the mini-
mum (of the maximum) power required by the stations such that each point in S is 
monitored by one or more of the stations. It is assumed that the required power of 
a station is a monotonically increasing function of the distance over which it can 
receive or send signals.

Letting z represent the square of the objective function in (10.15), the maximin 
problem can be converted to a standard nonlinear programming formulation:

� (10.16)

� (10.17)

� (10.18)

max
x∈S

min
i∈N

d(i, x),

Max z

s.t. z − ‖ai − x‖2 ≤ 0, 1 ≤ i ≤ n

cjx ≤ bj , 1 ≤ j ≤ m
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The above problem described by (10.16)–(10.18) is clearly not a convex program-
ming problem due to constraints (10.17). Therefore, it may have several local 
optima one has to enumerate explicitly or implicitly to find the global optimum. 
The properties of a local optimum can be explored by constructing the necessary 
Karush-Kuhn-Tucker conditions for a local optimum at ( x*, z*). Let the Lagrang-
ian multipliers for constraints (10.17) and (10.18) be vi

* ≥ 0, 1 ≤ i ≤ n, and uj
* ≥ 0, 

1 ≤ j ≤ m, respectively. Then, in addition to the feasibility conditions (10.17) and 
(10.18) the following conditions should be satisfied at ( x*, z*):

� (10.19)

� (10.20)

� (10.21)

� (10.22)

In addition, a local optimum either lies on the boundary of the feasible region (Case 
b) or not (Case a). These two cases are analyzed below to reveal the properties of 
local optima of (10.15).

Case a:  If x* does not lie on the boundary of S, none of constraints (10.18) are bind-
ing at x*, which in turn forces all u∗

j  = 0 by (10.22). In that case, (10.19) and (10.20) 
indicate that x* lies in the convex hull of the ai points, CH(N). Furthermore, in 
expressing the convex combination, only the multipliers vi

* that are associated with 
points that are equidistant from x* need to be positive, due to (10.21). Equivalently, 
x* can be expressed as a convex combination of the points ai that lie on the surface 
of the optimal hypersphere. Since k + 1 or fewer points suffice to express the con-
vex combination of more than k points in Rk ( Caratheodory’s theorem restated in 
Hadley 1964), a local optimum in CH( N) is equidistant from at least k + 1 points ai.

Case b:  If x* lies on the boundary of S, one or more (ignoring degenerate cases, up 
to k) of constraints (10.18) are binding at x*. Let d, 0 ≤ d ≤ k − 1, be the dimension 
of the smallest facet F , F ⊂ S,  on which x* lies. Assume now that at most d of 
constraints (10.17) are binding at (x*, z*), or equivalently, at most d of the points ai 
are equidistant from x*. Draw the projections of these equidistant points ai on the 
affine space A of F (a hyperplane of the same dimension that includes F ). Since the 
number of such projections on F results in at most d points in A, there exists a hy-
perplane H of A of a dimension lower than d that passes through them. If point x* is 
moved away from H by an infinitesimal distance, still lying on F, the distance from 
the equidistant points increases and therefore the objective function z* increases, 

n∑

i=1

v∗
i = 1,

s.t.
n∑

i=1

2v∗
i (ai − x∗) −

m∑

j=1

u∗
j cj = 0,

v∗
i

(∥∥ai − x∗∥∥2 − z∗
)

= 0, 1 ≤ i ≤ n,

u∗
j (cjx

∗ − bj ) = 0, 1 ≤ j ≤ m.
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thus contradicting the optimality of (x*, z*). Therefore x* should be equidistant from 
at least d + 1 nearest ai points.

The results of the above two cases are summarized in the following theorem:

Theorem 3:  The optimal solution x* of the maximin problem (10.15) either lies 
on the boundary of the convex polyhedron S or in the convex hull of the ai points 
CH(N). If it lies in CH( N), x* is equidistant from at least ( k + 1) nearest ai. If it lies 
on the boundary of S, x* is equidistant from at least ( d + 1) nearest ai, where d is the 
dimension of the smallest facet on which x* lies.

Similar to the case of the maxisum problem on a network as formulated in rela-
tion (10.1), the above theorem reduces the feasible region to a finite candidate set 
of solutions containing the optimal point of the maximin problem. These candidate 
points are either within CH( N), analogous to Church and Garfinkel’s bottleneck 
points, or remote points of the boundary of the feasible region, analogous to the 
leaves of a network.

The above theorem suggests a method for identifying candidate points on CH( N) 
and on the boundary of S as follows:

1.	 The point that is equidistant from every combination of k + 1 points ai is found 
and checked for feasibility using (10.17) and (10.18). Similarly, the center and 
radius of the hypersphere that passes through these k + 1 points is found and 
checked if the center is in S and there are no points in the interior of the hyper-

sphere. 
(

n
k + 1

)
 combinations of points ai are considered and for each one of 

them a system of k simultaneous linear equations is solved for the k components 
of x.

2.	 The point of each facet F of the boundary of S that is equidistant from every 
combination of d + 1 points ai is found, where d is the dimensionality of F. For 

each facet F of dimensionality d, 
(

n
d + 1

)
 combinations of points ai are con-

sidered, and for each one of them a system of k simultaneous linear equations 
are solved, of which d linear equations stipulate that x is equidistant from d + 1 
points ai and k − d equations define the facet F.

As in the algorithm for the maxisum problem, bounds are used so that not all 
candidate points are explicitly generated. Dasarathy and White used a lower 
bound L and an upper bound U on the global z* to eliminate facets from further 
consideration and to forgo the feasibility test if a generated point in CH( N) 
has an objective value z that falls outside these bounds. As lower bound on the 
global value of the objective z*, the objective value of the current best solution 
is used. A good initial lower bound L0 can be obtained by evaluating all extreme 
points ej of S, and at the same time taking care of the examination of 0-dimen-
sionality facets:

� (10.23)L0 = max
j

min
i

∥∥ai − ej

∥∥2
.
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Dasarathy and White computed an upper bound U on the global z* by maximizing 
the Lagrangian of the problem for any nonnegative multipliers vi,

� (10.24)

By letting 
∑

i

vi = 1, they developed an efficient algorithm for computing U. They 
also used upper bounds on the objective value z on facets in an effort to eliminate 
them. A facet F is eliminated from further consideration if the square distances 
between some ai and all the extreme points of F are smaller than the current best 
objective value L. Similarly, an upper bound on the objective value z on facet F is

� (10.25)

Although Dasarathy and White provided an algorithm for a convex polyhedron S in 
three dimensions ( k = 3), a general algorithm is presented below for any k ≥ 2. This 
maximin algorithm below can be easily modified for other distance metrics and for 
weighted distances.

Algorithm 2: Maximin Problem in a Convex Polyhedron 

Step 1:	� Find the lower bound L0 with the corresponding extreme point 
el of S and the upper bound U on the global z* using (10.23) and 
(10.24), respectively. L ← L0, x* ← el. ( L keeps track of the cur-
rent best local optimum, L ≤ z* ≤ U).

Step 2:	� (Search for the best local optimum interior to CH( N).) Consider 
all combinations of the points ai taken k + 1 at a time. For each 
one of these combinations find the point x that is equidistant from 
the points ai and its square distance z. If L < z ≤ U and x is feasible 

L ← z, x* ← x. Repeat Step 2 for all 
(

n
k + 1

)
 combinations of the 

ai points.
Step 3:	� (Search for local optima on the boundary of S.) Set d ← k − 1.
Step 3.1:	� For every facet F of dimensionality d, repeat: If a point ai exists, 

1 ≤ i ≤ n, such that Ui( F) ≤ L, eliminate F from further consid-
eration. If F is not eliminated, consider all combinations of the 
ai points taken d + 1 at a time. For each one of these combina-
tions, find the point x ∈ A  ( A is the affine space of F , F ⊂ A ) 
that is equidistant from the points ai and its square distance z. If 
L < z ≤ U and x ∈ F ,  set L ← z, x* ← x.

Step 3.2:	� Set d ← d − 1. If d > 1, go to Step 3.1.
Step 4:	� The optimal solution is ( x*, L).

U = max
(x∈S,z)

{
z +

∑

i

vi

(
‖ai − x‖2 − z

)
}

.

min
i∈N

{
Ui(F ) = max

ej ∈F

∥∥ai − ej

∥∥2
}
.
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Algorithm 2 assumes that the facet structure of S is known. For a 3-dimensional 
space, Dasarathy and White described an O( m2 log m) algorithm to obtain the face 
structure. The worst-case complexity of Algorithm 2 is O( nk + 2). For a 2-dimen-
sional feasible region, there is a lower worst-case complexity algorithm that utilizes 
the Voronoi diagram of the ai points.

For S ⊂ R2  (i.e., k = 2), Algorithm 2 can be simplified as follows. Step 1 con-
siders all the 0-dimensional facets of S and selects the best extreme point of S as a 
starting solution, and its z-value as the starting lower bound on the global z*. Since 
the nearest ai point to a vertex of a convex polygon having m edges can be deter-
mined in O(log2 n) time after O( n log n) preprocessing (Shamos and Hoey 1975), 
Step 1 can be executed in O( m log2 n + n log n) time. The local optima sought in 
Step 2 are among the Voronoi vertices of the Voronoi diagram of the ai points. If a 
Voronoi vertex is in S it is a local optimum. Shamos and Hoey (1975) provided an 
O(log m) algorithm for determining if a given point is within an m-edge polygon. 
The O( n) vertices of the Voronoi diagram can be generated in O( n log n) time and 
tested for feasibility in O( n log m) time. In Step 3, only the edges of the polygon S 
( d = 1) have to be searched for local optima. The points of the edges that are equi-
distant from ai points taken two at a time are the intersections of the Voronoi edges 
with the edges of S. A Voronoi edge can intersect the boundary of S at most twice. 
Using a binary search, Dasarathy and White found the intersections of the Voronoi 
edges with the edges of S in O( n log m) time.

In summary, the optimum point of the maximin problem in a convex polygon S 
can be a vertex of S, a Voronoi vertex, or an intersection of a Voronoi edge with an 
edge of S. The required effort to solve it is O( m log2 n + n log n + n log m).

Figure 10.4 shows a set N of 10 points, a1, …, a10, within a square region S. The 
boundary of CH( N) is displayed by dotted line segments. The Voronoi diagram of 
the points consists of 10 vertices and 19 edges. There are 8 intersections of Voronoi 
edges with the edges of S. The solution to (10.14), i.e., the maximin point in CH( N), 
is vertex v of the Voronoi diagram, which is the center of the largest empty circle, 
shown in Fig.  10.4. The extreme point e4 is the maximin point in S, solution to 
(10.15), with objective value ‖a7 − e4‖ .

10.2.2.3 � Drezner and Wesolowsky (1980): Weighted Maximin Problem 
with Maximum Distance Constraints

The difference in this contribution compared to the previous work is that positive 
weights wi are assigned to customers and the solution method does not search the 
feasible region for local optima to find the best one(s), but instead progressively re-
duces the feasible space to trap the global optimum in an infinitesimal area. The fea-
sible region is a convex bounded planar area defined by the intersection of circles, 
each having at their center a customer point ai, and radius ri representing the maxi-
mum distance the facility can be from customer i with i ∈ N. Clearly, the authors had 
in mind the location of a semi-obnoxious facility, which is pushed away by each cus-
tomer to a different degree depending on its weight, but at the same time is wanted 
within certain distance from each customer. The problem can be formulated as
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� (10.26)

where d(i, x) =‖ ai − x ‖ is the Euclidean distance between point ai and x ∈ R2  
and S is a set of n maximum distance constraints, S = {x|d( i, x) ≤ ri, 1 ≤ i ≤ n}.

The solution methodology is graphical in nature and is speeded up by a bisec-
tion search. Consider some objective value z, z = min

i∈N
wid(i, x).  The points of the 

plane with better objective value than z are outside of the union of circles having 
centers ai and radii z/wi, or C(z) = {x|d(i, x) ≥ z

wi
}.  Starting with a relatively small 

value of z, one can solve the problem interactively by increasing z until the last 
point in S is covered, or S ∩ C( z) is an infinitesimally small area. In fact, Brady and 
Rosenthal (1980) used this interactive graphical approach on the computer to solve 
constrained minimax problems. Instead of an interactive approach, Drezner and 
Wesolowsky used an efficient bisection search as follows. At some iteration, let  be 
the objective value of the best solution found so far (lower bound on z*) and  be an 
upper bound on z*. A new objective value is generated and a procedure is used to 
find out if a point x exists in S ∩ C(z) with that z-value. If it does, ← z, otherwise, 
← z. The iterations continue until (-) becomes smaller than a small preset constant. 
The solution x associated with is close to the best point x* within an approximation. 

10.3 � Impact of the Original Papers

The above classical contributions stimulated a large body of research in undesirable 
facility location that complemented the existing (desirable) location literature. Up 
to that time, pull objective location models, such as minisum (median) and minimax 

max
x∈S

min
i∈N

wid(i, x),
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(center), dominated the location literature. The introduction of the push objective 
location models leveled the field of location science and opened it to new methods, 
applications and location problems. An outstanding example has been the launch 
of a new class of location problems that utilize a combination of push and pull ob-
jectives to find locations that best trade off the conflicting objectives. This section 
describes the immediate impact of the original papers on the location literature in 
the period of 10–15 years that followed as well as the major works that were after-
wards influenced by the classical works and contributed to the undesirable location 
literature.

10.3.1  �The Impact of Church and Garfinkel’s Contribution

The pioneering work of Church and Garfinkel initiated the field of undesirable fa-
cility location by introducing the maxisum location problem and distinguishing it 
from the existing (desirable) location problems of the time. As Goldman (2006) 
notes, such a “three letter change” (substitution of max for min) might seem innocu-
ous, but in fact substantially increases the difficulty to carry out the optimization. 
Church and Garfinkel showed that the new problem is nonconvex and thus may 
have many local optima, so that it is necessary to generate all or at least a subset 
of them by improving bounds on the optimal objective value to find the global 
optimum. In fact, many algorithms that were developed later for variations of the 
maxisum and the maximin objectives resemble Church and Garfinkel’s algorithm. 
Similarly, the “existence of a finite candidate set of points containing the global 
optimum” that resonates throughout the undesirable location literature originated in 
this paper. Among the points in that set are local optima that arise due to the non-
convex property of the undesirable facility location problem which, in turn, render 
the “Hakimi property” of a network invalid. Finally, new terms were coined in their 
paper to enrich the location lexicon: “obnoxious” and “semi-obnoxious” facilities 
and “bottleneck points” of a network. In the remainder of this subsection we will 
include early contributions that built on the work of Church and Garfinkel.

Ting (1984) dealt with the maxisum problem on trees and developed an O( n) 
algorithm by using a special data structure. This is an improvement over Church 
and Garfinkel’s O( n2) algorithm for trees. Minieka (1983) addressed the unweight-
ed maxisum problem and essentially developed the same algorithm as Church and 
Garfinkel to find the antimedian of the network, as he named the solution of the 
maxisum problem. In the same paper, Minieka studied another max-type problem, 
max
x∈G

max
i∈N

d(i, x),  whose solution named the anticenter of the network.
Hansen et al. (1981) considered a more general maxisum problem on a continu-

ous and bounded feasible region S with S ∈ R2.  By modeling the nuisance from the 
obnoxious facility located at x to a population center i as decreasing and continuous 
function of their distance, Di[d( i, x)], they actually formulated a minisum model, 
named the anti-Weber problem, as the counterpart of the Weber problem with the 
objective
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�
(10.27)

where d( i, x) can be any distance metric, of which the most commonly used are the 
Euclidean, rectilinear and Tchebycheff metrics.

Similar to Church and Garfinkel’s (1978) Theorem 1 above, Hansen et al. estab-
lished a theorem that reduces the feasible region that contains the optimal location 
to the union of two sets. The first set, analogous to the set of bottleneck points of a 
network, consists of the points of S that are in the convex hull CH( N) of the points, 
i.e., S ∩ CH( N). The second set, analogous to the leaf nodes of a network, consists 
of the points of S − CH( N) that are remote from CH( N). A point y ∈ Y  is said to be 
remote from set X if there exists x ∈ X such that the straight halfline starting from 
x and passing through y contains no point of Y beyond y. The results of this theo-
rem are used by Hansen et al. to rationalize the locational pattern of nuclear power 
plants in France. Some power plants are at interior locations while many others are 
located at the border of France with Germany and Belgium or on the Atlantic coast. 
They solved the anti-Weber problem by a branch-and-bound method, similar to the 
Big Square-Small Square algorithm developed earlier by the same authors for the 
generalized Weber problem.

For the special case where Di is a linear function of distance d( i, x), relation 
(10.27) reduces to the (ordinary) maxisum objective on the plane:

� (10.28)

For the maxisum problem (10.28), Hansen et al. reduced the set containing the op-
timal solution even further by excluding all interior points of S:

Theorem 4:  For the maxisum problem in the plane there exists an extreme point of 
the convex hull of the feasible region S that is optimal.

The proof follows directly from the convexity property of the objective function. 
When the feasible region is approximated by a nonconvex polygon S with m verti-
ces, Melachrinoudis and Cullinane (1986a) described a simple O( mn) algorithm for 
finding the weighted maxisum point by evaluating the vertices of CH( S).

Theorem 4 states that the maxisum point is at remote points of the boundary of 
the feasible region. This result is analogous to Church and Garfinkel’s result for 
trees where the optimal point is one of the leaves of the tree. The feasible region S 
therefore has to be bounded, otherwise the optimal solution of the maxisum prob-
lem is “out at infinity.” It is even possible that the optimal location is at an exist-
ing facility point as Eiselt and Laporte (1995) illustrated in the following example. 
Consider the case of a square feasible region with four equally weighted customer 
points at the corners of the square. According to Theorem 4, the optimal maxisum 
locations are at the extreme points of the feasible region which coincide with the 
customer locations. Prescribing always a boundary solution and sometimes even a 
customer’s location for the undesirable facility does not make the maxisum model 
very attractive for use in the plane. However, the maxisum objective is very useful 

min
x∈S

T (x) =
∑

i∈N

Di[d(i, x)],

max
x∈S

T (x) =
∑

i∈N

wid(i, x).
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in a multiobjective setting when it is combined with a pull objective as described 
later in this section.

10.3.2  �The Impact of the Original Maximin Location Papers

The original papers on the maximin location problem, directly or indirectly, had an 
impact on the undesirable facility location works that followed during the 1980s. 
A number of variations of the maximin problem with Euclidean distances have 
been solved using a solution approach similar to Dasarathy and White’s for gener-
ating local optima by using the Karush-Kuhn-Tucker optimality conditions. Mela-
chrinoudis (1985) and Melachrinoudis and Cullinane (1985) extend the weighted 
maximin problem to nonconvex regions and to regions that enclose forbidden areas, 
respectively. They provided an example for locating a toxic dump in the state of 
Massachusetts, which was represented by a nonconvex bounded planar region with 
forbidden areas for the facility around cities, wetlands, rivers, lakes, and ecosys-
tems. The forbidden areas were approximated by the union of circles. Weights as-
signed to the customers, such as cities and towns, reflected the population size. The 
most important customer point, the city of Boston ( i = 6), was assigned a weight of 
1, while the weight of the population center i was calculated relative to Boston by 
the formula wi = (Ni/N6)−1,  where Ni denotes the population of city i.

Since it has not been elaborated in the location literature, it is important to note 
here that unlike the weight of a desirable facility, the maximin weight is a decreas-
ing function of the degree of incompatibility between a customer and the facility. 
For example, consider the simple case of a one-dimensional feasible region in the 
interval [0, 1], with customer A at point 0 having weight 1 and customer B at point 
1 having weight 3. The maximin point is at 0.75, meaning that the customer with 
the lower weight ( A) pushes the facility further away than the customer with the 
higher weight. By the way, the minimax point happens to be the same in this very 
small example, thus the customer with the higher weight pulls the desirable facility 
closer to it.

To explain this counterintuitive property of the maximin weights, consider the 
generalization of the weighted maximin problem of (10.26), where S ⊂ Rk, k ≥ 1. 
Let the optimal point be x* and the optimal objective value be z*. Theorem 3, gener-
alized for the weighted maximin problem, states that x* is equidistant (in a weighted 
sense) from a subset of customers, N′, and |N′| depends on the dimensionality of S 
and on whether x* lies in CH( N) or on the boundary of S. Theorem 3 and (10.26) 
imply that d( i, x) = z*/wi, i ∈ N ′ , and d( i, x) > z*/wi, i ∈ N − N ′.  Therefore, the 
distance of the maximin point from every point i ∈ N ′  is inversely proportional to 
its weight wi, while the distance from each of the remaining points i ∈ N − N ′  is 
greater than a lower bound that is inversely proportional to its weight wi.

The above property of the maximin weights is probably the reason some authors 
do not consider weights with the maximin problem. Karkazis (1988) studied an un-
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weighted Euclidean maximin problem in which the facility was to be located within 
a polygonal region S but as far away as possible from any point of the boundary 
of protected areas. These were more generally defined forbidden regions than in 
Melachrinoudis and Cullinane (1985). Although there were no apparent custom-
ers, the optimization approach—similar to the geometrical approach of Shamos and 
Hoey (1975)—suggests that the customers constitute an infinite set represented by 
the boundaries of the protected areas. The solution amounts to finding the largest 
(empty) circle that contains no points of the protected areas yet whose center is in S.

Melachrinoudis and Smith (1995) extended the Voronoi method of Dasarathy 
and White (1980) and developed an O( mn2) algorithm for the weighted maximin 
problem. For two points ak, aℓ having weights wk, wℓ such that wk > wℓ, the loci of 
weighted equidistant points is the Apollonius circle. This circle has center on the 
line connecting ak and al, at point okℓ, and radius γkℓ, both expressed in terms of the 
weights ratio, rk� = w�/wk , in (10.29). The edges of the weighted Voronoi diagram 
are therefore circular segments or whole circles.

� (10.29)

Melachrinoudis and Cullinane (1986b) developed a minimax model for undesirable 
facility location. The model seeks a facility location that minimizes the maximum 
weighted inverse square distance over all customers, or

� (10.30)

The objective is justified in many situations since the concentration of pollutants 
such as noise or radiation follows the inverse square law, see Poynting’s Theorem 
in Lipscomb and Taylor (1978). A customer weight represents the degree of incom-
patibility between the customer and the facility and unlike with the maximin objec-
tive, the higher the weight of the customer, the further away the facility is pushed. 
Similar to the one for the maximin problem, an O( n4) algorithm was developed for 
a convex polygonal region S, while for a nonconvex feasible region, composed of 
many disjointed nonconvex sets representing irregular land and islands, a graphi-
cal computer procedure was suggested as in Drezner and Wesolowsky (1980). The 
minimax problem in (10.30) was shown by Erkut and Öncü (1991) to be equiva-
lent to the maximin problem with weights wi

−1/2, implying the above mentioned 
inverse relationship between the magnitude of a maximin weight and the degree of 
incompatibility it represents. Their proof used a more general formulation with an 
arbitrary exponent, i.e., dq(i, x),  in which case the weights in the equivalent maxi-
min problem were wi

−1/q. The negative exponent explains the opposite behavior of 
weights in the two problems.

A minimax objective was also developed by Hansen et al. (1981) for the location 
of an undesirable facility in which, however, a general continuous and decreas-
ing function of distances was used. The authors named the problem the anti-Rawls 

ok� =
ak − r2

k�a�

1 − r2
k�

, and γk� =
rk� ‖ak − a�‖

1 − r2
k�

.

min
x∈S

max
i∈N

{wi/d
2(i, x)}.
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problem, since the objective can be characterized as an equity measure to the worst-
off customer. When the function of distances is linear, the minimax reduces to the 
maximin problem. The authors used a simple method called Black and White, which 
is similar to the -approximation method of Drezner and Wesolowsky (1980).

For the rectilinear maximin location problem in a convex polygon S, Mela-
chrinoudis and Cullinane (1986a) and Melachrinoudis (1988) developed optimality 
properties similar to those described by Dasarathy and White, except that the con-
vex hull CH( N) is replaced by the smallest rectangle H whose sides are parallel to 
the two coordinate directions and encases all customers. Thus, local optima exist in 
the union of two sets, the boundary of S and S ∩ H.

10.3.3  �Major Contributions on Undesirable Facility Location 
that Followed the Classical Works

Following the classical contributions, numerous papers on undesirable facility lo-
cation problems have been published in the last thirty years. A few of them, which 
built on the classical contributions and those on which the classical contributions 
had a direct or indirect impact, were reviewed in the previous two subsections. 
In this subsection, a short survey of major works that followed the classical con-
tributions is presented. This short and by no means all-inclusive survey includes 
representative works with similar distance metrics and solution spaces as well as 
multiobjective approaches. A comprehensive survey of undesirable facility location 
models, though less contemporary, can be found in Erkut and Neuman (1989) Eiselt 
and Laporte (1995) and Plastria (1996).

The classical contribution of Church and Garfinkel (1978) itself was followed 
by only an algorithmic refinement. Their algorithm requires O( mn2) time to find the 
weighted maxisum point on a general network. By making use of the observation 
that T( x) in (10.1) is a piecewise linear and concave function of x on a given arc, 
Tamir (1991) briefly suggested an improvement leading to an O( mn) algorithm. 
Colebrook et al. (2005) described a complete algorithm of this improved complex-
ity by making use of the above concavity property and by computing efficiently in 
O( n) time a new upper bound of T( x) over an arc. Their experimental results showed 
that the improved algorithm, compared to Church and Garfinkel’s, ran in about half 
the time and processed about 25% fewer arcs due to tighter upper bounds on the 
arcs.

The unweighted maximin problem on a network admits a trivial solution, in 
that the optimal is the midpoint of the longest arc of the network. The weighted 
maximin problem on a network, max

x∈G
min
i∈N

wid(i, x),  has similar properties to the 
maxisum problem. It is nonconvex and it has a unique local optimum on each arc 
(Melachrinoudis and Zhang 1999). In addition to the set of arc bottleneck points, the 
finite set of candidates includes the set of center bottleneck points. For a complete 
coverage of finite dominating sets to the maximin and other location problems on 
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networks with general monotone or non-monotone distance functions, see Hooker 
et al. (1991). The algorithm for solving the maximin problem on networks is similar 
to Algorithm 1: searching arcs for local maxima, updating the lower bound and 
eliminating arcs using upper bounds on arcs. For each unfathomed arc, a linear 
program with two variables can be constructed which can be solved very efficiently 
by an O( n) algorithm. Melachrinoudis and Zhang (1999) and Berman and Drezner 
(2000) independently provided O( mn) algorithms by using O( n) algorithms for lin-
ear programming problems of Dyer (1984) and Megiddo (1982), respectively.

The first paper on the maximin problem using the rectilinear metric was pub-
lished by Drezner and Wesolowsky (1983). Since the rectilinear distance is piece-
wise linear, the problem can be linearized. The feasible region is divided into rect-
angular segments by drawing horizontal and vertical lines through each customer 
point and a linear optimization problem is solved for each one of the O( n2) linear 
programming problems. Upper bounds for each region are used to reduce the num-
ber of linear programs that need to be solved. Mehrez et  al. (1986) proposed a 
new upper bound for that purpose which was further improved by Appa and Gi-
annikos (1994). Sayin (2000) formulated the rectilinear maximin location problem 
as a mixed integer program that can be solved by any standard MIP solver. Nadirler 
and Karasakal (2008) simplified the mixed integer programming formulation and 
improved further the bounds to increase the computational performance of a branch 
and bound algorithm very similar to the Big Square-Small Square algorithm of Han-
sen et al. (1981) and the generalized Big Square-Small Square method of Plastria 
(1992).

As was mentioned earlier, undesirable facility location problems provide some 
service to the community and some travel may be required to and from it. Therefore, 
in addition to minimizing the undesirable effects on populations, the minimization 
of transportation cost is of interest. This gives rise to a bi-objective problem for 
locating undesirable facilities. Depending on the application, either the minimax 
or the minisum (desirable facility) objective can be combined with the maximin or 
maxisum (undesirable facility) objective. An advantage of solving a bi-objective 
undesirable facility location problem is that one can obtain the whole efficient fron-
tier, i.e., the set of points that exhibit the complete tradeoff between the two objec-
tives, including the two points that optimize the individual objectives. For a formal 
definition of efficient points and other concepts in multicriteria optimization, see 
Steuer (1989).

The first bi-objective problem for undesirable facility location was formulated by 
Mehrez et al. (1985). The authors combined the minimax and maximin unweighted 
objectives using rectilinear distances. They generated the whole efficient set by 
examining the intersections of any two lines forming the equirectilinear distances 
between every pair of customer points or boundary edges of the feasible region. 
Also using rectilinear distances, Melachrinoudis (1999) combined the minisum and 
maximin objectives and solved the problem by generating a series of O( n2) linear 
programs as in Drezner and Wesolowsky (1983), but instead of solving the linear 
programs by the simplex method, he constructed the whole efficient frontier by 
reducing each linear program to simple variable ranges using the Fourier-Motzkin 
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elimination process. Brimberg and Juel (1998) used Euclidean distances in a bi-ob-
jective problem that combined the minisum objective and a second minisum objec-
tive (undesirable objective), which had the Euclidean distances raised to a negative 
power. They outlined an algorithm for generating the efficient set by solving the 
weighted-sum of the two objectives with varying weights. Skriver and Andersen 
(2001) solved the same problem using the Big Square-Small Square method and 
generated an approximation of the efficient set. A similar bi-objective model was 
developed by Yapicioglu et  al. (2007) where the second minisum objective was 
modified further to model undesirable effects with distance. They approximated 
the effects at a distance d( i, x) from the facility as a piecewise linear and decreas-
ing function of d( i, x); up to a certain distance, they argued, the obnoxious effects 
are constant, then decreasing with distance in a piecewise fashion, while beyond a 
certain distance the effects are nonexistent. Particle Swarm Optimization is used to 
approximate the efficient set.

Melachrinoudis and Xanthopulos (2003) solved the Euclidean distance location 
problem with the minisum and maximin objectives. They developed the whole tra-
jectory of the efficient frontier by a combination of a problem that optimizes the 
weighted sum of the objectives and the Voronoi diagram of the customer points. 
Using Karush-Kuhn-Tucker optimality conditions showed that this trajectory is not 
necessarily continuous and may consist of (a) a parametric curve of the weighted-
sum of the objectives starting at the minisum point and ending at the boundary of its 
Voronoi polygon, (b) segments of the Voronoi edges as the weight of the maximin 
objective is increasing while the weight of the minisum objective is decreasing, and 
(c) segments of the boundary until the maximin point is reached.

A different type of undesirable facility location problem is the minimal cover-
ing problem in which the undesirable effects of a facility are evident only within 
certain distance from it, referred to as the circle of influence. Given n populations of 
size wi, i = 1, …, n, that are concentrated in n points on the plane, the location of an 
undesirable facility is to be found within a feasible planar region S to minimize the 
population covered within a certain distance r from the facility. This problem was 
introduced by Drezner and Wesolowsky (1994) who, in addition to the circle, deter-
mined the rectangle that contains the minimum total population. Berman et al. (1996) 
extended the problem to the network space. By considering the radius of the circle as 
a continuous variable and second objective, Plastria and Carrizosa (1999) solved the 
problem with two objectives. First, to maximize the radius r of a circle with center 
the point x at which the facility is to be located, and second, to minimize the popula-

tion covered in that circle, 
∑

d(i,x)<r
wi. They developed polynomial algorithms for gen-

erating all efficient discs ( x, r) whose number they show is finite. The trade-off infor-
mation of efficient solutions can provide answers to interesting coverage questions, 
such as finding the facility location that minimizes the population covered within a 
given radius (previously defined as minimal covering problem) or finding the largest 
circle not covering more than a given total population. They considered a feasible 
region of any shape in the plane and the results can be extended to a planar network.
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A more recent approach for locating an undesirable facility is with expropriation. 
The rationale is that in certain cases there is no point in the feasible region that is 
far enough from all customers to locate the undesirable facility. One possibility to 
resolve this issue is by buying (or compensating) some of the customers. Berman 
et al. (2003) introduced two models for the location problem with expropriation. In 
the first model, a location on a network was sought that maximizes the minimum 
distance (maximin) from the facility to the non-expropriated customer points, sub-
ject to a given expropriation budget. In the second model, the expropriation cost 
was minimized while ensuring that the facility is located at least certain distance 
away from all non-expropriated customer points. Berman and Wang (2007) added a 
second objective to the last model: the minimization of transportation cost. The two 
cost objectives were added into one, so the resulting problem is treated as a single 
objective problem. For a planar feasible region and rectilinear metric, they identi-
fied a finite dominating set that contains the optimal solution.

There are not many papers on undesirable facility location on networks using 
two objectives. Zhang and Melachrinoudis (2001) formulated the first bi-objective 
problem on a network by combining the maxisum objective with the maximin objec-
tive. Using the piecewise linear and concave property of both objectives on an arc, 
they developed fathoming rules for eliminating inefficient arcs and arc segments. 
Unfathomed arc segments were mapped onto the 2-dimensional objective space and 
a direct search was undertaken to construct the nondominated set, followed by the 
efficient set, which was shown to consist of discontinuous arc segments. Hamacher 
et al. (2002) developed several multicriteria models for undesirable facility location 
problems on a network with minisum and center objectives, and proposed methods 
for solving them.

A general model for the undesirable facility location problem with Euclidean dis-
tances in a polygonal feasible region S was presented by Saameno et al. (2006). By 
setting a parameter to certain values the model reduces to problems already defined: 
maximin, maxisum and bi-objective maximin/maxisum problems. In addition, the 
model reduces to the r-anticentrum problem, which maximizes the weighted sum of 
distances between the undesirable facility and its r closest customers. The maximin 
and maxisum problems are special cases of the r-anticentrum problem for r = 1 and 
r = n, respectively. The authors generalized the properties of local optima developed 
by Dasarathy and White (1980) and Melachrinoudis and Smith (1995) for the whole 
class of objectives. They identified a finite dominating set consisting of the set of 
vertices of S, V, the set of intersections of weighted bisectors (10.29) of customer 
points with the edges of S, W, and the set of intersections of the weighted bisectors 
taken two at a time, I. The finite dominating set was obtained in O( nm2 + m4). In 
their algorithm they generated all candidate points in the set, eliminated some of 
them using the Lipschitzian property of the objective function, and evaluated the 
remaining points to obtain the optimal solution.

In addition to the above classes of models for undesirable facility location there 
are other models, such as multifacility, discrete, and location and routing models, 
which followed the classical contributions; we cannot elaborate upon these papers 
due to the limited space in this chapter. For the interested reader, some excellent 
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papers and surveys are available. For the p-dispersion problem, Chandrasekaran 
and Daughety (1981), Kuby (1987), Erkut (1990), and Pisinger (2006); for the 
p-defense problem, Moon and Chaudhry (1984), Kincaid (1992), and Klein and 
Kincaid (1994); for generic discrete multifacility undesirable location problems, 
Chhajed and Lowe (1994). For locating multiple undesirable facilities on graphs 
using maxisum and maximin objectives, Tamir (1988, 1991); using coverage objec-
tives, Berman and Huang (2008); using expropriation, Berman and Wang (2007). 
A recent survey for location and routing problems that includes undesirable facility 
location and routing of hazardous wastes can be found in Nagy and Salhi (2007).

10.4 � Summary and Outlook

The advent of more stringent environmental standards, the resurgence of environ-
mental groups and a greater awareness of the public of the potential dangers of 
pollution in the early 1970s generated a research need for systematically locating 
polluting and environmentally hazardous facilities. Undesirable facility location 
research began with the pioneering work of Church and Garfinkel (1978). Their 
work on the maxian (maxisum) problem was analyzed in detail followed by the 
first works on the Euclidean maximin problem of Dasarathy and White (1980) and 
Drezner and Wesolowsky (1980).

Church and Garfinkel (1978) first formulated a model for locating an undesir-
able facility on a network by replacing the min with the max operator in the median 
model that had dominated the location literature since the seminal work of Hakimi 
(1964). Unlike the median model, they demonstrated that the maxian model is hard 
to solve because it is nonconvex and typically has many local optima, a character-
istic of undesirable facility location problems. They showed that local optima occur 
on the cycles (bottleneck points) and on the leaves of the network and developed a 
simple solution procedure that decomposes the network into its arcs in the search 
for the global optimum. Arcs were considered for fathoming using bounds, and 
the local maxisum point was found on unfathomed arcs by utilizing the concavity 
property of the objective function. This algorithm became a standard for future 
algorithms in undesirable facility location. For example, instead of arcs, parts of 
the feasible region are considered for fathoming in the Big Square-Small Square 
method or individual facets of the feasible region in Dasarathy and White’s (1980) 
algorithm that partially enumerates local maxima. The work of Church and Garfin-
kel had an enormous impact by stimulating research and establishing the field of 
undesirable facility location in the 1980s.

Undesirable facility location in the continuous space has its origins in the larg-
est empty circle problem, one of several problems Shamos (1975) and Shamos and 
Hoey (1975) studied in computational geometry. Dasarathy and White (1980) were 
the first to define the maximin problem using Euclidean distances as a nonconvex 
and nonlinear problem, derive the properties of the local optima using the Karush-
Kuhn-Tucker optimality conditions, and identify a finite dominating set. They 
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proved that the global optimum is either in the convex hull of the customer points 
or on the boundary of the feasible region and developed an algorithm for searching 
those parts of the feasible region. As in Church and Garfinkel (1978), they used 
upper bounds to fathom facets of the feasible region and updated the lower bound 
on the optimal objective value using the current best feasible solution. For a 2-di-
mensional feasible region, they extended Shamos and Hoey’s Voronoi diagram ap-
proach to search for local optima at the boundary of the feasible region.

Drezner and Wesolowsky (1980) first formulated the weighted maximin loca-
tion problem. The 2-dimensional feasible region is the intersection of circles each 
having its center at a customer point and radius equal to the maximum distance 
the undesirable facility can be located away from that customer, implying that the 
facility performs some service to the customer and has to be within reach. Their 
solution approach is different from previous ones. It is graphical in nature and is 
implemented on the computer with a bisection search of the feasible region. Al-
though the bisection search seems very efficient for this feasible region, it has not 
been used generally. The contributions by Dasarathy and White and by Drezner and 
Wesolowsky incited a large body of research in undesirable facility location using 
the maximin objective with various distance metrics and solution spaces. Unlike 
the maxisum objective, the maximin objective does not limit the optimum to the 
boundary and excludes customer points for locating the undesirable facility. Its use 
represents obvious advantages over the maxisum objective in continuous spaces.

Important works that followed the original papers were analyzed with special 
attention given to location models or methods that extended the classical contribu-
tions, such as considering single facility location models on network and planar 
space and under multiple objectives. It was not the purpose of this chapter to survey 
the literature on undesirable facility location, and therefore many important papers 
have not been included. A complete survey of this area is important and its time is 
due, so therefore it is suggested that such an effort be undertaken in the near future.

Regarding future research directions, consider what has been accomplished so 
far, what has not and what can be accomplished given the technological advances 
and the changing needs of society. The location literature is full of elegant mathe-
matical models which admit neat solution algorithms. As ReVelle and Eiselt (2005) 
point out, the “location field is active from a research perspective but when it comes 
to applications it appears to be a significant deficit, at least as compared to other, 
similar fields.” It is known that real life problems are complex with nasty feasible 
regions and multiple objectives that may not be necessarily functions of straightfor-
ward distance metrics such as Euclidean or rectilinear. When it comes to undesir-
able facilities, pollution density or its effects often are neither symmetric nor linear 
functions of distance. Very often, a real feasible region is not a simple polygonal 
area but the union of many disjoint regions.

The parameters of the problem, such as customer weights, may change over time 
depending on the population size, technological developments, and legislation for 
hazardous wastes and facility standards. Multiple stakeholders and decision makers 
are usually involved in undesirable facility location decisions; therefore, more real-
istic, integrated and robust location models need to be developed that relate to the 
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practitioners’ concerns. New technological tools such as geographical information 
systems are readily available, together with versatile optimization tools and vast 
computer power to make the task easier. Without discouraging the development of 
elegant mathematical models that admit creative solution procedures, researchers 
should be encouraged to tackle real-life problems with creative formulations, even 
if they have to solve them for a near-optimal solution by a standard optimization 
software package or a heuristic procedure.

Although in this chapter we reviewed single facility location on continuous or 
network spaces, discrete location models appear to be more realistic from a practi-
tioner’s decision making point of view, maybe because it is more natural to compare 
the merits of given sites rather than find one among an infinite number of pos-
sible sites. As a strategic decision, the facility location process usually involves two 
stages: one approach is to evaluate many candidate sites in the first stage and come 
up with a few using constraints and minimum requirements, and in the second stage 
to select a site using multiple criteria optimization, as in Min et al. (1997); another 
approach is to generate a small number of candidate sites in the first stage with ana-
lytical models and in the second stage to use discrete multiobjective tools to select 
the candidate site, as suggested by Erkut and Neuman (1989) and Plastria (1992).

An interesting non-geographical area in which undesirable facility location mod-
els could be applied is product design; see, e.g., Goldman (2006). The attributes of 
a product, such as physical dimensions, expected lifetime, and cost can be regarded 
as coordinates in the attribute or design space. Given the existing products in the 
market (points in space), a company may want to design a new product to differenti-
ate from the existing ones as an alternative to purchase, yet not make it very differ-
ent. The new product has the properties of a semi-desirable facility that needs to be 
located in the design space away from existing points but within reach.

Finally, location researchers should adapt their models to fill new needs of the 
society and use tools made available by new technologies. Some examples are 
applications in telecommunications and especially wireless networks, homeland 
security, environment change and global warming (Francis 2008), and use of geo-
graphical information systems (Murray and Church 2008).
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11.1 � Introduction

Modern Location Theory includes a large and growing field studying the impact 
of various types of uncertainty in location models. This field of Stochastic Loca-
tion Models can be traced back to the pioneering work of Frank, whose 1966 paper 
“Optimum Locations on a Graph with Probabilistic Demands” represents the first 
formal analysis of stochastic issues in location theory. This paper appeared during 
the “golden age” of Operations Research, when many new applications of probabil-
ity theory to optimization problems were being developed, spawning fundamental 
contributions in a variety of fields such as inventory theory, queuing theory, and 
stochastic dynamic programming, among others.

The development of Stochastic Location Models parallels the trends in other 
fields of Operations Research. While, as evidenced by several chapters in the cur-
rent volume, the roots of location theory go back to the nineteenth century, the 
modern beginnings (particularly of network models) can be traced to the papers 
by Hakimi (1964, 1965) who formalized classical median and center objectives in 
deterministic location models. These objectives are concerned with the interactions 
of three elements: customer demands (assumed to be originating at the nodes of 
the network), location of the facility (early papers largely dealt with single-facility 
models; multi-facility models, generally requiring much larger computer process-
ing power, came later), and the travel distance between customers and the facility. 
Frank’s paper analyzed the effect of uncertainty in the first component: the customer 
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demands, also known as node weights. This work provided direct impetus for sub-
sequent works in two main directions: further and more general analysis of location 
models with stochastic node weights (which can be thought of as “direct descen-
dants” of Frank’s original work), and the analysis of the impacts of stochasticity in 
all other aspects of customer-facility interactions (the “indirect descendants”), such 
as customer-facility travel times, the provision of service once the customer reaches 
the facility (or the mobile server reaches the customer), and facility breakdowns. 
Many aspects of these analyses have been extended to, for example, multi-facility 
settings, planar location, or non-nodal demands. The obvious practical importance 
of these models, coupled with the significant technical difficulties they represent 
(often combining NP-hard deterministic location problems with very difficult sto-
chastic problems) has led to the continued strong interest in these models on the part 
of location theorists. It is fair to say that significant advances continue to be made, 
while many important problems remain open.

This chapter is structured as follows. We begin, in Sect. 11.2, with a detailed 
look at Frank’s original contribution, describing both the various models he intro-
duced and the main methodological approaches used to analyze these models. In 
Sect. 11.3 we describe direct generalizations of Frank’s original work, i.e., new re-
sults on location models with stochastic node weights. Important open problems in 
this line of research are discussed in Sect. 11.3.5. Finally, in Sect. 11.4, we provide 
a more general overview of Stochastic Location Theory. As noted earlier, this is a 
large and growing field and thus we do not attempt to provide a thorough treatment 
here. Instead, we outline main research directions and key contributions, citing a 
number of references that could serve as the basis for further reading.

11.2 � Frank (1966): Maximum Probability Center 
and Median Problems

Let G =  ( N, L) represent the underlying network, where N is the discrete set of 
nodes and L is the set of links. Let n = |N| and ℓ = |L| be the number of nodes and 
the number of links, respectively. We assume that customer demand is concentrated 
at the nodes of the network, while facilities may be located both at the nodes and 
along the links. The weight associated with a nodal point i ∈ N, denoted by hi, rep-
resents the number of potential customers originating from the corresponding node, 
while the length of a link ( p, q) ∈ L, denoted by ℓpq measures the traveling distance 
between the two end nodes. If a facility is located at some internal point x ∈ ( p, q), 
we will adopt the following common notational convention: we will let x ∈ [0, ℓpq] 
represent both the distance of the facility from the left end-point p and the actual lo-
cation of the facility. Thus, x = 0 means that the facility is located at p, while x = ℓpq 
means it is located at q, making clear from the context which link x is located on. 
We will also use d( a, b) to represent the shortest distance between points a and b on 
G, where a and b may be nodes or points along the links.

The concepts of absolute (deterministic) m-centers and m-medians of a network 
were rigorously defined by Hakimi (1964, 1965). In these models, the weight of 
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each nodal point and the length of each link are assumed to be constant and known 
a priori. Frank (1966) argued that the weight of a nodal point, e.g., the number of 
messages originating from a node of a communication network, may not be de-
terministic, but is better represented as a random variable with some probability 
distribution. This leads to several possible stochastic generalizations of the concepts 
of medians and centers: in the expected value sense (“absolute expected” median 
and center), in the sense of maximizing the probability of achieving some threshold 
(“maximum probability” median and center), or in the sense of variance minimiza-
tion (“minimum variance” absolute median). These concepts, which were intro-
duced and analyzed in Frank (1966), are discussed in Sect. 11.2 below.

Frank also provided some additional analysis for his models. He derived up-
per and lower bounds for most problems, developed some solution methods (under 
fairly stringent assumptions), and suggested several asymptotic results. Many of the 
ideas he introduced turned out to be quite useful and were employed by subsequent 
researchers to develop more general approaches that will be reviewed in Sect. 11.3. 
Furthermore, we note that in his paper, Frank focused on single-facility models. 
Though his definitions can be easily generalized to the case of multiple facilities, 
the resulting models are quite difficult to analyze, and remain open to a large ex-
tent. Thus, we will focus on single-facility models throughout Sects. 11.2 and 11.3, 
briefly discussing the multiple facility case in Sect. 11.3.5.

11.2.1  �Absolute Expected Centers and Medians

Suppose node weights hi, i  ∈  N are random variables whose distributions have 
finite moments. Denote the expectation operator by E. An absolute expected center 
( AEC) x0e of G is a point such that

holds for every point x ∈ G. The maximum expected weighted distance at the abso-
lute expected center, r0 = max

i∈N
{E(hi)d(i, x0e)}  is referred to as the expected radius 

of G.
Similarly, a point y0e is an absolute expected median ( AEM) if for every point x 

on G

and R0 =
∑
i∈N

E(hi)d(i, y0e)  is called the expected median length of G. Note that x0e 

and y0e are equivalent to the absolute center and median defined by Hakimi, with 
node weights taken to be the expected values of the random weights.

In the probabilistic setting, it may be important to evaluate the likelihood that the 
objective values of the absolute expected center and the absolute expected median 
(which represent expected maximum and total travel costs, respectively) exceed 

max
i∈N

{E(hi)d(i, x0e)} ≤ max
i∈N

{E(hi)d(i, x)}

∑

i∈N

E(hi)d(i, y0e) ≤
∑

i∈N

E(hi)d(i, x),
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certain pre-determined thresholds. This leads to the following expressions where r 
and R are the threshold values:

� (11.1)

and

� (11.2)

Suppose the threshold values satisfy r ≥ r0 and R ≥ R0. Noting that P( Z < c) ≥ 1 − E( Z)/c 
always holds for a nonnegative random variable Z, the following upper bounds for 
the probabilities in (11.1, 11.2) can now be established:

and

Note that the right-hand side of the first expression (the center objective) rapidly 
approaches 1 as the number of nodes |N| grows. On the other hand, the right-hand 
side of the second expression (the median objective) is independent of |N|.

11.2.2  �Maximum Probability Absolute Centers and Medians

Given the thresholds and probabilities defined in (11.1) and (11.2), where are these 
probabilities minimized? That is, if we want to minimize the probability that the 
maximum or total weighted distance from the facility to the demand points exceeds 
certain undesirable level, what is the best location for the facility? Is it necessarily 
the absolute expected center or median? The following example demonstrates that 
this may not be the case.

Example 1:  Consider a network consisting of a single link 10 units long with the 
two end nodes denoted by A and B. Suppose that the random weight associated with 
node A takes two values 10 and 20 with equal probabilities, while the weight of B 
takes the same two values with respective probabilities of 0.4 and 0.6. It is obvious 
that E( hA) = 15 and E( hB) = 16. Applying the solution approach suggested by Hakimi 
(1964) for the deterministic absolute center problem with node weights of hA = 15 and 
hB = 16, we have x0e = 5.16, so the absolute expected center is 5.16 units away from 
A (or, equivalently, 4.84 units away from B). The expected radius r0 is computed as 
5.16(15) = 77.40. It is easy to verify that P ( max

i∈{A, B}
{hid(i, x0e)} > r0) = 80%. Now con-

P

(
max
i∈N

{hid(i, x0e)} > r

)
,

P

(
∑

i∈N

hid(i, y0e) > R

)
.

P

(
max
i ∈N

{hid(i, x0e)} > r

)
≤ 1 − (1 − r0/r)n

P

(
∑

i∈N

hid(i, y0e) > R

)
≤ R0/R.
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sider the location x = 7.5, i.e., a point that is 7.5 units away from  A and 2.5 units away 
from B. It is easy to check that the value P( max

i∈{A, B}
{hid(i, x)} > r0) = 50%. A similar 

situation occurs for the absolute expected median of the network, where y0e = 10 (node 
B is the absolute expected median) and the expected median length R0 equals 150. Like-
wise,  P(

∑
i∈{A, B}

hid(i, y0e) > R0) = 50%,  while P(
∑

i∈{A, B}
hid(i, x) > R0) = 30%   when

x = 5.
The above example suggests that the absolute expected center and the absolute 

expected median may be suboptimal in terms of minimizing the risk of unaccept-
ably high values. This leads to the concepts of maximum probability absolute cen-
ters and medians. A point xr is a maximum probability absolute r center (MPArC) of 
G if it minimizes the probability that the maximum weighted distance to the nodal 
points exceeds r > 0, i.e.,

� (11.3)

which holds for every point x on G. Similarly, a maximum probability absolute R 
median (MPARM) of G, denoted by yR, minimizes the probability that the total 
weighted distance to the nodal points is greater than R, so that for any x on G,

� (11.4)

Here r and R can be interpreted as “aspiration levels” of the maximum weighted 
distance and total weighted distance, respectively: it is desirable for the probabilis-
tic weighted distances to stay within these targets. The MPArC and MPARM are the 
locations that maximize the likelihood of achieving the specified aspiration levels. 
Therefore, models (11.3) and (11.4) are in the same spirit as the concept of “satisfic-
ing objectives” (in contrast to “optimizing objectives”) that is developed by Simon 
(1957) for the behavior theories.

Assuming that the random weights are independent, solving model (11.3)  is 

equivalent to finding a point x maximizing 
∏
i∈N

Fi(x),  where Fi( x) = P( hid( i, x) ≤ r). 

Furthermore, if the probability distributions of the weights hi are discrete, 
the function Fi( x) on a link changes its value only at a finite number of jump 
points x = xim ,  where there exists some realization w(i) of the random weight hi 
such that w(i)d(i, xim ) = r.  Let J be the set of distinct jump points of Fi( x) for i ∈ N. 
It is obvious that the objective function is constant on each open interval formed by 
two consecutive jump points in J. Therefore, in principle, an optimum on each link 
may be found by enumerating all the jump points and then repeating this procedure 
for all links on the network. An algorithmic approach to accomplish this was sug-
gested by subsequent researchers and will be outlined in Sect. 11.3.

Unlike the deterministic absolute median model, the MPARM model (11.4) does 
not have the vertex optimality property (this follows from Example 1 above). In 
fact, the evaluation of the objective function at a given point is usually difficult to 
obtain since, even under the independence assumption, it involves a convolution of 

P

(
max
i∈N

{hid(i, xr )} > r

)
≤ P

(
max
i∈N

{hid(i, x)} > r

)
,

P

(
∑

i∈N

hid(i, yR) > R

)
≤ P

(
∑

i∈N

hid(i, x) > R

)
.

11  Stochastic Analysis in Location Research



246

distributions. One exception occurs when the distribution of node weights is Nor-
mal, since the convolution of Normal distributions is also Normal and is available 
in closed form. Moreover, when the number of nodal points is large enough, the 
central limit theorem indicates that the distribution of the weighted sum (i.e., the 
objective function) will be approximately Normal. Therefore, Frank suggests that 
the approximate MPARM can be found by solving the model

� (11.5)

where σ2( hi) is the variance of hi. We note that the nonlinear optimization model 
above can be hard to solve, since the objective function is not convex along each 
link. Thus, local optima may occur and it is not clear how the globally best location 
is to be found. Solution approaches for this problem will be discussed in Sect. 11.3.4.

In practice, the probability distributions of the weights may be unknown. Frank 
shows that the distributions estimated by sampling may give good results for the 
MPArC and MPARM as long as the sample sizes are sufficiently large.

11.2.3  �Minimum Variance Absolute Medians

The MPARM objective discussed in the previous section was introduced to limit the 
risk of large weighted travel distances that may occur due to stochasticity of node 
weights. Another common measure of risk (or variability) is the variance, which 
leads to the following model that was also introduced in Frank (1966).

A point y0v is a minimum variance absolute median (MVAM) if

� (11.6)

holds for every point x on G. This objective may be useful in situations where hav-
ing a location with a low variability of total weighted travel distance is as, or more, 
important than having a low expected value of travel distance.

If the random demand weights hi are independent, the variance of the total 
weighted distance from a point x to the nodal points can be computed as follows

Under the independence assumption, analysis in Frank (1966) shows how to find 
a local MVAM solution on an isthmus, i.e., a link whose removal disconnects the 
network (also known as a “cut link” in network theory). This approach allows us to 
find the optimal MVAM on a tree, where every link is an isthmus. However, a gen-

max
y∈G

[
R −

∑

i∈N

E(hi)d(i, y)

]
/√∑

i∈N

σ 2(hi)d(i, y)2,

Var

[
∑

i∈N

hid(i, y0v)

]
≤ Var

[
∑

i∈N

hid(i, x)

]

Var

[
∑

i∈N

hid(i, x)

]
=

∑

i∈N

σ 2(hi)d(i, x)2.

O. Berman et al.



247

eral network may have no cut links. Fortunately, Frank’s approach can be extended 
to arbitrary links. Consider a link ( p, q) ∈ L and a node i ∈ N. The antipode on ( p, q) 
with respect to i is a point xi ∈ ( p, q) such that d( i, p) + xi = d( i, q) + ℓpq − xi (recall 
that xi refers to the point on ( p, q) which is at distance xi from the left endpoint p). In 
other words, the shortest paths from xi to node i through both endpoints p and q have 
the same length. Observe that an antipode on ( p, q) exists for any node i ∈ N \ p \ q. 
Moreover, if the shortest path from i to q passes through p (through q), then xi = q 
( xi = p). This must be the case when ( p, q) is an isthmus—in this case all antipodes 
must be located at the endpoints. However, for an arbitrary link, the antipodes will 
often occur at an internal point. Consider all antipodes on ( p, q). We define a pri-
mary region as a segment between two adjacent antipodes and note that if ( p, q) is 
an isthmus, there is only one primary region consisting of the whole link. Since p is 
an antipode of q and vice versa, the primary regions represent a partition of ( p, q).

For a primary region π = [x̂, x̃]  we define two sets of nodes, denoted by  L′ 
and R′, as follows: let L′ = {i ∈ N |d(i, p) + x̃ ≤ d(i, q) + �pq − x̃}  and R′ = N \ L′. 
In words, L′ represents all nodes for which the shortest path from x̃  goes 
through x̂  and, consequently, through the left endpoint p of ( p, q) as well. The short-
est path from x̂  to a node in i ∈ L′ must also pass through p; indeed the shortest path 
from any internal point in  to i must pass through p. Now consider a node i ∈ R′. 
By definition of R′ the shortest path from x̃  to i goes through the right endpoint q. 
Observe that the shortest path from x̂  to i must also pass through q, for if it does 
not, an internal antipode xi must exist in . But then xi would also be an antipode on 
( p, q) that would contradict  as a primary region. It follows that the shortest path 
from any point in  to a node in R′ must pass through q.

These observations allow us to derive first-order conditions that lead to the fol-
lowing expression for the unique minimum z of the objective function within the 
primary region  (where z is the unique MVAM with respect to ):

� (11.7)

where    D =
[ ∑

i∈R′
σ 2(hi)(d(i, q) + �pq) −

∑
i∈L′

σ 2(hi)d(i, p)
]/ ∑

i∈N

σ 2(hi).    The 

overall minimum over the link ( p, q) can now be found by enumerating the solu-
tions over all primary regions on the link (as noted earlier, when the link is an isth-
mus, it contains only one primary region). By enumerating solutions over all links, 
the MVAM of the network G can be found.

We note that the technique introduced in this section, dividing a link into seg-
ments over which the objective function is well-behaved and the solution is easier 
to find, is an important approach that will be applied to many objectives other than 
MVAM in the next section.

z =






x̂ if D ≤ x̂
D if x̂ ≤ D ≤ x̃
x̃ if D ≥ x̃

,
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11.3 � The Impact of Frank’s Work: Models with Random 
Weights

The work on extending and generalizing Frank’s original results has proceeded in 
several directions. First, additional location models with random weights have been 
introduced; as in Frank’s original work, these models are counterparts of the well-
studied deterministic location models such as anti-median, anti-center, and maximal 
cover. These models will be presented in Sect. 11.3.1 below.

Second, much progress on finding efficient algorithms for the models introduced 
by Frank and their extensions has been achieved. The results here can be divided 
into four streams. The first stream identifies “easy cases,” i.e., conditions under 
which problems with random weights admit easily identifiable solutions; we will 
review these results in Sect. 11.3.2. The second stream consists of identifying situ-
ations where the optimal solution can be localized to a discrete finite set of points 
a priori; the solution can then be obtained by simple enumeration. In most cases, 
the localization results require the distribution of node weights to be discrete and 
independent; these results are covered in Sect. 11.3.3. Some algorithmic approaches 
have been developed for general distributions of node weights; these are described 
in Sect. 11.3.4. Finally, in Sect. 11.3.5 we will present a brief discussion of problems 
that remain open and, in our opinion, deserve further attention.

11.3.1  �Obnoxious and Covering Problems with Random Weights

The MPArC, MPARM and MVAM problems described earlier are probabilistic 
counterparts of two classical deterministic location problems: the center and the 
median. There are three additional deterministic location models that have been 
well-studied: anti-center, anti-median and maximal cover. The first two are used for 
the location of undesirable (so-called “obnoxious”) facilities that should be located 
far away from the demand nodes. The anti-center (also known as the maximin prob-
lem) seeks to find a facility location that maximizes the minimum distance from any 
demand node. The anti-median model maximizes the average or the total weighted 
travel distance between the facility and the demand nodes. The reader is referred to 
Erkut and Neuman (1989) for detailed discussions of these models and to Chap. 10 
of this volume.

Berman et al. (2003b) introduce the maximum probability absolute r anti-center 
(MPArAC), which they refer to as the “probabilistic maximin problem” with the 
objective of finding a point x1 that maximizes the probability of the minimum 
weighted distance to the nodal points exceeding a threshold value r. That is, x1 is an 
optimal solution to the model

� (11.8)max
x∈G

P

(
min
i∈N

{hid(i, x)} ≥ r

)
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In a similar vein, Berman and Wang (2006) define the maximum probability abso-
lute R anti-median (MPARAM) as a point y1 that achieves

� (11.9)

i.e., the probability that the total weighted distance to the nodal points is no less than 
R is maximized at y1.

The deterministic maximal covering location problem (Church and Meadows 
1978) seeks to locate a facility so that as much demand as possible is “covered.” 
A node i ∈ N is considered covered by a facility at x if it is within a pre-defined 
coverage radius ci of x, i.e. if d( i, x) ≤ ci. Given a point x ∈ G, let the coverage set 
COV( x) = {i ∈ N|d( i, x) ≤ ci} be the set of all nodes covered from x. Assuming that 
the weights are random variables, Berman and Wang (2008a) introduce the proba-
bilistic maximal covering problem (PMCP) with the objective of maximizing the 
probability that the total weight of the covered nodes is greater than or equal to a 
pre-selected threshold value T, i.e.,

� (11.10)

Together with the three problems discussed in Sect. 11.2, we now have six differ-
ent location models with random node weights. The solution approaches to these 
models under various assumptions are discussed in the following sections. The next 
two sections do not consider the MVAM model; some results for this model will be 
presented in Sect. 11.3.4.

11.3.2  �Special Cases: Bounds on Aspiration Levels

In general, the location problems defined above are difficult to solve, even for a 
single facility on a network. However, under some conditions optimal solutions can 
be easily identified. In this section, we assume that the node weight distributions are 
bounded, i.e., that for any i ∈ N there exist finite numbers ai, bi, 0 ≤ ai ≤ bi, such that 
P( ai ≤ hi ≤ bi) = 1. For discrete distributions ai and bi can be taken as the smallest 
and largest realizations, respectively.

Denote by x̂b  and x̂a  the deterministic absolute center of the network when 
hi  =  bi and hi  =  ai for all i  ∈  N, respectively. Berman et  al. (2003b) and Ber-
man and Wang (2007a) observe that if r ≥ max

i∈N
{bid(i, x̂b)},  then x̂b  is also 

the MPArC of the network since P (max
i∈N

{hid(i, x̂b)} > r) = 0.  Similarly, sup-

pose r ≤ max
i∈N

{aid(i, x̂a)}.  Then P (max
i∈N

{hid(i, x)} > r) = 1  holds for any x  ∈  G, 

implying that any point is an equally poor solution for the maximum probabilistic 
absolute center model. Now let x̃b  and x̃a  be the respective optimal solutions to the 

max
x∈G

P

(
∑

i∈N

hid(i, x) ≥ R

)
,

max
x∈G

P




∑

i∈COV (x)

hi ≥ T




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deterministic maximin (anti-center) problem when hi = bi and hi = ai for i ∈ N. Simi-
lar arguments to above show that x̃a  is the MPArAC if r ≤ min

i∈N
{aid(i, x̃a)},  while 

all points are equally bad when r ≥ min
i∈N

{bid(i, x̃b)}.

The same reasoning can be developed for the probabilistic median 
and anti-median. Indeed, let ŷb (ỹb)  and ŷa (ỹa)  be, respectively, the de-
terministic median and anti-median of the network when hi  =  bi and 
hi  =  ai for i  ∈  N. In Berman and Wang (2004, 2006) it is shown that (1) if
R ≥

∑
i∈N

bid(i, ŷb),  then P (
∑
i∈N

hid(i, ŷb) > R) = 0  and thus ŷb  is the MPARM; 

and (2) if R ≤
∑
i∈N

aid(i, ỹa),  then P (
∑
i∈N

hid(i, ỹa) ≥ R) = 1  and therefore ỹa  
is the MPARAM.

Moreover, the objective function value at any point x ∈ G is 1 for the maximum 
probability absolute median problem if R is less than 

∑
i∈N

aid(i, ŷa). Similarly, the 

objective function value at any point x ∈ G is 0 for the maximum probability abso-

lute anti-median problem if R is greater than 
∑
i∈N

bid(i, ỹb).

Finally, if yC( a), yC( b) are the solutions to the deterministic maximum covering 
problem when node weights for all i ∈ N are equal to ai and bi respectively, then 
for T ≤

∑
i∈COV (yC (a))

ai  we have P (
∑

i∈COV (yC (a))

hi ≥ T ) = 1  and thus yC( a) solves 

the PMCP.
On the other hand, if T >

∑
i∈COV (yC (b))

bi  then every solution to the probabilistic 

maximal covering problem is equally poor, achieving the objective function value of 0.
To summarize, recalling that the threshold values r, R and T in the models dis-

cussed above can be interpreted as the aspiration levels, the results presented in this 
section show that when the aspiration level is sufficiently easy to attain, the solu-
tion to the deterministic problem will be optimal for its probabilistic counterpart as 
well. On the other hand, if the aspiration level is too hard to attain, then all potential 
solutions will perform equally poorly in the probabilistic problem. Moreover, the 
sufficient conditions for these special cases are easy to check by evaluating the cor-
responding objective functions at the upper and lower bounds of the node weight 
distributions. These results thus provide upper and lower bounds for the ‘reason-
able’ values of the aspiration levels. Methods for finding solutions corresponding to 
the values within these bounds are discussed next.

11.3.3  �Localization Results for Problems with Stochastic  
Node Weights

As in the previous section, the results presented here apply to the aspiration-level 
models MPArC, MPArAC, MPARM, MPARAM, and PMCP. Unless stated other-
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wise, we generally assume that the probability distributions of node weights are 
discrete and independent throughout this section. It is clear that under these condi-
tions the joint distribution of node weights must also be discrete. For any link ( p, q) 
of the network, the objective functions for the models (11.3), (11.8), (11.4), (11.9), 
and (11.10) are step-functions of the facility position x along the link. It follows that 
the optimum within a link can be found at one of the jump points of the objective 
function. It is also possible to develop dominance relationships between these jump 
points, allowing us to focus on a subset of potential solutions. The discussion below 
is based on Berman and Wang (2004, 2008a).

We illustrate this approach for the probabilistic center (MPArC) model (11.3). 
Suppose the weight hi associated with node i ∈ N is a discrete random variable with 
realizations wi[k], k = 1, 2,…, Ki, where Ki is the number of realizations and the real-
izations are arranged in an increasing order, i.e., wi[k] < wi[k + 1] for 1 ≤ k ≤ Ki – 1. 
Consider a link ( p, q) and a location x ∈ ( p, q). Since the random weights are inde-
pendent, as noted in Sect. 11.2.2, the objective function value at x can be computed 
as follows:

� (11.11)

where P (hid(i, x) ≤ r) =
Ki∑
k=1

P (hi = wi[k])I {wi[k]d(i, x) ≤ r}  and I{•} is the 

indicator function.
Recall the definition of the primary regions in Sect. 11.2.3 and of the accompa-

nying sets L′ and R′ of nodes to which the shortest path from within the primary 
region passes through the left and right endpoints of ( p, q), respectively. Consid-
er a primary region [x̂, x̃]  and define xik as the jump point with respect to wi[k] 
if x̂ ≤ xik ≤ x̃  and

� (11.12)

In other words, for the realization wi[k], the weighted distance d( i, xik)wi[k] equals 
the threshold r. Suppose now that i  ∈  R′. Then for any x ∈ (x̂, xi1)  and any 
k ∈ {1,…, Ki}, we have d( i, x)wi[k] > d( i, xi1)wi[1] = r, implying that P( hid( i, x) 
≤ r) = 0. From (11.11) we see that the value of the objective function at x is 1.0, im-
plying that x cannot possibly be the maximum probability absolute r center. Similar 
arguments rule out any x ∈ (xi1, x̃)  for i ∈ L′.

Let now x̂ ′ = max
i∈R′

{xi1}  and x̃ ′ = min
i∈L′

{xi1}. As explained above, the objective 
function is equal to 1 for x ∈ [x̂, x̂ ′) ∪ (x̃ ′, x̃)].  Thus, if x̂ ′ > x̃ ′,  the objective func-
tion is 1.0 at any point within primary region [x̂, x̃]  and therefore the primary region 

P

(
max
i∈N

{hid(i, x)} > r

)
= 1 −

∏

i∈N

P (hid(i, x) ≤ r)

{
wi[k][d(i, p) + xik ] = r
wi[k][d(i, q) + �pq − xik ] = r

if i ∈ L′

if i ∈ R′
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does not contain an optimal solution. Now assume that x̂ ′ ≤ x̃ ′.  To find a local op-
timum, define the following sets of points:

Berman and Wang (2004) prove that x ∈ J0 if and only if x is a jump point of the ob-
jective function P (max

i∈N
{hid(i, x)} > r).  It follows that the best solution to MPArC 

problem (11.3) within the primary region [x̂, x̃]  can be found within the set J0, as in 
the following example.

Example 2:  Consider the network depicted in Fig. 11.1. Suppose that r = 30.0 and 
probability distributions of the discrete random weights are given in Table 11.1. 
On link (1, 2), the antipode associated with node 3 is x  =  6.0 (i.e., the point at 
distance 6 from node 1). Hence there are two primary regions [0, 6.0] and [6.0, 
10.0]. In the primary region [0, 6.0] it is easy to verify that L′ = {1, 3} and R′ = {2}. 
It follows that x14  =  5.0, x22  =  2.5, x23  =  4.0, x32  =  4.0, and x33  =  1.5 are valid 
jump points. Note that x̂ ′ = x̂ = 0  and x̃ ′ = x̃ = 6.0. We therefore have J1 = {1.5, 
4.0, 5.0}, J2  =  {2.5, 4.0} and J0  =  {0, 1.5, 2.5, 4.0, 5.0}. The objective func-

J1 = {xik |x̂′ ≤ xik ≤ x̃′, i ∈ L′, k = 1, 2, . . . , Ki},
J2 = {xik |x̂′ ≤ xik ≤ x̃′, i ∈ R′, k = 1, 2, . . . , Ki}, and

J0 = J1 ∪ J2 ∪ {x̂′}.

Fig. 11.1   Network for Example 2
3

1
10

6 8

2

O. Berman et al.

                  

ki wi[ki] pi[ki]
W1 1 2 0.3

2 3 0.2
3 4 0.4
4 6 0.1

W2 1 1 0.5
2 4 0.2
3 5 0.1
4 10 0.2

W3 1 2 0.3
2 3 0.45
3 4 0.2
4 6 0.05

Table 11.1   Probability 
distributions of random 
weights
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tion P (max
i∈N

{hid(i, x)} > r)  over the primary region [0, 6.0] is graphically depicted 
in Fig. 11.2. The optimum is reached at x = 4.

The procedure suggested above can be further improved by noting that many 
of the jump points in J0 are dominated by other jump points and thus need not be 
considered. Berman and Wang (2004) demonstrate that the dominant jump points 
for the local optimum on the primary region [x̂, x̃]  include x̂ ′  defined earlier and 
any element in the set J2, which (a) is also in the set J1, (b) is the largest element in 
J2, or (c) has a neighboring jump point to the right belonging to the set J1 only. The 
reasoning behind this result is as follows. Consider x = xik ∈ J0. If x ∈ J1 and x ∉ J2, 
moving x by a small  > 0 to the right will increase the objective function value. 
Similarly, if x ∈ J2 and x ∉ J1, moving x by a small  > 0 to the left will increase the 
objective function value. If x ∈ J1 ∩ J2, moving x by a small  > 0 either to the left or 
to the right will increase the objective function value. A local optimum on a primary 
region can thus be found by evaluating the objective function at only the dominant 
jump points. In the above example, the two dominant jump points are x = 0 and 
x = 4.0 with objective function values of 0.525 and 0.4, respectively. Once again we 
see that x = 4.0 is the local optimum.

The complexity of the solution procedure described above for finding a local 
optimum is O( U2n2), where U is the maximum number of realizations of a random 
weight and n is the number of nodes. Readers are referred to Berman and Wang 
(2004) for a formal description of the algorithm. In order to find the global MPArC, 
this algorithm must be applied to all primary regions on every link. Since there are 
at most n – 1 primary regions on a link and ℓ links, in time O( U2n3ℓ) we can solve 
the maximum probability absolute r center problem.

