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This new type of model consists of various 
sorts of interacting units which receive inputs 
and generate outputs. The outputs of each 
unit are, in part, functionally related to prior 
events and, in part, are the results of a series 
of random drawings from discrete probability 
distributions.

—Guy H. Orcutt (1957)
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Foreword

This book is intended for anyone who needs a practical introduction to microsimu-
lation in general and to the Modgen program in particular. We have selected Modgen, 
a Statistics Canada software package, as the platform for this initiation in micro-
simulation because of its flexibility, performance, accessibility and multifunctional 
capacity. Our view is that although Modgen is increasingly being used outside 
Statistics Canada itself, it is still under-exploited. Recent European microsimulation 
projects have invested significant resources in building their own microsimulation 
platforms, but these have not always proved to be as flexible or to perform as well. 
The underuse of Modgen is probably due mainly to the fact that the documentation 
produced by Statistics Canada is essentially aimed at those who are already experi-
enced Modgen users. We believe that there is a need for a training manual designed 
for beginners, offering a simple but realistic microsimulation model. This book is 
intended to fill this gap. It provides a series of exercises which are specifically tai-
lored to enable the beginner to build up his or her first dynamic microsimulation 
program step by step. To create a dynamic microsimulation model, a designer has to 
begin by identifying the events which will affect a population and which will drive 
its evolution over time. Whether the population is made up of businesses, house-
holds, people or other elements (or cases, to use the technical term), these individual 
elements all have to come into existence (or be born), evolve (grow older) and dis-
appear (or die). Each particular population model, then, exists in a particular setting. 
In this book we use examples of human populations and build a model of demo-
graphic projection which simulates the evolution of the population of the different 
regions of Canada, based on certain demographic characteristics. Although we will 
be using some of the concepts and methods of demography, the non-demographer 
should find it relatively easy to practise the exercises and then to transpose his or her 
skills in using Modgen into the development of models in another expert field, such 
as economics, sociology, biology or elsewhere.

The idea for this book emerged from a seminar organised by the Population 
Change and Lifecourse Strategic Knowledge Cluster (PCLC Cluster). Because of a 
lack of documentation on Modgen, the Cluster decided to sponsor the production of 
a training manual to encourage Modgen users to learn how to use the software 
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program, and this task was given to us. Through the Cluster, this book has therefore 
received financial backing from the Canadian Social Sciences and Humanities 
Research Council (SSHRC). The authors would like to acknowledge the support of 
SSHRC and of its director, Professor Roderic Beaujot. We would also like to thank 
Samuel Vézina for proofreading the original manuscript and Julien De Gouffe from 
Statistics Canada for his precious technical support. The book was originally writ-
ten in French and has been translated into English by Duncan Fulton, whom we also 
wish to thank for his work.

Of course, any errors or imprecisions that you may encounter in this book are 
entirely ours. We are always happy to receive suggestions and comments, and you 
can write to us at comments@microsimulationandpopulationdynamics.com.

Québec, Canada	 Alain Bélanger
	 Patrick Sabourin

Foreword

comments@microsimulationandpopulationdynamics.com
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Installing Modgen 12

Modgen is a microsimulation package based on the C++ programming language. 
The Modgen software is designed to be used in conjunction with Microsoft Visual 
C++.

Fortunately, Visual C++ is now available at no cost, as Microsoft has released a 
free version of its Visual Studio suite (Community Edition). You must download and 
install Visual Studio Community Edition before installing Modgen.

You will then be able to download and install the Modgen 12 software which is 
also available for free on the Statistics Canada website.

It is important that you install Visual Studio before Modgen, since Modgen will 
introduce some of its components in the Visual Studio files. Both installations are 
straightforward and should not be problematic. Complete installation instructions, 
along with download links to Visual Studio and Modgen can be found on the book 
website: www.microsimulationandpopulationdynamics.com.

Modgen 12 is scheduled to be released sometime in the Winter of 2017. Should 
it still be unavailable by the time you buy this book, you can write to statcan. 
microsimulation-microsimulation.statcan@canada.ca and ask for an advanced copy 
of the program.

Users of previous versions of Modgen will notice that some substantial changes 
have been made in version 12. Most notably, the Modgen toolbar has been removed, 
and precompilation (more on that topic in the book!) is now performed automati-
cally upon compilation with the Visual C++ compiler. The developer’s guide and 
other files, previously accessible through the Modgen toolbar, are now only avail-
able through the start menu.

For up-to-date information on the book and on Modgen, visit http://www. 
microsimulationandpopulationdynamics.com/.

http://www.microsimulationandpopulationdynamics.com/
http://www.microsimulationandpopulationdynamics.com/
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Introduction

IF WE ASK A DEMOGRAPHER to describe the future evolution of a given popu-
lation, he or she will start by gathering two types of information. The first of these 
concerns the actual population numbers by age group and sex (and perhaps by 
region), which are the starting point for an elementary form of population forecast 
or projection. The demographer’s next question will be about the frequencies with 
which the main demographic events occur – births, migrations and deaths. These 
frequencies will be used to calculate rates for each age and gender group. So our 
imaginary demographer will be building a model whose operationalisation requires 
population numbers for every group considered as “homogeneous” in some way 
(e.g. in terms of age or sex) and rates which represent the degree of risk (of mortal-
ity, birth, migration, etc.) that these groups are exposed to. The number of such 
events projected per year is obtained by multiplying the population numbers by the 
risk in question. Based on analysis of more or less recent trends or on comparison 
with trends observed in other regions or countries, hypotheses are formed about the 
likely evolution of these rates in the future.

�From Multi-state Macro Models to Microsimulation

This projection methodology is determinist in nature. The uncertainty attached to 
the future evolution of the various rates is estimated by generating a consistent set 
of scenarios which incorporate different plausible hypotheses about future rates of 
fertility, migration and mortality. These scenarios allow us to generate a set of pro-
jections; as future events unfold, their actual values should fall within the limit 
values of these projections. A probabilistic component can also be added to the 
model by estimating, in addition to the central tendency, the variance of each param-
eter (e.g. based on a chronological series). In this way the same projection can be 
repeated several times, giving the rates a random value depending on the variance 
attributed to each of them.
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Any model is necessarily an abstraction from reality, but these kinds of models, 
whether they are deterministic or probabilistic, have several major limitations. Firstly, 
all of them assume that each sex and age group is internally homogeneous, that is, 
that all the individuals in a group experience the same risk of undergoing a particular 
type of event (e.g. that all women aged 22 have the same risk of dying, migrating or 
giving birth). Such a hypothesis rarely if ever holds true in practice, and this is bound 
to result in a bias in the projected results. To illustrate this, suppose that a population 
is composed of two subgroups (e.g. with different languages or religions), which are 
different from each other in terms of their fertility (and, to keep things simple, solely 
in that respect). Assuming that fertility rates remain constant, the more fertile sub-
group will gradually increase in its relative size within the population as a whole. But 
if the relative size of this more fertile group within the population increases, then the 
fertility of the population as a whole will automatically rise, even though there has 
been no change in the behaviour of the women of either of the sub-groups. This will 
mean that the further into the future the projections extend, the more this simple 
macro model will tend to under-estimate the number of future births.

Another limitation of traditional macro models is linked to the nature of the pro-
jection hypotheses. According to these, the probability of an event occurring in the 
future depends entirely on present conditions. To use the example of fertility again, 
the probability of a woman giving birth is assumed to depend solely on her age and 
the region where she is living at time t, without taking account of her country of 
birth or her parity (the number of children she has). But if fertility behaviour is 
partly a result of the social and cultural environment in which a person was brought 
up, then a woman born in a country with higher fertility will have, on average, 
higher fertility than one born in a region with lower fertility, irrespective of where 
she is living at time t. But a simple cohort-components model is unable to take these 
differences into account, because the fertility of both women are assumed to be the 
same as the fertility of all women of the same age in their region of residence.

We should point out that it is theoretically possible to make the cohort-components 
model more complex, so as to account for the underlying heterogeneity of popula-
tions (for example in terms of ethnic group or region of birth). But the difficulty here 
is more technical, and results from the fact that component-based projections usually 
depend on matrix computation. Without going into details, the key point here is that 
the size of the matrix increases exponentially with the number of variables being 
considered. So the model quickly becomes unworkable (Van Imhoff and Post 1998).

Microsimulation enables us to overcome these limitations by creating a ran-
domised series of experiences for each individual in the projection and so building 
up a unique biography for each simulated case. Looking again at the fertility exam-
ple, we can trace the stages in a simple microsimulation model. The first step is to 
compile a representative sample of the female population of the region being stud-
ied (e.g. using publicly available micro-level data from a census). For each woman 
in the sample and for each year in the simulation, a randomised experiment is then 
carried out whose probability of success is a function of the level of fertility at each 
age. To put this in concrete terms, a random value between 0 and 1 is compared to 
the probability of giving birth, for each woman in the sample. If the random value 
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is lower than the probability of giving birth, an individual aged 0 is added to the 
simulation. If the opposite is true, there is no birth and the model moves on to 
another event. The randomized experiment is repeated for every fertile age, varying 
the probability of giving birth. The result for the population as a whole is obtained 
by aggregating all the individual results, using appropriate weighting.

Access to increasingly powerful computers at ever lower cost, as well as improved 
availability of survey microdata, has meant that microsimulation has become 
increasingly widely used over recent decades. The development of programming 
languages and of software such as the Modgen program presented in this book has 
made it easier to create microsimulation models and has helped to increase the num-
bers of people using them. However, even with the help of Modgen, developing a 
dynamic microsimulation model is, initially, a potentially more demanding task 
than developing a cohort-component projection model or even a multiregional 
model. Considerable resources have to be devoted to programming, establishing 
parameters and validating the model.

But despite the effort needed to set them up, microsimulation models are never-
theless superior to macromodels. One of their main advantages, as argued by Orcutt 
(1957) in his original article, is theoretical in nature. The most powerful theoretical 
models for explaining human behaviour, such as decisions to have a child or to 
migrate, operate at the level of the individual. So it makes sense to simulate these 
behaviours at the individual level. The same argument explains another strength of 
microsimulation which we have already touched on. This concerns changes in the 
composition of the population which are hard to capture in macro models but which 
can be easily taken into account by a microsimulation model. Behaviours like those 
involving fertility and mobility can be made to vary according to a large number of 
relevant variables such as country of birth, level of education or religion. At the 
analytical level, microsimulation offers greater flexibility and is usually the only 
way to obtain consistent results, especially when a number of different characteris-
tics have to be projected at the same time. For example, the microsimulation model 
developed at Statistics Canada to forecast the ethnocultural diversity of the Canadian 
population (Alain Bélanger and Caron Malenfant 2005) required simultaneous pro-
jection of several ethnic variables: immigration status and immigration period, 
membership of a visible minority group, religious denomination and mother tongue 
as well as age, sex and region of residence. Two other modelling options were avail-
able to the researchers developing this model, as alternatives to microsimulation – 
but one of them would have been impossible to implement, and the other would 
have yielded inconsistent results. If we had attempted to carry out this projection 
using a multistate model, the transition matrix would have had several hundred mil-
lion cells, much more than the total number of inhabitants of Canada. This matrix 
would have been so big that it would have been impossible to create and manipulate. 
The other option would have been to carry out separate projections for each dimen-
sion of cultural diversity. Such projection models might have been manageable, but 
their results would not have been internally consistent. This is because there is no 
reason to assume that population projections based, for example, on immigrant 
status would arrive at the same totals as those based on visible minority group 
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membership or religious affiliation. Furthermore, this approach would not have 
allowed cross tabulation of all the projected variables, and this would necessarily 
have reduced the quality of the projection itself as well as the richness of the results 
produced. It is much easier to introduce a number of explanatory factors for each 
type of behaviour into a microsimulation model, because there is no need to increase 
the state space (the matrix) exponentially. A new explanatory factor (a state) can be 
simply added to the existing model without having to reorganise everything that has 
been done up to that point.

Conditional relationships (interactions) between explanatory variables are prac-
tically impossible to account for in a conventional projection model. For example, 
the relationship between the fertility of immigrant women, their ethnic origin and 
their religion can be modelled relatively easily in a microsimulation model, but 
significantly increases the number of cells in the transition matrix of a cohort com-
ponent-model (it would be multiplied by the number of possible states in the immi-
grant status times the number of possible ethnic origins times the number of included 
religions). In the same way, modelling variables which vary over time is theoreti-
cally possible as an extension of multistate models, but in practice this would also 
lead to an exponential increase in the size of the transition matrix or to such compli-
cations that it is hardly ever attempted (Wolf 2001). The healthy immigrant effect-
the effect of duration of residence of immigrants in the host country on their relative 
mortality risk-is an example of the implementation of a continuous variable in a 
projection model.

Finally, a multistate model does not allow for the modelling of possible interac-
tions between the actors (in a model, individuals are referred to as “actors” or 
“cases”). There are numerous social processes in which the interactions between 
individuals are essential elements in understanding the phenomenon (and therefore 
in modelling it). For example, in family demography, modelling the formation of 
unions may require projecting the entire set of individuals in a population so as to 
enable a marriage market to be built up and interactions between the members of a 
couple to be generated. Modgen for instance enables us to build agent-based micro-
simulation models where individual agents may interact (by exchanging informa-
tion, for instance), but these latter models are not dealt with in this introductory 
book. Our focus will be placed exclusively on the modelling of the life courses of 
non interacting individuals.

�What Is Modgen?

Modgen is a framework for the development of microsimulation models. It includes 
a specialised microsimulation programming language, a runtime library and a suite 
of standalone applications which can be used with Modgen modules. Modgen was 
designed at Statistics Canada in 1994 to facilitate the programming and modification 
of microsimulation models. The aim was to develop a generic programming environ-
ment which would allow all kinds of microsimulation projects to be carried out.
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The Modgen Language  is a superset of the C++ programming language, so that 
Modgen functions are formed of C++ functions. The elements of the language spe-
cific to Modgen are processed by a precompiler which converts Modgen code into 
C++ code. The code is then processed by the C++ Visual Studio compiler to create 
a functional program. That is why Modgen 12 requires Visual Studio to be installed. 
There is no need to be an expert in C++ programming in order to use this book, but 
a basic knowledge of programming concepts will be very useful for understanding 
the code in the models. The library contains elements which are common to all the 
microsimulation models created using Modgen, such as the user interface (Fig. 1). 
Whereas the structure of the user interface is common to all Modgen models, its 
content is individualised for each one. It enables the user to run the model, consult 
and modify the parameters, control the simulations and manage the scenarios, as 
well as examine and export the tables generated by the model. With this interface it 
is possible to use projection models without necessarily knowing how to design 
them, in other words without needing to know the Modgen programming language. 
So a model can be distributed to external users, such as experts and decision makers, 
who can themselves set up their own scenarios and derive projections from them.

The Modgen Toolkit  includes numerous optional applications, some installed 
with Modgen and others available online. The most commonly used tools are 
Modgen BioBrowser and the Modgen Web Interface. Microsimulation programs 
often require large databases to be created in which output information on the simu-
lated individuals is stored; analysis of results then has to be done separately using 
external database software. With Modgen the simulation takes place at the individ-

Fig. 1  The user interface of a Modgen model
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ual level, but the tables generated by the model show aggregated results according 
to the designer’s specifications. So Modgen generates tables in real time during the 
simulation. This means that there is no need for output databases, which can take up 
a large amount of time and processing power. But Modgen still maintains the option 
of observing individual life courses, thanks to the monitoring option provided by 
Modgen BioBrowser. BioBrowser allows a subset of the simulated population of 
individual life courses to be observed graphically, with its dimensions and variables 
specified by the user. Developers more interested by a life course perspective than 
by the aggregated projection results per se will find the BioBrowser very useful. The 
BioBrowser is not covered in this book, but information on this topic can be found 
in the Modgen developer’s guide.

The Modgen Web Interface has been developed by the Canadian Partnership 
Against Cancer. It enables the user to operate a Modgen model from a website. This 
interface means that the user can see and modify the parameters, see the results in 
graphic or table form as well as compare the results of different scenarios.

�Types of Models

Modgen has been designed to be very flexible, and the software allows for both 
static and dynamic1 models, although dynamic models are the most commonly 
used. For dynamic models, Modgen adopts a competing-events approach which is 
general enough to permit the use of continuous-time, discrete-time, or combined 
models.

So-called “time-based” models, in which an entire population is simulated 
simultaneously so as to take into account the interactions between its members, are 
possible. These models are often known as multiagent or agent-based. So-called 
“case-based” models, which we will use for the examples in this book, are more 
usual. In these models the entire population is simulated, but one case at a time, with 
each single case representing an individual (or some other unit, a family or a firm 
for instance).

1 Typically, static models use weighted aging techniques to display the population over the course 
of the simulation. The characteristics of the actors do not change, but their weighting in the popula-
tion is modified. In practice these models use macrodemographic projections carried out sepa-
rately, usually by an official body, to modify the weighting of individuals in each age group. Static 
models are often used to measure the anticipated effect of a change in public policy, for example a 
fiscal measure, on individuals in terms of winners and losers.

Dynamic models work by continuously updating each of the characteristics of each individual 
across time: this is the type of model described in this book. Individuals evolve over time, experi-
encing life cycle events such as unions and their breakdowns, births, migratory movements, edu-
cational advancements, entry into and exit from the labor market etc. up to the time of death or the 
horizon of the projection. Each of these events occurs with a probability varying according to the 
characteristics of the actor. A specific risk is therefore calculated for every event which each actor 
in the projection may encounter, based on their current characteristics.

Introduction
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Finally, whatever the type of model chosen, the simulated populations may be 
synthetic (determined by the designer) or based on empirical micro-data (e.g. cen-
sus data). There are two main types of dynamic model: population models and 
cohort models. These two types use similar processes for aging and for modification 
of the characteristics of individuals, but differ in terms of the population used as the 
starting point for the simulation. A cohort model uses a cohort of individuals all 
born at the same time as its starting population. So the base population of a cohort 
model is a synthetic population. A population model instead takes as its starting 
point a representative sample of the projected population, generally derived from 
publicly available census data. The first four chapters of this book deal with devel-
oping a cohort model, and the two remaining chapters with a model of the Canadian 
population.

�Structure of the Book

When a Modgen model is first created, the software automatically generates a 
default model that projects a population cohort subject to a fixed death rate. The 
program also calculates the life expectancy of this imaginary population and creates 
a table to present this result. We begin, in Chap. 1, by describing how to set up this 
automatically generated program and how to specify some of its parameters. We use 
this simple model to introduce certain fundamental ideas and to describe a number 
of essential functions for the development of all microsimulation models using 
Modgen.

Chapter 2 deals with the further development of the model automatically gener-
ated by the creation wizard. In this chapter we introduce the basic factors enabling 
some variation in the risk of death, namely age and sex. This produces a more real-
istic microsimulation model by cohort which simulates life expectancy and the 
other elements of the life table, using mortality data from the Canadian province of 
Ontario in 2006. The programming exercise developed throughout this chapter will 
teach the reader to add new states to a model, such as sex (male or female), and to 
create a new event function, such as the birthday. The latter will provide the age of 
the actor in completed years, thus enabling us to distinguish it from exact age, which 
is also used for the purposes of calculating the life table. Finally, the reader will 
learn how to modify an existing event function and how to add new dimensions to a 
results table.

Chapter 3 continues the development of this cohort model by integrating a 
regional dimension, thus transforming the life table created in Chap. 2 into a “mul-
tistate” table. This chapter’s example will help the reader to learn how to create a 
new event function that is more complex than the birthday event. This event is part 
of a module on interregional mobility, where internal migration is modelled in two 
stages. First, the probability of an individual leaving his or her place of residence is 
compared to a random number. If the Monte Carlo experiment succeeds (if the ran-
dom number is lower than the probability of leaving), the model will randomly 
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assign a new region of residence to the individual according to a distribution spe-
cific to each region of origin. Through reproducing the example in this chapter, the 
reader will have the opportunity to become familiar with a type of parameter (cum-
rate) and a function (lookup) which are specific to Modgen. These functions enable 
a new value to be randomly assigned to a state variable according to an arbitrary 
distribution matrix. In practice, this model will generate results which are equiva-
lent to the results obtained by using a multiregional table.

In succeeding chapters, the cohort model will be gradually transformed into a 
population model. In Chaps. 4 and 5, we add a fertility module and build in a start-
ing population. This makes it possible to carry out closed multi-regional projections 
i.e. without new entries resulting from international migration. International migra-
tion is included in the model in Chap. 6, making it possible to do “open” multi-
regional projections.

Data search and estimation of parameters are of course an important part of the 
creation of a microsimulation projection model, but this laborious task is not neces-
sary in order to learn how to use Modgen. The data used in our examples are pro-
vided in Excel files which are available on the book website at http://www.
microsimulationandpopulationdynamics.com/. The data is taken from widely avail-
able microdata files from the 2006 Canadian census and from vital statistics data 
available on the Statistics Canada website.

All the files used in this book are available on the Internet at the following 
address: http://www.microsimulationandpopulationdynamics.com/ or on Springer 
Extras Online. For each chapter, the Modgen code for the example (i.e. the complete 
Visual Studio solution) and the Excel files needed for the parameters are provided. 
The code for the relevant files for the first two exercises is given in full in the appen-
dices to Chaps. 1, 2 and 3 to help the reader become familiar with the structure of 
the program. In succeeding chapters, the reader who is by then initiated will some-
times be required to look up the code directly in the solution files on the website.

	 *** 	

The reader who works through all the examples in the book will learn how to 
create a dynamic projection model using relatively complex microsimulation tools 
and, what is more, a model that would have been difficult to implement using the 
traditional cohort-component method. By this time he or she will have enough 
working knowledge of Modgen to be able to develop his or her own model of 
dynamic microsimulation.

As a final note, the model developed in this book is a slimmed-down version of 
a projection model developed by Alain Bélanger and his team in the Dynamic 
Simulation Laboratory. This model enables a simulation of the Canadian population 
and its subregions based on a representative sample of the population, along a set of 
demographic and ethnocultural dimensions (immigration status, visible minority 
membership, mother tongue, home language, religion, etc.).
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Chapter 1
Creating a Basic Cohort Model

Aims of This Chapter
•	 Creating a first microsimulation model using the Modgen wizard
•	 Learning about the structure of a Modgen model
•	 Learning some key Modgen functions
•	 Experiencing the Visual Studio environment and compiling your first Modgen 

model
•	 Running a Modgen model and getting to know the user interface

In this chapter our main aim is to introduce you to the Modgen software and to the 
Visual Studio programming environment, guiding you through the creation of a first 
basic model. This model will be based on one single type of event: death. Although 
this will yield only a small number of results, such as life expectancy at birth, it will 
allow us to demonstrate and to practise the use of several of the basic ideas in 
Modgen. We will move on to the calculation and presentation of other elements of 
the life table in the next chapter.

Calculating a life table is a good way to become familiar with Modgen. When 
demographers do this, they work through a series of stages. First, current or period 
mortality rates have to be translated into probabilities of dying1; when these are 
applied to the population in the table,2 they give the number of deaths in each year 
of age, and therefore the number of survivors at each succeeding exact age.3 
Assuming a random distribution of deaths between birthdays, the number of person-
years lived between each age interval can be summed and then be divided by the 

1 The probability of dying represents the probability for an individual at a given exact age x of 
dying before his or her next birthay.
2 In other words, an imaginary cohort whose individual members were all born at the same time.
3 Exact age is the age of an individual on the day of his or her birthday.
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number of survivors at each exact age to give the life expectancy by age – the mean 
number of years of life remaining to the survivors of a cohort at a given exact age.

This kind of calculation can be easily reproduced in a microsimulation model 
using Modgen. Our Modgen model, created using the new model wizard, here gen-
erates a table showing the life expectancy of a cohort subjected from birth to a 
constant risk of dying of 0.014. For each case simulated, the time duration before 
death is calculated using a random variable and a mathematical equation specified 
in the model. Since the model operates in continuous time (we will explain this later 
on), Modgen calculates the exact time of death, so life expectancy can be easily 
derived by taking the average lifetime (time passed before death) of all the actors in 
the simulation.

1.1  �Using the New Model Wizard

Although a Modgen microsimulation model can be created from scratch, we recom-
mend using the model wizard, since this will automatically generate a Visual Studio 
“project” (or “solution”) in which all the files needed to build a basic model can be 
found. Some of these files can be modified later to make the model more complex, 
for example by creating new states, events or tables.

The first step is of course to install Visual Studio and Modgen (see Installing 
Modgen 12 at the beginning of the book). Once the installation is complete, Visual 
Studio can be started (optimised for programming in Visual C++) and a new project 
created by selecting New -> Project, as shown in Fig. 1.1 below.

In the New Project window, select Modgen in the Visual C++ folder. A list 
appears (Fig. 1.2) offering a choice of two microsimulation models, each available 
in either French or English. Modgen allows us to create two types of models, one 
based on cases and the other on time (see Box 1.1). In this book we are developing 

Fig. 1.1  Opening a new Visual C++ project

1  Creating a Basic Cohort Model
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Fig. 1.2  Creating a new Modgen project

Box 1.1: Definition of Some Key Concepts: Case-Based and Time-Based 
Models, Actors, Events and States
Cases, time, actors, events and states are key concepts which will be used 
throughout this book. So it is worth taking a moment to define and explain 
them in more detail. In a microsimulation model, each simulation unit is 
called an actor and is simulated individually. The actor’s characteristics or 
states are modified by the occurrence of an event which is simulated by the 
model (marriage, birth, migration etc). The simulation of all the events affect-
ing an actor constitutes a “case”. In a more complex model, a case can have 
several actors, as we will see later (imagine a model in which an actor may 
give birth to another actor; both will be simulated in the same case). Generally 
in demographic models an actor represents a person or a household, but there 
is no reason why an actor could not represent a virus, an animal, or another 
non-living entity. States are the characteristics which define an actor. For 
example, age, sex, place of residence or immigrant status are all state vari-
ables; their values are set when the actor is initially created, and are liable to 
change whenever a relevant event takes place, such as a birthday which 
increases the actor’s age, or a move which changes the place of residence. 
Those who are familiar with C++ will recognise the concept of actor as being 
akin to the concept of class, while events and states would correspond to 
members of a class. Each actor in an actual simulation is therefore an object 
of the class Person (a description of the actor in our model).

(continued)

1.1 � Using the New Model Wizard
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a case-based model, so we select this option as shown in Fig. 1.2. This window also 
allows us to give the project a name and to specify the name of the sub-directory in 
which the files we create will be stored. Here we call the project “ModgenExample”.

A new dialog box opens and enables the user to choose the language in which the 
model will be developed (Fig. 1.3). Since Modgen has been developed by Statistics 
Canada, which is itself subject to the bilingualism regulations of the Canadian gov-
ernment, all the elements of Modgen are available in both English and French. A 
bilingual model can also be created, which would contain both the English and the 
French versions of the notes and the titles of the variables. Here for simplicity we 
develop an English-only model. To do this, select English in the dropdown menu 
and do not check the The model is bilingual box.

The dialog box also allows us to give a name to the “main actor” in the model. 
The “main actor” (see Box 1.1) is a C++ class which will serve as the mould or 
blueprint for all the simulated cases. In this exercise and in the following ones, we 
will be simulating individuals only, so it seems appropriate for this principal actor 
to be named “Person”. So leave the default name “Person” as it is and click the 
Finish button.

After clicking Finish, you will find a set of files in the Visual Studio Solution 
Explorer which are the skeleton of your model (if the Solution Explorer does not 
appear, press CTRL + ALT + L). Figure1.4 shows an overall view of the interface 
and of the files making up the microsimulation model.

All the files for our model can be found on the left of the window in the Solution 
Explorer (Fig. 1.4). They are sorted automatically into many folders, only two of 
which are relevant for model development.

In the example given in this chapter, the actor is subject only to the risk of 
dying. Death is therefore an “event” whose consequence will be a change of 
state from alive to dead. In practice, the death event will make the value of a 
logical variable change from true (alive) to false (deceased). The death event 
will also put an end to the simulation of this case; in a case-based model, the 
programme will then move on to the next case, and so on until the final case 
in the simulation round. In a case-based model, then, the actors are simulated 
one at a time until their death or up to the time horizon of the projection, or 
for a specific duration (a number of years) which has been pre-determined for 
this particular projection.

Because the actors are simulated separately, a case-based model does not 
allow for interactions between cases. If a model of interactions between actors 
is needed, time-based model must be used. In this kind of model, all the 
actors are simulated simultaneously up to the time horizon for the projection. 
A time-based projection requires greater material resources, because informa-
tion covering the entire set of actors has to be maintained in the memory 
throughout the course of the simulation. Events occurring in a particular actor 
thus have the capacity to affect events in other actors.

Box 1.1  (continued)

1  Creating a Basic Cohort Model
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The Modules folder contains the Modgen code files (.mpp) which make up the 
different modules of the microsimulation model. These are the files that will be 
modified by the developer to add events or states to the model. The Modgen pre-
compiler (which we will talk about later) converts Modgen instructions in each .mpp 
file into C++ code which is compatible with the Visual Studio compiler. The second 
important folder is the Scenarios folder which contains the files storing the param-
eters of the base scenario (.dat and .scex files). These files store the parameters of 
the simulation such as fertility rates, out-migration rates, mortality rates, the simula-
tion horizon, etc. The Base.scex file also contains information on the base scenario, 
but it is modified using the Modgen user interface and not Visual Studio (as we will 
see later). A file giving a summary of the project (ReadMe.txt) is also generated 
automatically. This last file provides a brief description of the program structure.

Fig. 1.3  Selecting the 
language for a model

Fig. 1.4  Visual Studio programming interface. Left panel: file explorer for the microsimulation 
model. Upper-right panel: text editor window. This is where the Modgen code is written. Lower-
right panel: output window. Messages referring to compilation errors will appear in this window

1.1 � Using the New Model Wizard
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The other folders contain files specific to C++ (.cpp,.h and others): these are 
always generated automatically when a Modgen programme is precompiled, and 
the model developer never has to modify them directly.

For the moment, we will focus on three files: the two.mpp files, ModgenExample.
mpp and PersonCore.mpp, and the file in the Scenarios folder called 
Base(PersonCore).dat. In the next section we describe how to view and modify the 
content of these files in the main Visual Studio window. To make the code appear in 
the text editor window (green box, Fig. 1.4) simply double-click on the file name in 
the Solution Explorer.

1.2  �The ModgenExample.mpp File (Appendix 1.1)

The name of this file corresponds to the name given to the project (see Fig. 1.2) and 
contains the code which is the motor of all Modgen microsimulation models. It has 
about 90 lines of code most of which appear in green: these are simply comments 
which help to understand the program and are not compiled.4 There are also some 
lines which define the model, and two functions: Simulation and CaseSimulation. 
These are essential for understanding the structure of a Modgen microsimulation 
model.

The first lines in the file define the model version, the type of simulation (by case, 
or case_based) and the development language (English). There is also the time vari-
able which is defined as a double type of number. The time variable refers to the 
model time (or the model clock) and the double type means that the time is mea-
sured continuously with double precision.5 Continuous time management means 
that the wait time for an event is calculated precisely, as opposed to a discrete model 
(non-continuous), where an event takes place during a unit of time specified in the 
model (generally a year). A particular feature of Modgen is that it makes modelling 
in continuous time easier in terms of programming. In later chapters we will see that 
this special feature is particularly useful for managing competing events 
efficiently.6

4 See Box 1.2 and consult a C++ manual for more details.
5 A double type variable contains 64 bits, which corresponds to a number with 15 digits. See a C++ 
manual for more details.
6 Suppose that during a simulation a birth and a death happen in the same year. The order in which 
these events take place will have an effect on the results of the simulation. If the mother’s death 
happens first, there will be no birth. On the other hand, if the birth happens first, a new actor will 
be added to the simulation. The risk of dying and the risk of giving birth are here defined as com-
petitive. In a discrete-time model, because the time unit is generally one year, events forecast for 
the same year conflict; in other words, the time until the two events take place is identical and there 
is no way of knowing which one will take place first. The model designer therefore has to add 
supplementary rules to determine which event will take precedence. In a continuous-time model, 
the probability of two events happening simultaneously is infinitely small so there is no need to 
draw up supplementary rules for ordering conflicting events.

1  Creating a Basic Cohort Model
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Reading these first lines of code, note that each instruction ends with a “ ; ” and 
that an instruction can be written over several lines, as in this example7:

ModgenExample.mpp
17    languages {
18        EN // English
19    };

This could equally well be written as:

Languages { EN }; // English

It is good practice to put the code between curly brackets { } on separate lines, 
especially if the enclosed code stretches over several lines.

Next we have the code for the two main functions of the model, Simulation and 
CaseSimulation, which in conjunction generate and govern each of the simulated 
cases. In this sense these are the functions which are the motor of the microsimula-
tion model. Simulation loops through all the cases and calls CaseSimulation which 
starts the simulation of each of these cases.

The void CaseSimulation function initialises the principal actor in a case by 
using the following code:

ModgenExample.mpp
27    // Initialize the first actor in the case.
28    Person *poFirstActor = new Person();
29    poFirstActor->Start(  );

Using C++ programming jargon, we could say that this code creates a poFirstAc-
tor pointer (represented by the sign “ * ”) to an object of the Person type (we will 
see the class which defines this object in another file later on). Within this Person 
object, all possible characteristics of the actors (states) will be defined, as well as the 
events which these actors may experience in the course of their lives. The Start 
function, which is called using “ -> ” launches the simulation of this actor. In the 
comments, we see that CaseSimulation simulates a single case, but also initialises 
and generates the “first actor in this case”, which implies that a case can include 
several actors. In a model simulating births, for example, a case with a female actor 
can contain a number of actors larger than one, the female herself and also each of 
the virtual children she will give birth to. However, in the example which concerns 
us in this chapter, there is only one actor per case. As well as initialising the actor, 
this function also contains a loop8 which actually manages all the possible future 
events affecting the actor in the case concerned, from the nearest event in time to the 

7 Remember that the complete code can be found in the appendix to this chapter. Numbers refer 
directly to the corresponding lines in the appendix.
8 A loop is a sequence of code which is repeated a predetermined number of times. Consult a C++ 
programming instruction manual for more details.

1.2 � The ModgenExample.mpp File (Appendix 1.1)
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most distant (lines 37–56 in ModgenExample.mpp). In our first model, only a single 
type of event, death, is liable to affect the actor. In a more complex model, a number 
of competing events may occur (where an actor is subject to all the different risks 
simultaneously), and the code for this loop will automatically order these events in 
time. So of all the possible events, the one with the shortest wait time will be selected 
as the next event to occur. For now, there is no need to understand the detail, but you 
should get a general sense of what the CaseSimulation function does.

The Simulation function is a simple loop which calls the CaseSimulation func-
tion a number of times specified in advance by the user as a scenario parameter. 
When covering the inclusion of a base population in Chap. 5, we will see how this 
loop works.

1.3  �The PersonCore.mpp File (Appendix 1.2)

The second file created by the Modgen wizard contains the key elements of the 
description of the actor. The Start and Finish functions initialise and terminate each 
simulated case, while the event functions enable mortality to be modelled. This file 
already contains most of the elements that will need to be modified to develop a new 
model.

The PersonCore.mpp file includes four sections: the first, the header, contains the 
statement of the actor’s characteristics (like sex or place of residence); the second 
contains the definition of the parameters which will be used to simulate the events 

Box 1.2: Some Color Conventions for Visual C++
In Visual Studio, the code can appear on the text editor screen in one of three 
colors: green, blue or black.

Code in green is for comments added by the programmer to document the 
program. There are two ways of adding comments to a program: either by 
using double forward slashes (“ // ”), which changes the rest of the line into 
comment, or by framing the comment text between a “ /* ” to open the com-
ment section and a “ */ ” to close it. This code is ignored by the C++ compiler 
and is used solely to document the program, an essential task often neglected 
even by otherwise competent programmers. Since all rules must have excep-
tions, Modgen does use some information from the comments to create labels 
for parameters and tables in the user interface. We will see more of this in 
Chap. 2. Code in blue represents Modgen and C++ keywords. These key-
words are words reserved for functions or data types that are an integral part 
of the programming language. To avoid confusion, these words cannot be 
used as names of variables in a user model. Finally, code in black is added by 
the user and is not made up of C++ or Modgen keywords. This is program-
ming code which consists mainly of names of variables, functions and 
operators.

1  Creating a Basic Cohort Model
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(the inputs, such as the mortality rate); the third contains the statement of the actor 
Person as well as of each of the event functions associated with the actor (duration 
before an event and the action to be taken when an event occurs); finally the fourth 
and last section contains the definition of the tables of results (the outputs, see 
Appendix 1.2). We will now look in more detail at each of these sections.

