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Preface

I have taught biostatistics in the health sciences and published a book
in 2003 with Wiley on that topic. That book is a textbook for upper-
level undergraduates and graduate students in the health science depart-
ments at universities. Since coming to the Lankenau Institute 17 months
ago, I was tasked to prepare a course in biostatistics for nurses and
physicians (particularly the hospital residents and fellows that do
medical research). I quickly learned that although the material in my
book was relevant, it contained too much material and was not in a
digestible form for them. I prepared a six-lecture course (1 hour each)
for physicians, and a two-lecture course for the nurses. To prevent
boredom, I introduced some funny but educational cartoon slides. The
course currently exists and has been refined as PowerPoint presenta-
tions and has been moderately successful. I also am starting a similar
course at statistics.com.

The physicians and nurses have a busy schedule, and what they
need is a concise and clearly explained set of lectures that cover only
the areas of statistics that are essential to know about in medical
research. This means topics that are not taught in traditional introduc-
tory statistics courses. So Kaplan—Meier curves, repeated measures
analysis of variance, hazard ratios, contingency tables, logrank tests,
bioequivalence, cross-over designs, noninferiority, selection bias, and
group sequential methods are all included, but they are introduced on
a conceptual level without the need for theory. It is when and why these
methods work that they need to know, and not a detailed account of
how they work mathematically. I feel that it would be appropriate to
have a textbook for such a course that can be taught in-house at research
centers or online courses. The book is intended to be approximately
160 pages along with suitable references.

ix
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I am very grateful to Professor Marlene Egger, who carefully
reviewed the manuscript and made several wonderful suggestions that
helped with the clarity and improved the content of the book.

Michael R. Chernick



CHAPTER 1

The What, Why, and
How of Biostatistics
in Medical Research

1.1 DEFINITION OF STATISTICS
AND BIOSTATISTICS

The Oxford Dictionary of Statistics (2002, p. 349) defines statistics as
“The science of collecting, displaying, and analyzing data.” Statistics
is important in any scientific endeavor. It also has a place in the hearts
of fans of sports, particularly baseball. Roger Angel in his baseball
book, Late Innings, says “Statistics are the food of love.”
Biostatistics is the branch of statistics that deals with biology, both
experiments on plants, animals, and living cells, and controlled experi-
ments on humans, called clinical trials. Statistics is classified by scien-
tific discipline because in addition to many standard methods that are
common to statistical problems in many fields, special methods have
been developed primarily for certain disciplines. So to illustrate, in
biostatistics, we study longitudinal data, missing data models, multiple
testing, equivalence and noninferiority testing, relative risk and odds
ratios, group sequential and adaptive designs, and survival analysis,
because these types of data and methods arise in clinical trials and other
medical studies. Engineering statistics considers tolerance intervals and
design of experiments. Environmental statistics has a concentration in

The Essentials of Biostatistics for Physicians, Nurses, and Clinicians,
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2 CHAPTER 1 The What, Why, and How of Biostatistics in Medical Research

the analysis of spatial data, and so does geostatistics. Econometrics is
the branch of statistics studied by economists, and deals a lot with
forecasting and time series.

Statisticians are professionals trained in the collection, display, and
analysis of data and the distribution theory that characterizes the vari-
ability of data. To become a good applied statistician, one needs to learn
probability theory and the methods of statistical inference as developed
by Sir Ronald A. Fisher, Jerzy Neyman, Sir Harold Jeffreys, Jimmie
Savage, Bruno deFinetti, Harald Cramer, Will Feller, A. N. Kolmogorov,
David Blackwell, Erich Lehmann, C. R. Rao, Karl and Egon Pearson,
Abraham Wald, George Box, William Cochran, Fred Mosteller, Herman
Chernoff, David Cox, and John Tukey in the twentieth century. These
are some of the major developers of the foundations of probability and
statistics. Of course, when selecting a list of famous contributors like
this, many have been unintentionally omitted. In the late twentieth
century and early twenty-first century, computer-intensive statistics
arose, and a partial list of the leaders of that development are Brad
Efron, Leo Brieman, David Freedman, Terry Speed, Jerry Friedman,
David Siegmund, and T. L. Lai. In the area of biostatistics, we should
mention Thomas Fleming, Stuart Pocock, Nathan Mantel, Peter
Armitage, Shein-Chung Chow, Jen-pei Liu, and Gordon Lan. You will
be introduced to these and other famous probabilists and statisticians
in this book. An applied statistician must also become familiar with at
least one scientific discipline in order to effectively consult with scien-
tists in that field.

Statistics is its own discipline because it is much more than just a
set of tools to analyze data. Although statistics requires the tools of
probability, which are mathematical, it should not be thought of as a
branch of mathematics. It is the appropriate way to summarize and
analyze data when the data contains an element of uncertainty. This is
very common when measurements are taken, since there is a degree of
inaccuracy in every measurement. Statisticians develop mathematical
models to describe the phenomena being studied. These models may
describe such things as the time a bus will arrival at a scheduled stop,
how long a person waits in line at a bank, the time until a patient dies
or has a recurrence of a disease, or future prices of stocks, bonds, or
gasoline.

Based on these models, the statistician develops methods of estima-
tion or tests of hypotheses to solve certain problems related to the data.
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Because almost every experiment involves uncertainty, statistics is the
scientific method for quantitative data analysis.

Yet in the public eye, statistics and statisticians do not have a great
reputation. In the course of a college education, students in the health
sciences, business, psychology, and sociology are all required to take
an introductory statistics course. The comments most common from
these students are “this is the most boring class I ever took™ and “it
was so difficult, that I couldn’t understand any of it.” This is the fault
of the way the courses are taught and not the fault of the subject. An
introductory statistics course can be much easier to understand and
more useful to the student than, say, a course in abstract algebra, topol-
ogy, and maybe even introductory calculus. Yet many people don’t
view it that way.

Also, those not well trained in statistics may see articles in medi-
cine that are contradictory but still make their case through the use of
statistics. This causes many of us to say “You can prove anything with
statistics.” Also, there is that famous quote attributed to Disraeli.
“There are lies, damn lies and statistics.” In 1954, Darrell Huff wrote
his still popular book, How to Lie with Statistics. Although the book
shows how graphs and other methods can be used to distort the truth
or twist it, the main point of the book is to get a better understanding
of these methods so as not to be fooled by those who misuse them.
Statisticians applying valid statistical methods will reach consistent
conclusions. The data doesn’t lie. It is the people that manipulate the
data that lie. Four books that provide valuable lessons about misusing
statistics are Huff (1954), Campbell (1974), Best (2001), and Hand
(2008).

1.2 WHY STUDY STATISTICS?

The question is really why should medical students, physicians, nurses,
and clinicians study statistics? Our focus is on biostatistics and the
students we want to introduce it to. One good reason to study statistics
is to gain knowledge from data and use it appropriately. Another is to
make sure that we are not to be fooled by the lies, distortions, and
misuses in the media and even some medical journals. The medical
journals now commonly require good statistical methods as part of a
research paper, and the sophistication of the methods used is greater.
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So we learn statistics so that we know what makes sense when reading
the medical literature, and in order to publish good research.

We also learn statistics so that we can provide intelligent answers
to basic questions of a statistical nature. For many physicians and
nurses, there is a fear of statistics. Perhaps this comes from hearing
horror stories about statistics classes. It also may be that you have seen
applications of statistics but did not understand it because you have no
training. So this text is designed to help you conquer your fear of sta-
tistics. As you learn and gain confidence, you will see that it is logical
and makes sense, and is not as hard as you first thought.

Major employers of statisticians are the pharmaceutical, biotech-
nology, and medical device companies. This is because the marketing
of new drugs, biologics, and most medical devices must be approved
by the U.S. Food and Drug Administration (FDA), and the FDA requires
the manufacturers to demonstrate through the use of animal studies and
controlled clinical trials the safety and effectiveness of their product.
These studies must be conducted using valid statistical methods. So
any medical investigator involved in clinical trials sponsored by one of
these companies really needs to understand the design of the trial and
the statistical implications of the design and the sample size require-
ments (i.e., number of patients need in the clinical trial). This requires
at least one basic biostatistics course or good on-the-job training.

Because of uncontrolled variability in any experimental situation,
statistics is necessary to organize the data and summarize it in a way
so that signals (important phenomena) can be detected when corrupted
by noise. Consequently, bench scientists as well as clinical researchers
need some acquaintance with statistics. Most medical discoveries need
to be demonstrated using statistical hypothesis testing or confidence
interval estimation. This has increased in importance in the medical
journals. Simple #-tests are not always appropriate. Analyses are getting
much more sophisticated. Death and other time-to-event data require
statistical survival analysis methods for comparison purposes.

Most scientific research requires statistical analysis. When Dr.
Riffenburgh (author of the text Statistics in Medicine, 1999) is told by
a physician “I’m too busy treating patients to do research,” he answers,
“When you treat a patient, you have treated a patient. When you do
research, you have treated ten thousand patients.”

In order to amplify these points, I will now provide five examples
from my own experience in the medical device and pharmaceutical
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industries where a little knowledge of statistics would have made life
easier for some of my coworkers.

In the first scenario, suppose you are the coordinator for a clinical
trial on an ablation catheter. You are enrolling subjects at five sites. You
want to add a new site to help speed up enrollment. The IRB for the
new site must review and approve your protocol for the site to enter
your study. A member of the IRB asks what stopping rule you use for
safety. How do you respond? You don’t even know what a stopping
rule is or even that the question is related to statistics! By taking this
course, you will learn that statisticians construct stopping rules based
upon accumulated data. In this case, there may be safety issues, and
the stopping rule could be based on reaching a high number of adverse
events. You won’t know all the details of the rule or why the statistician
chose, it but you will at least know that the statistician is the person
who should prepare the response for the IRB.

Our second example involves you as a regulatory affairs associate
at a medical device company that just completed an ablation trial for a
new catheter. You have submitted your premarket approval application
(PMA). In the statistical section of the PMA, the statistician has pro-
vided statistical analysis regarding the safety and efficacy of your
catheter in comparison to other marketed catheters. A reviewer at the
FDA sent you a letter asking why Peto’s method was not used instead
of Greenwood’s approximation. You do not know what these two
methods are or how they apply.

From this course, you will learn about survival analysis. In studying
the effectiveness of an ablation procedure, we not only want to know
that the procedure stopped the arrhythmia (possibly atrial fibrillation),
but also that the arrhythmia does not recur. Time to recurrence is one
measure of efficacy for the treatment. Based on the recurrence data
from the trial, your statistician constructs a time-to-event curve called
the Kaplan—Meier curve.

If we are interested in the probability of recurrence within 1 year,
then the Peto and Greenwood methods are two ways to get approximate
confidence intervals for it. Statistical research has shown differences in
the properties of these two methods for obtaining approximate confi-
dence intervals for survival probabilities. As an example, Greenwood’s
estimate of the lower confidence bound can be too high in situations
where the number of subjects still at risk at the time point of interest
is small.
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374 Analysis of survival times
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Figure 1.1. Example of a Kaplan—-Meier curve. Taken from Altman (1991), Practical
Statistics for Medical Research. Chapman and Hall/CRC, p. 374.

In these situations, Peto’s method gives a better estimate of this
lower bound. In general, neither method is always superior to the other.
Since the FDA posed this question, the statistician would opt to provide
the Peto estimate in addition to Greenwood for the FDA to compare
the two lower confidence bounds. Knowing these simple facts would
help you deal with the FDA question quickly, effectively, and accu-
rately (Fig. 1.1).

In situation 3, you are in regulatory affairs and are reviewing an
FDA letter about a PMA submission. The FDA wants you to report
results in terms of confidence intervals, in addition to the p-values,
before they give final approval to the treatment. You recognize this as
a statistical question, but are worried because if it takes significant time
to supply the request, the launch date of the new device will be delayed
and will upset marketing’s plans. You don’t even know what a confi-
dence interval is!

In this case, since you have the necessary data to do the binomial
test on success probability, you can easily compute an exact confidence
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interval. Your statistician can provide this for you in less than 1 day
and you are greatly relieved.

In situation 4, you are a clinical research associate in the middle of
an important phase III trial. Based upon a data analysis done by the
statistics group and an agreement with the FDA prior to the trial, the
primary endpoint can be changed from a condition at the 6-month
follow-up visit to that same condition at the 3-month follow-up visit.
This is great news, because it means that the trial can be finished
sooner!

There is a problem though. The protocol only required follow-up
visits at 2 weeks and 6 months, and the 3-month follow-up was optional.
Unfortunately, some sites opted not to conduct the 3-month follow-up.
Your clinical manager now wants you to have all the patients that are
past the 3-month time point since the procedure was done and did not
have the 3-month follow-up to come in for an unscheduled visit. When
you requested that the investigators do this, a nurse and one investigator
balked at the idea and demanded to know why this is necessary. You
need an answer from your statistician!

To placate the investigator, the statistician tells the investigator that
they could not use the 3-month follow-up initially because the FDA
had not seen data to indicate that a 3-month follow-up would be enough
to determine long-term survival. However, during the early part of the
trial, the statistician was able to find relevant survival curves to indicate
the survival probability flattens out at 3 months’ duration. This was
enough to convince the FDA that the 3-month endpoint was sufficient
to determine long-term survival. If we now have the unscheduled visits,
these could be the subjects’ last visit, and many subjects will not need
a 6-month follow-up, allowing a shorter accrual time and a chance to
get the product to market faster.

This explanation helped, but the problem could have been avoided
had the clinician had the foresight to see the importance of making the
3-month follow-up mandatory in the protocol. The investigator was
pleased because although it would cost more to add these unscheduled
visits, this would be more than compensated by the dropping of the
6-month follow-up, for those getting the unscheduled visit, and pos-
sibly some others.

In the last situation (situation 5), imagine you are the VP of the
Clinical and Regulatory Affairs Departments at a medical device
company. Your company hired a contract research organization (CRO)
to run a blinded randomized control phase III clinical trial. You have a
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statistics group, but the CRO is tasked to handle the data collection,
processing, and analysis, so as to keep your company blinded and thus
maintain greater integrity for the data and to avoid any presumption
of bias.

The CRO can view the data in an unblinded fashion as they prepare
their report. You are very curious to see the results, since a successful
trial outcome is of paramount importance. Now, as the report is com-
plete, you are the only representative of the company who can see the
report. As you look at the report, you see p-values for statistical tests.
You recall only a little statistics but remember to look for p-values
below 0.05 because those were indicative of statistical significance.
You are alarmed, when looking at a demographic comparison of treat-
ment and control groups by age and gender, to see high p-values. One
p-value was 0.56. You would like to show this to your statistician, but
cannot, because he must remain blinded.

If you had taken a course like this one, you would know that for
efficacy variables, the hypotheses are set up to be rejected, and low
p-values are good. But we want the demographic factors to be nearly
the same for both groups. For demographics, we do not want to reject
the null hypothesis, and a high p-value is actually good news!!

The main reason for similarity between the groups with respect to
all these demographic factors is randomization. Fisher originally sug-
gested randomization in experiments because of confounding of effects.
Perhaps unknown to the investigators, the treatment is more effective
in women than men. Suppose we have 100 patients in each group. In
the control group, 30 are women and 70 are men. In the treatment
group, 80 are women and 20 are men, and we see a statistically signifi-
cant effect. Is it due to the treatment or the fact that so many more
women are in the treatment group than in the control group?
Unfortunately, we do not know! This is what is called confounding.

Randomization overcomes this problem because it tends to balance
out factors that we are not interested in. Simple random sampling will
proportion the men and women nearly in the proportions that they occur
in the patient population. This too avoids bias and confounding. In situ-
ation 5, the high p-value shows that the randomization is doing its job!

We now summarize what we have learned in this section.

1. Statistics and statisticians played an important role in research.
Their role in medical research and particularly randomized
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controlled clinical trials continues to increase rapidly, as the
demand for finding new and better treatments for severe diseases
increases.

2. The regulatory agencies and pharmaceutical companies con-
tinue to emphasize controlled clinical trials for the evaluation of
efficacy and safety for a new drug.

3. Physicians and nurses cannot ignore statistics. It is everywhere,
and is mandated by the FDA to provide proof of safety and
efficacy of new drugs, devices, and combination therapies.

1.3 THE MEDICAL LITERATURE

Chapter 6 of Doug Altman’s book, Altman (1991), discusses statistical
methods in the medical literature. He quotes the famous statistician, Sir
David Cox, who in 1983 said: “One does feel that statistical techniques
both of design and analysis are sometimes adopted as rituals designed
to assuage the last holders of absolute power (editors of journals) and
perhaps also regulatory agencies, and not because the techniques are
appreciated to be scientifically important.” I agree with this statement
not only as it applied in 1983, but even to a large extent, still today, 27
years later!

Altman uses very strong language regarding problems with the
medical literature. He claims “Examples of substandard design and
incorrect analysis can be seen in almost any issue of any medical
journal.” He goes on to say: “The importance of sound design and
analysis cannot be overemphasized. Clearly the conclusions from a
study must rely on the methods having been correct. If conclusions are
unreliable because of faulty methodology, then the study cannot be
clinically worthwhile. Worse, it may be clinically harmful by reason of
the conclusions being misleading, and a clinically harmful study is
surely unethical.”

Evidence of the growth of the use of statistical methods in medical
research is given in this table about the journal Pediatrics, taken from
table 16.1, page 479 of Altman’s book. The number of papers is on an
increasing trend, the percentage of papers without statistics is decreas-
ing, and the percentage with more sophisticated techniques is increas-
ing over the three decades (Table 1.1).
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Table 1.1
Use of Statistical Procedures in the Journal Pediatrics

Year

1952 1962 1972 1982

No. of papers 67 98 115 151
% with no statistical procedures 66% 59% 45% 30%
% with procedures other than ¢, chi-square, or 3% 5% 12% 35%

From Altman (1991) with permission.

Table 1.2
Errors Found in Arthritis and Rheumatism 1967-1968 Compared
With 1982 (Continued)

Year of publication 1967-1968 1982

Number of papers n=47 n="74

Error type

Undefined method 14 (30%) 7 (9%)

Inadequate description of measure of location or 6 (13%) 7 (9%)
dispersion

Repeated observations treated as independent 1 (2%) 4 (5%)

Two groups compared on more than 10 variables at 3 (6%) 4 (5%)
5% level

Multiple #-tests instead of ANOVA 2 (4%) 18 (24%)

Chi-squared tests used when observed frequencies are 3 (6%) 4 (5%)
too small

At least one of these errors in the paper 28 (60%) 49 (66%)

From Altman (1991), with permission.

From 1982 to 2010, this trend has continued, and fortunately, the
quality of the statistical refereeing has improved as well. Altman also
looked at errors in a particular journal, Arthritis and Rheumatism,
comparing the late 1960s to 1982 (Table 1.2).

We see from the tables that the medical literature was notorious for
incorrect use of statistical methods. Trends from the late 1960s to the
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early 1980s show an increase in the use of statistical methods and
particularly the more sophisticated ones. The frequency of occurrence
of elementary-type errors declined over this period. Because statistics
is used more frequently and with more sophistication, there is an
increase in the percentage of papers that have at least one error, as well
as an increase in the percentage of papers that contain the more recent
type of errors from multiple testing and the use of multiple #-tests
instead of the analysis of variance.

1.4 MEDICAL RESEARCH STUDIES

Medical research studies involving human subjects can be put into four
categories.

Cross-sectional studies
Retrospective studies

Prospective studies (other than clinical trials)

tal

Controlled clinical trials, including pharmacokinetic and phar-
macodynamic studies

While the controlled clinical trial falls under the category of pro-
spective studies, we choose to separate it out because of its clear
importance in the evaluation of new drugs and medical devices.

1.4.1 Cross-Sectional Studies Including Surveys

Definition: A cross-sectional study is one that is taken at a given point
in time.

Surveys including election polls and censuses are both examples
of cross-sectional studies. These studies are conducted when only one
point in time is relevant to the question at hand (e.g., censuses, public
opinion polls, election polls, and marketing surveys). Here, only the
current opinion matters. Not interested in looking far into the future.
But often in medicine, we are interested in changes over time after a
medical intervention. This goes for both efficacy variables and quality
of life variables. So we do not see many cross-sectional studies in
medical research except in epidemiological studies.
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1.4.2 Retrospective Studies

Definition: A retrospective study is one that examines relationships
based on past data.

One important example of a retrospective study is the case-control
study (these could also be prospective). Such studies are intended to
be similar to what prospective clinical trials are intended to do. The
cases are the subjects with the outcome of interest (like a treatment
group in a clinical trial). The control subjects are similar demographi-
cally or otherwise to their matched case subjects, but for which the
outcome did not occur.

A particular example might be a situation where subjects who
contracted a particular disease such as lung cancer are asked about their
past exposure to a risk factor. The same questions are administered to
control subjects who did not get lung cancer. In this case, the risk factor
is cigarette consumption.

1.4.3 Prospective Studies Other Than Clinical Trials

Definition: A prospective study is one that is planned in the present and
takes place in the future.

Examples include cohort studies and clinical trials. Clinical trials
are particularly important to us, as we have already mentioned. So we
consider them as a category of their own.

An example of a cohort study is a study that follows a group of
disease-free subjects who have a certain risk factor for a disease to
see if they eventually develop the disease. The subjects could be
young college students, the disease could be emphysema, and the risk
factor could be smoking. From cohort studies, statisticians and epide-
miologists determine relative risks based on exposure levels to risk
factors.

1.4.4 Controlled Clinical Trials

In the context of clinical trials, an experiment is a study that assigns
subjects to treatment groups in order to assess differences among treat-
ments. A randomized experiment is one in which randomization is used
for the selection process.
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Definition: An experiment performed to evaluate the effect of
intervention(s) or treatment(s) for a group of human subjects against a
control group that does not get a treatment(s) (placebo) or gets different
treatment(s).

The purpose is to see if the difference in treatment creates
differences in outcomes for the treatment group versus the control
group. The gold standard for clinical trials is the double-blinded
randomized controlled trial. When constructed properly, these trials
provide good statistical information about the differences between
two groups or several groups (often there can be more than one
treatment). The control group could be on a drug that is an active com-
petitor to the study drug or on placebo, or, more generally, a different
treatment protocol, a different medical device or surgical procedure,
and so on.

The use of randomization and blinding is to protect the study
from biases that could invalidate the results. Not all clinical trials are
blinded, randomized, or completely prospective. Sometimes in device
trials, historical controls or objective performance criteria (OPCs) are
used for comparison with the treatment. This makes the comparator
retrospective while the treatment is done prospectively. Since the trial
only has one arm, there is no blinding or randomization in this type
of trial.

1.4.5 Conclusions

There are several types of studies in medical research.
Each study has its advantages and disadvantages.

Cross-sectional studies only look at one point in time.

tal

Most medical research and particularly clinical trials are con-
cerned with how patients improve or get worse over time as a
function of alternative treatments.

5. Because of (4), cross-sectional studies are not common in
medical research other than in some epidemiologic studies.

6. Double-blind randomized control clinical trials provide the gold
standard for evaluating a new treatment versus current standard
care and/or placebo when done properly. But they are also the
most costly and difficult to implement studies.
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1.5 EXERCISES

. What is a Kaplan—Meier curve?
. For what kind of data do you compute Kaplan—Meier curves?
. Why is randomization important in clinical trials?

. What does Greenwood’s method refer to?

N A W N =

. Why do we compute p-values? When is it good for p-values to be small
and when is it all right if they are large?

6. What are cross-sectional studies and why are they uncommon in medical
research?

7. What are retrospective studies?
8. What are prospective studies?

9. What are controlled clinical trials and why is blinding important?



CHAPTER 2

Sampling from
Populations

One of the key aspects of statistics and statistical inference is to draw
conclusions about a population based on a sample. Our ability to make
good inferences requires an intelligent design and must include some
form of random sampling. Random sampling is needed so that the
sample can be analyzed based on the probability mechanism that gener-
ates the sample. This way, estimates based on the sample data can be
obtained, and inference drawn based on the probability distribution
associated with the sample.

To illustrate, suppose we select five students at random from a math
class of 40 students. We will formally define random sampling later. If
we give a math test to these students based on the material they have
studied in the class, and we average the five scores, we will have a
prediction of what the class average for that test will be. This prediction
will be unbiased (meaning that if we repeatedly took samples of and
averaged them, the average of the averages will approach the class
average).

In practice, we do not repeat the process, but we do draw inference
based on the properties of the sampling procedure. On the other hand,
suppose we selected the five students to be the ones with the highest
class average thus far in the class. In that case, we would not have a
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random sample, and the average of this group could be expected to be
higher than the class average. The amount that it is higher is the bias
of the prediction. Bias is something we want to avoid because usually
we cannot adjust our estimate to get a good prediction.

In addition to bias (which can be avoided by randomization), an
estimate or prediction will have a variance. The variance is a measure
of the variability in estimates that would be obtained by repeating the
sampling process. While bias cannot be controlled by the sample size,
the variance can. The larger the sample size is, the smaller is the vari-
ance of the estimate, or in the example, above the prediction of the
class average.

Suppose that instead of taking a random sample of size 5, we took
a random sample of size 10. Then, for an estimate known to be unbi-
ased (e.g., the sample mean) will still be unbiased, and its variance will
be lower, meaning that it will tend to be closer to the value for the
entire class. You can imagine that if we chose 39 out of the 40 at
random, the prediction would be extremely close to the class average,
and if we had taken all 40, it will equal the class average and have zero
variance.

An excellent example that illustrates the need for random sampling
and the bias in prediction when the sample is not random is the Literary
Digest’s prediction of the winner of the 1936 U.S. Presidential elec-
tion. Franklin Roosevelt was the incumbent and the Democratic
nominee. Alfred Landon was the Republican nominee. To predict the
winner, the Literary Digest mailed out 10 million ballots asking regis-
tered voters which candidate they preferred. A total of 2.3 million out
of the 10 million ballots were returned and on the basis of the results
for the 2.3 million the Literary Digest predicted Landon to be a big
winner.

Although the number of voters in the election would be a lot more
than the actual or even the intended sample, that sample size is large
enough that if it were a random sample of those who would vote, it
would have a very small standard deviation (in political surveys,
approximately 2 standard deviations for the estimate is called the
margin of error), and the prediction would be highly reliable. The result
of the election, however, was that Roosevelt won by a landslide, obtain-
ing 62% of the popular vote. This high visibility poll totally destroyed
the credibility of the Literary Digest, and soon caused it to cease pub-
lication. How could they have gone so wrong?
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A subsequent analysis of their sampling method indicated that
the original mailing list of 10 million was based primarily on tele-
phone directories and motor vehicle registration lists. In modern
times, such a sampling method would be acceptable, since the percent-
age of eligible voters that have telephones and drivers licenses is
nearly 100%.

But, in 1936, the United States was recovering from the great
depression, and telephones and automobiles were a luxury. So a large
majority of the people with telephones and/or cars were affluent. The
affluent Americans tended to be Republicans, and were much more
likely to vote for Landon than the Democrats, many of whom were
excluded because of this sampling mechanism. As poor and middle-
income Americans represented a much larger portion of American
society in 1936, and they would be more likely to vote for Roosevelt,
this created a large bias that was not recognized by those individuals
at the Literary Digest who were conducting the survey. This shows that
samples not chosen at random may appear on the surface to be like a
random sample, but could have a large enough bias to get the prediction
wrong. If a truly random sample of 2.3 million registered voters likely
to vote were selected and the true proportion that would vote for
Roosevelt were 62%, then it would be nearly impossible for the survey
to pick Landon.

2.1 DEFINITIONS OF POPULATIONS
AND SAMPLES

At this stage, we have informally discussed populations and samples.
Now as we get into the details of random samples and other types
of sampling methods, we will be more formal. The term population
refers to a collection of people, animals, or objects that we are inter-
ested in studying. Usually, there is some common characteristic
about this population that interests us. For example, the population
could be the set of all Americans having type II diabetes. A sample
would be a subset of this population that is used to draw inferences
about the population. In this example, we might have a drug like
metformin that we think will control the sugar levels for these
patients. There may be millions of Americans that have type II
diabetes.
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But we shall draw inference about the population based on a sample
of 1000 subjects with type II diabetes that we were able to enroll in a
clinical trial. If the trial is properly conducted statistically, we may
estimate a treatment effect in the population based on an estimate from
the sample of 1000 subjects in the trial. This estimate, if favorable, may
lead the FDA to approve the drug for treatment of type II diabetes to
any American with type II diabetes.

Without a proper statistical design and analysis, the inference to
the population would not be valid and would not lead to an approval
even if the results are positive for the sample. The sample estimate
could be biased, and the probability that a decision favors the conclu-
sion of effectiveness when the drug is really not effective (called the
type I error or significance level) would not be appropriately
controlled.

So to summarize, a population is a collection of things or people
that have similarities and possibly subgroup differences that you are
interested in learning about. A sample is simply a subset of the popula-
tion that you take measurements on to draw inferences about those
measurements for the population the sample was taken from.

2.2 SIMPLE RANDOM SAMPLING

One of the easiest and most convenient ways to take a sample that
allows statistical inference is by taking a simple random sample. As
mentioned earlier, many methods of sampling can create biases. Simple
random sampling assures us that sample estimates like the arithmetic
mean are unbiased.

Simple random sampling involves selecting a sample of size n from
a population of size N. The number of possible ways to draw a sample
of size n out of a population of size N is the binomial coefficient C}
(read as “combinations of N choose n”), the number of combinations
of N things taken n at a time. This is known in combinatorial mathemat-
ics to be N!/[n!(N-n)!]. By “n!”, we mean the product n(n — 1)
(n—2)...32 1. In simple random sampling, we make the selection
probability the same for each possible choice for the sample n. So
the probability that any particular set occurs is 1/CJ). In Section 2.3,
we will show a method for taking simple random samples based on
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using a pseudo-random number generator on the index set for the
population.

2.3 SELECTING SIMPLE RANDOM SAMPLES

Simple random sampling can alternatively be defined as sampling at
random without replacement from the population. Going by our origi-
nal definition, a brute force way to generate a random sample would
be to enumerate and order all the possible samples from 1 to C) and
randomly select an integer k, where 1<k <CY.
To illustrate this method, we will look at a simple example where
N=6 and n=4. Then the number of possible samples is
9 =6!/[4!2!]1=6x5/2=15. Suppose these six elements represent
patients, and we denote them as the set {A, B, C, D, E, F}. Using this
notation, we can enumerate the 15 distinct samples any way we want
and assign integer indices from 1 to 15. A systematic enumeration
might look as follows:

{A, B, C, D}
{A, B, C, E}
{A, B, C, F}
{A, B, D, E}
{A, B, D, F}
{A, B, E, F}
{A,C,D, E}
{A, C, D, F}
{A, C, E, F}
{A, D, E, F}
. {B,C,D, E}
{B, C, D, F}
{B,C, E, F}
{B, D, E, F}
{C, D, E, F}

e Al o

—_— = = = =
Sk = o
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We then use a table of uniform random numbers, or on the computer,
generate a uniform pseudorandom number. A computer pseudorandom
number generator is an algorithm that will generate a sequence of
numbers between 0 and 1 that have properties approximating those of
a sequence of independent uniform random numbers. To assign a
random index to the random number we generate, we do the following:
We first break up the interval [0, 1)* into 15 disjointed (i.e., nonover-
lapping) intervals of equal length 1/15. So the intervals are [0, 1/15),
[1/15, 2/15) [2/15, 3/15), ..., [14/15, 1). Let U denote the random
number selected by the table or the computer generated value. Then

If 0 < U <0.0667, then the index is 1 (0.0667 is a decimal
approximation to 1/15).

If 0.0667 < U < 0.1333, then the index is 2.
If 0.1333 < U < 0.2000, then the index is 3.
If 0.2000 < U < 0.2667, then the index is 4.
If 0.2667 < U < 0.3333, then the index is 5.
If 0.3333 < U < 0.4000, then the index is 6.
If 0.4000 < U < 0.4667, then the index is 7.
If 0.4667 < U < 0.5333, then the index is 8.
If 0.5333 < U < 0.6000, then the index is 9.
If 0.6000 < U < 0.6667, then the index is 10.
If 0.6667 < U < 0.7333, then the index is 11
If 0.7333 < U < 0.8000, then the index is 12.
If 0.8000 < U < 0.8667, then the index is 13.
If 0.8667 < U < 0.9333, then the index is 14.
If 0.9333 < U < 1.0000, then the index is 15.

For example, suppose the computer generated the number 04017
corresponding to 0.4017. Since 0.4000 < 0.4017 < 0.4667, the index is

* [0, 1)” means all values x such that is greater than or equal to O but less than 1, “(0, 1)”
means all x greater than O but less than 1, “(0, 1]” means all x greater then O bur less than
or equal to 1, and “[0,1]” means all x greater than or equal to O but less than or equal to 1.
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7. Then referring to the systematic list, we see that the index 7 corre-
sponds to the sample {A, C, D, E}.

Now this method is feasible when N and n are small like 6 and 4
above, since the number of combinations is only 15. But as N and n
get larger, the number of combinations gets out of hand very quickly.
So a simpler alternative is to consider the sampling without replace-
ment approach. In this approach, the individual patients get ordered.
One ordering that we could have is as follows:

lis A
2is B
3is C
41is D
S5isE
6is F

Now we divide [0, 1) into six equal intervals and assign the uniform
random number as follows:

If 0.0000 < U < 0.1667, then the index is 1.
If 0.1667 < U < 0.3333, then the index is 2.
If 0.3333 < U < 0.5000, then the index is 3.
If 0.5000 < U < 0.6667, then the index is 4.
If 0.6667 < U < 0.8333, then the index is 5.
If 0.8333 < U < 1.0000, then the index is 6.

Example: From a table of uniform random numbers, suppose the first
number to be 00439 for 0.00439, since 0.00439 is in the interval [O,
0.1667], we choose index 1 corresponding to patient A. Now A is taken
out so we rearrange the indexing.

1isB
21is C
3isD
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41is E
5i1sF

Now we must divide [0, 1) into five equal parts.
So we get:

If 0.0000 < U < 0.2000, then the index is 1.
If 0.2000 < U < 0.4000, then the index is 2.
If 0.4000 < U < 0.6000, then the index is 3.
If 0.6000 < U < 0.8000, then the index is 4.
If 0.8000 < U < 1.0000, then the index is 5.

The second uniform random number from the table is 29676, corre-
sponding to 0.29676. Now since 0.2000 < U < 0.4000, the index is 2
corresponding to C. So now our sample includes A and C. Again, in
order to sample without replacement from the remaining four patients
B, D, E, and F, we divide [0, 1) into four equal parts and redefine the
indices as

1is B
2is D
3isE
4is F

For the intervals, we get:

If 0.0000 < U < 0.2500, then the index is 1.
If 0.2500 < U < 0.5000, then the index is 2.
If 0.5000 < U < 0.7500, then the index is 3.
If 0.7500 < U < 1.0000, then the index is 4.

The third uniform random number in the table is 69386. So U = 0.69386.
We see that 0.5000 < U < 0.7500. So the index is 3, and we choose
patient E. Now we have three of the four required patients in our
sample. They are A, C, and E. So for the final patient in the sample,
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we pick at random between B, D, and F. The indices are chosen as
follows:

1isB
21sD
3isF

To divide [0, 1) into three equal parts we get:

If 0.0000 < U < 0.3333 then the index is 1.
If 0.3333 < U < 0.6667 then the index is 2.
If 0.6667 < U < 1.0000, then the index is 3.

The final random number from the table is 68381. So U = 0.68381.

We see that 0.6667 < U < 1.0000. So the index for the last patient
is 3, corresponding to patient F. The random sample of size 4 that we
chose is {A, C, E, F}. This approach seems a little more awkward, but
it does generate a simple random sample using only four random
numbers. Although it is awkward, it avoids enumerating all 15 combi-
nations and therefore remains a feasible approach as N and n get large.

A simpler approach that also generates a simple random sample is
the rejection method. In the rejection method, we do not repartition the
interval [0, 1) after choosing each patient. We stay with the original
partition. This saves some calculations, but could lead to a longer string
of numbers. We simply start with the approach that we previously used
in sampling without replacement, but since we do not change the parti-
tion or assignment of indices, it is now possible to repeat an index (for
bootstrap sampling, this will be perfectly fine). But since a simple
random sample cannot repeat an element (a patient in our hypothetical
example), we cannot include a repeat. So whenever a patient repeats,
we reject the duplicate sample and pick another random sample. This
continues until we have a complete sample of size n (n =4 in our
example).

Using the same table and running down the first column, the
sequence of numbers is 00439, 29676, 69386, 68381, 69158, 00858,
and 86972. In the previous examples, we ran across the first row and
then the second. In this case, we get a different sequence by going down
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the first column. We did this to illustrate repeat values and how they
are handled in generating the sample.