A similar solution procedure, with the same worst-case complexity, can be ap-
plied to the probabilistic anti-center problem (11.8). In fact, the concepts of jump 
points and jump point dominance can also be applied to the probabilistic median and 

Fig. 11.2   Objective function 
over primary region [0, 6]
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anti-median models (11.4, 11.9). However, for these models the objective function 
involves the sum of the weighted distances and thus the jump points in Eq. (11.12) 
must be defined with respect to the joint, rather than marginal, distribution of node 
weights, see Berman and Wang (2004) for details. This implies that even the evalu-
ation of the objective function at a given point is NP-hard, and thus the resulting 
solution procedure can only be applied to small-scale networks. As noted earlier, for 
networks with a large number of nodes, the sum of weighted distances can be ef-
fectively approximated by the Normal distribution due to the central limit theorem. 
The solution for models with Normal and other continuous weight distributions will 
be discussed in the next section.

For the probabilistic maximal covering problem (11.10) even stronger localiza-
tion results were obtained by Berman and Wang (2008a), who prove that jump points 
of the objective function occur either at nodes or at network intersect points. The 
network intersect points associated with node i are all points x such that d( i, x) = ci, 
where ci is the coverage radius. Note that there are at most two such points along each 
link of the network, with one point corresponding to travel through either endpoint 
of the link. Thus, an optimal solution can be found by evaluating the objective func-
tion for, at most, O( nℓ) points. We emphasize that this result holds irrespective of the 
distribution of node weights, so the assumptions that node weight distributions are 
both independent and discrete made elsewhere in this section are not required here.

Unfortunately, the evaluation of the objective function runs into the same difficul-
ties as in the case of probabilistic median/anti-median problems, since the covering 

objective P

(
∑

i∈COV (x)
hi ≥ T

)
 also involves a sum of random variables. As noted 

earlier, evaluating this objective at a given point is NP-hard, implying that the exact 
solutions can be obtained only when |COV( x)| is small for all x ∈ G. For the potential 
solution points with large |COV( x)| it is necessary to use the Normal approxima-
tion. Computational experiments indicate that this approximation is very accurate 
for |COV( x)| ≥ 15.

To summarize, the optimal solution is obtained by evaluating the objective func-
tion value for all jump points in the network; for jump points with |COV( x)| < 15, 
exact evaluation of the objective function (via convolution) can be used, while for 
points with |COV( x)| ≥ 15, the Normal approximation is used. The jump point with 
the maximum value of the objective is returned as the optimal solution.

To illustrate the procedure, we refer back to the network in Example 2 to obtain 
the best solution on link (1, 2). Assume that the coverage radii are c1 = 4, c2 = 5, and 
c3 = 9. Then the set of network intersect points on link (1, 2) is given by NI = {3.0, 
4.0, 5.0, 9.0}, and the set of potential solutions on link (1, 2) is NI ∪ {0, 10} with 
the last two points corresponding to nodes 1 and 2, respectively. Suppose T = 10. 
For x = 0, the coverage set COV(0) = {1, 3} and

P




∑

i∈COV (0)

hi ≥ T



 = P (h1 = 4)P (h3 = 6) + P (h1 = 6)P (h3 = 4)

+ P (h1 = 6)P (h3 = 6) = 0.045.
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Incidentally, the Normal approximation gives a value of 1 – Φ(2.297) = 0.0108 in 
this case. In a similar way, all other potential solutions can be evaluated. The highest 
objective function is achieved at x = 9.0 with COV(9.0) = {2, 3} and an objective 

function value of P

(
∑

i∈COV (9.0)

hi ≥ 10

)
= 0.215,  indicating that the optimal location 

on link (1, 2) is 9 units away from node 1. Observe that an alternative optimum is 
available at node 2. The Normal approximation of the objective function value at 9.0 
is 0.188. Not surprisingly (since the cardinality of COV( x) sets is small), the Normal 
approximation provides a relatively poor estimate of the objective function values in 
this example. On the other hand, the optimal location under the Normal approxima-
tion is still 9.0, indicating that it does lead to the right solution in this example.

11.3.4  �Solution Approaches for General Probability 
Distributions of Node Weights

In this section, we consider five of the models discussed earlier: the probabilistic 
center, anti-center, median, anti-median, and minimum variance median. In all cas-
es, the distributions of node weights are either continuous or general. Two principal 
research directions have been pursued for this case. The first one develops solu-
tion approaches when the node weights are assumed to be independent, paralleling 
the development in Sect. 11.3.3. The main results for this case were obtained by 
Berman and Wang (2006), Berman et al. (2003b), and Berman and Wang (2007). 
The second direction is concerned with cases, in which the distributions of node 
weights are not independent but follow a multivariate Normal distribution; this was 
investigated by Frank (1967).

11.3.4.1 � Independent Node Weights

We start with the results for the probabilistic center/anti-center models for the case 
where the independence of node weights is assumed. Results for general probability 
distributions are available for this case because the evaluation of the objective func-
tion involves only marginal distributions of node weights unlike the models with 
median-type objectives that usually require joint distributions to evaluate.

The initial results for MPArC and MPArAC problems were obtained by Berman 
et al. (2003b) for the case when the node weights hi, i ∈ N are independent uniform 
random variables over [ai, bi] with 0 ≤ ai ≤ bi. Later, Berman and Wang (2007) ex-
tended the results to the case where the node weights follow arbitrary continuous 
probability distributions. The constants ai, bi represent the bounds of the probability 
distribution of hi, if this distribution is bounded. In the case of unbounded distribu-
tions, ai = 0 and bi = ∞ should be used.

The common difficulty in deriving an expression for the objective function of 
center-type problems is the change (often a discontinuity) that occurs when the 
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shortest paths to some nodes shift as the potential facility location is varied over 
the link ( p, q). In Sect. 11.3.3 these difficulties were overcome by restricting the 
analysis to the primary region of each link, where such shifts cannot occur. A simi-
lar strategy is followed here. For a given link ( p, q) we first divide it into intervals 
over which the form of the objective function is invariant. The end points of such 
intervals are called break points. Then on each interval we find a local optimum and 
the best local optimum is returned as the global optimal solution. We illustrate this 
approach for the maximum probability absolute center problem.

Consider a primary region [x̂, x̃]  on link ( p, q) ∈ L. Similar to the definition of 
the jump points in the previous section, we note that the form of the objective func-
tion changes at a point x where for some node i ∈ L′, aid( i, x) = r or bid( i, x) = r. This 
is because if the facility is located at y ∈ (x̂, x)  and d( i, x) = r/bi, then the threshold 
r cannot possibly be exceeded by node i, and thus this node will not be present 
in the expression for the objective function. On the other hand, if y ∈ (x, x̃)  and 
d( i, x)= r/ai, then the objective function is equal to 1, again changing the form. We 
call such points “break points.”

Denote by S the collection of all break points in [x̂, x̃].  Berman and Wang (2007) 
showed that S = L1 ∪ L2 ∪ R1 ∪ R2 ∪ {x̂, x̃},  where

Let sm and sm + 1 be two consecutive break points in S. If there exists i ∈ L′ such that 
ai( d( i, p) + sm) ≥ r or i ∈ R′ such that ai( d( i, q) + ℓpq – sm + 1) ≥ r, then the objective 
function P ( max

i∈N
{hid(i, x)} ≥ r) = 1  at any x ∈ [sm, sm + 1] and the interval [sm, sm + 1] 

can be excluded from consideration. Assume that P ( max
i∈N

{hid(i, x)} ≥ r) < 1  at 
any x ∈ [sm, sm + 1]. Define

and

Denote by Qi(•) the probability distribution function of random weight hi. It is clear 
from (11.11) that the objective function over the interval [sm, sm + 1] can be written as

L1 =
{

x|x̂ ≤ x =
r

ai
− d(i, p) ≤ x̃, i ∈ L′ and ai �= 0

}
,

L2 =
{

x|x̂ ≤ x =
r

bi
− d(i, p) ≤ x̃, i ∈ L′ and bi �= ∞

}
,

R1 =
{

x|x̂ ≤ x = d(i, q) + �pq −
r

ai
≤ x̃, i ∈ R′ and ai �= 0

}
,

R1 =
{

x|x̂ ≤ x = d(i, q) + �pq −
r

bi
≤ x̃, i ∈ R′ and bi �= ∞

}
.

A = {i ∈ L′|ai(d(i, p) + sm+1) ≤ r and bi(d(i, p) + sm) ≥ r},

B = {i ∈ R′|ai(d (i, q) + �pq − sm) ≤ r and bq(d(i, q) + �pq − sm+1) ≥ r}.

O. Berman et al.
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�

(11.13)

Minimizing (11.13) is equivalent to maximizing ln 
[∏

i∈A

Qi

(
r

d(i, p) + x

) ∏

i∈B

Qi× (
r

d(i, q) + �pq − x

) ]
,  and is done via a line search procedure.

For the case where the density of the distribution function (the derivative) is 
available in closed form, it is also useful to define

and

If M1( x) + M2( x) is increasing in x, the objective function has no stationary point in-
side the segment and therefore either sm or sm + 1 is optimal; we can simply compute 
and compare the objective values at these two points. If M1( x) + M2( x) is decreasing 
in x, then the objective function is unimodal on the segment and a dichotomous 
search method can be used to find the optimal solution; see, e.g., Bazaraa et  al. 
(1993). If neither of the above two conditions is met, a line search method can be 
applied. The procedure is illustrated by the following example.

Example 3:  Refer back to the network in Fig. 11.1 and Example 2, but now assume 
that the weights h1, h2 and h3 are uniformly distributed over the intervals [2.0, 8.0], 
[4.0, 5.0] and [3.0, 5.0], respectively. Let r = 36.0. Consider the primary region [0, 
6.0] on link (1, 2). Recall from Example 2 that L′ = {1, 3} and R′= {2}. It is easy 
to verify that  L1 = {6.0},   L2 = {1.2, 4.5},   R1 = {1.0},   R2 = {2.8}  and S = {0, 1, 
1.2, 2.8, 4.5, 6.0}. Consider the segment given by the breakpoints sm  =  1.2 and 
sm + 1 = 2.8. Since b1[d (1, 1) + sm] < r, b2[d (2, 2) + ℓ12 – sm + 1] = r, a2[d (2, 2) +
ℓ12 – sm] < r, b3[d (3, 1) + sm] = r and a3[d (3, 1) + sm + 1] < r we have A = {3}, B = {2}; 

therefore, the objective function can be written as 1 −
6(x − 1)(6 − x)

(10 − x)(6 + x)
.  Similarly, 

we can derive the expressions for the objective function of other segments. The 
objective function over primary region [0, 6.0] is expressed as

P

(
max
i∈N

{hid(i, x)} > r

)
= 1 −

∏

i∈A

Qi

(
r

d(i, p) + x

)

×
∏

i∈B

Qi

(
r

d(i, q) + �pq − x

)
, sm ≤ x ≤ sm+1

M1(x) =
∑

i∈A

d

dx
ln

(
Qi

(
r

d(i, p) + x

))

M2(x) =
∑

i∈B

d

dx
ln

(
Qi

(
r

d(i, q) + �pq − x

))
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P

(
max
i∈N

{hid(i, x)} > r

)
=






1 x ∈ [0, 1.0]

1 −
4(x − 1)

10 − x
x ∈ [1.0, 1.2]

1 −
6(x − 1)(6 − x)

(10 − x)(6 + x)
x ∈ [1.2, 2.8]

1 −
3(6 − x)

2(6 + x)
x ∈ [2.8, 4.5]

1 −
(6 − x)(18 − x)

2x(6 + x)
x ∈ [4.5, 6.0].

O. Berman et al.

Segment Optimal solution Optimal objective value
[1.0, 1.2] 1.2 0.9091
[2.8, 4.5] 2.8 0.4545
[4.5, 6.0] 4.5 0.7857

Table 11.2   Optimal solutions 
on the segments

On segment [1.2, 2.8], M1(x) =
d

dx
ln

[
3(6 − x)

2(6 + x)

]
=

−8

(6 − x)(6 + x)
and and M2( x) = 

M2(x) =
d

dx
ln

[
4(x − 1)

10 − x

]
=

9

(x − 1)(10 − x)
. Since both M1( x) and M2( x) are decreasing 

functions of x, the objective function is unimodal on this segment and the golden 
section search technique (see, e.g., Bazaraa et al. 1993) is applied to find the mini-
mum point. It turns out that x = 2.8 is optimal with an objective value 0.4545. The 
objective value is 1.0 at any point on segment [0, 1.0]. We can thus skip this seg-
ment because it cannot contain the global optimum. Local optimal solutions on 
other segments are presented in Table 11.2. It follows that x = 2.8 is the maximum 
probability absolute r center on primary region [0, 6.0].

To summarize, the methodology above reduces the computation of MPArC to 
(a) computation of the primary regions and the breakpoints, which can be done 
relatively efficiently, and (b) evaluation of the objective function over the subinter-
vals defined by the breakpoints. The latter can, in principle, be accomplished via 
univariate line search. However, depending on the distributions of node weights, the 
objective function can be multi-modal even within these intervals; thus, only a local 
optimum can, in general, be guaranteed.

We next turn our attention to the probabilistic median/anti-median models. As 
noted earlier, the objective for these models involves a sum of random variables, 
requiring a convolution operation to evaluate, which is even more problematic in 
the continuous distribution case than in the discrete distribution case considered 
earlier. Here the exact results are only available for the cases when the weight distri-
butions are Uniform or Normal: in these cases, the convolutions can be obtained in 
closed form and are thus relatively easy to evaluate. On the other hand, the Central  
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Limit Theorem ensures that Normal approximation of the distribution of the weight-
ed sum will be quite good unless the number of nodes is very small. Thus, provided 
MPARM and MPARAM models can be solved efficiently for the case where node 
weights are Normally distributed, high-quality approximate solutions should be 
available for the more general distributions as well. The discussion below is based 
primarily on the results in Berman and Wang (2006).

When node weights are Normally distributed, the objective function of either 
model is unimodal in any primary region and therefore a local optimum can be ob-
tained using the first-order conditions. This allows us to efficiently solve the prob-
lem (11.5) defined in Sect. 11.2.2. Similar approach works for the MPARAM case. 
An algorithm of order O( n5) is suggested for solving these models.

When the random weights are uniformly distributed, a closed form solution for 
the objective function is derived. A line search approach can then be applied for all 
links of the network to find local optima, and the best of them is an optimal solution 
on the entire network.

For the case of more general distributions, closed form expressions for the objec-
tive function are not available. There are two approximation approaches that can be 
used in this case. The first one is the Normal-based approximation discussed above 
and in Sect. 11.2.2. An alternative approach is to approximate node weight distribu-
tions with discrete probability distributions, and then apply the approach discussed 
in Sect. 11.3.3. One would expect the Normal-based approximation to perform bet-
ter when the number of nodes is reasonably large, while the discrete-based approach 
may be better when the number of nodes is small.

Computational experiments comparing the two approaches were reported by 
Berman and Wang (2006). They show that the Normal approximation method out-
performs the discrete approximation method in both CPU time and solution quality 
in the vast majority of cases; in fact, it is recommended for networks with |N| ≥ 5. 
For very small networks with under five nodes, either a direct numerical evaluation 
of the convolutions or a discrete approximation can be used.

11.3.4.2 � Correlated Node Weights

The analysis of the case where node weight distributions are correlated was carried 
out by Frank (1967). Our discussion is mostly based on his results. However, we 
extend his formulas to a general link (all of Frank’s work was restricted to an isth-
mus) and correct some of his formulas. All results on correlated node weights as-
sume that the joint distribution of weights is multivariate Normal. To the best of our 
knowledge, no results for more general distributions are available. We first present 
the results for the MPArC problem, followed by MPARM and MVAM. The results 
for MPArAC and MPARAM models are not available, but can likely be obtained 
along the same lines as for their MPArM and MPARM counterparts, respectively.

Suppose the random vector of node weights H  =  ( h1, h2,…, hn)′ has an n-
dimensional Normal distribution with the mean vector µ  =  ( µ1, µ2,…, µn)′ 
and variance-covariance matrix V  =  [σij]n  ×  n. For a given location x  ∈  G, de-
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fine the matrix D( x) =  [dij]n × n with dij = 0 if i ≠  j and dij = d( i, x) otherwise. If 
point x is not a node, the n-dimensional random vector of the weighted dis-
tances H(x) = (h1d(1, x), h2d(2, x), . . . , hnd(n, x))′ is Normally distributed with 
mean vector D( x)µ and variance-covariance matrix D( x)VD( x). If point x is a 
node, say node k, the distribution of  H(x)  is singular, i.e., its kth component 
is zero. However the probability distribution of weighted distances of interest 
Hk (x) = (h1d(1, x), h2d(2, x), . . . , hk−1d(k − 1, x), hk+1d(k + 1, x), . . . , hnd(n, x))′

 can be obtained without difficulty.
We start the discussion with the maximum probability absolute center problem. 

The objective value at any point x that is not a node can be computed as follows, 
with the objective value at a node being derived in a similar way.

Let u = D( x)−1z. Suppose x belongs to a primary region [x̂, x̃]  on a link ( p, q) ∈ L. 
The expression above can then be rewritten as

�

(11.14)

where

Expression (11.14) can be evaluated via numerical computation and the local op-
timum can be found using a line search method over [x̂, x̃]  such as the quadratic 
interpolation method; see, e.g., Bazaraa et al. (1993). The procedure can then be 
repeated for all other primary regions on ( p, q) and then for all the links on the 
network to find the overall MPArC. Of course, in the absence of the results on the 
unimodality of (11.14) within a primary region, only a locally optimal solution can 
be guaranteed.

We next turn our attention to the probabilistic median problem. As above, we 
consider a primary region [x̂, x̃]  within a link ( p, q) ∈ L. It can be shown that the 
optimum solution within the primary region must occur either at x̂,  or x̃,  or at the 
following internal point y, whenever the expressions below evaluate to y ∈ [x̂, x̃].

� (11.15)

P

(
max
i∈N

{hid(i, x)} > r

)
= 1 −

(2π )−
n
2

|D(x)||V| 1
2

r
∫

−∞
. . .

r
∫

−∞
exp{−1/2[u − D(x)µ]′

× D(x)−1V−1D(x)−1[u − D(x)µ]}du.

P

(
max
i∈N

{hid(i, x)} > r

)
= 1 −

(2π )−
n
2

|V|1/2

×
g1

∫
−∞

. . .
gn

∫
−∞

exp{−1/2[z − µ]′V−1[z − µ]}dz,

gi =






r

d(i, p) + x
, if i ∈ L′

r

d(i, q) + �pq − x
, if i ∈ R′.

y =
bc + af

bf + ae
,
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and

Observe that the expression (11.15) does not require computation of multivariate 
Normal densities and thus can be evaluated without difficulty. The optimal MPARM 
solution on a network is thus surprisingly easy to find even in the case of correlated 
node weights.

The final model addressed by Frank (1967) is the minimum variance median. 
Once again, we consider a primary region [x̂, x̃]  on a link ( p, q) ∈ L. The MVAM 
solution within this primary region is a point x defined by

To close this section, note that the question of whether the node weights are corre-
lated or not is quite important; assuming independence of node weights where such 

a = R −
∑

i∈L′

d(i, p)µi −
∑

i∈R′

[d(i, q) + �pq]µi ,

b =
∑

i∈R′

µi −
∑

i∈L′

µi ,

c =
∑

i∈L′

∑

j∈L′

d(i, p)d(j , p)σij +
∑

i∈R′

∑

j∈R′

[d(i, q) + �pq][d(j , q) + �pq]σij

+ 2
∑

i∈L′

∑

j∈R′

d(i, p)[d(j , q) + �pq]σij ,

e =
∑

i∈R′

∑

j∈L′

σij +
∑

i∈R′

∑

j∈R′

σij − 2
∑

j∈L′

∑

i∈R′

σij , and

f = te.

x =






x̂, if t ≤ x̂

t , if x̂ < t < x̃

x̃, if t ≥ x̃

,

where t =





∑

i∈R′

∑

j∈R′

[d(i, q) + �pq]σij +
∑

i∈R′

∑

j∈L′

d(j , p) σij





/




∑

i∈L′

∑

j∈L′

σij +
∑

i∈R′

∑

j∈R′

σij − 2
∑

j∈L′

∑

i∈R′

σij





−





∑

i∈L′

∑

j∈L′

d(i, p) σij +
∑

i∈L′

∑

j∈R′

[d(j , q) + �pq]σij





/




∑

i∈L′

∑

j∈L′

σij +
∑

i∈R′

∑

j∈R′

σij − 2
∑

j∈L′

∑

i∈R′

σij



 .
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an assumption is not warranted may lead to wide departures from optimality. We 
illustrate this point with the following example.

Example 4:  Consider again the single-link network of Example 1 and assume that 
the random weights associated with the two nodes A and B follow a joint Normal 
distribution with mean vector µ = (15, 12)′ and variance-covariance matrix

with a correlation coefficient of 0.7. Let R = 160.
Since the link ( A, B) is clearly an isthmus and thus (as discussed earlier) consists 

of a single primary region, the optimal MPARM solution must be one of the end-
points or the internal point given by (11.15). We evaluate the latter expression, com-
puting a = 40, b = – 3, c = 833.33, e = 5.00, t = 12.00, f = 60.00, and y = – 4.99. Since 
this y value does not result in an internal point of ( A, B), the solution must be at one 
of the endpoints. The z-value is 1.38 at node A ( x = 0) and 0.86 at node B ( x = 10). 
Therefore, node A is the MPARM in this case with the objective value of 0.0829.

If the two random weights are independent, their covariance is 0, then (11.15) 
yields a = 40, b = – 3, c = 833.33, e = 9.67, t = 8.62, f = 83.33, and y = 6.1. It is 
easy to check that y has lower objective value than either of the endpoints, and is 
the MPARM when the weights are independent. The objective function value at y 
is 0.0514, nearly 40% lower than in the previous case. The large gap between the 
optimal locations and objective function values in the two cases indicates the im-
portance of the independence assumption.

We can also use the same example to illustrate the impact of different distri-
butional assumptions. Assume that the weights of the two nodes are independent 
uniform random variables over intervals [13, 17] and [7, 17], respectively. It is 
easy to verify that E( hA) = 15, σ2( hA) = 1.33, E( hB) = 12, and σ2( hB) = 8.33, yielding 
the same values as for the Normally distributed weights considered earlier. As dis-
cussed above, for the case of independent uniform weights the objective function of 
MPARM can be computed in closed form, see Berman and Wang (2006) for details. 
Using the quadratic interpolation method for the resulting expression, we obtain 
the MPARM solution at x = 5.0, quite far from the optimal location under the in-
dependent Normal probability distributions, even though the random weights have 
the same mean and variance under the two distributions. The large gap between the 
two solutions is not unexpected as the network is quite small, and thus the Normal 
approximation is not expected to work well in this case.

11.3.5  �Summary and Open Problems

The results presented in this (and the previous) section indicate that while much 
progress has been achieved in extending Frank’s original results and providing ef-

V =
[

1.33 2.33
2.33 8.33

]

O. Berman et al.
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ficient computational approaches, many open problems remain and deserve further 
investigation.

In the single-facility case, the minimum variance absolute median problem has 
not been analyzed as thoroughly as the other models. This is likely due to the obvi-
ous flaws in this model: it appears odd to look for a location optimizing the second 
moment (the variance), without imposing any restrictions on the first moment (the 
expected value). This has, no doubt, limited the interest in this model. Nevertheless, 
the idea of limiting risk through minimizing variance is sound and has been used in 
a variety of fields from statistical quality control to finance. However, a more rea-
sonable model must incorporate both the expected value and the variance either by 
attaching a weight to each of these components in the objective function (leading to 
a mean-variance trade-off model) or constraining the value of one component (e.g., 
the expected value) while optimizing the other (e.g., the variance). Further investi-
gation of such models could lead to interesting insights.

The difference between the maximum probability absolute median or center and 
their absolute expected counterparts also deserves further investigation. In particu-
lar, when an aspirational objective is used, can bounds be provided on the departures 
from optimality in the expected sense? Can the acceptable levels of such departures 
be specified as bounds? Can combined objectives (such as a weighted combination 
of maximum probability center and absolute expected center) be handled?

Relatively few results have been obtained for the multiple-facility extensions 
of the models discussed above, possibly because the analysis is substantially more 
difficult than for the single-facility case. To our knowledge, the only available re-
sults are by Berman and Wang (2008b, 2010), where a maximum probability ab-
solute R m-median (MPARmM) and a maximum probability absolute r m-center 
(MPArmC), (with m > 1), are defined as the respective extensions of MPARM and 
MPArC models. For both models the authors identify solvable special cases simi-
lar to those described in Sect. 11.3.2. For the more general cases, as discussed in 
Sect. 11.3.3, the evaluation of the objective function of the MPARM problem at a 
given point is NP-hard; this conclusion easily extends to the multi-facility case as 
well. In view of this, the analysis by Berman and Wang (2010) limits the potential 
location sites for MPARmM to the set of nodes and assumes that node weights have 
independent discrete probability distributions. The MPARmM problem is formulat-
ed as an integer programming model, which can be solved only for small instances. 
Several heuristics and a Normal approximation method have been developed, and 
computational results suggest that the Normal approximation method is the only 
viable solution procedure, even for small problems.

Berman and Wang (2008b) consider the MPArmC problem with independent 
random node weights. Unlike the MPArC model, the MPArmC problem is NP-hard. 
It is also shown that at least one optimal solution consists of optimal points for the 
MPArC problem on subnetworks and nodal points, namely the dominant points. 
This implies that an optimal solution can be found by examining all subsets of car-
dinality m of the set of dominant points J ′. If the probability distributions of node 
weights are independent and continuous, it is generally difficult to construct the set 
of dominant points a priori. A suggested approach is to approximate node weight 
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distributions with discrete probability distributions and then identify the dominant 
points by treating the node weights as discrete random variables. Sufficient condi-
tions are derived for the case when the set of dominant points consists of all the 
nodal points, the antipodes with respect to any node, and the break points defined 
in Sect. 11.3.4, so no approximation is required. An exact solution procedure and 
some heuristics are proposed to search for the best solution in the set J ′. However, 
it remains clear that further study of multi-facility extensions of problems discussed 
in the previous sections is required.

Finally, we note that while Frank’s original work and all of the results described 
above have dealt with the network topology, the concepts of probabilistic centers, 
anti-centers, medians, anti-medians, and maximal cover extend easily to the planar 
topology as well. The only work to investigate the related issues on the plane ap-
pears to be Berman et al. (2003a), who study the maximum probability absolute 
center problem, which they refer to it as the probabilistic minimax problem, on the 
plane when random weights associated with demand points are uniformly distrib-
uted. They show that an optimal solution exists in the convex hull of the demand 
points. They also prove that the problem is equivalent to minimizing a convex func-
tion in a convex region and thus can be solved using a steepest descent approach 
when certain conditions on the weight distributions are satisfied. In case the con-
ditions do not hold, an alternative branch and bound procedure is suggested. The 
authors report that problems with 100 demand points took negligible time to solve 
in Excel Solver. The investigation of the remaining objectives on the plane (as well 
as MPArC objective under more general distributional assumptions), remains to be 
done.

11.4 � Extending Frank’s Work

Arguably, the main contribution of Frank’s work was not in the analysis of the spe-
cific location models discussed earlier in this chapter, but in the general motivation 
his work provided for the analysis of stochastic elements in facility location prob-
lems. This field came into its own in mid-1980s and continues to be quite active, 
having produced several hundred publications over twenty five years.

Frank‘s work focused rather narrowly on one aspect of potential uncertainty in 
location models: the node weights. However, most classical location objectives, 
including median and center objectives, involve three components: node weights 
(representing demand for service), travel time between customers’ and facility loca-
tions, and the assignment rule of customers to facilities. Thus, a natural continuation 
of Frank’s work is the analysis of stochasticity in travel times (or distances) of links 
on a network; this work is reviewed in Sect. 11.4.1.

Moreover, interpreting the “travel time” component more generally as the 
customer-facility interaction, several other sources of stochasticity arise: (1) the 
customer may be delayed in obtaining service due to congestion at the facility in 
cases where customers travel to facilities to obtain service, known as the “immobile 
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server” case, (2) the customer may be delayed in getting service because mobile 
servers are occupied elsewhere, in the “mobile server” case where servers travel to 
customers to provide service, and (3) the closest facility may not be the one provid-
ing service since, due to congestion delays or server availability, it may be faster to 
obtain service from a more distant but less busy facility, which may occur in both 
mobile and immobile server cases. The location models that take congestion into 
account are reviewed in Sect. 11.4.2 and 11.4.3. We note that these models, in ad-
dition to determining facility location, also seek to determine the required service 
capacity of the facilities, which is an important issue facing decision-makers. This 
has accounted for the continuing interest and large number of publications regard-
ing models of this type.

Finally, a facility may fail to provide service due to a temporary or permanent 
break-down, causing customers to seek service elsewhere, thus creating stochastic-
ity in both the travel times and the customer-to-facility assignments. The models 
seeking to analyze systems where facility reliability may be less than perfect are 
relatively recent and are reviewed in Sect. 11.4.4.

11.4.1  �Probabilistic Links

The uncertainty about the lengths of the links of a network often arises in practical 
applications, particularly when “lengths” are measured in units of travel time rather 
than geographical distances. This uncertainty arises due to factors such as changes 
in traffic patterns during the day, car accidents, changes in weather conditions, and 
other unforeseen occurrences. Mirchandani and Odoni (1979) studied the p-median 
problem when travel times on the links are discrete random variables. They assume 
that the network can be in a finite number of states, where each state is a snapshot 
of the network and the probability of each state is either given or can be calculated 
from the probability distributions of the lengths of links, which are assumed to 
be known. Under the link homogeneity assumption―the time required to travel a 
fraction q of any link ( i, j) ∈ L for any state r is equal to q times the length of link 
( i, j) in state r―an optimal set of locations is proved to be nodal. Subsequent work 
(see Berman et al. 1990 and references therein) studied the p-median problem with 
probabilistic lengths when states of the network change according to a Markov 
chain and facilities (servers) can be moved at a cost in response to the change of 
states. The objective function is to minimize a weighted function of demand travel 
times and relocation costs.

The median problem with links that are continuous random variables was 
studied by Handler and Mirchandani (1979). They formulated the problem for 
locating p facilities and provided an algorithm for the 1-median problem. For 
more details and references the readers can refer to Chap.  1 of the book by 
Mirchandani and Francis (1990) for the p-median problem with probabilistic 
discrete lengths, and to Chap. 12 of the same book for the problem with continu-
ous probabilistic links.
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11.4.2  �Location Models with Facility Congestions

As noted earlier, in this section we describe models which account for possible 
service delays due to congestion. We classify location models with congested facili-
ties into two types: facilities with mobile servers that travel to customers to provide 
service, (typically emergency service systems such as fire, ambulance, and police); 
and facilities with immobile servers where customers travel to the facilities to ob-
tain service (such as retail stores, hospitals, and banks). From a methodological 
point of view, these two types of models are quite different, with the former be-
ing significantly more complex since they include several travel time components: 
outbound travel to customer’s location and travel back to the facility (some models 
allow for direct customer-to-customer travel) in addition to the on-scene service 
time. Moreover, dispatching rules must be specified, i.e., rules that determine which 
server is assigned to respond to a particular customer request for service. The litera-
ture can be further subdivided into two streams: models with median-type objective 
that represents some overall system-wide service time, and models with covering 
objectives that seek to provide an acceptable level of service to all customers with 
the minimal amount of resources, including servers and facilities. Both streams 
are reviewed in this section, while models with immobile servers are reviewed in 
Sect. 11.4.3.

11.4.2.1 � Congested Facilities with Mobile Servers: The Median Objective

The following discussion is based on the material covered in the review papers by 
Berman et al. (1990) and Berman and Krass (2002), and the references therein.

Berman et  al. (1985) studied the problem of locating a single-server facility, 
operating either as a M/G/1/∞ (Poisson arrival of customers, general service time, 
one facility and all customer calls are queued) or as an M/G/1/0 (customer calls that 
arrive while the server is busy are lost). An important assumption of both models 
is that the server returns to the facility upon completion of each service and conse-
quently the service times are iid. The objective function is the expected response 
time for the M/G/1/∞, calculated by adding the expected travel time and the ex-
pected waiting time. For the M/G/1/0 the expected waiting time is replaced with 
the expected cost of dispatching a special reserve unit. For this model Berman et al. 
(1985) proved that the optimal solution is identical to that of the standard 1-median 
problem; for the M/G/1/∞, they proved that the objective function is strictly con-
vex on the portion of the link between two consecutive antipodes that they call a 
primary region. Therefore, the search for the optimal solution, called the stochastic 
queuing median (SQM) of a network is reduced to a finite set of locations, which in-
cludes nodes plus local minima within the primary regions. Many extensions of the 
problem with one facility and a single server are included in Berman et al. (1990).

In subsequent research, the M/G/1/∞ was generalized to include K > 1 servers in 
a facility using an approximation for the expected waiting time, and the results of the 
M/G/1/0 model were generalized to include K servers stationed at a single facility.
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For the problem of locating K congested facilities we distinguish between two 
cases: no-cooperation, where customers must always be served from the same facil-
ity, and co-operation, where customer calls may be served by any facility and thus a 
farther-away facility with a free server may provide service when the closest facility 
has no available servers. Berman and Mandowsky (1986) studied the problem of 
locating K facilities, each containing a single mobile server, for the no-cooperation 
case. The problem is solved by using a location/allocation scheme where the al-
location part (given location of the facilities, how to allocate the customers to the 
various facilities) was based on an allocation model that finds the optimal territories 
for two facilities that do not cooperate. The same problem, but with facility co-
operation allowed, was investigated by Berman et al. (1987), who developed a heu-
ristic that uses the Hypercube Model of Larson (1974) to approximate the system as 
an M/M/K queue with distinguishable servers. The approach to solve the problem 
is based on the following idea: given K locations, the Hypercube model provides K 
dispatching zones, such that for each zone, an optimal location of a single server can 
be found by using the standard 1-median or the SQM.

When relaxing the assumption that service units always return to the home lo-
cation following the completion of service, the problem is very difficult since the 
service times are no longer iid. Berman and Vasudeva (2005) studied the problem 
when service units return to the home locations only if no calls are waiting, other-
wise they travel from call to call to provide the service. They use queuing approxi-
mations for their model.

11.4.2.2 � The Covering Objective

In models with the covering objective, two service level constraints are typically 
defined: in order to be covered, a customer must have a facility within the cover-
age radius, and customer calls must find an available server at least α% of the time, 
where α ∈ [0, 100] is an externally specified parameter (alternative specifications of 
this constraint may include setting limits on the expected waiting time). See Berman 
and Krass (2002) for further discussion of models of this type.

The study of covering models with congestion originated with Daskin (1983), 
who introduced a model assuming that the busy fraction for servers who operate 
independently is an externally specified parameter. Batta et al. (1989) relax the as-
sumption that servers operate independently by incorporating the approach adopted 
by Larson (1975) for the Hypercube Model. ReVelle and Hogan (1989a, b) used re-
gion-based estimates for p. Marianov and ReVelle (1994, 1996) used the M/M/K/K 
loss system to estimate node availability. Note that the models in the papers by ReV-
elle and Hogan (1989a, b) and Marianov and ReVelle (1994, 1996) do not ensure 
system feasibility, see Baron et al. (2008) for further discussion.

Ball and Lin (1993) introduce a model that ensures system availability, but with 
unrealistic number of servers. They assume that service times are deterministic and 
derive lower bounds for server availability. Borras and Pastor (2002) use simula-
tion to examine ex-post the availability level of several known models. Recently, 
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Baron et al. (2008) showed that earlier models often overestimate servers’ availabil-
ity and thus may result in infeasible solutions. By analyzing the underlying partially 
accessible queuing system, they develop lower bounds on system availabilities that 
are used in two new models for which feasibility is guaranteed.

11.4.3  �Congested Facilities with Immobile Servers

In these models, customers travel to facilities to obtain services and it is assumed 
that service delays may occur at the facilities due to congestion. Most of work on 
this class of models has used the covering objective.

Marianov and Serra (1998) introduced the problem of locating K facilities us-
ing the maximal weight cover form. The problem is to maximize the total demand 
covered by the facilities subject to the service level constraint, which ensures that 
for any facility the probability that the waiting time is less than or equal to a pre-
determined level is bounded from below. They considered two versions of the prob-
lem: in one, they assume that each facility behaves as a M/M/1 queuing system; in 
the other one they assume that each facility behaves as a M/M/k queuing system. For 
both problems they show that the service level constraint can be linearized, result-
ing in a problem that can be formulated as a linear integer program. Marianov and 
Rios (2000) apply this methodology to find the locations of ATM machines where 
their number is also a decision variable.

Wang et al. (2002) studied the problem of locating facilities operating as M/M/1 
queuing systems with the median-type objective of minimizing the total cost of the 
system, which is the sum of the expected waiting and travel costs. They incorpo-
rated service level constraints on the expected waiting time in all facilities. Berman 
et al. (2006) considered a similar model with the coverage-type objective function 
of minimizing the number of facilities, subject to an additional constraint on the de-
mand that is lost due to congestion and insufficient coverage. Berman and Drezner 
(2007) generalized the queuing system of Wang et al. (2002) by modeling the fa-
cilities as an M/M/K queuing system. In addition to finding the optimal location 
and number of facilities, they also showed how to allocate the servers among the 
facilities. Aboolian et al. (2008a) examined the same problem but with an objective 
that minimizes the maximum sum of travel and waiting time costs. Aboolian et al. 
(2008b) generalized the results of Berman and Drezner (2007) by including in the 
objective function in addition to the expected travel and waiting cost, also the fixed 
cost of opening facilities and the variable cost of the servers.

Castillo et al. (2009) studied a problem similar to that of Aboolian et al. (2008b). 
In their model, there is a centralized authority that determines the assignment of 
customers to the facilities (whereas Aboolian et al. (2008b) assign customers to the 
closest facility). Also, Castillo et  al. (2009) use approximations for the expected 
waiting time. Finally, Baron et al. (2008) analyzed the problem of determining the 
number, location and capacity of congested facilities under general assumptions 
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such as spatially continuous demand, general server arrival and service distribu-
tions, and nonlinear costs.

11.4.4  �Unreliable Facilities

In this class of models facilities may fail to provide service due to breakdowns, forc-
ing customers to seek service elsewhere. A crucial assumption is whether customers 
have the knowledge about the state of the facility before they start their trip. If such 
an advanced knowledge is available, the customers are assumed to travel directly to 
the closest operating facility. When prior knowledge about the state of the facilities 
is not available, the customers must search for an operating facility.

The problem with advanced knowledge about the state of the facilities was ana-
lyzed by Berman et al. (2007b). The paper includes structural results, analysis of 
the model behavior and several exact and heuristic approaches. Drezner (1987) ad-
dressed a similar problem and suggested a heuristic. Lee (2001) proposed a differ-
ent heuristic to Drezner’s problem for the problem in the plane. Synder and Daskin 
(2006) developed several models that are similar to the work by Berman et  al. 
(2007b) focussing on the development of Lagrangian relaxation algorithm.

The problem without the advanced information on the status of the facilities was 
introduced by Berman et al. (2009). They focused on studying the effects of reli-
ability and information on the properties of the optimal solution. When the failure 
of facilities to receive customers for service is due to congestion at the facilities, 
Berman et al. (2007a) considered the problem studied by the earlier Berman et al. 
(2009) using queuing approximations. We note that both of these models assume 
that customers’ search strategy consists of always traveling to the closest unexam-
ined facility, which is not necessarily an optimal strategy. The problem of optimally 
locating the facilities when customers search in an optimal manner remains open.

11.5 � Conclusion

In this chapter we described the pioneering work of H. Frank who played a key role 
in introducing stochastic models to location analysis. While Frank’s interest was 
limited to just one aspect of uncertainty in location models—namely the uncertainty 
related to node weights—his research served as a springboard to broader research 
into various aspects of stochasticity in location models, as described in Sect. 11.4. 
Many of the ideas introduced by Frank, including maximizing the probability that 
a certain constraint is satisfied rather than some deterministic objective, have been 
applied in many other contexts within the field of location analysis and elsewhere. 
Stochastic location modeling is an active and exciting field where many impor-
tant problems remain open. This ranges from questions related to the extensions of 
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Frank’s original models, many of which were described in Sect. 11.3.5, to construct-
ing a tractable combined model that would represent uncertainties related to node 
weight (demand), service, and travel times simultaneously.
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12.1 � Introduction

O’Kelly’s (1986) classical paper started a new research stream by identifying a 
connection between spatial interaction models and location theory. The traditional 
spatial interaction theory applies models of travel behavior to investigate demand 
patterns between fixed locations. Location theory, on the other hand, takes demand 
as given, assumes a simple view of travel behavior, and focuses on finding the best 
location for facilities.

Spatial interaction theory focuses on the problem of locating centers of special 
interest, and observes that the selected locations have an effect on the evolution of the 
associated network. O’Kelly’s self-identified contribution in this context relates to the 
interaction effects between facility locations and spatial flows. He makes a distinc-
tion between endogenous and exogenous effects. In particular, he considers the given 
problem parameters as exogenous data, which are endogenously affected by the loca-
tion of the hubs as well as the allocations. Hubs are special facilities acting as con-
solidation and dissemination points for the flows. Flows from the same origin with 
different destinations are consolidated enroute at a hub node where they are combined 
with flows from different origins with a common destination. The main idea is to keep 
the flow interactions in perspective at the design stage of the hub network. That is, the 
hubs need to be strategically located in view of their effects on the intensity and cost 
of the flow data. In general, the hub location problems are defined as analogous coun-
terparts of the classical location problems with the addition of allocation decisions.

This chapter reviews and outlines the research on hub location problems that 
emerged as a new research stream led by O’Kelly’s (1986) seminal paper. Sec-
tion  12.2 discusses the geographical applications leading the way to the ideas 
proposed by O’Kelly. Section  12.3 summarizes the major findings presented in 
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O’Kelly’s original paper. Prominent theoretical developments that emerged from 
these findings are discussed in Sect. 12.4. Section 12.5 reviews some related ap-
plication oriented studies. Finally, Sect. 12.6 concludes the chapter with highlights 
of the current and future trends for research in the area.

12.2 � Before Hub Location

The identification of the importance of consolidation and dissemination points as 
well as their endogenous effects was well known in spatial interaction theory be-
fore O’Kelly’s work. For instance, the classical paper by Taaffe et al. (1963) dis-
cusses the issue in the context of formation of transportation infrastructure in third 
world countries. They observe that consolidation-dissemination points are located 
in administrative centers, political and military control centers, mineral exploita-
tion areas, and areas of agricultural export production. Lines of penetration emerge 
between these points of demand concentration. Figure 12.1 illustrates a line of pen-
etration between two fictitious centers of critical importance (centers A and B), 
resulting in indirect connections between the points previously connected to either 
one of these centers (i.e., points a1, a2, …, an, b1, b2, …, bm). Once such penetration 
lines are formed, they have an impact on both the surrounding area along these lines 
and the initial centers in terms of local development. These local developments 
are analogous to the endogenous attraction proposed by O’Kelly, and they in turn 
manifest themselves as a factor that further supports the structure of the penetration 
lines. Once the development in the centers and along the penetration lines stabilizes, 
the formation of the backbone is completed.

In classical spatial theory, there are also examples of active strategic develop-
ment of the transportation backbones. For instance, Miehle (1958) constructs a me-
chanical model to simulate alternative backbone structures enforcing the passage of 
flows through certain designated locations functioning as hubs. Goodchild (1978) 
mathematically considers the role of endogenous attraction. He assumes fixed loca-
tions and solves only the allocation problem, where attraction to a facility is mod-
eled as a function of both distance and usage. Distance is an exogenously given 

Fig. 12.1   Lines of penetra-
tion between centers A and B

A B

a1

a2

an bm

b2

b1

B. Y. Kara and M. R. Taner

                  



275

factor, whereas attraction due to usage is endogenously or voluntarily determined 
based on the actual level of service that a facility provides.

Ducca and Wilson (1976) consider a similar problem in the context of the planned 
positioning of shopping centers. In their model, demand intensity is expressed as 
a simultaneous function of existing retail density, employment, and distances trav-
eled. Allen and Sanglier (1979) develop a model of dynamically interacting urban 
centers. Each center has an associated attraction parameter, and once a center is 
located, the parameters of the original problem in terms of the demands generated 
at different locations are affected through immigration and emigration. In particu-
lar, there is a positive feedback loop due to the employment opportunities gener-
ated by a located center. In a subsequent paper, Allen and Sanglier (1981) improve 
their original model by also considering the negative feedback loop that reflects the 
crowding effect.

This brief discussion on inter-facility attraction shows that the fundamentals of 
the notion of endogenous attraction observed by O’Kelly date back to late 1950s. 
The formal definition of the problem in the context of location theory led to the 
development of a new field. The remainder of this chapter discusses this new field 
and ties its evolution back to O’Kelly’s paper.

12.3 � O’Kelly’s Seminal Contribution

Genesis of location of interacting facilities as a new research area within location 
theory dates back to O’Kelly’s paper, which was significantly impacted by the pop-
ular trend of simultaneous consideration of location and transportation decisions in 
spatial theory. In this paper, O’Kelly focuses on the interaction between hubs serv-
ing the United States inter-city air passenger streams, and studies the relevant data 
recorded in a Civil Aeronautics Board sample survey of 1970. He observes that, 
although airline companies in practice carefully consider the location of the hub 
facilities in view of their collective ability to efficiently connect the cities in their 
network, classical location research completely ignores these interactions. This per-
spective helps O’Kelly to identify a novel version of a location-allocation problem, 
in which the located facilities lie along the route between demand points.

O’Kelly studies both a single- and a two-hub version of this new problem in 
the 2-dimensional plane. The single-hub version is shown to be equivalent to the 
classical Weber least cost location problem. Regarding the economic advantages of 
building a single-hub network, O’Kelly points out that the only rational reason to 
justify such a system would be the potential savings in link costs due to the scale 
effects of routing the traffic through the hub. This issue in a problem with n demand 
points is mathematically expressed as

∑

i

∑

j

Wij

(
C(pi , Q) + C(Q, pj )

)
+ Kn <

∑

i

∑

j

WijC(pi , pj ) + 1/2n(n − 1)K ,
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where the notation is defined as follows.

pi:	� Demand point i, i = 1, 2, …, n
Wij:	� Flow between demand points pi and pj, i = 1, 2, ..., n,  j = 1, 2, …, n
Q:	� Hub to be located at ( x, y)
C( pi, pj ):	� Cost per unit flow between points pi and pj measured in terms of the 

Euclidean distance
K:	� Cost of intercity linkage (which may include the cost of using the trans-

portation mode and the operational expenses such as fuel cost, driver 
wages, etc.)

Observe that if function C satisfies the triangular inequality, the savings result from 
the fewer links to operate when the hub is utilized. The expression indicates that the 
total transfer cost is greater when the traffic is routed through the hub. However, 
this difference is compensated by the smaller cost of operating fewer flow links in 
the hub version, i.e., n vs. ½n( n − 1) in the hub and non-hub versions, respectively.

O’Kelly acknowledges the need for using multiple hubs to accommodate a large 
area and discusses also multiple-hub problems. In such a network, the inter-hub 
linkages can be specially designed to efficiently handle bulk flow. In this way, the 
unit transportation costs between hubs can be significantly reduced. The reduced 
cost of these flows in turn appears as an endogenous function of the hub locations.

O’Kelly proposes a simple approximation, and discounts the inter-hub costs by 
a factor , such that 0 ≤  < 1,  ∈ R.  Because of the special structure of the cost 
function, the multiple-hub problems involve a two-fold decision in the sense that 
both the location of the hubs and the assignment of the demand points to the hubs 
must be decided upon.

The paper particularly focuses on solving the two-hub version of the problem, 
which is significantly easier than the more general p-hub version. Using decision 
variables

the cost function to be minimized is characterized as

where Rij is the routing and transportation cost between points i and j condition-
al upon the corresponding hub location decision. This cost is mathematically ex-
pressed as follows.

Xik =
{

1, if demand point pi is assigned to hub Qk , k = 1, 2
0, otherwise

Min
Q1,Q2

∑

i

∑

j

WijRij ,

Rij = Xi1Xj1(C(pi, Q1) + C(pj , Q1))

+ Xi2Xj2(C(pi, Q2) + C(pj , Q2))

+ Xi1Xj2(C(pi, Q1) + αC(Q1, Q2) + C(pj , Q2))

+ Xi2Xj1(C(pi, Q2) + αC(Q2, Q1) + C(pj , Q1))
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Due to the binary nature of the decision variables, for each origin destination 
pair only one of the four possible components of the objective function will take 
on a positive value. The possibilities involved are the cost of flow from origin to 
destination via the same hub (either hub 1 or hub 2), and the transfer cost from 
origin to destination via both hubs (either from hub 1 to hub 2 or the reverse). 
Obviously, when both hubs are used, the cost of inter-hub transfer is discounted 
by factor .

O’Kelly observes that due to the quadratic term and the discounting effect, as-
signment to the nearest hub may turn out to be suboptimal. We develop an example 
to illustrate this phenomenon in Fig. 12.2. The network configuration and corre-
sponding distance matrix are shown in Fig. 12.2a and b, respectively. The magni-
tude of symmetric flows between point 4 and points 5 and 6 are equal to 10. Flow 
densities between all other pairs have a much smaller value of 1. The discount factor 
 is set equal to 0.60. Figure 12.2c shows allocation scheme 1, in which all points 
are allocated to their nearest hub. This scheme results in a total cost value of 353.60. 
On the other hand, allocation scheme 2, shown in Fig. 12.2d, assigns point 4 to the 
more distant hub, and gives a smaller total cost value of 308.40.

The proposed approach to solving the two-hub problem is to minimize the dis-
counted cost function by simply taking the first order derivatives with respect to the 
location coordinates and setting them equal to zero. In this problem, however, the 
cost function is minimized for different partitions of demand points corresponding 
to the hubs. A partition refers to the set of demand points assigned to a given hub. 
The partitions whose convex hulls are non-overlapping are defined as non-overlap-

Fig. 12.2   Two different allocation schemes on an example network. a Network configuration. 
b Distance matrix. c Allocation scheme 1. d Allocation scheme 2
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ping partitions. Figure 12.3 shows two non-overlapping partitions on the previous 
example network. Partitions 1 and 2 correspond to allocation schemes 1 and 2, re-
spectively. Motivated by the fact that consideration of only the non-overlapping par-
titions yields the optimum solution for the two-center location-allocation problem 
(Ostresh 1975), O’Kelly relies on the simplifying assumption that the assignment 
of demand points can be considered only for non-overlapping partitions, though he 
acknowledges that this approach may not necessarily yield the true optimum solu-
tion in the current problem.

Another of O’Kelly’s observations relates to the effect of the hub network struc-
ture on the intensity of flow between demand points. He proposes the following 
function that updates the revised flow.

Recall that the Rij values are the routing and transportation costs considering all 
hub assignment possibilities. This function revises the flow density between each 
pair as a decreasing function of the relevant transportation costs. The sensitivity 
of the flow volume to the cost is governed by coefficient  ≥ 0, where a larger 
value of this coefficient leads to a more significant effect. O’Kelly presents some 
computational analysis on the Civil Aeronautics Board data in which the effects 
of using different parameters (  and ) for modeling endogenous attraction are 
investigated.

The most significant contribution of this classical paper remains the identifica-
tion of the hub location problem as a version of the p-median location-allocation 
problem involving interactions. The solution techniques for the multiple-hub 
problems are later improved by various researchers including O’Kelly himself 
(e.g. 1987, 1992). In addition, a multitude of studies focusing on hub-location 
counterparts of different classical location problems emerged, and the next sec-
tion presents an overview of these studies within the framework of a new pro-
posed taxonomy.

Wij =
OiDj exp (−βRij )
n∑

k=1
Dk exp (−βRik)

Fig. 12.3   Two different non-overlapping partitions of the example network of Fig. 12.2. a Parti-
tion 1. b Partition 2
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12.4 � Theoretical Developments in the Hub Location 
Literature

This section starts out by identifying the connections between hub location prob-
lems with their counterparts in the classical location literature. After observing the 
factors that result in different types of hub location problems, the authors propose 
a new taxonomy that serves for a convenient classification of the relevant develop-
ments. These developments are presented for the cost minimization and minmax 
type of objectives in Sects. 12.4.3 and 12.4.4, respectively.

12.4.1  �Analogies with Location Theory

Having identified hub-location problems involving interacting facilities, O’Kelly 
(1987) formulates a general version of the problem where flow between demand 
points is to be transferred via p hubs to be cited at a subset of the nodes correspond-
ing to origins and/or destinations. The following additional notation is needed.

N:	� Set of nodes
Cij:	� Transportation cost for a unit flow between nodes i and j

Note that the transportation cost is redefined to highlight its correspondence to the 
network distance of the shortest path linking the two nodes. Although this cost is 
defined here as related in some way only to the distances involved, it is important 
to acknowledge that there may be a multitude of different factors affecting the mag-
nitude of the cost and the discount factor. The only decision variable Xik is now 
redefined for i, k = 1, 2,…, n. Note that if i = k and Xii = 1, node i is a hub.

The proposed formulation is as follows.

�

(12.1)

� (12.2)

� (12.3)

� (12.4)

� (12.5)

Min z =
∑

i

∑

j

Wij

(
∑

k

CikXik + α
∑

k

∑

m

CkmXikXjm +
∑

m

CjmXjm

)

s.t. (n − p + 1)Xjj −
∑

i

Xij ≥ 0 ∀ j

∑

j

Xij = 1 ∀ i

∑

j

Xjj = p ∀

xij ε {0,1} ∀ i, j
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The objective function, shown in (12.1), minimizes the total cost comprising the origin-
to-hub, discounted inter-hub transportation, and hub-to-destination cost components. 
The inter-hub transportation cost in this basic formulation includes a quadratic term to 
account for the origin-destination pairs connected through their designated hubs. Note 
that the discount factor works on the transportation costs, not the distances. Constraint 
set (12.2) ensures that no switching is allowed through a non-hub node. Constraint sets 
(12.3) and (12.5) enforce allocation of each node to exactly one hub. Finally constraint 
(12.4) sets the number of hubs equal to p. Note that this initial formulation is subse-
quently considered as the “basic formulation” in the hub location literature.

O’Kelly (1987) reiterates that interaction is the factor differentiating this new 
problem from the p-median and multi-facility Weber problems, both of which are 
widely considered in the classical location literature. The novelty is that the loca-
tions of the hubs have a direct effect on the magnitude of the inter-hub flows and 
the associated linkage costs.

An immediate consequence of this endogenous effect is in the allocation of nodes 
to hubs. In classical location theory with uncapacitated facilities, once the locations are 
given, the allocation subproblem can be optimally solved by assigning a node to its near-
est facility. In hub location problems, on the other hand, the assignment of a node to a 
facility is impacted also by that facility’s ability to service the interaction pattern. There-
fore, proximity of the hub to a node ceases to be the sole factor dictating the allocation.

The logical connections between hub location problems and the location theory 
literature were outlined by Campbell (1994a). Campbell defines location analogous 
versions of the hub-location problem, namely the p-hub median, hub location with 
fixed costs, p-hub center, and hub covering problems. The basic problem defined in 
O’Kelly (1987) is a p-hub median problem. A detailed discussion of the other prob-
lems defined by Campbell (1994a) will follow below. Campbell’s principle contri-
bution to the expansion of the hub location literature relates to the consideration of 
alternative criteria for objectives. On the constraint side, researchers identified the 
following three major factors to produce alternative versions of this basic problem:

1.	 Single- vs. multi-allocation (Campbell 1990),
2.	 Full vs. partial hub network (Chou 1990), and
3.	 Presence/absence of direct connectivity between non-hub nodes (Aykin 1995).

Recall that the basic model assumes each node is served by exactly one hub, all 
hubs are connected to each other, and any transfer between two non-hub nodes must 
be via at least one hub. O’Kelly and Miller (1994) suggest that different combina-
tions of these three factors result in eight alternative versions of the basic problem.

Based on the alternative objective functions and possible variations in the con-
straint set, the present authors propose a taxonomy in the next section to facilitate a 
convenient and systematic discussion of the emerging literature.

12.4.2  �A Taxonomy of Hub Location Problems

We observe that the factors that determine the nature of the problem can be consid-
ered in four categories. To also accommodate other problem-specific restrictions, 
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we propose a five-fold taxonomy in the following form ////. The fields in this 
short-hand notation correspond to the following specific factors.

:	� Objective criterion
:	� Allocation structure
:	� Capacity
:	� Inter-hub connectivity
:	� Other restrictions.

The alternative objective criteria corresponding to the p-hub median, hub location 
with fixed cost, p-hub center and hub covering problems will be denoted shortly as 
pH-median, fixH-cost, pH-center and H-cover, respectively. The allocation struc-
ture refers to the degree of flexibility in terms of the number of hubs to which a 
node can be assigned. The corresponding parameter  thus in turn may be either 
single or multi. Various types of capacities may be imposed upon the flow handled 
by the hubs and the transportation lines. The uncapacitated version of the problem 
is denoted by U, whereas the presence of node and arc capacities is indicated by 
node and arc, respectively. Finally, the underlying network topology appearing in 
the  field may range from full to different partial structures such as path, tree, 
ring, and star. Since the other restrictions are expected to vary depending on the 
circumstances of a specific problem, the notation to be used in the  field is left to 
the discretion of other authors. Note that the basic problem can be denoted as pH-
median/single/U/full.

We remark here that Campbell et  al. (2002) also provide a taxonomy to help 
classify the hub location problems. The alternative proposed herein is based on the 
review and synthesis provided in O’Kelly and Miller (1994) as well as the objective 
criteria discussed in Campbell (1994a).

After the basic problem was identified by O’Kelly (1986), for almost a decade 
researchers worked on mathematical formulations that would efficiently solve it. 
The initial formulation provided in O’Kelly (1987) was quadratic. Linear formu-
lations were given in Aykin (1990), Campbell (1996), and Skorin-Kapov et  al. 
(1996), among others. In these formulations, single- and/or multiple-allocation 
versions of the problem were considered under the cost objective. For the pH-
median problems, the objective is the minimization of the total transportation cost. 
Conversely, in the fixH-cost problem a fixed cost associated with opening a new 
hub was considered alongside the transportation cost. We first discuss several im-
portant studies on the pH-median and fixH-cost problems. Then we proceed with 
the pH-center and H-cover versions of the problem investigated in the more recent 
literature.

12.4.3  �Minisum Objectives

In the early 1990s, due to the quadratic nature of the formulation, researchers at-
tempted to solve the single allocation version of the pH-median problem with 
heuristic approaches. Three important examples of such attempts can be found in 
Klincewicz (1991 and 1992), as well as Skorin-Kapov and Skorin-Kapov (1994).
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The first solvable exact formulation dates to back to Campbell (1996), who 
studies pH-median/single/U/full and pH-median/multi/U/full. Campbell gives lin-
ear mathematical programming formulations for the two problems by defining a 
four-indexed binary variable Xijkm, which takes on a value of 1 only if the flow 
between nodes i and j is routed via hubs k and m. He observes that the integrality of 
these variables can be conveniently relaxed when solving pH-median/multi/U/full 
without forgoing optimality. He also remarks that solution to the multiple alloca-
tion version of the problem constitutes a lower bound for the single allocation 
version.

The single allocation version of the problem with the Civil Aeronautics 
Board data was optimally solved for the first time in Skorin-Kapov et al. (1996) 
by using a branch-and-bound algorithm utilizing a tight lower bound obtained 
from the linear programming relaxation of their original formulation. Ernst and 
Krishnamoorthy (1996) provide an efficient network flow formulation to solve 
the same problem. This formulation relies on modeling flows generated by each 
node as a different commodity which results O( n3) binary integer variables 
as opposed to O( n4) in the previous formulations. Ernst and Krishnamoorthy 
(1998a) embed this notion in a branch-and-bound algorithm, which to the best 
knowledge of the present authors is the most efficient solution algorithm for 
this problem to date. Ernst and Krishnamoorthy (1998b) apply the network flow 
notion also to the multi-allocation version of the problem and obtain optimum 
solutions to large instances. In the same paper, they observe that the problem 
can be solved polynomially by an all-pairs shortest path algorithm when the hub 
locations are fixed.

Following O’Kelly (1986), all research until O’Kelly (1992) considered sole-
ly the transportation costs in the objective function. O’Kelly (1992) incorporates 
this fixed cost into the problem and addresses the capacitated version of the prob-
lem, fixH-cost/single/node/full. He uses a modified version of his basic formula-
tion with the addition of the total hub cost, 

∑
j

FjXjj , in the quadratic objective 

function. The multi-allocation version of this problem with additional arc costs, 
fixH-cost/multi/node/full/{direct, arc-costs} was studied by Aykin (1994). Recall 
that the term “direct,” in this context, implies that a non-stop connection between 
non-hub nodes is permissible. He proposed a branch and bound algorithm utiliz-
ing a Lagrangian-based lower bound. This problem, with the only difference of 
not allowing direct connections, was studied by Ernst and Krishnamoorthy (1999), 
who proposed efficient integer programming formulations. Recent exact solution 
approaches exploit the polyhedral structure of the hub location problems. Labbé 
and Yaman (2004) derive facet-defining inequalities for fixH-cost/single/U/full. For 
the multiple allocation version of the problem, Hamacher et al. (2004) propose valid 
inequalities by modifying the facet defining inequalities for the uncapacitated facil-
ity location problem. Similarly, Marin (2005) exploits the polyhedral structure of 
the set packing problem to develop valid inequalities for fixH-cost/multi/U/full with 
Euclidian distances.
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12.4.4  �Minmax Objectives

An inherently different class of hub location problems is of the minmax type. The 
1-hub center problem was originally defined by O’Kelly and Miller (1991) to mini-
mize the maximum cost incurred by any origin-destination pair. This problem was 
motivated by a desire to achieve equity between user nodes in terms of the transpor-
tation costs incurred. Following the remarks made in O’Kelly and Miller’s (1991) 
conclusion, the minmax objectives in later studies focus on the service time con-
cerns rather than the cost issues. In the p-hub center problem, the objective is to 
minimize the worst service time between any origin destination pair. Alternatively, 
the objective of the hub cover problem is to serve all node pairs with the minimum 
possible number of hubs while keeping the travel times below a predetermined 
threshold level. These problems received attention in the literature partly due to 
their practical applications in such systems as perishable goods transfer and over-
night delivery.

The first paper which fully defines and classifies different versions of these prob-
lems is Campbell (1994a). In addition to providing integer programming formula-
tions for pH-center/single/U/full, pH-center/multi/U/full, H-cover/single/U/full, H-
cover/multi/U/full, Campbell identifies different types of service time restrictions. 
In particular, he additionally defines separate service times for the segments consti-
tuting a path between origin-destination pairs. He also proposes integer program-
ming formulations for the pH-center and H-cover problems based on these new 
service time definitions. These alternative versions of the two problems are still 
open areas that require further investigation.

After being defined by Campbell (1994a), the pH-center and H-cover problems 
were not studied until Kara and Tansel (2000). They provide a proof of NP-hardness 
for pH-center/single/U/full and develop an efficient integer programming formula-
tion with n2 binary variables. Ernst et al. (2002) give a more efficient formulation 
for the same problem by using auxiliary variables. They also show that the multiple 
allocation version of the problem is NP-hard, and propose a modification of their 
original formulation for its solution. Baumgartner (2003) analyzes these two formu-
lations, develops facet defining valid inequalities, and proposes a branch-and-cut 
algorithm based on these inequalities.

For the covering version of the problem with single allocation, Kara and Tansel 
(2003) provide an NP-hardness proof along with an efficient integer programming 
formulation. Ernst et al. (2005) present formulations for both the single and mul-
tiple allocation versions of this problem. Their formulation for the single allocation 
case outperforms that of Kara and Tansel (2003). Polyhedral properties of these 
H-cover problems are studied by Hamacher and Meyer (2006).

A variant of this problem is motivated by real life applications based on the 
observation that trucks are synchronized at the hub nodes by occasionally delaying 
their departures. Kara and Tansel (2001) call this variant the latest arrival hub loca-
tion problem, defining the pH-median, pH-center and H-cover versions of the prob-
lem. They propose a formulation for pH-center/single/U/full/latest-arrival which 
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can efficiently solve all Civil Aeronautics Board instances. The H-cover version 
of this problem was investigated in a similar way by Tan and Kara (2007) who test 
the performance of their formulation based on a new data set of Turkish highway 
travel times.

Special cases of the pH-center problems with fixed hubs are investigated by 
Iyer and Ratliff (1990) and Campbell et  al. (2007). Iyer and Ratliff (1990) con-
sider a “guaranteed time distribution” problem, which is in fact equivalent to the 
uncapacitated p-hub center problem with a tree type network structure. They pro-
pose a polynomial time exact algorithm to solve this problem. Their algorithm was 
later modified by Campbell et  al. (2007) to solve the 2H-center/single/U/path, 
pH-center/single/U/tree, 2H-center/single/U/full, pH-center/multi/U/full problems. 
Campbell et al. prove additionally that problems pH-center/single/arc/full and pH-
center/single/node/full are NP-hard.

12.5 � Application-Oriented Studies

In addition to the theoretical investigations discussed in the previous section, the hub 
location problem identified by O’Kelly (1986) has been widely studied in the past 
two decades regarding other practical applications than airline passenger streams. 
These different practical applications, which occasionally lead to alternative ver-
sions of the problem, can be broadly classified as telecommunication networks and 
cargo delivery practices. This section discusses major findings in these two areas.

In the context of telecommunication networks, data packets are transferred 
between user nodes through concentrators (servers, switches, multiplexers, etc.) 
which function as hubs. The user nodes are connected to the concentrators via ac-
cess networks, whereas the concentrators are connected to each other and/or to a 
central root node through a backbone network. Different topologies of backbone/
access networks such as clique, star, tree, path, ring, and their hybrids, are possible. 
Objectives considered in the design of telecommunication networks include equip-
ment installation and routing cost as well as reliability (survivability), capacity, and 
expandability concerns. Klincewicz (1998) provides an extensive review of the lit-
erature in this area. More recent works on telecommunication network design are 
discussed in Gourdin et al. (2002) and Labbé et al. (2005). Motivated by ongoing 
technological developments, there has been extensive research in this area in the 
past few years, and this trend is expected to continue for the foreseeable future.

As discussed in the theoretical aspects presented in Sect. 12.4.2, in cargo delivery 
practice time issues overshadow the cost concerns, resulting in minimax objectives. 
Cargo delivery networks are designed and managed mostly either with a constraint 
on the delivery times or with the objective of minimizing the delivery times. Hall 
(1989) identifies the issues of critical concern in the design of cargo networks as the 
number of hub terminals, the routing strategies of the transportation modes serving 
these terminals, and the synchronization of the inflow and outflow at a terminal.

An application to the postal delivery systems was described by Ernst and Krish-
namoorthy (1996) based on a data set obtained from the Australian Post. Due to the 
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possibility of having different modes of transfer in the collection and distribution 
segments, the cost structure in postal delivery services is different from that in the 
airline data. To model these differences, Ernst and Krishnamoorthy (1996) propose 
the use of two additional parameters apart from . In particular, parameters  and 
 ≥  correspond to differences in transportation costs in collection and distribution 
processes, respectively. Use of different factor coefficients allows for the consider-
ation of possible differences in the collection, transportation, and distribution costs 
that may result due to the use of different transportation modes. Note that this prob-
lem is equivalent to the basic problem when  =  = 1.

Nickel et  al. (2001) relax the assumption of all hubs being interconnect-
ed, and study a public transportation problem that can be denoted as fixH-
cost/multi/U/incomplete/hub-arc. The authors are the first to address the incomplete 
hub network version of the problem. They propose four-indexed mixed-integer pro-
gramming formulations for the single and multiple hub versions. Campbell et al. 
(2005a, b) exploit this same idea to address the pH-median/single/U/incomplete/hub-
arc problem. They introduce a new perspective for the solution of this problem. In 
particular, instead of locating hubs, they locate discounted hub arcs. They develop 
mixed-integer programming models and two exact algorithms for four different ver-
sions of the problem accommodating different objective criteria. They give exact 
solutions for the Civil Aeronautics Board data.

Motivated by a Federal Express application, Kuby and Gray (1993) model 
the practical case, in which feeder links consolidate local flows at a convenient 
node. In their problem, transportation media serving the regional hub are allowed 
to make multiple stops along their way. This problem can be denoted as 1H-
median/single/arc/full/stopover-feeder. Kuby and Gray considered a single, fixed 
hub air network problem, and developed a path-based mixed-integer programming 
formulation to explore the savings provided by the consideration of stopovers and 
feeders. Later, Yaman et  al. (2007) provide integer programming models for H-
cover/single/U/full/{latest-arrival, stopovers}. The authors propose a different 
mixed-integer programming formulation, which is strengthened by valid inequali-
ties and lifting. They test the performance of the model on the Turkish highway 
travel time data. Wasner and Zapfel (2004) suggest that the stopovers can be mod-
eled in the form of a vehicle routing problem.

The modeling complications necessitated by these practical observations suggest 
that the basic problem proposed by O’Kelly (1986) has implications in a variety of 
real life applications. The specific needs of these applications provide many ideas 
that continuously support the evolution of research in this area.

12.6 � Conclusion

O’Kelly’s classical 1986 paper led to the emergence of a new research area by 
identifying a connection between location theory and spatial interaction theory. This 
connection mainly manifests itself in the form of an endogenous interaction that 
has an impact on both the intensity and cost of flow to be routed through the facili-
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ties that are selected as hubs. The problem has been widely studied in the past two 
decades both from a theoretical and a practical perspective. Theoretical papers in 
this new area investigated various objectives including pH-median, fixH-cost, pH-
center and H-cover problems as well as network topologies with fully and partially 
connected structures. On the practical side, many researchers modeled and solved 
various real life applications observed in airflow streams, telecommunication net-
works, cargo delivery systems, and urban transit.

This chapter discussed the most prominent research relevant to both the theoreti-
cal and practical aspects of the problem within the framework of a proposed new 
taxonomy. The interested reader is referred to the excellent review papers written by 
Campbell (1994b), Klincewicz (1998), Bryan and O’Kelly (1999), Campbell et al. 
(2002), and Alumur and Kara (2008) for more in-depth coverage of the area.

The authors would like to note that hub location is still a very active research 
area with many potentially fruitful extensions. One of these extensions is identified 
by Marianov et al. (1999), who study a multi-allocation hub location problem in 
the presence of competitors. This interesting problem offers an avenue for further 
research, as it has not received much attention since. Another important extension 
is observed by O’Kelly and Bryan (1998) on the fundamental assumption that char-
acterizes the endogenous attraction via the constant scaling factor . They propose 
a nonlinear cost function to more accurately model this attraction. Although a few 
other researchers later improved or modified this function, further research is nec-
essary in this regard. Recall that O’Kelly (1986) proposed two different types of 
endogenous attraction. In the first type, cited hubs affect the cost of flow, whereas 
in the second category, the affected parameter is the intensity of flow. The entire 
literature stemming from this idea focused on the former type and investigated the 
hub location problem in view of the cost advantages provided by the economies of 
scale. The latter aspect, which requires modeling of the impact on the intensity of 
flow, received no attention other than O’Kelly’s original proposal.

The authors would like to conclude by emphasizing that these are just a few 
avenues for future research in this area led by O’Kelly’s classical paper (1986). 
The relevance of the problem to a number of application areas and the wide interest 
received from many researchers are expected to trigger further developments in the 
future.
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13.1 � Introduction

In 1960, Land and Doig published a paper that most scholars recognize as the first 
description of a now well-known technique for solving difficult optimization prob-
lems by solving a sequence of easier, restricted subproblems (Land and Doig 1960). 
Little et al. (1963) named this technique “Branch-and-Bound” ( B&B), and used it to 
solve the traveling salesman problem. Although the method is described and used in 
several papers in the 1960s (see for example, Lawler and Wood 1966), the descrip-
tion below, provided by Hillier and Lieberman (1980), succinctly captures the idea.