At present the header contains only comments. In this first example, the actor has 
no special characteristics at all – neither sex nor place of residence. We will add 
these characteristics as we go through the following chapters.

The “parameters” section contains the definition of the parameters to be used in 
the module, such as the mortality and fertility rates. The model wizard automati-
cally generates a mortality risk which it calls “MortalityHazard”. At present this 
risk is simply a constant which does not vary with either age or sex, or any other 
determinant of mortality. The purpose of the wizard is not to create a realistic model, 
but a functional one. In the next chapter we will see how to add in factors which 
bring the model closer to reality.

It is important to note that the value of the parameter is not shown in this file. The 
parameter is declared in the PersonCore.mpp file, but its actual value is defined in 
the Base(PersonCore).dat file which is found under the Scenarios thumbnail in the 
Solution Explorer. In our example, the mortality hazard is constant and equal to 
0.014.

The parameter values are found in a different file from PersonCore.mpp simply 
because parameters must be externally modified by users to create a range of sce-
narios. In other words, the .dat file is not part of the C++ program itself but acts as 
a database for the parameters. If the value of the parameter was shown in the pro-
gram itself, it would not be possible to change it after compiling the program. In 
later chapters we will see how to modify the scenario file, and we will also see how 
to make the parameters vary according to the factors which influence the risk of 
dying, such as age and sex.

Going back to the description of the contents of the PersonCore.mpp file, we see 
that the third section includes the definition of the Person actor. All the characteris-
tics of the actor are found here, and also the events likely to affect him (lines 18–106, 
which include the description of the functions declared in the Person class, see 
Appendix 1.2). The comments tell us that two variables, time and age have been 
created automatically (lines 20–33, see Appendix 1.2). The base unit for these two 
variables is a year.

The first instruction encountered in the actor Person creates a logical (or Boolean) 
variable called “alive”, whose default value is TRUE or 1 (FALSE being equal to 0).

PersonCore.mpp
36    logical alive = {TRUE};

The value of this variable will be modified at the time of death, before closing the 
simulation of a case. Since for the moment no other variable is needed to create a 
basic functioning model, the wizard produces only this one. In the next chapters we 
will add other variables in addition to the fact of being alive; these may be less 
critical but are still important!

1.3 � The PersonCore.mpp File (Appendix 1.2)
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The definition of the actor also includes a declaration of the events that might 
occur during the simulation. In Modgen, all the events are defined using two func-
tions: the first, the time function, determines the simulation time when the event is 
expected to take place, while the second, the event function, contains the changes to 
be made to the actor’s characteristics once the event has occurred. Note that here the 
functions are merely declared: they will be described in greater detail later in the file.

PersonCore.mpp
44    �event timeMortalityEvent, MortalityEvent;    //EN 

Mortality event

Two last functions are essential components of the actor. The Start function is 
applied right at the beginning of the simulation of the actor (remember that the 
ModgenExample.mpp file contains a call for this function). In addition to launching 
the simulation, it enables the initialisation of actor characteristics, such as sex, place 
of birth, or any other relevant characteristics included in the model. As this is a very 
simple cohort model, all the actors may be in only a single state (alive or dead), and 
all of them start the simulation at time 0 and age 0, as we can see in the definition of 
the Start function further on in the file (lines 84–96). The Finish function, in turn, 
simply removes the actor from the simulation so that Modgen can launch a new actor.

The following extract from the code shows the time and event functions which 
together simulate the mortality event.

PersonCore.mpp
57    // The time function of MortalityEvent
58    TIME Person::timeMortalityEvent()
59    {
60        TIME tEventTime = TIME_INFINITE;
61
62        // Draw a random waiting time to death 
63        // from an exponential distribution
64        // based on the constant hazard MortalityHazard.
65        tEventTime = WAIT( - TIME( log( RandUniform(1) ) / 
66                MortalityHazard ) );
67
68        return tEventTime;
69    }
70   
71    // The implement function of MortalityEvent
72    void Person::MortalityEvent()
73    {
74        alive = FALSE;
75   
76        // Remove the actor from the simulation.
77        Finish();
78    }

1  Creating a Basic Cohort Model
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The first function, the “time function”, determines the timing of an event for 
which the hazard is constant. It is very important to understand how this function 
works, as it will be used and adapted to create new and more sophisticated events 
where the hazard may vary according to individual characteristics such as age and 
sex.

We should first note that TIME, TIME_INFINITE and WAIT are key words which 
are specific to Modgen. For the moment all we need to emphasise is that TIME is a 
Modgen data type or macro-command defining a time variable which is used to 
manage continuous time efficiently and easily in a simulation.

The first line of the function is as follows: TIME Person::timeMortalityEvent(). 
The “ :: ” operator (a scope resolution operator) indicates that the timeMortali-
tyEvent() function is a member (or is part of) the actor (or the class, in C++ jargon) 
Person. The keyword TIME indicates that this function returns a value of type 
TIME, which is to be expected since this function is meant to calculate waiting 
times before an event.

In the function, the time variable tTimeEvent is initialised using the pre-defined 
constant TIME_INFINITE. This means that if the value of the variable is not modi-
fied, the event will never take place (TIME_INFINITE representing an extremely 
high value). But TIME_INFINITE is simply an initialisation value, and the next line 
will specify the time of death using the WAIT function. This function converts the 
estimated wait time before death into a figure which can be easily interpreted by the 
Modgen event manager. The length of time before the death is estimated using the 
equation found in the WAIT function brackets (see Box 1.3 for a fuller explanation). 
Once the wait time has been calculated and stored in tTimeEvent, the variable is sent 
back to the Modgen events manager using the C++ return command. To summarise, 
a variable containing the wait time is first defined, the wait time is then calculated 
and its value converted using the WAIT function, and finally this value is sent back 
to the Modgen event manager.

The moment when the death occurs has now been calculated, and Modgen moves 
the simulation forward to the next event. Because only mortality is being simulated, 
Modgen moves the simulation time forward to the age established at the time of 
death, and carries out the function associated with this event. It is only within an 
event function that the actor’s characteristics can change value. Here the “alive” 
state of the actor is changed from TRUE (1) to FALSE (0) (line 74) and the case is 
completed by calling the Finish function (line 77).

The final section of the PersonCore.mpp file includes the definition of the output 
tables storing the results of the simulation. One of the advantages of using Modgen, 
as we have said before, is that it makes the management of events much easier. 
Another advantage becomes clear with the table command, which aggregates the 
results of the simulation as each case progresses, without having to generate a data-
base containing all the detail of the simulation. There are two advantages to this way 
of storing results. First, there is no need to take up a lot of time during the running 
of the simulation, as reading and writing in a file are always relatively slow. Modgen 
keeps its tables in memory. Second, there is therefore no need to use separate soft-
ware to exploit the database and create synoptic tables.

1.3 � The PersonCore.mpp File (Appendix 1.2)
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The command syntax for a table has three sections. The first has only one line 
and is the header of the table (line 111). It contains the Modgen keyword table (indi-
cating that a table definition is coming), the name of the actor (Person) and the 
actual name of the table (DurationOfLife). The second section (lines 113–123) con-
tains the data to be tabulated. Generally, data are gathered through Modgen instruc-
tions called “derived states”9 which derive information about actor states (we will 
come back to this throughout this book). In the table created by the wizard, four of 
these derived states are used: value_in(), min_value_out(), max_value_out() and 
duration().

PersonCore.mpp
108    /*NOTE(DurationOfLife, EN)
109        �This table contains statistics related to the dura-

tion of life.
110    */
111    table Person DurationOfLife //EN Duration of Life
112    {
113     �   {
114              //EN Population size
115              value_in(alive),
116              //EN Minimum duration of life decimals=4
117              min_value_out(duration()),    
118              //EN Maximum duration of life decimals=4
119              max_value_out(duration()),    
120              //EN Life expectancy decimals=4
121              duration() / value_in(alive)    
122
123        �}      //EN Demographic characteristics
124    };

Duration (line 121) is probably one of the most useful derived states. It will be 
used either alone or in conjunction with other derived states. It supplies the value of 
the time spent in the state specified in brackets (i.e. as an argument). Where no state 
is specified, it provides the lifespan of the actor in the simulation. In its simplest 
version, where duration is used without argument and is not itself the argument of 
another derived state, it enables us to add together the time spent by all the actors in 
the simulation. When we want to calculate the duration in a specific state, we use 
arguments in brackets to allow us to specify the name of the state variable and its 
status. We will come back to this in the next chapter.

The keyword value_in() provides the value of the state when the actor enters the 
simulation. Here the state variable alive is a logical type of variable which has the 

9 Derived states such as the ones used in tables can be thought of as functions extracting informa-
tion about an actor’s states, such as the duration of time spent in a given state or the number of 
times the value of a given state has changed. In that sense, even though they are called derived 
states, it would be more appropriate to think of them as derived “from” states.

1  Creating a Basic Cohort Model
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value 1 when the actor is still alive. Writing value_in(alive) in the table description 
calls for the sum of the simulated cases, because each of the actors enters the simu-
lation with alive = 1 (or TRUE). In this cohort model, the number of simulated cases 
is equivalent to the population total, which corresponds to the root of a life table. 
Two other features of the table depend on derived states – min_value_out and max_
value_out – which give, respectively, the minimum and maximum values for the 
state specified in brackets, for all the simulated cases. So in the present case they 
give the age at death of the simulated cases, with the shortest and the longest lifes-
pan as calculated by the derived state duration.

The comment lines above each derived state are important, as they will be used 
as labels for the table. This is one case where comments are not ignored by the 
Modgen precompiler. So, for instance, for the last derived state, the label in the table 
will be Life Expectancy, and the number of decimals appearing in the data cell will 
be four.

To recapitulate: the first element of the table, value_in(alive), calculates the num-
ber of actors taking part in the simulation; the next two, min_value_out(duration()) 
and max_value_out(duration()), determine the shortest and the longest lifespan; 
finally, the fourth element of the table, duration()/value_in(alive), divides the sum 
of the years spent alive for all the actors by the number of actors, and so gives the 
life expectancy. The tables and the derived states are defined in a rather non-intuitive 
but logical way. The description of the table we have given here is relatively simple. 
In the next chapters we will make the tables more complex and go into the subject 
in more depth.

The third section of a table usually contains the dimensions along which the vari-
ous derived states are to be tabulated. We could for instance make all the above 
calculations for men and women separately by adding a sex dimension. Note how-
ever that the model generated by the wizard does not yet contain states other than 
alive, so the table cannot include additional dimensions such as age or sex.

Box 1.3: How Is the Wait Time Before an Event Set?
In a discrete-time microsimulation model, whether an event takes place or not 
is determined at each time change. If the smallest unit of time is 1 year, and 
the probability of dying is 0.01, each actor will have one chance in a hundred 
of dying during the year. If the event does not take place at time t, the model 
goes forward one step and repeats the experiment, until the event occurs or the 
simulation ends. This method is intuitive and easy to execute, but has a num-
ber of major disadvantages. Firstly, a randomized experiment has to be done 
at each time interval, which can turn out to be expensive in computing power. 
Next, several events which are subject to competing risks may occur during 
the same time interval. If that happens, how should we select which event 
occurs first? Should childbirth and death be scheduled to occur in a given 
year, the outcome will differ depending on which event occurs first: if death 
comes first, childbirth will never occur.

(continued)
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Box 1.3  (continued)

(continued)

A model which functions in continuous time allows us to get around this 
problem. Rather than evaluating the risk that an event occurs at each time 
interval, Modgen calculates a precise duration before the occurrence of the 
event, or a wait time. As it is possible to calculate this duration on the basis of 
a given hazard, the two methods are mathematically equivalent.

The Modgen wizard defines a force of mortality (μ), or a hazard of death, 
of 0.014 per year. The model in this chapter assumes that the risk of dying is 
constant and that therefore the population at time t (Pt) is equal to the popula-
tion at the starting time (P0) multiplied by e−0.014t (or 0.9861 where t = 1).

P P et
t= 0

-m

Because the population is closed and there are no births, we can obtain the 
proportion of individuals still alive at time t :

P P et
t/ 0 =

-m

The graph of this equation, using the value μ = 0.014 looks like this:

The derivative of the curve represents the number of deaths per years of age 
when the force of mortality remains constant throughout the lifespan. In gen-
eral the graph can be interpreted as follows: the y axis shows the proportion 
of members of a cohort who are still alive at a given age, for example 40% at 
age 65 (see the arrows on the graph). But the curve can also be interpreted 
from an individual point of view, so that each point on the y axis represents 
the individual’s probability of living until age x (on the x axis). Since every-
one has to die (perhaps unfortunately), one can determine a random age at 
death by picking a random number between 0 and 1 (a point on the y axis) and 
finding the corresponding age on the x axis – or, in microsimulation language, 

1  Creating a Basic Cohort Model
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Box 1.3  (continued)
the duration before the “death” event. The horizontal axis point can be found 
mathematically using the equation presented above. If the vertical axis point 
chosen at random is represented by a uniform random variable Y, we have :

Y e t= -m

Isolating t, the time elapsed before the mortality event,

ln ln

ln

ln /

Y e

Y t

t Y

( )= ( )
( ) =-
=- ( )

-m

m
m

t

When the force of mortality is known and the distribution of deaths follows an 
exponential risk model, then a random wait time can be attributed to an actor 
using this formula. And this is exactly what Modgen does in the model created 
by the wizard.

PersonCore.mpp
65        tEventTime = WAIT( - TIME( log( RandUniform(1) ) / 
66          MortalityHazard ) );

We can see that the expression log(RandUniform(1))/MortalityHazard (the 
wait time) is written as an argument to the TIME function, itself an argument 
of the WAIT function. Remember that the tEventTime variable is a TIME type 
of variable. The TIME() function is then used to convert a number of double 
type (a number with 25 significant digits afer the decimal point) into a TIME 
type of number, which has special properties in Modgen. The WAIT function 
for its part transforms the wait time into absolute time, to make it compatible 
with the model’s internal clock.

The RandUniform(1) function chooses a random number between 0 and 1 
(Y, in our example) and the MortalityHazard variable contains the force of 
mortality (μ). Note that the argument of RandUniform(1) has the sole function 
of initialising the random number generator in C++ and is automatically 
assigned by Modgen during the precompilation. When this function is inserted 
into the code, the bracket should be left empty and the function written simply 
RandUniform().

Once the random wait time has been calculated, it is returned by the 
timeMortalityEvent function and sent to the event queue managed by Modgen. 
Management of wait time is invisible to the model developer, but he or she 
still has to establish the wait time of the different event to be simulated using 

(continued)
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1.4  �Compiling and Running the Simulation Program

As we have said before, Modgen is a superset of C++, meaning that in addition to 
the basic C++ functions, it also contains some specific high-level functions. These 
functions are not recognised as such by the C++ Visual Studio compiler, and this is 
why the compilation is performed in two distinct stages.10 Firstly, the Modgen pro-
gramme has to be precompiled; this means that its high level functions need to be 
translated into C++ to make them interpretable by the Visual Studio compiler. Next 
the precompiled program has to be compiled by Visual Studio to generate an “auton-
omous” model in the form of a program file.

In previous Modgen versions, precompilation had to be done manually using a 
button on a Modgen toolbar. In Modgen 12, precompilation is done automatically at 
the time of compilation. The code is compiled by selecting Build Solution in the 
Build menu in Visual Studio (or simply by pressing the F7 key).

When a program is compiled, Visual Studio sends error messages to an output 
window. If you do not see the output window, you can make it appear by pressing 
Alt + 2. Figure 1.5 below shows the output when precompilation and compilation 
are performed without errors, as indicated by the lines of the output message 
(Modgen: 0 errors – 0 warnings for precompilation and Build: 1 succeeded, 0 failed 
[….] for compilation).

The compiler creates an executable file (.exe) whose name is the name of the 
project plus a suffix (usually the letter D or E). To run the program, we have to go 
back to the project folder using Windows Explorer and double-click on the 

10 The action of compiling transforms the high level code (Modgen, C++) written by the program-
mer into an independent executable file. Here, the executable file is the actual microsimulation 
model, which includes the execution library and the user interface.

Box 1.3  (continued)
risk models. In our example, the risk model is the exponential distribution of 
events, but we could equally well have used a Weibull or a log-normal 
distribution.

Finally, we should remember that as the duration before each event is 
determined randomly, different simulations will give different results. The 
error or variance which is produced by this stochastic process is called the 
Monte-Carlo error. This error is not present in deterministic models, in which 
a given mortality rate always implies the same number of deaths when the size 
of the population at risk is constant. The Monte-Carlo error can be reduced by 
taking the mean of the results of several microsimulations, or simply by 
increasing the number of cases.
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ModgenExampleD.exe file. If the file extension does not appear, you can find the 
right file in the Type column: it is the only Application type file in the folder 
(Fig. 1.6). Remember that the project folder was specified when the model was first 
created (see Fig. 1.2).

Double-clicking on the model program file opens the user interface created auto-
matically by Modgen for all microsimulation projects. Through this interface, the 
user can create scenarios, modify parameters, run the model and manipulate result 
tables. The wizard automatically creates a scenario which can be opened by clicking 
on Open… in the Scenario menu and selecting the Base.scex scenario (Fig. 1.7).

As there has not been a simulation yet, Modgen notifies the user that the output 
database (the results table) is missing and that the simulation has to be launched in 
order to create it. Click on OK to make this message disappear and click on ► in the 
toolbar to run the program. A window appears showing the progress of the simula-
tion, and posts a message when it is finished. The title of the single table produced 
by this model (Duration of Life) then appears in the window on the left of the screen 
(File View tab) under Tables. To open it, just double-click on the title of the table and 
the results will appear.

In Fig. 1.8 we can see that the simulation involved 5000 cases (the size of the 
cohort), that the shortest lifespan was 0.02 years and the longest 688.8 years (!), and 
that life expectancy was just over 72 years. Notice that the title over each column cor-
responds to the comment written above each derived state in the table description.

Fig. 1.5  Compiler output messages

1.4 � Compiling and Running the Simulation Program
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The results of the simulation depend on the parameters specified by the user. 
These can be modified by clicking on Settings in the Scenario menu. The default 
values for the simulation are 5000 cases and a Population size of 5000. The 
Population size field is used to rebalance the simulated population (Modgen refers 
to this as Population scaling) to make the results representative of a given popula-
tion. In our example, as the number of cases is equal to the population size, each 
case has a weight of 1, and thus scaling is unnecessary. Uncheck the Population 
scaling box (Fig. 1.9).

Because the radix (the starting population) of a life table is generally 100,000, 
the number of cases needs to be raised to 100,000 (Fig. 1.9). Raising the number of 

Fig. 1.6  Executable file in the project folder
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cases to 100,000 will reduce the Monte Carlo error (see Box 1.3) and will slightly 
alter the results shown in the Duration of Life table in Fig. 1.8.

Clicking on ► again in the toolbar launches the simulation of this new scenario 
and produces fresh, and more precise, results.

Fig. 1.7  Modgen model user interface: opening the base scenario

Fig. 1.8  Table of results
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A new scenario can also be created by modifying the mortality parameter. To do 
this, we just double-click on Parameter files -> PersonCore -> Annual hazard of 
death in the File View window: we will double the mortality hazard by changing its 
value from 0.014 to 0.028 (Fig. 1.10).

To keep the parameters of the previous scenario, we save this new scenario under 
a new name, by clicking on Save in the Scenario menu. Let’s call the new scenario 
Base2X to distinguish it from the previous one. If we click again on ►, the results of 
this new simulation will appear in the Duration of Life table with, essentially, values 

Fig. 1.10  Modifying the mortality parameter in the model

Fig. 1.9  Modifying the set-up parameters
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which are halved for life expectancy and for maximum and minimum lifespan. It is 
possible to modify the mortality parameters without creating a new scenario file, but 
it is still good practice to create one file per scenario in order to avoid any confusion, 
especially when working with dozens of parameters in complex models.

1.5  �Summary

The simulation model generated by the modelling wizard is simple and not very 
realistic. But it has enabled us to see how a Modgen microsimulation model written 
with Visual Studio works, to understand better how Modgen manages events, and to 
explore the thumbnails and buttons in the user interface of the compiled program. In 
its current form, the model is much too simple to be useful in any practical sense. 
New elements must be added, and this will be the subject of the next chapters.

In Chap. 2, we will add some more characteristics to the actor so as to make 
mortality vary according to age and sex. We will also learn how to generate an 
abridged life table and to derive all the elements needed for its construction.

�Appendices

�Appendix 1.1 ModgenExample.mpp

Code Sections: Header (lines 1 to 24), CaseSimulation() Function (lines 25 to 62), 
Simulation() Function (lines 63 to 97)

1   //LABEL(ModgenExample, EN) Core simulation functions
2
3   /* NOTE(ModgenExample, EN)
4          �This module contains core simulation functions and 

definitions.
5   */
6
7     // The model version number
8     version 1, 0, 0, 0;
9
10    // The model type
11    model_type case_based;
12
13    // The data type used to represent time
14    time_type double;
15
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16    // Supported languages
17    languages {
18      �      EN // English
19    };
20
21    // The CaseSimulation function simulates a single case,
22    �// and is called by the Simulation function declared 

later
23    // in this module.
24
25    void CaseSimulation( )
26    {
27            �// Initialize the first actor in the case.
28            �Person *poFirstActor = new Person();
29            �poFirstActor->Start(  );
30
31            �// Continue processing events until there are no 

more.
32            �// Model code is responsible for ending the case 

by calling
33            �// Finish on all existant actors.
34
35            �// The Modgen run-time implements 
36            �// the global event queue gpoEventQueue.
37            �while ( !gpoEventQueue->Empty() )
38      �      {
39                    �// The global variables gbCancelled and 

gbErrors
40                    // are maintained by the Modgen run-time.
41                    if ( gbCancelled || gbErrors )
42                    {
43                           // The user cancelled the simulation, 
44                           // or run-time errors occurred.
45                           // Terminate the case immediately.
46                           gpoEventQueue->FinishAllActors();
47                    }
48                    else
49                    {
50                           �// Age all actors to the time of the 

next event.
51                           �gpoEventQueue->WaitUntil( gpoEvent-

Queue->NextEvent() );
52      
53                           // Implement the next event.
54                           gpoEventQueue->Implement();
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55                    }
56      �      }
57
58            �// Note that Modgen handles memory cleanup
59            �// when Finish is called on an actor.
60    }
61
62
63    �// The Simulation function is called by Modgen to simu-

late a set of cases.
64    void Simulation()
65    {
66            �// counter for cases simulated
67            �long lCase = 0;
68
69            �// The Modgen run-time implements CASES (used 

below),
70            �// which supplies the number of cases to 

simulate 
71            �// in a particular thread.
72      �      // 
73            �// The following loop for cases is stopped if
74            �// - the simulation is cancelled by the user, 
75            �//    with partial reports (gbInterrupted)
76            �// - the simulation is cancelled by the user, 
77            �//    with no partial reports (gbCancelled)
78            �// - a run-time error occurs (gbErrors)
79      �      //
80            �// �The global variables gbInterrupted, gbCan-

celled and gbErrors
81            �// are maintained by the Modgen run-time.
82            �for ( lCase = 0; lCase < CASES() && !gbInterrupted 

&& !gbCancelled
83                    �&& !gbErrors; lCase++ )
84            {
85                    �// Simulate a case.
86
87                    �// �Tell the Modgen run-time to prepare to 

simulate a new case.
88                    �StartCase();
89
90                    �// Call the CaseSimulation function 
91                    �// defined earlier in this module.
92                    �CaseSimulation();
93
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94                    �// Tell the Modgen run-time that the case 
has been completed.

95                    �SignalCase();
96            }
97    }

�Appendix 1.2 PersonCore.mpp

Code Sections: Header, Parameters, Actor Person and functions, Tables

1     �//�LABEL(PersonCore, EN) Core functionality of the Person 
actor

2
3     �/* NOTE(PersonCore, EN)
4             �This module contains the basic information which 

defines 
5             �the Person case.
6     */
7
8     parameters 
9     {
10            �//EN Annual hazard of death
11            �double MortalityHazard;
12            �/* NOTE(MortalityHazard, EN)
13                    �A constant hazard of death results in an 

exponential
14                    �survival function.
15            �*/
16    };
17
18    actor Person         //EN Individual
19   {
20            �// �The variables time and age are automatically 

defined by Modgen.
21            �// �Model-specific labels and notes are supplied 

below.
22
23            �//LABEL(Person.time, EN) Time
24            �/*NOTE(Person.time, EN)
25                    �Time is a continuous quantity in this 

model.
26                    �A unit of time is a year.
27            �*/
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28
29            �//LABEL(Person.age, EN) Age
30            �/*NOTE(Person.age, EN)
31                    �Age is a continuous quantity in this model.
32                    �A unit of age is a year.
33            �*/
34
35            �//EN Alive
36                �ogical alive = {TRUE};
37            �/*NOTE(Person.alive, EN)
38                    �Set to TRUE when the actor starts, and to 

FALSE just 
39                    �before the actor finishes. Since the numeric 

value 
40                    �of TRUE is 1 and FALSE is 0, this 

variable
41                    �can also be used to count actors in tables.
42            �*/
43
44            �event timeMortalityEvent, MortalityEvent;    //EN 

Mortality event
45
46            �//LABEL(Person.Start, EN) Starts the actor
47            �void Start();
48
49            �//LABEL(Person.Finish, EN) Finishes the actor
50            �void Finish();
51    };
52
53    /*NOTE(Person.MortalityEvent, EN)
54            �This event implements a constant hazard of death.
55    */
56
57    // The time function of MortalityEvent
58    TIME Person::timeMortalityEvent()
59    {
60            �TIME tEventTime = TIME_INFINITE;
61
62            �// Draw a random waiting time to death 
63            �// from an exponential distribution
64            �// based on the constant hazard MortalityHazard.
65            �tEventTime = WAIT( - TIME( log( RandUniform(1) ) 

/ 
66                    �MortalityHazard ) );
67
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68            �return tEventTime;
69   }
70
71    // The implement function of MortalityEvent
72    void Person::MortalityEvent()
73    {
74            �alive = FALSE;
75
76            �// Remove the actor from the simulation.
77            �Finish();
78    }
79
80    /*NOTE(Person.Start, EN)
81            �The Start function initializes actor variables 

before simulation
82            �of the actor commences.
83    */
84    void Person::Start()
85    {
86            �// Modgen initializes all actor variables
87            �// before the code in this function is executed.
88
89            �age = 0;
90            �time = 0;
91
92            �// After the code in this function is executed,
93            �// Modgen initializes events and tables for the 

actor.
94            �// Modgen also outputs starting values to the 
95            �// tracking file if requested.
96    }
97
98   /*NOTE(Person.Finish, EN)
99            �The Finish function terminates the simulation of 

an actor.
100    */
101    void Person::Finish()
102    {
103            �// After the code in this function is executed,
104            �// Modgen removes the actor from tables and from 

the simulation.
105            �// Modgen also recuperates any memory used by 

the actor.
106    }
107
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108    /*NOTE(DurationOfLife, EN)
109            �This table contains statistics related to the 

duration of life.
110    */
111    table Person DurationOfLife //EN Duration of Life
112    {
113      �      {
114          �          //EN Population size
115                    �value_in(alive),
116                    �//EN Minimum duration of life decimals=4
117                    �min_value_out(duration()),    
118                    �//EN Maximum duration of life decimals=4
119                    �max_value_out(duration()),    
120                    //EN Life expectancy decimals=4
121                    �duration() / value_in(alive)    
122
123            �}     //EN Demographic characteristics
124    };

Appendices



29

Chapter 2
The Life Table

Aims of This Chapter
•	 Learning how to use classifications and numerical ranges
•	 Creating new state variables for an actor
•	 Creating a new event
•	 Adding dimensions to an existing parameter
•	 Understanding how to use age as a continuous or discrete variable

With the help of the Modgen wizard, we have developed and successfully run our 
first microsimulation program. This simple model was able to calculate life expec-
tancy for a cohort whose risk of death remains constant throughout the simulation. 
For demographers, and probably for most users, this unrealistic mortality hypothe-
sis is unsatisfactory. As a minimum, even in a simple cohort model, mortality should 
vary with age and sex, thus enabling us to calculate all the components of a conven-
tional life table.

In this chapter we will make the necessary modifications to the “wizard model” 
in order to generate a life table. Risk of death for an actor will now vary along two 
dimensions: sex and age. When dividing a population into subgroups of “men” and 
of “women”, we are in fact stratifying it using a categorical variable, namely that of 
sex. In Modgen, this kind of stratification takes a specific form which is called a 
“classification”. Age, on the other hand, takes the form of an integer number having 
a value comprised between 0 and the maximum lifespan. This kind of variable is 
defined in Modgen as a “range”. The range is simply defined by its minimum and 
maximum values.

We will also add a “birthday” event to enable us to increment the integer age of 
the actor (which is not the same as the age variable which is automatically put into 
the model which is a continuous variable). We will then need to make some modifi-
cations to the definition of the actor Person and to its Start function, which, as we 
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explained before, initializes each individual simulation. New data on age- and sex-
related mortality will have to be introduced into the model. And finally we will 
create new output tables, using derived states similar to the “duration” derived state 
used in the Chap. 1 table. These tables will enable us to derive the individual com-
ponents which make up the life table: the number of deaths between two exact ages, 
the number of survivors at each exact age, the number of person-years lived in an 
age interval, and age-specific life expectancy.

All these new elements will be added to the PersonCore.mpp file, in one of the 
four sections of code defined in the previous chapter: the header, the parameters, the 
actor Person and function definitions, and the tables. The complete file code can be 
seen in Appendix 2.1 at the end of this chapter, with each of the four sections of the 
program identified their line numbers. Since no modification will be made to the 
ModgenExample.mpp file, it is not reproduced in the appendices of Chap. 2. But 
remember that all the files from the complete program can be found on the book 
website (http://www.microsimulationandpopulationdynamics.com/) or on Springer 
Extras Online.

2.1  �Adding a Classification

Adding a categorical state variable in a Modgen model is done in two stages. First 
the variable categories have to be defined in the header of the program, using the 
classification instruction. A classification can be thought of as a blueprint of a vari-
able, or a form of data type. Second, a state variable of a type corresponding to the 
classification is declared in the Person class.

A classification is declared by using the following syntax:

classification NAMEOFCLASSIFICATION {list of categories sepa-
rated with commas}; 

Note the use of curly brackets { } to enclose the values for all the possible cate-
gories of the classification, each separated from the previous one by a comma. The 
semi-colon indicates the end of the instruction to the compiler.

Building on the model created by the wizard, we will create a SEX classification 
and write its defining categories, namely “Female” and “Male”:

PersonCore.mpp
1   classification SEX {S_FEM, S_MAL};1 

A classification is a type of data and not a state variable. In other words, the clas-
sification is the template or plan for a state variable. Just as an architect’s plan is not 
the same as a house, the classification is not the state variable. So the next step is to 

1 Remember that the numbers at the beginning of the lines are not part of the code: they refer to the 
corresponding line numbers in the Appendix.
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create a variable which will be of the type SEX. As this state variable will contain 
the characteristics of the actor, its declaration has to be located in the Person section 
(i.e. in the class definition of the actor).2

PersonCore.mpp
22   actor Person   //EN Individual 
23   {

     ...

34   SEX sex; // Sex state variable

     ... 

49   };

In this instruction we create a sex state variable (note the lower case) of the SEX 
type (the classification, in upper case). The sex state variable has two possible val-
ues: S_FEM and S_MAL, as stated above in the classification. S_FEM and S_MAL 
are the two possible values of the state variable sex, in the same way as the digits 
0,1,2,3,4,5,… would be the possible values for an integer variable. All this may 
seem a little confusing at present but will become clear with practice.

It is important to remember that C++ and Modgen are case-sensitive – the same 
letter in upper and lower case denotes two distinct symbols. So SEX, Sex and sex 
would refer to three different entities. Capital letters are conventionally used exclu-
sively to define groups or types such as here in classification SEX, and lower case 
letters exclusively for state variables. The values given to the categories of a classi-
fication will be in upper case, with the first letter referring to the name of the clas-
sification, followed by the first letters of the name of the category, separated by an 
underline. In the example above we have S_FEM and S_MAL, where S_ indicates 
that FEM and MAL are part of the SEX classification.

Appendix at the end of the book provides a short summary of coding standards 
in Modgen. Microsimulations are often team projects, so it is not unusual for several 
people to work on the same program. Coding standards help the programmer to find 
his way around his own program, but also enable other programmers to understand 
the coding logic more easily.

2 Three dots (…) in the code mean that some intervening lines of code have been left out. See 
Appendix 2.1 for the complete code sequence.

2.1  Adding a Classification
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2.2  �Adding a Numerical Range

With Modgen, creating microsimulation models in continuous time is easy: the state 
variables age and time which are automatically created by the model wizard are 
continuous variables. A measure of age in whole numbers (called a discrete vari-
able, because it is one which can only take certain values) is however almost always 
needed, because the input parameters themselves usually vary by year of age or 
calendar year.

By using the Modgen range command we can create a continuous series of 
whole numbers, following the same logic as for creating a classification.

PersonCore.mpp
3   range AGE {0,110};

The instruction above creates a numerical range comprising 111 integer values, 
from 0 to 110. Note that the Modgen range is just a special case of classification. 
While classification defines a type of categorical data, range defines a type of ordi-
nal data, creating a range of consecutive whole numbers. We could equally well 
have created this number range using a classification defined as follows,

classification AGE {0, 1, 2, 3, ..., 110}; 

taking care to (tediously) replace the “ …” by the complete sequence of digits up to 
110.

In the same way as for classification, the numerical range created using the 
RANGE instruction does not generate a state variable but simply a type of data 
which can be applied to a state variable. So, just as we have done for the SEX clas-
sification, we have to create a state variable age_int of the type AGE, as shown in 
the code excerpt below:

PersonCore.mpp
24   actor Personne  //EN Individual
25   {

     ...

35   AGE age_int = {0}; // Age state variable

     ...

65   };

You will note that here, in addition to defining age_int as being of type AGE, we 
initialize this state variable to zero. So by definition the actor being simulated has an 
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initial exact age of 0, and unless we create some kind of event that increments the 
age variable, the actor will remain of age 0. A simple way to increment the age state 
variable is to introduce a “birthday” event into the definition of the actor, so that we 
can increase its age by one unit every year on the day of its “birthday”.

2.3  �Adding an Event: The Birthday Event

To create a birthday event, we have to declare a new event in the description of the 
Person actor. Note that a birthday is an event in the same sense as mortality, with the 
difference that the timing of the event is predetermined and the event is repeatable. 
The first thing to do is to make a declaration of the new event in the actor Person. 
We also initialize a TIME type variable which will define the moment at which the 
event takes place.

PersonCore.mpp
22   actor Person            //EN Individual
23   {

        ...

39      // Duration before next birthday
40      TIME tNextBirthday = { TIME_INFINITE };
41      // Birthday event: increment age_int by 1
42      event TimeBirthdayEvent, BirthdayEvent;

        ...

49   };

The first instruction (line 40) creates tNextBirthday, a TIME type variable which 
determines the duration of time until the next birthday. The variable is initialised 
with a TIME_INFINITE value, a Modgen key word representing, as its name 
implies, an infinite value (in practice, a very large number). This means that the 
birthday event will never happen unless the tNextBirthday value is modified during 
the simulation. We will set its first value in the Start function described later.

The second instruction (line 42) specifies the name of the two functions which 
together will set the duration before the next birthday and change the actor’s age 
expressed in completed years. Notice that the syntax for the instruction is the same 
as for the mortality event predefined by the wizard. In general, all events are stated 
as follows:

2.3  Adding an Event: The Birthday Event
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event NameOfTimeFunction,EventName;

Event and time functions are simply declared in the Person class, so their com-
plete content have to be written further down in the program, after the definition of 
the Person class, as shown in the code below.

PersonCore.mpp
75   // The birthday event: increments age_int by 1
76   TIME Person::TimeBirthdayEvent()
77   {
78      return tNextBirthday;
79   }
80   void Person::BirthdayEvent()
81   {
82      if (age_int == AgeMax)
83      {
84          alive = FALSE;
85          Finish();
86      }
87      else
88      {
89          tNextBirthday = WAIT(1);
90      };
91      age_int++;
92  
93   }

As mentioned earlier, the birthday event differs from the mortality event in two 
important ways. First, it is a repeatable event whereas death, of course, occurs only 
once. Second, the duration before the event is not random but fixed, and is always 
1 year. This is why there is no need to calculate a randomised wait time in the time 
function, as was done for the mortality event. Because the “risk” of celebrating a 
birthday does not vary with time, or with the characteristics of the actor, the time 
function simply returns the value of tNextBirthday to the events manager. If the 
value of tNextBirthday kept its default value (infinite, as defined above), the birth-
day would never take place. The value of tNextBirthday will be first set to 1 year in 
the Start function, and then reset every year in the birthday event function, as 
described below.

