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Summary.

The problems and exercises in Strength and Stability that exceed the
bounds of the ordinary university course in complexity and their statement
are considered. The advanced problems liberalizing the readers and allow-
ing to see the connection of the Strength of Materials with some adjacent
courses are collected in this book. All the problems and exercises are ac-
compained with the detailed solutions. The set of new problems connected
with the development of computer methods and with the application of
composite materials in engineering are introduced in this publication.
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Preface

This is a book, written by the famous late Russian engineer and educator
Vsevolod I.Feodosiev, who formed the tradition of stress and stability analysis
for generations of engineers and researchers working in those fields, where the
Soviet Union accomplished the greatest technological breakthrough of the
20th century — a race into space.

Prof. Feodosiev continued the best tradition of the Russian engineering
school with his innovative and unique concepts based on deep penetration
into the mechanical and practical nature of problems. Four times revised and
republished in Russia and translated into some languages, the book became
a classical desk text for training of top mechanical specialists. Written with
a great pedagogical skill, it gives to the reader a fresh and original outlook
on analysis of some advanced engineering problems.

The research and educational work of Prof. V.I. Feodosiev was carried
out in the Bauman Moscow State Technical University (BMSTU), where he
studied and worked for over 50 years. For a long time Prof. V.I. Feodosiev
was head of the Space Missile Engineering Department.

His outstanding ability, extraordinary memory and diligence revealed it-
self quite early. Feodosiev’s final student project was qualified as a PhD thesis.
He was awarded his DSc degree for research in application of flexible shells
in machines when he was 27 years old.

For 50 years Prof. Feodosiev delivered in BMSTU his course of lectures
on strength of materials. His textbook of the course, republished more than
ten times, became the basic book on the subject for top Russian technical
universities and was awarded the State Prize. V.I. Feodosiev was awarded
also the Lenin Prize (the main scientific award in the Soviet Union) for his
contribution into fundamental tree-volume monograph ” Strength Analysis in
Mechanical Engineering”.

The fundamentals of strength and reliability in aero-space engineering
were published in his monographs: ”Elastic Elements of Precision Engineer-
ing”, ”Strength Analysis of High-Loaded Parts of Jet Engines”, ” Introd uction
into Missile Engineering”.

Deep insight into engineering problems, clearness of concepts and elegance
of solutions enhanced by undoubted pedagogical talent are the main features
of Feodosiev’s style.




VI Preface

I hope that the English-speaking readers will enjoy this brilliant and in-
structive book.

Valery A. Svetlitsky
Moscow Bauman State Technical Unwversity

From the Author’s Preface to the Russian Edition.

This book is not a collection of problems in the ordinary sense. The ex-
ercises are not intended for beginning students in a “Strength of Materials”
course but for those who have completed the course. Neither does the book
intend to interpret a full coursev, but it draws the reader’s attention either to
some specific problems that are not at all included in the course, or to such
problems that often escape the student’s attention not only in the process of
training but also in their further engineering activity.

The problem complexity is also different. Some are ordinary problems and
others are rather complicated. Some of them require only common knowledge
and quickness of wit and others require application of primary aspects of
the theory of elasticity. Many of them are complicated at first glance, but
their solution may be found to be unexpectedly simple. In other cases the
at first glance obvious solution may be incorrect. Even experienced readers
may find themselves making mistakes. That is why all problems are provided
with detailed solutions for those who are interested in the principles of the
problem-solving process, or to provide the possibility for testing the obtained
results in case the readers intend to solve the problems in their own manner.

Experience shows that students are often dissatisfied with the solutions
of typical problems presented in ordinary textbooks. Many students have
questions that are beyond the training course and require more fundamental
understanding. They naturally want to test themselves in solving more com-
plex and more interesting problems where alertness, knowledge, and intuition
are required. The book is aimed at the demands of those students, most of
all.

New problems appear not at a writing-table. They arise as a result of new
developments and sometimes simply by friendly conversations, as a result
of opinion exchange and creative search of suitable statements. The author
was fortunate for encountering such kind discussions with colleagues and
specialists and extremely thanks his lucky stars and friends for that.

Vsevolod I. Feodosiev




Part 1

Problems and Questions







1. Tension, Compression and Torsion

1. System consisting of two rods is loaded simultaneously by forces P;
and Py, directed along rods (Fig. 1a). Strain potential energy is obviously
equal to

P2y n P2ly
2E1A;  2E5A,
If we take partial derivatives of potential energy with respect to forces P; and
P, we shall obtain displacements of point A in directions 1 and 2 (u; and
uo, Fig. 1b):
Pl Pl
e EA v 2E5A,

U =

Fig. 1 Fig. 2

Show graphically the full displacement of point A.

2. Plane truss (Fig. 2) consists of n > 2 equal and equally spaced rods
connected in common node. The force P acts in the plane of the truss. Show
that the displacement of the node O is always directed along the force P and
that the value of this displacement does not depend on the angle «.

3. An absolutely rigid slab has a hole. An elastic bolt is inserted into this
hole and is tightened with the force of preliminary tension N;. The force P
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is applied to the nut after the tightening (Fig. 3). What change in the force
accounting for the bolt will occur under this condition?

Il
T k , ;
; 7 |
/// N7 %/// d
/ a7 / |\ 74
A /% // 7
/ ! //// T ‘
~T | \ ™~ \~ ‘ §
Y I N
[ N [ N\
P11 L]
N\ \
p P
Fig. 3 Fig. 4

4. Predicative of the previous problem is complicated by the fact that an
elastic spacer is installed between the lower nut and the slab (Fig. 4). What
change in the force acting on the bolt will occur in this case after applying the
force P to the lower nut if it is known that the spacer’s thickness decreases

P
under compression with the force P by the value A = — where ¢ is the
c

stiffness of the spacer?

Tested specimen

Fig. 5

5. The following experiment was carried out to determine the elasticity
modulus of some material under compression. The cylindrical specimen was
compressed between two massive steel slabs (Fig. 5).
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Two indicators were installed for measuring of the specimen’s strain with
the consideration to exclude the error caused by misalignment of slabs. The
measurements showed that the elasticity modulus of tested metal under com-
pression is E = 80 GPa.

Can we be rely on this result?
And in case not 80 but, say only 5 GPa... What then?

6. A straight rod of constant cross-section is rigidly clamped at its ends
(Fig. 6). Show without calculation that no axial displacements occur under
homogeneous heating,.

s
[ |
o
x .
$———* % i
7
N _’é_ i |2
% X |
AN 7 Z LY :
€ > F N
Fig. 6 Fig. 7

7. Let us set the previous problem in another way. Determine the law
of the rod’s cross-section area change A(x) which is necessary to obtain a
specified law of axial displacements’ change u(z) in the homogeneously heated
rod.

8. A rod clamped at its upper end is loaded with axial force P (Fig. 7).
There is a clearance A between the rod’s lower end and rigid lower support.
The lower clearance vanishes under P > FAA /1. Then the lower supporting
force N is determined from the condition

gP—Nl NI

A .
EA EA ’
therefore the force in the rod’s lower part will be
P AEA
N==—_==—"£,
2 [ 2
The upper part is strained with the force
P A EA
P—-N=—+4——
2 [ 2
So the displacement of force P application point will be
Pl A
6 . — —
2EA "

Let us determine the elastic energy, stored by the rod. On the one hand this
energy can be determined as the sum of energies contained in the upper and
lower parts of the rod, that is
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(P—N)*1 N2 P2 EAA?
- , or U= + (1)
2EA 2FEA 4F A 41
On the other hand this energy is equal to the work produced by the force P
at displacement 6 , that is

PA P33  PA
U= 2 ’4EA+ 4 2

As one can see, the expressions we have obtained are different. Which of these
expressions is correct and which is not?

U =

9. Straight uniform rod (Fig. 8a) sits on rigid foundation. Let us find the
displacement of the rod’s centre of gravity under action of its dead weight.
There are two ways to do it.

® e  ©

2FA

c.g. c.g.

de A
36112 % Yeg
¥ r SEA Yy

e s I
Fig. 8

(S
(NS T

Furst method. We find with the usual technique the displacement of the
point (centre of gravity), situated at a distance of [ /2 from the foundation
{see the epure of displacements, Fig. 8b). This displacement, as one can easily
check, will be equal to

3 ql?
A=t (1)

where ¢ is the rod’s dead weight per unit length (linear weight), EA is the
compression rigidity.

Second method. We find the distance from the foundation to the deformed
rod’s centre of gravity (Fig. 8c). This distance will be the following:

l
[ (x—u) dm
0
oy = —— . ©
Here dm is the mass of element having length dz :
dm = gdw , m = gl ,
g g
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u is current displacement which is determined according to epure (Fig. 8b)
by the formula

v=5a(-3)

Substituting u, m and dm into Eq. (2) and integrating we find
_ 1 14l
Ter =9 T 3EA
Therefore the sought displacement will be

l 1 ql?
A==—x,y =777, 3
2 T T 3 A 3)
that does not converge Eq. (1) obtained previously.
What is the reason of the discrepancy?

10. Flexible filament laying on horizontal plane is strained with force T}
between two fixed supports (Fig. 9).

A5 TS TS S
VN wm _‘//%

Fig. 9
As the supporting plane is taken away the filament will weigh down.
Clear up, how the sag w,.x depends on initial tension force Ty and the
filament’s linear weight ¢, considering that the filament’s tension rigidity £ A
and filament’s length [ are given.

iV ; i p i ; f { i i 3 aro Iy ;
P AN AN AN NI I hp
-— | |I? | | B | | | | —
PN N AN A~~~ h;

./

'l:’,lf,lz’, IJ,'le’,le’,'
AR N A A
“llooooioooo|
¥ "

Fig. 10

11. How can we find the force distribution between rivets I, II, III, IV of
the rivet joint, shown in Fig. 10, if the results of the following preliminary

experiment are known?
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Three sheets having thicknesses hi, ho and h; and width b joined with
one rivet are tested for tension (Fig. 11).

Depending on force T the change of distance between points A (at upper
sheet) and B (at middle sheet) shown in Fig. 11 is established by precise

measurements. This dependence has the following appearance: Aa =T / k
where k - constant. The measurements’ base a was chosen sufficiently large
to consider stresses distribution in cross-sections A and B to be uniform.

B B Yy hy
AV A 113 VS IIIY
T{ v N N e T
AT | h,
a2~ a’2 h
- i - 1
Fig. 11

12. Generalize the solution of the previous problem to the case of an
arbitrary number of rivets n.

1 [P

Fig. 12

13. Bolt and nut (Fig. 12) are stretched by force P.

Reveal the law of normal force distribution along the length of bolt and
nut (as a function of z) if the force occurring at each thread turn is known to
be proportional to the mutual displacement of bolt and nut t = k (up — uy,) ;
t is force occurring at unit length, k is an experimentally determined co-
efficient, wu, — u, is mutual displacement of bolt and nut due to thread
deformation (Fig. 12).

14. Bolt with nut screwed on it (Fig. 13).is strained with forces P.

L0 L
2_|____V_fg____J _______ P | ————— ]
o 777

X,
[ [
Fig. 13 Fig. 14

Under the conditions of the previous problem reveal the law of normal
force distribution and force at thread along the length of screw and nut.
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15. Nut is screwed on bolt (Fig. 14). The nut’s pitch of thread is smaller
than the screw’s pitch of thread s by the value A. What is the law of distri-
bution of forces occurring under this condition in bolt and nut and what is
the force at thread if, as in the two previous problems, t =k (up — uy) ?

16. What constructive design of nut (the first or the second type, Fig. 15)
provides more favorable working conditions for thread turns?

‘l| I%

17. In connection with the problems considered above one similar addi-
tional problem can be set.

An elastic homogeneous continuum contains sufficiently rare and uni-
formly distributed in volume inclusions having the form of finite length paral-
lel fibers. It is necessary to determine the nature of force interactions between
continuum (filler) and fibers under axial tension (Fig. 16).

Fig. 15
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18. What does the elongation test diagram (o, €) look like and what is the
breaking point for a filament bundle composed of elastic brittle filaments?

19. Three identical rubber rods (Fig. 17) are loaded by the force P.

60 PIN]

50 )%
30 /]
20 //
10 Al

0 1 2 3
Fig. 17

Determine the displacement of the nodal point A in its dependence on

force P, if the elongation diagram is given in the form of the curve shown in
Fig. 17.

20. A cdircular two-ply rubber-cord cylinder is under action of internal
pressure (Fig. 18)

——
P

Planar evolvent of cylinder
N~

S

XS
0

:
i
=

o
e

7
%

X
N

Q?

Fig. 18

There was observed that depending on the threads’ arrangement angle «
the cylinder, being deformed under action of internal pressure, may take one
of the forms shown in Fig. 19.

—

i | i

|

@ : C)i ©) }
| | \

| | |

Fig. 19
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In case 1 the deflected cylinder generatrix convexity is directed outwards,
in case 2 - inwards. In case 3 no perceptible deformations are observed and
the cylinder preserves its form to the extent in which the threads may be
considered inextensible. What values of angle a does each of the observed
deformation types correspond to?

21. A thin-walled sphere is reinforced with a multitude of rigid filaments
arranged along the meridian (Fig. 20).

Filaments Steel

Fig. 20 Fig. 21

Experiment shows that if the air is pumped inside the sphere under pres-
sure then the sphere will enlarge at its equator, shorten along the axis of
revolution and taking the form of a pumpkin. Determine the extent of flat-
tening for this form neglecting rigidity of the rubber shell.

22. A steel ring is fitted with specified tightness on aluminium one
(Fig. 21). Experiment shows that in some cases after heating and follow-on
cooling internal ring slips out of the external one.

Determine what conditions this phenomenon is possible under.

What data are necessary to obtain numerical evaluation of the above-
mentioned phenomenon?

23. A thin ring is freely fitted on a massive rigid cone (Fig. 22).
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Cone and ring are simultaneously subjected to influence of periodically
changing temperature. How may this influence have an effect on the ring’s
location along the cone axis? In other words, will the value A be changing in
time?

24. There is an absolutely rigid rod and a thin elastic tube having an
internal diameter less than the diameter of the rod by a value of 2A. The
tube is heated and fitted on the rod (Fig. 23).

)
I<—>|
- A
| _ 2R 777777777777777777
‘ ] % ” |
Fig. 23

Hoop stresses and (in the presence of friction) also axial ones arise in the
tube while cooling.
Determine the character of distribution of stresses arising within .

25. Let us complicate the previous problem situation. Determine the
force P which one needs to apply to the tube in order to take it off the
rod (Fig. 24). Consider two variants: a) the force P is compressive; b) the
force P is tensile.

4 B

//C

I — /
o ® A \\/’/

Fig. 24 Fig. 25

26. Show that under torsion of a prismatic rod, with a cross-section in
the form of a polygon, tangential stresses in any external angle A, B,C, ...
(Fig. 25) are equal to zero.
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27. Tangential stresses T proportional to the distance r from the rod’s
axis arise in a straight circular rod under torsion (Fig. 26).

According to the twoness law the same tangential stresses 7 arise in the
plane of the rod’s axial section. Stresses T produce the resulting moment

relative to the z axis. The cut off part of the rod must be in equilibrium
state. What does counterbalance the mentioned moment?

y<

.........

TYYYVYV Y, ‘\ '
|||||- \. l

28. How does torsional rigidity of a thin strip depend on axial tensile
force P (Fig. 27), acting simultaneously with torque M ?

Fig. 26

»
€

Fig. 27

29. A circular shaft (Fig. 28) inserted into a tube is kept in it by friction
forces. The value of tightness contact pressure which produces these friction
forces as well as the value of the friction coefficient may be considered con-
stant for the whole contact zone with sufficient degree of accuracy. Equal
and opposite moments M are applied to shaft and tube. Under M > M,
shaft and tube are turning relative to each other. It is necessary to sketch
the torque epure for shaft and tube under M < M.

OM MQ
e e ——— T

V@ 5 i ~ él
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30. How can the strength of a glued joint between a rigid gusset plate
and rigid foundation be estimated under arbitrary shape of the glued spot

(Fig. 29).

i P
Gf'ye l
e

Fig. 29

The shape of the glued spot is known. Tangential stress arising in the glue
layer is proportional to the local mutual displacement of the glued members.
Breaking stress for the glue is given.

31. Let us draw an arbitrarily closed curve in the cross-section of a twisted

rod (Fig. 30).

M

Fig. 30

Tangential stresses in each point of the curve are decomposed to normal
T, and tangent 7, components relative to the drawn contour. Normal stresses
in the cross-section are absent (torsion is unconstrained).

Prove that regardless of the rod’s cross-section shape and drawn curve
shape the following formulas are valid:

]{ Tpds =0 (1)

S

j{ Tsds =2GAY , (2)
S

where ds is contour arc element, G is shear modulus, Ay is area enclosed
within the curve, ¥ is twist angle per unit length of the rod. (Integration
applies to the whole contour of the closed curve).
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32. As known, secondary (indirect) normal stresses arise in cross-sections
of narrow rectangular strips under torsion. Tensile stresses arise near the
edges of the strip and compressive ones — in its middle (Fig. 31).

Fig. 31

What parameters and do these stresses depend on in the case of arbitrary
shapes of a thin-walled profile?

T T
N 7

Fig. 32

33. A cylindrical rod is twisted by moments m uniformly distributed over
its surface which are counterbalanced with moment M at the flank (Fig. 32a).

Tangential stresses ¢ in cylindrical and axial sections arise under such
loading in addition to usual tangential stresses 7 acting in the cross-sections
(Fig. 32b).

Determine the distribution of these stresses throughout the rod’s volume.
Make a comparative 7 and ¢ values estimation.

34. Shear stresses 7 in a rod’s cross-sections under pure torsion can be
decomposed to two components 7, and 7, (Fig. 33).

y Y%
B
a’yﬁ %
7k Iz Ze
>
Y z
\ —Z Mz
N | ‘y,
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Torque in the cross-section is obviously determined by the following ex-
pression:

T://Txydxdy—//Tymd:vdy.
T y Yy

Show that regardless of the rod’s cross-section shape the following formulas
are valid:

T
Ty

Ty

|




2. Cross-Section Geometry Characteristics:
Bending

35. Derive without integration the product of inertia J,, of a right triangle
with respect to the centroidal axes parallel to its legs (Fig. 34).

Fu Yy

\x
N

Fig. 34

36. Find the geometric locus where polar moments of inertia for a plane
figure are constant.

37. Prove the following statement:

If it is possible to indicate more than one pair of noncoincident principal
axes for the set of axes intersecting some point then we may assert that in
general every axis passing through this point is principal.

38. For an arbitrary plane figure find the point possessing the property
that every axis, passing through it, is principal.

39. Let us consider a beam loaded by two moments M (Fig. 35). No
stresses occur in the neutral plane OO under pure bending as is well known.
Accordingly, force interactions between upper and lower parts of the beam
in this plane are absent. Then one can divide the beam by the cross-section
OO into two thinner beams and this will have absolutely no effect on system

operation.
M M
i 0

4

Fig. 35
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”( )M
Fig. 36
From another point of view doubts arise if such action is legal. As you see,
these two beams set together and loaded by moments M will bend in such
a manner that longitudinal sliding will occur at the contact surface (Fig. 36)
and the stress diagram at a normal cross-section of both beams will be quite
not the same as it was in the whole beam.

So how is that? May the beam be divided into two parts so that this will
not influence its operation or not?

40. How to square a round log in order to obtain a beam of rectangular
cross-section having maximal strength under bending (Fig. 37)?

%
R

\_

Fig. 37

AN\,

41. As is well-known the neutral axis of a high curvature rod under bend-
ing does not coincide with the cross-section centroid and is slightly displaced
towards the curvature center of the rod’s axial line.

If the rod is not only bent but is also tensed, then the resultant stress
diagram neutral axis may be displaced, generally speaking, at any value de-
pending on the magnitude of tensile or compressive load.

What distance  from the curvature center O should the load P be applied
to the high curvature rod (Fig. 38) in order to obtain coincidence of the
resultant stress diagram’s neutral axis with the centroid of the cross-section

I1-17

< /]
! T

Y

Fig. 38
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42. It is known that a straight beam of constant rigidity effected by an
external moment M (Fig. 39) is bent taking the form of a quadratic parabola

M "
YT EI 2
On the other hand, we know the following expression
1 M,
o=t @
p J
7 M
I z
Fig. 39

1
If M, and E J are constant as we supposed for our case, then — is constant,

too. But only an arc of a circle has a constant curvature and not a parabola.
So how will the beam bend: by arc of parabola or of circle?

43. What distance z from the beam end should the load P be applied to
in order to obtain a deflection of point A equal to zero (Fig. 40)?

<L>lp

l

e -
Fig. 40

A

NNNN\N\N

44. A rectangular polyline beam (Fig. 41) clamped at its lower end is
loaded by force P at the other end. Select the force inclination angle « in
order to obtain displacement of point A in the line of force P action.

l P
e

A

Fig. 41
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45. Draw configuration of deflection curves for the systems shown in
Fig. 42.

@) 1 ! ! !
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Z k§§
;P
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Fig. 42
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46. In which direction will point A displace (Fig. 43)?

Fig. 43

Upwards, downwards, left or right?

I

47. The frame shown in Fig. 44 is loaded by force P. Is the rod AB tensed

or compressed?

20

A
Fig. 44

1\4' £ .
£ |
»
N 17
P
Y
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48. The deflection curve configuration of a strongly bent flexible rod
(Fig. 45) under specified value of load P is obtained experimentally.

Fig. 45

What is the simplest way to calculate the possible reactions of supports?

49. A massive device of weight 2P is installed in a ring frame (Fig. 46).

a | R a

% £J

£J ;

Fig. 46

Select dimension a in order to provide the maximal suspension member
stiffness value. Flexural rigidities of ring and beams are equal.

50. Which of the three frames shown in Fig. 47 is the most rigid, ie.
provides minimal displacement §4 under action of load P? Dimensions of
cross-sections are the same.

Yyl o % 7

7 0.
Ay A 4y P

7/ 7 V//4
Fig. 47

51. Suppose that you take a piston ring (Fig. 48a) in your hand. If you
compress it by its diameter you will notice that compliance of the ring changes
depending on the direction of compression. Let us simplify this problem by
presenting the ring coupling at point A as a pin.
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@ a g b | Z

A
<0

P P

Fig. 48

Calculate the angle « (Fig. 48b) under which mutual displacement of
points B and C will be minimal if the magnitude of load does not vary.

52. A square frame is produced by welding of the profile shown in Fig. 49
and is loaded by four forces P.

Fig. 49

Will the diagonal AB of the frame increase, decrease or remain unchanged
under action of this system of loads?

53. A coiled cylindrical spring fixed at its left end is loaded by lateral
force P at its right end (Fig. 50). Determine vertical displacement at the
load’s application point. The helix angle should be considered as small.

7 iP

Fig. 50
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54. The balance spring of a hand or pocket watch is a plane spiral band
(Fig.51). The outer end of the band is clamped and the inner end is rigidly
attached to the barrel fitted at the balance axle. The barrel rotates during
balance oscillation and the spring band is bent. Such a case of loading is
in general not pure bending, as shear forces and longitudinal ones may oc-
cur in spring cross-sections. The presence of such forces is undesirable for
watch mechanism operation as they increase friction in supports, cause the
distortion of balance axle and decrease precision of watch running.

Clarify the geometric conditions required for spring configuration to pro-
vide its pure bending under small rotation of the barrel.

Balance yZ
axle Y , L 7
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Fig. 51 Fig. 52

55. A plane spring consisting of two sheets with lengths 2/ and 3I, corre-
spondingly, is subjected to load P at its right end (Fig. 52a).

Determine how the spring deflection and stresses change if the sheets
are fastened together at distance ! from the clamped end (Fig. 52b). The
constraint is assumed to be close but allowing free longitudinal displacement
of sheets.

56. The spring comnsisting of three sheets with lengths 6/, 4/ and 2I
(Fig. 53) is loaded by the forces P.

61
41!

P 20 | P

2P
Fig. 53

Determine deflection of the spring and find stresses in the sheets under
action of a specified load. Friction should be neglected.




2. Cross-Section Geometry Characteristics: Bending Part I. Problems 25

57. A beam of length 5/ (Fig. 54) is under action of load P. The depen-
dence of load application point deflection f on load P has apiece-wise linear
character. Its form is defined by restraints on beam deflection due to four
equally spaced supports placed under the beam with the same clearance.

RANNNNNRNNY

dP
Analyze how will the stiffness ¢ = — change as the force P increases.

df

58. A flat spring of constant cross-section (Fig. 55) under bending is
laying on a rigid mould having a profile specified by the function y = y(z).
The question about adjacency of the spring to the mould arises first of all
while considering spring sags. Two principal cases are possible here:

ANNNN\N

Fig. 55

1) The spring is closely adjacent to the mould at the segment from the
clamped end to some point (Fig. 55a);

2) The spring touches the mould at one point only (Fig. 55b).

Establish the conditions when one or another mentioned type of adjacency
will take place considering that function y(z) is monotonic as well as its lower
derivatives and that y is significantly less than z.
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59. A homogeneous straight beam of length [ and weight P lies on a solid

plane (Fig. 56). Derive stresses arising in the beam under application of load
P/3 at its end.

;A
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Vi dd
Fig. 56
60. A flexible sloping spring having the form of a radius R circle arc is

pressed down to a rigid plane by two forces (Fig. 57). What magnitude of
forces P is necessary to put points A in contact with the plane?

PJ’ R/\/ J{P ) q(x)
A 7 /ﬁ%nmvvvv&”
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Fig. 57 Fig. 58

A

61. Is it possible to select such a law of load distribution g(z) being not

identically equal to zero (Fig. 58) and that the beam’s axis would remain
straight?

62. An elastic ring is fitted with interference but without friction on a
rigid bush (Fig. 59). Which limit value the force P should not exceed so that
the contact between ring and bush would not open? The inner diameter of
the ring in its natural state is less than the diameter of the bush by value A.
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Fig. 59
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63. Let us change the predicative of the previous problem so that
two equal and oppositely directed moments are applied instead of force P

(Fig. 60).

64. A split elastic ring of inner diameter D — A is fit over a rigid axle of
diameter D (Fig. 61), i.e. the diameter of the ring is less by A than the axle
diameter. Evidently the ring is slightly bent off under fitting.

[

Fig. 61 Fig. 62

Determine the law of bending moment variation along the ring’s contour
and reveal the character of force interaction between ring and axle.

65. An elastic beam is fitted without clearance and friction in the hole of
a solid base (Fig. 62). It seems evident that under loading by lateral force P
the beam will slide out from the clamped support. But... it is not clear what
forces will be responsible? What will dynamometer D show if friction forces
are absent?

66. Two beams of channel cross-section are tied by narrow lateral strips of
high stiffness welded at upward and downward shelves. The compound beam
constructed in such a manner is clamped at one end and loaded by forces P
at another end (Fig. 63). What forces will the lateral strips take up?

Fig. 63 Fig. 64

67. Analyze the shear stress distribution in a closed thin-walled triangle
profile under lateral bending (Fig. 64).
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68. Determine the shear stress distribution law in a beam cross-section
of varying thickness h (Fig. 65).

Fig. 65

69. A very long whole beam consisting of a great number of equal spans
is loaded by moment M at the left end (at first support) as shown in Fig. 66.
Derive bending moment and slope of the beam at the i-th support.

W
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Fig. 66

70. Solve the previous problem in case of a finite number n of supports

(Fig. 67).
M
1 2 3 4 n-1 n
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Fig. 67

N

71. Disclose static indeterminacy of the system shown in Fig. 68 applying
displacement equations. Under loading of the frame by force P, point A slides
with friction along the rigid horizontal plane. The friction factor is f. The
flexural rigidity of each frame segment is equal to EJ.

- a o p
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72. A geometrically unchanged system consisting of rods joined by pins is
called a truss. Truss rods are only tensed or compressed under loads applied
to truss nodes.

In real structures truss rods are joined rigidly (not pinned) by welding
or by riveting. Is it admissible in this case to analyze truss considering that
rods are tensed or compressed only and neglect the rods’ bending? If rods
are joined rigidly then in fact the truss ceases to be a truss and transforms
into a frame, isn’t it?

73. Determine the axial displacement of a slotted spring (Fig. 69) com-
pressed by load P. Assume that cross connections between rings have stiffness
considerably higher than other parts of the spring.

.
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Fig. 69
The spring dimensions are shown in Fig. 69.

74. Show that the internal moment M, diagram area is equal to zero for
any closed contour of constant rigidity plane frame, i.e.

/]\/frds =0.

S

75. Show that area the restricted by the contour of a non-stretched plane
ring frame under bending by a system of plane loads in case of small dis-
placements remains unchanged that is equal to 7R? (Fig. 70).
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76. Two sheets of the same thickness h and width b are glued together so
they overlap (Fig. 71). The sheets are bent in the plane of drawing. Determine
the law of load transfer from sheet to sheet considering that the glue layer
is elastic. The thickness of the glue layer is ¢, the modulus of elasticity and
shear modulus are E; and G,.
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Fig. 71
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77. So-called bimetallic elements are often used in various temperature
regulators. The bimetallic element consists of two rigidly adjoined metallic
strips of different temperature expansion factors oy and oy (Fig. 72). The
bimetallic plate under heating is bent due to different elongations of its con-
stituent parts. If one end of the strip is clamped, then the other - free - end
deflects by some value. The displacements obtained in such a manner are
used as a source of motion and of required mechanic load. Study the influ-
ence of the strip’s geometric dimensions and of heating temperature on the
strip curvature.
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Fig. 72

78. A bimetallic ring having the dimensions shown in Fig. 73 is heated up
by temperature t. Determine the ring cross-section rotation angle ¢ assuming
the cross-section shape to be unchanged. The thermal expansion factors of
ring constituent parts are ayand as.
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79. The temperature regulator of a thermostat is designed as to have the
bimetallic plate installed as shown in Fig. 74 as the sensitive element.

) VI V77
1

Fig. 74

According to the designer’s concept the plate begins to bend under the
rise of temperature. When the temperature rises up to a specified value the
contact A will close and relay controlling thermostat heating will operate.
Can such a system actually operate?

80. Prove that the closed plane bimetallic frame of a constant cross-section
does not change its curvature under uniform heating independently on frame
contour configuration (Fig. 75).

Fig. 75

81. A cantilever beam of rectangular cross-section (Fig. 76a) is loaded
by force P directed along the diagonal of the beam’s cross-section. Let us
assume that the material is ideally elasto-plastic (Fig. 76b). Calculate the
limit value of the bending moment in the beam.




32 2. Cross-Section Geometry Characteristics: Bending Part I. Problems

82. A simply supported concrete beam has a rectangular cross section

b x ho (Fig. 77).

v
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Fig. 77

Bending moments and corresponding stresses arise in the beam under
action of its own weight forces. In order to strengthen the beam its thickness
was increased directly at the exploitation place by putting thin layers of
concrete on the beam. Thus the thickness was brought to the value H. Each
layer of concrete was put on only after complete solidification of the previous
layer. Derive the law of stress distribution along the cross-section height under
own weight forces action, neglecting the effect of concrete shrinkage. How will
the solution of the problem change in case of concrete solidification with a
relative shrinkage factor a?




3. Complex Stress State, Strength Criteria,
Anisotropy

83. A hollow cylinder of internal diameter d; and external diameter ds is
loaded by the pressure uniformly distributed: a) over top and bottom faces;
b) over internal and external cylindrical surfaces; c¢) over the entire surface

(Fig. 78).

@b

Fig. 78

Determine the internal diameter variation and the internal cavity volume
variation for each of the given cases.

84. Determine the principal stresses for the stress state shown in Fig. 79.
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85. For the general case of the stress state (Fig. 80) show:
1) whether the conditions

Tye =kOp, Tys =kTee, 0y = kTyy, (1)
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where k is some constant, are valid for two mutually perpendicular planes
(for example, for planes, perpendicular to the z and y axes), the stress state
can’t be triaxial (it is biaxial or uniaxial).
2) whether besides the relations (1) the following conditions
Tox =NOg, Op =NTgy, Tay =NTay (2)
are valid and whether then the stress state is also uniaxial.
86. Determine which of the two stress states (Fig. 81) is more danger-

ous according to energetic criteria of strength without determining principal
stresses and without calculating o,.
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87. Plot the 0., diagram along the generatrix of the cylinder (Fig. 82)
filled with lLiquid of specific weight v up to the height H according to the
criterion of maximum shear stresses. Assume during solution that the cylin-
der is thin-walled and bending stresses arising in its walls have no essential
significance.

88. A thin-walled tube (Fig. 83) is loaded with internal pressure p and
with bending moment M.

=

M

)
|h Ji
1 ~—
Fig. 83

Using the maximum shear stresses strength criterion analyze the calcu-
lated o4 stress dependence on moment M under given pressure p.

89. A thin-walled spherical vessel of radius R = 0.5 m and of thickness

h =1 c¢m is loaded with internal pressure p; = 32 M Pa and external pressure
po =30 MPa (Fig. 84).
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It is necessary to determine a vessel wall’s safety factor s, if the yield
limit stress of its material is known to be o, = 300 M Pa.

Let’s consider an element taken from the wall near the internal surface
of the vessel (Fig. 85). Main stresses 07 and 0 are calculated by the known

formula for the spherical vessel: 01 =09 = %R, 03 =—p1 .
o
%
7
Fig. 84 Fig. 8
According to the theory of maximum shear stresses
p1—p2) R
”eqzﬂl—(’s:(lTQ)ﬂLpu
2-50
Ueq = +32:82]V1’Pa,
2-1
oy, 300
=—= =— =366.
T, T 82

Will the above solution be correct?

90. A thin-walled tube of thickness & is tightly fitted over a solid cylin-
der but without interference (Fig. 86). The system is plunged in liquid and
effected by uniform pressure p. Starting from maximum shear stress strength
theory conceptions ascertain conditions under which the loss of the tube’s
elastic properties is possible. Elastic constants of the cylinder and tube are
given.

N
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Fig. 86
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91. An absolutely flexible thin wire is placed into the vessel (Fig. 87).
The ends of the wire are taken out through the holes in the vessel bottom.
Gaskets are ideal made, and there is no friction between them and the wire.

Fig. 87

How will the wire behave, if the pressure p is pumped inside the vessel?
What stress state will be in the wire?

92. In one of the books on hydraulics we discovered a description of an
experimental assembly for liquid compressibility coefficient determination.

“While determining compressibility of a liquid it is necessary to eliminate
the influence of the vessel’s extension under pressure action. For this purpose
vessel A, filled with tested liquid C' and mercury D, is placed in a Reknagel’s
apparatus filled with water (Fig. 88). Pressure produced on the plunger will
according to Pascal law act on mercury and through it on the tested liquid
in vessel A, thus compressing it. Vessel A experiences the same internal and
external pressure which is why it is not able to change its volume capacity”.

Will this arrangement of the experiment eliminate the influence of vessel
volume changing under pressure action?

P AP AP

(1) 2

Fig. 88 Fig. 89
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93. Two rods of soft steel are tested for tension (Fig. 89). The first rod of
diameter d is smooth. The second rod has a narrow ring recess. The diameter
of the weakened cross-section is also d.

Which rod will withstand greater static load under otherwise equal con-
ditions?

94. What methods can you suggest for embodiment of pure shear?

95. By what method can the all-round uniform tension stress state

((71 =09 =03 :(T>O)
be put into practice?

96. It was found that while studying material properties under high pres-
sures the straight cylindrical rod loaded by pressure along the cylinder surface
and free from faces can be torn under sufficiently high pressure with forming
of a neck as shown in Fig. 90. So-called “cross-cutting” will take place.

Explain the reasons of this type of breakdown.

EEREEEEEREEN

Fig. 90

97. A specimen with annular recess was made from material having the
tension diagram shown in Fig. 91la. The normal stress diagram along the
cross-section in the recess zone according to the theoretical investigation of
G.V. Ugik [20] has the form of the curve shown in Fig. 91b.
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However, from the tension diagram one can see that o,,., cannot be
greater than o,. Thus the stresses diagram, shown above, gives reason for
doubts in its validity and in the correctness of calculations by which it was
obtained.

Are these doubts justified?

98. There is a long stretched strip with a hole (Fig. 92). Can you show a
point where the stress state will be uniaxial compression with the same stress
o as when the strip is stretched?
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Fig. 92

99. A thin-walled circular cylinder with a small hole in the wall is twisted
by moments M and simultaneously stretched by forces P (Fig. 93).
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Fig. 93

If the cylinder was only twisted, then maximum stress o,,,x would take
place in points A (Fig. 93a) and would be equal to 27. If the cylinder were
tensed only, then stress o,.x would take place in points B (Fig. 93b) and
would be equal to 3o.

What is 0.« when torques M and forces P act simultaneously? What
point will this stress occur in? Ounly local stress reference data should be used
for solution.

100. A straight beam of circular cross-section is twisted by two moments
M . Plastic deformations occur in the beam under this loading. How can the
relationship between torque moment M and twist angle § be determined if
the tension diagram of the material 0 = f(¢) is given?
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101. What number of elastic constants does one have to introduce in
order to characterize the elastic properties of wood completely?

102. Elastic constants of a composite material were obtained after test-
ing of its sheet. It was determined that E;/Ey = 16 and py; = 0.32. The
result was shown to a specialist who categorically said that there had to be
a mistake.

What was his confidence based on?

103. A sheet of plywood is an example of an anisotropic plate. If we cut
from it two differently directed strips (Fig. 94) then during tensile testing
they will obtain different elongations under equal force.
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Fig. 94

Let tensile elasticity modulus of the first strip be Ey; and of the second -
Eo;.

Can we say that deflections f; and fo of the strips under bending will
relate as Foyy/FE14?

104. The wire netting of a “halffang” braiding (Fig. 95) is loaded in its
plane. If the number of cells is large then the netting can be treated as a
solid medium with anisotropic properties. The reduced moduli of elasticity
along axis 1 and 2, Poisson’s ratios and shear modulus are to be determined.
Parameters of cells a,b, @ and bending rigidity of the wire are given.
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105. For the determination of “filament-matrix”-type composite materi-
als’ reduced (averaged) stiffness characteristics the following model is often
used (Fig. 96). Constituent elements of the composite are represented as in-
terlacing strips attached to each other. Elasticity moduli of the strips for
filament and matrix will be E; and E,,, respectively.

Fifament
Matrix

“‘-\1

Fig. 96

Determine the elasticity moduli of the composite along axis 1 and 2,
respectively.

106. The elasticity modulus of a crosshatch reinforced (+¢ ) material
(Fig. 97a) was found by testing one-directional reinforced specimens that
were cut off by the angle ¢ to the axis of tension (Fig. 97b) for simplicity.

o 4P

N

Fig. 97
Is it permissible to use such a method?
107. A tensile test was carried out for two specimens cut from sheet

material in two orthogonal directions. Moduli of elasticity occurred to be
equal. Does it prove that the sheet is isotropic in its plane?




4. Stability

108. A slender elastic rod is installed in a vertical guide (Fig. 98). The low
end of the rod is fixed in a moving plug supported by a spiral spring having
stiffness ¢ (A = P/c). As compressive force P grows the length of the rod’s
prominent free part [ — A\ decreases and the length of the rod’s lower part
A increases. What value of stiffness ¢ is necessary to prevent buckling of the
rod’s upper part as well as of the lower one while the rod moves down to

value [ 7
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109. A shaped plate is fastened and loaded as shown in Fig. 99. Determine
the critical force for the plate in two cases:

1) force is directed downward; 2) force is directed upward.

The bending rigidity of the middle part is equal to the sum of the outer
parts’ rigidities.
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110. A long bolt is inserted with clearance into a tube (Fig. 100).
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Fig. 100

Determine the bolt tightening force P under which the system will loose
its stability. The tube has such dimensions that it must be analyzed as a long
rod, but not as a shell. Bending rigidity of the tube is E;J;, of the bolt -
EsJs.

111. Find the critical buckling value of force P for the column shown in
Fig. 101. The ends of the column are pinned and have neither horizontal nor
vertical displacements.
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Fig. 101 Fig. 102 Fig. 103

112. The pin-ended column (Fig. 102) is heated uniformly. Let’s find the
normal compressive force supposing that the supports are absolutely incom-
pliant. It evidently has the value N = atEF. Under force N = n2E.J/I*
the straight-line mode of the column’s equilibrium becomes unstable and the
column Will2 buckle under further heating. Then the critical temperature will

meJ
be t., = T

However, there is the following doubt concerning this result. While we
consider the problem of buckling for a column compressed by load P we
suppose that force P does not change during buckling and is independent on
column bending. And in the given case force N must decrease even under the
smallest bending of the column, so there is no reason to apply formally the
solution of Euler’s basic problem to this case. That is why the critical force
N here may be something different than 72E.J/I%.

How can we clear this doubt?
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113. The energy method is the main approximate method of critical force
calculation. The sought buckling mode is taken approximately. This function
must satisfy boundary conditions and be as close as possible to true equilib-
rium mode which is unknown to us but intuitively proposed in accordance
with problem physical essence.

The question is whether the danger of obtaining an inexact value of the
critical load exists here even when the approximate function is infinitely close
to the exact shape of the rod deflection curve?

114. Find the critical force for the outrigger shown in Fig. 103.
The rods are clamped at left ends and rigidly connected with each other
at right ends. Assume that buckling occurs in the plane of the rod system.

115. A plane square articulated frame consisting of rigid rods is stiffened
by two elastic diagonal rods of length 2! connected with each other (Fig. 104).

Fig. 104

Diagonal rods have a rectangular cross-section with measures b and A
(b >> h). If the frame is loaded by force Pv/2 as shown in Fig. 104 then one
diagonal is stretched and another is compressed by forces P.

What value of force P will cause the rods’ buckling out of the frame plane?

116. It is well known that a long straight rod twisted by two moments can
loose its stability under certain conditions. Such type of buckling is observed
in the most visual form in case of thread and cable torsion.

Fig. 105

If the thread is twisted, it quickly obtains a curvilinear shape approxi-
mately like the one presented in Fig. 105. It is absolutely evident that if the
thread is stretched under torsion then we obtain a visible increase in torque
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under which the thread looses stability. It is always necessary to stretch a

cable during winding processes.
/s

Fig. 106

Taking a simply supported rod (Fig. 106) as an example, determine the
critical value of torque and ascertain its dependence on tensile force.

117. A rod with constant cross-section area A is subjected to uniform
pressure p (Fig. 107). It is obvious that under these conditions axial com-
pressive force P = pA acts on the rod. Can this force cause the rod’ buckling
under sufficient pressure value?

A
Hio | i
— - —— i
—|||= A = :_/
il el || il
A | - —i[=-
— | | |-~ el || Foll
— | | - - — || —
=] [="! ol [1 e
—» | | | - - —|]-= - p
— - — - L
=|||= -4
— - - Y /E;
W/ /Y ANNNN ANNNNA
Fig. 107 Fig. 109

118. A straight wooden rod of constant cross-section is immersed by
its lower end into water. The rod is clamped at the water level (Fig. 108).
Can this rod buckle under action of Archimede’s buoyant force in case of
sufficiently large length 7

119. A rod is effected by lateral pressure (Fig. 109). The upper end of
the rod is taken out of the vessel through the gasket. If the pressure grows,
the rod must elongate (Poisson’s ratio is not equal to zero). But elongation
is restricted by the rigid support A, and compressive force occurs in the rod.

Can the rod loose its stability under action of this force ?

120. A tube clamped at its base (Fig. 110) is filled by a liquid of specific
weight v through the upper hole. Can this tube loose its stability like a Euler
column during filling?
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121. A thick-walled straight tube is filled by an incompressible liquid
(Fig. 111). A plug is inserted without friction into the upper hole of the tube.
The tube and plug are pinned as shown in Fig. 111. When the load P is
applied to the plug, the liquid is compressed but compressive force in the
tube is absent.