The basic idea of the branch-and-bound technique is the following: suppose (to be specific) 
that the objective function is to be minimized. Assume that an upper bound on the optimal 
value of the objective function is available. (This is usually the value of the objective func-
tion for the best feasible solution identified thus far.) The first step is to partition the set of 
all feasible solutions into several subsets, and for each one, a lower bound is obtained for 
the value of the objective function of the solutions within that subset. Those subsets whose 
lower bounds exceed the current upper bound on the objective value are then excluded from 
further consideration. (A subset that is excluded for this or other legitimate reasons is said 
to be fathomed.) One of the remaining subsets, say, the one with the smallest lower bound, 
is then partitioned further into several subsets. Their lower bounds are obtained in turn and 
used as before to exclude some of these subsets from further consideration. From all the 
remaining subsets, another one is selected for further partitioning and so on. This process is 
repeated again and again until a feasible solution is found such that the corresponding value 
of the objective function is no greater than the lower bound for any subset. Such a feasible 
solution must be optimal since none of the subsets can contain a better solution.

The method of partitioning the set of feasible solutions into subsets (branching) is 
relatively straightforward for integer variables, particularly when these can take on 
only one of two values, zero or one. Thus, a partition is created when one of these 
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variables is set to zero in one subset, and set to one in the other subset. An easy way 
to envision the partitioning process is through what is called the branch-and-bound 
tree. The top node of the tree represents the original problem. Two branches can be 
created from this node by selecting one of the variables, and setting it equal to zero in 
one branch and to one in the other branch. Each of the resulting nodes can be further 
partitioned via the selection of another variable and a repetition of the above process.

To create bounds at each node, early implementers of the branch-and-bound 
method solved “relaxed” problems by treating integer variables as continuous. By 
doing this, the resulting relaxed problem was often a linear program that could be 
solved by existing codes. The key to branch-and-bound efficiency is to reduce the 
number of subsets that must be visited and to be able to create “strong” bounds. 
Early adopters realized this and those same issues are faced today by current users 
of the method. We will have more to say on this issue later in the chapter.

In spite of the fact that branch-and-bound can be painfully slow as a solution 
method for discrete optimization problems, it is still often applied as the technique 
of choice for these problems. Discrete optimization problems generally have locally 
optimal solutions and so sensible search methods are necessary to explore the solu-
tion space for a globally optimal solution. Branch-and-bound is such a method since 
it provides a means of exploring various subregions of the feasible set of solutions 
in an organized manner.

In this chapter, we give an overview of the use of branch-and-bound to solve 
two prototypical location problems: the quadratic assignment problem QAP and 
the uncapacitated facility location problem UFLP. Our focus will be on the early 
applications of branch-and-bound to these problems via a critical review of two pa-
pers from the 1960s. In providing these reviews we attempt to replicate the authors’ 
thought process in the development of the reported solution method.

The remainder of this chapter is organized as follows. Section 13.2 discusses 
the work of Gavett and Plyter (1966) on the quadratic assignment problem, fol-
lowing which we discuss advancements in the application of branch-and-bound to 
the problem as well as special cases of the problem solvable in polynomial time. 
Section 13.3 is dedicated to the uncapacitated facility location problems where we 
first review the work of Efroymson and Ray (1966) on this problem. We then fol-
low this review with a discussion of further work on the problem, and special cases 
solvable in polynomial time. Branching strategies for branch-and-bound methods 
are discussed in Sect. 13.4, and concluding remarks are offered in Sect. 13.5.

13.2 � Gavett and Plyter (1966): The Quadratic Assignment 
Problem

The Quadratic Assignment Problem was formulated by Koopmans and Beckman 
(1957) over 50 years ago. The motivating and most popular application of the qua-
dratic assignment problem is the facility layout problem of assigning n facilities to 
n locations where one and only one facility can be assigned to each location. Thus, 
there are n! possible assignments. The cost of an assignment depends on both the 
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distance between each pair of locations, and the traffic intensity between facilities 
assigned to those locations. The objective is to find a minimal-cost solution among 
the n! possible assignments. One of the earliest exact methods for solving it was the 
branch–and-bound approach given in the paper of Gavett and Plyter (1966). Herein 
we review their approach.

13.2.1  �Solving the Quadratic Assignment Problem via 
Branch-and-Bound

To formally pose the quadratic assignment problem as an optimization problem, let 
A =  [aj�]denote a matrix of distances between locations j and �  for j, � = 1, …, n. 
Also, let B = [bik] denote a matrix of rates at which material is transferred (traffic 
intensity) between facilities i and k where i, k = 1, …, n. Letting p = ( p1, p2, …, pn) 
denote a permutation of 1, 2, …, n and letting Pn denote the set of all permutations 
on {1, 2, …, n}, we can state the quadratic assignment problem as follows:

� (13.1)

In addition to facility location, there are many applications of the quadratic assign-
ment problem in the literature. These include backboard wiring, economic prob-
lems, scheduling, the design of typewriter keyboards and control panels, archeol-
ogy, statistical analysis, and reaction chemistry. For a further discussion see, for 
example, Loiola et al. (2007).

Consider the following simple example from Gavett and Plyter of 4 facilities to 
be assigned to 4 locations:

Assigning the facilities 3, 1, 2 and 4 to the respective locations 1, 2, 3, 4 results in a 
total cost of 523. A better solution is assigning the facilities 2, 4, 3, 1 to the respec-
tive locations 1, 2, 3, 4 for a total cost of 403. With only 4 facilities/locations in 
this example, there are only 4! = 24 possible assignments and hence the problem is 
readily solvable (indeed, it is easy to verify that 403 is the minimal cost). However, 
with even modest values of n (e.g., n = 25) the number of permutations quickly be-
comes disturbingly large. The challenge is how to efficiently find an optimal solu-
tion to such problems. Following up on the work of Little et al. (1963) on applying 
branch-and-bound to the traveling salesman problem, Gavett and Plyter showed 
how branch-and-bound could be used to solve this problem.

The authors assume that the matrix A is symmetric (so that the distance from 
location j to �  equals the distance from �  to j ). In this case (13.1) can be simplified 
as follows:

QAP : Min
{∑

aj�bpjp�
: p ∈ Pn for j, � = 1, 2, . . . , n

}

A =





0 6 7 2
6 0 5 6
7 5 0 1
2 6 1 0



 and B =





0 10 20 5
18 0 9 4
5 6 0 8
8 0 15 0



 .
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� (13.2)

For a given permutation, observe that the objective in (13.2) is simply the sum of 
the products of distances aj�  between pairs of locations and the total traffic inten-
sity (bpj p�

+ bp�pj
)  between facilities assigned to them. Clearly, an ideal solution 

would match high intensities with small distances and low intensities with high 
distances. Doing this among permutations Pn can be difficult. However, as Gavett 
and Plyter noticed, the problem is easy to solve by expanding the permutations to 
match pairs of locations with pairs of intensities. Observe that the number of pairs 
of n locations is simply the combination of n locations taken 2 at a time, namely 
N = n( n − 1)/2.

Let {α1, α2, …, αN} be the set of distances between pairs of locations. Thus 
αr =  aj�  for some pair ( j, � ) of locations. Also let {1, 2, …, N} be the set of 
traffic intensities between pairs of facilities so that t = bik + bki for some pair ( i, k) 
of facilities. Finally, let PN be the set of permutations on {1, 2, …, N}. With this 
notation, Gavett and Plyter’s relaxed problem is

� (13.3)

The matching in (13.3) of location pairs with facility pairs is sometimes referred to 
as “pair-assignment;” see, e.g., Pierce and Crowston (1971).

As suggested by Conway and Maxwell (1961) and independently established by 
Gilmore (1962), Gavett and Plyter prove that given two vectors of the same size, if 
the objective is to sort entries of the vectors so that the dot product is minimized, 
the solution is found by sorting one vector in nonincreasing order and the other in 
nondecreasing order. Thus, a permutation minimizes (13.3) when it corresponds to 
matching sorted elements of {α1, α2, …, αN} with reversely sorted elements of {1, 
2, …, N}. In the example this corresponds to matching location pairs (1,3), (1,2), 
(2,4), (2,3), (1,4), and (3,5) respectively with traffic intensities of facility pairs (2,4), 
(1,4), (2,3), (3,4), (1,3), and (1,2) for an optimal value of 389 in (13.3). Note that 
this is not a feasible solution to (13.2) since matching the location pairs (1,3) and 
(1,2) respectively with the facility pairs (2,4) and (1,4) means that location 1 must 
correspond to facility 4. However, the location pair (1,4) matching with the facil-
ity pair (1,3) is inconsistent with location 1 corresponding to facility 4. This is not 
surprising since PN is generally much larger than Pn. In the example, the number 
of permutations in Pn is 24 while the number in PN is 720. While each permutation 
in Pn corresponds to one in PN, the converse is not true. Thus, as we have seen, an 
optimal solution to (13.3) may not be admissible in that it may not correspond to a 
feasible solution in (13.2).

Given an efficient way to solve the relaxed problem (13.3), Gavett and Plyter 
turn their attention to using the branch-and-bound approach from Little et  al.  
(1963) to solve (13.2). To relate the problem to this approach, they first define an 

Min
{ ∑

aj�(bpjp�
+ bp�pj ) : p ∈ Pn

for j = 1, 2, . . . , n and l = j + 1, . . ., n
}

Min

{
N∑

r=1

αrβp(r) : p ∈ PN

}
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[N × N]-dimensional cost matrix C of elements αrt whose rows correspond to loca-
tion pairs {α1, α2, …, αN} sorted by decreasing distances and whose columns cor-
respond to facility pairs {1, 2, …, N} sorted by increasing intensities. Thus, in the 
example, the [6 × 6]-dimensional matrix C is shown in Table 13.1.

By construction, observe that the elements of C are nondecreasing across each 
row and are nonincreasing down each column. Also, observe that the optimal solu-
tion to (13.3) above corresponds to the diagonal of C with the sum of the diagonal 
elements being the optimal value of (13.3).

A primary difference between the matrix C in the quadratic assignment problem 
vs. the matrix considered by Little et al. is its interpretation. In Little et al., the ele-
ment cij denotes the cost from i to j, whereas in Gavett and Plyter the element is the 
cost of assigning a location pair with a traffic intensity pair. In both cases, the re-
laxed problem is an assignment problem where each row will be assigned to exactly 
one column and where each column will be assigned to exactly one row. Little et al. 
point out that one could solve the assignment problem for the original cost matrix C 
and reduce the matrix by the cost of the optimal assignment. However, rather than 
doing this, they present a simple reduction technique to give a nonoptimal bound: 
reduce C by subtracting the smallest element in each row from the elements in the 
row, and then subtract the smallest element in each column from the elements in 
the column in the resulting matrix. All elements of the reduced matrix will be non-
negative. Thus, the sum of the reducing constants is a lower bound, since the cost of 
any permutation in C will differ from the cost under the reduced C by the sum and 
since the reduced matrix is nonnegative. Applying this technique to the quadratic 
assignment problem, the reducing constant (minimal element) of each row is simply 
its first element (which respectively are 28, 24, 24, 20, 8, 4). After subtracting these 
from their respective rows, we obtain the matrix





0 63 77 133 147 168
0 54 66 114 126 144
0 54 66 114 126 144
0 45 55 95 105 120
0 18 22 38 42 48
0 9 11 19 21 24





Table 13.1   The cost matrix C
Sorted intensities 4 13 15 23 25 28
Facility pairs 2 to 4 1 to 4 2 to 3 3 to 4 1 to 3 1 to 2
Sorted distance Location pairs
7 1 to 3 28 91 105 161 175 196
6 1 to 2 24 78 90 138 150 168
6 2 to 4 24 78 90 138 150 168
5 2 to 3 20 65 75 115 125 140
2 1 to 4 8 26 30 46 50 56
1 3 to 4 4 13 15 23 25 28
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Now, the reducing constants for each column are simply the minimal element in the 
column (which respectively are 0, 9, 11, 19, 21, 24). After subtracting these from 
their respective columns, we obtain the reduced matrix

Since by construction all elements of this reduced matrix are nonnegative, the sum 
of the reduced constants (namely, 192) is a lower bound. Of course, this lower 
bound is not nearly as good as the lower bound of 389, which as noted previously 
is the optimal cost value for the assignment problem. In the case of the traveling 
salesman problem Little et al. observed that the advantage of finding an optimal so-
lution to the assignment problem in comparison to their simple reduction technique 
was mixed in terms of their computational results. The challenge tackled by Gavett 
and Plyter was to find for the case of the relaxed quadratic assignment problem an 
efficient method of obtaining an optimal basic feasible solution to the assignment 
problem (namely having zeroes along the diagonal of the reduced matrix and hav-
ing nonnegative elements everywhere else). Their approach for doing this, which 
they called successive reduction, can be viewed as the primary technical contribu-
tion of their paper.

The successive reduction technique works as follows. Starting with the matrix 
C, the diagonal element in each column is subtracted from all other elements in its 
respective column. Then the smallest element in each row is subtracted from other 
elements in its row. After at most N repetitions of these two reductions, the desired 
reduced matrix is obtained.

We illustrate with the example. In the first iteration, the column reducing con-
stants (namely 28, 78, 90, 115, 50, 28) are the diagonal elements of the original 
matrix C. Subtracting these from its respective column yields the matrix

The row reducing constants are the respectively minimal elements in the rows 
(namely 0, −4, −4, −15, −69, −92). Subtracting these from the corresponding rows 
yields the matrix





0 54 66 114 126 144
0 45 55 95 105 120
0 45 55 95 105 120
0 36 44 76 84 96
0 9 11 19 21 24
0 0 0 0 0 0









0 13 15 46 125 168
−4 0 0 23 100 140
−4 0 0 23 100 140
−8 −13 −15 0 75 112
−20 −52 −60 −69 0 28
−24 −65 −75 −92 −25 0




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Observe that the matrix above is nonnegative and the sum of the reducing constants 
give a lower bound of 205.

In the second iteration, the column reducing constants are (0, 4, 4, 15, 69, 92), 
yielding the matrix

and the row reducing constants are (0, 0, 0, −4, −15, −15), yielding the matrix

The sum of all reducing constants from the first and second iterations yields a new 
lower bound of 355. Subsequent iterations proceed similarly with a nonnegative 
matrix at each iteration (as given in Gavett and Plyter) and with a lower bound given 
by the sum of the new and previous reducing constants. The reducing constants and 
lower bounds are given in Table 13.2.

Why does successive reduction work? At a technical level, the method iteratively 
reduces C in a way that adds zeroes in the diagonal and sub-diagonal elements, 





0 13 15 46 125 168
0 4 4 27 104 144
0 4 4 27 104 144
7 2 0 15 90 127
49 17 9 0 69 97
68 27 17 0 67 92









0 9 11 31 56 76
0 0 0 12 35 52
0 0 0 12 35 52
7 −2 −4 0 21 35
49 13 5 −15 0 5
68 23 13 −15 −2 0









0 9 11 31 56 76
0 0 0 12 35 52
0 0 0 12 35 52
11 2 0 4 25 39
64 28 20 0 15 20
83 38 28 0 13 15





Table 13.2   Gavett and Plyter’s reduction constants and lower bounds for each iteration
Iteration Column-reducing constant Row reducing constant Lower bound
1 28, 78, 90, 115, 50, 28 0, −4, −4, −15, −69, −92 205
2 0, 4, 4, 15, 69, 92 0, 0, 0, −4, −15, −15 355
3 0, 0, 0, 4, 15, 15 0, 0, 0, 0, −4, −4 381
4 0, 0, 0, 0, 4, 4 0, 0, 0, 0, 0, −2 387
5 0, 0, 0, 0, 0, 2 0, 0, 0, 0, 0, 0 389
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increases the sum of the reducing constants, and ends each iteration with a nonnega-
tive matrix (so that the sum of the reducing constants is a lower bound).

At a broader level, a key to understanding successive reduction (as well as the 
simple reduction proposed by Little et al.) is the dual to the assignment problem. To 
illustrate, we now consider the dual to the example assignment problem; see, e.g., 
Bazaraa and Jarvis (1977):

s.t.

Observe that Little et al.’s simple reduction technique solves the first column and 
the last row of inequalities above as equations with v1 = 0. This gives the dual solu-
tion u = (28, 24, 24, 20, 8, 4) and v = (0, 9, 11, 19, 21, 24). Using the fact that the 
coefficients of C result from products of increasing intensities across the columns 
and decreasing distances across the rows, it is straightforward to see that the solu-
tion is dual feasible and therefore by duality gives a lower bound (namely, 192). 
Thus, Little et al.’s technique is simply one way to find a dual feasible solution, and 
hence a lower bound.

Gavett and Plyter’s method essentially generates a sequence of at most N dual 
feasible solutions where each component of a solution is the sum of the correspond-
ing reducing constants at its iteration. In particular, for our example it yields the 
dual solutions given in Table 13.3.

Hence, Gavett and Plyter’s technique is a way of optimally solving the dual 
problem in at most N iterations. It is just one of a number of possible ways of solv-
ing the dual problem of the relaxation of the quadratic assignment problem. Indeed, 

Max u1 + u2 + u3 + u4 + u5 + u6 + v1 + v2 + v3 + v4 + v5 + v6

Table 13.3   Dual feasible solutions and lower bounds for each iteration
Iteration ( v1, v2, v3, v4, v5, v6) ( u1, u2, u3, u4, u5, u6) Lower 

bound
1 28, 78, 90, 115, 50, 28 0, −4, −4, −15, −69, −92 205
2 28, 82, 94, 130, 119, 120 0, −4, −4, −19, −84, −107 355
3 28, 82, 94, 134, 134, 135 0, −4, −4, −19, −88, −111 381
4 28, 82, 94, 134, 138, 139 0, −4, −4, −19, −88, −113 387
5 28, 82, 94, 134, 138, 141 0, −4, −4, −19, −88, −113 389
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a simpler method than the successive reduction technique is to solve the inequalities 
along the diagonal and sub-diagonal (denoted above with a border) as equations 
and get the dual solution (with u1 = 0) in just one iteration. Using the monotonic 
properties of C, it is straightforward to show that the solution obtained by doing this 
is dual optimal.

As for branching, Gavett and Plyter use the same framework (and even the same 
notation) as Little et al. with some minor modifications. Like Little et al., at each 
step “certain assignments are eliminated corresponding to pattern restrictions on the 
cost matrix. In the traveling salesman problem, this restriction involves eliminating 
subtours conflicting with already selected cities. In the facility-location problem 
QAP, this restriction means applying the labels associated with a selected element 
to eliminate other elements in the C matrix that would produce an unacceptable as-
signment at a future branch.”

13.2.2  �Alternative Branch-and-Bound Approaches to the 
Quadratic Assignment Problem

As previously noted, Gavett and Plyter (1966) used a pair-assignment for-
mulation together with a row and column reduction technique to compute 
lower bounds at nodes of the branch-and-bound tree. A similar approach using 
only a column-reduced matrix was proposed independently by Land (1963); 
see, e.g., Pierce and Crowston (1971) for further discussion. While Gavett 
and Plyter’s reduction technique gave an easy-to-compute optimal solution to 
the pair-assignment problem, this solution is often infeasible to the original 
quadratic assignment problem, resulting in a relatively weak bound; see, e.g., 
Christofides and Gerrard (1981). In their branching strategy, Gavett and Plyter 
implemented restrictions on branching variables in order to prevent multiple 
assignments, etc. These restrictions were computationally advantageous since 
the number of nodes in the branch-and-bound tree could be reduced through 
their use. Nevertheless, according to Burkard and Cela (1998), numerical re-
sults show that pair-assignment algorithms are outperformed by single-assign-
ment algorithms.

Single-assignment strategies relate facilities directly to locations. The ear-
liest strategies of this type were introduced by Gilmore (1962) and Lawler 
(1963). In his paper, Gilmore outlines an enumeration algorithm to solve the 
quadratic assignment problem, making use of lower bounds on the objective 
function. Also, he suggests two methods for computing lower bounds on partial 
permutations. As previously noted, one method uses the fact that a lower bound 
on the product of two given vectors of the same size can easily be determined 
by sorting them in opposite orders of magnitude and then taking the product 
of these sorted vectors. The other suggested method involves solving a linear 
assignment problem LAP. Lawler, on the other hand, used an integer linear 
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program to compute lower bounds with n4 + n2 variables {yijkl} and {xij} and 
2n + n4 + 1 constraints:

where cijkl is the joint cost of assigning entity i to location j and entity k to location �.  
Lower bounds are created at partial assignment nodes by solving O( n2) linear assign-
ment problems and then using the resulting objective function values as coefficients 
in a master LAP. Lawler acknowledges that his bounding technique is similar to that 
of Gilmore. The resulting bounds created are often cited as benchmarks in other 
research efforts regarding the quadratic assignment problem. As stated by Loiola 
et al. (2007), “the QAP lower bound presented by Gilmore and Lawler is one of the 
best known. Its importance is due to its simplicity and its low computational cost.”

However, researchers have realized that the simplicity of computing the Gilmore 
and Lawler bound comes at a cost, as the bound is often not very tight for large in-
stances of the quadratic assignment problem. Since the publication of the Gilmore-
Lawler bound, research efforts have been directed toward finding improved bounds.

An obvious approach for obtaining lower bounds is to make use of the linear 
programming relaxation of the mixed integer linear program and its dual linear 
program (see for example, Assad and Xu (1985), Adams and Johnson (1994), Ram-
achandran and Pekny (1998), and Karisch et al. (1999). Using ideas from Drezner 
(1995), Resende et al. (1995) implemented an interior point algorithm to solve a 
relaxation of the mixed integer program.

A different formulation of the quadratic assignment problem has led to the gen-
eration of other bounding methods. Often, as in Gavett and Plyter, the coefficient 
cijkl is the product of bik (the flow or traffic between entity i, and entity k) and ajl (the 
distance between locations j and l). With B the [n × n]-dimensional flow matrix and 
A the [n × n]-dimensional matrix, a trace formulation of the problem is

MILP: Min
∑

i,j,k ,l

cijk�yijk�

s.t.
∑

j

xij = 1, i = 1, . . . , n xij = 1, i = 1, . . . , n

∑

i

xij = 1, j = 1, . . . , n

∑

i,j ,k,�

yijk� = n2

xij + xk l − 2yijk l ≥ 0; i, j , k, l = 1, 2, . . . , n

xij = 0 or 1, i, j = 1, . . . , n

yijkl = 0 or 1, i, j , k, l = 1, . . . , n,
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where tr(M) is the trace of matrix M and Sn is the set of permutation matrices. Let-
ting On represent the set of orthogonal matrices, it follows (since every permutation 
matrix is an orthogonal matrix) that a relaxation of the problem TF is

The solution to the relaxation TFR is found by computing the eigenvalues of both 
matrices B and A, sorting one vector in nondecreasing order, the other in nonincreas-
ing order, and then taking the product of the two resulting vectors. Unfortunately, the 
resulting eigenvalue bound has proven to be somewhat weak, but has been improved 
by enforcing additional constraints. For example, Hadley et al. (1992) enforce con-
straints on row and column sums resulting in a projected eigenvalue bound. Some-
times their bound was better than that by Gilmore and Lawler, and sometimes not.

Anstreicher and Brixius (2001) take a different approach by convexifying the 
quadratic objective function while making use of the derivation of the projected 
eigenvalue bound. Their formulation also makes use of optimal solutions of a sem-
definite programming ( SDP) problem related to the eigenvalue bound. They show 
that their bound is at least as good as the projected eigenvalue bound. Also, they 
have found that the value of their bound appears to increase much faster in com-
parison as branching occurs. This latter attribute is obviously very important in a 
branch-and-bound framework.

Use of this bound led to the first solution of several large benchmark problems, 
including the notorious “Nug 30” problem from Nugent et al. (1986). A nice sum-
mary of advances in quadratic assignment problem research as of the early 2000s 
can be found in Anstreicher (2003).

Recently, reformulation-linearization ( RL) has been applied to the quadratic as-
signment problem to compute lower bounds. This technique involves multiplying 
equality constraints and nonnegativity constraints by product factors of the vari-
ables (reformulation). Then, each nonlinear term is replaced by a single variable, 
resulting in a mixed zero-one linear integer program (linearization). Reformulation 
creates redundant constraints, and different formulations are possible depending 
upon the product factors chosen in this step. As described by Adams et al. (2007) a 
level-1 reformulation ( RLT-1) of the quadratic assignment problem is developed by 
multiplying each equality constraint and each nonnegativity constraint by each of 
the n2 variables. For a level-2 reformulation ( RLT-2), each constraint is multiplied 
by the product of two variables again creating redundant constraints. As before, re-
formulation is followed by linearization through substitution. Even higher levels of 
reformulation and linearization are possible through the use of higher level product 
forms, resulting in improved bounds, but at the cost of even larger zero-one linear 
programs. The resulting optimization problems can be quite large, but have been 
shown to provide relatively tight bounds. Adams et  al. (2007) used Lagrangean 

TF : min tr(BXAXt ),

s.t. X ∈ Sn,

TFR : min tr(BXAXt ),

s.t. X ∈ On.
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relaxation and dual ascent in a branch-and-bound framework to solve problems 
up to size n = 30 from Nugent et al. (1986) Although they found that their method 
required lower bound calculations at fewer nodes than competitive methods, com-
puting each bound required a large amount of RAM. They cite a future research 
challenge as one of finding ways to reduce the RAM requirement.

Also recently, additional attention has focused on a semidefinite programming 
relaxation of the quadratic assignment problem, see Zhao et al. (1998) and Rendl 
and Sotirov (2007), as well as a reformulation-linearization semidefinite program-
ming relaxation (also called a lift-and-project relaxation), see Burer and Vanden-
bussche (2006) and Lovasz and Schrijver (1991) for details. Interestingly, the 
equivalence between these two relaxations for the quadratic assignment problem 
was recently shown by Povh and Rendl (2009). Using a bundle method to solve the 
resulting problem, Rendl and Sotirov in 2003 obtained the tightest lower bounds at 
that time for a large number of test problems. More recently, Burer and Vandenbuss-
che (2006) used an augmented Lagrangian method and derived even tighter bounds 
on a number of test problems. Exploiting a special structure in the data matrices of 
certain quadratic assignment problems, de Klerk and Sotirov (2008) have found 
even tighter lower bounds than Burer and Vandenbussche on some problems.

Loiola et al. (2007) provide a recent survey on the quadratic assignment problem, 
including a discussion on different approaches used to solve the problem. In particular, 
the paper includes data on lower bound values found and run times of several com-
peting methods, including those mentioned above, applied to classical test problems.

13.2.3  �Special Cases of the Quadratic Assignment Problem 
that are Solvable in Polynomial Time

We now briefly review some of the work that considers special cases of the quadratic 
assignment problem with particular emphasis on cases that can be solved in polyno-
mial time. Burkard et al. (1997) considered the special case, in which cijkl is the prod-
uct of the flow between facilities i and k, and the distance between locations j and l. 
They showed that if 2n numbers bi

r, bi
c, i = 1, …, n exist and can be associated with 

the rows and columns of the flow matrix such that bik = bi
r + bk

c for all i and k, then 
the problem is reducible to the linear assignment problem and therefore is solvable 
in polynomial time. The result is also true if the distance matrix can be decomposed 
in a similar manner. Ergodan (2006) shows that this result can be generalized to a 
broader class of quadratic assignment problems that are “additively decomposed.”

Ergodan also considers “multiplicative decomposition” and has the following 
result. Suppose there exists {vij: i, j = 1, …, n} where cijk� = vij  vk�,  for all i, j, k, �. 
Then if the optimal objective function value of the linear assignment problem with 
coefficients {vij} is nonnegative, then the linear assignment problem solves the cor-
responding quadratic assignment problem.

Ergodan and Tansel (2006) consider the case where the n-node flow graph has a 
path structure (it has no cycles and every node has a degree of 0, 1, or 2) and the n by 
n distance matrix is induced by a grid graph in the following sense. With rc = n for 
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two positive integers r and c, let Grc be the undirected grid graph with rc nodes, where 
the nodes are arranged in r rows and c columns, and where the arc set consists of arcs 
connecting adjacent nodes in the same row, or adjacent nodes in the same column. De-
fine Dab as the [n × n]-dimensional matrix of shortest path distances in Gab. Then if the 
distance matrix A of the quadratic assignment problem is identical to hDab for some 
positive h, D is said to be induced by a grid graph. For this special structure, Erdogan 
and Tansel show that the quadratic assignment problem is solvable in O( n) time.

For information on other special structures that lead to polynomial-time solv-
ability, see Erdogan (2006).

13.3 � Efroymson and Ray (1966): The Uncapacitated 
Facility Location Problem

Also in the early 1960s there was considerable research interest in another problem 
known today as the Uncapacitated Facility Location Problem ( UFLP). Our purpose 
here is to report on perhaps the earliest published use of the branch-and-bound 
technique to solve the problem exactly. We will explain how branch-and-bound 
was used in the paper by Efroymson and Ray (1966). The problem setting involves 
several “demand points” (customers) requiring service from one or more potential 
“plant sites.” There is a given supply cost between a given demand point and poten-
tial plant site that will be incurred if the plant is opened and the demand is serviced 
from the plant. In addition, there is a fixed cost to open each plant.

13.3.1  �Solving the Uncapacitated Facility Location Problem 
via Branch-and-Bound

To formally pose the uncapacitated facility location problem as an optimization 
problem, suppose there are n customer locations j = 1, …, n and m potential plants 
i = 1, …, m. The following mixed integer program is a prototypical formulation of 
the problem:

� (13.4)

� (13.5)

� (13.6)

� (13.7)

� (13.8)

UFLP : Min Z =
∑

i,j

cij xij +
∑

i

fiyi

s.t.
∑

i

xij = 1, j = 1, . . . , n

xij ≤ yi ∀i, j

xij ≥ 0 ∀i, j

yi = 0 or 1 ∀i
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where we define the parameters

cij:	� the cost to service all of customer j’s demand from plant i
fi:	� the nonnegative cost of opening plant i

and the variables

xij:	� the fraction of customer j’s demand satisfied by plant i, and
yi =	� 1 if plant i is open, and 0 otherwise.

Thus, the decision problem is to decide which plants to open (which yi values to set 
to one) and which open plant(s) will service each customer. The overall objective 
is to minimize total cost. Note that the allocation variables xij are continuous and 
take on values between zero and one. This is why cij represents the cost of servicing 
all demand and so cij xij denotes proportional costing. In many applications, cij is 
determined by a transportation cost per unit multiplied by total demand of customer 
j. Finally, constraint (13.6) forces plant i to be open whenever xij > 0 for some j. 
There are many applications of this classical location problem and we outline two 
of these in what follows.

Krarup and Bilde (1977) describe an application in manufacturing called the 
dynamic economic lot size problem. A manufacturer of a single product needs to 
develop a production plan for the next n months in order to satisfy demand for the 
product in each of these months. Producing the product in month i incurs a fixed 
setup cost fi as well as a per-unit manufacturing cost pi. Demand for the product 
in month j is denoted as dj, and dj can be satisfied by production in month j and/or 
some earlier month. However, units produced earlier than needed incur a holding 
cost, where ri is the per unit cost of holding one unit from month i to month i + 1. 
Define cij as the cost of manufacturing and (if necessary) holding all of month j’s 
demand when production occurs in month i ≤  j. Thus,

Note that if i = j, then no holding cost is incurred. Also units produced in month i 
cannot be used to satisfy demand in some earlier month. However, if it is possible 
to backorder demand, then cij for j < i could be finite, but most likely would involve 
a per-unit (and per-period) backorder cost. Letting yi = 1 if and only if production 
occurs in month i, and xij as the fraction of month j’s demand produced in month i, 
the uncapacitated facility location problem is solved to minimize total setup, manu-
facturing, and holding cost over the n-month planning horizon.

In the days before electronic funds transfer, the time to clear a check often de-
pended on which bank the check was drawn on, and the location of the recipient 
of the check. After all, checks were often delivered by the postal service. Thus, a 
company might want to maximize the total funds that are in transit. However, main-
taining an account at a given bank is not costless. With cij as the “dollar days” (float) 

cij =






dj (pi +
j∑

t=i

rt ), for i < j

djpi for i = j

∞ for i > j
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in transit from bank i to customer j and fi the cost to maintain an account at bank 
i, the firm is faced with the problem of maximizing 

∑
i,j cij xij −

∑
i fiyi  subject 

to the constraints (13.5)–(13.8). Note that we are maximizing a modified version 
of (13.4), but structurally the problems are the same. Cornuejols et al. (1990) call 
this problem the Bank Account Location Problem. A mirror image of this problem 
is called the Lock Box Problem, where a firm collecting funds wishes to minimize 
“float.” For more on the above problem see also Cornuejols et al. (1977).

Efroymson and Ray recognized that practical instances of the uncapacitated fa-
cility location problem might have several thousand rows and columns and that 
contemporary integer programming techniques could not hope to solve such large 
problems in a reasonable amount of time. They therefore sought methods to solve 
the overall problem via a sequence of smaller subproblems.

Note that for fixed values of the yi variables { y ′
i , i = 1, …, n}, where at least 

one y ′
i  = 1, an optimal x-vector can be found easily by setting, for each value of 

j , xij = 1if cij = min{cij : y ′
i = 1}.  In other words, for each j, find the smallest cij 

over those plants i for which the corresponding y variable is set to one. An efficient 
solution method is to find a means of computing good y-vectors that will eventually 
lead to an optimal y-vector. Combining the above observation with the fact that the 
solution to a linear programming relaxation of an mixed integer program creates a 
lower bound to it (given a minimization objective), Efroymson and Ray made ex-
tensive use of the linear program LPR defined below.

Let Nk be the set of indices of those plants that can supply customer k and Pi be 
the set of indices of those customers that can be supplied from plant i, where ni is 
the number of elements in Pi. Note that Nk might be all plants and Pi might be all 
customers, but practical considerations often prohibit some links. With these defini-
tions, consider the following linear program:

� (13.9)

� (13.10)

� (13.11)

� (13.12)

� (13.13)

Efroymson and Ray made use of the LPR formulation in their branch-and-bound 
method. Since UFLP has both continuous and integer variables, it is natural to 

LPR : MinZL =
∑

i,j

cij xij +
∑

i

fiyi

s.t.
∑

i∈Nj

xij = 1, j = 1, . . . , n

∑

j∈Pi

xij ≤ niyi,, i = 1, . . . , m

xij ≥ 0 ∀i, j

yi = 0 or 1 ∀i = 1, . . . , m
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branch on the zero-one variables y. Thus, at some node in the branch-and-bound 
tree, some of the y variables may be set to zero (their indices collected in a set la-
beled K0), some may be set to one (their indices are included in a set labeled K1), 
while the status of some of the remaining variables y has not yet been decided. We 
denote this latter set of indices as K2.

A simple procedure can be used to solve the problem LPR without the use of 
an linear programming solver. The authors observed that the optimal allocation 
variables {x∗

ij }  and corresponding allocation costs {ACj
*} could be constructed as 

shown in Algorithm 1.

Algorithm 1: Solution Algorithm for the LPR Problem 

Step 1:	� Find ACj
* ≡ min{min {cij: i ∈ K1}, min{cij + fi/ni: i ∈ K2} for j = 1, 

…, n.
Step 2:	� Set xij

* = 1 for that value of i that attains ACj
* in Step 1, and x∗

ij  = 0 
otherwise.

The optimal y variables for those plants with indices in K2 are then computed as 

yi∗ = (1/ni)
∑

j∈Pi

x∗
ij

. The optimal objective function value at the node, accounting 

for those plants i ∈ K1 that are fixed open is then Z∗
L =

∑
i∈K1

fi +
m∑

j=1
AC∗

j
.

The above procedure solves LPR because relation (13.11) will hold as an equa-
tion at an optimal solution. Thus, those yi variables i ∈ K2 can be removed from 
(13.9) by substitution. Using the above ideas, LPR can be solved by finding the 
minimum entry in each column of a [(|K1| +  |K2|) × m]-dimensional matrix. Note 
that the value Z∗

L  can often be a fairly weak lower bound on UFLP at the current 
node. This is especially true when the number of customers actually served by plant 
i, i ∈ K2, is considerably smaller than ni. When this occurs, only a fraction of the full 
cost fi of opening the plant is accounted for. Realizing this fact, Efroymson and Ray 
developed “simplification rules,” i.e., conditions that can be used to either optimally 
fix the values of some members of K2 in all solutions that emanate from the current 
node, or to reduce ni.

The first rule is to set yi = 1, i ∈ K2 if it is known that the net savings in allocation 
costs with this plant open is at least as large as the fixed cost to open the plant. For 
any j, if plant i, i ∈ K2 is not open, then c~j ≡ min{ckj: k ∈ K1 ∪ K2, k ≠ i} is the mini-
mum possible cost to serve demand j by either a plant k, k ∈ K1 that is fixed open, 
or some other plant k ∈ K2 that might be opened. But then if c~j − cij > 0, opening 
plant i would certainly provide an allocation cost savings to serve demand j. If the 
sum of these savings over all demands is at least as large as fi, it is optimal to open 
plant i. More formally, let

� (13.14)�o
ij ≡ max{(min{ckj : k ∈ K1 ∪ K2, k �= i} − cij ), 0}
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Rule 1: If 
∑
j

�o
ij > fi , set yi = 1.

On the other hand, if the net savings in allocation costs with plant i open is known 
to be no more that the cost to open the plant, then set yi = 0. To implement this 
rule, restrict k to be in K1 in (13.14) and define �c

ij  to be the computed value. 
Then,

Rule 2: If 
∑
j

�c
ij ≤ fi , set yi = 0.

The final simplification provided by Efroymson and Ray involves the reduction of 
ni. Note that reducing ni. can provide a stronger lower bound at the node. Suppose 
that j is currently in the set Pi. If for some open plant k we find that ckj ≤ cij, then 
demand j will be no worse off by eliminating plant i as a potential server of j’s de-
mand, i.e., we can safely eliminate index j from the set Pi, thereby reducing |Pi| by 
1. More formally,

Rule 3: Let J( i) ≡ {j ∈ Pi: min {ckj : k ∈ K1} − cij ≤ 0}. Eliminate J( i) from Pi and 
reduce ni by |J( i)|.

13.3.2  �Alternative Branch-and-Bound Approaches to the 
Uncapacitated Facility Location Problem

Perhaps the best-known contribution to solution methods for the uncapacitated fa-
cility location problem is by Erlenkotter (1978). His approach involves working 
with the dual problem, solving a reduced nonlinear form of the dual heuristically 
through ascent and adjustment of the dual variables. The result of this method is 
the DUALOC algorithm that is frequently cited in the literature. Bilde and Krarup’s 
(1977) method is similar to Erlenkotter’s and was developed at approximately the 
same time. The ascent/adjustment method often produces an optimal dual solution 
that can possibly be used to construct an optimal primal solution. If not, the dual 
objective function value can be effectively used in a branch-and-bound algorithm to 
solve the uncapacitated facility location problem.

Another approach is to strengthen the lower bounds created by the linear pro-
gramming relaxation of UFLP. One way to do this is to find inequalities to add as 
constraints to the linear program which cut off portions of the linear programming 
polyhedron that are known to not contain an optimal solution to the problem. These 
added constraints are often called valid inequalities and have been studied by many 
researchers. In particular, it is of value to eliminate extreme points that correspond 
to fractional solutions, since such solutions are infeasible to the uncapacitated facil-
ity location problem.

Cho et al. (1983a) study the issue of generating so-called facet inequalities that de-
scribe the integer polyhedron of UFLP. Such an approach has great value since the in-
teger polyhedron is contained in the linear programming polyhedron. The authors state:
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This approach deserves attention since facets are the “strongest cutting planes.” One can 
thus reasonably expect to improve computational results for any solution method which is 
based on linear programming even if one can identify only a subset of these facets.

They make use of a node-packing reformulation of the uncapacitated facility lo-
cation problem, and are able to characterize all facets for the case of three plants 
( m = 3) and several destinations. In a companion paper, Cho et al. (1983b) identify 
all facets for the case of three customers ( n = 3) and several plants.

Goldengorin et al. (2003) use a pseudo-Boolean polynomial-based representa-
tion of UFLP to solve the problem. Their algorithm, called branch-and-peg, uses 
rules to determine (before branching) whether a plant will (or will not) be located 
at certain sites in the current subproblem under examination. This “pegging” op-
eration is applied to each subproblem and reduces its size. The authors report that 
on a number of problems solved, branch-and-peg took on average less than 10% 
of the execution time of branch-and-bound when the transportation matrix was 
dense.

Beltran-Royo et  al. (2007) apply a concept called Semi-Lagrangean Relax-
ation to UFLP. The idea is to dualize the equality constraints (13.5) to form the 
dual function, but then add the constraints 

∑
i xij ≤ 1, j = 1, . . . , n  to the dual 

problem. Adding the constraints increases the lower bound when the subproblem 
is solved to optimality. Unfortunately, the resulting subproblem is NP-hard, but 
the authors found that often the subproblems are smaller in dimension that the 
original primal problem. In those instances, they used CPLEX to solve the dual 
problem.

Algorithm 2: Variable Neighborhood Search: A Generic Algorithm 

	  Step 1:	� Identify a (perturbed) solution in the k-th neighborhood of an 
incumbent. This step is frequently referred to as “shaking”).

	  Step 2:	� Perform a local search from the perturbed solution.
	  Step 3:	� Move to an improved solution.

In a recent paper, Hansen et al. (2007) use a three-phase approach to solve large 
instances of UFLP. A key feature of their method is the use of variable neighbor-
hood search ( VNS). The idea of variable neighborhood search is to explore the 
neighborhood of a current solution. Once a neighborhood structure is defined, a dis-
tance function must be developed that describes the dissimilarity of two solutions. 
Then, for a given solution, points in the k-th neighborhood can be identified. Vari-
able neighborhood search consists of the repetitive sequence of three basic steps 
that are shown in Algorithm 2.

There are three phases to their overall approach to solving unconstrained facility 
location problems. These phases integrate variable neighborhood search as a key 
ingredient. The procedure can be described as shown in Algorithm 3.
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Algorithm 3: Solving UFLP with Variable Neighborhood Search 

Phase 1:	� Apply variable neighborhood search directly to UFLP to find a 
good primal solution. This step provides an upper bound of the 
problem.

Phase 2:	� Find an exact solution to the dual of the linear programming 
relaxation of UFLP. Variable neighborhood search is also used 
in this phase of this approach. The dual solution provides a lower 
bound.

Phase 3:	� A branch-and-bound procedure is then implemented making use 
of the upper and lower bounds from Phases 1 and 2. With their 
method, the authors reported success in solving very large prob-
lem instances.

13.3.3  �Special Cases of the Uncapacitated Facility Location 
Problem that are Solvable in Polynomial Time

In addition to research efforts to improve bounds for the uncapacitated facility loca-
tion problem, another research focus on the problem has been to identify special 
cases that can be solved to optimality in polynomial time. Kolen (1982) observed 
that UFLP could be transformed to an equivalent covering problem. Then, if the 
covering matrix of the resulting problem is totally balanced, it can be transformed 
through row and column operations into standard greedy form. (A totally balanced 
zero-one matrix contains no square submatrix with row and column sums equal to 
two, and such a matrix is in standard greedy form if it does not contain a submatrix 

of the form 
[

1 1
1 0

]
. Hoffman et al. (1985) give a polynomial time algorithm for 

this transformation.) When this can be done, Kolen shows that this covering prob-
lem can be solved in polynomial time, see also Kolen and Tamir (1990).

Jones et  al. (1995) identified another class of uncapacitated facility location 
problems, where not every instance fits the Kolen framework but that can still be 
solved to optimality in polynomial time. An instance is in this class if facility and 
demand point indices can be ordered so that the following holds:

(a)	 Continuity: If j, � ∈Pi, then k ∈Pi where j < k << �.
(b)	 Cascading: For all i < t, min{j: j ∈ Pi} ≤  min{j: j ∈ Pt}, and max{j: 

j ∈ Pi} ≤ max{j: j ∈ Pt}.
(c)	 Monotonicity: For all j, if i, t ∈ Nj, and if cij ≤ ctj, then cik ≤ ctk for all k where i, 

t ∈ Nk.

In addition to giving an O( nm) algorithm for such instances, the authors identify 
several problems that satisfy the conditions (a), (b) and (c). These problems in-
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clude the tool selection problem of Daskin et al. (1990), a substitutable inventory 
problem, a stochastic demand problem, the discrete lot sizing problem discussed by 
Wagner and Whitin (1958), and a facility location problem on the line.

13.4 � Branching Strategies in Branch-and-Bound 
Procedures

For the most part, in this chapter we have focused on the “bound” part of branch-
and-bound methods for the two location problems considered, because bounding 
techniques by their very nature need to be problem dependent. Nevertheless, our 
chapter would not be complete without at least a brief discussion of what seem 
to be some promising areas of research in the “branch” part of branch-and-bound 
procedures. These ideas can be applied to any mixed integer programming problem 
and thus are not restricted to location problems. Two key references for these ideas 
are Linderoth and Savelsberg (1999), and Achterberg et al. (2005).

As mentioned in the introduction to this chapter, the branch-and-bound process 
is most easily envisioned via a tree, where the top node of the tree is the original 
problem, and various branches are created through partitioning the set of feasible 
solutions to the problem. The “deeper” one is in the tree, the more options there 
are for selecting the next node for partitioning of the subset of solutions repre-
sented by that node. A significant amount of research has taken place regarding 
the node to be selected for partitioning, as well as how to perform the partition. 
In what follows, we will continue to assume that the original problem is one of 
minimization.

Regarding node selection, a popular method is to choose the node that has the 
smallest lower bound, where this bound is often found via linear programming re-
laxation. This method, when applied in its purest sense, is often called best-bound 
(or breadth-first) search. Another method, called depth-first search, is to continue 
searching down the tree until a feasible solution is found. Other methods include 
estimating the value of the best feasible integer solution obtainable from a given 
node in the tree, or combining depth first search early in the process and breadth-
first search methods later in the process.

As described by Linderoth and Savelsberg, one way to partition the feasible re-
gion represented by a given node is to select a single variable that does not take on 
an integer value in the linear programming relaxation solution, but must be integer 
in an over-all optimal solution; then create two subregions by constraining this vari-
able with an upper bound and a lower bound (they call this variable dichotomy). 
Below we discuss some methods for determining the variable to be “dichotomized.” 
Another method is applicable when certain generalized upper bounding constraints 
are present in the original problem. The generalized upper bounding dichotomy is 
a means of partitioning by bounding the sum of different subsets of the variables to 
create different subregions.

T. J. Lowe and R. E. Wendell
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Returning to variable dichotomy, there remains the issue of variable selection. 
Some authors have tested the use of “pseudocosts,” i.e., estimates of changes in the 
objective function value when a variable is rounded up or rounded down. The esti-
mates are usually created by using the objective function values of the correspond-
ing linear programming relaxations. Average pseudocosts for a given variable can 
also be determined by gathering “local” pseudocosts at several nodes and comput-
ing the mean of the set. However they are computed, these pseudocosts can be used 
to help select the partitioning variable.

Another promising approach is called “strong branching,” which involves test-
ing the set (or a subset of) the fractional variable candidates to find those that appear 
to give the best progress before actually branching on any of them. “Full strong 
branching” involves all fractional variables and thus it may be computationally pro-
hibitive to solve all the corresponding linear programming problems to optimality. 
Thus, some authors have considered testing just a subset of these variables and not 
solving the linear programs to optimality, instead performing a limited number of 
dual simplex pivots. Hybridized versions of these techniques are also possible.

Both Linderoth and Savelsberg (1999), and Achterberg et al. (2005) provide re-
sults on computational testing of the above ideas applied to a number of mixed 
integer programming problems as well as references to the work of others.

13.5 � Conclusions

Herein we reviewed the use of branch-and-bound in solving exactly two important 
location problems, the quadratic assignment problem and the uncapacitated facility 
location problem. Our focus was on the early application of branch-and-bound to 
these problems via a critical review of two classical papers from the 1960s, namely 
Gavett and Plyter (1966) on the quadratic assignment problem and Efroymson and 
Ray (1966) on the uncapacitated facility location problem. In providing these re-
views we attempted to replicate the authors’ thought processes in the development 
of the reported solution method and to discuss how these papers set the stage for 
subsequent research.

The quadratic assignment problem is generally recognized as one of the most dif-
ficult combinatorial optimization problems. After an initial lull of research activity 
in this problem (until the mid-1970s), research on this topic has exploded. In spite 
of this activity, however, an exact solution to the problem has remained elusive for 
modest and large size problems. Yet recently, significant results have been obtained; 
see, e.g., Adams et al. (2007), Anstreicher (2003), Burer and Vandenbussche (2006), 
De Klerk and Sotirov (2008, 2009), and Rendl and Sotirov (2007). The research 
activity and the results are nicely summarized in the comprehensive review paper of 
Loiola et al. (2007). The result of this research has been better lower bounds and an 
approximate doubling in the size of problems that can be solved exactly in the last 
10 years (from about n = 15 to about 30). Unfortunately, n = 30 is still a relatively 
small problem. In practice, this means that heuristic and metaheuristic approaches 
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are needed to attempt to solve the problem. Again, see Loiola et al. (2007) for an 
excellent review.

In contrast, much progress has been made in solving the uncapacitated facility 
location problem. As noted herein, large instances of the UFLP can now be solved; 
see, e.g., Beltran-Royo et al. (2007) and Hansen et al. (2007).

Acknowledgements  The authors would like to recognize and thank Kurt Anstreicher and Samuel 
Burer for their suggestions. The second author wishes to thank Renata Sotirov for many stimulat-
ing discussions on the quadratic assignment problem.

References

Achterberg T, Koch T, Martin A (2005) Branching rules revisited. Oper Res Lett 33:42–54
Adams WP, Johnson TA (1994) Improved linear programming-based lower bounds for the qua-

dratic assignment problem. In: Pardalos PM, Wolkowicz H (eds) Quadratic assignment and re-
lated problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 
vol. 16. American Mathematical Society, Rhode Island, pp 43–75

Adams WP, Guignard M, Hahn PM, Hightower WL (2007) A level-2 reformulation--linearization 
technique bound for the quadratic assignment problem. Eur J Oper Res 180:983–996

Anstreicher KM (2003) Recent advances in the solution of quadratic assignment problems. Math 
Program 97:27–42

Anstreicher KM, Brixius NW (2001) A new bound for the quadratic assignment problem based on 
convex quadratic programming. Math Program 89:341–357

Assad AA, Xu W (1985) On lower bounds for a class of quadratic 0,1 programs. Oper Res Lett 
4:175–180

Bazaraa MS, Jarvis JJ (1977) Linear programming and network flows. Wiley, New York
Beltran-Royo C, Vial J-Ph, Alonso-Ayuso A (2007) Solving the uncapacitated facility location 

problem with semi-Lagrangian relaxation. Optimization On-line. http://www.optimization-
online.org/DB_HTML/2007/02/1597.html. Accessed 22 Sept 2009

Bilde O, Krarup J (1977) Sharp lower bounds and efficient algorithms for the simple plant location 
problem. Ann Discrete Math 3:79–97

Burer S, Vandenbussche D (2006) Solving lift-and project relaxations of binary integer programs. 
SIAM J Optim 16:726–750

Burkard RE, Cela E (1998) The quadratic assignment problem. In: Du D-Z, Pardalos PM (eds) 
Handbook of combinatorial optimization, vol. 3. Kluwer, Dordrecht, pp 241–337

Burkard RE, Cela E, Demindenko VM, Metelski NN, Woeginger GJ (1997) Perspectives of easy 
and hard cases of the quadratic assignment problem. SFB Report No. 104, Institute of Math-
ematics, Technical University Graz, Austria

Christofides N, Gerrard M (1981) A graph theoretic analysis of bounds for the quadratic assign-
ment problem. In: Hansen P (ed) Studies on graphs and discrete programming. North-Holland, 
New York, pp 61–68

Cho DC, Johnson EL, Padberg M, Rao MR (1983a) On the uncapacitated plant location problem 
I: valid inequalities and facets. Math Oper Res 8:579–589

Cho DC, Padberg M, Rao MR (1983b) On the uncapacitated plant location problem II: facets and 
lifting theorems. Math Oper Res 8:590–612

Conway RW, Maxwell WL (1961) A note on the assignment of facility location. J Ind Eng 12:34–
36

Cornuejols G, Fisher ML, Nemhauser GL (1977) Location of bank accounts to optimize float: an 
analytical study of exact and approximate algorithms. Manag Sci 23:789–810

T. J. Lowe and R. E. Wendell



313

Cornuejols G, Nemhauser GL, Wolsey LA (1990) The uncapacitated facility location problem. In: 
Mirchandani P, Francis R (eds) Discrete location theory. Wiley, New York

Daskin M, Jones PC, Lowe TJ (1990) Rationalizing tool selection in a flexible manufacturing 
system for sheet metal products. Oper Res 38:1104–1115

De Klerk E, Sotirov R (2008) Exploiting group symmetry in semidefinite relaxations of the qua-
dratic assignment problem. Math Program, series A. Published online http://www.springerlink.
com/content/85302n245v250051/fulltext.pdf. Accessed 22 Sept 2009

De Klerk E, Sotirov R (2009) Improved semidefinite bounds for quadratic assignment problems 
with suitable symmetry. Technical report. Available at http://stuwww.uvt.nl/~sotirovr/B&B_
QAP.pdf. Accessed 22 Sept 2009

Drezner Z (1995) Lower bounds based on linear programming for the quadratic assignment prob-
lem. Comput Optim Appl 4:159–165

Efroymson MA, Ray TL (1966) A branch-bound algorithm for plant location. Oper Res 14:361–
368

Erlenkotter D (1978) A dual-based procedure for the uncapacitated facility location problem. Oper 
Research 26:992–1009

Erogodan G (2006) Quadratic assignment problem: linearizations and polynomial time solvable 
cases. PhD Thesis, Department of Industrial Engineering, Bilkent University, Ankara, Turkey

Ergodan G, Tansel B (2006) A Note on a polynomial time solvable case of the quadratic assign-
ment problem. Discrete Optim 3:382–384

Gavett JW, Plyter NV (1966) The optimal assignment of the facilities to locations by branch-and-
bound. Oper Res 14:210–232

Gilmore PC (1962) Optimal and suboptimal algorithms for the quadratic assignment problem. 
SIAM J Appl Math 10:305–313

Goldengorin B, Ghosh D, Sierksma G (2003) Branch and peg algorithms for the simple plant loca-
tion problem. Comp Oper Res 30:967–981

Hadley SW, Rendl F, Wolkowicz H (1992) A new lower bound via projection for the quadratic 
assignment problem. Math Oper Res 17:727–739

Hansen P, Brimberg J, Urosevic D, Mladenovic N (2007) Primal-dual variable neighborhood 
search for the simple plant location problem. INFORMS J Comp 19:552–564

Hillier FS, Lieberman GJ (1980) Introduction to operations research, 3rd edn. Holder-Day, San 
Francisco

Hoffman A, Kolen A, Sakarovich M (1985) Totally balanced and greedy matrices. SIAM J Alge-
braic Discrete Methods 6:721–730

Jones PC, Lowe TJ, Muller G, Xu N, Ye Y, Zydiak JL (1995) Specially structured uncapacitated 
facility location problems. Oper Res 43:661–669

Karisch SE, Cela E, Clausen J, Espersen T (1999) A dual framework for lower bounds of the qua-
dratic assignment problem based on linearization. Computing 63:351–403

Kolen A (1982) Location problems on trees and in the rectilinear plane. Stitchting Mathematisch 
Centrum, Amsterdam

Kolen A, Tamir A (1990) Covering problems. In: Mirchandani P, Francis R (eds) Discrete location 
theory. Wiley, New York, pp 263–304 (Chap. 6)

Koopmans TC, Beckmann M (1957) Assignment problems and the location of economic activities. 
Econometrica 25:53–76

Krarup J, Bilde O (1977) Plant location, set covering and economic lot size: an O( mn) algorithm 
for structured problems. In: Collatz L, Wetterling W (eds) Numerische Methoden bei Opti-
mierungsaufgaben. Optimierung in graphentheoritischen und ganzzahligen Problemen, vol 3. 
International Series of Numerical Mathematics 36. Birkhaeuser, Basel, pp 155–180

Land AH (1963) A problem of assignment with interrelated cost. Oper Res Quart 14:185–198
Land AH, Doig AG (1960) An automatic method for solving discrete programming problems. 

Econometrica 27:497–540
Lawler EL (1963) The quadratic assignment problem. Manag Sci 9:586–599
Lawler EL, Wood DE (1966) Branch and bound methods: a survey. Oper Res 14:699–719

13  Exact Solution of Two Location Problems via Branch-and-Bound



314

Linderoth JT, Savelsbergh MWP (1999) A computational study of search strategies for mixed 
integer programming. INFORMS J Comput 11:173–187

Little JDC, Murty KG, Sweeney DW, Harel C (1963) An algorithm for the traveling salesman 
problem. Oper Res 11:972–989

Loiola E, de Abreu NMM, Boaventura-Netto PO, Hahn P, Querido T (2007) A survey for the qua-
dratic assignment problem. Eur J Oper Res 176:657–690

Lovasz L, Schrijver A (1991) Cones of matrices and set-functions, and 0-1 optimization. SIAM J 
Optim 1:166–190

Nugent CE, Vollmann TE, Ruml J (1986) An experimental comparison of techniques for the as-
signment of facilities to locations. Oper Res 16:150–173

Pierce JF, Crowston WB (1971) Tree-search algorithms for the quadratic assignment problem. Nav 
Res Logist Quart 18:1–36

Povh J, Rendl F (2009) Copositive and semidefinite relaxations of the quadratic assignment prob-
lem. Discrete Optim 36:231–241

Ramachandran B, Pekny JF (1998) Lower bounds for nonlinear assignment problems using many 
body interactions. Eur J Oper Res 105:202–215

Rendl F, Sotirov R (2007) Bounds for the quadratic assignment problem using the bundle method. 
Math Program B 109:505–524

Resende MGC, Ramakrishnan KG, Drezner Z (1995) Computing lower bounds for the quadratic 
assignment with an interior point algorithm for linear programming. Oper Res 43:781–791

Wagner H M, Whitin TM (1958) Dynamic version of the economic lot size model. Manag Sci 
5:89–96

Zhao Q, Karisch SE, Rendl F, Wolkowicz H (1998) Semidefinite programming relaxations for the 
quadratic assignment problem. J Comb Optim 2:71–109

T. J. Lowe and R. E. Wendell



315

14.1 � Introduction

Posing location problems on graphs or networks has sharpened our understanding 
of what underlying structures can be exploited to prove theorems and to develop 
efficient algorithms. The construction of efficient algorithms for network location 
problems has been greatly aided by the work of computer scientists who have de-
vised algorithms and data structures that allow efficient traversal and storage of 
graphs. In this chapter the contributions of three early location analysis papers are 
examined in detail. Key ideas are identified and their effects traced forward through 
the literature. In addition, natural extensions of these key ideas are included. How-
ever, no attempt is made to be encyclopedic when surveying the literature. The 
chapter concludes with comments on future research directions.

The first two early papers examined are less well known than the third, but for 
different reasons. The paper by Harary and Norman (1953), although published in a 
highly visible mathematics journal, is not well known to the network location com-
munity. Largely, this is due to the fact that the title and main results in the paper are 
not about location problems. The second paper was originally published in Chinese 
in 1961 by Hua and was translated into English by the American Mathematical So-
ciety and published in 1962 (Hua et al. 1961). The third paper studied is a seminal 
(Western) location paper. Goldman (1971) is a well known and highly cited paper 
in network location literature.

Each of these three papers addresses location problems on tree networks and 
hints at ways to extend these results for treelike graphs. Many authors have focused 
on location problems restricted to tree networks. The second part of Tansel, Fran-
cis and Lowe’s 1983 survey paper is one such example and provides an extensive 
list of references and problem types for tree networks. At the close of Tansel et al. 
(1983), the authors ask two questions, the first of which is particularly interesting 
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to this chapter: other than trees, what special network structure leads to efficient 
algorithms for network location problems?

14.2 � Preliminaries

Before summarizing the contributions of the three papers, a few definitions provide 
a common language for the ensuing exposition. A graph G consists of a nonempty 
set of vertices, V, and a set of edges, E. In Fig. 14.1, G has nine vertices and nine 
edges. The number of edges incident to a vertex is the degree of the vertex. Vertex 
1 has a degree of five while vertex 9 has a degree of one. A path is a sequence of 
consecutive edges in a graph (no repeated edges or vertices). Edges (4,1), (1, 2), and 
(2, 7) form a path from vertex 4 to vertex 7. A graph is connected if there is a path 
between every pair of vertices. A cutvertex of a connected graph is a vertex whose 
removal (along with all edges incident with it) disconnects the graph. The resulting 
disconnected pieces of the graph are called subgraphs. Throughout this chapter no 
distinction is made between the terms graph and network.

The notation x ∈ G denotes x as any point on the graph G (along an edge or at a 
vertex). Associated with each edge ( vi, vj) ∈ E is a weight or length. Define d( x, y) 
to be the shortest path distance between any pair of points x and y of G. That is, 
define d( x, y) as the length of the shortest path, among all paths in G between 
x and y. The x and y components of the domain of d can be defined over different 
sets (typically either V or all of G). The eccentricity of a point x ∈ G is the length of 
the longest shortest path from x in G. The diameter of a graph is the length of the 
longest shortest path. Any path of length equal to the diameter is called a diametral 
path. Associate a weight function fi with each vi ∈ V. In most cases, fi is assumed to 

Fig. 14.1   A connected graph 
G( V, E)
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be linear, that is fi( d( vi, x)) = wi · d( vi, x). The cardinality of a set S is denoted by |S|. 
For optimization problems on graphs, a worst case complexity analysis is typically 
provided. For example, a (worst case) linear time algorithm is denoted O( n) or 
O(|V|). The typical convention assigns n = |V|.

In Fig. 14.2 the graph is connected and has eight vertices, eleven edges, four 
blocks and three cutvertices. A block of a graph G is a maximal connected subgraph 
of G that has no cutvertex. Each block in this figure is a complete subgraph. A com-
plete graph (or subgraph) is denoted by Kn, where n is the number of vertices. The 
number of edges in Kn is n( n − 1)/2. Figure 14.2 has two K2 blocks, one K3, and one 
K4 block. Blocks need not be complete. Removing either the horizontal or the verti-
cal edge (or both) in the K4 block does not disrupt the block structure of the graph. 
Cycles are denoted by Cn, where n ≥ 3 is the number of vertices in the cycle. For 
additional graph theory concepts and definitions, the interested reader is referred to 
Harary (1969) and West (2001).

A graph is said to be a tree if it is connected and contains no cycles. A graph that 
is a tree is designated by T( V, E). Two important facts about trees: a tree contains at 
least two degree one vertices, and a path between any two vertices is unique and is, 
therefore, the shortest path.

A cactus graph (sometimes called a cactus tree) is a connected graph in which 
any two cycles have at most one vertex in common (a cutvertex). That is, each 
block of a cactus graph is either a K2 or a Cn. Some authors use the term m-cactus to 
describe a cactus graph in which no cycle has more than m vertices. Cactus graphs 
were first studied under the name of Husimi trees in Harary and Norman (1953). 
The name cactus was coined in Harary and Norman (1953) for Husimi trees in 
which every cycle is a triangle. However, Husimi trees also came to refer to graphs 
in which every block is a Kn, and is now rarely used in the location literature. The 
term treelike is reserved for graphs in which each cyclic block may range from a 
cycle, Cn, to a complete graph, Kn. For example, the graph in Fig. 14.2 is treelike.

A common notation for distinguishing between location problem types lists 
the domain for the set from which locations are chosen, the set of points at which 
demand for service occurs, the number of points to be located, and the underly-
ing network type. The standard choices for each of these components is shown in 
Table 14.1. Note that G is reserved for use as a network type in the fourth field. To 
avoid confusion with field four E replaces G in fields one and two, but still means a 
point can lie anywhere on the network. Later in this chapter we will consider tree-
like networks and denote them by TL in field four.

Fig. 14.2   A connected graph 
with four blocks
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The classical point location problems are median (Hakimi 1964) and center (Jor-
dan 1869) problems. A median, x, is a point at which the average (or equivalently 
total) distance from x to all demand points is minimized. The notation V/V/1/T states 
that the median is chosen amongst the vertices, demand occurs only at vertices, one 
vertex is to be selected, and the underlying network is a tree. Definitions for two 
1-median and two 1-center problems are given in Table 14.2. When the first field 
is E, the solutions are called absolute centers or medians. The versions listed in-
clude linear vertex weights. Unweighted versions (or, equivalently, vertices of equal 
weight) are of interest as well. A key property of median problems, first noted by 
Hakimi (1964, 1965), is a vertex domination result; a solution to the E/V/p/G median 
problem always resides on the vertex set V. Moreover, the result holds as long as the 
vertex weight functions fj are concave (Levy 1967). Further domination results can 
be found in Hooker et al. (1991). The dominating sets described in that paper are not 
restricted to vertices but may include additional, well defined, points along edges. 
These authors survey the location literature and prove theorems that unify and gener-
alize many scattered results. New finite dominating set theorems are proved as well.

14.3 � Classical Contributions

In this section we summarize the contributions made by three early, and foundation-
al, historical references—Harary and Norman (1953), Hua et al. (1961) and Goldman 
(1971).

14.3.1  �Harary and Norman (1953): Husimi Trees

Most of the material in Harary and Norman (1953) is focused on developing 
mathematics for counting arguments on special classes of graphs and is of little 

R. K. Kincaid

Name Restrictions Formulation
1-vertex median V/V/1/G min

vi⊆V

∑
i �=j∈V

wjd(vivj )

1-absolute median E/V/1/G min
x⊆G

∑
j∈V

wjd(x, vj )

1-vertex center V/V/1/G min
vi∈V

max
vj ∈V

wjd(vi , vj )

1-absolute center E/V/1/G min
x∈G

max
vj ∈V

wjd(x, vj )

Table 14.2   Classic network 
location problems

Location set Demand set Number of location Network type
V V 1 T
E E P G

Table 14.1   Notation for 
location problems
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interest to location enthusiasts. However, embedded within the explanations for 
counting Husimi trees is an important lemma. The lemma establishes a funda-
mental result for center location problems on treelike graphs. To understand the 
statement of the lemma, the following definitions are needed. In this paper, as is 
typical in the mathematics literature, graphs have edges of unit length and there 
are no vertex weights.

Definition 1:  A graph is called a Husimi tree if no edge lies in more than one cycle.

Definition 2:  A Husimi tree in which no cycle is greater than three is called a 
cactus.

Definition 3:  A vertex is central if it lies on the midpoint of any diametral path.

Definition 4:  The set of central points of G are those with minimum eccentricity 
and are denoted by C( G).

Lemma 1:  If G is a connected graph, then there exists a block of G containing 
C( G).

Lemma 1 is the first known extension of the notion of the center (vertex or ab-
solute) of a tree to a treelike graph. The earliest reference defining the vertex center 
of a tree is generally attributed to Jordan (1869). The center of a tree, C( T), is either 
a vertex or an edge. For Husimi trees (in the current literature almost always called 
cactus graphs), this lemma tells us that C( G) is either a single vertex, a single edge, 
or a single cycle. Moreover, for treelike graphs (denoted TL), Lemma 1 guarantees 
that finding a vertex or absolute 1-center ( V/V/1/TL or E/V/1/TL) can be reduced to 
a problem on a single block. For example, in Fig. 14.1 let the edges of the triangle 
be of length two and all remaining edges be of length one; then, C( TL) is the triangle 
block. Vertex 1 solves the V/V/1/TL center problem and the midpoint of edge (1, 2) 
or edge (1, 3) solves the E/V/1/TL center problem.

The use of the term cactus in Harary and Norman (1953) is a first as well. Here, 
cactus graphs are restricted to graphs in which all the cyclic blocks are triangles 
( K3). It is not known why the name Husimi tree has dropped out of the location 
literature, or why the definition of a cactus graph (or m-cactus graph) has expanded 
to include blocks with cycles of any size (or of size at most m). Figure 14.1 fits 
Harary and Norman’s definition of both, a Husimi tree and a cactus, since the only 
cyclic block is a triangle. Figure  14.2 is not a Husimi tree, since the K4 blocks 
contains edges that are members of more than one cycle. The physics literature, 
however, continues to use the term Husimi trees—as defined by Harary and Nor-
man (1953)—following a seminal reference by Essam and Fisher (1970), which 
provided definitions and applications of graph theory in physics.

Harary and Norman (1953) appear to be aware that Lemma 1 was a departure 
from the central theme of their paper and noteworthy on its own. In the introduction 
of their paper, the authors comment that Lemma 1 is “of some independent inter-
est.” Although Harary (1969) summarized a wide variety of graph structures associ-
ated with treelike graphs, it appears that he never returned to the topic of locating 
centers in treelike graphs.

14  Exploiting Structure: Location Problems on Trees and Treelike Graphs
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14.3.2  �Hua et al. (1961): 1-Median on a Tree

Hua et al. (1961) was assembled by the author, Lo-keng Hua, following an uniden-
tified collaborative event of students and faculty from seven institutions (Peking 
Normal University, University of Science and Technology of China, Institute of 
Mathematics and the Institute of Mechanics of the Academia Sinica, Peking Agri-
cultural Mechanization College, Peking Normal School–special curriculum, and the 
Peking Industrial and Agricultural Normal School) all under the “unified leadership 
of the Rural Work Section of the Peking Municipal Committee of the Chinese Com-
munist Party.” The summary recorded in Hua et al. (1961) was read at the National 
Operations Research Shantung On-the-Spot Conference in July of 1960.

A broad collection of topics in location theory are addressed. It is possible that 
some results were known by the authors prior to the conference reading in 1960. 
(Hua Lo-Keng published an article in 1959 in Chinese with an English translation 
in the Notices of the American Mathematical Society 6: 724–730 in the same year, 
whose topic was a summary of mathematical research in China between 1949 and 
1959). The motivating example throughout is wheat harvesting in rural China. A 
nod is given to exogenous constraints that will not be considered—proximity of a 
site to water in order to fight fires, terrain topography for threshing sites, soil qual-
ity (do not build on sandy soil), and wind effects (lower and upper bounds on wind 
are needed to effectively winnow the wheat). Results for three separate classes of 
problems are summarized. First, the problem of how to select locations for thresh-
ing sites to serve a collection of small dispersed wheat fields is provided. Next, the 
problem of selecting a threshing site for a single large wheat field is discussed. Last, 
a method for estimating wheat production is given.

Only the first two classes of problems have a location flavor. The first gives 
rise to a set of location problems on a graph, while the second defines a location 
problem in the plane or some well defined polygonal shape. The first category of 
problems are the focus of this section: site selection for wheat threshing floors given 
a collection of small dispersed wheat fields. That is, the customers are the wheat 
fields, and the facilities to be located are the wheat threshing floors. It is assumed 
that routes exist connecting the fields to each other. In the graph setting, each wheat 
field is represented by a single vertex. Weights on the vertices are the (known) 
wheat production amounts. Edges are routes connecting the wheat fields. Addition-
al non-wheat field vertices may exist representing route intersection points. These 
vertices have weight zero.

Five types of problems are examined. The author groups these problems under 
the name string of grapes problems. Although not explicitly stated, it seems clear 
that the grapes denote the dispersed tracts of wheat and the stems connecting the 
grapes represent the route network. Thus, a string-of-grapes problem is a facility 
location problem for which the underlying network is a tree (or can be simplified 
to a series of equivalent problems on a collection of trees). The vertices of the 
tree are the grapes plus the set of points representing where two or more stems 
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are joined together. The case descriptions below include algorithm names to link 
the cases, (which appear without names in Hua et al. 1961) to their modern-day 
equivalents.

Case 1:  The underlying graph is a tree and only one threshing site is to be selected.
Algorithm 1 determines an optimal vertex for the threshing site selection. Note 

that no mention is made of a procedure for identifying degree one vertices.

Algorithm 1: 1-Median of a Tree 

Step 1:	� Among the vertices of degree one find a vertex of the smallest 
weight.

Step 2:	� Add this weight to the weight of the adjacent vertex. Delete the 
degree one vertex and its appendant edge.