The function determining the birthday event itself has two parts. The first is a 
conditional statement checking whether the maximum allowable age has been 
reached (lines 82–90). If maximum age is reached, the current case is ended by 
modifying the state variable alive and then by calling the Finish() function, which 
terminates the case. If maximum lifespan is not reached, the duration before the 
next birthday is fixed at 1 year (line 89).

2  The Life Table
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The second part is simply an instruction to increment the age in completed 
years,3 or in other words to increase the age_int variable by one unit (line 91).

Once the event function has been executed, the duration before the next occur-
rence of the birthday event is immediately and automatically computed by the 
TimeBirthdayEvent function. In this case, the time function simply collects the 
value of tNextBirthday (set to 1 year in the event) and sends it to the Modgen events 
manager, who will determine which event is meant to occur next.

You may have noticed that the condition in the birthday event refers to a variable 
which has not yet been defined: AgeMax.4 We could have written the maximum age 
directly into the code, which would have given us if (age_int==110), but this would 
have prevented a future user from selecting a different maximum lifespan. A 
researcher working on mortality in the oldest old might want to extend this maxi-
mum age by a few years. So it is good practice not to insert constants directly into 
the code but instead to define them as parameters. AgeMax should then be defined 
in the parameters section of the PersonCore.mpp file. The value attributed to this 
parameter will be added later in the Base(PersonCore).dat file.

PersonCore.mpp
8   parameters 
9   { 
     ...

17   int AgeMax;        // Maximum lifespan

     ...

 20   };

2.4  �Modifying the Start Function

The time of occurrence of the birthday event (tNextBirthday) has been initially set 
to a very distant future (TIME_INFINITE), which in practice means that the event 
will never take place and that the actor will never “age”. So where and how should 
the duration before the first anniversary be set? In the model for this chapter, we 
have to find a place to specify that the first birthday will occur 1  year after the 
creation of the actor. Note that the initial duration before the first anniversary does 
not always have to be 1 year: this is because in some models actors can be integrated 
into the simulation at other moments than at their birth. In a real situation, for 

3 The ++ symbol is used in C++ to increase a variable by one unit: age_int++ is equivalent to 
age_int = age_int + 1;
4 Note the use of capital letters for the first letter of each word and the lack of spaces between 
words, as suggested for a parameter in the coding standards (see Appendix I).
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example, the base population includes people of all ages. So the first birthday in the 
simulation happens less than 1  year after the introduction of the new actor. We 
specify the duration leading up to the first birthday in the Start function, which is the 
first function to be called when a case is created:

PersonCore.mpp
99   void Person::Start()
100   {

      ...

107   // Sets waiting time before first birthday
108   tNextBirthday = WAIT(1); 

      ...

121   }

Remember that, just as for the event functions described earlier, the Start func-
tion needs to be declared first in the description of the actor Person (see line 45, 
Appendix 2.1). Its full code description is written further below using the scope 
resolution operator (Person::).

In addition to initializing the tNextBirthday variable, the Start function has other 
uses. Because we want to calculate life tables for men and women separately, we 
have to create a simple synthetic cohort comprised of members of both sexes. The 
Start function is the place where the sex of the actor is determined.

The actor’s sex is attributed randomly using the RandUniform() function we 
introduced earlier in the mortality event function. It might seem tempting to make 
half the actors male, but in a normal population the number of male births is about 
105 for every 100 female births. So the sex of the actors is attributed by way of a 
conditional statement which compares the ratio of male births (0.512) to a random 
number between 0 and 1 obtained by the RandUniform() function:

PersonCore.mpp
99   void Person::Start()
100   {    

      ...

112      if (RandUniform() < ProbabilityMale)
113      {
114          sex = S_MAL;
115      }
116      else
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117      {
118         sex = S_FEM;
119      }; 
120
121   }

Note that the RandUniform instruction bracket is left empty, so that Modgen will 
add a unique argument during precompilation. The argument initializes the pseudo-
random number generator. If the same argument is used in different calls of 
RandUniform, the same sequence of numbers will be generated each time. It may be 
useful to be able to set a fixed sequence of random numbers so that the results can 
be reproduced. On the other hand, because it is important to avoid creating a cor-
relation between random events in the program, the arguments for each 
RandUniform() function have to be different. This is why Modgen automatically 
inserts non-redundant arguments for all the RandUniform() functions in the model.

So how can different simulation outcomes be obtained if all the random number 
generators have fixed arguments? In fact it is possible to modify all the starting 
values of the random number generator when setting up the scenario in the user 
interface, as we will see later.

Finally, since we used a new parameter (ProbabilityMale) for the random sex 
assignment, it needs to be added to the parameters section of the program:

PersonCore.mpp
8   parameters 
9   {

     ...

18   double ProbabilityMale;  // Probability of male birth
19
20   };

As for AgeMax, the precise value of ProbabilityMale will be inserted later in the 
Base(PersonCore).dat data file.

2.5  �Modifying the Mortality Event Function

The final step is to modify the mortality parameter and event function so as to 
include the new dimensions of age and sex.

First, the parameter generated by the modelling assistant has to be changed from 
a scalar (constant) to a two-dimensional matrix of rates (according to age and sex). 
Dimensions are added to a parameter using square brackets [], as follows :

2.5  Modifying the Mortality Event Function 
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PersonCore.mpp
8   parameters 
9   {
10   //EN Annual hazard of death according to sex and age
11   double MortalityHazard[SEX][AGE];

     ...

20   };

Note that classifications and numerical ranges (in upper case), and not state vari-
ables (in lower case), are inserted in the square brackets immediately following the 
parameter. Why should SEX and AGE be used rather than the state variables sex and 
age_int? The first thing to understand here is that state variables generally contain a 
single value – the value of an actor’s state at a given moment – whereas classifica-
tions and ranges contain sets of values. Here, we want to tell Modgen that the 
MortalityHazard parameter’s dimension will be [2] by [111]. So when a classifica-
tion or range appears inside the square brackets of a parameter, Modgen determines 
that the specified dimension of that parameter must be of a length equal to the length 
of the classification or range. In fact, the SEX classification has been defined in 
advance and contains two categories, while the AGE range contains 111 years of 
age. Therefore, Modgen determines that MortalityHazard[SEX][AGE] must be a 2 
by 111 matrix containing a total of 222 values. In the same way as for AgeMax and 
MaleProbability, the MortalityHazard mortality rates will be integrated into the 
parameters file Base(PersonCore).dat later on.

Now we have to modify the mortality event function so that sex and age are taken 
into account. We must add sex and age dimensions to the MortalityHazard param-
eter in this function:

tEventTime = WAIT(-TIME(log(RandUniform()) / MortalityHazard));

Once again, we do this using square brackets []:

PersonCore.mpp
53   TIME Person::timeMortalityEvent()
54   {

     ...

60   tEventTime = WAIT( - TIME( log( RandUniform() ) / 
61    MortalityHazard[sex][age_int] ) );
62
63   return tEventTime;
64   }

2  The Life Table



39

Note that here sex and age_int are written in lower case, because it is the age- and 
sex-specific value of the simulated case that has to be used to identify and select the 
parameter from the matrix of parameters MortalityHazard [SEX] [AGE]. 
Furthermore it is the discrete age_int variable which is used here rather than the 
continuous age variable: elements of a matrix are always accessed through an inte-
ger (also called an index). A male actor aged 30, for example will be exposed to a 
mortality hazard equal to MortalityHazard[1][30]. Notice that the first value of a 
dimension in a matrix is accessed using the number 0 and not 1 (it is said to be 
“zero-based”). Modgen also automatically converts the elements of a classification 
into a sequence of integer numbers giving the first element the value zero, the sec-
ond 1, the third 2 etc. In the SEX classification, then, S_FEM has the value 0 and 
S_MAL has the value of 1.

2.6  �Adding Values in the Parameters File

All parameters must have default values so that the base scenario may be loaded in 
the user interface of the model. We therefore have to modify the instructions in the 
parameters file so as to add the values of the new elements: the sex ratio, the maxi-
mum age at death, as well as the age- and sex- related mortality rates.

Double-click on the Base(PersonCore).dat file in the Scenarios tab of the 
Solution Explorer to access these parameters (see Fig. 1.4). The .dat files contain the 
values for each of the parameters for the base scenario. Since the PersonCore.mpp 
file has three parameters, the Base(PersonCore).dat file also has to include these 
three parameters, with their values specified in curly brackets. These may be modi-
fied later via the user interface of the model.

Although specifying the value of a constant is simple, entering each of the 222 
values needed to complete the mortality rate matrix by hand would be time consum-
ing and prone to error. When a vector or an input data matrix is too big, it is better 
to work through the user interface to paste in values which have already been tabu-
lated in an Excel spreadsheet. Some parameter values still need to be specified 
because the compiled program expects to read a predetermined number of values in 
the .dat file, and failure to do so will prevent it from loading the full scenario.5 The 
simplest way to set parameters is to first insert temporary values in the parameters 
file and then replace them later via the user interface. In the example below, a value 
of 0.1 is assigned to all ages (111) and both sexes (2): the sequence {(222) 0.1,} 
means that the 0.1 value is repeated 222 times.

5 Even in a case where the file does not contain the same number of values as that indicated in the 
parameters section of the .mpp file, it is still possible to compile the program without errors, 
because the .dat file is not compiled with the rest of the program. However, when trying to access 
a parameter through the user interface, a runtime error will appear showing that the program is 
expecting x values for a particular parameter but can read only a number of values which is differ-
ent from x.

2.6  Adding Values in the Parameters File
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Base(PersonCore).dat
1   parameters {
2      
3      int    AgeMax = { 110 }; // Maximum lifespan
4      double    ProbabilityMale = { 0.512 }; // Probability 

of male birth
5      // Mortality hazard by sex and age (initialized with 

arbitrary values)
6      double    MortalityHazard[SEX][AGE] = { (222) 0.1, };
7   
8   };

Box 2.1: Risk Recalculation and Competing Risks
In this chapter we have seen how to add dimensions to mortality so as to take 
age and sex into account. You may have noticed that there is no instruction in 
Modgen to indicate when the wait times have to be recalculated to take 
account of a change in risk, for instance with a change in age at an anniver-
sary. When and how does Modgen calculate the wait times of events? Or in 
other words, when is the event’s time function called by Modgen?

In fact Modgen may recalculate the wait time of an event in three circum-
stances: (1) at the beginning of the simulation, (2) each time there is a change 
in a variable which features in the time function or (3) after the occurrence of 
an event. For example, whenever a birthday occurs, the age of the actor is 
increased and the duration to the next birthday is set at 1 year. As soon as the 
birthday event has occurred, Modgen calls the time function to fetch the dura-
tion before the next birthday. As it turns out, this duration is simply given by 
the tNextBirthday time variable whose value was set to 1 year.

Because the birthday event modifies the age_int variable, and because this 
variable features in the mortality time function, Modgen recalculates the wait 
time to death according to the new age-dependent mortality parameter.

In one sense, the mortality event competes with the birthday event. If the 
birthday event occurs first, the age is modified and the duration until death has 
to be recalculated using the new mortality parameter. If the death occurs first, 
the case terminates and the bithday will never happen. In other words, for a 
death to occur, the wait time of the mortality event must be inferior to 1 year, 
otherwise the anniversary will take place first and the duration until death will 
be recalculated.

Therefore, Modgen is implicitly and automatically managing changes in 
risk and competing risks.

2  The Life Table
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2.7  �Generating New Tables: The Elements of the Life Table

To make the most of the new functionalities inserted in the model, we will have to 
modify the output tables. We will first create a new table which will contain some 
elements of the life table (see code below): survivors at an exact age x (lx), deaths 
within an age interval (dx, x+5), person-years lived during each age interval (Lx+5).6 
Calculating the number of person-years to be lived from an exact age x (the Tx) is 
more complex and we will come back to it later.

    PersonCore.mpp
133   table Person DeathsAndSurvivors // Elements of the life 

table
134   {
135      {
136
137          value_in(alive), // Survivors (lx)
138          entrances(alive, FALSE), // Deaths (dx)
139          duration() // Person-years lived (Lx) decimals=4
140 
141      }
142      *split(age_int, AGE_GROUP) +      // by age
143      *sex +                          // and sex
144   };

Let’s go back briefly over each of the elements found in the above table. The first 
line (line 133) contains the table statement (table Person) followed by its unique 
name (DeathsAndSurvivors). It basically says that the table DeathsAndSurvivors is 
part of the actor Person.

All the table elements appear between curly brackets (between line 134 and 144). 
These elements are grouped into two sections. First, the output items taken from the 
derived states appear between their own curly brackets (lines 135–141). Derived 
states are separated from each other by a comma. Second, additional dimensions are 
added using the * operator, which can be seen here before the expressions split 
(142) and sex (143). So the table above will show the data by sex and age group for 
the three derived states. In summary, a table has this general structure:

6 For more details on the life table, consult a basic demography text such as Rowland (2003).
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table Person NameOfTable
{
    {DerivedState1, DerivedState2, ... , DerivedStateN}

    *Dimension1
    *Dimension2
    ...
    *DimensionM
};

Note that the table statement with its derived states and additional dimensions 
may be considered as a single Modgen instruction and is ended by a semi-colon. 
Also, the order in which the dimensions are written will be the default order in 
which they appear in the user interface. We will see later how the order can be rear-
ranged directly within the user interface.

In Box 1.2 we mentioned that Modgen sometimes uses the information in com-
ments, for example to create a help file or explanatory tabs in the user interface. The 
comment following the table statement (line 133) also contains the name of the 
table as it will appear in the user interface (Elements of the life table). If a title has 
not been provided in the comment, the actual name of the table is used 
(DeathsAndSurvivors). The comments specified in lines 137–143 will be the titles 
for the different derived states and dimensions of the table.

Note that the content of the comments may be preceded by the EN abbreviation 
showing that these are for the English version of the model. If we had built a bilingual 
model, it would have been possible to include tabs for the French version as well.

Finally, notice the statement decimals=4 in the comments on line 139. This com-
mand specifies the degree of precision with which the data will be displayed in the 
table (in this case, one ten thousandth of a year). The number of decimal places can 
also be modified within the user interface.

Now let’s take a closer look at the age and sex dimensions of the table.
Because the age dimension ranges from 0 to 110 years, a detailed life table would 

be unnecessarily large (111 lines). The table can be abridged by showing data only 
for ages ending in 0 or 5. To do this, we have to build age groups according to limits 
which are defined in what is called a partition. The partition instruction is placed in 
the header of the PersonCore.mpp file (see Appendix 2.1), with classifications and 
numerical ranges, so that they can be easily found as the program becomes more 
complex.

    PersonCore.mpp
5     �partition AGE_GROUP {5, 10, 15, 20, 25, 30, 35, 40, 45, 
6        50, 55, 60, 65, 70, 75, 80, 85};

It is important to understand that the partition instruction does not create age 
groups directly, but defines limits at exact ages. A partition must be used in conjunc-
tion with the split function in order to create groups. So in the DeathsAndSurvivors 
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table, the split function groups the values of the age_int state variable within the 
AGE_GROUP limits defined by the partition instruction. Therefore the first group 
includes ages zero (the minimum age) to four, the second group includes ages five 
to nine, and so on. Because the final limit is set at age 85, the last group will be of 
those actors between 85 and 110 (the maximum age). In other words, the split func-
tion “cuts” the number range at intervals defined by the partition. If we modified the 
above partition as follows,

partition GROUPE_AGE {1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 
50, 55, 60, 65, 70, 75, 80, 85, 100};

the first age group would include actors aged zero (the minimum age), the second 
those aged 1–4, the third those aged 5–9, and so on up to the last age groups aged 
85–99 and 100–110.

Partitions are convenient because they allow the model developer to make group-
ings without having to define new (and redundant) state variables.

The + symbol after the sex state variable and the expression split(age_int, AGE_
GROUP) indicates that, in addition to the categories defined for each of the state 
variables (each sex and age group), the table must also include values for all the 
categories of each dimension taken together (for both sexes and for all age groups).

2.7.1  �Derived States in the Table

As we have seen, the values which appear in the table cells by sex and age group are 
defined using expressions known as derived states, separated by commas and placed 
between curly brackets { }7 (lines 135–141). The table DeathsAndSurvivors con-
tains three expressions of this kind. The expresssion value_in(alive) instructs 
Modgen to add up the values of the state variable alive for all the simulated actors 
reaching an age group defined by the split function (0 years, 5 years etc). Because 
the state variable alive takes the value TRUE when the actor is alive (which equates 
to the numerical value 1), the expression delivers the number of survivors at exact 
ages 0, 5, 10, … for each sex.

To calculate the number of deaths occurring in a 5 year interval (the dx,x+5), the 
program has to sum all state changes of the alive variable in the course of an age 
interval. To be more precise, it has to count the number of actors whose state vari-
able alive takes on the FALSE value during a particular age interval. To do this we 
will use the derived state

entrances(statevariable, state)

7 Note that there is no comma after the final expression of derived state in the table.
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which counts the number of times a given variable (statevariable) takes (or “enters”) 
a specified state value (state). In our example (line 138), the derived state entrances 
counts up the transitions of the state variable alive into the FALSE value – i.e. the 
number of deaths.

The number of person-years lived in the course of each age interval is obtained 
by using the duration derived state, which we saw in the previous chapter. The table 
then had no dimensions, so duration simply measured the lifespan of the actor. 
Here, because the table has sex and age group as additional dimensions, the derived 
state duration gives the length of time spent alive in each combination of sex and 
age group. The same expression of a derived state may thus provide different results 
depending on the table dimensions. We will come back to the results of these derived 
states at the end of the chapter, after we have compiled and run the model.

All this is very useful, but the DeathsAndSurvivors table does not provide the key 
indicator in a life table: life expectancy. Remember that life expectancy is defined as 
the mean amount of time left to live for all the survivors of a cohort at a given exact 
age. Because the duration function can give only the number of person-years for 
each combination of states (here, sex and age group), it is not possible to obtain this 
average directly from a given exact age. The duration function used with the age 
group and sex dimensions can tell us the number of person-years lived between 5 
and 10, for example, but not the number of person-years still to be lived from age 5 
until the death of the actor.

In demographic terms, the derived state duration used in conjunction with the 
age group and sex dimensions provides the Lx+5 of the life table. To obtain the life 
expectancy at a given age, we need instead to calculate the Tx, or the total number 
of years of life remaining starting from an exact age x (i.e. the sum of the Lx+5 start-
ing from age x). Life expectancy at age x (ex) is obtained by dividing the Tx (the total 
number of person-years lived after exact age x) by the number of survivors at exact 
age x (lx).

It would be easy to import the results from the DeathsAndSurvivors table into an 
Excel spreadsheet and to calculate the life expectancy at each age by summing the 
Lx+5. But it is always a good idea to try and limit the amount of external manipula-
tion of data, and so we try to use the full potential of the tools provided by Modgen. 
So how can we use a combination of derived states to obtain sex and age-related life 
expectancy without resorting to external software?

First, we can get sex-specific life expectancy at birth simply by suppressing the 
age dimension: duration then provides, as we have seen, the number of years of life 
starting from birth (the T0 of the life table), which enables us to obtain life expec-
tancy at birth of men and women:

2  The Life Table



45

    PersonCore.mpp
146   table Person LifeExpectancyBirth // Life expectancy at 

birth
147   {
148      {
149          // Life expectancy decimals=4
150          duration() / value_in(alive) 
151      }
152      *sex +        // By sex
153   };

It is possible to add an age filter to the previous table to obtain life expectancy at 
a given age. A table filter is simply a conditional statement constraining the ele-
ments of a table to certain specified state values. A filter is inserted next to the table 
statement between square brackets. The filter [age_int >= 5] inserted under the 
table LifeExpectancy5 (see below) creates a table presenting life expectancy at age 
5 by specifying that only actors at least 5 years old may be used in the calculations. 
In demographic notation, duration here gives the T5 and value_in(alive) gives the l5. 
Note that any arbitrary condition may be used as a filter in a table.

155   table Person LifeExpectancy5 // Life expectancy at 5 yo
156   [age_int >= 5]
157   {
158      {
159           //Life expectancy at 5 yo decimals=4
160          duration() / value_in(alive)    
161      }
162      *sex +
163   };

To obtain life expectancy at each age, we could simply copy the above instruc-
tions, changing the age specification of the filter. But this would be an inefficient 
way of doing things, because of the number of lines of code involved and the num-
ber of results tables needing to be manipulated. It would be better to create a table 
which gives life expectancy at each age directly. To do this, it appears that the 
derived states we have introduced so far are insufficient. Fortunately, Modgen pro-
vides dozens of derived states which are described in the developer’s guide, the 
reference work developed by the Modgen team at Statistics Canada.

Let’s first open the developer’s guide, which is located in the Modgen application 
group (this was inserted in the start menu by the installer) (Fig. 2.1).

The curious reader is encouraged to take a look at the Derived states specifica-
tion section under the Contents tab (Fig. 2.2).

We will here concentrate on the derived states used in this chapter. First, we 
search for duration in the index (Fig. 2.3).
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The developer’s guide explains that the duration derived state can be used with-
out argument (as we have used it up to now) or with arguments. In the latter case, 
the function takes the form duration(observed_state, value) and measures the length 
of time spent by an actor in a given state. In our model, the derived state duration(alive, 
TRUE) would be strictly speaking equivalent to duration() because both measure 
the time spent by the actor in the simulation.

Fig. 2.1  Accessing the 
Modgen developer’s guide

Fig. 2.2  The derived states section of the developer’s guide
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The variable used in the function duration(variable, state) can be a state variable 
or a derived state. If we could insert an on-off switch which would make the dura-
tion function count years only after a certain age, we would have an effect equiva-
lent to the filter we just saw in the LifeExpectancy5 table, but directly integrated into 
the derived state. In concrete terms this would mean that a derived state would take 
on the value TRUE only after a given age has been reached.

In fact Modgen does contain a derived state of the duration type which can create 
this kind of switch. This is the derived state duration_trigger:

duration_trigger(observed_state, value, time_interval)

This derived state takes on the value TRUE once an actor has spent a certain 
amount of time (time_interval) in a predetermined state (value), and the value 
FALSE if not. The derived state

duration_trigger(alive, TRUE, 5)

Fig. 2.3  Section of developer’s guide explaining the use of the duration derived state
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thus takes the value TRUE when an actor has remained in the state alive = TRUE for 
a duration of 5 years or more, and FALSE if not. By combining duration_trigger and 
duration, one can calculate the time spent in the state alive = TRUE from a certain 
age onwards:

duration (duration_trigger(alive,TRUE,5),TRUE)

The expression above measures the time during which the derived state dura-
tion_trigger(alive, TRUE,5) has the value TRUE, starting from the moment when 
the actor reaches the age of five. In the life table, this expression corresponds to T5. 
Any Tx can be obtained by modifying the time_interval argument in the derived 
state duration_trigger.

Note that it would also have been possible to create a switch in the model itself, 
by creating a logical variable which can take the TRUE value from a given age 
onwards. Duration would then have had the form duration(Switch, TRUE), which 
would have simplified the description of the table. But then we would have had to 
create a state variable for each Tx and then add the relevant code in the anniversary 
event so that the switches take on the value TRUE at the relevant ages. This way of 
doing it would have overburdened the code unnecessarily. It is always better to 
exploit the power of the derived states provided by Modgen as much as possible, 
rather than creating extra functions and state variables.

We now have a way to measure the length of life of an actor after a certain exact 
age x. To find life expectancy we also need the number of survivors at this exact age 
(lx). The number of survivors is quite easy to find by modifying the entrances func-
tion we used earlier. It is simply a question of counting the number of actors who 
reach (“enter”) a given age:

entrances(age_int,5)

Here the derived state entrances counts the number of actors reaching the age of 
5 (l5 in the life table). Combining all the functions we have seen so far can give us 
the life expectancy at age 5 (T5/l5):

171   duration(duration_trigger(alive,TRUE,5),TRUE) /
172           entrances(age_int,5)

To make a life table by age (the Tx/lx or the ex of the life table), all we have to do 
is to copy this instruction for each 5 year segment:

2  The Life Table



49

165   table Person LifeExpectancyByAge  // Life expectancy by 
age

166   {
167      {
168         // Life expectancy at birth decimals=4
169         duration() / value_in(alive),
170         // Life expectancy at 5 yo decimals=4
171          duration(duration_trigger(alive, TRUE, 5), TRUE) / 
172              entrances(age_int, 5),
173         // Life expectancy at 10 yo decimals=4
174          duration(duration_trigger(alive, TRUE, 10), TRUE) / 
175          entrances(age_int, 10),
176          // Life expectancy at 15 yo decimals=4
177          duration(duration_trigger(alive, TRUE, 15), TRUE) / 
178              entrances(age_int, 15),
         ...
         ...

215         // Life expectancy at 80 yo decimals=4
216          duration(duration_trigger(alive, TRUE, 80), TRUE) / 
217              entrances(age_int, 80),
218         // Life expectancy at 85 yo decimals=4
219          duration(duration_trigger(alive, TRUE, 85), TRUE) / 
220              entrances(age_int, 85)
221   
222      }
223      *sex +
224   };

Note now that only the sex dimension needs to be added, because the age dimen-
sion is implicitly included in the specification of the derived states.

Derived states and table coding is often a difficult and unintuitive task, so don’t 
worry if at this point Modgen tables still appear a bit confusing. In the following 
section we will examine the actual output of the tables, and hopefully this will shed 
some light on the code we have just presented.

Now we can precompile, compile and run our model to examine and compare the 
results of our life tables. If you have forgotten how to do this, consult the section on 
Precompiling, Compiling and Running the simulation program in the previous 
chapter.
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2.8  �Modifying Parameters and Reorganising Tables 
with the User Interface

We can now open the user interface by double-clicking on the compiled program 
icon in the solution folder (to refresh your memory on the procedure, look for Fig. 
1.6 of the Precompiling, Compiling and Running the Program section of Chap. 1.) 
The whole model along with the executable file can also be found on the book 
website (http://www.microsimulationandpopulationdynamics.com/) or on Springer 
Extras Online.

Once in the user interface, the base scenario (base.scex) can be loaded using the 
Scenario menu or by pressing the ctrl + o keys. In the base.scex file, we find the 
basic simulation parameters (number of cases, scaling, etc.), as well as links to the 
model parameters files such as Base(PersonCore).dat.

Output tables are only available after the first simulation run of the model. So 
Modgen may alert you to start the simulation, in order to update the results tables. 
But before launching the simulation, we still have to put in real age- and sex- related 
mortality parameters. Remember that we inserted some temporary parameter values 
from Visual Studio, setting a constant risk of dying of 0.1 for each age. You can 
confirm this by double-clicking on the item Parameter Files -> PersonCore-> 
Annual hazard of death according to sex and age in the left panel of the window.

New parameter values can be entered one by one in this table or, more simply, 
can be cut and pasted from an Excel spreadsheet. To do this, first copy the cells from 
an Excel file containing the parameters, and then select the parameter cells in the 
table (by clicking on the rectangle just above S_FEM in Fig. 2.4), and finally paste 
the information.

Here we will use the mortality risks observed for Ontario in the year 2006. You 
can find these parameters in the Data_Example2.xlsx file in the Chap. 2 folder (web-
site: http://www.microsimulationandpopulationdynamics.com/).

Fig. 2.4  Mortality parameters
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These values are saved by pressing ctrl-s. Saving them will modify the values of 
the parameters in the Base(PersonCore).dat file.

Next, we make sure that the general scenario parameters are correctly specified 
(as shown in Fig. 2.5), and launch the simulation by clicking on the play (►) button 
on the toolbar or on Run/resume in the Scenario menu.

Once the simulation has run its course and the tables are updated, we can start 
comparing the results from each of our four life tables. Let’s remind ourselves of 
these tables: Elements of the life table shows the constitutive elements of the life 
table (number of deaths, survivors and person-years lived); Life expectancy at birth 
calculates life expectancy at birth for men and women separately using the expres-
sion duration()/value_in(alive); Life expectancy at 5 yo calculates life expectancy at 
age 5 using a filter excluding actors aged 4 and under; and finally Life expectancy 
by age calculates age-specific life expectancy using a combination of the derived 
states duration, duration_trigger and entrances.

Double-clicking on Tables -> Life Expectancy at Birth opens the table shown on 
Fig. 2.6.

This table shows life expectancy at birth for women (S_FEM) and for men (S_
MAL), as well as life expectancy for the population as a whole (All). The All column 
is present because the “ + ” sign had been added after the sex dimension in the table 
definition. We must stress here that this column is not simply the mean of the S_
FEM and S_MAL values: it is the life expectancy at birth of the total population both 
male and female, a mean weighted in accordance to the sex ratio at birth.

Fig. 2.5  Scenario parameters
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We can compare life expectancy at birth with life expectancy at age five by double-
clicking on the Life Expectancy at 5 yo and Life expectancy by age tables. Note that 
the tables are similar, but that life expectancy at age 5 is lower than life expectancy at 
birth, which is to be expected in a population with low infant mortality.

The values we find in the Life expectancy by age table at birth and at age five 
should normally be identical to the life expectancy from the other two tables, and 
this is easy to confirm by comparing the results of three tables (Fig. 2.7).

We can also take a look at the elements of the life table by double-clicking on the 
Elements of the life table (Fig. 2.8).

The table which comes up gives the numbers of survivors by sex (columns) and 
age (rows). Deaths and person-years lived can be viewed by selecting the relevant 
item in the Selected Quantities drop-down menu (Fig. 2.8).

Fig. 2.6  Life expectancy at birth by sex

Fig. 2.7  Comparing methods for calculating life expectancy
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We can see that the root of the table (the starting population) is 100,000 as speci-
fied in the scenario, but that the number of male actors does not exactly match the 
sex ratio specified in the parameters (0.512). This is explained by the fact that sex 
attribution, which is done at random in the Start function, is subject to the Monte-
Carlo error. If we want a life table whose root total population is made up of exactly 
100,000 men and 100,000 women, we would have to take each sex separately. Then 
we can get round the Monte-Carlo error by specifying a sex ratio of 1, which will 
give us a table for men alone (with a root of 100,000). Repeating the simulation with 
a sex ratio of 0 will give us a table for women alone.

It may sometimes be useful to reorganise the dimensions of the table so as to 
make certain characteristics stand out. In our example, it would be useful to show 
the table contents (in columns) by age (in rows) for men and for women in two 
distinct tables. To modify the order of the dimensions, click on the table, and select 
Properties in the View menu (you can also find Properties by right-clicking any-
where on the table) (Fig. 2.9).

Under the Dimensions tab of the Properties window, we can find the table con-
tents (Selected Quantities), age and sex. The dimensions can be moved using the 
arrows on the right of the window. The last dimension in the list always represents 
the columns, and the next to last the rows of the table. To display the table contents 
by age, then, we move Selected Quantities to the last position, and Age to the last 
but one. This will give the desired table as shown in Fig. 2.10. Note that you can also 
modify the number of decimals displayed for each quantity by clicking on the 
Decimals tab.

Fig. 2.8  Survivors by age and sex
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Note that the sex dimension now appears in the drop-down menu, so this table 
can be displayed either for women or for men.

The tables can be exported simply, by cutting and pasting the required cells into 
a spreadsheet program. The entire table can also be cut and pasted by right-clicking 
on any cell and selecting Special Copy -> All Pages. Finally it is possible to export 
one or more tables of results directly into an Excel format: just select Export in the 
Scenario menu and follow the instructions on screen.

Fig. 2.9  Table properties

Fig. 2.10  Survivors, 
deaths and person-years 
lived by age
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2.9  �Summary

In this chapter we have seen how to create classifications, numerical ranges and 
state variables. We have put age and sex into our model and added new parameters. 
We have also added an event, the birthday, and modified the mortality event so that 
variations in risk by age and sex may be taken into account. We have learned to 
work with new derived states (duration, entrances, duration_trigger) and with fil-
ters, to produce more useful results tables. Finally we have learned how to person-
alise the parameters and the tables through the user interface. In the next chapter we 
will add a spatial dimension to the model, which will enable us to model the risk of 
migration from one region to another. With this model we will be able to reproduce 
the results of a multiple increment-decrement life table, also known as multi-
regional or multi-state table.

�Appendices

�Appendix 2.1 PersonCore.mpp

Code Sections: Header (lines 1 to 7), Parameters (lines 8 to 21), Actor Person and 
functions (lines 22 to 132), Tables (lines 133 to 224)

1  classification SEX{ S_FEM, S_MAL };
2 
3  range AGE{ 0, 110 };
4 
5   partition AGE_GROUP{ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 
6   55, 60, 65,70, 75, 80, 85 }; 
7 
8  parameters 
9  {

10      //EN Annual hazard of death according to sex and age
11      double MortalityHazard[SEX][AGE];
12      /* NOTE(MortalityHazard, EN)
13          The hazard of death acording to sex and age;
14          results in an exponential survival function.
15      */
16 
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17      int AgeMax;            // Maximum lifespan
18      double ProbabilityMale;    // Probability of male birth
19 
20  };
21 
22  actor Person            //EN Individual
23  {
24 
25      //EN Alive
26      logical alive = {TRUE};
27      /*NOTE(Person.alive, EN)
28             Set to TRUE when the actor starts, and to FALSE just 

before
29             the actor finishes.    Since the numeric value of TRUE 

is 1 and 
30            FALSE is 0, this variable can also be used 
31            to count actors in tables.
32      */
33 
34      SEX sex;         // Sex state variable
35      AGE age_int = { 0 }; // Age state variable
36         
37        event timeMortalityEvent, MortalityEvent;    //EN Mortality 

event
38 
39      // Duration before next birthday
40      TIME tNextBirthday = { TIME_INFINITE };
41      // Birthday event: increment age_int by 1
42      event TimeBirthdayEvent, BirthdayEvent;
43     
44      //LABEL(Person.Start, EN) Starts the actor
45      void Start();
46 
47      //LABEL(Person.Finish, EN) Finishes the actor
48      void Finish();
49  };
50 
51 
52  // The time function of MortalityEvent
53  TIME Person::timeMortalityEvent()
54  {
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55      TIME tEventTime = TIME_INFINITE;
56 
57      // Draw a random waiting time to death from 
58      // an exponential distribution based on the 
59      // constant hazard MortalityHazard.
60      tEventTime = WAIT( - TIME( log( RandUniform(1) ) / 
61          MortalityHazard[sex][age_int] ) );
62 
63      return tEventTime;
64  }
65 
66  // The implement function of MortalityEvent
67  void Person::MortalityEvent()
68  {
69      alive = FALSE;
70 
71      // Remove the actor from the simulation.
72      Finish();
73  }
74 
75  // The birthday event: increments age_int by 1
76  TIME Person::TimeBirthdayEvent()
77  {
78      return tNextBirthday;
79  }
80  void Person::BirthdayEvent()
81  {
82      if (age_int == AgeMax)
83      {
84          alive = FALSE;
85          Finish();
86      }
87      else
88      {
89          tNextBirthday = WAIT(1);
90      };
91      age_int++;
92 
93  }
94 
95  /*NOTE(Person.Start, EN)
96        The Start function initializes actor variables before 

simulation
97      of the actor commences.
98  */
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99  void Person::Start()
100  {
101      // Modgen initializes all actor variables
102      // before the code in this function is executed.
103 
104      age = 0;
105      time = 0;
106 
107      // Sets waiting time before first birthday
108      tNextBirthday = WAIT(1);
109      // Sets age_int to zero (cohort model)
110      age_int = 0;            
111 
112      if (RandUniform(2) < ProbabilityMale)
113      {
114          sex = S_MAL;
115      }
116      else
117      {
118          sex = S_FEM;
119      };
120 
121  }
122 
123  /*NOTE(Person.Finish, EN)
124      The Finish function terminates the simulation of an actor.
125  */
126  void Person::Finish()
127  {
128      // After the code in this function is executed,
129           // Modgen removes the actor from tables and from the 

simulation.
130      // Modgen also recuperates any memory used by the actor.
131  }
132 
133  table Person DeathsAndSurvivors // Elements of the life table
134  {
135      {
136 
137          value_in(alive), // Survivors (lx)
138          entrances(alive, FALSE), // Deaths (dx)
139          duration() // Person-years lived (Lx) decimals=4
140 
141      }
142      *split(age_int, AGE_GROUP) +    // by age
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143      *sex +                            // and sex
144  };
145 
146  table Person LifeExpectancyBirth // Life expectancy at birth
147  {
148      {
149          // Life expectancy decimals=4
150          duration() / value_in(alive) 
151      }
152      *sex +        // By sex
153  };
154 
155  table Person LifeExpectancy5 // Life expectancy at 5 yo
156  [age_int >= 5]
157  {
158      {
159          //Life expectancy at 5 yo decimals=4
160          duration() / value_in(alive)    
161      }
162      *sex +
163  };
164 
165  table Person LifeExpectancyByAge  // Life expectancy by age
166  {
167      {
168          // Life expectancy at birth decimals=4
169          duration() / value_in(alive),
170          // Life expectancy at 5 yo decimals=4
171          duration(duration_trigger(alive, TRUE, 5), TRUE) / 
172              entrances(age_int, 5),
173          // Life expectancy at 10 yo decimals=4
174          duration(duration_trigger(alive, TRUE, 10), TRUE) / 
175              entrances(age_int, 10),
176          // Life expectancy at 15 yo decimals=4
177          duration(duration_trigger(alive, TRUE, 15), TRUE) / 
178              entrances(age_int, 15),
179          // Life expectancy at 20 yo decimals=4
180          duration(duration_trigger(alive, TRUE, 20), TRUE) / 
181              entrances(age_int, 20),
182          // Life expectancy at 25 yo decimals=4
183          duration(duration_trigger(alive, TRUE, 25), TRUE) / 
184              entrances(age_int, 25),
185          // Life expectancy at 30 yo decimals=4
186          duration(duration_trigger(alive, TRUE, 30), TRUE) / 
187              entrances(age_int, 30),
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188          // Life expectancy at 35 yo decimals=4
189          duration(duration_trigger(alive, TRUE, 35), TRUE) / 
190              entrances(age_int, 35),
191          // Life expectancy at 40 yo decimals=4
192          duration(duration_trigger(alive, TRUE, 40), TRUE) / 
193              entrances(age_int, 40),
194          // Life expectancy at 45 yo decimals=4
195          duration(duration_trigger(alive, TRUE, 45), TRUE) / 
196              entrances(age_int, 45),
197          // Life expectancy at 50 yo decimals=4
198          duration(duration_trigger(alive, TRUE, 50), TRUE) / 
199              entrances(age_int, 50),
200          // Life expectancy at 55 yo decimals=4
201          duration(duration_trigger(alive, TRUE, 55), TRUE) / 
202              entrances(age_int, 55),
203          // Life expectancy at 60 yo decimals=4
204          duration(duration_trigger(alive, TRUE, 60), TRUE) / 
205              entrances(age_int, 60),
206          // Life expectancy at 65 yo decimals=4
207          duration(duration_trigger(alive, TRUE, 65), TRUE) / 
208              entrances(age_int, 65),
209          // Life expectancy at 70 yo decimals=4
210          duration(duration_trigger(alive, TRUE, 70), TRUE) / 
211              entrances(age_int, 70),
212          // Life expectancy at 75 yo decimals=4
213          duration(duration_trigger(alive, TRUE, 75), TRUE) / 
214              entrances(age_int, 75),
215          // Life expectancy at 80 yo decimals=4
216          duration(duration_trigger(alive, TRUE, 80), TRUE) / 
217              entrances(age_int, 80),
218          // Life expectancy at 85 yo decimals=4
219          duration(duration_trigger(alive, TRUE, 85), TRUE) / 
220              entrances(age_int, 85)
221 
222      }
223      *sex +
224  };
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�Appendix 2.2 Base(PersonCore).dat

1  parameters {
2     
3      int    AgeMax = { 110 }; // Maximum lifespan
4      double ProbabilityMale = { 0.512 }; // Probability of male 

birth
5      // Mortality hazard by sex and age (initialized with arbi-

trary values)
6      double    MortalityHazard[SEX][AGE] = { (222) 0.1, };
7 
8  };
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Chapter 3
The Multiple Increment-Decrement Life Table

Aims of This Chapter
•	 Replacing the birthday event by the self_scheduling_int function
•	 Creating a new Modgen module to simulate interregional mobility
•	 Using a cumrate type parameter and the Lookup function to randomly attribute a 

new state to an actor
•	 Creating customized tables

In the mid 1970S, Professor Andrei Rogers (1975) proposed adapting the life table 
methodology for regional analysis. The classic demographic approach often 
abstracted migration, which was thus considered to be a disrupting phenomenon. 
Rogers had the idea that migration could be taken into account explicitly by using a 
multi-regional table which would make it possible to calculate, for example, the 
share of life expectancy spent in a specific region (or country). The multi-regional 
model he developed is now an integral part of the demographer’s toolkit.