Recall that when we subdivide the interval into six equal parts, we
get:

If 0.0000 < U < 0.1667 then the index is 1.
If 0.1667 < U < 0.3333 then the index is 2.
If 0.3333 < U < 0.5000 then the index is 3.
If 0.5000 < U < 0.6667 then the index is 4.
If 0.6667 < U < 0.8333 then the index is 5.
If 0.8333 < U < 1.0000 then the index is 6.

Also recall the correspondence of patients to indices:

lisA
2is B
3is C
41is D
5isE
6is F

So the random sequence generates A, B, E, E, E, A, F. Since we didn’t
get a repeat among the first three patients, A, B, and E are accepted.
But the fourth random number repeats E, so we reject it and take the
fifth random number. The fifth number repeats E again so we reject it
and look at the sixth random number in the sequence. The sixth random
number chooses A, which is also a repeated patient, so we reject it and
go to the seventh random number. This number leads to the choice of
F, which is not a repeat so we accept it. We now have four different
patients in our sample so we stop.

The rejection method can also be shown mathematically to gener-
ate a simple random sample. So we had the advantage of only doing
one partitioning, but with it came the repeats and the need to sometimes
have to generate more than four random numbers. In theory, we could
get many repeats, but a long series of repeats is not likely. In this case,
we needed seven random numbers instead of just four. The rejection
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method is preferred on the computer because generating new random
numbers is faster than calculating new partitions. So although it looks
to be wasteful in practice, it is usually computationally faster.

Now for each patient, we are interested in a particular characteristic
that we can measure. For this example, we choose age in years at their
last birthday. Let us assume the ages for the patients are as follows:

Ais 26
Bis 17
Cis 45
D is 70
E is 32
Fis 9

The parameter of interest is the average age of the population. We
will estimate it using the sample estimate. Since the population is 6,
and we know the six values, the population mean, denoted as 1, is (26
+ 17 +45+70 + 32 + 9)/6 =33.1667. In our example, we will not
know the parameter value because we will only see the sample of size
4 and will not know the ages of the two patients that were not selected.
Now, if we generated the random sample using the exact random
numbers that we got from the reject technique, we would have {B, C,
E, F} as our sample, and the sample mean will be (17 +45 +
32 + 9)/4 = 19.5. This is our estimate. It is a lot smaller than the true
population mean of 33.1667.

This is because patient D is not in the sample. D is the oldest patient
and is 70. So his addition in the average would increase the mean and
his absence decreases it. So if we added D to the sample, the average
would be (17 + 45 + 70 + 32 + 9)/5 = 34.6. So adding D to the sample
increases the mean from 19.5 to 34.6. On the other hand, if we think
of the sample as being {B, C, D, E, F}, the removal of D drops the
mean from 34.6 to 19.5. So the influence of D is 15.1 years! This is
how much D influences the mean. This shows that the mean is a param-
eter that is heavily influenced by outliers. We will address this again
later.

The sample mean as an estimator is unbiased. That means that if
we averaged the estimate for the 15 possible samples of size 4, we
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would get exactly the population mean, which is 31.1667. This result
can be proven mathematically. In this case, since we know what the
finite population is, we can calculate the 15 possible sample means and
take their average to verify that it equals the population mean. Recall
the 15 possible samples are:

{A, B, C, D} with sample mean = (26 + 17 + 45 + 70)/4 = 39.50
{A, B, C, E} with sample mean = (26 + 17 + 45 + 32)/4 = 30.00
{A, B, C, F} with sample mean = (26 + 17 + 45 + 9)/4 = 24.25
{A, B, D, E} with sample mean = (26 + 17 + 70 + 32)/4 = 36.25
{A, B, D, F} with sample mean = (26 + 17 + 70 + 9)/4 = 30.50
{A, B, E, F} with sample mean = (26 + 17 + 32 + 9)/4 = 21.00
{A, C, D, E} with sample mean = (26 + 45 + 70 + 32)/4 = 43.25
{A, C, D, F} with sample mean = (26 + 45 + 70 + 9)/4 = 43.25
{A, C, E, F} with sample mean = (26 + 45 + 32 + 9)/4 = 28.00
{A, D, E, F} with sample mean = (26 + 70 + 32 + 9)/4 = 34.25
{B, C, D, E} with sample mean = (17 + 45 + 70 + 32)/4 = 41.00
{B, C, D, F} with sample mean = (17 + 45 + 70 + 9)/4 = 35.25
{B, C, E, F} with sample mean = (17 + 45 + 32 4+ 9)/4 = 25.75
{B, D, E, F} with sample mean = (17 + 70 + 32 + 9)/4 = 32.00
{C, D, E, F} with sample mean = (45 + 70 + 32 + 9)/4 = 39.00

In this case, the largest mean is 43.25, and the smallest is 21.00, and
the value closest to the population mean is 34.25. This shows that the
estimate has a lot of variability. To verify the property of unbiasedness,
we need to average these 15 estimates and verify that the average is
33.1667. This goes as follows:

The expected value of the averages is (39.5 + 30.0 + 24.25 +
36.25 +30.5 + 21.0 + 43.25 + 37.5 + 28.0 + 34.25 + 41.0 +
35.25 + 25.75 + 32.0 + 39.0)/15 = 497.50/15 = 33.1667 rounded
to four decimal places.

In Section 2.5, we will generate bootstrap samples. In bootstrap-
ping, we do simple random sampling with replacement. So this can be
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accomplished easily by using the approach of the rejection method
without the need to reject, since repeats are acceptable.

The basic bootstrap idea is to let the original sample data serve as
the population, and then you sample with replacement from the sample
data. The original sample is size n, and bootstrapping is usually done
by taking m samples with replacement with m =n.

However, in recent years, it has been discovered that although
m = n usually works best, there are situations where the choice of m =n
leads to a particular type of incorrect solution which statisticians call
inconsistency. In several of these cases, a consistent bootstrap approach
can be obtained by making m << n.* This is called the m-out-of-n
bootstrap. For the statistical theory of consistency to hold, both n and
m tend to infinity, but with m going at a slower rate. So we will see
that bootstrap sampling is conceptually very similar to simple random
sampling. The only difference is that replacement is used for the boot-
strap. For the bootstrap estimates, we will also look at the ages of the
Six patients.

2.4 OTHER SAMPLING METHODS

Stratified random sampling is just a little more complicated; the simple
random sampling in a set of m strata are defined indexed by k where
k=1,2,...,m, and each strata gets a simple random sample of size
n;. An example of stratification might be age group, with £ = 1 for ages
1-12, k = 2 for ages 13-20, k = 3 for ages 21-35, k = 4 for ages 36-55,
k =5 for ages 56-75, and k = 6 for anyone over 75. A stratified random
sample can work better than a simple random sample if each stratum
has a relatively homogeneous group, but there are marked differences
between strata.

Other forms of sampling are convenience sampling, cluster sam-
pling, and systematic sampling. Cluster sampling is a random sampling
approach that is used when it is easier to randomly select a group of
elements for a sample rather than the individual elements themselves.
Examples could be lists of districts or counties within a state. In cluster
sampling, the item being sampled is a cluster. A cluster is a group of
objects generally found in the same location. For example, in sampling

* By “m << n,” we mean that m is much less than n.
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households in a particular city, the city could be divided up into blocks.
A subset of the city blocks is selected at random, and each household
on the block is included in the sample. Cluster sampling is a conve-
nient and economic way for organizations such as the U. S. Census
Bureau to conduct surveys. So, for example, we may look at residents
of Manhattan, New York as the population. Every city block in
Manhattan is eligible for selection, and a random sample of city blocks
is taken, and every household on the chosen blocks are included.

Convenience sampling and systematic sampling are both nonran-
dom methods and are not recommended in general. In special cases,
these methods may work, but often they don’t. Systematic sampling
can be used (but not necessarily recommended) when an ordered list
of the population members is available. Samples are chosen by a sys-
tematic algorithm. For example, if the population size n = 500, and we
want a sample of size 100, we can choose every fifth case on the list,
such as those with indices 1, 6, 11, 16, 21, 26, 31, ..., 491, and 496.
This is not the only way if we skip 1; we can accomplish the sample
choosing 2, 7, 12, 17 . . ., 492, and 497. We could also start with the
third, fourth, or fifth index in the sequence. If we start with 5, the
sequence is 5, 10, 15, 20, 25, . . ., 495, and 500.

Systematic sampling can work if the ordering has no relationship
to the value of the outcome variable. A case where systematic sampling
can fail is when the outcomes are cyclical in time. For instance, if the
pattern is sinusoidal and the period is 5 units, then we could be sam-
pling at the peaks of the cycle when we pick every fifth case in sequence
and the first case is a peak. This would lead to a positive bias in the
estimate for the outcome variable’s mean. On the other hand, starting
at a trough would create a negative bias on the estimate of the outcome
variable’s mean.

Convenience sampling only means that you find a sample of size
n out of the population of size N in a simple and convenient way. There
is no way to draw inference from such a sample. Convenience sampling
should never be recommended.

2.5 GENERATING BOOTSTRAP SAMPLES

Bootstrap sampling is simple random sampling from the observed data
(also called the empirical distribution). It amounts to sampling with
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replacement m times from the data where each data point has probabil-
ity 1/n for each of the m draws, where n is the number of data points.
As mentioned in Section 2.3, m is usually equal to n, but sometimes it
is advantageous to take m << n.

In this section, we will show how bootstrap samples can be gener-
ated, much as we did for simple random samples in Section 2.3. We
will further discuss the bootstrap when we get to hypothesis testing and
confidence intervals, where it is commonly applied. Without going into
detail now, let us say that bootstrap estimation is based on using the
sampling distribution of estimates obtained from bootstrap samples.

In theory, that sampling distribution can be derived directly from
the data. However, this is not often easy to do (especially as n gets
large), so the distribution is approximated by Monte Carlo methods.
That means that we get a collection of B bootstrap samples by sampling
with replacement from the original data B times, each time taking a
sample of size m. In our example, we will take m = n, where n is the
size of the original sample.

The bootstrap samples, typically, differ from the original sample
because some observations get repeated in the bootstrap sample and
others are left out. This will become apparent in the example. To gener-
ate a bootstrap sample, we again partition the interval [0, 1). In this
case, since we have n samples indexed 1, 2, 3, .. ., n, we divide the
interval into n equal disjoint parts. Again taking U to be a uniform
random number from a table of random numbers, we get:

If 0 < U< 1/n, the index is 1.
If 1/n < U < 2/n, the index is 2.
If 2/n < U < 3/n, the index is 3.

If(n—-2)n<U<(m-1)/n,theindex isn — 1.
If (n—1)n U< n/n=1, the index is n
Let us take the same population of six patients {A, B, C, D, E, F} that

we used in Section 2.3, but it now represents the sample of patients.
Again, the correspondence of patients to indices:
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lis A
2is B
3isC
4is D
5isE
6is F

The variable of interest is the patient’s age, so again:

Ais 26
Bis 17
Cis 45
D is 70
Eis 32
Fis9

A bootstrap sample will sample six times with replacement from
the six patients, and mean age will be computed for each bootstrap
sample. There are 6° = 46,656 possible bootstrap samples when order
18 counted. This is a little too much for a human to handle, but not so
large to cause difficulty for today’s computers. To get the bootstrap
distribution for the mean, we would enumerate all 46,656 possible
bootstrap samples get the age distribution for each of these bootstrap
samples. For each bootstrap sample we compute, its mean and the set
of all 46,656 means provides the bootstrap sampling distribution for
the mean. This is very tedious and unnecessary.

We can get a good approximation of the distribution from just 100
to 1000 randomly selected bootstrap samples. The number of randomly
selected bootstrap samples is often denoted as B. That approach is what
we call the Monte Carlo approximation to the bootstrap distribution.
For illustrative purposes, we will take B = 10 even though in practice
the number B needs to be much larger to get a good approximation to
the bootstrap distribution. The random numbers and the corresponding
patients and ages for the ten bootstrap samples are as follows:
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Bootstrap sample 1: 69386, 71708, 88608, 67251, and 00169 cor-
responding to patients E, E, F, E, B, and A and ages 32, 32, 9, 32,
17, 26, with bootstrap mean estimate 24.67.

Bootstrap sample 2: 68381, 61725, 49122, 75836, 15368, and 52551
corresponding to patients E, D, C, E, A, and D, and ages 32, 70,45,
32, 26, and 70, with bootstrap mean estimate 45.83.

Bootstrap sample 3: 69158, 38683, 41374, 17028, 09304, and 10834
corresponding to patients E, C, C, B, A, and A, and ages 32, 45, 45,
17, 26, and 26, with bootstrap mean estimate 31.83.

Bootstrap sample 4: 00858, 04352, 17833, 41105, 46569, and 90109
corresponding to patients A, A, B, C, C, and F, and ages 26, 26, 17,
45, 45, and 9, with bootstrap mean estimate 28.00.

Bootstrap sample 5: 86972, 51707, 58242, 16035, 94887, and 83510
corresponding to patients F, D, D, A, F, and F, and ages 9, 70, 70,
26, 9, and 9, with bootstrap mean estimate 32.17.

Bootstrap sample 6: 30606, 45225, 30161, 07973, 03034, and 82983
corresponding to patients B, C, B, A, A, and E, and ages 17, 45, 17,
26, 26, and 32, with bootstrap mean estimate 27.17.

Bootstrap sample 7: 93864, 49044, 57169, 43125, 11703, and 87009
corresponding to patients F, C, D, C, A, and F, and ages 9, 45, 70,
45, 26 and 9, with bootstrap mean estimate 34.0.

Bootstrap sample 8: 61937, 90217, 56708, 35351, 60820, and 90729
corresponding to patients D, F, D, C, D, and F, and ages 70, 9, 70,
45, 70 and 9, with bootstrap mean estimate 45.5.

Bootstrap sample 9: 94551, 69538, 52924, 08530, 79302, and 34981
corresponding to patients F, E, D, A, D, and C, and ages 9, 32, 70,
26, 70 and 45, with bootstrap mean estimate 42.0.

Bootstrap sample 10: 68381, 61725, 49122, 75836, 15368, and
52551 corresponding to patients E, C, C, D, E, and B, and ages 32,
45, 45, 70, and 17, with bootstrap mean estimate 33.83.

The mean of the bootstrap distribution is (24.67 + 45.83 + 31.83
+28.0 + 32.17 + 27.17 + 34.0 + 45.5 + 42.0 + 34.83)/10 = 31.88.
The bootstrap mean will converge to the true mean for the six patients
as the number of bootstrap samples B gets large. As we already
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suggested, 10 is not a large number, and you can see that since the
original sample mean is 33.17, the estimate is off by 1.29 years. A value
of B = 100 or 500 should make the estimate much closer.

Properties of the bootstrap samples to note are the repetitions.
In bootstrap sample 1, E occurs three times and C and D are both
left out. In bootstrap sample 2, E and D each repeat once, and B
and F are left out. Bootstrap sample 9 has only one repetition, and
only B is left out. I that sense it is closest to the original sample,
but its mean is 42.0 compared with the mean of 33.17 for the
original sample. The large difference is due to the fact that the
oldest patient E is repeated and the second youngest is the one
left out.

2.6 EXERCISES

1. Why do we need to collect samples when we want to determine population
characteristics?

2. Provide a definition in your own words for the following terms:
(a) Sample
(b) Census
(¢) Parameter
(d) Statistic

3. Describe and contrast the following types of sampling designs. Also, state
when if ever it is appropriate to use the particular designs.

(a) Simple random sample
(b) Stratified random sample
(¢) Convenience sample
(d) Systematic sample
(e) Cluster sample
(f) Bootstrap sample
4. What is meant by parameter estimation?

5. For sample designs (a), (b), (c), and (d) in exercise 3, explain under what
circumstances bias can enter?

6. How does bootstrap sampling differ from simple random sampling?
7. What is the rejection sampling method and when is it used?
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10.

11.

. Why would a convenience sample of the elderly on vacation in Hawaii

probably not be representative of the elderly in retirement homes?

. What role does the sample size play in the accuracy of a statistical

inference?

Why is the choice of the design for the sample more critical than the size
of the sample?

Why is bias more important than variance in research?



CHAPTER 3

Graphics and
Summary Statistics

3.1 CONTINUOUS AND DISCRETE DATA

Numerical or quantitative data can be continuous or discrete. Discrete
data are data that consist of a finite or a countably infinite (mathemati-
cally equivalent to the integers) set of numbers. The binomial distribu-
tion that counts the number of successes is a discrete distribution with
a finite number of outcomes 0 to n successes out of n. In contrast, the
Poisson distribution counts the number of events occurring in a unit
time interval. It can take on any integer value that is nonnegative. So
it has a countably infinite set of values for the probability distribution.
A property of discrete data is that between any two values, there are
real numbers that are not possible data points.

On the other hand, continuous data have the property that there
exist two real numbers that are possible values, and any real number
between those numbers is a possible data point. Data that are continu-
ous include such things as weight, volume, area, and density. Although
height and weight are considered continuous, they are usually measured
on a discrete scale, such as inches and pounds respectively.

We call these data continuous because although we can only
measure height to the nearest inch, say, in theory, a person could have
a height between two units of measurement. Practically speaking, if the

The Essentials of Biostatistics for Physicians, Nurses, and Clinicians,
First Edition. Michael R. Chernick.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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units are fine and the possible values are large, it makes more sense to
treat the data as though it were continuous even though technically it
may be discrete.

3.2 CATEGORICAL DATA

Categorical data is data that is not numerical. Often there is no natural
order to categorical data, although there may be a qualitative ordering,
such as degree of severity. However, if we use a scale such as a Likert
scale to order the categories, they do not have the typical numerical
meaning. For example, a 2 on the scale may not be twice as severe as
1. So ratios of the scaled data have no real meaning. Categorical data
can be dichotomous, such as true or false, male or female, yes or no,
alive or dead. It also can consist of three or more categories. So race,
religion, ethnicity, and education level are all examples of categorical
data with more than two categories. Among these four examples, only
education level has a natural ordering in terms of the hierarchy of grade
levels: graduate school > college > high school > elementary school,
for example.

3.3 FREQUENCY HISTOGRAMS

Fo r continuous data, frequency histograms offer us a nice visual
summary of the data and the shape of its distribution. The range of
possible values for the data is divided into disjoint intervals usually of
equal length, and the number of data points in each interval is shown
as a bar. The art of generating frequency histograms is in the decision
as to how many intervals to choose. If you choose too many intervals,
some intervals could be sparse or empty, and the bars could look spikey.
If you take too few intervals, the bars may flatten and you lose some
of the shape of the distribution.

We shall produce a histogram for a set of body mass index (BMI)
measurements for 120 U.S. adults. The data looks as follows in Table 3.1.

To better discern patterns in this data, it is convenient to order the
data from lowest in the top left corner to highest in the bottom right
corner in ascending order down the columns, for example (could alter-
natively have chosen to go ascending across the rows). The result is
show in Table 3.2.
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Table 3.1

Body Mass Index: Sample of 120 U.S. Adults

27.4 31.0 34.2 28.9 25.7 37.1 24.8 349 27.5 25.9
23.5 30.9 27.4 25.9 22.3 21.3 37.8 28.8 28.8 23.4
21.9 30.2 24.7 36.6 25.4 21.3 22.9 24.2 27.1 23.1
28.6 27.3 22.7 22.7 27.3 23.1 223 32.6 29.5 38.8
21.9 24.3 26.5 30.1 27.4 24.5 22.8 24.3 30.9 28.7
22.4 35.9 30.0 26.2 27.4 24.1 19.8 26.9 233 28.4
20.8 26.5 28.2 18.3 30.8 27.6 21.5 33.6 24.8 28.3
25.0 35.8 25.4 27.3 23.0 25.7 223 35.5 29.8 27.4
31.3 24.0 25.8 21.1 21.1 29.3 24.0 22.5 32.8 38.2
7.3 19.2 26.6 30.3 31.6 25.4 34.8 24.7 25.6 28.3
26.5 28.3 35.0 20.2 37.5 25.8 27.5 28.8 31.1 28.7
24.1 24.0 20.7 24.6 21.1 21.9 30.8 24.6 33.2 31.6
Table 3.2

Body Mass Index Data: Sample of 120 U. S. Adults (Ascending

Order Going Down the Columns)

18.3

19.2
19.8
20.2
20.7
224
21.1
21.1
21.1
21.3
21.3
21.5

21.9

21.9
21.9
223
22.3
223
224
22.5
22.7
22.7
22.8
229

23.0

23.1
23.1
233
23.4
23.5
24.0
24.0
24.0
24.1
24.1
242

243

243
24.5
24.6
24.6
24.7
24.7
24.8
24.8
25.0
25.4
254

254

25.6
25.7
25.7
25.8
25.8
259
259
26.2
26.5
26.5
26.5

26.6

26.9
27.1
27.3
27.3
27.3
27.3
274
27.4
274
27.4
274

27.5

27.5
27.6
28.2
28.3
28.3
28.3
28.4
28.6
28.7
28.7
28.8

28.8

28.8
28.9
29.3
29.5
29.8
30.0
30.1
30.2
30.3
30.8
30.8

30.9

30.9
31.0
31.1
31.3
31.6
31.6
32.6
32.8
332
33.6
342

34.8

349
35.0
355
35.8
359
36.6
37.1
37.5
37.8
38.2
38.8

From this table, it is now easy to see at a glance that 18.3 is the

lowest BMI value and 38.8 is the highest. It is also easy to see the
values that repeat by scanning down the columns, and we quickly see
that 27.4 occurs the most times (five) and 27.3 next (four times). The
values: 21.1, 21.9, 22.3, 24.0, 25.4, 26.5, 28.3, and 28.8 occur three
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times, and 21.3,22.7,23.1,24.1. 24.3, 24.6,24.7,24.8, 25.8,25.9, 27.5,
28.7,30.8, 30.9, and 31.6 occur two times. We decide for the histogram
to break the data into 7 equally spaced intervals. The histogram for this
data is displayed here in Table 3.3.

Expressing this as a bar chart, we get Figure 3.1.

Table 3.3
Frequency and Cumulative Frequency Histogram for BMI Data
Class interval ~ Frequency (f) Cumulative Relative Cumulative
for BMI levels frequency (¢f) frequency (%) relative
frequency (%)
18.0-20.9 6 6 5.00 5.00
21.0-23.9 24 30 20.00 25.00
24.0-26.9 32 62 26.67 51.67
27.0-29.9 28 90 23.33 75.00
30.0-32.9 15 105 12.50 87.50
33.0-35.9 9 114 7.50 95.00
36.0-38.9 6 120 5.00 100.00
Total 120 120 100.00 100.00
30.00

Relative Frequency in %

25.00
20.00 1
15.00 1
10.00 -
5.00 1 I
0.00 - T T T T [

18.0-20.9 21.0-23.9 24.0-26.9 27.0-29.9 30.0-32.9 33.0-35.9 36.0-38.9

Class Interval

Figure 3.1. Relative frequency histogram for BMI data.
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3.4 STEM-AND-LEAF DIAGRAMS

John Tukey devised a quick way to summarize the data in a similar
way to a histogram but still preserving all the individual data points.
He called it a stem-and-leaf diagram because it looks like a stem with
the individual points protruding out like leaves on a tree branch.

We see from Table 3.4 that the leaves produce the shape of the
histogram on its side. This is a little different, because we chose 21
equally spaced intervals instead of 7 so that the stem could be the first

Table 3.4

Stem-and-Leaf Diagram for BMI Data

Stems Leaves Frequency
(intervals) (observations)

18.0-18.9 3 1
19.0-19.9 28 2
20.0-20.9 278 3
21.0-21.9 111335999 9
22.0-22.9 333457789 9
23.0-23.9 011345 6
24.0-24.9 000112335667788 15
25.0-25.9 04446778899 11
26.0-26.9 255569 6
27.0-27.9 1333344444556 13
28.0-28.9 233346778889 12
29.0-29.9 358 3
30.0-30.9 01238899 8
31.0-31.9 01366 5
32.0-32.9 68 2
33.0-33.9 26 2
34.0-34.9 289 3
35.0-35.9 0589 4
36.0-36.9 6 1
37.0-37.9 158 3
38.0-38.9 28 2

Total — 120
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two digits. The way to reconstruct the data from the diagram is as
follows: The interval with the stem 18 only has one value, and the leaf
is a 3. So the value of the data point is 18.3. The fourth interval from
the top has a stem of 21, and there are nine observations in the intervals.
The leaves are 1, 1, 1, 3, 3,5,9, 9, and 9. So the nine values are 21.1,
21.1, 21.1, 21.3, 21.3, 21.5, 21.9, 21.9, and 21.9. The data in the other
intervals are reconstructed in exactly the same way.

3.5 BOX PLOTS

In order to appreciate box plots, we need to explain the interquartile
range. The interquartile range is the middle 50% of the data. The lower
end is the 25th percentile of the data, and the upper end is the 75th
percentile. The width of the interquartile range is equal to:

75th Percentile-25th Percentile.

As we will see later in the text, the interquartile range is a
robust measure of variability. The box plot, or, more formally, the
box-and-whisker plot, is given as follows: The midline of a box-and-
whisker plot is the median or 50th percentile. The body or box portion
of the plot is the interquartile range going from the 25th percentile to
the 75th percentile. The ends of the whiskers are given different defini-
tions by several authors. Often, it runs in the lower end from the 1st
percentile to the 25th percentile, and in the upper end from the 75th
percentile to the 99th percentile. Sometimes, the lower end is the 5th
percentile, and the upper end, the 95th percentile. Points beyond the
ends of the whiskers are potential outliers, and are highlighted as indi-
vidual dots.

The following cartoon shows an example of what the box-and-
whisker plot looks like (Fig. 3.2).

3.6 BAR AND PIE CHARTS

We shall use a particular data set that we call the Pugh data to exhibit
both bar charts and pie charts. Both types of charts can be applied to
categorical data. Bar charts are preferred when the categories have a
natural ordering. The bars are displayed across as the order of the cat-
egories increases. The pie chart is preferred to give a good idea of the
proportion of the data in each category. By using a pie or circular shape,
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Figure 3.2. Explanation of box-and-whisker plots (taken from the Cartoon Guide to
Statistics with permission).
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Figure 3.3. Relative frequency bar graph for Pugh categories of 24 pediatric patients
with liver disease.

there is no natural order exhibited. The bar chart can also be used when
there is no natural order, but it is easy for the viewer to think that, since
the bars go from left to right, the bar chart, like the histogram, is dis-
playing the categories in increasing order.

In Figure 3.3, the Pugh data provides a measure of severity of liver
disease. The Pugh categories run from 1 to 7 in increasing level of
severity. Here is a bar chart for the Pugh data.

Note that the bar chart looks just like a relative frequency histo-
gram, but remember that the numbers represent categories and not
intervals of real numbers. So a 2 is not twice as severe as a 1, for
example. But as we move from left to right, the severity increases. So,
for the Pugh, data the bar chart is appropriate

Next, we shall look at the same data viewed as a pie chart (Fig. 3.4).

It is much easier to identify the differences in proportions visually
from the pie chart. The order is lost unless you recognize that order of
severity starts with 1 in the upper right quadrant and increases as you
move clockwise from there. For data like this, it may be useful to
present both types of graphs so that the viewer will recognize both
features clearly. But had there not been a natural ordering to the data,
only the pie chart should be used.
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Figure 3.4. Pie chart for Pugh level for 24 children with liver disease.

Bar charts are sometimes used to compare two groups with respect
to a measure. To show the variability in the data that went into the value
presented by the bar, an error bar like the whisker portion of a box plot
is used to show the variability. However, the box plot is a much better
choice for the comparison because it shows the difference between the
medians of the distribution in the proper way and provides more detail
about the variability and skewness of the data.

3.7 MEASURES OF THE CENTER OF
A DISTRIBUTION

There are several measures of central tendency for a data set. They
include

1. arithmetic mean;
2. geometric mean;
3. harmonic mean,;
4. mode; and

5. median.
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Figure 3.5. Explanation of the sample mean (taken from the Cartoon Guide to Statistics
with permission).

Of these five, we will only discuss the most common: 1, 4, and 5.

The next cartoon (Fig. 3.5) describes the sample mean of a data set
(this is the arithmetic mean, but when “arithmetic” is left off, it is
understood).

Note that the value, 38, is much larger than all the other values,
and may be considered an outlier. We have already seen that outliers
can have a large influence on the sample mean. If we removed 38, the
sample mean would be (5 +7 + 3 + 7)/4 =22/4 =5.5.
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Figure 3.6. Definitions for the sample median: even and odd cases (taken from the
Cartoon Guide to Statistics with permission).

This is a lot smaller than the average of 12, when the number 38
is included. We shall next look at the median, and for this example, see
how the median is affected by the outlier.

The following cartoon (Fig. 3.6) defines median and illustrates how
it is affected by the outlier in the TV viewing example.

In this case, with the value 38 included, the median is 7 (compared
with 12 for the mean), and by taking the outlier out of the data set, the
median drops only to 6 (compared with 5.5 for the mean). So the
removal of the outlier has a big effect on the mean, dropping it by 6.5
hours, but not so large for the median, dropping it by only 1 hour. In
statistics, we say that the median is “robust” with respect to outliers,
and the mean is not robust. Note that when 38 is removed, the data has
a distribution that is far less skewed to the right. When the data are
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symmetric or close to symmetric, the mean and median are nearly
equal, and the mean has statistical properties that favor it over the
median. But for skewed distributions or data with one or more gross
outliers, the median is usually the better choice.

For discrete data, the mode is the most frequently occurring value.
Sometimes, there can be more than one mode. For continuous data, the
mode of the distribution is the highest peak of the probability density
function. If the density has two or more peaks of equal height that is
the highest, then these peaks are all modes. Sometimes, authors will be
less strict and refer to all the peaks of the probability density function
to be modes. Such distributions are called multimodal, and in the case
of two peaks, bimodal.

The normal distribution and other symmetric distributions (such as
Student’s ¢ distribution) have one mode (called unimodal distributions),
and in that case, the mode = median = mean. So the choice of the
measure to use depends on a statistical property called efficiency. There
are also symmetric distributions that do not have a finite mean.* The
Cauchy distribution is an example of a unimodal symmetric distribution
that does not have a finite mean. For the Cauchy, the median and mode
both exist and are equal.

Now let’s give a formal definition for the mode. The mode of a
sample is the most frequently occurring value. It will not be unique if
two or more values tie for the highest frequency of occurrence.
Probability distributions with one mode are called unimodal.
Distributions with two or more peaks are called multimodal. Strictly
speaking, a distribution only has two or more distinct modes if the
peaks have equal maximum height in the density (probability distribu-
tion for a continuous distribution) or probability mass function (name
for the frequency distribution for a discrete distribution). However,
when not strict, Figure 3.7b is called bimodal even though the peaks
do not have the same height.

Figure 3.7 shows the distinction between a unimodal and a bimodal
density function.

Had the two peaks had the same height, then the bimodal distribu-
tion would have two distinct modes. As it is, it only has one mode. But
we still call it bimodal to distinguish it from the unimodal distribution.

* A continuous distribution has an infinite mean if =xf{x)dx = e, where f(x) is the probability
density function, and the integral is taken over all x where f(x) > 0.
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(a) Unimodal Distribution (b) Bimodal Distribution

Frequency
Frequency

x-Variable x-Variable

Figure 3.7. Example of a unimodal and a bimodal distribution.* The bimodal
distribution in the picture has two peaks but the peak to the right is the mode because it is
the highest peak.

The mean, median, and mode may all be different in the bimodal case.
In the symmetric bimodal case, the mean and median may be the same,
but neither of the two modes would equal the median (one will be
below and the other above both the mean and the median).

For symmetric unimodal distributions: mean = median = mode.
For unimodal distributions that are right skewed: mean < median <
mode. For wunimodal distributions that are left skewed:
mean > median > mode. Although the mode can sometimes be a good
measure of central tendency, at least in the case of the symmetric
bimodal distribution, the natural center is in the “middle” between the
two modes at where there is a trough. That middle of the valley between
the peaks is where the median and mean are located.

3.8 MEASURES OF DISPERSION

Measures of dispersion or spread (also called variability) that we
discuss in this section are:

* In the example above, we chose a symmetric unimodal distribution and an asymmetric
bimodal distribution. Unimodal distributions can also be skewed and bimodal distributions

symmetric.
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1. interquartile range;
2. mean absolute deviation; and

3. standard deviation.

We have already encountered and defined the interquartile range
because of its importance in illustrating the spread of the data in a box-
and-whisker plot. So we will now move on to the definitions of (2) and
(3) above.

The mean absolute deviation of a sample is defined as follows:

The mean absolute deviation (MAD) for a sample is the average
absolute difference between the sample mean and the observed
value. Its formula is:

MAD=Y"" |E ~E|/n,

where E; =the ith observation, E is the sample mean, and 7 is the
sample size. The MAD like the median is less sensitive to outliers
than the next measure we discuss, the standard deviation.

The standard deviation of a sample is the square root of the estimate
of the variance. The variance measures the average of the squared
deviations from the mean. The sample estimate of variance would then
be given by the formula V=3_, (E, - E )2 / n, where E is the sample
mean, and E; is the ith observation. Usually, we would divide by 7 as
in the formula above, but for normally distributed observations from a
random sample, this estimate is proportional to a chi-square random
variable with n — 1 degrees of freedom.* The expected valuet of a chi-
square random variable is equal to its degrees of freedom. So if instead
of n in the denominator we used n — 1 and label the estimate as S?, then
(n—1) $?/0* is known to have exactly a chi-square distribution with
n — 1 degrees of freedom, where o° is the true population variance.

Therefore, as previously discussed, its expected value E[(n — 1)
S*6’] =n — 1, or E[S*/0%] = 1. But this means E[S?] = 6°. So S is an

* Think of the degrees of freedom as a parameter that determines the shape of the chi-square
distribution.

1 Expected value is a statistical term for the mean of a distribution.



48 CHAPTER 3 Graphics and Summary Statistics

unbiased estimate of the population variance. So this means that
E(V) = (n — 1)c*/n, which means that V is biased on the side of under-
estimating o°. Hence, it is more common to use S* for the estimate. But
sometimes, I think too much is made of this, because for large n, the
bias is small (i.e., (n — 1)/n is close to 1). Furthermore, since we esti-
mate the standard deviation by taking the square root of an unbiased
estimate of the variance, that will give us a slightly biased estimate of
the standard deviation anyway.

Although we have only discussed the unbiasedness property for the
variance estimate S when the observations come from a random sample
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Figure 3.8. Properties of the sample mean and sample standard deviation
(taken from the Cartoon Guide to Statistics with permission).



3.8 Measures of Dispersion 49

(carm EMPIRICAL RULE: A

FOR NGARLY SYMMETRIC MOUND-SHAPED DATA SETS, APPROXIMATGLY &S89
OF THG DATA 15 WITHIN ONE& STANDARD DGVIATION OF THE MGAN AND §595 OF
THE DATA S WITHIN TWO STANDARD DGVIATIONS OF THE MEAN.

Z
-~
_

T

AN
AN
A\
AN

AN

>

T T T

A]’/'//l

FOR THE WEIGHTS, OUR GEMPIRICAL RULE HOLDS UP PRETTY WELL: £4%

(= %59/92) OF THE WEIGHTS ARG WITHIN ONG STANDARD DEVIATION OF THE
MEGAN, AND 9795 (= 89/92) OF THE WEIGHTS ARG WITHIN TWO STANDARD
DGVIATIONS OF THG MEAN.

Welight in pounds
100 150 200

(. 4 n I I 2 2 n n 1 1 I

-

69 points 'Illll‘lll

.

86 pointa u,.J_L.m_LUJ__,L._.__L,
—tten

92 points ,||,|||I||,,|_ AND NOW

FOR A RGST
-2 -1 o 1 2 FROM NUMBGR
CRUNCHING!

Z score
. 7

Figure 3.9. The empirical rule for mound-shaped distributions (taken from
the Cartoon Guide to Statistics with permission).

(i.e., are independent and identically distributed normal random vari-
ables), the unbiasedness of S* actually holds more generally. We shall
now discuss some properties of the mean and standard deviation to
explain why these two measures are sometimes preferred. This is again
illustrated nicely by a few cartoons (Figs. 3.8 and 3.9).

We call this an empirical rule because it was discovered by looking
at mound-shaped data. It works because mound-shaped data look
approximately like samples from the normal distribution, and the
normal distribution has exactly those percentages given in the rule. If
a distribution has a variance,* the Chebyshev inequality gives a lower
bound on the percentage of cases within k standard deviations of
the mean.