Step 3:	� Repeat until a single vertex remains.

The same algorithm is described in Goldman (1971). In addition, it appears that 
Hua et al. (1961) understand the vertex domination rule (Hakimi 1964, 1965) for 
the median objective. The authors mention that if the above algorithm reduces the 
graph to a single edge and both vertices have the same accumulated weight then any 
point on the edge (including the vertices) is optimal.

Case 2:  The underlying graph contains cycles.
As in the first problem, only one threshing site is to be selected. It is not clear in 

what way cycles may be present. From the example and description given it appears 
that by “graphs with cycles,” the authors mean graphs with cyclic blocks. In particu-
lar, each cyclic block seems to be restricted to a cycle, Cn. The algorithm proceeds 
by repeatedly removing edges from cycles.

Algorithm 2: 1-Median of a Cactus Graph 

Step 1:	� Remove an edge from each cycle of the graph. The result is a tree.
Step 2:	� Apply the algorithm from Case 1.
Step 3:	� For the selected site (vertex), compute the sum of the weighted 

distance the wheat must travel to get to the site (median objective 
value).

Step 4:	� Repeat Steps 1–3 for all possible trees (edge deletion patterns). 
Select the site with smallest weighted distance sum. 

The authors do not describe how to enumerate all possible trees. The example given 
has only one cycle and, as a result, the number of times Steps 1–3 are repeated is 
equal to the number of edges in the cycle.
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A second example is given indicating that the authors understand that the search 
for a 1-median can be localized to a single block. As a result, blocks which can be 
ruled out in the search for a median are contracted to a single vertex, so edge dele-
tions are not needed for that block and the total number of trees examined is reduced. 
For example, in Fig. 14.1 assume all vertices have a weight of 1. The weight of the 
nodes in the triangle block is 3 and is strictly less than 4 (half the total weight of 8). 
Thus, the triangle block can be contracted to a single vertex of weight 3. The vertex 
weight associated with a contracted block is the sum of all the weights in the block.

Case 3:  Extends Case 1 to the location of two or more sites.
As in Case 1 the underlying graph is a tree. A byproduct of the algorithm is the 

allocation of wheat fields to threshing sites. The algorithm proceeds as follows.

Algorithm 3: 2-Median of a Tree 

Step 1:	� Delete an edge of the tree. The result is two trees.
Step 2:	� Solve the site selection problem on each tree via the algorithm pre-

sented to solve Case 1.
Step 3:	� Solve the site selection problem on each tree via the algorithm pre-

sented to solve Case 1.
Step 4:	� Repeat Steps 1–3 for each possible edge deletion. Select the sites 

with the smallest weighted sums. 

If p > 2 sites are needed, the same algorithm is employed but p − 1 edges are re-
moved. The result is a set of p trees. Solve the site selection problem on each tree via 
the algorithm given in Case 1. For the selected sites (vertices), compute the sum of 
the weighted distance the wheat must travel to get to the site (median objective val-
ue). Repeat for all possible p − 1 edge deletions and retain the best solution found.

Case 4:  Identical to the problem in Case 3 except that simple cycles are allowed.
The suggested algorithm is to delete edges as described in Case 2. Then, for each 

tree, the process is repeated as described in Case 3. The process described is cum-
bersome and no attention is given to implementation issues.

Case 5:  The underlying graph is a tree. Existing sites for threshing floors exist.
How are additional new sites to be located? The problem is dealt with in the 

same manner as the problem in Case 3. The explanation for the algorithm begins by 
analyzing the simplest instance, where one existing site and one additional site are 
to be located. A summary is found in Algorithm 4.

Algorithm 4: Conditional 1-Median of a Tree 

Step 1:	� Delete an edge of the tree. Two trees result.
Step 2:	� Solve the site selection problem on the tree with no existing site as 

in Case 1.
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Step 3:	� Repeat Steps 1 and 2 for each tree edge deletion.
Step 4:	� Select the best solution. 

Case 5 is an example of a conditional location problem. A closely related problem 
is Hakimi’s (1983) ( r|p)-medianoid, in which r new facilities must be located to 
compete with p facilities already sited. Competition is not considered in Case 5, as 
all facilities are assumed to be a part of the same entity (presumably administered 
by the Chinese Communist Party).

The extension to more than one existing site and the siting of more than one ad-
ditional threshing floor is mentioned. Details for an algorithm are not given. The 
authors describe a simplifying rule for the multifacility version of this problem for 
the conditions posed in cases 3, 4 and 5. Assume there is a fixed capacity, U, for any 
threshing site; if the weight of any subtree exceeds U, then discard that solution.

To unify the presentation of the algorithmic results a rhyme is given. The rhyme 
claims to be a mnemonic device for remembering the algorithm, but it is most 
likely more effective in the original language. It is included here (in English) for 
completeness.

String of Grapes Algorithm
When the routes have no loops,
Take all the ends into consideration,
The smallest advances one station.
When the routes do have loops,
A branch is dropped from each one,
Until there are no loops,
Then calculation as before is done.
There are many ways of dropping branches,
The calculation for each must be assessed,
After figuring all, we then compare,
And break the loop in the case which is best.

The paper continues with a second topic—selecting a threshing site for a large (con-
tiguous) tract of wheat. Here the results are either obvious or a re-discovery of 
other earlier location problems in R2. For example, assuming the wheat is cut and 
collected into a finite set of sheaves, with known ( x, y) coordinates, determine the 
location of a threshing site. This is the classic Weber problem originally described 
in Weber (1909). The Weber problem has a long and convoluted history which is 
nicely summarized by Drezner and Hamacher (2001).

The analysis of algorithms was still in its infancy when Hua’s paper was published. 
However, some comments about the algorithms, as described in Hua et al. (1961), 
can be made. In Case 1, the algorithm to find an optimal vertex for the threshing site 
selection problem runs in linear time as long as vertices of degree one can be found 
efficiently. The class of graphs addressed in Case 2 are what are now called cactus 
graphs. The complexity of the proposed algorithm requires counting the number of 
trees needed to be examined. The number of trees grows rapidly unless one is able 
to determine blocks that may be contracted. The authors give no indication that a 
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technique to identify such blocks was known to them. In Case 3 it is easy to see that 
the algorithm requires ( n−1) repetitions of the Case 1 algorithm when p = 2. Thus, if 
the assessment of Case 1 is correct, the Case 3 algorithm, when p = 2, is O( n2). When 
p > 2, the general algorithm for Case 3 appears to have a complexity of O( np). The 
procedure described to solve Case 4 requires applying the counting argument in Case 
3 ( p > 2) to each possible tree generated from a cactus graph (the counting argument 
in Case 2). The worst case analysis could certainly be done. However, it is likely that 
the number of trees required to be examined would be quite large. The complexity 
analysis for the algorithm in Case 5 would be similar to Case 4.

The key contributions found in Hua et al. (1961) are the reduction algorithm for 
the 1-median problem on a tree (Case 1) and the hierarchical fashion in which ad-
ditional problem feature complexities are included. The authors begin with a 1-me-
dian problem on a tree. Next, the tree assumption is relaxed and the 1-median prob-
lem on cactus graphs is considered (Case 2). Returning to trees, the number of sites 
to be selected is relaxed. First, p = 2 and then p > 2 are considered (Case 3). Case 4 
relaxes both the tree and number of sites restrictions to solve the p-median problem 
on cactus graphs. Last, the authors extend the site selection problem to include the 
presence of existing facilities. The hierarchical approach reflects a typical scheme 
taken by current researchers in the location literature.

14.3.3  �Goldman (1971): 1-Median on a Tree

Goldman published a series of four papers in Transportation Science (Goldman 
1969, 1971, 1972 and Goldman and Witzgall 1970). The work in Goldman (1971) 
is described here but makes use of results in his earlier papers. The key assumptions 
for the underlying network are that the edges have positive length and the vertices 
have nonnegative weights, w( i). An algorithm for the 1-median problem on a tree, or 
nearly a tree (one cycle is allowed), is given. In examining the complexity of the algo-
rithm the author observes that a method for identifying degree one vertices is needed.

The beauty of the algorithm is its simplicity. Let w( i) ≥ 0 denote the weight of 
vertex i. Let W =

∑
i∈V w(i)  denote the total vertex weight. The algorithm, when 

applied to a tree, reduces the tree to a single vertex—the 1-median of the tree. The 
algorithm is equivalent to the one given in Hua et al. (1961). The theoretical under-
pinnings of the algorithm were established in Goldman and Witzgall (1970).

Algorithm 5: Tree Reduction Algorithm 

Step 1:	� If T is a single vertex v, stop v is a median.
Step 2:	� Find a degree one vertex vi. If w( i) > ½W, stop: vi is the optimal 

solution.
Step 3:	� Otherwise, delete edge ( vi, vj) ( vj is adjacent to vi) and increment 

w( j) by w( i).
Step 4:	� Return to Step 1.  
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The paper also explains how to determine the median if it is located in a cycle. 
Consequently, the tree reduction procedure can be extended to graphs consisting 
of blocks that are single edges and/or simple cycles (a cactus graph). The paper 
describes a reduction algorithm for isolating the 1-median problem to a single block 
for any treelike graph. The modification is straightforward. In step 2 of the algo-
rithm for trees, if no degree one vertex can be found we have reduced the treelike 
graph to a single block. If the block is a cycle, an algorithm is provided (described 
in the next paragraph) that finds the 1-median. If the block is not a cycle, then no 
procedure is given to identify the 1-median. Furthermore, no computational experi-
ence is given and the author points out that it may be non-trivial to determine the 
blocks of a treelike graph.

Why does the tree reduction algorithm fail if the median problem is reduced to 
a single cycle? The difficulty lies in the vertex weights. The reduction algorithm 
requires that the vertex weights be non-negative numbers. For cycles, the reduction 
process may result in negative weights on some of the vertices. To fully explain the 
algorithm on a single cycle requires additional terminology.

Label the vertices of the cycle Cn sequentially from 1 to n. Let ( i, j) denote the length 
of edge ( i, j). Let H denote half the total length of the cycle: H = 1/2

∑n
i=1 �(i, j ). 

Two vertices i and j are antipodal if d( i, j) = H. Let î  denote the antipode vertex for 
i. If i does not have an antipode, add a dummy vertex with zero weight so that it 
does. Consequently, the total number of vertices (original plus dummy) is even and 
|V| = 2k for some integer k > 0. Let W denote the sum of the non-negative weights on 
the vertices. The value of the objective function of the weighted vertex median can 
then be re-written as

The ½ eliminates double counting since each vertex appears as both a j and a ĵ  
in the summation. Noting that d(i, ĵ ) =H − d(i, j ), we can further simplify the 
objective to

In this form, it is easy to see that no change in f( i) occurs if the same amount 
is added or subtracted from any pair of antipodal weights. That is, the value of 
[w(j ) − w(ĵ )] does not change if some α > 0 is subtracted or added to both w( j) and 
w(ĵ ). As previously noted, the number of vertices in the cycle is even (each j has 
an antipode ĵ ). The cycle algorithm splits the cycle in half (between the pairs of an-
tipodal nodes) and solves a median problem separately on each half. Let V1 denote 
the first k vertices of V (original plus dummy) and V2 denote the remaining set of k 
vertices. To begin the search for a median on V1 subtract w(ĵ ) from w(  j) and w(ĵ ) 

f (i) = 1/2




∑

j∈V

[w(j )d(i, j ) + w(ĵ )d(i, j )]





f (i) = 1/2



HW +
∑

j �=i∈V

[w(j ) − w(ĵ )]d(i, j )




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for each j ∈ V1. It follows that all vertices in V2 have weight zero and possibly some 
of the vertex weights in V1 are negative. In Fig. 14.3, the weights are displayed next 
to each vertex: V1 = 1, 2, 3, and V2 = 4, 5, 6. After subtraction, the adjusted antipo-
dal pair weights are w(4) = w(5) = w(6) = 0, while w(1) = −3, w(2) = −1 and w(3) = 1. 
Thus, two of the adjusted weights in V1 are negative and the nonnegative weight 
assumption for the tree reduction algorithm is violated.

Algorithm 6: Cycle Algorithm 

Step 1:	� Initialization. Set i: = i* = 1. Set f = F = U = 0.
Step 2:	� Increment U by w( i) and f by ( i, j)(2U − W).
Step 3:	� Set i: = i + 1. If i > m, stop; i* is a median (for V1).
Step 4:	� If f < F, set F: = f and i*: = i and return to Step 2.

 
Although a complexity analysis of the tree reduction algorithm was not formally 
done in Goldman (1971), if the identification of the degree one vertices is disre-
garded, the algorithm is O( n). The key to the algorithm’s low complexity is avoid-
ing direct computation of the shortest path distance matrix, typically an O( n2) op-
eration. Why can the edge weights be ignored? Let vi denote any vertex of a tree. 
Deleting vi partitions the tree into several (at least two) subtrees. Sum the weights of 
the vertices in each subtree. Let Wi be the weight of the maximum weight subtree. A 
centroid is a vertex that minimizes Wi for all i ∈ V. A median of a tree is the centroid. 
Zelinka (1968) established this result for trees with equal vertex weights. The result 
was extended to trees with weighted vertices by Kariv and Hakimi (1979a, b). An 
alternative approach in Goldman and Witzgall (1970) establishes sufficient condi-
tions for a subgraph to contain a median. Goldman’s (1971) algorithm makes direct 
use of these sufficient conditions.

The key contributions in Goldman (1971) are the linear time tree reduction algo-
rithm for the 1-median problem on a tree and the observation that the same algorithm 
can be used to reduce the 1-median problem on a treelike graph to single block. 
Furthermore, Goldman (1971) notes the need for an algorithm to identify the blocks 
of a graph and provides an algorithm to solve the 1-median problem on a cycle, Cn.

Fig. 14.3   Weighted cycle 
with unit edge lengths
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14.4 � Key Ideas in the Classical Contributions

Both Goldman (1971) and Hua et al. (1961) describe the same elegant algorithm 
directed at solving the V|V | 1|T median problem. It is clear that Goldman knew 
his approach also solved the E|V | 1|T median problem, and although not explicitly 
stated, there are indications that Hua was also aware of this. Both Goldman and 
Hua attempt to extend their results for trees to graphs containing cycles. Goldman 
(1971) provides a detailed algorithm to determine the location of a vertex median 
on a cycle, Cn. Beyond the algorithm for trees, Hua et al. (1961) provides no new 
structural insights to exploit when solving the vertex median problem on graphs 
with cycles. Instead he resorts to enumerating all possible spanning trees in the cy-
clic graph, solving a vertex median problem on each one, and selecting the observed 
best as a solution. For graphs with only a few cycles, Hua’s enumerative procedures 
are reasonable. However, the number of enumerated trees can grow large. An upper 
bound on the number of possible spanning trees is given by nn −2, Cayley’s (1889) 
formula for G = Kn (where n = |V|). To calculate the number of spanning trees for a 
given graph, Kirchhoff’s matrix tree theorem (cf. Kirchhoff 1847 or West 2001) will 
do the job in O( n3) time.

The lemma in Harary and Norman (1953) extends the notion of absolute and ver-
tex centers of a tree to treelike graphs. In particular the lemma reduces the search for 
a center on a treelike graph to a single block. Similarly Goldman (1971) localizes 
the search for a median to a single block for treelike graphs.

There are two common key ideas found in these three foundational references 
The first idea is to exploit structure in such a way that the results on trees can be ap-
plied. This idea has been carried forward by many authors. Graphs whose structure 
has been exploited in this way include cactus graphs, planar treelike graphs, block 
graphs, wheel graphs and bounded treewidth graphs. The second key idea is the 
reduction of a given location problem to an equivalent problem on a single block.

Both of these key ideas require an algorithm to identify the block structure of 
a graph. Tarjan (1972) provided the first efficient algorithm to do this with his in-
troduction of depth first search algorithms for exploring graphs. A series of papers 
dedicated to this topic appeared in the early 1970s. In particular, Tarjan (1972) gives 
an O(|V| + |E|) depth first search ( DFS) algorithm to identify the blocks (biconnected 
components) of an undirected graph. However, it was more than ten years before 
these results were brought to bear on network location problems.

14.5 � Key Ideas Carried Forward: Center Problems

Research that exploits graph structure for center problems is summarized in this 
section. Treelike graphs dominate the literature, with cactus graphs being the most 
prevalent. An algorithm whose complexity analysis relies upon how close a treelike 
graph is to a tree is highlighted. In addition, the influence of data structures that take 
advantage of the treelike structure is noted.
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Gurevich et al. (1984) develop an algorithm for the p-center problem on treelike 
graphs. The algorithm makes explicit use of the depth first search approach in Tar-
jan (1972). The approach taken by Gurevich et al. (1984) is quite innovative. They 
exploit the fact that blocks must communicate through a cutvertex and that choices 
for locations in different blocks combine additively. In addition, the authors sought 
to find a way to interpolate between trees and general graphs when developing their 
algorithm and analyzing its complexity. The complexity analysis for the algorithm 
in Gurevich et al. (1984) depends on the number of edge deletions needed for a cy-
clic graph to become a tree. In particular, for each block, Bi of G, let k( Bi) denote the 
number of edge deletions needed to reduce the block to a tree. Let k = max

i
{k(Bi}.  

Given a connected graph and a positive integer r determine the minimum number 
of centers so that every x ∈ G is within r of some center. The complexity of the 

algorithm is O(|E|(6r)�k/2�. A second algorithm is given by Gurevich et al. (1982), 

whose complexity does not depend on r and solves the center problem when k ≤ 2 
in O( n log n).

The development of depth first search algorithms for graphs was a spring board 
for a wealth of activity in graph algorithms. One outgrowth of this activity, in the 
computer science community, was the development of efficient data structures for 
graphs. An important example with applications to location analysis is provided by 
Frederickson and Johnson (1983). They devised a data structure for storing infor-
mation about trees (and treelike graphs) called sorted Cartesian matrices. These ma-
trices store portions of the shortest path distance matrix efficiently. In particular, if 
V1 ⊂ V and V2 ⊂ V, then a sorted Cartesian matrix is able to store the |V1||V2| shortest 
path distances in only |V1|+|V2| space. With these sorted Cartesian matrices, p-center 
problems on trees and cactus graphs can be solved efficiently.

Three p-center tree problems, V/V/p/T, E/V/p/T, and V/E/p/T, are solved in 
O( n log n) time while the implementation for E/E/p/T has a complexity of O( pn 
log(2n/p)) when p < n = |V|. Frederickson and Johnson (1983) are able to extend their 
algorithm for trees to V/V/p/TL, when TL is restricted to cactus graphs. The exten-
sion hinges on the authors’ ability to adapt the sorted Cartesian matrix data structure 
to cactus graphs. Consequently, V/V/p/TL can be solved in O( n log n) time on a 
cactus graph. No algorithms or discussion are provided for any of the remaining 
three p-center problems on cactus graphs, V/E/p/TL, E/V/p/TL, and E/E/p/TL. The 
success of Frederickson and Johnson’s algorithm for center problems on trees and 
cactus graphs relies exclusively on their development of the sorted Cartesian matrix 
data structure.

A linear time algorithm for the E/V/1/TL center problem on a subset of 3-cactus 
graphs is given in Kincaid and Lowe (1990). The restrictions required for 3-cactus 
graphs highlights the difficulty in extending the results in Frederickson and Johnson 
(1983) on trees for non-vertex restricted center location problems on cactus graphs. 
Two additional terms are needed to specify the restrictions. An endblock of a graph 
is any block with exactly one cutvertex (analogous to identifying degree one verti-
ces in trees). The remaining blocks are called interior blocks. The algorithm in Kin-
caid and Lowe (1990) is restricted to 3-cactus graphs in which (1) the center cannot 
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lie in an endblock and (2) the eccentricity for any point x of any interior block must 
be achieved in at least two distinct endblocks.

Additional results for E/V/1/TL when the center objective is replaced by a 
weighted obnoxious center objective, are found in Zmazek and Zerovnik (2004) and 
Cabello and Rote (2007). Zmazek and Zerovnik (2004) pose the E/V/1/TL weighted 
obnoxious center problem on cactus graphs. An O( c|V|) algorithm, where c denotes 
the number of different vertex weights, is given. For the unweighted version c can 
be dropped and a linear time algorithm results. Cabello and Rote (2007) give an 
O( n log3n) algorithm that finds a weighted E/V/1/G obnoxious center on any planar 
graph. The complexity simplifies to O( n log n) for graphs with a bounded treewidth. 
The latter condition appears to hold some promise for defining treelike structure in 
graphs. Trees have a treewidth of one. Cactus graphs, series-parallel graphs and out-
erplanar graphs have treewidths of at most two. Treewidth measures the number of 
vertices mapped onto any tree vertex in an optimal tree decomposition. Bodlaender 
(1996) gives a linear time algorithm for constructing an optimal tree decomposition 
if the treewidth is bounded.

In another recent paper, Ben-Moshe et al. (2007) also developed an O( n log3n) 
algorithm for the E/V/1/TL weighted obnoxious center problem on cactus graphs. 
Algorithms on cactus graphs are also given for the weighted E/V/1/TL and V/V/1/TL 
center problems  O( n log n), the weighted E/V/2/TL center problems, O( n log3n), 
the weighted V/V/p/TL center problem,  O( n log2n), the weighted E/V/p/TL center 
problem, and the unweighted E/E/p/TL problem, O( n2). We note that the algorithms 
presented in Ben-Moshe et al. (2007) make use of the nomenclature developed in 
Burkard and Krarup (1998) for the pos/neg median location problem.

14.6 � Key Ideas Carried Forward: Median Problems

In this section, a number of approaches are summarized that construct a tree from 
a treelike graph. These approaches include a blocking graph, a skeleton graph, and 
a Y-∆ transformation. Graph planarity is seen to be a limiting feature of certain 
algorithms. The solution of 1-median problems on a single cycle are extended to a 
wheel graph. In addition, the difficulty with negative vertex weights, observed by 
Goldman (1971), is overcome in the algorithm for the pos/neg weighted median 
problem described in Burkard and Krarup (1998).

An early reference to extend and formalize the results of Goldman (1971) for 
treelike graphs is Chen et al. (1985). These authors provide the details of how to 
efficiently implement Goldman’s linear time algorithm for 1-median problems on 
both trees and treelike graphs. As expected, the complexity relies heavily on the 
seminal work of Tarjan (1972). To extend the linear time algorithm from trees to 
treelike graphs, a blocking graph is constructed. The key property of a blocking 
graph is that it is a tree. (There are a wide variety of ways to create a tree from a 
treelike graph by utilizing its block structure, see, e.g., Harary 1969.) The vertex set 
of the blocking graph augments the original graph’s vertex set by inserting verti-
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ces to represent each block. Edges within the block are deleted and new edges are 
constructed between the new block vertex and the old vertices of the block. That 
is, each block is replaced by a tree. In Fig. 14.4 the graph on the left is the original 
graph and the graph on the right is the blocking graph. The vertices representing 
blocks are open circles.

When the demand and site location sets for center and median problems are 
restricted to the vertices, algorithms for trees are more easily extended to cactus 
graphs. One example, the O( n log n) algorithm in Frederickson and Johnson (1983) 
for the V/V/p/TL center, was given in the previous section. In addition, linear time 
algorithms on 3-cactus graphs can be constructed for many location problems, in-
cluding the vertex-restricted versions of the minimum weighted variance, the vertex 
restricted stochastic queue median problems, and a wide variety of other median 
type problems (Kincaid and Maimon 1989). The transformation of a K3 into a tree is 
sometimes referred to as a Y-∆ transformation (see Fig. 14.5). The name arises from 
the shape of the block before, and after, an upside down Y, the transformation. The 
first use of this transformation is most likely in the electrical circuit transformation 
found in Kennelly (1899). In Fig. 14.5, the open circle vertex represents the block. 
Each block of a 3-cactus in which the edge lengths satisfy the triangle property are 
transformed as shown in Fig. 14.5. However, if a block’s edge lengths do not satisfy 
the triangle property, a tree is formed by deleting the longest edge. The transforma-
tion preserves shortest path distances. A postorder traversal of the vertices of the 
resulting tree finds the optimal vertex for the location problem of interest.

The above approach provides a method for transforming a 3-cactus into a tree 
while preserving shortest path distances. Unfortunately, the transformation does not 

Fig. 14.4   Graph and 
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generalize beyond 3-cactus graphs. It is possible, however, to exploit the structure 
of 4-cactus graphs and still solve the vertex median problem in linear time.

In Lan and Wang (2000) such an algorithm is constructed for the weighted ver-
sion of the vertex median problem. The algorithm replaces each C4 block with a K4 
and assigns edge weights to the K4, so that all shortest paths through C4 are repre-
sented. The linear time complexity analysis makes use of graph planarity results. A 
Km block is planar for m ≤ 4. The complexity of the algorithm for m-cactus graphs 
with m ≥ 5 is O( n2).

In the same spirit as Goldman’s cycle algorithm, Hatzl (2007) solves the weight-
ed 1-median problem on wheel graphs in linear time. A wheel graph is defined as its 
name suggests: a wheel Wn + 1 has a cycle Cn that approximates the circular portion 
of a wheel, a hub vertex, and edges (spokes) connecting the hub to the vertices of Cn 
on the outside of the wheel. Hatzl (2007) also solves the weighted 2-median prob-
lem on cactus graphs in O( n2). The algorithm for the 2-median problem solves a 
collection of 1-median problems defined on pairs of subgraphs of the cactus graph. 
The subgraphs partition V = V1 ∪ V2 with V1 ∩ V2 = ∅. There are at most two edges 
joining the subgraphs induced by V1 and V2. (If there is only a single edge the com-
plexity is reduced to O( n log n)). The remainder of the algorithm relies on results 
developed for a parameterized version of the 1-median problem also found in Hatzl 
(2007).

An extension of the ideas associated with locating a median of a cycle in Gold-
man (1971) can be found in the pos/neg-weighted median problem. Goldman’s 
cycle algorithm adjusts the vertex weights in the cycle so that some weights were 
likely to be negative. His cycle algorithm presents a way to incorporate negative 
weights and still solve the 1-median problem. Burkard and Krarup (1998) formulate 
the pos/neg-weighted median problem on a network as an extension of a comple-
mentary problem proposed by Courant and Robbins (1941). They provide a linear 
time algorithm that finds a vertex median of a cactus graph with vertex weights that 
may be positive or negative numbers. In addition, the edge lengths may be negative 
for edges not contained in cycles. That is, any K2 block may have positive, zero, or 
negative length. The authors provide an example showing that vertex optimality is 
no longer guaranteed when vertex weights in a cycle are allowed to be negative.

An additional contribution of Burkard and Krarup (1998) is the framework they 
developed for their pos/neg location problem algorithm. Their nomenclature has 
been adopted by a wide variety of subsequent authors solving other location prob-
lems on cactus graphs, such as Ben-Moshe et al. (2007) for center problems. Bur-
kard and Krarup (1998) partition the vertices of a cactus graph into three distinct 
classes. A C-vertex is a degree two vertex included in exactly one cycle. A G-vertex 
is a vertex not included in any cycle. The remaining vertices are called H-vertices 
or hinges. A graft is a maximal subtree in which no two hinges belong to the same 
cycle. These features are illustrated in the cactus graph below. The hinge vertices 
are drawn as solid squares. The grafts are the subtrees labeled G1, G2, and G3. For 
example, G1 is the subtree induced by three G-vertices and one hinge vertex. The 
cycles C1 through C6 are denoted by ellipses (no interior cycle vertices are drawn). 
Similar to the blocking graph in Chen et  al. (1985), a tree, called a skeleton, is 
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constructed from any cactus graph. The skeleton for the cactus graph in Fig. 14.6 
is drawn in Fig. 14.7 Cycles and grafts are collapsed to a single vertex. Hinges are 
cutvertices and remain unchanged.

14.7 � Discussion and Future Research Directions

Two common key ideas were identified in the three foundational references. The 
first idea was to exploit network structures so that the results found on trees can 
be extended to treelike graphs. The question asked at the outset (taken from Tansel 
et al. 1983) follows directly from this idea; other than trees, what special network 
structure leads to efficient algorithms for network location problems? Research-
ers have embraced this question with vigor and have considered a wide variety 
of treelike graph structures, which include cactus graphs, planar treelike graphs, 
block graphs, wheel graphs, and bounded treewidth graphs. The advent of depth 
first search algorithms for graphs in 1972 was a major influence on the way algo-
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rithms were constructed for treelike graphs. Nearly every algorithm mentioned in 
this chapter for cactus graphs makes use of depth-first search. Cactus graphs are 
planar, but as edges are added to the cyclic blocks it does not take long for planarity 
to fail. An interesting question to consider is for which location problems (or which 
class of algorithms) is graph planarity the limiting property?

The second idea gleaned from the three foundational references was that of 
reducing a given location problem to an equivalent problem on a single central 
component. This idea led Goldman (1971) to devise an algorithm for the median 
problem on a single cycle. For similar reasons, Hatzl (2007) also devised an algo-
rithm for a single block, the wheel graph. In both cases the ability to reduce the 
original problem to an equivalent problem on a single block (cycle or wheel) is a 
major motivation for the single block algorithm development. Extensions to finding 
p locations on a graph often result in partitioning the graph into p subgraphs and 
solving single site location problems on each subgraph (as in Hua et al. 1961). Such 
partitioning procedures are often repeated and take advantage of efficient (mostly 
linear time) algorithms for single site location problems on each subgraph.

A different approach was taken in Gurevich et al. (1982, 1984) in the develop-
ment of an algorithm for the p-center problem. The complexity of the algorithm 
includes an interpolating component associated with how near the graph is to a tree. 
The innovative complexity analysis allows an interpolation between trees and gen-
eral graphs. It seems that no other research has attempted to extend this approach to 
other location problems, but their approach warrants further consideration. Finally, 
recent efforts associated with bounded treewidth graphs (see Bodlaender 1996) ap-
pear promising as a mechanism for measuring “treelikeness.” Cactus graphs, series-
parallel graphs, and outerplanar graphs all have treewidths of at most two. While 
it is NP-hard to determine the treewidth of a graph, many NP-hard combinatorial 
problems on graphs are solvable in polynomial time when restricted to graphs of 
bounded treewidth.
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15.1 � Introduction

Location-allocation problems, due to their mathematical complexity, resist exact so-
lutions for problems of more than moderate size. For this and other reasons, heuristic 
(approximative) approaches are widely used in solving them. This chapter considers 
the two seminal streams of heuristic solution procedures, both of which remain in 
use today often in a somewhat altered form. We begin by outlining the location-
allocation problem that originally attracted the development of these approaches.

Consider the following basic scenario: a set of n points is given, either in the 
continuous plane or serving as nodes in a network, with each expressing a demand 
for some service. These demands can be met through travel to or from facilities also 
located at points. The objective is to determine a specified number of facility loca-
tion points that provide the best possible service to these demand points. The stud-
ies considered here explicitly define this problem as determining that set of facility 
locations that minimizes a sum of demand-weighted distances between the demand 
points (customers) and their nearest facility. This problem is known as the multi-
median or generalized median problem. Commonly, the number of facility locations 
sought is denoted by p, leading to the alternate and more popular title of p-median 
problem. Some researchers make a distinction between the continuous space mul-
tisource Weber problem (Brimberg et al. 2000) and the discrete or network space 
p-median problem; here, we do not.

Classic location problems including the location-allocation type occur in two-di-
mensional space, which may in turn be depicted in three ways: continuous, discrete, 
and network space. In the continuous case, referred to as site-generating models 
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(see, e.g., Love et al. 1988), locations are given by Euclidean coordinates, distances 
are calculated endogenously from these coordinates, and facility locations are deter-
mined by solving for the p best pairs of ( x, y) coordinates in the plane. In the discrete 
case, facility locations are selected from a set of potential sites (site selection mod-
els) and the distances, or more specifically, the shipping costs between demand 
points and potential sites are provided exogenously. In the network case, demands 
are expressed at the vertices of networks, facility locations (in the case of medians) 
are selected from network vertices, and distances are calculated over the shortest 
paths in the network. The classic papers of focus in this chapter were presented in 
continuous and network space; in the context of the p-median model, network and 
discrete space are identical in all practical terms.

Regardless of the space considered, the p-median problem is computationally 
difficult, having been shown to be NP-hard by Kariv and Hakimi (1979) for net-
works and Megiddo and Supowit (1984) for the continuous case. Thus, heuristic ap-
proaches are required to solve problems of reasonable size. This difficulty occurred 
to early researchers in location-allocation analysis, and seminal papers considered 
in this chapter presented the model formulations along with heuristic algorithms to 
solve them. They presented heuristic algorithms of two types. Cooper’s early work 
with the continuous space problem gave rise to the alternating locate/allocate heu-
ristic, which Maranzana adapted to the network space problem. Teitz and Bart dealt 
with the network problem using a vertex substitution heuristic in which vertices are 
systematically shifted in and out of a trial solution set.

The remainder of the chapter is organized as follows. Section 15.2 of this chap-
ter reviews the pioneering papers of Cooper (1963, 1964) and Maranzana (1964) 
including their well-known alternating locate/allocate heuristics; we then proceed 
to the classical vertex substitution heuristic of Teitz and Bart (1968). Section 15.3 
examines the impact of these seminal works on later developments. Section 15.4 
provides a short discussion of the future direction of research on the p-median prob-
lem. Finally, Sect. 15.5 offers some concluding remarks.

15.2 � The Classical Contributions

This section will follow the developments of ideas of four seminal papers in the 
field of location analysis. Each of these papers includes some heuristic methods that 
have had an impact on the way location problems are solved.

15.2.1  �Cooper (1963, 1964)

Cooper (1963) posed the problem of locating a set of sources (facilities) in some op-
timal fashion in order to serve a set of destinations (customers) at fixed and known 
locations. The problem was described in the following general terms: given the 
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location of each destination, the requirements at each destination, and a set of ship-
ping costs for the region of interest, determine the number of sources, the location 
of each source, and the capacity of each source.

Alluding to the theoretical difficulties of this problem, Cooper then added two 
important assumptions: there are no capacity restrictions on the facilities, and unit 
shipping costs are independent of facility output.

To put the new problem in context, Cooper (1963) reviewed the background lit-
erature on single facility problems, touching on the work of Cavalieri, Steiner, and 
others. Today, we know that this brief review overlooked two papers of major im-
portance, those of Weiszfeld (1937) and Kuhn and Kuenne (1962), which provided 
a solution method for the single facility problem.

Cooper stated the problem formally, but we have changed the notation for overall 
consistency. The known customer locations are defined by their Cartesian coordi-
nates

and the coordinates of the p facilities to be determined are

Note that although p is now given, we may repeat the analysis for various values of 
this parameter in order to ultimately determine the ‘best’ number of facilities.

Cooper also indicated that “in addition to not knowing the location of each of 
the p sources in the minimum cost solution, we also do not know which source is to 
serve which subset of destinations.” We now term this allocations. He introduced a 
binary variable to deal with these allocations:

He further introduced a weighting factor wij relating to the multiplicity of supply 
trips or service calls, a measure of demand for the service.

Cooper framed the problem mathematically in general terms and then introduced 
the notion of optimal service being the minimization of a weighted sum of Euclid-
ean distances between the customers and the facilities that serve them. This leads to 
the following formulation:

� (15.1)

Setting the first-order partial derivatives of (15.1) to zero with respect to each xj and 
yj provides conditions for a minimum. Thus, after replacing the Euclidean distance 
terms in (15.1) with

(ai , bi) , i = 1, 2, . . . , n,

(
xj , yj

)
, j = 1, 2, . . . , p.

αij = 1 if customer i is served by facility j , 0 if not.

Min : ϕ =
p∑

j=1

n∑

i=1

αijwij
[
(ai − xj)

2 + (bi − yj)
2]1/2

.

Dij = [(ai − xj )2 + (bi − yj )2]
1/2
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and re-arranging, we obtain

� (15.2)

Each pair of simultaneous equations provides the optimal solution for the single 
median problem defined for a known subset of customers who are allocated to a 
particular source. Where p facilities are sought, there will be p allocation groups; 
hence, p separate single facility problems must be solved for any given set of al-
locations (or partition of the customer set). Cooper presented an iterative scheme 
for solving (15.2) with fixed allocations, which is now commonly termed the 
Weiszfeld procedure, having rediscovered the same iterative scheme first proposed 
by Weiszfeld (1937) for the single median problem. The procedure simply updates 
the coordinates of each facility by substituting the values from the latest iteration 
in the right-hand side of (15.2), and continuing in this fashion until convergence is 
detected. (The interested reader is referred to Kuhn 1973, and Katz 1974, for con-
vergence studies of the Weiszfeld procedure.) As a starting point for the iterations, 
Cooper recommended the weighted mean center of the customer points:

� (15.3)

(Cooper presents these values incorrectly in both the 1963 and 1964 papers, by 
neglecting the wij  factor in the denominators. His case studies survive this error 
because all weights are assumed equal to unity.)

Cooper’s initial solution approach is straightforward, based on his observation 
of the crux of the location-allocation relationship: “If, for a set of n destinations and 
p sources, the location of the sources is known, the determination of the optimal al-
locations is trivial. It is merely the set of weighted distances […] that is a minimum. 
Conversely, if the allocation is fixed, the determination of the optimum location of 
the sources is merely the exact calculation, with known αij that has been previously 
described” (Cooper 1964). The problem can thus be solved exactly by examining all 
possible allocation sets, {αij}, and choosing the solution that minimizes (15.1). He 
presented a test problem, but acknowledged that this approach would not be com-
putationally attractive for what in the 1963 computing environment was quaintly 
considered to be a large set of customers (>10). Cooper determined that the number 
of such allocations is the Stirling number of the second kind S( n, p), a number that 
remains “formidably large” for problems that are considered of modest size today.

Cooper observed that a method for generating a “reasonable” number of facil-
ity location sets was required. He suggested considering the n customer sites as 
potential facility locations, thus reducing the problem to the discrete space form. 

xj =

n∑
i=1

αijwij ai

Dij

n∑
i=1

αijwij

Dij

and yj =

n∑
i=1

αijwij bi

Dij

n∑
i=1

αijwij

Dij

, j = 1, 2, . . . , p.

x0
j =

n∑
i=1

αijwij ai

n∑
i=1

αijwij

, and y0
j =

n∑
i=1

αijwij bi

n∑
i=1

αijwij

, j = 1, 2, . . . , p.
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The problem is thereby reduced to size nCp, but he acknowledged that the method 
remained “inadequate for many problems of industrial importance because of the 
excessive amount of calculation involved”. Moreover, he recognized that limiting 
facilities to a base set of customer sites might not yield correct allocations.

Having introduced the continuous location-allocation problem and discussed the 
issues in solving this problem in his 1963 paper, Cooper (1964) turned to the de-
velopment of heuristics to solve it effectively. He surmised that the problem had no 
sharp minimum, but rather many alternative or close optima, which “makes fea-
sible the use of heuristic algorithms with a reasonably high probability that a well 
constructed heuristic will find one of these near optimal solutions.” (Here, we see 
an interesting distinction between classical and modern viewpoints: today, the exis-
tence of multiple local minima is considered to be regrettable, and the goal of heu-
ristics is to come as close as possible to the optimal solution rather than to identify a 
good one. This goal is facilitated, of course, by the enormous increase in computing 
power available today.) The paper revisits the definition of the problem, the iterative 
procedure for the single facility problem (which he terms the “exact” procedure), 
and the suggestion that a direct solution to the multi-source problem is to minimize 
φ for all possible sets of αij. In order to treat the problem of very large customer sets 
( n ≤ 500) and situations of nonlinear costs (an idea he did not pursue further), Coo-
per developed several heuristic algorithms. He began by proposing lower bounds 
for limited cases of the problem, which he used to rank the results of the heuristics, 
and also determined an obvious upper bound for the problem.

Cooper (1964) presented four basic heuristics that are summarized below. Three 
of the heuristics assume that the “destination set is a very favored set,” and thus, use 
subsets of the customer set for locating facilities. The first two of these, upon termi-
nation, use the exact (Weiszfeld) procedure to determine the (optimal) continuous 
space origins with respect to the selected allocation.

A: The Destination Subset Algorithm.  This considers all possible subsets of p cus-
tomers as “sites” at which to locate facilities. This is the method of the 1963 paper 
and basically involves complete enumeration of all nCp discrete space solutions to 
the problem, a reduction from the S( n, p) possible continuous space solutions. Upon 
termination, a continuous adjustment is applied by using the exact procedure on the 
best discrete solution. Cooper again states that this procedure does not guarantee an 
optimal solution (the correct allocation may not be found), and warns that computa-
tion time for large problems is prohibitive.

B: The Random Destination Algorithm.  Here, p random customers are selected 
to be facility locations. The algorithm is repeated a number of times and the best 
solution is retained. Cooper suggests a statistical approach to determine when the 
algorithm might reasonably be terminated. The procedure provides a continuous 
adjustment on the final solution as before.

C: The Successive Approximation Algorithm.  The destination subset algorithm is 
run for p = 2 facilities. The best location for a third facility among the remaining 
customer sites is determined and then locked into the solution. Additional facilities 
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are similarly added. This is, after the initial two facilities are located, a greedy con-
structive algorithm of customer sites. It is unclear why Cooper does not apply the 
exact algorithm after termination.

D: The Alternate Location and Allocation Algorithm.  This elegant heuristic by 
Cooper continues to be popular to this day. It is based on the simple observation 
alluded to earlier that the two components of the problem, locate and allocate, are 
easy to solve in isolation. That is, given the locations of the p facilities, and the fact 
that there are no capacity restrictions on them, the customers are simply allocated in 
turn to the facility that provides the lowest cost service. For homogeneous facilities 
( wij = wi, for all i, j), this translates to assigning each customer to the closest facility. 
If the allocations are given, the problem reduces to p independent single facility 
problems that may be readily solved with the Weiszfeld procedure. The heuristic 
simply alternates between the two phases until no further improvement is possible. 
The steps provided by Cooper are summarized in Algorithm 1.

Cooper identifies the algorithm as a monotonic-decreasing convergent process 
that may not converge to the globally optimal solution. In fact, the process only 
guarantees a local minimum.

Cooper then uses solutions to the destination subset algorithm to demonstrate the 
lack of a sharp minimum, and reiterates that “it is this relative insensitivity to source 
location with correct or near-correct allocations which makes the use of heuristics 
feasible in this problem.”

Algorithm 1: Alternating Locate/Allocate (ALT-1) 

Step 1:	� Divide the customer set into p subsets of approximately equal size.
Step 2:	� For each subset, apply the exact procedure to determine the optimal 

facility location.
Step 3:	� Allocate all customers to the closest facility.
Step 4:	� Continue alternating between steps 2 and 3 until there is no alloca-

tion change.

 
Cooper tabulated results for 10 problems of size, n = 30, p = 3. For the first time in 
his experience, the destination subset algorithm arrived at an incorrect allocation. 
He also used 400 iterations of the random destination algorithm. As expected, the 
destination subset algorithm generally found the best solutions, but was by far the 
most computationally demanding of the methods. The random destination approach 
was next in quality, and much less costly. The successive approximation approach 
was not satisfactory―it is unfortunate that Cooper did not apply the exact solution 
procedure to its results for a fairer comparison with approaches A and B. The al-
ternate location and allocation algorithm (ALT-1) was deemed to be “satisfactory.” 
Cooper neglected to note that this algorithm actually performed best in three of the 
trials, even though its statistics were troubled by three spectacular failures.

He further tested the heuristics with 100 problems of size n = 40, p = 3, and con-
cluded that: “it is apparent that the best practical method of solving large location-
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allocation problems is with the use of the random destination algorithm and subse-
quent improvement by a single calculation of the exact location method.” Again, he 
does not credit the alternate location and allocation approach, the solution statistics 
for which were almost identical to the random destination approach.

One questions why Cooper downplayed the abilities of the alternating location 
and allocation algorithm, which has been passed down as the major contribution of 
his early work. One further questions why Cooper did not think to combine algo-
rithms B and D to apply the alternating algorithm to the random solutions. Cooper 
started the alternating heuristic with a rather messy selection of an initial allocation. 
Scott (1971) modified the algorithm by starting with a random selection of trial 
facility locations. Later work discovered that the influence of a single poor solu-
tion could be overcome by using several such random starts. This has become the 
common procedure for using the alternating heuristic today. The random multi-start 
version of the alternating heuristic allows us to obtain several local minima in dif-
ferent regions of the solution space, and thus improves the chances of obtaining a 
“good” solution.

Cooper’s 1963 and 1964 papers first identified the location-allocation problem 
in mainstream literature. Moreover, they identify the computational characteristics 
of the problem, while the second paper provides solution techniques for what is 
otherwise a very difficult class of problems. The alternate location and allocation 
algorithm is still often used today. For several years, this popular approach has been 
dubbed “The Cooper Algorithm” (Scott 1971).

15.2.2  �Maranzana (1964)

Maranzana (1964) defined the location-allocation problem on a network space as 
follows: given, in a network, a set V of n points (referred to as “sinks”) v1, …, vn, 
with associated nonnegative weights w1, …, wn, and a nonnegative, n-dimensional, 
symmetric distance matrix [dij], find p sources vx1 , ..., vxp

 among the points in V, 
and a partition of V into p subsets of sinks Vx1 , ., Vxp

 served respectively by the p 
sources so that

� (15.4)

is a minimum, where Dij is the minimum path length from vi to vj. (Again we have 
changed notation for consistency.) The total transport cost is assumed to be propor-
tional to the weighted sum of shortest-path distances given in (15.4).

Maranzana concluded that direct enumeration would be impractical for “the 
typical problem,” and proposed instead an iterative procedure to solve the prob-
lem heuristically. The method alternates between location and allocation phases 
as in Cooper’s algorithm, except that since we are dealing with a network, the 
shortest paths between all pairs of nodes must be determined first in a prepro-
cessing step. Maranzana adapted a dynamic programming approach attributed to 

p∑

j=1

∑

vi∈Vxj

Di,xj
wi
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Bellman (1958) to accomplish this. The shortest path between a given pair of 
nodes is determined recursively as the shortest path that uses at most j edges, for 
j = 1, 2, …, n − 1. By using a fixed sequence and constant updates of the shortest 
paths between all pairs of nodes, Maranzana actually improved the efficiency of 
Bellman’s algorithm.

Maranzana also noted that a separate routine was required to find the “center of 
gravity” of any subset Q of nodes, which he defined as a vertex vj of V that provides 
the minimum weighted sum of shortest path lengths between itself, acting as a facil-
ity, and the vertices of Q, acting as its customers. (This should not be confused with 
the median of set Q, since vj is not restricted to Q.) To find the center of gravity, 
Maranzana simply evaluated each vertex and chose the best one. The steps of his 
heuristic may be outlined as shown in Algorithm 2.

Algorithm 2: Alternating Locate/Allocate (ALT-2) 

Step 1:	� Select p trial facility sites arbitrarily from the n vertices of V to 
specify the current location set.

Step 2:	� Partition the n vertices by assigning each customer to its nearest 
facility in the current location set.

Step 3:	� Determine a “center of gravity” for each subset in the partition.
Step 4:	� If the center of gravity is the same as the current location of the 

facility for each subset, stop (the current location set with associated 
partition is the final solution); else update the current locations to 
the new centers of gravity and return to Step 2.

 
Maranzana proved that the sequence of solutions generated by the algorithm is 
monotone non-increasing by showing that the allocation and location phases (Steps 
2 and 3) may only improve the current solution. He then provided a simple numeri-
cal example to show that the procedure can converge to a non-optimal (local) mini-
mum. Using a second simple example, he demonstrated the difficulty that may arise 
when the center of gravity (Step 3) is non-unique; that is, different decision rules for 
breaking ties may lead to very different solutions. To circumvent the above difficul-
ties, Maranzana, unlike Cooper, who treated the alternating heuristic as being suited 
to a single application, suggested that “with a computer it is feasible to carry out 
the procedure on a number of initial selections so that one can be assured of arriv-
ing at a good solution.” Finally, the algorithm was applied to problems of two and 
three facilities in a case study of 158 Italian cities, each given a hypothetical weight 
that appears to have been related roughly to city size. It is interesting that computa-
tion time was mainly devoted to the calculation of shortest path distances on the 
network, a problem that would be magnified later on for practical applications on 
much larger networks. Finally, we note that Maranzana seems to have assumed in 
his procedure that the optimal facility sites are located at the vertices of the network, 
a result that would be proven coincidentally by Hakimi (1964).
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15.2.3  �Teitz and Bart (1968)

Teitz and Bart (1968) addressed the problem of solving what they called the “gener-
alized vertex median of a weighted graph,” which today we call the “uncapacitated 
p-median problem on a network.” Specifically, they considered “the problem of 
choice of location of p sources of unconstrained capacity from among n destina-
tions having fixed demands and located at nodes of a network.” They acknowledged 
that their problem was essentially the same as that investigated by Hakimi (1964) 
and Maranzana (1964), stating that their concern was with alternative methods of 
solution.

The problem is thus defined on an edge and vertex weighted graph, G. Each ver-
tex vi is weighted by a weight wi and each i–j edge by the shortest path distance Dij. 
The distance matrix D of G is an [n × n] symmetric matrix of shortest path distances 
between all pairs of vertices vi, vj. The weighted distance matrix R, asymmetric for 
differentially weighted vertices, is defined as

� (15.5)

The single vertex median solves

� (15.6)

where

� (15.7)

The generalized vertex median problem can be developed as follows: let Vp be some 

subset containing exactly p vertices of G. In an n-vertex graph there will be 
(

n

p

)
 

possible such subsets, indexed V m
p ; m = 1, 2, ...,

(
n

p

)
. For each such subset, we 

may construct a submatrix Rm
p  of R by adjoining all columns of R for which the 

corresponding column vertices are contained in V m
p . If facilities are limited to ver-

tices in V m
p ,, each customer vi will be served by that facility in V m

p
 for which rik is a 

minimum. The total weighted distance rm for the V m
p  set of facilities is

� (15.8)

where in each row of Rm
p ,  k (=k( i)) is the facility for which rij is minimized. The 

general vertex p-median of G is defined as some V m∗
p  such that

[
rij

]
=

[
wiDij

]
.

rk = min {r1, r2, . . . , rn} ,

rj =
n∑

i=1

rij , j = 1, . . . , n.

rm =
n∑

i=1

rik ,
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�
(15.9)

so that rm* ≤ rm, m = 1, 2, . . . ,
(

n

p

)
.  Teitz and Bart acknowledge that the p-me-

dian is not necessarily unique. They then addressed the task of finding it.
Teitz and Bart begin by outlining the direct enumeration method and Maran-

zana’s alternating algorithm, termed the partition method for obvious reasons. The 
former was deemed too computationally demanding and the latter of suspect robust-
ness. This is followed by the main contribution, their vertex substitution method, 
which in their words “concentrates upon the formal definition of the generalized 
vertex median and its associated weighted distance matrix.”

The method proceeds as follows: for each possible subset of facility sites V m
p , we 

may construct a submatrix Rm
p

by combining the relevant p columns as described 
above. Consider what happens when one vertex vj in the facility subset is replaced 
by another vertex vb outside this set; that is, the vb column takes the place of the vj 
column in Rm

p .  If rij is the i-th row minimum of Rm
p ,  then its replacement by rib 

could have one of several outcomes:
If rib  ≤ rij, the increment to the i-th row contribution to sum r would be

� (15.10)

If rij ≤ rib ≤ ris (where ris is the second-smallest i-th row element in Rm
p ),

� (15.11)

If rij ≤ ris ≤ rib,

� (15.12)

In the Teitz and Bart paper, the differences in these expressions are incorrectly re-
versed. For example, rib − rij is incorrectly written rij − rib. The authors also seem to 
make a fundamental error by concluding that “if rij were not the i-th row minimum 
of Rm

p ,  then no change in the i-th row contribution to r would result.” This is not 
generally true, as implied by the analysis above. There can be no increase in the 
objective value r, but vb may still become the new closest facility to vi, resulting in 
a reduction in r.

It is worth substituting vertex vb for vj only if the net effect of all increments

� (15.13)

is less than zero, i.e., if it reduces the total weighted distance. An iterative process 
of single vertex substitutions as suggested by Teitz and Bart may now be employed 
to obtain a monotone decreasing sequence of solutions that ends when a local mini-
mum is reached. 

rm∗ = min{r1, r2, ..., r

 n
p




},

i�bj = rib − rij ≤ 0.

i�bj = rib − rij ≥ 0.

i�bj = ris − rij ≥ 0.

�bj =
n∑

i=1

i�bj
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Algorithm 3: Vertex Substitution (VS-1) 

Step 1:	� Choose some initial facility subset V1 containing p (randomly-
selected) vertices.

Step 2:	� For each vertex vj ∈ V1, find its associated customer subset of verti-
ces for which it is the closest facility (no rules are given for break-
ing ties as in Maranzana); compute the total weighted distance r1 for 
the resulting solution.

Step 3:	� Select some vertex vb not in the facility subset, i.e., vb ∈ V \V1.

Step 4:	� Substitute vb in turn for each vertex vj ∈ V1, and compute Δbj each 
time.

Step 5:	� Find that vertex vk ∈ V1 that, when replaced by vb, most reduces the 
total weighted distance, that is,

	
� (15.14)

Step 6:	� If such a vertex vk can be found, substitute vb for vk in the facility 
subset; label the new subset V2 and compute r2(=r1 + Δbk). If no ver-
tex vk satisfies relation (15.14), simply retain the facility subset V1.

Step 7:	� Select another vertex, not previously tried, in the complement of V1, 
and repeat Steps 4 through 6.

Step 8:	� When all vertices in the complement of V1 have been tried, define 
the resulting facility subset Vt as a new V1 and repeat Steps 2 through 
7. Call each such complete repetition a cycle.

Step 9:	� When one complete cycle results in no reduction in r, terminate the 
procedure. The output is the last solution obtained.

 
Note: It appears to be unclear in Step 7 whether the authors intended that the new 
subset V2 replace the original subset V1 in the repetition of Steps 4–6. However, this 
would only affect the type of improvement strategy utilized, and not the gist of the 
procedure. We interpret the authors’ intention as using the original V1 in each such 
repetition of Steps 4–6, giving rise to what is termed today a “best” improvement 
strategy; i.e., look at all solutions in the one-interchange neighborhood of V1 and 
select the best one. It is also unclear how they intend us to perform Step 6 in suc-
cessive iterations; their use of Vt in Step 8 suggests that they would label further 
subsets V3, V4, …, Vt. This is not necessary, since we need only maintain a current 
“best” substitution at this step, which we could label Vt throughout. Moreover, the 
total weighted distance need not be calculated each time.

Teitz and Bart acknowledge that a situation could arise in which a single ver-
tex substitution produces no further improvement, whereas pairwise or higher sub-
stitutions would further reduce the total weighted distance. However, they do not 
characterize this case or give examples. In their experiments on random graphs 
with 25 vertices, they observe that the procedure always terminated (i.e., reached a 

�bk < 0 and �bk = min
j

{�bj }
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local minimum) within four cycles. Most important—they note a very significant 
improvement in solution quality using vertex substitution compared to the partition 
method. The partition method furthermore exhibits considerable variation in perfor-
mance. They conclude that vertex substitution is the preferable heuristic.

15.3 � Impact of the Early Heuristics

This section investigates what further developments have been made on the basis of 
the heuristic methods described in the previous section. We first examine work that 
considers generalization of distance measurements, followed by a variety of loca-
tion—allocation models and modern heuristics in continuous and discrete spaces.

15.3.1  �Generalization of Distance Measurements

The Maranzana and Teitz and Bart approaches were defined in network space, but 
it is not necessary to have a network structure to define the p-median or to solve it 
using their procedures. Many examples in the literature do not rely on an underlying 
network structure. Both discrete and network spaces are defined with reference to a 
matrix of shortest distances, and operate through consideration of these internodal 
distances. This is possible because the Hakimi (1964) finding ensures that optimal 
locations can be limited to the vertices—hence the internodal distance matrix is all 
the information required. It follows that the relevant distance matrix among pairs 
of “vertices” can be defined other than within a network or if, within a network, 
without specifying the network structure. We can apply the partition and vertex 
substitution methods to any system where a matrix [Dij ] is provided. Given a set 
of nodes in space, these distances might be specified for example as Euclidean dis-
tances, airline travel times, psychologically perceived travel costs, or in many other 
different ways.

The Teitz and Bart and Maranzana papers work on the assumption that the cus-
tomer set represents the potential facility locations from which trial sites can be 
selected. In modern practice it is recognized that this is often not realistic. Some 
customer sites may be unsuited to facilities; some ideal facility locations may not 
express demand. Thus, we recommend that a separate set of potential facility loca-
tions be maintained in working with network and discrete space models. The dis-
tance matrix would be constructed and used in a similar fashion as before. In some 
realistic problems, facilities may already exist in some locations, and the heuristics 
above are easily adapted to deal with this situation.

The Cooper papers (1963, 1964) assumed that distances are measured by the Eu-
clidean norm. Since that time more general distance functions, such as the lp norm, 
have been incorporated in location models to provide more accurate measures of 
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travel distance. Given any two points, X1 = ( x1, y1), X2 = ( x2, y2) in the plane, the �p  
distance between them is given by:

where the parameter p ≥ 1. When p = 1, we have the well-known rectangular (or 
Manhattan) norm; the Euclidean norm occurs with p = 2. The Cooper algorithm 
is readily extended to the median problem with �p  distances after modifying the 
Weiszfeld formulas appropriately; see, e.g., Love et al. (1988). The use of “block 
norms” allows the location step to be solved by linear programming techniques. 
In fact the problem may now be reduced from continuous space to a finite set of 
intersection points, thus allowing a vertex substitution heuristic to be used as well.

The distance function may be raised to some power in order to model more ef-
fectively the transportation costs or times; an example is the fire engine travel time 
study in Kolesar et al. (1975). Geodesic distances are typically used for location on 
a sphere as in the case of air travel. In cluster analysis, which has important applica-
tions, for example, in data mining, the fixed points (vertices) are located in higher-
dimensional space according to the number of attributes involved. The well-known 
k-means model from the data mining literature is simply a version of the p-median 
model ( p = k) with squared Euclidean distances.

The partition and vertex substitution methods have been readily adapted to such 
generalizations of the original continuous and discrete (network) problems.

15.3.2  �Other Location-Allocation Models

The general principles of partition and vertex substitution may be extended to other 
forms of the location-allocation problem as introduced elsewhere in this book. With 
the vertex substitution method, we simply revise the procedure for calculating the 
incremental change in objective function associated with each swap move of vertex 
entering and vertex leaving the solution. The generation of a monotone sequence 
and convergence to a ‘local’ optimum are guaranteed. With the partition method, 
the location step is adjusted according to the type of objective function under con-
sideration. For problems that are separable into location and allocation phases, we 
may show again that the sequence generated is monotone, which is essential for 
convergence of the heuristic. However, the partition method may not converge in 
more general cases. Consider, as an example, a form of the covering problem where 
the goal is to locate sensors on a grid in order to maximize the mean probability 
of detection measured at the grid points. The location step is no longer separable 
into p independent single facility problems due to additional interactions that exist 
with facilities (sensors) other than the closest one, and thus the partition method 
breaks down. A similar situation may occur in location-allocation models involving 
noxious facilities. It therefore appears that the partition method is not as universally 

�p (X1, X2) = [|x1 − x2|p + |y1 − y2|p]1/p
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useful as the vertex substitution method for problems occurring on networks or in 
discrete space.

15.3.3  �Modern-Day Heuristics

The partition and vertex substitution methods both fall in the category of local 
search; that is, the procedure finds a better solution in a local neighborhood of the 
current solution and iterates in this fashion until a local optimum is reached. It is 
interesting to note that in network (or discrete) space, any local optimum obtained 
by the vertex substitution method must also be a local optimum in the partition 
method, but the converse is not necessarily true. This is due to the fact that the loca-
tion step in the partition method is equivalent to a “restricted” set of vertex swap 
moves. Thus, starting from some local optimum, a better partition of the customer 
set may be found by examining all possible swap moves as in the vertex substitution 
method. This may explain the superiority observed by Teitz and Bart of their heu-
ristic, as well as the higher variability of results obtained by the partition method. 
It is also interesting to note that comparative studies of the two methods appear to 
be limited to the experiment of Teitz and Bart on a few small random instances, and 
some further testing by Rosing et al. (1979). Yet the vertex substitution method is 
widely used to this day, while Maranzana’s work in comparison has been largely 
ignored. There may be computational advantages, for example, in using a two-stage 
approach where the fast partition method is applied first on a random initial solu-
tion, followed by vertex substitution with the solution from the first stage as the 
starting point.

The Cooper algorithm is still widely used on problems posed in continuous 
space. A few variants that seem to work better have been suggested including, as 
noted, Scott (1971) who starts with an initial random set of facility locations instead 
of an initial allocation. Care must be taken, since the Cooper algorithm may lead to 
a degenerate solution (Brimberg and Mladenovic 1999) where some facilities end 
up having no customers assigned to them. The shortcoming is easily remedied by 
inserting such facilities at unoccupied vertex locations (those customers that do not 
have coinciding facilities) whenever the situation arises within the solution process.

As problem size defined by n and p increases, an exponential growth in the num-
ber of local optima is observed. Thus, local search methods become inefficient. We 
will see next that the partition and vertex substitution methods still play an impor-
tant role in the more advanced techniques used today.

15.3.3.1 � The Continuous p-Median Problem

The random multi-start version of Cooper’s algorithm remained the state-of-the-art 
for many years despite a number of other competing heuristics. Notable among 
these is a heuristic developed by Love and Juel (1982) that is the first method to 
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impose a set of neighborhood structures on the problem. A given neighborhood of 
a solution is defined here as the set of points around that solution that are obtained 
by exchanging a specified number of assignments of customers from their current 
facilities to new ones. The authors consider up to two exchanges, and show that 
the two-exchange neighborhood may be used (at a computational cost, of course) 
to ‘jump out’ of a local optimum trap in the one-exchange neighborhood. In their 
procedure the facilities are always optimally located with respect to any given allo-
cation of the customers. Other heuristics include gradient-based methods (Murtagh 
and Niwattisyawong 1982, and Chen 1983) and a projection method by Bongartz 
et al. (1994). For further details, see, for example, the survey paper by Brimberg 
et al. (2008a).

Recall that one of Cooper’s initial ideas was to solve a discrete version of the 
problem where the facility locations are restricted to the set of fixed points given 
by the customers and the shortest-path distance is simply the Euclidean distance 
between each pair of vertices. Hansen et al. (1998) revisit this idea several years 
later while taking advantage of an efficient code by Hanjoul and Peeters (1985) to 
solve the discrete problem exactly. A second stage involves a continuous improve-
ment where p single facility problems resulting from the partition of the customer 
set by the discrete solution are solved. Excellent results are reported, but computa-
tion times become excessive. Brimberg et al. (2000) propose a new neighborhood 
structure based on the vertex substitution idea of Teitz and Bart (1968); that is, 
facilities are relocated one at a time to an unoccupied fixed point (a customer that 
does not have a coincident facility). The one-interchange neighborhood contains 
all such possible single moves. A local search using Cooper’s algorithm is then 
conducted from all or selected points in this neighborhood. The authors investigate 
various “drop and add” strategies in the selection process, which allow a reduction 
in the size of the neighborhood from O( np) to O( n + p), and as a result, a much faster 
local search. When the full one-interchange neighborhood is verified, an efficient 
updating procedure by Whitaker (1983) is used. The relocation heuristics are able to 
obtain better results than the multi-start Cooper algorithm in a fraction of the time.

The recent application of metaheuristics to the continuous p-median problem 
has resulted in a significant advance in the state-of-the-art. Unlike local search 
that examines a narrow region of the solution space and terminates at a local op-
timum, metaheuristics are general frameworks that allow the search to expand to 
different regions of the solution space, and thus escape the “local optimum trap.” 
A comparative study (Brimberg et al. 2000) shows that as problem size increases 
(and the number of local minima explodes), the performance of the multi-start 
Cooper algorithm deteriorates significantly relative to new heuristics based on 
Tabu search, variable neighborhood search, and the genetic algorithm. It is in-
teresting to note, however, that these newer methods usually have Cooper’s al-
gorithm embedded within them. For example, the various versions of variable 
neighborhood search in the above comparative study use Cooper’s algorithm in 
the local search step. The initial population in the genetic algorithm of Houck 
et al. (1996) is obtained by repeating Cooper’s algorithm from random starting 
points until an adequate number of local minima is found, and after the crossover 
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operation, the new solution is improved (mutation operation) using the Cooper 
algorithm. For a further update on metaheuristic-based methods for solving the 
continuous p-median problem, see Brimberg et al. (2008a).

15.3.3.2 � The Discrete p-Median Problem

As noted in Mladenovic et al. (2007), the vertex substitution method by Teitz and 
Bart, which they refer to as the Interchange procedure, is still “commonly used as 
a standard to compare with other methods.” Both Maranzana’s partition method, 
aptly named the Alternate heuristic, and the Interchange procedure have been used 
in composite type heuristics. For example, Captivo (1991) adds facilities one at a 
time in a greedy fashion that reduces total cost as much as possible, and then uses 
the Alternate procedure in each step to further improve the solution. Another com-
posite method first constructs a greedy solution and then applies the Interchange 
procedure to that solution; it is often used for comparison with other new methods 
(see Voss 1996, and Hansen and Mladenovic 1997). Lagrangian-based procedures 
that “alternate” between solving for the primal variables and adjusting the Lagrange 
multipliers typically use a local search as above to improve the obtained solution 
(as in Beasley 1993).

The concept of neighborhood structure is intimately related to the vertex sub-
stitution method. We may view this method as a local search in the 1-interchange 
neighborhood. Generalizations are now possible. For example, Kochetov et  al. 
(2005) propose a new neighborhood structure, termed LK (Lin-Kernigham), which 
employs a depth parameter k that counts the number of interchange moves within 
one step of local search. The LK( k) neighborhood may be described as follows: 
( i) find two vertices vadd and vdrop that give the best solution in the 1-interchange 
neighborhood; ( ii) exchange these two vertices to get a new solution; ( iii) repeat 
the above steps k times, not allowing any facility that has been dropped to re-enter 
the solution. The process is repeated until a local minimum in the LK neighborhood 
is reached. This type of local search has been used within Lagrangian relaxation, 
random rounding (after linear relaxation), and ant colony optimization (Dorigo and 
Di Caro 1999). The 1-interchange neighborhood can be modified in a straightfor-
ward way to handle the related simple plant location problem. In this case a fixed 
cost fi is charged to open a facility at vertex vi, and the number of facilities to open 
is unknown. Brimberg et al. (2008b) examine an extended version of the simple 
plant location problem with nonlinear objective function representing the return on 
investment. They use an expanded local search neighborhood that allows all single 
moves where either a vertex is opened ( vadd), a vertex is closed ( vdrop), or an inter-
change is made ( vadd and vdrop).

Mladenovic et al. (2007) note that “the Interchange method is one of the most 
often used classical heuristics either alone or as a subroutine of other more complex 
methods or within metaheuristics.” In large scale applications it is therefore critical 
that the procedure be implemented in an efficient manner. The popular CLARANS 
(Clustering Large Applications based on RANdomized Search) method in data min-
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ing (Ng and Han 2002) conducts a local search using a small random sample of 
points in the 1-interchange neighborhood. Efficient implementations that can evalu-
ate in reasonable time the entire neighborhood for very large instances, including 
the fast interchange of Whitaker (1983) mentioned previously, are summarized in 
Mladenovic et al. (2007).

Several modern heuristics that derive from metaheuristic rules use the vertex 
substitution method in some form. In the Tabu search procedure of Mladenovic 
et al. (1996), the 1-interchange move is extended to what they term the 1-chain-
substitution move. In Rolland et al. (1996), the 1-interchange move is divided into 
add and drop moves that do not necessarily follow each other in an approach within 
Tabu search known as strategic oscillation. Note that this procedure allows the 
trajectory that is generated to oscillate between feasible and infeasible solutions. 
Kochetov (2001) proposes a simple probabilistic Tabu search in which a restricted 
(random) 1-interchange neighborhood is used. The simulated annealing heuristic 
of Chiyoshi and Galvao (2000) combines the 1-interchange neighborhood with the 
general methodology of simulated annealing. The scatter search method of Garcia-
Lopez et al. (2003) uses the Interchange procedure in a final step to improve the 
combined solutions that are obtained.

The Variable Neighborhood Search methodology imposes a set of neighborhood 
structures on the solution space in order to conduct a systematic search at different 
distances from the current solution. The movement to different neighborhoods is 
accomplished by a ‘shaking’ operation. In the standard approach for the p-median 
problem (e.g., Hansen and Mladenovic 1997), the neighborhood structures are de-
fined by moving 1, 2, …, kmax facilities from their currently occupied vertices to 
new unoccupied ones. The shaking operator thus selects a random point in the k-
neighborhood by randomly moving k facilities in this manner. A local search from 
this point is conducted using the Interchange procedure.

Heuristic concentration (Rosing and ReVelle 1997) is a metaheuristic of special 
interest to this chapter as it was developed specifically for the p-median problem 
and is based straightforwardly on the Teitz and Bart algorithm. The local minima 
arising in repeated runs of the Teitz and Bart algorithm are identified as two-, three-, 
and so on “traps” by Rosing and Hodgson (2002); these identify clusters of nodes 
that cannot be avoided by single interchanges. The main idea behind heuristic con-
centration is to then create a concentration set of desirable facility sites (open facil-
ity sites that most often appeared in the solutions from the first stage), and use this 
concentration set as the set of potential facility locations, thus reducing the solution 
space of the problem. Nodes that occur in all solutions may be assumed to be in the 
optimal solution if so desired. The much smaller problem defined by the demand 
nodes and the concentration set may be solved optimally or approximately. Heuris-
tic concentration has been shown to provide very good, usually optimal, solutions to 
problems of several hundred nodes, although these are considered relatively small 
instances by today’s standards. Since the number of customers remains at its origi-
nal size, computation times may become unmanageable for larger problems. This 
shortcoming may be addressed in the future by applying neighborhood approaches 
to the traps identified in the concentration set.
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Thus we see that several of the new methods have at their hearts the fundamen-
tal interchange notion of Teitz and Bart (1968). Mladenovic et al. (2007) conclude 
that the more recent heuristics outperform Teitz and Bart, but due to the number of 
different data structures and implementations, they are unable to conclude “what 
metaheuristic dominates others.” Another useful source to note is Reese (2006).

15.4 � Future Research

We believe that interest in heuristics will continue to grow in the coming years in 
studies of combinatorial and global optimization problems including, of course, the 
p-median problem. Here are some reasons why.

Networks are getting increasingly larger in real applications. For example, Brim-
berg et al. (2000) motivate their work by citing two actual case studies, a transship-
ment center location problem and a districting problem with ( p, n) = (20, 1,700) and 
(170, 1,400), respectively. A very large-scale study dealing with spare parts logistics 
for a Japanese manufacturing company with 6,000 customers and 380,000 potential 
warehouse sites is cited in Brimberg et al. (2008a). With such trends as globaliza-
tion of business, we can expect the size and complexity of location and distribution 
problems to only increase. Given the limiting assumptions inherent in mathematical 
models, finding the “optimal” solution, even if it were possible, may be of ques-
tionable importance in practice. It seems a more sensible approach would be to use 
heuristics to find a set of alternative “good” solutions in a way that strikes a proper 
balance between quality of solution and computing time.

New important applications of the p-median model are materializing that are 
outside the original scope of locating physical assets such as warehouses. We men-
tion as an example the importance of the p-median model and other related models 
in the field of data mining. One objective in data mining is to detect useful patterns 
within databases by using models such as the p-median that are able to partition the 
dataset into meaningful clusters. These databases generally contain several thou-
sand entries, and thus the use of heuristics becomes a practical necessity.