Can this tube loose its stability in Euler’s sense under these conditions?

122. The upper hole of a thin long tube is slipped over a solid stationary
plug without friction. The lower end of the tube is clamped in a solid foun-
dation. Pressure p is fed into the tube (Fig. 112). Can this tube buckle under
sufficiently high pressure?

123. A liquid of specific weight v runs through the tube pinned at both
ends (Fig. 113).
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Fig. 113

Show that under some value of liquid velocity v the tube looses its stability
like Euler’s column.
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124. Let us consider the following problem. A rod having roundings of

radius R at its ends (Fig. 114) is compressed without friction between two
solid slabs. It is necessary to determine the critical load.

A 2| =Ry
Z Y
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~

Fig. 114

Taking the line of compressive forces action as the z axis and designating
the lateral deflection of the beam axis as y we obtain as usual:

EJy" +Py=0, y"+a’y=0,

P
= Asin ax + Bcosax o =—
Y ( EJ
The deflection y at the rod ends is proportional to the angle of rotation y’,
i.e. y=—Ry under z = 0. As the negative deflection y corresponds to
the positive angle of rotation y’ the sign before Ry’ is negative. Thus we get

B=—-aRA, y=A (sinar—aRcosazr).

In addition, y = +Ry’ under z = [ ; here y is positive for positive 3’. Hence
A (sinod — aRcosal) = A (aR cos ol + o*R*sinal)

As A # 0 we obtain

R
2a—
tan al = —;2 (1)
2 R
1—(al) 7

Solving this transcendental equation we determine the least non-zero value
of ol dependent on the relation R/l and then find the critical load.
As a? = P/(EJ) the critical load is equal to

(al)’EJ

Pc’r = 12 (2)




4. Stability Part I. Problems 47

The first (the least) root of equation (1) must be substituted here instead
of ad.

Now let us find the least root ol of equation (1) as a function of R/I.
The most convenient way to ascertain this relationship is specifying values of
al and then determining R/! from equation (1).
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Fig. 115

The calculation results are shown as a curve (Fig. 115). We reveal that
al = in case of R/l = 0, and therefore according to (2) :
w2 EJ
12

The critical load is equal to the ordinary Euler force as one would expect.

I%r::

As R/l increases the value of al grows too. Hence the critical load also
increases. It also seems to be sufficiently obvious. But when R/l = 0.5 the
critical load vanishes (falls to zero value) as it follows from the curve and
then while further ascending of radius R the critical load begins to grow
again tending under R/l = oo to a limit equal once more to Euler’s force.

Interpret the result obtained above.

125. A long elastic rod with pinned ends is inserted with clearance A into
a rigid channel (Fig. 116). What stresses will arise in the rod and what will
the deflection curve be if the rod is compressed by a force greater than the
first critical load, i.e. greater than 72E.J /27

Assume that only in-plane bending is possible. Bending rigidity is EJ.
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Fig. 116
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126. The set of the previous task is slightly changed. Now let us consider
the behavior of a rod with circular cross-section installed in a tube. Clearance
remains the same: A.

The question is what stresses will arise in the rod if it is compressed by
the force greater than the first critical load that is greater than 72E.J/I*?
Bending rigidity is EJ.

127. Determine the critical force for a column with two ends clamped.

The column has different bending rigidities (EJ; and EJy) depending on
the sign of the bending moment. For example, such properties take place if
a beam has cutouts with tightly inserted plates at one side (Fig. 117).
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Different bending rigidity depending on the sign of the bending moment
occurs also in the case of a compressed rod with nonsymmetrical cross-section
under plastic deformation (see problem 158).

128. A clamped at its base column has an axial through hole (Fig. 118).
A flexible rope is inserted without clearance and friction into the hole. The
rope is attached to the free end of the rod. Can this rod loose its stability if
we suspend a sufficiently large weight P to the rope?

129. The scheme considered in the previous problem is changed. The
rope is inserted with clearance of value A to each side of the hole (Fig. 119).
Determine the lateral deflection f of the rod’s free end in dependence of
load P.

130. A cantilever column is loaded at its free end by a vertical compressive
force transmitted by a rope (Fig. 120). Transfer of force through the rope
occurs in two variants. In the first case the rope falls down freely. In the
second case the rope is thrown over two rigid blocks without friction. What
case yields a greater critical load P, for the column?
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Fig. 120 Fig. 121

131. The following problem can be set in conjunction with the previous
question. Determine the critical load for a column of length [ in dependence
on distance a from the column’s free end to the block (Fig. 121).
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132. Two rods of equal rigidity but of different length are compressed by
longitudinal force P (Fig. 122).

{

v P
— o

Fig. 122

What distance from the clamp point does one have to place a pin in order
to get equal buckling safety factors for both rods?

133. A rope is thrown without friction over the block at the rod’s end
and the load P/2 is applied to the rope’s free end, so the rod is compressed
by force P. The left end of the rope is steady fixed (Fig. 123).

PP
| 2 2

Fig. 123 Fig. 124

Under deflection of rod from its vertical position the left half of the rope
lays tightly upon the lateral surface of the rod and causes contact pressure.
The rope at the right side of the rod freely takes a vertical position.

Calculate the critical load.

134. A ring is subjected to an external uniformly distributed load
(Fig. 124). Will any difference be observed in values of the critical load:
a) if it is caused by pressure which is permanently normal to the arc of the
ring; b) if it is caused by radial forces directed permanently to the center?
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Elastic
threads

The first case of loading may be implemented, for example by pressure
of air injected into a plastic ring bag (Fig. 125a), and the second one — by
set of a large number of elastic threads passing through a centrally arranged
stationary bush (Fig. 125b).

135. Pressure p is supplied in the volume between a cylinder and two
pistons (Fig. 126). Arising forces are transmitted to a strip of length [ through
the piston rod and two connecting rods. Thus we obtain that the strip is
loaded by two equal opposite forces P subjected to its end.

Is this state of equilibrium stable?




52 4. Stability Part I. Problems

136. A column clamped at its lower end is loaded on the upper end by
two equal and opposite moments created by four weights P (Fig. 127).

, L,

B3

Investigate the system’s stability.

Fig. 127

137. The following question arises in connection with the previous prob-
lem: Would the critical moment value depend on the forces arms orientation
with respect to the principal axes of the column cross-section?

Sy ot
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N

Fig. 128

In case a (Fig. 128) the plane of the moment M rotates together with
the end cross-section of the column under bending in the plane of minimum
rigidity and in case b— under bending in the plane of maximum rigidity.
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138. How does the critical load P depend on the bowl radius R (Fig. 129)?

Fig. 129

139. A question about stability of the structure shown in Fig. 130 arises
during water-tower design. What tank filling liquid level h will cause loss of
the supporting mast’s stability?

z| Gl P

y

Fig. 130 Fig. 131

140. Let us imagine a rod with narrow rectangular cross-section clamped
at its lower end (Fig. 131). If load P is central then its critical value is known
to be equal to 72E.J/(4/%). What will be the change in this result if the
point of load application is displaced along axis z by the value a from the
cross-section centroid?
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141. A column with plane ends is compressed between two slabs (Fig. 132a).
Two main equilibrium deflection curves are possible under buckling: the first
one shown in Fig. 132b occurs under critical load

P — Am2EJ ,
(21)2

and the second one shown in Fig. 132c occurs in case when the column leans
on slabs by its corners only. It is evident that if column ends are not very
wide then the second mode buckling will take place under load lower than

for the first case. In particular, if the width of the column ends vanishes, the
2

critical load will be P,, = (2—1)2 .Determine the minimal critical load for the

case when each end width is equal to 2e.
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Fig. 132

142. A weightless beam clamped at its right end (Fig. 133) lies freely on a
rigid base. The beam is loaded by force P applied at the free-end cross-section
centroid and directed at angle 6 to the rigid base.

What value of load P will cause the loss of the beam’s stability? Angle 6
value is given.

P ! N

]
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Fig. 133
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143. An absolutely flexible non-stretched slender thread is fit over a thin-
walled ring. Then the thread is tightened by force P (Fig. 134). Determine
under what value of force P the ring will loose its stability. Friction between
thread and ring surface may be neglected.

Fig. 134

144. A slender elastic rod simply supported at its ends is compressed

by longitudinal force
1072EJ
P - T .

Additional constraints placed between supports (Fig. 135) prevent the rod
from buckling. The straight equilibrium mode of the rod without constraints
would become unstable just under the load equal to P/10. It is known that
at the force variation interval between 72 EJ/I? and 1072 E J/I? there are two
more values of critical load: 472E.J/I? and 972 E J/I?. They correspond to the
rod buckling modes with two and three half-waves.

Suppose that intermediate constraints supporting the rod are suddenly
removed. Then the rod will undoubtedly buckle. But how will it buckle? By
one, two or three half-waves?

P

Fig. 135
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145. A column (Fig. 136a) is clamped at its base. A force P directed
permanently along the tangent to the rod’s deflection curve is applied at the
free end. Such load can be put into practice, for example by installation of a
powder jet engine at the free end of the column (Fig. 136b). Analyze system
stability.

146. A column clamped at its base has a rigid disk at its free end. The
force P is applied to the disk at the point constantly disposed on the z axis
(Fig. 137).

Analyze system stability for two cases:

a) The force P is generated by the flow of inelastic particles impacting
the disk. In this case the direction of vector P remains unchanged under disk
rotation.

b) The force P is applied to the disk through the roller connected by a
plunger with the weight. In this case force P follows the perpendicular to the
disk.
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147. A slender elastic homogeneous rod moves with constant acceleration
under action of follower force applied at one of its ends (Fig. 138). Analyze
the rod’s straight configuration stability.

148. A homogeneous bar is compressed by two follower forces (Fig. 139).
Analyze the system stability.

Fig. 139

149. Derive the value of moment M under which the cantilever beam
(Fig. 140) will buckle out of its plane. Moment M acts permanently in the
vertical plane during bending.

150. Analyze the stability of the cantilever column loaded at its free end
by the torque M and the force P which remains vertical under buckling
(Fig. 141).

s S

Fig. 141 Fig. 142

151. A thin long strip (Fig. 142) is heated uniformly along length ! and
thickness h but irregularly along width b.
Derive the conditions when the strip looses its stability under twisting.
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152. Study the stability of a cantilever pipe conveying fluid (Fig. 143).
Assume that the parameters of the pipe and of liquid flow are specified.

2 v

—— — — —  m—  — -

{
Fig. 143

153. Problems connected with plane bending mode stability are formu-
lated in most monographs and manuals on stability of elastic systems with
implicit assumption that the bending moment is applied in the plane of max-
imal rigidity (Fig. 144).

Can the plane bending mode of stability loss take place if the bending
moment is applied in the plane of minimal rigidity and not in the plane of

maximal rigidity?
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Fig. 144

154. The ring of radius R and rectangular cross-section (Fig. 145) is
turned inside out in such a way that its internal surface becomes an external
one and the external surface turns out to be inside. Under what ratios of b and
h will this equilibrium configuration be stable? The strain state is considered

to be elastic.

Y —————- S b

. R ] A,
Fig. 145

155. A ring of rectangular cross-section (Fig. 146) is heated at the inner
or external side. Thus the temperature varies along the ring thickness h .
Derive the conditions of initial equilibrium mode stability supposing that
h << R. Assume the linear law of temperature variation.

7 —— 1

R ‘ h
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156. An elastic ring of radius R and rectangular cross-section is cut
through and then unrolled by two moments until its axis becomes straight
(Fig. 147). The rod which is obtained in such a manner is clamped at its
ends. Under what conditions will this equilibrium configuration be stable?

M

M

27R
Fig. 147

157. Following schematically set problem that has obvious applied signif-
icance is considered.

The structure which represents a large plane ring is assembled in outer
space. It consists of sections that are transported to orbit and attached there
to each other. When the time has come to attach the last section to the first
it was discovered that there were disparities of dimensions in the plane of the
ring: along the tangent to the arc of the ring’s axis A;, along radius A, and
also angular disparity ¥ (Fig. 148).

These disparities were forcedly eliminated and the ring was assembled.
Internal normal and transverse forces and a bending moment also occur in
the plane of the ring.

The question arises: Is the plane equilibrium mode stable or unstable?
Under large values of disparities Ay, Ay and 9 the ring’s buckling out of
plane is apparently possible. And if torsional stiffness is insufficient then ring
axis transformation into some similarity of the spatial figure eight cannot be
excluded. Buckling in the plane of the ring may be possible too, when the
ring, remaining plane, significantly deflects from a circular shape.
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158. A column of channel cross-section (Fig. 149) is compressed by central
axial force P causing plastic strains in it. The question is to which side will
the column most probably deflect under buckling: to the left or to the right?

p
2
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Fig. 149

159. Is buckling of a helical cylindrical spring under tension possible?

160. Two rods are loaded at a common node by force P (Fig. 150). Each
rod is a telescopic device allowing large variations of length.

Fig. 150

Could conditions exist under which the transfer from symmetric to non-
symmetric equilibrium mode is possible?
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161. A straight homogeneous rod is in a state of full weightlessness (in
interstellar space). But it has nonzero mass and all its particles gravitate to
each other in accordance with Newton’s law.

Can this rod loose its stability in Euler’s sense due to mutual gravity
forces and under what conditions may it happen?

162. The set of the previous problem is preserved. But now the matter
concerns a circular homogeneous ring and not the rod.

163. Four identical balls of mass m are attached at rods as shown in
Fig. 151.

The system is rotating about axis C'C' fixed inrigid bearings. If there were
no bearings (the system, for example, would be hung from a thread) then as
it is well known from physics the balls would rotate about axis AA and take
up a position in a horizontal plane. In the given case the rigid bearings and
elastic rods AA of circular cross-section oppose such rotation. Is it possible to
select such angular velocity w under which the balls will nevertheless rotate
for some angle about the AA axis?

Fig. 151 Fig. 152

164. A homogeneous rod of narrow rectangular cross-section is rotating
about the axis OO (Fig. 152) which is parallel to the larger side of the cross-
section. Determine the angular velocity w under which the rod will be twisted
like the rods AA of the system considered in the previous problem.
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165. A thin homogeneous disk (Fig. 153) is rotating about the station-
ary axis normal to its plane. Can this disk loose the stability of its plane
equilibrium mode?

Fig. 153 Fig. 154

166. Calculate the critical angular velocity value for a ring of mass m
(Fig. 154) connected with its stationary axis by n equally distributed spokes.
Tension rigidity of the spoke is E A.

167. A thin closed rubber spherical vessel is under action of internal
pressure. Is the spherical shape always stable?

168. Explain from an equilibrium modes stability point of view the for-
mation of a neck under a specimen’s tension test.

169. Failure with formation of an inclined wave intersecting annual
growth layers (Fig. 155) is often observed under longitudinal compression
tests of wooden specimens.

Fig. 155

May this phenomenon be interpreted as a specific example of stability
loss?




5. Various Questions and Problems

170. What material has the highest ultimate stress?
171. What material bears a greater load in tension than in compression?
172. What material has the largest elasticity modulus?
173. What material has the smallest elasticity modulus?
174. Does rubber obey Hook’s law?
175. Why do thin glass fibres have greater strength than pane glass?

176. Why is the reduced elasticity modulus of rope lower than elasticity
modulus of its component threads?

177. It was necessary to make a measurement of the deflection curve
that is to establish experimentally the dependence of vertical displacements
upon coordinate z for some beam (Fig. 156) loaded by concentrated force P
at point A. The shape of the beam was so intricate that calculation of the
deflection curve would have been too difficult. The experimenter had only
one indicator for deflections measurement as shown in Fig. 156.

X

e E—

Indicator

Fig. 156

What is the easiest way to measure the deflection curve under these con-
ditions if it is a priori known that deflections are proportional to the acting
force P?
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178. Why does twisted thread have a greater strength than an untwisted?

179. A teacher in a student’s design project pointed out that the shaft of
the designed machine was too long so its rigidity would not be sufficient.

“It can be easily corrected without changing the structure”, the student
said, “I shall take a higher quality material and make the shaft of alloyed
steel.”

Was the student right?

180. A solid elastic cylinder of height H and radius R leaning on a rigid
plane (Fig. 157) is loaded with gravity forces (weight of cylinder is P). How
will its volume change if the cylinder is laid on its side?

P
DRy @
Sl :
i +——— 2R
Y i Y
7777777 7777777777 P
Fig. 157 Fig. 158

181. An arbitrary elastic body is compressed by two opposite loads P
(Fig. 158). Determine the change of the elastic body volume.

182. The main detail of pressure measuring devices is the so-called Bour-
don’s spring. It represents a thin-walled tube of a circular axis and oval or
some other oblong cross-section (Fig. 159). The tube (1) slightly unbends
under action of internal pressure and the tube’s ends deflection is transmit-
ted to a manometer pointer by an amplifying mechanism (2) (Fig. 160). The
measured pressure value is defined by the pointer’s deflection.
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In one of the books devoted to measuring devices we happened to see the
following explanation of Bourdon’s tube principle of operation:

“Bourdon’s spring operation is based on the fact that pressure inside the
tube is greater at the outer surface of the spring than at its internal surface.
In fact, if we denote external and internal radii of tube as R; and Rs, then
areas of the tube’s external (S;) and internal (S3) surfaces will be equal to

2mp 2m

)
— —X d — —X
S1 360 Ria and Sy 360 Rsa,

where ¢ is central angle of spring, a is horizontal dimension of tube cross-
section, and R; and R, are radii.

Under the pressure p kN/cm? the resultant pressure force on the external
surface is

P =pS; kN
and on the internal one
P, =pS; kN.
As the force P is greater than Py then it tends to unbend the spring.”

Is this explanation correct?

183. Let us consider the closed toroidal shell of a car wheel tire inner
tube type (Fig. 161) loaded by internal pressure p and derive stresses arising
in this shell.

Om

at+Rsin®
Fig. 161

From the equilibrium condition of the shell part cut off by cone section
(Fig. 161) we obtain

prl(a+ Rsing)? — a? = 0,,27(a + Rsinp)hsing ,

_ pR2a+ Rsing (1)
~ 2h a+ Rsing

Om

The circumferential stress o; will be found from the Laplace equation
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Im Tt _ P
Pm P h

In our case

pm:Ra Pt = .
s @

After substitution of p,,, p, and o, we obtain

pR
=—. 2
Ot oh ()

Now we move on to determining the displacements. Let us denote the
displacement of the median surface points in the direction perpendicular to
the rotation axis as u and displacement parallel to the rotation axis as v

(Fig. 162).
. a .
Iv/ v A
A N C u .
NEA ds/
P vdv[N_ ¢

A u+au }/B

L |

Fig. 162
The relative elongation in the circumferential direction is
U u
:A_C:a—i-Rsinap' (3)
The relative meridional elongation is
_A'B'- AB BB' - AA
AB AB '

BB’ = (u+ du)cosp — (v+ dv)sing ,
12 2

€t

67’71

AA" =ucosp—wvsing, AB = Rdp.

That is why the relative elongation along the meridian is equal to

Em = é(z_:; cosp — Z—: sin @) . (4)
On the other side
1 1
gy = E(O’t —UOm), Em= E((rm — Qo).
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Considering the relations (1), (2) and (3) we find

R

u = ;;jh[a(l +2u) + R(1 — p)sing] .

Then from (4) we obtain
dv  pR? cos’p  enR
PTGl et
¢ 2Eh sin ¢ sin g
pR? (1 ) s a
=— |—(1—p)sing —

2Eh a 4 sinp(a+ Rsing) | ’

and integrating we arrive at
R

pR? ® 2R atan® +

v = EL [(1 — ) cosp — lntanz + ﬁarc‘can (ﬁ)] +C.

Constant C defines the displacement of the whole tore as a rigid body
along the axis of symmetry and can be set arbitrarily; In tan(p/2) converges
to infinity under ¢ = 0 and ¢ = 7. Hence at these points the displacement
v tends to infinity too. But it is obvious that this displacement can not be
infinite. This means that the obtained expression for v does not give a correct
solution of the problem.

What is the matter? Where is the mistake?

[}

184. Pressure vessels are used in aircraft and space engineering among
other constructive elements. As usual they have cylindrical or spherical shape.
The application field makes it extremely important for them to meet the
requirement of minimal weight.

Fig. 163

The profiled cylinder structure shown in Fig. 163 is proposed. The vessel
consists of several cylindrical sections connected by radial walls. As the radius
of the cylindrical sections is less than the radius of the ordinary cylinder with
the same volume then stresses in them will be less too. So one can hope that
in spite of weight increase due to the radial walls the whole weight of the
structure will be lower. To what extent are these expectations valid?
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185. Weight P is put on a spring (Fig. 164). If the spring stiffness is ¢
then the weight displaces down by value A = P/c.

r—————7

LG

Fig. 164

Therefore the potential energy of the weight (position energy) decreases
by

P2
P\=—. 1
- (1)
The potential energy of the spring in the deformed state will be equal to
T o
w2 2

i.e. it will be two times less than the energy lost by the weight.
What’s the matter? Where did energy disappear?

186. Determine the spring coils rotation angle ¢ in the axial plane (draft
plane in Fig. 165) under compression of the spring.

Ay

=4
3D

% / /.
Fig. 165

187. A coil spring of helix angle o and radius of coils R is tensed by
forces P. Determine spring height and diameter change as well as coils number
change.
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188. Shaped springs with coils landing are used in some devices to obtain
nonlinear force dependence upon displacement (Fig. 166).
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Fig. 166

If such a spring is compressed, its lower (bigger) coils are deformed greater
than the upper ones, land on the base and almost completely come out of
work. Thus as compressive force increases the spring’s working coils number
decreases, so the spring characteristics turn out to be nonlinear with increas-
ing stiffness (Fig. 167a). The force derivative with respect to displacement
dP/d\ grows.

@ dxz 70

Fig. 167

Think, how can spring characteristics with decreasing stiffness like the
one shown in Fig. 167b be obtained with the same spring?

189. A rectangular frame (Fig. 168) is pinned at its upper end. A roller
leaning on a rigid base is at the lower end of the frame.

Determine the lower support reaction supposing that force P and frame
rigidity have such values that deflections arising in the frame are small enough
in comparison with its initial dimensions.
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Fig. 168
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190. A thin flexible cantilever rod is loaded by vertical concentrated force
at its end (Fig. 169). The rod has constraints allowing it to bend only in the
load action plane (draft plane). What equilibrium modes besides the shown
one are possible for the rod?

e
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Fig. 169

191. A force P is applied at a point A of some elastic body (Fig. 170).
What surface will be circumscribed by an arbitrarily taken point B if the
force P will rotate in space about point A?

P

Fig. 170

192. A ring of circular cross-section (Fig. 171) is loaded by uniformly
distributed moments of intensity m [Ncm/cm].

A  m [N-em/cm|
W‘! i £ 7
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Fig. 171

Supposing r to be small in comparison to R determine the angle ¢ of the
ring cross-section rotation in the axial plane depending on m if the material
of the ring obeys Hook’s law.
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193. How does the solution of the previous problem change if the consid-
ered ring was produced by bending of a straight bar (Fig. 172) and preserves
the stresses obtained under bending?

27TR

Fig. 172

Assume that bending stresses are completely elastic.

194. A flexible shaft representing a thin wire freely rotating in an im-
mobile braid (Fig. 173) is used to transmit torque in many devices such as
speedometers, for example. If one end of the wire is rotating uniformly then
its second end is rotating uniformly too.

Fig. 173

In a defective wire this rotation evenness is however broken. The output
cross-section is rotating at first with deceleration and then with acceleration
in such a way that its angular velocity remains unchanged on average but
includes a component varying with the period of wire rotation. It was found
that this defect is connected to the initial curvature the wire had before its
conversion into a braid.

Analyze this phenomenon and determine the conditions for elimination of
motion irregularity. Friction forces between cable and braid can be neglected.
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195. A thin-walled rod of circular cross-section intended for space struc-
ture is manufactured by stacking of composite cylindrical monolayers under
angles +¢ (Fig. 174). It was noted during bench-tests that the rod begins to
twist under tension (or under uniform heating).

Explain this phenomenon and suggest methods for its elimination.

-@ +¢

W

Fig. 174

196. Mass M fixed at the end of a rectangular frame contacts an immobile
plane IT (Fig. 175). Friction between the mass and the plane is supposed to
be dry. If the frame is bent and after this is released then mass M begins to
oscillate. Determine the motion path of mass M neglecting frame mass.
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Fig. 175

197. Compressed air is fed into a closed thin-walled tube (Fig. 176).
How will tube vibration eigenfrequency change under air pressure growth?
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198. A long cantilever beam under action of gravity forces ¢ lays on a
rigid horizontal plane disposed at a distance h below the support (Fig. 177a).
A segment of length [ remains free. Then the right end of the free segment is
clamped and the supporting plane is removed (Fig. 177b).

a)

b)

Fig. 177

Derive the lowest eigenfrequency of the beam obtained in such a way.

199. Let us imagine the following paradoxical situation. An elastic body
is loaded with a system of forces and is in stable equilibrium state. We ad-
ditionally load the body putting weight on it. And contrary to expectations
the weight does not move down but moves up. The system performs work.
We take the weight off - and the system returns to its initial state. Is this
possible?

200. A thinwalled rubber cylinder open at both ends is turned inside-out
(Fig. 178).
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Fig. 178

Analyze its shape after a specified operation if the cylinder deformations
are known to be pure elastic? We suppose rubber to obey Hook’s law (see
the answer to question 174).
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201. The solution of the axisymmetric deformation problem for a thin-
walled cylinder under internal pressure action (Fig. 179) is reduced as known
to solving of the differential equation

(Iv) 4kt = ya
w + w D’
where w is radial displacement of the shell median surface points,
Eh 4 Eh
D =—————- and 4k* = .
12(1 — p?) R2D
w O.
-
W
1 X A X
R
1 S——
>

Fig. 179

If besides pressure p the shell is effected by axial tensile force producing

ho
axial stress o, then the summand —u, which reflects the presence of
cylinder transverse narrowing due to Poisson’s effect, is added to the right
part of the equation and the question is usually considered to be settled.
Meanwhile due to meridian curvature w” longitudinal stress o, gives the
force radial component acting conjointly with pressure p. As a result the
ho
summand ——=w" must be included into the left part of the equation which
takes the form
ho ho
(Iv) z 4 D pRO
w — w' +4k"w == — . 1
D D RD (1)
What are the validity limits for standard neglect of the equation’s left
part second term?

202. Everybody knows well, how the cord of a telephone twists (Fig. 180).
We shall term such a formation as a twine (look also Fig. 105) and consider
it to be elastic. The twine can be untwined and residual deformations in the
cord are not observed. Visible uniformity of coils gives reason to suppose
force interaction uniformity along length [ of the twine. One may assume
that deviations from this uniformity depending on the nature of the forces
applied out of length L borders occur at segments /; and [s.
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Fig. 180

Analyze branch (strand) force and contact interaction conditions of the [
segment. List the parameters and how the twine angle 3 depend on them.

203. A ball of mass m is placed in a tube rotating with constant angular
velocity w. The ball is attached to a rubber string (Fig. 181).

The string tension diagram is specified by the curve shown in Fig. 181
(force and displacement are plotted in relative units). Derive the dependence
of ball displacement u on angular velocity w.
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Fig. 181 Fig. 182

204. A spatial rod system (Fig. 182) consisting of three articulated equal
bars is loaded in a common node O by force P normal to the supports’ plane.

Determine point O displacement w in relation to force P considering H
to be small in comparison to [ and supposing that the rods’ material obeys
Hook’s law. Interpret the obtained result.
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205. Determine disk spring (Fig. 183) deflection in relation to force P.

Treat the spring as a circular beam of rectangular cross-section [hx(b—a)].
Assume that the spring cross-section inclination angle « is small. As thickness
h and angle « are small then consider forces P applied at the circumferences
of a and b radii.

)
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Fig. 183

206. Analyze the stability question and problem of large displacements
for the system shown in Fig. 184.

P

Fig. 184

A tube at its lower end is pinned and is connected with a spiral spring
giving moment cp under tube rotation at angle ¢. A spring and a piston
capable of moving without friction are inserted into the tube. The inserted
spring has stiffness c1, i.e. under force P its shortening is P/c;.
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207. Preliminarily bent elastic rods are hooked by nips to a flexible
thread. Each of the rods produces tensile force S in the thread (Fig. 185a).

NN NS R o
A B C S S

DD IPIGDE B

Fig. 185

At points A,B,C... the rods are not joined to each other and so the
system possesses kinematic variability and represents some kind of multilink
mechanism. In order to eliminate this variability the second set of exactly
the same prestressed rods is fastened to the thread at points A’, B’, (', ...
(Fig. 185D).

Though bent rods can freely rotate about the longitudinal axis of the
thread, the thread itself, being tensed at all points, has characteristics of an
elastic bar and in some necessary cases can be used as a carrying element of
the structure.

Determine the flexural rigidity of the “beam” created in such a way.

208. Determine the forces acting in bicycle wheel spokes and stresses
occurring in the wheel rim under force P applied to the wheel axis. The
ground supporting the wheel can be treated as rigid. The spokes number n
is sufficiently high to make it possible to consider the spokes not as separate
rods but as a continuous medium.

The following data should be used under numerical calculations:

P = 400 N; wheel radius R = 31 cm; rim inertia moment J = 0.3 cm?;
spokes number n = 36; spokes diameter d = 2 mm. Rim and spokes are of

steel, E = 200 GPa.

209. Determine the bow speed dependence arrow flying off on bow-string
pull aside its initial state value w. If the bow-string is untied then the bow is a
straight beam of length 2/ and flexural rigidity EJ. Bow sag after bow-string
tying is h.

Perform numerical calculations for the case:

l=60cm, h=03[ FE=10GPa (wood),
wd* . .
J = a (d=20cm), w=0.61, arrow weightis 0.4 N.

Suppose that the energy of the strained bow completely transfers to ki-
netic energy of the arrow. Assume that the bow-string is unstretched.
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1. Tension, Compression and Torsion

1. Full displacement will be, naturally, determined not by the diagonal
of the parallelogram plotted on segments u; and us (as often happens to be
the answer for the formulated question) but by the length of the segment
measured from point A to the point of intersection of the perpendiculars
erected from the ends of segments u;and uo (point B in Fig. 186).

The solution is based on the fact that displacement in a specified direction
is the projection of full displacement onto a specified direction.

displacement

Fig. 186 Fig. 187

2. Let us decompose force P to components P; and Ps along the directions
of two neighbouring rods 7 and 2 (Fig. 187). As each of these rods is situated
in a symmetry plane, full displacements u; and u, caused by forces P; and
P5 will be directed along the lines of action of the corresponding forces, that
is along rods 1 and 2.

Stiffness coefficients for directions 7 and 2 are identical, therefore
Py Py
U =—, Ug= —
c c

And so the summary displacement u, obtained by composition of displace-
ments u; and ug according to the rule of the parallelogram, will be directed

P
along the line of action of force P and will have value u = — regardless of
c

angle .
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Comparing the solution of this problem with the solution of the previous
one, it is important to remark that displacements u; and s in the present
problem represent full displacements caused by forces P; and P,, correspond-
ingly. So under simultaneous action of these forces displacements ujand uq
are composed according to the rule of the parallelogram. As to the previous
problem, there u; and uo represented projections on directions I and 2 of
full displacement caused by simultaneous action of forces P, and Py. And so
they were composed in another way.

3. As the slab is rigid, the length AB of the strained bolt remains un-
changed up to opening of contacts. And so the internal tensile force remains
unchanged also. In the case, where force P is greater than the force of prelim-
inary tension, the contact between the slab and lower bracket will be opened.
Then internal tensile force in the bolt will be equal to P.

Consequently, under P < N, the internal tensile force in the bolt is equal
to N = N; and under P > N, it will be N = P.

—|— ] —— =+ 1
.0

1

[}
»U

P
Fig. 188 Fig. 189

The validity of the obtained result is well illustrated with the following
simple example. Imagine a spring balance of a steelyard, the upper ring of
which we put on a nail and the lower hook after tension hitch up by some
rigid ledge, for example, up a table edge as shown in Fig. 188. The balance
after this will indicate some value, for example, 4 Kg-wt. Let us liken this
balance to the strained bolt. Now let us hang weights to the lower hook of the
strained balance. Until the weight of the load remains less than the specified
tension force, balance will permanently indicate four kilograms. And only
when a load hanged on the hook will be greater than four kilograms then the
indicator will move from its place and indicate the corresponding weight.
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4. For solution of this problem let us consider bolt and spacer separately.
Let us denote the force compressing the spacer as Ps; and the force acting on
the bolt’s head from the side of the slab as P, (Fig. 189).

As long as the lower contact is not opened the sum of the bolt’s elongation
and of the spacer’s elongation

PP
EA ¢
remains invariable and equal to the sum of the same quantities under
tightening (that is under P = 0); the latter is obviously equal to
Ne Ny
EA " ¢’
where A is the area of the bolt’s cross-section. Consequently,
L L N N
EA ¢ EA * c’
Besides it we have equality

P,— P, =P
From these two equations we find
EA
P P
Po=Ne——F3 . B=Nt—%5
14+ — 1+—
cl cl

The internal force NV stretching the bolt will be equal to P, and as long as the
lower contact is not opened N remains invariable and equal to the tightening
force N; (see solution of the previous problem).

The opening condition for the lower contact will be P; = 0 that leads to

P =N, (1 + E—A> .
cl

Then N = P. Under ¢ = oo, that is when the spacer is absolutely rigid, we
obtain the solution of the previous problem.

The graph of internal force N stretching the bolt depending on load P
under different values of ¢ (o < ¢1 < 00) is plotted in Fig. 190.

N N=P
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5. In the mentioned scheme, indicators measure not the shortening of
the specimen but the sum of this shortening and mutual displacement of the
edges of the slabs (Fig.191), that is the quantity Al+ 61 + 82. In consequence
of this fact the obtained elasticity modulus must be found to be less than
actual one. The greater the elasticity modulus of tested specimen will be the
greater will be the relative error.

[

0, Iy Al

Py ot - -

Fig. 191

The described procedure is suitable only for determining the elastic
properties of rubber, wood or plastic, that is of those materials that have
elasticity modulus essentially less than steel has. As the value of the
elasticity modulus of the tested material (80 GPa) specified in the problem
is commensurable to steel’s elasticity modulus (200 GPa) we cannot be sure
of the obtained result. And if the value of the elasticity modulus equal to 5
GPa was obtained then we could hope for sufficient accuracy.

6. In the middle cross-section of the rod due to the symmetry conditions
no axial displacements occur. Now let us consider the left or the right part
of the rod. Axial displacements at the ends of this part are absent, the rod
is uniform and heating is homogeneous. Consequently, due to the symmetry
conditions axial displacements in the middle cross-section of the rod’s half are
absent also. Reasoning in such a way we can divide the rod into arbitrarily
small segments having axial displacements equal to zero at their ends. Hence
we can make the deduction that axial displacements are absent for all cross-
sections of the rod in general.

7. Let us denote compressive force arising as a result of homogeneous
heating of the rod as N. Then displacement in some arbitrary cross-section
can be described as
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N [ dx
u(z):atm—Eo/A(x),

where ot is thermal elongation, and A(x) is the sought law of a cross-sectional
area A variation.
Differentiating we obtain

du . N_1
de ~ © E A(x)
Hence
N /E
A(m):—du. (1)
t — —
@ dzx

There is a necessity for interpreting the found expression.

First of all area A(x) is determined as accurate by a constant multiplier.
The greater the value of A is, the greater the value of the corresponding
compressive force N will be. If the area near the left fixing is denoted as Ay,
then we obtain

du
at ——
Alr) = Ap——La=0,

dz

It means that specifying an arbitrary value of Ag we can define a law of
a cross-sectional area A(x) variation satisfying given condition of displace-
ments’ function u(z) variation.

And one more peculiarity. The specified function u(z) must not only be
equal to zero at the ends of the rod but at the same time be such that
the denominator of the expression (1) would be greater than zero, otherwise
the function A(x) would be negative which contradicts physical sense.

at

Let us postulate, for example, that displacements u were varying along
the rod’s axis according to the quadratic law

u(z) = Katzl (1— %),

where K is an undetermined multiplier.
As

du x
- :Kat(1—2l>,
then the denominator of the expression (1) takes the form
x
at—Kat(1—2l>,

from which we see that the coefficient K of a specified function u(z) must be
not greater than 1.
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8. The first expression of U is correct. As to the second one, it is erroneous.
In the specified case the work produced by force P

Pé
U#E—

as displacement ¢ is proportional to force P not at the entire interval of its
change. This can easily be seen from the plot in Fig. 192 where the dependence
of § upon P for the considered system is represented by the diagram. The
work produced by the force P is determined as the crosshatched area that is

UJSQEA+ Pl A\SEA 1(, SEA\( Pl A
2 2EA 2) 1 2 1 J\2EA 2)°

After reduction we obtain
P2l EAA?
4F A 47

This expression coincides with the one obtained previously (see expression
(1) in the set of the problem).

U:

P ' —_ &

17
y 5 q %ﬁaK $+d 9

Fig. 192 Fig. 193

9. In the first case we determine the displacement of the point where
the rod’s centre of gravity was before deformation. In the second case we
determine the distance from the point of the new position of the centre of
gravity to the point of its old position, and this is not the same.

Thus there is indeterminacy in the set of the question itself.
It is necessary to stipulate neatly what should be understood by
“displacement of the centre of gravity” because the centre of gravity is not
rigidly connected with some point of the deformed body.

10. Let us consider the filament’s element of length dz (Fig. 193) and
denote an inclination angle of the weighed-down filament as ¥ and tensile
force of the weighed-down filament as T'. It is greater than the initial tensile
force Ty, (T > Tp).

Assuming angle ¥ to be small we shall obtain from the conditions of the
equilibrium
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TY—qde —T (¥ +dJd) =0,

from which

q dd
4_ a4 1
T dx (1)
After integration we find
q
Y==(C —x);
L)
under  =1/2 we have ¥ = 0, so that C =1/2; therefore
12 ,
l l
=L (- _, andwmaxz/ﬁd o (2)
T\2 8T "

0
Now let us find T. As a result of inequality of forces T > Ty, the filament
elongates by the value of the length’s difference between the curved and the
straight filament, that is

(T —Ty) / 1192
0 /( —l)dx—/—dx
cos 2
0

0

from which

LTy, _ ¢
EA — 24T%
Let us substitute here T from expression (2). Then we obtain
Wmax Wmax TO ql
4 ( ) 24— — =3—.
) T T EA T EA ®

That is the sought dependence of w,x upon Ty and g. The obtained result
is represented in Fig. 194 in the form of curves

Ymax _ ¢ (To gL
1 '\EAEA)"

% /'/
L L
=0 —
0.08 %30{//
00— ;/0[01/0
Vs
0.04
/A e- T
/
0 0.004 0008 0012 0016 gl
EA

Fig. 194
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11. If the sheets in the place of riveting were conjunct through the whole
width b and this conjunction was absolutely rigid then for the sheets tested
for tension we should have according to Hook’s law

T% T%
Aag = 1
= T obh, | Ebhy (1)

where FE is the elasticity modulus of the sheets. The obtained value Aaq
would be less than the measured one, Aa.

The difference between the measured value Aa and the calculated one,
Aag (1) represents the result of deformation of rivet and sheets in the con-
junction zone. Let us denote the obtained difference of elongations as A:

1 a a
A=T |- — — .
<k 4FEbh, 2Ebh2>

Let us denote also

4t i _ L @
k' 4Ebh; 2Ebhy ko
T
Then the difference of elongations will be A = E

N, N N,

)&&@@)Dﬁ

P ;l P-N, IPNH[
‘6 6 o o)
hi | [ |

Fig. 195

Now let us consider the deformation of the sheets (Fig. 195). Let us denote
normal tensile force in the span number ¢ of the internal sheet as N;. In two

}12

v,

external sheets the summary force will be evidently equal to the difference
P — N, (see Fig. 195). The difference of elongations of the internal sheet and
of the external sheets in the span number i

Nl (P—N)

Ebhg 2Ebhy
is equal to the difference of displacements of the span ends due to deformation
of the rivets, that is
Niy1 —N;  Ni—Ni 1
ko - ko 7
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where N; — N;_1 and N;;1 — N; are forces falling at the left and the right
rivet of the span number i, correspondingly. Equating the above differences
of displacements we obtain

Ni_ja = N; 8+ Nyprao = =P, (3)
where
2Ebh, 2hy
= =2 1+—. 4
=T B=2a+1+ s (4)

The obtained equation (3) analogous to the known equation of the three
moments is written down sequentially for the first, the second and the third
span (Fig. 10):

0a—N1ﬁ+N2a: —P7
Nla—N2,6’+N3a: —P,
NQQ_N3ﬁ+ Pa=—P.

From this we obtain formulas for normal forces

2 3
N = pltaitas
,8(,8 —2a2)
(8+ 22 +0a?)
NQZPﬁ Ié] g o+ 7
B (67 —2a2)
Ny = pia) ot ap
B (8 — 20a2)
Forces falling at rivets will be the following
2 3
pI:lepﬁ:a—m,
B (3% — 2a2?)
( +aB— 2)
PH:NQ*Nlipa & 2aﬁ = )
,6’(,6’ 72a2)
2
PIII:N3_N2:Pa(ﬁ 70&70&27,6)
B(3%—2a2)
Pry—p-Ny—p |1 ZUtal—attap
1V 3 /6(/32—202)
In the case when ho = 2 h; we have

B=2(a+1)
and then forces will be
P a3 +6a?+10a+4
PI:P]V:_ P 9
4 (a+1)(a?+4+2)
P«
4 a+1°

=

Prp =P =
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If fastening is absolutely rigid (kg = co) then the coefficient @ = 0, and
we shall obtain

PI:PIV: and PI]:P][[:O.

o | Ny

Therefore in such a case only two rivets (at the ends of the rivet joint) work.
Under highly compliant rivets the value kg will be small and a will be
large. As a limit under o — oo we have

P
PI:PII:PIH:PIV:Z~

In the set of the problem it was said that coefficient k is determined by
testing of riveted sheets with the measurements’ base a being sufficiently
large to consider the stresses distribution in cross-sections A and B to be
uniform (Fig. 11). The obtained solution will be sufficiently accurate in this
sense if the distance between rivets is greater than a. However even with less
distance between rivets when the stresses along the sheet’s width are not
equalized from rivet to rivet, the solution of the problem remains valid. Only
expression (2) for ko will be changed. There we must change the sheet’s width
b with some equivalent to its reduced value.

12. Assume that there are n rivets in the longitudinal joint. According to
expression (3) for n — 1 spans we have the following n — 1 equations

_N1ﬁ+N2a :_P7
N1a7N26+N3a :7P,
Noa— N3+ Ny« =—P,

Nicia—= N; B+ Nipyoo = —P,

Nn_ga—Nn_l,B:—P(l—i—a).

From these equations we must determine the unknowns

Nl’ N27 N37 ,N”(L—l'
Let us note that if we assume
P
N :N :N = e e e — _ :—_’
1 2 3 n—1 20— 3

then all equations except the first and the last will be satisfied.
Assume further that
P

Ny = Az? —
2 & Za_ﬁa I

N1:A$—

P
20 — 3’
P

N; = Az* — e,
2a0 — 3
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where A and x are some arbitrary constants.
Let us select x so that once more all equations except the first and the
last are satisfied. After substitution of N;_1, N; and N;;1 into the equation

Nija—N;B+Nip1a=—P,

we obtain
Pa : P3 ) Pa
—Ax’ Azitla — =
200 — 3 xﬁ+2a75+ v 2a0 — f3 ’

Az la —

or
a—pBzr+az?=0,

from which we find

B+ VB — 402 B— V3 — 40
= - x = - .