* A variance is defined for any finite population or finite sample. However, if a distribution
has an infinite range the distribution (or infinite population) does not necessarily have a
finite variance. We require i = [x f{x) dx < oo and ¢® = [(x — 1)*f(x) dx < oo for the distribu-
tion with density f to have a finite variance.
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Chebyshev’s inequality: The interval [u — ko, 1 + ko] contains at
least 100(1 — 1/k*)% of the distribution or data, where y is the mean
and o is the standard deviation. Compare this with the empirical rule.
Chebyshev’s inequality guarantees at least 0% within 1 standard devia-
tion of the mean (essentially guarantees nothing), while the empirical
rule gives 68%. Chebyshev’s inequality guarantees at least 75% with
2 standard deviations of the mean, while the empirical rule gives 95%.
Chebyshev’s inequality always guarantees lower percentages than the
empirical rule. This is because Chebyshev’s rule must apply to all dis-
tributions that have variances while the empirical rule applies only to
distributions that are approximately normally distributed.

3.9 EXERCISES

1. What does a stem-and-leaf diagram show?
2. What does a relative frequency histogram show?

3. What is the difference between a histogram and a relative frequency
histogram?

4. How is arelative frequency histogram different from a cumulative relative
frequency histogram?

5. What portion of the data is contained in the box portion or body of a box-
and-whiskers plot?

6. When are pie charts better than bar charts?

7. What relationship can you make to the three measures of location (mean,
median, and mode) for right-skewed distributions?

8. What is the relationship between these measures for left-skewed
distributions?

9. What is the definition of mean absolute error (deviation)?
10. What is the definition of mean square error?

11. Under what conditions does a probability distribution contain approxi-
mately 95% of its mass within 2 standard deviations of the mean?



CHAPTER 4

Normal Distribution
and Related Properties

4.1 AVERAGES AND THE CENTRAL
LIMIT THEOREM

How does the sample mean behave? If the sample comes from a normal
distribution with mean p and standard deviation o, then the sample
average of n observations is also normal with the mean u, but with
standard deviation g /+/;; . So the nice thing here is that the standard
deviation gets smaller as n increases. This means that our estimate (the
sample mean) is an unbiased estimator of i, and so it tends to get closer
to u as n gets large.

However, even knowing that we cannot make exact inference
becayse what we actually know is that Z=X-u)/(c/ \/;) =
Jn (X—w)/ o, where X is the sample mean, has a normal distribution
with mean O and variance 1. To draw inference about L we need to
know ©. Because o causes difficulties, we call it a nuisance parameter.
In the late nineteenth century and in the first decade of the twentieth
century, researchers would replace o with a consistent estimate of it,
the sample standard deviation S. They would then do the inference
assuming that Jn (X —u)/S has a standard normal distribution.

The Essentials of Biostatistics for Physicians, Nurses, and Clinicians,
First Edition. Michael R. Chernick.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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This, however, is not exactly right, because S is a random quantity
and not the constant 0. However, for large n, the resulting distribution
is close to the standard normal. But this is not so when 7 is small.
Gosset, whose pen name was Student, had experiments involving small
n. In this case, Gosset was able to discover the exact distribution, and
a formal mathematical proof that he was correct was later derived by
R. A. Fisher. We will discuss Gosset’s ¢-distribution later in this chapter.

It is also true for any distribution with a finite variance that the
sample mean is an unbiased estimator of the population mean, and if
o is the standard deviation for these observation, which we assume are
independent and come from the same distribution, then the standard
deviation of the sample mean is ¢/ \/; . However, inference cannot be
exact unless we know the distribution of the sample mean, except for
the parameter y. Again, ¢ is a nuisance parameter, and we will use
Jn(X = u)/$ to draw inference.

However, we no longer can assume that each observation has a
normal distribution. In Gosset’s case, as long as the observations were
independent and normally and identically distributed with mean t and
standard deviation o, n(X —w)/S would have the #-distribution with
n — 1 degrees of freedom. The “degrees of freedom” is the parameter
for the r-distribution, and as the degrees of freedom get larger, the
t-distribution comes closer to a standard normal distribution. But in our
current situation where the distribution for the observations may not be
normal, \/;(X —u)/S may not have a r-distribution either. Its exact
distribution depends on the distribution of the observations. So how do
we do the statistical inference?

The saving grace that allows approximate inference is the central
limit theorem, which states that under the conditions assumed in the
previous paragraph, as long as the distribution of the observations has
a moment slightly higher than 2 (sometimes called the 2 + § moment),*
Jn X - W)/ S will approach the standard normal distribution as n gets
large. Figure 4.1 illustrates this.

So we see distributions with a variety of shapes, and all have very
different distributions when n = 2, and less different when n = 5, but
all very close to the shape of a normal distribution when n = 30.

* Recall that the population mean is E(X). This is called the first moment. E(X?) is called
the second moment. The variance is E[X — E(XX)]* = E(X?) — [E(X)]%, and is called the second
central moment. The 2 + § moment is then E(X*>*%) with § > 0.
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SAMPLING DISTRIBUTIONS FOR MEANS
142 Population diatrlbutions

Values of X Values of X

Values of X Values of X

Values of X Values of X

Values of X Values of X Values of X Values of X

Figure 4.1. The effect of shape of population distribution and sample size on the
distribution of means of random samples.

Source: Kuzma, J. W. (1984). Basic Statistics for the Health Sciences. Mountain View, CA:
Mayfield Publishing Company, figure 7.2, p. 82.

4.2 STANDARD ERROR OF THE MEAN

The standard deviation of the sample mean is sometimes called the
standard error of the mean. We have seen in the previous section that
the standard error of the mean is ¢ /~/n. This is very important, because
it indicates that the variance approaches 0 as n gets large.

4.3 STUDENT’S T-DISTRIBUTION

We have already explained some of the history regarding the ¢-
distribution. Now let’s look at it in more detail. The 7 is a symmetric
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Figure 4.2. Picture of Student’s -distributions (2 and 4 degrees of freedom) and the
standard normal distribution ".
* df is an abbreviation for degrees of freedom.

unimodal distribution with fatter tails (density drops slower than the
normal), and especially fatter when the degrees of freedom is 5 or less.
See Figure 4.2.

Here is why the #-distribution is important. Our test statistic will
be standard normal when we know the standard deviation and the
observations are normal. But to know what the standard deviation is
equal to is not common in practice. So in place of our test statistic

Z =(m-u)/(c/~n), where mzZX,- /n,

the sample mean, and u is the population mean, we use

T =(m—p)/(S/~/n), where S = \/[21 (X, —m)> [(n— 1)}.

This pivotal quantity for testing has a Student’s z-distribution with n — 1
degrees of freedom, and T approaches Z as n gets large. These state-
ments hold exactly when the X;s are independent and identically dis-
tributed normal random variables. But it also works for large n for other
distributions thanks to the central limit theorem.
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4.4 EXERCISES

10.

11.

12.

13.

What is a continuous distribution?

. What is important about the normal distribution that makes it different

from other continuous distributions?
How is the standard normal distribution defined?

For a normal distribution, what percentage of the distribution is within
one standard deviation of the mean?

What percentage of the normal distribution falls with two standard devia-
tions of the mean?

How are the median, mean, and mode related for the normal
distribution

What two parameters determine a normal distribution?

In a laboratory in a hospital where you are testing for subjects with low-
density lipoprotein and the distribution for healthy individuals is a par-
ticular known normal distribution, how would use this information to
define abnormal amounts of lipoprotein?

What are degrees of freedom for a #-statistic for the sample mean?

How is the t distribution related to the normal distribution? What is dif-
ferent about the t statistic particularly when the sample size is small?

Assume that the weight of women in the United States who are between
the ages of 20 and 35 years has a normal distribution (approximately),
with a mean of 1201bs and a standard deviation of 181bs. Suppose you
could select a simple random sample of 100 of these women. How many
of these women would you expect to have their weight between 84 and
1561bs? If the number is not an integer, round off to the nearest integer.

Given the sample population of women as in 11, suppose you could
choose a simple random sample of size 250. How many women would
you expect to have weight between 102 and 1381bs? Again round off to
the nearest integer if necessary.

The following table shows patients with rheumatoid arthritis treated with
sodium aurothiomalate (SA). The patients are divided into those that had
adverse reactions (AE) and those that didn’t. In addition to SA, their age
is given. Of the 68 patients, 25 did not have AEs and 43 did (Table 4.1).

(a) Construct a stem-and-leaf diagram for the ages for each group.
(b) Construct a stem-and-leaf diagram for the total dose for each group.

(¢) Do a side-by-side comparison of a box-and-whisker plot for age for
each group.
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Table 4.1

Table of Rheumatoid Arthritis on Sodium Aurothiomalate

Patients without adverse reactions

Patients with adverse reactions

Patient Age Total SA Patient Age Total SA
ID dose (mg) ID dose (mg)
001 42 1510 003 59 1450
002 67 1280 005 71 960
004 60 890 006 53 1040
007 55 1240 009 53 370
008 52 900 012 74 2000
010 60 860 014 29 1390
011 32 1200 015 54 650
013 61 1400 018 68 1150
016 48 1480 019 66 500
017 69 3300 023 52 400
020 39 2750 024 57 350
021 49 850 026 63 1270
022 36 1800 027 51 540
025 31 1340 028 68 1100
031 37 1220 029 51 1420
032 45 1220 030 39 1120
035 39 1480 033 60 990
036 55 2310 034 59 1340
037 44 1330 041 44 1200
038 41 1960 042 57 2800
039 72 960 043 48 370
040 60 1430 044 49 1920
050 48 2500 045 63 1680
055 60 1350 046 28 450
062 73 800 047 53 300
048 55 330
049 49 400
051 41 680
052 44 930
053 59 1240

(Continued)
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Table 4.1

(Continued)

Patients without adverse reactions Patients with adverse reactions

Patient Age Total SA Patient Age Total SA

ID dose (mg) ID dose (mg)
054 51 1280
056 46 1320
057 46 1340
058 40 1400
059 37 1460
060 62 1500
061 49 1550
063 55 2050
064 52 820
065 45 1310
066 33 750
067 29 990
068 65 1100

Averages 51 1494 .4 Averages 51.79 1097.91

(d) Do a side-by-side comparison of a box-and-whisker plot for total
dose.

(e) Do the box-and-whisker plots for age look the same or different?
What do you infer from this?

(f) Do the box-and-whisker plots for total dose look the same or differ-
ent? If they are different, what are some possible explanations?



CHAPTER 5

Estimating Means
and Proportions

5.1 THE BINOMIAL AND POISSON DISTRIBUTIONS

Consider a discrete variable that has two possible values, such as
success or failure (e.g., success could be complete remission, while
failure would be incomplete or no remission). Let 1 denote success and
0 denote failure. Suppose that we want to determine the proportion of
successes in a population that for practical purposes we can consider
to be infinite. We take a simple random sample of size n. We can con-
sider this sample to represent a set of observations of n independent
identically distributed random variables that each have probability p to
be a success and 1 — p to be a failure Then the number of successes is
a discrete random variable with parameters n and p, and is called the
binomial distribution. As n gets large, the central limit theorem applies,
and even though the binomial distribution is discrete and the normal
distribution is continuous, the binomial is well approximated by the
normal distribution. Sometimes, to improve the approximation due to
the discrete nature of the binomial, a continuity correction is applied.
However, with the increased speed of the modern computer, it is now
very feasible to do exact inference using the Clopper—Pearson
approach.

The Essentials of Biostatistics for Physicians, Nurses, and Clinicians,
First Edition. Michael R. Chernick.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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Now we will describe another important discrete distribution the
Poisson distribution. In clinical trials, we often consider the time from
entrance in the study to the occurrence of a particular event as an end-
point. We will cover this in more depth when we reach the survival
analysis topic. One of the simplest parametric models of time to an
event is the exponential distribution. This distribution involves a single
parameter A called the rate parameter. It is a good model for some time
to failure data, such as light bulbs. For the exponential distribution, the
probability that the time to the first event is less than 7 is 1 — exp(—Af)
for 0 < < . The Poisson distribution is related to the exponential
distribution in the following way: It counts the number of events that
occur in an interval of time of a specified length 7 (say t = 1).

We have the following relationship: Let NV be the number of events
in the interval [0, 1] when events occur according to an exponential
distribution with parameter A. Let the exponential random variable be
T. Then P[N > k] = P[T < 11" = [1 — exp(=A)]*. This relates the Poisson
to the exponential mathematically. This says that there will be at least k
events in [0, 1] as long as the first k events are all less than 1. So:

P[N <k]=1-[1-exp(-A)]* = P[N <k —1].

For k > 1, using the binomial expansion for [1 — exp(—A)]*, we can
derive the cumulative Poisson distribution.

The following figure shows an example of a binomial distribution
with n = 12 and p = 1/3. In the figure, 7 is used to represent the param-
eter p. The Poisson distribution is also given for A =0.87 and ¢ = 1.
Note that the binomial random variable can take on integer values from
0 to 12 in this case, but the Poisson can be any integer greater or equal
to zero (though the probability that N > 5 is very small. Also note that
the probability that the number of successes is 11 is very small, and for
12, it is even smaller, while the probability of O or 1 success is much
larger than for 11 or 12. This shows that this binomial is skewed to the
right. This Poisson is also skewed right to an even larger extent (Figs.
5.1 and 5.2).

5.2 POINT ESTIMATES

In Chapter 3, we learned about summary statistics. We have discussed
population parameters and their sample analogs for measures of central
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Figure 5.1. Binomial distribution n = 12, p = 1/3. Note that the number of successes is
1less than the number displayed on the x-axis. So 1 corresponds to 0 successes, 2
corresponds to 1 success, 3 corresponds to 2 successes, . . . , 13 corresponds to 12

successes.
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Figure 5.2. Poisson distribution with lambda = 0.87. Note that the number of events is
1 less than the number displayed on the x-axis. So 1 corresponds to 0 events, 2
corresponds to 1 event and so on.
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tendency and dispersion. These sample analogs are often used as point
estimates for the parameters. Sometimes, for a given population param-
eter from an assumed parametric family of distributions (e.g., the
normal distribution), there are two or more possible choices for a point
estimate.

For example, with continuous parametric families like the Gamma
and Beta distributions, we can find maximum likelihood estimates or
method of moment estimates for the parameters. How then can we
choose an optimal estimate? Statistical theory has been developed to
define properties that estimators should have. Among the nice proper-
ties, we have consistency, unbiasedness, minimum variance, minimum
mean square error, and efficiency. Consistency is an important property.
It tells us that even though the sample is random and subject to vari-
ability, as the sample size gets larger, the estimate gets close to the true
parameter and will become arbitrarily close as n goes to infinity.

The sample mean is consistent because if the population distribu-
tion has mean u and standard deviation o, then the sample mean has
for its sampling distribution mean u and standard deviation ¢/ Jn. So
as n gets larger, the standard deviation goes to zero. This is enough to
show consistency in probability.

The sample mean is also unbiased. To be unbiased, we must have
for every n that the sampling distribution for the estimator has its mean
equal to the true value of the parameter. We know this is the case for
the sample mean. If we consider the class of all unbiased estimators
for a parameter, we might consider the best estimate from this class to
be the one with the lowest variance.

We call these minimum variance unbiased estimates. However, even
a minimum variance unbiased estimator may not always be the best.
Accuracy is a measure of how close the estimate tends to be to the
parameter. An estimate with a small bias and small variance can be better
or more accurate than an estimate with no bias but a large variance.

To see this, let us consider mean square error. The mean square
error is the average of the squared distance between the estimator and
the parameter. It is natural to want the mean square error to be small.
Denote the mean square error by MSE, and B the bias, and o~ the vari-
ance of the estimator. It then happens that MSE = B* + ¢°. So mathe-
matically, what we have just said in word simply means that if one
estimator has MSE, = B} + o7, and another estimator is unbiased with
mean square error MSE, = 03, then MSE, > MSE,, if 05 > B} + o7}.
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This can easily happen if B, is small, and 03 is much larger than
ot. An estimator is called efficient if as n gets large, it approaches the
lowest possible mean square error. So if there is an unbiased estimator
that has the smallest possible variance among all consistent estimates,
then it is the best. If a biased estimator is consistent and has its variance
approaching the lowest possible value, then it is efficient because the
bias approaches zero under these same conditions. This is important
when considering maximum likelihood estimation.

5.3 CONFIDENCE INTERVALS

Point estimates are useful but do not describe the uncertainty associated
with them. Confidence intervals include the point estimate (often at the
center of the interval), and they express the uncertainty by being an
interval whose width depends on the uncertainty of the estimate.
Formally, confidence intervals are defined as being one-sided or two-
sided, and they have a confidence level associated with them. For
example, a 95% two-sided confidence interval for the mean would have
the interpretation that if samples of size n are repeatedly taken, and for
each such sample, a 95% confidence interval for the mean is calculated,
then approximately 95% of those intervals would include the popula-
tion mean and approximately 5% of the intervals would not.*

As an example, we will show you how to determine a two-sided
95% confidence interval for the mean, i, of a normal distribution when
the standard deviation, o, is assumed known. In that case, the sample
mean X has a normal distribution with mean U and standard deviation
o/Nn - Solet Z=(X- ,u)/(O'/\/;). Z has a normal distribution with
mean 0 and standard deviation 1. From the table of the standard normal
distribution, we have P[—-1.96 < Z < 1.96] = 0.95. We use this fact to

* In contrast for another form of inference called the Bayesian approach, the analogue to
the confidence interval is the credible interval. Because it treats parameters like random
variables, a 95% credible interval is an interval that has probability 0.95 of including the
parameter. This is not so for confidence intervals. The Bayesian method takes what is called
a prior distribution, and based on Bayes’ rule creates a posterior distribution combining the
prior with the likelihood function for the data. A credible region is determined by integrating
the probability density of the posterior distribution until the area under the curve between
a and b, with a < b, integrates to 0.95.
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construct the interval. Since Z = ()A( - ‘u)/(O'/\/; )= Jn ()2 - /o, we
have P[-1.96 < Jn X - W)/o <1.96]=0.95. We invert this probability
statement about Z into a probability statement about U falling inside an
interval as follows:

P[-1.96 <n(X — w)/o <1.96] = P[-1.966/~/n < (X — 1)
<1.960/\n]=P[-X —1.9606/n < —u<-X +1.966//n].

Then multiplying all three sides of the inequality in the probability
statement by —1, we have PIX + 1.966/</n > u= X- 1.966/\/;] =0.95.
This probability statement can be interpreted as the interval
[)A( ~1.966/"n , X +1.966//n ]is a two-sided 95% confidence interval
for the unknown parameter y. We can calculate the endpoints of this
interval since o is known. However, in most practical problems o is an
unknown nuisance parameter. For n very large, we can use the sample
estimate S for the standard deviation in place of ¢ and calculate the
endpoints of the interval in the same way.

If the sample size is small, then Z is replaced by T = Jn ()A( —/S.
This statistic 7" has a Student z-distribution with n — 1 degrees of
freedom. But then to make the same statement with 95% confidence
the normal percentile value of 1.96 must be replaced by the correspond-
ing value from the t distribution with n — 1 degrees of freedom. From
a table for the central f-distribution that can be found in many
text books (Chernick and Friis (2003, p. 371), we see forn — 1 =4, 9,
14, 19, 29, 40, 60, 120, we have the comparable t-percentile C = 2.776,
2.262, 2.145, 2.093, 2.045, 2.021, 2.000, 1.980. As the degrees
of freedom get larger, C approaches the normal percentile of 1.960.
So between 40 and 60, the approximation by the normal is pretty
good.

The cartoon in Figure 5.3 illustrates the concept visually. In an
experiment like the one shown there, since the confidence interval is a
95% two-sided interval, and the true parameter value is 0.5, we would
expect 19 intervals to include 0.5 and 1 to miss. But this too is subject
to variability. In the example above, all 20 intervals included 0.5,
although one almost missed. If we repeated this experiment indepen-
dently, we could get 19, 18, 17, or all 20 intervals containing 0.5. It is
theoretically possible for a number smaller than 17 to include 0.5 but
that would be highly unlikely.
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THIS PAGE SHOWS THE RESULTS OF A COMPUTER SIMULATION OF TWENTY
SAMPLES OF SIZE n = 1000. WE ASSUMED THAT THE TRUE VALUE OF p = 5. AT
THE TOP YOU SEE THE SAMPLING DISTRIBUTION OF 5 (NORMAL, WITH MEAN P

AND ¢='\/E},:-E ). BELOW ARE THE 95% CONFIDENCE INTERVALS FROM EACH

SAMPLE. ON AVERAGE, ONE OUT OF TWENTY (OR 5%) OF THESE INTERVALS WILL
NOT COVER THE POINT p = .5,

‘ . ALMOST
' MS9ED!

Sample

0.44 0.46 0.48 0.50 0.52 0.54 0.56

95% Confidence Intervals for p

Figure 5.3. Explanation of 95% confidence interval, taken from Chernick and Friis
(2003), figure 8.2, p. 156 with permission.

A one-sided confidence interval will either be an interval of the
form [a, o) or (—eo, b]. These come about most often when looking at
the difference of two parameters, such as arithmetic means for one
group versus another. Suppose group 2 has mean greater than group 1,
that is, t; — U, < 0. Let X be the sample mean for group 1, and let Y
be the sample mean for group 2. Then we construct a confidence inter-
val for y; — u, of the form (—ee, b] with say a 95% confidence level.
Then, in repeating this process many times, 95% of the time, the true
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mean difference will be less than the b that is determined from the
sample, and 5% of the time, it will be larger.

We conclude with 95% confidence that the difference u, — 1, is
less than b. If b < 0, we reject the notion that the group 1 mean is larger
than the group 2 mean, and conclude that group 2 has the larger mean.
We do not set a finite lower limit because we are not concerned about
how much larger it is. On the other hand, if we are only interested if
group 1 has a larger mean than group 2, we would take an interval of
the form [a, o) and reject the notion that group 1 has a larger mean
than group 2 if a > 0. Here we do not worry about the upper bound
because we do not care how much larger it is.

In the next chapter, we will discuss hypothesis tests and will see
the relationship between hypothesis testing and confidence intervals
presented there. The two-tailed and one-tailed hypothesis tests corre-
spond exactly to the two-sided and one-sided confidence intervals.

We illustrated confidence intervals for a one sample problem for
simplicity. This easily extends to the two sample situation for mean
differences and for other parameters in one-sample and two-sample
problems for parametric families of distributions. In our examples, Z
and T play the role of what we call pivotal quantities. A pivotal quantity
is a random variable whose distribution is known and the resulting
probability statement can be converted into a confidence interval.

Because of the 1-1 correspondence between hypothesis testing and
confidence intervals, nonparametric confidence intervals can be
obtained through nonparametric tests. So too can bootstrap confidence
interval be defined.

5.4 SAMPLE SIZE DETERMINATION

We will demonstrate fixed sample size estimation criteria for confi-
dence intervals using parametric assumptions. The approach is to
specify a width or half-width for the interval and a confidence level.
Then, the width can be expressed in terms of the sample size n. We
will demonstrate that for the estimation of a population mean and for
the difference between two population means.

Why is sample size determination important in medical research?
When conducting an experiment or a clinical trial, cost is an important
consideration. The number of tests in an experiment has an effect on the
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cost of the experiment. In a clinical trial, the sample size is usually deter-
mined by the number of patients that are recruited. Each patient must get
aregimen of drugs, have tests taken on each of a series of hospital visits,
and be examined by the investigating doctors and nurses. The patients
volunteer and do not incur much of the cost. Sometimes, the pharmaceu-
tical company will even pay the transportation cost. So the sample size
is one of the main cost drivers for the sponsor. Therefore, meeting objec-
tives with the smallest defensible sample size is important.

To illustrate the idea, let us consider a normal distribution with a
known variance, and we are simply interested in accurate estimation of
the population mean. Recall that for a sample size n, a two-sided 95%
confidence interval for the mean is [}A( ~1.966/"n , X +1.966/\n ]. The
width of this interval is 2(1.96)6/\/;, and since the interval is sym-
metric, we can specify the requirement equally well by the half-width,
which is 1.960/</n. We require the half-width to be no larger than d.
Then we have 1.966/</n <d. Since n is in the denominator of this
inequality, the minimum would occur when equality holds. But that
value need not always be an integer. To meet the requirement, we take
the next integer above the estimated value. So we solve the equation
1.966/\/n = d for n. Then \/n =1.960/d or n = (1.96)* 6*/d".

Chernick and Friis (2003, p. 177) also derive the required equal or
unequal sample sizes when considering confidence intervals for the
difference of two normal means with a known common variance.
Without losing generality, we take n to be the smaller sample size, and
kn to be the larger sample size, with k > 1 to be the ratio of the larger
to the smaller sample size. The resulting sample size n is the next integer
larger than (1.96)*(k + 1)0%/(kd”). The total sample size is then (k + 1)n.
This is minimized at k = / but for practical reasons, we may want a
larger number of patients in the treatment group in a clinical trial.

5.5 BOOTSTRAP PRINCIPLE AND BOOTSTRAP
CONFIDENCE INTERVALS

The bootstrap is a nonparametric method for making statistical infer-
ences without making parametric assumptions about the population
distribution. All that we infer about the population is the distribution
we obtain from the sample (the empirical distribution). The bootstrap
does it in a very different way than the parametric approach. It is also
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quite different from most nonparametric approaches that differ from the
bootstrap because these nonparametric tests are based solely on rank-
ings, while the bootstrap uses the actual values. Similar to parametric
procedures, which require pivotal quantities, the bootstrap appears to
function best when an asymptotically pivotal quantity can be used.

Recall that the difference between bootstrap sampling and simple
random sampling is that

1. Instead of sampling from a population the bootstrap samples
from the original sample.

2. Sampling is done with replacement instead of without
replacement.

Bootstrap sampling behaves in a similar way to random sampling in
that each sample is a random sample of size n taken from the empirical
distribution function F,, which gives each observation an equal chance
each draw, while simple random sampling is sampling from a popula-
tion distribution F (finite in population size N), but for which, uncon-
ditionally on each draw, each observation has the same chance of
selection, and for the overall sample of size n, every distinct sample
has the same chance 1/C}), where C) is the number of ways n objects
can be selected out of N as defined in Chapter 1.

The bootstrap principle is very simple. We want to draw inference
about a population based on the sample without make extraneous
unverifiable assumptions. So we consider sampling with replacement
from the empirical distribution F,. It is a way to mimic the sampling
process. Like actors in a play, the empirical distribution acts the part
of the population distribution. Sampling with replacement produces a
bootstrap sample that plays the role of the original sample. Repeating
the process (like performing a play over again) acts like what repeated
sampling of size n from the population would be. Generating bootstrap
samples is like simulating the sampling process.

We now illustrate the simplest bootstrap confidence interval, called
Efron’s percentile method, which is obtained by generating a histogram
of bootstrap estimates of the parameter and using the appropriate per-
centiles to form the confidence interval. We consider an example taken
from Chernick and Friis (2003).

In this experiment, a pharmaceutical company wants to market a
new blood-clotting agent that will minimize blood loss during surgery
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or from injury such as liver trauma. In the early stages, a small experi-
ment to be part of the proof of concept is conducted on pigs. In the
experiment, 10 pigs are in the treatment group, and 10 in the control
group. All 20 pigs have the same type of liver injury induced. The
control group gets a low dose of the drug, and the treatment group gets
a high dose. Blood loss is measured for each pig, and we are interested
in seeing if the high dose is significantly more effective at reducing the
loss of blood. We will do the inference by generating 95% confidence
intervals for the difference in blood loss. The sample size results are
given in Table 5.1.

Perusing the data, we see the appearance that there is significantly
less blood loss in the treatment pigs. If we generate a two-sided 95%
confidence interval for the mean difference, assuming normal distribu-
tions with the same variance, for simplicity, the pivotal quantity involves
a pooled estimate of variance, and it has a z-distribution with 18 degrees
of freedom. The 95% confidence interval for the treatment mean—the
control mean is [-2082.07, —120.93]. Since this does not contain 0, we
would conclude that the treatment mean is lower than the control mean.

Table 5.1

Pig Blood Loss Data (mL)

Control pig ID Control group Treatment pig Treatment group
number blood loss ID number blood loss
Cl 786 T1 543

C2 375 T2 666

C3 4446 T3 455

C4 2886 T4 823

C5 478 T5 1716

C6 587 T6 797

Cc7 434 T7 2828

C8 4764 T8 1251

c9 3281 T9 702

C10 3837 T10 1078
Sample mean 2187.40 Sample mean 1085.90
Sample standard 1824.27 Sample standard 717.12

deviation deviation
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However, the data suggest that the distributions are not normal, and
the sample sizes are too small for the central limit theorem to take
effect. Also, the equal variance assumption is highly suspect. If we use
a well-known r-distribution approximation, the approximate 95%
confidence interval is [-2361.99, 158.99]. This interval includes 0.
Based on these assumptions, we cannot conclude that the means
are different. For detailed calculations see Chernick and Friis (2003,
pp- 163-166).

Because of the small sample size and apparent nonnormality, a
nonparametric or bootstrap confidence interval would be more appro-
priate. Chernick and Friis (2003) also generate a bootstrap confidence
interval using the percentile method.

Now, as in the case of Chernick and Friis (2003), let us compare a
95% confidence interval for the treatment mean is [572.89, 1598.91]
based on the parametric method that uses the z-distribution. Using
Resampling Stats software and generating 10,000 bootstrap samples,
the bootstrap percentile method 95% confidence interval is [727.1,
1558.9]. This is quite different from the parametric interval, and is a
tighter interval. The difference is another indication that the treatment
data is not normal, and neither is the sample mean. The same type of
result could be shown for the control group and for the mean
difference.

Other bootstrap confidence intervals can be generated and are
called bootstrap ¢, double bootstrap, BCa, and tilted bootstrap. See
Chernick (2007) for details on these methods.

5.6 EXERCISES

1. Define the following

(a) Inferential statistics

(b) Point estimate of a population parameter

(c) Confidence interval for a population parameter

(d) Bias of an estimate

(e) Mean square error
2. What are the two most important properties for an estimator?
3. What is the disadvantage of just providing a point estimate?

4. What is the standard error of the mean?
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5.

10.

If a random sample of size n is taken from a population with a distribution
with mean y and standard deviation o, what is the standard deviation (or
standard error) of the sample mean equal to?

Suppose you want to construct a confidence interval for the mean of a
single population based on a random sample of size n from a normal
distribution. How does a 95% confidence interval differ if the variance is
known versus when the variance is unknown?

Describe the bootstrap principle.

Explain how the percentile method bootstrap confidence interval for a
parameter is obtained.

Suppose we randomly select 25 students who are enrolled in a biostatistics
course and their heart rates are measured at rest. The sample mean is 66.9
and the sample standard deviation is S = 9.02. Assume the sample comes
from a normal distribution and the standard deviation is unknown.
Calculate a 95% two-sided confidence interval for the mean.

How would you compute a one-sided 95% confidence interval of the form
(—oo, a] based on the data in exercise 9?7 Why would you use a one-sided
confidence interval?

11. The mean weight of 100 men in a particular heart study is 61kg, with a

standard deviation of 7.9kg. Construct a 95% confidence interval for the
mean.

Table 5.2
Plasma Glucose Levels for Ten Diabetic
Patients

Plasma glucose (mmol/L)
Patient Before After Difference
01 4.64 5.44 0.80
02 4.95 10.01 5.06
03 5.11 8.43 322
04 5.21 6.65 1.44
05 5.30 10.77 5.47
06 6.24 5.69 -0.55
07 6.50 5.88 -0.62
08 7.15 9.98 2.83
09 6.01 8.55 2.54

10 4.90 5.10 0.20
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12. Ten diabetic patients had their plasma glucose levels (mmol/L) before and
after 1 hour of oral administration of 100g of glucose. The results are
shown in Table 5.2.

(a) Calculate the mean difference in plasma glucose levels.

(b) Calculate the standard error of the mean.

(c) Assuming a normal distribution for the change in plasma glucose.
Based on the results in the table how many diabetic patients would
you need to sample to get a 95% two-sided confidence interval for

the mean difference to have width 0.5 mmol/L? Treat the estimated
standard error as if it were a known constant for this calculation.



CHAPTER 6

Hypothesis Testing

The classic approach to hypothesis testing is the approach of Neyman
and Pearson, initially developed in the 1930s. It differed from the
approach of significance testing that was proposed by R. A. Fisher but
was clear and methodical, whereas some of Fisher’s ideas were obtuse
and poorly explained. The differing opinions of the giants in the field
of statistics led to many controversial exchanges. However, although
Fisher was probably the greatest contributor to the rigorous develop-
ment of mathematical statistics, his fiducial theory was not convincing
and was largely discredited.

The Neyman and Pearson approach starts out with the notion of a
null and alternative hypothesis. The null hypothesis represents an unin-
teresting result that the experimenter wants to refute on the basis of the
data from an experiment. It is called the null hypothesis because it
usually represents no difference, as, for instance, there is no difference
in the primary endpoint of a clinical trial when comparing a new treat-
ment with a control treatment (or placebo).

The approach fixes the probability of falsely rejecting the
null hypothesis and then determines a fixed sample size that will
likely result in correctly rejecting the null hypothesis, when the differ-
ence is at least a specified amount, say 6. When we reject the null

The Essentials of Biostatistics for Physicians, Nurses, and Clinicians,
First Edition. Michael R. Chernick.
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hypothesis, we are accepting the alternative. Whether we reject or
do not reject the null hypothesis, we are making a decision, and associ-
ated with that decision is a probability that we made the wrong
decision. These ideas will be discussed more thoroughly in the next
section.

6.1 TYPE | AND TYPE Il ERRORS

The type I error or significance level (denoted as ) for a test is the
probability that our test statistic is in the rejection region for the null
hypothesis, but in fact the null hypothesis is true. The choice of a cutoff
that defines the rejection region determines the type I error, and can be
chosen for any sample size n > 1.

The type II error (denoted as 3) depends on the cutoff value and
the true difference 6 # 0, when the null hypothesis is false. It is the
probability of not rejecting the null hypothesis when the null hypothesis
is false, and the true difference is actually O. The larger delta is, the
lower the type II error becomes. The probability of correctly rejecting
at a given 9 is called the power of the test. The power of the test is
1 — B. We can define a power function f (8) = 1 — B (6). We use the
notation B(6) to indicate the dependency of B on 6. When =0,
fo) = a

We can relate to these two types of errors by considering a real
problem. Suppose we are trying to show the effectiveness of a drug by
showing that it works better than placebo. The type I and type II errors
correspond to false claims. The type I error is the claim that the drug
is effective when it is not (i.e., is not better than placebo by more than
0). The type II error is the claim that the drug is not effective when it
really is effective (i.e., better than placebo by at least J).

However, it increases as |l increases (often in a symmetric fashion
about 0, i.e., f{6) = f[-0]). Figure 6.1 shows the power function for a
test that a normal population has a mean zero versus the alternative that
the mean is not zero for sample sizes n = 25 and 100 and a significance
level of 0.05. The solid curve is for n = 25, and the dashed for n = 100.
We see that these power functions are both symmetric about 0, and
meet with a value of 0.05 at 6 = 0. Since 100 is four times larger than
25, the power function increases more steeply for n = 100 compared to
n=25.
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Power Function for two sample sizes

40
.2

Power

Alternative Mean

Figure 6.1. Power functions for a normal distribution with mean & and sample sizes 25
and 100. Null hypothesis 6 = 0.

6.2 ONE-TAILED AND TWO-TAILED TESTS

The test described with the power function in Figure 6.1 is an example
of a two-tailed test. Two-tailed tests are test where we consider both
0>0 and 0< 0 as part of the alternative. A one-tailed test is a test
where only one side is of interest for the alternative. So, for example,
if you want to show drug A is better than drug B at lowering cholesterol,
we would only be interested to see if drug A had a larger drop from
baseline in cholesterol than drug B. Then, if we take 0 = change from
baseline for A — change from baseline for B, we are interested if 6 < 0.
But 6 > 0 is no more interesting than ¢ = 0. So in this case, 6 > 0 is as
much a part of the null hypothesis as § = 0. There are also cases where
0 <0 is not interesting, and is included in the null hypothesis because
we are only interested if we believe 6 > 0.

6.3 P-VALUES

The p-value is simply the probability of getting a value as extreme or
more extreme than the actual value of the observed statistic when the
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null hypothesis is true. There is a relationship between p-values and
the level of the test. The p-value is the lowest level at which the test
will reject the null hypothesis. Therefore, it is more informative about
the evidence against the null hypothesis. A p-value can be one sided or
two sided, depending whether or not the test is one or two tailed.

6.4 COMPARING MEANS FROM TWO
INDEPENDENT SAMPLES: TWO-SAMPLE T-TEST

We start out by considering comparison of capture thresholds from two
treatment groups as a way to introduce the #-test for two independent
samples. In a clinical trial where pacing leads are implanted along with
a pacemaker, we want to show that the treatment, a steroid-eluting lead
attached in the heart, provides a 1V lower capture threshold than a
nonsteroid lead, the control treatment. The test hypothesis is that the
difference in mean capture threshold at 6 months postimplant is zero.
This is the uninteresting result that we call the null hypothesis. For
the trial to be successful, we need to reject the null hypothesis in favor
of the alternative hypothesis that the difference: Treatment Group
Average—Control Group Average is negative.