New developments within the field of heuristics are extending the usefulness 
of these methods. For example, using decomposition to solve a series of smaller 
(decomposed) problems is proving to be a highly effective and efficient approach 
to handle large problem instances. In Hansen et al. (2001), a decomposition variant 
of variable neighborhood search, referred to as variable neighborhood decomposi-
tion search, obtains notably better results than basic variable neighborhood search 
in less computing time. In fact, the method finds much better results than fast-
interchange in the same time fast-interchange takes for a single descent. Another 
example is the recent development of primal-dual heuristics that are able to obtain 
tight lower bounds on the optimal solution of the p-median and related simple plant 
location problems by solving exactly or approximately a relaxed version of the dual, 
see Hansen et al. (2007). Thus, a guaranteed bound on the quality of the solution 
obtained by the primal heuristic is now provided. Heuristics are also used in con-
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junction with exact solution methods. Since these exact methods are generally very 
sensitive to the starting point, it is important to use a good heuristic initially. Brim-
berg et al. (2000) note that the improved solution quality from the newer heuristics 
available has enabled the exact solution of much larger instances of the continuous 
p-median problem than before.

We have seen a tremendous growth in the field of heuristics in recent years. 
Empirical studies have shown consistently that the new metaheuristics at our dis-
posal work better than the older methods, but aside from this we do not understand 
much of what transpires. Research into the theoretical underpinnings of meta-
heuristics is still in its infancy, but judging from the recent Seventh Metaheuristics 
International Conference (June 2007), this is becoming a very hot area indeed. It 
seems a safe bet to predict that the field of metaheuristics will be subject to rigor-
ous theoretical analysis in the years to come. We believe that statistical studies of 
the landscapes derived from various local search operators will play a useful role 
here. The ultimate goal, aside from designing better heuristics, will be a deeper 
understanding of the fundamental nature of combinatorial and global optimization 
problems.

15.5 � Conclusions

We have reviewed the classical heuristics introduced by Cooper (1963, 1964), Ma-
ranzana (1964), and Teitz and Bart (1968). Maranzana’s paper, although important 
also for its formulation of the network model and some fundamental results, may 
be considered less significant as its partition method was quickly superseded by the 
vertex substitution method of Teitz and Bart. The contributions of these original 
papers were timely and important, as they introduced a wide audience to some fun-
damental location problems and showed how they could be solved. They stand out 
as important way posts in location science and are truly deserving of their celebrity 
status.

Rather than review derivative work in detail, we have guided readers to the de-
tailed reviews by Brimberg et al. (2000), Reese (2006), Mladenovic et al. (2007), 
and Brimberg et  al. (2008a). These reviews indicate that the performance of the 
classical heuristics suffers in the face of the explosive number of local minima that 
arise in large problems. None of these classic approaches is ready for retirement, 
however.

The Cooper algorithm, accompanied by graphical illustration, is an excellent 
tool for teaching a fundamental lesson of location modeling and optimization in the 
classroom, as aptly demonstrated in Scott (1971). 

The vertex substitution method of Teitz and Bart lies at the heart of all the inter-
change-based heuristics developed to solve the p-median problem more effectively. 
Although much progress has been made in recent years in the development of me-
taheuristics, much work still remains to understand the underlying theory, and in 
consequence, to design heuristics in a more intelligent fashion.

15  Heuristics for Location Models
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16.1 � Introduction

16.1.1  �A Brief History

Some time in the early seventeenth century, the following geometrical optimization 
problem was posed:

…given three points in a plane, determine a point at which the sum of the distances to the 
three given points is smallest.

Opinions differ about the originator of this question, usually attributed to Pierre de 
Fermat (1601–1665), to Battista Cavalieri (1598–1647), or to Evangelista Torricelli 
(1608–1647); see the historical part of the overview papers by Kupitz and Martini 
(1997) and Drezner et al. (2002). Optimality conditions, purely geometric solutions, 
and corresponding classical “ruler and compass” constructions were soon found, in 
particular by Cavalieri and Torricelli. This involved considering two separate cases. 
In case the given points form a triangle with all angles less than 120°, one sought the 
point inside the triangle from which each side is seen under an angle of 120°. This 
angle is obtained by constructing an equilateral triangle and its circumscribed circle 
on each side; these three circles will meet in the desired point. Whenever there ex-
ists a vertex with an angle of at least 120°, we simply take that triangle’s vertex as 
the sought point. These two solutions are shown in Figs. 16.1a and b.

The question extended to four given points in the plane turned out to be ex-
tremely easy, as shown a good century later by Fagnano (1775): if the four given 
points form a convex quadrilateral, take the intersection of the diagonals; otherwise 
take the given point inside the triangle formed by the three others. This solution is 
shown in Fig. 16.2.
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The move to more than four given points in the plane or in space was made by 
many scholars, including some quite well known mathematicians, such as Gauss, 
Bertrand, Simpson, Riesz, Steiner, and others. Optimality conditions were extended 
(see the next section), but geometric construction attempts seem to have remained 
largely undocumented likely because the problem has turned out to be unsolvable 
in general by simple geometric means when there are at least five given points. This 
fact, however, was only shown two centuries later by Cockayne and Melzak (1969) 
and Bajaj (1988) using advanced Galois theory. Nongeometric solution methods 
were also developed based on the principle of equilibrium of forces in physics, lead-
ing to a mechanical device called a Varignon frame, which was already described 
by Lamé and Clapeyron (1829). A very thorough treatment with extensive historical 
notes is given in Kupitz and Martini (1997).

One particular complete proof of the optimality conditions was obtained in the 
years just before the Second World War by Endré Weiszfeld, a young mathematician 
from Budapest, Hungary. Having fled the rising antisemitic movement in his country, 
he wrote its proof (together with two other proofs) in French during his stay in Paris, 
and sent it, together with several other manuscripts, to be published in the prestigious 
Tohoku Mathematical Journal in Japan, where it was published in the issue of 1936–
37. This proof was based on the construction of an infinite sequence of points shown 
to converge to the optimal solution. At the time, this theoretical device was virtually 
useless for the numerical calculation of an optimal solution, since it involved far 
too many calculations to be of practical use. But with the advent of programmable 
numerical computing devices around the middle of the century, this numerical pro-
cess became perfectly feasible and useful. During the 1950s and 1960s, virtually 
the same calculation method was rediscovered independently by several authors, 
in particular Miehle (1958), Cooper (1963), and Kuhn and Kuenne (1962), mostly 
without formal proof of convergence and in a more general setting (see Sect. 16.7 in 

Fig. 16.1   Solution to the 
three-point problem

a b

Fig. 16.2   Solution to the 
four-point problem
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this Chapter). Weiszfeld’s more complete work remained unknown in the west until 
former colleagues of Weiszfeld pointed to it during a seminar Kuhn gave in Buda-
pest around 1963, as recounted in Kuhn (1973). Endre Weiszfeld changed his name 
to Andrew Vaszonyi when he emigrated to the United States after the war, where he 
has been active in applying mathematics to all kinds of business decisions and teach-
ing “applicable math” until his death in 2003. He was one of the founders of TIMS, 
The Institute of Management Science, in 1954, and its first past-president, see Gass 
(2004). He candidly told his life’s story in his autobiography Vazsonyi (2002a). But 
he never was really concerned with solving location problems (see Vazsonyi 2002b).

A slightly more complex variation of the geometrical problem considers a posi-
tive weight for each given point, and asks to

find the point(s) at which the sum of weighted distances to the given points is minimum.

In (mining) engineering and mathematics this question emerged in 1829 in the pre-
viously cited memoir of Lamé and Clapeyron, under the name “general problem of 
the theory of least distances.” Even more than the Weiszfeld paper, this paper has 
remained hidden and unknown until its recent rediscovery and translation by Frank-
sen and Grattan-Guinness (1989). The following application is described by Lamé 
and Clapeyron as “the most simple case” (quoting the translation given in Franksen 
and Grattan-Guinness 1989):

Let us suppose, for example, that one wants to establish a plant intended for the treatment 
of metallic minerals, obtained from different mines, and which must be mixed together in 
known proportions with the smelting flux, and with a fuel, extracted or bought at given 
locations. Let us suppose also that the metallic products obtained, for which the weights 
will be in a ratio known in advance with the initial materials used, should be distributed 
according to a certain law among different markets at known positions. Suppose finally that 
the only condition that it is important to satisfy in the choice of the position of this plant, is 
that of the best possible economy in terms of the price of transportation. Under these special 
circumstances, the plant ought to be placed, so that its distances from the different locations 
furnishing the original materials, or receiving the produced metals, multiplied respectively 
by the weights which must travel [these distances], and for which the ratios are known, give 
products the sum of which will be a minimum relative to all other positions.

The mechanical device they propose is as follows (quoting again Franksen and 
Grattan-Guinness 1989):

One fastens horizontally a well planed board, on which will be traced the topographical 
map of the land. One will suspend vertical pulleys beneath this board, turning about vertical 
axes. These axes must cross the board at those points which on the map depict the mines 
and the above-mentioned markets. One will wind around each of these pulleys a wire, on 
which one suspends a weight; this weight must be proportional to that which should be 
transported on the path between the place, represented by that pulley, and the desired plant. 
Finally one will attach all the wires to one very small and mobile ring. The point at which 
this ring will stop, projected onto the map, will determine the location of the plant.

The device for points A, B, C, and D with weights wA, wB, wC, and wD is shown in 
Fig. 16.3.

In economics this question has often been said to appear first (with only three 
given points) in Weber’s (1909) book about the location of industries, and in particu-
lar in the appendix written by Georg Pick (who describes the Varignon frame): where 
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should one locate a factory that receives its raw materials from a single source but has 
to deliver its finished products to two different markets. Probably following Laun-
hardt (1885), Weber follows the same idea that this location should be chosen such 
that the transportation costs of raw materials and products are the lowest possible, all 
other factors remaining constant. Consider these costs as proportional to (Euclidean) 
distance and therefore at different rates for the raw materials and for the products, 
thereby obtaining a simple instance of the question above. It has been popularized 
among economists and geographers as the search for the point of minimum aggregate 
travel, and has acquired the status of fundamental problem in spatial economics un-
der various names, like the Weber problem (the name we will use here), the Steiner 
problem, and, more recently, as the single facility Euclidean Minisum Location Prob-
lem (Wesolowsky 1993). Most frequently, the problem is referred to as the Euclidean 
median problem. For a detailed history of this problem, see Drezner et al. (2002).

16.1.2  �Choices in Setting and Notation

The next sections will develop the details of the Weber problem in step-by-step 
fashion, including Weiszfeld’s method and proof of convergence. At the time it was 
written, it only referred to two and three-dimensional space, and the possibility of 
considering weighted distances was only shortly evoked as a final remark. Since all 
arguments directly extend to the weighted version in any dimension higher than 1, 
we will adapt his argument to this slightly more general case.

The notations used by Weiszfeld are now outdated, and new notations have been 
standardized when working in vector spaces. We will therefore also adopt these 
new standards. Readers interested in the original notations may refer to the original 
contribution in Weiszfeld (1937), or its recent annotated translation into English in 
Weiszfeld and Plastria (2009).

Weiszfeld (1937) described three proofs of the optimality conditions. The first is 
the convergent sequence argument, which forms the basis of the “Weiszfeld algo-
rithm” and is the main subject of this chapter. The second proof is based on more 

Fig. 16.3   Mechanical device 
for the weighted four-point 
problem
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geometrical arguments but is, unfortunately, only valid in the plane (dimension 2) or 
for at most four points in three-dimensional space. Finally, the third proof is also quite 
remarkable since it uses, avant la lettre, arguments of convex analysis that were to be 
developed in general much later in the 1960s by Moreau and many others; see Rock-
afellar (1970), or, for a more recent exposition, Hiriart-Urruty and Lemaréchal (2001).

The next section starts by formulating the Weber problem, thereby introducing 
our notation together with the main concepts we will use, and stating the main 
theorem, which asserts existence and uniqueness of an optimal solution together 
with complete optimality conditions. This is followed by a short section about the 
standard error involving the center of gravity. Then we devote a section to following 
in detail the lines of Weiszfeld’s first proof.

Weiszfeld’s geometric second proof will not be discussed here, not only because 
it does not seem to lead to interesting generalizations (e.g. it does not readily work 
for the weighted problem), but mainly because it seems to contain some flaws that 
remain unresolved to the best of this author’s knowledge. Instead, we devote a 
much shorter section to some of the basic ideas of convex analysis in order to de-
rive the more modern view, initiated by Kuhn (1967), which finds its first traces in 
Weiszfeld’s third proof, as annotated in Weiszfeld and Plastria (2007). This is fol-
lowed by a discussion of several identified difficulties together with an overview of 
the ensuing research work and results.

The final section will have a look at the many ways in which Weiszfeld’s algo-
rithm has been and still is being extended to many variants of the Weber problem.

16.2 � The Weber Problem and its Optimality Conditions

Let n different and not aligned points a1,…, an be given in d-dimensional space 
Rd (d > 1), together with positive real weights wi > 0, i ∈ N = {1, …, n}.

The Weber problem seeks a point m ∈ Rd , where the weighted sum of Euclidean 
distances to these given points is minimal. In other words we want to minimize the 
following unconstrained function

Here, ‖z‖  denotes the Euclidean length (or norm) of the vector z = (zk )k=1, ··· d ∈ Rd ,  
defined as

and ai − x is the vector going from x to ai, so ‖ai − x‖ denotes the Euclidean distance 
between x and ai. Note that this norm is always strictly positive, except for the zero 
vector ‖0‖ = 0. A unit vector is a vector of length 1.

f :Rd → R :x →
∑

i∈N

wi ‖ai − x‖.

‖z‖ =

√√√√
d∑

k=1

z2
k ,
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We will also need the scalar product of two vectors u, (u), v ∈ Rd ,

which is symmetric, i.e., 〈u; v〉 = 〈v; u〉, and bilinear, i.e., 〈u + u′; v〉 = 〈u; v〉 + 
〈 u′; v〉 holds for any u, u′, v ∈ Rd and any , µ ∈ R.We see that ‖z‖2 = 〈z; z〉, and 
one may prove the well-known Cauchy-Schwartz-Buniakowski inequality

where equality holds if and only if v is a multiple of u. In fact, the geometric in-
terpretation of this scalar product for nonzero vectors is 〈u; v〉 = ‖u‖ ‖v‖ cosαuv, 
where αuv denotes the angle between vectors u and v. Thus, in case u is a unit vec-
tor, 〈u; v〉 represents the length of the orthogonal projection of v on the line de-
fined by u (connecting the origin to point u). For any nonzero vector z  ≠  0 we 
may construct its corresponding unit vector, having the same direction as z, by 
u(z) = z/‖z‖. Note that 〈u, v〉 = 0 either means that u or v is the zero vector, or that 
u and v are orthogonal.

We may now state the main theorem, the unweighted version of which is attrib-
uted by Weiszfeld to Sturm (1884). A proof will be developed in Sect. 16.4.

Theorem 1 (Existence and optimality conditions):  There exists a unique point m 
minimizing f. In other words, there exists an m ∈ Rd , such that f (m)  f (x) for any 
point x ∈ Rd different from m ( in which case it is evidently unique).

This minimum point is characterized by the following optimality conditions

1.	 If there exists a point m, different from all ai, i ∈ N, for which

�
(16.1)

then this m is the minimum point.

2.	 If for some k ∈ N we have

� (16.2)

then this ak is the minimum point. (In this context, Weiszfeld uses the somewhat 
misleading symbol Σ′ to indicate that the k-th term is left out of the summation. We 
prefer to state explicitly over which index-set the sum is made).

Note 1: It should be observed that this theorem also remains valid when the points ai 
are aligned, except that uniqueness of the optimal solution is not guaranteed anymore.

〈u; v〉 =
d∑

k=1

ukvk ,

| 〈u; v〉| ≤ ‖u‖ ‖v‖,

∑

i∈N

wiu(ai − m) = 0,

∥∥∥∥∥∥

∑

i∈N\{k}
wiu(ai − ak)

∥∥∥∥∥∥
≤ wk ,
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Proof:  When all ai lie on a line of direction the unit vector v, say, then all ai are of 
the form p + tiv, with ti ∈ Rd  and p an arbitrary fixed point of the line. Now in case 
m lies outside this line, let m′ ≠ m be its orthogonal projection on this line. Then for 
all ai we have ai − m = ai − m′ + m′ − m and, since, by construction, ai − m′ is orthog-
onal to m′ − m, we have ‖ai − m‖2 = ‖ai − m′‖2 + ‖m′ − m‖2 > ‖ai − m′‖2, so 
that m′ lies strictly closer to all ai than m, and hence f (m′) < f (m), showing that m 
cannot be optimal.

Choosing a basis of origin m′ with the projection direction m − m′ as the first 
basevector, v as the second basevector, and arbitrary further basevectors when in 
dimension greater than 2, one also sees that all vectors u(ai − m) have a strictly posi-
tive first component, showing that condition (16.1) does not hold. In case m lies 
on the line, all vectors u(ai − m) either equal v or −v, depending on whether ai lies 
before or after m on the line oriented by v.

The two conditions (16.1) and (16.2) then express exactly that the sum of weights 
before m equals the sum of weights after m, possibly up to the weight present at m 
itself. In other words, m is a median of the points ai with weights wi, well-known 
as the optimal solution to a Weber problem on a line; see, e.g., Francis et al. (1992, 
p. 194). � □

16.3 � Intermezzo: About the Gravity Center

But let us first have a quick look at the slightly different question
find the point(s) at which the sum of weighted squared distances to the given points is 
minimum.

Mathematically, given the points ai ( i ∈ N) and positive weights µi, we want to find 
a point where the following function is minimized

Below, we find the easy solution to this problem in two ways.

16.3.1  �The Classical Argument

Written extensively using coordinates, with x = (xk )k=1,...,d  and ai  =  ai = (aik)k=1,...,d ∈ Rd ,  
the classical argument gives the somewhat simpler expression

f 2 :Rd → R :x →
∑

i∈N

µi‖ai − x‖2.

f 2(x) =
∑

i∈N

µi

(
d∑

k=1

(aik − xk )2

)
,
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which may be rewritten as

where µ =
∑
i∈N

µi > 0. This is a simple sum of convex quadratic functions, each of 

a separate variable xk, which may be minimized by minimizing them separately for 
each k (e.g., set the derivative to zero). This results in

which is the center-of-gravity or centroid of the i-weighted points ai.

16.3.2  �The Vectorial Argument

Define the center-of-gravity of the i-weighted points ai by

First, observe that this means that 
∑
i∈N

µi(ai − g) = 0.

Developing now the equality ‖zi‖2 = 〈zi ; zi〉 for zi = ai − x = (ai − g) + (g − x), 
we obtain

and therefore f  2(x) > f  2(g) for all x ≠ g, showing that g is the only minimizer of f  2.

f 2(x) =
d∑

k=1

[
µx2

k − 2

(
∑

i∈N

µiaik

)
xk +

∑

i∈N

µia
2
ik

]
,

xk =
1

µ

∑

i∈N

µiaik , or, in vector notation,

x =
1

µ

∑

i∈N

µiai

g =

∑
i∈N

µiai

∑
i∈N

µi

.

f 2(x) =
∑

i∈N

µi‖ai − x‖2

=
∑

i∈N

µi〈(ai − g) + (g − x); (ai − g) + (g − x)〉

=
∑

i∈N

µi
[
〈ai − g; ai − g〉 + 〈g − x; g − x〉 + 2 〈ai − g; g − x〉

]

=
∑

i∈N

µi‖ai − g‖2+
∑

i∈N

µi‖g − x‖2 + 2

〈
∑

i∈N

µi(ai − g); g − x

〉

= f 2(g) +
∑

i∈N

µi‖g − x‖2,
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16.3.3  �The Standard Error

It has often been advocated to solve the Weber problem by taking the gravity center. 
But, as shown above, the center-of-gravity is the optimal solution to a quite different 
problem that does not consider Euclidean distances, but squared Euclidean distanc-
es. This was already clearly shown by Schärlig (1973) and by Francis et al. (1992), 
among others. For more details on this controversy and the history of the Weber 
problem, see Drezner et  al. (2002). Unfortunately this error seems quite hard to 
eradicate: it is still found in most textbooks on Operations Management—ironically 
even in Weida et al. (2001), a recent introductory book with coauthor Vaszonyi.

It is also possible to view Weiszfeld’s method as an iterated application of the 
center-of-gravity construction, but with varying weights, as we show next. When 
being at a tentative point p, which easy weights µi should be chosen for the function 
f  2 in order to obtain the same objective function value as f at p? The equality

has the easiest solution:

It may therefore seem natural to have a look at the optimal solution for this function 
f  2, which is exactly what Weiszfeld proposes to do.

16.4 � Weiszfeld’s First Proof: the “Weiszfeld Algorithm”

Consider a point p ∈ Rd  different from all ai. We construct a new point T(p) by tak-
ing the center-of-gravity of the points ai with respective weights wi/‖ai − p‖, i.e;

� (16.3)

The Weiszfeld algorithm now consists of applying this construction iteratively. Start 
with any point p1, construct p2 = T(p1), then p3 = T(p2), etc. This will yield an infi-
nite sequence ( P) p1, p2, p3,….

Note 2: It should be noted that an infinite sequence is only obtained when the points 
pk are always different from all ai, since otherwise the new point T(pk) is undefined. 
In the original paper by Weiszfeld this assumption is never mentioned, but remains 
implicit throughout. In the remainder of this section we will do likewise. This dif-
ficulty will be discussed in more detail in Sect. 16.6.1.

f (p) =
∑

i∈N

wi‖ai − p‖ = f 2(p) =
∑

i∈N

µi‖ai − p‖2

µi =
wi

‖ai − p‖ .

T (p)
def=

∑
i∈N

wi

‖ai − p‖ai

∑
i∈N

wi

‖ai − p‖

.
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Theorem 2 (Convergence):  This sequence ( P) is convergent, and its limit is the 
minimum point of the points ai, i ∈ N, independent of the starting point p1.

The proof of this convergence theorem is obtained by way of a series of technical 
lemmas (called auxiliary theorems by Weiszfeld). Section 16.5 then discusses how 
the Convergence Theorem implies the main Theorem 1.

Lemma 3:  Given a finite number of points bj ∈ Rd (j ∈ J ) with corresponding 
weights wj > 0 and a line L not passing through all bj, let x0 be an arbitrary point 
of L, and v its direction. Then the points of L may be parametrically written as 
xt = x0 + tv, t ∈ R.The expression

is strictly decreasing with t.

Proof:  Considering a fixed bj ∉ L, 
〈
u(bj − xt ); v

〉
 is the cosine of the angle αt between 

u(bj − xt) and v. This angle strictly increases with t from 0 to , so its cosine strictly 
decreases with t. Therefore, for any t < t′ we have 

〈
u(bj − xt ); v

〉
>

〈
u(bj − xt ′ ); v

〉
.  In 

case bj ∈ L, we rather have for any xt ≠ bj either u(bj − xt) = −v or u(bj − xt) = v according 
to whether xt lies before or after bj on L, respectively yielding 

〈
u(bj − xt ); v

〉
= −1

or 1. So in this case for any t < t′, the relation 
〈
u(bj − xt ); v

〉
≥

〈
u(bj − xt ′ ); v

〉
 holds.

Multiplying each inequality (at least one of which is strict) with its correspond-
ing wj > 0 and summing yields for any t < t′

which proves the lemma.� □

Lemma 4:  There can exist at most one point m satisfying Condition (16.1).

Proof:  We show that the existence of two different points m and m′ satisfying con-
dition (1) leads to a contradiction. The assumption means one would have

In case m ≠ m′, these points would define a line L with direction v, say. The previ-
ous equality would then yield

〈
∑

j∈J

wj u(bj − xt ); v

〉

〈
∑

j∈J

wj u(bj − xt ); v

〉
=

∑

j∈J

wj

〈
u(bj − xt ); v

〉
>

∑

j∈J

wj

〈
u(bj − xt ′ ); v

〉

=
〈
∑

j∈J

wj u(bj − xt ′ ); v

〉
,

∑

i∈N

wiu(ai − m) =
∑

i∈N

wiu(ai − m′) = 0.

〈
∑

i∈N

wiu(ai − m); v

〉
=

〈
∑

i∈N

wiu(ai − m′); v

〉
(= 0),
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whereas by virtue of Lemma 3 with J = N and bi = ai applied to the points m and m′ 
on L, one should have a strict inequality. � □

Lemma 5:  In case there exists some point m that satisfies Condition (16.1), none 
of the points ai satisfy Condition (16.2).

Proof:  Here, we provide the proof for the point a1; the reasoning for other points ai 
being fully similar. Thus assume for some m ≠ a1 we have

Consider the line L passing through a1 towards m. This line has the direction v =

u(m − a1). On one hand, the previous equality implies that 
〈 ∑

i∈N

wiu(ai − m); v
〉

= 0, 

whereas by virtue of the choice of v, we have 〈u(a1 − m); v〉 = −1,  from which 

we conclude that 

〈
∑

i∈N\{1}
wiu(ai − m); v

〉
= w1. However, from Lemma 3 with

J = N \{1}and bi = ai, applied to the points a1 and m on L, and noting that since a1 
lies on L, not all these points may lie on L, we obtain

By virtue of the Cauchy-Schwartz-Buniakowski inequality, and since ‖v‖ = 1,  we 
then have

showing that a1 does not satisfy Condition (16.2).� □

Lemma 6:  At most one of the points ai may satisfy Condition (16.2).

Proof:  We will only prove that in case a1 satisfies condition (16.2), then a2 does not. 
All other cases are completely similar. Consider then the line L moving through a1 
towards a2, which has direction v = u(a2 − a1). From Lemma 3 with J = N \{1, 2} and 
bi = ai (which do not all lie on L), applied to the points a1 and a2 on L, we obtain

Since by assumption a1 satisfies Condition (16.2), i.e. 

∥∥∥∥∥
∑

i∈N\{1}
wiu(ai − a1)

∥∥∥∥∥ ≤ w1,  

we also have, using ‖v‖ = 1,

∑

i∈N

wiu(ai − m) = 0.

〈
∑

i∈N\{1}
wiu(ai − a1); v

〉
>

〈
∑

i∈N\{1}
wiu(ai − m); v

〉
= w1.

∥∥∥∥∥∥

∑

i∈N\{1}
wiu(ai − a1)

∥∥∥∥∥∥
≥

〈
∑

i∈N\{1}
wiu(ai − a1); v

〉
> w1,

〈
∑

i∈N\{1,2}
wiu(ai − a1); v

〉
>

〈
∑

i∈N\{1,2}
wiu(ai − a2); v

〉
.
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By the choice of v we have 〈u(a2 − a1); v〉 = 1,  and thus the equality

which, together with the previous inequalities, yields

It now follows that

and due to the Cauchy-Schwartz-Buniakowski inequality we obtain

This indicates that a2 does not satisfy Condition (16.2).� □

Lemma 7:  For any point p ≠ ai ∀ i with T(p) ≠ p, we have f ( T(p)) < f (p).

Proof:  Applying the optimality property of the center of gravity discussed in 
Sect. 16.3 for the choice of weights µi = wi

‖a i− p‖ ,  for which the center-of-gravity is 
g = T(p), we obtain, choosing x = p ≠ T(p),

〈
∑

i∈N\{1}
wiu(ai − a1); v

〉
≤

∥∥∥∥∥∥

∑

i∈N\{1}
wiu(ai − a1)

∥∥∥∥∥∥
≤ w1.

〈
∑

i∈N\{1}
wiu(ai − a1); v

〉
= w2 +

〈
∑

i∈N\{1,2}
wiu(ai − a1); v

〉
,

〈
∑

i∈N\{1,2}
wiu(ai − a2); v

〉
< w1 − w2.

〈
∑

i∈N\{2}
wiu(ai − a2); v

〉

= w1 〈u(a1 − a2); v〉 +
〈

∑

i∈N\{1,2}
wiu(ai − a2); v

〉

= −w1 +
〈

∑

i∈N\{1,2}
wiu(ai − a2); v

〉
< −w1 + w1 − w2 = −w2,

∥∥∥∥∥∥

∑

i∈N\{2}
wiu(ai − a2)

∥∥∥∥∥∥
≥

∣∣∣∣∣∣

〈
∑

i∈N\{2}
wiu(ai − a2); v

〉∣∣∣∣∣∣
> w2.

∑

i∈N

wi

‖a i − p‖
‖a i − T (p)‖2 <

∑

i∈N

wi

‖a i − p‖
‖a i − p‖2 =

∑

i∈N

wi ‖ai − p‖
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But we also have

which, combined with previous inequality, yields

from which it follows that

� □

Lemma 8:  The sequence (P) and any of its subsequences has an accumulation point.

Proof:  Each point pk of ( P) with k > 1 equals T(pk − 1), and therefore, by its defini-
tion, is a convex combination of the points ai. Therefore, all these points lie in the 
convex hull of the points ai, which is a bounded and closed set. The well-known 
theorem of Bolzano-Weierstrass then asserts the existence of an accumulation point 
of the sequence ( P). The same argument also applies to any subsequence of ( P). �□

The following lemma is not present in Weiszfeld’s paper, but is implicitly used.

Lemma 9 (Additional):  The function f is continuous everywhere, and the map T is 
continuous at any point p ≠ ai, ∀ i.

Proof  All distances ‖ai − p‖ are continuous functions of p, from which one directly 
obtains the continuity of f. As long as p is different from any ai, these distances are 
also strictly positive. Therefore, the weights wi

‖ai− p‖ , used to obtain T as a gravity 
center, are all continuous functions of p, implying the continuity of T at p. � □

Lemma 10:  If m is an accumulation point of ( P) which is different from any ai, 
then T(m) = m.

Proof:  Applying Lemma 7 to each pk+1 = T (pk), we have 0 ≤ f (pk+1) ≤ f (pk) 
for each k, so the sequence of real numbers f (pk) is decreasing and bounded below, 

∑

i∈N

wi

‖a i − p‖
‖a i − T (p)‖2

=
∑

i∈N

wi

‖a i − p‖
[
‖a i − p‖ +

(
‖a i − T (p)‖ − ‖a i − p‖

)]2

=
∑

i∈N

wi‖ai − p‖ + 2
∑

i∈N

wi‖ai − T (p)‖ − 2
∑

i∈N

wi ‖ai − p‖

+
∑

i∈N

wi

‖a i − p‖
(
‖a i − T (p)‖ − ‖a i − p‖

)2

2
∑

i∈N

wi‖ai − T (p)‖ − 2
∑

i∈N

wi‖ai − p‖

< −
∑

i∈N

wi

‖a i − p‖
(
‖a i − T (p)‖ − ‖a i − p‖

)2
< 0,

f (T (p)) =
∑

i∈N

wi‖ai − T (p)‖ <
∑

i∈N

wi‖ai − p‖ = f (p). �
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hence converges to some value μ. Therefore, by the continuity of f, for any accu-
mulation point m of ( P) we will have f (m) = μ. By construction of ( P), T(m) would 
then also be an accumulation point of ( P). If then T(m) were different from m, 
Lemma 7 would imply f ( T(m)) < f (m), contradicting that f(T(m)) = μ. Therefore 
T(m) = m. � □

Lemma 11:  Let m be an accumulation point of ( P) that is different from any ai, then 
m satisfies condition (16.1).

Proof:  By virtue of Lemma 10, we have T(m) = m. Using the definition of T and 
bringing the denominator to the right-hand side, we obtain

which is equivalent to

which is exactly Condition (16.1). � □

Lemma 12:  At most one accumulation point of ( P) is different from any ai.

Proof  Combining Lemmas 11 and 4, the proof follows immediately. � □

Lemma 13:  In case ak is an accumulation point of (P), it is the only accumulation 
point of (P).

Proof:  Without loss of generality let a1 be an accumulation point of ( P), and let us 
assume there exists at least one other accumulation point of this sequence. This will 
lead us to a contradiction.

Such a point must then either be one of the ai ( i ∈ N \{1}) or, if it exists, some 
by previous lemma unique m different from any ai. Since these possibilities form 
a finite set, one may construct a closed ball B of center a1 and a sufficiently small 
radius ε  >  0 that does not contain any other accumulation point than a1. Under 
our assumption, ( P) contains some subsequence converging to a1, and some subse-
quence converging to some point outside the ball B. This allows us to choose points 
pkj

(j ∈ N) of ( P) all lying in B, such that the corresponding sequence of next points 
pkj +1(j ∈ N) all lie outside B.

Any accumulation point of pkj
(j ∈ N)  then lies in B, and hence, as an accumu-

lation point of ( P), must equal a1. This means that

� (16.4)

and for all i ∈ N \{1}

� (16.5)

∑

i∈N

wi

‖ai − m‖ai =
∑

i∈N

wi

‖ai − m‖m,

0 =
∑

i∈N

wi

‖ai − m‖ (ai − m) =
∑

i∈N

wiu(ai − m),

lim
j→∞

∥∥a1 − pkj

∥∥ = 0

lim
j→∞

∥∥ai − pkj

∥∥ = ‖ai − a1‖

F. Plastria



371

Since all pkj +1 /∈ B,  we also have

and by taking limits, using equation (16.4), we obtain

� (16.6)

On the other hand, we have pkj+1 = T
(
pkj

)
=

∑
i∈N

wi∥∥∥ai−pkj

∥∥∥
ai

∑
i∈N

wi∥∥∥ai−pkj

∥∥∥

, which may be rewrit-
ten as

After division by 
∥∥a1 − pkj

∥∥ and taking the norm, we obtain

By (16.4) and (16.5) the limit of the right-hand side denominator equals w1, so that

� (16.7)

which contradicts (16.6). � □

Lemma 14:  If ak is an accumulation point of ( P), it satisfies condition (16.2).

Proof:  Without loss of generality, suppose that a1 is an accumulation point of ( P). 
Therefore, we know by Lemma 13 that it is the only accumulation point of the 
sequence, meaning that ( P) converges to a1. The reasoning of the previous lemma 
may then be repeated now for the whole sequence ( P) yielding, similarly to (16.7),

�

(16.8)

∥∥a1 − pkj +1

∥∥
∥∥a1 − pkj

∥∥ >
ε∥∥a1 − pkj

∥∥

lim
j→∞

∥∥a1 − pkj +1

∥∥
∥∥a1 − pkj

∥∥ = +∞.

a1 − pkj +1 =

∑
i∈N\{1}

wi∥∥ai − pkj

∥∥ (a1 − ai)

∑
i∈N

wi∥∥ai − pkj

∥∥
.

∥∥a1 − pkj +1

∥∥
∥∥a1 − pkj

∥∥ =

∥∥∥∥∥
∑

i∈N\{1}

wi∥∥ai − pkj

∥∥ (a1 − ai)

∥∥∥∥∥

w1 +
∥∥a1 − pkj

∥∥ ∑
i∈N\{1}

wi∥∥ai − pkj

∥∥
.

lim
j→∞

∥∥a1 − pkj +1

∥∥
∥∥a1 − pkj

∥∥ =
1

w1

∥∥∥∥∥∥

∑

i∈N\{1}

wi

‖(ai − a1)‖
(a1 − ai)

∥∥∥∥∥∥
,

lim
k→∞

‖a1 − pk+1‖
‖a1 − pk‖

=
1

w1

∥∥∥∥∥∥

∑

i∈N\{1}

wi

‖ai − a1‖
(a1 − ai)

∥∥∥∥∥∥

=
1

w1

∥∥∥∥∥∥

∑

i∈N\{1}
wiu(a1 − ai)

∥∥∥∥∥∥
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But since ( P) converges to a1, we also have

and combined with (16.8) we obtain

which is exactly condition (16.2). � □

Lemma 15:  The sequence ( P) is convergent to a limit point satisfying either con-
dition (16.1) or condition (16.2). Moreover, this limit point is independent of the 
starting point p1.

Proof:  We know that ( P) has an accumulation point (Lemma 8). In case one of the 
given ai is an accumulation point, it is the only accumulation point (Lemma 13), and 
it satisfies condition (16.2) (Lemma 14). Otherwise there exists an accumulation 
point different from all ai, and then it satisfies condition (16.1) (Lemma 11), and 
is the only accumulation point of ( P) (Lemma 12). It follows that ( P) has a unique 
accumulation point m, and thus, since it remains bounded, converges to m, and this 
limit point satisfies either condition (16.1) or condition (16.2).

Consider then another sequence (P ′)  constructed in the same way as ( P) but 
starting from another point p′

1 �= p1.  Then ( P′) also converges to some limit point 
m′ satisfying either condition (16.1) or condition (16.2). If now m′ would differ 
from m, this would contradict one of the Lemmas 4, 5 or 6, showing that we must 
have m′ = m. � □

Lemma 16:  The limit point m of ( P) is the sought minimum point.

Proof:  We will not reproduce Weiszfeld’s reasoning here since it is incorrect; it 
makes use of sequences ( P) with any starting point and applies previous results 
on it, thereby forgetting the implicit assumption that ( P) never reaches any of the 
given points ai. However, as will be discussed in a direct way without any use of 
the results in this section, this does not always hold. In Sect. 16.5 below we show 
in a direct way that Conditions (16.1) and (16.2) imply optimality. Combined with 
previous Lemma 15, the current lemma will follow. � □

16.5 � Some Glimpses of the Modern View

A function g : Rd → R is called convex if and only if

lim
k→∞

‖a1 − pk+1‖
‖a1 − pk‖

≤ 1,

∥∥∥∥∥∥

∑

i∈N\{1}
wiu(a1 − ai)

∥∥∥∥∥∥
≤ w1,

g((1 − t)x + ty) ≤ (1 − t)g(x) + tg(y) ∀ x, y ∈ Rd , ∀ t ∈ [0, 1]:
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and it is called strictly convex when this inequality is strict as soon as x ≠ y and 
0 < t < 1.

The point z = (1 − t)x + ty for t ∈ [0,1] runs over the line segment between x and 
y, and the expression (1 −  t)g(x) + tg(y) is the linear interpolation of g at z from 
x and y. Hence g being (strictly) convex means that linear interpolation always 
(strictly) overestimates g, except at the points from which one interpolates.

From this definition, it is easy to see that multiplying a convex function by some 
positive constant or summing several convex functions always yields another con-
vex function. This is also true of any “translate” defined by gb(x) = g(b − x) for some 
fixed b.

We also have for any x, y and 0  ≤  t  ≤  1, using the Cauchy-Schwartz-Bunia-
kowsky inequality,

which yields, taking square roots, ‖(1 − t)x + ty‖ ≤ (1 − t) ‖x‖ + t ‖y‖ , proving 
that the “norm”‖•‖  is a convex function.

Therefore the Weber-function f : Rd → R : x →
∑
i∈N

wi‖ai − x‖ is a convex 
function.

The norm-inequality above is an equality only when the Cauchy-Schwartz-Bu-
niakowsky inequality is an equality, that is, when ty is a positive multiple of (1 − t)x. 
Whenever 0, x and y are not aligned and t ≠ 0, 1, we always have a strict inequality.

From this last observation one may derive that the Weber-function is strictly con-
vex as soon as the given points ai are not colinear, an assumption we will continue 
to make following Weiszfeld.

Convex functions are fundamental objects in nonlinear and nondifferentiable op-
timization. They have been studied in depth and turn out to have many extremely 
important properties too numerous to discuss here. For reference, see Hirriart-Urruty 
and Lemaréchal (2001). Some of these properties of particular interest are as follows, 
discussed here without all the necessary details and proofs (except if very short).

Property 1: First of all, convex functions are always continuous, but not necessarily 
differentiable. The Euclidean norm function, in particular, is differentiable every-
where, except at the origin. This implies that the Weber function is nondifferentiable 
only in the given points ai.

Property 2: However, convex functions have directional derivatives at all points 
and in any direction. The directional derivative of g at a point z ∈ Rd  in direction 
d ≠ 0 is defined as:

‖(1 − t)x + ty‖2 = 〈(1 − t)x + ty; (1 − t)x + ty〉
= (1 − t)2 〈x; x〉 + t2 〈y; y〉 + 2(1 − t)t 〈x; y〉
≤ (1 − t)2‖x‖2 + t2‖y‖2 + 2(1 − t)t ‖x‖ ‖y‖

=
[
(1 − t) ‖x‖ + t‖y‖

]2
,

g′(z, d)
def= lim

t↓0

g(z + td) − g(z)

t
.

16  The Weiszfeld Algorithm: Proof, Amendments, and Extensions



374

If the function g is differentiable at point z, this means that

is a linear function of the direction d, defined by the gradient ∇g(z) of g at z.

The Euclidean distance function ga(x) = ‖a − x‖ to point a is differentiable at 

any point z ≠ a, with gradient ∇ga(z) =
z − a

‖a − z‖
, i.e., the unit vector u(z − a) at a 

towards z. At the point of nondifferentiability z = a, however, we find

� (16.9)

� (16.10)

� (16.11)

Directional derivatives behave somewhat similarly to usual derivatives: in particu-
lar, at a fixed point z and for fixed direction d, they sum nicely and scale posi-
tively. For convex functions g1 and g2 and h = w1g1 + w2g2 ( w, w′ > 0) we always 
have h′(z, d) = w1g

′
1(z, d) + w2g

′
2(z, d).

Therefore, for the Weber function we obtain the following directional derivatives:

If z is different from all ai, then

� (16.12)

If z = ak, then

� (16.13)

Property 3: For a convex function g a point z is a local minimum of g if and only 
if its directional derivative at z in any direction d is nonnegative. In other words, 
g′(z, d) ≥ 0 for all d ≠ 0.

In order to apply this property to the Weber function f, we must again consider 
the two cases:

Case 1: If z is different from all ai this local optimality condition becomes 
〈∑
i∈N

wiu(ai − z); d
〉

≥ 0 ∀ d �= 0. However, in case 
〈∑
i∈N

wiu(ai − z); d
〉

> 0,

for the opposite direction −d we would have 
〈∑

i∈N
wiu(ai − z); −d

〉
 

= −
〈∑

i∈N
wiu(ai − z); d

〉
< 0, contradicting the local optimality condition. There-

g′(z, d) = 〈∇g(z); d〉

g′
a(a, d) = lim

t↓0

ga(a + td) − ga(a)

t

= lim
t↓0

‖td‖ − 0

t

= ‖d‖ .

f ′(z, d) =
〈
∑

i∈N

wiu(ai − z); d

〉

f ′(z, d) =
〈

∑

i∈N\{k}
wiu(ai − ak); d

〉
+ wk‖d‖
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fore, it follows that 
〈∑
i∈N

wiu(ai − z); d
〉

= 0  for all d ≠ 0, which can only happen if 
∑
i∈N

wiu(ai − z) = 0,  i.e., when condition (1) is satisfied.

Case 2: If z  =  ak, we must have for all d  ≠  0 that 〈Df ; d〉 + wk ‖d‖ ≥ 0  

where Df =
∑

i∈N\{k}
wiu(ai − ak).This may be rewritten as wk ≥ 〈Df ; −d

‖d‖ 〉,  

and the particular choice of d  =  −Df, using ‖−d‖ = ‖d‖,  leads to 

wk ≥
〈
Df ; Df

‖−Df ‖
〉
=

∥∥Df

∥∥. In this case, for any other d, using one part of the 

Cauchy-Schwartz-Buniakowsky inequality allows us to write the expression 
〈Df ; d〉 + wk‖d‖ ≥ −‖Df ‖.‖d‖ + ‖Df ‖.‖d‖ = 0. Replacing Df by its definition, 
we just proved that the local optimality condition at z = ak is given by

which is exactly Condition (16.2).

Property 4: Any local minimum of a convex function g is also a global minimum.
To prove this, assume x is a local minimum of g, and consider any point y for 
which we have to prove that g (y) ≥ g (x). We may choose some z = (1 − t)x + ty) 
with t > 0 on the line segment connecting x with y, close enough to x such that 
g(z) ≥ g (x). By convexity of g we then have g(x) ≤ g(z) ≤ (1 − t)g(x) + tg(y), imply-
ing that g (y) − g (x) ≥ 0. � □

This last statement, together with previous point, proves Theorem 1.

Property 5: A strictly convex function admits at most one minimal solution.
Indeed, any solution on the open line segment connecting two different minimal 

solutions would, by strict convexity, yield a strictly lower objective value, which 
is a contradiction. Together with previous statement, this confirms the uniqueness 
results of Weiszfeld for Lemmas 4 and 6.

A final property is more technical, but very useful, as will be seen in next sections:

Property 6: If the function g : Rd → R is convex, it admits subgradients at any 
point.

A vector q ∈ Rd is called a subgradient of g at the point c ∈ Rd if and only if

� (16.14)

This generalizes the more classical property that if the convex function g : Rd → R
is differentiable at the point c ∈ Rd , then we have

� (16.15)

∥∥∥∥∥∥

∑

i∈N\{k}
wiu(ai − ak)

∥∥∥∥∥∥
≤ wk ,

∀ x ∈ Rd : g(c) + 〈x − c; q〉 ≤ g(x)

∀ x ∈ Rd : g(c) + 〈x − c; ∇g(c)〉 ≤ g(x)
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or, in other words, the gradient ∇g(c) is a subgradient of g at c. In fact, it is the only 
subgradient of g at c, and the fact that it is unique guarantees differentiability.

In order to apply this at any point of the convex Weber function f we need also 
to know a good subgradient of f at the points c = ak where it is not differentiable. It 
may be shown that the choice

� (16.16)

is such a subgradient when ak ∈ N is not an optimal solution as it does not satisfy 
Condition (16.2), which is equivalent to saying that the coefficient 1 − wk

‖Df ‖ ≥ 0.

When ak is the optimal solution, however, the choice q = 0 is a subgradient of f at ak.

16.6 � Additions and Improvements

16.6.1  �Fixed Point Iterate

The Weiszfeld algorithm has been rediscovered independently several times, e.g. by 
Cooper (1963) and Kuhn and Kuenne (1962). It was Kuhn (1973) who provided the 
first independent proof of convergence, and reported (in some notes added in proof) 
the rediscovery of Weiszfeld’s early work. Kuhn did observe Weiszfeld’s omission 
to consider the case where some iterate of the constructed sequence falls exactly on 
one of the given fixed points ai; but he did not solve this question. He simply con-
sidered it “a very unlikely event,” and “corrected” Weiszfeld by stating “for all but 
a denumerable number of starting points, the sequence converges.”

However, many years later, Chandrasekaran and Tamir (1989), and Cánovas 
et al. (2002) constructed examples in which the set of starting points p, such that 
T(p) equals one of the ai, is a continuum, contradicting the “denumerable number” 
of Kuhn. In all these examples, though, the given points ai all lie in some lower 
dimensional subspace. Brimberg (2003) finally succeeded in proving the following 
conjecture made by Chandrasekaran and Tamir (1989): when the convex hull of 
the fixed points ai has full dimension, the set of “bad” starting points, from which 
Weiszfeld’s algorithm has a “fixed point iterate,” is indeed always denumerable.

The occurrence of such a fixed point iterate may be considered quite exceptional. 
However, mathematicians usually do not like exceptions and want an answer for 
any possible situation, however unlikely. Similarly, a good programmer will try to 
make certain that no “bugs” will arise in programs, so should envisage all possible 
situations and offer a way out in each of them.

Suppose our sequence arrives exactly at (or starts from) some ak. We have 
learned how to check the optimality of this point: use the optimality Condition 
(16.2). What is needed is to specify some new iterate T (ak) �= ak  in case this 

qk =
(

1 −
wk∥∥Df

∥∥

)
Df
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condition is not met. Preferably, this new iterate should be better than ak in the sense 
that f (T (ak)) < f (ak). As we have seen in the previous section that the directional 
derivative of f in the direction −Df (the negative gradient at ak of the differentiable 
part of f) is then negative, this means that points with lower value are to be found 
in this direction. Therefore for sufficiently small λ, points of the form cλ = ak − λDf 
will satisfy f (cλ) < f (ak). Indeed, all proposals in the literature do so, but differ in 
the choice of λ. Chronologically, Balas and Yu (1982) propose to find an adequate 
λ by a binary search, which might take a few steps. Vardi and Zhang (2001) show 
that a good choice is

Rautenbach et al. (2004) prove that another adequate choice is given by

Yet another more involved stepsize that may be used for minimization of more gen-
eral functions was already developed by Illgen (1979).

16.6.2  �The Starting Point

A major algorithmic question is how to choose a good starting point. Two main 
ideas may guide this choice. First, one will probably want to make calculations 
short, starting from some point already close to the sought optimum point. Second, 
one might want to avoid the fixed point iterate situation discussed above.

The first concern is not easy to answer. The most common suggestion seems to 
be to start with the gravity center. This idea was probably prompted by an attempt to 
remedy the standard error discussed in Sect. 16.3.3. However, the only (unconvinc-
ing) reason for this choice might be that the center-of-gravity and the sought opti-
mum point both lie “between” the given points or, more precisely, in their convex 
hull. This convex hull is the smallest convex set that contains them all, and consists 
of all convex combinations of the ai, i.e., points of the form

λ =

(
1 −

wk∥∥Df

∥∥

)

∑
i∈N\{k}

wi

‖ak − ai‖

.

min





min

i∈N\{k}
1/2 ‖ak − ai‖;

∥∥Df

∥∥ − wk

∑
�∈N\{k}

4w�

‖ak − a�‖





.

∑

i∈N

λiai ,
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where the λi are nonnegative numbers with
∑
i∈N

λi = 1. In other words, this 

means being a gravity center of the ai for some choice of weights. For the choice 

λi =
(
wi/

∑
i∈N wi

)
 the convex combination yields the gravity center of the ai, 

weighted by wi. For any p ∈ Rd  (where p /∈ N ), the choice

where s(p) =
∑
j∈N

wj

/∥∥aj − p
∥∥ gives as convex combination the Weiszfeld iterate 

T(p). On the one hand, this shows that T(p) always lies in the convex hull. On the 
other hand, if p is the sought optimum point m, we have p = T(p) by the results of 
previous section, so this optimum also lies in the convex hull. Note that this also 
holds if the optimum point is a fixed point such as, m = ak; in that case it clearly also 
lies in the convex hull, which may also be seen by the choice of λi = 0 ( i ∈ N \{k}, 
and λk = 1.

Since from any starting point p a single Weiszfeld iteration brings us immedi-
ately to T(p) in the convex hull, the reasons to prefer starting at the gravity center 
are rather thin. Simple experiments show that usually the iterations converge quite 
quickly from any starting point. But it has been observed that in some cases, in par-
ticular when for some given point ak the fixed point optimality inequality (16.2) is 
almost an equality (either way), the method may become extremely slow, see, e.g., 
the example by Drezner et al. (2002). This was confirmed by the theoretical analysis 
of the convergence rate by Katz (1974).

By all means it seems therefore a good idea to start by checking each of the given 
points ai, i ∈ N for optimality. Thanks to the optimality Condition (16.2) this is easy 
to do. In case the condition holds at some ak, we are immediately done with the 
whole optimization process because m = ak. It is only when unlucky at all ai, that we 
have to go through the cumbersome iterative procedure from some starting point. 
What has been gained, however, is the certainty that the optimal solution will not be 
one of the given points. In addition to taking care of calculating each value f (ai), one 
also determines the lowest of these values, say f (ak), and one knows for sure that the 
optimal value f (m) < f (ak). In that case, a good idea is to start the iterations from this 
point ak, using one of the proposals for T (ak)  discussed in previous Sect. 16.6.1. 
Since we know that f (T (ak)) < f (ak) < f (ai), i ∈ N\ {k},  this has the advantage 
that none of the further iterations will be (or even come close to) a fixed point.

This therefore yields an answer to the second concern.

Note 3: It may be argued that checking all ai, i ∈ N is a lot of work, particularly 
for large sets N. Since each evaluation of f (c) or optimality check at some point c 
calls for calculation of |N| terms, the total work will be of order O(|N |2). It is usu-
ally possible to avoid a good part of this work by using the subgradients mentioned 
in Sect. 16.5. Checking ak involves calculating the corresponding vector Df and its 

λi =

wi

‖ai − p‖
s(p)

,
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norm, which, in case ak turns out not to be optimal, also yields immediately the 
subgradient qk defined by (16.16) in Sect. 16.5. We may therefore write

It follows that any ai ∈ Rd for which 〈ai − ak; qk〉 > 0 will satisfy f (ak) < f (ai) (sub-
stitute x = ai in the previous inequality), so does not need to be checked anymore 
for optimality.

Another even simpler algorithmic strategy was suggested by Ostresh (1978a): 
start from any point with the Weiszfeld algorithm, and at each step check for op-
timality the given point ai closest to the current iterate unless already checked 
earlier. Almost no additional work is involved in determining this closest given 
point, because all distances to the ai have to be calculated anyway for finding the 
next iterate.

16.6.3  �The Stepsize

The standard optimality condition for having a minimum of the convex function f at 
a point p is ∇f (p) = 0. Now

where, as before, s(p) =
∑
j∈N

wj

‖aj −p‖ .  On the one hand, this shows (again) that the 

optimal solution m must satisfy T(m) = m. This observation has been the motiva-
tion for Cooper’s (1963) and Kuhn’s (1967) (re-)discovery of the iterative scheme 
pn+1 = T (pn)  for finding m, which was found in a different way by Weiszfeld.

On the other hand, we also obtain the equality

which shows that the Weiszfeld method belongs in fact to the general class of gradi-
ent descent methods: at each step n = 0, 1,…, a move is made from the current point 
pn in the direction of steepest descent (i.e., the negative gradient) of the objective 
function at that point; in formula pn+1 = pn − σk∇f (pn). In general optimization 
problems, one has to search for a stepsize σn that will make the objective value de-
crease such that f (pn + 1) < f (pn). What is remarkable in Weiszfeld’s method is that 
such a stepsize may be directly calculated as σn = 1

s(pn) .

Ostresh (1978a) has even shown that, in this gradient method, one may in fact 
choose independently at each step any stepsize

∀ x ∈ Rd : f (ak) +
〈
x − ak; qk

〉
≤ f (x).

∇f (p) =
∑

i∈N

wi

p − ai

‖p − ai‖
= s(p)(p − T (p))

T (p) = p −
1

s(p)
∇f (p),
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and still obtain a descent method converging to the optimal solution. This prop-
erty yields yet another way to avoid fixed point iterates, which was the main goal 
behind Ostresh’s study: in case the Weiszfeld method (or a similar one with other 
stepsizes) would fall exactly on some non-optimal given point ak, simply repeat the 
previous step using a slightly modified stepsize within the allowed bounds, thereby 
avoiding ak.

16.6.4  �Stopping Rules

The convergence property of an iterative algorithm says that the infinite generated 
sequence (pn)n∈N  will have a limit point, and that this limit is the sought solution m. 
A solution may therefore be reached that is arbitrarily close to m, provided the cal-
culations continue up to sufficiently large n. Unfortunately, the convergence prop-
erty does not indicate how large the value of n must be in order to be “sufficiently 
large” to satisfy the stopping criterion.

There have been many different viewpoints regarding an adequate stopping rule. 
The simplest and therefore most popular rule is to fix in advance the number of 
steps. This is a totally blind rule and does not yield any clear indication of how good 
the attained approximate solution is, particularly in view of the widely different 
convergence rates that may occur, see Katz (1974).

In the beginning of the computer age, another concern was to limit the calcula-
tion time. This is in a sense even more blind than limiting the number of steps, since 
each step depends (linearly) on the size N of the data. With modern day computers 
this kind of rule has fortunately disappeared, except in the area of metaheuristics 
calling for very intensive calculations.

This means we can now focus on obtaining “rational” stopping rules, which yield 
some quality stamp on the accuracy of the solution obtained. But what is accuracy?

•	 A first type of accuracy hinted at above, is proximity to the optimal solution m. 
This is, however, very difficult to measure directly, since m is unknown. The 
only attempts in this direction seem to have been to approximate the full level set 
of f at the same level f (pn) that is reached at the current iterate pn, in other `words 
by the set Ln = {x ∈ Rd |f (x) ≤ f (pn)}. These attempts occur not in the context 
of the Weiszfeld algorithm, but in Plastria (1987) using a cutting plane method, 
or in Plastria (1992a) using the “Big Square Small Square” global optimization 
method.

•	 A second type of accuracy, which is much easier to calculate, is related to the 
fact that the sought point m is defined by ∇f (m) = 0. One can test how close to 
this equality one is at the current iterate pn by calculating 

∥∥∇f (pn)
∥∥. One then 

1

s(pn)
≤ σn ≤

2

s(pn)
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decides to stop whenever this is “sufficiently” small, meaning in practice when 
∥∥∇f (pn)

∥∥ ≤ ε, for some small chosen ε > 0.
•	 A third accuracy measure is in terms of values: how closely does the current 

objective value f (pn) approximate the optimal value f (m)? And although f (m) 
is unknown, several procedures have been developed to calculate a good lower 
bound �n ≤ f (m) at each step n, which converges increasingly to f (m) from 
below when n increases. When such a lower bound �n is known, the accuracy 
in value of the current iterate may be overestimated, either in absolute terms by 
the difference, f (pn) − �n, or in relative terms (or percentage wise) by the ratio 
f (pn)−�n

f (pn) . The calculations are then stopped if these have become “sufficiently 
small.” Clearly the effectiveness of this last stopping rule will depend in part 
on how quickly this bound comes close to f (m), but also on the effort spent in 
calculating it.

Bounds have been developed by Love and Yeong (1981), Juel (1984), Drezner 
(1984), Wendell and Peterson (1984), and Love and Dowling (1989). Here we only 
derive Juel’s bound, which is easy using the tools developed above.

The (sub)gradient inequality (16.15) at any iterate c = pn ∉ N, applied at the point 
x = m ∈ N results in

We also know that m is a convex combination of the given points ai, from which one 
easily derives that for any vector q we have min 〈ai ; q〉

i∈N

≤ 〈m; q〉.

Plugging this property for q = ∇f (pn) into the inequality above we obtain Juel’s 
lower bound

This bound was shown by Elzinga and Hearn (1983) to be always better than the 
original bound of Love and Yeong. The other bounds are more involved, and a com-
parison between them was conducted by Dowling and Love (1986, 1987).

16.6.5  �Acceleration Attempts

Several attempts have been made to try to accelerate Weiszfeld’s method, particu-
larly in view of cases of slow convergence. In most cases, general types of accel-
eration techniques from nonlinear programming were proposed, like Steffensen’s 
scheme by Katz (1974), the Armijo rule by Cooper and Katz (1981) or a Newton-
Raphson modification by Ostresh (1978b); these are tested experimentally, but 
without formal proof of acceleration. Ostresh’s (1978a) hope that his extended step-

f (pn) − 〈pn; ∇f (pn)〉 + 〈m; ∇f (pn)〉 = f (pn) + 〈m − pn; ∇f (pn)〉 ≤ f (m).

�J
n = f (pn) − 〈pn; ∇f (pn)〉 + min

i∈N
〈ai ; ∇f (pn)〉 ≤ f (m)
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sizes discussed in Sect. 16.6.3 would enable “proving the descent property of yet to 
be discovered, very fast, nongradient algorithms” has not yet been fulfilled. More 
recent work in this context is found in Drezner (1995), Li (1998), and Brimberg 
et al. (1998).

Weber’s problem has been, and still is, considered a simple and educational ex-
ample of a nonlinear and nondifferentiable optimization problem, and has therefore 
often been used as a kind of benchmark for testing new ideas in nonlinear optimiza-
tion. One may safely state that virtually any proposed nonlinear optimization algo-
rithm has been at some point tried out on the Weber problem. A list of these is given 
by Wesolowsky (1993), to which we may add a cutting plane method by Plastria 
(1987), a quadratically convergent method by Overton (1983), several interior point 
methods, such as that by Wu (1994), and a recent Newton bracketing method by 
Levin and Ben-Israel (2002).

16.7 � Extensions to Other Problems

Weiszfeld’s method has been adapted to an enormous number of variants of the 
classical Weber problem. Here we will list a number of these applications, without 
attempt at exhaustiveness. As far as possible we indicate also if proofs of conver-
gence are available.

As many of these extended problems do not have a convex objective function, 
local, non-global, optima may occur. In such circumstances convergence of a meth-
od should be understood as convergence to some locally optimal solution.

The adaptation of Weiszfeld’s method always follows the reasoning of Cooper 
and Kuhn, suggested in Sect. 16.6.3: consider the optimality condition ∇f (p) = 0, 
rewrite it in some way as a fixed point equation p = T(p) where the particular form 
of T will depend on the function f, and then try to “solve” this by an iterative scheme 
pn+1 = T (pn).

16.7.1  �Modified Transport Cost Functions

The most common modification of the Weber problem is to consider a more general 
objective function

where the gi are nondecreasing functions defined on the positive real numbers. 
The traditional Weber problem is obtained by the choice of linear functions 
gi( t) = wit.

A first modification of this type was made by Cooper (1968), choosing gi( t) = 
wi tK for some fixed K > 0. He proposed Weiszfeld’s scheme, but without conver-

f (x) =
∑

i∈N

gi(ai − x),
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gence proof. It was Katz (1969) who introduced the general model above, and proved 
convergence of a Weiszfeld scheme under some technical conditions on the gi.

When the functions gi are convex, such as Cooper’s proposal with K ≥ 1, the 
resulting f is still convex and we may hope for convergence to a globally optimal 
solution. When the functions gi are nonconvex this cannot be ensured; usually one 
will have many local optima, in particular often at the given points ai.

Several authors contributed to solving such models, among whom Drezner 
(2009) offers one of the most recent and encompassing results. For a much larger 
related class of models in the much more general setting of Banach spaces, Eck-
hardt (1980) proved convergence for a Weiszfeld scheme.

16.7.2  �General ℓp Distances

Many authors have studied the Weber problem where for a given x = (xk)k=1,..., d ∈ Rd

the Euclidean norm ‖x‖  is replaced by the more general ℓp norm given by the for-
mula

This also yields a convex function f of x for any p ≥ 1, which, for p > 1, is differ-
entiable everywhere, except at the points ai, i ∈ N. For p = 1 one obtains the well-
known “rectilinear,” “rectangular,” “Manhattan,” or “taxi” distance, which leads to 
Weber problems that may be studied and solved directly, as developed for example 
in the excellent book by Francis et al. (1992). Therefore, in what follows we assume 
p > 1.

When Weiszfeld’s algorithm is applied directly to the ℓp distance Weber prob-
lem, the descent property and hence convergence is found only for p ≤ 2, see Brim-
berg and Love (1993). In order to avoid the non-differentiabilities of f, the ℓp dis-
tance is often replaced, following Morris and Verdini (1979) by its “hyperbolic 
approximation”

The developments may be found in the book by Love et al. (1988), providing many 
pertinent references. The most general convergence result of a Weiszfeld scheme 
for a model combining hyperbolic approximation of ℓp distances with nonlinear cost 
functions extending those described in Sect. 16.7.1 has been proven by Frenk et al. 
(1994). Convergence is found, however, only when 1 ≤ p ≤ 2.

�p(x) =
(

d∑

k=1

|xk|p
) 1

p

�ε
p(x) =

(
d∑

k=1

(
x2

k + ε2) p
2

) 1
p
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16.7.3  �Other Single Facility Location Problems

The Weiszfeld scheme converges very well when adapted to several other distance 
measures. Examples include Chen’s (1991) method for locations on an inclined 
plane and Cera and Ortega’s (2002) model for locating a hunter of fleeing prey. 
Both examples involve the use of some asymmetric ellipsoidal distance. Distance 
measures of this nature are studied in general by Plastria (1993). Katz and Vogl 
(2010) redefine Weiszfeld’s method for problems, in which distance to each given 
point is an individually rescaled version of Euclidean distance, and extend Katz’s 
(1974) convergence proof and convergence rate analysis,

Other examples of good convergence of Weiszfeld-type techniques involve loca-
tion models on the sphere that use geodesic distances; see, e.g., Drezner and We-
solowsky (1978) or Katz and Cooper (1980). Weiszfeld’s scheme has also success-
fully been adapted to situations with area demand, in which the objective function 
involves an integral instead of a sum, see Drezner and Wesolowsky (1980) and 
Chen (2001).

Further variants include Weber problems with possible negative weights 
(Drezner and Wesolowsky 1991), Weber problems taking queuing into account 
(Drezner et al. 1990), Weber problems within buildings (Arriola et al. 2005), com-
petitive location models (Drezner and Drezner 2004), models that include price 
decisions (Fernández et al. (2007), and single facility location-allocation problems 
(Plastria and Elosmani 2008). In most of these applications, only convergence to a 
local optimum may be expected.

16.7.4  �Multifacility Location Problems

Simultaneous location of several facilities f ∈ F leads to more difficult questions. 
When the exact facilities-demand points and inter-facilities interactions are given 
as weighted distances with respective weights wif and wfg for demand point i and 
facilities f and g, we obtain the so-called Multifacility location problems of type

for which Weiszfeld’s method has been adapted by many authors. After several 
proposals, among them one of the pioneers of the method (Miehle 1958), the 
first proven convergent method was given by Rado (1988), and later improved 
by Rosen and Xue (1992). A full general description of the optimality conditions 
was obtained by Plastria (1992b), and is valid for any type of norm. The solution 
algorithm was extended to hyperbolic approximation of ℓp distances by Rosen and 
Xue (1993).

min
∑

f ∈F

∑

i∈N

wif

∥∥ai − xf

∥∥ +
∑

f ∈F

∑

g∈F

wfg

∥∥xg − xf

∥∥,
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16.7.5  �Location-Allocation Problems

When the model includes the allocation decision of which facility will serve which 
given point, we obtain multiple facility problems usually called location-allocation 
problems, or multi-Weber problems. For each fixed allocation, the corresponding 
location question may be split into several single facility Weber problems (one for 
each facility) that may be solved by a Weiszfeld scheme. But the major difficulty 
here is the search for an adequate allocation, and no tractable method is known 
which guarantees to find a globally optimal solution, except when the number of 
facilities to locate is as small as two (Ostresh 1975).

Eilon and Watson-Gandy (1971) proposed to use a pure Weiszfeld scheme, as 
though the allocation is fixed, but adapting this allocation at each step. However, to the 
best of our knowledge, no convergence proof of such a scheme has been published. 
Therefore, in general, heuristic solution methods are proposed, usually with built-in 
Weiszfeld schemes, for solving single facility subproblems. The most popular pro-
posal, usually called Alternate, was made by Cooper (1963). It consists of two alter-
nating steps, the allocation step that finds the best allocation for fixed locations of the 
facilities, and the location step that finds the best locations for the facilities for a fixed 
allocation. These two steps are performed in an alternating sequence, until no further 
changes occur. For an enhancement of this method, see Rosing and Harris (1992).

Nowadays, heuristic methods have evolved and are becoming a field of enquiry 
unto themselves, as in Hoos and Stützle (2005) and Gendreau and Potvin (2008). 
One may state that almost any metaheuristic idea has been applied to the location-al-
location problems with various success. Usually these involve either Weiszfeld steps 
or the more elaborate Alternate procedure as “local search” substeps. An overview 
of these methods, together with a comparison of some of them, is provided by Brim-
berg et al. (2000). One of the most successful approaches in this particular setting 
is of variable neighborhood search type, and is described by Brimberg et al. (2006).

16.7.6  �Outside the Facility Location Field

Weiszfeld’s method has recently known applications to problems quite different 
from location questions. Examples are those by Shi et al. (2007) for an application 
in signal processing, and Valkonen (2006) for an application in functional analysis.

16.8 � Outlook

It is quite extraordinary how a proof developed some eighty years ago for attack-
ing a centuries old and allegedly purely theoretical question has grown, thanks to 
its simplicity, into a quite efficient computer solution method for a problem that is 
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considered nowadays as one of the quintessences of locational modeling coming 
in many guises to which the methodology adapts. Such phenomena are rather rare 
in science, and probably mainly limited to the field of mathematics and its applica-
tions, corroborating the doubts about the validity of some current quality evaluation 
methods for scientific research, e.g., impact factors that are based on very short term 
periods of time, often no longer than a year.

We hope that this exposition and overview of extensions will help interest in it to 
continue to grow with further developments and extensions to many variants of the 
basic Weber problem. Presumably several fields of application of the model beyond 
spatial economics remain unexplored and it may be expected that the first steps of 
the Weiszfeld method outside the facility location field as discussed in Sect. 16.7.6 
will know further discovery.

References

Arriola R, Laporte G, Ortega FA (2005) The Weber problem in a multi-storey building. INFOR 
43(3):157–169.

Bajaj C (1988) The algebraic degree of geometric optimisation problems. Discrete and Comput 
Geom 3:177–191

Balas E, Yu CS (1982) A note on the Weiszfeld-Kuhn algorithm for the general Fermat problem. 
Management Science Report 484:1–16, Graduate School of Industrial Administration, Carn-
egie Mellon University, Pittsburgh

Brimberg J (2003) Further notes on convergence of the Weiszfeld algorithm. Yugoslav J Oper Res 
13:199–206

Brimberg J, Chen R, Chen D (1998) Accelerating convergence in the Fermat–Weber location prob-
lem. Oper Res Lett 22:151–157

Brimberg J, Hansen P, Mladenović N (2006) Decomposition strategies for large-scale continuous 
location–allocation problems IMA J Manag Math 17:307–316

Brimberg J, Hansen P, Mladenović N, Taillard ED (2000) Improvements and comparison of heu-
ristics for solving the multisource Weber problem. Oper Res 48:444–460

Brimberg J, Love RF (1993) Global convergence of a generalized iterative procedure for the 
minisum location problem with ℓp distances. Oper Res 41:1153–1163

Cánovas L, Canavate R, Marín A (2002) On the convergence of the Weiszfeld algorithm. Math 
Program 93:327–330

Cera M, Ortega FA (2002) Locating the median hunter among n mobile prey on the plane. Inter J 
Ind Eng 9:6–15

Chandrasekaran R, Tamir A (1989) Open questions concerning Weiszfeld’s algorithm for the Fer-
mat-Weber location problem. Math Program 44:293–295

Chen R (1991) An improved method for the solution of the problem of location on a inclined plane. 
RAIRO Rech Oper—Oper Res 25:45–53

Chen R (2001) Optimal location of a single facility with circular demand areas. Comput Math 
Appl 41:1049–1061

Cockayne EJ, Melzak ZA (1969) Euclidean constructibility in graph-minimization problems. 
Math Mag 42:206–208

Cooper L (1963) Location-allocation problems. Oper Res 11:331–343
Cooper L (1968) An extension of the generalized Weber problem. J Reg Sci 8:181–197
Cooper L, Katz IN (1981) The Weber problem revisited. Comput Math Appl 7:225–234

F. Plastria



387

Dowling PD, Love RF (1986) Bounding methods for facilities location algorithms. Nav Res Logist 
Q 33:775–787

Dowling PD, Love RF (1987) An evaluation of the dual as a lower bound in facilities location 
problems. Inst Ind Eng Trans 19:160–166

Drezner Z (1984) The planar two center and two median problems. Transp Sci 18:351–361
Drezner Z (1995) A note on accelerating the Weiszfeld procedure. Locat Sci 3:275–279
Drezner Z (2009) On the convergence of the generalized Weiszfeld algorithm. Ann Oper Res 

167:327–336
Drezner T, Drezner Z (2004) Finding the optimal solution to the Huff based competitive location 

model. Comput Manag Sci 1:193–208
Drezner Z, Klamroth K, Schöbel A, Wesolowsky GO (2002) The Weber problem. In Drezner Z, 

Hamacher H (eds) Facility Location: Applications and Theory. Springer, Berlin, pp. 1–136
Drezner Z, Schaible S, Wesolowsky GO (1990) Queuing-location problems in the plane. Nav Res 

Logist Q 37:929–935
Drezner Z, Wesolowsky GO (1978) Facility location on a sphere. J Oper Res Soc 29:997–1004
Drezner Z, Wesolowsky GO (1980) Optimal location of a facility relative to area demands. Nav 

Res Logist Q 27:199–206
Drezner Z, Wesolowsky GO (1991) The Weber problem on the plane with some negative weights. 