2 v 20
Now evidently all equations except the first and the last will be satisfied by

the following expressions

T

P
Ni=A Bxry ——m
1 T1 + D X2 20— 35"
P
Ny = Azi + Buaj —
2 .’l'1+ T 2a—,6”
i i P
Ni:Al‘1+Bx272a—ﬂ,

under any values of arbitrary constants A and B. And we shall select these
constants so that the first and the last equations of the system are satisfied

P
_/6|:A$1+B272— }+a[A:c%+Bx§—2a_ﬁ]:_P7

20 — 3
P P
20 — 3 20 — 3

Hence we determine A and B and, taking into account that x;z, = 1 and

e [Ax?_g + Ba} 7% — ]—ﬁ [Aav?_l + Bay ! — } =—-Pla+1)

T1+T9 = é , after a simple reduction we obtain
«@

__P (ﬁ—1—2a)(:v?l—azé)—i—acg_i—a:?_i_1}
Y 2a-0 xy —zf '
Forces in rivets are equal to
Pr = Ny,
Prp = Ny — Ny,

Prip = N3 — N,

P,=P—N, ;.
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13. Let us consider equilibrium conditions for element of bolt (Fig. 196).

t

-— «— -«—

N, N,+dN,
>

[ - -

x | dx
Fig. 196
Evidently

dNy

— —=1t. 1

s (1)
Further, according to the set of the problem

E=k (up—un) (2)
but

duyp du, q Ny N,

—_— = - =€&n an Ep = 9 En = .

dx b dx ’ b EbAb En An

Therefore as a result of differentiating expression (2) we obtain

At (N Ny
de "\ EyA, EnAn)’

Substituting here ¢ from equilibrium equation (1) we have

dQNb_k( Ny Ny >

dz? ~ "\ E,4, E,A,
Using condition N,, = P — N, we find
d*N, 9 kP
— 2N, = —
dzz O E A, (3)

where

1 1

2

= k .
“ (EbAb * EnAn>

The general solution of the homogeneous equation
d?N,
dz?

will be

—OCQNb =0

Ny, = Asinhax + Bceoshax .
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Adding here a particular solution of equation (3) we obtain
kP
o?E, A,

Constants A and B can be found from boundary conditions

Ny, = Asinhaz + Bcoshazx +

at £ =0 Ny, =0,
at =1 Ny, =P.

Solving these conditions we obtain

A kP 1—cosho¢l+ P B_ kP
" a2?E, A, sinhal sinh al ’ T a?E, A,
Normal force in the bolt is equal to
N P 1 sinh al — sinh(a (1— a:)) N sinh az
UL _1 sinhal En A, EyAp |
Eb Ab En An
Normal force in the nut
N, = P — Ny.
Force at thread’s turns is equal to
. dNy P e! cosh(a(l —x))  coshax
dx 1 n 1 sinhol E, A, E A, |
Ey, A, E,A,

The character of these quantities’ distribution along the length of the bolt
and the nut is shown in Fig. 197.

i e ——
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{ P o
D Bt Eny sl [EnAnch ol + Esfs]
)

P o
EpAp+ELA, sha

1 [EpApchaul + E,A,] EpAp<E,A,

Fig. 197
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14. The problem is solved just the same as the previous one. The difference
is introduced only with boundary conditions that now will be the following

at =0 Ny =P,
at =1 Ny, =P.

These conditions are satisfied with the following values of constants A and B

1—coshal< __kP > B_p_ kP .
sinh vl o2E, A, ) o?E, A,
Normal force in the screw will be

N P 1 sinh ax — sinh (a = m)) N sinh ol

b 1 + _ 1 sinhad E,A, E, A, |
E, A, E,A,

Normal force in the nut is equal to

N, =P —N,.
Force at thread’s turns is equal to

L dN, _ Pa cosh az — cosh(a (I — 7))

dz 1 1 E, A, sinh ol

Eb Ab * En An

The character of N,, N, and t quantities’ distribution along the length of
the screw and the nut is shown in Fig. 198.

p v 7 p
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Fig. 198
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15. If we apply the compressive force P to the screw on the assumption
that its pitch of thread s decreases by the value A and after this screw the
nut, then no forces in the thread will occur. If now we unload the screw then
the forces arising in the system will be the same as in the system considered
in the previous problem. So the solution obtained previously is suitable also
for the present case assuming that the force P in the freely strained screw
provides elongation A per one pitch of the thread. According to Hook’s law

__Ps
By Ay
where s is a pitch of thread. Thus, to obtain the solution we are interested in,

there is enough to replace P in the expressions of the previous problem with

A
_Eb Ab .
S

16. Working conditions can be considered the most favorable when the
forces on thread turns are distributed more uniformly.

In the first case the first turn is strongly overloaded.

In the second case the tightening force is applied to the nut beyond the
first turn. The nut’s diameter in its lower part is diminished. So the forces on
the first turn in this case will be smaller. Thereby (under the same tightening
force) the remaining turns are additionally loaded. Working conditions for
thread turns in the second case will be more favorable.

However, the conclusion that generally in all cases the usage of type 2
(Fig. 13) nuts is preferable should not be drawn from the aforesaid. It is
clear that complication of every construction especially of such widespread
standard units as nuts will be appropriate only in the case when this compli-
cation gives really perceptible results. As the overload of some thread turns
in comparison with the remaining turns is limiting the strength of the thread
joint only in exclusive cases then correspondingly the usage of the mentioned
type of nuts may be recommended as an exclusion.

17. This is a standard model for one of the possible composite material
makeups. In common with a thread joints, interaction between the contin-
uum of filler and the fibers can be considered as an elastic one. The only
difference is that mutual elastic displacements in a thread joints are caused
by deformation of the thread turns, and here — caused by local deformation
of the filler continuum and the surface layer of the fiber.

Similarly to a thread joints

t=k (up — ue),

where up, — u. is the displacement of the fiber’s centre in relation to distant
points of the filler continuum. Coeflicient k& can be approximately estimated
by methods of elasticity theory. This depends on elasticity modules of fiber
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and filler as well as on the percentage of volume occupied by them in the
composite.

Simplifying the problem let us liken the part of the filler falling at one
fiber to some isolated tube bearing the same functions as a nut in the previous
problems.

Then without changes we obtain equation (3) of problem 13, where N,
must be understood now as normal force in the fiber. For this case let us
replace A,, with A. - cross-section area of the filler tube. Force P will be
expressed through the specified mean stress o, that is

P:U(Ab+AC).

Ab Ac
A, A
and filler in the composite, that is V, and V. . And now instead of equation
(3) (problem 13) we obtain

d’N, 9 ko
dz?

where

) k(l w)
==+ ==
Ay \E»  E.V:
As afiber is long, it is more suitable to express the solution of this equation

not through hyperbolic functions as it was done for bolt and nut, but in the
form of a damped exponent:

Ratios represent the volume percentage of fibers

ko
a?E.V,

As at the end of the fiber (at = 0) normal force N, becomes zero, we
obtain

N, = + Aexp(—ax).

(TEbAb
Ny = ————1[1— —
b= Ev, + B o Cen)l,
dNb (TEbAb
t=—"" P 5> 4 8] (—ax).

dr  E,Vy + E,V.

Thus, maximal tangential stress occurs at the ends of fibers and then
rapidly decreases. And normal force rapidly increases from zero to the con-
stant value which is determined from the conditions of equality of extension
strains for fiber and filler (Fig. 199).

The pattern described above clears up many things in spite of its simplic-
ity. For example, if fiber elongation at rupture is less than filler elongation
then destruction of composite under tension will begin from rupture of fibers
in the middle part of their length. The disrupt fiber turns into two shorter
ones, and a crack arises in filler at location of rupture. Evolution of crack in
the beginning will be blocked by neighboring fibers. Under further tension
of specimen already ”half-length” fibers will be ruptured somewhere in their
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middle part. Such dividing into fragments will stop evidently when fiber be-
comes so short that longitudinal tangential stresses at its ends will not be
able to produce sufficient normal tensile force in its middle part. Such fiber
length is called inefficient and is determined from simple considerations.

t

Ne

Filament

Fig. 199

Let us address the initial differential equation once more. But now, be-
cause we are talking about fibers with short length we need to express the
function N, through hyperbolic sine and cosine, that is

ko
"7 @’E.V.

Constants A and B are determined from such obvious conditions that at

xz = 0 and & = [ normal force N, becomes zero. Then

+ A sinhax + B coshaz.

oEy Ay coshal —1 | b b
= sinh ax — cosh ax
"7 By + E.V. sinhal
Fiber length is considered inefficient if the stress in the fiber’s middle
point amounts to 90 percent of its possible maximum. So at * = [/2 the

contents of the brackets must be equal to 0.9. From here without difficulties
we find al;. = 6 and if « is known then ineflicient length [, is found also.

18. At first sight the breaking point for the filament bundle seems to be
equal to the arithmetic average of the breaking points of the component fila-
ments. In reality this is not the case, and the breaking point for the filament
bundle depends also on scattering of the filaments’ strength within the lot.

Suppose we have two bundles. Each of them consisting of ten filaments
with breaking points that are written as conventional values in Fig. 200.

The mean breaking point for both bundles is the same at 5.5 but the
dispersions are different. In the first bundle breaking point alternates from
1 to 10 while in the second one from 5 to 6. We consider, naturally, that
the elasticity modules of all filaments are equal. Let us give step-by-step
elongation to the first bundle. Linear dependence reflected in Fig. 200 is
established between stress and strain. In the end of the first stage the same
stress equal to 1 occurs in all filaments, and the first one, which is the weakest,
is ruptured.
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Fig. 200
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Let us continue loading so that the strain is doubled. Then we mark
the new point at the abscissa axis. Actual stress in all filaments is doubled
correspondingly. The second filament is ruptured. And at the axis of the
ordinates we must point not 2 but conventional stress in relation to the initial
area of the bundle’s cross-section, that is 2 x 9/10 = 1.8.

Let us apply additional strain to the specimen, the third ” portion”. Then
in the remaining eight filaments actual stress equal to three conventional
units occurs but. .. it must be recalculated in relation to the initial area that
is multiplied by 8/10. As a result the ordinate of the third point of the test
diagram will be equal to 2.4. In such a way, from point to point the whole test
diagram is plotted for the first bundle and then for the second one (Fig. 200).
The breaking point for the first bundle is equal to 3, and then for the second
one equal to 5. Both values are less than mean. And this is the general rule:
the breaking point decreases under dispersion. If dispersion is absent the
breaking point of the bundle is equal to the breaking point of the filaments.

19. Let us consider the system of rods in the deformed state (Fig. 201) and
under given displacement of nodal point A search for force P. In the drawing
we measure angle «, Aly /1 and ua /1. Through the curve of Fig. 17 we
find forces P; and P corresponding to strains Aly /I and ua /1. Force P is
determined from the equilibrium condition

P=2P cosa+ P,.
Taking some given values of u4 we can plot the dependence of us on P.

The curve =2 — f(P) for the given rod elongation diagram is shown in
Fig. 201.
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20. Case I takes place under the large values of angle o, and case 2 under
the small ones. Case 3 represents the boundary between the two first cases.
The value of angle «, corresponding to case 3 can be found approximately
supposing that the rigidity of filaments is significantly greater than the rigid-
ity of rubber and therefore the loads are entirely reacted by the filaments.

Let us select the rubber-cord cylinder’s element with the dimensions a
and a X tan « (Fig. 202).

a

Y

>.p

A }\\ ™ P h P
atanor: / LB
& \“3

Oﬂ S CC
P \B
4B

s

:
lP
Fig. 202

Under such selection of element dimensions an equal number of filaments
fall into both element sections AB and BC'. Let us denote internal force in
the filament as P, then the resultant of forces in section AB will be

Psp=Pnsina,
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where n is the number of filaments falling into section AB. In section BC
the resultant of forces will be

Pge=Pncosa.

But we know that under loading of the cylinder with internal pressure the
mean hoopential stress is twice as much as the axial one. Consequently

Ppc Pup

a tanao a
Substituting P4p and Pgo we find

1
tanQa:?Z, a = 35°16.

Under this value of angle @ the cylindrical shape of the shell is maintained.
Under o > 35°16 the cylinder becomes convex as in case 1 shown in Fig. 19,
and under a < 35°16’, concave as in case 2 of Fig. 19.

Let us note among other things that the problems of investigating similar
rubber-cord constructions arise under design calculations of automobile tires.
The question of the filaments’ arrangement angle selection (Fig. 203) has
great significance for lifetime of the tire. Changing of angle to one or another
side away from the value optimal for the given type of tire results in decreasing
tire service life.

Fig. 203

However, it is necessary to say that the optimal angle for the tire is deter-
mined not from equilibrium conditions as in the example considered above,
but from optimal conditions of filaments fatigue strength under alternating
stresses arising during wheel rolling.
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21. Let us consider equilibrium of the distinguished filament (Fig. 204).

Fig. 204

The filament is affected by the distributed load ¢ [N/m] from the side of
the rubber shell. It is a variable load because the distance between filaments
at different points is different. The distance is maximal at the equator where

27 r,
qe = p bl
n
p is the pressure and n is the number of filaments. At the point situated at
the distance r from the axis
r

q={Gqe -
Te

Tensile force T' does not vary along the arc of the meridian. It is T = q p,
where p is the local radius of the meridian’s curvature.
Excluding ¢ and then ¢, from here we find

2m
T=—ppr.
n

On the other hand the half-sphere equilibrium condition gives
2
Tr

T=p ne' (1)

Excluding we obtain

2
Ie

2r
Let ¢ be the angle between the normal to the deformed surface and the
axis of revolution. Then dr = p cosp dy or

p:

2
dr = 5"‘ cospdy.
r

Integrating we obtain
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r:rzsinap+01.

As ¢ becomes zero under r = 0 then C; =0 and

2
. r
sing =—. (2)

Let us denote the distance of some point from the equator plane as y

d
It is obvious that d_y = —tany or
r

2

— dr
7.2

o
i
Let us substitute r =r.costy for integration of this expression.

Then

dy =

cos? ) dip

dy=re
Y \/1 4 cos29)

L Y
.2
Zlireﬁ 2/\/15”1 wdw—/—L +Cs.
2 2 \/ Sin2’(/}
0 0 4/1] — —=+
2

The value of Cy is equal to zero because at the equator v = 0 and y

or

becomes zero also.
Relative flattening of the equilibrium figure is determined by the relation

yo/re where yg is the vertical semi-axis of the body of revolution:

ﬂ[

/2

/ \/1— k2sin? ¥dy — / Jio I;fsm? w}

o

Yo _
Te

or
p
@=£(2E—F).
T

2
integrals of the first and second kind corre-

Here E and F are full elliptic
spondingly, having modulus & = y/1/2 . These integrals are tabulated; from

the tables we find
F =1.85407 and E = 1.35064 .

€

As a result

2 0.599.

Te
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There is one interesting detail: the found shape of the shell has the greatest
volume among the other bodies of revolution having a specified length of the
meridian’s arc. If the length of the filaments is given and therefore remains
unchanged then the energy of the system is determined by the potential
of the pressure forces only. The pressure produces work equal to pV. This
work will be maximal under maximal volume V and the potential of the
external forces (—pV') correspondingly has a minimum in comparison to all
neighboring shapes.

And one more question. If the filaments are compliant then how will the
shape of the found body of revolution be changed due to the increase of
internal pressure? The answer is sufficiently obvious. The extent of flattening
will be the same but all dimensions of the “pumpkin” will be multiplied by
(1+ ¢) where ¢ is the relative elongation of the filaments. And ¢ depends on
the form of the elongation diagram of the filaments.

Quantitative estimation follows from computations already carried out.

The length of the meridian’s arc that is the new length of the filaments
is determined by integration of the expression ds = /dz? + dy?2.

Omitting simple intermediary computations let us deduce the final result.
The length of the arc from pole to equator will be

l:§reF:1.31107’e.

Specifying r. we compare [ with the initial half-length of the filament
and find e. If the elongation diagram of the filaments is given, and this is
necessary, we find from the graph the tensile force T, and the pressure p is
determined from expression (1). In such a way from point to point one can
construct the dependency of r. upon p.

And finally one more instructive circumstance. The deduced solution un-
doubtedly contains some rudiments of the precomputer age. When a re-
searcher had no computing engines in his hands, reducing of any problem
to tabulated functions would be considered as an undoubted success. And
the deduced example is the best proof of this fact. But this situation remains
in the past. In fact, since expression (1) was derived, one should be able to
write

dy = —singpds, dr =cospds,
where ds is the element of the filament’s arc. Further, it is possible to make
these expressions dimensionless assigning, for example

y r S

— s -_— = ) :S.

Te Te Te

And then

Y:f/X2dS, X:/\/le‘ldS.
0 0




104 1. Tension, Compression and Torsion Part II. Solutions

And, further, one can fulfil computer integration with respect to S taking
zero initial values for Y and X and stop this calculation when X will reach
its maximum. The value of Y found at the same time and taken with ”plus”
sign will give us exactly the extent of the spheroid’s flattening we are looking
for. The expected value of argument S, as one can easily understand, will be
close to 1.5.

22. The mentioned phenomenon may take place only in the case when
sufficiently large plastic deformations occur in the aluminium ring under heat-
ing.

Let us denote the difference between the external radius of the internal
ring and the internal radius of the external ring before the fitting as A.

It is obvious, that

A
EA-I—ESZE, (1)

where €4 is the relative shortening of the aluminium ring’s arc and g is the
relative elongation of the steel ring’s arc.

Within the limits of elastic deformations in the presence of additional
heating

EA::?—i_aAt’ Eszz—z+a5t,

where 0 4 and og are the stresses in aluminium and steel rings, and a4 and
ag are the corresponding coefficients of temperature linear broadening. On
the other hand, 04 = 05 = ¢ , as follows from the equilibrium conditions
(Fig. 205) under equal thicknesses of the rings.

Then from equation (1) we have

A
— 4+ t(oqg—0
,_E7a ) @
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Suppose that the tension or the compression diagram of aluminium can
be schematized in such a way as shown in Fig. 206.

O
. _
=
BN
3
&
Fig. 206

The yield stress of aluminium is lower than the yield stress of steel. As
the stresses in both rings are equal, the steel ring will work elastically in all
the cases.

The stress of initial tightness of the rings which we denote as og will be

A

oo = —B

| 1
E4 * Eg
Then expression (2) will take the form

t(oa—o0

o=o00+ % . (3)
. Es

Let us note that o cannot be greater than o, 4. If the temperature of heating

1S
t>( )< 1 + 1 > 1
TyA — O — — VN
Y Y \Ea " Es) (as —ag)

then plastic deformations will occur in the aluminium ring and o = o 4.
Under cooling the rings will be deformed elastically. Then the residual
stresses can be found as the algebraic sum of 0,4 and the stress of cooling,
obtained from expression (3) by replacing the sign before ¢ with the reverse
one, that is
t (04 —0g
Ores = OyA — 1 1 . (4)
— + —
Es  Eg
Under 0,.s < 0 the aluminium ring will be falling out of the steel one.
Therefore the condition of falling out will be

t(aa—as)>oya (E_lA +Eis) (5)
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It is possible that plastic deformations in the aluminium ring arise already
under the fitting that is before heating, The expressions (4) and therefore
(5) also remain valid under these conditions, in no dependency upon the
influences resulting from reaching the yield stress o, 4.

23. If the temperature elongations of the ring and the cone are equal, the
height h evidently is not changed. Let us suppose that temperature elongation
of the conical rod is greater than temperature elongation of the ring:

Etc > Etr

In this case tensile stress ¢ having a value depending on the difference of
the temperature deformations e4. — e¢, (Fig.207) will arise in the ring under
heating.

O

O

0 ,

> Gres &
ftc - gtL

Fig. 207

If the stress o remains lower than the limit of elasticity then under cooling
the dimensions of the ring are reestablished and the height of its disposition A
is not changed. If the difference £;. — &, is sufficiently large then the ring will
receive residual deformation and under cooling the ring will descend. Under
repeated heating it will elongate once more and henceforward will descend
once more. This descending will continue until the elastic deformation ¢ g
will not become equal to the value of €. — &4, (Fig. 208). The new height of
the ring’s location is easily determined by the value of cumulative residual
deformation _ &, -

The analogous behavior takes place also under ;. < €4,.. In this case the
descending of the ring occurs under heating, while its elongation occurs under

cooling.
° [
X ”
&'
-
g'ou
Q)
N
W
Y _—
g z Sres &k ¢
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24. The tube’s deformation in the circumferential direction is specified
by
A 1

R:E(nt—pnl).

Let us denote the contact pressure as p and the axial force arising in the
tube as N. Then

pR N
Op="—, Oz= ;
TR 2 Rh
where h is the tube’s thickness. Consequently
A 1 (p N o
R~ ER\"" T ForR)-

But the axial force in the section z is determined by the integral of frictional
forces at interval (0+x) that is

N:/fp27er$ (2)
0

where f is the friction coefficient. Now expression (1) will take the form

x
A 1
2 - _ d
== Fn pR—uf / pdx
0
Differentiating this expression with respect to x we obtain
dp pf
dr R

from which

—r)
R

The constant py represents the contact pressure at the end of the tube.
It can be found from expression (1) by assigning N = 0. So we have

p=0,

Eh
po = FA .
Therefore
_BhA [
p= D exp 7 z|.

From expression (2) we find the axial force
2mEh A
N = U [exp (ﬁx> —1] .
I R

Consequently, the contact pressure and the axial force are increasing as
the distance from the end of the tube is growing. This increment will evidently
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cease at the section where axial elongation due to the forces N and p will
become equal to the initial axial elongation of the tube. But as the heated
tube is uniformly broadening in all directions, axial elongation at the moment
of fitting was equal to the hoopential one, that is A/R. Let us express axial
elongation through N and p :

1 A f
Em:E((Tx—,u(Tt), gx:u—R [(1—@2)exp <%x> —1]
Let us denote as a the length of the interval where the slippage takes place

and frictional forces exist. Assigning ¢, = A/R and z = a we find from the
last expression

R 1
a=—In—m—.
pf o 1—p
Under x > a ¢, =¢; = A/R = const and we have
N_27TEhA EhA 1 '

o 1-p P= "R 1—p
At the other end of the tube the distribution of the forces will be
analogous.
Figure 209 shows the laws of distribution along the tube’s axis for the
normal force N, the frictional forces dN /dz and the contact pressure p.
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A A

Y

Fig. 209

The same graphs for the case of the shorter tube (I < 2a) are shown aside
for the comparison.
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25. Let us consider the case (a).

Part II. Solutions
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Fig. 210

The axial force in the section z of the tube (Fig. 210) will be

N:/fp27erx —P.
0

(1)

Instead of expression (1) obtained in solving the previous problem we

have

R Eh

éfi{R—L /—P+27rR zpd.r\-l.
i promR | e e

As well as in the previous problem

D = po €xp (ﬂ—f$> .
R

(2)

The value of pg is determined from equation (2) if we assign there x =0 :

A_ 1 pit p
R Eh (po 2R )
from which
Eh uP
- —A-——,
W= e R

Consequently, we obtain

_(Eh,y kP )
P=\R2°  27zm2 )P\ R" )"

and then from equation (1)

2rEhA <27TEhA > (uf
N=— + — P )exp|—

I I

x
R

).
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Fig. 211

Figure 211 shows the laws of distribution along the tube’s axis for the
normal force N, the frictional forces dN /dz and the contact pressure p.

The behavior of the curves under P = 0 and under some other values of P
is shown by dashed line.

The tube will be taken off the rod under such value P* of the force P
when the segment b (Fig. 211) becomes equal to the tube’s length [.
Assigning N =0 andz =1 in the last expression we find

P* = 2rERA {1 — exp (— 'u—fl>] .
" R

Now let us consider the case (b). Here the force P as well as the frictional
forces near the left end of the tube change their direction. Therefore

N=P —/fp27er:U
0
and instead of equation (2) we obtain

%zﬁ {pRﬁ PQWRfO/pdw }
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Eh P
Then p = pyexp (— H-}{x) , where pg = EA + .QIL;RQ .
Further
N 2rERA (27rEhA . P) exp ( M_fx> _
1% K R

The corresponding laws of distribution along the tube’s axis for the normal
force N, the frictional forces dN/dx and the contact pressure p are shown in
Fig. 212. Under = = b the frictional forces change their direction stepwise.

: L s i L L L L L L L L L L L L Ll P
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T4 Rf120

Y R2( T—u)

Fig. 212

Assigning N =0 and x = [ in the last expression we find the sought
value of the force P* under which the tube will be taken off the rod.

P = 2nERA [exp (M—fl> - 1] .
I R

This value of the force proves to be greater than in case (a). This fact is
sufficiently obvious because tensile force causes the narrowing of the tube
and the augmentation of the frictional forces.
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26. Let us suppose that some tangential stress 7 occurs in any corner
point of the rod’s cross-section (Fig. 213).

Let us decompose this stress to components 77 and 79 perpendicular to
the sides of the polygon. According to the twoness condition, the conjugate
tangential stresses 71 and 7o must occur in the lateral faces of the rod. But
the lateral surface is free of stresses. Therefore 71 = 79 = 0 . Consequently,

7 =0 too.

o
o

Fig. 213
It is clear that the proved thesis remains valid under any value of angle

less than 180°.

27. The resulting moment of the stresses 7’ is counterbalanced with the
moment of the resultant force @ occurring in the plane of the normal section
(Fig. 214). The value of this force will evidently be the following

R «
Q://Trsingpdrdap.
00

Z
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r
But we have 7 = T,,.x—, therefore

R

us

R
r? 2
= max_ i d d =3 maxRQ'
Q //T 7 sin ¢ drde 37’
0 0

The moment of the force ) relative to z axis is equal to

2 2
M = - TpaR°L
3 T
And the stresses T produce just the same moment
R R
’ 2T l 2
M =2l dr = === | r?dr = ZTmax R
/T rdr R /r r 37'
0 0

28. If the rod is twisted without tension then the dependency of the
specific torsion angle 6 upon the torque M would exist within the limits of
small displacements

M
- GbR¥’
that is, the torsional rigidity would be equal to

1
Cy = nghS.

Now let us consider the case of the rod’s torsion in the presence of the
axial tensile force P . The normal stresses P/ (bh) preserve the direction of the
strip’s longitudinal fibers during rotation of the end cross-section (Fig. 215).
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The projections of these stresses onto the plane perpendicular to the
strip’s axis are equal to

P dp P
vhdr? " onY
(Fig. 215). These stresses produce the additional twisting moment
+h/2 )
Mp = / b—]:LQthdy = P@%.
—h/2

Adding this moment to the moment produced by tangential stresses we
find
b2 Pb?
M=Cb0+Pl—=0({Co+—|.
REET ( SRT )

Consequently, the torsional rigidity of the strip being stretched is equal to
the rigidity of the unstretched one plus the value Pb?/12.

29. As the tube and the shaft are not absolutely rigid, the local slippage
begins earlier than the value of the moment will reach the quantity My. In the
beginning, the slippage occurs in the marginal zones of the contact segment.
Under M = Mj the slippage embraces the whole surface of the contact. The
moment of the frictional forces at the same time will reach its limiting value
My and the turning of the shaft relative to the tube is beginning at the whole
length of the contact.

Let us divide the contact segment [ into three zones a, b and ¢ (Fig. 216).

A, By C . D

@M P> M?
Y,
Dl+t—-——tr—Ft———————— - d
T S
Fig. 216

At the segment a the twisting moment in the tube is greater than in the
shaft and correspondingly the angle of torsion is greater, too. While transition
from the cross-section A to the cross-section B the transfer of the twisting
moment from the tube to the shaft takes place and in the cross-section B the
twist angles of the tube and the shaft become equal.

There is no slippage at the segment b. At the segment c¢ the slippage takes
place again. Here the twisting moment in the shaft is already greater than in
the tube. The angle of torsion in the shaft is greater correspondingly. While
transition from the cross-section C' to the cross-section D the moment in the
tube descends to zero and in the shaft increases to M.
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The intensity of the moments of the frictional forces is equal to

M
m:—lo, (1)

The value of m is independent of the moment M. It is determined only by
the value of the friction coeflicient and the value of tightness.

Now let us determine the lengths of the segments a, b and ¢ . For this
purpose let us consider the tube and the shaft separately (Fig. 217). From
the equilibrium condition we evidently have

m(a+c¢) =M, (2)

and from the equality condition for the angles of torsion at the segment b we

obtain
me ma

= : )
(GTp)y (GJp)g
From equations (2) and (3) we find
o o
_ My _ My
a = y Cc = . (4)
LG T (G
(GTp)g (G )y
If the rigidities of the tube and the shaft are equal then from (4) we obtain
M
a=c= l.
2M,

Under the known a and ¢ we are sketching torque epures (Fig. 217).
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Fig. 217
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As the moment M increases the segments a and ¢ become longer and the
segment b shortens. Under M = Mj the sum a + ¢ is equal to [ and b = 0.
After that the moment of the frictional forces, which grew due to the increase
of the segments a and ¢, cannot grow any further and the mutual slippage
along the whole contact surface begins.

30. Let us locate the origin of coordinates z, y in the glued spot’s center
of gravity (Fig. 218). Let us assign that under loading the glued gusset plate
has moved left by A, and down by A, and in addition has rotated clockwise
by a small angle ¢.

y Y

PJ,
MA

Fig. 218 Fig. 219

Let us determine the stresses 7, and 7, effecting the gusset plate. They
are proportional to the local displacement, that is, to the displacement of the
point with coordinates z,y:

Tz:k(Ax_pr)ﬂ Ty:k(Ay—i_‘P‘T)a

where k is some coefficient of proportionality between the stress and the
displacement.
Let us write the equilibrium equations

/TIdA:O, /TydA:P, /(Twasz)dA:]W,
A A A

where M is the moment of the force P about the origin of coordinates. The
integration applies to the area of the whole spot or to the total area of the
spots if there are several of them.

Taking into account that the axes z and y are central ones we obtain

A,=0, kA,A=P, kol,=M,

where J), is the polar moment of inertia of the glued spot about its center of
gravity. Substituting A,, A, and ¢ into the expressions for the stresses 7,
and 7, we obtain
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M P M
Ty =—"" T, =+ .
50 T ATy,

The full stressisequal toT = \/TE + T% . Substituting here the expressions

for 7, and 7, let us determine the geometrical locus of points where the full
stress reaches its limiting value 71y, :

2 2
P J Jy T
) 2 _ [ Zpllim
<$+MA> +y_( M )
JE im . .
As we see this is the circle of radius 17\—/[1 . The center of the circle is located

P J
at the x axis to the left from the origin of the coordinates by the value — —£

M A
(Fig. 219). If the circle intersects the contour of the glued spot then the

stresses in the outer region of the spot are greater than the limiting (breaking)
stress. If the whole spot is inscribed into the circle then the strength condition
is fulfilled.

31. 1. Let us isolate the inner part of the rod by the cylindrical surface

y

through-passing the specified contour (Fig. 220).

Fig. 220

Tangential stresses conjugate to 7,, occur at the traced cylindrical surface.
Projecting on the axis z all the forces effecting at the isolated part of the rod
we obtain

]{Tnms:o,

S
or otherwise

andSZO.

S

2. Let us consider the element dsdz of the cylindrical surface traced
through the drawn contour (Fig. 221). After loading of the rod this element
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will be disfigured and will take the form of a parallelogram represented in
Fig. 221. The angle of shear v will be determined by the sum of the angles «
and 3, that is

y=a+p.
Now let us find the expressions for every summand of the above-mentioned.
The angle « is determined by the angle of torsion 8 and by the distance from

the center of twist; indeed from Fig. 221 we have

’

AA
dz '’

but AA" =n dy, where dy is the relative rotation angle of the cross-sections
lying in the distance dz from each other, and n is the distance from the center
of twist O (Fig. 222) to the tangent to the contour in point A. As dp/dz =0,
then a = 6 n.

y

Fig. 221 Fig. 222

The cross-section of the rod under torsion will not remain plane. It will
receive some displacement w(z,y) in the direction of the z axis. It is obvious
(Fig. 221) that

dw
A= ds’
Asy:% then
Ts
_:6 —
G nt ds’

from which we obtain
Ts
dw = (G —6n>ds.

The integral of dw applied to a closed contour is equal to zero. So

1
Ej{Tsdsf@j{nds:O.
S

S
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But nds is the doubled area of the OAB triangle (Fig. 222), therefore

%nds:ZAs, 7{7'5 ds =2GA, 6.
5 s

32. A thin-walled profile with the principal central axes of inertia is shown
in Fig. 223. Let us suppose that under torsion the cross-section rotates by
the angle ¢ about some point C' having the coordinates z., y,..

L
V
Fig. 223
The generatrix AB (Fig. 223) under this will rotate by the angle
P = £ _ 9.

l
As a result there will arise the longitudinal elongation
_AB-AB __1
N AB "~ cost ’

€ V?

ER

N =

or

e==r209%

The mutual rotational displacement about the z and y axes and the mu-
tual axial displacement of the cross-sections are possible simultaneously with
the mutual rotational displacement about the longitudinal axis. Therefore
the additional component, depending linearly upon = and y, will appear in
the expression for ¢, i.e. we have
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1
5:5r292+a+bx+cy

and correspondingly the stress

U:E(‘irQQQ—Q—a—i—b:c—i—cy). (1)
The warping of the cross-section will not have an influence on the elongation
¢ because we consider the unconstrained torsion (6 does not change along the
rod’s axis).

The constants a,b and ¢ must be selected in such a way that the normal
force in the cross-section as well as bending moments about =z and y axes
would become zero:

N:/(fdA:O, ]Wx:/(fydA:O, ]Wy:/(r:vdA:O,
A A A
from which we obtain
6> J 0°H 2
a=— L h=— Y c= f Hx,
2A 2Jy 2J,

where J,, J, and J, are correspondingly axial and polar moments of inertia
of the cross-section, and H, and H, are the new geometrical adjectives

Hz:/TdeA:O, Hy:/TQdi:O.
A A

The expression (1) takes the form

E® J, H H,
<T2——E——y:1:——y). (2)

A g0 L

The stresses o create in the cross-section the additional twisting moment

M, = /(f?“’(/JdA,
A

or
E®

E®? J, H H
M, =— Py =y )r?dA, M,=—"K.
2T <T A" ny)T T

where the quantity K represents the new geometrical adjective

J? H2 H2
K:/r“dA——:——Jy'—j‘T‘. (3)
A Y ¢

The twisting moment in the cross-section consists of the “usual” moment
produced by the tangential stresses and of the additional one
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E®

1 1 E 3
My == 3s8°G6 + K=- 53(;9<1+— 921(), 4
B 3" G 28° W

S
where s is the length of the contour’s arc.

Executing the replacement of r2 with (z — z.)°+(y — y..)” in expressions
(2) and (3) we shall notice that the coordinates z . and y,., in the expressions
for ¢ and K are excluded. It means that the selection of the pole C' can
be made arbitrarily and one may be guided here by the considerations of
convenience only.

Let us consider the particular cases:

a) The strip of the rectangular cross-section with the sides b and h
(Fig. 224a). In this case we have

3 +b/2 5 5
Bs A Bs b6
A=bs - = H,-H,=0, K=6 dy — — = —,
TS v =0 /y Y7144 T 180
—b/2

Then
EO* [, b 1. 4 E b 2)
=—(4y2-= My ==b8Go(1+= 62 ) .
777 ( 12)’ =3 G( G 120682

The last summand in the expression for My gives us the quantitative evalu-
ation of the nonlinear effect.

y Y

P

s @ ®
Fig. 224

b) The unclosed circular profile (Fig. 224b) is
A=2rR§, J,=2rR*S, H,=H,=0, K=0,
therefore 0 = 0,
1
My =32t R §8G 6.

The nonlinear effect in this case is absent.




122 1. Tension, Compression and Torsion Part II. Solutions

33. Let us isolate from the rod the elementary ring with the thickness dz
by two cylindrical surfaces having radii » and r 4+dr and by two cross-sections
(Fig. 225).

Equating the sum of the moments about the z axis to zero we obtain
0 ot
[7’ + B_sz] 2nridr — r2nridr = [t + 6—dr] 21 (r 4+ dr)? dz — t 27rdz
z r

from which

or 0
20T O o
r Bziar(tr). (1)

Fig. 225 Fig. 226

Let us denote the displacement in the direction of the tangent to the
circle’s arc as v (Fig. 226). The angle of shear in the cylindrical surface is as
usual

ov
71 = Ea
and the stress
ov
_o& 2
T=G 5% (2)

The angle of shear in the plane of the cross-section v, is equal to the
segment’s ratio BC'/AB (Fig. 226). But

BC = v+ Lar— o 2T AR 4
or r
therefore
_Ov v
V2 = or 1’

and corresponding stress

tG(?—:i}). (3)
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Substituting 7 and ¢ into the equilibrium equation (1) we obtain

0%v 0 [10
02?2 + or [r or (UT)] =0 4)

It is natural to suppose that the displacement v depending on z is changing

as under usual torsion in accordance with the quadratic law, that is
V=g + V1 2+ 11222,

where vp,v1,v2 depend on r only. Equation (4) after substitution of v is
decomposed into the three following

1 ’ ' 1 ’ ' 1 ’ '
[‘ (UOT)] = —2vy, [‘ (Uﬂ")] =0, [‘ (Uzr)} =0, (5)
r r r
from which
B B
’U1:A17'+_1, U2:A2T+_2.
r r

Finally, substituting vs into the right side of the first of the equations (5) we
obtain
vg = Agr + Bo _i27’3—BQ7' Inr.
r 4
As the displacements at the rod’s axis are equal to zero it is necessary to
assign By = B1 = By = 0. Then

A
U:Aorffr3+A1rz+A2rz2,

and according to expressions (2) and (3)
1
T=G(A +242)r, t= GE Aq 2.

At the left flank, that is under z = 0, tangential stresses are equal to zero.

d
Consequently, 4; = 0. At the surface of the cylinder (under r = 5) = ﬁd’
™
8
therefore Ao = un and as a result we obtain
TG
16m dm
= rz,

HRE Y
Thus, the stresses 7 are distributed linearly with regard to r and z as follows
from the usual theory of torsion. The stresses t are distributed along the
radius in accordance with the quadratic law. The ratio of 7 and ¢ maximal
values will be

M_ Mgl . ﬂd_2 _8_l
tnax  \7dB 2 ) \xd® 4 ) " d

Consequently, for a long cylinder the stress t,.. is significantly less than

T max-
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34. Let us consider the equilibrium conditions for the element drdydz
(Fig. 227a) [12].
The equality of the sum of all forces projections onto the z axis to zero
gives us
0T, 0Ty
— + —
ox dy
At the contour (Fig. 227b) we have the boundary condition

~0. (1)

Ty cosa+ T, sina =0,

or
dx dy
Ty ds+TI . 0, 7ydr=—-T,dy (2)
T
Tyt ayydy y
ds T
z d 1 b4 Ty
dz Vi
¥y a
Y
CTy X
dx dx
ox b L
Fig. 227

Now let us consider the integrals specified in the set of the problem

//Txydacdy, //Ty;vdxdy.
Ty z Yy

Integrating by parts of the first expression with respect to z and of the second
one with respect to y we obtain

//nydmdyZ/ | Te @ 3} — /—xdx ydy,
Ty Yy
//Tyacdydac:/\Tyy\gf—/gyyydy:vd:c,

z oy T T

that results in the expressions

//nydmdy—/mml ydy - //—wydwdy,
//Tyxdxdy—/\Tyy|y2xdx—//gyxydmdy.
Y
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According to the boundary condition (2) we obtain

/Inxlifydyz—/\wy\
Yy x

Y2 xdx,
Y1

and according to the equilibrium condition (1) we have

//%xydxdy:—//%’;‘:rydmdy.
y z x T

Consequently, we arrive at the equation

//Tmydacdy:f//Tyxdacdy.
Ty z y

But as

//Txydacdy—//Tycvdaadz =T,
z y z Yy

then finally we obtain

T T
//Txydzdyzg, —//Tyatda:dyZE.
x oy oy

The obtained relationships contain some element of didacticism. For
example, under torsion of a thin rectangular strip (Fig. 228) we are always
neglecting the stresses 7, in comparison with 7,. And that is correct.

))

A

Tx

Fig. 228
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But if we neglect the small stresses 7, while determining the torque then
we should make an error of exactly twofold amount because the small stresses
T, at the large arm y produce the same moment as the large stresses 7, at
the small arm z.




2. Cross-Section Geometry Characteristics.

Bending

35. The right triangle product of inertia with respect to the axes xg, yo
parallel to the legs and crossing their middle points is equal to zero (Fig. 229)
because these axes are symmetry axes for two constituent triangles.

X}’o

Xg
h
ai /
h / x
2 /
/ \
b
6
o=
b
2 L
Fig. 229

Applying parallel-axis theorem we obtain
b hbh
Jow = Jeows = 56
b2h?
theref zy = — .
erefore Jay -

where Jp 4, =0,

36. Let us denote the figure’s polar moment of inertia with respect to its
centroid O as J,, and with respect to some arbitrary point of coordinates

a,b as J, (Fig. 230).

v 4y %
™ ™~
K T2

A z

Fig. 230
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It is obvious that
Jy=Joy + Ty = Ju +J, + (a®> + DA
where A is figure’s area. As J, + Jy, = Jp, then

Part II. Solutions

Consequently, the plane figure’s constant polar moments of inertia geomet-

ric locus represents the set of circumferences concentric about point O (see
Fig. 230). Each circumference radius R is determined by J, value:

Jp—J
42— po
R= .

37. Let the x and y axes of some plane area be principal (Fig. 231).

v |
Vi 7
N Uy
N e
N
N 7 Oy
\\ /// u
N - o
0] X
Fig. 231

Suppose that there is one more pair of principal axes u,v noncoincident

with z,y (angle « is not a multiple of 7/2). If axes u,v are principal then

Juw = 0. But it is known that

Jx* J1 .
Juv = Jgycos2a+ TJsm 200 .

As the x,y axes are also principal then J,, = 0. Therefore

Jz = J,
2

but as sin 2a # 0 then
Jo = Jy

sin2a =0,

Considering an arbitrary taken pair of axes u1,v; we can write

Je— J,
Jugv, = Joycosag + %Sin 27 .

Obviously we have J,,,, = 0 independently of angle o, i.e. any pair of axes

is principal.
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It is evident from the above proof that for every cross-section of three
or more axes of symmetry any central axis is principal and axial moment of
inertia with respect to any central axis will be just the same. This follows
from relation (1).

Fig. 232

The cross-sections presented, for example, in Fig. 232 (square, equilateral
triangle, curved hexagon, etc..) have such property.

38. Assume that z,y are principal centroidal axes of the plane area
(Fig. 233) and that the sought point A has the coordinates a,b. Now let
us select @ and b so that J,, vanishes for any «.

Jl V|5
u
a
A A { z;
bv
<a; z
Fig. 233

At first we apply parallel-axis theorem (A — cross-section area)
Jon = Jo +0°A, Jy = Jy+d’A,  Ju .y =abA.
Then according to the axes rotation formulas for products of inertia
Jog — Jy .
Juv = Jgq 41 COS20 + > sin 2av .
To obtain J,, equal to zero under any « angle we obviously need that
J$1y1:07 le_‘]m:o’
or

abA=0, J,—J,=(a®—-b)A.
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Either a or b or both a and b must be zero as follows from the first relation,
i.e. the desired point in any case is on one of the principal centroidal axes.
Assume that J, > J, and at first let b = 0. Then

Je — J,
¢ \/ A

In Jy, > J, case a is an imaginary value. If J, = J, then a = 0.
Now suppose that a = 0. Then

Jy,—J
b= 4/ ——=.
Vi
If J, > J, then b is a real value. If J, = J, then b = 0.
Thus we obtain four sought points with the coordinates:

1)a=+ M, b=0;

.
2)a:—\/M,b:0;
A
Jy,—J
3)a=0, b= £ =
Ja=0, b=+ Lt
4)&20,13:— 121__J$

The points lying on the axis of minimal moment of inertia are imaginary. The
points lying on the axis of maximal moment of inertia are real.