We then choose the sample size to be large enough that we are very
likely to reject the null hypothesis when the mean threshold for the
treatment group is at least 1V lower than for the control group. This
we call a clinically significant difference.

If we reject the null hypothesis, we say the difference is statistically
significant. We use the Neyman—Pearson approach discussed earlier.
In the clinical trial, we can determine a value for the test statistic
called the critical value such that we reject the null hypothesis if
the test statistic is as negative, or even more negative than the critical
value.

We set o= 0.05 and do a one-sided test (i.e., only reject for large
negative values, since we are only interested in showing statistically
significantly lower thresholds and not significantly higher ones). This
determines, based on the chosen significance level and the sample size,
a critical value for the test statistic: The mean threshold difference
normalized by dividing by an estimate of the standard deviation of the
difference. This test statistic may be assumed to have a Student’s
t-distribution with 2n — 2 degrees of freedom (df) when the null
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hypothesis of zero difference is true, and n is the number of patients in
the treatment group and also the number in the control group.

So then based on the r-distribution, we find a critical value, call
it —Co. If the test statistic 7 < —Ceo, we reject the null hypothesis. If
T > —Ca, we cannot reject the null hypothesis. As we know, the power
function depends on the distribution of the test statistic under the alter-
native hypothesis and the chosen critical value —Cc¢. This distribution
is a noncentral t-distribution. Just trust that statisticians can use such
distributions to compute power and required sample size. It is not
something that you need to learn.

In this test, we assume both samples come from normal populations
with the same variance and hence the same standard deviation. This is
a more realistic assumption for the pacing leads trial. Also, because
steroid-eluting leads had already been approved by the FDA for a com-
petitor, it is accepted that the steroid lead is preferred. Consequently,
the patients and the sponsor would both like to see more steroid leads
implanted during the trial, but still enough control leads so that the test
for difference in means will have the required statistical power (gener-
ally taken to be 0.80).

The test statistic ¢ = (m, — m,)/SD, where m, is the sample mean
for the first population with sample size n; and m, is the sample mean
for the second population with sample size n, and the pooled standard
deviation given by the following equation:

SD = J{(1/ )+ (1 m ) (m = 1)+ (my = 1)s3 Iy + 1, = 2].

Under the null hypothesis and the above conditions, ¢ has Student’s #-
distribution with n, + n, — 2 df. We have seen the power function for
this test in Figure 6.1.

6.5 PAIRED T-TEST

The tests we have studied so far that involve two populations consid-
ered independent samples. With the paired #-test, we are deliberately
making the samples dependent, since we have matched pairs. The
pairing is used to create positive correlation that will reduce the vari-
ability of the estimate (say the difference of two sample means). One
common way to do this is to have the patient as the pairing variable.
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This will usually lead to a smaller variance for the difference of the
two means, such as in crossover trials or the change in test scores in a
particular subject before and after an intervention.

Steps for the paired z-test.

1. Form the paired differences d; = X, — X¢; fori=1,2, ..., n,
where i is the index for the paired variables (e.g., patients)

2. State the null hypothesis Hy: pr = ¢ versus the alternative
Hi: uy # uc (or equivalently Hy: yr — tie = 0 versus the alterna-
tive Hy: ty — e # 0)

3. Choose a significance level a (often o = 0.01, 0.05, or 0.10).

4. Determine the critical region: the region that has values of the
test statistic t in the upper /2 or lower /2 tails of the sampling
distribution (in this case for a central ¢+ with n — 1 df where
n=ny=nec.

S. Calculate ¢ = {&_(HT —‘uc)}/[Sd/\/Z], where S, is the standard
deviation of the paired differences, and d is the mean of the
paired differences.

6. Reject the null hypothesis if the test statistic ¢ (computed in step
5 above) falls in the rejection region for the test; otherwise, do
not reject the null hypothesis.

The example of daily temperatures in Washington, DC, compared with
New York is next illustrate to dramatically depict the situations where
pairing works best. Although this is a weather example, similar improve-
ments can occur in clinical trials or epidemiology studies where pairing
is done by patient as in a cross-over trial or propensity score matching
in a case-control study. The paired data is given in Table 6.1.

The data are paired by date. We see that over the course of the year,
the average temperature varies periodically with the lowest tempera-
tures in the winter months and the highest in the summer. The date the
temperatures were taking is the 15th of the month for all months in the
year. Because New York and Washington are relatively close, they often
share the same weather system on a particular date. Note that from this
data, the highest mean temperature in Washington is 93°F occurring on
July 15 and the lowest mean temperature is 26°F on December 15. For
New York, the highest mean temperature is 89°F, also occurring on July
15, and the lowest mean temperature is 24°F on December 15. Over
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Table 6.1
Daily Average Temperature in Washington, DC, and New
York City

Date Washington, DC (°F) New York City (°F)
1. January 15 31 28
2. February 15 35 33
3. March 15 40 37
4. April 15 52 45
5. May 15 70 68
6. June 15 76 74
7. July 15 93 89
8. August 15 90 85
9. September 15 74 69

10. October 15 55 51

11. November 15 32 27

12. December 15 26 24

the course of the year, temperatures in DC range from 93°F to 26°F, a
difference of 67°F, and in New York, from 89°F to 24°F, a difference
of 65°F. But the difference in mean temperature between New York
and Washington ranges only from 2 to 5°F. However, New York is
always lower than DC each date of matching.

This is a clear case where this small difference would not be detect-
able with a two-sample (independent samples) f-test. But it would
be easily detected by a paired z-test or a nonparametric approach
(sign test).

6.6 TESTING A SINGLE BINOMIAL PROPORTION

The binomial distribution depends on two parameters n and p. It rep-
resents the sum of n independent Bernoulli trials. A Bernoulli trial is a
test with two possible outcomes that are often labeled as success and
failures. The binomial random variable is the total number of successes
out of the n trials. So the binomial random variable can take on any
value between O and n. The binomial distribution has mean equal to
np and variance np(1 — p). These results are to construct the pivotal
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quantity for construction confidence interval and testing hypotheses
about the unknown parameter p.

For a confidence interval, the central limit theorem can be applied
for large n. So let Z=(X—np—1/2)/[ nf)(l—ja)], where p is the
sample estimate of p, and X is the number of successes. The estimate
we use is p = X/n. Z has an approximate normal distribution with mean
0 and variance 1. This is the continuity-corrected version. Removing
the term —1/2 from the numerator gives an approximation without the
continuity correction. Here Z can be used to invert to make a confidence
interval statement about p using the standard normal distribution.
However, for hypothesis testing, we can take advantage of the fact that
p = po under the null hypothesis to construct a more powerful test.
Do is used in place of p and p in the definition of Z. So we have

Z=(X-np, —1/2)/|: npo(l—po)]. Under the null hypothesis, this
continuity-corrected version has an approximate standard normal
distribution.

6.7 RELATIONSHIP BETWEEN CONFIDENCE
INTERVALS AND HYPOTHESIS TESTS

Suppose we want to test the null hypothesis that i, — y, = 0 versus the
two-sided alternative that ; — u, # 0. We wish to test at the 0.05 sig-
nificance level. Construct a 95% confidence interval for the mean dif-
ference. For the hypothesis test, we reject the null hypothesis if and
only if the confidence interval does not contain 0. The resulting hypoth-
esis test has significance level 0.05. Conversely, suppose we have a
hypothesis test with the null hypothesis y; — i, = 0 versus the alterna-
tive that ; — i, # 0. Look at the region of values for the test statistic
where the null hypothesis is rejected. This region determines a set of
values for i, — U, that defines a 95% confidence region for u, — ..
The same type of argument can be used to equate one-sided confi-
dence intervals with one-sided tests. So what we have shown is that for
every hypothesis test about a parameter with a given test statistic, there
corresponds a confidence interval whose confidence level = 1 — signifi-
cance level of the test. On the other hand, if we can construct a confi-
dence interval (one or two-sided) for a parameter 8, we can define a
test of hypothesis about 0 based on the confidence interval, and the
hypothesis test will have significance level « if the confidence level is
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1 — a. Confidence levels are often expressed as a percentage, so the
confidence level for the interval is 100(1 — &)%.

It should be noted that hypothesis tests are often constructed in a
way that the test statistic assumes the value of nuisance parameters
(e.g., the standard deviation of a normal distribution when testing that
the mean is different from 0) under the null hypothesis. This is done
because the test is designed to reject the null hypothesis, and such a
formulation generally leads to a more powerful test than the one you
would get by simply inverting the null hypothesis. Remember that
confidence intervals have a different goal, namely to identify the most
plausible values for parameter based on the data, and the null hypoth-
esis has no relevance. For example, in hypothesis testing for a propor-
tion, when using a normal approximation, the unknown standard
deviation (which statisticians call a nuisance parameter) is replaced by
the value under the null hypothesis. Under the null hypothesis, let us
assume p = 1/2. Then if n is the sample size, the standard deviation for
the sample proportion is /p(1—p)/n, or, substituting p = 1/2, it is
1/(2 \/;). But for the confidence interval we would use p in place of
the unknown p making it /p(1—p)/n, which will be different in
general.

6.8 SAMPLE SIZE DETERMINATION

We will again look at the pacing leads example to demonstrate sample
size determination. Here we are only considering fixed sample sizes.
Group sequential and adaptive designs allow the final sample size to
depend on the data, and hence the sample size is unconditionally a
random integer N.

What is the required sample size for a test? It depends on how big
the treatment effect has to be. It also depends on the standard deviation
of the test statistic. Averaging sample values reduces the standard
deviation. If a random variable X has a standard deviation o, then if
you average n, such variables that have the same mean and standard
deviation and are independent of each other the sample mean has stan-
dard deviation o/~/n. This explains why we get increasing power as
we increase 7.

The sample standard deviation gets smaller and approaches 0 as
n — oo, So the idea is to specify a power that you want to achieve, say
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0.80, at an alternative mean difference. Then pick the first value of n
that achieves that desired power. Just as with the confidence intervals,
we can sometimes construct a formula for the sample size. However,
when things get more complicated, the sample size can still be deter-
mined numerically by computer and software packages, such as SAS,
STATA, Minitab, Power and Precision, PASS 2000, and nQuery
Advisor, all have capabilities to do sample size determination.

In the Tendril DX trial, one of the steroid-eluting pacing lead trials
that I was involved in, an unpaired ¢-test (as well as a bootstrap test)
were carried out. For the t-test, I assumed a common standard deviation
for the capture thresholds for the steroid and the control leads. I used
0 = 0.5V and consider the equal sample size case and the case where
the treatment group gets three times the number of patients that the
control group gets. The test was done at the 0.10 significance level for
a two-sided test (even though a one-sided test is appropriate). The result
was that 99 patients were need for the treatment group and 33 for the
control, with a total sample size of 132.

On the other hand, if we were able to recruit equal numbers in both
groups, we would only have need 49 in each group for a total of 98,
saving 34 patients. Choosing equal sample sizes is the optimal choice
if there were no practical constraints and both groups had distributions
with the same variance. It would not, however, be optimal if the vari-
ances were known to be very different. Detailed output from nQuery
Advisor 4.0 can be found on page 202 of Chernick and Friis (2003).

6.9 BOOTSTRAP TESTS

We shall demonstrate the use of Efron’s percentile method bootstrap
for testing. We will illustrate the approach with a numerical example,
the pig blood loss data. Recall that previously, we listed the 10 blood
loss values for the treatment group. They were 543, 666, 455, 823,
1716, 797, 2828, 1251, 702, and 1078. This gives a sample mean of
1085.9.

We found, using Resampling Stats software, that a two-sided
approximate percentile method 95% confidence interval for the popula-
tion mean u (based on 10,000 bootstrap samples would be [727.1,
1558.9]. Now, consider the test where we have a null hypothesis that
U = Uy versus the alternative that it # 1,. Then recalling the relationship
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in Section 6.7 relating confidence intervals and to hypothesis tests, we
reject Hy if uy<727.1, or if o> 15589, and do not reject if
727.1 <ty < 1558.9. There are many other bootstrap confidence inter-
vals, and each can be used to construct a test. See Efron and Tibshirani
(1993) or Chernick (2007) for details.

6.10 MEDICAL DIAGNOSIS: SENSITIVITY
AND SPECIFICITY

Screening tests are used to identify patients who should be referred for
further diagnostic evaluation. To determine the quality of a screening
test, it is best to have a gold standard to compare it with. The gold
standard provides a definitive diagnosis of the disease. For healthy
individuals, the tests, if they are numerical, there is a range called the
normal range.

Formulating the screening test as a statistical hypothesis testing
problem, we would see that these two types of error could be the type
I and type II errors for the hypothesis test. In medical diagnosis, we
have special terminology. Table 6.2 shows the possible results.

In this case, we apply a screening test to n patients with the fol-
lowing outcomes. Based on the gold standard, m of the patients had the
disease, and n — m did not. Of the m diseased patients, “a” were found
positive based on the test, and ¢ were found negative. So m =a + c.
Of the n — m patients that were not diseased based on the gold standard
b tested positive, and d were found negative. So b + d =n — m. The
off-diagonal terms represent the two types of error. The number of false
positives is b, and the number of false negatives is c.

Table 6.2
Sensitivity and Specificity for a Diagnostic Test Compared to a
Gold Standard

Test results True condition of the patient Total
based on gold standard

Diseased Not diseased
Positive for disease A b s=a+b
Negative for disease C d n—s=c+d

Total m=a+c n-m=b+d n=a+b+c+d
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The estimate of the unconditional probability of a false positive is
estimated to be b/n based on this sample. The estimate of the uncondi-
tional false negative probability is c/n. Perhaps of greater interest are
the conditional probabilities of error. These rates are estimates as c¢/m
for false negative probability, given the patient has the disease (by
the gold standard), and the conditional false positive probability
bl(b + d) = bl(n — m).

Now we shall define the specialized terms called sensitivity and
specificity. Sensitivity is defined as the probability that a screening test
declares the patient diseased given that the patient has the disease.
Mathematically, the estimate of sensitivity for the above table is 1 — ¢/
(a+c)=alla+c)=1-c/m. So sensitivity is 1-probability of a false
positive.

Specificity is the probability that the screening test declares
the patient well given that the patient the patient does not have the
disease (based on the gold standard). Mathematically, the specificity
estimate is 1 — b/(b +d) =d/(b + d) =1 — b/(n — m). So specificity is
1-probability of a false negative.

Ideally, a test should have high sensitivity and specificity. However,
measurement error and imperfect discrimination rules prevent perfec-
tion (i.e., specificity =1 and sensitivity = 1). But just as there is a
tradeoff of type I and type II error when # is fixed, but the threshold is
allowed to change sensitivity, and specificity can be changed to increase
one at the cost of the other. So it is usually important to decide which
type error is the most serious for the application and make the tradeoff
accordingly. Friis and Sellers (1999) provide more detail regarding
screening tests.

The curve that shows the tradeoff between specificity and sensitiv-
ity is called the receiver operating characteristic (ROC) curve. Useful
references on diagnostic testing that include discussion of ROC curves
are Pepe (2004), Zhou et al. (2002), Krzanowski and Hand (2009),
Gonen (2007) and Broemeling (2007).

6.11 SPECIAL TESTS IN CLINICAL RESEARCH

Superiority testing is the standard testing approach in clinical trials and
involves testing a null hypothesis that the treatment is no different from
the control or worse than the control versus a one-sided alternative that
the treatment is better or superior to the control. This is simply a
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one-sided hypothesis with power function requirement at a fixed . So
the approach is the same as in the Tendril DX lead example. Noninferiority
and equivalence are different and require more detailed explanations.
Briefly for noninferiority, the null hypothesis becomes that the
treatment is worse than the control by at least a o, called the noninfe-
riority margin. The alternative is that treatment may be better, but is at
least within the margin required to say thatitis notinferior. Noninferiority
tests are one sided. Equivalence testing means that we want to show
that the treatment and control are essentially the same (i.e., within a
margin of equivalence ). So, equivalence tests are two-sided tests that
would simply reverse the null and alternative hypotheses if there were
no margin (i.e., d=0). The existence of a positive margin and the
reversal of the null with the alternative make equivalence testing a little
complicated, and it deserves a more detailed discussion also.

6.11.1 Superiority Tests

Not much needs to be said for superiority. It is the standard test that
fits in naturally to the Neyman—Pearson approach. The one-sided two-
sample ¢-test as described in Section 6.2.

6.11.2 Equivalence and Bioequivalence

Bioequivalence and equivalence are the same in terms of the formal
approach to hypothesis testing. The only difference is that bioequiva-
lence means that two drug formulations must be essentially the same
in terms of their pharmacokinetic and pharmacodynamic (PK/PD) char-
acteristics. This is common when developing a new formulation of a
treatment or developing a generic replacement for an approved drug
whose patent has expired.

When doing equivalence or bioequivalence testing, the conclusion
you want to reach is that the two treatments are nearly the same. This
is like trying to “prove” the null hypothesis. For a parameter of interest,
we want to show that the difference in the estimates for the subjects on
each treatment is within an acceptable range called delta. The Neyman—
Pearson approach fixes the level of the test for the null hypothesis of
no difference and tries to use the data to reject this hypothesis. If we
reject, we have accepted the alternative because we controlled the type
IT error with an adequately large sample size.
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In equivalence testing, we want to accept the null hypothesis. To
do this in the Neyman—Pearson framework so that the type II error is
controlled, we simply switch the roll of the null and alternative hypoth-
eses. Often, in equivalence testing, it is feasible to do cross-over
designs, which remove subject-to-subject variability by allowing each
subject to act as their own control.

Example: You want to show that a generic drug or a new formula-
tion of an approved drug is basically the same as the approved drug
with respect to PK and PD characteristics. At Auxilium Pharmaceuticals
Inc., we had a testosterone gel that was approved and trademarked as
Testim®. We wanted to see if we could show that a new formulation
with a better odor was equivalent in terms of the PK parameters, area
under the curve (AUC), time of maximum concentration (Tmax), and
value of maximum concentration (Cmax). For each of the parameters,
there is a test of bioequivalence that can be performed. We designed a
cross-over trial to perform these tests.

Steps in Equivalence Testing

1. Pose a clinically important difference .

2. State a pair of null hypotheses: Hy: d < -6 and Hoy: d > 6,
where d is the observed mean difference. The alternative hypoth-
esis is then H;: =0 <d < 6.

3. Choose a significance level o.

4. Find the appropriate critical value (usually from the standard
normal or the ¢-distribution).

5. Calculate the appropriate test statistics for the two tests of null
hypotheses.

6. Compare these test statistics to their critical values, and if both
null hypotheses are rejected, you have rejected nonequivalence
or accepted equivalence at the level o.

In the case where the data are normally distributed, we can use
Schuirmann’s two one-sided z-tests. The same idea can be used with
other tests when the data are not normally distributed. We next describe
Schuirmann’s test.

When each test of the null hypotheses is a one-sided Student’s #-
test, it is called Schuirmann’s two one-sided #-tests (TOST). A simple
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way to do the test is to construct a two-sided confidence interval for
the mean difference, and if 6 lies outside the interval, you reject non-
equivalence. To ensure that the two one-sided tests each have level «,
you must choose a symmetric 100(1 — 2¢) % confidence interval. This
is a little counterintuitive, because for example, it is a 90% confidence
interval that is used to construct a test at the 5% significance level.
However, this is right, because we must reject both r-tests to claim
equivalence.

6.11.3 Noninferiority Tests

Noninferiority is a one-sided test that a new treatment is not clinically
significantly worse than a particular established treatment. Significantly
worse is defined by a chosen 0 just as was needed to demonstrate
equivalence.

Steps in Noninferiority Testing

1. Select a clinically important difference 0.

2. State as the null hypothesis Hy: d > 6, where d = M, — M, and
M, is the mean for the new treatment, and M, is the mean for
the old one. Then the alternative hypothesis H, is that d < 6.

. Choose a significance level o.
. Determine the critical value for the appropriate test.
. Calculate the test statistic (d or a scaled version of it).

SN Ut AW

. Reject H, if the test statistic exceeds the critical value.

6.12 REPEATED MEASURES ANALYSIS OF
VARIANCE AND LONGITUDINAL DATA ANALYSIS

In clinical trials, measurements are taken on key variables at several
patient visits to the site. If a change from baseline at the end of the trial
is all that is of interest, conventional analysis of variance (ANOVA) or
covariance can be used. However, if one is interested in how the results
change over several visit (i.e., are interested in trends), then the multiple
measurements on the same subject at different time points introduces
correlations that conventional methods do not account for. When we
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are interested in the time evolution of the measurements for many
patients over a short number of visits, say 3 to 6, we are doing longi-
tudinal analysis, and the measurements over time for a particular patient
are called repeated measures.

The correlation structure within a patient must be modeled and
estimated parametrically from the data. Common parametric structures
for the correlation matrix are AR(1), Toeplitz, and compound symme-
try, among others. These patterns correspond to statistical dependency
models. For example, AR(1) is a first-order autoregressive time series
model, where Y(7) = pY(t — 1) + &(t), -1 < p < 1, and &(¢) is an inde-
pendent random variable with mean 0 and constant variance for all
times ¢. Sometimes, if there is sufficient data, the covariance can be
estimated without modeling a particular correlation structure. In soft-
ware packages, such as SAS, Proc Mixed is to declare the covariance
to be unspecified.

In SAS, repeated measures analysis of variance can be done using
the GLM procedure or the procedure “Mixed,” but the two procedures
handle various similar statements differently, and some cases can only
be done with Proc Mixed. The Mixed Procedure is intended to do mixed
effects analysis of variance, where mixed effects means that some of
the effects can be treated as fixed, but other may be best modeled as
random effects.

Why might we be interested in random effects? In many clinical
trials, many different centers from different parts of the country or in
different countries enroll patients for the trial. However, sometimes
there is significant variation between the sites. We may want to see if
these differences do exist, and so to do that, we model the site as a
factor in the ANOVA model. Usually, it makes sense to consider the
sites chosen as though they represented a random sample from the
population of all potential sites. In such cases, the site becomes a
random effect. Other factors may also in a similar way need to be
modeled as random effects.

This topic is fairly advanced and beyond the scope of the course.
But it is such an important part of clinical trials analysis. Also, missing
data is a common practical problem, and mixed models provide a way
to handle missing data that is sometimes appropriate. The following
references provide detailed treatment of longitudinal data analysis and
missing data modeling and analysis. Hardin and Hilbe (2003), Verbeke
and Molenberghs (1997), Hand and Crowder (1996), and Little and
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Rubin (2002) are my recommendations. Little and Rubin deal specifi-
cally with missing data and the various approaches to handling them
based on the type of missing data. Hardin and Hilbe (2003) take the
generalized estimating function approach, which is an alternative way
of dealing with longitudinal data that we did not cover. The book gives
a thorough and very readable treatment even for nonstatisticians.

6.13 META-ANALYSIS
Two problems may occur when conducting clinical trials.

1. Often a study may not have sufficient sample size to reach
definitive conclusions.

2. Two or more studies may have conflicting results (not because
there was anything wrong with any of the studies, but rather
because type I and type II errors can occur even when the study
is well powered).

A technique called meta-analysis is being used more often recently to
combine information in order to reach stronger conclusions that are
also more likely to be correct than what any single study might tell us.
This can be done either by combining estimates or p-values in an
appropriate way. Care is required in the choice of studies to be com-
bined. Also publication bias (the bias due to a tendency to only publish
positive results) is a common problem. To remedy this, for FDA regu-
lated trials, the FDA requires posting trial information on the Internet
(for all phase III trials), including all trial results and data after the trial
is completed. This certainly will help to eliminate publication bias.

Hedges and Olkin (1985) was the pioneering work on formal sta-
tistical approaches to meta-analysis using frequentist approaches.
Stangl and Berry (2000) provide thorough coverage of the Bayesian
approach to meta-analysis. In this section, we will illustrate the use of
Fisher’s test for combining p-values to strengthen inference from
several tests.

Fisher’s test is based on the following results: Under the null
hypothesis in each of k hypothesis tests, the individual p-values have
a uniform distribution on [0, 1]. If we let U represent a random variable
with this uniform distribution, then let L = =2 In(U) where “In”” denotes
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the natural logarithm function. Then L has a chi-square distribution
with 2 df.

Now suppose we have k independent tests, and we let L, = =2 In(V),
where V is the product of the k independent uniforms. So L; = =2 In(Uj,
U,...U)=-2InU) -2 In(U,) —...=2 In(Uy). L is the sum of k
independent chi-square random variable with 2 df, and hence it is
known to have a chi-square distribution with df equal to the sum of the
df for the chi-square random variables being summed. So L, is chi-
square with 2k df. V is the probability that all & null hypotheses are
true, which, under the independence assumption, is the product of the
individual p-values. Because L; is a simple transformation of V with a
known chi-square distribution, it is more convenient to work with L;
rather than V.

We first illustrate this with a consulting application that I provided
to a medical device company. The company conducted a clinical trial
in the United States and some countries in Europe. The device was a
cutting balloon catheter used for angioplasty. The manufacturer believed
that the restenosis rate would be lower for the cutting balloon compared
with conventional balloon angioplasty. Historically, the conventional
approach had a disappointing 40% restenosis rate. Since the manufac-
turer expected the new method would have about a 25% rate, which
would clearly be a clinically significant improvement, they used these
assumptions to determine the necessary sample size.

Initially, the plan was to get FDA approval, which only required a
study in the United States. But recruitment was going slower than they
had hoped. So they chose to expand the trial to several sites in European
countries. Unfortunately, the results were not consistent across the
various countries. See Table 6.3.

We see that country E (which is the United States) had the lowest
rate and it is below the anticipated 25%. Ironically had the company
waited until the required number patients were treated in the United
States, they would have had a successful trial. But even though coun-
tries C and D also have rate significantly lower than 40%, countries A
and B do not, raising the question as to why. Using country as a main
effect, an ANOVA clearly shows a significant difference between coun-
tries. The most likely explanation is difference in the techniques of the
physicians in the European countries, where they may have had less
experience with the cutting balloon catheter, or differences in the sever-
ity of the disease across the various countries.
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Table 6.3

Balloon Angioplasty Restenosis Rates

by Country

Country Restenosis rate % (no. of
failures/no. of patients)

A 40% (18/45)

B 41% (58/143)

C 29% (20/70)

D 29% (51/177)

E 22% (26/116)

Table 6.4
Cutting Balloon Angioplasty Combined p-Value Meta-Analysis by
Fisher's Test

Study Cutting balloon Conventional p-value -2 In(U)
restenosis proportion balloon restenosis
proportion
Grt 173/551 170/559 0.7455 0.5874
Molstad 5/30 8/31 0.5339 1.2551
Inoue 7/32 13/32 0.1769 3.4641
Kondo 22/95 40/95 0.0083 9.5830
Ergene 14/51 22/47 0.0483 6.0606
Nozaki 26/98 40/93 0.022 7.6334
Suzuki 104/357 86/188 0.001 13.8155
Combined 0.000107 42.3994

The client did have several published studies of the use of the
cutting balloon for angioplasty. The hope is that combining this data
with the pooled results in the clinical trial, a clinically significant
improvement over the conventional rate of 40% could be shown and
used to improve the case for approval of the treatment.

I conducted a meta-analysis using six independent studies with
the cutting balloon along with the company’s clinical trial (referred to
as GRT). Table 6.4 shows the meta-analysis using Fisher’s p-value
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combination method. The other studies are labeled using the last name
of the first author.

We note that the most convincing study is Suzuki, which other than
GRT had the largest sample size. Also, although, some of the studies
are small, most of the proportions run from 18 to 30%, making the
expected 25% very plausible. This meta-analysis is conclusive even
though the GRT result and the Molstad (because of small sample size)
paper are not convincing. One drawback of Fisher’s approach is that it
treats each study equally regardless of sample size. There are other
ways to combine the p-values where the studies are weighted according
to sample size.

Perhaps the simplest reasonable approach would be to just total the
number of restenosis events divided by the total sample size generating
two proportions that can be compared directly. In this case, the propor-
tions are 351/1214 and 379/1045 for cutting balloon and conventional
balloon, respectively. These sample proportions are 28.9 and 36.3%,
respectively, a difference of 7.4%.

Using a normal approximation for the two-sample two-sided test,
we get an approximate value of 3.56 for the test statistic, assuming the
common proportion under the null hypothesis p, = 0.40. The two-sided
p-value is less than 0.002, since for a standard normal distribution
P[Z > 3.1] =0.001 and hence P[IZI > 3.1] =0.002. Since 3.56 > 3.1,
we know the p-value is lower.

Although this analysis may seem compelling, it would not help to
get an approval. The FDA may accept results from meta-analysis, but
it would require a protocol and control and approval of the clinical
trials. Only GRT had a protocol and was a controlled clinical trial, with
its protocol accepted by the FDA. So they would not consider this as
clear and convincing statistical evidence.

Another example is based on five published studies of blood loss
in pigs, comparing those with versus those without pretreatment with
the clotting agent NovoSeven®. Table 6.5 shows the p-values for the
individual studies and the combined p-value using Fisher’s combina-
tion test. One advantage of Fisher’s method is that information about
the data in each study is not needed, and the tests applied in each study
need not be the same. For example, in one study, a nonparametric test
might be used, while in another, a parametric test is used. All that we
need to know is that the studies are comparable and valid, and have the
individual p-value in each case.
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Table 6.5

Meta-Analysis of Five Studies of Pig

Blood Loss

Study p-value -2 In(p)
Lynn 1 0.44 1.641961
Lynn 2 0.029 7.080919
Martinowitz 0.095 4.714083
Schreiber 1 0.371 1.983106
Schreiber 2 0.086 6.91614

Total 20.33621
Combined 0.026

In this case, we see that the combined p-value is only slightly lower
than the Lynn 2 study.

The first major statistical reference on meta-analysis is Hedges and
Olkin (1985). Because of the increased popularity of meta-analyses in
medical research, there have been a number of excellent books appear-
ing in recent years. This includes Rothstein et al. (2005), Hartung et al.
(2008), Whitehead (2002), Stangl and Berry (2000), and Borenstein
etal. (2009). Higgins and Green (2008) is a text that provides a summary
of systematic reviews of intervention studies covering numerous meta-
analyses for the Cochrane Group. Michael Borenstein’s company has
commercial software to do meta-analysis. Another good recent refer-
ence is Egger et al. (2001).

6.14 EXERCISES

1. DB3 gives baseline serum theophylline levels for patients with emphy-
sema. Perform an equivalence test to learn if the data are free from a sex
bias, that is, if mean baseline level is equivalent for men and women.
There are n, = 6 women and n, = 10 men. A difference in means of at
least 2 indicates a bias. The sample means and standard deviations for
women and men are m; = 12.67, s, = 3 for the women, and m, = 9.68
and s, = 3.65 for the men. You can assume that the standard deviation
is the same for men and women, and hence use a pooled estimate of the
standard deviation for the z-test.
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10.

11.

. How are equivalence tests different from standard hypothesis tests?
. What is the difference between equivalence testing and non-inferiority?
. What is a pooled standard deviation and when can it be applied?

. Describe the 1: 1 correspondence between hypothesis tests and confidence

intervals. How do confidence intervals give you more information than
p-values?

. Define the following quantities:

(a) Hypothesis test

(b) Null hypothesis

(¢) Alternative hypothesis
(d) Significance level

(e) Power of the test

(f) Power function

(g) p-value

(h) Type I error

(i) Type II error

. In a factory, an occupational medicine physician who was conducting a

medical research study found the mean blood level of the clerical workers
was 11.2 based on a sample. State the null and alternative hypotheses
when testing to see if the population of clerical workers has a mean blood
level of 11.2.

. Describe the difference between a one-tailed and a two-tailed test and

describe situations where one is more appropriate than the other.

. Define specificity and sensitivity and relate them to the type I and type II

error rates.
What are meta-analyses? Why might they be needed?

Based on the data in Table 6.1, do you think it is plausible that the true
mean difference in temperature between New York and Washington would
be 3°F? Would the power of the test be higher, lower, or the same if the
true mean difference were 5°F? Does the power depend on the true mean
difference? If so, why?
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Table 6.6
Antibody Changes from Vaccine Given to
20 Healthy Volunteers

Antibody concentration to type III GBS

Volunteer Before After
no. immunization immunization
1 0.4 0.4
2 0.4 0.6
3 0.5 0.8
4 0.5 0.6
5 0.4 0.5
6 0.5 0.5
7 0.5 0.6
8 0.4 0.5
9 0.4 0.4
10 0.6 0.7
11 0.7 10.2
12 0.7 1.1
13 0.8 0.9
14 0.9 1.2
15 1.0 1.9
16 1.0 0.9
17 1.1 2.1
18 1.0 2.0
19 1.6 8.1
20 2.1 3.8

12. A vaccine against type III group B Streptococcus (GBS) was tested on 20
healthy volunteers. Table 6.6 shows the results on the antibodies before
and after immunization.

(a) What type of test would you apply?
(b) Would a bootstrap test be better than a paired #-test?

(¢) Should the test be one-sided or two-sided? Provide justification for
your answer.



CHAPTER 7

Correlation, Regression,
and Logistic Regression

In this chapter, we will cover correlation, discussing the Pearson
product moment correlation coefficient. The Pearson correlation coef-
ficient (due to Karl Pearson) is a common measure of association that
is interrelated with simple linear regression and goes back to the begin-
ning of the twentieth century. It is a natural parameter of the bivariate
normal distribution. So its properties and interpretation apply to two
variables whose joint distribution is at least, approximately, a bivariate
normal distribution. An example of a nonparametric measure of asso-
ciation will be discussed in Chapter 9.

Specifically, there is a mathematical relationship between the slope
of the regression line in simple linear regression (only one independent
variable) and the correlation coefficient. This will be shown when we
cover simple linear regression. Multiple regression is an extension of
linear regression to two or more independent variables, and the multiple
correlation coefficient is an extension of the square of the Pearson cor-
relation coefficient.

Logistic regression is similar to multiple regression, but whereas
in multiple regression the dependent variable is a continuous numerical
variable, in logistic regression, the dependent variable is binary (it
can be an outcome like success or failure). The expected value of the
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dependent variable conditional on the independent variables (which can
be discrete or continuous) is a probability p, with possible values on the
interval [0, 1]. Logistic regression is covered separately in Section 7.6.

7.1 RELATIONSHIP BETWEEN TWO VARIABLES
AND THE SCATTER PLOT

The Pearson correlation coefficient that we will discuss in Section 7.2
measures linear association. While it may detect some forms of curved
relationships, it is not the best measure for those associations. The
linear association may be positive as in the equation

Y =5X-10. (7.1)

Here X and Y are related with a positive slope of and a Y intercept
of —10. We will see that this relationship with the addition of an inde-
pendent random component will give a positive correlation. This simply
means that as X increases, Y tends to increase. If Equation 7.1 held
exactly, we would drop the word “tends.” However, the addition of a
random component means that if the random component is negative,
the observed value of Y at X = X, could be smaller than the observed
value of Y at X, where X, < X,. In most cases, the data will not fall
perfectly on a straight line, and so we define the difference Y — Yto be
the residual at X. For example, if the fitted line happens to be
Y=3.5X+2, and at X =2, we observe Y=8.7, then Y- ¥ =8.7 —
(3.5(2) +2) =8.7 -9 =-0.3. So the residual at X = 2 is —0.3. For all
the data point (X, ¥)) fori =1, 2, . . . n, we compute the residuals. We
then square the residuals and take their sum. This is called the mean
square error. Note that in this case, the slope “b” for the fitted line is
3.5, and the intercept “a” is 2. Had we used a different value for “b”
and “a,” we would have gotten different residuals and hence a different
mean square error. The method of least squares is a common way to fit
“b” and “a.” It simply amounts to finding the value of “»” and “a” that
makes the mean square error the smallest. This minimum is unique in
many instances, and the resulting values for “b” and “a” are called the
least squares estimates of the slope and intercept, respectively. Note
that this minimum will be greater than O unless all the points fall exactly
on a straight line.
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Table 7.1 is a listing of systolic and diastolic pressure for 48 elderly
men. Figure 7.1 is a scatter plot of this data.