The multi-regional model is appropriate for analysing any phenomena involving 
transitions between different modalities of a state variable. The multi-regional table 
therefore becomes a “multi-state” table, or a multiple increment and decrement 
table. This type of model, which is more general in scope, has contributed to analys-
ing a wide range of phenomena such as healthy life expectancy (Rogers et al. 1990; 
Bélanger et al. 2002), active life expectancy (Bélanger and Larrivée 1992; Willekens 
1980) or the analysis of married life (Zeng et al. 2012; Willekens et al. 1982).

In this chapter we will be modifying the program we developed in the previous 
chapter, to convert it into a multi-regional model; this is a transposition of the origi-
nal work by Rogers into the world of microsimulation. To do this, we will be adding 
new elements to the model to account for interprovincial mobility. The first step will 
be to add a new state to the actor, namely his or her province of residence, and ini-
tialise it at the time of birth. We will do this using the Lookup function and a new 
type of Modgen parameter, the cumrate. Used together, Lookup and cumrate allow 
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us to assign states to actors randomly according to a predetermined distribution. We 
will also add a migration event for which we will need new parameters, namely 
province-specific outmigration rates and origin-destination matrices. Finally, we 
will add a dimension to the mortality parameter to make the rates specific to each 
province.

As in previous chapters you will find the complete code of the relevant files at the 
end of the chapter. You can also access the files on the book’s website (http://www.
microsimulationandpopulationdynamics.com/) or on Springer Extras Online. But 
before we start to add a new migration module, we will simplify the code in Chap. 
2 by replacing the birthday event by a convenient Modgen element called a self-
scheduling state.

3.1  �Self-Scheduling Events: The self_scheduling_int Function

In the previous chapter we saw how to increment the age of an actor by using the 
anniversary event. If the maximum age was reached when this event occurred, the 
alive state variable was switched to FALSE and the actor was withdrawn from the 
simulation. This repeatable event with fix duration was a convenient way to intro-
duce the new user of Modgen to the creation of a new event. However, the self_
scheduling_int function is a simpler way to do the same thing.

Modgen allows the value of a variable to be automatically increased without hav-
ing to use an explicit event function. The self_scheduling_int function automatically 
increments a state variable by one unit for each year that passes. The moment when 
this increase takes place is determined by the value of another variable which 
changes in continuous time (such as the time and age variables for example, which 
are automatically defined by Modgen). Each time the integer part of a reference 
variable increases, self_scheduling_int increments a designated state variable. In the 
example below, the self_scheduling_int function automatically modifies the value 
of the variable age_int according to the evolution of the continuous variable age.

int age_int = self_scheduling_int(age);

For example, when the age variable reaches the 2 year point, the self_schedul-
ing_int function automatically updates the value of the age_int variable, so that its 
value changes from 1 to 2.

The self_scheduling_int function (or its sister self_scheduling_split, which won’t 
be discussed here) used to be a well-kept secret and was not documented in previous 
versions of the Modgen User’s Guide. However it was described in an article by 
Martin Spielauer on Modgen and the Riskpath microsimulation model (Spielauer 
2009).

It is a very useful function, and has been used to replace the birthday event which 
we introduced in the second chapter. To be precise, we have removed the birthday 
event (the declaration of the event in the actor description as well as the event code 
itself) and replaced it by the following line of code in the Person class:
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http://www.microsimulationandpopulationdynamics.com/
http://www.microsimulationandpopulationdynamics.com/
http://dx.doi.org/10.1007/978-3-319-44663-9_2


65

PersonCore.mpp
26    // Age state variable, auto-increment
27    AGE age_int = COERCE(AGE, self_scheduling_int(age)); 

You will notice that the self_scheduling_int(age) function is inserted in another 
function, COERCE, which has not been introduced yet. This function acts to restrict 
a value so that it is confined within the limits defined by a Modgen range. Because 
the numerical range AGE has values between 0 and 110, the COERCE function will 
prevent the self_scheduling_int(age) function from returning a value above 110 or 
below 0. If an individual were to attain the age of 111, the coerce function would 
force the age_int variable to take the maximum value allowed for the AGE range: 
110 years.

A good modeller will normally ensure that the state variables cannot take on 
values outside the defined limits of a numerical range. However, the coerce function 
adds an extra layer of security.

In Chap. 2, age was constrained by the birthday event, which included a condi-
tional statement to check whether the actor had reached the maximum age. Because 
we have removed the birthday event, we must now relocate this task to another 
event, and the mortality event seems the most appropriate for this:

PersonCore.mpp
43    // If max age is reached, death event occurs immediately
44    if (age_int == AgeMax) 
45    {
46            tEventTime = WAIT(0);
47    }
48    else
49    {
50            // Draw a random waiting time to death from 
51            // an exponential distribution based on the 
52            // constant hazard MortalityHazard.
53            tEventTime = WAIT(-TIME(log(RandUniform(1)) /
54               MortalityHazard[sex][age_int][prov]));
55    };

This conditional statement simply states that if the maximum age has been 
reached, the death event occurs immediately (WAIT(o)); otherwise a random wait-
ing time is computed using a Monte-Carlo experiment. What used to be done in the 
birthday event occurs now in the mortality event.

3.1  Self-Scheduling Events: The self_scheduling_int Function
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3.2  �Creating a New Module for Interprovincial Migration

Having introduced these preliminary modifications into the code, we are now ready 
to add a new module to the model. But first, let’s clarify what a module is and what 
it is not.

It is important to understand that a Modgen module is not strictly speaking a 
distinct programming block or entity, in the same way that a function or a class in 
C++ would be. Instead, a module is an element of organisation which enables us to 
put different functional parts of the model into separate files. So, for instance, we 
could put the code relating to mobility into one module and the code relating to 
fertility into another. In addition to allowing us to organise the code, modules make 
working in parallel possible, so that several modules can be developed separately by 
different members of a team.

Organizing the code into modules is not mandatory. It would be possible, 
although not very practical, to build a complex model without creating modules, by 
putting all the code into the PersonCore.mpp file. But it is easy to imagine how dif-
ficult this would be to achieve: a very large file, the risk of a poorly organised code, 
and no possibility of parallel working. It is good practice, even for smaller models, 
to create a specific module for each specific category of event.

A new Modgen module is simply a new.mpp file integrated into the Visual Studio 
project of a model. The file is created from the Visual Studio Solution Explorer: 
position the mouse pointer on the Modules(mpp) sub-directory and right-click to 
access the contextual menu and then select Add -> New Item (Fig. 3.1). Then click 
on “Modgen12EmptyModuleVide” which is available under the Modgen heading 
(Fig. 3.2). Give a name (Migration) to this new module and make sure that the loca-
tion of the file corresponds to the project working directory. Then click on Add.

The new “Migration” module now appears in the Solution Explorer. If you 
double-click on it, a blank file opens (Fig. 3.3).

Because the simulation of migration will require new parameters, it is recom-
mended to create a parameters file specifically for this new module. To do this, you 
need to create a new .dat file in the Scenarios folder. Right-click on the Scenarios 
folder in the Solution Explorer and then on Add-> New Item (Fig. 3.4).

In the new window, select Text File in the Utility section under Visual C++. Write 
the name of the file: Base(Migration).dat would be a good choice as it indicates that 
this is the parameters file of the Migration module for the base scenario. But ulti-
mately the choice of the name is up to the developer. Finally click on Add (Fig. 3.5).

The new empty parameters file appears in the main window and in the Solution 
Explorer. We will close it for the moment, and come back to it later (Fig. 3.6).

Let’s go back now to the new empty migration module. Its structure will be iden-
tical to the structure of the PersonCore.mpp file. It will include a header (with dec-
larations of classifications and ranges, for example), a section for the parameters, a 
section for the description of the actor class (Person) and a section for the tables. All 
these sections mirror the equivalent sections in PersonCore.mpp. In fact, even 
though all the elements of a model may be divided into several modules, you can 
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Fig. 3.1  Accessing the menu to add a new Modgen module

Fig. 3.2  Adding a Modgen module

3.2  Creating a New Module for Interprovincial Migration
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Fig. 3.4  Menu for adding a new parameters file

Fig. 3.3  The empty migration module
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Fig. 3.5  Creating a new parameters file

Fig. 3.6  New parameters file for the Migration module

3.2  Creating a New Module for Interprovincial Migration



70

think of the model as having a single parameter section, a single header section, and 
so forth. The elements of the modules are combined during compilation, so that 
code which is already in one file should not be repeated in others. Consequently, all 
the elements contained in one module are accessible in all the others. This is very 
important. For example, the classification PROVINCE which we are going to create 
in the Migration.mpp module may also be used in the main module (PersonCore.
mpp) to add a new dimension to the mortality parameter or a new dimension to a 
table. Equally, the classifications declared in PersonCore.mpp will also be available 
in the migration module, so there is no need to declare the AGE classification again 
in the migration module. In fact, if we did this, the compiler would signal an error 
because the same classification would be defined twice in the same project.

So what should we include in a mobility module? First of all, it is useful to start 
by describing the content of the module in the file header. The description should 
explain broadly and succinctly the purpose of the module.

Migration.mpp
1    /* Internal Migration Module
2    This module contains all the elements of the mobility 

event.
3    The Lookup function is used in cunjunction with an 
4    origin-destination matrix (cumrate) to determine 
5    the choice of a destination province. 
6    */

Next the classifications and numerical ranges used in the new module are stated. 
In the case of a mobility module, we will need a state variable to hold the place of 
residence or the place of birth of the actor. Because our microsimulation model is 
Canadian, we will choose the province as the geographical unit, but the choice 
could have been different depending on the available data (the state, the county or 
the department, for example), and on the analytical decisions made by the modeller 
(what research questions do we want this microsimulation model to help us 
answer?). So we create a “Province” classification covering the ten Canadian prov-
inces (the territories are not included in this model).

Migration.mpp
8    classification PROV{ P_NFL, P_PEI, P_NOV, P_NEB, P_QUE, 

P_ONT, 
9        P_MAN, P_SAS, P_ALB, P_BRC };

Note again the use of capital letters in the declaration of a classification and the 
building of modalities based on the first letter of the classification (P) and three 
significant letters from the province name. The first three letters of the province 
would be a good choice, but sometimes it is more meaningful to use some other 
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acronym (NFL for Newfoundland and Labrador for instance is more meaningful 
than NEW). So the modeller can depart from writing conventions (by not taking the 
first three letters of the province for example), but should make sure to retain a 
degree of logic and clarity in the naming system.

Now that we have a classification for the province, we have to give the actor a 
province of birth and a province of residence. But in order to do this, we first have 
to introduce two new elements of the Modgen programming language: the cumrate 
parameter and the Lookup function.

3.3  �Assigning a Province of Birth Using a cumrate Parameter 
and the Lookup Function

Suppose we want to assign a value to a state variable according to a pre-defined 
distribution, for example to assign a sex value at birth according to a sex distribution 
of 105 men to 100 women (the natural sex ratio at birth). This is what we did in the 
previous chapter when we assigned a sex to the actor in the start() function. Because 
the sex variable had only two modalities, we used a simple condition to assign sex: 
if the value of a random number was lower than the probability of being male, the 
actor’s sex was male. If not, the actor was female. But what if the number of modali-
ties of a state variable is higher than two, as in the case of region of birth, where 
there are 10 modalities? Do we have to multiply the conditional statements accord-
ingly? What should we do if we want to use a distribution which has several dimen-
sions? For example a destination province might be assigned taking account of the 
province of residence, age and sex. This could make assigning a state quite 
complicated.

Fortunately the Lookup function and the cumrate parameter in Modgen make it 
possible to manage all this automatically.

The cumrate parameter (from “cumulative rate”) is a statistical distribution con-
taining the relative frequencies of the modalities of a given state variable. Let’s take 
the example of the province of birth. We have just defined a province classification 
(PROV) which has ten modalities (the ten provinces of Canada). When an actor is 
created in the start() function, a province of birth has to be assigned to him or her. 
This province of birth is also the province of residence at the time of birth. The 
distribution of births is contained in a cumrate parameter.

Migration.mpp
17    // Distribution of births according to province
18    cumrate ProvBirth[PROV]; 

This command creates a parameter along a single dimension (PROV, because the 
birth province is one of the ten provinces). This distribution is specified in the 
parameter file associated with the mobility module (see Appendix  3.3, 
Base(Migration).dat) :

3.3  Assigning a Province of Birth Using a cumrate Parameter…
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Base(Migration).dat
8    cumrate ProvBirth[PROV] = {1,1,1,1,1,1,1,1,1,1};

Notice first that the distribution has not been standardised (meaning that the sum 
of its elements is not equal to one): Modgen itself standardises it when selecting a 
random state with the Lookup function. Any number repeated ten times would yield 
the same result. In our example for this chapter, we assume that births are randomly 
distributed across all the provinces. So we will use this distribution to construct the 
multi-regional life tables. However, we might have wanted to assign a birth province 
based on real data. In that case we could have used the numbers of births in each 
province to construct the distribution, which would have given us the following1:

cumrate ProvBirth[PROV] =
                       {4455,1423,8572,6826,88250,142448,16237, 

15367,56582,43738};

The sum of all these numbers is 385,937, and so this distribution implies that the 
probability of having Newfoundland and Labrador as a province of birth (the first in 
the list) is 4455/385937 = 0.012. For Ontario (the sixth), the probability is 
142448/385937 = 0.369 and so on.

You may have noticed that a new classification has been created to define the 
provinces (PROV), but that no corresponding state variable has been added to the 
actor definition. We can create these now.

Migration.mpp
22    actor Person               // Individual
23    {
24         ...
25         PROV prov;
26         PROV prov_birth;
27    };

We have added two new state variables (in lower case letters), the province of 
residence and the province of birth, both based on the PROV classification (in capi-
tals). Remember that the case is important. PROV and prov are two distinct entities: 
the first refers to an invariable classification (a type of data), while the second refers 
to a state variable.

These state variables have to be initialised at the beginning of the simulation, in 
the start function of the actor. Remember that the start function is defined in the 
main PersonCore.mpp, and not in the migration module.

We can then use the information contained in the cumrate parameter to randomly 
select the actor’s birth province in the start function. It is at this point that the 

1 According to Statistics Canada data, 2013–2014: http://www.statcan.gc.ca/tables-tableaux/sum-
som/l02/cst01/demo04a-fra.htm. Consulted 21 May 2015.
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Lookup function comes into play. Its syntax is rather unusual (and not self-explana-
tory), so we will go through it step by step.

PersonCore.mpp
70    void Person::Start()
71    {

         ...

91       // A temporary variable to store the province value
92       int prov_temp = {0};
93       // Lookup picks a random province according to cumrate 

distribution
94       Lookup_ProvBirth(RandUniform(5), &prov_temp);
95       // Casts the (integer) prov_temp value into the 
96       // prov state variable (of PROV type)
97       prov = (PROV) prov_temp;
98       // Province of residence at birth is the province of 

birth
99       prov_birth = prov;
100
101    }

The use of the Lookup function is generally done in three stages. First a tempo-
rary variable is created (line 92) which will eventually contain the state picked ran-
domly by the Lookup function. This variable is of type integer (int), because Lookup 
returns the state value in the form of a whole number (remember that the elements 
of a classification are ordered, with the first element taking the value 0, the second 
1, and so on). So in our example, because the cumrate ProvBirth parameter allows 
for ten possible values (corresponding to the 10 provinces), the Lookup function 
will return a whole number between 0 and 9.

Next the Lookup function is called to return a randomly selected province in the 
previously defined temporary variable (line 94). Finally we transfer the value of the 
temporary variable prov_temp into the state variable prov (line 97) and define the 
birth province as the province of residence at birth (line 99).

Let’s go back over the last two stages (creating a temporary variable is relatively 
trivial and doesn’t require further explanation). We will take a closer look at the 
syntax of the Lookup function:

Lookup_[cumrate distribution](RandUniform(), &dest_vari-
able);

We can see that the Lookup function is tied to a cumrate parameter using an 
underline: in our example, Lookup is tied to the province of birth distribution 
(Lookup_ProvBirth). The Lookup function paired with a cumrate also takes two 
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arguments. The first, RandUniform(), is a function returning a random number: it is 
the argument which will enable the Lookup function to select a province randomly. 
The second argument is a pointer to a temporary variable: it indicates to Modgen the 
variable in which the randomly selected value is to be stored. In our example, the 
temporary variable is called prov_temp. Because the argument of the function has to 
be a pointer, don’t forget to add an ampersand (&) in front of the name of the vari-
able (&prov_temp, see line 94).2 To re-emphasise, the Lookup function does not 
return the value of a state, but a whole number value: this is why prov_temp is an int 
type variable and not a PROV state variable. So next we must give the prov state 
variable the value selected by Lookup and stored in prov_temp. Because the prov_
temp variable is a whole number (int) and the state variable is a PROV classification, 
we convert the whole number type into a PROV type using a “casting”. A casting is 
a conversion from one type of data to another. For example the value “0” may sim-
ply signify zero (nil value) as a whole number, but may equally represent the value 
P_NFL or Newfoundland and Labrador as a PROV type variable. To convert an 
integer into a PROV type, the destination type (PROV) is written in parentheses in 
front of the name of the variable to be converted.

PersonCore.mpp
97     prov = (PROV) prov_temp;

Because place of residence is equivalent to place of birth at the time of birth, the 
value of the place of residence is simply given to the prov_birth state variable (line 
99).

We now have assigned a birth province, which will remain the same throughout 
the actor’s life, and a province of residence, which will have to change with succes-
sive migrations. And these migrations will be determined by a mobility event, which 
is the subject of the next section.

3.4  �Adding an Internal Migration Event

Internal migration can be seen as a decision made in two separate steps: the first step 
is linked to the decision to change province of residence (to become mobile), while 
the second step is linked to the choice of a destination province. In Modgen, model-
ling this kind of process is done using event functions, which we have already used 
in previous chapters to model mortality and birthdays. The time function of the 
event enables us to determine the random wait time before the mobility event, and 
the event function lets us assign a new province of residence to the actor.

2 In concrete terms, &prov_birth corresponds to the memory address where the content of the 
prov_birth variable is located. So it indicates the memory address where the Lookup function can 
place the result of the random selection. For more information on pointers, consult a C++ guide.
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First we have to declare the event function in the actor class of the new migration 
module.

Migration.mpp
22    actor Person            // Individual
23    {
24         event TimeIntMigEvent, IntMigEvent;

      ...    

27    };

The two aspects of the event are stated using the event function. The complete 
functions are defined a little further on in the code. The random time elapsed before 
the mobility event is calculated in the event time function (TimeIntMigEvent), while 
the destination province is assigned in the event function itself (IntMigEvent). Let’s 
first have a look at the time function.

Migration.mpp
29    TIME Person::TimeIntMigEvent()
30    {
31         TIME tEventTime = TIME_INFINITE;
32  
33         // A waiting time is picked at random    
34         tEventTime = WAIT(-TIME(log(RandUniform(3)) / 
35         �        (IntMigHazard[sex][age_int][prov]  + 
                    0.0000000001)));
36        
37         return tEventTime;
38    }

As we might have expected, the time function for the mobility event is similiar 
to the one used for the mortality event. A TIME type variable containing the wait 
time is first initialised with an infinite value. The value of this variable is later 
replaced by a random wait time generated from the mobility rates written into the 
parameters section (we will come to this later). The value of the random wait time 
is then sent back to the events manager using the return command. So this time 
function is indeed similar to the mortality event function in Chap. 2, but there are 
two important differences.

First, the IntMigHazard parameter (stated in the parameters section) contains 
three dimensions rather than two: sex, age and province of residence – a state vari-
able which was added in the migration module. This new parameter is declared in 
the Parameters section of the migration module, and its values are initialised in the 
Base(Migration).dat parameters file.
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Migration.mpp
11    parameters
12    {
13        // Outmigration hazard
14        double IntMigHazard[SEX][AGE][PROV]; 
           ...
19  
20    };

Base(Migration).dat
1    parameters
2    {
3         // Outmigration hazard
4         double IntMigHazard[SEX][AGE][PROV] = { (2220) 1, };   
           ...

9    };

The new parameter is filled with values equal to 1. Those serve only the purpose 
of initializing the parameter and will be replaced from the user interface with plau-
sible values.

A second difference from the mortality time function is the addition of a very 
small number (0.00000000001) to the risk of out-migration (IntMigHazard). Why 
is this? Some of the exit rates to be used will have a nil value: extremely old people, 
for example, have a practically zero risk of migration. But because the value of the 
exit rate is part of the denominator of the equation, there is a risk of computing a 
division by zero (an indeterminate result that leads to a runtime error). By adding a 
negligible quantity to the value of the parameter, we avoid generating an error when 
running the model. We could equally have proceeded by replacing the nil values 
directly in the parameters file, which would have avoided the trouble of inserting the 
correction in the code. However, adding the correction directly into the code is a 
way of ensuring that any nil rate which may have been overlooked in the parameters 
file will be rectified.

We now move on to the IntMigEvent function, which determines the actor’s des-
tination province. We will again use the cumrate and Lookup function as we did 
before, but now adding an extra complication. The destination province is actually 
selected not on the basis of a distribution vector, as for the birth province, but on the 
basis of an origin-destination matrix. This is because the choice of a destination 
province also depends on the province of origin: for each province of residence, 
there are nine possible destination provinces. So we need to declare a two-
dimensional cumrate parameter.
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Migration.mpp
11    parameters
12    {
       ...     
15          // Interprovincial migration, origin-destination 

matrix
16          cumrate OrDestMat[PROV][PROV]; 
       ...    
20    };

As usual, the parameter values have to be initialised in the migration module 
parameters file.

Base(Migration).dat
6        cumrate OrDestMat[PROV][PROV] = {(100) 1, };

Here we enter the same value 100 times (because we defined a ten by ten matrix), 
which represents a purely random distribution. We can add real values from the user 
interface once we run the model. So we have to remember that the final dimension 
of the parameter is in columns and the second to last is in rows. In other words, the 
provinces of origin are in rows and the destination provinces in columns.

Following a mobility event, we determine the destination province by a proce-
dure which is analogous to the one we used to determine the province of birth: we 
use the cumrate parameter in conjunction with the Lookup function.

Migration.mpp
40    void Person::IntMigEvent()
41    {
42        int prov_dest = 0;
43        Lookup_OrDestMat(RandUniform(4), prov, &prov_dest);
44        prov = (PROV)prov_dest;
45    }

As we did before, a temporary variable is first created (prov_dest) in which the 
value of the randomly selected destination province will be stored. Lookup is then 
called together with the origin-destination matrix (Lookup_OrDestMat), and the 
value of the province of residence (prov) is finally replaced by the value of the 
picked destination province (prov_dest). Notice that Lookup now takes an extra 
argument (now three instead of two). This is because in addition to a random vari-
able and a temporary variable, we have to specify the province of residence. The 
number of arguments following the random number generator has to correspond to 
the number of dimensions in the cumrate parameter, and they must appear in the 
same order. As arguments, state variables provide a constraint to the random draw 
while pointers to temporary variables are randomly assigned a value by the Lookup 
function based on given constraints and the cumrate distribution. So in our example, 
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the province of residence state variable acts as a constraint so that Lookup may ran-
domly find a value along the destination province dimension. The Lookup function 
is very flexible: it can accommodate a cumrate parameter with an arbitrary number 
of dimensions.

3.5  �Modifying the Mortality Parameter

In a multi-regional life table, the death rates vary according to region of residence. 
The assumption is that all individuals in the same territory are also subject to the 
same behaviours and socio-economic conditions influencing life expectancy. In 
Chap. 2, we modified the mortality parameter to take account of age and sex in 
determining the risks of dying. To take the province of residence into account, we 
add a dimension to the mortality parameter.

PersonCore.mpp
10  // Annual hazard of death according to sex, age and 

province
11  double MortalityHazard[SEX][AGE][PROV];

It is simply a matter of adding the name of the PROV classification in square 
brackets after the SEX and AGE dimensions. The number of elements in the param-
eters matrix now rises from 222 to 2220, because there are ten provinces. We must 
then re-initialise the values in the Base(PersonCore).dat file, so that the parameter 
contains the right number of values.

double  MortalityHazard[SEXE][AGE][PROV] = {(2220) 0.001, };

Once the parameter has been modified and its values have been re-initialised to 
take account of the new dimension, all that remains is to modify the code in the 
mortality time function.

 PersonCore.mpp
53      tEventTime = WAIT(-TIME(log(RandUniform(1)) /
54          MortalityHazard[sex][age_int][prov]));

We add the new dimension to the mortality parameter in the event function. The 
appropriate mortality rate is accessed using the state variables age_int, sex and prov, 
or the province of residence of the actor (again, remember, not the PROV 
classification).

Here we can see the power of microsimulation using Modgen. Revising the 
model to take account of an extra dimension turns out to be quite simple: we just 
add an extra dimension to a parameter, modify the event function, and the job is 
done. Now that our model contains all the elements required to produce multi-
regional tables, we can define the appropriate tables in the table section of the 
mobility module.
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3.6  �Multi-regional Tables

Our microsimulation model now allows for the simulation of interprovincial mobil-
ity, but proper output tables still need to be constructed to collect the relevant data 
and use them to produce a multi-regional life table. But before thinking about multi-
regional tables, it would be useful just to take a look at the number of in- and out-
migrations for each province, and also calculate the net migration. This is what the 
NetMigIP table does.

Migration.mpp
47  table Person NetMigIP // Exits, entrances and net migra-

tion by province
48  {
49    {
50      exits(prov, P_NFL), // Exits from Newfoundland
51      exits(prov, P_PEI), // Exits from PEI
52      exits(prov, P_NOS), // Exits from Nova Scotia
53      exits(prov, P_NEB), // Exits from New- Brunswick
54      exits(prov, P_QUE), // Exits from Québec
55      exits(prov, P_ONT), // Exits from Ontario
56      exits(prov, P_MAN), // Exits from Manitoba
57      exits(prov, P_ALB), // Exits from Alberta
58      exits(prov, P_SAS), // Exits from Saskatchewan
59      exits(prov, P_BRC), // Exits from British Columbia
60
61      entrances(prov, P_NFL),  //   Entrances in Newfoundland
62      entrances(prov, P_PEI),  // Entrances in PEI
63      entrances(prov, P_NOS),  // Entrances in Nova Scotia
64      entrances(prov, P_NEB),   //   Entrances in New-Brunswick
65      entrances(prov, P_QUE),  // Entrances in Québec
66      entrances(prov, P_ONT),  // Entrances in Ontario
67      entrances(prov, P_MAN),  // Entrances in Manitoba
68      entrances(prov, P_ALB),  // Entrances in Alberta
69      entrances(prov, P_SAS),  // Entrances in Saskatchewan

70      entrances(prov, P_BRC),  // Entrances in British 

	 Columbia
71 
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72      // Net migration Newfoundland
73      entrances(prov, P_NFL) - exits(prov, P_NFL),
74      // Net migration PEI
75      entrances(prov, P_PEI) - exits(prov, P_PEI),    
76      // Net migration Nova Scotia
77      entrances(prov, P_NOS) - exits(prov, P_NOS),
78      // Net migration New-Brunswick
79      entrances(prov, P_NEB) - exits(prov, P_NEB),    
80      // Net migration Québec
81      entrances(prov, P_QUE) - exits(prov, P_QUE),    
82      // Net migration Ontario
83      entrances(prov, P_ONT) - exits(prov, P_ONT),
84      // Net migration Manitoba
85      entrances(prov, P_MAN) - exits(prov, P_MAN),    
86      // Net migration Saskatchewan
87      entrances(prov, P_SAS) - exits(prov, P_SAS),
88      // Net migration Alberta
89      entrances(prov, P_ALB) - exits(prov, P_ALB),    
90      // Net migration British Columbia
91      entrances(prov, P_BRC) - exits(prov, P_BRC)    
92    
93    }
94 
95    *split(age_int, AGE_GROUP) +
96    *sex +
97  };

The derived states exits and entrances count the number of times an actor enters 
or leaves a given state of a state variable. So it takes as arguments the name of a state 
variable and the name of a particular state. For example, exits(prov, P_NFL) counts 
the number of times the state variable prov leaves the P_NFL state, or in plain lan-
guage, the number of times an actor migrates out of the province of Newfoundland 
and Labrador.

The calculation of net migration by combining the exits and entrances derived 
states is straightforward. All that is needed is to subtract exits from entrances: for 
the province of Ontario for example, the formula is entrances(prov, P_ONT)  – 
exits(prov, P_ONT). Note also that the elements of the table are disaggregated by 
age group (using the split function, see Chap. 2) and by sex.

Having generated these descriptive data, we can now move on to the main topic 
of this chapter: the construction of a multi-regional life table. There are many ways 
of using this type of table, but here we will limit ourselves to measuring the share of 
life expectancy lived in each of the provinces for an actor born in a given province. 
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First we have to establish the number of survivors at an exact age x, by sex and 
birth province. We then need to calculate the number of years lived in each of the 
provinces from exact age x, by sex and birth province. The ratio of years of life 
remaining in each province to the number of survivors will give the multi-regional 
life expectancy.

The two components can be easily obtained via the derived states we introduced 
in this chapter and in the previous one. Survivors are obtained using the Small_lx 
table below.

Migration.mpp
99       table Person Small_lx // Small lx (multiregional)
100    [age_int >= agex] 
101    {
102  
103        sex +
104        *{
105                 value_in(alive)        // Survivors at age x 

decimals=4        
106        }
107        *prov_birth
108  
109    };

Here we recognise the derived state value_in(alive) which counts the number of 
times an actor “enters” a combination of states. Because sex and birth province are 
fixed characteristics which do not vary with time, value_in simply counts the num-
ber of actors entering the model. Note that a filter [age_int>=agex] has been 
inserted after the title of the table so that only individuals reaching a particular age 
x (line 100) are counted, which enables us to calculate the multi-regional life expec-
tancy at age x (when x = 0, we have the life expectancy at birth). While age_int is a 
state variable that is already defined, agex is a new parameter which should be 
declared in the parameters section of a module. We will integrate it into the 
PersonCore.mpp file, because this is the module in which variables linked to age are 
declared. But we could equally well have added it to the migration module; this is 
for the model builder to decide. As usual, we will add the agex parameter to the 
Base(PersonCore).dat parameters file (the code for this file is not reproduced at the 
end of this chapter).

PersonCore.mpp
14    int agex; // Age x (for multiregional life expectancy)

Base(PersonCore).dat
    int agex = 0; // Age x (for multiregional life expectancy
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The Small_lx table then provides the number of survivors at age agex, by birth 
province and sex, a 10 by 2 table (actually 10 by 3 because the sum of both sexes is 
also included by the addition of the + symbol). To complete the table, we must now 
derive the number of years lived in each of the provinces from exact age agex. To do 
this we use the duration derived state as we did in the previous chapters.

Migration.mpp
111    table Person Big_Tx // Big Tx (multiregional)
112    [age_int >= agex]
113    {
114  
115       {
116            duration() //EN Person-years to live from  age x 

(multiregional)
117          
118       }
119       *sex +
120       *prov +
121       *prov_birth
122    };

The Big_Tx table gives the number of years lived from exact age x, by sex (sex) 
and birth province (prov_birth), in each province of residence (prov). To obtain the 
multiregional life expectancy at age x, all that needs to be done is to divide the num-
ber of years lived in each province from exact age x by the number of survivors at 
exact age x.

At this point, one might ask a legitimate question: why didn’t we do this division 
in the Big_Tx table? Why not just use the duration()/value_in(alive) operation 
directly in this table, like we did before? This question takes us back to the way the 
derived state value_in works.

Remember that the value_in derived state enumerates all the instances in which 
an actor of a given sex and birth province “enters” a combination of given states. In 
the Big_Tx table, the derived state value_in would count the number of times an 
actor of a given sex and birth province made an entry into a new province of resi-
dence (after a mobility event). So for example, an actor who leaves his or her birth 
province and makes a return migration would be counted twice in a single province 
(once at birth and another time at the return migration). Because the Big_Tx table 
has an extra dynamic dimension, the derived state value_in would therefore count 
not the number of survivors of a given sex and birth province at age x, but rather 
the number of entries in each province for an actor of a given sex and birth province 
starting from age x. So we have to create two separate tables in order to derive the 
number of survivors and the number of years lived. To obtain a final compact mul-
tiregional life table, we can copy and paste the results of the two tables into an Excel 
spreadsheet and calculate life expectancy for ourselves by dividing Tx by lx. This 
extra step is not very complicated, but for those who want to avoid using Excel, 
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Modgen does offer advanced tools for manipulating table results. These tools are 
described in the next section, which is aimed at more advanced (and more moti-
vated) users.