In the case of equal principal moments of inertia (J, = J,.) all four points
are real and coincide with the area centroid. For such figures (circle, square,
equilateral triangle, etc.) every axis intersecting area centroid will be princi-
pal.

y A
A
¢ z
Y A
Fig. 234
For example, let us consider a rectangle of measures ¢ x 2¢ (Fig. 234)
where J, = 21:—;3, Jy = - 12; 3, A = 2¢%. The coordinates of the sought

real points are

These points are marked in Fig. 234 as A. Each axis intersecting these points
will be principal.
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39. If stresses at the neutral plane OO are absent, then the beam, of
course, can be divided into two parts and stresses and strains in the beam
will not be changed after this. But for this it is necessary to preserve the
same conditions of loads application at the beam ends. When we draw the
moment at the beam ends (for example as in the case of Fig. 35) it means only
that the resultant moment of stresses effecting the beam end is equal to M.
Thus we are usually neglecting the distribution law of the stresses at the very
end which are reduced to M. But it is not significant indeed. Independent
of the character of loads application, stresses are flattening rather quickly
as the distance from the beam end grows, and the stress diagram takes the
well-known linear form.

Step-by-step modification of the normal stress diagram form from the
beam end to its middle is shown in Fig. 235. An arbitrary lattice diagram of
the stresses at the beam end is considered as an example. The stress flattening
falls in a very short beam segment but considerably large shear stresses arise
at this segment in the neutral plane OO.

7 |,

Fig. 235

If we consider the specified set of the problem then stress distribution
at the beam ends in the one and in the other case is not indifferent. In the
first variant of the beam (Fig. 35) stresses are supposed to be distributed at
its end by one law (Fig. 236a and 236¢c), as in the second case (Fig. 36), by
another law (Fig. 236b and 236d).

[T
%
P

Fig. 236
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The beam can be divided into two parts without disturbance of its oper-
ation if we manage to provide the same linear law of stress distribution at
the ends of the slit beam as for the entire beam (Fig.236c¢).

==

It is not difficult to fulfil this constructively. For example, rigid holds at
the slit beam ends for both of its parts (Fig. 237) will be quite enough.

40. The problem is known as Parent’s’ problem. As b2 + h? = 4R?, then
the section modulus W, of the rectangle with respect to the z axis (Fig. 238)
bh? b

will be W, = = —(4R* — ¥*). This function has a maximum under
b= 2R\/§ and correspondingly under h = b\/a.
.1)
<
L/
-T2 T 1 I=
b
Fig. 238 Fig. 239

Parent himself gave the answer in the form suitable for a carpenter. The
circle diameter AD has to be divided into three equal parts AB = BC =
CD (Fig. 239). Then the perpendiculars BE and CF are erected up to the
intersection with the circle. The rectangle AEDF is the bar sought cross-
section.

41. In order to provide that the neutral axis of the collective stress dia-
gram o passes through the cross-section I —1I centroid, the line of force action
must intersect the center of the curvature, i.e. x = 0.

Bending stress in the point situated at the distance y from the neutral
axis of a high curvature rod cross-section is calculated by the formula

]Vfby

! Antoine Parent (1666-1716) — French scientist.
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where M, is the bending moment, A is the cross-sectional area, r is the
distance from the centre of curvature to the neutral axis and e is the distance
from the neutral axis to the cross-section centroid. In our case M, = P(r +
e + z). At the centroid (i.e. y = e¢) we have
P(r+e+a)e

Ae(r+e)
According to the problem predicative the algebraic sum of this stress and
tensile stress must be equal to zero:

P(r+e+x)e 2 0

Ae(r+e) JrA B

whence we arrive at z=0.

Op = —

42, The relation (1) in the set of the problem results from the differential
equation

oMy

- EJ’
which was obtained from relation (2) under the assumption that deflections
of the beam are so small that

1__ v
p 14y 2)3/2
Therefore, strictly speaking, under pure bending a beam is bent by the
arc of circle which in the case of small deflections can be approximated by a

quadratic parabola with very high precision.

Y

43. Figure 240 shows the upper part of the moments diagram caused by
given force P and the moments diagram caused by unit force applied at point
A. We find displacement 64 calculating Mohr’s integral of these moments’
product by the graphico-analytic technique described in [7]. Coincidence of
the unit force diagram’s centroid (C.G.) with the zero point of the given
force diagram (Fig. 240) is necessary to get zero value of 6 4. It is obvious
that © = /3.

x —1\3( l-z)

AN

N\
8
—

AN
Sy

o

®
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44. The displacement of point A in direction perpendicular to the line of
force action should vanish according to the set of the problem. So this is the
condition the angle « is derived from.

Let us apply unit force at point A in direction normal to P and then draw
diagrams of bending moments (Fig. 241).

Pl sinco. (I cosa

Pl(cosa-sina) I(cosa+sina)

77
Fig. 241

Let us set to zero the displacement of point A, obtained by multiplying
these diagrams [7]. Then we get
™m
tg 2a =1, az?—i—g,
where n is any integer.

45. See Fig. 243.
. . P
46. a) Point A (Fig. 42a) deflects upward by BT
3

PR
b) Point A (Fig. 42b) deflects to the right by Yo

PR3 T
(1—=);
EJ 4
3 3

Pl P
c¢) Point A (Fig. 42¢) deflects upward by CEJ and to the right by 7

d) For the case shown in Fig. 42d the question cannot be answered until
the constraints, forbidding displacement of the frame as a solid body, are
given. Point A deflection will be different depending on the constraint char-
acter (Fig. 242).

and upward by

] AP
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I . 1 I . 1

®
=
C

P

A
N

l

s
3
.
A

A
P 3
Fig. 243

For example, under indicated constraints (Fig. 242) point A deflects:

13
in the first case — to the right by ;
16EJ3
in tk d — to the right by — ;
in the second case — to the right by 2=
PP P

in the third case — to the right by and downwards by

16EJ 4EJ

135
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47.Bar AB is compressed. It is necessary to reveal statical indeterminacy
of the frame to become convinced of it.

\ X %Pl

P 74 P
385 Pl
TITS7TT T
Fig. 244
The reaction forces in the pin (Fig. 244) will be as follows:
X, = —%P, Xy = 24—:513.

48. The resultant of load P and of the right support reaction passes
through the inflection point of the rod deflection curve (Fig. 245).

M
A

a
Fig. 245

Reaction R is derived from this condition. Remaining reactions are derived
from equilibrium equations:

A=P, B=R, M=Ra.

49. The displacement of each load application point (Fig. 246) is derived
by the usual method as follows:

PR3 3n2 1 w2 2 T
6= —_— - = — _7-92 2| —-_9 3
WEJ{[S T 2}“{2 i }“Y [4 ]HY 3}’

where a = a/R.
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Fig. 246
The displacement § takes its least value if o = 0.148.

50. Deflections of point A for three frames will be as follows:

Pa?
6 =
Yo
Pa® (n—3 m/2-1
(5]] = ’
2 \ GJ, EJ
Pa3V2 [ 1 1
S111 = + .
i 4 (GJP 3EJ>

137

EJ
For a beam of circular cross-section we have —— = 1.3 and therefore we get

p
51]:1.136], (5[[[:1.726[.

Hence the first frame is the most rigid one.

51. The ring stiffness may only decrease if a pin is cut in it. At least ring
stiffness remains equal to its value for the closed ring. The last case will occur
only if the pin is placed at a point where the bending moment in a closed

ring vanishes (Fig. 247). The sought angle is o = arcsin —.
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52. If one of the principal axes lied in a frame plane we could give an
instant answer: both diagonals of the frame do not change their length as the
bending of the frame occurs only out of plane.

The other case takes place for a Z-shaped section. The cross sectional
principal axis ¢ does not lie in the frame plane. It is inclined by angle a # 0
(Fig. 248). Thus a bending moment arising in planes perpendicular to the
frame plane causes variation of curvature and correspondingly deflection of
the frame in its plane.

M\

C Va4

o

Frame plane

lrrrsrs.vrsse.

Fig. 248

Bending moments in cross-sections of the frame are derived from equi-
librium conditions though the closed frame is statically indeterminable. This
follows from system properties. The frame is symmetric with respect to its
diagonals and load is antisymmetric with respect to the axes passing through

the middle of the frame sides. If we cut a corner with sides 5 out of the frame
P
(Fig. 249a) it is easy to find the values of transverse forces 2 and torsional

Pl
moments I from equilibrium conditions. Then diagrams of bending and

torsional moments are constructed as presented in Fig. 249b.
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Let us cut the frame at an arbitrary cross-section and apply unit forces
at points A and B. The corresponding diagram of bending moments is shown
in Fig. 250. Torsional moments are absent.

In order to multiply unit diagram and diagram of moments corresponding
to the given load (Fig.249b) both of them should be decom posed along section
principal axes ¢ and 1 (Fig.248). Decomposition of moments along new axes
does not change diagram shape. Only ordinate scales are multiplied by sin
and cos « correspondingly. The product’s signs should also be watched closely.

Diagram multiplication at segment C'B yields:

1 1V2 1P 1 1.V2 1 Pl

sina—— cosa — =l— lcosa——sinq,

!
EJpa 2 2 3 4 EJpw 2 2 34

where J.x and Jy;, are cross-section principal moments of inertia about
axes ¢ and 7 correspondingly. Multiplication at segment AC gives the same
result.

In the upshot elongation of diagonal AB will be

2 1 1
A(AB) = Pl3£ _— sin2a .
48 \ EJpnax  EJnin
As Jmin < Jmax, it means that A(AB) will be negative. Therefore the
diagonal AB shortens under action of load P. Correspondingly, the second
diagonal elongates.

53. The posed problem can be solved by two methods.

The first way is suitable for springs of large helix angle also and lies in
considering the spring as a spatial rod. Its displacements can be derived by
Mohr’s method. The complexity of geometric relations represents the main
difficulty in applying this method.

The second simplified way, which we shall use below, lies in replacing
the spring by some equivalent straight beam. Its bending rigidity is derived
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depending on mutual rotation of coils (Fig. 251a). The distinct shear displace-
ments in the vertical plane (Fig. 251b) are inherent for such beams besides
bending deflections.

Fig. 251

In order to determine bending and shear stiffness of the according beam
let us consider a single spring coil assuming that the helix angle is equal to
zero. The colil is isolated by sections placed in a vertical plane (Fig. 252a). The
moments M and forces ) arise at the coil ends. Their magnitudes are easily
obtained from equilibrium conditions for the discarded part of the spring.

©

Fig. 252
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Moment M causes a mutual cross-section rotation angle 9 (Fig. 252b).
The magnitude of ¥ is calculated applying Mohr’s integral as follows:

2m 2m
197/\ ]\/[t Afth d(p n / ]\/[b ]\/[bleSO
B GJ, EJ
0 0

where M; and M, are torsional and bending moments. We can see from
Fig. 252c that

My = Mcosp and M, = Msing.
Moments by unit load have the corresponding values:
My =cosp and My =sing.

After integration we get

19:]V17TD< 1 n 1)

2 \GJ, EJ
or
32M D

It we denote the lead of the helix as h then 1/p = ¥/h, as follows from
Fig. 251a. If n is the number of coils and [ is the length of the spring, we
have h = [ /n. Then

1 In

e
or

1 M

P EdY

32Dn(2 + p)
The value
Ed*l
32Dn(2 + p)

can be considered as bending stiffness of the equivalent beam. Let us denote
it as Cb

Ed*l
G = 32Dn(2+ p) 1)
then
1 M
=== 2
5= C (2)

Shear displacements are caused by bending of the coil in its plane
(Fig. 252d). Obviously we have
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27
/ Mb A/[bl R d(p
w= | ———-
EJ ’
0
where (see Fig. 252¢)

My, =QRsinp and My = Rsingp.
After integration we arrive at

_ QD3rn
T 8EJ

An additional angular deflection will be

Deflection of the spring under action of transverse forces will be

f = fb + fs .
For the considered specific case of the beam clamped by its left end the
bending displacement is equal to
PP
 3EJ’
where flexural rigidity E'J should be replaced by C.
The shear deflection is

b

Pl
fs = A0 = a
Thus we arrive at
e p
3C, C,

Magnitudes of C}, and Cy are defined by relations (1) and (4). In other cases
of loading the problem is analyzed in a similar way.

54. Let us release the balance axle from its bearing and introduce reac-
tions as unknown forces X and Y. Let’s also designate the moment acting on
the spring from the oscillating balance mass as M (Fig. 253a).
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Fig. 253

Further let us write the conditions of the balance axle zero displacements
in z and y directions. For that we apply the corresponding unit forces produc-
ing bending moments x and y in the section of (z,y) coordinates (Fig. 253b).

Then we arrive at

/nyds—/Y:vyds—/]WydszO,

S

—/nyds+/Yx:vds—/M~xds:O,

s
or

XI,-YIL,=MS,,
—XI,y+YI, =-MS,,
where

Im:/des, I, :/a:2ds, Ly :/myds,

S S

Slz/yds, Sy :/xds.

In order to get zero X and Y forces it is necessary that S, =

= 0.
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It means that the required condition is valid if the spring coil’s centre
of gravity coincides with the balance axle. But the axial line of the spring
is Archimedes spiral and its centroid does not coincide with the center of
barrel rotation. That is why special spring designs created to satisfy the
above-mentioned condition are common practice in watch manufacturing.
Such balance springs have a deflected outer coil. Typical examples are shown
in Fig. 254.

55. The main question arising in this problem solution is revealing the
character of spring sheet contact. Let us suppose that fastened sheets osculate
in the point at the shorter sheet’s right end and also in the link point where
vertical displacement and slope of both sheets are the same. The correspond-
ing scheme of forces is presented in Fig. 255a. If sheets are not fastened, then
Xy = X3 =0.

Multiplying the unit diagrams of the moments (Fig. 255b) we obtain

16 5

EJ 611 2313, EJ612:§l3, EJ 6§15 = 312,
_2p y _

EJ 8y =31, EJ 893 =12, EJ 633 = 2L,

14 4 5
EJ6&1p = ary P13, EJ&yp = -3 PI3, EJ&sp = —EPZQ.

Substituting these relations in the equations of the force method we have

16 5 14
— X1+ - Xol+3X3=—PI
3 1 +3 20+ 343 3 )
5 2 4
- Xil+ - Xol+ X3 =7 Pl
31 +3 20+ X3 34
)
3X1Z+Xgl+2X3:§Pl.
Solving these equations we find
0] 3 1
)(1:_137 Xgif_P, X3:7_Pl.
4 4 4

In case of non-fastened sheets we have X1 ==P, X, =0, X3=0.

The resultant diagrams for fastened sheets is plotted in Fig. 255¢ by solid
line and for free sheets by dashed line.

Now it is necessary to validate the assumption made about the character
of sheet contact. At first let us consider the dashed diagrams (Fig. 255¢c). The
bending moment in a lower sheet and consequently its curvature at the point
of sheet contact is greater than curvature of the upper sheet. This means that
deflection curve of the lower sheet will be lower than the deflection curve of
the upper sheet that corresponds to the above specified assumption.

Diagrams for fastened sheets at the first segment are absolutely identical.
Hence full contact without force interaction takes place here and does not
contradict the previous assumption.
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At the second segment of the diagram the deflection curve of the lower
sheet is lower than the deflection curve of the upper sheet. Thus, the obtained
solution confirms the assumption about the character of sheet contact.

The displacement of the load P application point is derived by the mul-
tiplication resultant diagram of the upper sheet and unit diagram. Finally

118 P13
we obtain the displacement for non-fastened sheets A BT and for fastened
115 P13
sheets — —.
24 EJ

Fastening of sheets reduces the maximal bending moment from 7Pl/4 to

6P1 /4.

56. Let us consider the right-hand half of the spring assuming that sheets
contact at points A and B (Fig. 256a).

l l l
@ AX1 P

FUSUVOINY

X,

V),
3P1 ,W

2 \m"
2 T,

! T f? @
=,

Fig. 256

Redundant forces X; and X5 are derived from compatibility equations of
the force method [7]

011 X1+ 012Xo = —61p, O X1+ 622X = —b2p. (1)
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The coefficients §11,012,622,01p and dop are determined by multiplication
of the diagrams (Fig. 256b) [7]:

16 5 2
EJéyy = =01, EJsi9=—=013, EJbyo==103
11 3 ) 12 6 ) 22 3 )
14
EJbéip = —§Pl3, bop = 0.
Thus, from equations (1) we find X; and X5 :
112 140
1=—=P Xo=—70P
103 103

The resultant diagrams of bending moments are plotted in Fig. 257. It fol-
lows from these diagrams that at a clamped end the bending moment and
consequently the curvature of the first sheet is greater than the curvature of

the second sheet.
03 PL
(0.8252)
< Pl
it Pl J_ m W
(0.8155)
L1 e

22p1 (1.0874)
(1.3592 | |/

Fig. 257

This means that under these conditions the deflection curve of the second
sheet must be higher than the deflection curve of the first sheet. Such a case
is physically impossible. Hence the specified assumption about sheet contact
character is not correct and the considered scheme must be changed.

Now let us suppose that the first and second sheets contact at two points:
as previously at point A and also at a point C' at some unknown distance a
from the clamped end (Fig. 258).

l l l
a AAX3 ux1 'P am”
C 4 A
¢ % ®

1
: X, B X, ¥

Fig. 258 Fig. 259
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If the unit diagram corresponding to the redundant force X3 (Fig. 259) is
added to the diagrams of Fig. 256b, then the coeflicients of the force method
equations (assuming that a < ) are derived as follows:

16 5
EJS, ==,  EJ&g=—=1° EJ 815 =a2(20 — =),
3 6 3
2 a? a 2
EJ 609 == I3, EJby3 = ——(—=), EJ b33 == a®,
J 622 30 J 623 2( 3)» J 633 3%
14 2
EJ81p =~ PI*, EJ 82 =0, EJ63p:—%(3l—(—§)P.

In this case the force method equations system looks like
32X, —5Xy+ 2a” (6 — ) X3 = 28P,
—5X; +4Xy —a? (3 —a) X3 =0,
26— a) X1+ (3— o) Xo+4aX3 =(9—a) P,
where oo = a/l. Solving these equations for the redundants, we obtain
P
X, = 2(448 — 549 + 228a% — 31a?),
P
Xy = 2(560 — 684ar 4 27007 — 34a3),

P1
X3 =—=(3 - 19),
3 Aa(3 9a),

A =412 — 504 + 20402 — 28a3.

The magnitude of a (or «) is derived from the condition that slopes of the

first and the second sheets at a point C' must be equal.
Applying unit moments to these sheets at this point (Fig. 260)leads to:

_ ] .0.054993]
1|||||||| ‘1 0.8203 Pl M W
N Pl
A
1 LT % 0.8204 Pl m W
a N L1"1.0873 P1
08303Pl’/
1.3593 Pl W/
/
///
Fig. 261

Fig. 260

and multiplying the corresponding diagrams we arrive at
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a a &2
a(3z—§)P—a(2z—5)X1—3X3
2

:a(2lf§> Xl—a(l—%)X2+%X3,

or 24— a)X; — (2— @) Xa + 20 X5=(6— )P.

Substituting the obtained values of X7, X5 and X3 into this expression we
get

3a® —15a? +19a — 1 =0,

whence a = 0.054993 < 1. If the obtained value of o were be greater than 1,
then the solution would have to be repeated considering that a > [.
For sought o we calculate the redundants X7, X5 and X3 :

X; = 1.0873P, X, = 1.3593P, X5 = 0.09237P.

Notice that forces X; and X under the given sheet length ratio are
almost the same as for the previous case. Let us draw up diagrams of bending
moments again (Fig. 261). Examination of these diagrams shows that the
curvature of the second sheet at the clamped end is greater than the curvature
of first one, and that the curvature of the third sheet is greater than the
curvature of the second one. Hence the deflection curve of each next sheet
will be disposed below the deflection curve of the previous one. Thus, the
assumption about the character of sheet contact is confirmed. The bending
moment design value is equal to M;'®* = 1,36 Pl occurring at the clamped
cross-section of the lower sheet.

The spring camber 6 is determined by the first sheet end displacement,
that is

EJ&§=9PP — 1—;)(1 3 —%XgaQ(QZ—a).

Substituting X7, X3 and a, we obtain

6 =3.926 P_l3

T EJ
57. If the reactions of redundant supports are not equal to zero they must
be directed upwards only (Fig. 262). So the convexity of the beam deflection
curve to the right of the load P application point is always directed down-
wards. Therefore the beam may have contact with one or two neighbouring
supports only. Numbers of reactions X, X3, X4, X5 (Fig. 262) correspond to

the number of spans from the clamped end.
P NG MG M A Xs
ANANENENE R

Fig. 262
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Let us suppose that the beam deflection curve has the force interaction
with two neighbouring supports: i-th and (¢ + 1)-th. The reactions X; and
X 41 can be found by the force method from the equations:

611 Xi+ 612 Xiy1 +61p = -4,
091 X+ 092 Xip1 +62p = —A.

Coeflicients of these equations are determined by multiplying the dia-

grams shown in Fig. 263:

l
Pl MP ®
i @
i
e [T ® 1
l (i+1)1
(=T,
Fig. 263
313 (i4+1)33 A
o1 =357 092 :;_—;J, 012 = 021 =357 (Z-Fg) ;

67P13,_167Pl3,+2
w=mes\""3) T o \""3)"

After substituting coefficients and transformations, the equations arrive at

E( 1) 3EJ A

7 — =

3
BX; 412 <i+ 5) X1

2 3 B
i (i+g>Xi+(i+1)3X,v+1:%(i—i—%)—3€iA, (1)
from which we have
Xizlis3z_i4[P<i3+2i2—§>—2EZ§A(3i2+6i+2) (2
Xi+1:l—33ii4 [—Pi2 (i—1)+6El—3JAi2} (3)

Now we can determine deflection f. Applying unit force at point A and
multiplying the obtained diagram (Fig. 263) with the diagram of the specified
load P and also with two other unit diagrams enlarged by X; and X;;; and
adding these products together we get
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f £ 2P Xili L X L+ 2 (4)
= oL T A\t ) T A T3
2EJ |3 3 i 3
or
PP 1 1 5 1 1 9
=— |1— = 9%° —3i+1 A= 93" —2).
I=3E; [ B O s )] A 072
The sought stiffness is
3EJ 1
T 1 1 ‘ (5)
11— —=—— (98 —-3i+1)
i33i+4
While the load P increases, the reaction X;,; decreases and in case of
6EJ A
T ) vanishes. It means that the beam is already in contact only
i —

with the i-th support.
Let us suppose X;11 = 0. Then from relation (1) we find

P 1 SEJA
=ty

3 ep ©
and then from equation (4) we derive

P9 (1) sA L

3EJ |7 48 (Z_ 3) HEYz <2_ 3)’
and stiffness

3EJ 1
= 5.
PR
443 3

Now let us consider again relations (2) and (3). They allow us to obtain
the magnitude of redundants in the case when the beam leans on two neigh-
bouring supports — X5 and X3 (if i = 2), X3 and X4 (if i = 3), X4 and X5
(if i =4).

Setting the first redundant of the listed pairs equal to zero we find the
magnitude of the load P under which the contact with two neighbouring
supports takes place. If we equate to zero not the first reaction but the second
one, then we find the magnitude of the load under which the beam looses
contact with the right support of the considered pair and begins to lean only
on the left one. Corresponding values of the sought stiffness ¢ can be derived
by substitution of index i into relation (4) in accordance with the above listed
contact pairs (Fig. 264).

If load is small enough, the beam deflects freely as clearances are not closed
vet and the stiffness is ¢ = 3E.J/I>. The contact with the right end support
is defined by the condition X5 = 0 using relation (6), and the stiffnesses in
case of contact with supports 5, 4, 3 and 2 are obtained from relation (7).

There is no wonder that the stiffness varies in jump-like manner. It is

interesting that under increasing of the load P the stiffness sometimes may
decrease.

f=

C

(7)
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Fig. 264

58. Let us suppose that some segment of the spring was forced to take
the shape of the profile gage. To reach it we obviously have to apply some
forces and moments at the ends of this segment and also distributed load of
intensity ¢ in its intermediate points.

The deflection curve under bending is determined by the equation

q(z) = EJU(IV),

where v is bending deflection. If the distributed load here acts upwards then
it is considered to be positive: q(x) > 0.

Now it is quite clear that the spring will be away from the profile if vV > 0
and will be adjacent to it if v!Y < 0. If the contour of the profile gage is a
power function curve of an order not higher than three then v!Y = 0. In
this case the spring will be tightly adjacent to the profile without pressing
it. Some concentrated force P; will arise at the end of the adjacent segment

(Fig. 265).
quadratic or cubic curve

Wi

A9 =0
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59. After application of the force P; the left part of the beam (Fig. 266)
raises at some length a. The right part lies on a plane and remains straight.

x
P, [ x

R

a 9%
2 M,
ga
a 8
2
Fig. 266

Consequently, bending moment is equal to zero at every cross-section of
the beam’s right segment. Particularly the moment is also equal to zero at
cross-section x = a.

The segment a length is derived from this condition, i.e. (see Fig. 266)

2 2P
, a=—1.
P

The resultant of all forces’ vertical projections must be equal to zero. It is
readily apparent from this equilibrium condition that the solid base reaction
P, arises at the point z = a (Fig. 266).

Under this set of forces we can consider the suspended left part of the
beam as a simply supported beam of length a loaded by uniformly distributed

P
force of intensity —l At the middle of the suspended segment a of the beam

the bending moment takes its maximal value that is equal

g _ PP
8 2P’
In case of Py = P/3 we get
Pl Pl 2
]\/[max:_’ Omax — y a==1.
18 18W 3
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The concentrated force P; appearance at the adjacency segment boundary
is the most interesting and instructive fact of the considered problem as well
as of all problems where a contact of an elastic beam with a solid surface
takes place.

At first sight the appearance of this force seems somewhat unexpected
though its existence is formally in complete agreement with the equilibrium
equations and deforming conditions. Nevertheless this question is worth con-
sidering in detail.

The technical theory of bending that we have used above is based on the
hypothesis offered by D. Bernoulli, that considers plane cross-sections of a
beam to remain normal to its deflection curve. Below we shall refer to such an
approach as a Bernoulli beam. Certainly this theory takes into account the
essential thing, i.e. perceives the origin of a beam axis deflection in a bending
moment arising in a beam cross-section. But at the same time it is imperfect
(incomplete) because it leaves aside the shear compliance of a beam. In reality
cross-sections of a beam do not remain normal to its deflection curve but have
some distortion. This distortion is connected with transverse shear force in a
beam cross-sections and causes the additional deflection.

We realistically neglect this feature of bending in most cases of applied
problems analysis. And it is correct. But in some cases this feature reveals
itself in one or another form. The matter stands in a particular relation to
the concentrated force arising at the boundary of a contact region.

The beam bending theory that takes into account shear displacements
besides of bending ones is usually identified by the name of S.P. Timoshenko.
So if the reader encounters the term “Timoshenko’s beam” it must be kept
in mind that just such a case is observed. As soon as we want not to exclude
the concentrated contact force (by the way this is not necessary) and to
understand the causes of its appearance we should address to the scheme of
a Timoshenko beam.

Let us consider a beam element of length dz (Fig. 267a). Moments M
and M + dM and shear forces Q) and ) + d@ are applied at its ends. The
increment of force d() is balanced by the resultant of the distributed load
qdzx.

q
y +dy

/"

o‘<
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Usually we consider that end sections remain plane and normal to the
beam deflection curve. If we denote the angle of their mutual rotation as dé
(Fig. 267b) then the line AB disposed at distance y from the neutral layer
elongates by ydf. Dividing this elongation by dr we obtain the longitudinal
strain € = y/p.

This is the usual scheme (Bernoulli beam). But in the given case we
must not restrict ourselves to such an approach. The distortion caused by
transverse shear forces also ought to be taken into account.

As the shear stresses are distributed along a section inhomogeneously
then the shear strain varies correspondingly but we shall use only its average
value. To obtain it we divide the average value of shear stress () /A by shear
modulus G, taking into account the influence of cross-section shape as usual
by the coefficient k, i.e.

_kd
TTea
For a rectangular cross-section k = 6/5, for a circular one k = 10/9, etc.
If the angle v (Fig. 267¢) remained constant along a beam length then it

would not effect the elongation of line AB. But since the force @) varies from
one section to another, the line AB obtains additional relative elongation
y dv/dx (Fig. 267c).

After summation of the strains caused by the mutual rotation angles d6
and dvy we arrive at

Ky dQ
GA dz

The corresponding stress is
1 kQ
c=FEy <— + —Q> ,
P

and the bending moment will be found by integrating along the cross-section
area as follows

/
]\Lf:/(fydA or ]VIEJ(—1+&>.
p GA

e:£+
p

1
Since Q@ = M’, and — = v”, finally we get the following deflection curve
p
differential equation of the Timoshenko beam that will be used later:

v M kM 1
EJ  GA @
And some notes in conclusion: Distinct differentiation between the cross-
section rotation angle and the inclination angle v’of the deflection curve tan-
gent is necessary for the Timoshenko beam. In usual technical theory of
bending they are treated as identical. And here the section rotation angle 6
differs from v’ by the shear angle v, i.e.

v
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kQ
f=v"+ GA- (2)

If we are applying equation (1) for analysis of a beam having some seg-
ments where M or EJ or GA are described by different expressions, then
in the joining sections of these segments the values of v and # must be the
same (the functions v(z) and 6(z) must be uninterrupted or in other words
continuous). Analyzing expression (2) we see that at the points where the
functions @(z) or GA(z) are interrupted (vary stepwise), the function v'(z)
varies stepwise as well. If GA = const, then the steps in the function v'(z)
occur at the same points as the steps in the function Q(z), ie. at the points
where concentrated forces are applied. The concentrated force acting upwards
leads to a negative step in the function Q(z) and consequently to a positive
step in the function v/(z).

Now let us return to the considered problem.

If z < a (Fig. 266) we have

P z?
21
Substituting (3) into equation (1) we get

L1 _ Pa?] kP
— P — —
v [ T [ Tiear

P
M=Pz—— ]\f[”:——l. (3)

from which

1 3 pat kP

EJ "6 T 21 TiGA 2

The constant Cy is not interesting for analysis. It can be easily fitted so
that the deflection v is zero under x = a. This gives Cy = 0. As for the
calculation of the constant C1, it is necessary to satisfy the specific condition
of attachment to the second segment of the beam where the curvature is
equal to zero. So from equation (1) we get

GA
M" —a’M =0, where o> = —— | (5)
kEJ
from which
M = C5 sinhax + C4 coshazx. (6)

P 2
If x =a,then M = Pia— 2—(;, and at x = [ we have M = 0. From these

conditions we derive the arbitrary constants C3 and Cj and arrive at
Pa?\ sinha(l —2)
21

M= <P1 a— (7

sinha(l —a)’

Further we need to require that the section rotation angle is the same for
both beam segments at their joining point. At first we determine angle 6 at
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x = a for the left part of the beam using relations (2) and (4). Then we arrive

at
1 a> Pad® kP k Pa
0 Pl__ +_G+Cl+_ Pl__ .

T EJ 2 61 IGA GA !

For the right part of the beam we have v' = 0. Therefore, angle 6 contains
here the shear component only. Differentiating relation (7) to obtain @ we
get

k Pa?
0= ~GA° (Pla - 2(; > cotha(l — a).
Equating these expressions for angles 6§ we find
1 > Pd® k Py k« Pa?
= —-— - - ——— —— |Pya— —— | cotha(l — a).
G EJ{12 6l} GA GA[la 21]"0 all-a)

Now we must check whether the left segment deflection curve satisfies the
condition of noncrossing the support plane. The matter is that if the shear
exists then the function v'(z) has breaks at the points where concentrated
forces are applied. We don’t know yet whether the concentrated force P
would arise at the end of the contact region or not. But if it does then the
only option is that it acts upwards, i.e. will be positive. In this case the value
of v/ to the left of the P; application point will also be positive according to
relation (2). It means that the left segment deflection curve will intersect the
support plane.

So it is necessary to satisfy the condition v’ < 0 at = = a.

Substituting the value of C; found above into relation (4) we obtain

ok pe p u&(p _Llpe thl(l 9)
Vrma =g [P T T M\ gty ) eome 1]

Substituting the previously found value of a = 21/3 and the given value of
P, = P/3 we reveal that the derivative of v at © = a turns out to be positive
for the left segment and its deflection curve intersects the support plane. It is
possible to obtain here the negative magnitude of v’ by decreasing the value
of a. Then the function v’(2z) will have the positive step at the joining point.
But it means that at * = a the set of the support reactions will contain a
concentrated component acting downwards. This is inadmissible because of
the unilateral nature of the constraints. Only one option remains: to assume
that v = 0 at £ = @ and to derive a from this condition. Therefore we have

P,
As the specified value of ?g = 5 we arrive at
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_a_ 83 2]
7 = al . (8)

a
Now we can get 7 by solving this transcendental equation under specified

quantity

1=1—=2 .
@ EJk

If al = o0, i.e. if a beam has no shear strains, then from equation (7) we

2
find % = 5 that was obtained previously. If al = 50 we get % = 0.646, and

under al = 10 we have 4_ 0.58.

Now let us derive the load ¢ distributed along the second beam segment
(gq is the difference between the support plane distributed reaction and the
beam’s own weight forces P/l). From relation (6) we have

g = L8 2 (ﬁ lg) shall—z)

I 1 P 21)sha(l—a)’

If =1 then ¢ = 0, i.e. the support plane distributed reaction is equal here
to the beam weight per unit length. At z = a we have

Pa P la
272 1
=——=l" = —-—==.
Q=77 (P 2 z)
If «l, ie. shear stiffness increases then ¢, tends to infinity and as a limit
under al = oo we obtain the concentrated force at the point x = a.

The variation of the distribution law for the support plane reaction in its
dependence on the al value is shown in Fig. 268.
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It is curious to note that shear deflections in the beam changed the contact
force distribution not only at the transient region but outside its limits, too.
Now the concentrated reaction force arises at the right end of the beam.
Differentiating the relation (7) and substituting « = [ we get the shear force
as follows:

0 - -2(p _ipt)—2oal
T\t 20 1) shal(l—a)l)

This expression allows us to analyze the role of shear deflections as the
agent of deformation propagation along the straight beam. The force @4
quickly decreases as the shear stiffness increases.

60. In order to solve the flexible spring deformation problem (Fig. 57) we
need to take into account the influence of shear on the shape of the spring
deflection curve.

If we proceed from the usual relation between bending moment and cur-
vature change, i.e.

1 M

R EJ’
then we shall inevitably come to the conclusion that points A will touch
the base only under P = oo. Actually, the bending moment at the spring
ends is equal to zero under any finite value of forces P. As for the complete
straightening of the spring it is necessary that the moment be equal to M =

— at each of its points. And in real practice the sought force is naturally

finite.

The obtained contradiction is explained by the fact that under bending
by forces P the curvature change near the spring ends, where the bending
moments are small, is mainly the result of shear strains which must be taken
into account while solving the problem.

Let us address the relation (1) of problem 59. The curvature change of

the spring pressed to a solid base plane is v” = T In this case we get
1 GA GA
M —a*M ==— 2o —
“ Rk ¢ T kEJ
Solving this equation we arrive at
EJ
M = Asinh ax + B coshaz — ? .

Constants are derived from the following boundary conditions
atz=0, Q=M =0, atx=1, M=0,

from which

A=0, B= M

72 1 72 cosh ax 1
R coshal’ R ’

coshal




160 2. Cross-Section Geometry Characteristics. Bending Part II. Solutions

The sought force is

EJ
P=Quz=M,_, = = atanhal.
If GA = oo (shear is absent) then « turns out to infinity also. In this case
tanhal = 1 and P = oo as would be expected. The contact pressure along

the surface of the spring contact with the solid base is determined as follows
EJ ,coshar GA coshax
R ¢ coshal kR coshal

The diagram of the load ¢ distribution along the spring length is plotted
in Fig. 269.

g=M" =

GA_ 1 _|q

kR cosh ol GA

9= kR

P P
Y Y

AN R
2]

Fig. 269

61. It is possible to derive such distributed load under which the beam
remains straight. But in this case the transverse shear forces are so large that
it is necessary to calculate the beam deflection curve taking into account the
shear strains. The following simple example shows us that determination of
the proper distribution law for ¢(z) is possible. Let us consider a beam tightly
fixed in rigid guides (Fig. 270) and loaded by the moment applied at one of
its ends.

SOUONUNNNNNNONNNONNONNNNNNNNY

Such a beam remains straight under bending and we can assert that the
distributed load acting on the beam from the guides is of the sought type.
The solution of problem 59 expresses the same. There the right part of the
beam remains straight though the distributed load acting on it is not equal
to zero.

Let us again consider equation (1) of problem 59

w_ M EM"
T EJ  GA

If we require that v/ = 0 then we get
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GA
M —a?M =0, o =T
The solution of this differential equation is
M = Cisinhaz + Cycosh ax g (1)
differentiating step by step we obtain
Q =M' = Cyasinhazr + Cyacoshar, (2)
q=Q =C;a’sinhaz+ Cya’coshar, (3)

where constants C; and Cs should be specified in accordance with the bound-
ary conditions. If the beam is simply supported at its ends we have

M=0atxr=0and atx =1, then C; =Cy=0 and ¢=0.

It means that the beam remains straight only if the distributed load ¢ van-
ishes.

However, there is the possibility to apply not only the distributed load but
the concentrated forces and moments at the beam ends as well. For example,
let us consider that the moment at the left support is equal to zero as it was
previously and for the right support let us allow to apply any concentrated
moment. Then supposing that M =0 at x = 0 we have

Cy =0, M =C; sinhax,
where Cy is an arbitrary constant. From relation (2) we have
Q = Cy acoshar,
and the sought load from relation (3)
q(x) = Cy o®sinh azx.
The reaction at the left support is
Qe=0 =Cr1a,
and at the right support
Qz= = Ciacoshal, M =C; sinhal.
The system of required loads is presented in Fig. 271.

g(x)=Ciasinhax

M=C,sinhoul
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62. This problem must be solved taking into account the shear strains of
the ring, i.e. in accordance with the scheme of Timoshenko. The equations
for a straight beam were already derived. And for a ring we need to derive
the equations again.

Let us consider equilibrium equations for an element of a ring having
length ds (Fig. 272). They will be as follows

dM d N dN
Hog L2, &89 (1)

9 MedM 9 Judw 0| ds

=z
el

Fig. 272 Fig. 273 Fig. 274

Let us denote normal and tangent components of displacement as w and u,
and the rotation angle of the tangent to a ring deflection curve as ¢ (Fig. 273).

Setting the sums of the closed polygon side projections on the axes u and
w equal to zero we arrive at

du w dw u

=u='®R '"% R @
Now we need to derive the relative elongation ¢, of the longitudinal fiber
located at the distance y from the middle layer. The sought ¢, consists of
two components. The first one is caused by the displacements of the points
of this line and can be found from relation (2) by replacing R with R+y and
ds with ds(1 + y/R) (Fig.274). The second one is caused by mutual rotation
of deflection curve tangents and mutual distortion of end cross-sections. The
scheme of its determination was explained in detail during the solution of

problem 59.
Thus we have
Ey = du + v Y (ﬁ +ﬂ>
v Y R+y B ds ds )’
ds (1+ R)
1 Yy
As ~ 1 — = then
1+ 2 R

R
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dd dy 1 du w
=G R )

where ¢ is the relative elongation of the middle layer defined by relation (2).
Eliminating 9 by means of the second expression of relation (2) and then
substituting the known relation for v defined in problem 59 we arrive at

Lo w o k dQ
fyTETY <d2+ +GAds>

Normal force and bending moment in a ring cross-section are derived by
integration as follows

N:/andA:EAE,

, d>w w k dQ
]\J—/EsyydA EJ<d2+ GAds)
A

Eliminating @ by means of the first expression of relations (1) we obtain

M v w k d>M

——_+—

EJ ds? GA ds2

S
Introducing the new independent variable p = T and denoting parameter 3
as

GA
=R “Bl
we arrive at
M T 1 (ﬂﬂu)
dp? R? i

The solution of this equation with respect to M under assumption that
w is constant and equal to A/2 is

A
M = By sinh p 4+ Bycosh o+ EJ —— oR?
from which
1 dM
RQ=—7—— ——(31 cosh B¢ + By sinh 3¢) . (3)
R dy

Using the symmetry of loads with respect to vertical diameter we obtain
the following boundary conditions for transverse shear force

P
QZE at p=0 and Q@ =0at o=

Therefore
PR coth B

By =— d By=-P
1 2ﬂ all 2 R 25 5
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thus
P .
Q= 5 (cosh Bp — coth B sinh Byp) .
From the last of the relations (1) we obtain

N= / Qdy = s1nhﬁ<p — coth 87 cosh Bp) + C,

where C; is a constant of integration. Before its determination we ought to
obtain the displacement u from relation (2)

After integrating we obtain

CiR
= cosh By — coth Bmsinh + +C
AT (cosh By B Be) + o e+ Co

As from the symmetry condition u is equal to zeroat ¢ =0and at ¢ =7
it is easy to get

P
Cy =—ZFA
PR g,
Now returning to the second of the equilibrium equations (1) we get
d P1+p3
qR = dg + N = P} + 8 (sinh B¢ — coth B cosh Byp) B 2

The contact between the ring and the shaft opens obviously at the point
of the force application. Therefore substituting ¢ = 0 and ¢ = 0 in the above
relation we shall find the sought force value

2
P—EBAS I .
R (14 %) Brcoth Bm — 1

If the shear deformations in the ring are not taken into account in the

solution we arrive at an incompetent conclusion because if 3 — oo then the
force P tends to infinity also.

63. Here due to the symmetry of loads with respect to the vertical diame-
ter the transverse shear force vanishes under ¢ = 0. Therefore, from relation
(3) of the previous problem we obtain B; = 0 and

Q= %Bg sinh Sy.
The bending moment is

A
My = BocoshfBp + EJ—— SR
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and at ¢ = 7/2 takes the value —M /2 due to the antisymmetry of loads with
respect to the horizontal diameter. Thus

A
M+ EJ—;
2coshf3—
cosh 3 5
The normal force is

1
N:/Qd;p:EBgcoshﬂ4p+C.

Due to the antisymmetry condition the normal force at ¢ = 7/2 does not
change after the moment M application. Therefore

1 7T A
EBQOOShﬂ§+C:NM:0:TREA
Now we find ¢ as follows:
d 143
qud—i+N: + Bycosh By +C
or
A
qR:—EA~—B7? [(1 +52) cosh B — cosh f— | .
2R 2Rcosh,65 2

Due to the antisymmetry condition the load ¢ must vanish at p = 7/2.
Substituting ¢ = 7/2 and ¢ = 0 into the preceding expression we can find
the value of the moment under which the contact opens:

A A A R?A
M==EA-EJ= ==EJ(— 1),
3 R? R B

or

A E A
M=—FEJ|k=—-1) == FEJ|2k(1 —1].
2B (K —1) = B 20+ )~ 1)

64. The ring fitted on the axle will not contact it along the whole outline
length. At the segments AB the ring is distant from the axle and the full
contact takes place along the arc BC' B ounly (Fig. 275).
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The forces of interaction between the ring and the axle are shown in the
central part of Fig. 275. The forces )1 act at the ring ends A and the forces
Q2 act at the points B. The nature of these forces is the same as in problem
59. The distributed load of intensity g occurs at the region of the full contact
BB. If we manage to determine the forces 01, @2, ¢ and the angle « satisfying
all boundary conditions of the ring deformation, then we shall prove that the
chosen scheme of the forces is valid.