A scatter plot is used to portray the relationship between two vari-
ables. It displays the relationship by marking the data on a grid of (X,
Y) pairs. This is a plot in Cartesian coordinates of the measurements X
and Y for the individual subjects. In the case of Figure 7.1, X is the

Table 7.1
Systolic and Diastolic Blood Pressure for a
Sample of 48 Elderly Men

Subject Systolic blood Diastolic
number pressure blood pressure
01 140 78
02 170 101
03 141 84
04 171 92
05 158 80
06 175 91
07 151 78
08 152 82
09 138 81
10 136 80
11 173 95
12 143 84
13 117 75
14 141 83
15 120 76
16 163 89
17 155 97
18 114 76
19 151 90
20 136 87
21 143 84
22 163 75
23 141 81

24 163 94



98 CHAPTER 7 Correlation, Regression, and Logistic Regression

Table 7.1

(Continued)

Subject Systolic blood Diastolic
number pressure blood pressure
25 145 81
26 151 83
27 134 85
28 178 99
29 128 73
30 147 78
31 146 80
32 160 91
33 173 79
34 143 87
35 152 69
36 137 85
37 146 83
38 162 83
39 158 77
40 152 86
41 152 93
42 106 67
43 147 79
44 111 71
45 149 83
46 137 77
47 136 84
48 132 79

systolic blood pressure and Y is the corresponding diastolic blood pres-
sure taken at the same time. If the two variables are highly positively
correlated, the pattern of dots will closely resemble a straight line with
a little scatter.

In Figure 7.1, we can perhaps visualize a straight line running
through the data but mainly what we observe is a tendency for the
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Figure 7.1.  Scatter diagram of systolic and diastolic blood pressure (data from Table 7.1).

diastolic pressure to be higher than its average when the systolic
pressure is higher than its average and lower than its average when the
systolic pressure is below its average. Next in Section 7.2, we will see
how the Pearson correlation describes aspects of the scatter plot, and
in Section 7.3, how a regression line can be plotted through the data
using the least squares criterion.

7.2 PEARSON’S CORRELATION

The Pearson correlation coefficient is a parameter that has a natural
place in the bivariate distribution. When we have a sample such as in
the scatter plot for systolic and diastolic blood pressure, we can obtain
a sample estimate. Generally, p is used to denote the parameter, and r
to denote the sample estimate of p.

=3 %R T D)X (R T ()
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Here, ¥ and X are their respective sample means, and X; and
Y, are the respective blood pressure readings for the ith subject.
This formula is best for understanding the meaning because it shows
r to be the ratio of the sample estimate of the covariance between
X and Y divided by the square root of the product of their
variances. To see it, divide numerator and denominator by n. In
the denominator, rewrite n as Jnn. Put one n under the sums
involving X, and one under the sums involving Y. Then the
denominator is an estimate of the square root of the product of
sample variances, and the numerator is a sample estimate of the
covariance.

A more complicated computational formula calculates r faster, and
is mathematically equivalent to the expression above. Both r and p have
the property that they can take on any value in [-1, 1], but cannot take
on a value outside that interval.

One common hypothesis test that is conducted when the data is
suspected to be correlated is to test that the population correlation coef-
ficient p = 0 versus the two-sided alternative that p # 0. This test is the
same as the test that the slope of the regression line is 0. Under the
null hypothesis that p =0, the quantity r (y/n —2)/~1—r*) has a t-
distribution with n — 2 degrees of freedom.

In this case, if we reject the null hypothesis of no correlation,
we can conclude that the two variables are related. But it does not
address the issue of why they are related. Often, we study relationships
between variables because we suspect a causal link. The simple test
for correlation cannot provide us with information on causation.
Sound theory is required to make the causal link. In many situations,
we must at least have the value for X occur before Y in time for X
to be able to cause Y, and in such situations, we can rule out the
possibility that Y causes X. Over the past 20 years, a great deal
of research in statistical modeling has led to advances in finding
models and plausible assumptions where a significant relationship
can imply a causal relationship. In this branch of statistics, which is
sometimes called causal inference, the names of Pearl, Rubin, and
Robins stands out. Some articles that may be of interest are Robins
(1999), Hernan et al. (2000), and Hernan et al. (2005). There are also
the books, Pearl (2000, 2009), Rubin (2006), and van der Laan and
Robins (2003, 2010).
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Y Intercept

Figure 7.2. Scatter plot for six observations illustrating regression line and residuals.

7.3 SIMPLE LINEAR REGRESSION AND
LEAST SQUARES ESTIMATION

A scatter plot of six points with a line fit through it is illustrated in
Figure 7.2, taken from figure 12.3 from Chernick and Friis (2003)

The least squares solution for the slope and intercept is the one (the
solution is not always unique) that picks a value for “b,” the slope
estimate, and “a,” the intercept estimate, so that. Now b is related to r
as we shall show. The least squares estimate of b is

b= (X-R)(x-7)/ 3 (x-%)"

Let

S, :\/Z;(Yi _?)2/(,1—1) and S, :\/Z;(Xi _)2)2/(11—1).

Then

b=(S,!S,)r.

The least squares estimate of “a” is obtained by solving
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Y=a+bX or a=Y-bX.

To illustrate solving a simple linear regression problem, we use
weight and height data obtained for 10 individuals. The data and the
calculations are illustrated in Table 7.2.

We first calculate b and a.

Z(X —X)(Y -Y)=201 and

D (X =X)? =9108.90.
So b=201/9108.90 =0.0221.
Then a=Y —bX =63—(0.0221)154.10 = 59.59.
Now let us see how we would get confidence intervals for new

values of Y when X = x. First let us define a few terms.

1. Sum of squares error: SSE = X(Y; — )A/)2
2. Standard error of estimate: S, , =+/[SSE/(n—2)]

Table 7.2
Calculations for Inference about the Predicted Y-Value and the
Slope of the Regression Line

Subject X = Weight x — )2' X - }2’)2 Y =Height Predicted y_— f/ (Y - f/y

ID (Ibs) (in) height ¥,

01 148 —6.1 37.21 64 62.87 1.13 1.29
02 172 179 32041 63 63.40 —-0.40 0.16
03 203 489 2391.21 67 64.08 2.92 8.52
04 109 —45.1  2034.01 60 62.00 -2.00 4.01
05 110 —44.1 1944.81 63 62.02 0.97 0.95
06 134 -20.1 404.01 62 62.56 —-0.56 0.31
07 195 409 1672.81 59 63.90 -490 24.05
08 147 7.1 50.41 62 62.84 -0.84 0.71
09 153 -1.1 1.21 66 62.98 3.02 0.15
10 170 159 25281 64 63.35 0.65 042

Total 1541 9108.9 49.56
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3. Standard for IA/given X=x:

SE(V)=S, " +(x—X)* /I (X, - X)? |

A 100(1 — )% confidence interval for predicted value of Y given
X =x1is then [Y" — t,,()SE(Y"), Y + t,,(a)SE(Y")], where t,,() is
the 100(1 — o/2) percentile of a r-distribution with n — 2 degrees of
freedom.

A confidence interval for a prediction of Y is sometimes called a
prediction interval. Now let’s go through the steps above to get a pre-
diction interval for Y given X = 110 for the example in Table 7.2.
SSE = 49.56 (see table). Then S, . =+/(49.56/8) =2.73. So,

SE(Y")=2.73(N107" +(110—154.1)* /(108.9) = 0.56.
Hence, a 95% prediction interval for Y given X = 110 is

[62.02-2.306(0.56),62.02+2.306(0.56)] =[60.73, 63.31].

To test the hypothesis Hy = 0, where B is the slope parameter of
theregressionequation, we usethe teststatistict = (b — B)/SE(b) = bISE(b),
since the hypothesized value for 8= 0. Now SE(b) =S, / [Z(Xi -X)? ]
For our example, SE(b)=2.73/v9108.9 =0.0286. So, t=0.77. We
refer to a #-distribution with 8 degrees of freedom to determine the p-
value, and we cannot conclude that f3 is significantly different from 0.
Since p is a simple multiple of B, we also cannot conclude that p is
significantly different from 0. In this case, the p-value is greater than
0.2, since it is two-sided, and the 90th percentile of a z-distribution with
8 degrees of freedom is 1.397 and 7 = 0.77 << 1.397.

One important point about simple linear regression is the term
linear. Linear here means that the relationship is linear in the parameters
and not necessarily in the independent variable. So although we often
think of the linear regression equation as Y = X + «, this is both linear
in the independent variable X, as well as the parameters o and f.
However, the equations Y = 8X* + a, or Y = 3 In(X) + ¢, also fit the
simple linear regression model, although they involve nonlinear func-
tions of the independent variable X.

The term nonlinear regression is defined as a form of regression
where the equation for Y is nonlinear in the parameters that we wish to
estimate. So, for example,
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Y =g(x,0) =6, +6,exp(6;x),

is a simple nonlinear regression because it is nonlinear in the parameter
05, and it cannot be transformed into a linear regression. Multiple linear
regression is also linear in the parameters. There is a nonlinear regres-
sion analog to simple nonlinear regression. However, we will not cover
nonlinear regression, and the interested reader should refer to Gallant
(1987) and Bates and Watts (1988), which are both authoritative texts
on nonlinear regression.

7.4 SENSITIVITY TO OUTLIERS AND
ROBUST REGRESSION

Outliers are unusual or extreme observations within a given data set.
We might expect laboratory data and other measured data taken on
humans to be normally distributed, with approximately 95% of the
cases falling within two standard deviations of the mean. Nevertheless,
particularly in large samples, extreme values may occur. This could be
due to the actually occurrence of an extreme value from the normal
distribution, or it could be a measurement, coding, or data entry error.
In small samples, this is also possible with all the same explanations.
However, the chance of an extreme outcome from a normal distribution
is much less likely to occur in small samples.

For the simple linear regression problem discussed in the previous
section, we showed how to compute the slope and intercept parameters
as a least squares solution. Since the method involves minimizing the
sum of squared residuals, these parameter estimates are very sensitive
to outliers. This is analogous to the sensitivity of the sample mean to
outliers. The sample mean is the least squares estimate of the mean
from a sample of independent identically distributed observations.
Because the sum of squares is minimized, outliers pull the estimate
toward their value, and hence execute great influence than observations
near the true population mean.

In regression, the slope is pulled up or down depending on the
direction of the outlier. Robust regression methods are used to mini-
mize the influence of outliers at the price of statistical efficiency.
However, when outliers are possible, the sacrifice in efficiency is often
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more than made up for by the reduction in the bias that the outlier(s)
may cause. Later, we shall see that there are also diagnostics that can
be used in regression to tell when the least squares estimates are influ-
enced by outliers.

There are two strategies for dealing with outliers in regression. One
is to detect and remove the outliers. The other is to use a robust regres-
sion procedure in place of least squares. Robust regression is sometimes
preferred because it is viewed as accommodating outliers, whereas the
removal of an outlier really is a statement that the data point has no
value toward the estimation of the parameter.

Deciding that the outlier is an erroneous observation is not some-
thing that you can know by just looking at the data, and so removal of
outliers should only be done when, after checking the source for gen-
erating the data, an actual error is identified. Outliers in regression also
have greater influence on the slope when they are near the upper or
lower limits on the x-axis. These outliers are called leverage points. In
general, any point near the upper or lower limits on the x-axis is a
leverage point. But if the leverage point does not affect the estimate
very much when it is removed, it is not an outlier with respect to the
bivariate distribution of X and Y.

One robust regression method is to find the estimated coefficients
that minimize the sum of absolute errors. By doing this, the outliers
have less influence than when the deviations are squared. In the case
of the mean, a robust sample estimate is the median. It turns out that
the median minimizes the sum of absolute deviations of the observa-
tions from the estimate. So taking the mean absolute error for regres-
sion parameter estimates is analogous to using the median as an estimate
of the mean for a simple random sample. There are many other robust
regression procedures. We will not cover them here. See Huber (1981)
or Maronna et al. (2006) for the details.

I choose a very dramatic example from the 2000 presidential
election votes counted in the state of Florida. Although this is not a
medical example, it is a very familiar example that makes the case very
well. The number of votes received by Patrick Buchanan in Palm Beach
County was very high relative to other counties, and hence represents
an outlier.

You may recall that the Gore campaign contested the voting
results in Florida due to several irregularities that they believe cost
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Gore votes. They contended that due to the closeness of the race
between Bush and Gore, the contested votes could swing the state
over from Bush to Gore, and hence the election would go to Gore,
since Florida had enough electoral votes to change the outcome of
the votes in the electoral college. One irregularity was the butterfly-
shaped ballot in Palm Beach County. The democrats theorized that
the unusual butterfly shape of the ballot could confuse voters, and
they could mark Buchanan’s box thinking that they had voted
for Gore.

In this case we could put the data on a scatter plot with counts by
county plotted for Gore versus Buchanan, Bush versus Buchanan, or
even Ralph Nader versus Buchanan, and in each case, Palm Beach
County will be a huge outlier. The data were made public on the
Internet, and many statisticians analyzed the data in a variety of ways.
Table 7.3 shows the vote by county for Gore, Bush, and Buchanan.
There are a total of 67 counties in Florida.

There are many things that can be observed from the data, and
the scatter plots will help greatly. First, Gore and Bush were the
main party candidates and received the lion’s share of the votes.
Buchanan and Nader were alternative party candidates, and Nader
received far more votes than Buchanan. The number of votes from
county to county varies quite a bit for all candidates simply because
the population size of the counties varies so much. Dade (where Miami
is located), Broward, and Palm Beach are the three largest counties in
Florida.

Palm Beach is a heavily populated by registered Democrats, and
so Gore won the county by a large margin 268,945 to 152,846. Not
including Palm Beach County, Buchanan’s votes ranged from 9 in
Glades to 1010 in Pinellas. Gore’s vote totals ranged from 788 in
Lafayette to 386,518 in Broward County. Bush’s vote totals ranged
from 1316 in Liberty to 289,456 in Dade County. In Palm Beach
County, Buchanan got 3407 votes. This is more than three times the
amount of votes he got in any other county! By comparison, in Broward
and Dade counties, Buchanan only got 789 and 561, respectively.
Figure 7.3 shows Gore’s votes versus Buchanan’s, and Figure 7.4
shows Bush’s votes versus Buchanan’s.

This seems to present a prima facie case that there is some irregu-
larity going on in Palm Beach County, and that it is likely that many
of the votes for Buchanan were not intended for him. But then
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why worry, Buchanan didn’t come close to winning the state or even
Palm Beach County, and 3407 votes is not a lot. Some were probably
intended to go to Buchanan. In fact, we can do a regression analysis
by excluding Palm Beach and fitting a regression line to the Gore versus
Buchanan data, and predict the number of votes Buchanan would be
expected to have given that Gore had 268,945. This will be an estimate
of how many out of the 3407 might be legitimate, and the remainder
would belong to Gore, Bush, or Nader.

Since we do not know how to split it up, someone playing devil’s
advocate could say that Bush probably would have gotten something
like the proportion that he otherwise got, and the differential would not
be enough to swing the election to Gore. But Bush only won by
approximately 2000 votes, so if all those votes were for Gore, it could
swing the election to Gore’s favor.

If we just did a little data mining, we would have seen this anomaly
even if we didn’t know about the butterfly ballot. But now the butterfly
ballot becomes important because (1) Palm Beach is primarily
Democratic; and (2) the ballot makes it easy to mistake Buchanan for
Gore, but not Buchanan for Bush. Now adding up all the votes from
the counties we get:

Gore 2,907,342 Bush 2,828,127.

So Gore would have actually won by close to 80,000 votes. But
this does not include the absentee ballots, many of which came from
the troops overseas. So the absentee ballots swung the vote to Bush.
Although we can estimate how many additional votes we think Gore
should have gotten from Palm Beach County there is uncertainty in our
estimates, and in the end, we would not be highly confident that Gore
won Florida. A better resolution, as I see it, would be to have Florida
do a reelection.

Some would argue that it would not be fair to allow registered
voters to vote if they hadn’t voted on election day. Now those voters
could be excluded because we have records of every registered
voter who cast a ballot. Of course even this would not replicate the
results because some voters could change their mind and some that
legitimately voted for Nader or Buchanan could switch to Gore or
Bush. There is also the issue of the absentee ballots. There really is no
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good resolution to the problem. Also the Bush campaign said that for
every county that Gore contests, Bush could also find counties that he
would contest. Perhaps the Supreme Court’s decision was correct. If
there is no good way to correct a mistake you should stay with the
results you have. It was the right decision, but their reasoning was
wrong.

7.5 MULTIPLE REGRESSION

The differences between simple linear regression and multiple linear
regression are

1. One independent predictor variable versus two or more indepen-
dent predictor variables

2. The bivariate correlation squared is replaced by the multiple
correlation coefficient R.

3. In multiple linear regression, the correlation matrix replaces the
correlation coefficient.

4. Partial correlations can be defined in multiple regression.

Recall that as mentioned in the section on simple linear regression,
the form of multiple regression that we are referring to in this section
is linear regression, which involves an equation that is linear in the
parameters and not necessarily the independent variables. Multiple
nonlinear regression is not a topic for this text, but Gallant (1987) is
an excellent text that concentrates on nonlinear regression (both simple
and multiple).

Not written in the equation above is the additive independent error
term denoted by &. This error term has mean 0 and a variance o that
is constant (does not change as the independent variables change).
Under these assumptions, the least squares estimates of the regression
parameters are minimum variance unbiased estimators. Also, if € has a
normal distribution, the parameter estimates are maximum likelihood
estimates. This property also holds for simple linear regression. The
property that the least squares estimates are minimum variance among
unbiased estimates is called the Gauss—Markov theorem. A proof can



112 CHAPTER 7 Correlation, Regression, and Logistic Regression

be found in Draper and Smith (1998, p. 136). The maximum likelihood
result can also be found in Draper and Smith (1998, p. 137).

In practice, once we consider multiple regression, there is an
issue of how many candidate variables should be included in the
regression. Also, some of the variables that we think affect the depen-
dent variable may be related to each other, and so some different
selections of subsets of the variables may produce essentially the same
predictions. However, in such cases, we have a phenomenon called
multicollinearity.

When this happens, it is not a good idea to include all the variables.
This is because there may be different sets of values that could be used
for the parameters to almost identically fit the data. When this is the
case, the estimates are unstable, meaning that slight changes in the data
could produce large changes in the regression parameters. Consequently,
multicollinearity must be avoided.

There are diagnostics for determining when multicollinearity or
near multicollinearity occurs. Belsley et al. (1980) cover this in detail.
Another way to avoid multicollinearity is to use one of the many pos-
sible procedures for selecting a subset of the independent variables.
Among the possibilities are best subset selection (requiring an evalua-
tion of all possible subsets, which can be a lot of possibilities), forward
selection (adding variables in one at a time based on an F to enter
criterion), backward selection (start with all variables in the model and
remove one at a time based on an F to exit criterion), and stepwise
selection (at each stage, when a proper subset of the variables is in the
regression model F'to enter and F to exit, criteria are looked at to decide
if the next step should be to add or drop a variable, and which variable
to remove [add]).

Other texts on regression cover these methods in detail, but are not
important to cover in this text. These methods are all available in most
statistical packages that include multiple regression.

We will illustrate multiple regression by again using the Florida
2000 Presidential Election results. We will attempt to predict Buchanan’s
votes in Palm Beach on the basis of the data from all the other counties,
but not simply use Bush’s or Gore’s or Nader’s votes in a simple linear
regression. Rather, we will look at a multiple regression model using
Bush, Gore, and Nader, and the possible subsets of these. We hope to
get a better prediction by using more than one predictor, but we also
realize that these vote totals are positively correlated because of the
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variability of the size of the counties, and hence all candidate votes
increase together because the increase is primarily due to the larger size
of county.

Using the software package SAS, we looked at three of the possible
multiple regression models. Let N, = Gore’s total votes in the county,
N, = Bush'’s total, N; = Nader’s total, and M = Buchanan’s total votes
(the dependent variable). The three models are as follows:

1. M = BN, + BN, + BiN; + .
2- M = ﬂzNz + ﬁ3N3 + O
3. M = BN, + BiN; + BNoN;.

In model 1, the coefficient B, was not statistically significant. So
model 1 was dispensed with, and only models 2 and 3 remained under
consideration. The SAS code used to obtain the results is given in italics
as follows:

data florida;
input county$ gore bush buchanan nader;
cards;
alachua 47300 34062 262 3215
baker 2392 5610 73 53

¢

walton 5637 12176 120 265
washingtn 2796 4983 88 93
run;
data florid2;
set florida;
if county = 'palmbch’ then delete;

nbinter = nader*bush;
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run;

proc reg;
model buchanan = nader bush gore;

run;

proc reg;
model buchanan = nader bush;

run;

proc reg;
model buchanan = nader bush nbinter;

run;

The data statement at the beginning creates the SAS data set
“florida,” with “county” as a character variable, which is indicated by
“$” after it in the input statement, and “gore, bush, buchanan and nader”
as numerical variables representing the vote totals for that candidate in
the given county. The input statement tells how to assign the data that
will be read. The cards statement indicates that the data read according
to the input statement is to follow. The symbol “;” at the end of the
data indicates the completion of reading the data. The statement “run”
indicates the finish of the data step.

The next statement is a new data step used to modify the original
data set. The set statement means to copy the data set florida into
florid2. The “if statement” deletes the line corresponding to Palm Beach
county, so that the model will be constructed without including Palm
Beach. The statement “nbinter = nadir*bush” creates a variable equal
to the product of Nader’s total with Bush’s total. This variable will be
used as the interaction term in the third regression.

The first regression generates model 1, where we can test the sig-
nificance of Gore’s total when included with Bush and Nader. This is
part of the standard SAS output for this procedure. The second regres-
sion is for the model that includes Bush and Nader’s votes only to
predict Buchanan’s total. The third regression incorporates an interac-
tion term between Bush and Nader.

The output is now presented in bold face, as follows:
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Model: MODEL1 (using votes for Nader, Bush, and Gore to predict

votes for Buchanan)

Dependent Variable: BUCHANAN

Source df
Model 3
Error 62
Total 65
Root
MSE
Dep
Mean
C.V.
Variable df
INTERCEP 1
NADER 1
BUSH 1
GORE 1

Analysis of Variance

Sum of
Squares Mean Square  F-Value

2777684.5165  925894.82882  114.601
500914.34717  8079.26366

3278598.8636

89.88472 R? 0.8472
211.04545 Adj R? 0.8398
42.59022

Parameter Estimates

Parameter Standard T for Hy:
Estimate Error Parameter
=0
54.757978 14.29169893 3.831
0.077460 0.01255278 6.171
0.001795 0.00056335 3.186
-0.000641 0.00040706 -1.574

Prob
>F

0.0001

Prob
> |TI

0.0003
0.0001
0.0023
0.1205

Model: MODEL2 (using votes for Nader and Bush to predict votes

for Buchanan)

Dependent Variable: BUCHANAN

Source df
Model 2
Error 63
Total 65

Root

MSE

Analysis of Variance

Sum of
Squares Mean Square  F-Value

2757655.9253  1378827.9626  166.748
520942.93834  8268.93553
3278598.8636

90.93369 R’ 0.8411

Prob
>F

0.0001
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Variable

INTERCEP
NADER
BUSH

Dep
Mean

C.v.

af

211.04545

43.08725

Adj R?

Parameter Estimates

Parameter

Estimate

60.155214
0.072387
0.001220

Standard

Error

14.03642389
0.01227393
0.00043382

0.8361

T for Hy:
Parameter
=0
4.286
5.898
2.812

Prob
> Tl

0.0001
0.0001
0.0066

Model: MODEL3 (using votes for Nader and Bush plus an interac-
tion term Nader*Bush to predict votes for Buchanan)

Dependent Variable: BUCHANAN

Source

Model
Error
Total

Variable

INTERCEP
NADER
BUSH
NBINTER

af

62
65

Root
MSE

Dep
Mean

C.V.

daf

e S =

Analysis of Variance

Sum of
Squares

2811645.8041
466953.05955
3278598.8636
86.78422

211.04545

41.12110

Mean Square
937215.26803
7531.50096

RZ

Adj R

Parameter Estimates

Parameter

Estimate

36.353406
0.098017
0.001798
—-0.000000232

Standard

Error

16.7731503
0.01512781
0.00046703
0.000000009

F-Value
124.439

0.8576

0.8507

T for H,:
Parameter
=0
2.261
6.479
3.850
-2.677

Prob
>F

0.0001

Prob
> Tl

0.0273
0.0001
0.0003
0.0095
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For each model, the value of R* describes the percentage of the
variance in the votes for Buchanan that can be explained by the predic-
tor variables. This is a measure of the goodness of fit for the model.
The adjusted R” is slightly smaller and takes into account the fact that
the estimates have greater variability in prediction due their correlation
in estimation from a common data set.

Both the R* and adjusted R* are highest in model 3. The R* and
adjusted R* in models 1 and 2 are almost the same. But model 2 is
preferable to 1 because Gore’s coefficient is not statistically significant.
Each model is highly predictive, as indicated by the p-value for the
overall F-test, which is 0.0001 in each case.

It appears that model 3 is the best. So we will use model 3 to predict
Buchanan’s total in Palm Beach County. Here are the predictions that
each model would give.

Model 1: 587.710 votes for Buchanan
Model 2: 649.389 votes for Buchanan
Model 3: 659.236 votes for Buchanan

We see that none of the models predict more than 660 votes for
Buchanan. Not mentioned in the section on simple linear regression
were the simple linear regression models. Without going into the details,
which can be found in Chernick and Friis (2003), the prediction for the
simple linear regression models ranged from 600 to 1076.

Recall that Palm Beach actually recorded 3407 votes for Buchanan.
This is more than three times the amount obtained by any of the predic-
tions. Subtracting the predictions from 3407, we see that Buchanan
received between 2331 = 3407 — 1076 and 2807 = 3407 — 600 that we
believe were mistakes. Our best estimate is 3407 — 660 = 2747. In any
case, if these votes should have gone to Gore, this swing would have
a significant impact on the results.

7.6 LOGISTIC REGRESSION

Logistic regression is a method used to predict binary outcomes on the
basis of one or more predictor variables. The goals are the same as with
linear regression. We attempt to construct a model to best describe the
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relationship between a response variable and one or more explanatory
variables. The difference that distinguishes logistic regression from
other forms of regression is that there are only two possible outcomes,
and the job is to estimate the probabilities of the two possible outcomes
or the odds of the outcome of interest.

Because we have a dichotomous response variable, we use a very
different methodology from the one employed in ordinary linear regres-
sion. The text by Hosmer and Lemeshow (2000) is one of the most
readable texts devoted to logistic regression and providing instructive
examples.

In this section, we provide one simple example along with its solu-

tion. For logistic regression, we have predictor variables X;, X,, . . . X;
and are interested in
EV1X,, X,, ... X, where Y is the dichotomous outcome variable.

This expectation is a probability because Y only takes on the values 0
and 1, and so the conditional expectation is the conditional probability
that Y = 1. For simplicity, we will go through the notation when there
is only one predictor variable X in the model. Then we let
n(x) = E[Y1X = x]. Now because Y is dichotomous and 7(x) is a prob-
ability, it is constrained to belong to (0, 1). The possible values for X
may be unconstrained (i.e., may be anywhere between —co and +oo)

Then if we want the parameters o and f3 for the right-hand side of
the equation to be of the linear form o + fBx when X = x, then the left-
hand side cannot be constrained to a bounded interval such as (0, 1).
So we define the logit transformation g(x) = In[m(x)/{1 — 7(x)}]. First
we note that the transformation a(x) = m(x)/{1 — m(x)} takes values
from (0, 1) to (0, o). Then applying the logarithm transforms, it takes
values from (0, o) to (—co, o0).

So the logistic regression model is g(x) = o+ Bx. The observed
values of g(X) will have an additive random error component. We can
express this on the probability scale by inverting the transformation to
get m(x) = exp(a + Br)/[1 + exp(a + Bx)]. To see this requires a little
basic algebra as follows: exp(In[x]) = x since the natural logarithm and
the exponential function are inverse functions of each other. Now exp
(glx]) = exp((a + Bx)) = exp{In[z(x)/(1 = 7lx])]} = 2x)/{1 — n(x)}.
So we now solve the equation m(x)/{1 — r{x]) = exp((ox + Bx)) for m(x).
So multiplying both sides by 1 — mx), we get m(x)= {1 — m(x)}
exp((a + Bx)). Distributing exp((oc + fx)) on the right-hand side gives
us 7m(x) = exp((a + Bx)) — mx)exp((ex + Px)), and then by adding 7m(x)
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exp((ax+ Bx)) to both sides, we have m(x)+ mx)exp((a+ Bx)) =
exp((a + Bx)). Now, we factor out m(x) from the left-hand side of the
equation and get m(x)[1 + exp(( + Bx))] = exp((a + Px)). Finally, we
divide both sides by [1 + exp((c + Bx))] and get

71(x) = exp((+ ) /[1+exp((ex + ).

Our objective in logistic regression is to estimate the parameters o
and S to provide the “best fit” in some statistical sense. Now, in ordinary
linear regression, when the error terms are normally distributed with
mean equal to zero and a constant variance, least squares, and maximum
likelihood are the same. In the logistic regression model, however,
maximum likelihood and least squares are not equivalent because the
error term is not normally distributed. Now we proceed to see where
maximizing the likelihood will take us.

Suppose the data consists of the pair (x;, y;) fori=1, 2,..., n.
The x;s are the observed values for X, and the y;s are the observed Y-
values. Remember that the y;s are dichotomous and only can be O or 1.
The likelihood function is then

L(X0, Y15 X205 Y2see X Yo ) =
() [1=m ()] ™ 7w () (17 (0)] 7 o ()" (17 ()]

The solution is obtained by taking partial derivatives with respect
to a and B to obtain the two equations X[y, — 7(x;)] =0 and
Yx[y; — m(x;)] = 0. The parameters o and S enter these equations
through the relationship 7(x;) = exp((o+ fx))/[1 + exp((a + Bx))].
These equations must be solved numerically since they are not linear
in o and . It is also not obvious that the solution is unique.

For the fine details, see Hosmer and Lemeshow (2000) or Hilbe
(2009). The logistic regression model is a special case of the general-
ized linear model due to Nelder. The generalized linear model is linear
in the regression parameters but replaces the response Y with a function
called the link function. In the case of logistic regression, the logit
function is the link function. If you want to learn more about general-
ized linear model, including other examples, consult McCullagh and
Nelder (1989).

The data in Table 7.4 was adapted from Campbell and Machin
(1999) by Chernick and Friis (2003), and is used here to illustrate a
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Table 7.4
Hemoglobin Level (Hb), Packed Cell Volume (PCV), Age,
and Menopausal Status for 20 Women*

Subject Hb (g/dL) PCV (%) Age (years) Menopause
number (0 =no, 1 =yes)
1 11.1 35 20 0
2 10.7 45 22 0
3 12.4 47 25 0
4 14.0 50 28 0
5 13.1 31 28 0
6 10.5 30 31 0
7 9.6 25 32 0
8 12.5 33 35 0
9 13.5 35 38 0
10 13.9 40 40 0
11 15.1 45 45 1
12 13.9 47 49 0
13 16.2 49 54 1
14 16.3 42 55 1
15 16.8 40 57 1
16 17.1 50 60 1
17 16.6 46 62 1
18 16.9 55 63 1
19 15.7 42 65 1
20 16.5 46 67 1

*From Chernick and Friis (2003, p. 286, table 12.10).

logistic regression analysis. The purpose of this data is to fit a logistic
regression model to see if the odds of becoming anemic differ for
women under 30 years of age compared with women over 30. Female
patients with hemoglobin levels below 12 g/dL. were classified as anemic.

We see from the data that two out of the five women under 30 were
anemic, while only 2 of the 15 women over 30 were anemic. None of
the women experiencing menopause were anemic. It is because during
menstruation, younger, nonmenopausal women have blood and hemo-
globin loss, while postmenopausal women would not. So it was hypoth-
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esized that the nonmenopausal women would be at greater risk for
anemia than the postmenopausal women. By risk we mean the probabil-
ity of being anemic given whether or not you are postmenopausal. So
we are saying that we expect that just conditioning on nonmenopausal
or postmenopausal, we would expect the conditional probability to be
higher for nonmenopausal women.

Another common way to look at the difference in risks such as
anemia when comparing two groups like this is the odds ratio, say
0,/0,, where O, =m/(1 — m) and O, =m/(1 — m). O, and O, are
called the odds—say 1 denotes nonmenopausal women and 2 denotes
postmenopausal women. Relative risk is m,/m,. So when m; and 7, are
small, 1 — m; and 1 — m, are close to 1, and the odds ratio and relative
risk are nearly the same. But when they are not small, the two measures
can differ. Lachin (2000) is an excellent text on biostatistics that empha-
sizes relative risks and odds ratios. So it is a great source to use to clear
up any confusion you might have.

Campbell and Machin only used the age dichotomized at 30, and
estimated that the regression parameter for age group was 1.4663, with
a standard error of 1.1875. The Wald test is the analog in logistic regres-
sion to the t-test for significance of the parameter. The value of the
Wald statistic was 1.5246, which translates to a p-value of 0.2169. So
at least for the two age groups, there was not a statistically significant
difference. However, age could still be an important factor if the cut
point should be different or if age is left on a continuous scale. Also,
it may be that there is too much patient to patient variability for 20
women to be an adequate sample size. Also, age is correlated with
menopause. So it may be that age would be far more important if the
dichotomous menopause variable were not included in the model.

The result of performing the logistic regression using the actual
ages, as was done by Chernick and Friis (2003), gives a coefficient of
—0.2077, with a standard deviation of 0.1223, indicating a possible
decrease in the risk of anemia with increasing age. The Wald statistic
is 2.8837, corresponding to a p-value of 0.0895. This is significant at
the 10% level, but not at the 5% level. It could well be that we would
find greater significance with a larger sample of women. The choice of
30 to dichotomize was probably a bad choice. We note that 6 of the 15
women over 30 were not menopausal, and the coefficient of 1.4663
was in the opposite direction of what the alternative hypothesis would
suggest.
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7.7 EXERCISES

11.
12.

. Define the following terms:

(a) Association

(b) The Pearson correlation coefficient

(c) Simple linear regression

(d) Multiple linear regression

(e) Nonlinear regression

(f) Scatter plot

(g) Slope of the regression line in simple linear regression

. What assumptions are needed for the Pearson correlation coefficient to be

a meaningful measure of the relationship between two variables?

. What is the mathematical relationship between the correlation coefficient

and the slope of the simple linear regression line? Can the slope be nega-
tive and the correlation be positive? If the correlation is zero, what is the
value of the slope?

. Regarding outliers:

(a) How would you define an outlier?
(b) Does an outlier always imply an error in the data?
(c) Give an example of an outlier that represented an error in the data.

(d) Give an example where the outlier is more important to the research
than the other observations.

. What is logistic regression? How is it different from ordinary linear

regression?

. How does multiple linear regression differ from simple linear

regression?

. What is the definition of the multiple correlation coefficient R*?
. How is R? useful in evaluating the goodness of a model?
. What is the equivalent to R* in simple linear regression?
10.

What is multicollinearity? Why does it pose problems estimating regres-
sion parameters?

What is stepwise regression? Why is it used?

Refer to Table 7.5. A psychiatric epidemiologist studied information he
collected on the anxiety and depression levels for 11 subjects. Produce a
scatter diagram for anxiety score on the x-axis and depression score on
the y-axis.



7.7 Exercises 123

13.

14.

15.

Table 7.5

Anxiety and Depression Scores for 11

Subjects

Subject ID Anxiety score Depression score
1 24 14
2 9 5
3 25 16
4 26 17
5 35 22
6 17 8
7 49 37
8 39 41
9 8 6
10 34 28
11 28 33

Again referring to Table 7.5, calculate the following: (a) mean anxiety
score, (b) mean depression score, (c) standard deviations for depression
and anxiety scores, and (d) Pearson correlation between anxiety score and
depression score.

An experiment was conducted to study the effect of increasing the dosage
of a certain barbiturate. Three readings were recorded at each dose. Refer
to Table 7.6.

(a) Plot the scatter diagram (scatter plot)

(b) Determine by least squares the simple linear regression line relating
dosage X to sleeping time Y.

(c) Provide a 95% two-sided confidence interval for the slope.
(d) Test that there is no linear relationship at the 0.05 level.
Fit the model and predict the sleeping time for a 12 uM/kg?>
(a) The Pearson product moment correlation coefficient

(b) A test result as to whether or not the correlation coefficient is signifi-
cantly different from O at the 0.05 significance level.

(¢) The same test as (b) but at the 0.01 significance level.
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16.

17.

18.

Table 7.6
Dosage Versus Sleeping Time
Sleeping time Y (hours) Dosage X (uM/kg)
4
6
5
9 10
8 10
7 10
13 15
11 15
9 15
Xy=172 X =84
TY: = 642 ¥X* = 1002
2XY =780

Table 7.7 shows the Math Olympiad scores for 33 math students at
Churchville Elementary School in Churchville, Pennsylvania in 2002. We
are interested in how well the first score (test 2) predicts the students next
score (test 3). Plot the scatter diagram for this data. Compute the Pearson
correlation coefficient and the square of the correlation coefficient.
Calculate the mean score for test 2 and the mean score for test 3.