INFOR 29:87–99
Eckhardt U (1980) Weber’s problem and Weiszfeld’s algorithm in general spaces. Math Program 

18:186–196
Eilon S, Watson-Gandy CDT, Christofides N (1971) Distribution management: Mathematical 

modelling and practical analysis. Charles Griffin & Co., Ltd., London
Elzinga DJ, Hearn DW (1983) On stopping rules for facilities location algorithms. Inst of Ind Eng 

Trans 15:81–83
Fagnano GF (1775) Problemata quaedam ad methodum maximorum et minimorum spectantia, 

Nova Acta Eruditorum 1775 Mensis Iunii (published in 1779), 281–303
Fernández J, Pelegrín B, Plastria F, Tóth B (2007) Solving a Huff-like competitive location and 

design model for profit maximization in the plane. Eur J Oper Res 179:1274–1287
Francis RL, McGinnis LF, White JA (1992) Facility layout and location: an analytical approach 

(2nd edition). Prentice Hall, Englewood Cliffs
Franksen OI, Grattan-Guinness I (1989) The earliest contribution to location theory? Spatio-tem-

poral equilibrium with Lamé and Clapeyron, 1829. Math Comput Simul 31:195–220
Frenk JBG, Melo MT, Zhang S (1994) A Weiszfeld method for a generalized ℓp distance minisum 

location model in continuous space. Locat Sci 2:111–127
Gass SA (2004) In Memoriam, Andrew (Andy) Vazsonyi: 1916–2003, OR/MS Today, February 

2004, http://www.lionhrtpub.com/orms/orms-2-04/frmemoriam.html, see also Ann Oper Res 
167:2–5 (2009)

Gendreau M, Potvin J-Y (2008) Metaheuristics: a Canadian Perspective. INFOR 46:71–80
Hoos HH, Stützle T (2005) Stochastic local search: foundations and applications. Elsevier, Am-

sterdam
Hiriart-Urruty, J-B, Lemaréchal C (2001) Fundamentals of convex analysis. Springer, Berlin
Illgen A (1979) Das Verhalten von Abstiegsverfahren an einer Singularität des Gradienten. Math-

ematik, Operationsforschung und Statistik, Ser Optim 10:39–55
Juel H (1984) On a rational stopping rule for facilities location algorithms. Nav Res Logist Q 

31:9–11
Katz IN (1969) On the convergence of a numerical scheme for solving some locational equilibrium 

problems. SIAM J Appl Math 17:1224–1231
Katz IN (1974) Local convergence in Fermat’s problem. Math Program 6:89–104
Katz IN, Cooper L (1980) Optimal location on a sphere. Comput Math Appl 6:175–196
Katz IN, Vogl SR (2010) A Weiszfeld algorithm for the solution of an asymmetric extension of the 

generalized Fermat location problem. Comput Math Appl 59:399–410
Kuhn H (1967) On a pair of dual nonlinear programs. In: Abadie J (ed) Methods of nonlinear 

programming. North-Holland, Amsterdam, pp. 38–54

16  The Weiszfeld Algorithm: Proof, Amendments, and Extensions



388

Kuhn H (1973) A note on Fermat’s problem. Math Program 4:98–107
Kuhn HW, Kuenne RE (1962) An efficient algorithm for the numerical solution of the generalized 

Weber problem in spatial economics. J Reg Sci 4:21–33
Kupitz YS, Martini H (1997) Geometric aspects of the generalized Fermat-Torricelli problem. In: 

Intuitive geometry, Bolyai Society, Math Stud 6:55–127
Lamé G, Clapeyron BPE (1829) Mémoire sur l’application de la statique à la solution des prob-

lèmes relatifs à la théorie des moindres distances. Journal des Voies de Communications 10: 
26–49. (In French—Memoir on the application of statics to the solution of problems con-
cerning the theory of least distances.) For a translation into English see Franksen & Grattan-
Guinness (1989)

Launhardt W (1885) Mathematische Begründung der Volkswirtschaftslehre, Wilhelm Engelmann, 
Leipzig

Levin Y, Ben-Israel A. (2002) The Newton bracketing method for convex minimization. Comput 
Optim and Appl 21:213–229

Li Y (1998) A Newton acceleration of the Weiszfeld algorithm for minimizing the sum of Euclid-
ean distances. Comput Optim Appl 10:219–242

Love RF, Dowling PD (1989) A new bounding method for single facility location models. Ann 
Oper Res 18:103–112

Love RF, Morris JG, Wesolowsky GO (1988) Facilities location: models & methods. North-Hol-
land, New York

Love RF, Yeong WY (1981) A stopping rule for facilities location algorithms. Am Inst Ind Eng 
Trans 13:357–362

Miehle W (1958) Link-length minimization in networks. Oper Res 6:232–243
Morris JG, Verdini WA (1979) Minisum ℓp distance location problems solved via a perturbed prob-

lem and Weiszfeld’s algorithm. Oper Res 27:1180–1188
Ostresh LM Jr (1975) An efficient algorithm for solving the two-center location-allocation prob-

lem. J Reg Sci 15:209–216
Ostresh LM Jr (1978a) Convergence and descent in the Fermat location problem. Transportation 

Science 12:153–164
Ostresh LM Jr (1978b) On the convergence of a class of iterative methods for solving the Weber 

location problem. Oper Res 26:597–609
Overton ML (1983) A quadratically convergent method for minimizing a sum of Euclidean norms. 

Math Program 27:34–63
Plastria F (1987) Solving general continuous single facility location problems by cutting planes. 

Eur J Oper Res 29:98–110
Plastria F (1992a) GBSSS, the generalized big square small square method for planar single facil-

ity location. Eur J Oper Res 62:163–174
Plastria F (1992b) When facilities coincide: exact optimality conditions in multifacility location. J 

Math Anal and Appl 169:476–498
Plastria F (1993) On destination optimality in asymmetric distance Fermat-Weber problems. Ann 

Oper Res 40:355–369
Plastria F, Elosmani M (2008) On the convergence of the Weiszfeld algorithm for continuous 

single facility location-allocation problems. TOP 16:388–406
Rado F (1988) The Euclidean multifacility location problem. Oper Res 36:485–492
Rautenbach D, Struzyna M, Szegedy C, Vygen J (2004) Weiszfeld’s algorithm revisited once again. 

Report 04946-OR, Research Institute for Discrete Mathematics, University of Bonn, Germany
Rockafellar T (1970) Convex analysis. Princeton University Press, Princeton, NJ
Rosen JB, Xue GL (1992) On the convergence of Miehle’s algorithm for the Euclidean multifacil-

ity location problem. Oper Res 40:188–191
Rosen JB, Xue GL (1993) On the convergence of a hyperboloid approximation procedure for the 

perturbed Euclidean multifacility location problem. Oper Res 41:1164–1171
Rosing K, Harris B (1992) Algorithmic and technical improvements: optimal solutions to the (gen-

eralized) multi-Weber problem. Pap in Reg Sci 71:331–352

F. Plastria



389

Schärlig A (1973) About the confusion between the center of gravity and Weber’s optimum. Reg 
Urban Econ 13:371–382

Sturm R (1884) Über den Punkt kleinster Entfernungssumme von gegebenen Punkten. Journal für 
die reine und angewandte Mathematik 97:49–61. (In German: On the point of smallest distance 
sum from given points)

Shi Y, Chang Q, Xu J (2007) Convergence of fixed point iteration for deblurring and denoising 
problem. Appl Math and Comput 189:1178–1185

Valkonen T (2006) Convergence of a SOR-Weiszfeld Type Algorithm for Incomplete Data Sets. 
Numer Funct Anal and Optim 27;931–952. See also Errata, same journal, (2008), volume 
29:1201–1203

Vardi Y, Zhang C-H (2001) A modified Weiszfeld algorithm for the Fermat-Weber location prob-
lem. Math Program 90:559–566

Vazsonyi A (2002) Which Door has the Cadillac. Writers Club Press, New York
Vazsonyi A (2002) Pure mathematics and the Weiszfeld algorithm. Decision Line 33:12–13, http://

www.decisionsciences.org/DecisionLine/Vol33/33_3/index.htm
Weber A (1909) Über den Standort der Industrien. Tübingen, Germany. (English translation: Fried-

rich CJ (translator) (1929), Theory of the location of industries. University of Chicago Press, 
Chicago)

Weida NC, Richardson R, Vazsonyi A (2001) Operations analysis using Excel. Duxbury, Pacific 
Grove

Weiszfeld E (1937) Sur le point pour lequel la somme des distances de n points données est mini-
mum. Tôhoku Math J (first series) 43:355–386

Weiszfeld E, Plastria F (2009) On the point for which the sum of the distances to n given points is 
minimum. Ann Oper Res 167:7–41

Wendell RE, Peterson EL (1984) A dual approach for obtaining lower bounds to the Weber prob-
lem. J Reg Sci 24:219–228

Wesolowsky GO (1993) The Weber problem: history and perspectives. Locat Sci 1:5–23
Wu S (1994) A polynomial time algorithm for solving the Fermat-Weber location problem with 

mixed norms. Optimization 30:227–234

16  The Weiszfeld Algorithm: Proof, Amendments, and Extensions



391

17.1 � Introduction

Though it is generally agreed that the term “Lagrangean relaxation” was first 
used by Geoffrion (1974), the use of this technique, either explicitly or implicitly 
(through special applications of Lagrangean relaxation ideas), precedes the work 
of Geoffrion by a number of years. For example, among others, Held and Karp 
(1970, 1971) used the concept in their successful algorithm for the traveling sales-
man problem.

In location theory, it appears that the first use of Lagrangean relaxation ideas 
should be credited to Bilde and Krarup (1967, 1977). Although the publication of 
their work in English dates from 1977, the corresponding lower bounding generat-
ing procedure for the Simple Plant Location Problem ( SPLP) was originally devel-
oped by the authors in 1967. This procedure was published in the period 1967–1969 
in a series of research reports written in Danish, which attracted limited (if any) 
attention outside Scandinavia. As the authors testify in the abstract of their 1977 pa-
per, due to their simplicity and high standard of performance, their algorithms were 
still competitive ten years after they were first published. This encouraged them to 
write an English version of their original work.

Erlenkotter (1978) acknowledges the early contribution of Bilde and Krarup in 
the last paragraph of the introductory remarks to his seminal paper on Lagrangean 
relaxation-based techniques for optimally solving the simple plant location prob-
lem. Erlenkotter states (1978, p. 993):

After this paper was submitted for publication, I learned of closely related work by Bilde 
and Krarup (1977). Their paper, although published recently, is essentially a translation 
into English of a report originally prepared in Danish in 1967. From a different perspective, 
Bilde and Krarup develop a procedure essentially the same as the ascent procedure given 
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here and incorporate it into a branch-and-bound procedure. They do not, however, consider 
the adjustment approach and other improvements developed here or provide explicit com-
putational comparisons with other approaches.

Diehr (1972) and Marsten (1972) were the first authors to use Lagrangean relax-
ation-based ideas to solve the p-median problem. Diehr (1972) developed a heuris-
tic algorithm which provides upper and lower bounds for the p-median problem. 
His algorithm exploits the structure of the dual of the linear programming relaxation 
of p-median problems to determine generally very tight lower bounds for this prob-
lem. In his computational experiments, using networks of up to 100 vertices, the 
average difference between upper and lower bounds was less than 2%.

Marsten (1972) showed that all medians of a weighted network are the extreme 
points of the same polyhedron Pp. He defines Pp starting from an equivalent form of 
the linear programming relaxation of the p-median problem. He then dualizes one 
of its constraints in Lagrangean fashion. The dual of the corresponding Lagrangean 
problem is linear program whose maximization objective is parameterized, from 
which he defines the polyhedron Pp. Marsten then developed an algorithm which 
makes a path of Pp that passes through most of the integer extreme points of the 
polyhedron and through very few others. The tour may, however, include extreme 
points that correspond to fractional values of p; furthermore, it may also not en-
counter the optimal p-median for certain integer values of p.

Future developments of Lagrangean relaxation-based ideas for solving simple 
plant location problems and p-median problems followed different paths. While 
dual ascent procedures, of the type developed by Erlenkotter (1978), continue to be 
very effective for solving simple plant location problems to this date, as for example 
in Körkel (1989), and in the several dual-based procedures developed for hub loca-
tion problems (further discussed in Sect. 17.3), the use of Lagrangean relaxation 
proper did not prosper much in this field, perhaps due to the very successful results 
obtained through the dual procedures. On the other hand, several Lagrangean relax-
ation algorithms have been successfully developed for p-median problems; for ex-
ample, Narula et al. (1977), Christofides and Beasley (1982), Boffey and Karkazis 
(1984), Hanjoul and Peeters (1985), and Mirchandani et al. (1985).

Apart from the pioneering work of Diehr (1972), the only known attempts to 
solve p-median problems through dual ascent procedures appear to be the works of 
Mavrides (1979) and Galvão (1980). In the latter case it was found that the restric-
tion on p, the number of facilities in p-median problems, complicates the solution 
of the dual. Consequently, the corresponding computational results, while strong at 
the time, are modest by today’s standards.

The previous paragraphs focused on simple plant location problems and p-me-
dian problems, which are location problems related to classical (early) applications 
of Lagrangean relaxation-based ideas. A general model for static uncapacitated fa-
cility location problems ( UFLP) was defined by Galvão and Raggi (1989). This 
model, which has both simple plant location problems and p-median problems as 
special cases, was solved by a three-phase method composed of ( i) a primal-dual 
algorithm; ( ii) a Lagrangean-based subgradient optimization procedure; and ( iii) 
a branch-and-bound algorithm. A detailed review of the use of Lagrangean relax-
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ation in the solution of uncapacitated facility location problems is given in Galvão 
(1993). Further applications of Lagrangean relaxation to different classes of loca-
tion problems, such as capacitated and hierarchical problems, may be found else-
where in the literature, and a brief review of major contributions for these classes of 
location problems is presented in Sect. 17.4 of this Chapter.

The remainder of this chapter is organized as follows. The main concepts of 
Lagrangean relaxation are briefly reviewed in Sect. 17.2. The next section surveys 
the classical contributions by Bilde and Karup, Diehr, and Marsten. Section 17.4 
provides a brief survey of important works that followed the classical contributions. 
Finally, Sect. 17.5 provides an outlook and a conclusions of the chapter.

17.2 � A Brief Review of Lagrangean Relaxation

This brief review is based on the works of Fisher (1981) and Galvão (1993). It 
contains only the main results available in the literature; no proofs are included. For 
detailed reviews of the topic, see the excellent surveys by Geoffrion (1974), Shapiro 
(1979), and Fisher (1981). For a discussion of subgradient optimization strategies 
see Sarin and Karwan (1987), Sherali and Myers (1988), and Baker and Sheasby 
(1999). The use of conditional subgradient optimization is analyzed in Larsson et al. 
(1996). The choice of the step size in subgradient optimization algorithms is ad-
dressed by Sherali and Myers and by Poljak (1967, 1969), Held et al. (1974) and 
Bazaraa and Sherali (1981).

Lagrangean relaxation may, in general, be applied to any combinatorial opti-
mization problem formulated as an integer program. However, as applications re-
viewed in this chapter are modeled as zero-one integer problems, we consider the 
following formulation:

where c, x, b, and e are [1 × n], [n × 1], [m × 1], and [� × 1]-dimensional vectors, 
respectively, and A and D are matrices of appropriate dimensions. Suppose that 
Ax ≤ b is the set of complicating constraints, that is, the set of constraints that if 
relaxed (dualized) into the objective function will make the resulting Lagrangean 
problem “easier” to solve than problem P. These constraints are thus added to the 
objective function through a vector λ of Lagrangean multipliers. The corresponding 
Lagrangean relaxation of P is given by:

P :v = min cx
s.t. Ax ≤ b
Dx ≤ e
x ∈ {0, 1}n ,

LRλ: vλ = min cx + λ (Ax − b)

s.t. Dx ≤ e
x ∈ {0, 1}n.
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Without loss of generality, assume that P has at least one feasible solution, and that 
the set of feasible solutions to LRλ,  which does not depend on λ, is finite. Note that 
since Ax ≤ b, we must have λ ≥ 0  for vλ  to be a lower bound for problem P. If the 
complicating constraints were of the form Ax ≤ b, we would have to have λ ≤ 0  for 
vλ ≤ v to hold; correspondingly, λ would be unrestricted in sign in the case Ax = b. 
When we solve LRλ  for any vector λ ≥ 0, we obtain a lower bound for P; we are 
interested, however, in obtaining the best possible lower bound.

The best choice for λ is given by the optimal solution of the problem:

This problem is designated by D because it corresponds to the Lagrangean dual of P 
with respect to the constraints Ax ≤ b, see Geoffrion (1974). It is a concave problem 
whose structural properties make it solvable. Since we assumed that the set of fea-
sible solutions to LRλ is finite, the set X = {x: Dx ≤ e, x ∈ {0, 1}n} may be expressed 
as X = {xt, t = 1,…, T}, and problem D may be formulated as a linear program with 
many constraints as problem D  as follows:

The linear programming dual of D is a linear program with many columns (see for 
example Fisher 1981):

Problem P  with ξt  integer is equivalent to P, although P  and LP , the linear pro-
gramming relaxation of P, are generally not equivalent.

Problems D  and P  have important structural properties that allow the formula-
tion of algorithms to find the optimal λ vector that solves D. It is possible to solve 
D  through a subgradient optimization method, and P  can be solved, for example, 
by generalized linear programming, such as the Dantzig-Wolfe decomposition. We 
will briefly review each of these two possibilities.

From D it follows that w = vλ is the lower envelope of a finite family of linear 
functions. Function vλ has the desirable properties of continuity and concavity, but 
is not differentiable at all points. It is, however, subdifferentiable everywhere, and 
the subgradient optimization method, an adaptation of the gradient method in which 
gradients are replaced by subgradients, can be used to solve D.

D: vD = max
λ≥0

vλ.

D : vD = max w

s.t. w ≤ cxt + λ(Axt − b), t = 1, . . . , T
λ ≥ 0.

P : vD = min
T∑

t=1
ξtcxt

s.t.
T∑

t=1
ξtAxt ≤ b

T∑
t=1

ξt = 1,

ξt ≥ 0, t = 1, . . . , T .
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An m-vector γ  is called a sugradient of vλ at λ = λ if vλ ≤ vλ + (λ − λ)γ  for all 
λ. It is clear that vλ can have several subgradients at λ = λ  and that γ = (Ax − b) 
is a subgradient at any λ for which x solves LRλ. Any convex combination of sub-
gradients at λ = λ  is also a subgradient at this point.

In the subgradient optimization method, given an initial vector λ0, a sequence 
{λk} is generated by the rule

where γ k  is any subgradient selected at λ = λ  and θk > 0  is the step size. Pol-
jak (1967) proved that if θk  satisfies θk → 0 and

∑
k θk → +∞ , then vλk → vD , 

where vλk  is the value of vλ  at iteration k.
The step size most commonly used in practical applications is

where the step size parameter αk  is a scalar satisfying 0 < αk ≤ 2 , v∗  is an upper 
bound on vD , usually obtained by applying a heuristic to solve P, and || γ k||2  is 
the norm of the subgradient vector at iteration k. Although the above rule does not 
satisfy the second Poljak sufficient condition for optimal convergence, it has per-
formed well in practice.

As emphasized by Sherali and Myers (1988), one of the most influential factors 
in the convergence of the subgradient optimization algorithm is the choice of the 
step size, especially the updating of the step size parameter αk  throughout the pro-
cedure. Held et al. (1974) initialize αk  as 2 and halve it whenever its current value 
fails to improve the value of vD  after a predetermined number of iterations. They 
report satisfactory convergence results. Bazaraa and Sherali (1981) use a different 
strategy, which they claim to yield faster convergence rates.

We will now examine the solution of P  by generalized linear programming. This 
procedure starts with a subset of the T columns, which form a master problem. A 
column generating technique is used to find a new column for the master problem 
and eventually an optimal solution for this problem will yield, as dual multipliers, 
the λ vector of Lagrangean multipliers. This approach has not performed consistent-
ly well and modifications of this technique, for example the Boxstep algorithm of 
Hogan et al. (1975), have performed better. A hybrid approach is to use subgradient 
optimization as a starting strategy and then switch to generalized linear program-
ming when the convergence rate slows down.

The experience to date indicates that subgradient optimization is a more effec-
tive method to determine λ, and for this reason it has been used in the majority 
of the applications. The subgradient algorithm is easy to implement; a version of 
it appears, for example, in Sherali and Myers (1988). This algorithm terminates 
when the value of vD  coincides with an upper bound calculated for P, in which 
case the optimal solution for P is available, or when γ = 0,  in which case a dual-
ity gap may exist. Other stopping rules commonly used are to halt the procedure 
when the algorithm fails to converge after a predetermined number of iterations, 

λk+1
i = max{0, λk

i + θk.γ
k
i }, i = 1, . . . , m,

θk = αk(v∗ − vλk )/ || γ k ||2,
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or when the step size θk  becomes very small. In these two latter cases a duality 
gap is present.

We will omit discussion of Lagrangean decomposition, a solution technique 
closely related to Lagrangean relaxation. For an overview of Lagrangean decompo-
sition, see, for example, Guignard and Kim (1987).

17.3 � The Classical Contributions and Their Impact

This section surveys three of the original contributions that laid the foundations for 
the use of Lagrangean Relaxation techniques for the solution of location problems. 
Each subsection surveys one of the three contributions.

17.3.1  �Bilde and Krarup (1967, 1977): Sharp Lower Bounds for 
the Simple Plant Location Problem

17.3.1.1 � Statement of the Problem and some Fundamental Results

In order to follow the arguments of Bilde and Krarup, we first need to formulate the 
simple plant location problem. In order to do so, we need the following notation:

Sets
I:	� Set of sites available for the location of facilities: i ∈ I = {1, 2… m}, and
J:	� set of customers: j ∈ J = {1, 2… n}.

Parameters
m:	� Number of potential facility sites,
n:	� number of customers,
fi:	� fixed cost associated with facility i,
bj:	� demand (number of units) of customer j,
tij:	� unit transportation cost from facility i to customer j,
cij = tijbj:	� total transportation cost incurred when demand j is totally supplied
	 from facility i,
Δ = [Δij]:	� an [m × n]-dimensional matrix of real numbers, and
λj :	� level number of column j.

Variables
xij:	� Fraction of the demand of customer j supplied from facility i. If the single 

source property holds for a given problem, then we have 

	 xij =
{
1 if customer j is supplied from facility i;
0, otherwise.
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	 yi =
{
1 if facility i is open;
0 otherwise.

ri:	� slack (auxiliary) variable related to facility i.

Given these sets, parameters, and variables, we can now write the simple plant loca-
tion problem as

� (17.1)

In the formulation above the objective function minimizes fixed plus transportation 
costs. The first constraints guarantee that the demand of all customers is satisfied, 
the following constraints ensure that products are shipped only from open facilities, 
and the remaining constraints define the nature of the decision variables. Notice that 
since there are no capacity constraints or economies of scale, this formulation has 
the single source property, with each customer fully assigned to its closest facility. 
Also, without loss of generality, Bilde and Krarup assume that all fixed costs are 
nonnegative. Finally, if it is also assumed that the parameters cij are nonnegative, the 
demand satisfaction constraints may be replaced by 

∑m
i=1 xij ≥1, ∀j, since, given 

the nonnegative nature of the parameters fi and cij, these constraints will be satisfied 
as equalities in the optimal solution. This latter form of expressing the demand sat-
isfaction constraints is convenient for some of the developments that follow.

A direct way of generating a lower bound on Z0
SPLP = min{ZSPLP} could be to relax 

the integrality constraints to xij, yi ≥ 0, ∀ i, j, and solve the resulting linear program prob-
lem. Instead, the authors developed a highly effective heuristic method to maximize 
the lower bound. Matrix Δ is said to be feasible if it satisfies the following conditions:

� (17.2)

The matrix Δ is now introduced into the formulation (17.1) of the simple plant lo-
cation problem by adding and subtracting the same term in the objective function, 
which results in the following formulation:

�
(17.3)

SPLP : ZSPLP(min) =
m∑

i=1

fiyi +
m∑

i=1

n∑

j=1

cijxij

s.t.
m∑

i=1

xij =1 ∀ j

yi − xij ≥ 0, ∀i, j

xij ∈ {0,1} ∀i, j

yi ∈ {0,1} ∀i.

n∑

j=1

�ij ≤ fi , ∀i, and �ij ≥ 0 ∀ i, j.

SPLP : ZSPLP(min) =
m∑

i=1

( fi yi −
n∑

j=1

�ijxij) +
m∑

i=1

n∑

j=1

(cij + �ij)xij
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The optimal solution to problem (17.1) or, alternatively, problem (17.3) is denoted 
by (x0, y0) . It is not difficult to see that

� (17.3a)

for any feasible Δ and for any (x, y) representing a feasible solution to (17.3).
For any fixed set of feasible parameters Δij, consider the linear programming 

problem

� (17.4)

with min {ZLBSPLP} = Z∗
LBSPLP .

For (x, y) = (x0, y0) we obtain, from (17.3a)

� (17.5)

The problem LBSPLP may be solved by inspection. It is easy to see that

� (17.6)

i.e. Z∗
LBSPLP  is the sum of the column minima of the (C + Δ) matrix. This immedi-

ately implies

s.t.
m∑

i=1

xij ≥1 ∀j

yi − xij ≥0 ∀i, j

xij ∈ {0,1} ∀i, j

yi ∈ {0,1} ∀i.

fiyi −
n∑

j=1

�ijxij ≥ 0, ∀i

LBSPLP : ZLBSPLP(min) =
m∑

i=1

n∑

j=1

(cij + �ij)xij

s.t.
m∑

i=1

xij ≥1 ∀j

xij ≥0 ∀i, j

Z0
SPLP =

m∑

i=1

(fiy0
i −

n∑

j=1

�ijx
0
ij) +

m∑

i=1

n∑

j=1

(cij + �ij)x0
ij

≥
m∑

i=1

n∑

j=1

(cij + �ij)x0
ij ≥ Z∗

LBSPLP

Z∗
LBSPLP =

n∑

j=1

min
i

{cij + �ij },
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Theorem 1:  Given any set of nonnegative numbers Δij satisfying 
∑n

j=1 �ij ≤ fi ∀i, 
we have

This lower bound is evidently dependent on the way Δ is determined. From Theo-
rem 1 it follows that the sharpest lower bound is found as the optimal solution to 
the problem

� (17.7)

In fact, problem (17.7) could be reformulated and solved as a linear program, but 
the authors decided instead to seek a bounding procedure which—rather than at-
tempting to find an optimal solution to the bounding problem—could obtain sharp 
lower bounds using limited computational effort. To this end, the authors developed 
a heuristic procedure, the principles of which are described in the following para-
graphs.

This heuristic procedure is initiated with the given matrix C and a matrix Δ that 
consists entirely of zeroes. A set ri of auxiliary (slack) variables is then introduced 
as

� (17.8)

where the slack variables ri initially equal the costs fi. The ( n + 1) numbers 
( ri, �i1 … �in ) may be viewed, throughout the computations, as a partitioning of 
the corresponding fi.

The idea of Bilde and Krarup is to find partitionings of the fixed costs so as to 
maximize the summed column minima of the (C + Δ) matrix. All parameters cij 
preserve their original values and the elements of Δ are increased iteratively. The 
procedure operates in the columns of the matrix (C + Δ), one at a time. In each 
step a column is selected and an attempt is made to alter a subset of its elements 
by increasing the respective parameters Δij in such a way that it has a maximum 
effect on the corresponding column minimum, with a minimum “consumption” 
of the slack variables ri involved. (Note that the slack variables ri cannot become 
negative).

n∑

j=1

min
i

{cij + �ij} ≤ Z0
SPLP.

WLBSPLP(max) =
n∑

j=1

min
i

{cij + �ij}

s.t.
n∑

j=1

�ij ≤ fi ∀i

�ij ≥ 0 ∀i, j.

ri = fi −
n∑

j=1

�ij ∀i
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Finally, in order to guide the search for the column to be the next candidate for 
further augmentation, the authors associate a level-number λj  with each column 
j of the matrix (C + Δ). This number is equal to the number of occurrences of the 
smallest element in that column. At any stage of the computation the next candidate 
for selection, j*, is the column with the smallest level number, ties being broken 
by selecting the column with the smallest subscript. The selection rule can then be 
written as

� (17.9)

For further details of the heuristic procedure, together with a small numerical exam-
ple solved in detail to illustrate it, readers are referred to Bilde and Krarup (1977).

17.3.1.2 � The Bounding Procedure and a Lagrangean Relaxation of 
Formulation (17.1)

Bilde and Krarup (1977) relate their bounding procedure to a Lagrangean relaxation 
of formulation (17.1), corresponding to the definition of yi − xij ≥ 0 ∀i, j , as the 
set of “complicating constraints.” The parameters Δij are the corresponding set of 
nonnegative Lagrangean multipliers. The Lagrangean problem then becomes

�

(17.10)

If we consider the multipliers Δij satisfying (17.2), the variables yi may be removed 

from LR1_SPLP because 
∑
j

�ij ≤ fi ∀i (and, therefore, yi = 0 ∀i ). After the vari-

ables yi are removed from (17.10), the problem LR1_SPLP coincides with the for-

mulation (17.4) and may be thus solved by inspection. Due to relation (17.6), the 
minimum value of ZLR1_SPLP is determined by

j ∗ = min{j : λj = min
s∈J

(λs)}.

LR1_SPLP : ZLR1_SPLP (min)

=
m∑

i=1

fiyi +
m∑

i=1

n∑

j=1

cij xij +
m∑

i=‘1

n∑

j=1

�ij (xij − yi)

≡
m∑

i=1

(fi −
n∑

j=1

�ij )yi +
m∑

i=1

n∑

j=1

(cij + �ij )xij

s.t.
m∑

i=1

xij ≥1 ∀j

xij ∈ {0,1} ∀i, j

yi ∈ {0,1} ∀i.
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In terms of Lagrangean relaxation, Bilde and Krarup’s approach may be viewed as 
a parameterized relaxation, where the bounding procedure is a rule for setting the 
parameters Δij to obtain sharp lower bounds. Notice that the Lagrangean dual

and the lower bound maximization problem (17.7) are equivalent problems.
The remainder of the paper by Bilde and Krarup (1977) is dedicated to dem-

onstrating that, if certain conditions are met, the optimal solution of simple plant 
location problems may be found by inspection for moderately sized problems as a 
follow-up of the bounding procedure. Otherwise, a branch-and-bound algorithm is 
used to find such optimal solutions, and some related computational experience is 
reported. These topics, however, are beyond the scope of this chapter.

17.3.1.3 � The Impact of the Work on Future Developments

The very successful algorithm DUALOC, developed by Erlenkotter (1978) for the 
simple plant location problem cannot be seen as a development originating from the 
work of Bilde and Krarup, since the two procedures, in spite of their similarity, were 
developed independently, as explained in the introductory remarks of this chapter. 
The work by Körkel (1989), on the other hand, was directly built upon the work of 
Erlenkotter, since it specifically improves DUALOC, cutting computational times 
considerably. The use of dual ascent procedures for solving simple plant location 
problems and related problems, however, continue to be successfully used to this 
date, based on the same principles of these early developments.

Consider for example the uncapacitated multiple allocation hub location prob-
lem ( UMAHLP), an important problem in the design of logistic networks. Its objec-
tive is to find minimum cost solutions to the problem of locating hubs and allocating 
terminals to them, in the presence of installation and transportation costs. According 
to Klincewicz (1996), the dual ascent method he developed for UMAHLP, com-
prising basically a dual ascent algorithm, a dual adjustment routine and a branch-
and-bound algorithm, had its origins in the works of Bilde and Krarup (1977) and 
Erlenkotter (1978) for the simple plant location problem.

The first integer programming formulations of UMAHLP are given in Campbell 
(1994). Klincewicz (1996) identified a close relationship between the simple plant 
location problem and UMAHLP and proposed a solution method that may be seen 
as an extension of the method of Erlenkotter (1978) for the hub location problem. 
Sung and Jin (2001) and Mayer and Wagner (2002) presented alternative mathe-
matical formulations for UMAHLP and used dual-based methods for their solution. 
Finally, Cánovas et al. (2006) presented a formulation that has the tightest linear 

Z0
LR1_SPLP =

n∑

j=1

min
i

{cij + �ij }.

max
�ij ≥0

{Z0
LR1_SPLP },
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programming relaxation of those developed so far. They also developed a complex 
dual ascent procedure, used to solve the relaxed problem and produce tight bounds 
in each node of their branch-and-bound algorithm.

While the papers reviewed above are not intended to be an exhaustive survey of 
the use of dual-based methods to solve location problems, they do demonstrate their 
importance. The close relationship that exists between dual-based and Lagrangean 
relaxation methods, as demonstrated by Bilde and Krarup (1977), are a proof of the 
importance of the pioneering developments in these fields.

17.3.2  �Diehr (1972): Upper and Lower Bounds for 
the p-Median Problem

As previously discussed, Diehr (1972) developed a heuristic algorithm that provides 
upper and lower bounds for the p-median problem. He considers a network G = ( V, 
E) with n vertices V joined with edges E. Associated with each vertex j is a nonnega-
tive real valued weight hj, j = 1, 2… n. Associated with each edge in E is a nonnega-
tive distance or length. Let V p = {i1, i2, . . . , ip)  be a set of any p vertices contained 
in V, i.e., V p ⊂ V . Define d(V p, j ) = min{d(i1, j ), d(i2, j ), . . . , d(ip, j )} , where 
d( ik, j) is the length of the shortest path from vertex ik to vertex j. Finally, define an 
[n × n]-dimensional matrix of weighted distances D = [Dij] = [hjd( i, j)].

Associated with any subset V p  is a value S(V p ) given by S(V p) =
∑n

j=1 min
i∈Vp

{Dij }.  
Thus, for a given subset V p  the value of S(V p ) is determined by summing the 
minimum Dij values for each column (vertex of the network). The p-median is then 

given by the subset V p

0 , where S(V p

0 ) = min
Vp⊂V

{S(V p)} . Notice that the p-median 

was defined as a set of p vertices of the network. This is correct because Hakimi 
(1964, 1965) proved that there exists at least one subset V p ⊂ V  containing exactly 
p vertices, such that S(V p) ≤ S(Yp)  for any arbitrary set Yp  of p points on the 
links or vertices of the network G = ( V, E). The optimal p-median of a network can 
therefore be sought as a subset of p vertices of the network.

The solution algorithm of Diehr is composed of two phases: (i) a heuristic al-
gorithm to find an approximate solution (upper bound) for the problem, and (ii) a 
heuristic search on a dual problem to determine a lower bound. The primal heuristic 
is a “greedy”-interchange heuristic that has an iterative (vertex substitution) phase 
similar to the algorithm of Teitz and Bart (1968); it will not be discussed here, as our 
interest lies in the solution of the dual problem.

17.3.2.1 � The Dual Problem

Theorem 2:  Given any subset V p  of p vertices, a lower bound S(V p)  to the value 
of S(V p)  is given by
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� (17.11)

where Bj, j = 1, 2… n are any real-valued variables.

Proof:  Assume, without loss of generality that Di1 j ≤ . . . . ≤ Dipj  for some j. 
Diehr (1972) proves that (17.11) provides a loss for each value of j which is less 
than the loss for each j in the value of S(V p) . That is, he proves that the following 
relationship holds:

� (17.12)

Consider the following two cases, one of which must be true:

(i)	 Bj ≤ Di1 j . In this case the left hand side of (17.12) is strictly less than Di1 j  by 
assumption.

(ii)	 Bj > Di1 j  In this case the left-hand side of (17. 12) can be rewritten as

	
Bj − (Bj − Di1 j) −

p∑
k=2

max(0, Bj − Dik j)

= Di1 j − K , K =
p∑

k=2
max (0, Bj − Di1 k )

which is clearly less than or equal to Di1j  since K is nonnegative. Since the bound 
holds for each j it clearly holds for the sum over j, establishing (17.11).� □

Diehr argues that since a lower bound to the optimal solution value S(V 0
p )  is de-

sired, it is necessary to minimize S (V p)  over all V p  contained in V, i.e.,

� (17.13)

The subset V p  which minimizes the left-hand side of (17.13) is determined as fol-
lows. Define for each i ∈ V  a “gain” Gi given by Gi =

∑n
j=1 max (0, Bj − Dij ).  

Then rank the gains such that Gi1 ≥ Gi2 ≥ . . . ≥ Gin . The subset V p  which mini-
mizes the left-hand side of (17.13) is simply V p = (i1, i2, . . . , ip).  The lower bound 
on the optimal solution is thus given by:

� (17.14)

The goal is now to find the maximum possible lower bound through an adequate 
selection of the variables Bj. The method used to determine starting values for the 
variables Bj and to seek for “good” Bj values is discussed in the following section 
that is dedicated to the dual heuristic.

S(V p) =
n∑

j=1

[Bj −
∑

i∈V p

max(0, Bj − Dij )] ≤ S(V p),

Bj −
∑

i∈V p

max
(
0, Bj − Dij

)
≤ min

i∈V p
Dij = Di1 j .

min
V p⊂V

S(V p) ≤ S(V 0
p ).

S(V p) =
n∑

j=1

Bj −
p∑

k=1

Gi
k
.
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It is worth mentioning that the corresponding dual problem is equivalent to the 
dual of the linear programming relaxation of the primal problem, as formulated by 
ReVelle et al. (1970). The variables Bj are the dual variables corresponding to the 
restrictions that each vertex in the network must be assigned to one of the vertices in 
V p , i.e., 

∑n
i=1 xij ≥1 ∀j . Note that for p-median problems, we must also satisfy 

the restriction 
∑n

i=1 yi = p , where p is the number of facilities to be established in 
the network and the variables xij and yi are as defined in Sect. 17.3.1.

17.3.2.2 � The Dual Heuristic

This phase of the algorithm uses solution values from the primal phase to deter-
mine initial values for the variables Bj. The primal “greedy”-interchange heuristic, 
because of its “greedy” phase that sequentially selects vertices for the solution, pro-
vides approximate solution values S(V p ) and S(V p−1 ), for the p- and ( p-1)-median 
problems, respectively. Diehr then argues that if it is supposed that ( i) these values 
are optimal and equal to the maximum lower bounds, and ( ii) the values of the dual 
variables are the same for the maximum lower bounds for the p- and ( p-1)-median 
problems, then from (17.14) it is possible to write:

Assuming that the p largest gains are equal, i.e., Gi1 = Gi2 = . . . = Gip , we then 
have

�

(17.15)

Finally, the initial values of the variables Bj are determined so that their sum satis-
fies (17.15), with individual variables Bj biased above or below the mean, depend-
ing whether the values Dij in the corresponding columns are large or small when 
compared to the Dij values in other columns.

The determination of a good lower bound involves a local search on the variables 
Bj. Starting with B1, it is determined whether the lower bound can be increased by 
increasing or decreasing B1 to the next larger or smaller value of Dij. If an improve-
ment in the lower bound is obtained, the change which results in the largest increase 
in the lower bound is made. The search is then performed on B2, B3,…, Bn. The 
algorithm cycles through the columns until it is no longer possible to improve the 
lower bound by changing the values of the variables Bj.

S
(
V p−1) − S

(
V p

)
=




n∑

j=1

Bj −
p−1∑

k=1

Gik



 −




n∑

j=1

Bj −
p∑

k=1

Gik



 = Gip .

S(V p) =
n∑

j=1

Bj − pGip , and

n∑

j=1

Bj = S(V p) + p(S(V p−1) − S(V p))
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Diehr also found that, when such local optimum is achieved, further improve-
ments are often possible if a randomly selected Bj is allowed to increase or decrease 
to the next higher or lower Dij in its column; if an improvement is thus obtained, the 
algorithm reverts to the local search cycling through the columns. The algorithm 
terminates when a sequence of n random selections of the variables Bj is completed 
without further improvements in the value of the lower bound. The algorithm also 
terminates if the lower bound coincides, at any given stage of the search, with the 
value found by the primal heuristic.

Finally, Diehr conjectured that comparable results could be obtained if a modi-
fied search of his method were applied to the simple plant location problem. In that 
case the lower bound would be given by

� (17.16)

That is, a vertex should be included in the lower bound computation whenever its 
gain Gi was greater than the corresponding fixed cost fi. Though Diehr did not con-
duct any experimentation to support his conjecture, we can compare his conjecture 
to the Lagrangean relaxation of the simple plant location problem with respect to 
the constraints

Consider formulation (17.1) of the simple plant location problem with constraints ∑m
i=1 xij = 1∀j  replaced by 

∑m
i=1 xij ≥1∀j.  As already noted, the two formula-

tions are equivalent. If we dualize these constraints in usual Lagrangean fashion 
using the variables Bj ≥ 0 ∀j  as Lagrangean multipliers, we obtain the following 
formulation:

�

(17.17)

n∑

j=1

Bj −
m∑

i=1

max (0, Gi − fi).

m∑

i=1

xij ≥1 ∀j.

LR2_SPLP : Z(LR2_SPLP)B

= min






m∑

i=1

n∑

j=1

cijxij +
m∑

i=1

fiyi +
n∑

j=1

Bj

(
1 −

m∑

i=1

xij

)




≡ min






m∑

i=1

n∑

j=1

(
cij − Bj

)
xij +

m∑

i=1

fiyi +
n∑

j=1

Bj






s.t. yi − xij ≥0 ∀i, j

xij ∈ {0,1} ∀i, j

yi ∈ {0,1} ∀ i.
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This Lagrangean problem is easily analyzed for fixed values of the variables Bj. 
From the form of the objective function and considering the constraints it follows 
that

Now we define, for a fixed vector B = {B1, B2…Bn}:

The optimal values of the variables yi are obtained by solving the reduced problem

� (17.18)

It is easy to see that this problem can be solved by inspection by setting yi = 1 if 
�i(B) ≤ 0 , and yi = 0, otherwise. The best choice for the vector B is obtained by 
solving the Lagrangean dual

� (17.19)

for example through a subgradient optimization method.
Return now to (17.16), the expression proposed by Diehr (1972), where Gi was 

defined as Gi =
n∑

j=1
max (0, Bj − Dij ) . Replacing the parameters Dij by cij, it is 

then possible to write

�

(17.20)

For a given vector B = {B1, B2…Bn}, the final expression of (17.20) is equivalent to 
the objective function of LR2_SPLPR, given in (17.18). The search for the vector B 

xij =
{
yi if cij − Bj ≤ 0,
0, otherwise.

�i(B) =
n∑

j=1

min(0, cij − Bj ) + fi.

LR2_SPLPR :Z(LR2_SPLPR)B
= min

m∑

i=1

�i(B)yi, s.t. yi ∈ {0, 1) ∀i.

LD :ZLD = max
B≥0

Z(LR2_SPLPR)B

n∑

j=1

Bj −
m∑

i=1

max(0, Gi − fi) =
n∑

j=1

Bj +
m∑

i=1

min(0, fi − Gi)

=
n∑

j=1

Bj +
m∑

i=1

min



0,




fi −
n∑

j=1

max(0, Bj − cij )










=
n∑

j=1

Bj +
m∑

i=1

min



0,




fi +
n∑

j=1

min(0, cij − Bj )










=
n∑

j=1

Bj +
m∑

i=1

min {0, �i(B)}.
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that maximizes the lower bound is therefore equivalent to solving the Lagrangean 
dual formulated in (17.19).

The development shown above not only proves the conjecture of Diehr (1972), 
but also indicates that his approach is related to a Lagrangean relaxation of the 
simple plant location problem. His proposed bound, however, would differ from 
the bound of Bilde and Krarup (1967, 1977) for the simple plant location problem 
(see Sect.  17.3), since in that case the dualized constraints were the constraints 
yi − xij ≥0 ∀i, j.  To the best of our knowledge, however, no numerical experi-
mentation has ever been carried out with either Lagrangean relaxation of the simple 
plant location problem.

Given that the conjecture of Diehr followed from an immediate extension of 
his detailed work for the p-median problem, it is easy to prove, following the same 
steps, that his dual heuristic for the p-median problem is also related to a Lagrang-
ean relaxation of that problem.

17.3.2.3 � Impact of the Work on Future Developments

Contrary to the simple plant location problem, several Lagrangean relax-
ation schemes have been successfully developed for the p-median problem (see 
Sect. 17.1). On the other hand, dual-based procedures for this problem did not re-
ceive much attention after the early paper by Diehr (1972), except perhaps for the 
work of Mavrides (1979) and Galvão (1980).

Galvão (1980) developed his dual-bounded algorithm to solve p-median prob-
lems having as a basis the paper by Diehr. It consists of a dual ascent algorithm 
that solves the dual of the linear programming relaxation of the p-median prob-
lem. This procedure produces sharp lower bounds for the p-median problem and 
was later embedded into a branch-and-bound algorithm. It used relations (17.15) 
to obtain initial values for the variables Bj, which have a prominent role in the 
procedure.

Consider the following formulation of the p-median problem:

� (17.21)p−MP : Zp−MP (min) =
n∑

i=1

n∑

j=1

cij xij

s.t.
n∑

i=1

xij ≥1 ∀j (Bj )

yi − xij ≥ 0 ∀i, j (�ij )

n∑

i=1

yi = p (�)
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where the variables shown in parentheses are the dual variables corresponding to 
each set of constraints. The dual algorithm of Galvão may also be related to a La-

grangean relaxation of the p-median problem, if constraints 
n∑

i=1
xij ≥1 ∀j , and 

n∑
i=1

yi = p , are simultaneously dualized into the objective function using the indi-

cated dual variables as Lagrangean multipliers.
The work of Galvão was later reviewed as a modification of the algorithm of Er-

lenkotter (1978) for the simple plant location problem. It may be indeed viewed as a 
specialization of Erlenkotter’s algorithm, but was in fact developed independently, 
before Erlenkotter’s paper was published, at a time when ideas about dual-based 
procedures for this type of problem were just beginning to be considered.

17.3.3  �Marsten (1972): An Algorithm for Finding Almost all 
Medians of a Network

17.3.3.1 � Essentials of Marsten’s Contribution

In order to describe the procedure developed by Marsten (1972) it is necessary to 
rewrite the p-median problem using the formulation of ReVelle and Swain (1970) 
for location in a network. Using hj as defined in Sect. 17.3.2, let 

dij denote the length of the shortest path from node i to node j, denote

Note that yii = 1 if and only if a median is placed at node i. The problem may then 
be formulated as:

� (17.22.1)

xij ∈ {0,1} ∀i, j

yi ∈ {0,1} ∀i

c′
ij = hjdij , and define

yij =
{

1 if node j is assigned to a median at node i;
0, otherwise.

RS:Min
n∑

i=1

n∑

j=1

c′
ij yij

s.t.
n∑

i=1

yij = 1, j = 1, . . . , n
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� (17.22.2)

� (17.22.3)

� (17.22.4)

Problem RS is an integer linear program. It can be relaxed to a linear program by 
replacing (17.22.4) with yij ≥ 0 ∀i, j.  Marsten calls this linear program RS , it is a 
very large linear program with n2 variables and ( n2 +1) constraints.

As already noted in Sect. 17.1, Marsten (1972) showed that every p-median of 
the network is an extreme point of the same polyhedron Pp, and that it is possible 
to take a tour around Pp that passes through most of these special (integer) extreme 
points and through very few others. Marsten begins by defining polyhedron Pp. He 
eliminates the yii variables by means of eq. (17.22.1), which results in

Carrying out this elimination gives an equivalent form of RS,  namely

� (17.23.1)

� (17.23.2)

� (17.23.3)

�
(17.23.4)

The polyhedron Pp is now defined by Marsten as

� (17.24)

where En(n−1)  is the space of vectors with n( n − 1) zero-one elements. It is clear that 
any integer solution of RS  is an extreme point of Pp and that this is true regardless 
of the value of p.

Marsten now dualizes RS  with respect to the single constraint (17.23.3), using 
λ (scalar) as the dual variable, obtaining the objective

yij ≤ yii ∀i �= j

n∑

i=1

yii = p

yij ∈ {0,1} ∀i, j.

yii = 1 −
∑

k �=i

yik , i = 1, . . . , n

RS : Min
∑

i

∑

k �=i

c′
ij yik

s.t. yij +
∑

k �=i

yik ≤ 1 ∀i �= j

∑

i

∑

k �=i

yik = n − p

yij ≥ 0 ∀i �= j.

Pp = {y ∈ En(n−1) : y ≥ {0}n(n−1)and y satisfies relation (17.23.2)},
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� (17.25)

He then defines

� (17.26)

� (17.27)

The dual problem is then

� (17.28)

If m = n( n – 1), and em is a vector of m ones, then (17.26) can be written more com-
pactly as

� (17.29)

Marsten (1972) notes that Eq. (17.29) leads to the following observations:

(a)	 v( λ) does not depend on p
(b)	 v( λ) is the optimal value of a linear program parameterized in its objective func-

tion. Noting that λ is a scalar, v( λ) is a piecewise-linear concave function
(c)	 Zp(λ)  is just the linear function ( n – p)λ plus v( λ). Therefore v( λ) gives the 

whole family of Zp(λ)  functions for p = 1… n. Note that each Zp(λ)  is also 
piecewise-linear and concave.

Let now Y( λ) denote the set of optimal solutions for fixed λ, i.e.,

� (17.30)

Inspection of the objective function (17.26) reveals that v(λ) ≤ 0  for all λ and that 
yik cannot participate in an optimal solution as long as λ < c′

ik.  That is, λ < c′
ik.  

implies that yik = 0 for all y ∈ Y (λ).  In fact y = 0 is an optimal solution as long 
as λ ≤ c∗, c∗ = min

i �=k
c′
ik , i.e., as long as λ is less than or equal to the smallest 

number in the weighted distance matrix. So for λ ≤ c∗  we have v(λ) = 0  and 
Zp(λ) = (n − p)λ.

Marsten makes the tour of the polyhedron Pp in the course of constructing the 
v( λ) function. The construction of v( λ) is a straightforward application of parametric 
linear programming. Let y0 ∈ Y (λ0).  Then

� (17.31)

Min
y∈Pp

∑

i

∑

k �=i

(c′
ik − λ)yik + (n − p)λ

v(λ) = min
y∈Pp

∑

i

∑

k �=i

(c′
ik − λ)yik , and

Z p(λ) = (n − p)λ + v(λ)

Max
λ

Z p(λ)

v(λ) = min
y∈Pp

(c − λem)y

Y (λ) = {y ∈ Pp : v(λ) = (c − λem)y}.

v(λ0 + δ) = [c − (λ0 + δ)em]y0
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as long as

� (17.32)

Equation (17.31) can be written as

� (17.33)

which reveals that v( λ) has slope −emy0  as long as (17.32) holds.
Marsten observes that if y0 ∈ Pp  is a vector of zeroes and ones, then emy0  

is simply the number of ones, hence the number of assignments. When y = {0}m 
there are no assignments and therefore n medians are located. Each assignment 
reduces the number of medians by one. An integer solution y0 must therefore have 
(n − emy0)  medians. Finally, taking p = n − emy0  and using (17.27) and (17.33), 
Marsten obtains

�

(17.34)

as long as relation (17.32) holds. Therefore, subject to (17.32), Zp(λ)  has a zero 
slope for p = n − emy0.  This means that λ0  maximizes the dual objective function 
Zp(λ) , and since y0 ∈ Y (λ0)  it follows that y0 is an optimal solution of the primal 
problem RS. Consequently, y0 is a p-median of the network for p = n − emy0.

Marsten’s argument proves that every integer extreme point y∗  of Pp that belongs 
to Y (λ∗)  for some value of λ∗  is a p-median of the network for p = n − emy∗.  He 
notes, however, that it is possible that none of the p-medians of a network belong 
to Y (λ)  for any value of λ for certain values of p, for example p = 9. On the other 
hand, fractional extreme points of Pp that appear in some Y (λ)  may be thought of 
as “generalized” p-medians.

The procedure that Marsten gives for generating the entire v(λ)  function starts at 
y = 0 and λ = c∗  and increases λ, moving from one extreme point of Pp to another, 
so that the procedure is always at a member of Y (λ)  for the current value of λ. 
Every integer extreme point of Pp is a p-median of the network. Marsten notes that 
these medians are encountered in decreasing order of p, from p = n to p = 1, since 
v(λ)  is concave with slope −emy0  for y0 ∈ Y (λ).  Thus y = 0 belongs to v(c∗)  and 
the procedure is started with a p = n − em0 = n  medians.

Marsten then sets to discuss in great detail the pivoting mechanism, where the 
special structure of Pp is exploited. This is a lengthy discussion, which takes several 
pages of his report; it is beyond the scope of the present work to reproduce it. In his 
discussion Marsten addresses: ( i) the coefficient matrix for the constraints (17.23.2) 
that determine Pp; ( ii) the determination of the entering basic variable; ( iii) the de-
termination of the exiting basic variable.

y0 ∈ Y (λ0 + δ).

v(λ0 + δ) = v(λ0) − δemy0,

Zp

(
λ0 + δ

)
= (n − p)

(
λ0 + δ

)
+ v

(
λ0 + δ

)

=
[
n −

(
n − emy0)] (

λ0 + δ
)
+ v

(
λ0) − δemy0

= v
(
λ0) + λ0emy0,
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This detailed discussion is followed by a section on computational results. The 
author starts with a small test problem of a network having n = 10 nodes. In this 
case, the tour passes through exactly 10 extreme points, including the origin. Each 
of these is an integer extreme point and hence a median of the network; the entire 
tour took less than 1 second on a CDC 6400 computer. Marsten tested next a 33-
node network, with all the node weights being equal. The corresponding distance 
matrix was taken from Karg and Thompson (1964). Starting at the origin ( p = n), 
integer extreme points corresponding to p-medians for p = 33 down to p = 10 were 
encountered. The next extreme point visited, however, was fractional, correspond-
ing to a “median” for p = 9½.

The tour for the 33-node network did not produce a 9-median or an 8-median. 
Marsten states that, in general, the series of solutions that are available should make 
it easy to find the missing ones by means of a branch-and-bound search, but no such 
experience is reported. He also notes that the computational burden increases as the 
number of medians decreases. This is apparently because the necessary changes in 
the configuration of the solution become more drastic as the value of p decreases; 
the number of basis changes preceding a breakthrough increases as the number of 
medians decreases.

It is unfortunate that, to the best of our knowledge, this work of Marsten was 
never published as a paper, which would have made it available to a much wider 
audience than in the form of an internal report. The report itself is very well docu-
mented, not only in the formal development of his proposed procedure, but also 
with detailed results related to Marsten’s computational experiments.

17.3.3.2 � Impact on Future Developments

We are not aware of direct impacts of this work of Marsten on future developments 
related to the p-median problem. A possible indirect impact of his work is the de-
composition formulation of Garfinkel et al. (1974). These authors solved the linear 
programming relaxation of RS by decomposition, thus considerably reducing the 
size of the problem. In their decomposition formulation, the linear programming ba-
sis of the master problem contains only ( n + 2) rows, and each of the n subproblems 
can be solved by inspection. Due to the very degenerate nature of the linear pro-
gramming basis of the master problem, however, in many cases the algorithm fails 
to converge. This lack of convergence is a very serious problem, and prevents the 
decomposition formulation from effectively solving the problem; see, e.g., Galvão 
(1981).

The linear programming decomposition formulation represents only part of the 
Garfinkel et al. (1974) paper. In cases of noninteger termination of the linear pro-
gram, integrality is achieved through group theoretic techniques and a dynamic 
programming recursion. Garfinkel et al. report some computational experience with 
their proposed procedures.
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17.4 � A Survey of Subsequent Work

There are numerous papers related to the use of Lagrangean relaxation in facility 
location problems. A search of the Scopus database, using “Lagrangean relaxation 
and location” as keywords, produces 74 references to papers published between 
1978 and 2007. Twenty-seven of these papers are related to capacitated facility 
location, both with and without single-source constraints. These are followed by 
papers related to general facility location problems (10 papers), design of commu-
nication/computer networks (8 papers), and design of mobile/wireless networks (4 
papers). Classical location problems such as the simple plant location problem, the 
p-median, the Maximal Covering Location Problem ( MCLP) and hierarchical and 
dynamic location problems are also in the list. Finally, there are 8 papers that may 
be considered of theoretical nature.

In relation to classical location problems we may cite the Lagrangean dual ascent 
heuristic developed by Guignard (1988) for the simple plant location problem, a 
comparison of Lagrangean and surrogate relaxations for the maximal covering loca-
tion problem by Galvão et al. (2000), the development of dual-based heuristics for 
a hierarchical covering location problem by Espejo et al. (2003), a maximal cover-
ing location model in the presence of partial coverage by Karasakal and Karasakal 
(2004), and a branch-and-price approach to p-median location problems by Senne 
et al. (2005).

It is clearly beyond the scope of the present chapter to make a detailed survey of 
all of these works. Nevertheless, since capacitated problems are very important, it 
is worthwhile to take a closer look at the corresponding applications of Lagrangean 
relaxation. We will concentrate on the variant of the capacitated facility location 
problem with single source constraints, i.e., problems for which the demand of each 
customer must be totally supplied from a single facility, a problem referred to here 
as CFLP_SSC.

Let qj be the demand of customer j ∈ J  and Qi the capacity of a facility lo-
cated in i ∈ I.  Using the notation defined for the simple plant location problem in 
Sect. 17.3, the problem may be formulated as

� (17.35.1)

� (17.35.2)

CFLP_SSC_1: ZCFLP_1(min) =
m∑

i=1

fiyi +
m∑

i=1

n∑

j=1

cijxij

s.t.
m∑

i=1

xij =1 ∀j

n∑

j=1

qjxij ≤ Qiyi ∀i
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If we choose to relax restrictions (17.35.1) using Lagragean multipliers 
uj ≥ 0, j ∈ J  (remembering that 

∑m
i=1 xij = 1  may be replaced by 

∑m
i=1 xij ≥1 

if we consider fi ≥ 0 ∀ i and cij ≥ 0 ∀ i, j), we obtain obtain the Lagrangean problem

� (17.36)

This problem decomposes into m subproblems of the form

� (17.37)

If yi = 0, then Zi
LR1_MCLP = 0.  If yi = 1 then (17.37) is a zero-one knapsack problem 

with Zi
LR1_MCLP = z∗

i ,  where z∗
i  is the optimal solution of knapsack problem i.

Now, if we were to add to LR1_CFLP_SSC the redundant constraints ∑m
i=1 Qiyi ≥

∑n
j=1 qj ,  a stronger relaxation LR2_CFLP_SSC is obtained, which 

also decomposes into m zero-one knapsack problems in variables xij, one for each 
i ∈ I.  Finally, an alternative model to the one given by (17.35) may be defined as

xij ∈ {0,1} ∀i, j

yi ∈ {0,1} ∀i

LR1_CFLP_SSC : ZLR1_CFLP(min)

=
m∑

i=1

fiyi +
m∑

i=1

n∑

j=1

cijxij +
n∑

j=1

uj

(
1 −

m∑

i=1

xij

)

s.t.
n∑

j=1

qjxij ≤ Qiyi ∀i

xij ∈ {0,1} ∀i, j

yi ∈ {0,1} ∀i.

Zi
LR1_CFLP(min) =

n∑

j=1

(cij − uj)xij + fiyi

s.t.
n∑

j=1

qjxij ≤ Qiyi

xij ∈ {0,1} ∀ i, j

yi ∈ {0,1} ∀ i.

CFLP_SSC_2: ZCFLP_2(min) =
m∑

i=1

fiyi +
m∑

i=1

n∑

j=1

cijxij
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�
(17.38.1)

�
(17.38.2)

� (17.38.3)

Let now vi ≥ 0, i ∈ I  be the Lagrangean multipliers associated with constraints 
(17.38.2). The relaxation of this set of constraints results in the problem

which corresponds to the formulation of the simple plant location problem in (17.1).
Barceló and Casanovas (1984) proposed a Lagrangean heuristic to solve the 

problem CFLP_SSC in which the maximum number of facilities p is predefined 
and part of the model (using constraint 

∑m
i=1 yi ≤ p ). They present 3 Lagrang-

s.t.
m∑

i=1

xij =1 ∀j

n∑

j=1

q jxij ≤ Qiyi ∀i

xij ≤ yi ∀i, j

xij ∈ {0,1} ∀i, j

yi ∈ {0,1} ∀i.

LR3_CFLP_SSC : ZLR3_CFLP(min)

=
m∑

i=1

fiyi +
m∑

i=1

n∑

j=1

cijxij +
m∑

i=1

vi




n∑

j=1

qjxij − Qiyi





≡
m∑

i=1

(fi − Qivi)yi +
m∑

i=1

n∑

j=1

(cij + qj vi)xij ,

or, if we define Fi = fi − Qivi and Cij = cij + qj vi

ZLR3_CFLP(min) ≡
m∑

i=1

Fiyi +
m∑

i=1

n∑

j=1

Cijxij

s.t.
m∑

i=1

xij =1 ∀ j

xij ≤ yi ∀i, j

xij ∈ {0,1} ∀i, j

yi ∈ {0,1} ∀i,
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ean relaxations of CFLP_SSC: LR1_CFLP_SSC, LR3_CFLP_SSC, and a relaxation 
that dualizes constraints (17.35.1) and the restriction on the maximum number of 
facilities. They use LR1_CFLP_SSC and a two-phase heuristic to find approximate 
solutions to the problem.

Klincewicz and Luss (1986) developed a different Lagrangean heuristic to solve 
CFLP_SSC. They use the relaxation LR3_CFLP_SSC; the Lagrangean problems 
are simple plant location problems, which they solve by means of the DUALOC 
method of Erlenkotter (1978), but without using that method’s branch-and-bound 
procedure. The initial solution is given by an ADD heuristic; another heuristic, 
based on differential costs, makes the necessary adjustments in an attempt to find 
better solutions through better allocations of clients to facilities. Klincewicz and 
Luss tested their method using 12 problems derived from the test problems created 
by Kuehn and Hamburger (1963), having 25 and 26 potential facility sites and 50 
clients; the results obtained were of good quality.

A solution procedure based on relaxation LR2_CFLP_SSC was developed by 
Pirkul (1987) for the concentrator location problem. According to Beasley (1993), 
this solution procedure produced the best solutions available until then for con-
strained facility location problems with single source constraints. Pirkul presents 
two heuristic procedures to find approximate solutions to this problem: one involv-
ing two phases (in the first phase locations of the concentrators are determined, fol-
lowed by the allocation of terminals to the concentrators in the second phase), the 
other attempting to find a primal feasible solution in each step of the subgradient 
optimization method that solves the Lagrangean dual.

Chen and Guignard (1998) study the polyhedral structure of two primal relax-
ations of a class of specially structured mixed integer programming problems. This 
class includes as special cases the generalized capacitated plant location problem 
and the production scheduling problem. The authors show that, for this class of 
problems, two polyhedra, constructed from the constraint sets in two different pri-
mal relaxations, are identical. These results have the surprising implication that 
the bounds from two a priori different primal relaxations of the capacitated plant 
location problem are actually equal. This means that a simple Lagrangean substitu-
tion yields exactly the same strong bound as the computationally more expensive 
Lagrangean decomposition method introduced by Guignard and Kim (1987).

Finally, Cortinhal and Captivo (2003) developed a method that uses Lagrangean 
relaxation, a Lagrangean heuristic and local and tabu searches to find lower and 
upper bounds to CFLP_SSC. They use relaxation LR2_CFLP_SSC; the Lagrangean 
problem decomposes into knapsack problems. They solve the knapsack problems 
using the MT2 code of Martello and Toth (1990). The solutions of the Lagrang-
ean problems are submitted to a two-phase heuristic. The first phase finds feasible 
solutions to the original problem. The second phase, consisting of a local search 
and a tabu search meta-heuristic, improves the solutions obtained in Phase I. The 
combined use of a Lagrangean heuristic and tabu and local searches produced very 
good results for several test problems, both created by the authors and available in 
the literature.
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17.5 � Conclusions

We have seen that Lagrangean relaxations, and dual-based related techniques, are 
very important solution strategies for facility location problems. The pioneering 
works of Bilde and Krarup (1967, 1977), Diehr (1972) and Marsten (1972) were 
analyzed in detail. The dual-based procedures of Bilde and Krarup and Diehr were 
proven equivalent to Lagrangean relaxations of the simple plant location problem 
and the p-median problem, respectively.

The method developed by Marsten (1972), in which every p-median of a net-
work is shown to be an extreme point of the same polyhedron Pp, takes a grand tour 
of Pp that passes through most of the special (integer) extreme points and through 
very few others (fractional extreme points). This tour successively generates the 
p-medians of a network in descending order of p, although for some values of p the 
solution may be missed and never generated, or, conversely, extreme points of Pp 
may be generated which contain fractional values of yii. Thus, although Marsten’s 
method is both theoretically and computationally attractive, it may fail to produce 
the p-median of a network for the specific value of p that may be required.

Important works that followed the classical contributions were then analyzed. 
We dedicated special attention to the single source capacitated location problem 
CFLP_SSC, which is a problem that has many important practical applications, 
such as the location of concentrators in a computer network, but is difficult to solve 
to optimality. Correspondingly, we found out that many of the Lagrangean relax-
ation-based solution methods for location problems are related to CFLP_SSC. We 
analyzed different relaxations of CFLP_SSC and discussed important papers dedi-
cated to this problem.

It was not the purpose of this chapter to make a survey of Lagrangean relaxation 
applied to location problems. Therefore, although an effort was made to cite the 
main contributions in this area, many important papers may not have been included. 
A survey of this area is both important and presently unavailable, so we suggest that 
this task be undertaken by a researcher familiar with the topic.

Finally, we would like to point out potential future research directions. This is 
not an easy task, given the numerous possibilities that Lagrangean relaxation-based 
techniques present in the solution of facility location problems. However, an area 
that has been growing lately is design of mobile/wireless networks (see for example 
Wen et al. 2007). This topic is not yet fully developed and may become one of the 
main fields for future research work.
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18.1 � Introduction

Throughout the 20th century, geographers have developed a variety of models that assist 
public and private entities in locating facilities from factories to emergency services. In 
the area of retail location analysis, the early gravity models of geographers William J. 
Reilly and David L. Huff played a pioneering role in delineating retail trade areas and 
modeling many other kinds of spatial interaction. Their fundamental insight was that 
customers do not necessarily shop at the closest store, but patronize locations in propor-
tion to the attractiveness of the retail centers and in inverse proportion to their distance. 
In this chapter, we elucidate the early history, structure, and significance of these models.

Gravity models are based on the laws of Newtonian physics (Young 1975). With 
respect to the social sciences, Berkeley (1713) and Carey (1858) are believed to 
have been the first to suggest an association between gravitation and the social 
implications of spatial interactions. In the early twentieth century, Reilly (1931) 
introduced his Law of Retail Gravitation following the results of an empirical sur-
vey to identify the breaking points of retail influence between two competing cit-
ies. Amidst a flurry of controversy over the accuracy and applicability of Reilly’s 
model, Huff followed in 1963 with an alternative gravity model. Depending on 
the complexity of the chosen model, gravity models are designed to allow flexible 
criteria choices for application (Wagner 1974). The original gravity models were 
structured with two key elements: attraction and friction of distance. According 
to Huff and Jenks (1968), attraction can be measured by population, employment, 
retail or wholesale sales volumes, or other measures. The second component is to 
infer some sort of friction of distance, or distance decay. As distance from a center 
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increases, the influence of that center decreases by some value. This may be mea-
sured by Euclidian distance, rectilinear distance, travel distance, travel time, travel 
cost, or other factors (Huff and Jenks 1968; Drezner and Drezner 2002).

The gravity model is obviously a simplification of the real world. Spatial interac-
tions between people and places can be a complex process depending on a variety 
of factors. The shopping choices of the individual consumer are affected by factors 
including age, lifestyle, family, quality, price, or convenience (Bucklin 1971). Fur-
thermore, the site and situation of the center can also be influential with respect to 
factors such as the type and age of center, proximity of competitors, accessibility, 
visibility, clientele, topography, crime, and socioeconomic factors. Thus, it is essen-
tial to account for market structure and the types of products or services for proper 
use of gravity models.

This chapter commences by presenting this field in chronological order, discuss-
ing first how the gravity model was used initially by Reilly to identify breaking 
points and how Huff transformed the model to predict shopping probabilities from 
demand points. We then discuss how the models diffused with popularity amidst the 
deliberations of proper application and calibration. Although gravity models have 
been popular, they have also been a topic of debate and controversy. The issue is 
not with the fundamental concept of a gravity model, but in the details of how the 
models should be structured, especially with respect to the distance-decay param-
eter in different location settings. There were several empirical studies that focused 
on how to select an appropriate parameter value to account for this phenomenon. 
Although our primary focus is to present the original models of Reilly and Huff, we 
lend some of our discussion to this issue as it affects the utilization and diffusion of 
the modeling.

18.2 � The Classical Contributions

This section will survey the classical contributions by Reilly and Huff. We have 
kept our discussion as close to the original work as possible.

18.2.1  �The Work of William J. Reilly

The Law of Retail Gravitation was a prominent early finding for the location analy-
sis community (Thrall 2002). This law emerged from the efforts of William Reilly 
and his attempts to identify a reliable means of finding breaking points of retail 
influence between various sized cities at different distances. In this section, we re-
view Reilly’s landmark study from 1931, starting with an explanation of the law. We 
present the original formulation of his model with accompanying examples and his 
suggestions regarding its potential applications. In the end, Reilly’s original book 
offers an interesting blend of theoretical and practical geography and marketing.
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18.2.1.1 � The Law of Retail Gravitation

Reilly’s Law of Retail Gravitation relates two key location factors, city population 
and distance, to identifying the breaking points of retail influence between any two 
cities. Specifically, the breaking point is the location where the retail trading influ-
ence of two cities is identical. As you move closer to either city from the breaking 
point, that city asserts its retail trading dominance.

The model was based on two general assumptions. First, cities with larger popu-
lations attract more outside retail trade than smaller cities and towns. To that end, 
Reilly discovered that as the population of the cities increased, outside trade in-
creased at a similar rate. For instance, a city with three times the population of a 
smaller city would attract three times more trade originating from outside the city 
than the smaller city. Second, cities attract more trade from closer cities and towns 
than from farther locations. Unlike the population factor, however, Reilly did not 
discover a one-to-one relationship between distance and retail trade influence; as 
distances increased, retail trade influence decreased at a faster rate. In fact, trade de-
creased at a rate nearly twice as fast as distance increased. It should be noted that the 
application and understanding of the importance of population and distance were 
not necessarily conceptually new to scholars and practitioners. Indeed, Reilly’s ma-
jor contribution was to identify the specific rates at which these factors affected re-
tail trading influences between cities. The functional form of his law evolved from 
analyzing the results of a few key empirical studies.

18.2.1.2 � Historical Backdrop to the Paradigm Shift in Trade Area 
Delineation

Somewhat lost in today’s academic wrangling over the exact structure and compo-
sition of spatial interaction models is the motivation behind the original research. 
Reilly’s contributions to delineating areas of retail trading influence were a re-
sponse to the proliferation of the automobile among households across the United 
States. Unexpectedly, greater mobility from smaller towns and cities to larger mar-
kets greatly transformed the range and shape of retail trading areas in the early 
twentieth century. The improved accessibility of smaller towns to larger markets 
was accompanied by improved standards of living and the increased media out-
reach to these smaller communities. Populations in smaller cities and towns be-
gan to demand the same merchandise as populations in larger cities. While this 
national phenomenon was occurring, the major stakeholders, including retailers, 
manufacturers, distributors, and advertisers, were ill-prepared to respond to this 
dynamic spatial redistribution of consumers. Consequently, Reilly conducted an 
empirical investigation to analyze how smaller towns and larger cities interacted 
and the subsequent attraction of retail trade between them. This research eventu-
ally led to modeling the Law of Retail Gravitation. Before we elucidate the details 
of the model, the following discussions highlight the process that contributed to its 
development.
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18.2.1.3 � Pilot Study

While Reilly’s best-known book was published in 1931, the major findings that led 
to developing the law were derived from a pilot study that began in 1927 (Reilly 
1929). The study analyzed the relationships between retail trade and seven differ-
ently sized cities in Texas including Fort Worth, Dallas, Houston, Austin, San An-
tonio, El Paso, and Waco. More specifically, this survey was designed to demarcate 
the types of people and products that were involved with retail trade between small-
er and larger cities, and the types of products these cities were capable of support-
ing. In addition, Reilly sought to identify a reliable method for measuring the extent 
of a city’s retail trading influence.