As we assume that the segment BB is in full contact with the rigid axle
it is obvious that the curvature of the ring along this segment is constant and
equal to 2/D. The curvature variation here

2 2 2A

D-A D D?
is constant also. The bending moment along the same segment BB will be

2A
Mgp :EJE’

where EJ is the bending rigidity of the ring. Therefore we must choose the
forces @1, @2, q so that the moment along the segment BB is constant and
would have the specified quantity.

In an arbitrary cross-section of the ring segment BB (Fig. 275) we have

D D
Mpp =Q17 Sln<p+Q2—s1n(<p—

)
2
—sin*(p— a) + 1 % [1—cos(yp — a)]Qa

e D2
297y 2
or
D D D?
Mpg =sin ¢ [ng +Q25cosa— qT sina]

2 4 4

The moment remains constant if we require that each of the expressions in
square brackets vanishes

[ D . D? ] D?
—cosy |@Qe —sina+ gq— cosa| +q—.

D
Q1 +Q2cosa—q?sina: 0,

D
Qgsina—i—chosa:O, (1)
then we obtain
D? 2A 8A
T:Ejﬁ’ or q:EJﬁ'

Thus, ¢ is found. These two equations (1) are not enough to evaluate the
three unknowns @1, 2 and a.

Let us require now that the distance between points A and C of the ring
increase by A. This condition can be written as follows
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« s
A _/ Mg M, Ddyp / Mpgg M, Ddyp
o 2EJ 2FEJ
0 [e%

where Mg and Mgp are the bending moments in the ring segments AB
and BB, and M is the bending moment due to unit forces applied along the

direction AC (see right part of Fig. 275). These moments are equal to
M —Qg' M —EJ% M _ D,
AB — 12511150, BB — D2’ 1= 2811190.

Substituting these relations and integrating we arrive at

D3 1 A
A=(Q, (a——sinQa)—l—E(l—i—cosa).

16EJ 2
Solving this equation jointly with equations (1) we evaluate @)1 and Qs
4EJ A 4EJA
@ = Digna @27 Tps cote

The value of « is determined from the transcendent equation

«
2= + cos o,
sina
that has the solution o = 122°35’. Therefore we have
EJA EjA
Q1 =475 I Qo = 2.56 LI

Thus satisfying all the geometric boundary conditions we confirm that
the specified scheme of the forces is valid.
The diagram of the bending moment is plotted in Fig. 276.

EJA
DZ

Mn.=2.37

Fig. 276
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65. At first let us consider the contact of the beam and the rigid guides
when a small clearance space exists. The clearance magnitude is denoted

as A (Fig. 277).
B

o l -
S —— —J,-—-O/ ‘L )]
f 1 T

<
/
l‘/

Py

Fig. 277

At the left part the beam remains straight and tightly adjoins to the upper
surface of the hole. The reaction A = P [/a arises at the point of separation
of the beam from this surface. The value of a remains indeterminate for the
time being. The reaction B occurs at the point where the beam exits the
hole. If friction forces are absent then this reaction is directed normally to
the beam surface. As the angle 0 of this force declination from the vertical is
small then

l
B:P+A:P<1+—>.
a

If we put the coordinate origin into the point O then at x = a the vertical
deflection of the beam is equal to A:

B Aa® B Pla®

~ 6EJ  6EJ’
from which

[6EJA
a = ——
Pl

The slope angle 0atz =ais

—6A,
2EJ \/ 6

As the clearance A decreases, the angle 8 and the value of a tend to zero
and the forces A and B infinitely increase. Let us look how the horizontal
component of the force B changes:

I\ 1 /Pl
B&P<1+a> 2\/EJ
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or

P ([ Pi? Pl
B@E<E—J+ E—JGA>.

As we see, at A — 0 the horizontal component of the force B converges
to a certain limit
P22
2EJ

This value of force will be shown by the dynamometer (see also in [4]).

B =

66. Let us consider one half of the symmetric system shown in Fig. 68 as
a separate beam (Fig. 278).

Elastic
center

(=)
Fig. 278 Fig. 279

As the force P is applied not in the elastic centre then this beam will be
twisted simultaneously with bending. This twist will be excluded for all beam
sections if in the sections where the first strips have been cut we apply the
couple of forces IV counterbalancing the moment of the force P with respect
to the elastic centre, i.e. N = Pc/H.

Thus the first upper strip is compressed and the first lower strip is tensed
by the forces N. All the other strips do not bear any forces under the system
bending. Naturally this statement is valid only if the strips are considered as
rigid. If they had considerable strains then arising forces should be derived
in the same manner as forces in the rivets in problem 11.

67. Let us decompose the force P along the principal axes x and y
(Fig. 279) and cut the cross-section at the corner point A. At the same time
we introduce indeterminate shear stress flow 7¢. Then the shear stress at an
arbitrary point B will be the sum of 7o and of the shear stresses expressed
by Zhuravskiy formula due to the force P components
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__  PVa(s: ﬂ)
TETOT s <J1+Jy '

After simple calculations we get

2 1 3 35 14 2v/2
B A Y R A -y
2 242 6 6 242

For each of the cross-section’s three parts we obtain

3\/5 P —sla 2—5% sla\/§
T1I=T0+ %5 5% = = |, (1)
2 a®| 242 1+2v2
_ [22 _ _
_ +3\/2i 785_82a\/§+2a2+52a\/27(1+\/2)s§
T2 =To 2 4368 2+\/§ 1+2\/§ Ja
+3\/§ P —\/§s§—a2+a2—a(2+\/§)53+(1+\/§)s§
T3 =To+—F =% | = = S )
TTT 2 6% | 2 242 1+2V2 ’

where s1, so and s3 are coordinates measured along the contour from the
corner points.

As no mutual displacements may occur in the cross-cut A, we must satisfy
the condition

/’yds:O,

S

or
a2 a a
/7'1 dsl+/'rgd82+/'r3d53:0.
0 0 0

From this relation the magnitude of 7 is determined as

_3v2p V2 1 ]

T = — — =
T 2 a8 3(2+v2)°  1+2v2

Substituting 7¢ into relation (1) and preforming the necessary calculations
we get

= a—i (—0.47 + 1.66¢; — 0.62¢2),

Ty = a—i (0.64 — 0.095¢, — 0.90¢3)

g = a—]; (—0.35 — 1.89¢, + 1.78(2),
where gl:% (i=1,2,3).
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=5 2
=4 = 086 =

Fig. 280
Figure 280 represents the shear stress diagram from which it is clear that
P
max = 0.86—.
’ aé

68. Let us separate the element of the beam of the length dx at the
distance z from its free end (Fig. 281)

B.

>

Fig. 281

This element in turn is divided into two parts by a horizontal plane at
the distance y from the middle line of the beam. Now let us consider the
equilibrium condition of the upper part ABCD. Obviously it looks like

(h+dh)/2 h/2
((r—i-d(r)bdy—/(rbdy:dez.
y Y
12M 12y | M M
As U:Wy, then (7+d(7:T|:h—3+d<F>:|.

Now we can rewrite the equilibrium condition as follows:

(h+dh)/2 h/2

12 [ M M 12M
T[ﬁﬁ-d(ﬁ)] / ydy — o /ydyzrd:c,

Yy Yy
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from which
M dh 6 (R ,\ d (M
T=3——+-|\——vyv|—|=]-
bh? dx b \ 4 dz \ h3
If the law of h and M variation is linear, then, as the specified h; = 2 hg,
we get

h:h0(1+§), M = Pz,

T =

x
__ 6P |1z 1 (h_y)l_‘?ﬂ

2 2 21
(L) om [0 R0 (1 g) ]
The diagrams of 7 for the five equidistant beam cross-sections are shown in
Fig. 282.

2P 2P 3_961% B’ fbg
, 25 bhy 3 bh, o

s | ]

~__ 3 P 24 P 3P

F—X2bhy =A25bh, Y 49bh, 8 bh,
—— —
~— | —]

C
0 0.25 0.5 0.75 D'\j x/1

Fig. 282

Here, in contrast to any beam of the constant cross-section height, the
shear stresses at the upper and the lower points of the cross-section do not
vanish as the section plane is not perpendicular to the outer upper (A’B’) and
lower (C'D’) surfaces. The diagram for the free end cross-section is plotted
by dashed line because the law of stress distribution along this cross-section
is completely determined by the manner of the external load P application.

If the beam thickness varies not too fast depending on z, i.e. the angle
of the beam widening or narrowing is small enough, then the above solution
is exactly the same as the solution for the wedge obtained by the elasticity
theory methods.

69. As the specified beam is very long then if we cut it at the i-th support
its right part can be considered as a very long beam similar to the specified
beam but loaded now by the moment M; and not by the moment M. The
same can be said concerning the support number ¢ + 1, ¢ + 2 and so on.
Therefore if the bending moment at the 7 + 1-th support accounts some part
of the i-th moment then the i 4+ 2-th moment accounts exactly for the same
part of the ¢ + 1-th one, i.e.
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My, =z M;, Miyo =2 M;41 = x°M; ete.

Let us write the expression of the three moments theorem for the i-th and
the ¢ + 1-th span. As any external loads within the spans are absent we get

M;a+2M; i 1(a+a)+M;i0a=0.

Substituting the relations for M;; and M,;, we arrive at the equation
144z +2%=0,

from which we find
r=-243.

As the absolute value of M; must be decreasing with i then the absolute value
of  must be less than 1 so we take the ”plus” sign before the radical?>. Then

x:—(2—\/§).

Let us note that as x is negative then the bending moments at the neigh-
bouring supports will be of different signs. The bending moment at the i-th
support is

X i—1
M, =Maz~' =M (\/5 _ 2) .

To derive the rotation angle of the cross-section at the i-th support we
apply to the basic system the unit moment at this support and then multiply
the obtained bending moments diagram occupying the i-th span only with
the bending moments diagram caused by the external moment M at this
span which is plotted in Fig. 283 assuming that the moments M; and M,
are positive.

M,' M/+1

Fig. 283

M i—1
The result is:  E.J 6; = Ta 3(vV3-2) .
70. Let us write the system of n — 2 equations that are required for
determination of the moments at the supports:

2 The "minus” sign before the radical corresponds to the case when the moment
is applied not at the left end but at the right end support. Then the absolute
value of z will be greater than 1, so the absolute value of M; will increase with 3.




174 2. Cross-Section Geometry Characteristics. Bending Part II. Solutions

M+ 4Ms+ M =0,
Mo+ 4Ms+4My =0,

My_o+4M,_ ;1 =0.

Assuming that M; = A z'~1 and substituting this value of M; in all equations
except the first and the last we arrive at

1+ 42 +22=0,

r=—-24+3.

Now it is easy to reveal that all equations except the first and the last are
valid if we assume that

J\é[g = Al’1+ B$2,

Mz = Ax%—i— Bxg,

M;= Az ' +Bay !,
where

$1=—2+\/§, $2:_2_\/§),

A and B are arbitrary constants that are chosen in order to satisfy the first
and the last equations of the system

M+4(Azy+Bxo)+ Azl + By =0,
Aw’f‘s +Bx§_3 +4A;v’11_2 +4ng_2 =0,

from which we have

A= M zy B=_M 2y
T (et T (e )

Finally we get
(_2_ \/g)nfz _ (_2+\/§)n72
n—1 n—1"
(—2-V3)" —(-2+V3)
If M; is known then we need not work hard to determine the rotation angle

of the cross-section at the i-th support. Multiplying the diagrams shown in
Fig. 283 we arrive at

M, =M

a a
3 + Miy1 6
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71. Let us denote the normal reaction of the right support as X;. Then
the friction force will be fX; (Fig. 284).

P P 4 e

= ONNRRRN NN RRRRNRARN S

E fa fa
P @ @
rx Fa n /
- - — - -
X, { {
Fig. 284

If we solve the problem by the force method we have
611 X1+ 61p=0.

As 611X is the displacement in the direction of X1, caused by the forces
X1 and fX1,and 6;p - the displacement in the same direction caused by the
load P, then 6;; is calculated by multiplying the diagrams (1) and (2) and
81p - by multiplying the diagrams (P) and (2) as follows:

a® (4 Pad
511=EJ (3_f>7 51P=—2EJ-

Then the reaction is

P 3P
4 T 8—6f"
2(5-)

The diagram of resultant bending moments is shown in Fig. 285.

3-3f
s Pop e P

X =

72. Under the condition of applying loads at frame nodes a frame having
rigid angles can be analyzed like a truss, i.e. in assumption that its rods
undergo only compression or tension. To make sure of this let us consider
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some frame which consists of several closed contours (Fig. 286) providing
that the system remains geometrically unchanged if the rigid nodal joints are
replaced with the pinned ones.

=
Fig. 286

Suppose that the frame is loaded by the forces applied only at nodes (the
force P and the support reactions). Applying the forces method we disclose
static indeterminacy of the frame by fitting pins at its nodes and introducing
the nodal moments X7, X9, X3, ... as the reactions of the withdrawn elastic
constraints (Fig. 287).

X, X, X X+ X, X
X ] ’X,
X, X5 X
X P
X X2 Xy X,
X X+ X0 + Xy Xt X X,
Fig. 287

Thus we obtain 12 equations of usual type for this system:

011 X1 +612Xo+...+61p =0,
021 X1 + 622 Xo + ...+ 62p =0,

01201 X1 + 0122 X0 +... +612p =0,

where the coefficients 611, 612,... are derived by multiplying the diagrams of
the bending moments caused by the unit moments applied instead of the

moments X1, Xo,... Coefficients 61 p,d9p,... are derived by multiplying the
same ones and the diagrams of the bending moments caused by the load

P. But the load P and in general any forces applied at frame nodes do not
produce any bending moments if the frame rods are connected by pins. Hence

S1p =63p=...=0. (2)

As equations (1) are independent, the determinant of the system is not equal
to zero (see the next problem). For this case if condition (2) is valid we
obviously obtain

Xi=Xo=..=0.

Therefore, under the specified conditions the system with the rigid nodes is
equivalent to the system with the pinned rod joints.
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But rigorously, the bending moments arise nevertheless in the system
(Fig. 286) due to elongation or shortening of rods.

These bending moments can be derived from the same equations (1) if we
take into account the displacements due to rod tension or compression while
calculating coefficients 811, 812,..., 61 p,82p,... But obviously the stresses that
correspond to these moments will be sufficiently less than the stresses caused
by normal forces.

In fact, displacements of any pinned bar are proportional to M2 divided
by EJ under bending by moment M and to P! divided by E'A under tension
by force P. In the given case these magnitudes have the same order, i.e.

772
MU ~ ﬂ But M =0, W, P=0;A, therefore we have 2 i,
EJ EA oy Wl
i.e. the ratio of o, to o; has the magnitude of order J divided by W. But
J/W is equal to maximal distance of section point from the neutral axis
that crosses the centroid. Therefore the right part of the above proportion is
considerably small as the ratio of the section height part to the rod length.
Correspondingly, o, has the magnitude of the same order in comparison with
O ¢.

73. Let us consider the spring ring quarter (Fig. 288). The rotation of
cross-section A with respect to cross-section B is absent but the deflection in
the axial direction takes place.

The shear force P/4 and the torsion moment X; arise in section C.

P
2
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Let us determine the unknown value X; by the method generally used for
disclosing of frame static indeterminacy

onX; =0,
/4 w/4
511=E—J MQRdap—l——/MQRdgo,
Tr/4 /4
o1p =

1 1
—J / My Mppy R dg,0—|— E / My Mp: R d\p,
0
where
My = singp, My = cos p,
PR PR
Mpy = _T sinp, Mp;= T (1 —cosyp),

C' is torsional rigidity. For the square cross-section C' = 0.141 Ga*.
After integration we arrive at

w=1g5 (5-1) + 3 (5+1):

PR? PR?
O = 1657 (E 1) o0 (2\/2_ 2 _1)’
i HEA )

! g_1+%](2+1)

For the square cross-section under p = 0.3 we have

ot
EJ EE 1+4+p
c 0.141 —2— 44 0.846
21+ p)
then the sought torsional moment is
PR
X = 0.03757.

The resultant bending moment is
PR
M, = 1 0.962 sinp.
The resultant torsion moment is

P
M, = TR(I — 0.962 cosy).
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The vertical displacement of section C' with respect to section A is

w/4 /4
R R
)\C:E—J /]\Lfb M'b/d<p+5 /]\/It]V[ffdap,
0 0

where M, and M, are bending and torsional moments,
M| and M/ the corresponding moments caused by unit vertical load ap-
plied at section C, i.e.

M} =—Rsiny, M{= R(1— cosyp).

Thus we obtain

/4 /4
PR® L, PR®
)\074EJ 0.962/sm pde + 1c /(1—0.962cos¢)(1—cos<p)dga
0 0
PR3 ™ PR3 ™
= 962 (= —1)+— |7 —2v2—-0.9622v2 40962 (= +1)];
= 0.962 (5~ 1) + Toi |7 2vV2 - 0.9622v2 1 0.962 (5 + 1)) 5
or finally we arrive at
PR?
Ao = 0.0405.
“7 EJ

In order to determine the deflection of the spring completely A. should be
multiplied by twice the number of working rings 2n:

3 3

PR PR
A=2n 77 0.0405, or A =0.972 T n.

Comparing this value with the camber of the square section coil spring that
has the same number of working coils n, i.e.
PR327mn N PR3

= 01digat ~ 10 g

we arrive at the conclusion that the slotted spring is about 120 times more
stiff than the coil spring.

A

n,

74. Let us consider some plane closed frame of constant rigidity EJ and
suppose that the diagram of bending moments is constructed (Fig. 289). Let
us cut the frame outline in some arbitrary point and derive the cross-sectional
mutual rotation angle at the point of the cut. This angle vanishes from the
continuity condition. In order to determine the mutual rotation angle we must
calculate the integral [7]

/ MM
EJ

where M, is the bending moment caused by the unit moments applied at the
point of the cut (Fig. 289), i.e. My = 1.
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Fig. 289

Therefore in case of constant rigidity we arrive at

/]\/dezO.

S

The proved statement is valid not only for closed frames but in general for
any rod construction fixed in such a manner that its end cross-sections have
the same angle of rotation. For example, under arbitrary load the bending
moments diagram area vanishes for each of the constructions depicted in
Fig. 290 in case of EJ = const.

P

-

P
glijZ E | £

Fig. 290

75. Let us note preliminarily that the area AA that is swept by any beam
under bending is determined as the integral

AA— /]V]\[lqd

where M is the bending moment due to external load, and M, is the bending
moment caused by the distributed load of unit intensity (¢ = 1 N/m).

The easiest way to derive this relation is to apply the same method as for
the usual linear and angular displacements.

In order to calculate the variation of the area restricted by closed frame
we should preliminarily derive the expression for My,, by applying the unit
distributed load ¢ = 1 (Fig. 291).
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Fig. 291

But for the closed ring frame M, = 0, therefore AA = 0. Thus the
supposed statement is proved. It is absolutely clear that this statement is
valid on the one hand only within the limits where the elongation of the
ring contour can be reasonably neglected, and on the other hand under the
condition that the displacements of the system are small enough. For the
considerably slender ring under sufficient variation of its contour shape the
area restricted by the contour will not remain unchanged.

76. Let us reduce the external load to the junction ends in the form of
shear forces and bending moments (Fig. 292) [11].

M4Q M40 Q1 WM,

( I A§Ql ( I " b;;N
h ~N:

X lQ X ?»

/

Fig. 292 Fig. 293
The internal forces and moments relating to the upper sheet are denoted
by the index “one” and the ones relating to the lower sheet by index “two”.
The equilibrium equations for the left junction part of length = (Fig. 293)
give

Ny = —N; =N,

Q1+ Q2 = Q, (1)

The mutual displacement A along the z axis arising between the lower
surface of the upper sheet and the upper surface of the lower one can be
determined as the integral of the strain difference

A= /(61 —€9)dz + C,

but
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_ N 6M N 6M,
T Ebh T EbR2 2T T Ebh Ebh?’
therefore
6
A=—m [2N+ - (My + My) | da+ C, 2)

The magnitude of A is expressed through the shear stresses 7, in the glue
layer by the obvious expression

A
Gy s T
where G is the glue shear modulus and 4 is the thickness of the glue layer.

- dx

0,f -
M, M,+dM,
N, N,+dN,

E Y0, +dQ,
g Gq

Fig. 294

It follows from the equilibrium condition of the upper sheet element of
length dz (Fig. 294) that

ng = N/a (3)
therefore
A N’
Gy e

Differentiating both parts of this equality with respect to z and substi-
tuting the expression for M; + M, from the relation (1) into relation (2) we
arrive at the equation from which the value of N can be determined:

8G 6G
n  O4g _ Vg
N EhéN Eh (M +Quz).

If we denote

8G
g 2
= 4
Zhe =& (4)

then we get

N = Asinh az + Bcoshaz — 4—?;1(M' + Qx).

The constants A and B are derived from the boundary conditions for the
tensile force at the ends of the conglutination segment

Ne—o = Nz=; =0.
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Finally we obtain
3sinh az 3M 3
= —[M (1 —coshal I+ — haor—— (M
2 sinh of M (1= coshal) + QU+ "5 coshaz =7 (M + Q)(5)

and the shear stress 74 in the glue layer in accordance with relation (3) will
be

3acoshax 3aM .
4bh sinh al 1o, Snher = 4th (6)

The glue layer undergoes not only shear but also tension and compression
in the direction perpendicular to the surface of glueing.

Ty = [M(1—coshal)+ QI+

The normal stress in the glue layer is
Yya— Y1
9 = S Ey,
where y; and y, are vertical displacements of the upper and the lower sheets,
E, is the glue elasticity modulus.

Let us add also two more equilibrium equations for the element dx
(Fig. 294):

o.b=Q1, (7
! h /
Q12N11—§N- (8)
Substituting o, into relation (7) and then @, into relation (8) we obtain:
(y2 — y1)b—?'q = My - gN”-

But as EJyY = My, and EJyy = My we arrive at
My — M, bE, h Y
=2y - 2N

EJ 6 2

Finally we exclude the moment My from this equation using relation (1).
As a result we obtain the following equation:

(1v)
h 2E, h bE,
<M1 - §N> + 5t <Ml 2N> Sos (M +Qua).

If we denote

h BE
Mi—=N=Y, —2 =4k
) SEJ ’

then
YUV) 4 4kt Y = 2k* (M + Qx).
The homogeneous equation

YUV) 4 4k*y =0
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is satisfied by the functions sinhkzsinkz, coshkzcoskx, sinh kz coskz,
cosh kz sinkx and by any combination of these functions. Such combinations
that are the most suitable for practical use were suggested by A.N. Krylov
and named after him as Krylov functions. They are suitable as the derivative

of any Krylov function gives some other of these functions. The relations of
the Krylov functions are given in Table 1.

Table 1. Krylov functions

n Y, (z) V@) V@) ¥'(z) ¥i'@)
1 coshz cosx —4Y, —4Y3 —4Y, —4Y;
2 % (cosh xzsin z + sinh zcosx) Y] —4Y, —4Y; —4Y,
3 9; sinh kxsin kx Y, Y: —4Y, —4Y;3
4 < (coshzsin x — sinh zcos ) Ys5 Yo Y —4Y,

Thus we have
Y = CYi(kz) + CoYo (k) + CsYs(kx) + CyYy(kx) + %(M’ +Quz), (9)
where the constants Cp,Cy, C3 and Cy are derived from the four conditions
Yico=Mu—o=M, Qu-o=Y_0=Q, M.=0, Y., =0

As a result after some transformations and replacement of the Krylov
functions by their expressions we arrive at

M Q
Cl - 2 ) CQ - Qk,

sinh (k) 4 sin(kl) @ cosh(kl) + cos(kl)
sinh(kl) — sin(kl) k& sinh(kl) + sin(kl)
sinh(k!) sin(kl)
sinh 2(kl) — sin 2(kl)’

Cy=—M

cosh(kl) +cos(kl) ~ @ sinh(kl) 4 sin(kl)
sinh(kl) —sin(kl)  k sinh(kl) + sin(kl)

cosh(kl) sin(kl) + sinh (kl) cos(kl)
Q1 sinh 2(kl) — sin 2(kl)

Now the bending moment M; is determined from the expression

Cy =2M

h
My =Y + 2N,

where N is specified by the function (5).

The normal stress in the glue layer according to equations (7) and (8) will
be
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1
04 = ZY”,
k2

The positive value of o4 corresponds to the compression of the glue layer.
Using relations (6) and (10) we can construct the plots of normal and shear
stress variation in the glue layer, and using the relations (5) and (9) obtain
the diagrams of normal forces and bending moment in the upper sheet.

The problem is significantly simplified in the case of a considerably long
glued joint as the stress in the glued layer has local character. In this case we
can separate the decaying part of the solution and assume that

N = Aexp(—kz) — 4_3h(M + Qx),

1
Y = exp(—kz) (Cysin kx + Cycoskz) + 5(]\/[ +Qux).
The constants A, C7 and Cy are calculated from the boundary conditions

at the left end, i.e. at t = 0, where N =0,Y = M, and Y’ = Q.

77. Let us separate the bimetallic sheet elementary segment (Fig. 295)
having the length ds and the initial curvature of the junction surface 1/p,
(bimetallic elements are often produced as curvilinear).

junction
surface

Fig. 295

The relative elongation of the fiber disposed at the distance y from the
junction surface is combined of the two quantities: the elongation of the joint
and the elongation due to sheet bending

%)
yl=—-—
P Po
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where 1/p is the curvature of the sheet after bending. Thus

e=¢+yl———].
P Po

Subtracting thermal elongation from this expression and multiplying the
obtained difference by the elasticity modulus E we derive the stress acting in
the fiber disposed at the distance y from the junction surface. For the first
sheet we have

1 1
01E1[60+y(——>01t] (Ogyghl).
P Po
and for the second one :
1 1
09 = Es [€0+y<_—_> —QQt] (—hy <y <0);
P Po

where FE; and F5 are the elasticity moduli of the first and the second sheets.
The normal force and the bending moment in the bimetallic element cross-
section are equal to zero. Hence

h1 0 h1 0
/nlbdy—i- / oabdy =0, /Ulbydy—i— / oabydy = 0.
0 —ho 0 —h2

Substituting o1 and o9 and integrating we arrive at

111 1
€0 (E1h1 + Eghg) — t (anE1hy + agEqho) + P [7’) — p_] (Elh% — EQh%) =0,
0

€ t 111 1
= (E1h? — Eoh3) — 5 (Branh} — Baash3)+5 |= — — | (Eihi + Eahd) = 0.
2 2 3Le po
Excluding €¢g from these relations we derive the curvature variation as follows

1 1 _ 6t (a1 — avo)

P P E1h3— Eyh3)”

(B Bold) gy 4 ny)

E1 Eshy ho (hy + ho)

The curvature variation is proportional to the temperature change and
to the difference of the thermal expansion factors. The maximal curvature
variation value can be obtained as it is seen from the above relation when we
select such thicknesses of the component sheets that

Eyh? = Eohl.
Then
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78. The problem set specifies the ring cross-section as undeformable. It is
well known that any figure displacement in its plane can be presented as some
figure point linear displacement having two axial projections and following
rotation of the whole figure about this point.

Let us consider any point in the ring section, for example the point O
(Fig. 296), disposed at the inner radius a of the rings junction surface. Now

the ring section full displacement can be presented as the point O displace-
ments along the symmetry axis, perpendicularly to it and the cross-section
rotation by the angle ¢ about the point O, following each other.

|

y Yy
yt O ] — o~
x|
| a Jox ' '
- b V \/
Fig. 296 Fig. 297

The point O axial linear displacement corresponds to the ring movement
as a solid body and causes no deformations. Therefore we disregard this dis-
placement. The second (radial) component of the point O linear displacement
we denote as A. Thus the point A radial displacement will be combined of the
displacement A and the displacement caused by the section rotation about
the point O. This second component denoted as A, is

A, =yep.

(see Fig. 297, assuming that the angle ¢ is small). So the point A radial
displacement will be

Atye,
and the circumferential relative elongation
. A+yp
a4z’
The hoop stress in the first ring is equal to
A4y«
o1 =E (J—alo (0<y <),
a+zx
and in the second ring

A+
09 = Ey <Tz{;ﬁa2t> (—ho <y <0).
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If we cut the ring by the axial diametrical plane and consider the equi-
librium of its half we can easily make sure that the bending moment M and
the tensile force N in the ring sections are equal to zero (Fig. 298).

Therefore
b—a hy b—a 0
N://(rldxdy—i—/ /(rgdxdy—O,
0 —ho
b—a h1 b—a 0
]b[z/ /rflyd:cdy—i-/ /agyd:rdyzo.
0 0 0 —ho

Substituting o1 and o5 in the relations we arrive at

[ h2 b
E1 <h1A+_2uD> ln—alt(ba)hl]
L a

[ h2 b
+ By (hQAJ2i’>1n—a2t(ba)h2] 0,
a
r h2 h3' b h2
E; _(-21A+—J?)—¢>ln;a1t(ba)—21]
[/ h2 h2 o b h?2
E|[(-2A—- =25 )In- t(b—a)=2| =0.
+2(2 2)na+a2( 0)2} 0
Excluding A from the above relations we get
b—a 6t (1 — )
= b 2 2)2
ns  (E1h}— E»h3)

E1Eshy by (hy + ho) 4+ ko)
As in the previous problem the angle ¢ has its maximal value if
Ey h = Eyh}.
Then the sought angle is equal to
3. b—a o —a

2 lné hl—i-hg.
a

(P:
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79. The sensor will be inoperative as the bimetallic plate clamped at its
ends does not change its curvature under uniform heating.

Certainly, if the plate is simply supported then under uniform heating it
would be bent by the circle arc. In the given case the plate is also affected
by the moments applied at the ends that are clamped. Under their action
the plate will be bent by the circle arc also but in the opposite direction
(Fig. 299).

1@
e ———

M M

()

Fig. 299

Imposing the requirement of rotation angles ¢, and ¢, equality at the
plate ends we inevitably must require the identity of both circle arc curva-
tures. It means that the resultant rotation angles and displacements of all
plate points vanish under the condition ¢, = ¢,. Therefore the bimetallic
plate clamped at its ends will not be bent under uniform heating.

Hence, the system shown in Fig. 74 would correspond to its destination
if, for example, the clamped fixation of its ends would be replaced by the
pinned one.

80. Let us mentally cut the frame (Fig. 300) and apply the internal mo-
ment My and the forces N and @) in the cross-section we have cut.

_— +——— T 4+———
Y | Y \
| |
| |
NMQQMUNI/ 11 h1 1]
—— ———)) 7 —— ———|) (I T
1Q% x . ki x .
Fig. 300 Fig. 301

The bending moment in the section A caused by these loads is
My=My+Qx+Ny.

If the frame is cut then its curvature will be changed under heating. As the
temperature and cross-section shape do not vary then the curvature change
remains constant at all points of the frame contour. But if this is so then the
temperature action can be replaced by the action of some equivalent moment
M, applied in the section we have cut.
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Now, let us require that the mutual linear and angular displacements of
the cross-section caused by the moment My, and the forces N and @) would be
equal to the same mutual displacements caused by the action of temperature
equivalent moment M;.

The bending moments caused by the unit loads applied along the direc-
tions of the sought angular, vertical and horizontal mutual displacements
(Fig. 301) will be correspondingly 1, z, y.

Then we get

/(]\/[0+Qx+Ny)1ds:/ZV[t1ds,

S

/(]\10+Q3:+Ny)xd5:/Mtazds,

S

/(A/IO+Qx+Ny)yds:/]V[tyds,

S S

or

(]VIO—]VIt)/ds+Q/xds+N/yds:0,

S

(]V[o—lbft)/xds+Q/xst—l—N/m/ds:O,

S

(JVIOfMt)/yds+Q/xyds+N/y2ds =0,
from which we find Q = N =0, My = M,.

Therefore the moment My is equal to the equivalent temperature moment
M;. It means that the curvature change caused by the moments M, will
be identical to the curvature change caused by the temperature. Thus the
curvature of the uniformly heated closed bimetallic frame remains unchanged.

81. The plane of the bending moment in the suggested problem coincides
with the diagonal AB of the rectangular cross-section (Fig. 302).

We hope that our reader knows that in this case the second diagonal C'D
of the rectangular cross-section represents the neutral line where the stresses
vanish. Of course it is valid for elastic strains only.

Let us pose the natural question, will the neutral line save its position
further, ie. if plastic strains appear? We can answer this question in the
affirmative. The strains in a cross-section vary by linear law. They are pro-
portional to the distance from the neutral line. So the strains and therefore
the stresses remain unchanged along some strip KL that is parallel to the di-
agonal CD. But the diagonal AB intersects such a strip exactly at its middle,
so the moment of the stresses with respect the axis AB is equal to zero.
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Fig. 302

Thus the assumption of the neutral line position invariance does not con-
tradict the condition that the bending moment remains in the same plane.

Now it is very easy to derive the limit bending moment. The constant
tensile stress that is equal to the yield limit in tension o, occurs in the limit
state in the area of the triangle CBD. Exactly the same but compressive
stress occurs in the area of the triangle ACD (Fig. 302).

The sought moment withstands the moment of external forces and should
be calculated with respect to the axis M N that is perpendicular to the plane
of the external moment action.

It is easy to establish that the moment is

bh | (B> b\ 2
Mlim:2(7y3 <E> +<_6> )

bh
Mim = 0,7 VR + b2

or

82. Let us denote the current vertical coordinate measured upwards from
the cross-section’s lower end as y (see Fig. 303). The bending moment is
proportional to the section height H, and we shall consider that M = KH,
where K is the coefficient depending on the cross-section position at the
beam. In particular at the beam middle K = v b1?/8, where v is the specific
weight of concrete and [ is the beam length.

A
H A
h
A VyV h(}¢

b

v

-

Fig. 303
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Let us denote increasing section height as a variable h. When the next
in its turn layer Ah is imposed on the beam surface, then the additional
compressive stress (negative) caused by the enlarged beam weight arises in
the layer disposed at the distance y from the lower end. It is equal to

A 12K Ah h
o= - —_— =
ph3 \Y 2"

and stress in the layer y under some thickness H of the whole section is
determined by the following integral

H
12K [ [y 1 6K y
== (L -o5)an="pr(1-2). ho).
7 b /(h3 2h2> bH H (v > ho)
Yy

This is valid for y > hg. In case of y < hy we should integrate from hg
to H and add initial stresses that the beam had before the concrete layer
superposition, i.e.

H
B 12K/ v 1N\ 12Kho [ ho
T h3  2h2 g \Y7 2
ho

6K y\ 6K [y
“ bH( H) bho ( ho > (v < ho)

If we divide the obtained stresses by the maximal stress arising in the initial

or

6K
state (when section height is hg), i.e. by — , then we get

bho
ho y
ey < o),
=215 (v > ho)
N ho( y) Yy
= (L) L4y ho).
a H H 3h0+, (y< 0)

The diagrams of the stresses ¢* along the section height H = 4hy are
shown in Fig. 304.

Thus, the stresses due to the own weight of the beam reinforced in the
described manner are greater than in the initial beam, though undoubtedly
the increasing of section height improves the general strength.

The additional shrinkage stresses are easily determined independently of
the previous problem solution.

As the additional stresses vary along the section height linearly (as the
sections remain plane) we can write

c=FE(A+ By+ «), (y > ho),

o=E(A+ By), (y < ho).
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The coefficients A and B are determined from the conditions that the
tensile force and the bending moment caused by the additional stresses are

equal to zero, i.e.

/(fbdy:(), /(Tbydy:O,

F F
or
H2
AH—}—BT:—O[(H—hO),
H? H? H? 12
- = _ _ - _ 22
A2 +B3 = a<2 2),

from which we have

Az ot o) (B ) g ek to)
H H H H H

The diagram of the additional shrinkage stresses in case of H = 4 hq is shown
in Fig. 305

YVan, Y} ah,

3h, \%3%
2h, 2h0%

320
oE

; LTI
I
1
>
o
QqQ
*
4“‘

219 1 % 20 10 0 10 20

Fig. 304 Fig. 305







3. Complex Stress State, Strength Criteria,
Anisotropy

83. See the results in Table 2.

Table 2. The hollow cylinder internal cavity variation

Case Pressure acting on  Diameter d; Volume V
~ e
Fig.78a  Faces (1 + . p) dy (
1—
Fig.78b  Cylindrical surfaces (1 — —EHp> dy <1 — 2p T H) 1%
1-2 1-2
Fig.78  Whole surface (1 - = p> dy <1 —3p I3 H) \%4

So the internal cavity diameter increases only under the pressure acting
on the cylinder faces and decreases in the two other cases. The internal cavity
volume decreases in all the cases specified in the problem set.

84. Every plane containing one of the axes z,y or z and equally inclined
to another two axes is principal.

Let’s take the element represented in Fig. 79 and separate a new elemen-
tary parallelepiped as shown in Fig. 306.

(3

Fig. 306

Axis ¢’ is principal (6, = —7). The other two principal stresses can be
found according to the relation:

2
Ty a
Opr = 5 i“f +T§Z,
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[2 2
(rm:gi TZ-‘,—(T\/E), o' =—1, o' =+42r.

Thus we obtain

or

01 =21, O09=—T, O03=—T.

This problem may also be solved by using the general method of principal
stresses calculation known from the triaxial stress state theory. Let’s write
the following determinant:

Op — 0 Tay  Tae
Tyz Oy — 0 Ty =0. (1)
Tee Tay Ox—0C

In our case

Or =0y =0, =0, Tpy=7Tz, =7Ty,=0.

That is why
—-oT T
T —O0T =0,
T T —0O

or

o3 —3r%c—2r% =0,
and the three roots of this equation are

01=2T7, O9=-—-T, O03=—T.

85. It is necessary to show that in the first case at least one and in the
second — two of the principal stresses are equal to zero. For that let’s rewrite
equation (1) as follows:

037J1(T2+ Joo —J3 =0,
where

Jh =0, +0y+0,,

— 2 2 2
Jo =00+ 0y0,+ 020, — Ty — Too — Ty s
Ox Tay Tzz
J3 = | Tyz Oy Ty
Tzx Tay Oz

are the invariants of a stress state.
In the first case according to the properties of the determinant
Ox Tzy Tzz
Js = |kog kToy kT2 | =0,

Tzx Tzy Oz
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and one of the cubic equation roots vanishes. In the second case J3 = 0 and
Jo = 0 and therefore already two roots of the cubic equation are equal to
Zero.

Using the above proved we can say at once, for example, that the stress
state represented by the tensor

(800 200 400
20050 100
\400 100 200

is uniaxial.

86. These stress states are equally dangerous. Actually, the work done by
the normal stresses in the first case is equal to the work done by the same
stresses in the second case. The same is valid for the shear stresses. Conse-
quently, the internal energy will also be identical for these two cases. Namely
this fact is the condition of the two stress states equal danger (equivalence)
for any energetic strength theory independently on the type of energy used
as strength criterium (the shape distortion energy or the full energy).

87. Let us consider the stress state of the element (Fig. 307) taken from
the cylinder at the depth x below the level of the liquid.

vHd

Nl NT

Fig. 307

The stress ¢’ is constant along the generatrix length and is equal to the
2

d
liquid weight V%H divided by the cylinder normal cross-section area mDh

r_ . Hd
o =x T
The hoop stress above the liquid level is ¢” = 0 and below it equals to
o1 P4 _ yxd
2h 2h

The equivalent stress according to the strength criterium of maximal shear
stresses 0.4 = 01 — 03. Consequently, if ¢’ > ¢” then we have 0., = ¢’ —0 =
o’. And for 0’ < 0" we get 0oy =0’ —0=0". Thus, for t < H/2
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P 7:
€1 4h

and in case of x > H/2

7 ﬂ
-~ 2h
The diagram of 7.4 is shown in Fig. 307. This diagram inflects at = H/2
which is a consequence of the fact that in this point the planes corresponding
to the principal stresses 01 and o5 change their places. The diagram of o,
obtained by the energetic theory of strength is shown in Fig. 307 by dashed
line.

Oeqg =0

88. Let us consider the stress state of the cylinder points disposed near

its upper (A) and lower (B) generatrices (Fig. 308), where o}, and o), are the

stresses caused by the pressure p, and ¢, is the bending stress.

——] A ——
M M
{lo ] )
| )
Gy
——
Gy Oy
®)
It is easy to establish that
o :ﬂ (7”:ﬂ oh, = M (1)
PR’ P T 2n” M T r@?h

and since 20, = o, therefore if
el <0
then we have the following condition for both points A and B:
(req:(rl—(rg,:o;’—O:(r;'
And if |0y, > o}, then at point A
Oeq =01 — 03 = (rf;,—&—(ﬁw) —O:aé,—l—(/M,
but at point B

" !/ / !/ /
(Teq:(Tl—(73:0'p+((fM—(7'p):Up-i-(J'M

Consequently, in all cases points A and B are equally dangerous. The
diagrams of 0., and o'y, are shown in Fig. 309.
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Values of 0}, o) and 0y, are determined by expression (1). For |o,| < o},

the strength safety factor for the system does not depend upon the value
of the applied moment M. This conclusion is the consequence of using the
strength theory of maximum shear stresses which disregards the contribution
of 09, i.e. of the intermediate principal stress. According to the energetic
strength theory 0., depends upon the moment M. This dependence is shown
in Fig. 309 as the diagram plotted by the dashed line.

Geq /
Gy P
5 ’/’
g
4 4
3 7~
2=
1
Owm
0 1 2 3 4 5 G;,
Fig. 309

89. The solution presented in the set of this problem is not correct because
the stresses 01 and og are calculated there with the mistakes.

Fig. 310

Let’s consider the equilibrium condition of the sphere part (Fig. 310):

h\? h\?
Py (R—5> — Do <R+5) =01 2nRh.
In ordinary conditions the quantity h/2 in brackets can be neglected in
comparison with R. And here it cannot be done because the values of p; and

po are large but the difference between them is small. That is why

2

h
(p1—p2) R* — (p1 + p2) Rh + (p1 —Pz)z =012Rh.
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The third member in the left part of the equation can be neglected.
If py and po differed considerably then we could neglect the second member
also but now it can’t be done. Thus

(p1—p)R  p1tpo

01=02 = oh 5 03 = —P1,

Gog= PP p PLEP2 L 51 MPa

o 2h 2 ! ’
o, 300

y=—L == =588

., T Bl

90. Let’s denote the pressure acting on the cylinder and tube contact
surface as p;, and derive principal stresses for both details.

P NP

L
P

LT
FHHHHt

I
i
i
pil P;
|
i
i

T

From the equilibrium conditions for the tube (Fig. 311) we get

R R+h
C=pig P

Near the internal surface another two principal stresses will be —p and
—p1, thus the hoop relative elongation of the tube will be

1

— g — . (—p— ,

T, 17 (=P =p1)]

where E; is the elasticity modulus and p, is Poisson’s ratio of the tube ma-
terial. Substituting o we arrive at

&t =
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1 [pl_R p(R+h

- +m(p+p1)]-

“TFE | n h
For the cylinder we have
1
o= p—pe=p—p)l.

But ¢; = e.; from this condition we derive p; :

1 (R

_ B \h E,
P =pr7 R+ +1_uc~
B \n M E.

Excluding p; from the expression for ¢ we obtain
1—2p 1—-2p,

PR S Ee _
E \n M E.

Suppose that
1—-2 1—-2
ey > I3
Et Ec
Then it is easy to show that p; > p and o > —p. Consequently,

<

g1 =0,
Oy =—P, Ocq=01—03=0+Dp1,
03 = —P1,

from which
1—2p  1—2p,

R E E

eq=p|—+1 L < .