Math Olympiad and regression toward the mean. The least squares regres-
sion equation for exam score 3, y as a function of exam score 2, x, is:

y=0.4986x +1.0943.

The possible scores for exam 2 are 0, 1, 2, 3, 4, and 5. For each pos-
sible score, use the above regression equation to predict the score for exam
3 for a student who got that score on exam 2. Fill in the predicted scores
for Table 7.8.

Having computed the average scores on exams 2 and 3, you know that in
both cases, the average is somewhere between 2 and 3. So scores on exam
2 of 0, 1, and 2 are below average, and scores of 3, 4, and 5 are above
average. Compare the scores on exam 2 with their predicted score for
exam 2 scores of 0, 1, and 2. Are the predicted scores lower or higher than
the exam 2 score? Now, for scores 3, 4, and 5, are the predicted scores
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Table 7.7
Math Olympiad Scores for Churchville Students

Student number Score on exam 2 Score on exam 3
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Table 7.8
Predicting Student's Olympiad 3 Exam
Score Based on Olympiad 2 Exam Score

Exam 2 score Predicted exam 3 score

b Bk~ LN = O

higher or lower than the exam 2 score? What changes when we move
from below the average to above the average? The result is a mathematical
property called regression toward the mean. This occurs in any regression
problem. Some people thought it was a tendency to move toward medi-
ocrity. But that is a fallacy called the regression fallacy.
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Contingency Tables

Contingency tables are cross-tabulations of one categorical variable
versus another. They are used to test hypotheses about association
between the variables or differences among proportions. We will see
that the chi-square test is an approximate test for association when the
data set is large enough. Large enough means that each cell in the table
is filled with a reasonable number of counts (5 as a minimum is a good
rule of thumb).

On the other hand, Fisher’s exact test and its generalizations achieve
the exact significance level, but require an added assumption that the
row sums and the column sums are fixed at their observed levels when
comparing the existing table with other possible arrangement that occur
under the null hypothesis of no association (sometimes referred to as
independence).

The simplest table is the 2 X 2, where each variable can have only
two categories. However, in general, we have the R X C table where R
is the number of categories for the row variable, and C is the number
of categories for the column.

8.1 2 x 2 TABLES AND CHI-SQUARE

For an example of a 2 X 2 table, consider the case: Let us consider
whether or not there is a difference in the preference for western

The Essentials of Biostatistics for Physicians, Nurses, and Clinicians,
First Edition. Michael R. Chernick.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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Table 8.1
Preference for Type of Medical Care by Gender

Type of medical care preference

Gender Western medicine Alternative medicine Row total
Men 49 (39.5) A 51 (60.5) B 100 (100) A+ B
Women 30 (39.5) C 70 (60.5) D 100 (100) C+ D
Column total 79 (719) A+ C 121 (121) B+ D 200 (200)

N=A+B+C+D
Grand total

Expected frequencies are shown in parentheses.

medicine versus alternative medicine between men and women.
Suppose we have a questionnaire where we ask the respondents if they
prefer western medicine or alternative medicine, and we tell them that
they must choose one over the other. We also keep track of the gender
of all the respondents. Table 8.1 illustrates the 2 x 2 table that corre-
sponds to the results of such a survey.

The table above presents the observed frequencies from a survey
of men and women. Out of 100 men, 49 favored western medicine, and
51 favored alternative medicine. Out of 100 women, 30 favored western
medicine, and 70 favored alternative medicine. The expected frequen-
cies represent the total (not necessarily an integer because it is an
average) in each of the four cells under the assumption of no associa-
tion. The cell counts are represented algebraically as A for men favoring
western medicine, B for men favoring alternative medicine, and C for
women favoring western medicine, and D for women favoring alterna-
tive medicine.

The expected value under the null hypothesis of no difference or
independence for the cell containing A, we shall denote as E(A), and
similarly for B, C, and D. E(A) is the product of the two proportions
involving A multiplied by N (the grand total). So E(A) = N[(A + B)/N]
[(A + C)/N] = N(A + B)(A + C)/N* = (A + B)(A + C)/N. By the same
argument, E (B) = (B + A)(B + D)/N, and E(C) = (C + D)(C + A)/N,
and E(D) = (D + C)(D + B)/N. Applying these formula in the example
in Table 8.1, the values in parentheses are obtained using A = 49,
B=51,C=30,and D =170.
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In general, Karl Pearson’s chi-square test determines the goodness
of fit of the observed data to the expected value under a model. This is
a general asymptotic result that applies to a wide variety of problems,
including testing for independence between two variables, as in the
current example. The asymptotic distribution in the general case of an
R x C contingency table is the central chi-square distribution with
(R—1)(C — 1) degrees of freedom. So in the 2 X 2 table, R =2 and
C =2, and hence the degrees of freedom is 1. The chi-square statistic
is given by the formula

x ZZ(Q‘ —E)/E,

where O; is the observed total in for cell 1, and E; is the expected total
for cell i.

x* =(49-39.5)*/39.5+(30-39.5)*/39.5+
(51-60.5)* /60.5+ (70 —60.5)* /60.5 =7.55.

For o= 0.05, the critical value for a chi-square random variable
with 1 degree of freedom is 3.84. So, since 7.55 >> 3.84, the choice of
type of medical care does differ between men and women.

8.2 SIMPSON’S PARADOX IN THE 2 x 2 TABLE

Sometimes, as for example in a meta-analysis, it may be reasonable to
combine results from two or more experiments, each of which produces
a 2 x 2 table. We simple cumulate for the corresponding cells in each
table the sum of the counts over all the tables.

However, this creates an apparent paradox, known as Simpson’s
paradox. Basically, Simpson’s paradox occurs when we see an apparent
association in each of the individual tables, but not in the combined
table or the association reverses!

To understand this better, we take the following example from
Lloyd (1999, pp. 153-154). For this analysis (a fictitious example used
to illustrate the issue), a new cancer treatment is given, experimentally,
to the patients in hospital A, who have been categorized as either ter-
minal or nonterminal.

Before we analyze the patients based on their terminal/nonterminal
category, we naively think that we can see a difference in survival
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simply based on the treatment without regard to their status. Hospital
A follows the patients, and records the results after 2 years of follow-
up, hoping to see better survival under the new treatment. The results
are given in Table 8.2.

By examining the table, the results seem clear. There were 221
patients receiving the new treatment, and 221 the old. But the old treat-
ment appears better because 177 survived, compared with only 117
under the new treatment. The survival rate for patients under the old
treatment is 80.1%, and only 52.9% for the new treatment. This is puz-
zling to the investigators, because they thought that the new treatment
was better!

The investigators think about it, and now they say to themselves
“maybe the greater survival in the old treatment group could be due to
an imbalance of terminally ill patients.” Since terminally ill patients
are likely to die regardless of treatment, it is possible that the observed
difference is explained, because many more patients were terminally
ill in the new treatment group.

They decide to split the data into two groups and generate two 2 X 2
tables. Table 8.3 is the table for the terminal patients, and Table 8.4 for
the nonterminal patients.

Table 8.2
All Patients: Survival Versus Treatment

Treatment  Survived 2 years  Died within 2 years  Total

New 117 104 221
Old 177 44 221
Total 294 148 442
Table 8.3

Terminal Patients Only: Survival Versus
Treatment

Treatment  Survived 2 years  Died within 2 years  Total

New 17 101 118
Old 2 36 38
Total 19 137 156
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Table 8.4
Nonterminal Patients Only: Survival Versus
Treatment

Treatment  Survived 2 years  Died within 2 years  Total

New 100 3 103
Old 175 8 183
Total 275 11 286

Here, the picture is quite different. The survival rate is much lower
in the terminal patients (as we should expect), and many more terminal
patients got the new treatment compared with the old 118 versus 38.
In the terminal group, the survival rate for those getting the new treat-
ment is 14.4% compared with only 5.2% for patients on the old treat-
ment. For the nonterminal patients, the new treatment group has a
survival rate of 97.1%, slightly higher than the 95.6% for the old treat-
ment group.

So here is the paradox. The new treatment is apparently better in
both subgroup analyses (although probably not statistically signifi-
cantly better for the nonterminal patients). So based on the subgroup
analysis, the new treatment might get regulatory approval. However, if
we only had the combined results, we would be convinced that the new
treatment is inferior to the old treatment.

So why does Simpson’s paradox occur and how do we resolve it?
First, notice the imbalance between the subgroups. Only 156 patients
were terminal compared with 286 in the nonterminal group. Also, in
the terminal group, there were far more patients getting the new treat-
ment (118), while only 38 patients got the old treatment. These imbal-
ances mask the benefit of the new treatment when the data is combined.
Also notice that the survival rates are so drastically different for termi-
nal and nonterminal patients.

A total of 275 out of 286 nonterminal patients survived (96.15%),
whereas only 19 out of 156 survived among the terminal patients only
(12.18%). So the combination of the two groups makes no sense. It is
like adding apples with oranges. In reality, the combined table is mean-
ingless and presents a distorted picture.

In such cases, we would not combine these two studies in a meta-
analysis, as they are estimating radically different success probabilities.
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So the investigators were right in thinking that the status of the disease
had a confounding effect on the result in the combined table, and the
analysis should have done only on the separate groups. Thus, Simpson’s
paradox is not a true paradox, but rather a misunderstanding about the
proportions in the tables.

Another way to deal with this to avoid the occurrence of Simpson’s
paradox would be stratification. Make sure that there are sufficiently
large numbers of terminal and nonterminal patients. Also through ran-
domization we can make sure that an equal number in each group get
the new treatment as get the old. The stratification can force any ratio
of nonterminal to terminal; a 1 to 1 balance is not necessary, but an
approach that creates a near 1 to 1 balance will do the job.

8.3 THE GENERAL R x C TABLE

The R x C table is a generalization of the 2 X 2, where the column
variable can have two or more categories denoted by C, and the row
variable can also have two or more categories denoted by R. The chi-
square statistic has the same form, but as mentioned earlier, the asymp-
totic distribution under the null hypothesis is a central chi-square, with
(R — 1)(C — 1) degrees of freedom, compared with 1 for the 2 x 2 table.

To illustrate, we will look at an example of a 3 X 3 table. The data
is a sample taken from a registry of women with breast cancer. The
research problem is to see if there is a relationship with the ethnicity
of the patient and the stage of the cancer. The three ethnicities consid-
ered are Caucasian, African American, and Asian. The three stages are
called in situ, local, and distant. The data in the 3 X 3 table is given
next in Table 8.5.

The chi-square statistic is again obtained by taking the observed
minus expected squared divide by the expected in each of the nine cells
and summing them together. We see that the Asians seem to be very
different from their expected value under the independence model.
Also, the in situ stage has all ethnicities, with totals very different from
their expected values. The chi-square statistic is 552.0993. For the chi-
square with degrees of freedom = (3 — 1)(3 - 1) =2 x 2 =4. A value
of 16.266 corresponds to a p-value of 0.001. So the p-value for a chi-
square value of 552.0993.

Thus far, all the tables we have studied had plenty of counts in each
cell. So the chi-square test is highly appropriate and gives results very
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Table 8.5
Association Between Ethnicity and Breast Cancer Stage From a
Registry Sample*

Stage of breast cancer

Ethnicity In situ Local Distant Total

Caucasian 124 (232.38) 761 (663,91) 669 (657.81) 1554

African 36 (83.85) 224 (239.67) 301 (237.47) 561
American

Asian 221 (64.87) 104 (185.42) 109 (183.71) 434

Total 381 1089 1079 2549

*Note: Count with expected count in parentheses.

close to other asymptotic and exact nonparametric tests. However,
when some cells are sparse (i.e., 0—4 counts in those cells), Fisher’s
exact test for 2 X 2 tables and its generalization to the R x C table is a
better choice. That is the topic of the next section.

8.4 FISHER'’S EXACT TEST

In contingency tables, the counts in each cell may be totally random,
and hence the row and column totals are not restricted. However, there
are cases where the row totals and column totals (called marginal totals
or margins) are fixed in advance. In such cases, it makes sense to con-
sider as the sample space all possible tables that yield the same totals
for each row and each column. The distribution of such tables under
the null hypothesis of independence is known to be a hypergeometric
distribution.

So one could ask under the null hypothesis is our observed table
likely to occur or not based on the known hypergeometric distribution.
This idea goes back to Fisher (1935) for 2 x 2 tables, and can easily
be generalized to any R X C table. This idea has been applied even
when the rows and column need not be the same as in the observed
table, with the argument being that it still makes sense to condition on
the given values for the row and column totals. In fact, the Fisher exact
test gives nearly the same results as the chi-square when the chi-square
is appropriate as an approximation, and the chi-square test does not
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Table 8.6
Basic 2 x 2 Contingency Table

Column 1 Column 2 Row totals
Row 1 X r—x r
Row 2 c—x N-r—c+x N-r
Column totals c N-c N

involve any conditioning on the marginal totals. As a historical note,
Conover (1999) points out that the same idea appeared in Irwin (1935)
and Yates (1934). So it is not clear whether or not Fisher should be
credited as the originator.

Now, let us see, in the case of the 2 X 2 table how the hypergeomet-
ric distribution occurs under the null hypothesis. Let N be the total
number of observations. The totals for the two rows are r and N — r for
our data set. Similarly we have column totals of ¢ and N — c. Table 8.6
shows the complete picture.

Because the values r, ¢, and N are fixed in advance, the only
random variable remaining is x, by our notation the entry in the cell for
row 1 and column 1. Now, x can vary from O to the minimum of ¢ and
r. This restriction happens because the sum of the two columns in row
1 must be r, and the sum of the two rows in column 1 must be c.

As we provide different values for x, we get different 2 X 2 con-
tingency tables. So the possible values of x determine all the possible
2 x 2 tables with the margins fixed. For the null hypothesis of indepen-
dence, the probability of p, that an observation falls in row 1 is equal
to the probability p, that an observation falls in row 2 regardless of
what column it is in. The same argument can be made for the columns.
The random variable T = x has the hypergeometric distribution that
isforx=0,1,...,min(z ¢) P(T =x) = C(r, x)C(N — r, ¢ — x)IC(N, ¢)
and P(T = x) = 0 for any other value of x where C(n, m) = n!/[(n — m)!
m!] for any m < n.

A one-sided p-value for the test for independence in a 2 X 2 table
is calculated as follows:

1. Find all 2 x 2 tables with the same row and column totals of the
observed table where cell (1, 1), row 1 and column 1, has a total
less than or equal to x from the observed table, and a probability
less than or equal to the observed probability.
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2. Use the above formula for the hypergeometric distribution to cal-
culate the probability of these tables under the null hypothesis.

3. Sum the probabilities for all such tables.

This gives a one-sided p-value. To get a p-value for the other side,
sum all the probabilities of tables where cell (1, 1) has values greater
than or equal to x, and probability lower than the observed probability.
The two-sided p-value is just the sum of the two one-sided p-values
minus the observed probability, because the sum would count the
observed probability twice.

We now illustrate an example of testing skills at detecting order.
Now suppose as hypothesized by Agresti (1990, p. 61) that an experi-
ment was conducted to test the null hypothesis of random guesses
versus the alternative of skill in detecting order. Agresti’s well-known
text was revised (see Agresti [2002]). The patient is given a medicine
and water. She is told that four of the cups have the water poured first,
and four had the medicine place in the cup first, and then the water was
added. The cups are numbered 1-8. Because she knows that four are
water first, and four are medicine first, the table is constrained to have
both row margins and both column margins totaling four. The table
looks like Table 8.7.

Here, the conditioning is uncontroversial, because the experimenter
told the patient the row and column constraints. There are now only
five possible tables: (1) perfect guessing x = 4, (2) two mistakes out of
eight guesses when x = 1, (3) four mistakes out of eight guesses when
x =2, (4) six mistakes out of eight guesses when x = 3, and (5) eight
mistakes out of eight guesses when x = 4. Clearly, the more mistakes
that there are, the further we are from the alternative hypothesis. The

Table 8.7

Patient Taking Medicine Experiment: Possible

2 x 2 Tables

Placed in cup ~ Patient guesses Patient Row totals
first medicine guesses water

Medicine X 4 —x 4
Water 4 —x X 4

Column totals 4 4 8
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Table 8.8

Patient Taking Medicine Experiment: Observed
Table

Placed in cup  Patient guesses Patient Row totals
first medicine guesses water

Medicine 3 1

Water 1 3

Column totals 4 4

null hypothesis expects four mistakes. This test is naturally one sided,
since the patient claims skill, meaning she get more right than four out
of eight, and less than four simply says that she is no better or worse
at guessing than by chance. We do the experiment and get a result where
she guesses 1 “water first” wrong and 1 “medicine first” wrong. Her
table looks like Table 8.8.

There is one table more extreme than the observed, and that is the
perfect guess table with x = 4. The p-value for this experiment is the
sum of the probabilities that x = 3 and x = 4. Sop = C(4, 3)C(4, 1)/C(8,
4) = (4[3! 11HEV[1! 31D/(8Y/[4! 41]) = 4(4) 41/8 T 6 5) = 16/70 = 8/
35 =0.229. Perfect guessing has probability 1/70 = 0.0142. So the p-
value for the experiment is 0.229 + 0.014 = 0.243. This is not statisti-
cally significant. Only a perfect score would have been significant for
a sample size of eight, with four of each mixture.

Fisher’s exact test is an example of nonparametric procedures that
go by various names: permutation tests, randomization tests or reran-
domization tests. For a modern treatment of these procedures, see Good
(2000). In Fisher’s original book (Fisher 1935), the exact problem is
presented except that instead of a patient taking medicine, it is a lady
tasting tea. The experiment itself is covered in detail in Salsburg (2001),
a beautiful story of the history of the development of statistics through
the twentieth entury.

8.5 CORRELATED PROPORTIONS AND
MCNEMAR’S TEST

When considering the paired #-test, we recognized the advantage of
reducing variance through the use of correlated observations. Since we
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were looking at mean differences, it was positive correlation that
helped. McNemar’s test is used for correlated categorical data. We can
use it to compare proportions when the data are correlated. Even if there
are more than two categories for the variables, McNemar’s test can be
used if there is a way to pair the observations from the groups.

As an example, suppose that we have subjects who are attempting
to quit smoking. We want to know which technique is more effective:
a nicotine patch or group counseling. So we take 300 subjects who get
the nicotine patch and compare them to 300 subjects who get the coun-
seling. We pair the subjects by characteristics that we think could also
affect successful quitting and pair the subjects accordingly.

For example, sex, age, level of smoking, and number of years you
have smoked may affect the difficulty for quitting. So we match sub-
jects on these factors as much as possible. Heavy smokers who are
women and have smoked for several years would be matched with other
women who are heavy smokers and have smoked for a long time. We
denote by 0 as a failure to quit, where quitting is determined by not
smoking a cigarette for 1 year after the treatment. We denote by 1 a
success at quitting.

The possible outcomes for the pairs are (0, 0), (0, 1), (1, 0), and
(1, 1). We will let the first coordinate correspond to the subject who
receives the nicotine patch, and the second coordinate his match who
gets counseling instead. The pairs (0, 0) and (1, 1) are called concordant
pairs because the subjects had the same outcome. The pair (0, 0) means
they both failed to quit, while the pair (1, 1) means that they both were
able to quit. The other pairs (0, 1) and (1, 0) are called discordant pairs
because the matched subjects had opposite outcomes.

The concordant pairs provide information indicating possible posi-
tive correlation between members of the pair without providing infor-
mation about the difference between proportions. Similarly, the
discordant observations are indicative of negative correlation between
the members of the pair. The number of 1s and Os in each group then
provides the information regarding the proportions.

What we mean is that if I only tell you a pair is concordant and not
whether it is (0, 0) or (1, 1), you know that they are correlated but do
not know the actual outcome for either subject in the pair. The same
idea goes for the discordant observations. Although you know the
results are opposite, indicating a possible negative correlation, and we
know we have added a success and a failure to the total, we do not
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Table 8.9
Outcomes for Pairs of Subjects Attempting to Stop Smoking

Counseling failure ~ Counseling success  Nicotine patch total

Nicotine patch N =143 (0, 0) R=48 (0, 1) N+ R=191
failure

Nicotine patch Y=92(1,0) Z=17(,1) Y+Z=109
success

Counseling total N+Y=235 R+Z=065 N+Y+R+Z=300

know if it is added to the nicotine patch group or the group counseling
group.

Table 8.9 is a 2 x 2 table that counts the number of each of the four
possible pairs for this matched experiment.

Under the null hypothesis that success does not depend on the
treatment, we would expect the discordant observations (0, 1) and (1,
0) to be approximately equal. So the expected total given the discordant
total R+Y would be (R+Y)/2. McNemar’s test statistic is
T=(R~-[R+YII2{(R+Y)2}+ (Y—[R+Y2){(R+ Y)/2}. This
is just like the chi-square statistic summing “the observed minus
expected squared divided by expected.” After some algebra we see for
the 2 x 2 table, this simplifies to (R — Y)*/[2(R + Y)], and so the test is
equivalent to testing for large values of W= (R — Y)*/(R + Y). For a
more detailed account, see Conover (1999, p. 166). In this example,
we get (92 — 48)%/(92 + 48) = (44)*/140 = 0.1936/140 = 13.82. Now
under the null hypothesis, T is asymptotically chi-square with 1 degree
of freedom. 7= W/2 = 6.91. Consulting the chi-square table, we see
that the p-value is slightly less than 0.01.

For more than two categories in each group the idea of concordant
and discordant pairs extends, and McNemar’s test can be applied to an
R X 2 table.

8.6 RELATIVE RISK AND ODDS RATIO

Relative risks and odds ratios are important in medical research and
are common in epidemiology studies as well. For a detailed discussion
of these concepts, see Lachin (2000), and, from the epidemiologists
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Table 8.10

Assessment of Relative Risk in a 2 x 2 Table
Outcome

Factor Present Absent Total

Yes a b a+b

No c d c+d

RR (relative risk) = [a/(a + b])/[c/(c + d)] = a(c + d)/[c(a + b)]

perspective, Friis and Sellers (1999). Both concepts are germane to
contingency tables where proportions are considered. Relative risk is
used in cohort studies. Suppose we have a population of subjects who
have different exposure to risk factors for a particular disease.

We have a record of their medical history and information on past
exposure. Then we follow these patients to see if they get the disease.
The occurrences of new cases of the disease, in this population, are
compared between groups with different exposure to see if the exposure
affects the incidence rates. Table 8.10 shows the concept of relative risk
in a2 x 2 table.

The relative risk can vary from 0 to <. It is the ratio of the propor-
tion of the cases where the disease occurs, given the factor is present
to the proportion of cases where the disease occurs, given the factor is
absent. It shows how many times the risk increases or decreases accord-
ing to whether or not the factor is present. So a relative risk of 2 for
lung cancer when the subject is a smoker compared with a nonsmoker
is interpreted as smoking doubles your risk of getting lung cancer. Table
8.11 shows a 2 x 2 table for lung cancer with smoking as a factor from
a cohort study.

So we see from Table 8.11 that the relative risk is 6.53, which
means that you are over 6.5 times more likely to get lung cancer if you
smoke than if you don’t smoke. So a relative risk greater than 1 in this
case means that the factor increases your chances of getting the disease.

Consequently we often test that the relative risk is different from
1 or perhaps greater than 1 if we anticipate a negative effect from the
factor. In Chapter 10, when we cover survival analysis, we will see how
the survival models allow us to obtain tests of hypotheses on the rela-
tive risk or construct confidence intervals for it. This is often done when
the Cox proportional hazard model is fit to the survival data. In such a
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Table 8.11
Assessment of Relative Risk in a 2 x 2 Table from Lung Cancer
Cohort Study

Lung cancer

Smokers Present Absent Total
Yes 98 202 300
No 35 665 700

RR (relative risk) = a(c + d)/[c(a + b)] = 98(700)/[35(300)] = 6.53

Table 8.12

2 x 2 Assessment of an Odds Ratio

Factor Cases Controls
Yes a B
No c D
Total a+c b+d

OR (odds ratio) = (a/c)/(bld) = ad/(bc)

Table 8.13

2 x 2 Assessment of an Odds Ratio

Smoker Lung cancer cases Controls
Yes 18 15
No 9 12
Total 29 27

OR (odds ratio) = 18(12)/[(15)9] = 1.6

situation, the relative risk is the same as the hazard ratio. This will be
explained in Chapter 10.

A closely related concept is the odds ratio. Suppose we want to do
a case-control study to look at the risk that smoking cases with respect
to lung cancer rather than a cohort study. For such a study, we would
have a 2 x 2 table of the form given as Table 8.12.

Now Table 8.13 shows the calculation for a particular small case-
control study.
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In this study, we see that the interpretation of the odds is that the
odds are 1.6 times greater that a nonsmoker who is otherwise similar
to the smoker. Odds represent the ratio of the probability of occurrence
to the probability that the disease does not occur, and the odds ratio is
just a ratio of the odds for cases divided by the odds for controls. This
is a little different from relative risk but conveys a similar message.
When the risk (probability of occurrence of the disease) is low, the odds
ratio provides a good approximation to the relative risk.

We looked at point estimates for relative risk and odds ratios, but
we did not show you how to get confidence intervals. Confidence inter-
vals for these estimates are found in Lachin (2000, p. 24 for relative
risk). We will discuss relative risk again in the context of survival
analysis in Chapter 10.

8.7 EXERCISES

1. Define the following:
(a) Chi-square test
(b) Contingency table
(¢) Odds ratio
(d) Relative risk
(e) Cohort study
(f) Case-control study
(g) Test for independence in 2 X 2 table

2. In a survey study, subjects were asked to report their health as excellent,
good, poor, and very poor. They were also asked to answer whether or not
they had smoked at least 250 cigarettes in their lifetime. Suppose Table
8.14 represents the outcome of the survey.

Determine if there is a relationship between cigarette usage and reported
health status at the 5% significance level, one sided. What is the p-value
for the chi-square test? Why is it appropriate to use the chi-square test?

3. For the same subjects in the survey in the above table, the subjects were
asked if they were currently smoking, had quit smoking or never smoked.
Table 8.15 shows the survey results on smoking status versus health
assessment.

Is reported health status related to smoking status? Test at the 5% level
one-sided.



142 CHAPTER 8 Contingency Tables

Table 8.14
Relationship Between Reported Health
Status and Smoking Usage

Reported Smoked 250 or  Smoked O to  Total
health status ~ more cigarettes 249 cigarettes

Excellent 30 72 102
Good 350 485 835
Poor 121 138 259
Very poor 39 20 59
Total 540 715 1255
Table 8.15

Relationship Between Reported Health
Status and Smoker vs. Non-smoker

Categories

Reported Current Quit Never Total
health status ~ smoker =~ smoking  smoked
Excellent 20 42 40 102
Good 250 300 285 835
Poor 117 72 70 259
Very poor 29 18 12 59
Total 416 432 407 1255

Why is the chi-square test appropriate here?

4. In the same survey, the subjects also were asked to classify themselves
according race, with the choices African American, Asian, Hispanic, Native
Americans, or European American. Twelve subjects failed to respond.
Table 8.16 shows race versus smoking status.

Is race related to smoking status? Test at 5%. Should you do the test
one-sided or two-sided? Is the chi-square an appropriate test? Does it matter
that 12 subjects did not respond? If a much higher percentage of the sub-
jects did not respond what might invalidate the analysis?

5. Again using the same survey data, suppose we have statistics at baseline
regarding the subjects drinking status, as well as their smoking status.
Given the results in the following table, what would you conclude about
the relationship between smoking status and drinking status? Test at the 5%
level (Table 8.17).
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Table 8.16
Relationship Between Race and Smoking Status

Race Current Quit Never Total
smoker  smoking  smoked

African American 40 34 40 114

Asian 33 34 65 142

Hispanic 117 92 70 279

Native American 20 28 12 60

European American 202 232 214 648

Total 412 430 401 1243
Table 8.17
Relationship Between Smoking and Alcohol Consumption
Smoking Current Light Former Never used Total
status alcohol user alcohol user alcohol user alcohol
Heavy 40 24 10 40 114
Moderate 33 30 49 30 142
Light 30 72 20 38 160
None 110 158 232 339 839
Total 213 284 311 447 1255

6. Aclinical trial is conducted at an academic medical center. Diabetic patients
were randomly assigned to a new experimental drug to control blood sugar
levels versus a standard approved drug using a 1:1 randomization. Two
hundred patients were assigned to each group, and the 2 x 2 table (Table
8.18) shows the results.

Test at the 5% level to determine if the new drug is more effective. Is
it appropriate to apply the chi-square test? Why would it be difficult to do
Fisher’s test without a computer? How many contingency tables are pos-
sible with the given row and column marginal totals?

7. A study involving 75 patients who at one time used sodium aurothiomalate
(SA) as a treatment for rheumatoid arthritis. The purpose was to examine
whether or not the toxicity of SA could be linked to the patients sulphoxi-
dation capacity assessed by the sulphoxidation index (SI). For SI, a value
of 6.0 was used to separate impaired sulphoxidation (SI > 6.0), with unim-
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Table 8.18
Fasting Blood Glucose Levels (normal vs. out of
normal range) vs. Drug Treatment Group

Fbg level at Patients with Patients with Total
follow-up investigational drug approved drug

Normal 119 21 140
Not normal 81 179 260
Total 200 200 400
Table 8.19

Relationship Between High or Normal
Sulphoxidation Index and Major Toxicity
Reaction

Major adverse reaction (toxicity)

Yes No Total

Impaired sulphoxidation (SI > 6.0)  Yes 32 9 41
No 12 22 34
Total 44 31 75

paired sulphoxidation (SI < 6.0). The results are given in the 2 X 2 table
below (Table 8.19).

(a) Using Fisher’s exact test, determine whether or not impaired sulphoxi-
dation affects toxicity.

(b) Perform a chi-square test on the 2 x 2 table.
(¢) Are the results of the tests similar?



CHAPTER 9

Nonparametric Methods

Most of the statistical methods that we have covered in this book
have involved parametric models. The bootstrap, Fisher’s exact test,
and the chi-square test are the exceptions. A parametric model is one
that involves probability distributions that depend on a few parameters
(usually five or less). For example, when we assume a normal distribu-
tion the parameters, it depends on are the mean and variance. We then
use the data to estimate the parameters, and we base our inference on
the sampling distribution for these estimates based on the parametric
model. But in many practical situations, the parametric model may be
hard to justify, or may be found to be inappropriate when we look at
the sample data.

Nonparametric methods on the other hand only assume that the
distribution function F'is continuous. Ranking the data or considering
permutations of the data are two ways to construct test statistics that are
distribution free under the null hypothesis. Distribution free mean that
the distribution of the test statistic is known exactly when the null
hypothesis is assumed, and does not depend on the form or parameters
of the original data. So, for example, the sign test has a binomial distri-
bution with p = 1/2 under the null hypothesis, and Fisher’s exact test has
a specific hypergeometric distribution when the null hypothesis is true.

The Essentials of Biostatistics for Physicians, Nurses, and Clinicians,
First Edition. Michael R. Chernick.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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There is a price paid for this, however. That price is that some
information in the data is ignored. In the case of rank tests, we ignore
the numerical values of the observations and just consider how they
are ordered. So when a parametric model is consistent with the data,
the maximum likelihood estimates make efficient use of the data and
provide a more powerful test than its nonparametric counterpart, which
cannot exploit the information in the distribution’s family.

9.1 RANKING DATA

We use rank tests when we want to make inferences about two or more
populations and we don’t have a good parametric model (that theoretical
or empirical work would suggest). Suppose, for example, that we have
samples from two populations. Our null hypothesis is that the two dis-
tributions are identical. In this case, we pool the observations and order
the pooled data from the smallest value to the largest value. This is like
temporarily forgetting the population the data points were taken from.
Under the null hypothesis, this shouldn’t matter, since the distributions
are the same. So the data should be well mixed (i.e., there will not be
a tendency for the sample from population 1 to have mostly high ranks
or mostly low ranks). In fact, we would expect that the average rank
for each population would be nearly the same. On the other hand, if the
populations were different, then the one with the larger median would
tend to have more of the higher ranks than the one with the lower median.

This is the motivation for the Wilcoxon rank-sum test. Comparing
the average of the ranks is very similar to comparing the sum of the
ranks (if the sample sizes are equal or nearly so). The Wilcoxon rank-
sum test (equivalent to the Mann—Whitney test) compares the sum of
the ranks from, say, population one, and compares it with the expected
value for that rank sum under the null hypothesis. This test is the topic
of the next section. It can be generalized to three or more populations.
The generalization is called the Kruskal-Wallis test.

9.2 WILCOXON RANK-SUM TEST

The Wilcoxon rank-sum test is a nonparametric analog to the unpaired
t-test. See Conover (1999) for additional information about this test.
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Table 9.1
Left Leg Lifting Among Elderly Males Getting Physical Therapy:
Comparing Treatment and Control Groups

Unsorted scores Scores sorted by rank

Control group  Treatment group  Control group (rank)  Treatment group (rank)

25 26 16 (1)
66 85 18 (2)
34 48 25(3)
18 68 26 (4)
57 16 34(5)
N =5 N,=5 48 (6)
57 (7)
66 (8)
68 (9)
85 (10)
T1=3R =25 T2 =%R =30

As previously mentioned, the test statistic is obtained by ranking the
pooled observations, and then summing the ranks of, say, the first
population (could equally well have chosen the second population).

We will illustrate the test first scores of a leg-lifting test for elderly
men Table 9.1.

For this problem, the sum of all the ranks is (N; + No)(N; + N> + 1)
2=(5+5) G+5+1)/2=10(11)/2 =155, since N;=N,=15. Now,
since N,/(N; + N,) = probability of randomly selecting a patient from
group 1 and N/(N; + N,) = probability of randomly selecting a patient
from group 2, if we multiply N\/(N, + N,) by (N, + N))(N, + N, + 1)/2,
it gives the expect rank-sum for group 1. This is N{(N, + N, + 1)/2,
which in our example is 5(11)/2 = 27.5. From the tables for the Wilcoxon
test, we see that a rank-sum less than 18 or greater than 37 will be
significant at the 0.05 level for a two-side test. Since 71 =25, we
cannot reject the null hypothesis.

As a second example, we take another look at the pig blood loss
data. Table 9.2 shows the data the pooled rankings.

The p-value for this test is greater than 0.20, since the 80% confi-
dence interval for T1 is [88, 122], which contains 112. Now, although
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Table 9.2
Pig Blood Loss Data (mL)
Control group pigs (pooled ranks) Treatment group pigs (pooled ranks)
786 (9) 543 (5)
375 (1) 666 (7)
4446 (19) 455 (3)
2886 (16) 823 (11)
478 (4) 1716 (14)
587 (6) 797 (10)
434 (2) 2828 (15)
4764 (20) 1251 (13)
3281 (17) 702 (8)
3837 (18) 1078 (12)
Sample mean = 2187.40 (rank-sum = 112) Sample mean = 1085.90
(rank-sum = 98)
Sample SD = 1824.27 Sample SD = 717.12

the Wilcoxon test cannot reject the null hypothesis that the distributions
are the same, the 7-test (one sided) rejected the null hypothesis that the
means are equal. Why do we get conflicting results? First of all, we
made two very dubious assumptions when applying the r-test. They
were (1) both populations have normal distributions, and (2) the distri-
butions have the same variances. Standard tests for normality such as
Wilk—Shapiro or Anderson—Darling would reject normality, and the
control group standard deviation is about 2.5 times larger than the treat-
ment group. The F-test for equality of variances would likely reject
equality of variances.

The #-test is therefore not reliable. So it should not be a surprise
that the test could give erroneous results. Since neither assumption is
needed for a nonparametric rank test, it is more trustworthy. The fact
that the result is nonsignificant may just be an indication that the sample
size is too small. Recall also that the Wilcoxon test is not the most
powerful.

We shall now look at another simpler analog to the two-sample
independent 7-test. It is called the sign test, and just looks at the sign
of the difference between the two means.
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9.3 SIGN TEST

Suppose we are testing the difference in the “center” of two populations
that are otherwise the same. This is the same situation that we encoun-
tered with the Wilcoxon rank-sum test, except here we will be consider-
ing paired observations. So the sign test is an analog to the paired #-test.
Another test called the Wilcoxon signed-rank test is a little more com-
plicated and more powerful because it uses the idea of ranking the data
as well as considering the sign of the paired difference. For simplicity,
we will only cover the signed test, and the interested reader can go to
Conover (1999) or any of the other many books on nonparametric
statistics to learn more about the signed-rank test.