3.7  �Manipulating Tables in Modgen (Advanced Topic)

Because we can’t build a multi-regional life expectancy in a single table, we would 
normally have to import the results into an Excel spreadsheet and carry out the addi-
tional calculations separately. However Modgen does enable us to manipulate pre-
defined table elements in order to create new customized tables.

The idea is to create first a blank table into which arbitrary values may then be 
inserted. The data from the existing tables can then be extracted, transformed and 
inserted in this new blank table.

To create a blank table, the command user_table, rather than table, must be used. 
We give the new customized table the title MultiregionalLifeExpectancy.

Migration.mpp
126    // Creates an empty canvas for the multiregional 

lifetable
127    user_table MultiregionalLifeExpectancy // Multiregional 

life exp. at age x
128    {
129        {
130              LIFE_EXPECTANCY // Life expectancy decimals=4
131        }
132  
133        *SEX +    // sex
134        *PROV + // province of residence
135        *PROV // province of birth
136    };

The table is set up in the same way as a normal table, except that instead of 
derived states we enter titles which will enable us to access the cells of the table later 
on. In addition, the dimensions are not specified using state variables but using clas-
sifications, which is why capital letters are used here. We have to tell Modgen the 
dimensions of the blank table and not give it state variables to tabulate. A custom-
ized table is passive: it is an empty shell that contains none of the actor’s derived 
states. In our example, MultiregionalLifeExpectancy, the table cells are accessed by 
way of the LIFE_EXPECTANCY heading. The SEX and PROV classifications define 
the dimensions of the table: in this case SEX+ * PROV+ * PROV gives 3 × 11 × 10 
(remembering that the + symbol adds the sum of the states), and so the table will 
have 330 cells.

3.7  Manipulating Tables in Modgen (Advanced Topic)



84

We now have a blank table with three dimensions, with each cell containing one 
result (LIFE_EXPECTANCY). To enter real values into the blank table, the 
UserTables() function must be used. This generally contains nested loops as an 
efficient way of accessing and filling all the boxes of the customized table (in our 
example, filling them all one by one would require 330 lines of code!). So to fill this 
blank table, we use the function UserTables().

The code which enables us to complete our multi-regional life expectancy table 
is reproduced below. Each of the steps will be explained afterwards.

Migration.mpp
138    // This function fills the empty cells of the multire-

gional life table 
139    void UserTables()
140    {
141
142       double TValue;
143       double lValue;
144  
145      // Loops through all three specified dimensions to fill 

the cells
146       for (int nSex = 0; nSex <= SIZE(SEX); nSex++) {
147  
148          �for (int nProvN = 0; nProvN < SIZE(PROV); 

nProvN++) {
149
150                 �for (int nProvR = 0; nProvR <= SIZE(PROV); 

nProvR++) {
151
152                       �lValue = GetTableValue("Small_lx.Expr0", 

nSex, nProvN);
153                       TValue = 
154                                �GetTableValue("Big_Tx.Expr0", 

nSex, nProvR, nProvN);
155                       �SetTableValue("MultiregionalLifeExpe

ctancy.LIFE_EXPECTANCY",
156                       �TValue / lValue, nSex, nProvR, nProvN);
157
158            }
159 
160        }
161   
160      }
161
162    }
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In line 139 we see the statement of the function UserTables(). All the elements of 
this function are shown between curly brackets (lines 140 and 162). At lines 142 and 
143 two variables are declared: TValue and lValue. These will be used to temporar-
ily store the values of the big Tx and the small lx, which can be found in the Small_lx 
and Big_Tx tables. Because our table has three dimensions, we will use three nested 
loops to cover all the cells. The maximum size of the index, which terminates the 
loop, is defined using the SIZE(Classification) function. This function returns the 
number of states included in the classification specified as an argument. For exam-
ple, the SEX classification has two possible values, so the SIZE(SEX) function will 
return the value two. The following loop:

Migration.mpp
146    for (int nSex = 0; nSex <= SIZE( SEX ); nSex++ ) {

will therefore run three times (with the index passing through the values 
nSex = 0 = female and nSex = 1 = male and nSex = 2 = sum of the dimension). Notice 
that the condition determining the end of the loop is either exclusive (<, which 
makes the loop run a number of times equal to SIZE(classification)) or inclusive 
(<=, which makes the loop run a number of times equal to SIZE(classification) + 1), 
depending on whether the + option (the sum total of a dimension) has been specified 
in the table description or not. The indexes of these three nested loops enable us to 
access each of the cells of the customized table and of the results tables Small_lx 
and Big_Tx. To complete each box in the customized table, first we have to find the 
corresponding big Tx and small lx using the GetTableValue function.

Migration.mpp
152    lValue = GetTableValue( "Small_lx.Expr0", nSex, nProvN);
153    TValue = 
154              GetTableValue( "Big_Tx.Expr0", nSex, nProvR, 

nProvN);

The GetTableValue function allows us to access an element in a pre-defined 
results table. It takes the name of the table as an argument, as well as indices to 
access the relevant cell. Let’s look at line 152. The GetTableValue function takes 
Small_lx.Expr0 as its first argument. Small_lx refers to the title of the table which 
gives the number of survivors at age x. The term Expr0 refers to the first derived 
state in the Small_lx table. Subsequent derived states could then be accessed using 
the expressions Expr1, Expr2 etc. But in the case of Small_lx, because only one 
derived state is defined, only Expr0 is valid. The function’s other arguments specify 
the indices which give access to elements in the table. For example, if nSex = 0 and 
nProvN = 1, the function will return a value of lx for women born in Prince Edward 
Island. The value will be stored in the temporary lValue variable. The principle is the 
same to retrieve Tx (lines 153–154), the only difference being that GetTableValue 
then takes an extra argument to indicate the province of residence (because the 
Big_Tx table has three dimensions rather than two).
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Now that we have retrieved the lx and the Tx elements of the table, we need to 
calculate the life expectancy and enter it into our customized table. The SetTableValue 
function (line 155) lets us do this. The function’s first argument gives us access to 
the customized table we created (MultiregionalLifeExpectancy.LIFE_
EXPECTANCY). Instead of using the Expr0 expression as we did in the GetTableValue 
function, this time we access the customized table item using the label we have 
specified (LIFE_EXPECTANCY). The second argument of this function contains 
the value to be entered in the table. In our example, this is the life expectancy at age 
x, or Tx/lx (in the code, TValue/lValue). The other three arguments are the indices 
providing access to each of the cells in the table, according to the three dimensions 
specified in the table description (sex, province of residence and birth province). It 
is important to use the same order of dimensions as in the definition of the custom-
ized table. So once the model is compiled and run, Modgen will execute the 
UserTables() function and the new customized table will appear as a regular table in 
the user interface. We will see this in the next section.

3.8  �Adding a Parameter File to a Scenario

The multiregional table is now complete and you can precompile, compile and open 
the microsimulation program as we did in the two previous chapters (see 
Precompiling, compiling and running the microsimulation program). Then open the 
base scenario as we did before. Before doing anything, new information must be 
added to the scenario. First, we have to indicate that a new parameters file 
(Base(Migration).dat) must be included. Although this new file was added to the 
Visual Studio project, it still has to be manually integrated into the base scenario. 
We add a parameter file by accessing the thumbnail Parameter Files in the Settings 
(Scenario -> Settings -> Parameter Files, Fig. 3.7).

Click on the Add button, select the Base(Migration).dat file and finally click OK. 
Then click on one of the parameters files (in the left hand panel of the main window) 
to make the parameters appear (Fig. 3.8).

Next we have to modify the values of the parameters that were added to the 
model, which were initially set up to be constants (a model with constant value 
parameters would not give very interesting results). These new parameters are the 
risk of migration between provinces, the origin-destination matrix and age x for the 
multi-regional table. We can also modify the distribution of births by province, but 
because we are calculating multi-regional life tables, the number of births in each 
province does not make much difference, given that these births are sufficiently 
numerous to minimise the Monte-Carlo error (it is the average duration of life in 
each province that is of interest to us). We also have to enter new mortality rates 
because these now vary by province of residence. Canadian values for these param-
eters are available on the book website (http://www.microsimulationandpopulation-
dynamics.com/). You may notice in the File View pane that the parameters are 
grouped by file name. This is the advantage of using one file of parameters per 
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Fig. 3.7  Adding a parameters file to a scenario

Fig. 3.8  User interface, multi-regional tables

3.8  Adding a Parameter File to a Scenario
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module. In a more complex model, these headings are useful for finding particular 
parameters more easily.

Run the model to create or refresh the table results (Scenario -> Run/Resume) 
and take a look at the multi-regional life expectancy table (Fig. 3.9).

Notice that the last line of the table (All) gives total life expectancy for each birth 
province. A native of Manitoba, for example, has a life expectancy of 79.7 years. 
Each item in a column indicates the number of years an actor born in a given prov-
ince can expect to spend in each of the provinces. The proportion of the life expec-
tancy spent in the birth province is low in those provinces where there are generally 
high rates of out-migration. In the Atlantic provinces, an individual can expect to 
spend on average less than half of his or her life in his province of birth. On the other 
hand, the share of life expectancy spent in one’s province of birth will be greater 
where the overall rate of exit from the province is low: Quebec and Ontario are 
examples of this. You can explore for yourself the results of the different tables we 
have created in this chapter. As an exercise, you could show using Excel that the 
multi-regional life expectancy table can be recreated using the survivors table (Small 
lx) and the person-years left to live (BigTx).

3.9  �Summary

In this chapter we have learned how to use the self_scheduling_int function and how 
to add a new module to a Modgen microsimulation program. In the course of doing 
this we have added a new event – migration between provinces of Canada – to the 
model and calculated the elements of a multi-regional life table. We have also 
learned how to generate a customized table with UserTables.

Fig. 3.9  Multi-regional life expectancy table

3  The Multiple Increment-Decrement Life Table
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The multi-regional model proposed by Rogers has been developed in the context 
of analysing migration between the regions of a country. As a generalisation, regions 
of a country can be thought of as separate states, between which we can observe 
movements. So it is easy to adapt the multi-regional table model developed here to 
treat any phenomenon where there are transitions between a defined number of 
mutually exclusive states. For example, such multi-state models, also known as 
multiple increment and decrement tables, enable us to analyse life expectancy 
according to marital status, activity status or health condition.

The results from a microsimulation model should be identical to those obtained 
from a determinist model based on matrix mathematics as proposed by Rogers, 
except of course for the Monte-Carlo error, which decreases as the number of cases 
increases. Because it is generally easy to increase the number of cases while main-
taining a reasonably low model run time, the Monte-Carlo error can be reduced to a 
negligible level.

There are two major advantages to using microsimulation rather than a matrix 
method. Firstly, in the matrix method, the size of the state space grows exponen-
tially as the number of states increases, so the model quickly becomes mathemati-
cally and computationally hard to manage. This does not happen with 
microsimulation, which can accommodate a large number of states. Secondly, the 
maths involved in a conventional model can soon become complicated, especially if 
one has to take a number of competing risks into account or use more complex risk 
models. For example, if we wanted to produce multi-state tables in which popula-
tions could move in various ways between ten provinces, three states of health and 
two activity statuses, it would become rather tedious to define the elements of the 
matrices in a satisfactory way. Adding new dimensions (new states, or new events) 
to a microsimulation model is made easy by Modgen’s modelling flexibility and its 
mode of operation in continuous time.

�Appendices

�Appendix 3.1 PersonCore.mpp

Code Sections: Header (lines 1 to 7), Parameters (lines 8 to 17), Actor Person and 
functions (lines 18 to 113), Tables (lines 114 to 146)

1  classification SEX{ S_FEM, S_MAL };
2 
3  range AGE{ 0, 110 };
4 
5  partition AGE_GROUP{ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 

60, 65, 
6  70, 75, 80, 85 };
7 

Appendices
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8  parameters 
9  {
10       //EN Annual hazard of death according to sex, age and 

province
11       double MortalityHazard[SEX][AGE][PROV];
12       int AgeMax;                // Maximum lifespan
13       double ProbabilityMale; // Probability of male birth
14       int agex; // Age x (for multiregional life expectancy)
15 
16  };
17
18  actor Person            //EN Individual
19  {
20     
21       //EN Alive
22       logical alive = {TRUE};
23 
24       SEX sex;    // Sex state variable
25 
26       // Age state variable, auto-increment
27       AGE age_int = COERCE(AGE, self_scheduling_int(age)); 
28         
29       event timeMortalityEvent, MortalityEvent;    //EN Mortality 

event
30 
31       //LABEL(Person.Start, EN) Starts the actor
32       void Start();
33 
34       //LABEL(Person.Finish, EN) Finishes the actor
35       void Finish();
36  };
37 
38  // The time function of MortalityEvent
39  TIME Person::timeMortalityEvent()
40  {
41       TIME tEventTime = TIME_INFINITE;
42 
43       // If max age is reached, death event occurs immediately
44       if (age_int == AgeMax) 
45       {
46            tEventTime = WAIT(0);
47       }
48       else
49       {
50            // Draw a random waiting time to death from 
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51            // an exponential distribution based on the 
52            // constant hazard MortalityHazard.
53            tEventTime = WAIT(-TIME(log(RandUniform(1)) /
54                MortalityHazard[sex][age_int][prov]));
55       };
56 
57       return tEventTime;
58  }
59 
60  // The implement function of MortalityEvent
61  void Person::MortalityEvent()
62  {
63       alive = FALSE;
64 
65       // Remove the actor from the simulation.
66       Finish();
67  }
68 
69 
70  void Person::Start()
71  {
72       // Modgen initializes all actor variables
73       // before the code in this function is executed.
74 
75       age = 0;
76       time = 0;
77 
78       // Sex is randomly attributed according to parameter 

ProbabilityMale
79       if (RandUniform(2) < ProbabilityMale)
80       {
81            sex = S_MAL;
82       }
83       else
84       {
85            sex = S_FEM;
86       };
87 
88       // The following lines attribute province of birth 
89       // and province of residence to the actor
90 
91       // A temporary variable to store the province value
92       int prov_temp = {0};
93       // Lookup picks a random province according to cumrate 

distribution
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94       Lookup_ProvBirth(RandUniform(5), &prov_temp);
95       // Casts the (integer) prov_temp value into the 
96       // prov state variable (of PROV type)
97       prov = (PROV) prov_temp;
98       // Province of residence at birth is the province of birth
99       prov_birth = prov;
100 
101  }
102 
103  /*NOTE(Person.Finish, EN)
104      The Finish function terminates the simulation of an actor.
105  */
106  void Person::Finish()
107  {
108      // After the code in this function is executed,
109      // Modgen removes the actor from tables and from the 

simulation.
110      // Modgen also recuperates any memory used by the actor.
111  }
112 
113 
114  table Person DeathsAndSurvivors // Elements of the life table
115  {
116      {
117 
118            value_in(alive), // Survivors (lx)
119            entrances(alive, FALSE), // Deaths (dx)
120            duration() // Person-years lived (Lx) decimals=4
121 
122      }
123      *split(age_int, AGE_GROUP) +    // by age
124      *sex +                            // and sex
125  };
126 
127 
128 
129  table Person LifeExpectancyBirth // Life expectancy at birth
130  {
131      {
132            // Life expectancy decimals=4
133            duration() / value_in(alive) 
134      }
135      *sex +        // By sex
136  };
137 
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138  table Person LifeExpectancy5 // Life expectancy at 5 yo
139  [age_int >= 5]
140  {
141      {
142          // Life expectancy at 5 yo decimals=4
143          duration() / value_in(alive)    
144      }
145      *sex +
146  };

�Appendix 3.2 Migration.mpp

Code Sections: Header (lines 1 to 10), Parameters (lines 11 to 21), Actor Person and 
functions (lines 22 to 46), Tables (lines 47 to 164)

1  /* Internal Migration Module
2  This module contains all the elements of the mobility event.
3  The Lookup function is used in cunjunction with an 
4  origin-destination matrix (cumrate) to determine 
5  the choice of a destination province. 
6  */
7 
8  classification PROV{ P_NFL, P_PEI, P_NOV, P_NEB, P_QUE, P_ONT, 
9       P_MAN, P_SAS, P_ALB, P_BRC };
10 
11  parameters
12  {
13      // Outmigration hazard
14      double IntMigHazard[SEX][AGE][PROV]; 
15      // Interprovincial migration, origin-destination matrix
16      cumrate OrDestMat[PROV][PROV]; 
17      // Distribution of births according to province
18      cumrate ProvBirth[PROV];
19 
20  };
21 
22  actor Person            // Individual
23  {
24      event TimeIntMigEvent, IntMigEvent;
25      PROV prov;
26      PROV prov_birth;
27  };
28 
29  TIME Person::TimeIntMigEvent()
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30  {
31      TIME tEventTime = TIME_INFINITE;
32 
33      // A waiting time is picked at random    
34      tEventTime = WAIT(-TIME(log(RandUniform(3)) / 
35            (IntMigHazard[sex][age_int][prov] + 0.0000000001)));
36     
37      return tEventTime;
38  }
39 
40  void Person::IntMigEvent()
41  {
42      int prov_dest = 0;
43      Lookup_OrDestMat(RandUniform(4), prov, &prov_dest);
44      prov = (PROV)prov_dest;
45  }
46 
47  table Person NetMigIP // Exits, entrances and net migration by 

province
48  {
49      {
50            exits(prov, P_NFL),    // Exits from Newfoundland
51            exits(prov, P_PEI),    // Exits from PEI
52            exits(prov, P_NOS),    // Exits from Nova Scotia
53            exits(prov, P_NEB),    // Exits from New-Brunswick
54            exits(prov, P_QUE),    // Exits from Québec
55            exits(prov, P_ONT),    // Exits from Ontario
56            exits(prov, P_MAN),    // Exits from Manitoba
57            exits(prov, P_ALB),    // Exits from Alberta
58          exits(prov, P_SAS),    // Exits from Saskatchewan
59          exits(prov, P_BRC),    // Exits from British Columbia
60 
61           entrances(prov, P_NFL),   // Entrances in Newfoundland
62           entrances(prov, P_PEI),   // Entrances in PEI
63           entrances(prov, P_NOS),   // Entrances in Nova Scotia
64           entrances(prov, P_NEB),     // Entrances in New-Brunswick
65           entrances(prov, P_QUE),   // Entrances in Québec
66           entrances(prov, P_ONT),   // Entrances in Ontario
67           entrances(prov, P_MAN),   // Entrances in Manitoba
68           entrances(prov, P_ALB),   // Entrances in Alberta
69           entrances(prov, P_SAS),   // Entrances in Saskatchewan
70           entrances(prov, P_BRC),     // Entrances in British 

Columbia
71 
72           // Net migration Newfoundland
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73             entrances(prov, P_NFL) - exits(prov, P_NFL),
74             // Net migration PEI
75             entrances(prov, P_PEI) - exits(prov, P_PEI),    
76             // Net migration Nova Scotia
77             entrances(prov, P_NOS) - exits(prov, P_NOS),
78             // Net migration New-Brunswick
79             entrances(prov, P_NEB) - exits(prov, P_NEB),    
80             // Net migration Québec
81             entrances(prov, P_QUE) - exits(prov, P_QUE),    
82             // Net migration Ontario
83             entrances(prov, P_ONT) - exits(prov, P_ONT),
84             // Net migration Manitoba
85             entrances(prov, P_MAN) - exits(prov, P_MAN),    
86             // Net migration Saskatchewan
87             entrances(prov, P_SAS) - exits(prov, P_SAS),
88             // Net migration Alberta
89             entrances(prov, P_ALB) - exits(prov, P_ALB),    
90             // Net migration British Columbia
91             entrances(prov, P_BRC) - exits(prov, P_BRC)    
92           
93        }
94  
95        *split(age_int, AGE_GROUP) +
96        *sex +
97     };
98  
99    table Person Small_lx // Small lx (multiregional)
100    [age_int >= agex] 
101    {
102 
103      sex +
104      *{
105          value_in(alive)    // Survivors at age x decimals=4        
106      }
107      *prov_birth
108 
109  };
110 
111  table Person Big_Tx // Big Tx (multiregional)
112  [age_int >= agex]
113  {
114 
115      {
116          �duration() //EN Person-years to live from   age x 

(multiregional)
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117         
118      }
119      *sex +
120      *prov +
121      *prov_birth
122  };
123 
124  // Custom user table 
125 
126  // Creates an empty canvas for the multiregional lifetable
127  user_table MultiregionalLifeExpectancy // Life exp. at age x 

(multiregional)
128  {
129      {
130          LIFE_EXPECTANCY // Life expectancy decimals=4
131      }
132 
133      *SEX +    // sex
134      *PROV + // province of residence
135      *PROV // province of birth
136  };
137 
138  // �This function fills the empty cells of the multiregional 

life table 
139  void UserTables()
140  {
141 
142      double TValue;
143      double lValue;
144 
145      // �Loops through all three specified dimensions to fill the 

cells
146      for (int nSex = 0; nSex <= SIZE(SEX); nSex++) {
147 
148         for (int nProvN = 0; nProvN < SIZE(PROV); nProvN++) {
149 
150             for (int nProvR = 0; nProvR <= SIZE(PROV); nProvR++) {
151 
152                  lValue = GetTableValue("Small_lx.Expr0", nSex, 
nProvN);
153                 TValue = 
154                      �GetTableValue("Big_Tx.Expr0", nSex, nProvR, 

nProvN);
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155              �           SetTableValue("MultiregionalLifeExpectancy.
LIFE_EXPECTANCY",

156                      TValue / lValue, nSex, nProvR, nProvN);
157 
158              }
159 
160          }
161 
162      }
163 
164  }

Appendix 3.3 Base(Migration).dat

1  parameters
2  {
3      // Outmigration hazard
4      double IntMigHazard[SEX][AGE][PROV] = { (2220) 1, };   
5      // Interprovincial migration, origin-destination matrix
6      cumrate OrDestMat[PROV][PROV] = {(100) 1,}; 
7      // Répartition des naissances selon la province
8      cumrate ProvBirth[PROV] = {(10) 1,};
9  };
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Chapter 4
Modelling Fertility

Aims of This Chapter
•	 Creating a new actor during a simulation and linking it to its parent actor
•	 Transferring information between actors using Modgen links
•	 Making the Start function more complex, so that initialization may differ accord-

ing to the type of actor simulated
•	 Ending a simulation after a fixed number of years
•	 Reorganising the code and generating results tables in a separate module

The models developed in the three previous chapters are “cohort” models, in which 
all the actors in the simulation are born at the same time. This cohort approach is the 
principle behind life tables. Although this type of modelling is interesting and very 
useful for analytical purposes, it cannot be used for simulating real populations 
exposed to the full range of demographic forces such as immigration and fertility.

In this chapter we will see how to integrate fertility into the model, that is to cre-
ate new actors (births) during a simulation. By adding fertility, we also add a second 
type of actor to the simulation: the first type is created at the onset of the simulation 
(the original cohort), while the second type is created (born) during the simulation. 
Each of these types of actor will need its own preliminary treatment (or initialization); 
we will see how the Start function can be modified to incorporate the particular 
features of each type of actor.

In a case-based model like the one developed in this book, actors are simulated 
one after the other and are not linked, though Modgen enables us to create explicit 
links between actors of a single case, using a type of variable analogous to a C++ 
pointer. This means that actors born during the simulation of a case can be con-
nected to their parent actor (their mother) through the creation of a Modgen link. 
The link allows all the characteristics of the parent actor to be accessed from the 
child actor. For example, the place of residence of a newborn actor can be determined 
by accessing the mother’s place of residence. In this book we will stick to using the 
Modgen links in the most basic way, but it is good to be aware that links offer a wide 
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range of possibilities, especially in time-based models where all the actors are simu-
lated at once. For further details on links, see the Modgen user guide.

Inserting births into the model requires that we define a length of time beyond 
which the simulation cannot extend. This simulation “horizon” turns out to be 
essential because the simulation could be infinitely prolonged under fertility rates 
above the replacement level. Even with fertility below replacement, the simulation 
could run on well beyond what is needed or practical (continuing to simulate great-
great-grandchildren over hundreds or thousands of years).

So before we go on to add the fertility module, we have to build in a distinction 
between different timelines, namely calendar time and age. As in the previous chap-
ters, the example we use in this chapter takes the model from the preceding chapter 
(Chap. 3) as its starting point.

4.1  �Adding Calendar Time

In a cohort-based model in which births are not simulated, all the simulated indi-
viduals appear (or “are born”) at the same time, at time 0. So the age of the cohort 
corresponds to the calendar year: year 1 corresponds to age 1, year 2 to age 2, etc. 
But once fertility is included in the model, simulated children are born randomly 
throughout the course of the simulation, and the correspondence between time and 
age no longer holds; all the actors in the model will not be the same age at the same 
time. So how can we distinguish between an actor who is aged zero at the start of 
the simulation from another one born during the simulation? Age and time, the two 
fundamental concepts of demography, will have to be taken into account separately 
and explicitly.

A continuous time variable, distinct from age, is already present in the model: 
this is the variable time that we have seen in the first chapter. But as with age, we 
need to measure the passage of time in discrete steps: an additional time variable of 
the integer type is therefore needed. Let’s call it year_int. It will be automatically 
incremented by the self-scheduled event we have used to increment age_int: self_
scheduling_int. The only difference is that the Modgen continuous variable time is 
used as an argument rather than the continuous variable age.

PersonCore.mpp
32    // Year state variable, auto-increment
33    int year_int = self_scheduling_int(time);

The COERCE function is not used, because year_int is an integer (int) and not a 
Modgen range: integer variables are not bounded, unlike range variables. Year_int 
will therefore be updated automatically by self_scheduling_int(time) until the simu-
lation ends.

4  Modelling Fertility
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Now that we have a clock for measuring time in a discrete manner, we are able 
to end the simulation at a precise time. To do this, we have to create a parameter 
which will define the maximum duration of the simulation. In our example this 
parameter will be given the name horizon:

PersonCore.mpp
17    int horizon; // Maximum duration of simulation

Then we have to initialize the new parameter in the Base(PersonCore).dat1 file 
with the required value (here we will select a value of 100, so that the simulation 
stops after a century):

Base(PersonCore).dat
int     horizon = 100; //FR Horizon de la simulation

With a clock counting absolute time and a parameter establishing the maximum 
duration of the simulation, all that remains is to create an event which will remove 
the actors once the maximum duration of the simulation is reached.

To do this, it would be possible to create a horizon event with the sole function 
of withdrawing an actor at the end of the simulation. But there is already an event, 
the mortality event, which has precisely this function of withdrawing actors from 
the simulation at death. So we can save the cost of an event by modifying the mor-
tality function to include the maximum duration of the simulation.

In the example from Chap. 3 the mortality event time function was made to with-
draw the actor when the maximum age was reached. The same mortality event time 
function now has to be modified again to include the maximum duration of the 
simulation.

PersonCore.mpp
51   // The time function of MortalityEvent
52   TIME Person::timeMortalityEvent()
53   {
54      TIME tEventTime = TIME_INFINITE;
55    
56       �// If max age or horizon is reached, death event occurs 

immediately
57       if (age_int == AgeMax | year_int >= horizon) 
58      {
59             tEventTime = WAIT(0);
60      }

1 The file code is not shown at the end of the chapter.

4.1  Adding Calendar Time
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61       else {
62             // Draw a random waiting time to death from 
63             // an exponential distribution based on the 
64             // constant hazard MortalityHazard.
65           tEventTime = WAIT(-TIME(log(RandUniform(1)) /
66              MortalityHazard[sex][age_int][prov]));
67      }
68   
69       return tEventTime;
70   }

The condition in line 57 is modified to manage the two limiting cases, the 
maximum age and the maximum simulation duration. Modgen will check this con-
dition every time year_int or age_int are updated by the self_scheduling_int func-
tion. If the condition is fulfilled (if the maximum age or the maximum simulation 
duration has been reached), the event function (death) is immediately executed 
using the tEventTime = WAIT(0) statement. If the condition is not fulfilled, the simu-
lation follows its normal course and a random duration before death is calculated as 
before. In practical terms, the mortality function brings about exit from the simula-
tion in three ways: through death directly, through reaching the maximum age, and 
through reaching the time limit of the simulation.

But if an actor reaches the time limit set for the simulation, it should not really 
be counted as a death. One of the objectives of the model is to estimate the numbers 
of deaths, so it is not appropriate to simulate a death in a case where all that has 
happened is that the model’s end point has been reached.

So we need to find a way to distinguish an actual death from the mere ending of 
a simulated case due to the simulation time limit being reached. The tabulation of 
deaths is based on the logical type state variable alive. It actually registers cases 
where this variable changes from TRUE to FALSE.

So here is an easy solution to our problem: the value of the alive state should be 
changed to FALSE if and only if a death has really taken place, that is, if the absolute 
time has not reached the time horizon of the simulation. So if the mortality event 
occurs before the horizon of the simulation, a death is registered and the case is 
terminated; otherwise, the case is simply terminated.

PersonCore.mpp
72   // The implement function of MortalityEvent
73   void Person::MortalityEvent()
74   {
75      if (year_int<Horizon) {alive = FALSE;};
76  
77      // Remove the actor from the simulation.
78       Finish();
79   }
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The model now keeps track of both the integer age of the actor and of the abso-
lute calendar time. It allows us to stop the simulation of an actor using the Finish() 
function after a predetermined number of years. We can now move on to add a fertil-
ity module.

4.2  �Creating a Fertility Module

In the previous chapter we saw how to create a new Modgen module and a new 
parameters file for inter-regional mobility. We will use this procedure again to create 
a new fertility module and its corresponding parameters file. The complete code for 
this module can be found in Appendix 4.2 at the end of this chapter. We will analyse 
each of the components of the fertility module in this section.

As for all Modgen events, fertility is conceptualized in two phases. First we 
establish the random duration before a female actor (a potential mother) gives birth 
to a new actor (a child). Next, once the event has occurred, we go on to simulate this 
new child actor, who may also in due course have one or several children of her 
own. All these actors make up a single Modgen case.

First, the event function is declared in the Person class of the new fertility mod-
ule (see line 23 below):

Fertility.mpp
17   actor Person            // Individual
18   {
19   
20      �int last_age_fertile = { 0 }; // Age of actor at last 

birth
21   
22    event TimeFertilityEvent, FertilityEvent; // Fertility 
       event (birth)
23   
24   };

In addition to the declaration of the fertility event, a state variable last_age_fer-
tile (line 20), which stores the age of the mother at the most recent birth, is also 
created. This variable will be useful in a number of ways, as we will see later on.

Before moving on to the description of the main body of the event functions 
themselves, we first have to define the Modgen parameters and data structures 
which will be needed to simulate fertility. Naturally we have to state the age-specific 
fertility rates which will determine the frequency of births. Because women are 
generally fertile between the ages of 15 and 49 (fecundity is actually not zero before 
15 and after 49, but births outside this age range are rare), there is no point in defin-
ing fertility rates for all ages. So we will create a new range corresponding to the age 
limits of female fertility:
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Fertility.mpp
8   range AGE_FERTILE {15,49};  // Fertile ages

A Modgen link between the child and its mother (link) must also be created. This 
link will become useful a little later on, once the Start function is remodelled to take 
into account the particular characteristics of the newborn actors entering the simula-
tion. This link actually makes it possible to access the state values of the mother, and 
so enables us to initialize certain characteristics of the child to match the character-
istics of its mother (such as place of residence, for example).

Fertility.mpp
7   link   Person.lMother;     // Link to the mother 

As we can see, the syntax used to create a link between actors of the same type 
is very simple. After declaring the link, the name of the actor is linked to it using a 
simple full stop. In our example, the name of the actor (the name of the class) is 
Person and that of the link is lMother. The letter l in front of the name Mother is part 
of the writing convention; it means that this is a single link to another actor, as a 
child can have only one mother. It is also possible to create multiple links, for exam-
ple in the case of a reverse link connecting a mother and her children, but we will 
not deal with these here.

Next we must declare the parameter variable containing the fertility rates:

Fertility.mpp
10   parameters
11   {
12   
13      double FertilityHazard[AGE_FERTILE][PROV]; // Fertility 
      hazard
14   
15   };

The dimensions of the parameter will be 35 by 10, because it covers the 35 years 
of age within the FERTILE_AGE range for each of the ten provinces in the model. 
The parameter is initialised by adding temporary values to the Base(Fertility).dat 
file (which must first be created, as was done in the preceding chapter for the mobil-
ity module).

double FertilityHazard[AGE_FERTILE][PROV] = {(350) 0,};

Now we can move on to the description of the fertility event itself, whose code is 
shown below:
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Fertility.mpp
26    // Fertility event
27    TIME Person::TimeFertilityEvent()
28    {
29      TIME tEventTime = TIME_INFINITE;
30   
31      // A birth can take place if actor is female and fertile 

(between
32      // 15 and 49 years old)
33      // An actor cannot give birth twice in the same year 
34   
35   �   if (age_int >= MIN(AGE_FERTILE) && age_int <= MAX(AGE_ 

FERTILE) &&  
36          sex == S_FEM && last_age_fertile != age_int)
37      {
38   
39          tEventTime = WAIT(-TIME(log(RandUniform(6)) / 

(-log(1 –
40           �           FertilityHazard[RANGE_POS(AGE_FERTILE, 

age_int)][prov]
41                          - 0.0000000001))));
42   
43      };
44   
45      return tEventTime;
46   
47    }
48   
49    void Person::FertilityEvent()
50    {
51   
52     �     Person      *prChild = { NULL }; // Creates a new 

actor
53     �     prChild = new Person(); // Instantiation of the 

class Person
54     �     prChild->Start(time, 1, this); // Starts simulat-

ing the new actor
55     �     last_age_fertile = age_int; // Indicates age of 

actor at last birth
56   
57    }

The structure of the fertility event time function (TimeFertilityEvent), as can be 
seen in the code above, is similar to that of the mortality and mobility events. There 
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are nevertheless some differences to be noted. Here the calculation of the random 
time before the event is inserted into a conditional statement (if): time lapse before 
the event is not calculated unless the actor is considered at risk of giving birth. 
Firstly the actor must be female (sex == S_FEM). Secondly, the age of the actor 
must correspond to a valid fertile age, in other words it must lie within the AGE_
FERTILE range (age_int >=MIN(AGE_FERTILE) && age_int < =MAX(AGE_
FERTILE)). The MIN and MAX functions provide respectively the minimum and 
maximum values of the AGE_FERTILE range, which are 15 and 49. Finally, an 
actor cannot give birth twice in the same year: so age at the most recent childbirth 
must not be equal to the current age of the actor (last_age_fertile ! = age_int). This 
final condition is needed because fertility is a repeatable event. After a birth, Modgen 
immediately recalculates the waiting time until the next birth. There is nothing to 
prevent an actor from giving birth twice in the same year of age; however, fertility 
rates are generally annual rates, which assume a single birth per woman per year.2

The calculation of the waiting time itself has two peculiarities. In the first place, 
one of the two dimensions of the FertilityHazard parameter is accessed by way of 
the RANGE_POS(AGE_FERTILE, age_int) function. Why not simply use the state 
variable age_int to access the parameter, as we did before in the other modules? To 
understand this properly we have to go back a step and look at the statement of the 
fertility parameter. The FertilityHazard[AGE_FERTILE][PROV] statement actu-
ally creates a 35 by 10 parameter because there are 35 fertile age years and ten 
provinces, as we saw just now. At the same time, although the AGE_FERTILE range 
contains values from 15 to 49, the index of the first dimension of the parameter still 
requires values lying between 0 and 34 (because there are 35 elements). So for 
example, in the fertility event time function, the FertilityHazard[20][5] parameter 
does not correspond to the fertility of a woman aged 20 in province number 5, but 
rather to the fertility of a woman aged 35 (20 plus 15, the minimum age in the range) 
in province number 5. The fertility of a woman aged 20 is found instead at index 
5 in the parameter (FertilityHazard[5][5]). The fertility rates lag behind the actual 
age of the actor. The RANGE_POS function in Modgen makes it possible to shift a 
variable automatically to take account of the minimum value of a span of whole 
numbers. The RANGE_POS(AGE_FERTILE,age_int) statement reduces the age_
int value by 15 units, or the minimum value of the AGE_FERTILE range, and so 
produces the correspondence between the age in whole numbers of the actor and the 
index which gives the fertility parameter by fertile years of age.