7o p(ﬁ)i B\ l-u
B, \n E.
As R/h is significantly greater than unit, then
1—2p 1—2p,

eq — E - )

Oeq = PLt ( E, E.

and we can write the following condition under which the plastic deformations
appear in the tube

1—2p, 1-—-2p
E - <) =0,.
P < Et Ec v

1-2 1-2

If 5 =t < 5 Ee then we shall have p; < p. In this case the contact
t c

between the tube and the cylinder will be absent and both bodies will be

deformed independently.
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Let’s solve the numerical example in order to estimate the pressure p
value. For the steel cylinder:

E. =200 GPa, pu,=0.3.
For the organic glass tube we specify:
E; =3 GPa, p,=035, o,=75MPa

The calculation gives

Oy

p= = 255 MPa.

E
=2 — 2 (1= 2p,)

This number is approximate (guiding) because the solution does not consider
the changes in the organic glass properties under the pressure and the value
of p, is given not exactly.

91. The ends of the curvilinear wire will be pushed out by the pressure
and the wire will be straightening.

If the wire is held in its curvilinear state, then the buoyancy forces will
be equal to the product of the pressure p and the non-compensated area A
(see Fig. 312 where AA is the cross-section having maximal deflection from
the axis of the holes). It is obvious that the area A cannot be greater than
the wire cross-section area.

If the wire is absolutely flexible then it will be straightened completely
and the axial tension in it will vanish as A = 0. The stress state for this case
is shown in Fig. 313.

p

’

LB

Fig. 313

.
p I
~

[
\

If the wire has some bending rigidity then it will not be straightened
completely and it will undergo some tension pA. The bending stresses will
occur in the wire besides this tension.
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92. The described experiment setting does not exclude the influence of
volume variation. The relative variation of the vessel’s internal cavity volume
is equal to the relative variation of the vessel’s material volume. That is
why we need to add the vessel’s material compressibility coefficient to the
compressibility coefficient found by the specified method in order to define
the proper value of the compressibility coefficient.

The relative volume variation measured by the mercury D meniscus is
equal to

AV = AV — AV,

where AV, is the liquid C volume variation, and AV} is the vessel’s internal
cavity volume variation. Thus:

AVe :ﬂcvpa AVA:/BAVP,
AV

AV =pV (B —B4), 5C:p_v+'BA’

B¢ is the sought liquid compressibility coefficient, 3 4 is the vessel’s material
compressibility coefficient, and V' is the vessel’s internal cavity volume.
That is why the vessel’'s material volume variation can be neglected only
in the case if B4 < B¢ .
If the vessel for example is made of glass, then

8, = 0.0255 GPa™ ',

Compressibility coefficients for liquids vary within very wide limits and
have the following values shown in Table 3.

Table 3. Compressibility coefficient for liquids

Liquid  Compressibility coefficient

Mer cury 0.039 GPa~!
Water 0.51 GPa™!
Spirit 0.77 GPa~!
Ether 1.45 GPa !

Hence the amendment (3, is of great importance for liquids having low
compressibility.

93. The second rod can bear the greater load.

Really, the disruption in the first case will be preceded by the neck forming
and the rupture will take place under the cross-section area significantly less
than the original one. In the second case the neck will not or almost will
not form because the thick main parts of the rod will prevent shear in the
planes inclined to the rod’s axis within the region weakened by the recess.
The disruption will occur without narrowing of the cross-section.

If the specimen’s material is not plastic but fragile then the first speci-
men would be not weaker than the second one and for some materials, most
sensitive to local stresses, it would be even stronger.
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94. The pure shear will be homogeneous, i.e. such that the stresses remain
constant in all points of a body if we apply the following techniques:

1) The torsion of the straight thin tube (not necessarily circular) with
constant thickness of walls (Fig. 314a).

pd
{ o ”’
M I
@
a

e[ [
[ p

) . I

Fig. 314

2) The simultaneous loading of the thin-walled cylindrical vessel by the
internal pressure p and the axial compressive force P = 0.75 pwd?. In this
case the axial compressive stresses will be equal to the hoop tensile ones for
all points sufficiently distant from the bottoms (Fig. 314b).

3) The simultaneous loading of the thin-walled cylindrical vessel by the

4h
external pressure p and internal pressure p (1 + 7) (Fig. 314c). Walls of

this cylinder will be compressed in normal direction to the middle surface
by stress p and with the same stress tensed in circular direction. In axial
direction the cylinder is not tensed.

4) The stretching of the hinged rod rectangle with the plate fixed in it
by the diagonal force P. If the rods of the rectangle are comparatively rigid
then tangent stresses in horizontal and vertical plate cross-sections are

D i Dy for th £
Th="—"" =——F—— = =Ty =T or € square 7T — )
"Tah  nazie bk Y ¢ ahv?2

where P, and Py are the force P horizontal and vertical components, a and b
are the rectangle base and height, h is the plate thickness (Fig. 314d).
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The stress state in the boundary regions under real conditions will be
slightly different from the pure shear in all the cases given above.

The pure shear will be nonhomogeneous, i.e. such that the values of
stresses in all points of a body are not the same, for example, under torsion of

the prismatic beam with arbitrary cross-section shape or when a sufficiently
thick tube is loaded by the internal pressure p (Fig. 315).

Fig. 315

95. The only one method of creating the all-round homogeneous tension
known at the present time is the following;:

The previously cooled solid homogeneous ball is quickly heated. The stress
state indicated above will occur in the ball center. Unfortunately this method
is not suitable for investigation of material properties under this stress state,
for example, for determining the so-called rupture characteristic.

All-round (but not homogeneous) tension occurs in the central part of the
cylindrical specimen with the ring recess under its tension (Fig. 316)'.

All-round tension region

.
y
T

96. The easiest way to explain this phenomenon is to use the strength

theory.
o P
= A e

Fig. 317

Let’s add and subtract axial forces pA (A is the specimen cross-section
area) as shown in Fig. 317. Then the external load acting on the rod is

! The radius of the recess profile is supposed to be of the same order as the
specimen diameter.




206 3. Complex Stress State, Strength Criteria, Anisotropy. Part II. Solutions

presented as a combination of all-round compression and axial tension. Ac-
cording to the theory of maximum shear stresses as well as to the energetic
theory, the all-round pressure has no influence on plastic deformation onset.
And the axial tension causes rupture with forming of the neck.

The phenomenon can be explained also from the positions of equilibrium
state stability.

If some cause provokes local narrowing of the rod then the tensile force
equal to the product of the pressure on the areas difference A; — Ay appears
in the cross-section of the least area. Here A; is the rod cross-section area
in the zone sufficiently distant from local narrowing; A is the least area of
rod cross-section in the place of narrowing. The occurrence of this tensile
force leads to further development of neck, growth of the tensile force and
the following rupture.

97. The consideration stated in the problem set can not serve as founda-
tion for doubts in the solution correctness.

The tension diagram shown in Fig. 91a was obtained for the uniaxial
stress state. But in the zone of recess the stress state is triaxial, excluding
the points laying on the surface. The hoop and the radial stresses here are
tensile ones. That’s why the axial stress here reaches values greater than .

98. It will be the points A and B (Fig. 318) near the hole contour.

o)

Q
PAAREAEAA
N
Q
T

A B

(o2 (o2
Fig. 318

99. Using the combination of the foregoing data for local stresses caused
by the forces and the moments separately for solving the problem will not
lead to positive result, and here we have to apply the following technique:

First of all let us consider the stress state of the cylinder points distant
from the hole (rectangle abdc, Fig. 319a).

2M P
xd?h’ " wdh
The principal stresses o7 and o3 can be found according to the formula

Obviously 7=

1 —
01,3 :%i;_,\/02+47—2
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Fig. 319

The maximum stress o1 acts in the plane which is inclined to the nor-

mal circle arc at the angle a. According to the plane stress properties (see

2 4M
Fig. 319b) this angle can be found from the correlation tan 2a = ==

Now let’s isolate by the principal planes the tube element e fgh gontaiﬁcrilg
the considered hole and the local stresses zone subjacent to it (Fig. 319c¢). If
the plate' with hole is loaded in such a manner then according to reference
data we have 0. = 30’ — ¢/, where ¢’ is the largest and ¢” the smallest of
the considered stresses. In the given case

! 2
o =01, o' =03, (fmax:(f+2\/0'2+47'2

This stress occurs near the hole contour at the ends of the diameter orientated
along the line of o3 action (points A, Fig. 319¢).

100. This problem takes place among the simplest problems of the small
plastic deformations theory. For its solution it is necessary first of all to
reconstruct the diagram o = f(¢) into the diagram 7 = (7).

The plasticity theory ascertains that the stresses intensity

7= 5\ o1 =00 + (03— )+ (o1 — )’

and the deformations intensity

_ 2

3 \/(52— 53)2 +(€3 —61)2 +(€1 —62)2

for the given material are related through the definite functional dependence

&

! Cylindrical shell in the zone of hole can be referred as plate if p?/v/Rh < 0.1
where p is the hole radius, R is radius of the cylinder, and h — its thickness. See
Lurie A.L [15].
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;=P (e5) (1)

which is invariable for all stress states.
In the particular case of tension we have

ocp=0, o09=03=0, 0;=0,
2
€1 =&, &9 =&3= [E, Eizg(l—i-,u)e
If we accept = 0.5 then ¢; = ¢.
For torsion
op=71, 09=003=-—T, (r,-:\/§7',
5121, g9 =0, 632—1, €z:l,
2 2 V3

But according to expression (1)
o= (g), T\/}):@<_V—>.
V3

The first of these equations is the equation of the material tension diagram.
Consequently, the diagram reconstruction is made by simple replacement of
o with 7v/3 and of ¢ with 'y/\/3.

g

1 r=
V3

/

| -

0 € 0 Vnax y= V3
Fig. 320

An example of such a reconstruction is given in Fig. 320.
The shear angle v at the distance p from the beam axis will be:

Y=00  Vmax = 59, (2)

ol

where d is the cross-sectional diameter. The torsion moment is equal to

d/2
M = 271'/ Tp2dp;
0

d
but as the distance p = = , then

max

7rd3 ‘Ynlax
M = 2dy. 3
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The integral at the right side of this expression is the inertia moment of the
curvilinear triangle O AB with respect to the ordinate axis (Fig. 320).

Thus we can determine the necessary dependence in the following way:
Assigning the value of v,,,, we calculate the inertia moment of the OAB
triangle. Then according to the formulas (2) and (3) we determine 6 and M.
The sought dependence can be constructed by repeating this operation for
the set of several vy values.

101. Let us consider the wooden cube (Fig. 321). The axis z is directed
along the fibres, the axis x is normal to the annual growth layers and the
axis y tangentially to them. The coordinate planes coincide with the planes
of elastic symmetry.

Fig. 321

Relative elongation in the axis z direction will depend linearly on the
stresses o, 0, and 0., ie.

€e=C110, +Crp0y +Ci30.,

where C11, C12,C13 are elastic constants.
Analogically we can write

ey =010, +Cogoy+ Co3 0,
€, =0C310,+C30y+Cs30,.

The shear angles are proportional to the corresponding tangential stresses:
Vyr = CaaTyzy Voo =C55Teas Vyy = Cos Tay -

It is easy to establish that according to the displacements reciprocity
principle Cio = C51,C13 = C31,Cs3 = C39. Thus we obtain nine elastic
constants: C11, Cra, C13, Cag, Cas, C33, Cu4, Css, Cee.

It can be shown that these constants are independent [1].
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The medium that possesses anisotropic properties of such type is called
orthotropic. Compliance coefficients C;; seem unusual. That is the reason why
in the mechanics of composites it is accepted to use ordinary notation for elas-
tic constants E, u, G, but supply them with the corresponding indices. These

coefficients for the orthotropic medium given in matrix form are represented
below:

1 Iz Iz
= _Hxa  H3
2 £y 7, 0 0 0
_ﬂlz i _ﬁlz 0 0 0
Ei Es Es
T R
Ei B, Es |
0 0 0 — 0 0
G23 1
0 0 0 0 — O
Gs1 )
0 0 0 0 0 —
G12

Here Ei, Eo, E3 are the elasticity moduli corresponding to three the axes
of anisotropy. Poisson coefficients p are supplied with two indices. The first
one corresponds to the axis along which the specimen is tensed by the force,
and the second one to that axis along which the narrowing is measured.
Indices of the shear modulus G correspond to the two axes laying in the
plane of shear. The positions of these indexes can be assigned at random.
The indices of 1 cannot be treated in such a manner.

102. Using the matrix given in the previous problem solution let us write
Hook’s law relationships for the flat anisotropic specimen tensed along the
axes 1 and 2 :

1 m
g = —0— =g 1
! E4 ! Es ? (1)
_ _Hio 22
&9 = 1('71+ )

Solving it with respect to stresses, we get:

E

(71:_1(51"'#2152)7 (2)
1 — pq9 oy
Ey
oy =T (&2 + py2€1) -
1 — py9 oy 12

If the strains €; and ¢4 are simultaneously positive then the stresses must be
positive also. Consequently

fag Moy < 1.
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According to the work reciprocity principle the matrix of the elastic co-
efficients must be symmetric and therefore

tor/Es = pi19/ Ex .

If we exclude pq, from the last formula then we obtain py; < \/Es/E;
and correspondingly we get 1y < \/E1/Es.

As the experiments gave E2/E1 = 1/16 then Poisson coefficient uy; has
to be less than 0.25, but it occurred equal to 0.32. This fact substantiates
the supposition about the error made during the experiment or during the
following calculations.

103. The strip’s deflection ratio for plywood f1/f2 # Fs:/E1: in the gen-
eral case, because plywood bending rigidity depends not only upon thickness
and orientation of layers, but also upon their distance from the middle plane.

hel |« b - he |= -
First specimen section Second specimen section
Fig. 322

Let us take the three-layer plywood as the simplest example (Fig. 322).
Then we denote the thickness of the external layers as h., and the thickness
of the middle layer as h,,. Elasticity moduli of wood across and along its
fibers are denoted as E’ and E” correspondingly.

Now let’s calculate E1; and Fq . For the first specimen under tension by
force P we have

' bhm +20"0he = P,
eb (E'hy, + 2E”he) =P.

P
But as o =c¢FEy = b_h then the first strip modulus

E'h,, +2E"h,
- 5,

By transposition of E' and E” we obtain the second strip modulus
E"hy, +2E'h,
S @)

Now let’s find the reduced elasticity moduli under bending Ej, and FEsp.
For the first specimen under its bending by a moment M we have

Elt = (1)

Eyy =

by /2 hon/2+h.
2b / o'zdz +2b / o"zdz= M,

0 hin/2
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where z is the current distance from the neutral axis,

Ul:EIE, (J'HZEH_Z.
p p
That is why
hm/2 hm/2+hr
El El/
20— / 22dz + 26— / 22dz =M,
P P
0 B/ 2

or after integration

20 {Eh_m B

(5 en) - () poe

3p 8
But as it is known
bR? 1
Eiopy—=-=M,
12 p
from which
ho\?
E, = (E'— E") (—;) +E". (3)
By transposition of E’ and E” we obtain
ho\ 3
Ey = (E"— E') (f) +E'. (4)

It is easy to see from expressions (1)-(4) obtained above that in the general
case

Ey " Eg
h h
If we accept for example that h,, = 2> and h, = 1 then
Ey | Eu E +7E"
Eyy ~ FEo TE'4+E"

104. Tension along the axes 1 and 2 causes no shear. That is why the
deformations €1, €5 caused by the stresses o1 and o4 may be considered inde-
pendently, and the shear vy caused by the stress 7 may be treated separately.

Let’s consider an elementary cell shown in Fig. 323. The forces P; and
Py are expressed through the conditional stresses o1 and o4. Let us accept
two diameters of wire 2d as the “thickness” of the net. The netting has such
“thickness” at the lay location. Other values taken into calculation are the
netting segment lengths along the axes 1 and 2 falling at one force, that is

a .
= cosa and — + = sina. As a result we have

2 2 2
P, =01bdcosa, Py=o0y(a+bsina)d.
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Fig. 323

Forces P; and P, at every element’s “spur” end produce transverse force
Q) = Py cosa — Pysina, which gives bending displacement AB (Fig. 323):
_1Q0/2°
3 EJ

This allows us to find the element’s relative elongations along the axes 1
and 2 :

QY cos o Qv sina
= , €2 =— .
12EJ a +bsina’ 12E.J beos

At first we exclude @ and then express P; and P, through the conditional
stresses 01 and o5 :

AB

€1

b®d  beos® a »¥d .
TR at+bsina  (212Eg D
b3d . b2d a + bsin o sin? «
9 = —01 @ SIN CoS & + 09 12EJ b s

Comparing the structure of these relations with the expressions (1) of
problem 102, it is easy to establish that

a .
12E] 3 Tone 12EJ cosa

1= 3 v Er=73 a . . )
bd cos” b°d (— + sma) sin? o
b
cos? v sina /a .
o = Tg —, p2= 5 (7 +sina
(3 + sin a) sin ar cos™ a

b

There is something obscure in this answer, at first glance. The product
Hy9 fop is equal to one. And if we return to the solution of problem 102, then
we shall see from equation (2) that the stresses oy and o2 become infinite
under arbitrary relationships between ¢; and e5. It is the consequence of
the netting schematization incompleteness. The bending of the wire in a cell
was taken into account but the displacements caused by wire tension were
ignored. This is the reason of the arising discrepancy which is rather typical
for the nettings. It can be eliminated, of course, if necessary. But now we
shall not do these cumbersome calculations.
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Let us turn to determining the reduced shear modulus, ignoring wire
tension deformations as before. For that we shall again consider an elementary
cell (Fig 324a). Now it is loaded by the forces P12 and P»; which we relate
to the shear stress 7 by the technique already used

P12 :deCOSCl, P21 :Td(a—FbSiIlO().

It is easy to check that these relations satisfy equilibrium conditions for the
cell.

Now we must find the displacement AB (Fig. 324a). If the twisted cross-
piece of length a is not deformed then the segment AB would be equal
to Qb /(24EJ) as before. And here this deflection must be greater by
¥ b/2, where ¢ is the section slope angle at the end of the twisted segment
(Fig. 324a). It can be obtained by the ordinary procedure for the simply sup-
ported beam (Fig. 324b) and is equal to M a/(12EJ). Let us remark that the
wire at the segment of length a is twisted but not soldered. That is why its
bending rigidity is taken as two times greater than for the other segments.
The moment M = @ b. Thus the displacement AB will be

B Qb3 Qal? B Qb2
~uEJ T 24E] T 24EJ
where () = Pjssina — Py cosa = —Td acos «.
Now we need to find the shear angle of the deformed cell. It is equal to
the difference of the segments’ AC and AD rotation angles (Fig. 324a), i.e.
_ 2ABsina 2ABcosa Qb a(a+b)
» " YT T ET b(a + bsina) |

Substituting the expression for ) through stress 7 we obtain

AB (a+b),

a+ bsina bcosa

~_a’bd (a+b)cosa
TTT12E] a +bsina
from which we find the reduced shear modulus
_2FEJ a+bsina
~ a?bd (a+b)cosa’
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105. Let’s simplify the problem and find the reduced elasticity moduli
supposing that Poisson ratios of fiber and matrix are the same and equal to

p [21].

Let 01 be the average stress under tension along the axis 1. But the
stresses o1y and o1, for fibers and matrix differ in such measure as the
moduli Ey and E,, differ. As fiber and matrix must have equal elongations
then

e1=015/Ef, e1=01m/En,
and mean stress is determined as

o1 = (015 As +01mAm) [ (Af + Am)
where A; and A,, are cross-section areas of fibers and matrix strips. This
expression can be written in the following conventional way [1,21]

01 = Ulf‘/f + (71me7

where V; and V;, are fibers and matrix volume fractions in the composite.
Expressing 01 and o9 through €, we obtain

01 =¢e1(EfVy + EnVin),
from which
E1 = EfVi+ EmVin. (1)

If the flat specimen is tensed by the stress o, applied along the axis 2
then its relative elongation along the axis 2 will be

b Do
= (go=L + 0922 ) /(bs + b)) ,
€2 <2Ef 2E )/(f )

m

where by and b, are fibers and matrix strip widths. As a result

L —m
o (Ve Ve
2=72\E "E.)’

and the reduced elasticity modulus

E _r 2
=Y v (2)
Ey + E,.

As regards Poisson ratio, it remains common: fi19 = fg; = K.

Let us note that if we liken fiber and matrix to the springs of stiffnesses
cs and ¢, then longitudinal and transverse tension of composite will be
correspondingly similar to the parallel and sequential connection of these
springs (Fig. 325).
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Fig. 325

The item we still need to determine is the composite shear modulus. If
the specimen is loaded by tangential forces (Fig. 326) then the mutual shear
of the strips takes place, and the average shear angle is

Tbh Tbp,
rYa'u<_i+ )/(bf+bm)a

Gy Gn
or
(Y Ve
rYa'u =T (Gf + Gm) )
from which we obtain the sought shear modulus
V. V,
G=1/(=+== 3
/(& +8) ®
1 5
b, i

b

./

! .
!
/

| E j[r
! [
/ /

-
T

Fig. 326

The difference between Poisson ratios of fiber and matrix under longitu-
dinal tension and under shear has no effect on composite rigidity. That is
why expressions (1) and (3) can be used in this case, too. Poisson ratio jy,
can be found by averaging of the transverse contraction under longitudinal
tension. But the matter stands in quite another way under the specimen’s
tension along the axis 2. Unequal shortening of fiber and matrix leads to force
interaction between them which reveals itself as local tangent stresses near
the edges of the specimen. These stresses either strain fiber and compress
matrix or on the contrary compress fiber and strain matrix. The tangent




3. Complex Stress State, Strength Criteria, Anisotropy. Part II. Solutions 217

stresses are localized only in the narrow region having depths of about two-
three times the diameters of the fiber. The peculiarities in distribution of the
local tangent stresses and shear deformations are usually referred to as edge
effect.

The region of the edge effect is excluded while calculating the modulus,
and the following analysis clarifies that modulus Es due to the difference of
fiber and matrix Poisson ratios y, and y,, becomes slightly greater than the
value given by expression (2).

106. Such simplification is inadequate. The shear restraint takes place
under tension of the cross-ply laminate specimen. In other words, the layers
mutually prevent the shear at an angle of ¢ along the fibers. Such restraint
does not exist in a one-way reinforced specimen. And its elasticity modulus
will be noticeably less than for cross-ply laminate. This difference is especially
visible in the range of ¢ from 5 to 45 degrees.

107. Certainly no. For example, a +45° cross-reinforced sheet has equal
elasticity moduli along two diagonal axes but this material is anisotropic.







4. Stability

108. The length of the rod’s upper free part is equal to

P
l—A=1l——
Cc

The equilibrium state with curved axis for this segment will exist if
n?EJ
4(1— P/c)?’
and for the lower rod’s part of length A = P/c in case of
4nEJ
(P/e)*
Let’s denote
A P n2EJ
1w P e
Then the above written curvilinear equilibrium shapes’ existence conditions
take the form

P>

P>

= Po-

1
p(1—p)* > 2P p* > dpo. (1)

As A< lthen 0 < p <1.On this interval of p we plot functions p(1 —p)?
and p3 (Fig. 327) and see that their maximal values are correspondingly

4
— and 1.
27
1
p’
4
27 p(1-p)?
0 13 1p

Fig. 327
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Then from the relations (1) we find the conditions necessary to prevent
the rod’s buckling

1 4
4p0 > 57 and 4pg > 1,
from which
16
Po 27;
but as we previously denoted
_ TmEJ
Po = ZSC 3
therefore the spring’s stiffness must be less than the following value
27 7lEJ
16 3
A PUP
P Q Mo/ \Mo Q
P g -
Ll y % 1 y \ 4
x = [t
; e o T
2| o/ /.
Y2 k-yf \
PRI Tube| \Bolt
<Y
X X Yx
Fig. 328 Fig. 329

109. Let’s consider the contour of the bent plate (Fig. 328).
Deflection curve differential equations for the first and the second parts
of the plate under the force P directed downwards will be as follows

EJy! + Py, =0,
EJyy — Pys = 0.

P
Denoting — = o2 we get
g £ g

y/ + o’y =0, yy—a’y =0,
from which

y1 = Arsinax + By cosax, yo = Agsinh ax + Bgcosh ax
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The constants are determined from the conditions:
Hatz=0 y; =0,
atz=1 y =y,
3)atac:l y{:yéa
4)at z=0 gy5Hh=0.

From the first and the last conditions we get
By = A, =0,
from the second and the third one:
Aisinal = Ba coshal,
Ajcosal = By sinhal,
from which follows
tan altanh ol = 1 (1)

or
0.88EJ

72

If the force P is directed upwards, the sign of a2 is changed by the opposite
one and the transcendental equation (1) arrives at

al = 0.938, P, =

tan il tanhial = 1.

tanh !
But tanial = — an. e , and tanh ial = i tanal. Therefore
tan altanh ol = —1,
whence

ol =235, P, = 5'5?2EJ

110. Let’s imagine to remove the nut from the bolt and consider the forces
acting on the tube and the bolt. The deflection curves of the bolt and the
tube after buckling and the internal forces and moments P, Q and Mj also
are shown in Fig. 329. Obviously we have for the tube

My = Pyr — Qz — Mo,
for the bolt
My = —Pys + Qx + Mp.
Differential equations for deflection curves of tube and bolt are as follows:

EiJvy) + Py1 = Qz + Mo,
EyJoys — Pys = —Qx — M.
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Let’s denote
P 2 P 2
E1J1 = aq, EQJQ = (g,

then we have

Q Mo My
ul + olyr = Jotr + St + ol
Q My
ys — ahys = —jajr —— a3,
Solving these equations we get
. Q M
= Ay sinajx+ Bycosagr + —=x + —,
Y1 1 1 1 1 P 2
M
Yo = Ag sinhasx + By coshasz + %x + ?0.

The last two terms of both expressions are particular solutions of the equa-
tions. Constants Ay, B, As, Ba, @, and M are derived from the following
conditions:

at z =0

hn 207 Y2 :07 yi :yé,
at x =1
y1=0, =0y =y,
From the first three conditions we get
]\J() (@3]
B =By — =% A, — A4 1
1 2 R 2 e (1)
The last three conditions give

. Q. M,
A l+ B l+=l+—=0
1sinat + B cos apl + 7 + Iz s

M,
Aq sinh anl + By coshanl + %l + ?O =0,

Ajaq cosaql — Biagsin agl = Asag cosh aegl + Bayarg sinh apl.

If we substitute By, By, and A, from (1) in these equations, then

. M
A smaﬂ—&—%l—&— ?0 (1—cosayl) =0,
M
Alz—;sinhagl + % + = (1~ coshal) = 0,

M
Ajay (cosal — coshanl) + ?O (a1sin gl + ag sinhagl) = 0.

Equating the determinant of the set of equations to zero we arrive at
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sin oyl [ 1— cosal
ik sinh ail [ 1— cosh asl =0,
Qg

a1 (cosaql — coshasl) 0 g sin a1l + ag sinh asl
from which

22129 (coshzg cos z; — 1) = (25 — 2}) sinh zpsinzy, (2)

where 21 = ayl, 29 = asl. Under the prescribed rigidity relation we can
express 2o in z; and then by solving transcendental equation (2) find the
critical force of tightening P.

Specifically, for Ey1J; = E3Js = EJ we have z; = 29 = 2z and then
cosh zcos z = 1, from which

22EJ  224EJ
22

2=473, P.. =

111. Let’s consider the bent state of t he rod and remove the upper support
(Fig. 330). We denote the vertical reaction of this support by P, and the
horizontal one by Q.

Q
-

N~
A
~n
/

N =~

b
U

X
Fig. 330

The first question arising here is the one about the magnitude of these
reactions. The force @) can be found from the zero sum of moments about
the point A condition, that gives

o=l

Before the beginning of buckling the force P, = P/2. As the deflection
of the rod from its straight state can be assumed to be infinitely small, then
under buckling the force P; can be also taken equal to P/2 (see the solution
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of problem 112). Now let us write the differential equations of the deflection
curve for two segments of the rod:

!
EJy/ = Piy; — Qx <0§x§5),

!
EJy) = Prys — Qx — P (y2 — f) <—2 g:::gz),

or otherwise

L,

vl — @’yr = —2a%5

vy + 'y = 207 w4 207,

where
2 P
2EJ
Solving the equations we get

«

2
y1 = Asinh az + B coshax + Tf:v,

2
Yo :C’sinam—l—Doosa:B——lf:E-i-?f'
Atx=0 gy =0,
at t=1/2 y =yo = f and y} = y5,
atz =1 yo=0.

Hence
1) B=0,

l l
2) Asinh% —Q—Bcoshﬁ2 +f=f

l l
3)Csin% +Dcos%+f:f,

al ol 2 ol al %
4) Accosh 2Basmh 5 + / = Cacos 5 — Dasin 5 T
5) Csinal + Dcosal = 0.

It follows from the second relation that A = 0 (i.e. the rod’s upper part is
the straight line). The last three relations arrive at :

l l
C’sin1 +Dcosa— =0,
2 2

C’acos&l —Dasinﬁl —ﬂ =0,
2 2 l

Csinal + Dcosal =0

In the case where the determinant of the equations’ set is not equal to
zero all constants C, D, f vanish. Then y; = yo = 0 and the rod remains
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straight. The solution may be nontrivial if the determinant is equal to zero.
That makes it possible to derive the critical force P :

i oal «l
sin < cos< 0

acos‘gL —asin";" —% =0,
sinal cosal 0
from which follows
.al al B 8T2EJ
sm; =0, —=m, er =T
If the upper end of the rod were able to move in vertical direction, the
EJ
critical force would be four times less, i.e. 18.71—2.

112. We can assert that the deflection curve configuration of the bent rod
under the given compressive force will be just the same independent of the
causes which give rise to this force.

If the rod’s deviation from the straight form is given then the force that
compresses the rod must be the same under any circumstances. Infinitely
decreasing the rod’s curvature we shall unavoidably come to the conclusion
that the critical force for the observed rod will be the same both in the ordi-
nary case of applying ”"dead” load and in the examined case of temperature
loading.

We can also argue as follows: The bending moment in a rod is propor-
tional to deflection y, and compressive force variation takes place at vertical
displacement that is proportional to the second power of y’. Hence the value
of y can always be chosen small enough to neglect variation of force.

113. The formal approach of approximating function selection can lead

to the result that is extremely far from reality.
Thus, for example, let’s assume that the shape of the simply supported
compressed rod elastic curve (Fig. 331) is expressed by the following function

T l TMT

= A |sin— + —sin . 1
v=a (s E L T ®
While m — oo this function comes extremely close to the exact solution for

. . . . T
the elastic curve shape, i.e. lim ¥ |;m—oo= Asin —.

!
y
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But the critical force P determined by the energetic method after substi-
tution of this function happens to be equal

P EJf[i y"?dx _1+m?a’EJ
cr — fé y/Qd{L’ - 2 lQ

and as we see under m — oo infinitely moves away from the exact solution.

The peculiarity of function (1) lies in the fact that it reflects the form of
the primitive function y well, but abruptly diverges from it with respect to
the second derivative, i.e. by the expression of curvature.

The example is very instructive because the general rule is visually under-
lined with the help of it. During selection of the approximating function we
should also keep in mind the approximation degree of its derivatives including
the highest of them entering the expression for energy.

114. At first let’s analyze the auxiliary task.

N, = Pctge

b)

Fig. 332

Let’s take a hinged rod of length [ loaded by compressive force N and mo-
ments My and M; (Fig. 332a). The differential equation of the rod deflection
curve is

EJy" = My— Rz — Ny,

where R is the reaction of supports. Then we get

y = Asinaz+ Bcosaz + (Mo — Rz) (1)
Ja?
N
where o? = —.
Obviously at # = 0 and = = [ the displacement y = 0. Let’s assume

in addition that at = 0 ¢’ = 0. Using these conditions and taking into
account that
My— M
R==0—
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we exclude the values of A, B, My, and R from relation (1). Then we get

M; (1 —cosal)(al—sinal) [1 —cosax ax —sinazx

v= EJa? al cos al — sinal 1— cosal al —sinal

The value of moment M remains undetermined.
The slope angle of the rod at the right support is equal to

M; —2 +2cosal + alsin ol
EJa alcosal — sin ol

(2)

If the force N is not compressive but tensile then the value of a must be
changed by iq, cos al by coshal and sin ol by i sinh ol. Then relation (2) will
take form

0:ya/c:l:

My —2 +2coshal — alsinhal )
FEJa al coshal — sinh al

Now let’s return to the given system of rods (Fig. 332b). The lower hori-
zontal rod is compressed by the force N; = P cot ¢ and the upper is tensed
by the force Ny = P/sing.

At the point of the force P application the displacements of both rods
are equal to zero accurate to the higher order infinitesimal value. Left ends
of the rods are rigidly fixed. Therefore the scheme of the fixed-hinged rod
(Fig. 332a) corresponds to the fastening and loading conditions for the rods
belonging to the given frame. The only one thing remaining to be done is to
satisfy the junction conditions. These conditions are reduced to the equality
of angles # and the equilibrium of moments in the common point.

Let’s return to the relations (2) and (3). We replace al by «;l; in the first
of the relations and by asls in the second one. It is obvious that

Pcot l P
aly =1 L gl = g (4)
EJ cosp \| EJsin g

As moments in the junction point are directed towards each other then in
one of the relations (2) or (3) the sign of M; is changed by the opposite one.
Equating angles 6 we arrive at the transcendental equation

0 =

1 —2+2cosaqly + ayly sin aqly

a1l1 a1l1 COSOélll — sina111
1 —2 + 2 cosh agly — aaly sinh agls

gl cosp aalo cosh aigly — sinh aigls
The following relation should be added to the equation

3/2

a1ly = agly cos®/“ .

| PI?
Calculating the value of a1l = E] cot ¢ for several values of ¢ we
obtain the results presented in Table 4.
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Table 4. Critical values of dimensionless load

po 0 10 20 30 40 50 60 70 80 90

P ?/EJ 0 5.55 1146 18.21 26.57 38.08 56.18 91.37 196.9 oo

115. Let’s suppose that point A came out of the plane BCDEFE and apply
forces Py to the beams BD and CFE in point A (Fig. 333) whereupon we shall
consider the beams separately.

PB Dp «x

<
>

:V‘ \E" X
e
x -
/

Fig. 333
The differential equation of beam BD bending is
EJy" — Py = f—;Plx.
For beam C'E we have
EJy" + Py = +—;P1z.

The solution of these equations will be correspondingly:

1P,
= (4 sinhaz + Cs cosh ax +——z

2 P
1P
yo = Cs sinax + Cycosax + §?$
where
P
ol = —

At the point £ = 0 the deflection y in both cases is equal to zero. That is
why Cy = C4. For the symmetric modes of buckling at x = [ the slope ¥’ = 0,
therefore
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P 1 P 1

" 2Pa coshad’ Cs = " 2Pacosal’

Finally from the condition of the beam deflections equality at point A we
obtain

C =

Cisinhal = Cssin al,
or taking into account the preceding relation
tanhal = tanal,

from which

al =3.926, P., = 15'142EJ. (1)
_PB 7 Dp_ x
: oM -
y
; M
¢ < S
Pl P
‘/x R 2
1 1

Fig. 334

Besides the above there is another possibility of buckling for the com-
pressed rod C'E. This rod can bend by two half-waves with point A being
immovable. Under these conditions the rod BD will be twisted. Let’s consider

both rods separately (Fig. 334). The deflection curve differential equation for
the rod C'E is

M
EJy" + Py = —uz,
21
from which
y=Cisinax + Cy cos ax + ——x.

2P1
The boundary conditions are

at =0 y=0
at z=1 y=0 (2)

/

at =1 y =—p
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where ¢ is the rotation angle of the rod BD middle section which is equal to

=3
where c is the torsional stiffness of the tensed thin rod that according to the
solution of problem 28 is
1 .5 Pb?
=~Gbh” +——.
c 3G + 12
The boundary conditions (2) yield

Cy = 0,

M
Ch sinal—%—ﬁ =0,
M M 1
l+— = .
Ciacos o +2Pl 5 _IthZ& Pb2
37T

Transferring the free terms to the right side and dividing the second equation
by the third one we obtain

1
= _ P
> tan ol = 1 . ]
Pl 1 Pb?
—thS —
3 * 12
As
E bh3
P=a’EJ, G=——, J=—,
2(1+p) 12
where p is Poisson’s ratio, then
2 v,
— L —— 22
1t 122"

tan al = ol .
_2 + a2l? b_2 +1
1+ p 12]2
As b is significantly less than [ and ol must have the magnitude of about 3 or

4 units, then it is clear that on the right-hand side of the equation the terms
containing b2 can be neglected. Then we arrive at

2al

t l=—
ana 24+ (14 p)a??
For n =0.3
123EJ
al =351, P, = —Pr (3)

This value of P, is less than the one calculated before (1). Hence the stability
loss of the rod CE will occur by two half-waves.
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If the load P increases then the internal force in the compressed rod
remains almost unchanged, and the greater part of the load will be perceived
by the tensed diagonal BC.

The system considered in this problem is the analogue of the thin-walled
panel BCDE (Fig. 335) working under the conditions of the shear. Such
elements are typical for aircraft and rocket constructions. Their buckling
under the shear causes the formation of diagonal waves. Nevertheless, the
panel that has lost its ability to bear the additional compressive load along the
diagonal C'E successfully perceives the tensile forces acting in perpendicular
direction.

Fig. 335

116. Assuming that displacements are small let’s derive the differential
equation of the beam deflection curve.

Let’s introduce the coordinate system z,y, z shown in Fig. 336. The bend-
ing moments caused by the force P and the torque M in the section x are

in plane xy : Py and M2/,

in plane xz: Pz and —My/.

y
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The positive and negative sign in front of the moment term is taken as
depending on the fact whether the moment is directed towards the increasing
or the decreasing of the axial line positive curvature in the corresponding
plane of bending.

If we accept that beam bending rigidities in the planes xy and zz are the
same, then the equations of axial line bending can be written as follows

EJy'=Py+ Mz', EJ2'=Pz— My'. (1)
Let’s find the solution in the form

y = Acosajxz+ Bsinajz + C cos agx + D sinasx,

z = Asinayxz — Beosayx + Csinasxr — D cosasw,

where a; and «ay are the roots of the quadratic equation

M P
2, 24 = _
! +EJa+ J_O' (2)

In case of the hinged rod we have the following boundary conditions

at x=0, y=2z=0,
at z=1 y=2z2=0.

Applying these relations we obtain four equations

A+C =0,
B+ D =0;
Acosail + Bsinaql + C cos agl + Dsin asl = 0,

Asinaql — Bcosaql + Csinasl — D cosasl = 0.
Equating the determinant of the system to zero we arrive at
cos (ag — o)l =1,
or
(g —aq)l =0, 2m 4dm;..

But according to equation (2)

g — ] = 2 iQ—L
o0 2EJ EJ’

hence

My = +2VEJ\/P. + P,

where P, is Euler critical force

w2EJ
€ = l2




4. Stability Part II. Solutions 233

Thus if the tensile force P increases then the critical moment grows. If the
force P is compressive then the moment M decreases. For the compressive
force value P = P, the magnitude of M., vanishes as ought to be expected.

117. The rod cannot loose its stability. Assume that the rod was bent
due to some cause (Fig. 337). In the ordinary case, i.e. under loading by
longitudinal forces only, such deformation causes the rise of bending moment
M = Py tending to increase the rod curvature.

4

Fig. 338

Under sufficiently large force P the rod will not take its initial straight
equilibrium form after bending causes removal. Then we say that the straight
form of rod equilibrium is unstable.

The considered problem is absolutely different. External moments do not
affect the rod in its bent configuration. Pressure acting on the rod surface
disposed above the cross-section AA does not cause the internal bending
moment in this section and is reduced only to the normal force equal pA
where A is the cross-section area. That is why if the causes of bending are
withdrawn then the rod freely returns to the initial straight form even under
sufficiently great value of pressure p. Thus the straight form of equilibrium
is always stable.

The confirmation of the aforesaid can be observed in everyday life. Indeed
atmospheric pressure does not prevent the thin straw from keeping its straight
form independently of its length and rigidity!

118. The rod will loose its stability under the same length as the verti-
cally standing column (Fig. 338) having specific weight equal to the weight
difference of liquid and wood.

119. The most convenient way to answer the given question is to apply
energy relations. The complementary energy U, that the column receives
while bending is taken from the potential of external and internal forces.
Usually we write the energy balance for a compressed bar as follows:

U, = PA (1)
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where A is the displacement of the axial compressive force application point.
If the point does not move, as for example during hinged rod heating (see
problem 112), then all the same PA can be treated as the internal forces
potential variation arising earlier as a result of the constrained heating. In
the considered example the matter stands just the same. The force P arises as
a consequence of pressure action on the column. The column is compressed.
It accumulates the energy of compression. Under the column’s bending this
energy decreases by PA where A is the difference between the bent rod length
and its length before bending,

However, in our case relation (1) should be revised as it does not reflect
the variation of the pressure forces potential. We must calculate the liquid’s
volume variation AV under the column’s bending. If the volume increased
then the potential of the pressure forces decreases and we must add the
product pAV to PA. If the volume decreases then we must subtract the
product pAV. It is obvious that the latter takes place in the given case.
Hence instead of (1) we must write

U, =P\ —pAV
Obviously AV = AX where A is the rod’s cross-section area, and the

force P is derived from the condition that relative longitudinal elongation
is equal to zero:

P
~EA E 7
Then P =2upA and finally we get
Uy =pA(2p—1).

The left part of the relation is positive and the right part is negative...
And they cannot be equal. That is why the rod does not loose its stability.

120. A liquid-filled tube will behave exactly the same as a freely standing
column loaded by its own weight. That is why the tube will loose its stability
if the total weight of tube and liquid contained in it is greater than the critical
weight of the rod having the same length and rigidity.

121. The system looses its stability in the same manner as in the case
when the load is applied directly to the tube. In the given case P, = 72 E.J/I*

Sometimes we can hear that in the considered case the tube can not loose
its stability under any conditions. Such an opinion is based on a false position
that the presence of the internal compressive forces is of great importance
while the stability analysis by Euler. In reality the latter is not the case.

In order to obtain the correct solution of the given problem it is sufficient
to consider the deflected configuration of the tube (Fig. 339). The differential
equation of deflected tube axial line is the same as for the compressed column

L
y+EJy_'
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From which follows the mentioned above magnitude of the critical force for

the hinged tube.

Fig. 340

122. After analysis of the previous problem we can say at once that the
tube will loose its stability when

A72EJ
pA = 72

where A is the area of tube cross-section.
The critical pressure existence for the given system can be easily detected

if we consider the balance of system energy. The volume of the tube’s internal
cavity in the bent state grows by A\ because the tube under bending rises

out from the upper plug by a value A\, where

1 l
A= - 2 dz.
z/oy *

The critical force is derived from the condition

pc’rA)‘ = Uba

In case of ordinary compression of the rod we have

Pcr/\ = Ubv

from which we obtain the same
4mEJ
pcrA - Pcr - l_2
The considered case of buckling is obviously displayed under loading of

a thin-walled sylphon by the internal pressure (Fig. 340). The magnitude of
critical pressure for this case is obtained by the same way as for a rod. But
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instead of rigidity EJ we must take some equivalent bending rigidity of the
sylphon, and instead of A the area of the sylphon cross-section calculated by
mean diameter should be taken.

123. Let’s suppose that the tube is slightly bent for some reason. The
tube’s bent part is shown in Fig. 341 where its curvature is taken as positive.
The mass of the liquid inside the tube’s segment dx at a given moment is

dm = jAd:v, (1)
g

where A is the area of the tube’s orifice.

i /

Fig. 341

While the curvature of the channel is 1/p = d*y/dz the flowing liquid at
section dx gives the inertial force
2 2
d
dm— — LJAdamP—‘Z,
P9 dx
directed out of the center of curvature. The intensity of the inertial force, i.e.

force falling at unit length of arc, will be
Y 4240y

= L g2

d g Y dz?