Now, the idea behind the sign test is that we simply look at the
paired differences and record whether the difference is positive or nega-
tive. We ignore the magnitude of the difference and hence sacrifice some
of the information in the data. However, we can take our test statistic
to be the number of cases with a positive sign (or we could choose the
number with a negative sign). We are assuming the distribution is con-
tinuous. So the difference will not be exactly zero. If we choose to do
the test in practice when the distribution is discrete, we can simply
ignore the cases with O as long as there are not very many of them.
Whether we choose the positive signs or the negative signs, under the
null hypothesis that the distributions are identical, our test statistic has
a binomial distribution with parameter n = the number of pairs (or the
number of pairs with a nonzero difference in situations where differ-
ences can be exactly 0) and p=P(X > Y) =1/2, where X — Y is the
paired difference of a randomly chosen pair and the test statistic is the
number of positive differences (or P(X < Y) if X — Y is the paired dif-
ference and the test statistic is the number of negative pairs).

Now under the alternative hypothesis that the distributions differ
in terms of their center, the test statistic is binomial with the same n
and p = P(X > Y). However, the parameter p is not equal to 1/2. So the
test amounts to the coin flipping problem. Is the coin fair? A coin is
fair if it is just as likely to land heads as tails. We are asking the same
question about positive signs for our paired differences. So if we
compute an exact binomial confidence interval for the proportion of
positive paired differences a two-sided test at the 5% significance level
amounts to determining whether or not a two-sided 95% confidence
interval for p contains 1/2.
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Table 9.3
Daily Temperatures for Two Cities: Paired Nonparametric
Sign Test

Day Washington mean New York mean Paired Sign
temperature (°F) temperature (°F) difference
1. January 15 31 28 3 +
2. February 15 35 33 2 +
3. March 15 40 37 3 +
4. April 15 52 45 7 +
5. May 15 70 68 2 +
6. June 15 76 74 2 +
7. July 15 93 89 4 +
8. August 15 90 85 5 +
9. September 15 74 69 5 +
10. October 15 55 51 4 +
11. November 15 32 27 5 +
12. December 15 26 24 2 +

If we want to do a one-sided test with the alternative that p > 1/2,
then we compute a 95% confidence interval of the form (a, 1] and reject
the null hypothesis if a > 1/2, or for the opposite side and confidence
interval of the form [0, b) with b < 1/2. Table 9.3 shows how the sign
test is applied comparing average temperatures in New York and
Washington paired by date.

We note that the number of plus signs is 12, which is the highest
possible, favoring Washington as being warmer than New York. So
since it is the most extreme; the probability of 12 pluses is the one-sided
p-value. So p = (1/2)'* = 0.000244. Since the binomial distribution is
symmetric about 1/2 under the null hypothesis (p = 1/2), the two-sided
p-value is just double the one-sided p-value which is 0.000488.

9.4 SPEARMAN’S RANK-ORDER
CORRELATION COEFFICIENT

Thus far, we know about Pearson’s correlation coefficient, which is
suitable for bivariate normal data, and its estimate is related to the slope
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estimate from the least squares line. But how do we measure a mono-
tonic relationship that is not linear or the data is very nonnormal?
Spearman’s rank-order correlation coefficient is a nonparametric
measure of such relationships.

Suppose we have a relationship given by Y = VX measured with
no error and defined for all X = 0. Recall that Pearson’s correlation can
be between —1 and 1, and is only equal to 1 or —1 if there is a perfect
linear relationship. Now this square root function is a monotonic func-
tion but is nonlinear. So the Pearson correlation would be less than 1.
In such cases, we would prefer that a correlation measure for a perfect
monotonic functional relationship would equal 1 if it is an increasing
function such as the square root or —1 for a negative exponential (i.e.,
Y = exp(—X)). Spearman’s rank correlation coefficient does that. In fact,
there are two nonparametric correlation measures that have been
devised to satisfy this condition for perfect monotonic relationships and
be properly interpretable for any continuous bivariate distribution.
Spearman rank correlation “p” and Kendall’s “7” introduced by
Spearman (1904) and Kendall (1938), respectively. We shall only
discuss Spearman’s p.

Spearman’s p in essence is calculated by the same formula as
Pearson’s correlation, but with the measured values replaced by their
ranks. What exactly do we mean by this? For each X, replace the value
by the rank of X; when ranked with relationship to the set of observed
Xs with rank 1 for the smallest values in increasing order up to rank n
for the largest of the Xs. Do the same for each Y,. Then take the ranked
pairs and compute the correlation for these pair just like you would
with Pearson’s correlation coefficient. For example, suppose we con-
sider the pair (X, Ys), and X; is ranked third out of 20, and Y5 sixth out
of 20, Then we replace the pair with (3, 6) their ranked pair.

The computational formula for Spearman’s rank correlation is

p= {2 ~ ROXOR)=n([n+1/2)° }/

Hz ;R(X,. 2 —n([n+1]/2)>* }}

{Z ;R(Y,‘)2 —n([n+11/2) }

In the case of no ties, this formula simplifies to



152 CHAPTER 9 Nonparametric Methods

where 7=/ [R(X,)—R(Y)I.

p=1-6T/[n(n* —1)},

As an example, let us look at the correlation between the tempera-
ture in Washington and New York over the 12 months of the year. The
reason the paired t test worked so well was because most of the variation
was due to seasonal effects that were removed through the paired differ-
ences. This variation will translate into high correlation between X;, the
temperature in New York on the 15th of month i, with Y, the temperature
Washington, DC on the 15th of the ith month. Using the ranks, we show
in Table 9.4 how the Spearman correlation is calculated in this case.

Table 9.4
Daily Temperatures for Two Cities: Spearman Rank Correlation
Day Washington mean New York mean  Ranked Term
temperature (°F)  temperature (°F) pairs
Y (rank) X (rank) [(x), [r(yv) = r(x)]
)]

1. January 15 31 (2) 28 (3) 3,2 1

2. February 15 354 33 (4) 4. 4) 0

3. March 15 40 (5) 37 (5) (5,9) 0

4. April 15 52 (6) 45 (6) (6, 6) 0

5. May 15 70 (8) 68 (8) (8, 8) 0

6. June 15 76 (10) 74 (10) (10, 10) 0

7. July 15 93 (12) 89 (12) (12. 12) 0

8. August 15 90 (11) 85 (11) 11, 11) 0

9. September 15 74 (9) 69 (9) 9,9 0
10. October 15 55(7) 51(7) 7,7) 0
11. November 15 32 (3) 27 (2) (2,3) 1
12. December 15 26 (1) 24 (1) (1.1) 0
T 2
p=1-06T/ =1-12/
[n(n* — 1)] [12(143)]

= 142/143

=0.9930
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9.5 INSENSITIVITY OF RANK TESTS TO OUTLIERS

Of course, with univariate data outliers are the extremely large or
extremely small observations. For bivariate data, it is less obvious what
should constitute an outlier, as there are many directions to consider.
Observations that are extreme in both dimensions will usually be outli-
ers, but not always. For example, if data are bivariate normal, the
contours of constant probability are ellipses whose major axis is along
the linear regression line. When the data are highly correlated, these
ellipses are elongated.

If a bivariate observation falls on or near the regression line, it is
a likely observation, and if the correlation is positive, and if X and Y
are both large or both small, we may not want to consider such obser-
vations to be outliers. The real outliers are the points that are far from
the center of the semi-minor axis. Another measure, called the influence
function, determines a different direction, namely the direction that
most highly affects the estimate of a parameter. For the Pearson correla-
tion, the contours of constant influence are hyperbolae. So outliers with
respect to correlation are values that are far out on the hyperbolic
contours.

We noticed previously that outliers affect the mean and variance
estimates, and they can also affect the bivariate correlation. So,
confidence intervals and hypothesis tests can be invalidated by
outliers. However, nonparametric procedures are designed to apply to
a wide variety of distributions, and so should not be sensitive to outli-
ers. Rank tests clearly are insensitive to outliers because a very large
value is only one rank higher than the next largest, and this does not at
all depend on the magnitude of the observations or how far separated
they are.

As an illustration, consider the following data set of 10 values,
whose ordered values are 16, 16.5, 16.5, 16.5, 17, 19.5, 21, 23, 24,
and 30. The largest value, 30, clearly appears to be an outlier.
The sample mean is 20, and half the range is 7, whereas the
number 30 is 10 units removed from the mean. The largest and
second largest observations are separated by six units, but in term
of ranks, 24 has rank 9 and 30 has rank 10, a difference in rank that
is the same as between 23 and 24, which have ranks 8 and 9,
respectively.
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Table 9.5
Pig Blood Loss Data (Modified)
Control group pigs Treatment group pigs
786 643
375 666
3446 555
1886 823
465 1816
580 997
434 2828
3964 1351
2181 902
3237 1278
Sample mean = 1785.40 Sample mean = 1185.90

9.6 EXERCISES

1. Table 9.5 provides a modification of the pig blood loss data as an exercise
for the Wilcoxon rank-sum test

Do the results differ from the standard two-sample #-test using pooled
variances? Are the resulting p-values similar? Compare the z-test and the
Wilcoxon rank-sum test for a one-side alternative that the treatment group
has a lower blood loss average than the control group.

2. Apply the Wilcoxon rank-sum test to the data in Table 9.6 on the relation-
ship between the number of patients with schizophrenia and the season of
their birth by calling fall and winter as group 1, and spring and summer as
group 2. The four individual seasons represent data points for each group.
Ignore the possibility of a year effect.

Do we need to assume that births are uniformly distributed? If we knew
that there were a higher percentage of births in the winter months, how
would that affect the conclusion?

3. Based on Table 9.7, which is a modification of the temperature data for
New York and Washington, apply the sign test to see if the difference in
the temperatures is significant.

4. Using the data from Table 9.7 in exercise 3, compute the Spearman rank
correlation coefficient between the two cities
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Table 9.6

Season of Birth for 600 Schizophrenic
Patients over 6 Years

Season Number of patients
Year 1 Fall 20
Winter 35
Spring 20
Summer 25
Year 1 Total 100
Year 2 Fall 32
Winter 38
Spring 10
Summer 15
Year 2 Total 95
Year 3 Fall 27
Winter 43
Spring 13
Summer 17
Year 3 Total 105
Year 4 Fall 19
Winter 36
Spring 18
Summer 28
Year 4 Total 101
Year 5 Fall 33
Winter 36
Spring 14
Summer 21
Year 5 Total 104
Year 6 Fall 23
Winter 41
Spring 22
Summer 9

Year 6 Total 95
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Table 9.7
Temperature Comparisons between Two Cities
Day Washington mean New York mean Paired Sign
temperature (°F) temperature (°F) difference
1. January 15 31 38 -7
2. February 15 35 33 2 +
3. March 15 40 37 3 +
4. April 15 52 45 7 +
5. May 15 70 68 2 +
6. June 15 76 74 2 +
7. July 15 93 89 4 +
8. August 15 90 85 5 +
9. September 15 74 69 5 +
10. October 15 55 51 4 +
11. November 15 32 27 5 +
12. December 15 26 24 2 +
Table 9.8
Aggressiveness Scores for 12 Sets of Identical Twins Based on
Birth Order
Twin Ist born 2nd born Paired Sign of paired
set aggressiveness score  aggressiveness score  difference difference
1 85 88 -3 -
2 71 78 -7 -
3 79 75 +
4 69 64 5 +
5 92 96 —4 -
6 72 72 0 0
7 79 64 15 +
8 91 89 +
9 70 62 +
10 71 80 -9 -
11 89 79 10 +
12 87 75 12 +
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Table 9.9
Aggressiveness Scores for 12 Sets of Identical Twins Based on
Birth Order
Twin set 1st born 2nd born Ranked Term r(x,)r(y;)
aggressiveness aggressiveness pair (x. y)
score (rank) x score (rank) y
1 85 (8) 88 (10) (8, 10) 80
2 71 (3.5) 78 (7) (3.5, 7) 24.5
3 79 (6.5) 75 (5.5) (6.5,5.5) 35.75
4 69 (1) 64 (2.5) (1,2.5) 2.5
5 92 (12) 96 (12) (12, 12) 144
6 72 (5) 72 (4) (5,4) 20
7 79 (6.5) 64 (2.5) (6.5, 2.5) 16.25
8 91 (11) 89 (11) (11, 11) 121
9 70 (2) 62 (1) 2,1 2
10 71 (3.5) 80 (9) (3.5,9) 31.5
11 89 (10) 79 (8) (10, 8) 80
12 87 (9) 75 (5.5) 9,5.5) 49.5
5. Given the aggressiveness scores for the twins shown in Table 9.8, apply

the sign test to see of the there is a difference depending on order of birth.

Remember that when the paired difference is 0, we ignore the case. So
in this case, we treat the 11 sets without ties (8 pluses and 3 minuses). Are
the results statistically significant at the 5% level (two-sided)? What is the
two-sided p-value? What is the p-value for the one-sided alternative that
the first born is more aggressive?

Using Table 9.9, compute the Spearman rank correlation coefficient for the
aggressiveness scores. Does this suggest that both twins tend to be similar
in degree of aggressiveness?
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Survival Analysis

Survival analysis is based on data where patients are followed over
time until the occurrence of a particular event such as death, relapse,
recurrence, or some other event that is of interest in to the investigator.
Of particular interest is the construction of an estimate of a survival
curve which is illustrated in Figure 10.1. Survival probability at t rep-
resents the probability that an event does not occur by time t.

In the figure, the x-axis shows time in years and the y-axis survival
probability. In this case, the function S(r) is a Weibull curve with
S(#) = exp(—(A)P) and A =0.4 and B=2.0. In a clinical study, S(?)
represents the probability that the time from initiation in the study
(t=0) until the occurrence of the event for an arbitrary patient is
greater than a specified value t. The curve represents the value for this
probability as a function of z. Data on the observed time to the event
for each patient is the information to use to estimate the survival curve
for all 7 in (0, «). See Section 10.4.2 for more details on the Weibull
family of survival curves.

The survival curve or the comparison of two or more survival
curves is often important in determining the effectiveness of a new
treatment. It can be used for efficacy as in the case of showing that an
anticoagulant is effective at reducing stroke for patients with atrial
fibrillation. More often, it is used as a safety parameter, such as in the

The Essentials of Biostatistics for Physicians, Nurses, and Clinicians,
First Edition. Michael R. Chernick.
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S(t): Survival at time t
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Figure 10.1. A typical survival curve.

determination of a particular adverse event that the treatment is sus-
pected to cause. The term survival analysis came about because it was
originally used when mortality was the outcome, but it can be used for
time-to-event data for any event. More generally, the curve does not
necessarily have to be a function of time. It is even possible for time
to be replaced by a variable that increases with time, such as the cost
of a worker’s compensation claim where the event occurs when the
claim is closed.

10.1 TIME-TO-EVENT DATA AND
RIGHT CENSORING

What characterizes survival data is that some patients have incomplete
results. In a particular study, there is a time at which the study ends
and the data must be analyzed. At that point, some of the patients may
not have experienced the event (either because they will never have the
event or because the event will occur some time later). The data for
these patients should not be thrown out because that would (1) ignore
valuable information about the time to event, since these patients time
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to event must at least be longer than the time from study initiation until
the termination of the study (called the censoring time); and (2) leaving
them out biases the estimate of parameters, such as median or mean
survival time, since the censored observations are more likely to be the
longer times than those that were not censored. So from (2), we see
that the median time-to-event is underestimated if the censored data are
ignored. Other censoring could occur if the patient becomes lost to
follow-up prior to the date of completion for the study.

What makes survival analysis different is the existence of incom-
plete data on some patients whose time to event is right censored (i.e.,
cut off at the end of the study). The key to the analysis is to find para-
metric, semi-parametric, or nonparametric ways to estimate the sur-
vival curve utilizing both the complete and incomplete observations.
This will often allow for a less biased median survival time estimate.
The remainder of the chapter will cover various methods.

The first method is the life table. Although the methods we describe
here are straightforward, there are many practical difficulties. One of
these is the problem of unreported events. This is a very big problem
with medical devices. Attempts have been made to address the issue of
bias in estimates due to underreporting. But these methods must rely
heavily on assumptions about the underreporting. The article by
Chernick et al. (2002) covers the issue in detail.

10.2 LIFE TABLES

The survival curve S(7) is defined to be equal to the probability that
T > t where T is the random variable representing the time to the event.
The data is Table 10.1 is taken from Altman (1991, p. 367). In this
example events are restricted to the time (0, L] with events occurring
after time L, right censored.

We notice from the table that patients are accrued over time for
slightly less than 6 months. The study is terminated at 18 months after
the first patient is enrolled in the study. Four patients died during the
trial six were either living at the end of the trial or lost to follow-up.
Specifically, patients 1, 5, 7, and 10 died, patients 3, 6, 8, and 9 com-
pleted the study alive and patients 2 and 4 were lost to follow-up. This
table provides us with exactly all we need to construct the various types
of survival curves.
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Table 10.1

Survival Times for Patients

Censor code*  Patient no.  Time at entry Time to death or Survival time
(months) censoring (months) (months)

1 1 0.0 11.8 11.8

0 2 0.0 12.5 12.5%

0 3 0.4 18.0 17.6F

0 4 1.2 44 3.2%

1 5 1.2 6.6 54

0 6 3.0 18.0 15.0F

1 7 34 4.9 1.5

0 8 4.7 18.0 13.3%

0 9 5.0 18.0 13.0F

1 10 5.8 10.1 43

*Death occurred = 1, censoring = 0, L = 18.0.

tCensored observation.

Life tables give survival probability estimates for intervals of time
whereas survival curves are continuous over time (although their non-
parametric estimates are step functions that only change when events
occur). Life tables must be used when the only information that is
available is the number of events occurring in the intervals. If we have
the exact times when each event occurs, and all the times when censor-
ing occurs, we can estimate the survival curve by parametric or non-
parametric methods.

We can also create a life table by choosing time intervals and count-
ing the number of events and censoring times that occur in each speci-
fied interval. However, the use of life tables when we have the exact
times for the events and censoring is inefficient, since it ignores some
of the available information about survival (namely, where in the inter-
val each event occurs). In addition to the interval survival probability,
the life table provides an estimate of the cumulative survival probability
at the end of the time interval for each interval. Whether we are esti-
mating cumulative survival over time or for life table intervals, there
is a key equation that is exploited. It is shown as Equation 10.1.

S(tz): P(tz |t1)S(t1)f0r any tz >t1 20, (101)
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Table 10.2

Life Table for Patients From Table 10.1

Time No. of No. No. at Avg. No. Est. Est. Est.
interval deaths withdrawn riskin /; atriskin/;, prop. of  prop. cum.
I; in [ in [; deaths ~ Surv. at  surv. at

]

inf; endofl, endof]

[0, 3) 1 0 10 10 0.1 0.9 0.9

(3, 6) 2 1 9 8.5 0235 0765  0.688

[6, 9) 0 0 6 6 0.0 1.0 0.688

[9, 12) 1 0 6 0.167 0833  0.573

[12, 0 3 5 5 0 1.0 0.573
15)

[15, 0 2 2 2 0 1.0 0.573
18)

[18, o) 0 0 0 0 — _ _

where S(f) = survival probability at time ¢ = P(T > 1), t, is the previous
time of interest, and ¢, is some later time of interest (for a life table, 7,
is the beginning of the interval, and ¢, is the end of the interval.

For the life table, we must use the data as in Table 10.1 to construct
the estimates that we show in Table 10.2. In the first time interval, say
[0, a], we know that S(0) = 1 and S(a) = P(al0)S(0) = P(alO). This is
gotten by applying Equation 10.1, with #, = 0 and ¢, = a, and substitut-
ing 1 for S(0). The life table estimate was introduced by Cutler and
Ederer (1958), and therefore it also is sometimes called the Cutler—
Ederer method. We exhibit the life table as Table 10.2, and then will
explain the computations.

In constructing Table 10.2 from the data displayed in Table 10.1,
we see that including event times and censoring times, the data range
from 1.5 to 17.6 months. Note that since time of entry dies not start at
the beginning of the study, the time to event is shifted by subtracting
the time of entry from the time of the event (death or censoring). We
choose to create 3-month intervals out to 18 months. The seven
intervals comprising all times greater than 0 are: (0, 3), [3, 6), [6, 9),
[9, 12), [12, 15), [15, 18) and [18, «<). Intervals denoted [a, b) include
the number “a” and all real numbers up to but not including “b.”
Intervals (a, b) include all real numbers greater than “a” and less
than “b” but do not include “a” or “b.” In each interval, we need to
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determine the number of subjects who died during the interval, the
number withdrawn during the interval, the total number at risk at
the beginning of the interval, and the average number at risk during the
interval.

To understand Table 10.2, we need to explain the meaning of the
column heading.

Column 1 is labeled “Time interval” and is denoted /; for the jth
interval.

Column 2 contains the number that died in the jth interval and is
denoted D;.

Column 3 contains the number that withdrew during the jth interval
and is denoted W,.

Column 4 contains the number at risk at the start of the jth interval
and is denoted N,

Column 5 is the average number at risk during the jth interval and
is denoted N; .

Column 6 is the estimated proportion of deaths during the interval
and is denoted as g;.

Column 7 is the estimated proportion of subjects surviving the
interval and is denoted by p;,.

Column 8 is the cumulative probability of surviving the interval.

We note that the deaths are determined just by counting the deaths
with event time falling in the interval. The withdrawals are simply
determined by counting the number of censoring times falling in the
interval. The number at risk at the beginning of the interval is just the
total at time O minus all deaths and withdrawals that occurred from
time O up to but not including time “a” where “a” is the beginning time
for the interval.

Now the average number remaining over the jth interval is
N =N, — (W/2). We then get the estimated proportion that are dead,
to be g; = D/N;". Then the estimated proportion surviving the interval
is p; =1 — g;. Remember the key recursion in Equation 10.1? It gives
S; = p;S; - 1. This recursive equation allows S, to be determined from the
known value S after calculating p,. Then S, is calculated using S; and
P>, and this continues up to the time of the last event or censor time.
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This is the Cutler—Ederer method, and just about any life table is gener-
ated in a very similar fashion.

10.3 KAPLAN-MEIER CURVES

The Kaplan—Meier curve is a nonparametric estimate of the survival
function (see Kaplan and Meier 1958). It is computed using the same
conditioning principle that we used for the life table. However, here we
estimate the survival at every time point, but only do the iterative com-
putations at the event or censoring times. The estimate is taken to be
constant between points. It has sometimes been called the product limit
estimator, because at each time point, it is calculated as the product of
conditional probabilities. Next, we describe in detail how the curve is
estimated.

10.3.1 The Kaplan-Meier Curve: A Nonparametric
Estimate of Survival

For all time from O to #,, where t; is the time of the first event, the
Kaplan—Meier survival estimate is Sy,(f) = 1. At time ¢, Sy, (t;) = Sim(0)
(n, — Dy)/n,, where n, is the total number at risk, and D, is the number
that die (have an event) at time t,. Since S,,(0) = 1, Sin(t) = (n; — Dy)/n,.
For the example in Table 10.3, below we see that Sy,(#) =

Table 10.3

Kaplan—-Meier Survival Estimates for Example in Table 10.1

Time No. of No. No. at Est. Est. prop. Est.
deaths  withdrawals risk n;  prop. of surviving cumulative
in D; W, deaths ¢; pj-1—¢q; survival

Sim(t)

Hn=15 1 0 10 0.1 0.9 0.9

=43 1 1 9 0.125 0.875 0.788

=54 1 0 6 0.143 0.857 0.675

=118 1 0 6 0.167 0.833 0.562

18>1>11.8 0 5 5 0 1.0 0.562

1218 0 0 0 0 — —
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(10 — 1)/10 = 0.9. At the next death time 7,, Sim(%2) = Skm(t1) (12 — D))/ny.
For n,, we use the value of N, in Table 10.2, and get Si.(¢,) = (0.9)
(8=1)/8 =0.9(7/8) = 0.9(0.875) = 0.788. Note that n, =8 because
there was one withdrawal between time t, and t,. The usual convention
is to assume “deaths before losses.” This means that if events occur at
the same time as censored observations, the censored observations are
left in the patients at risk for each event at that time and removed before
the next event occurring at a later time.

We notice a similarity in the computations when comparing
Kaplan—-Meier with the life table estimates. However the event times
do not coincide with the endpoints of the intervals and this leads to
quantitative differences. For example, at t = 4.3, the Kaplan—-Meier
estimate is 0.788, whereas the life table estimate is 0.688. At t=15.4,
the Kaplan—Meier estimate is 0.675 whereas the life table is 0.688. At
and after t = 11.8 the Kaplan—Meier estimate is 0.562, and the life table
estimate is 0.573. Although there are numerical differences qualita-
tively, the two methods give similar results.

10.3.2 Confidence Intervals for the
Kaplan-Meier Estimate

Approximate confidence intervals at any specific time t can be obtained
by using Greenwood’s formula for the standard error of the estimate and
the asymptotic normality of the estimate. For simplicity, let S; denote
Sim(t). Greenwood’s estimate of variance is V; = Sf[E{:1 qi!(n;p;)].
Greenwood’s approximation for the 95% confidence interval at time ¢,
is[S,-1.96\V,. S, +1.96,V, |.

Although Greenwood’s formula is computationally easy through a
recursion equation, the Peto approximation is much simpler. The vari-
ance estimate for Peto’s approximation is U; =S;(1—-S;)/n;. Peto’s
approximation for the 95% confidence interval at time ¢ is
[5,-1.96\U;. 5, +1.96U; |

Dorey and Korn (1987) have shown that Peto’s method can give
better lower confidence bounds than Greenwood’s, especially at long
follow-up times where there are very few patients remaining at risk. In
the example in Table 10.3, we shall now compare the Peto 95% confi-
dence interval with Greenwood’s at time ¢ = ;. For Greenwood, we
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need to calculate V3, which requires recursively calculating V, and V,
first.
V, = (0.9)[0.1/{10[0.9])] = (0.9)(0.01) = 0.009. Then

Vy = 831qu/(napy) + VilS7 1= (0.788)*[0.125/{8(0.875) + 0.009/(0.9)* }]
=0.621(0.0179+0.0111) = 0.621(0.029) = 0.0180. Finally,

V, = (0.675)[0.143/{7(0.857)} + 0.018/(0.788)*] = 0.4556[0.143/6] =
0.0109. So the 95% Greenwood confidence interval is

[0.675-1.969/0.0109,0.675+1.965/0.0109 |
=[0.675-0.2046,0.675+0.2046] =[0.4704, 0.8796].
For Peto’s estimate of variance, U;, we simply calculate
Us =S3(1-S;5)/n; =(0.675)*(1-0.675)/7
=(0.675)*(0.325)/7 = 0.4556.(0.0464) = 0.0212 .

So Peto’s estimate is

[0.675 ~1.96v/0.0212,0.675+ 1.96\/0.0212]
=[0.675—0.285,0.675 + 0.285] = [0.390, 0.960].

In this example, we see that Peto’s interval is much wider and hence
more conservative than Greenwood’s. However, that does not neces-
sarily make it more accurate. Both methods are just approximations,
and we cannot say that one is always superior to the other.

10.3.3 The Logrank and Chi-Square Tests:
Comparing Two or More Survival Curves

To compare two survival curves in a parametric family of distributions,
such as the negative exponential or the Weibull distribution, we only
need to test for differences in the parameters. However, for a nonpara-
metric estimate, we look for departures in the two Kaplan—Meier
curves. The logrank test is a nonparametric test for testing equality of
two survival curves against the alternative of some difference. Details
about the test can be found in the original work of Mantel (1966) or in
texts such as Lee (1992, pp. 109-112) or Hosmer et al. (2008).
Rather than go into the detail of computing the logrank test for
comparing the two survival curves, we can conduct a similar test that
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Table 10.4
Computation of Expected Numbers for the Chi-Square Test in
the Breast Cancer Example

Remission ~ Number of ~ Number Number at Expected Expected
time 7' remissions  at risk in  risk in control frequency frequency
at T dy treatment group n, in treatment  in control
group n, group E| group E,
15 1 5 5 0.5 0.5
18 1 4 4 0.5 0.5
19 2 3 3 1.0 1.0
20 1 3 | 0.75 0.25
23 1 2 0 1.0 0.0
Total — — — 3.75 2.25

has an asymptotic chi-square distribution with k — 1 degrees of freedom,
where k is the number of survival curves being compared. For compar-
ing two curves, the test statistic is chi-square with 1 degree of freedom
under the null hypothesis. The chi-square statistic as usual takes the
form 2, (0; — E;)*/E;, where n is the number of event times.

The expected values E; are computed by pooling the survival data
and computing the expected numbers in each group based on the pooled
data (which is the expected number when the null hypothesis is true,
and we condition on the total number of events at the event time points
and sum up the expected numbers. Our example is from a breast cancer
trial.

In the breast cancer study, the remission times for the treatment
group, getting cyclophosphamide, methatrexate, and fluorouracil
(CMF), are 23 months, and four patients censored at 16, 18, 20, and
24 months. For the control group, remission times were at 15, 18, 19,
19, and 20, and there were no censoring times. Table 10.4 shows the
chi-square calculation for expected frequencies in the treatment and
control groups in a breast cancer trial.

Based on the table above, we can compute the chi-square statistic,
(1 —3.75)%4.75 + (5 — 2.25)*/2.25 = 1.592 + 3.361 = 4.953. From the
chi-square table with 1 degree of freedom, we see that a value of 3.841
corresponds to a p-value of 0.05 and 6.635 to a p-value of 0.01. Hence,
since 3.841 < 4.953 < 6.635, we know that the p-value for this test is
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between 0.01 and 0.05, and the survival curves differ significantly at
the 5% level.

The logrank test is very similar except that instead of E; in
the denominator, we compute V=2."v;,, where m is the number
of time points for events from the pooled data, and
Vv; = nynyd;(n; — d;)/[n? (n; —1)], where n,; = number at risk in group 1
at time #;, n,; = number at risk at time ¢; in group 2, n; = n; + ny;, and
d; = combined number of deaths (events pooled from all groups) that
have occurred by time #. For two groups, the logrank test also has an
approximate chi-square distribution with 1 degree of freedom under the
null hypothesis. A nice illustration of the use of the logrank test with
the aid of SAS software can be found in Walker and Shostak (2010).
Additional examples of two-sample and k-sample tests can be found in
many standard references on survival analysis, including, for example,
Hosmer et al. (2008).

10.4 PARAMETRIC SURVIVAL CURVES

When the survival function has a specific parametric form, we can
estimate the survival curve by estimating just a few parameters (usually
1 to 4 parameters). We shall describe two of the most common para-
metric models, the negative exponential and the Weibull distribution
models.

10.4.1 Negative Exponential* Survival Distributions

The negative exponential survival distribution is a one-parameter
family of probability models determined by a parameter A, called the
rate parameter or failure rate parameter. It has been found to be a good
model for simple product failures, such as the electric light bulb. In
survival analysis, we have several related functions. For the negative
exponential model, the survival function S(¢) = exp(-At), where 1> 0
and A > 0. The distribution function F(¢) = 1 — S(7) = 1 — exp(-Ar), (1)
is the density function, which is the derivative of F(¢), f(t) = Aexp(—Az).
The hazard function A(f) = f(£)/S(¢). For the negative exponential model,

* Also simply referred to as the exponential distribution.
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Table 10.5
Negative Exponential Survival Estimates for Patients From
Table 10.3

Time Number Number of Number Est.  Est. prop. KM Negative

T of withdrawals  atrisk  prop, surviving survival exp.
deaths Wj n; of D estimate  survival
Dj deaths estimate
4q;
1.5 1 0 10 0.1 0.9 0.9 0.940
43 1 | 8 0.125 0.875 0.788 0.838
5.4 1 0 7 0.143 0.857 0.675 0.801
11.8 1 0 6 0.167 0.833 0.562 0.616
18 0 5 5 0 1 0.562 0.478

h(t) = Aexp(—Af)/exp(—Ar) = A. In this case, we will fit an exponential
model to the data used to fit the Kaplan—-Meier curve in Table 10.3.
Table 10.5 compares the estimated negative exponential survival curve
with the Kaplan—Meier estimate.

The exponential survival curve differs markedly from the Kaplan—
Meier curve, indicating that the negative exponential does not ade-
quately fit the data.

10.4.2 Weibull Family of Survival Distributions

The Weibull model is more general and involves two parameters A and
B. The negative exponential is the special case of a Weibull model,
when = 1. The Weibull is common in reliability primarily because it
is the limiting distribution for the minimum of a sequence of indepen-
dent identically distributed random variables. In some situations, a
failure time can be the first of many possible event times, and hence is
a minimum. So under common conditions, the Weibull occurs as an
extreme value limiting distribution similar to the way the normal dis-
tribution is the limiting distribution for sums or averages.

For the Weibull model S(r) = exp(—(A0)P), F(t) = 1 — exp(—(Ar)P),
f(t) = AB(A0)P 'exp[—(A1)P], and h(f) = AB(AH)P. For the Weibull model,
A>0and B> 0.
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10.5 COX PROPORTIONAL HAZARD MODELS

The Cox proportional hazards regression model is called semi-
parametric because it includes regression parameters for covariates
(which may or may not be time dependent), but in terms of the baseline
hazard function, it is completely general (hence not parametric). So part
of the modeling is parametric, and another part is nonparametric, hence
the term semi-parametric. In SAS®, the model can be implemented
using the procedure PHREG, or STCOX in STATA. An excellent and
detailed treatment with SAS applications can be found in Walker and
Shostak (2010, pp. 413-428). A similar treatment using the STATA
software package can be found in Cleves et al. (2008).

The purpose of the model is to test for the effects of a specific set
of k covariates on the event times. These covariates can be numerical
or categorical. In the case of categorical variables, such as treatment
groups, the model can estimate relative risks for the occurrence of an
event in a fixed interval when the patient gets treatment A versus when
the patient gets treatment B.

For example, in the RE-LY trial to compare three treatments, two
doses of dabigatran and warfarin as a control, the Cox model was used
to estimate the relative risk of the patient getting a stroke during the
trial while on one treatment versus another. This ratio was used to test
for superiority or noninferiority of the dabigatran doses versus warfarin
with respect to stroke or systemic embolism as the event. The model
was also used for other types of event, with major bleeding being a
primary safety endpoint.

The model is defined by its hazard function A(r) = A(t)exp(B. X, +
B.X> + ...+ B,X,), where m is the number of covariates the X; are the
covariates and is the baseline hazard function (¢ represents time). We
only consider ¢ 2> 0. It is called a proportional hazards model because
h(t) is proportional to A(f), since h(t)/A(f) is a constant (does not depend
on 7) that is determined by the covariates. The parameters f3; are esti-
mated by maximizing the partial likelihood. The estimation procedure
will not be described here, but its computation requires the use of
numerical methods and high-speed computers.

There are many books on survival analysis that cover the Cox
model, and even some solely dedicate to the method. A recent text
providing an up-to-date theoretical treatment is O’Quigley (2008),
which includes over 700 references. Other texts worthy of mention are
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Cox and Oakes (1984), Kalbfleisch and Prentice (1980, 2002), Therneau
and Grambsch (2000), Lachin (2000), Klein and Moeschberger (2003,
paperback 2010), Hosmer and Lemeshow (1999), Cleves et al. (2008),
Klein and Moeschberger (2003), and Hosmer et al. (2008). There have
been a number of extensions of the Cox model, including having the
covariates depend on time. See Therneau and Grambsch (2000) if you
want a lucid and detailed account of these extensions. Parametric
regression models for survival curves can be undertaken using the SAS
procedure LIFEREG and the corresponding procedure STREG in
STATA.

10.6 CURE RATE MODELS

The methods for analysis of cure rate models are similar to those previ-
ously mentioned, and require the same type of survival information.
However, the parametric models previously described all have cumula-
tive survival curves tending to zero as time goes to infinity. For cure
rate models, a positive probability of a cure is assumed. So the cumula-
tive survival curve for a cure rate model converges to p >0 as time
goes to infinity, where p is called the cure probability, cure fraction or
cure rate. Often the goal in these models is to estimate p.

For nonparametric methods such as the Kaplan—Meier approach, p
is difficult to detect. It would be the asymptotic limit as ¢ gets larger,
but the Kaplan—Meier curve gives us no information about the behavior
of the survival curve beyond the last event time or censoring time
(whichever is last). So to estimate the cure rate requires a parametric
mixture model.

The mixture model for cure rates was first introduced by Berkson
and Gage (1952). The general model is given by the following
equation:

S(@)=p+1A-p)Si()

where p is the cure probability, and S;(?) is the survival curve for those
who are not cured. S(¢) is the conditional survival curve given the
patient is not cured. The conditional survival curve can be estimated
by parametric or nonparametric methods. For an extensive treatment
of cure rate models using the frequentist approach, see Maller and Zhou



172 CHAPTER 10 Survival Analysis

0.9

0.8 \
07]\

0.6

0.5

0.4

0.3

Cumulative Survival Probability

0.2

0.1

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
Time in Years

Figure 10.2. Exponential cure rate model with cure rate p = 0.20 and exponential rate
parameter A = 1.Sente videm patum ad inam nonvere timorio rterumunina nihi, catum

(1996). The Bayesian approach to cure rate models can be found in
Ibrahim et al. (2001).