The second peculiarity lies in the formula for calculating the waiting time, which 
is slightly different from that used for the events in other modules. Instead of divid-
ing the natural log of a random number by the rate, as we did previously, we divide 
here by –ln(1-rate). Why is there a transformation of the rate? The formula for 

2 This argument is also valid for the mobility event we added in Chap. 3. We assumed there that the 
exit rates were real rates (rather than annual rates or probabilities). In fact the inputs are almost 
always annual rates, so we have to take the necessary precautions to avoid double counting of 
repeatable events. Having said this, where rates are low the probability of double counting is very 
small and the corresponding impact on the results is negligible.
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calculating the waiting time which we have used up to now assumes that the rate is 
constant and that the distribution of events follows an exponential rule (in other 
words that the events are more frequent at the beginning than at the end of the year, 
since the population at risk is larger at the beginning). But in general the fertility 
rates are annual rates which assume a uniform distribution of births throughout the 
year, so that the rate actually rises slightly because the population at risk gradually 
diminishes while the number of births per unit of time remains constant (see Box 4.1 
below for a detailed explanation).

Here we have corrected the formula in the code so that the number of births gen-
erated corresponds to the expected number of births. We could equally well have 
corrected the rates directly in the parameters file (using –ln(1-rate)), or used another 
formula to calculate the waiting time. This is a decision for the modeller to make. 

Box 4.1
Matching hypotheses underlying the calculation of parameters and imple-
mentation of waiting time

In Chap. 1 we saw that the formula used to calculate waiting time assumes 
a constant rate and an exponential distribution of events. In fact, the demo-
graphic rates used as inputs into projection models are often annual rates, 
calculated according to hypotheses of uniform event distribution and increas-
ing frequency (Fig. 4.1).

(continued)

Fig. 4.1  Demographic parameters according to event distribution
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Box 4.1  (continued)

In this way, using a parameter calculated on the basis of linear hypotheses 
in an exponential equation gives different results. To take a concrete example, 
assume an annual fertility rate of 0.1 children per woman. This rate is calcu-
lated by taking the ratio of the number of births in a given year to the mean 
number of women present during this year (we generally use the mean value 
of the population measured at the beginning and the end of the period). For a 
population of 100,000 women, for example, this rate corresponds to 10,000 
births per year. Putting this rate into an exponential distribution, we get:

	
Births WomenPopulation e erate= −( ) = −( ) =− −1 100000 1 95160 1) ,* .

	
An exponential model using an annual rate of 0.1 tends to under-estimate the 
number of events. So a model which calculates waiting times using an expo-
nential equation but an annual rate based on a linear hypothesis would slightly 
under-estimate the number of births. Note that these differences will be 
greater if the rates are higher. Most of the time, however, demographic rates 
are relatively low, and differences between linear and exponential estimations 
are small.

To get correct numbers, we can modify the equation determining the wait-
ing time to make it linear. Instead of an equation of the form:

tTimeEvent = WAIT( - TIME( log( RandUniform(1) ) / RATE ) );

we could use a linear form

tTimeEvent = WAIT(  TIME(  RandUniform(1) / RATE ) );

The rate can also be corrected so that the exponential model gives a num-
ber of births to match the linear model. This means resolving the following 
equation:

	
Births Population Rate t Population e t Corrected Rate= = −( )−* * * *1

	

For 1 year (t = 1),

	

Rate e

Corrected Rate rate

Corrected Rate= −
= − −( )

−1

1ln 	

(continued)
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The aim here is to show that modelling of waiting time in Modgen must always 
match the hypotheses underlying the rates being used as inputs.

Finally, the time function sends the wait time back to the Modgen events man-
ager, and the event function is implemented as soon as the random duration expires 
(lines 49–57). The main task of this event is to create a new Person object and 
launch the simulation of this new actor.

The code in line 52 creates an object of type Person, or in other words a new 
actor (in strictly C++ jargon, this is a pointer to an object of type Person). The next 
line (53) creates the actor in concrete terms by allocating a memory span. Next, the 
code in line 54 launches the simulation of the actor by calling the Start function. 
Notice that the Start function now takes on three values as arguments, which was 
not the case in the previous examples. In the next section we will see how the Start 
function has been modified to take care of births occurring in the course of the simu-
lation. Finally, the last_age_fertile variable takes the value of the age of the mother 
at the time of the birth. As we explained earlier, this variable enables us to avoid 
double events in the same year. Later on, it will also be used to calculate the mean 
age of childbearing. Now let’s look at how to modify the Start function to deal with 
initializing newborn actors.

4.3  �Modifying the PersonCore Module and the Start Function

The fertility event creates a new actor whose simulation is initialized by calling the 
Start function. In previous chapters, the Start function was only called in the main 
file (which has the name of the model and contains the Simulation and CaseSimulation 
functions). Things were simpler then, because all the actors were born at the same 
moment at the start of the simulation. The rules for attributing states were the same 
for all actors.

The appearance of new actors during the simulation changes this situation. Now 
there are actors created at the beginning of the simulation, whose characteristics are 
attributed according to predefined distributions, and actors created during the simu-

3 Note here that the examples in Chaps. 1, 2 and 3 assume that the rates used as inputs are derived 
based on the hypothesis that mortality and mobility are distributed exponentially.

Box 4.1  (continued)

This is the solution adopted for the model developed in this book. A rate of 
0.1 applied to a population of 100,000 women then gives the required total of 
10,000 births. The power and flexibility of Modgen allow the waiting times to 
be calculated for a wide variety of risk and duration models. We therefore 
need to be extra careful in order to make sure that the same hypotheses under-
pin the calculations of inputs and of waiting times.3

4.3  Modifying the PersonCore Module and the Start Function
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lation, whose characteristics are partially determined by the actors to whom they are 
linked (through the mother-child link).

Actors born during the simulation are different from actors of the initial cohort 
in two respects. Firstly, the initial value of the Modgen time variable (time, or abso-
lute time) is not the same; for members of the starting cohort it is zero, but for those 
born in the course of the simulation it is greater than zero. Secondly, the birth prov-
ince is not attributed in the same way in the two cases; members of the initial cohort 
have a province randomly attributed to them according to the distribution specified 
in the parameters, while actors originating from a fertility event are given the prov-
ince of residence of their mother. So the Start function has to be modified to take 
into account the type of actor being simulated.

To accommodate these specific features, new arguments will have to be added to 
the Start function. To be precise, we will need three new arguments. The first will 
indicate the exact moment (in absolute time) when an actor enters the simulation. 
This argument will initialize the time variable, which itself determines the derived 
state year_int. A second argument will specify the type of actor being simulated. 
This argument enables the Start function to distinguish a new birth from a member 
of the original cohort. The third argument contains a link and enables the Start func-
tion to access the characteristics of the parent-actor when the initialized actor is a 
new birth. This argument takes the form of a C++ pointer to the parent-actor.

The Start function now takes the following form:

PersonCore.mpp
81   // The start function now takes three arguments: 
82   �// 1) dTimeStart is the exact time at which a simulation 

starts
83   �// 2) ActorType tells if the simulated actor is part of 

the 
84   //    starting cohort or born in the model
85   �// 3) prMother is a pointer to the actor who gave birth 

to the 
86      //    new actor
87    �void Person::Start(double dTimeStart, int ActorType, 

Person   *prMother)
88   {
89   // Modgen initializes all actor variables
90   // before the code in this function is executed.
91   
92   age = 0;
93   �// Sets continuous time. time>0 if actor is born during 

simulation
94  time = dTimeStart;

        ...
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Note the presence of the three arguments in the name of the function (line 87). 
The argument dTimeStart gives the actor’s entry time into the simulation: time = 0 
for members of the initial cohort, and time > 0 (and equal to the time of the birth 
event) for actors born during the simulation. The argument ActorType specifies the 
type of actor, whether a member of the initial cohort or a subsequent birth. Finally, 
the argument *prMother is a pointer to an object of type Person (an actor), the 
parent-actor.

All actors of the initial cohort enter the simulation at age zero, and the definition 
of the age variable is therefore always the same: age = 0 (line 92). The time variable 
has a value equal to the argument dTimeStart. The value of the argument is itself 
defined when the Start function is called in the fertility event or in the CaseSimulation 
function, as we will see later.

PersonCore.mpp
        ...

96   // Sex is randomly attributed according to parameter  
     ProbabilityMale
97      if (RandUniform(2) < ProbabilityMale)
98      {
99          sex = S_MAL;
100     }
101     else
102      {
103          sex = S_FEM;
104    };

        ... 

The way sex is assigned is the same for both types of actor (lines 97–104), so 
there is no need to distinguish between the newly born and members of the initial 
cohort. On the other hand, attributing a province of residence varies according to the 
type of actor. So a different sequence of instructions is implemented depending on 
whether the Actortype variable has the value 0 (actor who is a member of the start-
ing cohort) or 1 (subsequent birth, see lines 109–136). In the same way as dTime-
Start, ActorType is defined when the Start function is called (line 54, see previous 
section).
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PersonCore.mpp
       ...

106    // ActorType = 0 (actor from the starting cohort)
107    // ActorType = 1 (actor born in the simulation)
108   
109    if (ActorType == 0) {
110   
111          // The following lines attribute province of birth 
112          // and province of residence to the actor
113   
114          �// A temporary variable to store the province 

value
115         int prov_temp = { 0 };
116         // Lookup picks a random province 
117         // according to cumrate distribution
118         Lookup_ProvBirth(RandUniform(5), &prov_temp);
119         // Casts the (integer) prov_temp value into the 
120         // prov state variable (of PROV type)
121         prov = (PROV)prov_temp;
122         �// Province of residence at birth is the province 

of             birth
123         prov_birth = prov;
124      }
125   
126      else {
127   
128         if (prMother != NULL) {
129   
130               lMother = prMother;
131               prov = lMother->prov;
132               prov_birth = prov;
133
134        };
135                
136    };

       ...

Using a conditional statement on the ActorType variable (1ine 109), we attribute 
the province of residence. This is done randomly for an actor member of the starting 
cohort (ActorType == 0, lines 109–124); for a subsequent birth, the new actor is 
given the province of residence of its parent actor (lines 126–136). To do this, we 
first make sure that the pointer is not empty (i.e. that it does not have NULL as its 
value, see lines 128–134 – we will see later why the value could be NULL). Next, 
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we assign the value of the prMother pointer (given as an argument) to the Modgen 
lMother link, previously defined in the fertility module (line 130). Then the charac-
teristics of the parent-actor can be transferred using the Modgen link and the the -> 
operator. The prov = lMother -> prov line then assigns a province of residence (the 
parent-actor’s own province of residence) to the new actor. The province of birth 
can then be easily defined as the province of residence at the time of the birth (line 
132).

Remember that the Start function is a member of the Person class, and that as 
such it must be declared inside the class description (the actor Person). Since we 
added three arguments to the Start function description, we must make sure that 
these arguments are also added in the function declaration:

PersonCore.mpp
45    �void Start(double dTimeStart , int ActorType, Person 

*prMother);

As we can see, it is a relatively simple matter to complexify the Start function 
progressively as the model evolves and as new types of actors and state variables are 
added. It is easy to adjust the code to include specific features and exceptions in a 
model. This flexibility is one of the strengths of microsimulation in general and of 
Modgen in particular.

Before we move on, we will take a look at the two places where the Start func-
tion is called (i.e. where the simulation is initiated): in the fertility module and in the 
CaseSimulation function.

In the fertility module, the Start function is used with the following argument 
values: Start(time, 1, this). Let’s look at each of these in turn. Because a birth occurs 
during the course of the simulation, absolute time at the moment of birth corre-
sponds to the time variable at the moment of the event (first argument, dTimeStart). 
This is the starting time for the new actor. The second argument (ActorType), which 
has the value 1, corresponds to the “Birth” type of actor and tells the Start function 
to create a link to the mother (see the Start function code above). Finally, the last 
argument (prMother), takes a rather special value: this. this is a reserved C++ key 
word and is a pointer to the object in which it is embedded. In our model, a birth 
occurs during the lifetime of a female actor. At the time of a birth, the fertility event 
initialises a new actor by passing a pointer to itself (this) to the Start function (as a 
third argument). This will provide the link from the mother to the child.

The Start function is also called in the main file (which carries the model name) 
each time the simulation of a new actor in the starting cohort is launched. In previ-
ous chapters, the Start function was called without arguments. Now we have to add 
the three new arguments, otherwise the compiler will return an error message, as it 
now expects a Start function with three arguments. The code for the main file can be 
found in Appendix 4.4.
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ModgenExample.mpp
29   poFirstActor->Start( 0,0,NULL );

The actors from the initial cohort enter the simulation at time 0 (first argument) 
and are of type 0 (second argument – remember that a birth is of type 1). Because 
these actors are not born within the model during the course of the simulation, they 
cannot have links with a parent-actor. But even when the actor created has no parent, 
the Start function requires a pointer to a Person object as a third argument. So the 
value NULL is passed to the Start function. NULL is a C++ key word (much like 
this), representing a blank pointer. The number, position and type of arguments 
must always be the same for every call of the same function.

The model is now capable of simulating the evolution of a cohort, taking its fer-
tility characteristics into account. In the next section, we will define the output 
tables which enable us to visualise the evolution of the cohort and the births taking 
place as part of the model.

4.4  �Bringing the Tables Together in a Results Module

Before defining the output tables which will be used to visualise the simulation of 
fertility, it would be a good idea to reorganise the code so as to separate the sections 
to do with modelling itself from those to do with result tables. It is not absolutely 
necessary to do this, but it will prove to be helpful in a number of ways. Firstly, most 
of the relevant results will concern state variables belonging to a number of different 
modules, or even to all of the modules taken together. A module to bring together 
the creation of all the results tables will help to avoid confusions in  locating the 
result tables. Also, centralising the tables in a single file will give us an overview of 
all the results at once. Finally, taking the tables out of the event modules is a way of 
making the modelling code less cumbersome and easier to read.

A module for results is created like any other module in Modgen (see Chap. 3). 
In this chapter the results module has been called Tables.mpp (see Appendix 4.3). 
This module does not require a parameter file, as tables do not require any param-
eters of their own. All the tables of the previous exercises have been eliminated, and 
three new tables are inserted in this new results module.

To check that the fertility module is working properly and to validate its outputs, 
we need a table measuring the number of births and the age-specific fertility rates.
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Tables.mpp
1   �table Person FertilityBirths // Births and age-specific 

fertility rates
2   �[age_int >= MIN(AGE_FERTILE) && age_int <= 

MAX(AGE_FERTILE)]
3   {
4       {
5          // Number of births
6          changes(last_age_fertile),        
7          // Annual fertility rates decimals=4
8          changes(last_age_fertile) / duration(sex, S_FEM) 
9      }
10   
11      *split(year_int, YEAR5) + // Year
12      *age_int + // Age
13      *prov + // Province
14   };

The FertilityBirths table uses the changes derived state on last_age_fertile, 
counting the number of times this state variable has changed its value, which hap-
pens every time there is a birth (line 6). The fertility rate is calculated by taking the 
ratio between the number of births and the number of person-years. The derived 
state duration(sex, S_FEM) in line 8 counts the time spent by the actor in the female 
state (or the number of woman-years).

The dimensions of interest are included next: the year, in five-year groups, to 
monitor the evolution of fertility; age, to produce age-specific fertility rates; and 
finally province, to enable inter-provincial comparisons to be made.

Remember that the comments will serve as labels in the table. Also, the expres-
sion decimals = 4 in the comments (line 7) specifies the number of decimal places to 
be used in displaying the results. This is one of the rare instances where Modgen 
uses the code found in comments for other purposes than labelling.

Next, it would be interesting to calculate the mean age at which women give 
birth, or average age at childbirth.

Tables.mpp
16   table Person AvAgeCB // Average age at childbirth
17   {
18      {
19          // Average age at childbirth decimals=4
20          value_at_changes(last_age_fertile, age) 
21                           / changes(last_age_fertile)
22      }
23   
24      *prov + //Province
25   };

4.4  Bringing the Tables Together in a Results Module
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The AvAgeCB table calculates the average age at childbirth using the derived 
state value_at_changes. This derived state sums the values of the state specified in 
the second argument (here, the Modgen continuous variable age) from every change 
in value of the first argument (last_age_fertile). In the example above (at lines 
20–21) value_at_changes sums the values of the age variable at each birth. Dividing 
this sum by the number of births (calculated as in the first table using the derived 
state changes), we get the average age at childbirth. Next we add the province as an 
extra dimension, which enables us once again to do interprovincial comparisons. 
Because, in this model, average age at childbirth does not vary with age or year, 
there is no point in adding these two dimensions to the table.

Finally we can add a “control” table which allows us to do demographic monitor-
ing of the simulated population.

Tables.mpp
27   table Person Demography // Population
28   {
29      {
30          // Population size at the end of period
31          value_at_changes(split(year_int, YEAR5), alive),
32          entrances(alive, FALSE),         // Deaths
33          changes(last_age_fertile),       // Births
34          changes(prov),                   // Exits
35          event(changes(prov))             // Entrances
36      }
37   
38      *prov + //Province
39      *split(age_int, AGE_GROUP) + // Age
40      *split(year_int, YEAR5) // Year
41   
42   };
41   };

The first item in the Demography table (line 30) gives the population at the end 
of the period: the derived state value_at_changes sums the state variable alive when 
the value of split(year_int, YEAR5) changes, that is every 5 years. The second ele-
ment counts the deaths (the entries into the alive = FALSE state). The two other lines 
use the derived state changes in two different ways in order to count those entering 
and leaving each of the provinces. Let’s now look at this in more detail.

Remember that the changes derived state calculates the number of state changes 
in a given variable. So changes(prov) counts the number of times an actor changes 
province. If the table also contains a province dimension (*prov + in line 38), 
changes(prov) shows the number of migrations by province of residence. But if a 
change in the state of a variable has to be tabulated according to this same state vari-
able, which value will be used in the table – the one before or the one after the 
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change? In our example, will a change of province be recorded under the province 
of origin or under the province of destination?

By default, Modgen tabulates state values before executing the event function. If 
an actor resident in Ontario undergoes a migration experience, this will therefore be 
recorded as a change in the prov state for a resident of Ontario. In this way, what is 
produced is the number of changes of province by province of residence BEFORE 
the mobility event occurs, or in other words it is those exiting rather than those 
entering who are counted.

But Modgen also allows us to execute the event function before state values are 
recorded for tabulation. So for example if a resident of Ontario leaves for Alberta, 
Modgen can first proceed to implement the event function (changing the value of 
prov) before registering the change using the derived state changes. Here the change 
in province will be accounted for as affecting a resident of Alberta, i.e. AFTER the 
migration event has taken place. The operator which enables this alternative regis-
tration is called event4: to use it, the derived state is entered as its argument (see line 
35). It enables us to obtain the number of changes of state by province of residence 
after the event has taken place, in this case counting those entering rather than those 
exiting. The default operator is called interval(), so that changes(prov) is equivalent 
to interval(changes(prov)).

With these three tables, we will be able to track the different demographic 
components of our model. The results will also alert us of any errors in design or 
programming that may have arisen.

4.5  �Looking at the Results

Now we can precompile, compile and open the microsimulation program (see 
Precompiling, compiling and running the microsimulation programme, chapter 1). 
We then open the base scenario and add the parameters file Base(Fertility).dat 
which was created along with the fertility module (see Fig. 4.2).

We must next modify the temporary values we inserted for the fertility rates (you 
can use your own data for these, or take the values provided on the book’s website 
(http://www.microsimulationandpopulationdynamics.com/) in the Base(Fertility).
dat file).

After launching the simulation, we access the results for the number of births and 
fertility rates by clicking on the table called Births and age-specific fertility rates.

The table (Fig. 4.3) gives the births per year of age of the mother, for the ten 
provinces. By default, the results shown are for the first 5 years: naturally, since the 
starting cohort has not yet reached the age of 15, no birth is noted here, and the 
fertility rates cannot be calculated. By selecting different simulation years, it is pos-

4 Not to be confused with the definition of an event in the actor Person.
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Fig. 4.2  Adding the fertility parameters file

Fig. 4.3  Table of births and age-specific fertility rates
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sible to observe the cohort’s evolution. Between years 15 and 20 for example, we 
can observe births to women aged 15–19 (data not shown); between years 20 and 
25, births to women aged 20–24, and so on. So the table allows us to follow the 
children born to women of the initial cohort. But from the 30th year onwards, these 
children of the initial cohort begin to have children of their own as they get to age 
15. Progressively, as the women of the second generation grow older, births occur 
throughout the entire fertile age range.

In view of this very uneven distribution of births across the years, the observation 
of age- specific fertility rates will be more robust if we select all years together (All) 
rather than a particular five year period. The simulated fertility rates should corre-
spond to the fertility rates we used as inputs, apart from a small random difference 
caused by the Monte Carlo error (Fig. 4.4). The difference between inputs and out-
puts can be reduced to virtually zero by increasing the number of cases in the sce-
nario, thus reducing the Monte Carlo error.

At first sight, trying to reproduce input rates in output tables might seem like a 
waste of time. In fact it is a useful validation exercise: it allows the developer to 
check that the model is behaving as planned and that the waiting times have been 
correctly specified. Here, of course, the aim is mainly educational, as it serves to 
demonstrate the behaviour of the different Modgen derived states.

The second table shows the average age at childbirth by province. This result is 
interesting because we would usually have to do a calculation to obtain it. The 
microsimulation allows us to derive this result without explicit calculations. A 
researcher interested in fertility could easily improve the model by adding birth-
order-specific fertility rates, which would enable the mean age at childbirth to be 
calculated according to birth order.

Finally we can observe the different demographic events in our simulation by 
looking at the Population table (Fig. 4.5).

Fig. 4.4  Comparison of simulated fertility rates and input fertilty rates for the province of Québec 
(100,000 cases for the whole of Canada)
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Exploring these results, we see the evolution of the initial cohort on the table 
diagonal. Note also that the population given by value_at_changes is the population 
at the end of the five year period. This can be easily verified by noting that in the first 
five year period the population equals 998,513, or 1,000,000 (the number of cases 
specified in the scenario) minus the number of deaths (which can be found by select-
ing Deaths in the drop-down menu Selected Quantities).

We can also see that after 30 years of simulation, only the initial cohort can still 
be clearly distinguished. The second and subsequent generations give birth simulta-
neously to new actors. It would still be possible to modify the code in the model and 
the table so as to distinguish the generation of the actors (by adding a state variable 
Generation equal to the generation of the mother + 1). For those interested in mobil-
ity, the table provides data on entries and exits by province. It is easy to calculate net 
interprovincial migration by taking the difference between entries and exits for each 
of the provinces. For Canada as a whole, as expected, net migration is equal to zero, 
meaning that the sum of exits from all provinces is equal to the sum of all entries 
into provinces (an actor leaving one province must indeed enter another one in a 
closed projection).

4.6  �Summary

Chapter by chapter we have built a microsimulation model to gradually enable us to 
make a forward projection of the population. This model allows us to simulate three 
of the main demographic components: mortality, fertility and internal mobility. This 
model remains with two major gaps. The first is that it is still a model which does 
not account for international migration, a component whose real demographic 
importance is becoming more and more evident, especially in Western countries. 

Fig. 4.5  Population, births, deaths, exits and entries, by province
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The second gap is that the model does not yet enable us to use an observed popula-
tion as a point of departure with all its different characteristics. Of course we could 
create a synthetic population analogous to a real population, giving the actors char-
acteristics according to statistical distributions which have been calculated in 
advance (cumrates). But this solution quickly becomes impractical as the number of 
characteristics increases. For our simple little model, we would have to create a 
population which includes 100 age groups, two sexes and ten provinces of resi-
dence, which generates a total of 2000 categories. The growth of the number of 
possible combinations is exponential, and we would quickly find ourselves with 
enormous matrices to contain all the distributions according to the different charac-
teristics included in the model. In a way we would be recreating here some of the 
problems encountered in multi-state models. The Modgen data importation module 
is more flexible and much more practical; it allows us to integrate a basic population 
which is drawn from an external database such as that of the national census. In the 
next chapter, we will see how to prepare the data file and how to integrate this kind 
of population into our microsimulation model.

Appendices

Appendix 4.1 PersonCore.mpp

Code Sections: Header, Parameters, Actor Person and functions

1    classification SEX{ S_FEM, S_MAL };
2 
3    range AGE{ 0, 110 };
4   
5    �partition AGE_GROUP{ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 

55, 60, 65, 
6    70, 75, 80, 85 };
7   
8    �partition YEAR5{ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 

60, 65, 70,
9    75, 80, 85, 90, 95, 100 };
10    
11   parameters 
12   {
13         //EN Annual hazard of death according to sex and age
14         double MortalityHazard[SEX][AGE][PROV];
15         int AgeMax;                // Maximum lifespan
16         double ProbabilityMale; // Probability of male birth
17         int horizon; // Maximum duration of simulation
18 
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19   };
20   
21   actor Person            //EN Individual
22   {
23     
24         //EN Alive
25         logical alive = {TRUE};
26 
27         SEX sex;    // Sex state variable
28 
29         // Age state variable, auto-increment
30         AGE age_int = COERCE(AGE, self_scheduling_int(age)); 
31 
32         // Year state variable, auto-increment
33         int year_int = self_scheduling_int(time);
34     
35     
36         � event timeMortalityEvent, MortalityEvent;    //EN 

Mortality event
37 
38         //LABEL(Person.Start, EN) Starts the actor
39         // The start function now takes three arguments: 
40        // 1)  dTimeStart is the exact time at which a simulation  
         starts
41        // 2) ActorType tells if the simulated actor is part of  
         the 
42        //     starting cohort or born in the model
43        // 3)  prMother is a pointer to the actor who gave birth  
         to the 
44         //    new actor
45        � void Start(double dTimeStart, int ActorType, Person  

*prMother);
46 
47         //LABEL(Person.Finish, EN) Finishes the actor
48         void Finish();
49   };
50   
51   // The time function of MortalityEvent
52   TIME Person::timeMortalityEvent()
53   {
54        TIME tEventTime = TIME_INFINITE;
55 
56       � // If max age or horizon is reached, death event occurs  

immediately
57       if (age_int == AgeMax | year_int >= horizon) 
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58       {
59           tEventTime = WAIT(0);
60       }
61       else {
62           // Draw a random waiting time to death from 
63           // an exponential distribution based on the 
64           // constant hazard MortalityHazard.
65           tEventTime = WAIT(-TIME(log(RandUniform(1)) /
66               MortalityHazard[sex][age_int][prov]));
67       }
68 
69       return tEventTime;
70   }
71   
72   // The implement function of MortalityEvent
73   void Person::MortalityEvent()
74   {
75        if (year_int<Horizon) {alive = FALSE;};
76 
77       // Remove the actor from the simulation.
78        Finish();
79   }
80 
81   // The start function now takes three arguments: 
82    �// 1) dTimeStart is the exact time at which a simulation 

starts
83    // 2)   ActorType tells if the simulated actor is part of the 
84   //    starting cohort or born in the model
85   �// 3) prMother is a pointer to the actor who gave birth to 

the 
86   //    new actor
87   �void Person::Start(double dTimeStart, int ActorType, Person 

*prMother)
88      {
89       // Modgen initializes all actor variables
90       // before the code in this function is executed.
91 
92       age = 0;
93        � // Sets continuous time. time>0 if actor is born during 

simulation
94        time = dTimeStart;
95 
96       � // Sex is randomly attributed according to parameter  

ProbabilityMale
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97          if   (RandUniform(2) < ProbabilityMale)
98         {
99             sex = S_MAL;
100        }
101         else
102        {
103            sex = S_FEM;
104        };
105 
106        // ActorType = 0 (actor from the starting cohort)
107        // ActorType = 1 (actor born in the simulation)
108 
109        if (ActorType == 0) {
110 
111            // The following lines attribute province of birth 
112            // and province of residence to the actor
113 
114             // A temporary variable to store the province value
115            int prov_temp = { 0 };
116            // Lookup picks a random province 
117            // according to cumrate distribution
118            Lookup_ProvBirth(RandUniform(5), &prov_temp);
119            // Casts the (integer) prov_temp value into the 
120            // prov state variable (of PROV type)
121            prov = (PROV)prov_temp;
122           � // Province of residence at birth is the province 

of birth
123            prov_birth = prov;
124      }
125 
126      else {
127 
128            if (prMother != NULL) {
129 
130                lMother = prMother;
131                prov = lMother->prov;
132                prov_birth = prov;
133 
134            };
135                 
136        };
137 
138    }
139 
140    /*NOTE(Person.Finish, EN)
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141       � The Finish function terminates the simulation of an 
actor.

142 */
143  void Person::Finish()
144 {
145      // After the code in this function is executed,
146      // �Modgen removes the actor from tables and from the 

simulation.
147       // Modgen also recuperates any memory used by the actor.
148 }

Appendix 4.2 Fertility.mpp

Code Sections: Header, Parameters, Actor Person and functions

1   /*
2   �This module contains the fertility event and related 

parameters
3   In the fertility event, a Modgen link is created between the 
4   parent and the actor
5   */
6 
7   link   Person.lMother;    // Link to the mother
8   range AGE_FERTILE{ 15, 49 };  // Fertile ages
9   
10  parameters
11  {
12  
13      � double FertilityHazard[AGE_FERTILE][PROV]; // Fertility  

hazard
14  
15  };
16  
17  actor Person            // Individual
18  {
19  
20     � int last_age_fertile = { 0 }; // Age of actor at last 

birth
21  
22     � event TimeFertilityEvent, FertilityEvent; // Fertility 

event (birth)
23  
24  };
25  
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26  // Fertility event
27  TIME Person::TimeFertilityEvent()
28  {
29      TIME tEventTime = TIME_INFINITE;
30  
31     � // A birth can take place if actor is female and fertile 

(between
32      // 15 and 49 years old)
33      // An actor cannot give birth twice in the same year 
34  
35     � if (age_int >= MIN(AGE_FERTILE) && age_int <= MAX(AGE_

FERTILE) && 
36          sex == S_FEM && last_age_fertile != age_int)
37      {
38  
39         � tEventTime = WAIT(-TIME(log(RandUniform(6)) / (-log(1 –
40                 �FertilityHazard[RANGE_POS(AGE_FERTILE, age_

int)][prov]
41                     - 0.0000000001))));
42  
43      };
44  
45      return tEventTime;
46  
47  }
48  
49  void Person::FertilityEvent()
50  {
51  
52      Person      *prChild = { NULL }; // Creates a new actor
53     � prChild = new Person(); // Instantiation of the class 

Person
54     � prChild->Start(time, 1, this); // Starts simulating the 

new actor
55     � last_age_fertile = age_int; // Indicates age of actor at 

last birth
56  
57  }
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Appendix 4.3 Tables.mpp

1   �table Person FertilityBirths // Births and age-specific  
fertility rates

2    [age_int >= MIN(AGE_FERTILE) && age_int <= MAX(AGE_FERTILE)]
3   {
4      {
5           // Number of births
6           changes(last_age_fertile),        
7           // Annual fertility rates decimals=4
8           changes(last_age_fertile) / duration(sex, S_FEM) 
9      }
10   
11      *split(year_int, YEAR5) + // Year
12      *age_int + // Age
13      *prov + // Province
14  };
15   
16  table Person AvAgeCB // Average age at childbirth
17  {
18      {
19           // Average age at childbirth decimals=4
20           value_at_changes(last_age_fertile, age) 
21                            / changes(last_age_fertile)
22      }
23   
24      *prov + //Province
25  };
26   
27  table Person Demography // Population
28  {
29      {
30           // Population size at the end of period
31           value_at_changes(split(year_int, YEAR5), alive),  
32           entrances(alive, FALSE),         // Deaths
33           changes(last_age_fertile),       // Births
34           changes(prov),                   // Exits
35           event(changes(prov))             // Entrances        
36      }
37   
38       *prov + //Province
39       *split(age_int, AGE_GROUP) + // Age
40       *split(year_int, YEAR5) // Year
41   
42  };

Appendices



128

Appendix 4.4 ModgenExample.mpp

1    //LABEL(ModgenExample, EN) Core simulation functions
2    
3    /* NOTE(ModgenExample, EN)
4         � This module contains core simulation functions and 

definitions.
5    */
6    
7    // The model version number
8    version 1, 0, 0, 0;
9    
10   // The model type
11   model_type case_based;
12   
13   // The data type used to represent time
14   time_type double;
15   
16   // Supported languages
17   languages {
18       EN // English
19   };
20   
21   // The CaseSimulation function simulates a single case,
22   // and is called by the Simulation function declared later
23   // in this module.
24   
25   void CaseSimulation( )
26   {
27        // Initialize the first actor in the case.
28       Person *poFirstActor = new Person();
29        poFirstActor->Start(0, 0, NULL  );
30   
31       // Continue processing events until there are no more.
32          �// Model code is responsible for ending the case by 

calling
33       // Finish on all existant actors.
34   
35       // The Modgen run-time implements the global
36       // event queue gpoEventQueue.
37       while ( !gpoEventQueue->Empty() )
38       {
39           // The global variables gbCancelled and gbErrors
40           // are maintained by the Modgen run-time.
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41          if ( gbCancelled || gbErrors )
42          {
43              // The user cancelled the simulation,
44              // or run-time errors occurred.
45              // Terminate the case immediately.
46              gpoEventQueue->FinishAllActors();
47          }
48          else
49          {
50                // Age all actors to the time of the next event.
51              �gpoEventQueue->WaitUntil( gpoEventQueue-> 

NextEvent() );
52       
53              // Implement the next event.
54              gpoEventQueue->Implement();
55          }
56         }
57   
58       // Note that Modgen handles memory cleanup when 
59       // Finish is called on an actor.
60   }
61   
62   
63   �// The Simulation function is called by Modgen to simulate 

a set of cases.
64   void Simulation()
65   {
66       // counter for cases simulated
67       long lCase = 0;
68   
69       // The Modgen run-time implements CASES (used below),
70       �// which supplies the number of cases to simulate in a 

particular thread.
71       // 
72       // The following loop for cases is stopped if
73       //  - the simulation is cancelled by the user,
74       //     with partial reports (gbInterrupted)
75       //  - the simulation is cancelled by the user, 
76       //     with no partial reports (gbCancelled)
77       //  - a run-time error occurs (gbErrors)
78       //
79       �// The global variables gbInterrupted, gbCancelled and 

gbErrors
80       // are maintained by the Modgen run-time.
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81       �for ( lCase = 0; lCase < CASES() && !gbInterrupted && 
!gbCancelled 

82                  && !gbErrors; lCase++ )
83       {
84           // Simulate a case.
85   
86           �// Tell the Modgen run-time to prepare to simulate 

a new case.
87           StartCase();
88   
89           �// Call the CaseSimulation function defined earlier 

in this module.
90           CaseSimulation();
91   
92           �// Tell the Modgen run-time that the case has been 

completed.
93           SignalCase();
94       }
95   }
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Chapter 5
The Base Population

Aims of This Chapter
•	 Building a base population file from an external database
•	 Adding a class to import data into a Modgen project
•	 Modifying the main model file so that characteristics of actors can be imported 

from an external file into the simulation
•	 Adding a new argument to the Start function

This fifth chapter will deal with the integration of a base population into a Modgen 
microsimulation model, and as such will be more technical than conceptual or 
demographic. Up to now, the simulated population has been synthetic; all the actors 
and their characteristics have been generated by the model itself. A synthetic popu-
lation requires statistical distributions to be created, describing the composition of 
the population. An example of this is the distribution of births by province which we 
included in Chap. 3. However, as a starting point for the simulation, it may be more 
practical to use microdata taken directly from a real population. Rather than gener-
ating random characteristics for the actors, such as birth province or sex, we will be 
using information contained in a database representing an actual population. In this 
chapter, data from the National Household Survey (NHS) will be used to make a 
projection of the population of Canada starting from 2011 (the year of the survey). 
We will start by describing the preparation and the formatting of the data file to be 
used for the base population. Next, we will see how to use an external class to read 
the datafile and import its content. Finally, we will modify the main file and the Start 
function so as to use the imported data to initialize actor states.

We will modify the example from Chap. 4, replacing the starting cohort by a real 
base population (the population of Canada as observed by the 2011 NHS). We will be 
working on the ModgenExample.mpp main file, the PersonCore.mpp module and the 

http://dx.doi.org/10.1007/978-3-319-44663-9_3
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results module (Tables.mpp). The content of these files can be found in the appendi-
ces. As usual, the model’s entire code can be downloaded from the website.

5.1  �Preparing a Microdata File

A base population file must contain the data required to initialize the actors’ state 
values. The file is structured so that each line corresponds to an individual. The 
values representing each of the states of the individuals (the variables) must be sepa-
rated by commas (in .csv format).

To create a base population file, we first have to obtain a microdata file which is 
representative of the population to be simulated. In this chapter, we use the public 
microdata file of the National Household Survey (NHS) of Statistics Canada, which 
is based on a representative sample of the Canadian population in 2011.