The negative sign is taken because the force ¢ for positive curvature is directed
opposite to the displacement y. But it is known that

d*y
EJ— =gq.
dxt e
Hence
d* d?
Br L gl

dz* g dz?
Let’s denote
Y Av® 2
vET "

Then we get
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& d?
£y 289 _
dx4 dx?

from which

0,

y=A;sinazr+ Bcosax+ Czx + D.

At 2 = 0and z = [ we have d?y/dz? = 0 and y = 0. It follows from these
conditions that

B=0, C=0, D=0, A;sinal=0,

al =, UCT:ilT’/%TJ (2)

It is very surprising that the mode of stability loss obeys sinus law, i.e. is
the same as for axial compression. Moreover, buckling occurs under the speed
for which the reaction of stream is equal to Euler’s critical force. In fact, the
reaction of stream, i.e. jet force of stream, as is well known is equal to:

dm
P=—
dt
where dm/dt is mass consumption per second, and v velocity of stream.
(Curiously, the thrust of a rocket engine is defined by this formula). According

to (1)

p=2La2
g
Substituting here v from (2) we get that the force of the stream reaction is
equal to Euler’s critical force P = 72 EJ/I%. But one should not consider that
the tube is compressed by the force of a stream response. The tube looses
its stability without external compressive force as it takes place in the case
considered in problem 121.

124. Let’s consider the well-known statement: “let’s take the least non-
zero root of an equation...”. The expression became commonplace due to
its evidence, and nobody usually thinks over its substance. Certainly “the
least”- because we are interested in the first minimal value of the critical
force. “Non-zero”- because under zero root we have an unbent initial mode
of equilibrium. This solution is not relevant.

If we analyze the considered system for the case R/l < 0.5 we should take
exactly zero value of al. The system represents a mechanism where friction
forces are absent. The rod looses its stability as a solid body under the action
of infinitely small force P. For R/l = 0.5 both end faces are restricted by arcs
of circumference the center of which is at the middle of the rod (Fig. 342a).
It is the limit value of parameter R/l , as with further increase the bending
modes of buckling appear. Thus, disregarding friction forces, critical states
are characterized by the curve OAB in Fig. 343.
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P P
P P P
a) b) C)
Fig. 342

As radius R increases the column buckling appears with more and more
curvature of the rod under presence of transverse sliding of end faces or free
transverse displacement of plates. In extreme case for R = co the mode of
column instability is shown in Fig. 342b, i.e. for this case al = 7 and, hence,
P..=m2EJ/I2.

If plates can not freely move in transverse direction, and friction forces are
sufficient to avoid the sliding, then the critical states of column depending on
R/l are described by curve C' (Fig. 343). For R/l = oo the mode of column
buckling is presented in Fig. 342c. In this case P../P = 4 and hence

An?EJ
cr — l2

P —
P, —

C/

3 /
2
1 B —
]
A
0 0.5 1.0 15 R/
Fig. 343

125. The rod looses its stability under action of force P = n2E.J/l* and
then by its middle part touches the tube walls.
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Y

Fig. 344

Let’s accept that for P > 72E.J/I? there exists a zone ly of the rod’s
tight contact with the tube walls (Fig. 344) and derive the equation of the
deflection curve of the rod at the section 0 < z < [;

EJy" + Py = Rz,

R P
— Asi B il 2 _ .
y= Asinaz + Bcosaxr + —z (a = J)’

with boundary conditions: at + =0 y =0,atx =10; y = A, at ¢z =
l1 3y =0, whence B =0,

I

R
Asinaly +1—311:A, Aacosaly +—= =0. (1)

The rod remains straight at the section /5. Hence at this section M, = 0.
That’s why according to Fig. 344

PA*RI1+R(1‘1*Z1):O,

whence
A
R=P—.
l
We derive from equation (1)

a=2,
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A
y=— (sinaz + az); (3)
T

it follows from relation (2), that for {; =1/2
47 EJ
= l2 .
It means, that in case
w2 EJ 47*EJ
2 < P< 12
the rod touches the wall only in one point, and only for
47’ EJ
12
the rod is adjacent to the wall along the segment.
If the middle straight segment becomes long enough, then it may buckle

too. Let’s determine the length /; under which it happens. The critical force
for the middle segment will be

_ 4m*EJ

P = , lo =1-2l).
2 (L 1)
But on the other hand P = 7?EJ/I3. Equating these forces we find
l 16m2E.J
1 = Z, P = T

When the middle segment is bent, [; changes its value stepwise and be-
comes equal to [/6. Considering now each one-third of the rod as the new
independent rod, we can keep the above-derived equations by substituting [
for {/3. From equation (4) we arrive at

l 36m2E.J
lh==, P=—77f.
e 12
It means that for
36m2EJ
> —12
adjacency to the walls along the segment begins again.
For
167%EJ 362 E.J
—p < P < e
the rod touches the walls at three points.

During unloading the rod will move away from the upper wall not under
the force value P = 1672 E J/I?, but, obviously, under P = 972E.J/I?.

The rod’s main equilibrium modes are shown in Fig. 345 where the inter-
vals of force variation under loading and unloading are given also.

P
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Loading Unloading
p e , 1 T'EJ ’EJ
Pzt P<
P ' T’EJ ]247:251 vEJ ]241:251
<Pg <Pg
—_— F r F r
2 2 2 2
P . . . . 471:2EJs P<167§ EJ 4112EJS Psgn 2EJ
/ / / /
) 5 2 2 2 2
P - 1611; EJs p s367: EJ 9n"EJ <P s367; EJ
/ P s /
P " " 2 2 2 2
et 3611;EJ<P<144'£:EJ 3672EJ<Ps81n EJ
7 " / / / I&
P - 2 2 2 2
/,, \'/,‘ I W — \\j{v 144’721: EJS P<324};c EJ 8111:]2EJ< P<324]‘f EJ
P . . e . . 2 R R R
LR NN IR SUnEL p 12067°E) | 324nE) [ 7291
](v / f I I
1 1
6 /|6
2
/
Fig. 345

For any values of force P the bent segments of the rod between the inflec-
tion point and the neighbour point of adjoining to the wall have the length
Iy and are described by expression (3), derived for the left end segment. The
bending moment

A
EJy" = fEJl—;r sin az
1

has maximal value M., = E'JAﬂ'/ll2 .
The maximum stress is equal to
P . EJAT
Omax —
A l% w
where W is the section modulus.
If the rod has circular cross-section then
4P m Ed
=— + A——.
Tmax =T T AT

Let’s consider two examples:
1) Suppose that compressive force P is equal to

30m2EJ
2
It is seen from the plots (Fig. 345) that under the condition
1672EJ 3672E.J l
l—2§P§T llzconstzg.

It follows from relation (5) that
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3ndE
Omax = W(&rd +48A).

2) Let’s suppose that the force is P = 4972 EJ/I?. For the interval

36m2EJ 14472 EJ
— <P —
12 - 12

l; depends upon P. Hence according to expression (2)

= —— 4
1= > 7
EJ
Then it follows from relation (5) that
497dE
max = d+8A).
y 162 "4t EA

126. The problem concerns the spatial bending of rods and is essentially
more difficult than the previous one. Moreover, it is one of the most compli-
cated problems presented in this book.

P

~J
S

N
Fig. 346 Fig. 347
Under Euler force P, the rod, as it should be, bends by the sinusoidal
half-wave and is pressed to the tube at the mid-point of the rod span. As the
compressive force increases, the deflection curve obtains bicurvature and the
spiral line (as shown in Fig. 346) begins to form in the middle part and later
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develops more. If the compressive force increases, the length of the end spans
a decreases and the number of coils in the middle part increases. The shape
of the deflection curve is uniquely determined by the force P, and it can be
considered to be the same as for loading and unloading of the rod if friction
is small.

The main difficulty of this problem solving consists in revealing the mech-
anism of the rod’s adjacency to the tube: how many contact points exist,
where are they situated and in what order do they change each other.

It is not convenient to trace this sequence in the process of the force
gradual growth, but quite the contrary. Let’s suppose that the rod is com-
pressed by the force that considerably exceeds Euler force and then this force
gradually decreases.

The solutions of the previously discussed problems 59, 60, 64 lead to the
idea that the uniformly distributed contact load of intensity q arises along
the formed spiral line, i.e. at the middle part of the rod (Fig 347). At the
ends of this segment (point A) the concentrated force Y, probably arises as
in problems 59 and 64. Then it is necessary to draw the deflection curve from
the point A to the hinge support O. And this was found to be correct. But
as a result of attempts to derive the desired equations we find that one more
contact point, namely point B, must exist between points A and O. The
reaction at this point is Yz .

Let the point O be the coordinates’ origin. The y-axis is drawn parallel
to the force Yg, and the reaction of the hinged support is resolved along the
axes y and z into components Yy and Zp. The unknowns in this scheme are
forces Yo Y4, Yp, Zy, the distributed load g, lengths of the spans a and b, and
also the angles: ¢ , and the angle of the spiral line 3. The load P and the
clearance between rod and tube A are considered to be given.

The bending moment in the cross-section x > a is derived as the sum
of the moments produced by the forces with respect to the axis ¢ that is
perpendicular to the rod’s axial line (Fig. 347).

M = Yy(xcos pcosf+ Asinpsin )
—Yg(z— b)cospcos B —YpAsinpsin g (1)
—Ya(z—a)cos(p—py)cosf—YaAsin(p —p4)sin
+ Zoxsinpcosff— Z,Acos psinfi — PAcosp — M,
The last summand in the equation is the moment of load ¢, distributed

along the segment AC, and can be found by integration of the elementary
moment:

dM, = qds (x — ¢)cos (p — 1) cos i + q ds Asin (p — ) sin 5,

where the element of the helical line arc is ds = d{/ cos 3.
The expression for the moment can be written as follows:

q

M, =
7 cos B

[ 1= 0 cos (o= w)coss + Asin (o~ w)sin Bl de.
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As Ady = d{ tan 3, then

qA (¥ . .
M, [(z — {)cos (p — ) cos B+ Asin (¢ — ) sin 3] dip.

7 sinp o

Integrating by parts we obtain
M,y =qA{(z—a)sin(p — g 4) cot B+ AL —cos(p —¢4)] (1 - cot? §)} (2)
As the curvature of the helical line is constant, the bending moment M
defined by (1) must be constant along the length, too. But there are four
types of variables in its expression: zcosy, xsing, cose, sing. They

ought to be grouped, and the coefficients near each of them must be equated
to zero. Thus we arrive at the following four equations:

qA .

Yo—-Ys —Y, Y4+ =0

o) B A COSP 4 g 5 S1I P 4 5

gA 0
COS Py =

sin /3 A ’

Yasinpy — Zo +

Ygb+ Yaacosp 4 + YaAsing , tan § — Zp Atan 3

A
_C((])S,B [asmcpAcotﬁ—A(l—co‘GQ,@’) cos¢A] =0,

Yo—Ys + YA(% sing 4 cot 5 — cosyy)
L
sin 3

By solving the equations jointly we have

[%coscpA cot B+ (1 —cotQ,B) sin;pA] =0.

qA 1 a A
Yo = 3—1+—sm<pAcos<pAcotﬁ ,
a

sin3 sinp 4
qA a 1
B A
sinf3 b sinp 4
A (A
=2 (s ). .
sin \ a
A .
Zo = — sinp 4 cot 3.

sinf3 a

If these conditions are fulfilled the bending moment M (1) is independent
of the coordinate s along the helical line and is equal to

M = —qA%*(1— cot?3) — PAcos 3.

It’s value is related to the curvature of the helical line sin® 3/A by the
obvious expression

1
M = —EJj—sin’§.

Assuming (3 to be small, we obtain
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qA = Pg* — EJG*/A%. (4)

Let’s exclude ¢ in equations (3). Then we have

%_o_, S 1 [ A |

k2EJ =(1- kQAQ)SinsOA [(b 71)ﬂ+ —singpycospy |,

5 = v (-2 (5)
k2EJ  bsing, 2A2 )

Y4 32 A
K2EJ (1_ k2A2> (Z — Beot ‘PA> ’

Z, A B2\ .
WE] @ \U pzaz ) Sneas

k* = P/(EJ). (6)

Now we should only smoothly “draw” the helical line from point A
through point B to the support O.
Differential equations of the deflection curve at the segment OB are:

EJy, = =Py, + Yoz,
EJz = —Pz + Zyx .

Solving them, we obtain

y1 = Cy sinkx + Cocos kx + kQYEO‘Jx’
. Zo
z1 = Cysin kx + Cy cos kx + kQEJx .
The functions are the same but the boundary conditions are different:
at x=20: y1 =0, 21 =0,
at T=b: y1=4, 3y =0,21=0.

From these five conditions we can derive not only four constants but force
Yy, also. As a result we have

_, kx cos kb —sin kx  Zgb z sin kx 7
Y1 2 Kb cos kb —sin kb’ AT %Er \b " Sinkb )
Y, kcoskb

k2EJ ~ ° kbcoskb—sin kb’ ®)

Function z7 without changing is valid at section AB, and function y for
this section (now ys) is determined from the solution of the new equation

EJyy = —Pys+ Yoo — Yg(z—b),
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whence
Y
2 (z—0).
kQEJ ©K2EJ

Now function s, as y1 also, should be equal to A at the point = = b, and
its derivative must vanish. It may be rewritten as function y; but adding the
component corresponding to the force Yp:
kx cos kb — sin kx Ygs
kbcoskb —sinkb  k2EJ

= (5 sin kx + Cg cos kx +

Yo = (x—b)—%sink(m—b) . (9)

We only have to satisfy the deflection curve junction conditions at the
cross-section A. Hereat z = a :

yacospa +zisingy =A, yy=—fsing,, 23=LpFcospy,

and in addition we equate the relations (3) and (8) for Yg.
Eliminating by equations (3) the forces Z, and Yp after simple transfor-
mation we obtain four equations

kacos kb — sin ka
oo kb — kg S A + Bo(1— 50) [smk(a —b)—k(a—b)]
kb sin ka

xcotapA—!—(l—ﬁo) (Em—l)sin pa—1=0,

coskb— cos ka
kb(x)lsk:b— sinkb

ka
+ 8, (17 ﬁg)ﬁ [cosk (a —b) — 1]

( ; =0
X+ osinea =0,
kb oy [coska 1
ka (17 0) <Sink0/ kb>SIH¢AﬁOCOS¢A7 (10)
cos kb B 1
- (11— -1)— +— =0,
kbcos kb— sinkb ( /BO) (kb > sing,  ka CFPAT

where
— B/(kA). (11)

We have to find the four unknowns: ¢,, ka, kb, and 3, from these four
transcendental equations.

Only one simplification is possible: to evaluate tany, from the third
equation and exclude sinyp, and cosy ,. Nevertheless we must solve three
transcendental equations simultaneously. But at the same time there is one
favorable circumstance. Equations should be solved only once. They do not
include freely varying parameters. The prescribed force P and clearance A
enter into ka, kb, and 3, and their influence becomes clear after the system
is solved.

Numerical solution of the equations can be fulfilled by various methods,
but in all the cases it is necessary to know roughly the domain of unknowns.
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The guide we can use in the search is the approximate solution of the same
problem. It can be found from the minimum condition of the system’s poten-
tial energy:

1 1
ZE/EJy"Qda:—PE/ylgd:r.

Let’s assume that not only the middle part of the rod is the helical line,
but the segment AB also. The transition curve equation at the segment OB
can be written as:

1 T T
=A|—sin—/— +— .
Y <71' b b)
The first and the second derivatives of the function can be substituted in the
potential energy expression. For the helical line segment

y/:ﬁ, y”:—ﬂQ/A.

Integrating we obtain the functional U that has its minimum at values
kb=~ 2.29 and 3, = \/5/2 . Such initial approximation has become very useful
and sufficiently accurate. Solving numerically the system of equations (10)
we get

ak =4.8098, bk =2.5824, [(,=0.71146,

tangp, = 13.154, ¢4 = 1.4949 = 85.65°.

If we return to the expressions (5),(6), and (11) we obtain

[EJ EJ P A2
a=4.8098)/ =, b=25824 /=, d071146\/ =7
Y, —031170P\/PAQ Y —065626P\/PA2
o= EJ PO EJ’

Y4 = 0.075696 P \/PA2
A — U EJ,

PA? P2A
Zo =0.102 =0.24 .
o =0.10 37\/ T ¢ 0.24996 7

As it is seen from the above relations the magnitudes of the sought pa-
rameters do not depend upon the length of the rod. Naturally the forces
arising near one end of the rod do not depend upon the things happening at
the other end. The segment of full adjoining separates the end spans by an
insuperable obstacle.

However, the obtained solution validity limits depend upon the rod length.
If it is small or the force P is not great enough, then the segment of full
adjoining degenerates into the point and a = [/2. It means that the obtained
solution remains correct if

a = 4.8098 £J <

= (12

o |~
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or
P >937 P, .

If the load is smaller, then the problem must be solved again. Let’s discuss
the main peculiarities of this solution.

The scheme given in Fig. 347 is the same, but ¢ = [/2, so the axis
coinciding with the direction of the force Y, is the axis of skew symmetry for
the deflection curve. Hence the moment of the forces Y, , Yg, and Z, with
respect to this axis is equal to zero, reflecting the condition of equilibrium:

[YO —Yp <1 _2_;)} sinp 4 — Z,cosp, =0.

The force Y4 is also found from the equilibrium
Ya=2(,—Yg)cosps+2Z,sinp, .

At © =1/2 we have
yp = Acosp,, 2 =Asing,, yjcosp,+ 2isinp, =0. (13)

Now we need only to substitute the functions y; and z; and to transform the
obtained equations in order to “hide” the given parameters P and A into
the dimensionless parameters. It can be done only with the clearance A. As
regards the given force P, it is kept into the independent parameter

P2
EJ

It forces us further to solve the system of transcendental equations many
times for the specified values of k,.

Let’s introduce the nondimensional unknown by = b/1 and reduce all the
forces to the new dimensionless form:
Yol o Yl o Yal o Zol 0
—— =Y — =Y, —— =Y — =275
PA 9 pA P pAT A pAa O

Applying relations (13), we arrive at:

ko =

1 k
Eko cos kgbg — sin EO 1 1 1

Yo |—sin [ =kg — kobg ) —= + b
kob() CcOos kobo — sin kobo + B [ko St (2 0 0 0) 2 + 0:|

= cos g, (19
1 sin (kg /2 .
78 (% —pinlho/2)) ; 1
o (2 % sin kobo > SHLPA (15)

ko
coskobg — cos—

1
F=k Y |cosky (= —bo ) —1
L= R0 cos kobg —sin kgbg C S PA T B[COS °<2 0) ](16)
ko /2
COS( 0/ ))SIH@AO,

Xcospys+ Z5 | 1— kobg Sin kob
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F=[Y5— Y5 (1—2by)|sinpy — Zjcosp, =03 (17)

ko CcOs k‘o bo

Yg = (18)

kobo cos koby — sin koby
Y =(Y5—Yg)cosp, + Zgsing, . (19)

Here Y7 means half of the total force Y .

The procedure of numerical solution is obvious enough. We specify the
value of kg. It must be slightly less than 9.6 as seen from (12). Let’s accept
ko = 9.5. The expected values of the unknowns by and ¢, will be close to
0.25 and 1.43 respectively. This follows from the junction condition of the
sought solution with that obtained above.

Then the calculations can proceed. By using Eqgs. (14), (15), and (18) we
calculate Y3, Y§ and Zg, and then the left parts F1 and F> of the equations
(16) and (17). Naturally, they do not vanish under accepted values of by and
¢ 4 - That is why the calculation of F; and F} is carried out two times more.
The first one for the shifted by and the second one for the shifted ¢ ,. When
these three values of F} and three values of Fs in the vicinity of the unknown
solution are determined the following linear approximation can be written:

Fy = Ay1bp + Appy — B =0,
Fy = Ag1bp + Aoy — By =0,

that is, we determine the coefficients of the linear approximation A;; and
B; of two functions F; and F5. These two relations can be considered as
two equations in two unknowns, and the improved values of by and ¢4 can
be determined from the system. Additionally, the equations (10) have been
solved by the same method but with three unknowns.

If the initial approximation was chosen successfully, as is the case, and as
we have the neighbour solution then the procedure quickly converges and by
and ¢, are calculated with the prescribed accuracy. Further Y¢ is calculated
by (19) and we make a step towards ko decreasing, This process continues
until the value of Y§ changes its sign from plus to minus. It means that the
rod looses its contact at the middle point, and we need to derive one more
new system of equations for determining conditions of contact at the points
B. But before doing this let’s quote the results of our calculations. The force
Y7 becomes equal to zero under kg = 8.807. It means that when

\/P—lQ<8807 P < T7859FP,
77 . or . s

the rod at the middle point A has no contact with the tube.

Let’s analyze now the solution for the new stage of loading, or more
correctly for unloading, because our analysis proceeds towards the load P
decreasing. At this new stage the contact of the rod with the tube takes
place at point B, and at the middle point A the contact is absent.
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The Egs. (16), (17), and (18) remain unchanged, in relation (19) the force
Y2 is supposed to be equal to zero, and Eqs. (14) and (15) are replaced with
the new equation, expressing the fact that point A of the rod axis permanently
lies at the former force Y action line, i.e. at the normal to the point of the
former contact:

yrsing , = 21 cosp, (x=1/2).
As a result we obtain
o kg cos kobg o o___bosin2¢,
YO - . ) ZO = YO .2 )
kobo cos kgbg — sin kqbg 1 —2bg sin” p 4

YR = Y8 + 28 tan g 4,

k
Coskobo—cos—O 1
=Sk Yg leosko (= — b ) — 1
! 0 %eabo cos kobo — sin koby | B[COS 0(2 0) }

k
X c0s @ 4 sin kobg + Z5 (sink‘obo — kobg cos—20> sinpy =0,

ko . ko
— cos kgbg — sin— 1 1 1
FQZ 2 N 2 +Y§ —Sinko -—bo —-+b0
L kobo COs kobo — sl k‘obo ko 2 2 J

1 k
X sin ¢ 4 sinkobg — Zg (—2 sin kybg bosin?0> cosp, =0.

The equations’ solution shows, that while the load P decreases to the
value 4P,, the two contact points B merge in one, lying at the middle of the
span.

Let’s analyze the result considering the process of the rod’s natural load-
ing. The beginning is obvious. Until P < P, the rod keeps its straight form.
Under P = P, the rod bends and contacts the tube at the only one point
disposed in the middle of the rod span.

Under P = 4P, the deflection curve obtains a spatial form. The rod buck-
les sideways, and the contact point splits into two which move away from each
other as force increases. The rod’s middle point leaves the channel surface, at
first moves off it, and later approaches it again, and once more contacts the
tube under the load P = 7.859P,. Further the three-point contact scheme is
kept until P = 9.376PF, , and then the helical line with the segment of full
adjacency to the tube’s surface near the middle point of contact is initiated.

Now it is not very difficult to determine the bending stresses in the rod.
The rod has maximal curvature at the helical segment. Hence

T

—E—=F
=y, 24

where d is the diameter of the rod’s cross-section.
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. . A? PA

The angle 3 is known. It is equal to 0.71146 \/ o7 Hence o, = 5.16 ?

127. The points of inflexion of the rod deflection curve (Fig. 348) sep-

arate it into sections having rigidities EJ;and EJs. The length of segment

l1 is derived from the condition of critical force equality for both segments.
Obviously,

’FE ’E
PCT - - 2J1 - u J22 s (1)
413 (1—20)

whence
oL Yk
2VEk+1"
where
k= EJ;
EJ,

/ EJ,

[ EJ,

7

Fig. 348 Fig. 349
If £ = 1 then, as it should be expected, [ = [/4. For k = 0 we have [; = 0,
and for k = oo we obtain /1 = [/2. The bent rod deflection curve modes for
these particular cases are shown in Fig. 349. The critical force is derived from
expression (1) by eliminating /1:

—_ 2
1+ Vk
LD

(2)
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If the rod under buckling bulges in the opposite direction, i.e. not right-
ward but to the left, then we have to interchange the rigidities EJiand EJ,
in the obtained expressions. The magnitude of [; changes also, but the critical
force remains the same. Actually, if the rod bulges to the left the interchange
of EJ; on EJy gives

_m’EJy (1 + \/ﬂ) 2

R £ 1/k
which leads to expression (2).

A subtlety is hidden in the problem. If the rod really has opening slots in
its construction, as it is shown in the problem set as a possible variant, then
an ordinary stability problem can become a special one. While opening of the
slots the central axis of the cross-section moves stepwise to a new position, and
at the point of the supposed inflection the small but finite jump of bending
moment arises under arbitrarily small rod flexure. This special question is
analyzed further by easier examples, such as problem 141 and some others.

128. It is seen from Fig. 350 that the position of weight does not change if
the rod deflects from vertical. Force P does not produce work. The stability
of the straight equilibrium state is maintained under any P.

129. Here the rod naturally looses its stability under P = 72E.J/(41?),
differently to the previous case.

Until the rope has not lied on the wall of the tube, i.e. until the deflection
f has not exceeded A, the relation between P and f is expressed by the
straight-line segment (Fig 352)

s
:T:const.
¥ f
f P
P,
4 /'/
/ 3 //
2 ,/
1
P 0 1 2 3 4 5 f/A
Fig. 350 Fig. 351 Fig. 352

The bending deflection is unknown. Deflections from the straight line
can be found only by the theory considering large displacements. A curious
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peculiarity of the problem consists in the fact that under growing deflections
further displacement f is determined on the base of ordinary linear theory.
After the section of the rope has lied on the bent wall of the tube we have
two segments: OA and AB (Fig. 351).
The bending moment at the segment OA is equal to PA, and the tube
bends by the second-order curve

PA
y=——2z".
2EJ
The deflection of point A will be
PA
=—(—-a)
fi 2EJ( a)

If the rod at the segment AB does not bend, then the displacement of
point B would be as follows:
PA

(l—a)2+ym=l—a = 3%EJ )2+E—J(l—a)a.

But the second segment is bent exactly as much as necessary for point B to
deflect from the tangent AB by A. Hence,

PA , PA
= 2EJ(l—a) + EJ(l—a)a—i—A,
or
PA
f:ﬁ(127a2)+A.

The magnitude of a is the length of the rod clamped by one end, which
buckles under force P, i.e.

B w2EJ
 4a?
Hence,
o TEJ
a =
4P
and then

or
f w2 /P
—=—|—-1 1,
A 8 \ P, *
w2 EJ
where P, = R The deflection f dependence upon force P is shown in

Fig. 352.
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130. In the second case critical force will be four times greater than in the
first one. It is enough to consider the bent column for both cases (Fig. 353)
to ascertain this result.

For the first case

w2E.J
cr T 4l2

>
>

‘
<

y
777 -

L

Fig. 353

The force direction in the second case crosses the lower beam’s end (follows
it) during bending. As a result, the bending moment at the clamped end is
permanently equal to zero. Therefore, the second case of column loading has
no difference with the case of the rod hinged at both ends (Fig. 353). That
is the reason why here P., = m2EJ/I?.

P
of

7

Fig. 354

131. Let’s decompose force P into vertical and horizontal components

(Fig. 354) :
P,=P, P,=P Z
a
and write the equation of the beam deflection curve as:

EJy' = —Py+pPLa.
a
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P
Let’s denote E_J = 2. Then the equation and its solution will be

y//+a2:a2_$’
a

y:Asina:v+Bcosa:x+iz.
a

In order to derive A, B and f we have the next boundary conditions
at z=0 y=0, at =1 y=f, 3 =0,
whence
B =0, Asinal+£l:f, AacosalJrg =0.

The critical value of force P is found from the following transcendental
equation:

tan al = ol (I—L;). (1)
If @ = 0o (the first case of the previous problem),
2
ol=Z p,-TE]
2 412
If @ =1 (the second case of the previous problem),
m2EJ
al = T, cr =
12

For a = 0 the force action line permanently crosses the initial vertical at
point & = 0. It is possible only for the case when the rod’s upper end does
not move (Fig. 355). Thus

tanal =ad, aol=449, P, = 20.19%.

[P

[
|

Fig. 355 Fig. 356
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132. After analysis of the previous two problems the correct solution of
the given problem does not cause any difficulties.

The left rod of length b is under action of rotating compressive force
(Fig. 356), the action line of which permanently passes through point A. That
is the reason why the critical force for the left rod will not be 72 E.J/(4b%) as
it seems at first glance. It must be found from the transcendental equation

solution of the previous problem if we replace in it [ with b, and a with
1 luti f th i blem if 1 in it [ with b d ith
—(l—=1), i.e. tanab = al, where a = /P/(EJ).

The critical force for the right rod is

m2EJ
(1-1b)°

The stability safety factor of the rods will be the same if critical forces
are equal. Therefore

a—\/&— T tan b B ml
T VEJ 1-b’ I—b 1—b"

cr

From this relation we derive the sought ratio b/l :

b/l s b
¢ - 2 = 0301
Mo T 1oe 1080

133. It is not necessary to consider the contact pressure between rod and
rope for critical force determination.

. f

Nl

Nlg

=
2
No

T ¥
Fig. 357

We cut the part of the rod (Fig. 357) and determine the bending moment

P K\ Ph
M==(f-yt+=)_=2<
2<f y+2> 2 2
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where h/2 is half of the rod thickness. Hence

"

EJy =§(f— y)-

Thus we have the ordinary case of a clamped rod loaded by force P/2:
P B m2EJ
2/, A2

134. Let’s consider the equilibrium condition for the ring’s bent element

of length ds (Fig. 358).

Fig. 358

Bending moment M, shear force (), and normal force arise in the ring’s
cross-section. Normal force is presented as a sum of undercritical force g R and
its small increment N. One or another peculiarity of external load ¢ behavior
is taken into consideration by introduction of normal ¢, and tangential g
components. In detail, if a ring is loaded by forces of gas or liquid pressure:
qn = q;+ = 0. The new local curvature radius of the element is denoted as R

1 1
— == 1
Rl R ( )
where s is the variation of the ring arc curvature.

The element’s equilibrium equations are:

dM  dN Q dQQ N +gqR

=7 N — =0 n .
Q 5 ds +qt+R1 gt an T )

Eliminating 1/R; and taking into consideration that s, @ and N are
small quantities, we hold only their first orders. Then

_aM 4N Q _ Q N _
- dS’ ds +qt+}_2*07 qR}f+qn+ ds R*O

As M = EJs, then excluding further N and @, we obtain

0.
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EJ—+ |qR+ — +— +=¢=0. (2)

d3s EJ\ dx  dg, 1
ds3 R2 ) ds ds R

Let’s assume that the ring is loaded by the pressure, following the surface
normal. Then, as mentioned before, ¢, = ¢; = 0 and

o (i (S
a  \"" TR ) as T

If we assume that s = Asin %, we arrive at
Er 4 (qr+ZL) 2 g
rO\TTR )R
whence
n? — EJ
R2
The quantity g., has the least nonzero value when n = 2. As a result we
obtain

Ger =

3EJ
Ger = R3 .

Now let’s discuss the load ¢ application in a different way. Assume that
the ring is loaded by radial forces created by the great amount of rubber
threads collected in a bundle at the ring center (Fig. 125b). The load ¢ in
this case is directed to the center of the ring (follows it). Under the arc’s ds
rotation the load tangent component g; arises

_
qt = ¢ ds )
where w is radial displacement of the ring points.

If threads are compliant enough or if each thread is pulled independently,
then radial displacement w causes no change in the normal component of
external forces and, hence, ¢, = 0.

The variation of curvature s is related to w as follows:

d*w w

7T 42 +E’

and equation (2) takes the form

d (d*w  w EJ\ d (d*w w q dw
B (&2, 2 - A )
st3(d82+R2>+(qR+ R2>ds<d32+R2>+ 0.(3)

ns
Assuming w = Asin R we get

gn2—1)2EJ

Ger = (n2 — 2)R3




4. Stability Part II. Solutions 259

Ifn=2
_9EJ
- 2R3

i.e. the critical load turns out to be 1.5 times greater than for the case of
hydrostatic loading.

If threads having some stiffness are pulled by one common force (weight),
then the redistribution of loads occurs under ring bending. In the regions
where threads are additionally tensed the displacement w is positive, and are
shortened in those regions where w is negative. When the normal component
gn, varies, then we obtain the additional component ¢, = Kw in equation (3),
where K is the stiffness coefficient of threads. As a result

4
9 2 KR
- R3 n? —2

The increasing of thread stiffness K leads to arise of critical load; this is
obvious. The occurring additional forces are directed in such a way, that they
restore the ring’s circular form. The lowest critical value of g, is reached, in

general, not when n = 2, but under some other integer-valued n, depending
upon the magnitude of K.

der

Ger

135. Let’s consider the system in the deflected position (Fig. 359)

VIPIIIIIFIIIIIIIIIIY

POl 7877777777777

]

Fig. 359

The length of the connecting rods a is more than the length of con-rod b.
That’s why the up-directed component of force arises. It is equal to

_p(L_ L
hop( L)

The deflection f under action of this force will be
_ne
- 3EJ’

Excluding P; we find the magnitude of the critical force:

3E
P = 2
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136. The proposed problem has the same topic as the previous one. Ini-
tially the moments are mutually balanced, and the rod is not stressed. How-
ever, the moments behave in different ways under system deflection. Under
bending in plane zz (Fig. 360) the plane of the moment M5 rotates in conjunc-
tion with the end cross-section. The plane of moment AM; does not change.
Under bending in plane xy the plane of the moment M, does not change,
but the plane of action of moment M rotates.

X

Fig. 360

For simplicity let’s accept that the rod bending rigidities in two planes are
the same and lengths of ropes by which loads P are transferred are sufficiently
great. It allows to consider that rotation of moment A/ in one plane and M,
in another plane completely coincides with the rotation of the end section.
Let’s denote angles of rotation of the cross-section relative to axis y and z
correspondingly by @, and ¢,. Then the moments in the current cross-section
A with respect to the moving coordinates y; and yo will be

My, = Mi(p, —y') + Moy,

M., = M2+ My(p, — 2').
As a result we obtain two equations:

EJyz" =M (¢, —y') + M2y,

EJ.y" =M 2 + My (¢, —2'). (1)
As J, =J, = J, and M; = My, then

EJ:"=Myp,, EJy' = Me,,
Whence

M z? M z?
r=77 <<Pz7 +A1$+Bl>, Y= (‘Py?+A2x+BQ)'
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Atz=0, 2=02 =0y =0y =0, therefore 41 = A =0; B;=
By=0.Atz=1, y'=¢, andz' =¢,; then

ML Ml
Py = Fg P PaT g P

It is obvious that ¢, and ¢, are not equal to zero only in the case, if

= =11,
EJ

that gives the magnitude of the critical moment.

137. Consider equation (1) of the previous problem. Taking M; = M,
and My = 0 we arrive at

EJ,z" =M (¢, —y)
EJ.y' = M2.
It follows that

y=Asinazr +bcosa+ ¢,z + C
EJ

z = T;(Aa cosax — Basinaz + ¢, + D),
where
9 M?
o =T,
EJ,EJ,

At =0 we have y = 2 = 0, and also ¢y’ = 2’ = 0. Then
B+C=0, Aa+g,=0,
Aot ¢, +D =0, Ba’=0.
from which
B=C=D=0.

At x =l angle y’ = ¢,. This yields Acosal = 0. Hence, the critical state
takes place when

T Ml Ly

al==—or =—=.
2 VEJGEJ, 2

The interchange of J, and J, does not change the value of the critical
moment. Therefore the cases of loading in Fig. 128a and 128b are equivalent.

138. The differential equation of the rod deflection curve (Fig. 361) will
be

EJy'=P(f+Re—y),
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whence
y= Asinax+ Bcecosax+ f+ Ry,
where, as usual, a? = —.

Atz=0, y=0 andy =0.
Atz=1 y=f andy = ¢. Thisyields

B+f+Rp=0, A=0,
Asinal + Beosal+ R p =0,

Aacosal — Basinal = p.

e

P
a4 <
'y /

< v 0 7 2 3 4 5 67 & 9 IR
Fig. 361 Fig. 362

If we construct the determinant for the system of three equations in un-
knowns B, f and ¢ and equate this to zero we arrive at the transcendental
equation

l
— = ol tanal.
R

The dependence of critical force upon (/R is shown in Fig. 362.
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139. The differential equation of the rod deflection curve (Fig. 363) will
be as follows

EJy"=P(f —y)+ M. (1)

The force P is obviously equal to the weight of the liquid P = yrR%h,
where 7 is specific weight of liquid.

Moment M is determined by summation of moments of elementary forces
dP (Fig. 364) with respect to the axis z. The angle ¢ of tank rotation is
assumed to be small. After integrating we obtain

2
M = % (2n% + R?) . 2)

The solution of equation (1) is

2 2
e r)

y=Asinaxr+ Bcecosax+ f + m p=

At z=0, y=0 andy =0.
Atz=1, y=f andy =¢
The conditions yield

g2h2+RQ)
B+ f+ =0 A=0,

an T
2h% + R?
Asinal—i—Bcosal—ﬁ—iTz@ =0,

Aacosal — Basinal = ¢.

From the last two equations we get

altan ol 2h_2 R? _1
I ZIRNTI A
il

Substituting the value P, we obtain

N /M’\/E
Y“NVNESS TV BTV

Then the sought value h /[ is determined from the transcendental equation

tan a\/-b 2

a 1 h

—— (2= ) =1 3
l

and depends on two parameters

_[ymR2B R
a—\/ N and b—l.
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The level of liquid under which the rod buckles can be found for any
specific case and depends upon the parameters.

If the contents of the tank did not possess liquidity property, for example
if the tank had been filled with sand, the moment M would be smaller than
(2), namely:

h2
M = ’y’/TRQ?;p.

This would cause a considerable growth of critical load. The greater the
diameter of the tank the greater the difference in critical forces will be as
more as . The contents mobility adds to the fact that for the scheme shown
in Fig. 365 stability loss is also possible. The critical level of filling h/l is
determined from the same transcendental equation (3) by replacing circular
tangent (tan) with hyperbolic tangent (tanh).

140. As the bending rigidity in plane xz is large we can consider that
in the undercritical state the rod remains straight. Under transition to the
adjacent state of equilibrium, bending in plane zy is accompanied by torsion
of the rod.

EJ

o S

- R - R
Fig. 365 Fig. 366

T
i

Let’s represent the system given in the problem set in a more general view
(Fig. 366) and write the main relations:

EJy" =M,; GJy@ =M,. (1)

The positive direction of angle ¢ is shown in Fig. 366.

The torsional rigidity G'J; for the narrow strip, as known, is equal to
Gbh3/3. But in the given case, because the rod is compressed, the torsional
rigidity decreases, while the compressive force increases (see problem 28).
Therefore in the given case

GJ, = Gbh® /3 — Pb*/12. (2)
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If we expand the right sides of equations (1), we arrive at the following
simple system of differential equations:
EJy"+Py=Py +Palp — ),
GJ, ¢ = Pavy/, (3)
where y; and ¢, are displacement and angle of rotation of the rod’s end, i.e.

at = 1.
Eliminating ¢ from the first equation, we obtain

EJy"'+(P+P2a2>y':O y'"—i—kzy':O
GJt ) )
where
1 P22
B =—=(P+—]. 4
EJ < Gy, ) )
Thus,

y= Asinkx + Bcoskz+ C.

For x = 0 the displacement y and its derivative ¢ vanish. Hence,

Pa
=C(1—-coskz), p=C——(1—coskx).
y=C( ), p=C7 T ( )
Substituting y and ¢ in equation (3) we prove that the first of them is
satisfied either if C = 0 either under the condition coskl = 0, from which
kl = m/2; so from condition (4) we get

l2’7 P2a? -‘ 72

— |y ——— ==

2 T
3 12

If a =0, then P, = 72 E.J/(41%), as expected.
Let’s denote:

_ PAl 8 r , a

TEl T TR e T
Here X is understood as the measure of critical force decrease in comparison
with the case of rod central loading.
Now we arrive at
1 1
X - )+ X(A+—) - A=

(0" = 5)+ X(A+75) = A=0, Q

or

X:m {\/(A%) +4a2A~%} .
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In the special case of a? = 1/12, the dimensionless critical force is deter-
mined from equation (5) as

12A
X=—"
124 +1

141. The given problem touches fundamentally new questions of stability
and it can not be solved by ordinary means.

Actually, reducing the compressive forces, shown in Fig. 132c, to the axis
of the rod, we obtain the following scheme of loading (Fig. 367).

The rod is compressed by forces P and simultaneously is bent by moments
M = Pe acting in the direction opposite to the rotation of the rod ends. The
equation of the deflection curve will be

EJy" = — Py + Pe,
or
P
" 2. 2 2
y'+ 'y =a’e, (a EJ),
whence

y= Asinax + Bcosazx+ e,

at x = 0 deflection y = 0, and for x = 2I, too; hence,

A:ecos.2alfl, N
sin2al
cos2al —1 .
Yy =e|—————sinaxr —cosax +1].
sin 2al

Fig. 367
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Thus we determine certain magnitudes of deflections that the rod would
have if from the very beginning of loading by the moments Pe a gradual
increase with growth of load P would have been applied. So the above calcu-
lations do not catch the critical transfer from the rod’s straight equilibrium
to a curvilinear state, and we obtain in pure form the case of longitudinal-
transverse bending.

Let’s consider main postulates of stability analysis. An elastic system is
called stable if for any infinitely small (emphasize: infinitely small) deviation
from the equilibrium state the system itself returns to its initial state.

Such approach, however, does not answer the question, whether the sys-
tem would return to its initial state if we deflected it “slightly stronger”, i.e.
apply to the system a small, but finite deflection (not infinitely small) that
is greater than some value specified in advance (even if it is a very small
value). May it happen that a system under any infinitely small deflection will
return to its initial state, and under some small but greater than prescribed
magnitude of deflection will not return?

Actually, it may. For example, a ball laying on the top of a sphere in
a small hollow (Fig. 368) can serve as a mechanical analogue of the above
mentioned. If a small deflection is applied to the ball, it will return to its
initial state but if we impart sufficiently great deflection, it will not return
to its initial state. If the hollow was absent the state of equilibrium would
simply be unstable.

Fig. 368

In such a way we come to the new stability criterion, based on imparting
on the system not an infinitely small disturbance, but small ones that are
greater than the value prescribed before. Such an evaluation of stability is
called the stability criterion “in large quantities”. The ordinary criterion of
stability, based on imparting to a system an infinitely small displacement, is
called a criterion “in small quantities”.

This terminology is applied to the stability of elastic systems from the
general theory of motion stability and now has become generally accepted.

The rod in the considered example is stable “in small quantities”, but
not always stable “in large quantities”. Actually, if we impart a very small
deflection from the straight equilibrium state to the rod then the restoring
moment Pe will be greater than the deflecting moment Py (as y can be
infinitely small), and after removal of reasons causing the small deflection,
the rod will return to its straight equilibrium state. It will take place under
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any value of P not exceeding 47%E.J/ (2l2), and the rod loses its stability “in
small quantities” by the deflection mode, shown in Fig. 132b.

External disturbances (distortion of rod, eccentricity of force application,
random impacts) under real conditions always have finite value, and depend-
ing on these conditions the rod transfers to a new equilibrium state under
action of bigger or smaller force. In the theory of motion stability such a
phenomenon is called bifurcation point. Therefore the conception of stability
and instability “in large quantities” is inevitably connected with absence or
existence of appropriate external excitations.

Stability in large quantities is the extension of the classic scheme that
brings it closer to our intuitive-everyday understanding of stability. It is a
complex of system properties and disturbances, acting on the system. There-
fore the analysis of possible equilibrium states is only part of the stability
investigation and does not solve the problem completely. This will be seen
by the example of some of the following problem solutions.