We illustrate a parametric mixture survival curve with an exponen-
tial survival curve with rate parameter A = 1, for the conditional sur-
vival curve S,(f) and with survival probability p = 0.2. This curve is
shown in Figure 10.2.

Although cure rate modeling began with Berkson and Gage in the
1950s, much of the literature came about in the 1990s when computing
became much faster and the EM algorithm for the frequency approach
and MCMC methods for Bayesian approaches became easy to imple-
ment. Until recently, the free software WinBUGS was the main option
for doing MCMC methods for the Bayesian approach to modeling.
However, very recently in SAS Version 9.2, MCMC methods have been
added as a procedure in SAS/STAT. Users of SAS software may find
this more convenient.
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10.7 EXERCISES

1. Define the following:
(a) Life table
(b) Kaplan—Meier curve
(c) Negative exponential survival distribution
(d) Cure rate model
(e) Chi-square test to compare two survival curves

2. If the survival function S(f) =1 —#/b for 0 <t < b, where b is a fixed
positive constant, calculate the hazard function. When is the hazard func-
tion lowest? Is there a highest rate?

3. Suppose + denotes a censoring event, and that the event times in months
for groupl are [8.1, 12, 17 334, 55, and 61] while for group 2 they are
[32, 60, 67, 76+, 80+, and 94]. Test to see if the survival curves are dif-
ferent using the chi-square test.

4. Suppose the survival time since a bone marrow transplant for eight
patients who received the transplant is 3, 4.5, 6, 11, 18.5 20, 26, and 35.
No observations were censored.

(a) What is the median survival time for these patients?

(b) What is the mean survival time?

(¢) Construct a life table where each interval is 5 months.
5. Using the data in example 4:

(a) Calculate a Kaplan—Meier curve for the survival distribution

(b) Fit a negative exponential model.

(¢) Compare b with a.

(d) Is the negative exponential survival distribution a good fit in this case?
6. Modify the data in example 4 by making 6, 18.5, and 35 censoring times

(a) Estimate the median survival time.

(b) Why would an average of all the survival times (excluding the cen-
soring times) be inappropriate?

(¢) Would an average including the censoring times be appropriate?

7. Now using the data as it has been modified in exercise 6, repeat exercise
Sa.

8. Listed below are survival and censoring times (using the + sign for cen-
soring) for six males and six females.
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Males: 1, 3, 4+, 9, 11, 15
Females 1, 3+, 6, 9, 10, 11+

(a) Calculate the Kaplan—Meier curve for males
(b) Calculate the Kaplan—Meier curve for females

(¢) Test for a difference between the male and female survival curves
using the chi-square test.

(d) Compute the logrank statistic and perform the same test as in ¢ using
this statistic? Do you reach the same conclusion as in ¢? Are the
chi-square and logrank test statistics close in value? Are the p-values
nearly the same?

9. What assumptions are required for the Cox proportional hazard model?
Why is it called a semi-parametric method?
10. Suppose a cure model is known to have S;(f) = exp(—0.51).

Recall S(#) = p + (1 — p)S,(¥). Suppose that we know that S(2) = 0.5259.
Can you calculate the cure rate for this model? If so what is it?



Solutions to Selected
Exercises

Chapter 1

1. What is a Kaplan—Meier curve?

A Kaplan—Meier curve is an estimate of cumulative survival over time based on
possibly right-censored time-to-event data. It is an estimate obtained without
making a parametric assumption about the shape of the survival curve.

3. Why is randomization important in clinical trials?

In clinical trials, we are comparing two or more treatments. Confounding can occur
when the subjects in one treatment group has very different characteristics than the
other. In one case, there may be a much higher percentage of males in one group
than in the other, or one group might tend to have older patients than the other. In
such situations, a significant difference in response between the two groups could
be due to the difference in treatment, but it also could be due to differences in ages
or gender. Randomization tends to balance out these factors, thus eliminating the
confounding.

7. What are retrospective studies?

Retrospective studies are any type of study where all the data were generated in the
past and are now being used for the purpose of an investigation that was not con-
sidered prior to the collection of data.

9. What are controlled clinical trials and why is blinding important?

In clinical trials, we are comparing two or more treatments on human subjects. The
trial is considered controlled when randomization is properly used and blinding is

The Essentials of Biostatistics for Physicians, Nurses, and Clinicians,
First Edition. Michael R. Chernick.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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included. When the investigator and/or the patient know which treatment group
they are in before the completion of the treatment, they could act in a way that
creates bias in the estimates. If both the investigator and the patient are unaware of
the treatment the patients are more likely to all be treated in the same manner and
bias will not creep into the study.

Chapter 2

3. Describe and contrast the following types of sampling designs. Also state when
if ever it is appropriate to use the particular designs:

(a) Simple random sample
(b) Stratified random sample
(c) Convenience sample

(d) Systematic sample

(e) Cluster sample

(f) Bootstrap sample

(a) Simple random sampling is just sampling at random without replacement from
a well-defined population.

(b) Stratified random sampling is a sampling procedure where the data are divided
into groups (strata) that make the subpopulations homogeneous groups. In each
strata, a specific number patients are sampled at random without replacement.
So it is a collection of simple random samples drawn for each strata. Stratified
random sampling is better than simple random sampling when subpopulations
are homogeneous, and there are differences between the groups. If the original
population is already very homogeneous, there is no benefit to stratification over
simple random sampling. It is possible to obtain unbiased estimates of the popu-
lation mean by either sampling technique, but one estimate will have a lower
variance compared with the other depending on the degree of homogeneity
within and between the subpopulations.

(c) A convenience sample is any sample that is collected in an operationally con-

venient way. This is usually not an acceptable way to sample because it is not

possible to draw inferences about the population from the sample. This is
because inference depends on having known probabilities for drawing elements
from the population.

Systematic sampling is an ordered way of selecting elements from the popula-

tion. So, for example, if you wish to take a 20% sample, you can enumerate

the population and draw the first and skip the next four until you have run
through the entire population. Systematic sampling can sometimes be easier
than random sampling, and if there is no pattern to the ordering it may behave
like a simple random sample. However, if there are patterns, such as cycles,
the method can be extremely biased. In the 20% sample, suppose that the data

G

=
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10

formed a sine wave as you step through the order. If the peak of the cycle
occurs at the first case and repeats every five you will only collect the high
values, and the mean will be much larger than the population mean. Similarly,
if the trough occurs in the first sample and the cycle length is five, you collect
only the lowest values from the population, and the sample mean will be
too low.

(e) Cluster sampling is another way that may be more convenient than simple
random sampling. For example, when the Census Bureau does survey sam-
pling in a city, it may be convenient to sample every house on a particular
block since the blocks form a list that can be randomly sampled. In such situ-
ations, cluster sampling has advantages.

(f) Bootstrap sampling is not a procedure to sample from the population per
se. Instead, we have a sample (presumably random), and bootstrapping is
sampling with replacement from this sample to try to infer properties of
the population based on the variability of the bootstrap samples. In the
ordinary case when the sample size is n, we also take n elements for the boot-
strap sample by sampling with replacement from the n elements in the original
sample.

. How does bootstrap sampling differ from simple random sampling?

As described earlier, bootstrap samples with replacement from a random sample,
whereas simple random sampling samples without replacement from a
population.

. What is rejection sampling and how is it used?

Rejection sampling is a method for sampling at random without replacement. A
common way to sample without replacement is to eliminate the elements from the
population as they are selected in sequence and randomly sample each time from
the reduced population. With rejection sampling you can achieve the same proper-
ties without changing the population you draw the samples from. You simply keep
a running list of all the elements that have thus far been sampled, and if the new
one is a repeat of one of the old ones, you throw it out and try again always making
sure that nothing repeats.

Why is the sampling design choice more critical than the size of the sample?

If you make a bad choice of design you can create a large bias that cannot
be overcome by an increase in sample size no matter how large you make it.
However if the sample size is too small but the design is appropriate, you
can obtain unbiased estimates of the population parameters. Increasing the sample
size will not prevent us from obtaining an unbiased estimate, and since the
accuracy of an unbiased estimate depends only on its variance, the sample
size increase will reduce the variance and make the estimate more accurate.
So with a good design, we can improve the estimate by increasing the sample
size. But no increase in sample size will remove a bias that is due to the poor
design.



178 Solutions to Selected Exercises

Chapter 3

1.

10.

What does a stem-and-leaf diagram show?

A stem-and leaf diagram has the nice property of describing the shape of the data
distribution in a way similar to a histogram but without losing information about
the exact value of the cases with a histogram bin.

. What is the difference between a histogram and a relative frequency

histogram?

A histogram has a bar height that equals the number of cases belonging to the bin
interval, The relative frequency histogram has the same shape, but the height rep-
resents the number of cases belonging to the bin interval divided by the total
number n of cases in the entire sample. So the height of the bar represents a pro-
portion or percentage of the data falling in the interval (or a frequency relative to
the total).

. What portion of the data is contained in the box portion or body of a box-

and-whiskers plot?

The bottom of the box is the 25th percentile and the top is the 75th percentile. So
the box contains 50% of the data.

. What relationship can you make to the three measures of location (mean,

median, and mode) for right-skewed distributions?

For unimodal distributions that are right skewed: mean < median < mode.

What is the definition of mean square error?

The mean square error is the average of the squared deviations of the observations
from their target. Note that the target is not always the mean. Using this definition
one can show that Mean Square Error = B + Variance, where B is the bias (the
difference between the mean and the target). When the estimate is unbiased, B = 0,
and Mean Square Error = Variance.

Chapter 4

1.

What is a continuous distribution?

A continuous distribution is a probability distribution with a density defined on an
interval, the whole real line, or a set of disjoint intervals.

. What is important about the normal distribution that makes it different from

other continuous distributions?

The normal distribution is a special continuous distribution because of the central
limit theorem, which states that for most distributions (continuous or discrete)
the average of a set of n independent observations with that distribution has a
distribution that is approximately a normal distribution if 7 is large (usually 30 or
more).
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6.

10.

11.

How are the median, mean, and mode related for the normal distribution?

For any normal distribution by the symmetry property, the mean and median are
the same, and the distribution is also unimodal with the mode at the mean. So the
three measures are always equal for normal distributions.

How is the t distribution related to the normal distribution? What is different
about the ¢-statistic particularly when the sample size is small?

Student’s #-distribution with n degrees of freedom is approximately the same as a
standard normal distribution when 7 is large (large is somewhere between 30 and
100. When # is small, the z-distribution is centered at 0, and is symmetric, but the
tails drop off much more slowly than for the standard normal distribution (small
is from 2 to 30). The smaller the degrees of freedom are, the heavier are the tails
of the distribution.

Assume that the weight of women in the United States who are between the
ages of 20 and 35 years has a normal distribution (approximately), with a
mean of 1201lbs and a standard deviation of 181bs. Suppose you could select
a simple random sample of 100 of these women. How many of these women
would you expect to have their weight between 84 and 1561bs? If the number
is not an integer, round off to the nearest integer.

First, let us compute the Z-statistic. Suppose X is the weight of a girl chosen at
random, then her Z-statistic is (X — 120)/18. By the assumption that X is normal
or approximately so, Z has a standard normal distribution. We want the probability
P[84 < X < 156]. This is the same as P[(84 — 120)/18 <Z < (156 — 120)/18] = P
[-2 £Z<2]=0.9544. See the table of the standard normal distribution. So the
expected number of women would be 0.9544(100) = 95.44 or 95 rounded to the
nearest integer.

Chapter 5

2.

What are the two most important properties for an estimator?

The most important properties of a point estimator are its bias and variance. These
are the components of the estimator’s accuracy.

. What is the disadvantage of just providing a point estimate?

As noted in problem 2, accuracy is the most important property of an estimator
and without knowledge or an estimate of the mean square error (or equivalently
the bias and variance) you do not know how good the estimator is.

. If a random sample of size n is taken from a population with a distribution

with mean p and standard deviation ¢, what is the standard deviation (or
standard error) of the sample mean equal to?

For a random sample of size n, the sample mean is unbiased and has a standard

deviation of O / \/; .
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8.

11.

Explain how the percentile method bootstrap confidence interval for a param-
eter is obtained.

To obtain a percentile method bootstrap confidence interval with confidence
level 100(1 — )%, generate many (e.g., 1000) bootstrap samples. Calculate the
estimate of interest for each bootstrap sample. Order the estimates from lowest to
highest. Find the first integer greater than or equal to 1000/2. Let’s call that m.
Then look for the mth bootstrap estimate, call it E:m) Then find the first integer
greater than 100(1 — 0/2). Call that integer m!/. Find the mith bootstrap estimate in
the ordered list and call that Efml). Then the interval [E(*m), E(*m])] is a two-sided
100(1 — o) % bootstrap percentile confidence interval for the parameter being
estimated.

The mean weight of 100 men in a particular heart study is 61kg, with a
standard deviation of 7.9kg. Construct a 95% confidence interval for the
mean.

We assume that the 100 men constitute a random sample of size 100, and that the
central limit theorem will apply to the average weight. So first we compute
the Z-statistic for the lower and upper bounds of the 95% confidence interval. Call
the confidence interval [L, U], then for the Z-scores the interval is [(L — 61)/7.9,
(U — 61)/7.9]. To make this a symmetric two-sided interval, we want (L — 61)/7.9
to be the 2.5 percentile of a standard normal random variable and (U — 61)/7.9 to
be the 97.5 percentile. From our table for the standard normal, we look for the
point X with area from 0 to X equal to 0.975/2 = 0.4875. We see that this gives a
value of X = 2.24. So (U — 61)/7.9 = 2.24. By symmetry, (L — 61)/7.9 = -2.24. We
can now solve for U and L. U =2.24(7.9) + 61 = 17.696 + 61 = 78.696 and L =
61 —2.24(7.9) =61 — 17.696 = 43.304.

Chapter 6

2.

How are equivalence tests different from standard hypothesis tests?

The standard Neyman—Pearson method for hypothesis testing make the hypothesis
of no significant difference the null hypothesis with the power of the test controlled
for the alternative by the necessary sample size. However, in equivalence testing,
we want no significant difference to be the alternative. Some people call this
“proving the null hypothesis.” In the Neyman—Pearson approach, we cannot “prove
the null hypothesis” without formally making it the alternative. That is because the
type I error is only the probability that we reject the null hypothesis when the null
hypothesis is “true.” It does not control the probability of accepting the null
hypothesis when the null hypothesis is “true.” If the sample size is small, it is hard
to reject the null hypothesis regardless of whether or not it is “true.” So to control
that probability, we make the null hypothesis the alternative and then controlling
the power of the test controls the probability of accepting the hypothesis when it
is “true,” since that is precisely the definition of power. By no significant difference
we mean that the difference between the two groups is in absolute value less than
a defined margin of equivalence 6.
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3.

10.

11.

What is the difference between equivalence testing and noninferiority?

In equivalence testing, we require that the difference be no greater than a specified
d and no less than —4. In noninferiority testing, there is no restriction on how much
larger the treatment mean is compared to the control mean, but the treatment mean
minus the control mean cannot be less than —d, where J is now called the nonin-
feriority margin.

. Describe the difference between a one-tailed and a two-tailed test and describe

situations where one is more appropriate than the other.

Sometimes, the alternative is only interesting in one direction. For example, in
clinical trials, we are usually only interested in showing that the treatment is supe-
rior to the control. This would mean that we want the average treatment effect to
be statistical significantly higher than the control. If the average treatment effect
is less than the average control treatment effect, it is just as bad as if there were
no difference.

What are meta-analyses? Why might they be needed?

Meta-analyses are analyses that combine information from several studies on the
same or similar endpoints. The purpose is to use the information to draw stronger
conclusions about the endpoint than was possible from any individual study. The
can be necessary when several small studies show trends that are not statistically
significant but are all or most in the same direction. The meta-analysis may be able
to provide research results that are significant rather than just a trend.

Based on the data in Table 6.1, do you think it is plausible that the true mean
difference in temperature between New York and Washington would be 3°F?
Would the power of the test be higher, lower, or the same if the true mean
difference were 5°F? Does the power depend on the true mean difference? If
so, why?
Yes: The observed difference is 3° or more higher in Washington versus New York
in January, March, April, July, August, September, October, and November, and is
2° higher in the other 4 months (February, May, June, and December).
Assuming the variance of the difference does not change the power of the test
would be higher if the true mean difference were 5° instead of 3°. This is because
the greater the separation of the center of the distribution, the less the distributions
overlap.

Chapter 7

1.

Define the following terms:
(a) Association

(b) The correlation coefficient
(c) Simple linear regression

(d) Multiple linear regression
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Nonlinear regression
Scatter plot

Slope of the regression line in simple linear regression

Association is a general term for a relationship between two variables. It
includes the Pearson correlation coefficient, Kendall’s tau, and Spearman’s rho
among others.

The correlation coefficient usually refers to the Pearson product moment cor-
relation, which is a measure of the strength of the linear association between
two variables. Sometimes Kendall’s tau and Spearman’s rho are also called
correlations. Spearman’s rank correlation measures the degree to which X
increases as Y increase or X decreases as Y increases. It is 1 when Y is exactly
a monotonically increasing function of X, and —1 when Y is exactly a mono-
tonically decreasing function of X.

Simple linear regression is the curve relating two variables X and when
Y=af(X) + b + e, where a and b are the parameters, and e represents a random
noise component. In this formulation, Y is a linear function of the parameters
a and b, and fis any function of X. The regression function is afiX) + b. If

fiX) =X, Yis linear in X also, but f{X) could also be \/} or X* or log(X).
Multiple linear regression is similar to linear regression except that Y is a
function of two or more variables X;, X,, . . . X, where n > 2.

Nonlinear regression can have Y be a function of one or more variables. It
differs from linear regression in that it must be nonlinear in parameters. So, for
example, Y could be exp(b)X“, or some other complicated expression. Y =X+ e
is nonlinear. But if the noise term were multiplicative, that is, Y = X“e, then it is
transformable to a linear regression, since In(Y) = In(e) + a In(X) In this case, we
can solve by least squares with a zero intercept restriction. In(e) is the additive
noise term, and Z=In(Y) has a linear regression Z=aW + 6, where W = In(X)
and 6=1In(e). The only parameter now is a, and Z is a linear function of the
parameter a. Usually, in nonlinear regression, iterative procedures are needed
for the solution, while in linear regression, the least squares solution is obtained
in closed form by solving equations that are called the normal equations.

A scatter plot is a graph of pairs (X, Y) that graphically shows the degree of
relationship between the variables X and Y and is often the first step toward
fitting a model of Y as a function of X.

In simple linear regression, where Y = af(X) + b + e. The parameter a is called the
slope of the regression line. When f{X) = X, the least squares regression line is fit
through the scatter plot of the data. The closer the data points fall near the least
squares line the higher is the correlation between X and Y, and the better the linear
regression line fits the data. The slope of that regression line is the least squares
estimate of a, and the Y intercept for the line is the least squares estimate of b.

What is logistic regression? How is it different from ordinary linear
regression?

Logistic regression involves a response variable that is binary. The predictor vari-
ables can be continuous or discrete or a combination of both. Call Y the binary
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11.

14.

variable, then the regression of Y on the predictor vector X = (X, X, . . ., X)) is
the probability that Y =1 given X =x. We let n(x) = E[YIX = x]. The logistic
regression expresses g(x) = the logit function of m(x), namely g(x) = In[7(x)/
{1 — m(x)}], with the function g linear in the prediction vector x. Here the coef-
ficientof each X; = x;is B, i = 1,2, . . . , k. It differs from ordinary linear regression
in that E(YIX = x) is a probability belonging to the interval [0, 1], and the logit
transformation is used to transform it to (—oe, o). It is linear like ordinary linear
regression, but only after the logit transformation.

. What is the definition of the multiple correlation coefficient R*?

For multiple linear regression, the multiple correlation coefficient is the proportion
of the variance in Y that is explained by the estimated regression equation divided
by the total variance in Y. It is a measure of goodness of fit to the line, and when
R* =1, the regression equation explains all of the variance implying that all the
data fall exactly on the regression line.

. What is the equivalent to R* in simple linear regression?

In simple linear regression, the square of the Pearson correlation coefficient is
analogous to R The square of the correlation is the percentage of the variance in
Y explained by the variable X. When the data fall perfectly on a line the correlation
equals *1, and its square equals 1.

What is stepwise regression? Why is it used?

Stepwise regression is a procedure for selecting a subset of a set of proposed
predictor variables to include in the regression model. It uses criteria to either add
a variable or subtract a variable at any stage until there are no more variables
satisfying the drop or add criterion. Stepwise regression is used because often in
practice we know a set of variables that are related to the response variable, but
we don’t know how correlated they are among each other. When there is correla-
tion, a subset of the variables will do better at predicting new values for the
response than the full set of variables. This is because the estimated coefficients
can be unstable when there is correlation among the variables. This is called the
multicollinearity problem, because high correlation means that one of the predic-
tor variable, say X is nearly expressible as a linear combination of other predictor
variables. If the multiple correlation between the variables and X, the regression
coefficients are not unique.

An experiment was conducted to study the effect of increasing the dosage of
a certain barbiturate. Three readings were recorded at each dose. Refer to
Table 7.6.

(a) Plot the scatter diagram (scatter plot)

(b) Determine by least squares the simple linear regression line relating
dosage X to sleeping time Y.

(c) Provide a 95% two-sided confidence interval for the slope.
(d) Test that there is no linear relationship at the 0.05 level.
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(a) Scatter plot

14

12

SLEEPING TIME Y (hours)

10 1

0 2 4 6 8 10 12 14 16

DOSAGE X (mM/kg)

(b) Least squares the simple linear regression line relating dosage X to sleeping

time Y.

E(YIX) = a + bX, where the intercept b= 2./, (X; — X" )(Y; = Y™)/ X1,
(X, = X" =(XL 2L XY, —nX YOHIZL 5 X, X, — (X" )]
and a = YN — bX". From Table 7.6 we see XY = 72 s0 YA = 72/9 = 8 and ZX = 84
so X = 84/9 = 9.33.

Now b = [6048 — 9(72/9)(84/9)]/[7056 — 9(84/9)(84/9)] = 5376/6272 = 0.857143, and
a =38 —0.857(9.33) = 0.00286. The regression line is therefore Y = 0,857X + 0.00286.

(c) A two-sided 95% confidence interval for b is obtained by recalling that

(d)

SSE=X(Y, =Y") =X, X" VY, —n(Y")*SS, , = JISSE/(n—2)]
andSE(b)= S, , / gx/ [X(X; — X*)*].Also,r = (b — BY/SE(b)has a-distribution

with n — 2 degrees of freedom. So the degrees of freedom for this case is 7.

SSE =5184 — 9(64) = 4608 and SS, , = V4608/7 = 25.66 and SE(b) =
25.66/\[7056 —9(9.33)2] = 25.66/79.1995 = 0.324. Therefore, a
two-sided95% confidenceinterval forbis[b — 0.3241,(0.975),b + 0.324£,(0.975)].
From the 7 tables in the appendix, we see that #;(0.975) = 2.365. So the confi-
dence interval = [0.857 — 0.324(2.365), 0.857 + 0.324(2.365)] = [0.091, 1.62].
Since 0 is not contained in the interval, we would reject the hypothesis that

B=0.

Chapter 8

2. In a survey study subjects were asked to report their health as excellent, good,
poor and very poor. They were also asked to answer whether or not they had
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smoked at least 250 cigarettes in their lifetime. Suppose Table 8.14 represents
the outcome of the survey.

Determine if there is a relationship between cigarette usage and reported
health status at the 5% significance level one-sided. What is the p-value for the
chi-square test? Why is it appropriate to use the chi-square test?

Yes, we reject the null hypothesis at the 0.05 level. Based on SAS Version 9.2 Proc
Freq, chi-square p-value < 0.0001, indicating a highly significant relationship
between smoking frequency and health status. Over 70% of the patients in the
excellent category smoke fewer than 250 cigarettes. Similarly, 58% of patients in
the good health category smoke fewer than 250 cigarettes. In the poor health cat-
egory, 53% are from the smoke fewer than 250 cigarettes. But in the very poor
health category 64% are from the smoke 250 or more category

The chi square test is appropriate because the sample sizes are large and each cat-
egory has at least 20 counts.

6. A clinical trial is conducted at an academic medical center. Diabetic patients
were randomly assigned to a new experimental drug to control blood sugar
levels versus a standard approved drug using a 1: 1 randomization. 200 patients
were assigned to each group and the 2 X 2 table (Table 8.18) shows the results.

Test at the 5% level to determine if the new drug is more effective. Is it

appropriate to apply the chi-square test? Why would it be difficult to do
Fisher’s test without a computer? How many contingency tables are possible
with the given row and column marginal totals?
Based on both the chi-square test and Fisher’s exact test, we see that the drug is very
effective. p-value for both test is much less than 0.0001. The chi-square test s appropri-
ate because each cell has at least 21 patients in it. Fisher’s test would be difficult to do
by hand because there are many contingency tables to look at. But using SAS 9.2, this
is not really a problem. There are 141 such tables with the fixed marginal totals.

Chapter 9

2. Apply the Wilcoxon rank-sum test to the data in the following table on the rela-
tionship between the number of patients with schizophrenia and the season of
their birth by calling fall and winter as group 1 and spring and summer as
group 2. The four individual seasons represent data points for each group.
Ignore the possibility of a year effect (Table 9.6).

Do we need to assume that births are uniformly distributed? If we knew
that there were a higher percentage of births in the winter months how would
that affect the conclusion?

The ordered data and ranks are as follows:

9—summer

10—spring

1
2
13—spring 3
14—spring 4

5

15—summer
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17—summer 6
18—spring 7
19—fall 8
20—fall 9.5
20—spring 9.5
21—summer 11

22—spring 12

23—fall 13
25—summer 14
27—fall 15
28—summer 16
32—fall 17
33—fall 18
35—winter 19

36—winter 20.5
36—winter 20.5
38—winter 22
41—winter 23
43—winter 24

By groups we have ranks and sum of ranks as follows:

Group 1 (fall Group 2 (spring
and winter) and summer)

8 1

9.5 2

13 3

15 4

17 5

18 6

19 7

20.5 9.5

20.5 11

22 12

23 14

24 16

Rank sum 209.5 90.5
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It appears obvious that group 1 has the larger numbers.
From the table for the Wilcoxon rank-sum test when nl = n2 = 12 we have for
T = 209.50. The p-value given here was obtained using the following SAS code:

data schizo;
input group$ season$ nschizo

7

datalines;

g2
g2
g2
g2
g2
g2
g2
g2
g2
g2
g2
g2
gl
gl
gl
gl
gl
gl
gl
gl
gl
gl
gl
gl

7

summer
summer
summer
summer
summer
summer

spring
spring
spring
spring
spring
spring

fall
fall
fall
fall
fall
fall

19
20
23
27
32
33

winter
winter
winter
winter
winter
winter

run;

9

15
17
21
25
28
10
13
14
18
20
22

35
36
36
38
41
43

ods graphics on;
proc nparlway data = schizo;

class group;
var nschizo;

run;

ods graphics
data schizo;
input group$

7

datalines;

off;

season$ nschizo
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g2 summer 9
g2 summer 15
g2 summer 17
g2 summer 21
g2 summer 25
g2 summer 28
g2 spring 10
g2 spring 13
g2 spring 14
g2 spring 18
g2 spring 20
g2 spring 22
gl fall 19
gl fall 20
gl fall 23
gl fall 27
gl fall 32
gl fall 33
gl winter 35
gl winter 36
gl winter 36
gl winter 38
gl winter 41
gl winter 43
run;

ods graphics on;

proc nparlway data = schizo;
class group;

var nschizo;

run;

ods graphics off;

The result is included in the following SAS output:

The SAS System 12:10 Monday, December 6, 2010
2

The NPARIWAY Procedure

Wilcoxon Scores (Rank Sums) for Variable nschizo
Classified by Variable group
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Sum of Expected Std Dev Mean

group N Scores Under HO Under HO Score
FISEEFFSSSAFISSSFFSSSSFISSSSFFSSSSFFISSSFISSSSFISSSSFIFSSSSFISSSSFISSfSS
g2 12 90.50 150.0 17.312976 7.541667

gl 12 209.50 150.0 17.312976 17.458333

Average scores were used for ties.

Wilcoxon Two-Sample Test
Statistic 90.5000

Normal Approximation

Z -3.4078

One-Sided Pr < Z 0.0003
Two-Sided Pr > |z| 0.0007

t Approximation
One-Sided Pr < Z 0.0012
Two-Sided Pr > |Z| 0.0024

7 includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 11.8111
DF 1
Pr > Chi-Square 0.0006

Yes, we do need births to be at least uniform over the seasons. This is because
we are ranking based on number of births over a season. If there tended to be more
births in the fall and winter compared with summer and spring, the higher number
of schizophrenic patients could be due to the higher number of total births rather
than a tendency for schizophrenics to be born during winter and fall. If there were
a higher number of births in the winter, then we could not reach our intended con-
clusion. We would need to know the number of births in each season and adjust
accordingly by looking at proportion of schizophrenic births rather than the total
number.

. Using Table 9.9, compute the Spearman rank correlation coefficient for the
aggressiveness scores. Does this suggest that both twins tend to be similar in
degree of aggressiveness?

Recall that the formula for Spearman’s rank correlation is given as follows:
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p= {ZilR(Xi)R(Yi)_n([l’l+]]/2)2}
" ROGR a2 WY ROGR = nin+ 1277
i=1 ~

In the case of no ties, this formula simplifies to
p=1-6T/[n(n*>-1)},

where T =2 [R(X;)— R(Y)I.

Since we have ties, we cannot use the simplified formula.
So in this example, the estimate

p={Z2RX)RY,) - S0TY/[{ZZ R(X))* = SOTHZ 2 R(Y,)* —507}]
= (535.0 - 507.0)/(649.0 — 507.0)(649.0 — 507.0)
= 28/(142) = 28/20,164 = 0.001389.

The correlation is negligible, meaning there is practically no relationship between
order of birth and aggressiveness of the twins. A statistical test would show that
the correlation is not statistically significantly different from 0. So the twins tend
to be similar in the amount of aggressiveness shown in their scores.

Chapter 10

2. If the survival function S(#) =1 — ¢/b for 0 <t < b, where b is a fixed positive
constant, and S(f) = 0 for ¢ > b, calculate the hazard function. When is the
hazard function lowest? Is there a highest rate?
Ft)y=1-8St)=1-1—=1t/b)=1t/b for 0<t<b in this case, and F(t) =1 for
t > b. Now f(r) = dF(t)/dt = 1/b for all 0 <t < b and f(r) = 0 otherwise. Now the
hazard function is defined as Ah(r) = f(t)/S(¢) = 1/[bS(¢)] = 1/b(1 — t/b) = 1/(b — 1)
for 0 £t < b. At ¢t = 0, the hazard function is 1/b, and that is its lowest value. For
b>1t>0h(t)=1/(b—1) > 1/b, since b > b — t. So the hazard function is increas-
ing. Butast — b, b —t — 0, and h(t) = 1/(b — t) — o. So there is no maximum
value for the hazard function.

4. Suppose the survival time since a bone marrow transplant for eight patients
who received the transplant is 3, 4.5, 6, 11, 18.5 20, 26, and 35. No observa-
tions were censored.

(a) What is the median survival time for these patients?
(b) What is the mean survival time?

(¢) Construct a life table where each interval is 5 months.
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(a) Since the data is complete and there are 8 event times, the median is the average
of the 4th and 5th ordered observations, which is (11 + 18.5)/2 = 14.75 months.

(b) The mean survival is just the arithmetic average of the eight event times, which
is(3+454+6+ 11+ 185+ 20+ 26 + 35)/8 = 15.5 months.

(c) A life table for this data using 5-month intervals is as follows:

Time No. of No. No.at  Avg. no. Est. Est. Est.
Interval /; deaths withdrawn riskin/; atrisk prop. of  prop. cum.
in [; in [; in [; deaths  Surv. at  surv. at

inf; endofl; endof]

[0, 5) 2 0 8 8 0.25 0.75 0.75
[5, 10) 1 0 6 6 0.167 0.833 0.585
[10 15) 1 0 5 5 0.200 8 0.468
[15,20) 1 0 4 4 0.250 0.750 0.341
[20,25) 1 0 3 3 0.333 0.667 0.227
[25,30) 1 0 2 2 0.500 0.500 0.114
[30,35) 0 0 2 2 0.000 1.000 0.114
[35,40) 1 0 1 1 1.000 0.000 0.000
[40, ) 0 0 0 0 — — _

10. Suppose a cure model is known to have S;(¢) = exp(-0.5¢).

Recall S(#) =p + (1 —p) S1(¢). Suppose that we know that S(2) = 0.5259.
Can you calculate the cure rate for this model? If so what is it?

S() =p + (1 — p)Si(?). Since we know S;(7) = exp(-0.5¢), we only need to deter-
mine pS(1).

We are given S(2) = 0.5259, and we can use this information to solve for p.

S(2) = 0.5259, on the one hand, and

S(2)=p+(1-p)exp[-(0.5]= p+(1-p)(0.3679)
= p(1-0.3679) + 0.3679.

So p(1-0.3679)=0.5259-0.3679 = 0.1580.

P =0.1580/(1-0.3679) =0.1580/0.6321 = 0.4295

So S(#) = 0.4295 + 0.5705exp(—0.5¢), and the probability of cure is 0.4295. This
means that approximately 43% of the patients receiving this treatment will be cured
of the disease based on this model.
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Table 4
x* Distribution

df P
0.99 0.95 0.90 0.10 0.05 0.01 0.001
1 0.0°157 0.00393  0.0158  2.706 3.841 6.635  10.827
2 0.0201 0.103 0.211 4.605 5.991 9210  13.815
3 0.115 0.352 0.584 6.251 7815 11345 16266
4 0.297 0.711 1.064 7.779 9.488 13277  18.467
5 0.554 1.145 1.610 9236  11.070  15.086  20.515
6 0.872 1.635 2204  10.645 12592 16812 22457
7 1.239 2.167 2833 12017  14.067 18475 24322
8 1.646 2.733 3490 13362 15507  20.090  26.125
9 2.088 3.325 4168  14.684 16919  21.666  27.877
10 2.558 3.940 4865 15987 18307 23209  29.588
11 3.053 4575 5578 17275  19.675 24725  31.264
12 3.571 5.226 6304 18549  21.026 26217  32.909
13 4.107 5.892 7.042 19812 22362  27.688  34.528
14 4.660 6.571 77790 21.064  23.685  29.141  36.123
15 5.229 7.261 8.547 22307 24996 30578  37.697
16 5.812 7.962 9312 23542 26296  32.000  39.252
17 6.408 8.672  10.085 24769  27.587 33409  40.790
18 7.015 9390  10.865 25989  28.869  34.805  42.312
19 7.633 10.117  11.651 27204  30.144  36.191  43.820
20 8.260 10.851 12443 28412 31410 37566 45315
21 8.897 11591 13240 29615 32671 38932  46.797
22 9.542 12.338  14.041  30.813  33.924 40289 48268
23 10.196 13.091  14.848 32007  35.172  41.638  49.728
24 10.856 13.848  15.659  33.196  36.415 42980  51.179
25 11.524 14611 16473 34382  37.652 44314 52620
26 12.198 15379 17292 35563  38.885  45.642  54.052
27 12.879 16.151  18.114 36741  40.113 46963  55.476
28 13.565 16.928 18939 37916 41337 48278  56.893
29 14.256 17708  19.768  39.087 42557  49.588  58.302
30 14.953 18493 20599 40256 43773  50.892  59.703

SOURCE: Adapted from Table IV of R. A. Fisher and F. Yates (1974). Statistical Tables for
Biological, Agricultural, and Medical Research. 6th ed. London: Longman Group, Ltd. (Previously
published by Oliver & Boyd, Ltd., Edinburgh). Used with permission of the authors and
publishers.

Taken from Chernick and Friis (2003), Appendix D, pp. 368-369, with permission.
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Table 6
Percentage Points, Student’s t-Distribution

F 0.90 0.95 0.975 0.99 0.995
n
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 2.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2492 2,797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2473 2771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
120 1.289 1.658 1.980 2.358 2.617
oo 1.282 1.645 1.960 2.326 2.576

Source: Beyer, William H., ed. (1966). Handbook of Tables for Probability and Statistics.
Cleveland, Ohio: The Chemical Rubber Co., p. 226.
Taken from Chernick and Friis (2003), Appendix F, pp. 371-372, with permission.
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