Once we have identified the source of the data, the variables needed for the simu-
lation are selected. The main state variables in the previous chapter were age, sex 
and province of residence. These must therefore be included in the base population 
file. In addition to these three variables, we will include the sample weight, each 
individual in the file being representative of a variable number of individuals in the 
population as a whole. Ideally we would also add the province of birth, but these 
data are not available in the published microdata file of the NHS, and so this state 
variable is removed from the Chap. 4 model.

Any statistical software can be used to prepare the data file. It is important to re-
code the variables of interest in such a way that their coding scheme corresponds to 
that of the state variables in the microsimulation model. So make sure that sex is 
coded 0 for females and 1 for males, and that codes 0–9 are used for the provinces 
in the same order as in the PROV classification. This is preferable to the manipula-
tion of data in the model after the importation.

Once this ordering is done, the whole set is exported into a comma separated data 
file (.csv). As an example, we have used the Outsheet function from the Stata soft-
ware package1:

outsheet age sexe pr weight using "Y:\LSD1\BasePop\ ///
\PopBaseBookC5.csv", comma nonames nolabel replace

To check that the formatting of the data is correct, open the newly created file 
using a spreadsheet or word processing program. If the file generated is too big to 
be opened, tests can be done on smaller sub-samples or databases before exporting 
the whole file. The contents of the data file should be formatted as in Fig. 5.1.

Age is shown in the first column. Note that it is the exact age that is saved rather 
than age in completed years. This will be used to initialise the continuous variable 

1 Consult the manual of your preferred software for the appropriate export function.
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age in the model. Remember that age in whole years (age_int) is automatically 
updated by the self_scheduling_int function.

In the second and third columns, we find the codes for sex and province of resi-
dence. Finally, the sample weight is found in the fourth column. Note that the data 
are separated by commas, and that the decimal points are indicated by full stops.

5.2  �Importing External Data into Modgen

C++ contains a whole array of functions to open, read and close text files, but to use 
these tools efficiently, one may require a relatively high level of programming skills. 
Fortunately, some tools have already been developed by professional programmers 
to perform this task.

In order to import data into Modgen, we will use a C++ class developed by Steve 
Gribbles and made freely available through an MIT license.2

To use this class, we will first need to copy some files into the project directory. 
On the book website or on Springer Extras Online, in the Chap. 5 section, download 
and copy into your project directory the following two files: microdata_csv.h and 
custom.h. It’s that simple!

2 The MIT License reads as follows: « Copyright (c) 2013–2015 OpenM++ Contributors. 
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and 
associated documentation files (the “Software”), to deal in the Software without restriction, includ-
ing without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 
sell copies of the Software, and to permit persons to whom the Software is furnished to do so, 
subject to the following conditions: The above copyright notice and this permission notice shall be 
included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED 
“AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING 
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE 
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 
OTHER DEALINGS IN THE SOFTWARE.

Fig. 5.1  Format of data in 
the base population file
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The new data import class is called input_csv. It contains a number of functions 
to open, close, read from and write into csv files (comma separated files). These will 
be integrated into the main model module, ModgenExample.mpp.

5.3  �Integrating Import Functions into the Main File

Now that we have a data file and a data import class, we can integrate information 
from the 2011 Canadian population by modifying the model from Chap. 4.

Since the main simulation loop is located in the Simulation function, this is 
where data importation will take place.

ModgenExample.mpp
80  void Simulation()
81  {
82     // Microdata input file
83     input_csv input_file;
84   
85     input_file.open("PopBaseBookC5.csv");
86   
87     // counter for cases simulated
88     long lCase = 0;

    ...

102      for ( lCase = 0; lCase < CASES() && !gbInterrupted 
&& !gbCancelled 

103          && !gbErrors; lCase++ )
104      {
105   
106          // quit the loop if end-of-file is reached
107          if (!input_file.read_record(lCase))
108           {
109              break;
110          }
111 
112          // Simulate a case.
113   
114           // Tell the Modgen run-time to prepare to simu-

late a new case.
115         StartCase();
116   
117          // Call the CaseSimulation function def. earlier 

in this module.
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118          CaseSimulation(input_file);
119
120        // Tell the Modgen run-time that the case has been 

completed.
121          SignalCase();
122    }
123   
124      input_file.close();
125   }

First, an object of the class input_csv must be created so that its functions may be 
used (line 83). The new object is called input_file and is used on line 85 to open the 
file PopBaseBookC5.csv (our base population file). The file is now ready to be read 
from, line by line.

The read function is implemented inside the simulation loop: with every new 
case, a new line will be read from the data file. The code on lines 106–110 tries to 
read the record number lCase: if the input_file.read_record returns the value FALSE, 
that is if the record number exceeds the number of lines available in the file, the 
simulation loop is stopped (the function break is used to exit the loop). Otherwise, 
a new case is started and the input_file object is passed to the CaseSimulation 
function.

Once all the cases have been simulated, the simulation loop ends and the data file 
can be closed again using the input_file.close() function (line 124).

Because an argument is now passed to the CaseSimulation function, we must 
modify its declaration to include this argument.

ModgenExample.mpp
25    void CaseSimulation(const input_csv& input)

All that needs to be understood from this is that the argument input must be of 
type input_csv (the object input_file is of type input_csv). This input argument will 
contain all the data read from the base population file, as we will see in the next 
section.

5.4  �Using the Imported Data and Modifying the Start 
Function

The CaseSimulation argument input now contains the four elements that were read 
from a record of the base population file, and is therefore used as a vector.

5.4  Using the Imported Data and Modifying the Start Function
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ModgenExample.mpp
25   void CaseSimulation(const input_csv& input)
26   {
27      /* Imported data
28   
29      0 - Age
30      1 - Sex
31      2 - Province
32      3 - Weight
33   
34      */
35   
36       // Gets the number of sub-samples specified in the 

parameters 
37      int    nSubSamples = { 0 };
38      nSubSamples = GetSubSamples();
39   
40      // Set case weight
41      SetCaseWeight(input[3], input[3] * nSubSamples);

        ...

To access individual elements, you need to write a number (an index) between 
square brackets added at the end of the variable name. For instance, to access the 
first element, you need to write input[0]; for the second element input[1]; etc. In the 
base population file, data is organised so that the first element is the age, the second 
is the sex, the third is the province and the fourth and last one is the weight (these 
are recalled in the comments).

We will start by setting the weight of the case, as this may only be done from the 
CaseSimulation function, just before calling the start function.

The sample weight is found in fourth position in the base population file, so in 
input[3]. The weight of the case is defined using the SetCaseWeight function (see 
line 41). This function takes two arguments. The first is the weight of the case, and 
the second is the weight of the case when it is part of a sub-sample.

Modgen allows sub-samples to be created in a single simulation, so that the 
Monte Carlo error may be estimated. The simulation is split into n sub-simulations, 
each including a number of cases equal to the total number of cases divided by n. In 
order for the result to remain representative of the population, the weight of a case 
simulated in a sub-sample must be multiplied by the number of sub-samples. To 
illustrate this, suppose that in a sample of a 100 actors, each has a weight of one 
unit. A simulation of this population will obviously give a total of 100 members. 
Now suppose that the simulation is made up of two sub-samples. The simulation of 
each of these will have a membership of 50 individuals. For these sub-samples to 
remain representative of the total population, we must multiply their weight by the 
number of sub-samples (2). Lines 37 and 38 of the code above show how the num-
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ber of sub-samples can be obtained using the GetSubSamples function. The weight 
(input[3]) and the adjusted weight for the sub-samples (input[3]*nSubSamples) is 
then passed to the SetCaseWeight function (line 41).

Once the case is started, the weight may not be modified again. If an actor experi-
ences a fertility event during the simulation, its weight will be transferred to the 
actor-child because the latter is part of the same simulated case (remember that one 
case can contain more than one actor). So in Modgen, weight is really the weight of 
a case and not that of an actor.

We must now pass the other informations read from the base population file to 
the Start function. The three elements of the input object (input[0], input[1], 
input[2]) are therefore added to the list of arguments of the Start function (see line 
46 below), in which state values will be initialised.

ModgenExample.mpp
43      // Initialize the first actor in the case. Age, sex and 

province
44      // are passed to the start function
45      Person *poFirstActor = new Person();
46       poFirstActor->Start(0, 0, NULL, input[0], input[1], 

input[2]);

The Start function now has six arguments, whereas in Chap. 4 it included only 
three. The declaration and the definition of the Start function in the PersonCore file 
must therefore be modified. The declaration of the function is modified first (line 
46–47).

PersonCore.mpp
46     void Start(double dTimeStart, int ActorType, Person 

*prMother, double 
47            fileage, double filesex, double fileprovince);

The three new arguments are given descriptive names: fileage for the age of the 
actor, filesex for the sex and fileprovince for the province of residence. These vari-
ables will receive values from input[0], input[1], and input[2], respectively. The 
function definition below must be modified as well.

PersonCore.mpp
91   void Person::Start(double dTimeStart, int ActorType, 

Person *prMother, 
92              double fileage, double filesex, double fileprovince)

Below is the modified Start function, now making use of the information from 
the base population data file.
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PersonCore.mpp
91  void Person::Start(double dTimeStart, int ActorType, 

Person *prMother, 
92   double fileage, double filesex, double fileprovince)
93   {
94      // Modgen initializes all actor variables
95      // before the code in this function is executed.
96   
97        // Sets continuous time. time>0 if actor is born dur-

ing simulation
98      time = dTimeStart;
99   
100     // ActorType = 0 (actor from the base population)
101         // ActorType = 1 (actor born in the simulation)
102
103    if (ActorType == 0) {
104        
105        // Continuous age 
106        age = fileage;
107        // Sex
108        sex = (SEX)(INT) filesex;
109        // Province
110        prov = (PROV)(INT) fileprovince;
111
112    }
113
114    else {
115
116        // Continuous age is zero at birth
117        age = 0;
118
119          // Sex is rand attributed according to parameter 

ProbabilityMale
120        if (RandUniform(2) < ProbabilityMale)
121        {
122            sex = S_MAL;
123        }
124        else
125        {
126            sex = S_FEM;
127        };
128
129           // Province of residence is the same as the  

mother's
130        if (prMother != NULL) {
131
132            lMother = prMother;
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133            prov = lMother->prov;
134
135        };
136
137    };
138
139   }

Comparing the Start function here with the one from Chap. 4, we notice that the 
types of actor have changed (lines 100–101). The 0 type, which previously corre-
sponded to a member of the initial cohort, is now an actor drawn from the base 
population.

Let’s look at how state variables are initialized.
Continuous time is initialized in the same way for both actors born in the model 

and drawn from the base population. So there is no need to repeat the command for 
each type of actor, and the initialization takes place before the condition on the type 
of actor. This does not mean that time is the same for the two types of actor. Members 
of the base population will start their simulation at time zero, just as the members of 
the initial cohort used to do. Births continue to start their simulation at a time greater 
than zero. As before, the value of the initial time is defined before calling the Start 
function and is passed on as an argument (dTimeStart).

The condition at line 103 determines whether the actor is part of the base popula-
tion or not. If this is the case, the first block of code is run (lines 103–112). State 
values are taken directly from the last three arguments of the Start function (fileage, 
filesex and fileprovince) and assigned to the corresponding state variables (lines 
105–110). It is worth emphasizing here that the values passed as arguments are of 
type double, and that they do not necessarily correspond to the types of the state 
variable used in the model. Initializing age is not a problem, because the age vari-
able created by Modgen is a continuous variable of type double and because exact 
age (also type double) is used in the base population file. The formats of the two 
numbers are matched.

By contrast, sex and province are of the type SEX and PROV respectively, so the 
arguments will have to be converted to an appropriate format. This is what is known 
as a casting. The value of the variable is first converted to a whole number type 
(INT) and then to the (SEX) or (PROV) type. The procedure is done in two stages 
because Modgen does not allow a direct conversion from a double type into a 
Modgen classification. The two castings can however be done on the same line 
(lines 108–110). Note that birth province was removed from the model because this 
information is not available in the National Household Survey.

If an actor is not part of the base population, then it must be the result of a birth 
(ActorType==1), and the block of code following the else is executed (lines 114–
137). Initializing the state variables takes place as in Chap. 4, because initialization 
of actors born within the model has not changed. Notice that initialization of age 
and of sex now differs for births and for actors from the base population: for the 
latter, age and sex are no longer randomly attributed.
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Before we move on, we must modify the Start function call in the fertility mod-
ule. Remember that Start now takes six arguments instead of three, and that only 
three were previously included in the function call from the fertility module. 
Arguments must total six; if not, the compiler will call an error.

Fertility.mpp3 
  prChild->Start(time, 1, this, 0,0,0); // Starts simulating 

the new actor

The values we enter as arguments for fileage, filesex and fileprovince are not very 
important, as they will not be used in the Start function. Here we have simply 
inserted three zeroes.

5.5  �Modifying Calendar Time

In a cohort model, the calendar year has little practical meaning, and the simulation 
can start arbitrarily at time zero. But now that we have added a base population cor-
responding to a real population observed at a particular time, it is preferable to 
adjust Modgen time to reflect the appropriate calendar year. Because the National 
Household Survey was carried out in 2011, we will replace “time zero” with the 
year 2011 in our simulation. To modify the start time of the model, we first create a 
parameter to indicate the opening year of the simulation:

PersonCore.mpp
17    int StartYear; // Starting calendar year of simulation

The value of this parameter must also be initialized to “2011” in the 
Base(PersonCore).dat file. We could have hard-coded the starting year in the model, 
but using a parameter has one advantage: the user can change its value if, for exam-
ple, the base population is changed.

Next we have to modify the code of the main file so that the starting time for each 
case is set to StartYear. Remember that each case is initialized in the CaseSimulation 
function of the main file. This function in turn calls the Start function and provides 
the value of the initial calendar time as a first argument.

3 The entire module code is not reproduced at the end of the chapter.
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ModgenExample.mpp
46  poFirstActor->Start(StartYear, 0, NULL, input[0], 

input[1], input[2]);

Finally, so that the data are tabulated correctly in the results tables, we have to 
modify the YEAR5 partition in the PersonCore.mpp file. In Chap. 4, the partition 
divided the years into five-year groups starting from year 0. Here we have to start in 
2011. Because we are projecting a real population, we will limit ourselves to observ-
ing the results over 25 years. A 100 year projection is unrealistic and not very use-
ful. So the last element of the partition is 2036.

PersonCore.mpp
8   partition YEAR5{ 2011, 2016, 2021, 2026, 2031, 2036 };

5.6  �Modifying the Scenario and Running the Model

As you can see in Appendix 5.3, the sole output table is identical to the demography 
table we used in Chap. 4, but now that the base population has been added, the 
results of the simulation will be quite different. This table contains the demographic 
data of interest for validating the simulation of the base population – the total popu-
lation, the deaths, births and migrations by age and year.

The model from Chap. 5 must now be precompiled, compiled and opened (see 
the section on Precompiling, compiling and running the microsimulation 
program).

The new model does not contain any new parameters files, so none needs to be 
added to the scenario.

Before launching the simulation, we still have to modify the scenario to indicate 
the number of cases to be read in the base population file. Since our data file con-
tains 879,464 lines, we enter that number in the Cases field of the scenario settings 
(Fig. 5.2).

In the scenario settings, we also have to make sure that the number of simulation 
threads is equal to 1 (see Fig. 5.2). Modgen makes it possible to create several simu-
lation threads, which can be run in parallel to reduce computing time. But in the 
example developed in this chapter, adding extra simulation threads may cause prob-
lems, in part because more than one thread may try to access the base population file 
simultaneously. Some C++ functions would allow us to overcome this problem, but 
their description would be beyond the aims of this book.

Once the number of cases has been specified in the scenario, the horizon of the 
simulation must be modified to correspond to the calendar year at the expected end 
of the simulation. It is not very useful to simulate a real population over a hundred 
years, so a projection of 25 years should be sufficient. The horizon of the simulation 
will therefore be 2036. Next we start the simulation and open the Population table 
(Fig. 5.3).
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Fig. 5.3  Table of results

Fig. 5.2  Modifying the number of cases in the scenario
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Figure 5.3 shows the population table for Canada as a whole, by age and year. 
Tables by province or sex can be obtained by using the corresponding drop down 
menus.

The first thing to notice is that the population is now of comparable size to the 
real population of Canada – 34.7 million in 2016 (see the first non-blank column), 
which more or less corresponds to the expected result.4 You can explore for yourself 
the demographic indicators by province and by sex.

Looking more closely at how the numbers evolve over time, we can see that the 
total population declines, which would seem astonishing given that all the official 
forecasts predict a rise in the Canadian population over the coming decades. The 
reason for this difference is of course linked to the fact that our model is closed to 
immigration, and that demographic growth is not possible in a context of low fertil-
ity and population aging without the help of international immigration. So in the 
sixth and final chapter, we will be looking at how to build in an immigration 
module.

5.7  �Summary

The cohort-based simulations of Chaps. 1, 2, 3 and 4 turn out to be useful for ana-
lysing and understanding a number of demographic phenomena. The simulation in 
this chapter gets us closer to real-life projections by importing the characteristics of 
the Canadian population contained in a microdata file. Projecting a real population 
may also be done through a synthetic population generated using cumrates and real 
distributions, but using a base population is much more convenient.

Importing data from a microdata file into Modgen allows us to integrate a large 
amount of information external to the model, although in this chapter we have used 
only four variables (age, sex, province of residence and weight). This is another 
example of the greater flexibility Modgen can provide. The same model can be used 
to project different populations (by varying the base population) according to differ-
ent parameters (using different scenarios).

In the next chapter we will complete the model by making it open to international 
migration. This final addition will enable us to make a real projection and to obtain 
results which are closer to Canada’s demographic reality.

4 The population of Canada is estimated to be 35,851 million at 1 July 2015, but the model is not 
yet counting gains due to net international migration.
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�Appendices

�Appendix 5.1 ModgenExample.mpp

1   //LABEL(ModgenExample, EN) Core simulation functions
2 
3   /* NOTE(ModgenExample, EN)
4          This module contains core simulation functions and 

definitions.
5   */
6 
7   // The model version number
8   version 1, 0, 0, 0;
9 
10  // The model type
11  model_type case_based;
12 
13  // The data type used to represent time
14  time_type double;
15 
16  // Supported languages
17  languages {
18      EN // English
19  };
20 
21  // The CaseSimulation function simulates a single case,
22  // and is called by the Simulation function declared later
23  // in this module.
24 
25  void CaseSimulation(const input_csv& input)
26  {
27      /* Imported data
28 
29      0 - Age
30      1 - Sex
31      2 - Province
32      3 - Weight
33 
34      */
35 
36      // Gets the number of sub-samples specified in the 

parameters 
37      int    nSubSamples = { 0 };
38      nSubSamples = GetSubSamples();
39 
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40      // Set case weight
41      SetCaseWeight(input[3], input[3] * nSubSamples);
42     
43       // Initialize the first actor in the case. Age, sex and 

province
44      // are passed to the start function
45      Person *poFirstActor = new Person();
46         poFirstActor->Start(StartYear, 0, NULL, input[0], input[1], 

input[2]);
47     
48      // Continue processing events until there are no more.
49           // Model code is responsible for ending the case by 

calling
50      // Finish on all existant actors.
51 
52      // The Modgen run-time implements the global
53      // event queue gpoEventQueue.
54      while (!gpoEventQueue->Empty())
55      {
56          // The global variables gbCancelled and gbErrors
57          // are maintained by the Modgen run-time.
58          if ( gbCancelled || gbErrors )
59          {
60              // The user cancelled the simulation,
61              // or run-time errors occurred.
62              // Terminate the case immediately.
63              gpoEventQueue->FinishAllActors();
64          }
65          else
66          {
67              // Age all actors to the time of the next event.
68                gpoEventQueue->WaitUntil( gpoEventQueue->NextEvent 

() );
69     
70              // Implement the next event.
71              gpoEventQueue->Implement();
72          }
73      }
74 
75      // Note that Modgen handles memory cleanup when 
76      // Finish is called on an actor.
77  }
78 
79  // The Simulation function is called by Modgen to simulate a 

set of cases.
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80  void Simulation()
81  {
82      // Microdata input file
83      input_csv input_file;
84 
85      input_file.open("PopBaseBookC5.csv");
86 
87      // counter for cases simulated
88      long lCase = 0;
89 
90      // The Modgen run-time implements CASES (used below),
91      // which supplies the number of cases to simulate in a 

particular thread.
92      // 
93      // The following loop for cases is stopped if
94      // - the simulation is cancelled by the user,
95      //     with partial reports (gbInterrupted)
96      // - the simulation is cancelled by the user, 
97      //     with no partial reports (gbCancelled)
98      // - a run-time error occurs (gbErrors)
99      //
100       // The global variables gbInterrupted, gbCancelled and 

gbErrors
101     // are maintained by the Modgen run-time.
102      for ( lCase = 0; lCase < CASES() && !gbInterrupted && 

!gbCancelled 
103          && !gbErrors; lCase++ )
104      {
105 
106          // quit the loop if end-of-file is reached
107          if (!input_file.read_record(lCase))
108          {
109              break;
110          }
111 
112          // Simulate a case.
113 
114          // Tell the Modgen run-time to prepare to simulate a 

new case.
115          StartCase();
116 
117              // Call the CaseSimulation function defined earlier in 

this module.
118          CaseSimulation(input_file);
119 
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120        // Tell the Modgen run-time that the case has been 
completed.

121          SignalCase();
122      }
123 
124      input_file.close();
125  }

�Appendix 5.2 PersonCore.mpp

Code Sections: Header (lines 1 to 9), Parameters (lines 10 to 19), Actor Person and 
functions (lines 20 to 149)

1   classification SEX{ S_FEM, S_MAL };
2  
3   range AGE{ 0, 110 };
4  
5   partition AGE_GROUP{ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 
6     60, 65, 70, 75, 80, 85 }; 
7 
8   partition YEAR5{ 2011, 2016, 2021, 2026, 2031, 2036 };
9 
10  parameters 
11  {
12      //EN Annual hazard of death according to sex and age
13      double MortalityHazard[SEX][AGE][PROV];
14      int AgeMax;                // Maximum lifespan
15      double ProbabilityMale; // Probability of male birth
16      int horizon; // End of simulation
17      int StartYear; // Starting calendar year of simulation
18  };
19 
20  actor Person            //EN Individual
21  {
22     
23      //EN Alive
24      logical alive = {TRUE};
25 
26      SEX sex;    // Sex state variable
27 
28      // Age state variable, auto-increment
29      AGE age_int = COERCE(AGE, self_scheduling_int(age)); 
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30 
31      // Year state variable, auto-increment
32      int year_int = self_scheduling_int(time);
33     
34     
35          event timeMortalityEvent, MortalityEvent;    //EN Mortality 

event
36 
37      //LABEL(Person.Start, EN) Starts the actor
38      // The start function now takes six arguments: 
39      // 1) dTimeStart is the exact time at which a simulation 

starts
40        // 2) ActorType tells if the simulated actor is part of the 
41      //    starting cohort or born in the model
42      // 3) prMother is a pointer to the actor who gave birth to the 
43      //    new actor
44      // 4-6) State values extracted from parameter file
45 
46      void Start(double dTimeStart, int ActorType, Person 

*prMother, double fileage,  
47      double filesex, double fileprovince);
48 
49      //LABEL(Person.Finish, EN) Finishes the actor
50      void Finish();
51  };
52 
53  // The time function of MortalityEvent
54  TIME Person::timeMortalityEvent()
55  {
56      TIME tEventTime = TIME_INFINITE;
57 
58      // If max age is reached, death event occurs immediately
59      if (age_int == AgeMax | year_int >= horizon) 
60      {
61          tEventTime = WAIT(0);
62      }
63      else {
64          // Draw a random waiting time to death from 
65          // an exponential distribution based on the 
66          // constant hazard MortalityHazard.
67          tEventTime = WAIT(-TIME(log(RandUniform(1)) /
68              MortalityHazard[sex][age_int][prov]));
69      }
70 

5  The Base Population
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71      return tEventTime;
72  }
73 
74  // The implement function of MortalityEvent
75  void Person::MortalityEvent()
76  {
77      if (year_int < horizon) { alive = FALSE; };
78 
79      // Remove the actor from the simulation.
80      Finish();
81  }
82 
83  // The start function now takes three arguments: 
84  // 1) dTimeStart is the exact time at which a simulation starts
85  // 2) ActorType tells if the simulated actor is part of the 
86  //    starting cohort or born in the model
87  // 3) prMother is a pointer to the actor who gave birth to the 
88  //    new actor
89  // 4-6) State values extracted from parameter file
90 
91  void Person::Start(double dTimeStart, int ActorType, Person 

*prMother, double fileage, 
92  double filesex, double fileprovince)
93  {
94      // Modgen initializes all actor variables
95      // before the code in this function is executed.
96 
97      // Sets continuous time. time>0 if actor is born during 

simulation
98      time = dTimeStart;
99 
100      // ActorType = 0 (actor from the base population)
101      // ActorType = 1 (actor born in the simulation)
102 
103      if (ActorType == 0) {
104         
105          // Continuous age 
106          age = fileage;
107          // Sex
108          sex = (SEX)(INT) filesex;
109          // Province
110          prov = (PROV)(INT) fileprovince;
111 
112      }
113 
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114      else {
115 
116          // Continuous age is zero at birth
117          age = 0;
118 
119          // Sex is randomly attributed according to parameter 

ProbabilityMale
120          if (RandUniform(2) < ProbabilityMale)
121          {
122              sex = S_MAL;
123          }
124          else
125          {
126              sex = S_FEM;
127          };
128 
129          // Province of residence is the same as the mother's
130          if (prMother != NULL) {
131 
132              lMother = prMother;
133              prov = lMother->prov;
134 
135          };
136 
137      };
138 
139  }
140 
141  /*NOTE(Person.Finish, EN)
142      The Finish function terminates the simulation of an actor.
143  */
144  void Person::Finish()
145  {
146      // After the code in this function is executed,
147           // Modgen removes the actor from tables and from the 

simulation.
148      // Modgen also recuperates any memory used by the actor.
149  }

5  The Base Population
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�Appendix 5.3 Tables.mpp

1  table Person Demography // Population
2  {
3      {
4          // Population size at the end of period
5          value_at_changes(split(year_int, YEAR5), alive),  
6          entrances(alive, FALSE),        // Deaths
7          changes(last_age_fertile),      // Births
8          changes(prov),                  // Exits
9          event(changes(prov))            // Entrances        
10      }
11 
12      *prov + //Province
13      *sex +
14      *split(age_int, AGE_GROUP) + // Age
15      *split(year_int, YEAR5) // Year
16 
17  };
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Chapter 6
International Migration

Aims of This Chapter
•	 Adding an international migration module to include emigration and 

immigration
•	 Modifying the Start function and the main file to take account of immigration
•	 Modifying the results table to include the counting of international migration 

events

We are now at the final design stage of a basic microsimulation model – the integra-
tion of an international migration module. This module will complete the model we 
have been developing gradually over the first five chapters. Just as with births, 
immigrants come into the simulation in the course of the projection, at a simulation 
time greater than zero. And like actors entering the simulation through birth, immi-
grants are liable to experience all the demographic events in the model (fertility, 
mortality, mobility etc.). But unlike births, the creation of an immigrant actor is not 
the result of an event taking place in the simulation of an existing actor. Immigrant 
actors are simulated as separate Modgen cases.

A number of different methods can be used to integrate immigrant actors into a 
microsimulation model. The characteristics of immigrant actors could be imputed 
using cumrate type distributions of the kind we used in the first cohort models  
(remember that sex and birth province were attributed using cumrate distributions). 
Immigrants created in this way would be simulated in an extra simulation loop 
inserted into the main model file. Another way would be to integrate immigrants 
directly into the base population file. All we would need to do is to add to the data 
file the census date for the base population and the date of entry to Canada for 
immigrants. This variable would be used to initialise the start time of their simula-
tion at various moments in the projection, depending on the case type. This is a 
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simple option because it needs little programming, but it is not very flexible. 
Moreover, it requires manipulation of the base population file, which may eventu-
ally lead to errors.

We have chosen to use a mixed strategy. A sub-set of immigrants will be selected 
in the base population for repeated simulation in each year of the projection. So an 
immigrant in the base population will be simulated for the first time when the case 
is read in the base population file (and the actor simulation will be started at 
time = 2011), and then re-simulated for each year of the simulation, in 2011, 2012, 
2013 etc (time > 2011), up to the projection horizon. To do this we will use a condi-
tional statement (if) to identify the immigrants to be re-simulated. A second loop 
will have to be added in addition to the main simulation loop (described in Chap. 5), 
to generate annual immigration. This will be described in detail in this chapter.

Modeling immigration in this way has many advantages. First, it is relatively 
easy to do, as immigrants are dynamically selected from the base population. 
Second, characteristics of immigrants are implicitly defined. If we choose immi-
grants who have arrived in Canada in the last 5 years (as we will do in this chapter), 
the immigrants in the projection will have the characteristics of this sub-population. 
There is no need to create cumrate distributions to randomly assign values to the 
state variables of the immigrants. This is especially useful when the number of char-
acteristics increases, because cumrate matrices then become complex and difficult 
to manipulate. Finally, the modelling of immigration described in this chapter is 
also flexible – the composition of an immigration cohort can be easily changed by 
selecting a different sub-population of immigrants – for example by choosing less 
recent immigrants, or by modifying simulation weights.

Before going ahead, we have to modify the content of the base population to 
include two other variables which have to do with immigration (which means add-
ing two new columns to the four columns of the base population file in Chap. 5). 
The first variable to add is immigration status (in column 5), coded 0 for native-born 
and 1 for immigrants. The second is the age at the time of immigration, saved as a 
double precision variable (added in column 6). For a quick start, you may use the 
Chap. 6 base population file available on the book website (http://www.microsimu-
lationandpopulationdynamics.com/) or Springer Extras Online. Note that for the 
purpose of this chapter, non-permanent residents have been removed from the NHS 
database, and so the number of cases in the Chap. 6 file will be smaller than in the 
Chap. 5 file. So the scenario will need to be modified accordingly.

6.1  �Creating an International Migration Module

The new international migration module includes new parameters and new state 
variables, as well as a new emigration event. But no immigration event is there to be 
found. Why is that? Why doesn’t immigration need its own event? This is because 
immigration is not an event in the Modgen sense, as it does not occur inside an 
existing actor. No actor from the base population is “at risk” of immigration. Births, 
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by contrast, are linked to a female actor of fertile age. So while births are linked to 
an event within a case, each immigrant must constitute a separate case. We will 
come back to this later.

First, we need to declare new parameters and state variables for the immigration 
module. We need some kind of classification for immigration status, with two pos-
sible states: non immigrant (I_NON_IMM) or immigrant (I_IMM).

InternationalMigration.mpp
1   classification IMM {I_NON_IMM, I_IMM};

Next, a corresponding state variable of the IMM type is declared in the descrip-
tion of the actor (line 14).

InternationalMigration.mpp
14      IMM imm;

Because age at immigration is only useful for selecting actors involved in immi-
gration (we will come back to this in the next section), there is no need to create a 
range for this. However we do have to create a state variable which will store the 
value of the age at immigration, taken from the base population file (the variable is 
double, as age at immigration is stored as a floating-point number in the base popu-
lation file).

InternationalMigration.mpp
15      double age_imm;

An additional variable (line 16) will be used to differentiate immigrants already 
present in the base population, whose simulation begins in 2011 exactly, from future 
cohorts of immigrants in the projection, whose simulation starts at a time later than 
2011. This state variable will be useful for tabulating the intensity of annual immi-
gration in the different scenarios created from the user interface.

InternationalMigration.mpp
16      int is_imm = {0};

Finally, parameters allowing us to control the intensity of emigration and immi-
gration are added.

6.1  Creating an International Migration Module
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InternationalMigration.mpp
3   parameters
4   {
5      // Sum of weights of recent immigration in microdata 

file 
6      double WeightRecentImmig2011;
7      double ImmigSimul; // Number of immigrants per year
8      double EmigrationHazard[SEX][AGE][PROV]; // Risk of 

emigration
9   };

The WeightRecentImmig2011 parameter gives the total weight of the set of 
immigrants that will be selected from the base population file to be part of the 
annual immigration in the projection. In our example, the selected immigrants will 
be those who have been in Canada for less than 5 years. ImmigSimul on the other 
hand indicates the number of required immigrants per year during the simulation. 
With these two parameters we can adjust the weight of each actor-immigrant to 
control immigration intensity: all we have to do is to standardise the immigration 
weight to unity using WeightRecentImmig2011, and then multiply the result by the 
required number of immigrants per year for the simulation (ImmigSimul).

Finally, the annual risk of emigration (the probability of leaving Canada for a 
foreign country) is given by the EmigrationHazard parameter. Like the mortality 
risk, this varies with sex, age, and province of residence.

A new parameter file called Base(Immigration).dat must be created. It will con-
tain the values of the international migration parameters (the code for this file is not 
reproduced in the appendix). All values for the EmigrationHazard parameter are set 
to zero: they will be modified from the user interface.

Base(InternationalMigration).dat
parameters 
{
        // Sum of weights, recent immigration in microdata file
        double WeightRecentImmig2011 = 1121807.6;    

         // Number of immigrants per year 
        double ImmigSimul = 250000; 

          // Risk of emigration
         double EmigrationHazard[SEX][AGE][PROV] = {(2020) 0,};

};

6  International Migration
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In the parameters file we can see that the total weight of recent immigration 
(defined as those who have arrived in the past 5 years) is 1,121,807.6 in the base 
population.1 This is to be expected, given that annual immigration to Canada is 
around 250,000 immmigrants per year, and that some immigrants leave Canada 
soon after arrival. The number of immigrants per year of simulation is set to 250,000, 
based on recent trends as reported by Citizenship and Immigration Canada. This 
number may be modified later to create scenarios with higher or lower immigration 
flows. A file containing all the international migration parameters for Canada 
(including emigration hazards) is also available on the book website (http://www.
microsimulationandpopulationdynamics.com/) or on Springer Extras Online.

6.2  �The Emigration Event

The international migration module must include an emigration event, so that actors 
may exit the simulation without going through a mortality event. As usual, this 
event is declared in the Person class.

InternationalMigration.mpp
17       event timeEmigrationEvent, EmigrationEvent;    
          // Emigration event
18         logical emigration = { FALSE }; // Indicate that an 

actor has emigrated

The emigration state variable will be used as an indicator: its value will be 
changed from FALSE to TRUE if an emigration event occurs. Emigrants will be 
tabulated by counting the state transitions from FALSE to TRUE in the emigration 
variable. The code for the emigration event is very similar to the code used for the 
mortality event, and this is not surprising because both events have the function of 
removing an actor from the simulation. In the case of a death, the alive state changes 
from TRUE to FALSE. For an emigration event, the emigration state changes from 
FALSE to TRUE. The Finish function removes the actor from the simulation.

1 This value was calculated in Stata when the base population was exported.

6.2  The Emigration Event
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InternationalMigration.mpp
22   // Computes waiting time before emigration
23   TIME Person::timeEmigrationEvent()
24   {
25      TIME tTimeEvent = TIME_INFINITE;
26   
27      tTimeEvent = WAIT(-TIME(log(RandUniform(7)) /
28            (EmigrationHazard[sex][age_int][prov]+ 

0.0000000001)));
29   
30      return tTimeEvent;
31   }
32   
33   // Event function
34   void Person::EmigrationEvent()
35   {
36      // Terminates actor and signal an emigration event
37      emigration = TRUE;
38      Finish();
39   }

Since the emigration event is so similar to the mortality event, it does not need 
further explanation. The integration of immigration on the other hand is not so 
straightforward, and this will be the subject of the next two sections.

6.3  �Modifying the Start Function

The two state variables added to the immigration module earlier need to be properly 
initialised in the Start function, using the data imported from the base population 
file. Two new arguments for immigration status and age at immigration must first be 
added to the function declaration in the Person class

PersonCore.mpp
46    void Start(double dTimeStart, int ActorType, Person 

*prMother, 
47           double fileage, double filesex, double fileprovince, 

double   
               fileimmstat, double fileageimm);

and in the function description.