At the time of his study, Reilly was not fortunate enough to commence his re-
search with a complete list of customer location data. He realized, however, that 
there would be a need for some form of customer data in order to generate reliable 
results. Reilly started by examining transaction data obtained through associations of 
retail merchants. In fact, these associations provided customer lists from cooperating 
retail stores, including customers from outside the city where the store was located. 
Furthermore, he utilized data from charge accounts from the leading stores to map 
the spatial distribution of the stores and their respective account holders. To ensure 
accuracy, he followed up on this mapping with door-to-door field surveying. This 
allowed Reilly to calculate the proportion of charge accounts that were outside the 
seven studied Texas cities. Not surprisingly, Reilly found that some customers would 
often travel through smaller cities to patronize stores in larger cities. For instance, 
he found that there were numerous customers of stores who would pass through Fort 
Worth from the west to shop in Dallas. In an isolated city such as El Paso, however, 
he found that the retail influence would stretch for several hundreds of miles before 
another city attracted more trade. Finally, he compared newspaper circulation with 
charge account locations for the seven Texas cities and 1,204 surrounding cities and 
towns. The results matched fairly closely, but there were still enough differences to 
necessitate further investigation. In other words, newspaper circulation was not suf-
ficient as the only means of measuring retail trading influence.

In this pilot study, Reilly came to the conclusion that retail influence could not 
simply be explained by a two-dimensional flat surface with assignment of consum-
ers to their nearest retail outlets. Instead, it needed to be examined in terms of three 
dimensions including length, width, and height. The height is based on the popula-
tion of the cities. It allows the analyst to visualize the retail influence of different 
sized cities at various distances. This would become an important component to his 
continuing research.

18.2.1.4 � The National Study

Following his initial empirical findings, Reilly extended his study area to the United 
States as a whole. For this endeavor, he used data provided by the secretaries of the 
retail credit associations for various cities to determine the trade to and from these 
cities. These data provided the evidence for proper delineation of breaking points 
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of retail trade influence between the cities. Furthermore, Reilly and his colleagues 
drove on the connecting highways between the larger cities while using the credit 
data to identify the breaking points. At these locations, he conducted field checks to 
identify any potentially influential local factors. In particular, he conducted inter-
views in the communities with local merchants’ associations as well as door-to-door 
interviews. Although it may seem that the charge account data would have been 
sufficient for determining the breaking points and that field investigation would be 
unnecessary, Reilly noted that these data were relative and not absolute, and there-
fore, he still sought to test it empirically.

In an effort to reduce the burden on his audience, Reilly provided a straightfor-
ward matrix for determining the breaking points between two cities. An abbreviated 
example from Reilly (1931) is provided in Table 18.1.

The first row and first column represent the urban-area population of Cities A 
and B respectively, including the city and its suburbs, in thousands. The body of the 
matrix contains a decimal value between 0 and 1 representing the location of the 
breaking point as a percentage of the distance from City B towards City A. We have 
shaded the cells where the breaking point is exactly half of the distance from B to A, 
and notice that the populations of these cities are equal. To use the matrix, line up 
the population values for any two studied cities and identify the corresponding cell 
of the matrix. Then, take that decimal value and multiply it by the travel distance 
between the cities to identify the breaking point from City B. This method is easily 
understood and applicable for any pairwise city combination. For example, consider 
an attempt to identify the breaking point between City A with a population of one 
million and City B with a population of two million. According to Table 18.1, the 

Table 18.1   Reilly’s breaking point factors. (Abbreviated example from Reilly 1931)
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breaking point factor is 0.58. If the travel distance between these cities is 100 miles, 
the breaking point would be 58 miles away from City B and 42 miles away from 
City A.

Interestingly enough, Reilly did not hesitate to assert confidence in his breaking 
points. In fact, he provided several examples of how accurately his model chose 
the breaking points when compared to the field surveys. These comparative figures 
are given in Table 18.2. He notes that this methodology is applicable throughout 
the entire U.S. when comparing cities in the same region. However, according to 
Reilly, one of the limitations of the model is that is does not account for impedances. 
For instance, he provides an example of how a toll bridge crossing the Ohio River 
altered the breaking point between Indianapolis, IN and Louisville, KY. Thus, it 
appeared fewer Hoosiers were willing to pay the toll to shop at stores in Kentucky.

As previously stated, Reilly’s model is based solely on two primary factors: dis-
tance and population. Although he does recognize the existence of many other sec-
ondary factors, he deemed them unnecessary to include in the model as the primary 
factors were powerful enough to identify the breaking points. Altogether, Reilly 
asserts his confidence that he is presenting a firm “law” and not merely a theoretical 
discussion. Of course, other researchers would eventually describe the limitations 
of his model while presenting their own modifications and extensions. We will dis-
cuss these later in this chapter. Still, Reilly’s confidence was such that he openly 
challenged any reader to dispute his breaking points in the U.S., referring to any 
incorrect prediction as an “exceptional case.”

18.2.1.5 � The Original Model

Reilly presents a rather simple and straightforward quantitative model. Mathemati-
cally, to revisit the components, Reilly states “that the amount of outside trade en-
joyed by a city increases directly in proportion to some power of the population” and 
“that the amount of outside trade which a city draws from a surrounding town varies 

Table 18.2   Breaking points (B.P.) between various cities. (From Reilly 1931)
Betweena Location of B.P. 

discovered in field 
study

Automobile highway distance (in miles) 
from each city to B.P. based upon
Field study Application of law

Atlanta, GA… (270,367) Collier, GA 64 66
Macon, GA… (53,866) 31 29
Atlanta, GA… (270,367) Heflin, AL 87 89
Birmingham, AL… (257,657) 87 85
Austin, TX… (53,118) Salada, TX 55 55
Waco, TX… (52,825) 55 55
Buffalo, NY… (620,007) Westfield, NY 58 60
Erie, PA… (115,922) 29 27
a Population given immediately after each city–1930 Census
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inversely in proportion to some power of the distance of the town from that city.” 
Towards that end, the original model is presented with the following Eq. (18.1).

� (18.1)

where

Ba:	� the business which City A draws from any given intermediate town,
Bb:	� the business which City B draws from that intermediate town,
Pa:	� population of City A,
Pb:	� population of City B,
Da:	� distance of City A from the intermediate town, and
Db:	� distance of City B from the intermediate town.

Reilly presents Eq. (18.1) as a means to quantify his law. Much of his discussion 
is reserved for explaining N and n, as these are the exponents of population and 
distance respectively. N explains the rate at which outside trade increases as the 
population of the city increases, while n explains the rate at which outside trade 
decreases as distance from the city increases. From the field observations, Reilly 
found that as the size of a city’s population increases, its retail trading influence in-
creases at a similar rate (i.e., linearly), and thus allows for the use of the first power 
or N = 1. To solve for n, however, Reilly uses the Eq. (18.2).

� (18.2)

Reilly found that n was consistently between 1.5 and 2.5, and that these values were 
ubiquitous throughout the entire U.S. “with no exceptions.” Accordingly, he uses 
the integer number 2, which indicates that a city’s retail trading influence decreases 
faster than the distance from a city increases, or, more specifically, the influence 
decreases with the square of distance.

Reilly recognizes several individualistic secondary factors for each of the cities 
that may have affected the breadth of their retail trading influence. Some of the 
factors includes transportation, communication, type of consumer, population den-
sity, proximity to larger markets, business attractions, social amusement attractions, 
competition, topography, climate, and business leadership. Specifically, Reilly 
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highlights that communication and transportation were considered important influ-
ences over the spatial distribution of retail trade. Items such as a newspaper would 
not exist, however, without a sufficient population base. Furthermore, convenience 
is directly linked to distance and the time it takes to travel from origin to destination, 
which depends on the existing transportation network.

18.2.1.6 � Applicable Uses and Intended Audience

The process of identifying breaking points can provide several opportunities for 
analysis. In fact, the model has been useful for items such as trade area delineation, 
newspaper circulation, and determining fiscal territories for manufacturing. The fol-
lowing discussions highlight some of these uses as put forth by Reilly.

Store location affects what segments of a community a retailer can serve. Strate-
gies for advertising and product mix can then be designed to target those specific 
neighborhoods. Reilly presented how his model can assist the development of se-
lective growth strategies for retailers. This includes choosing the right large cit-
ies for expansion. Along those lines, the gravity model is useful for determining 
the spatial distribution of shoppers by specific product and service categories. In 
general, consumers in smaller cities and towns travel to larger cities especially for 
style and specialty goods. Thus, the trade areas were larger for higher-end goods. 
Notwithstanding, if stores in smaller towns decided to offer such higher-end items, 
Reilly suggested (with an insight that pre-dated Christaller’s threshold concept in 
central place theory, see Chap. 20 in this volume) that they would be unsuccessful 
because these small towns do not have enough population to support these types 
of goods. There are some markets, therefore, that could only offer common goods. 
This suggestion emerged in response to many small towns that were attempting to 
attract more higher-end businesses to their communities. Since these communities 
lacked the necessary population base to support the style and specialty merchandise, 
however, the stores were unable to offer deep lines of merchandise and diverse 
selections. Consequently, Reilly described how retailers may actually end up alien-
ating their customers from shopping in the community altogether by a creating a 
negative shopping experience. This could also spread to avoiding stores even for 
common goods because shoppers may become frustrated when they are unable to 
find the products they want.

Given the era of Reilly’s original studies, deciding in which newspapers to ad-
vertise was one of the more important marketing decisions for retailing businesses. 
Alternatively, newspapers were attempting to extend their circulations to the extent 
of the retail trading areas of the larger stores in their cities. Many times, the area 
served by the newspaper circulation may only be in the immediate area of a particu-
lar city, though the breadth of that city’s retail influence may stretch much farther, 
or vice versa. The importance of this debate centered on whether it was worth the 
additional costs because of higher advertising rates for retail stores. By merging 
trade areas with newspaper circulation, retailers could eliminate waste in their ad-
vertising budget. If a newspaper circulated to an area where the city did not have 
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retail trading influence, then it might not be worth the expense to advertise in that 
paper. There were also implications concerning the extent of trading influence for 
particular categories. It may be worthwhile to advertise goods and services such as 
fur coats or theatrical plays in a newspaper with a large circulation area, but not a 
neighborhood bakery or barber shop.

Reilly also noted how his model could be useful for manufacturers. “Budget 
territories” could be based on consumer purchasing habits for various products and 
distribution channels. For instance, it is important to know which large cities at-
tract the most stylish goods. He also explained how individuals from smaller towns 
often purchased their common goods in large cities for various reasons, such as the 
assumption that goods were less expensive in larger cities. Furthermore, custom-
ers might purchase some common goods while shopping for higher-end goods, a 
phenomenon we now refer to as “multi-purpose shopping” (O’Kelly 1983). Finally, 
many customers from outside the city patronized stores near their places of employ-
ment in the city.

Reilly provided his law as a means to “stimulate many minds to conceive pos-
sible uses of the law within the sphere of their own interests.” While Reilly certainly 
accomplished this feat, he also stimulated many location researchers to alter his 
model and identify its limitations. To that end, David L. Huff’s alternative model 
would further transform quantitative methods for trade area delineation of shopping 
centers.

18.2.2  �The Work by David L. Huff

Three decades following the introduction of Reilly’s Law of Retail Gravitation, 
David L. Huff developed an alternative model for trade area estimation. Although 
Huff credited the “gravitationalists” such as Reilly for their important contribu-
tions, he concluded that there was a dearth of models that could be utilized for 
empirical testing. Furthermore, he opined that the existing models at the time were 
ambiguous and debatable. Towards that end, Huff (1963, 1964) presented a con-
ceptually superior means of predictive analysis in what would become a very in-
fluential study in retail research. First, he analyzed existing trade area delineation 
techniques. This was followed with the presentation of an alternative technique that 
would come to be referred to as the Huff Model. The model would eventually be 
adopted widely with significant implications for retail location decisions. Although 
Huff has been actively involved in both geography and marketing at the University 
of Texas, Austin, his analytical methods have been utilized by not only scores of 
businesses, but also a number of public and private organizations including the 
U.S. Census Bureau, U.S. Department of Transportation, cultural and health insti-
tutions, and many others (Huff 2003). In this section, we discuss the development 
of the Huff Model including the original quantitative presentation. We follow by 
extending the discussion to how the model has been influential for both academics 
and practitioners.
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18.2.2.1 � Existing Methods and Limitations

Huff provided a critical review of existing trade area delineation techniques. First, 
he discussed the process of surveying. This generally involved interviewing house-
holds or individuals at the point of sale to collect various data. These data may 
include what types of products or services were purchased, frequency of shopping 
trips, and home locations of customers. Following such a survey, trade areas could 
be drawn from the spatial distribution of the customers. The researchers reached 
the following consistent conclusions. First, distance to the shopping center was a 
key determinant of the proportion of customers that patronize that shopping center. 
Second, shopping centers with deeper and more diverse product lines were drawing 
sales from a larger geographic region. It should also be noted that different types of 
products and services had varying ranges of distances that customers were willing 
to travel. Lastly, competing opportunities were affecting the directional “pull” of 
shopping centers.

Huff was critical of basing location decisions on analogous conclusions from 
empirical studies. For instance, as noted from the surveying, customers may only be 
willing to travel a few miles for general food purchases but they might travel much 
farther for higher-end goods such as furniture or automobiles. Indeed, Huff objected 
to analysts relying on the same constant parameters for all types of shopping jour-
neys because different products and services may have unique trading areas. Huff 
was also not as confident as Reilly with respect to excluding the secondary location 
factors from the analysis. In fact, Huff elucidated a number of factors that can affect 
the accuracy of modeling with fixed assumptions. Huff presented a critical quantita-
tive review of Reilly’s model, and reviewed the work of P.D. Converse.

18.2.2.2 � The Influence of P.D. Converse

Huff credited Converse (1949) with modifying Reilly’s formula making it easier to 
calculate the breaking points of retail influence between two competing cities. Ac-
cording to Huff, the advantage of Converse’s formula is that it expedited the process 
of identifying the breaking points.

� (18.3)

where

Db:	� the breaking point between City A and City B in miles from B,
Dab:	� the distance separating City A from City B,
Pb:	� the population of City B, and
Pa:	� the population of City A.

Db =
Dab

1 +
√

Pa

Pb
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Although Huff credited Reilly and Converse for developing a “systematic basis” 
for trade area delineation, he believed that there were limitations to these models 
both conceptually and operationally. One of his objections was that analysts were 
treating the model as all-or-nothing, where all the potential sales of one trading area 
were assigned to only one particular store or city. Moreover, there were no potential 
sales assigned to the store or city outside that trading area. Certainly this is unreal-
istic; Huff believed it was more accurate to use gradual declines of sales potential 
as distances increased to the cities or shopping centers. There was also the quandary 
of dealing with multiple trading areas in a given geographical area. In reality, trade 
areas of retail stores frequently overlap. Since the objective of Reilly’s formula is to 
only identify the breaking points, however, it is inconsistent in those regions with 
overlapping trade areas. Consequently, Huff asserted the impracticalities of objec-
tively appraising the total demand from a particular city or shopping center using 
the Reilly type gravity model.

18.2.2.3 � The Huff Model

Huff addressed the aforementioned limitations by presenting an alternative probabi-
listic model. The Huff Model focuses on the origin or customer data as opposed to 
the destination or shopping center data. The model seeks to explain how customers 
make their patronage decisions among competing opportunities for products and 
services. This model (18.4) estimates the probability that a customer at an origin 
point i will shop at a retail center j.

� (18.4)

where

Pij:	� denotes the probability of a consumer at a given origin i traveling to a particu-
lar shopping center j,

Sj:	� is the size of a shopping center j (measured in terms of the square footage of 
selling area devoted to the sale of a particular class of goods),

Tij:	� indicates the travel time involved in getting from a consumer’s travel base i to 
a given shopping center j, and

λ:	� is a parameter which is to be estimated empirically reflecting the effect of 
travel time on various kinds of shopping trips.

Equation (18.4) can be further modified to estimate the total number of expected 
customers from i that would patronize retail center j. This simple extension is pro-
vided by (18.5), which multiplies Pij by the number of customers at point i. This 

Pij =

Sj

Tij
λ

n∑
j=1

Sj

Tij
λ
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modification can be particularly useful in estimating sales as well as predicting can-
nibalization of sister stores.

� (18.5)

where Eij denotes the expected number of consumers at i that are likely to travel to 
shopper center j, and Ci is the number of consumers at i.

The Huff Model is not simply formulated from empirical data. Instead, it is based 
on an abstract theory of the geographical nature of customer behavior. The Huff 
Model also allows for the simultaneous estimation of probabilities of many retail 
centers at once. Furthermore, the model can be customized by assigning the param-
eter λ to any given power. This allows the analyst to control for the unique trading 
areas of various products and services. In a pilot study, Huff found that customers 
are willing to travel longer for furniture than for clothes. Larger values of λ repre-
sent a more rapid decay of patronage as travel time increases. Thus the parameter 
for shopping for clothing (3.191) was larger than for furniture (2.723).

Equations (18.4) and (18.5) are designed to permit graduated demand at differ-
ent points, ranging from zero (no demand) to one (all demand). Thus, it is possible 
to have overlapping trade areas while at the same time identifying the breaking 
points of retail influence among competing shopping centers. The breaking points 
are where the probability values are equal for two or more shopping centers and half 
the consumers travel to each center, as illustrated in Fig. 18.1. Of course, this as-
sumes that there are no other points farther away that capture greater demand. Thus, 
identifying the breaking points with this method would not account for additional 
pockets of demand outside the zone of continuous decline.

Eij = Pij × Ci

Fig. 18.1   Identifying break-
ing points using probability 
isolines. (From Huff and 
Jenks 1968)

5

10 10
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Next, Huff developed Eq. (18.6) to sum up the trade a shopping center j would 
capture from all surrounding population centers i. This equation incorporated the 
spatial distribution of customers and their associated demand.

� (18.6)

where
Tj:	� is the trading area of a particular firm or agglomeration of firms j, that is, the 

total expected number of consumers within a given region who are likely to 
patronize j for a specific class of products or services (Huff referred to Tj as the 
“trading area” but it is really more of a market size as measured in customers),

Pij:	� denotes the probability of an individual consumer residing within a given gra-
dient i shopping at j, and

Ci:	� represents the number of consumers residing within a given gradient i.

The following points summarize Huff’s definition of a retail trading area:

•	 the trade area represents a demand surface that consists of potential customers 
for particular products or services from a particular shopping center,

•	 a shopping center, also referred to as a distribution center, may consist of a single 
firm or several firms (agglomeration),

•	 the demand surface may consist of many subareas (demand gradients) with indi-
vidual levels of demand (sales potential),

•	 the demand gradients are based on probabilities, ranging from zero to one,
•	 trade areas may overlap,
•	 the point where demand is equal for competing firms constitutes a “spatial com-

petitive equilibrium,” and
•	 the total market size for a shopping center is the sum of the expected consumers 

from the various surrounding cities and towns.

A few years later, Huff and Jenks (1968) displayed the advantages of illustrating the 
model using a three-dimensional surface instead of just two dimensions (Fig. 18.2). 

Tj =
n∑

i=1

(Pij × Ci)

Fig. 18.2   Illustrating probabilities in three dimensions. (From Huff and Jenks 1968)
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Greater heights signify higher probabilities. At each point of attraction, there is 
an attraction-distance ratio that provides the probability at that point. The three-
dimensional graphic makes it easier to understand the spatial behavior of shoppers, 
especially for multiple center comparisons (Huff and Jenks 1968).

18.3 � Implications of the Work by Reilly and Huff

The Huff Model is easy to use and can be applied to a variety of problems, even 
beyond delineating trade areas (Huff 2003). Still, the model was developed and is 
best known for its retail applications, and its popularity remains on the rise. Many 
fields and types of organizations are adopting the model. In the contemporary retail 
real estate market, for example, there may be more analysts using the Huff Model 
than ever before. This is partially a result of the development and proliferation of 
Geographic Information Systems (GIS), which offer built-in routines to apply the 
Huff Model (Huff 2003). In fact, David Huff joined Environmental Systems Re-
search Institute, Inc. (ESRI) in 2003 as an advisor and technical contributor to the 
Business Analyst extension of ArcView (Huff 2003). With these tools, analysts can 
easily determine the proportion of customers in a particular neighborhood shopping 
at a particular store and the proportion of a particular store’s customers that come 
from a particular neighborhood.

The Huff Model took its time to diffuse and has evolved over the years. The 
same could be said about Reilly’s Law of Retail Gravitation. One of the key com-
ponents of these models is the distance-decay parameter. Unfortunately, some early 
adopters of these models had issues dealing with appropriate spatial applications 
and the associated parameter estimation. We next describe the diffusion of calibra-
tion methods and applications.

The two most prominent debates about gravity models involved parameter es-
timation and acceptable spatial applications. Douglas (1949) found Reilly’s model 
to be very precise compared to credit and banking data. Still, Reilly’s law was de-
signed to identify the breaking point between two differently sized cities surround-
ed by rural lands. Wagner (1974) listed how the model was being applied in much 
broader situations such as within market areas of one urban region. For instance, 
Reynolds (1953) and Converse (1953) engaged in series of disagreements over the 
success of the model in Iowa. Reynolds found that the model accurately predicted 
retail trade in southwestern Iowa, but not across the entire state. Converse, however, 
refuted the results, claiming the model should only be used for fashion shopping 
and, when used properly, it worked for the whole state.

The Huff Model was introduced as an alternative means to accurately appraise 
a center’s influence in various location situations. Although this alternative model 
was garnering new attention from academics and practitioners, Reilly’s original 
contribution was still at the forefront of trade area analysis in the 1960s and 1970s. 
Wagner (1974) empirically tested the accuracy of Reilly’s model in central Ohio for 
thirteen goods and services from specialty to convenience for two markets: Spring-
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field (population 83,723) and Columbus (475,316). While Wagner’s 1974 study 
came out over a decade after the Huff model, it actually began eight years earlier. 
Over a succession of years (1964, 1967, and 1972), he interviewed 50 people in both 
the geographic center and at the breaking point calculated according to Reilly’s law. 
While Columbus, the larger city, received more of the trade at the geographic mid-
point as expected, Springfield received a disproportionate amount of trade at the the-
oretical breaking point, where the probabilities should have been equal. There was 
some variation, however, with respect to different products and services: customers 
would travel greater distances for music events and holiday shopping. The greatest 
lesson learned from Wagner’s study was that the Reilly model is not as precise when 
comparing cities with greatly different populations. Instead of using population, 
Wagner (1974) suggested using square footage, sales, or advertising spending. By 
using population, the distance-decay value of two was not very precise.

Drezner and Drezner (2002) introduced a method to validate the gravity model 
by inferring attractiveness. This method was based on a set of independent variables 
including retail center attractiveness, buying income, and distance from custom-
ers to retailers, with market share as the dependent variable. In order to measure 
attractiveness, Drezner and Drezner (2002) obtained data for buying income, dis-
tance from customers to retailers, and market share, calculated from sales volumes 
obtained from secondary sources. Still, they affirm that sales volumes are not a suf-
ficient sole measure to calculate attractiveness and that sales should be adjusted by 
key demographic factors such as buying income. In other words, the attractiveness 
of a retail center is affected by its trade area characteristics (Drezner and Drezner 
2002). They tested their method for ten retail centers in Orange County, CA. Their 
results matched closely when compared with an independent survey.

Numerous academics, such as Bucklin (1971) and O’Kelly and Miller (1989), 
have concluded that using a distance-decay exponent of two may lead to inaccura-
cies. While Gautschi (1981) and Eppli and Shilling (1996) found that the distance 
parameter was overstated, Lee and Pace (2005) found the parameter was under-
stated. Fotheringham (1981) suggested that the parameter is a function of spatial 
structure. Drezner and Drezner (2002) stated that the parameter is related to the 
amount of time spent shopping; as the time spent shopping increases, the parameter 
decreases.

Young (1975) suggested moving from a fixed parameter for all centers to a 
variable parameter to account for specific site characteristics. He analyzed how 
the size and type of a shopping center affects the distances consumers are willing 
to drive. He compared customer patterns at three large regional shopping centers 
and three smaller neighborhood shopping centers in Philadelphia. The large retail 
centers with hundreds of thousands of square feet and thousands of parking spots, 
structured around major department stores and many other off-retailers, drew trade 
from a mean travel time of over twenty minutes with less than a quarter of shoppers 
traveling less than ten minutes. The neighborhood centers, anchored by supermar-
kets and fewer off-retailers, only drew trade from about a ten minute drive, with the 
vast majority traveling less than ten minutes. The neighborhood centers had a decay 
exponent of 2.3 compared with 0.967 for the regional centers. Consequently, Young 
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(1975) declared that the distance decay value should be two for neighborhood cen-
ters and one for regional centers. The largest center, The King of Prussia Mall, did 
not have the smallest decay value. In fact, Neshaminy, which was only half the size 
in square feet and had less than one third of the parking spaces, had a lower distance 
decay exponent, meaning that trade fell off more gradually from the smaller center. 
Thus, generalization can be inaccurate even within empirical categorizations.

Retail gravity models may not have been fully comprehended by all analysts 
who use them. This has led to errors in analysis, especially by incorrectly estimat-
ing the distance-decay parameter (O’Kelly and Miller 1989). Certainly, most users 
agree that a parameter value of two is too restrictive. Sometimes retail influence 
may decrease more or less steeply than 1/d2

ij . Measuring the interactions between 
different places is a dynamic process and may not always translate into similar 
results. Besides, parameter estimation may vary in interurban and intraurban situa-
tions (Huff 1962; O’Kelly and Miller 1989). This led to the development of prop-
er methods for calibrating spatial interaction models (Fotheringham and O’Kelly 
1989; O’Kelly and Miller 1989). Nakanishi and Cooper (1974) developed a tech-
nique for estimating parameters by least squares. This necessitated transforming the 
model into linear form using logarithms to then estimate the parameters using linear 
regression techniques. Jain and Mahajan (1979) and Bell et al. (1998) also studied 
this problem. Although it is beyond the scope of this chapter to specifically describe 
this process, it is important to note that analysts should be cognizant of the models’ 
limitations and the proper applications. For further reading, we suggest Cooper and 
Nakanishi (1988) as they provide a good review of model calibration.

18.4 � New Approaches and Outlook

In the past two decades, there have been a growing number of papers in the litera-
ture that have included the principles of gravity modeling in other types of models. 
For instance, O’Kelly and Miller (1989) created a model to link Reilly’s Law of Re-
tail Gravitation and the Huff Model with Applebaum’s customer spotting technique. 
According to Applebaum (1966), customer spotting involves mapping the spatial 
distribution of customers. The analyst can then use these data to define a trade area 
based on a chosen amount or percentage of total customers. By linking the two 
together, analysts can calculate market share in designated regions based on prob-
abilities of patronage. This required the relaxation of a key constraint of the original 
Reilly model. Instead of only identifying breaking points, the model was modified 
to identify the proportional influence of two competing centers at any point, such as 
where a customer is three times more likely to shop A than B. Furthermore, Huff’s 
probability isolines were useful for analyzing varying types of situations with dy-
namic distance-decay parameters (O’Kelly and Miller 1989).

One of the main limitations of the Reilly model was that it was designed to find 
the breaking point between only two competing centers. Thus, it was insufficient to 
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handle multiple choices because of the Luce Choice axiom (Luce 1959; Sheppard 
1978). Calculating the breaking points between two competing centers may not be 
as meaningful if there are more than just two competitors. Consider the situation 
where the influence of a point A and point B is found to be equal at a particular 
location, but upon review of probabilities, we find the influence of some point C is 
higher. Along those lines, O’Kelly and Miller (1989) provided a model to estimate 
probabilities with multiple competing facilities. In addition to their contribution of 
linking Reilly and Applebaum, they also linked Huff’s contour probability isoline 
mapping with Applebaum’s “primary trade area” to identify the contour line that 
can be chosen to provide sufficient demand to allow a fixed proportion of store 
sales. In other words, comparing the necessary catchment area against the prob-
ability at its spatial extent can help analysts and senior management analyze risk. 
Choosing an isoline with higher probability values would imply less risk in gener-
ating the necessary store sales. Conversely, if the desired sales required attracting 
from low probability areas, then it would have greater risk.

We have already mentioned that gravity models have much broader applications 
for location analysis than retail. For instance, Drezner and Drezner (2001) created 
a model based on the Huff Model to identify the best hub locations for airlines. 
Bruno and Improta (2008) used a gravity model to estimate university selection by 
students in Italy and how new facilities would impact enrollment. Certainly, there 
are many other examples of contributions beyond the scope of a single chapter. We 
do, however, discuss the details of select papers from one industry in particular: the 
health care industry.

Bucklin (1971) investigated the gravity model in an intraurban context to de-
termine whether patients were more willing to travel past competing hospitals if 
the distances were shorter. Of course, shoppers and patients do not always choose 
the closest facility. Bucklin suggested varying exponents for competing facilities 
at various distances from one another. Using data for patient locations of Alameda 
County hospitals in California, Bucklin found that closer pairs of competitors had 
lower exponents. For his eleven pairs of hospitals, 6–25 minutes apart, he found 
his exponents were as low as 0.033 and as high as 4.518. Conversely, Carrothers 
(1956) found that the exponents were higher in an intraurban context than intercity. 
In that hospital choice is more risky than ordinary purchases such as groceries, 
it is logical to not always choose the closest hospital, especially when there are 
other opportunities in close proximity. Bucklin asserted that this phenomenon may 
be best explained by a logistic curve with respect to distance to two competitors, 
where you can expect very small exponents when competitors are close and rapid 
increase of the exponent as distance increases to a tapering off at a maximum value, 
an S-shaped curve. Nevertheless, Bucklin recognized the flaw in the fixed-exponent 
gravity model.

McLafferty (1988) used a gravity model to evaluate the dynamic patterns of 
patients in accordance with the closure of the Sydenham Hospital in New York 
City. Using patient origin data obtained before and after the closure, she found that 
although the gravity model accurately predicted patient flows, the distance param-
eter was inconsistent. Following the closure, the parameter changed from 1.4 to 

18  Gravity Modeling and its Impacts on Location Analysis



440

1.66 just four years later. Although this was not a significant change, it does provide 
credence for a variable parameter.

Lowe and Sen (1996) used a gravity model to analyze patient choice behavior. 
Specifically, they investigated how policy changes such as hospital closures and the 
restructuring of the insurance system such as universal health care would affect the 
spatiality of patient flows. In this study, they concluded that the friction of distance 
is lower for the more advanced services of the larger hospitals with medical schools 
than for the smaller community facilities. They also inferred that universal health 
care would steer many patients away from the larger hospitals to smaller hospitals 
in poorer neighborhoods. According to Lowe and Sen, this may necessitate invest-
ing more in medical education in community center settings. They also investigated 
how previous hospital closures led to the redistribution of patients to other facili-
ties. The closures reduced the number of short trips but did not generate a greater 
number of long trips over 30 minutes. A universal health care policy could have 
prevented the closures of some of the hospitals.

Location-allocation models have long been used to solve various location prob-
lems including retail-based problems (Hodgson 1978; Beaumont 1980). For in-
stance, the p-median model has been especially useful for finding new locations in 
competitive environments (Hakimi 1983), though most location-allocation mod-
els, including the p-median model, assign customers to the closest facility (Beau-
mont 1981). Store patrons, however, do not always exhibit this behavior, and there 
have consequently been a growing number of attempts to apply the principles of 
the gravity model to competitive optimal facility location problems. These mod-
els have been structured in a plethora of ways. Most retail-based models have an 
objective function that maximizes market share or profit. Others have applied the 
basic location-allocation models to maximize retail coverage or minimize con-
sumer travel distance. Hodgson (1978, 1981) was one of the first to incorporate a 
gravity-type spatial interaction model into a location-allocation model. Okunuki 
and Okabe (2002) presented an optimal location problem that incorporated the 
Huff model with continuous demand, meaning that there exists a demand probabil-
ity at any point. Although there have been models that only allocated demand to 
the nodes such as Hakimi (1990) and Ghosh et al. (1995), models that incorporate 
the Huff Model can be designed with continuously varying demand that depends 
on a node’s distance from a store. To that end, Okabe and Kitamura (1996) pre-
sented the “Network Huff Model,” where distance decay assumed a convex form, 
which varied from Hakimi (1990), where the form was concave. Other examples 
include Berman and Krass (1998), who modeled demand from both nodes and 
paths, and Okunuki and Okabe (2002), who permitted demand along links. Co-
lome et al. (2003) made an amendment to the Maximum Capture Model (MAX-
CAP) by ReVelle (1986) to calculate the capture of market share with the gravity 
model instead of just proximity. Finally, Drezner and Drezner (2007) introduced 
the “gravity p-median model,” where customers have different probabilities for 
competing facilities that differ from standard p-median problems where customers 
are assigned to the closet facility.
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18.5 � Concluding Remarks

We have presented Reilly’s Law of Retail Gravitation and the Huff Model in their 
original forms, and have discussed the empirical tests of Reilly’s law and the as-
sociated debates over parameter estimation and applicable spatial uses. Further, 
we have explored the proliferation of analyses using the Huff Model; four decades 
after its introduction, however, Huff (2003) opined that the model has been com-
monly misused and has not been applied to its full potential. For instance, Huff 
described how many analysts were failing to statistically validate their parameters 
and were simply arbitrarily choosing their values. Clearly, statistically validating 
the variables and parameters increases the accuracy of the conclusions. Optimal 
locations are very sensitive to varying parameters and measures of attractiveness 
(Drezner and Drezner 2002), and proper use of the model includes gathering em-
pirical data from customers (origin data). Although acquiring these data may be an 
exigent task for academics, many retail analysts are fortunate enough to have these 
data at their fingertips. At the time of their landmark studies, Huff and Reilly did 
not have these data and relied upon empirical tests. Still, the eventual ubiquitous 
availability of reliable data has changed the nature in which analysts study retail 
trade. In modern retail trade, many retailers have great customer origin data. Much 
of these data are acquired through loyalty store cards (a.k.a. frequent-buyer cards). 
For Reilly and others in his era, the proliferation and advent of customer data loy-
alty cards would have greatly simplified and expedited the process of identifying 
retail trade areas.

Reilly/Huff modeling is well-known for its retail applications, but we also dis-
cussed a few of the other noteworthy applications of the modeling. One pronounced 
example is its applications for health care. Even within the literature of both retail 
and health care, however, there are the same debates about the parameter estima-
tion and the accuracy of modeling applications in particular situations. It is rather 
obvious that although retail, health care, and other industries and public organiza-
tions can learn from each other, they cannot necessarily apply the empirical results 
because the scenarios may be remarkably different.

Finally, there is still room for extensive adaptation of the modeling. As we dis-
cussed, the flexibility of gravity modeling is one its advantages. These models can 
be customized based upon the unique factors associated with different types of or-
ganizations. The Huff Model is credited with switching the focus from the destina-
tion to the customer, and current and future adaptations of the modeling are and will 
be involved with accounting for the individual customer. Specifically, segmenting 
customers based on varying lifestyles is becoming increasingly popular for retail-
ers. By structuring gravity models to assign greater probabilities to customers who 
are more likely to purchase or spend more on particular products and services, the 
opportunity for improving the accuracy of the modeling, especially as it relates to 
sales forecasting, is greater.
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19.1 � Introduction

Voronoi diagrams are a very simple geometrical construct with a large variety of 
applications. Simply put, the problem can be described as follows. Consider some 
d-dimensional space in which a number of given points (sometimes referred to as 
seeds, attractors, or generators) are located. To each seed we assign a set that in-
cludes all points that are closer to the seed it is assigned to than to any other seed. 
Such a set is called a Voronoi set. The collection of all Voronoi sets is then a Voronoi 
diagram. Voronoi diagrams can be constructed for a number of different metrics. 
Clearly, different metrics will lead to different measures of proximity that result in 
rather different Voronoi diagrams.

The first steps into the direction of this geometrical construct were taken by 
mathematicians in the nineteenth century. Gauss (1840) appears to have been the 
first to graphically represent quadratic forms in a special case of Voronoi diagrams. 
Ten years later it was Dirichlet (1850) who further developed that representation. In 
his treatise (Voronoi 1908), the Russian mathematician G.F. Voronoi (1868–1908) 
exploited the Lejeune-Dirichlet theorem on the reduction of positive integer qua-
dratic forms in two dimensions and its equivalence to a configuration of hexagons 
in the plane. Three years later, the geographer Thiessen (1911) independently de-
veloped “Thiessen polygons” for a spatial missing data problem. As the latter con-
tribution provides a much more obvious explanation and use of the concept, we 
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have chosen to concentrate on Thiessen’s work. Note that this is in no way meant to 
indicate that Voronoi’s work is any less original.

As reported by Okabe et al. (2000), estimation of the magnitude of ore deposits 
in Russia during the early years of the twentieth century used the concept of Voronoi 
diagrams. Crystallographers such as Niggli (1927) and Wigner and Seitz (1933) 
rediscovered the concept and used it for their work. The latter were interested in 
atomic structures. Their terse description of Voronoi diagrams is this:

If we draw lines connecting the nearest atoms and consider the planes bisecting these per-
pendicularly, we have every atom surrounded by a truncated octahedron.

Delauney (1934) introduced another, but intimately related, tessellation of space. Today, 
we know that it is the graph-theoretic dual of Voronoi diagrams. It will be described in 
some detail in Sect. 19.3 of this chapter. The seminal contribution by Shamos and Hoey 
(1975) connected the proximity concept of Voronoi diagrams with location models. The 
many contributions by authors such as Aurenhammer and Edelsbrunner have advanced 
a variety of aspects of Voronoi diagrams and have made them what they are today. Ex-
cellent surveys are those by Aurenhammer (1991) and the book by Okabe et al. (2000).

19.2 � Thiessen’s (1911) Contribution

Thiessen’s (1911) concern deals with the computation of averages given spatial 
data. In particular, consider a region in which the average rainfall is to be deter-
mined. A number of reporting stations exist, but they may not be evenly distributed 
within the region, or some stations have failed to report for some reason. While one 
could simply take an average of the existing data, this may lead to significant errors. 
Envisage a situation in which one part of the region is basically dry, while another 
experiences heavy rainfall. Furthermore, assume that the reporting stations are not 
representative, so that an average computed on that basis will fail to paint the true 
picture. In today’s parlance, the problem deals with missing spatial data.

Thiessen presents his ideas in the form of an example. A square region is sub-
divided into small squares of 4 in.2 each. The true rainfall amounts are shown in 
Fig. 19.1. The total rainfall amount is 30 on the entire 16 squares, resulting in an 
average of 1.875 in. per square.

Fig. 19.1   Thiessen’s original 
example
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Suppose now that for some reason, not all weather stations are reporting. 
Figures 19.2a–c show three different scenarios, each of which relating to a different 
set of weather stations reporting, all based on the same true rainfall data shown in 
Fig. 19.1. The averages in the scenarios shown in Fig. 19.2a–c are 2.166,7, 1.833,3, 
and 1.333,3. Note the significant errors of the averages calculated above. Thiessen 
then suggests that

The amount of rain recorded at any station should represent the amount for only that region 
inclosed (sic) by a line midway between the station under consideration and surrounding 
stations.

Based on this suggestion he constructs what geographers have long since referred to 
as a “Thiessen tessellation.” The subdivision of space for this example as reported 
by Thiessen is shown in Fig.  19.3a. Here, the four regions are of size 4¼ with 
rainfall 1, 5 with rainfall 2, 3 with rainfall 4, and 3¾ with rainfall 1, resulting in a 
weighted average of 30/16 = 1.875, which happens to be the exact average.

However, closer inspection will reveal that the tessellation shown in Fig. 19.3a is 
not correct, following Thiessen’s own description. As a matter of fact, if we were to 
take his example, the proper tessellation is shown in Fig. 19.3b. There is an area of 
6¾ with a rainfall of 1, an area of 63/8  with a rainfall of 2, and an area of 27/8  with 
rainfall of 4, resulting in an average of 31/16 = 1.937,5, only a slight overestimate.

Published almost a decade after Thiessen’s publication, Horton (1917) claims 
that Thiessen’s method was “independently developed and has been extensively 

Fig. 19.2   Different scenarios with missing data
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used by the writer.” He also developed the “inclined plane method,” a spatial inter-
polation method that determines missing data by way of weighted average of sur-
rounding existing data. Thiessen’s method was later developed further by Whitney 
(1929), who anticipated duals of Voronoi diagrams without formally introducing 
them and most likely without being aware of them. These concepts are defined and 
discussed in the next section.

19.3 � Voronoi Diagrams and Their Properties

This section will formally introduce Voronoi diagrams and display examples for a 
variety of distance functions. Then some of their properties are explored including 
another tessellation that is closely related to Voronoi diagrams. Finally, a number of 
extensions of the basic concept and some applications are introduced and discussed. 
Even though there are no restrictions on the number of dimensions in which Vor-
onoi diagrams can be constructed, for reasons of simplicity we restrict ourselves to 
two dimensions in this paper.

19.3.1  �Measures of Distance

The concept of distance is central to Voronoi diagrams. While there are many types 
of distances such as gauges (Nickel and Puerto 2005), we will restrict ourselves to 
Minkowski distances, usually referred to ℓp distances. Given two points A = ( a1, a2) 
and B = ( b1, b2) in R2,  the ℓp distance is formally defined as

where p is a parameter chosen by the decision maker. It turns out that if p = 1, we 
obtain the Manhattan, rectilinear, rectangular, or simply ℓ1 distance. Formally, it 
is defined as

and it mimics movements that occur only parallel to the axes. The ℓ1 distance func-
tion may be appropriate to model inner-city movements (without one-way streets), 
or wherever travel takes place along corridors such as on shop floors, in stores, or 
in a warehouse. This metric is commonly used in facility layout models; see, e.g., 
Francis et al. (1994).

For p = 2, we obtain

d
(p)
AB = [|a1 − b1|p + |a2 − b2|p]1/p,

d
(1)
AB = |a1 − b1| + |a2 − b2|,

d
(2)
AB =

√
(a1 − b1)2 + (a2 − b2)2.
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This is the usual as the crow flies, straight line, Euclidean, or simply ℓ2 distances. 
Many authors (such as Thiessen in the second section of this chapter) have used 
Euclidean distances as a default. A related measure of distance is the squared Eu-
clidean distance defined as

While not a Minkowski distance in the strong sense, it is a specific instance of 
a generalization of these distances that can be arrived at by using different ex-
ponents in the inner and outer part of the square brackets of the general formula 
(here: 2 and 1). Geometrically, this function does not actually define the length of 
a line segment but an area. However, it may be interpreted not as a distance but a 
cost or a disutility. The function itself has some interesting and desirable proper-
ties. First of all, it assumes that the cost or disutility of travel grows nonlinearly. 
For example, the disutility of commuting is more costly for the second mile than 
for the first mile, and more costly for the tenth mile than for the ninth. There are 
two reasons that economists use to justify this assumption. First, people normally 
get increasing disutility from higher levels of a bad thing, such as work or pol-
lution. Secondly, there is an increasing opportunity cost of an individual’s time 
as more and more time is spent driving. The first 15 minutes spent driving might 
pose only a minor inconvenience, but the second 15 minutes take the individual 
away from a more important activity.(Of course, the opposite might be true in the 
case of shipping a product. It may be less costly per mile to ship a long distance 
by ship or train than a short distance by truck or van. For details, see, e.g., Rydell 
(1967).

The general effect of varying p ∈ [1, 2] on the distance measured between two 
points A = (1, 1) and B = (2, 2) is illustrated in Fig. 19.4.

Figure 19.5 demonstrates what happens as p decreases from 2 toward 1. In par-
ticular, decreasing p from 2 to 1 “mimics” the effect of barriers to straight line travel. 
Studies performed with real-world transportation data (e.g., Love and Morris 1979, 

(
d

(2)
AB

)2
= |a1 − b1|2 + |a2 − b2|2.
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Fig. 19.4   Calculation of ℓp distance between A = (1, 1) and B = (2, 2) for p ∈ [1, 2]
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Brimberg et al. 1994, and Fernández et al. 2002) show that variants of the ℓp norm 
with intermediate values of p between 1 and 2 best predict actual road distances.

Finally, we can let p → ∞, which results in the Chebyshev (or max) distance

19.3.2  �Basic Voronoi Diagrams

We are now able to formally define Voronoi diagrams. Let a set of seed points Q1, 
Q2, …, Qn be given in d-dimensional real space Rd .  For convenience, Qi denotes 
a given point as well as its location. The convex hull of the set of seed points is the 
intersection of all sets that include all seed points. To each seed point Qi we can then 
assign a Voronoi set (or Voronoi area or Voronoi cell in Rd ) which we denote by 
V p( Qi) given the ℓp metric. If no confusion can arise, we will refer to the area simply 
as V( Qi). The set Vp( Qi) consists of all points in space which are no farther from the 
seed point Qi than to any of the other given seeds Qj, j ≠ i. As such, a Voronoi area 
solves the closest assignment problem of points to the seed. Formally, we define 
V p( Qi) = {Q: d p( Q, Qi) ≤ d p( Q, Qj) ∀ i ≠ j}. The collection of all Voronoi sets then 
defines the Voronoi diagram VDp or simply VD. Since each point Q ∈ Rd  belongs 
to at least one Voronoi set, it follows that the union of all Voronoi sets spans the 
given space (or, alternatively, is a tessellation of the given space).

To visualize the concept, consider the simple case of only two points Qi and Qj 
in the two-dimensional Euclidean plane. Define then the bisector of Qi and Qj as 
Bp( Qi, Qj) = {Q: dp( Q, Qi) = dp( Q, Qj)}, i.e., the set of points Q whose distance to Qi 
equals that to Qj. The graphs in Fig. 19.6a–e display the bisectors for Minkowsky 
distances with the usual parameters p = 1, 2, ∞ as well those with the more unusual 
parameters p = ½ and 3.

Before further investigating the properties of bisectors in the various metrics, 
a special case related to the ℓ1 metric should be mentioned. Given the case that 

d
(∞)
AB = max{|a1 − b1|, |a2 − b2|}.

Fig. 19.5   Illustration of 
distance for p ∈ [1, 2]
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|xi − xj| = |yi − yj| as shown in Fig. 19.6f, the bisector within the square defined by Qi 
and Qj coincides with the diagonal of that square. Outside this square, the bisector is 
no longer uniquely determined. Larson and Stevenson (1972) appeared to be among 
the first to notice this phenomenon. Actually, all points in the crosshatched area, the 
“plateaus,” as Larson and Stevenson call them, are equidistant to Qi and Qj. At first 
glance, this non-uniqueness could be considered as an interesting, but ultimately 
highly unlikely anomaly as it occurs only if Qi and Qj are located at the corners of a 
square. Consider, however, a situation in which Qi and Qj form a rectangle with al-
most equal side lengths, then minor movements of either point will cause the bisec-
tor, and this the two sets it generates, to change suddenly and dramatically. Whether 
or not such a feature is desirable depends on the specific application.

Also note that among the ℓp distance functions, only ℓ2 has a linear bisector. Fur-
thermore, Bp( Qi, Qj) is piecewise linear only for p = 1 and p → ∞. In all other cases, 
the bisector is nonlinear.

Define now the p-halfspace H
p

i (Qi , Qj ) = {Q : dp(Q, Qi) ≤ dp(Q, Qj )}  as 
the set of all points that are closer to Qi than to any of the other points Qj, j ≠ i, based 
on the ℓp distance. Note that the line bordering such an ℓp-halfspace is the bisector 
separating Qi and Qj in the ℓp metric. Then the i-th Voronoi set can be written as 
V p(Qi) =

⋂
j �=i

H
p

i (Qi , Qj ).  This allows us to state

Lemma 1:  Given an ℓp distance function, then p = 2 implies that Vp( Qi) is convex.
The proof follows immediately from the convexity of H

p

i (Qi , Qj ) , which it-
self is a result of the linearity of Bp( Qi, Qj). This result also implies that V2( Qi) is 
a bounded or unbounded polygon. Note that some of the p-halfspaces maybe be 
redundant and thus unnecessary in the actual construction of the Voronoi diagram.  

Fig. 19.6   a Bisector in ℓ1 metric. b Bisector in ℓ2 metric. c Bisector in ℓ∞ metric. d Bisector in ℓ½ 
metric. e Bisector in ℓ3 metric. f Special case of bisector in ℓ1 metric
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Figure 19.7 provides an example for Voronoi diagrams for ℓ1, ℓ2, and ℓ∞ metrics. 
(Note the plateau in the Northwest corner of Fig. 19.7a).

In general, each point in a Voronoi diagram in Rd which is equidistant to more 
than d points is commonly referred to as a Voronoi point. These points are the inter-
sections of d + 1 or more bisectors Bp( Qi, Qj). We will call a Voronoi point degen-
erate, if it is equidistant to d + 2 or more of the seeds, based on whatever metric is 
used. Only one Voronoi point in Fig. 19.7c is degenerate (the point that is equidis-
tant to Q1, Q2, Q4, and Q5). In the following it will be assumed that no degenerate 
Voronoi points exist.

Suppose now that a Voronoi diagram for n seeds Q1, Q2, …, Qn has been con-
structed. A Delauney tessellation is then constructed by connecting two seeds Qi 
and Qj, whenever the Voronoi areas V( Qi) and V( Qj) are direct neighbors, i.e., if they 
have points on a dividing line in common. Note that the lines that connect seeds on 
the convex hull are included in the Delauney tessellation (Fig. 19.8).

It must be noted that the structure of the Delauney tessellation depends on the 
metric used for the Voronoi diagram. In other words, if two points Qi and Qj gener-
ate Voronoi areas V( Qi) and V( Qj) which are adjacent in one metric, they do not have 

Fig. 19.7   a Voronoi diagram in ℓ1 metric. b Voronoi diagram in ℓ2 metric. c Voronoi diagram in 
the ℓ∞ metric
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to be adjacent in some other metric. This property has been pointed out by Eiselt 
and Pederzoli (1986). As an example, consider the Voronoi diagrams in Fig. 19.9 
spanned by the same three points Q1, Q2, and Q3.

Clearly, the Delauney tessellations of the Voronoi diagrams in the ℓ2 and ℓ∞ met-
rics contain the edges ( Q1, Q2), ( Q2, Q3), and ( Q1, Q3), while the dual of the Voronoi 
diagram in the ℓ1 metric includes the edges ( Q1, Q2) and ( Q2, Q3). In order to dem-
onstrate that the duals of the Voronoi diagrams in the ℓ2 and ℓ∞ metrics may also 
be different, rotate the space by 45°. The shape of the ℓ∞ Voronoi diagram is then 
identical to the one displayed in Fig. 19.9b (rotated by 45°) and the dual includes the 
edges ( Q1, Q2) and ( Q2, Q3), whereas the Voronoi diagram in the Euclidean metric 
is unchanged.

Construction methods for Voronoi diagrams fall into two categories: divide-
and-conquer techniques, and incremental methods. Typically, divide-and-conquer 
methods are somewhat more difficult to implement than incremental methods, but 
have a better worst-time complexity. Among other things, Shamos and Hoey (1975) 
demonstrated that a Voronoi diagram with n seed points can be computed by their 
divide-and-conquer method in two dimensions for the ℓ2 metric in O( n log n) time, 
while the worst-case time complexity of incremental methods is O( n2). However, 
incremental methods appear to be easier to implement. Subsequent authors such 
as Hwang (1979) have extended this result to ℓ1 and other metrics. A practical ap-
proach to the construction of Voronoi diagrams was put forward by Fortune (1987). 
Based on algorithmic ideas by Fortune (1987), Shute et al. (1987) constructed De-
launey tessellations for ℓ1 and ℓ∞ metrics, in O( n log n) time. A good review of the 
subject is provided by Aurenhammer and Klein (1996).

19.3.3  �Extensions to Basic Voronoi Diagrams and Their 
Applications

This section will explore some extensions to basic Voronoi diagrams and a few se-
lect applications. The choice of extensions and applications has been made in view 
of their applicability to location problems.

Fig. 19.9   a ℓ2 metric. b ℓ1 metric. c ℓ∞ metric
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One straightforward extension of the standard Voronoi diagram allows different 
weights associated with the seed points, so that the tessellation is then computed 
based not only based on distance, but on the weights as well. Important applica-
tions of weighted Voronoi diagrams are found in the retail sector, where “attraction 
functions” that combine distances and weights have been used for a long time com-
pletely unrelated to Voronoi diagrams. In this context, the weights symbolize floor 
space, availability of parking, the general price level, friendliness of staff, and simi-
lar features that are but a few components relevant in a customer’s decision making. 
Reilly (1931) was the first to acknowledge the problem and to introduce a single 
factor called “attractiveness.” The probabilistic counterpart to Reilly’s deterministic 
model was put forward by Huff (1964). In general, a customer at site i is attracted 
to a facility at site j governed by the function

where the weight Aj denotes a basic attractiveness of the facility located at site j, and 
k is a parameter that measures distance decay. In case k = 2, we obtain Huff’s gravity 
model. Given this attraction function, customers will then choose the facility they 
are most attracted to.

A number of problems are associated with this seemingly straightforward 
weighted extension of the basic model. As an example, consider a line segment of 
length 2 with a customer at its left and, a small facility with attractiveness “6” at 
the center, and a large facility with attractiveness 36 at the right end. At its location 
at the left end, the small and large facility exert a respective “pull” of 6/1 = 6 and 
36/4 = 9 on the customer, who will decide to patronize the larger facility. Suppose 
now that the customer drives towards the large facility, but makes a stop at ½. 
The distances to the two stores are now ½ and 1½, respectively. Recalculating his 
preferences, the “pull” of the small and large store are now 24 and 16, respectively, 
so that the customer is now more attracted to the smaller store. This inconsistency 
was noted by Drezner et al. (1996), who prove that only additive selection rules are 
consistent. The authors also offer a consistent approximation to inconsistent multi-
plicative rules. In two dimensions, Voronoi diagrams based on attraction functions 
will have the Voronoi area of the less attractive facility surrounded by the Voronoi 
area of the more attractive facility, provided that the study region is sufficiently 
large. The above example on a one-dimensional line segment is but a cross section 
of a two-dimensional space.

The weighted model described above is generally known as having multipli-
cative weights, as the distances are multiplied by weights. This is also known as 
the Appolonius model. In contrast, in the additive model weights are added to the 
distances. This additive model was first investigated by Johnson and Mehl (1939), 
who examined the growth of crystals, bubbles, and cells. Both extensions result in 
Voronoi areas with nonlinear boundaries.

Another extension concerns the Voronoi diagram of order k. The idea of this con-
cept is to tessellate the space into regions, such that each region V*( R) is associated 

aij =
Aj

dk
ij

,
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with a set R ⊇ {Q1, Q2, …, Qn} with |R| = k, in a way that all points in region V*( R) 
are closer to all seeds in R than they are to any seed not in R. The most important 
orders are k = 1 (which are the standard Voronoi diagrams discussed above), and 
k = n − 1. In the latter case, suppose that the only seed not in the set R is Qj. In this 
case, the region V*( R) includes all points closer to any seed than Qj, or, to put it in 
other words, V*( R) includes all points from which Qj is farther than any of the other 
seeds. This is why a Voronoi diagram of order n− 1 is also referred to as the farthest 
point Voronoi diagram. Both these special cases are of particular importance in 
location modeling.

In order to explain just two of the concepts that link Voronoi diagrams to location 
modeling, we need to introduce two concepts. The first is the smallest enclosing 
circle. This is the smallest circle in the plane that includes all of the given seeds. The 
second is the largest empty circle. This is the largest circle, whose center is located 
inside the convex hull of the set of seeds that that does not include any of the seeds 
themselves. The center of the smallest enclosing circle is the solution of the 1-center 
(=1-minimax) problem in the two-dimensional plane with ℓ2 distances (see Chaps. 
4 and 5 of this volume for more details). On the other hand, the center of the largest 
empty circle is the solution of the 1-anti-center (=1-maximin) problem in R2  with 
ℓ2 distances. The following two observations can be used to solve the 1-center and 
the 1-anti-center problems very efficiently with the use of Voronoi diagrams.

Lemma 2:  The center of the smallest enclosing circle is either at the center of the 
seeds that are farthest from each other, or at a Voronoi point of the farthest-point 
Voronoi diagram.

Furthermore, we can state

Lemma 3 (Shamos and Hoey 1975):  The center of the largest empty circle is 
either located at a Voronoi point of the standard (1st order) Voronoi diagram, or at 
one of the points determined as the intersection of the boundary of a Voronoi area 
and the convex hull of the set the circle is to be located in.

What follows are a number of applications, in which Voronoi diagrams play 
an important role. For reasons of space, this list is very selective. For a much 
more detailed discussion of the many applications of Voronoi diagrams, readers 
are referred to the authoritative works by De Berg et al. (2008) and Okabe et al. 
(2000) and Preparata and Shamos (1985), as well as the survey by Aurenhammer 
(1991).

A very difficult and compelling application of the basic Voronoi model is the 
incorporation of competition in Voronoi diagrams. Competitive location models 
date back to Hotelling’s (1929) seminal work, which is described in Chap. 7 of this 
volume. Suppose now that customers are located in the plane with uniform density. 
Furthermore, a number of facilities (e.g., retail facilities) are also located in the 
plane. The task is now to determine the optimal location for a new retail facility, 
given that its objective is to maximize the number of customers that will patronize 
its store. Given uniform demand density, this objective is equivalent to maximizing 
the size of the Voronoi area associated with the new facility. As Eiselt et al. (1985) 
point out, this task first requires the triangulation of the Voronoi area, the determi-

19  Voronoi Diagrams and Their Uses



456

nation of its size, and then its optimization. The objective is a polynomial that only 
holds within some nonlinearly bounded area. Okabe and Suzuki (1987) devise a 
nonlinear optimization method, coupled with a heuristic, for this global optimiza-
tion method. Actually, their study does not simply find the optimal location for a 
single facility, but it repeatedly optimizes the optimal locations for one facility at a 
time. The research question is whether or not the process will stabilize. It turns out 
that while the patterns become similar to regular honeycomb patterns described by 
Lösch (1962), the pattern then self-destructs and no equilibrium is reached.

Another application concerns the task of drawing a topographic map from data 
observed in the field. A number of points in the area of interest have been measured, 
so that for each such point, the exact coordinates and its altitude are known, e.g., 
by way of GPS measurements. The problem is now to interpolate these points to 
enable the designer to draw contour lines on topographic maps. This could be ac-
complished by constructing a Voronoi diagram and the Delauney tessellation. It is 
then possible to interpolate the altitudes along the arcs of the dual, thus enabling 
the mapmaker to draw smoother contour lines than without this technique, see, e.g., 
Gold (1989). A good survey can be found in Okabe et al. (2000).

An application from the military field was suggested (but not solved) by Lee 
and Yang (1979). It deals with the surveillance and tracking of ships and it can be 
described as follows. The set of ships is subdivided into two classes, the red and the 
blue ships. Assuming that the present locations of all ships is known, the red points 
in the plane denote the locations of target ships, e.g., enemy submarines, while the 
blue ships indicate the locations of the ships in our own fleet. One problem is now 
to determine which of the blue ships is used to track and/or intercept the red target 
ships. The fact that this game is dynamic and stochastic makes it very difficult to 
solve. In addition, behavioral assumptions concerning the actions and moves of the 
red ships will have to be made. This introduces an element of fuzziness into the 
model. In order to initialize the game, it has been suggested to first determine the 
Voronoi diagram for the blue points as seeds. In this case the use of the Euclidean 
metric appears justified. Whenever now a red point Q is located in the Voronoi area 
V( Qi), it means that the target ship is closer to our own vessel Qi than to any of our 
other ships, so that we will use Qi for the chase. In case multiple target ships are 
present in a single Voronoi area, the authors suggest an interactive man-machine 
procedure.

Some further applications of Voronoi diagrams can be found in the works by 
Eiselt (1989), Aurenhammer (1991), and Okabe et al. (2000).

19.4 � A Case Study Involving Voronoi Diagrams

To illustrate the application of Voronoi diagrams with different attraction func-
tions and metrics, we use data from the Piedmont-Triad region of North Carolina. 
This region comprises the 12 counties of northern central North Carolina (out of 
100 counties in the state). Included in this region are the Greensboro-High Point 
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and Winston-Salem Metropolitan Statistical Areas and the surrounding counties. 
Figure 19.10 shows the geographic location of this region. The major cities in this 
region are Greensboro, Winston-Salem, and High Point which are the third, fourth, 
and eighth most populous cities in North Carolina. These cities have approximately 
188,000, 173,000 and 72,000 people. The 12 counties of the Triad Region contain 
1.5 million of North Carolina’s eight million people. (All population data are taken 
from the 2000 United States census).

The seed points comprise the centroids of the urban areas within this 12-county 
region as defined by the US Geological Survey’s national atlas. The USGS de-
scribes these as the “Generalized footprint of built-up areas.” (For these data and 
further information, see Nationalatlas 2008) There are 21 such areas in these 12 
counties, shown in Fig. 19.11.

Note from Fig. 19.11 that several counties have several “attractors” (i.e., seed 
points), while two counties have none. While this may seem curious at first glance, 
the counties without attractors (Stokes and Caswell Co.) are large in area but sparse-
ly populated. For example, the county seat of Stokes County, Danbury, had a popu-
lation of only 108 people in the year 2000. Also, according to the 2000 census more 
than 70% of the workers in each of the counties had a job outside of their county of 
residence, therefore being “attracted” to some other location for work. The major 
attractors are listed in Table 19.1, along with their populations. All attractors not 
listed have populations under 10,000 people.

We will construct several Voronoi diagrams in the next sections, and will use 
the centroids of the region’s 976 Census Block Groups for the year 2000 to assign 
households to each attractor. Then, we will compare the attraction functions based 
on each diagram’s assignment of households to attractors.

Fig. 19.10   Triad region of 
North Carolina
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19.4.1  �Voronoi Diagrams of the Piedmont Triad Region

19.4.1.1 � Unweighted Voronoi Diagrams

Figures 19.12, 19.13, and 19.14 will show the tessellation of the Triad Region under 
unweighted Minkowski distances, i.e., attraction functions in which all base attrac-
tions Aj are equal.

While Fig. 19.12 shows the subdivision of the area by using Euclidean distances, 
Figs. 19.13 and 19.14 displays a similar tessellation based on ℓ1 and ℓ1.5 distances, 
respectively.

Fig. 19.11   The 12 triad 
counties and 21 urban areas

M. L. Burkey et al.

                  

Name Population
Greensboro 187,800
Winston-Salem 173,238
High Point 72,096
Burlington 57,711
Lexington 21,250
Asheboro 16,606
Thomasville 15,915
Eden 15,238
Reidsville 12,183
Mount Airy 11,657

Table 19.1   Large attractors 
in the triad region
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19.4.1.2 � Weighted Voronoi Diagrams

Consider now weighted models with attraction functions, in which the attractors are 
not all equal. Borrowing from Krugman (1980) and other economists and market-
ing researchers (for a survey, see, e.g., Martin and Sunley 1996), we may use the 
population of a seed as the base attraction Aj.

Fig. 19.12   Unweighted 
Voronoi diagram with ℓ2 
distances
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Fig. 19.13   Unweighted Vor-
onoi diagram with ℓ1 distance
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The resulting weighted Voronoi diagram with Euclidean distances is shown in 
Fig. 19.15. As is evident from Fig. 19.13, the most prominent Voronoi cells belong 
to Winston-Salem and Greensboro, the two most heavily populated and hence, the 
largest attractors in the Piedmont Triad region. Their Voronoi cells are separated by 
the curved line running roughly North-South between them. As is evident, these ar-
eas are nonconvex, and include all of the area not contained in a small circle around 

Fig. 19.14   Unweighted 
Voronoi diagram with ℓ1.5 
distance

Fig. 19.15   Weighted Voronoi 
diagram with ℓ2 distances

M. L. Burkey et al.
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each of the other attractors. As mentioned earlier in Sect. 19.3.3, this nonconvexity 
is problematic in that it implies that customers who are to the east of the Voronoi cell 
of Burlington would still be attracted to Greensboro rather than Burlington. Clearly 
this would be questionable as a predictor of reality.

As a result, the population-weighted Euclidean metric appears to give results that 
are at least counterintuitive and do not coincide with reality. The Voronoi diagram 
boundaries also cut through the limits of the known “built up areas” in many cases, 
assigning people living inside these areas not to the facilities in their own proxim-
ity but to one of the two main attractors, Winston-Salem and Greensboro, instead. 
Clearly, if the “built-up areas” are any measure of reality, then simply weighting by 
population gives too much weight to the attraction factor proxied by population, and 
not enough to costs related to distance.

There are two ways that one can change the attraction function to make the dia-
grams more realistic. The first would involve making the attraction function have 
a negative second derivative with respect to variety (e.g., population). Krugman 
(1980) and others have used utility functions that assume that people have a prefer-
ence for variety, but that their utility increases in variety at a decreasing rate. There-
fore, imposing a natural logarithm or square root function on population might be 
appropriate.

Alternatively, one could achieve a similar, economically more realistic result by 
assuming that the disutility associated with the distance to an attractor increases at 
an increasing rate. Applying the usual attraction function with squared Euclidean 
distances results in the Voronoi diagram shown in Fig. 19.16. For reference, the ℓ2 
distances are also shown in Fig. 19.16 in light gray.

While the Voronoi cells of Greensboro and Winston Salem still have very wide 
areas of influence, increasing the importance of distance relative to population has 
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increased the size of the areas for the smaller attractors. None of the smaller attrac-
tors are “torn apart” as they were when using only the Euclidean metric.

Figure 19.17 shows a weighted Voronoi diagram based on cubed Euclidean dis-
tances and Euclidean distances raised to the fourth power.

19.4.2  �Comparing the Voronoi Diagrams

This section will focus on comparing the different attraction functions discussed in 
Sect. 19.3 above. In particular, we will conclude this section with an empirically-
based validation of these attraction functions that will allow us to conclude which 
one best predicts travel behavior in the Piedmont Triad region.

As a first method of comparison among the different attraction functions, we list 
below in Table 19.2 several measures from each Voronoi diagram. For the four larg-
est attractors in the Piedmont Triad (Greensboro, Winston-Salem, High Point and 
Burlington), Table 19.2 lists the areas and total income of their respective Voronoi 
cells generated under each attraction function.

As a second way to quantitatively compare the different attraction functions, we 
use the Herfindahl-Hirschman indices of inequality with respect to several measure-
ments of interest. (Other potential measures include Lorenz curves and the Gini 
index). The measures we choose for comparison are income, population, and land 
area. Original references regarding these measure are Lorenz (1905), Gini (1921), 
Hirschman (1945, 1964), and Herfindahl (1950).

Fig. 19.17   Weighted Voronoi 
diagram with ( ℓ2)

3 distances 
( gray lines) and ( ℓ2)

4 ( black 
lines)

M. L. Burkey et al.
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A Herfindahl-Hirschman Index ( HHI) is a common measure of concentration or 
inequality that was primarily invented to measure the concentration of production 
among a small number of firms.

The HHI is simply the sum of the squared proportions of each entity. As this mea-
sure gets closer to one, it indicates a higher concentration among fewer entities. For 
example, if each of ten firms produce one tenth of the industry output each, then 
the HHI equals 10(0.1)2 = 0.1. If instead one of the ten firms produces 90% of the 
industry output, and the other nine firms produce 1.1% each, then the HHI would 
increase to (0.9)2 + 9(0.011)2 = 0.811089. Thus, one can see that equal shares of n 
elements produce an HHI of 1/n, while the index will approach the value of one, as 
one member has a larger, unequal share. Therefore, with 21 attractors in the Pied-
mont Triad region, an equal share (of area, population, etc.) would generate an HHI 
of 1/21 ≈ 0.0476.

In contrasting the results obtained using the different attraction functions, we 
find below (see Table 19.3 below) that for the unweighted ℓ1, ℓ2, and ℓ1.5 attraction 
functions, the area is very close to being equally divided with an HHI around 0.06, 
with the largest shares of area for any attractor of around 8 or 9%. Thus these at-
traction functions predict only a marginal amount of agglomeration in the Piedmont 
Triad region.

However, as also seen below (and is clear from the Voronoi diagram) the Voronoi 
diagrams weighted by the population of the seeds show significantly more agglom-
eration than the unweighted Voronoi diagrams with respect to all three distance 
measures. For example, in the population-weighted diagram, 43 and 39% of the 
household incomes are assigned to the largest two attractors, while in the unweight-
ed ℓ2 Voronoi diagram, the largest shares of income are 25 and 22%. Interestingly, 
the unweighted diagrams are most heavily concentrated in income, whereas the 
population-weighted ℓ2 Voronoi diagram is most heavily concentrated in area, with 
Greensboro’s Voronoi area controlling 54% of the total surface area.

The attraction function that uses squared Euclidean distance weighted by popu-
lation serves as a middle path between the unweighted and population weighted 
diagrams, by reducing the importance of population relative to the distance, and is 
again most heavily concentrated in income.

This example assigns people in block groups to attractors. One feature of interest 
concerns the distance between a block group and the attractor for each attraction 
function under investigation. Suppose now that we compute the weighted aver-
age distance that people would have to travel from their home block group mea-
sured in Euclidean distances to the assigned attractor. The Voronoi diagram based 
on unweighted ℓ2 distances minimizes the distances, achieving the “most efficient” 
assignment in terms of transportation. This will be the benchmark measure. It is 

HHI =
∑

i



 xi∑
k

xk




2
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apparent that other attraction functions will assign people to attractors other than the 
closest. Given that, we can then calculate the ratio of the distances generated under 
each model to the benchmark measure. For instance, traffic planners who are inter-
ested in patterns of urban sprawl and associated excess traffic congestion, could use 
such a ratio as a measure of excess transportation costs when people shop or work 
at a job in a large city, rather than the closest city. For example, the most efficient 
travel assignment would predict that the average commute would be 5.57  miles 
each way (see Table  19.3). However, the weighted ℓ2 metric with population as 
weights assigns people more heavily to larger (rather than closer) attractors, and 
would predict average commutes of 11.76 miles, which is 2.11 times as large as the 
most efficient assignment.

Below, we attempt to cross-validate how well these attraction functions predict 
actual human behavior. To test this, we begin by estimating the county border cross-
ing behavior predicted by each attraction function. These predicted numbers are 
then checked against cross-county worker flow files from the Census Bureau for the 
year 2000, since this is the finest level at which this information is recorded. Refer 
to Table 19.4, which shows the origin and destination for each worker 16 years of 
age or older for people who both live and work in the 12 Triad Counties. Looking at 
the top row, 47,734 workers live and work in Alamance County, and 2,388 people 
live in Caswell County, but work in Alamance County. Conversely, only 164 people 
live in Alamance and work in Caswell (2nd row, 1st column). With the set of attrac-
tors we are using, there is a limit to how accurately we can model behavior since 
two counties had no urban areas. However, attraction functions which do better 
could be considered to be more appropriate, at least in terms of modeling employ-
ment behavior.

Having computed the estimates of cross-county travel as predicted by each at-
traction function, we compare them to the actual data above by computing two 
measures of error.

The first measure of error is a chi-square goodness of fit and an absolute error 
measure where, for each (origin, destination) pair,

χ2 =
∑

(actual − predicted)2/(actual)

Table 19.3   Descriptive comparison measures
Attraction 
function

Herfindahl-Hirschman index Avg ℓ2 distance from block 
group to attractor

Income Population Area
(mile2)

Distance
(mile)

( ℓ2Ratio)

Unweighted ℓ2 0.134,3 0.115,7 0.024,7 5.57 1.000
Unweighted ℓ1 0.137,9 0.118,3 0.024,1 5.60 1.007
Unweighted ℓ1.5 0.136,2 0.117,4 0.024,4 5.57 1.001
Weighted ℓ2 0.344,9 0.328,1 0.176,5 11.76 2.112
Weighted ( ℓ2)

2 0.230,0 0.206,7 0.087,8 8.02 1.441
Weighted ( ℓ2)

3 0.188,6 0.164,6 0.044,7 6.41 1.153
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The second measure of error is the mean absolute error, which is given by the sum 
of absolute deviations of predicted minus actual number of people crossing between 
each county and divided by two.

For example, suppose that there were only two counties, and in reality 100 people 
commute both from county 1 to county 2 and from county 2 to county 1. If our 
model wrongly predicted that 99 people travel from county 1 to county 2 and 101 
from county 2 to county 1, note that the model is only wrongly assigning 1 person. 
The term in the numerator would be computed as [|100–99| + |100–101|] = 2, so to 
arrive at the correct number of persons wrongly assigned, we divide by 2 in the 
denominator. The results are shown below in Table 19.5.