6  International Migration
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PersonCore.mpp
83   // The start function now takes 8 arguments: 
84     // 1) dTimeStart is the exact time at which a simulation 

starts
85   // 2) ActorType tells if the simulated actor is part of 

the 
86   //    starting cohort or born in the model
87   // 3) prMother is a pointer to the actor who gave birth 

to the 
88   //    new actor
89   // 4-8) age, sex, province, immigrant status and age at 

immigration
90   void Person::Start(double dTimeStart, int ActorType, 
91       Person *prMother, double fileage, double filesex, 
92         double fileprovince, double fileimmstat, double 

fileageimm)

Calls to the Start function must be modified to include the new arguments. 
Dummy values (zeroes) are added to the call in the fertility module:

Fertility.mpp
    prChild->Start(time, 1, this, 0,0,0,0,0); // Starts simu-

lating the new actor

In the model’s main file, state values extracted from the base population file are 
inserted:

ModgenExample.mpp
43   // Initializes the first actor in the case. Age (0), sex 

(1), province (2),
44   // immigrant status (4) and age at immigration (5)
45   // are passed to the start function
46   Person *poFirstActor = new Person();
47    poFirstActor->Start(StartTime, 0, NULL, input[0], input[1], 
48       input[2], input[4], input[5]);

Notice that the first argument has changed from StartYear to StartTime: this will 
be explained in the next section. The description of the Start function itself must be 
modified to make use of the new information passed in the arguments.

6.3  Modifying the Start Function
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PersonCore.mpp
103    // ActorType = 0 (actor from the base population)
104    // ActorType = 1 (actor born in the simulation)
105
106
107    if   (ActorType == 0) {
108
109            if (dTimeStart == StartYear) {
110                // Continuous age
111                age = fileage;
112            }
113            else {
114                // Continuous age is age at immigration 
115                // if dTimeStart>0
116                age = fileageimm;
117                is_imm = 1;
118            };
119          
120            // Sex
121            sex = (SEX)(INT) filesex;
122            // Province
123            prov = (PROV)(INT) fileprovince;
124            imm = (IMM)(INT) fileimmstat; // Immigrant status
125            age_imm = fileageimm; // Age at immigration
126
127
128    }

Immigrant status (imm) and age at immigration (age_imm) are initialised directly, 
based on the values taken from the base population file (lines 124 and 125). The 
Modgen continuous variable age is initialised differently depending on whether the 
actor is taken from the base population or has immigrated during the simulation. To 
initialise age, the function must identify the origin of the actor: if the simulation of 
the actor starts precisely in 2011, then the actor is taken from the base population 
file (line 109); in all other cases, the actor is an immigrant who has arrived during 
the course of the projection (line 113). If an actor is from the base population, the 
actor’s age is the age measured at the time of the survey (line 111). But if the actor 
is an immigrant, his age is initialised as the age at immigration (line 116). In fact the 
age of the immigrant upon his arrival in Canada is usually not the same as the age 
measured at the time of the survey or census. It is preferable for the age of the immi-
grant upon entry into the simulation to correspond to the real age at the time of 
immigration to Canada. If the actor is an immigrant, the is_imm variable also takes 
the value 1, indicating that the actor is an immigrant who has arrived during the 

6  International Migration
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projection and is not an immigrant from the base population. This variable will be 
used to tabulate the intensity of annual immigration.

Finally the imm and age_imm variables are also initialised for actors born within 
the model, even though age at immigration is not applicable to these actors. Their 
immigrant status is of course non immigrant (I_NON_IMM, line 153, see 
Appendix 6.3), and their age at immigration is initialised arbitrarily at 0 (line 154). 
Any other values would work, as this variable is used only for immigrants.

6.4  �Modifying the Simulation Loop to Include Immigration

In Chap. 5 we described the Modgen simulation loop, in which each line of the base 
population file was read and the simulation of each actor was started. The simula-
tion of all these actors began in 2011 the year of the NHS survey used to construct 
the base population.

Immigrant actors, just like actors born during the simulation, appear in the simu-
lation at projection times greater than zero. But unlike those who are born in the 
simulation, immigrants are not tied to any existing actor (or parent), and thus do not 
appear in the simulation through a regular event. A birth is an actor linked to an 
event in another actor, and both actors are part of the same case. An immigrant actor 
constitutes a case in its own right.

If an immigrant is not created by an event, how do we integrate this new type of 
actor into the projection? The answer, as you may have guessed, is that immigrant 
actors have to be generated in the main file, in the same way as are regular actors 
from the base population. As we mentioned earlier in this chapter, the immigrants 
are taken directly from the base population, based on the duration since immigration 
(less than 5 years). If a member of the base population satisfies this criterion, the 
case is replicated for each year of the simulation. Let’s see how this is done.

Extra instructions have to be included in the simulation loop to integrate these 
immigrants into the projection. To be more precise, each time a record in the base 
population file is read, (1) the actor has to be simulated, then (2) a conditional state-
ment checks whether the actor is a recent immigrant, and (3) if this is the case, the 
actor is simulated for each year of the simulation (as immigration in the model is 
annual).

Figure 6.1 below shows a schematic view of how immigration is integrated in the 
main file.

The diagram shows that integrating immigration implies a second simulation 
loop, and that this second loop is embedded in the first one (an immigrant has to be 
simulated for each year of the simulation). Now we can examine how this concep-
tual diagram is translated into Modgen code within the main file.

6.4  Modifying the Simulation Loop to Include Immigration
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ModgenExample.mpp
82   void Simulation()
83   {
84   
85      // Microdata input file
86      input_csv input_file;
87   
88      // Reads the file
89      input_file.open("PopBaseBookC6.csv");
90   
91   
92      // counter for cases simulated
93      long lCase = 0;

      ...

107   for ( lCase = 0; lCase < CASES() && !gbInterrupted && 
!gbCancelled 

108          && !gbErrors; lCase++ )
109      {
110   

Fig. 6.1  Diagram of microsimulation algorithm (the variable t represents simulation start time and 
is reset to 2011 every time a record is read)

6  International Migration
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111          // exits the loop if end-of-file is reached
112          if (!input_file.read_record(lCase))
113          {
114                     break;
115          }
116   
117          /* Imported data
118   
119          0 - Age
120          1 - Sex
121          2 - Province
122          3 - Weight
123          4 - Immigrant status
124          5 - Age at immigration
125   
126          */
127   
128          // Simulates a case.
129   
130          // Tells the Modgen run-time to prepare to simu-

late a new case.
131          StartCase();
132   
133              // Calls the CaseSimulation fcn defined earlier 

in this module.
134          CaseSimulation(input_file, StartYear);
135   
136              // Tells the Modgen run-time that the case has 

been completed.
137          SignalCase();
138   
139   
140              // If immigrant is recent (age-age at immigra-

tion < 5) 
141              // the case is repeated for every year of the 

simulation 
142          if (((input_file[0] - input_file[5])<5) &&
143                   input_file[4] == 1)
144          {
145   
146               for (int yeartemp = StartYear; yeartemp < 

horizon; yeartemp++)
147            {                

6.4  Modifying the Simulation Loop to Include Immigration



164

148                     StartCase();
149   
150                     CaseSimulation(input_file, yeartemp + 

RandUniform(5));
151                                
152                     SignalCase();
153            }
154 
155          }
156        
157      }
158  
159      input_file.close(); // Closes file
160   }

Let’s take a moment to break down this code.
The first thing to notice is that the immigration loop (lines 142–155) is inserted 

into the main simulation loop (107–157).
Just as in the simulation loop from Chap. 5, a record is first read from the base 

population (line 112), and then the actor is simulated (lines 131–137). The attentive 
reader will have noticed that the CaseSimulation function now accepts an extra 
argument (it takes the StartYear value at line 134). This is the value of the actor 
initial simulation time: in this case, it is 2011 (the NHS year).

In the Chap. 5 example, the value of the initial time was integrated directly into 
the Start function call, which was located in the CaseSimulation function. All the 
actors simulated from the base population file therefore entered the simulation at the 
same time, in 2011 exactly. The situation is different now because the actors gener-
ated in the main file can start either at the beginning of 2011 (base population) or 
later (as immigrants). So from now on we have to specify the starting time of the 
simulation (StartTime) to the CaseSimulation function. To do this we add the 
StartTime argument to the CaseSimulation function header, a little higher up in the 
file code

ModgenExample.mpp
25   void CaseSimulation(const input_csv& input, double 

StartTime )

and change the argument passed to the Start function accordingly:

6  International Migration
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ModgenExample.mpp
47        poFirstActor->Start(StartTime, 0, NULL, input[0], 

input[1], 
48            input[2], input[4], input[5]);

Note that StartTime – the initial time of the simulation, which varies depending 
on the actor type – should not be confused with StartYear, which is the starting time 
of the base population and the year of the NHS (and therefore a constant).

Now back to the Simulation function and the simulation loop. After launching 
the actor’s simulation, we find a condition (lines 142–143) checking whether the 
actor who has just been simulated is a recent immigrant or not. The condition checks 
whether the duration of time since the immigration is less than 5  years (input_
file[0]-input_file[5] < 5 corresponds to age minus age at immigration, or the num-
ber of years since immigration), and that the actor is an immigrant. These two 
conditions are needed because age at immigration for non-immigrants was ini-
tialised to zero. Without the second part of the condition, non-immigrants aged less 
than 5 years old would have been selected as part of recent immigration.

The actor-immigrant is then re-simulated for each year in the projection: this is 
the immigration loop. In this loop, the value of the yeartemp variable moves from 
StartYear (2011 in our case) to Horizon-1 (2035, for a 25 year projection). The case 
is launched with the usual Modgen functions  – StartCase, SimulationCase and 
SignalCase – which have been copy-pasted from the main simulation loop. In the 
first year, instead of starting the simulation at the beginning of 2011 as we did for 
the base population actors, the simulation starts randomly during the year. The same 
is true for the succeeding years, so that the arrival of immigrants in the model is 
spread evenly throughout all the simulation years. Hence the value of StartTime, 
passed as an argument to the CaseSimulation function, is yeartemp (the immigrant 
actor’s year of arrival) plus a random duration between 0 and 1 year. Once the immi-
gration loop is finished, the simulation continues, and another case is read in the 
base population file (unless the end of the file has been reached).

6.5  �Adjusting Weights

You may remember that each actor in the simulation has a given simulation weight 
specified in the base population file. Setting the weights as in Chap. 5 would yield 
an annual volume of immigration equal to the sum of weights of all recent immi-
grants to Canada (those who arrived 5 years or less prior to the NHS). Given the 
intensity of immigration to Canada, this number would exceed one million immi-
grants. Since such an annual rate is too high (as it represents the total immigration 
for a five year period), the weights must be adjusted in order to get the desired 
number of immigrants for the simulation.

The weights are adjusted in the CaseSimulation function, as was done in Chap. 
5. But now a conditional statement must be added to differentiate immigration in the 
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model from other actors in the base population: if the start time of the simulation is 
larger than 2011 (StartYear), then the actor is an immigrant and the weights are 
adjusted as follows.

As we saw earlier, the total weight of immigrants who arrived in the 5 years prior 
to the NHS is about 1,121,808. To set the desired volume of annual immigration (in 
number of immigrants), we adjust the weight using a simple rule of three: we mul-
tiply the weight of the actor-immigrant by the the desired volume of annual immi-
gration for the simulation (ImmigSimul), and then we divide the result by the weight 
of recent immigration in the base population (line 35). Since ImmigSimul is a 
parameter, we will be able to control the number of immigrants within the model’s 
user interface.

ModgenExample.mpp
33    // Set case weight
34    if (StartTime > StartYear) {  // Recent immigrants
35             SetCaseWeight(input[3] * ImmigSimul / 

WeightRecentImmig2011, 
36             input[3] * ImmigSimul / WeightRecentImmig2011 * 

nSubSamples);
37    }
38     else { // Everyone else
39  
40             SetCaseWeight(input[3], input[3] * nSubSamples);
41     };

If the actor is not a recent immigrant, the weights are set as before in Chap. 5.

6.6  �Generating Results

To generate the results of the simulation, we recycle the table used in Chap. 5 and 
expand it to derive the numbers of emigrants and immigrants from and to Canada.

Tables.mpp
10     entrances(duration_trigger(is_imm,1,0),TRUE)
        // Immigration
11    entrances(emigration, TRUE)        // Emigration

The derived state duration_trigger(is_imm,1,0) is a switch indicating whether an 
actor is an immigrant or not. It takes the value TRUE when an actor has passed a 
zero duration in the is_imm = 1 state. Put another way, as soon as an immigrant 
enters the simulation, the value of the derived state duration_trigger changes to 
TRUE and the derived state entrances records this change in state from FALSE to 
TRUE. Used on its own, duration_trigger, which takes the value TRUE for the whole 
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of the simulation, would be counted in all the cells of the table (as long as the actor 
is alive, of course), and would not allow the number of immigrants arriving in a 
given period to be counted. The same would be true of the derived state 
value_in(is_imm).

So why not use the derived state entrances on the is_imm state variable instead? 
The problem is that state modifications carried out in the Start function are not 
accounted for by the derived states. Derived states only register changes of state 
occurring inside events. Because the is_imm variable is initialised in the Start func-
tion (see the previous section), the derived state entrances does not “see” this change 
in state. A combination of the two derived states duration_trigger and entrances is 
needed to achieve the correct count of annual immigration – a trigger to flag the 
immigrant’s entry into the simulation, with a derived state to detect the change in 
the value of this trigger. The derived state for emigration is relatively simple by 
comparison; it counts the number of times an actor enters the state 
emigration = TRUE.

Now that we have modified the table description, we can pre-compile, compile 
and open the microsimulation program (see the Precompiling, Compiling and 
Running the microsimulation program section). Before the simulation is launched, 
we have to modify some of the parameters in the base scenario. First, as we did with 
other modules, we have to add to the scenario the parameters file from the immigra-
tion module (Base(Immigration).dat). Next, the number of cases must be changed 
to 869,980 (remember that the number of cases in the base population file is slightly 
different from the number of cases in the file in Chap. 5).2

During the simulation, the progress bar will not be working properly, due to the 
cases generated by the immigration loop. The movement of the progress bar is actu-
ally based on the number of cases specified in the scenario, which controls (and this 
is very important) the number of iterations in the main simulation loop. In our 
example, the progress bar reaches 100 % once 869,980 cases have been simulated.

But this number assumes that only cases from the base population file are being 
simulated. Because cases from the immigration loop are counted as well, the total 
number of cases counted by the progress bar is now equal to the number of cases in 
the base population, plus the number of recent immigrants times the number of 
years of simulation. For example, if there are 100 actors in the base population, and 
10 of these are recent immigrants, and the length of the simulation is 25 years, then 
the total number of cases in the simulation will be 100, plus 25 times the 10 immi-
grant actors, or a total of 350 cases. Since a number of cases equal to 100 was speci-
fied in the scenario, the progress bar will go up to 350 % by the time the simulation 
ends. If you want the progress bar to reflect the actual simulation time, you can write 

2 You must also make sure that the correct file name is specified in the ModgenExample.mpp file. 
In this chapter, this file is called “PopBaseBookC6.csv”. See ModgenExample.mpp, line 89  in 
Appendix 6.2.

6.6  Generating Results

http://dx.doi.org/10.1007/978-3-319-44663-9_5


168

the actual number of cases in the scenario. But won’t this higher number make the 
main simulation loop run for too many iterations, exceeding the total number of 
records in the base population file? Actually, specifying a number of cases higher 
than the number of records in the file does not matter, as the program automatically 
exits the main simulation loop when the end of the file has been reached.

We then start a simulation and open the Population table. Figure 6.2 shows the 
number of immigrants admitted per period of five years (the Immigration item 
under Selected Quantities). As the base scenario specified 250,000 immigrants per 
year, we can expect to have 1,250,000 immigrants in a five year period, and this is 
in fact the number that appears at the foot of the table. The table also shows the 
distribution of immigrants by province, reflecting the observed distribution of recent 
immigrants who arrived between 2006 and 2011 to Canada (because we chose 
immigrants who have arrived in the past 5 years).

We can use the Modgen user interface to change the number of immigrants per 
year and compare the effect of different immigration scenarios on population size. 
Choosing three scenarios, one low (200,000), one medium (250,000) and one high 
(300,000) and repeating the simulation using these different volumes of annual 
immigration, we get the population results illustrated in Fig. 6.3 below (graph drawn 
using Excel).

Fig. 6.2  Number of immigrants per five-year period
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Once again, this example shows just how easy it is to use Modgen to create sce-
narios and generate outputs which can be conveniently exported to external applica-
tions for editing.

6.7  �Summary

This chapter has put in place the final pieces of the microsimulation model we have 
been bulding throughout this book. Although the model is still elementary, it is 
already very useful and can serve as a basis for more complex models. In fact, most 
national population projections are done with a similar model, although usually of 
the multi-state type.

Fig. 6.3  Canadian population according to high (300,000), medium (250,000) and low (200,000) 
immigration scenarios
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�Appendices

�Appendix 6.1 InternationalMigration.mpp

Code Sections: Header (lines 1 to 2), Parameters (lines 3 to 9), Actor Person and 
functions (lines 10 to 39)

1  classification IMM{ I_NON_IMM, I_IMM };
2 
3  parameters
4  {
5      // Sum of weights of recent immigration in microdata file 
6      double WeightRecentImmig2011;
7      double ImmigSimul; // Number of immigrants per year
8       double EmigrationHazard[SEX][AGE][PROV]; // Risk of 

emigration
9  };
10 
11  actor Person            // Individual
12  {
13 
14      IMM imm;
15      double age_imm;
16      int is_imm = { 0 };
17       event timeEmigrationEvent, EmigrationEvent;    
         // Emigration event
18      logical emigration = { FALSE }; // Indicate that an actor 

has emigrated
19 
20  };
21 
22  // Computes waiting time before emigration
23  TIME Person::timeEmigrationEvent()
24  {
25      TIME tTimeEvent = TIME_INFINITE;
26 
27      tTimeEvent = WAIT(-TIME(log(RandUniform(7)) /
28              (EmigrationHazard[sex][age_int][prov] + 

0.0000000001)));
29 
30      return tTimeEvent;
31  }
32 
33  // Event function
34  void Person::EmigrationEvent()
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35  {
36      // Terminates actor and signal an emigration event
37      emigration = TRUE;
38      Finish();
39  }

�Appendix 6.2 ModgenExample.mpp

1  //LABEL(ModgenExample, EN) Core simulation functions
2 
3  /* NOTE(ModgenExample, EN)
4          This module contains core simulation functions and 

definitions.
5  */
6 
7  // The model version number
8  version 1, 0, 0, 0;
9 
10  // The model type
11  model_type case_based;
12 
13  // The data type used to represent time
14  time_type double;
15 
16  // Supported languages
17  languages {
18          EN // English
19  };
20 
21  // The CaseSimulation function simulates a single case,
22  // and is called by the Simulation function declared later
23  // in this module.
24 
25  void CaseSimulation(const input_csv& input, double StartTime)
26  {
27 
28 
29          // Gets the number of sub-samples specified in the 

parameters 
30          int    nSubSamples = { 0 };
31          nSubSamples = GetSubSamples();
32 
33          // Set case weight
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34          if (StartTime > StartYear) {  // Immigrants
35                    SetCaseWeight(input[3] * ImmigSimul / 

WeightRecentImmig2011, 
36                    input[3] * ImmigSimul / WeightRecentImmig2011 * 

nSubSamples);
37          }
38          else { // Everyone else
39 
40                    SetCaseWeight(input[3], input[3] * nSubSamples);
41          };
42        
43          // Initializes the first actor in the case. Age, sex, 

province,
44          // immigrant status and age at immigration
45          // are passed to the start function
46          Person *poFirstActor = new Person();
47          poFirstActor->Start(StartTime, 0, NULL, input[0], 

input[1], 
48                 input[2], input[4], input[5]);
49     
50          // Continue processing events until there are no more.
51          // Model code is responsible for ending the case by 

calling
52          // Finish on all existant actors.
53 
54          // The Modgen run-time implements the global
55          // event queue gpoEventQueue.
56          while ( !gpoEventQueue->Empty() )
57          {
58                   // The global variables gbCancelled and gbErrors
59                   // are maintained by the Modgen run-time.
60                   if ( gbCancelled || gbErrors )
61                   {
62                   // The user cancelled the simulation,
63                   // or run-time errors occurred.
64                   // Terminate the case immediately.
65                   gpoEventQueue->FinishAllActors();
66         }
67         else
68         {
69                   // Age all actors to the time of the next event.
70                   gpoEventQueue->WaitUntil( gpoEventQueue-

>NextEvent() );
71     
72                   // Implement the next event.
73                   gpoEventQueue->Implement();
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74         }
75      }
76 
77      // Note that Modgen handles memory cleanup when 
78      // Finish is called on an actor.
79  }
80 
81  //     The Simulation function is called by Modgen to simulate 

a set of cases.
82  void Simulation()
83  {
84 
85      // Microdata input file
86      input_csv input_file;
87 
88      // Reads the file
89      input_file.open("PopBaseBookC6.csv");
90 
91 
92      // counter for cases simulated
93      long lCase = 0;
94 
95      // The Modgen run-time implements CASES (used below),
96      // which supplies the number of cases to simulate in a 

particular thread.
97      // 
98      // The following loop for cases is stopped if
99      // - the simulation is cancelled by the user,
100      //     with partial reports (gbInterrupted)
101      // - the simulation is cancelled by the user, 
102      //     with no partial reports (gbCancelled)
103      // - a run-time error occurs (gbErrors)
104      //
105      // The global variables gbInterrupted, gbCancelled and 

gbErrors
106      // are maintained by the Modgen run-time.
107      for ( lCase = 0; lCase < CASES() && !gbInterrupted && 

!gbCancelled 
108          && !gbErrors; lCase++ )
109      {
110 
111          // exits the loop if end-of-file is reached
112          if (!input_file.read_record(lCase))
113          {
114              break;
115          }
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116 
117          /* Imported data
118 
119          0 - Age
120          1 - Sex
121          2 - Province
122          3 - Weight
123          4 - Immigrant status
124          5 - Age at immigration
125 
126          */
127 
128          // Simulates a case.
129 
130          // Tells the Modgen run-time to prepare to simulate 

a new case.
131          StartCase();
132 
133          // Calls the CaseSimulation function defined earlier 

in this module.
134          CaseSimulation(input_file, StartYear);
135 
136          // Tells the Modgen run-time that the case has been 

completed.
137          SignalCase();
138 
139 
140          // If immigrant is recent (age-age at immigration < 

5) 
141          // the case is repeated for every year of the 

simulation 
142          if (((input_file[0] - input_file[5])<5) &&
143                   input_file[4] == 1)
144          {
145 
146                   for (int yeartemp = StartYear; yeartemp < 

horizon; yeartemp++)
147                    {                
148                        StartCase();
149 
150                        CaseSimulation(input_file, yeartemp + 

RandUniform(5));
151                                 
152                        SignalCase();
153                    }
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154 
155          }
156         
157      }
158 
159      input_file.close(); // Closes file
160  }

�Appendix 6.3 PersonCore.mpp

Code Sections: Header (lines 1 to 9), Parameters (lines 10 to 19), Actor Person and 
functions (lines 20 to 172)

1  classification SEX{ S_FEM, S_MAL };
2 
3  range AGE{ 0, 110 };
4 
5  partition AGE_GROUP{ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 
6  55, 60, 65, 70, 75, 80, 85 }; 
7 
8  partition YEAR5{ 2011, 2016, 2021, 2026, 2031, 2036 };
9 
10  parameters 
11  {
12      //EN Annual hazard of death according to sex and age
13      double MortalityHazard[SEX][AGE][PROV];
14      int AgeMax;                // Maximum lifespan
15      double ProbabilityMale; // Probability of male birth
16      int horizon; // End of simulation
17      int StartYear; // Starting calendar year of simulation
18  };
19 
20  actor Person            //EN Individual
21  {
22     
23      //EN Alive
24      logical alive = {TRUE};
25 
26      SEX sex;    // Sex state variable
27 
28      // Age state variable, auto-increment
29      AGE age_int = COERCE(AGE, self_scheduling_int(age)); 
30 
31      // Year state variable, auto-increment
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32      int year_int = self_scheduling_int(time);
33     
34     
35      event timeMortalityEvent, MortalityEvent;    //EN 

Mortality event
36 
37      //LABEL(Person.Start, EN) Starts the actor
38      // The start function now takes six arguments: 
39      // 1) dTimeStart is the exact time at which a simulation 

starts
40      // 2) ActorType tells if the simulated actor is part of the 
41      //    starting cohort or born in the model
42      // 3) prMother is a pointer to the actor who gave birth 

to the 
43      //    new actor
44      // 4-8) State values extracted from parameter file
45 
46      void Start(double dTimeStart, int ActorType, Person 

*prMother, double fileage, 
47              double filesex, double fileprovince, double 

fileimmstat, double fileageimm);
48 
49      //LABEL(Person.Finish, EN) Finishes the actor
50      void Finish();
51  };
52 
53  // The time function of MortalityEvent
54  TIME Person::timeMortalityEvent()
55  {
56      TIME tEventTime = TIME_INFINITE;
57 
58      // If max age is reached, death event occurs immediately
59      if (age_int == AgeMax | year_int >= horizon) 
60      {
61               tEventTime = WAIT(0);
62      }
63      else {
64               // Draw a random waiting time to death from 
65               // an exponential distribution based on the 
66               // constant hazard MortalityHazard.
67               tEventTime = WAIT(-TIME(log(RandUniform(1)) /
68                      MortalityHazard[sex][age_int][prov]));
69      }
70 
71      return tEventTime;
72  }
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73 
74  // The implement function of MortalityEvent
75  void Person::MortalityEvent()
76  {
77      if (year_int < horizon) { alive = FALSE; };
78 
79      // Remove the actor from the simulation.
80      Finish();
81  }
82 
83  // The start function now takes 8 arguments: 
84  // 1) dTimeStart is the exact time at which a simulation 

starts
85  // 2) ActorType tells if the simulated actor is part of the 
86  //    starting cohort or born in the model
87  // 3) prMother is a pointer to the actor who gave birth to 

the 
88  //    new actor
89  // 4-8) age, sex, province, immigrant status and age at 

immigration
90  void Person::Start(double dTimeStart, int ActorType, 
91    Person *prMother, double fileage, double filesex, 
92    double fileprovince, double fileimmstat, double fileageimm)
93  {
94      // Modgen initializes all actor variables
95      // before the code in this function is executed.
96 
97 
98      // Sets continuous time. time>0 
99        // if actor is born during simulation
100      time = dTimeStart;
101 
102 
103      // ActorType = 0 (actor from the base population)
104      // ActorType = 1 (actor born in the simulation)
105 
106 
107      if (ActorType == 0) {
108 
109                if (dTimeStart == StartYear) {
110                        // Continuous age
111                        age = fileage;
112                }
113                else {
114                        // Continuous age is age at immigration 
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115                        // if dTimeStart>0
116                        age = fileageimm;
117                        is_imm = 1;
118          };
119         
120          // Sex
121          sex = (SEX)(INT) filesex;
122          // Province
123          prov = (PROV)(INT) fileprovince;
124          imm = (IMM)(INT) fileimmstat; // Immigrant status
125          age_imm = fileageimm; // Age at immigration
126 
127 
128      }
129 
130      else {
131 
132          // Continuous age is zero at birth
133          age = 0;
134 
135 
136          // Sex is randomly attributed according to parameter 

ProbabilityMale
137          if (RandUniform(2) < ProbabilityMale)
138          {
139                    sex = S_MAL;
140          }
141          else
142          {
143                    sex = S_FEM;
144          };
145 
146          // Province of residence is the same as the mother's
147          if (prMother != NULL) {
148 
149                    lMother = prMother;
150                    prov = lMother->prov;
151 
152                    // The actor is not an immigrant
153                    imm = I_NON_IMM;
154                    age_imm = 0;
155 
156 
157          };
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158 
159      };
160 
161 
162  }
163 
164  /*NOTE(Person.Finish, EN)
165          The Finish function terminates the simulation of an 

actor.
166  */
167  void Person::Finish()
168  {
169          // After the code in this function is executed,
170          // Modgen removes the actor from tables and from the 

simulation.
171          // Modgen also recuperates any memory used by the 

actor.
172  }

�Appendix 6.4 Tables.mpp

1  table Person Demography // Population
2  {
3      {
4          // Population size at the end of period
5          value_at_changes(split(year_int, YEAR5), alive),  
6          entrances(alive, FALSE),            // Deaths
7          changes(last_age_fertile),         // Births
8          changes(prov),                       // Exits
9          event(changes(prov)),              // Entrances    
10         entrances(duration_trigger(is_imm, 1, 0), TRUE),    
              // Immigration
11           entrances(emigration, TRUE)        // Emigration
12 
13      }
14 
15      *prov + //Province
16      *sex +
17      *split(age_int, AGE_GROUP) + // Age
18      *split(year_int, YEAR5) // Year
19 
20  }

Appendices



181© Springer International Publishing Switzerland 2017 
A. Bélanger, P. Sabourin, Microsimulation and Population Dynamics,  
The Springer Series on Demographic Methods and Population Analysis 43,  
DOI 10.1007/978-3-319-44663-9

�Conclusion

In the course of this book, we have developed a dynamic population microsimula-
tion model in successive stages. We have progressively increased the number of 
state variables and events associated with actors in a simulation. The added charac-
teristics enabled us to differentiate the risks of undergoing one or another of the 
events in the model. The final model enabled us to make projections of a national 
population by age, sex and region of residence, as well as to calculate the compo-
nents of a classic multi-regional life table.

The first chapter paid particular attention to explaining the structure of a Modgen 
program and to exploring the interface used to generate scenarios. At this stage, the 
model generated by the Modgen Wizard was taken as is, and a single event, death, 
was modelled using a constant risk. In the following chapter we added a classifica-
tion to attribute a sex to the actors, and also a range to measure their ages in com-
pleted years. These two new characteristics of the Person actor, contained in the two 
state variables (sex and age_int) allowed us to specify more accurately the risk of 
death. We were able to construct an abridged life table and appreciate how easy it is 
to add new dimensions to the model.

Adding an internal migration event in Chap. 3 demonstrated the other advantages 
of Modgen for programming microsimulation models. We saw the ease with which 
a new event module could be added, a useful feature given the advantages of modu-
lar programming. We also introduced and explained a new type of parameter (cum-
rate) and a function (Lookup) specific to Modgen, which together enable us to 
change the value of a state variable from a probability distribution matrix. In the 
mobility example, this matrix was solely a function of the province of origin, but 
cumrate and Lookup may be used with an arbitrary number of dimensions.

Another of Modgen’s major advantage is its ability to automatically manage 
competing risks. Unlike discrete-time models, Modgen’s continuous-time model-
ling allows us to add a new event without having to re-estimate the parameters of the 
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other model events, and without the problem of having to explicitely decide in what 
order the events are to take place.

In the following chapters we saw how a cohort model could be transformed to 
become a full projection model allowing for the addition of new actors to the popu-
lation through fertility and immigration. The fertility module enabled new actors to 
be created and linked to their mother allowing for the transfer of information 
between actors using pointers and the Modgen link instruction.

Gradually complexifying a simple model is a useful didactical approach for a 
tutorial course and it has enabled us to show that it is relatively simple to complexify 
or modify an existing model in Modgen; however this is not the best way to proceed 
in reality. Microsimulation models should be thought through as much as possible 
before you start programming. Before generating a new model from the Modgen 
Wizard, the designer of a microsimulation should have a clear conceptual outlook 
of the final model and should define each of the state variables and their sub-catego-
ries using classification, range, or other types of variables. He or she should also 
have a clear idea of the equations which will define the waiting time of the different 
events in the model, as well as the consequences of each of these events for the 
whole set of characteristics of the simulated actor.

The full model presented in chapter six could easily be developed further by add-
ing relevant dimensions. Let’s take the level of education, for instance, which is a 
characteristic of analytical interest in itself, as well as an important determinant of 
the other events we want to model, such as fertility, migration or death. To add the 
level of education in the model, we would create a module determining the age at 
which each actor reaches each educational milestone. This would involve a new 
classification describing the educational level of the actor, as well as the corre-
sponding state variables. The modeling of education itself could be done in several 
ways. We could first determine the highest educational attainment of an actor, and 
then determine the timing of the event, as well as the timing of intermediate educa-
tional achievements. We could also calculate transition rates between the different 
educational levels (this would be the preferred solution for multistate models). In 
any case, the result of this modeling would be implemented in the event function 
and its associated time function. Education could then be added as an additional 
dimension in other demographic events, such as fertility or mortality.

The model developed in this book is a dynamic case-based microsimulation 
model in which each actor is simulated separately up to the time of death or the end 
of the projection. As we saw in the chapter on the fertility module, it is possible to 
create links between actors of the same case, such as between children and their 
mother. However, this type of model does not allow for links or interactions between 
different cases.

Modgen can also be used to create microsimulation models with interactions 
between the simulated actors. To do this, the model builder has to choose a time-
based rather than a case-based model when creating the microsimulation program. 
The code described in this book can be used without major changes to define a simi-
lar corresponding time-based model. In such a model, all the actors are simulated 
simultaneously, thus enabling interactions between simulated actors. Time-based 
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models are useful if one wants, for example, to simulate the evolution of a conta-
gious disease in a population, or to create families by explicitly modelling the for-
mation of unions between two actors in the simulation. To do this, Modgen provides 
tools to create actor sets, so that simulated actors can be grouped and accessed 
dynamically according to some of their characteristics. To model union formation, 
for example, we could create actor sets by sex, marital status and other characteris-
tics associated with marriage practices and partner selection – age group, level of 
education, place of residence, etc. In this way we could create a union-formation 
event which would match unmarried candidates from the different mate pools 
according to pre-determined probabilities based on mate preferences. Union types 
having a generally low probability of formation, for instance, could still have good 
chances of happening in a marriage market where suitable candidates are rare.

So the Modgen language has a lot to offer and allows for many different types of 
microsimulation models to be created. In this book we have developed a relatively 
simple dynamic microsimulation model, but one which is sufficiently general to 
serve as the basis for a set of models with different objectives. This concluding sec-
tion has shown the different development paths the user could follow, using the 
model created here, to meet some specific research needs.

Conclusion
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The coding convention we propose is a set of simple generic guidelines for making 
a Modgen microsimulation program easier to write and to read. A model builder 
should follow these guidelines as closely as possible, but they are not hard and fast 
rules; when you build a model you will naturally adapt them to your particular set 
of problems while respecting their essential spirit.

•	 A microsimulation model should be divided as far as possible into thematic or 
functional modules. Results tables are grouped together in a separate module.

•	 The order of sections should be the same for each module. In order of appear-
ance, starting from the top, this should be: classifications and ranges; partitions; 
parameters; the Person class and its functions, if possible in their order of appear-
ance in the class.

•	 As many comments as possible should be added next to the code. Clearly written 
and detailed comments are of immense value, not just for other users and devel-
opers but as reminders for oneself.

•	 No numbers should ever be inserted into the code; instead, state variables or 
parameters should be created.

•	 Give meaningful names to states, state variables, parameters, classifications, 
ranges and other types of variable. Names of classifications and ranges are writ-
ten in CAPITALS. Classification modalities are also in upper case letters. They 
start with the first letter of the classification name, followed by an underline and 
the name of the modality.

•	 The first letter of each word in the name of a parameter is capitalised, as in 
ParameterNameExample.

•	 State variable names are written in lower case letters. This makes it easy to dis-
tinguish, for example, the province state variable from the PROVINCE 
classification.

•	 Names of links begin with the letter l (for link). So a link to the mother has the 
form lMother.

�Appendix: Coding Standards
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Actor  Generally corresponds to an instance of the Person object. Analog to an 
individual in a real population.

Case  A case is a unit of simulation in Modgen. A case starts by launching the sim-
ulation of an actor. Events taking place during the simulation of this case may in 
turn create other actors within the same case (for example when there is a birth).

Derived State  A derived state is information generated by Modgen on the state of 
an actor at a given moment. For example, a derived state can detect a change in 
state or compile the value of a state variable at a particular moment (when there 
is a change in the state of another variable, for example).

Event  An actor’s state variables are modified in events. Each event function is 
paired with its own time function, which determines the exact time at which the 
event takes place.

Main file  This is the file which drives a Modgen simulation and usually bears the 
model name. It contains the Simulation function (containing the loop that gener-
ates the cases) and the CaseSimulation function.

User interface  This is the graphic interface of a Modgen compiled program.
Precompilation/Compilation  The action of transforming the model code into an 

independently executable program (which does not need additional software to 
be executed). In Modgen, compilation takes place in two phases. In the first, 
Modgen code is transformed into C++ code by the Modgen compiler: this is pre-
compilation. In the second phase, the Visual Studio compiler transforms the C++ 
code into an executable program. In Modgen 12, the two phases occur simultane-
ously when the project is compiled from the Visual Studio build menu.

Glossary
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Waiting time  Waiting time is the duration before the occurrence of an event. 
Modgen automatically orders and manages waiting time for all the events. It 
recalculates this time whenever there is a change in a state variable on which 
waiting times depend. For example if mortality risk varies with age, Modgen 
recalculates the time before death on each birthday.

Glossary
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