The attraction function with weighted ( ℓ2)
2 distances performs best with a 15.9% 

error rate. In other words, this model’s predictions are 15.9% off in their predic-
tions of actual inter-county worker flows. This is much better than a simple linear 
weighted model, and outperforms all of the unweighted models.

We will conclude this section by applying the standard Voronoi diagram to find 
the largest empty circle centered at any point in the Triad Region so as to solve the 1 
maximin problem, i.e., the optimal location of an undesirable facility. Following our 
discussion in Sect. 19.3.3, the following algorithm will solve the problem.

Algorithm: Locate a Single Undesirable Facility 

Step 1:	� Draw the Voronoi Diagram of points Q1, Q2, Qn using the unweighted 
ℓ2 metric.

Step 2:	� Superimpose the outer boundary of feasible locations on this Vor-
onoi Diagram.

Step 3:	� Construct the Voronoi cells V2( Qi) for all points Qi.
Step 4:	� Determine Q̄i  ∈ V 2( Qi), the point in Qi’s Voronoi cell that is farthest 

from Qi.
Step 5:	� Determine Di as the ℓ2 distance between Qi and Q̄i . The optimal 

location is the facility that determines D* = max{Di}.  

Error = 1/
2

∑
|actual − predicted|

Table 19.5   Predictive ability of attraction functions
Attraction function and 
metric

Chi-square measure  
of error

Mean absolute error Error rate (%)

Unweighted ℓ2 329,501.10 130,340 19.17
Unweighted ℓ1 307,678.50 130,440 19.19
Unweighted ℓ1.5 299,653.10 127,717 18.79
Weighted ℓ2 956,172.30 197,863 29.11
Weighted ( ℓ2)

2 293,826.90 108,231 15.92
Weighted ( ℓ2)

3 299,653.10 127,716 18.79
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The optimal solution is shown in Fig. 19.18 by a large “X” in the Northeast corner 
of the region. This location is 32.84 miles away from the nearest seed point, Reids-
ville.

19.5 � Conclusions

This chapter has followed the steps taken by one of the first geographers to tes-
sellate space based on the concept of “nearest neighbors.” This was followed by 
a general introduction of Voronoi diagrams and a short survey of some of their 
properties. The concept was then put to work in a real-life application that exam-
ined settlement patterns and agglomerations in the Piedmont Triad Region in North 
Carolina. In particular, a number of weighted und unweighted distances functions 
were applied to the region. In addition to different Voronoi diagrams, we explored 
the computation of descriptive measures for the different models, thus allowing 
model validation.

While this chapter has focused on measurements in “geographic spaces,” it 
should be noted that interesting work in many fields is being done which extends 
measures designed for geographic spaces into “conceptualized spaces.” The earli-
est reference to mention modeling in such spaces appears to be Hotelling (1929), 
who discussed the location of politicians along a single-dimensional ideological 
spectrum. Whether it is the stand on a political issues, preferences for products, or 
similar issues, many of them could potentially be modeled as points in a multidi-
mensional space; see, e.g., Aspinwall (2002), Shaw (1982), and Bower and Whit-
ten (2000). Once this is done, voter and customer behavior may be put into some 

Fig. 19.18   Obnoxious 
single-facility location
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proximity-based concept, resulting in a Voronoi diagram. Such a diagram will then 
allow to predict voting outcomes, market shares of products, and similar measures. 
Much work needs to be done, though, in order to make these concepts workable.
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20.1 � Introduction

The question of why economic activities are concentrated in certain places and not 
in others, why so-called “central places” exist at which an agglomeration of people 
and trade takes place, and where these central places are to be found, has long 
been a focus of spatial economists. In the nineteenth and twentieth centuries, three 
German scientists concentrated on that area, and the results of their research be-
came famous and influential in Germany and all over the world. The three scholars 
in question are: Johann Heinrich von Thünen (“Der isolierte Staat in Beziehung 
auf Landwirtschaft und Nationalökonomie,” Teil I, 1826), Walter Christaller (“Die 
zentralen Orte in Süddeutschland,” 1933) and August Lösch (“Die räumliche Ord-
nung der Wirtschaft,” 1940). Von Thünen was the first to develop a theory of land 
use, and was praised as “one of the patron saints of econometrics” by Schumpeter 
(1955). Christaller founded the Theory of Central Places which, in the 1950s, was 
the only theory “concerning systems of cities that was at all well developed” (Berry 
1964) and, especially in the 1960s and 1970s, became the major concept to be ap-
plied in regional planning in Germany. Lösch, who is described as an “extraordinary 
personality” by Stolper in the foreword to Lösch’s book, developed the first general 
equilibrium concept regarding the system of locations of economic activities that 
had ever been presented.

The three scholars worked in diverse areas: von Thünen concentrated on agricul-
tural land use, and proposed a location theory for agricultural products. Christaller 
derived a concept to explain the locations, the sizes, and the interrelation of urban 
settlements. Lösch refined and generalized the resulting theory of central places to 
a concept on the “nature of economic regions.” Although their work is differently 
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focused, the three researchers have an important aspect in common: in each case, 
an economic region is defined by the major center which is at its core. The major 
center has some “sphere of influence” surrounding it, and this sphere of influence 
economically depends upon the center.

In this paper, the major aspects of von Thünen’s, Christaller’s, and Lösch’s theo-
ries are presented, and their interrelations as well as their impact on further develop-
ments in the field are analyzed. Moreover, some of the most important subsequent 
work is discussed, underlining the importance of the fundamental contributions of 
these three authors for spatial studies and location theory.

20.2 � Classical Theories on Central Places

This chapter discusses the theories developed by von Thünen, Christaller and Lösch 
and the most important results regarding central places. The presentation of each 
of the theories is followed by a short discussion of its limitations, variations and of 
possible extensions.

20.2.1  �Johann Heinrich von Thünen’s Ring Theory

Johann Heinrich von Thünen (1783–1850) was a landowner and farmer who was 
interested in the mechanisms that lead to the different uses of land in different areas, 
in different systems of cultivation, and also in the factors that influence the fertility 
of the soil and the prices of the produce gained from the land. To develop explana-
tions for the phenomena he observed on his own estate, he took an analytical ap-
proach leading to a partial equilibrium model.

20.2.1.1 � Assumptions and Development of the Theory

In developing his approach, von Thünen (1921) considers an “isolated state” (hence 
the title of his work), in which there is a central city and which is surrounded by wil-
derness. The surface of the land is assumed to be flat and homogenous without moun-
tains or rivers, and the soil is assumed to have the same constant a priori quality ev-
erywhere, leading to a standard yield. Farmers are assumed to transport their products 
directly to the city which is the only place of consumption. Furthermore, each farmer 
is assumed to behave as a homo oeconomicus with the goal of maximizing his profit.

Based on these assumptions, von Thünen wants to determine to which use the 
land should be put (the “optimal land use”), depending on the distance to the town, 
which has a crucial impact on the cost of transportation, and under the condition that 
the demand of the town has to be fulfilled (“supply model”). Early in his paper and 
without much preceding analysis, he observes that the differences in transportation 

K. Fischer



473

cost, resulting from different weights and volumes of products, will lead to a ring 
structure around the central city, where the different rings grow different products. 
From this seminal insight he develops his model of the “Thünen rings” for agricul-
tural activity which has been praised as the “world’s first economic model” by Hall 
in the introduction to von Thünen’s book (1966).

A major part of the first section of von Thünen’s book is devoted to an analysis 
of the farm price of grain. On the one hand, this price—or better: what the grain is 
worth at a certain distance from town—is determined by the transportation cost. If 
the price in the central town is known, the prices in different places around the city 
will amount to the difference of this price and the transportation cost. Therefore, 
prices will decrease with increasing distance from town, and there will be a certain 
limit beyond which it is not profitable to produce any grain at all. This defines the 
limits of the respective ring. In contrast to the majority of authors, von Thünen does 
not—at least at first—assume that cost of transportation per unit is proportional 
to the distance travelled. This is due to the fact that he does take into account the 
amount of food for the horses that needs to be taken on each trip, and hence the unit 
costs of transportation are slightly decreasing. However, later on he assumes trans-
portation cost to be proportional to distance, e.g., in the case of butter.

On the other hand, the area on which grain is grown and the fertility of the soil 
are important factors which influence the yield, and therefore the cost, of grain 
production. The fertility depends on factors such as the use of manure or the rota-
tion of crops. Hence, while von Thünen assumes a homogenous plane and therefore 
the same “inherent quality of the soil” in his development of an intensity theory, he 
nevertheless takes into account the effect of different levels of fertility.

The data which von Thünen collected on his own farm lead to the proposition 
that a less fertile soil which produces less grain should only be used for grain when 
the price is high, as otherwise no profit will be made, due to the high cost of produc-
tion. In studying different cultivation systems, he found that the improved system in 
which seven different crops are rotated is not always better than the three-field sys-
tem. Which of the systems is better depends on the grain prices, with lower prices 
supporting the three-field system.

In his analysis, von Thünen also takes production costs into account, which he 
assumes consist of a money (“town-based”) part and of a “farm-based” part, cal-
culated in terms of units of grain. It is one of the important contributions of von 
Thünen that he studies all cost aspects and their impact on the choice of location 
for the different products. He concludes that the product that leads to the greatest 
decrease in cost when it is produced close to the market and hence saves the high-
est amount of cost should be produced there; this is the product which leads to the 
highest land rent. Hence, the land rent or so-called “locational rent” is the profit 
which results from the land itself, after the deduction of all cost and the interest for 
buildings and other objects apart from the land. This rent is the same as the clas-
sical “economic rent,” but, as von Thünen points out, it is different from the “land 
rent” in the sense of Adam Smith who does not deduct the respective interest. The 
land rent also represents land value, and therefore it equals the maximum amount a 
farmer would be ready to pay for using the land.
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From this, Lösch (1962) concluded that, under the assumption of linear transpor-
tation costs, the land rent R for a specific product is determined by relation (20.1).

� (20.1)

with the following parameters an variables:

y:	� yield per unit of land (in tons of product)
c:	� production cost per ton of product
p:	� market price per ton of product
f:	� freight rate per km and ton
m:	� distance to market (in km)

Therefore, the returns from a product equal the sum of the production cost (which 
may vary with the distance from town), the transportation cost and the land rent. In 
other words, the land rent is a residual, as it equals the difference between the cost 
resulting from the production and transportation of the product at the “marginal 
site,” which is equal to the product’s return, and the costs that have to be incurred 
at the place currently under consideration. (The “marginal site” is the site furthest 
from town where the product still has to be produced in order to satisfy the towns 
demand.) The land rent then results from the advantage that a farm has over the 
“worst” farm that still supplies the market with the same product (usually a farm 
with high production or transportation costs), and therefore it is a measure of mar-
ginal productivity: “Land rent does not spring from capital or labor, but from the 
fortuitous advantage one farm enjoys over the others in the quality of its soil or 
location” (von Thünen 1966). It can also be interpreted as an opportunity cost: if, 
for example, another crop were to replace the growing of grain, it should lead to a 
lower total cost, including the grain’s land rent.

Consequently, the limits between the rings in which the varying uses of land 
take place are defined by the land rent: one ring ends and the next ring begins at the 
point where, for instance, the land rent for the produce of the first equals the land 
rent for the produce of the second. This concept of marginal productivity can be il-
lustrated as shown in Fig. 20.1. A similar figure on milk production is provided by 
Lösch (1962).

Figure 20.1 illustrates the tradeoff between land rent and transportation cost. It 
shows how the Thünen rings result from differences in the costs of transportation 
(or production) and in the rent that a farmer who raises a certain crop would be 
ready to pay at a certain distance from the town (named the “bid-rent” by Alonso 
1964). The faster the rent for a certain product diminishes, shown by the steeper 
respective line in Fig. 20.1, the closer to the town the product must be grown.

The Thünen rings can also be derived analytically as explained by Lösch (1962). 
Consider two products I and II, such that product I leads to a larger rent RI than 
product II, which leads to rent RII. Using relation (20.1), we can then write

� (20.2)

yp = yc + yf m + R ⇔ R = y(p − c) − fmy,

RI > RII ⇔ yI (pI − cI ) − fmyI > yII (pII − cII ) − fmyII
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At the town, the distance m from the market is 0, and hence this is equivalent to:

� (20.2′)

which leads to the inequality

� (20.3)

Therefore, inequality (20.3) must be satisfied, if product I can be more profitably 
produced in the town than product II. Analogously, a condition for II to be more prof-
itable at the periphery of the area can be derived. The two resulting inequalities are:

� (20.4)

If only one of these conditions is true, either crop I or crop II is grown exclusively 
as the other cannot be advantageously grown anywhere. If both conditions are ful-
filled, we find that if yI > yII, crop I will be grown in the inner ring (and note that if 
yII > yI, the conditions have to be reversed and product I will be in the outer ring). 
Lösch (1954) wrote “the choice of a crop is then a function of distance.” While the 
yield is higher for product I, the maximum possible profit per unit, ( pI  − cI), must be 
smaller, resulting from the first part of condition (20.4). For product I, therefore, the 
profit per unit is absorbed more quickly by the cost of transportation than it is the 

yI (pI − cI ) > yII (pII − cII ),

yI ( pI − cI )

yII ( pII − cII )
> 1

yI

yII
>

yI ( pI − cI )

yII ( pII − cII )
> 1

Fig. 20.1   Land rents for different products and the development of von Thünen’s rings

Product 2

Product 4

Land Rent R

Distance m

Product 1

Product 3
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case for the other crop. In summary, at some distance from the market the two crops 
give the same profit, and further out in the periphery, the production of the second 
product will be advantageous.

20.2.1.2 � Von Thünen’s Rings

Von Thünen gives a very specific presentation regarding the allocation of the pro-
duction of different products to the different rings around a central town. This central 
town is the (only) place of consumption, i.e. the place where the products are sold to 
the customers, whereas production takes place in the respective rings. According to 
von Thünen, in the first ring dairy production and intensive farming are to be found, 
as these products need to be brought to the market very quickly in order for them 
not to perish; as in von Thünen’s time, cooling devices, and especially refrigeration 
trucks, were unheard of. Obviously, the selling price of the milk has to be so high 
that it is not attractive for the farmers to put the land to any other use than food 
production for the cows, with the exception of the production of selected products, 
such as strawberries, because they would not survive a long transport, and potatoes, 
because it would be too expensive to transport them over a long distance. A special 
feature of this ring is that manure is mainly bought from the city. Von Thünen calls 
this ring the “free cash cropping” ring (in German: “Freie Wirtschaft”).

The second ring contains timber and, closer to the town, firewood production. 
During von Thünen’s lifetime, wood was needed for heating and cooking, and as 
its transportation was difficult due to its weight, it was located close to the place of 
consumption. In the third ring, crops such as grain are found, because they are not 
perishable and are much easier to transport than wood. Three different “sub-rings” 
are defined by the different types of crop rotation: an inner ring, in which the crop 
alternation system is used, a middle ring with the improved system, and an outer 
ring with a three-field system.

The fourth (or sixth, if we count the three sub-rings mentioned above separately) 
and final ring should be devoted to animal farming, including, for example, the pro-
duction of butter. Von Thünen concludes that butter production should take place 
at about 30 miles from the town, as it is not worthwhile to produce it at a shorter 
or longer distance. Closer to the city (except for the “Freie Wirtschaft” ring), the 
land rent for stock farming is negative and no stock farming will take place there, 
because close to the town the cost of production steeply increases and overcom-
pensates the decrease in transportation cost. This is due to the fact that crops such 
as rye are less expensive at larger distances to the town due to the lower land rent, 
and therefore stock farming, which has a higher production but lower transporta-
tion cost than rye (due at least partly to the consumption of rye by those working in 
stock farming), can be done more efficiently further away from the town.

Stock fattening can commence far away from town but has to be finished close 
to it, as the animals lose too much weight on their way to the town if they have to 
walk long distances. Also, young cattle can be raised at the outer ring. It should be 
noted that “industrial” crops which extract a lot of fertility from the ground (e.g., 
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oilseeds, such as rapeseed, tobacco, and flax), are to be found in this outmost ring, 
as are sheep farming and the production of wool. At about 50 miles from the town, 
all farming activity ends, as the land rent is too low to support it. Overall, there is 
a tendency of rising intensity towards town, but there are exceptions like forestry 
(ring 2). The concept of the rings is illustrated in Fig. 20.2.

Assuming identical costs and/or yields, von Thünen states some general rules 
regarding the location of different agricultural products:

(a)	 The higher the production cost, the farther from the market the product should 
be produced.

(b)	 The higher the yields of a product, the closer to the market it should be produced.
(c)	 The crop extracting the most fertility from the soil should be grown farther 

from the market.

While (b) agrees with the result derived by the analytic procedure, result (a) is some-
what less convincing. Von Thünen states that the lighter or more expensive good is 
produced farther away, as freight is not so important for such goods, whereas Lösch 
(1962) subsequently argues that there are cases where it makes sense to produce the 
cheaper good at the periphery. Moreover, in contrast to von Thünen, Lösch comes 
to the conclusion that the von Thünen rings are only one possible result. They will 
form if the economy is dynamic (in the sense that farmers react to changes in the 
market, such as the introduction of a new crop), whereas in a traditional economy, 
reversed von Thünen rings are possible as well.

In the second part of his book, von Thünen himself discusses and criticizes his 
own major assumptions. He states that the soil usually is not of the same quality 
everywhere, and he drops the assumption of only one central town. The existence 
of additional smaller towns leads to “sub-centers” which have their own smaller 
systems of rings. Of course, there are interdependencies between the different rings, 
as the land rents have to be equal where the borders meet.

Von Thünen also states that towns must be distributed such that their location 
maximizes national income. According to him, such a pattern will result if all (agri-

Fig. 20.2   The von Thünen rings in overview

Ring 1: Free Cash Cropping

Ring 2: Forestry

Ring 3: Different Crop Systems:
Crop Alternation, Improved
System, Three-field System

Ring 4: Stock Farming
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cultural) goods are produced at the location which leads to the lowest cost. He has 
got in mind some kind of spatial equilibrium structure; however, he does not elabo-
rate on the question why and how towns should come into existence at the optimal 
places and in an optimal pattern.

Moreover, because towns tend to be found near rivers, von Thünen considers the 
influence of rivers on the regional pattern and concludes that rivers lead to zones of 
equal transportation costs that stretch along them, as transportation on the rivers can 
be assumed to be cheaper than transportation on land.

20.2.2  �Christaller’s Central Place Theory

Walter Christaller (1893–1969) was the first researcher who focused on systems 
of settlements and the hierarchy of towns, instead of studying them as single units. 
Nevertheless, von Thünen’s work, which mainly deals with a single town, served as 
one of the major foundations of Christaller’s studies.

Christaller’s theory of “Central Places” is presented in his book “Die zentralen 
Orte in Süddeutschland,” published in 1933 (“Central Places in Southern Germa-
ny,” the English translation, appeared in 1966). Christaller is mainly interested in 
the laws and principles that determine the number, size, and distribution of towns, 
in order to explain the existing structures he observed in Southern Germany. From 
his point of view, these could not be explained by geographical aspects, but only 
through economic theory and, therefore, economic laws.

20.2.2.1 � Assumptions and Basic Terms

Christaller’s book comprises four parts: a theoretical foundation, the development 
of a method, a descriptive part on real phenomena, and a final verification of the 
theory. Observing that centralization around some kind of core or nucleus is one 
of the basic principles in nature, he states that it is the major purpose of a (market) 
town to be in the centre of an agricultural area. Being “central” and the notion of 
centrality are therefore relative notions: Christaller defines central places as those 
settlements which are important for the surrounding area because they provide it 
with so-called central goods. Central goods and services are produced at only a few 
central places, but are needed and consumed at many different and dispersed places. 
Examples are medical services, cinemas, schools, and stores. Christaller empha-
sizes that “centrality” is not so much about the production of goods, but that sales 
and services are primarily offered at central places due to the capital requirements 
related to establishing those services.

In order to determine the laws according to which the central places develop, 
Christaller makes a number of key assumptions: first, the area under study is a flat 
and homogeneous surface (isotropic plane), on which the population is evenly dis-
tributed. Next, all consumers have the same demand regarding the “central goods,” 
and they all have the same income and identical purchasing power. However, those 
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who live further away from the central place—which in the first instance is assumed 
to be located in the middle of the respective area—have to use part of their budget 
(in terms of time and money) in order to travel to the central place, meaning they 
have to pay transportation costs, and therefore not all of them can spend the same 
amount on central goods. Finally, transportation costs are assumed to be propor-
tional to distance, and hence customers always prefer the nearest central place (if 
there is a choice).

Hence, it should be noted that in contrast to von Thünen who assumes the ex-
istence of one town—the center of consumption—and dispersed production of 
(agricultural) goods which have to be transported to the town by the producers 
(farmers), Christaller builds his approach on the assumption that the consumers 
have to travel to the central place in order to buy the central goods. Therefore, 
while in von Thünen’s theory a standard transportation cost function can be used 
to model the impact of transportation on the price of the goods, in Christaller’s 
theory the disutility resulting from travelling plays a role. In other words, “eco-
nomic distance” is the most important factor in determining if a place is indeed 
central, and this notion relates to the cost of transportation, the time a consumer 
has to invest in transportation, and the disutility connected with it. The economic 
distance leads to the range of a good, which is the maximum distance people are 
ready to travel to buy the good, but the willingness to travel to a central place will 
be different for different individuals, and hence the economic distance or range is 
also an individual measure. Each central place is surrounded by a so-called sphere 
of influence, which is the market area that it serves. The size of this area depends, 
among other things, on the price of the good and on the transportation cost. It has 
to be noted, however, that better roads or railways can facilitate transportation of 
central goods, and therefore reduce cost and “transportation resistance,” which 
leads to a higher consumption of central goods, to an increase of the ranges, and to 
better developed central places.

With relation to the sphere of influence, Christaller distinguishes between cen-
ters of high and low order. He assumes that at a center of higher order (such as a 
place with a university) all the goods and services of lower order (like a school) are 
on offer as well, but not the other way around. This leads to a hierarchy of central 
places, where the importance of a center is not equal to the number of people living 
there, but depends on the intensity with which central functions are executed. This, 
in turn, is related to the number of central goods that are on offer and their ranges.

On the one hand, the range of a central good depends on the distribution of the 
population and on the order of the central place: the higher the order of the central 
place (and usually, the larger the place itself), the more different central goods are 
on offer, making the place more attractive and increasing the range of the goods. 
On the other hand, the amount of central goods that are consumed and hence the 
importance of a central place depend on the sphere of influence, on the number of 
inhabitants, and on the population density: the higher the population density, the 
more central goods will be consumed, and the larger the sphere of influence, the 
better the central place will be developed.

The characteristics of the goods are important as well: A central good that can 
easily be substituted will have a lower range than a good which can hardly be sub-
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stituted at all. For example, bread can be bought in many stores and hence can be 
substituted without difficulty, while a special wedding cake has to be ordered at 
a specialized bakery. Moreover, it matters if the good is available only in limited 
amounts or if there are no limitations, if the prices are fixed or variable, and if the 
good is also offered at other places. With respect to the last aspect, Christaller dif-
ferentiates between the absolute range (the distance at which people do not buy the 
good at all) and the relative range (the distance at which they prefer to buy the good 
from another central place).

These different aspects lead to the individual range of a good, which is an upper 
limit. There is, however, also a lower limit, the so-called threshold, which is the 
minimum distance from which people have to travel to the central place to buy the 
good in order to make offering it worthwhile and profitable. Based on range and 
threshold, the place can be classified as a “higher order place” if both are large, and 
as a “lower order place” if both are small. If the upper limit is high and the lower is 
small, the good can be offered in many places, and hence it is a “low order” good.

Christaller concludes that each central place will expand its market area as much 
as possible, and because the ranges are identical for central places of the same order, 
these central places have to be spaced regularly. Furthermore, there is a tendency to-
wards more than one central place, as when people have to travel smaller distances, 
more people can get serviced and total consumption increases. However, those who 
offer the service or good have to be able to make a living from it, which requires 
enough customers to support them. Hence, the optimal constellation must be such 
that the demand of the whole population is satisfied from a minimum number of 
centers, and this leads to the maximum possible profit for those who offer the good. 
In this sense, Christaller is aiming at an equilibrium pattern of central places. It can 
be called a supply equilibrium, as it is aimed at serving the whole population.

20.2.2.2 � Christaller’s System of Central Places

Under the assumption that each customer is always served from the nearest location 
(an assumption that, to this day, is made by most location analysts, e.g., in competi-
tive location models), Christaller develops a basic spatial pattern which the loca-
tions of the central places have to follow in order to serve the whole population with 
all central goods. The development of this pattern is explained as follows.

First, assuming one central good with a certain range r, and a homogeneous 
plane with an evenly distributed population, a simple, circular sphere of influence 
results, as shown in Fig. 20.3.

Fig. 20.3   Circular structure 
of the market area around the 
central place

Range of the good, r
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The black dot represents the central place from which all customers within the 
range of the good, shown by the gray area, can be served. As those people who are 
not in this area cannot be served from there, additional central places are needed to 
serve them. The resulting pattern, the so-called hexagonal circle packing, which is 
the densest packing of circles in the plane (Fejes 1960/1961), is shown in Fig. 20.4.

However, as is obvious from Fig. 20.4, in this pattern there are areas which are 
not served at all. Hence, to serve all customers, the central places have to be moved 
a little closer together, such that the spheres of influence overlap. Defining central 
places for the goods of lower order at those points where the market areas meet 
leads to a hexagonal pattern of central places and to market areas as illustrated in 
Fig. 20.5.

As stated above, if the whole population is to be served by a minimal number of 
central places, these places have to be in a regular pattern. When the central places 
are arranged in the form of equilateral triangles, as it is the case in Fig. 20.5 (note 
the dotted lines), the market area for each supplier reaches a maximum and the 
whole population is served: according to Christaller’s objective, this is the optimal 
spatial structure of central places.

In order to determine the distance between the central places of the lowest order, 
the length of one of the edges of the basic triangle, �,  has to be found. The Pythago-

Fig. 20.4   Pattern resulting 
from many circular market 
areas

Fig. 20.5   A hexagonal market area
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ras formula (with r being the range of the lowest order good which is assumed to be 
known) leads to relation (20.5).

� (20.5)

Figure 20.6 illustrates relation (20.5) with such a triangle.
The triangular basic shape leads to the maximum possible market areas for the 

central places and to the hexagonal structure that has been already described above. 
As there are different central goods of increasing order, a system of hexagons of 
different sizes results (see Fig. 20.7). The resulting location pattern is called supply 
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principle, marketing principle or K = 3 system because the market area of a higher 
order place is three times the size of the market area of the next lower order place. 
Moreover, three marketplaces are served with higher order goods from a place of 
higher order, namely the higher order place itself and one third of each of the six 
surrounding places of lower order. (Note that customers are assumed to patronize 
the closest location, allowing the demand of the lower order place to be split evenly 
among the three higher order places to which it has the same distance.)

The smallest central places are only “supportive places” and are to be found in 
the middle of the triangles shown in Fig. 20.7. The resulting structure of settlements 
shows certain basic principles: the lower the order, the larger the number of settle-
ments of this order will be, while higher orders will serve larger areas.

Christaller’s first main result, therefore, is that there is a regular pattern of cen-
tral places which follows certain laws: there is an important place “in the center” 
(highest order), with six small places around it (lowest order). Then follows a ring 
of medium sized places around that and, following another ring of small places, 
there is a peripheral ring of medium-to-large places (second-highest order). The 
second result implies the existence of those different categories of central places, 
and, according to Christaller’s third result, the number of central places of each 
order increases geometrically, with the lowest number of settlements for the high-
est order. The numbers of central places will then develop as shown in Table 20.1.

While the smallest central places offer only a few goods—Christaller estimates 
ten—the next larger places might offer about 40, the next 90, then 180 and 330 
goods, and so forth, so the number of goods on offer increases. The importance or 
level of a central place is directly related to this number of goods.

Christaller’s system or principle is rational, as it leads to an optimal use of the 
central places and to the smallest possible loss in the economy; the producers and 
salesmen make the maximum profit, and all the consumers are served. Of course, 
in reality there are many obstacles to this optimal pattern; therefore, for example, 
places of the lowest order can be missing completely. Historical development has 
a big influence on the existing structure of central places, too, as when one or two 
big central places already exist, they determine the structure of the smaller places 
around them. However, governments can help to establish a more efficient structure 
by setting up their administrative offices in the right places.

It is a special feature of Christaller’s approach that he does not develop a struc-
ture based on the (existing) traffic conditions, but that he assumes the traffic con-
ditions to result from the system of central places. He argues that the existence of 
central goods, for the exchange of which people have to travel, leads to the ex-

Table 20.1   Numbers of central places and market areas
Order of place 1st (highest) order 2nd order 3rd order 4th order 5th order
Number of places 1 2 6 18 54
No of market areas 1 3 9 27 81
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istence of traffic and the respective infrastructure, but not the other way round. 
Consequently, traffic structures in the supply system will be dissatisfying because 
the central places of different orders usually are not to be found on straight lines. If, 
for example, two central places of the second-highest order (gray with bold black 
line in Fig. 20.7) are connected, then only two places of the lowest order are to be 
found on that connection (see bold black lines in Fig. 20.7). The traffic structures 
can be modified to include more places of different order, but in essence the supply 
principle does not lead to a good solution of traffic and transportation problems.

Therefore, Christaller also considers the transportation or communication 
principle, which is aimed at the realization of as much transportation as possible, 
(the maximization of connectivity) at the lowest possible cost (a minimal network 
length). This leads to a different structure of central places which can be illustrated 
as shown in Fig. 20.8.

According to the transportation principle, the lower order places are to be 
found on the edges of the hexagon instead of the corners. Therefore, each higher 
order place serves a total of four places of the lower order, the place itself and half 
of each of the six neighboring places, and hence, this principle is also called the 
K = 4 principle. There is a larger number of central places in this “linear” traffic-
oriented system, and hence the “supply principle,” which means to serve all cus-
tomers from the minimal number of central places, does not work here. Moreover, 
as more central places lead to a higher demand for central goods, demand will be 
higher and therefore traffic will be more intense when the transportation principle 
is applied.

A third principle that is discussed by Christaller is the administrative or political 
principle. Here it is necessary to find a unique allocation of some lower order places 
to a higher order place, such that the respective group of settlements defines an 
administrative district. In this principle, seven central places—one of higher order 
and six of lower order—are put together to build a unit, which is why the system is 
also called the K = 7 system. 

Fig. 20.8   The K = 4 system 
or transportation principle
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20.2.2.3 � Variations and Empirical Implications of Christaller’s Theory

After the development of the three principles described above which are of a static 
nature, Christaller proceeds with introducing dynamic aspects into his theory. He 
discusses changes in demand resulting from changes in the size of the population, 
i.e., an increasing (decreasing) number of people, which leads to higher (lower) im-
portance of certain central places, and can even result in new central places coming 
into existence (or old places disappearing). Changes of prices are also considered, 
as are changes in the number of central goods that are on supply at certain central 
places. Christaller points out that the introduction of an additional central good 
does not only lead to higher sales of the respective good, but also to higher sales of 
other goods. The major advantages of agglomeration are discussed by Christaller, 
as are the effects of the land prices (and related rent), which usually will be higher 
in places of higher order than in places of lower order. He considers this to be an 
obstacle to too much centralization.

Furthermore, he states that technological progress will lead to cheaper produc-
tion and transportation, as indeed it did in the last century. A decrease in the cost of 
transportation leads to more money being available for actually buying the goods. 
Moreover, people will be able to travel longer distances to buy the goods, thus in-
creasing the range of the goods. Therefore, the goods can be offered in fewer and 
more distant central places, while still serving all customers. As a result, the larger 
central places will grow even more while others lose importance, and smaller cen-
tral places close to a larger one may even disappear altogether. For example, if a 
new railroad station is built, central place(s) which now can be reached by train will 
increase in importance, as the “economic distance” to them decreases. Moreover, 
people will buy different goods at this place which in turn will lead to an increase of 
the range of the goods offered there, leading again to more agglomeration.

In the second part of his book, Christaller establishes a relationship between his 
theory of central places and the situation in Southern Germany. He applies his theo-
ry to the existing structures to judge which settlements are central and to determine 
their order. To do this, he first classifies different administrative, cultural, medical, 
entertainment, and organizational services as well as sales, crafts, and traffic ser-
vices as of low, medium or high importance. For example, while a police station is 
of low importance, a Lower Court would be of medium and the Superior Court of 
major importance. To quantify the importance of a central place, he uses the num-
ber of private phone lines that exist in a place. At his time, he found there to be one 
phone line per 40 inhabitants on average. According to his approach, a central place 
is of higher importance if it has more than the “expected number” of phone lines, 
and of lower importance, if it has less.

In his general discussion, Christaller starts from the least important central places 
(the “supportive” central places) and then works his way up through M-places (mar-
kets), A-places (Amtsgericht, the Lower Court), followed by the K-places (Kreis-
stadt, small district town), the B-places (Bezirkshauptort, major district town), the 
G-places (Gaubezirksstadt, Superior Court), the P-places (Provinzialhauptort, seat 
of provincial government), and up to the most important L-places (Landeszentrale, 
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major central city). But in the specific analysis of Southern Germany, he defines 
the L-places which are central for a larger area first, and then works his way down 
to the smaller places. He calls the central place of highest order “system-building” 
or “system-defining,” as it is the basic element of the system. Around this major 
place, central places of lower order are located in a regular pattern as illustrated in 
Fig. 20.7. This might be the reason why it is often argued that Christaller went “top 
down” in his analysis, while Lösch went “bottom up” (see von Böventer 1963). 
However, they both start their theoretical development from the smallest settle-
ments while finding the existence of a major central place to be crucial for the 
resulting overall structures.

The typical distances that Christaller observes in reality are 7–9  km between 
each two central places of the lowest order ( M-places), and hence the radius of the 
sphere of influence is 4–5 km. This is the distance that can be covered by a one-hour 
walk, and obviously there are many central goods for which the “critical distance” 
or range is about an hour. The distances between the central places should—accord-
ing to the supply principle and going from the lowest to the highest level—then 
obey the following scheme:

These are the theoretically correct distances. They are not always found in reality, 
though, and if they are not, there must be an “explanation which is due to special 
economic, historical or natural circumstances.”

In the third part of his work, Christaller studies the five different central places of 
highest order in Southern Germany, viz., Munich, Nuremberg, Stuttgart, Frankfurt 
and Strassburg, and discusses the urban structures around these central places. He 
finds that in the case of Munich and Nuremberg, his rational system does seem to 
work and reality fits the central place system rather well. In the case of Stuttgart, 
however, the results are not that clear cut. While in most cases the structure follows 
the supply principle, in other cases it can be better explained by the transportation 
principle, as is the case for the city of Frankfurt.

In the fourth and last part of his book, Christaller concludes that his three prin-
ciples indeed are “laws of distribution of central places” that are at work in different 
areas. He considers the supply principle to be the major distribution principle, and 
the transportation principle and the administrative principle to be secondary and, 
therefore, less important.

20.2.3  �Lösch’s Theory of Economic Regions

In 1940, August Lösch (1906–1945) published his book “Die räumliche Ordnung 
der Wirtschaft” (the English translation “The Economics of Location” appeared in 
1954), in which he refined and generalized Christaller’s theory of central places—
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but, as he claims, without even knowing Christaller’s book beforehand. Similar to 
Christaller, the focus of Lösch’s work is on the interdependencies of locations of 
production and consumption and on the nature of economic regions (such as the 
distribution of population and cities), and not on the isolated study of one specific 
location or location choice.

Among other research, Lösch’s book is based on the work of Palander (1935) 
and Ohlin (1933). He criticizes Weber’s partial equilibrium theory, and, following 
Stolper in his foreword to Lösch’s book, Lösch “…was the first to present a full 
general equilibrium system describing in abstract the interrelationship of all loca-
tions.” However, in contrast to Christaller, whose aim it is to find a way to supply 
the whole area with a minimum number of marketplaces—i.e., this is essentially 
some kind of minimum covering problem as it was later introduced by Toregas 
et al. (1971)—Lösch concentrates on the effects of competition which lead to the 
smallest market areas possible. Hence, essentially his objective is to maximize the 
number of independent economic units and, therefore, of locations.

20.2.3.1 � Introduction

In Part I of his book, Lösch discusses previous work in the area (such as the work by 
von Thünen, discussed in Sect. 20.2.1 of this chapter), and lays the foundation of his 
own work. Lösch’s basic assumption is that each location is chosen such that utility 
is “as great as possible.” For an industrial location, this leads to the “location of the 
greatest nominal profit.” If demand is completely inelastic, as assumed by Weber 
(1909), this is the point of minimum transportation cost. This point can be deter-
mined by different means, especially geometrically by using Weber’s isodapanes. 
These are lines of identical total freight per unit, in which costs for the transporta-
tion of raw materials as well as costs for the transportation of the final products are 
taken into account. Production costs must also be considered, as Lösch points out. 
(As Isard (1956) demonstrated, the point of minimum transportation costs remains 
optimal with respect to profit maximization, if the production function coefficients 
are fixed.)

However, it has to be taken into account that usually demand depends on the 
price and the location, and that the three aspects are therefore interdependent. In 
other words, it cannot be assumed that the demand is independent of the location, 
because the market area depends on the location, and so market area and demand 
will change with it. Lösch points out that in this situation, isodapanes are of no use 
at all, and that the only possibility to find the best location is a “trial and error ap-
proach.”

While his predecessors such as Weber (1909) only concentrate on parts of the 
system instead of considering the system as a whole, Lösch presents an integrated 
analysis that is one of his major results, viz., the “general equilibrium in space.” 
This general equilibrium results from two forces: the maximization of individual 
advantages (utility) and the maximization of the number of independent economic 
units. From these, Lösch develops five conditions which define the equilibrium.
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According to condition 1, the location of each individual (be they farmer, entre-
preneur, or customer) must be as advantageous as possible, meaning it has to lead 
to the highest possible profit or utility. Moreover, there are three conditions which 
make sure that the number of enterprises reaches its maximum. Condition 2 states 
that there must be so many locations that the entire space is covered. According 
to condition 3, all abnormal profits must disappear, leaving prices equal to costs. 
Condition 4 states that all areas of supply, production, and sales must be as small as 
possible, or more entrepreneurs would come onto the market. Finally, condition 5 
implies that “at the boundaries of economic areas it must be a matter of indifference 
to which of two neighboring locations they belong.”

These five conditions and the resulting types of equations define “the size and 
limits of market areas, the situation of production locations within them and within 
the entire area, and the f.o.b. prices.” The resulting system of equations, however, 
cannot be solved in general terms. As Stolper in the foreword to Lösch’s book puts 
it, the theory is “too all-inclusive to be applicable.” Moreover, in the subsequent 
discussion, Lösch points out that the best location for the producers does not have to 
be optimal for the consumers, and that the structures in industrial production which 
lead to the existence of cities are different from those in agriculture, as the latter are 
much more dispersed.

20.2.3.2 � Lösch’s Theory of Economic Regions

Lösch states in the preface to his work that “Parts II and III are the kernel of the 
whole book”. The discussion below will mostly concentrate on Part II which con-
tains Lösch’s development of economic regions and relates to Christaller’s system 
of central places. An overview of the content of Part I was already given above in 
Sect. 20.2.3.1, and a brief overview of the contents of Parts III and IV can be found 
below, at the end of Sect. 20.2.3.3.

Part II of Lösch’s book is dedicated to economic regions. In his analysis, Lösch 
assumes that raw materials are evenly distributed, that the whole area is homo-
geneous and that there exist only regularly distributed farms. If now any of these 
farmers starts to produce a good such as beer, this good will be bought by other 
farmers, but only by those who are not too far away. Hence, it can be assumed that 
demand decreases with increasing distance, and furthermore that only those who 
live within the necessary shipping distance (“Versendungsreichweite”) will buy the 
product from the respective supplier at all. (Note that Lösch does not consider the 
range or the maximum distance people would travel to buy the product. Instead, 
he only considers the threshold, i.e., the distance that has to be covered to render 
production worthwhile, as in contrast to Christaller he concentrates on minimum 
sized market areas).

Due to the homogeneity assumption, Lösch’s first approach leads to circular 
market areas as does Christaller’s. But also under Lösch’s assumptions, this struc-
ture cannot be optimal because parts of the plane are left unused (in contradiction 
to his conditions 2 and 4). Therefore, the circles have to be reduced to hexagons or 
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honeycombs, which are completely enclosed in the circles and cover a somewhat 
smaller area. Those hexagons will have the minimal size necessary to support the 
living of the suppliers, in accordance with condition 4, and will therefore allow for 
the maximum number of independent enterprises. The size of the hexagons belong-
ing to any specific product can be described by the radius of the inscribed circle, ρ, 
which depends on the production cost and the demand. If now the smallest settle-
ments (farms) have a distance of a, and their areas are regular hexagons, they will 
be found in a form of “honeycomb scattering” as shown in Fig. 20.9.

The distance between the smallest market towns, b, corresponds to the diameter 
of the circle inscribed in the hexagon, 2ρ (where ρ is expressed in freight costs 
and b is expressed in kilometers). Finally, the furthest distance at which the good 
must be sold to make its production worthwhile is called nV. This corresponds to 
Christaller’s threshold.

The smallest possible value for nV is a (if we assume production to take place 
in one of the settlements) and the smallest number of settlements served is three, as 
in Christaller’s model (each market town serves 1/3 of each of the six settlements 
surrounding it, and it serves itself). The distance between two market towns, b, is 
also the same as in Christaller’s model, i.e., b = a

√
3 . However, in contrast to 

Christaller, Lösch argues that there could be products that still have a threshold of 
nV = a, but for which the number of settlements served is not three, but four. This is 
illustrated in Fig. 20.10.

Each of the small settlements is served from two market places, so a total of 
four settlements is served from each place that offers goods of order 2, and for such 
a good, the distance between two places offering it is b = 2a(= a

√
4). In other 

words, the market area is bigger than in the case of the first good, but the necessary 
shipping distance remains the same, as only a larger fraction of the same settle-
ments is served. This is a general result: with the increasing order of the goods, the 

Fig. 20.9   Honeycomb scat-
tering, smallest market areas b = 2ρ = a   3

Smallest market town

a
Smallest settlement (farm)
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distance b between the market places and the number of places served increases 
monotonously, whereas the necessary shipping distance nV does not increase in 
each step, as shown in Table 20.2. The resulting system of hexagonal market areas 
is presented in Fig. 20.11. Only the first six hexagons are given here (for a similar 
presentation, see also Lang 2002); the development of the areas of higher order 
proceeds analogously.

Table 20.2 summarizes the development for the 10 smallest possible economic 
areas (though they do not all have to exist) and shows the number of settlements 
served n, the distances between the different centers b, and the necessary shipping 
distance nV.

A comparison with Christaller’s concept shows that the first and the fourth hexa-
gon are the same as in Christaller’s model, while the second and third market areas 
are different. In contrast to Christaller’s approach, as can be seen from the develop-
ment described above and as is illustrated in Fig. 20.12, Lösch does not assume that 
each good of lower order is on offer in all places of higher order. The only exception 
is the most central place (the town of the highest order) that offers all the goods. 
However, the smaller centers specialize in different goods, and they are therefore 
not in a strict hierarchical order.

According to Lösch, not all possible market areas as they are illustrated above 
have to actually exist. On the one hand, the resulting market area might be too small 
to make producing and selling a specific good worthwhile and, on the other hand, 
the splitting of settlements between central places is not a stable arrangement. In his 
opinion, it is therefore especially likely for the market areas 3, 6 and 8 to be estab-
lished, as in these constellations no splitting is necessary.

Fig. 20.11   The six smallest market areas

Smallest Settlement

Small Market Town
(Goods of order 1)

Main Market Town: All Goods
(Good 1, Good 2, etc.) are on offer here.

Good 1 on offer

Good 2 on offer
(but not Good 1)

Small Town
(Goods of order 2)

Table 20.2   The ten smallest economic areas
Area # 1 2 3 4 5 6 7 8 9 10
n 3 4 7 9 12 13 16 19 21 25
b a√3 a√4 a√7 a√9 a√12 a√13 a√16 a√19 a√21 a√25
nV a a a a√3 2a a√3 2a 2a a√7 a√7
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As can be seen from Fig. 20.12, there are areas in which more central places 
are to be found, and places in which there are less of them. Specifically, there is an 
“empty” ring without central places around the main central place, and there are 
sections with more central places in some kind of “wheel structure” around the main 
place. This structure is illustrated in Fig. 20.13.

In the gray spokes, we find places at which more than one good or class of goods 
is on offer, and these are central places or sites that, as in Christaller’s model, are 
to be found in a regular pattern. The resulting structure for each of the goods (or 
better: for each of the sizes of market areas, as goods with the same size of market 

Fig. 20.12   Lösch’s system of market areas

Most central
place, all goods
(1–10) on offer

Place offers good 2

Place offers good 3

Place offers good 4
(and good 1)

Place offers good 1

Fig. 20.13   Lösch’s system with “city-richer” and “city-poorer” sectors

City or most
central place, all
goods (1–10) on
offer

Areas in which
there are many
central places
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area will belong to the same class and hence to the same network) is a honeycomb 
network. The market areas of a specific size are to be found adjacent to each other, 
and the networks of the different sizes cover the whole area. They can be “thrown 
over our plane at will,” but they should have one center in common (the major city), 
and they should be arranged in such a way that sectors with more and sectors with 
fewer market towns result. Due to the existence of those “city-richer” and “city-
poorer” sectors, there are some bigger and more intensively used traffic lines which 
mostly leave the central city and lead out from there to the sectors, especially to 
those that contain more central places. The resulting pattern resembles a cobweb, 
with the major city as the midpoint. The central city is also the midpoint of a system 
of rings of economic activity, which is the industrial equivalent to von Thünen’s 
agricultural rings.

Obviously, there will not only be one such system with one most central (major) 
city, but there will be many of them that are adjacent to each other and that in them-
selves have a honeycomb structure. In this way, Lösch develops a system of regular 
economic regions which with their network structure “form…an organic whole”. 
The complete system consists of three different stages: simple market areas, re-
gional networks, and regional systems.

20.2.3.3 � Special Cases, Variations and Empirical Results

Lösch examines some typical regional systems, namely those where each area has 
the size of K regions of the next smaller size. For example, a 3-system would contain 
settlements and areas of the type 1 as the smallest units, then towns of type 4 would 
be the next larger size (as type 2 and 3 cannot cover three areas of the type 1, they 
do not exist in a 3-system), followed by type 11 on the next stage which contains 
three areas of type 4 (again, types 5–10 do not exist), followed by type 30 and type 
77. The resulting system has the same structure as developed by Christaller (see his 
K = 3 system as illustrated in Fig. 20.7). According to Lösch, it has the advantage of 
having a clearer structure than the full system, but the disadvantage of being less 
economical, as in this system the areas of many goods are larger than they actually 
need to be.

Lösch also criticizes Christaller for his claim that the K = 3 system was most 
economical. However, this is merely a question of definition, as Christaller assumes 
the supply principle, and his objective is therefore to supply the whole popula-
tion from as few places as possible. Obviously, this must lead to a result different 
from Lösch’s who assumes that the number of “independent existences” (suppliers) 
should be maximized. But nevertheless, Christaller’s theory of central places can be 
viewed as a special case (or better, the three systems can be viewed as three special 
cases) of Lösch’s more generalized theory.

After the presentation of his general theory, Lösch varies his assumptions and 
studies economic differences (price, product differentiation, the importance of the 
freight rate) and natural differences (productivity, accessibility, human and politi-
cal differences) and their impact on his model and its results. It turns out that they 
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lead to modifications of the theoretical structure in reality, allowing irregular and 
overlapping market shapes and less regular networks.

Part III of the book is devoted to the specifics of trade. Here, Lösch relates the 
location problem to other important areas, such as the choice of occupation. Again, 
he takes a marginal view and develops conditions for an equilibrium in which each 
individual, e.g., a worker or an entrepreneur, realizes the highest utility possible.

In the fourth and final part of his work, Lösch studies the spatial structure of 
locations in the United States. For example, among bank branches in Iowa he finds 
a uniform distribution which agrees with his theoretical results of a regular network 
structure, and therefore he concludes that “the spatial distribution of most non-ag-
ricultural enterprises corresponds very well, after all, with our theoretical model.” 
Moreover, he finds that a “regular distribution of towns throughout the world is 
extraordinarily common.”

20.3 � Assessment of the Classical Contributions

As already stated in the introduction, the contributions by von Thünen, Christaller, 
and Lösch are pioneering and seminal, serving as the basis of many subsequent 
developments in different fields, including regional science, geography, economic 
theory, and location theory. Their work is highly interdisciplinary: the three books 
are named among the “path-breaking books in regional science” (Waldorf 2004) by 
the members of the Regional Science Association International (RSAI), while at the 
same time their authors—first and foremost von Thünen, but also Christaller and 
Lösch—are considered to be very important contributors to economic theory.

20.3.1  �Von Thünen’s Contribution

Von Thünen’s work is the first publication in which—in Part I more implicitly, in 
Part II explicitly—marginal analysis is used to analyze and model an economic 
problem, namely optimal agricultural land use and the prices resulting from it. Based 
on the principles of arbitrage and marginal productivity, von Thünen develops his 
concept of the land rent and an equilibrium concept for land use. As these prob-
lems necessarily involve the existence (and location) of central towns as centers of 
consumption and the question of where to locate which agricultural activities, his 
contribution is a seminal part of the literature on spatial analysis. At the same time, 
it is an important contribution to the field of economics: in his “Foundations of 
Economic Analysis,” Samuelson (1983) mentions J.H von Thünen alongside Leon 
Walras, J.S. Mill, and Adam Smith as one of the most important economists ever. 
Von Thünen’s outstanding work has clearly had a major impact in more than one 
scientific field, and, as Fujita (2000) points out, his views and insights on modern 
aspects like agglomeration, are well ahead of his time.
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Perhaps the most important contribution of von Thünen is the introduction of 
transportation costs into economic theory and the extensive analysis of their effects 
on land use and prices. Von Thünen was among the first to introduce the dimension 
of space into economic modeling, and in this way he prepared the ground for the 
many publications in location analysis, regional sciences and spatial economics that 
followed.

Although von Thünen’s model has often been criticized for its simplifying as-
sumptions—the homogenous plane, the single city, the static approach—it still re-
mains one of the most important models of agricultural regional structures, and it 
is still studied and discussed, applied and modified by economists as well as geog-
raphers. This is, as Block and Dupuis (2001) assert, probably due to the important 
theoretical contribution, but also to its simplicity and to the fact that it is empirically 
relevant. For example, Rutherford et al. (1967) find a slightly modified ring (actu-
ally a belt) structure for agricultural activities in Australia, around and near Sydney.

The major criticism regarding von Thünen’s model concerns his assumptions, 
especially regarding the uniformity of the plane. That he does not take into account 
the obviously uneven distribution of natural resources, renders his theory less rel-
evant and applicable, at least at first sight. Authors such as von Böventer (1963) 
point out, though, that many of von Thünen’s results remain true, albeit possibly in 
modified form, if this assumption is dropped.

While von Thünen mainly concentrates on “advantages of site” (i.e. the loca-
tion), according to Lösch there are different factors which lead to different rings for 
different products: besides the advantages of site, there are advantages of source 
(like the quality of the soil) and advantages of scale (where larger amounts lead to 
lower cost per unit). Lösch also emphasizes that, as in industrial production, there 
is a tendency to maximize the number of producers, allowing each farm to be only 
the size necessary to support a family, and to maximize rent. This is an aspect that 
von Thünen does not study.

Moreover, von Thünen’s theory does not explain how cities emerge, as it takes 
the central city as given. However, in the second part of his work, von Thünen re-
laxes the assumption of only one major city and even mentions a system of cities of 
different sizes covering and serving the whole state. Therefore, he can be viewed as 
a true predecessor for Christaller’s central place theory. Finally, it should be noted 
that von Thünen already elaborates on aspects of industrial location, a theory which 
was to be formulated in detail no less than 80 years later by Weber (1909).

20.3.2  �The Contributions by Christaller and Lösch

Christaller’s central place theory is pioneering in the studies of economic regions 
because it does not concentrate on individual locations in isolation, but instead 
takes into account the interrelations of different economic activities and their loca-
tions. He is the first author to develop a complete system and hierarchy of urban 
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settlements. It is especially remarkable that the structure of this system is not de-
termined by traffic conditions or other existing structures, but solely by the goods 
which are on offer at specific places and consumed at many others, the central 
goods. At the core of his theory is the idea that the goods and their consumption 
define and shape the economic landscape, an idea which is simultaneously new, 
simple, and utterly convincing. By taking into account that consumers have only 
a limited budget and can buy only goods relatively close to their home place, and 
that suppliers have to be able to sell enough of their product to make its production 
worthwhile, Christaller develops an equilibrium system of central places and the 
respective market areas which ensures the cost-minimal provision of all customers 
with all goods.

Central place theory became fundamental for subsequent developments in differ-
ent fields of sciences, such as in urban systems research (Coffey 1998) or urban eco-
nomics. Wang (1999) remarks that central place theory does “treat cities as space-
less points” in order to analyze the structure of a system of cities. Hence, the major 
contribution of central place theory is to explain the existence of urban centers and 
of their hierarchical order. As Christaller’s own analysis of Southern-Germany and 
other empirical studies show, the patterns he developed are not to be found in real-
ity in this pure hexagonal form, but nevertheless in many cases central place theory 
describes the locations of towns and trade activity rather well.

Christaller makes the basic assumptions that the plane is homogeneous and that 
each customer will patronize the closest location. The former has often been criti-
cized, even by Christaller himself, as obviously physical features like mountains or 
rivers also have an effect on central place locations and the respective market areas. 
If, however, the assumption were dropped, a modified structure would result, but 
still Christaller’s basic result of a hierarchy of urban settlements remains true. The 
second assumption has developed into a standard assumption in location analysis, 
and it is also common to split the demand of a customer location between two fa-
cilities if both are at the same distance from the customer (Plastria 2001), e.g., in 
competitive location theory (for an introduction and overview, see Eiselt and La-
porte 1989). In gravity models (Huff 1964) this assumption is modified to take into 
account aspects of attractiveness, for example of different stores.

In fact, closest center choice does not describe actual behavior, because people 
tend to go to places where they can satisfy different needs at the same time. In other 
words, multi-purpose shopping will usually take place (Eaton and Lipsey 1982), 
in contrast to the single purpose travel assumed by Christaller in his basic model. 
For this reason, most trips are made to higher order places instead of places of low-
er order. The same tendency can be observed regarding medical treatment: While 
medical services of different order are offered in different places, and hence the 
medical sector is organized hierarchically and fits Christaller’s assumptions very 
well, people tend to go to a larger regional hospital instead of requiring treatment at 
a smaller and more local clinic, even if they have got only a minor health problem. 
This behavior, in turn, increases the size of high order places and leads to an even 
stronger hierarchy, as Christaller himself actually anticipated; however, this devel-
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opment is not part of his basic theory but only of the subsequent discussion, see 
Sect. 20.2.2.3 above.

Moreover, with increasing industrial production and less expensive transporta-
tion, physical proximity of producers and customers became less important than 
Christaller assumed. Finally, customers usually are not uniformly distributed, but, 
mainly due to historical reasons, centers with higher numbers of inhabitants usually 
already exist.

Nevertheless, central place theory had a big impact on actual regional planning 
decisions in Germany, both during and after World War II. As Rössler (1989) re-
ports, Christaller was involved in the development of Hitler’s “General Plan of the 
East” at Himmler’s “Planning and Soil Office.” This was a plan to reconfigure the 
geography in Eastern countries such as Poland, where millions of inhabitants were 
forced to leave their homes and were relocated or deported to enable the setup of a 
new hexagonal structure of settlements.

After the war, in the 1960s and 1970s, central place theory remained the most 
important theoretical concept for German regional planning activities, as these ac-
tivities concentrated on supplying the whole population with the necessary goods 
within a preset distance (or travel time). In applications to the planning of German 
regional structures, a maximum of three to four hierarchical stages of towns and 
settlements are considered. The concept was much criticized during the 1980s and 
1990s due to its suggested lack of flexibility and because it was said not to take into 
account modern ideas of “sustainable development.” However, it is still useful as a 
basic concept for political planning and activities in the areas of spatial and regional 
decision making, even if in adapted form (Blotevogel 2002). It has also been used 
for settlement planning in other countries, especially for the polders in the Nether-
lands (Yoshio 2006).

The major contribution of Lösch is the generalization of Christaller’s hierarchi-
cally structured approach to a more flexible system of central places. In contrast to 
Christaller, Lösch’s approach leads to different types of places which specialize in 
different goods, but are not in a strict hierarchical order. “Smaller” centers can also 
serve “larger” centers in his system, which is more realistic than Christaller’s con-
cept. However, the resulting pattern of locations is less regular than the one which 
is produced by Christaller’s theory, and therefore it is more difficult to evaluate it 
empirically (Lang 2002). This is probably why most scientists, and especially those 
with an empirical background, focus more on Christaller’s original theory and less 
on Lösch’s generalized approach.

In contrast to Christaller, Lösch discusses different reasons for the existence of 
towns which are to be found in large individual enterprises, in agglomeration (be-
cause of advantages of larger numbers in sales and procurement), in advantages of 
certain sites in terms of natural conditions and the structure of the population, and 
in the fact that competitors will come into the market until there are no remaining 
rents and pure competition is reached. With this discussion, Lösch sets the stage for 
a theoretical foundation of the existence of towns, as it was developed later on by 
other authors.
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20.4 � The Impact of the Work of von Thünen, Christaller, 
and Lösch

As alluded to above, the work by von Thünen, Christaller and Lösch had a major 
impact on the subsequent development in different areas of economic theory. Some 
of the most important contributions which are based on their theories are presented 
in this section, in order to illustrate the significance of their seminal work.

20.4.1  �The Impact of von Thünen’s Work

Soon after it was published, many German economists such as Hermann (1832), 
Schüz (1843), and Roscher (1854), built upon von Thünen’s work. Even now, von 
Thünen is very famous in Germany. There is even a “Thünengesellschaft” that, 
among other activities, publishes Thünen-Jahrbücher. Predöhl (1928), who inte-
grates the problem of location choice into production theory, uses von Thünen’s 
work as a founding pillar of his theory; however, while von Thünen concentrates 
on agricultural production and location, Predöhl’s focus is on industrial activities.

Internationally, von Thünen’s work was only little known until Isard (1956) and a 
little later Chisholm (1962) discussed it in their books and until, in 1966, an English 
translation was published. This was the same year as the translation of Christaller’s 
book, which had appeared in its original German version more than 100 years after 
von Thünen’s book!

Spatial pricing models as introduced, for example, by Beckmann (1952, 1968) 
can be said to have their origin in von Thünen’s work, as they explicitly take into 
account the impact of transportation cost on the price structure, an idea which was 
first developed by von Thünen.

Von Böventer (1963) presents a common framework for agricultural and urban 
location theory. In his discussion, von Thünen’s rings as well as Christaller’s (and 
Lösch’s) central place theory play an important role as basic models of economic 
theory. Therefore, it should be noted that agricultural and urban land use theories 
are based on the same ideas and have common roots, mainly in von Thünen’s work, 
whereas industrial location theory goes back to different sources (Launhardt 1885 
and Weber 1909).

Alonso studies the structure of cities in his book “Location and land use” (1964). 
Based on von Thünen’s model for agricultural structures, he develops a monocen-
tric city model with one central business district ( CBD) in the middle, surrounded 
by a residential region. (An earlier contribution along similar lines goes back to 
Burgess (1923) who, mainly on a empirical basis, studies the structure of the City 
of Chicago.) Under the assumption of individual utility maximization, Alonso de-
velops a system of resulting bid rents (land rents), i.e., the prices of the land at dif-
ferent distances to the center. Analogously to von Thünen’s theory for agricultural 
land use, due to the cost of transportation the land rents for urban use decrease with 
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increasing distance to the centre, which leads to decreasing land use intensity, e.g. to 
taller buildings in the CBD and to smaller buildings with less floors in the outskirts. 
Depending on their intensity of land use and thus their productivity, industrial activ-
ities can be found in even larger distance from the city center in a ring surrounding 
the residential areas, if they require much space, or closer to the center, in a second 
ring around the retail and service area.

Alonso’s book is the pioneer work in urban economics and location analysis, 
and monocentricity—a concept that corresponds to von Thünen’s assumption of 
a single, centrally located city—for a long while remained a basic assumption in 
urban economics which was also used by Mills (1967), Muth (1969) and others.

Sinclair (1967) argues that von Thünen’s theory and results, especially the de-
creasing intensity of land use at larger distances from the market, were still valid for 
underdeveloped areas, while it was not true for the industrialized parts of the world, 
as here the most important factor was urban expansion. This “urban sprawl” leads 
to the reversed pattern, i.e., to rings of increasingly intensive land use with growing 
distance from the city.

Krugman (1991), the founder of the “New Economic Geography” ( NEG), a 
rather new branch of spatial economics, builds upon von Thünen’s work, as do 
Fujita and Thisse (2002) in their work on agglomeration. The aim of the NEG is to 
“explain the formation of a large variety of economic agglomeration in geographi-
cal space, using a general equilibrium framework” (Fujita and Mori 2005). It is the 
general equilibrium modeling approach—following, in a way, the spirit of Lösch, 
but going much further in modeling the market mechanisms—that characterizes 
the “New Economic Geography” and distinguishes it from traditional Economic 
Geography as represented by von Thünen and Christaller. The explanation for the 
formation of centers (i.e., regions in which economic activities concentrate) and 
cities given by NEG is mainly based on increasing returns to scale and, therefore, 
imperfect competition, and on the existence of transportation costs. One major re-
sult is Krugman’s “core-periphery model” according to which two rather similar 
economic regions can develop differently, due to a small advantage one of them has 
got, e.g., in terms of costs: one of them develops into an industrial agglomerated 
“core” and the other into non-industrialized periphery.

If there are different industries with differing scale economies or transportation 
costs, it can be shown that there is a tendency towards a hierarchical structure as 
it was already developed by Christaller. Based on von Thünen’s, Christaller’s and 
Lösch’s results, Fujita et al. (1999) develop an integrated model of the economy, 
consisting of an industrial core and an agricultural periphery, and provide an expla-
nation of the formation of cities and systems of cities in which, as in Krugman’s 
approach, the importance of imperfect competition is emphasized.

Finally, it should be noted that von Thünen’s ring model is still discussed and 
applied today, e.g., to explain the location of milk production (Block and Dupuis 
2001). In the tradition of Alonso, the “Concentric Zone Model,” which is based on 
Thünen’s rings, is used with respect to urban structures to study the location of dif-
ferent economic activities in an urban setting as described above, or, for example, 
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to analyze the residential locations of different income groups assuming a circular 
city (de Bartolome and Ross 2007).

20.4.2  �The Impact of Christaller’s and Lösch’s Work

Central place theory has acted as a foundation for many contributions regarding 
systems of cities. Christaller’s seminal work was followed by many publications, 
one of them being the work by Lösch (1962). Christaller himself refined his con-
cept, extended it to a European scale, and discussed the different aspects that in-
fluence the locations of agricultural activities (which will usually be dispersed in 
the “sphere of influence” of a central place), of industrial activities (which are to 
be found close to a centre or on a traffic line connecting central places) and of the 
central places (markets) themselves (Christaller 1950).

The ideas of Christaller were introduced to the English speaking world by Ull-
man in his paper “A theory of location for cities” (1941). (Note that, by publishing 
some major results in an English journal, Lösch (1938) reached a bigger readership 
at a slightly earlier stage.) Later on, these ideas are discussed by Isard (1956) who 
combines central place theory with Weber’s results on production location, with 
market area theory and with von Thünen’s results on agricultural location to de-
rive the first unified and generalized location principle. A little later, a quantitative 
model for systems of central places is presented by Berry (1964).

The two aspects of Christaller’s and Lösch’s theories which influenced the sub-
sequent literature most are (a) the hierarchy of locations or market places and (b) 
the hexagonal structure of locations and market areas. Some contributions to both 
areas are discussed below.

20.4.2.1 � Hierarchy of Locations

Beckmann (1958) and Parr (1969) are interested in the sizes of the cities on different 
levels of hierarchy in Christaller’s central place system. Based on the assumptions 
that the size of a city is proportional to the population it serves and that each city 
of a certain order has a certain number of “satellite” cities of the next lower order, 
Beckmann develops a system of multipliers by which the respective city sizes can 
be found. Beckmann and McPherson (1970) generalize the approach such that the 
number of “satellites,” and hence the relation between the sizes of the market areas, 
is allowed to change from level to level. In other words, they modify Christaller’s 
hexagonal structure in a way similar to Lösch’s approach. Central place theory is 
therefore now often linked to the question of city sizes and urban growth (see, e.g., 
Nourse 1978). However, as Burns and Hfaly (1978) point out, centrality is not only 
related to population size, but should primarily be measured in economic units such 
as occupation and related incomes.
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Von Böventer (1963) combines von Thünen’s and Christaller’s theories to de-
velop “a hierarchy of villages within a ring formation for the commodities” or, 
if more than one town is taken into account, “hierarchies of agricultural villages 
within systems of interrelated Thünen rings.” He emphasizes that in their pure form, 
von Thünen’s theory can be mainly applied to the primary (agricultural) sector, 
Christaller’s theory to the tertiary (services) sector and Lösch’s theory to the sec-
ondary (manufacturing and production) sector. Regarding central place theory, this 
view is supported by Wyckoff (1989), who finds that it mostly held true for the 
service sector in Colorado at the end of the nineteenth century.

Beavon and Mabin (1975) restate and clarify some aspects of Lösch’s theory, 
especially with respect to the development of the system of market areas of different 
hierarchical order. They emphasize that the “city-rich” and “city-poor” sectors are 
a constraint, and not a result, of Lösch’s system. Moreover, they argue in favor of 
its use as a theory for urban development, i.e., as a concept which can represent and 
explain what they call the “internal tertiary structure” of a city.

In their work on spatial competition among shopping-centers, Eaton and Lipsey 
(1982) assume multi-purpose shopping behavior on the side of the customers 
and, based on this assumption, develop a hierarchy of shopping centers similar to 
Christaller’s hierarchy of central places. In their seminal study, they concentrate 
on a one-dimensional market and on only two goods, and they develop important 
insights on agglomeration effects. Empirical studies regarding the attractiveness, 
growth and decline of shopping centers based on Christaller’s central place theory 
and on the results of Eaton and Lipsey are presented, e.g., by Ryan et al. (1990) and 
Dennis et al. (2002).

20.4.2.2 � Hexagonal Structure

Isard (1956) drops the assumption of a uniformly distributed population and con-
cludes that the size (and shape) of a market area depend on the population density, 
and therefore will vary. A similar result is achieved by Rushton (1972). Friedmann 
(1961) continues the development of central place theory, concentrating on aspects 
of political, cultural, and social authority due to which the surrounding regions de-
pend on the respective major center, and on the sub-centers which take care of 
some subordinate services. Again, the approach leads to an irregular structure of 
the resulting regions and centers. Allen and Sanglier (1979) study the influence 
of the introduction of new goods and services by simulation. Also their results do 
not show a regular pattern, but different irregular results. On the other hand, in his 
empirical study of the current German structures, Lang (2002) finds rather regular 
patterns of cities, but no obvious hexagonal structure.

Eaton and Lipsey (1975, 1976) point out that in a competitive environment, i.e., 
under the assumption of free market entry, no hexagonal market structure has to re-
sult in a two-dimensional market, given a uniform distribution of customers. While 
the hexagonal structure is the “planner’s solution” that minimizes total transporta-
tion cost, and thus is efficient (Beckmann 1968), according to Eaton and Lipsey 
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it is not the solution that results from profit-maximizing behavior of the firms, at 
least when up to 19 firms are studied. However, Okabe and Suzuki (1987) come to 
the conclusion that for an even larger number of firms (up to 256 firms in their nu-
merical tests), the “quasi-global equilibrium” configuration that results from spatial 
competition, will be similar to the hexagonal structure resulting from social plan-
ning. In an iterative procedure, Okabe and Suzuki apply Voronoi polygons in order 
to determine the market areas the competing firms can achieve from their current 
locations, then the firms relocate in turn if they can increase their market area by 
the respective move, and so on. The procedure results in a near-hexagonal structure; 
however, it should be noted that the two structures do not agree completely, but are 
only similar, and even in the case where the simulation is started with the socially 
optimal pattern, this pattern is actually destroyed during the process.

Drezner and Zemel (1992) examine the sequential competitive location problem 
in the plane in which two competitors can open multiple facilities each. Under the 
assumption of a uniform distribution of customers, the first competitor wants to 
choose his locations such that the second competitor is prevented from capturing 
too much of the market. The authors show that under these circumstances the hex-
agonal, honeycomb pattern is the best location structure for the first competitor to 
defend his market area.

Okabe et al. (1997) study systems of successively “inclusive” and “exclusive” 
hierarchical facilities. Here, an “inclusive” type of hierarchy is one, in which the 
facilities of higher order offer all services of lower order as well, and which occurs, 
e.g., in the medical sector. In the “exclusive” hierarchy, not all services of lower 
order are offered at each central place. As a result, the planning problem consists 
of the decision about the hierarchical structure of the facilities and about their spa-
tial configuration in areas with uniform customer distribution. As it turns out, the 
regular triangular lattice as used by Christaller and Lösch is a basic feature of the 
solution for each stage of the “exclusive” problem. From the solutions of the differ-
ent hierarchical stages, a solution of the “inclusive” problem can be derived which 
closely resembles the hexagonal structure suggested by Christaller.

Finally, Suzuki and Okabe (1995) show that a hexagonal structure also results 
for the continuous p-center problem in which the maximum distance from a user to 
his closest facility is to be minimized. Hence, the basic hexagonal structure that was 
first developed and studied by Christaller and Lösch is a characteristic feature of 
many different spatial planning situations which are of major interest to researchers 
and scientists up to this day. Moreover, central place theory is discussed and applied 
also in special areas of research such as sport tourism; see, e.g., Daniels (2007).

20.5 � Future Research Directions

As the classical publications, as well as most of the work that followed, concentrate 
on a homogeneous plane with a uniform or regular customer distribution, future 
research might focus on the modification of these assumptions, such as non-uniform 
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demand and/or forbidden regions. Especially in the field of hierarchical and com-
petitive location, this would lead to new and interesting insights which are more 
closely related to reality.

With the increasing globalization of all economic activities, global structures 
and systems of cities, and locations are increasingly the focus of economists and 
regional scientists. Therefore, central place theory and the theories building upon 
it can be useful to derive theoretical insights regarding the future development of 
these global structures, such as the pattern of future “global central places.” More-
over, the ring concept that was originally developed by von Thünen and modified 
by Alonso for urban structures could be used to explain and perhaps also forecast 
the future development of those huge cities: for example, residential areas can be 
expected to be found farther and farther away from the city centers, while the cen-
ters’ predominant functions are to host commercial activities.

In general, urban structures and their developments have to be studied to be 
able to plan and (politically) direct their growth and development. In particular, the 
development of “medium-sized cities” will be of interest, as it has not received as 
much attention as large cities have. It can be expected that, especially in Germany, 
central place theory will remain an important supporting tool for political decision 
making in regional planning, specifically with respect to the development of infra-
structure in certain areas and with respect to the allocation of financial incentives to 
certain branches of industry.

Changes in transportation infrastructure have an important impact on both large 
scale and small scale planning and need to be taken into account in the future devel-
opment of models in both areas. Here, the concept of “economic distances” as de-
veloped by Christaller may lead to further important insights, as the actual distances 
are less and less important, while the importance of “felt distances” increases. Due 
to the possibility of getting to literally every point on earth within a day or two, and 
of getting information from everywhere within seconds, some services do not have 
to be offered locally at all, but can be received by the customers even over a very 
long distance. It would be interesting to examine how the structure of the system of 
central places changes due to these developments.

Finally, environmental and ecological issues could also be incorporated in the 
respective approaches. This change of the planning objective will most likely lead 
to modified ring or network structures.
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