Let’s return to the given scheme of the compressed column and derive the
equations of the deflection curve under large displacements. As these equa-
tions are required in further analysis we shall derive them in a more general
form than necessary for solution of the considered problem. The derivation
is taken from [18].

X s
o)

X 4 r

Y A
L P X,
a
Y y
Fig. 369

The segment of the rod strongly bent by force P is shown in Fig. 369. Let’s
introduce two coordinate systems: the system xy oriented by the tangent and
normal to the deflection curve at the rod’s clamped end, and the system z’y’
oriented by force P.

Let’s denote the angle between the direction of force and axis = as § (in
our case § = 0); and the current angle between the tangent to the arc of the
deflection curve and axis =’ as (.

The curvature of the beam in any arbitrary point will be obviously ex-
pressed through the angle ¢ as follows:
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1_ 4

p ds’

where ds is the element of the beam arc. The bending moment in point A is
equal to

M, =Py, —v),

where gy} is the coordinate of point L. Now it is obvious that

@ _P o
s~ EJ LY
Differentiating this equation by s we arrive at:
¢ _ P dy
ds?>  EJ ds’
but dy’/ds = sin(, therefore
d*¢ in ¢
— = ———sin(.
ds? EJ
Let’s denote
P 3
—_— == 1
J 1 (1)
Then
d*¢
2 2
l FE R sin ¢,
or

g Y
2 =) 932 > =
ld(ds>_ 20 s1n2cos2ds.

d
Multiplying two parts of the equality by d_C after integrating we get:
s

2
<z%> =443 (cl — siIl?—g) ) (2)

Let’s denote the constant Cy by k* and sin ((/2) by ksin, i.e.
sin—g = ksin. (3)

Then equation (2) will arrive at

@ _
lds =20k cos . (4)

But from (3)
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therefore
d / d d
l—¢:,3 1—k2sin® v, [3—8:—1’/;.
ds ! \/1 — k2sin? ¢

By integration of the relation we obtain
S
S=FW)-F ). ©

Here by F(¢) is denoted the elliptical integral of the first order

v d
0 /1— k2sin%¢
Values of the integral are given by tables in handbooks depending on £ and

).

Now let’s derive the equation of deflection curve z’(s) and y’(s):
dx’ =cos(ds, dy =sin(ds,

or

do' = (1 —2sin2£ ds, dy ZQSiIISCOSQdS.
2 2 2

If we substitute here sin ((/2) = ksin ¢, we arrive at

dz’ 2 ! 2
Tz :E\/l—kQSiande—%, dTy zgksinwdw.

Let’s integrate the equations from zero to s :

= =< [B(W) - E@wy)] - 7,
¥y

@I @

; k[cosipy — costp], (6)

where E(1) denotes the elliptical integral of the second order

y —_—
E(d}):/ \/17k251n2¢d¢.
0

This function is also given by tables in handbooks.
Transformation to the coordinate system xy gives

! !
:I—lcosﬁﬁ—%siné,
! !
:y—lcosé—%siné. (7

Now let’s consider the boundary conditions for the rod. At s = [ we have:

~lke ~|8

M, = Pecos(;.

Hence




4. Stability Part II. Solutions 271

d¢  Pecos(p

ds EJ
or according to (1)

¢

El:fﬁQ%cosgL.

On the basis of the relation (4) we have

2k cos g, :fﬂ?cosg“,:,

but as

cos(; =1—2sin ,

281
2
then from (3) we obtain
cos (; =1 —2k*sin® ¥ .
Thus we have the first boundary condition in the following final form:

at s=1 2kcosy :—ﬁ§(1—2k20052wL). (8)

The second boundary condition is:
¢ =0at s=0, orin accordance with (3) vy = 0.
The relation (5) for s = [ takes the form

F(p)=8. (9)
From (6) we find

rp 2
— =—+* =-=F —1.
£ =Tk =SB
The mutual displacement of rod ends A will be
A =20—-2z],
A

1
7= 4 [1 — EE(’L/}L):| .
Maximal deflection is equal to

21
fzy'LZEk(l—coswL). (10)

Now let’s derive the relation between force P and maximal deflection f
for some prescribed ratio e/(2{). The calculation sequence will be as follows.
Divide equation (8) by (9) term by term:

cosp e

kaL) =3 (1 —2k%sin%4;). (11)
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For given e /(2l) we specify k, and then in accordance with tables we find
¥ in such a way that equation (11) will be satisfied. Then from (9) we find
3, and then

P P(21%) 457

P,  mEJ] @
From equation (10) we find f/(2l). Thus we get a point of the relation

Pr (i)
r, “\2)

Let’s take, for example, e/(2]) = 0.02 and compose Table 5, specifying
k = sin 5°%,sin 10°, ...

Table 5. Numerical results
k v, B P/P. f/(2])
0.08716 118° 2.06 1.72 0.0620
0.1736 101°  1.778 1.28 0.118
0.259 97° 1.725 1.21 0.168
0.342 94° 1.694 1.156 0.216
0.707 90° 1.854 1.39 0.381

In accordance with the table we draw the curve shown in Fig. 370. Two
additional curves are also drawn in the figure. The first corresponds to the
case e = 0; the second one starting at the point P/P, = 4 corresponds to the
rod bending by the mode shown in Fig. 132b.

P
P, P
-
pae -
5 =002
3 1
A
2/ E
114 N [a | B
1 e
5
01 02 03 04 05 ¢
2/ P
Fig. 370 Fig. 371

Let’s discuss the obtained result. The curve e/(2]) = 0.02 decreases at
small deflections and then grows starting from the point P/P. = 1.14. At
point B it crosses the curve e/(2!) = 0._This point is common for all curves
independently of e/(21). Here k = 1/v/2 and from equation (11) it follows
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that for any e/(20) we have cost; = 0. This means that the moment at the
rod end vanishes and the rotation angle at the end is 90° (Fig. 371).

The curve e/(2) = 0.02 does not intersect the coordinate axes. In its left
part it asymptotically converges to a straight line f/2] = 0.04. Therefore the
column is always stable in small quantities if the buckling only in the mode
shown in Fig. 132¢ is considered. But under the force P = 472EJ/(20?) at
any e/(2l) the rod loses its stability in the mode shown in Fig. 132b.

Let’s now suppose that for e/(2]) = 0.02 the rod is loaded, for example,
by the force

2m2E.J (P )
P= , = =2).
(21)2 P.

Under these conditions the rod keeps its straight form. Let’s try to deviate
it from the vertical line specifying a certain curvature of its axis. If this
deviation is small then the rod itself will return to its initial state. If the
deviation is sufficiently large (greater than the value A/(2l), Fig. 370) the
rod will assume a new curvilinear equilibrium state, corresponding to point
E (Fig. 370).

Depending on the value of the imparted deviation the system may return
to its initial position, or may not. But it will occur under magnitude of
force P which is greater than a certain value. In the case of ¢/(2() = 0.02 it
takes place under P > 1.14P, (point A Fig. 370) and P < 4P., where the
stability loss happens independently of the imparted deviation magnitude.
Thus we arrive at a new concept of a possible critical load interval, in which
the transfer to a new equilibrium state is possible: 1.14P, < P < 4P,.

The column buckling will happen at the specified interval earlier or later
depending on the precision of rod manufacturing and on the fact how strictly
the load P obeys the condition of its central application. But somehow, the
critical loads in such systems are determined in the indicated interval as
probable ones.

For P > 4P, the transfer to a new equilibrium state is inevitable.

5 INE A

5 INP | Psind

P cosb (B)
Fig. 372

142. While solving the problem it is necessary to consider separately the
equilibrium configuration (A) (Fig. 372) under which the end of the beam
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remains pressed to the plane. The transfer from the straight configuration
to this equilibrium state will occur, as is well known, under the longitudinal
force value

20.2EJ

2 -

Now let’s consider the equilibrium state of type (B) (Fig. 372). It is clear
that transfer to such an equilibrium state can not be realized by small (in-
finitely small) deviation of the system from its initial state. Actually, if we
want the beam do not return to its initial straight state and used the con-
figuration of type (B) then we would need to impart to the beam’s end the
deflection which is great enough for the moment caused by force P cos  and
leading the beam away from its initial state which would be greater than the
restoring moment produced by the force Psiné. In other words, we should
impart a displacement greater than some prescribed value. The system itself
after that will not return to its initial state.

Now let’s consider the conditions under which the equilibrium configura-
tions of type (B) are possible. In our case the deflection curve can exist only
in such a form when all points of the bent beam are above the horizontal
plane. Two cases are possible here: the whole beam is bent (B;) (Fig. 373a)
and only a part of the beam is bent (By) (Fig. 373b).

P..cosbd =

Yy
b)
Fig. 373

Consider the first case (Fig. 373a). At the beam’s end, i.e. at s = [ the
curvature vanishes (d¢/ds = 0). Therefore from relation (4) of the previous
problem it follows that ¢y, = /2. At s = 0 we have ( = —§. Using the
relation (3) of the previous problem we obtain

—sing = ksinyy , (1)

and from (1) and (5) of problem 141

ﬁ2=];—lj [F(%)—Fwo)]z- 2)
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Coordinates of beam ends in the system z'y’ according to (6) of problem 141
are

EII‘:QE(%)—EWO)_1

) e

E’L: 2k cos ¥ . 3)
LR (5)-Fw)

The horizontal displacement of the point of force application is derived
from the first relation (7) of problem 141:
/ /
A: — L coss — Losing. (4)
l l l
Now we can draw the P{?>/(EJ) dependence on )/ for equilibrium modes
of type (B1) shown in Fig. 373a for some values of § (10°,20°, 30°). Specifying
values of k we determine ¢, from (1). From relation (2) applying the tables
of elliptical integrals we find PI?/(EJ), and from (3) and (4) the magnitude
of A/L.

P
EJ

20.2 + —

/" B,

10
\ \\"(81)
AN
I, NI 5300
o ot
5 TS
d=1p0
n2 \ 10 9—;'
4_ 6=00 'Dmlnl2
| = A
01 02 03 04 05 06 /
Fig. 374

Three curves are shown in Fig. 374. In plotting the curve we take into
account that for equilibrium mode of type (B;y) (Fig. 373a) the action line
of the force P crosses the y axis above the coordinate origin and ¢, remains
greater than —m/2. The dashed line in Fig. 374 is the upper boundary for
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these curves. For greater values of PI?/(EJ) the sought relation should be
determined corresponding to the equilibrium mode of type (B2) (Fig. 373b).
In this case g = —7/2 at point O (Fig. 373) and instead of (1) we have

6
k= sin= . v
sin g (1)
Instead of (2) we obtain
PI? 2 s 2
— 1 _ -\ _ ’
EJ 2 [F (2) F(%)} ' @)

Instead of (3) and (4) we get

o1 E(3)-Ew)

L :2_2—71 (3>)
I 1 N ’

F ()~ Fwo)
w_
L

7

él:l—il‘icosé. (4"
[l [ I

Thus, here we find k from (1’). For some arbitrary PI?/(EJ) from (2’)
we determine [1/l, and from (3’) and (4’) we find A\/l. The results of the
calculations are shown by the curves (Fig. 374) drawn above the dashed line.

Let’s discuss the obtained results. If § = 0 then buckling by Euler exists
for

P2 72
— = — = 246.
EJ 4 6

For § # 0 under PI?/(EJ) < 20.2/cosé the instability occurs only “in
large”. The deflection magnitude that is necessarily imparted in order to
transfer the beam into a new equilibrium state, decreases with increasing of
load P. At the same time beam buckling (depending on ¢) can not occur
under forces smaller than a particular value. Thus for

Prinl?

§=10° E_JQ ~ 3.25,
Prinl

6 =20° B7 ~4.25,
Pminl2

6 =30° N ~5.25.

In any case P, is determined as probable at the interval

20.2EJ

Prin < Por < 12cosé

where Pnin = f(6).
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143. Before buckling the ring is under action of external uniformly dis-
tributed load ¢ = P/R. Under ordinary conditions, if ¢ remains unchanged
during bending of the ring, the loss of stability will occur under

3EJ
q= RS

After buckling the ring takes a close to elliptical form.

However, in the present problem the ring is always stable “in small”.
Actually, if the ring bends for some reasons taking the form of an ellipse,
the distributed load ¢ = P/R will increase where the curvature increases and
decreases where the curvature lessens. The load g will increase near the ends
of the ellipse’s longer axis and will decrease near the ends of the shorter axis
(Fig. 375). The difference of loads will restore the circular form of the ring.

To prevent the circular shape of the ring from being restored it is necessary
to impart the ring with a sufficiently big curvature of such magnitude that at
some segment the ring would loose contact with the thread. The configuration
of the ring deflection curve is easily revealed by a simple experiment which
consists in sticking a paper strip in a ring shape and tightening it by the
ordinary thin thread.

Fig. 375 Fig. 376
The configuration of the ring after buckling is shown in Fig. 376.

Let’s consider the right half of the ring and cut it at the point where
the thread leaves the contact with the ring (Fig. 377, point 1). The bend-
ing moment M; and normal compressive force N arise in the ring section.
Transverse force obviously vanishes, as otherwise the equilibrium conditions
for the ring segment O1 are not satisfied.

To analyze the equilibrium conditions for the shown elastic ring shape we
apply the relations derived earlier in solving problem 141. These equations
were derived for a straight elastic rod. Here we have a ring of constant cur-
vature 1/R. But a ring of constant curvature is obtained from a straight rod
by applying to its ends the moment M = E.J/R. Hence the problem (and
not only the one under consideration) of bending for an elastic beam with
constant initial curvature is reduced to a bending problem of a straight beam
of the same length and rigidity by addition of moments M = EJ/R applied
at the rod’s ends to a given load.




278 4. Stability Part II. Solutions

Fig. 377

The length of the segment O1 is denoted by ;. The arc s we shall count
from 0 to 1. The relation (1) of problem 141 for the first segment of the ring
will be as follows

N

Ats=0and s=1; {yg=¢; =0 and according to (3) of problem 141 we
obtain

sinyyg =0, siny; =0.

As the angle ¢ increases along arc s, passing at the inflexion point the
magnitude 7/2 (see problem 141), then assuming 1, = 0, we get ¥, = 7.

The curvature of the beam at point 1 in accordance with (4) of problem
141 will be

¢ g
— ) =2—k
<d5>1 h reos¥y,

d¢ N
=) = 2k —. 2
<d3>1 "W EJ @
The expression (5) of problem 141 at s = [; arrives at

11\/% = Fi(m) = 2R (7). (3)

where Fj (7/2) is the full elliptical integral of first kind under modulus k;
(for the second segment modulus is ky). We take into account that

Fny) =nr (3):

Coordinates of point 1 according to expression (6) of problem 141 will be

or
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2 T
Ty = T2E1(2)_l1: (4)
EJ
4k
S — 3
n i ()
EJ

Now let’s consider the second segment of the ring, i.e. segment 1— 2. Here
the ring is under action of a distributed load of magnitude proportional to
the ring curvature. It is known that in the case of uniformly distributed load
the problem of a rod’s large displacement is solved not by elliptical tabulated
integrals, but by ultra-elliptical nontabulated integrals. However, in the given
case we have a considerably easier problem. As a thread is absolutely flexible
we can consider the thread and the ring together as a whole ring with the
same rigidity F'J and suppose that at point 1 of the second segment the ring
is under action of the compressive force N — P and moment M;. And for
such load a problem of large displacements can easily be solved by elliptical
integrals.

Under such an approach to the problem the load ¢ acting outside the
ring becomes the internal force acting on both ring and fibre. Also, we can
conclude from the above that under distributed load proportional to the de-
formed beam curvature the problem of big displacements is solved by elliptical
integrals. The conclusion is rather general but not well known.

As at the second ring segment the inflexion points are absent and, hence,
d¢ /ds does not vanish anywhere at the segment, then value C; in the relation
(2) of problem 141 must be greater than unity. If, as in problem 141, we
denote C; as k2 and sin(¢/2) as ksin v then we arrive at elliptical integrals
with modulus greater than unity. There are no tables for such integrals. That
is why the expressions (3)-(6) of problem 141 should be rearranged.

Let’s denote for the second segment

1
C, = k_227 sin—g = sin v, (6)

then equation (2) of problem 141 will be as follows

a _ 28 [ e o
lgds—j:k2 1 —k5sin“ v,

where [y is the length of the second segment. As the curvature of the second
segment is negative we take the minus sign:

%__2 N_P 2 oin2
= kg‘/ 77 1 —k3sin®. (7)

Substituting here instead of d{/ds the expression

2cos ¢ dy
sin (¢/2) ds’
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obtained from (6) we get

dy
; (8)
\/N P \/1 stw
whence
- R W) - R 9
s = N _ P 2 \¥W 2 0)]' ()
EJ

Further as in problem 141
dr =dx' = (1 — 2sin? %) ds,

dy =dy = 2sin—g COS—g ds .
If we substitute here sin ({/2) from (6) and ds from (8) we arrive at

2 2
dr = ———=1/1 - K2sin2¢dip — (= — 1] d
v N_P 2Sin" 9 dy (k% )5’

’”\/ EJ
k2 sin 2
Y "

d
\/N P\/l k281n¢

After integration we find

2 2
x—xozkﬁ[Eg(w)—Eg (o)) — <k—22—1)s, (10)
V' EJ
Zlyoﬁ[\/lk%sifwo\/lk%sifzb}. (11)
M\ ey

Now let’s consider boundary conditions for the second segment.
At point 1, i.e. at the beginning of the second segment, {; = 0, and at
the end (point 2) ¢, = —180°. According to (6)

siny; =0, sinyy = —1.

Let’s accept ¢, = 180°,%, = 270°.
As F(nm/2) = nF(m/2), then from (9) for the end of the second segment
we obtain

L keE) w
N - P

EJ
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If we substitute 1» = 180° into equation (7) we derive the ring curvature
at point 1 of the second segment

i _ 2 [N-P
ds ko EJ

The curvature has no discontinuity at point 1. Therefore we equate the
obtained curvature to the value that was found at point 1 of the first segment
(2), ie.

| N 1 |IN—-P
k1 E—J—k—Q —EJ . (13)

Coordinate x of the end of the second segment is equal to zero, and the
coordinate of the second segment origin must coincide with the coordinate
of the first segment end z; (4). Therefore from (10) at s = Iy, * = 0 and
xp = a1 (4) we obtain

4 s 2 m 2
e (A -—2 —)_ = 1), 14
N 1(2>+1 k\/N—P 2(2 <k§ >2 (14)
EJ N EJ
By analogy we find y to be the distance between points 0 and 2
4k, 2 ( >
= —_— 1—4/1—-k2). 15
A CRRURL (15)
EJ "\ EJ

Now from equations (3),(12),(13) and (14) we eliminate \/ N/ (EJ) and
V(N —P)/(EJ). Then we arrive at

k_iQEQ (g) _ (k% - 1) P (i;) — 2%, {Fl (g) _2F, (%)] , (16

Iy _ 2k Fy (7 /2 . (17)
lo F (7/2)
But the sum of lengths [; and l5 is equal to half of the ring arc
lh+l=7/R,
whence
75_13 N 1%52/12 ' (18)

From (3) and (13) we find
NR?  2F (r/2)
EJ  nl/(7R)’

PR? NR?

EJ EJ

(19)

(1— kik3) (20)
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Thus the sequence of calculations will be as follows.

Specifying k; (or value of modular angle a; = arcsink;) and using tables
of full elliptical integrals, we select ko satisfying equation (16). Practically it
can be done by drawing plots of right- and left-hand parts of the equation
dependence versus ki and ko.

From (17) and (18) we find I; /7R, and from (19) and (20) the magnitude
of load P. The deflection w (decreasing of vertical diameter) corresponding
to force P will be (15)

w=2R—y,

w 1 2

—=2- 1—1/1—k2)—4k|. 21

“ — [M< Vi) - 4| (21)
V EJ

Thus we derive one point of the dependence

T 1(3)
EJ R/

The results of calculation are shown in Fig. 378 as a curved line, similar
to the ones obtained in the three previous problems. The minimum value of
critical force is equal to

EJ
Poin = 21E .

However, this value is only formally lower, because the displacement w/R
is equal to 2.65, i.e. the decreasing of ring diameter is greater than the di-
ameter itself. The ring contour takes the form of the curved line shown in
Fig. 379.

PR

e

"I
\

LN

T
21 i Tl l “
g 95 10 15 20 i 35wy,

Fig. 378 Fig. 379
It is clear that under real conditions the initial ring shape deviations from
the circular one are insignificant, i.e. w/R remains essentially less than unity.

/)
N\
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For small values of w/R calculation gives much higher values of PR?/(E.J),
which can not be placed in the scale of the plot (Fig. 378). It is convenient to
rearrange the obtained formulas in this case, taking into account that k;and
ko are small values. For this case

Fl(g)zg< +—l+ )
FQ(%) 2(1+_+ )

According to (17), (18), (19) and (20)

I I 2kq NR?2 142k; PR? 144k
= =2k, — = , ~ , ~ - (22)
Iy 21 1+ 2k EJ 2k, EJ 4k3
At last
w 2]€1 2 k2
— =2 — 1— 14 =) —4k
R 1+ 2k [klkg( + 2) 1]’
w
— =~ 4k;. 23
7 1 (23)

Thus for small w/R, eliminating k; from (22) and (23), we obtain
PR®  1+w/R __ 4
EJ ~ (w/R? " (w/R)?

Returning to the conception of stability in large quantities, described
in problem 140, we see that a final solution for the current problem has
not been obtained. Only equilibrium modes are found, and it follows from
the analysis that the ring “is very stable”. In order to predetermine system
stability we must take into account the set of reasonably limited real existing
disturbances and such types of initial ring imperfections as ring deflection
and inhomogeneity of material. None of the problems had been analyzed in
such a way up to the present time.

The considered problem is no exception in this sense. The stability theory
of elastic systems can not yet give a satisfactory solution of very important
practical problems, such as stability of spherical shells under external pressure
and cylindrical shells under axial compression.144. For the first time this

problem in a similar form was analyzed in [13].
It is impossible to give a unique answer to the given question. Let’s con-
sider the process of rod motion. An ordinary equation of stability

M =EJy"' =Py

will become complicated owing to the introduced transverse inertial forces of
intensity q, i.e. it will take the form

EJyw =—Py"+q.
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But
_ Ay
9=
where v is weight density of the rod material, and A is the cross-sectional
area. We obtain the differential equation

YA 821/ My 0%y
78t2 Ejm+Pﬂ*0 (1)

Assume that
. mmx
Y= Z T sin T
where T, is an unknown function of time ¢.
Let us substitute the expression into equation (1). Then we arrive at
YA d’T,, n TtE.J
g dt? 4

m*(m* — 9*) T, =0, (2)

where
n? = PI?
m2EJ’
In our case 7% = 10.
If m? > n?, equation (2) is solved in trigonometric functions, that corre-

sponds to periodic vibrations of the rod.
If m? < n?, equation (2) is solved in exponential functions

T = Am eXp(kmt) + Bn eXp(fkmt) >

where

‘FE
ki = Ww{gmw —m?),

and magnitude m takes three integer values 1,2, 3.
Certainly, we are interested only in components having unlimited increase
in time. Thus we can write

27 3
y=A; exp(klt)smT + A exp(kaot)sin —— ; + Az exp(kgt)sm%

The index of exponent k,,, characterizes velocity of either mode increase
and depends upon the value of m. For m = 1,2,3 and % = 10 the magnitude
of m?(n? — m?), entering the radical expression for k,,, takes the values 9,
24 and 9 respectively. Thus, velocity of deflection growth for two half-wave
bending modes is found to be greater than for one or three half-wave modes.
Perhaps it is the only thing that we can reliably be assert in connection with
the given question.

The fact is that we know nothing about magnitudes of Ay, As, and Aj
characterizing the initial deflection of the rod. Even if we consider these
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parameters as statistically equivalent then the obtained solution of the linear
problem says nothing about the behaviour of the rod in the range of big
displacements. If we go further in our investigation and try to analyze the
behaviour of the rod under big displacements then we find that the initial
data is not enough for a full solution of the problem.

Really, what does the question mean: “What mode will the rod bend?”
Obviously at first we should come to agreement where the process of motion
ends, what bounds vertical displacement of the rod’s upper end or what is
the duration of force action. But all these questions would take us too far.

145. The proposed problem again touches upon a principal question of
elastic system stability analysis, and its solution results in the necessity to
give a new formulation of the stability criterion.

Let’s imagine that the rod deflects slightly from the initial equilibrium

position (Fig. 380).
X ~Pi
/P

¢/ Po

/ y

—

0 Y
Fig. 380

The equation of the deflection curve is
EJy" = P(f —y) - Pp(l—z),
from which

y= Asinazx+ Bceosax+ f — (Il —z),
P
I 2=
where « 57
Atz=0 y=0and y' =0.
Atz=1 y=fand y = .
The implementation of these conditions results in four equations:
B+f—-pl=0,
Aa+¢ =0,
Asinal + Bceosal =0,
Acosal — Bsinal = 0.
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Counsidering the last two equations it is easy to establish that indepen-
dently of selecting «l the constants A and B are equal to zero because the
determinant

sin ol cos al

cosal —sin ol

is not equal to zero. But if A = B = 0, the only equilibrium mode of the rod
is an initial straight mode.

In all the problems considered before two concepts were permanently iden-
tified: “loss of stability” and “existence of another equilibrium state except
the initial”. Therefore in the given case we should decide between the two
variants: either to refuse the usual and deeply-rooted identification of the
given concepts or to accept that the system keeps its stability under any
value of force P.

The first is correct. The initial equilibrium state is stable only up to a
certain value of force P. Under forces exceeding this value, which we shall call
critical as earlier, the transition occurs not to a new equilibrium state, but to
some form of motion with increasing deflection from the initial equilibrium
state. The criterion of instability is the condition of specified form of motion
arising and is called the dynamic criterion of stability.

Let’s discuss the following mechanical model shown in Fig. 381. Two
homogenous rods having masses m; and my are connected by a spring of
stiffness c. The same spring connects the lower rod with the hinge support.
Line of force P action permanently coincides with the direction of the upper
rod axis.

Assume the angles of the rod’s rotation ¢; and ¢, as generalized coordi-
nates. Then the displacements of the mass center of each rod will be

y1 =lpr, Y2 =lpy + 2lp,,

where 2/ is length of each rod.

Fig. 381 Fig. 382

Moments of inertia of each rod with respect to the central transverse axis
are equal to
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12 2
m; and Jp, = m; .

If we introduce the interaction forces in the hinge (Fig. 382) the equations
of motion can be derived.
For the upper rod

Y=P, X=Pp,+mgy¥ys, (1)

Jy =

Jo pg +ma Yo I+ c(pg — ¢1)-
For the lower rod

cor+Jipr —clpy —p1) + X204+myyn 1= Y2l =0. (2)
Eliminating 1, y2, X, and Y and expressing moments of inertia in terms

of masses we obtain two linear differential equations in unknowns ¢; and ¢,:

4
3 mal?® @, +2mal? o, +c(py — ;) =0,

4
(4mol? + gmllQ) ©1 +2mal? py +(2¢ — 2Pl)p; + (2P1 —c)py = 0. (3)

As usual we assume
Y1 = Alekta P2 = AQekt' (4)

After substitution we arrive at two equations in unknowns A; and A, :

4
A1 (2m2l2k‘2 — C) + AQ (5 m212k2 —|—C) = 0,

4
Ay <4m2l2k2 + §m112k2 + 2c — 2Pl> + As (2mol?k? + 2Pl —c) = 0.

In order to derive the conditions of non-trivial solution existence the de-
terminant must equal zero. It gives a quadratic equation relative to k? :

k12 k212 Pl 9
<m2_ 3 a—5) 45 =0, (5)

C

)2(3+4u)+

where y = my,;ms.

The free term of equation (5) does not depend on force P. Hence, we can
not determine such P that k will vanish, and therefore if we return to the
expressions (4) we shall see that angles ¢; and ¢, can not be constant. The
system has no equilibrium state except the initial one. The considered model
has the same property as the clamped rod loaded by follower force.

It is easy to establish from equation (5) that value k2 under any force P
remains negative. This means that & does not have real values and conditions
of aperiodic motion are absent. Let’s assume that

kl\/@:5+iw,
c
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and find the condition under which ¢ may have a positive value. This corre-
sponds to the appearance of oscillatory motion with increasing amplitude.
Separating real and imaginary parts in equation (5) we arrive at

(2 ) —4e%0?] (3+ 4pr) +3 (2 — ) (8+u5}%l) +j91 —0,

Pl
45w(52w2)(3+4u)+65w<8+u57>0.
By excluding w, we get
2
Pl 9g8+ -5 9
44(3+4p)+526<8+u5—> 1 r 771:0’

from which

Pl
—8—putv3+4u

3+4p

35
2 _ 2
£ T

The least value of P under which 2 (and hence one of the roots ¢) takes a
positive value is

Pcrzé (84 1—+v3+4n).

The magnitude of critical force depends on the mass distribution between
rods. If m; = mq then p = 1. And

P == C (9 V7).

If the mass of the first rod is small in comparison with the second mass p =0
and

cr— 8_\/5

The value of w1 infinitely increases as the mass of the upper rod decreases
in comparison with the mass of the lower one. Thus P, infinitely increases,
also, and it is clear. In the case of the absence of transverse inertial forces
the upper rod will always lay on the same straight line with the lower one.

For systems allowing stability estimation on the basis of equilibrium state
analysis, i.e. for ordinary systems, the dynamic criterion gives the same results
as the static criterion. Let’s consider, for example, the same rod system under
action of load retaining its direction (Fig. 383). Such load is called “dead”
force. In this case instead of equations (1) we have

Y=P X =moVY¥s,
Jo 0o +ma Yo L+ c(py— ;) — P2lp, .

Equation (2) remains unchanged. Instead of equation (3) we get
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4
Emﬂg P2 +2mal? 1 +e(pp — 1) — 2Plpy =0,

4
(4mol* + gmllg) 01 +2mal? @y +(2¢ — 2Pl @, — cpy =0,

and instead of (5) we arrive at

<m2k2l2

Cc

9 Pl PI\?
o
4 c c

Now the free term of the equation depends on force P and for

:E(?)i\/g)

212

2 m Pl
) (3 + 4p) + —= 3[8+p—7(8+2p)

~0. (6)

is equal to zero. Hence zero values are possible for k, and the solution exists
for which ¢; and ¢, (4) are independent of time, i.e. exists for the equilibrium
state at

c -
Pcr:4_l(3—\/5)

m,,{;'_“‘ Y
(@, - ¢)
J1.(IE)1
O y
Fig. 383 Fig. 384

Here the magnitude of critical force does not depend on mass distribution,
as the parameter p does not enter into the free term of equation (5) and (6)
and can not enter into it.

Let’s return to the elastic rod and derive the equation of motion. The
element of length dz is loaded by forces and moments applied in its cross-
sections (Fig. 384) and by distributed inertial forces of intensity mq0%y /ot
are also applied, where mg is mass per unit length of rod material.

By projecting forces on the normal to the deflection curve we obtain

0%y 0%y
dQ—}—P@ dx+m0@ dxr = 0.
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As
83
Q=EJ==,
then
oty 0%y %y
Ejm Py tmogy =0;

mg shall be considered as a constant value.
Let us assume

y=Ye !
where Y depends only on coordinate x. For real values of = the motion has
the character of harmonic vibrations. If  is complex
=a=+bi,
then
y = Ye(FtHia)dt — YTt (cosat 4 isin at). (7)

Hence the motion will occur either with decreasing or with increasing
amplitude and depends on the sign of b.

Substituting y in the equation of motion and introducing dimensionless
parameters

P m T
2 2 0
ﬁ EJ b w EJ b C l b
we obtain
d'y d*y
+ 3 — —w’Y =0. (8)
d¢* g
The solution of the equation is
Y =Cysina;(+ Cycosai( + Cg sinh as + Cycoshas(, (9)
where
2o 5_4
M= +

w?

At the clamped beam end independent of conditions of loading we have

Y =0 and dY/d¢ = 0. Hence
CQ +C4=0, a101 +a203:0.

At the free end of the rod the bending moment is equal to zero, and in
the case of follower force the transverse force vanishes too. Therefore at z = [
(orat&=1)
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d*y Y
— =0 and —5 =0,
g ag
that gives two additional equations:
—Cloz% sin g — CQQ? cos vy + C3a§ sinhay + C4a§ cosh ag = 0;
fCla:f cosa + Cga‘;’ sin oy + O3a§ cosh ay + C’4ag sinh g = 0.
In the case of “dead” force P the last condition would have another form.

Here transverse force is not equal to zero but it is equal to — Py’._,.
Let’s equate the determinant of the four obtained equations to zero. Then

a‘l1 + 0/21 + alag(af — ag) sinaq sinh g + Qafag cos ay coshag = 0,
or
B* + 2uw? 4+ B*wsinag sinh g + 2w? cosa coshay = 0. (10)
In case of “dead” force, instead of expression (10) we get

2w? — B%wsin a; sinh ay + (,[34 + 2w?) cos o coshag = 0. (11)

The relation (10) allows to draw the dependence of eigenfrequencies w of
rod vibrations on the dimensionless force 3 (Fig. 385). By dashed line the
frequency variation for the case of “dead” force is shown in this plot.
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For 3= 0 we have first w; and second ws eigenfrequencies of clamped rod
vibrations. As “dead” force increases the frequencies (and all higher frequen-
cies too) decrease and vanish under forces taking critical values, i.e.
n2EJ

or for P=——rm,

for B> = 55 = 17

and in general for

3
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n?r?EJ
P ST (n=1,3,5,...).

In the case of follower force lower frequency increases while increasing
of P and at point A the curve lines of the first and second tones merge. If
we expand the plot to areas of higher frequencies then we can see that such
merging of curves exists as well for the third and fourth frequencies, the fifth
and sixth and so on.

For determination of the critical value of force P in this case we should find
the minimal value of P under which the multiplicity of roots w of equation
(10) takes place. It means that for a further increase of 3 the roots become
complex-conjugate and the root with negative imaginary part,ie. =a—b1i
exists. According to relation (7) it corresponds to the occurrence of mode of
vibrations with increasing amplitude. It is seen from Fig. 385 that multiplicity
of roots takes place at point A.

Carrying out the numerical calculation we find

5% =20.05 (w=11.016),

hence

E
FP., =20.05 —J
12

The obtained result is correct only for rod mass uniformly distributed
along its length. For another distribution of mass the critical force will be
different. This is very important to note as sometimes we encounter attempts
to determine critical force in such problems by applying the different tricks
which do not satisfy the dynamics laws. Such approach presets the neglect of
mass distribution and leads to principal incorrectness of the solution.

146. The loading case a became well known in literature under the name
Reut problem [19].
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The rod has no equilibrium state except the initial straight. Actually
(Fig. 386)

EJy" = —Py;
and further
y= Asinazx + Bcosazr;
at t =0y =0 and y’ = 0, hence
B=0and A=0.

Let’s analyze the modes of motion. Assume that mass of the flat disk at
the end of the rod is small. Function Y in relation (9) derived during solution
of the previous problem is valid. The two first boundary conditions are valid
also:

dy
Y:Oandd—czo at (=0,

that is
Co+Cy=0, a1C1 + a0y =0.
At z=1({=1) we have
EJy"=—Py, EJy"=-Py,
or
Y +B%Y =0, YY"+ =0.
Returning to the solution (9) of the previous problem we obtain
Ci(—a3 + %) sina; + Co(—a? + B%) cosa;
+Cs(a3 + B%)sinh g + Cy(as + 5°) cosh oy = 0,
C’l(fa? + ﬁgal)cosal + Cg(oz:{’ — ,82(11) sinog
+C3(ad + BPag) cosh g + Cy(a + F2ay)sinhay = 0.
Equating the determinant to zero we arrive at the transcendental equation
ﬁ4 +2w% + ,62w sin aq sinh ag + 2w? cosay coshag = 0.

which completely coincides with equation (10) of problem 145. Thus, the
critical force will be the same as in the previous problem

EJ
Por = 20.05 = .

One could guess about the coincidence of results in advance. Forces at the
end of rods in both cases are identical. The difference is only in the coordinate
frame for y and = (Fig. 387).
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In the case of loading b (Fig. 388) the problem can be solved on the basis
of ordinary analysis of equilibrium modes. The equation is the following

EJy" = —Py—pp(l—z),
or
P
" 20 — 2 1 — 2 _
Y+ o’y = —ap(l - x), at =7
whence

y=Asinaz+ Beosazr — p(l —x).

Atz =0 y=0andy =0,andat x =1 ¢ = p. Then we obtain the
next three equations:

B—pl=0, Aa+¢p=0, Acosal— Bsinal=0.
X
A P
N /’” ]
< Pr

~N

M=Pr X

2 / o 7
Fig. 387 Fig.388
By equating the determinant of the system to zero we obtain

tanal = —ad .

The least nontrivial root of the equation is

al = 2.029,
whence
P., =4.115 ﬂ

[2

147. The system is similar to the one considered in problem 145. Here, is
necessary to derive equations of motion for stability analysis.
Let’s consider the rod element (Fig. 389) of length dz. If we balance all
force projections onto the y axis we arrive at
o} 9? l—xz—dx (0 2 l—20
o —<—y yd;r)P——y

Yy
B BT Moy, det P or T 9u2 T or

Ox ot2 l 0,
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or
0Q Py 9 [,lordy]
or T Ton [T x| T
But as
0Q _ .. 9%
0x7EJ8x4’
then
oty 0 I —z 0y 0%y
ET et T oa [P oz T =0 (1)

Here myq is mass per unit length of rod material. These values (as well as
EJ) do not depend upon .

Equation (1) of problem 145 has a structure that presumes computer
calculation. But there is hope that for a homogeneous rod it is possible to
reduce the equation solution in tabulated Bessel functions or related to them.
However, even in this case the problem is solved more quickly by computing.
Let’s suppose

y=Ye' !
and go to the dimensionless form
'y 0 d ay 9
—_— — (1= —| —wY=0,
dct + 8 dc [( <) df} w 0,
where
P2 mol* T
2 _ 1 2 _ %0 2 _ =z
F=%r Y TEr > TT
2 / waw‘r——‘rf‘“f
dy : ’ .
!

Boundary conditions are
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d*Y d*Y

at (=0 —5 =0, — =0,
ac d¢
&’y 2y

at (=1 — =0, — =0.
dc? acd

The solution we find in expanded form is as follows
Y= > Al
n=0,1,2,

According to the boundary conditions at the rod’s ends As = A3 =0,

> Ann—1)=0, Y A.n(n—1)(n—2)=0. (2)
We have the recurrent formula for the term of series determination

1 2
An = nn—1)(n —2)(n —3) {wdns

+67 [An—g (n=3) = Ay (n—=2) (n = 3)]}.

Constants Ag and A; remain indeterminate. They must be selected in such
a way that the two last boundary conditions are satisfied. As in expressions
(2) Ag and A; are linearly dependent and we can write

ZAnn(n — 1) = K()AO + KlAl = 0,

> Apn(n—1)(n—2) = LyAg + L1A; = 0.
The existence condition for the nontrivial solution is following:
KoL, + KLy =0. (3)

The calculation algorithm is described below.

1) Specify 8 and w.

2) If we assume that Ag = 0 and A; = 0 we derive terms of the series by
the recurrent formula. For the given problem it is enough to take 20 or 30
terms. Then calculate Y A,n(n —1)= Kg and Y. A,n(n— 1)(n — 2) = L.

3) Repeat the calculation setting Ay = 1 and A; = 0: then the obtained
sums are equal to K; and L; respectively. Then the magnitude of D (3) is
calculated.

4) Change w and calculate D again. Compare it with the previous one. If
the sign of D does not change then proceed the calculation further. If the sign
changes it means that the sought value for the given force has been passed.
By interpolation we find w. As a result, we plot the dependence of w on 32,
which is shown in Fig. 390.

As in the case of problem 145 the frequencies of the first and second modes
merge under critical force P :

2. =109.69 (w=23.02).
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The critical force is

EJ
P., = 109.69l—2.

The rod vibration modes for several values of P are shown in Fig. 390. More-
over the cases of compressive and tensile force P also are considered. It is
interesting that for some values of P the nodal points become imaginary.
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Fig. 390

148. Obviously here problem 145 is repeated though under different

boundary conditions. Relation (9) of problem 145 is valid, only the boundary
conditions are changed. Now we have

d*Y 3y

— =0 and —F =0 at{=0

dg dg¢

d’y >y

— =0 and —5 =0 at (=1 (1)
dg¢ g

Then we obtain four equations:

—aiCy+asCy =0,

—afC) +a3Cs =0,

—a%Cl sin vy — Q%CQ cos o + CY%Cg sinhay + a%CLL coshagy = 0,

—a‘;’C’l cosay + Q?CQ sin o + agCg cosh ap + ag’C4 sinh ay = 0,
By equating the determinant to zero we obtain the transcendental equa-

tion

2w(cos g coshag — 1) + 3% sin oy sinh s = 0, (2)
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which is analyzed.

The question about rod behaviour is solved depending on the character of
function w = f(B). If for some value of dimensionless force 32 the frequency
w becomes equal to zero then the rod has equilibrium forms different from the
straight one. If there are no zero points for w, then it is necessary to derive
the conditions of frequency multiplicity, corresponding to the conditions of
motion with increasing amplitude.

Another solution given by L.I. Balabukh is also extremely effective.

Let’s return to equation (8) of problem 145. By differentiating it twice
with respect to ( and denoting dQY/dC2 =Y, we obtain the same equation:

d*Yy 2 d*Yy

2
+ —wYy =0,
dct act 0
but boundary conditions will be different
dYg
Yo=0 and d—;:O at ( =0,
dY;
Yy=0 and d—gf’:o at ¢ = 1. (3)

Hence the solution will be the same as for the compressed rod clamped by
its ends (Fig. 391). But here we know that the rod does not have oscillatory
modes of buckling. A new equilibrium mode appears under P, = 472E.J/I.

We can also ascertain this by analyzing equation (2) which is just the
same for the boundary conditions (1) as well as for the conditions of (3).

’” m IJ

el
A\

Fig. 392

It is clear that the equilibrium mode of therod shown in Fig. 391 is relative
as it should be considered in the coordinate frame attached to the rod that
is under an accelerated motion in space (Fig. 392). Here two components Py
are balanced by D’Alembert’s forces of inertia ¢ = 2P /1.

It is clear that the described operation of the equation’s double differenti-
ation leads to the specified conclusions only for the case of the homogeneous
rod. For the case of nonuniform mass distribution or for variable rigidity the
result will be different.
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As an analogue we can consider two rigid rods connected to each other
by a spring of stiffness ¢ (Fig. 393). The system moves with acceleration if
the angle of rotation ¢ rises. If we introduce the balancing inertial forces at
the center of mass we obtain the condition of stability as follows

2c
2cp = Pya, or P.,=—,
a

where a is the distance between hinge and the center of mass.

For loading by forces P keeping their direction (Fig. 394) it is natural
that the distribution of mass would have no significance. In this case
2c
l b

where [ is the length of each rod.

Pc’r:

149. The given problem seems to be easy but contains the same difficulties
as we met in the previous problems.
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Let’s try to find existence conditions for equilibrium modes different from
the initial and assume that the beam buckled and came out of the plane of
initial bending (Fig. 395). Also, let’s denote lateral displacement of the beam
axis as y, and the angle of cross-section rotation with respect to the = axis
as . The directions shown in Fig. 395 for y and ¢ shall be taken as positive.

If beam deflects from its initial state then the bending moment in the
plane of minimum rigidity arises in its cross-sections. The moment is equal
to My and is directed towards the increase of beam curvature. The torsional
moment occurring in the cross-section of the deflected beam is equal to My’
and is directed in such a way that it tries to decrease angle ¢. Hence

My=+Mp, M,=-My'
On the other hand
M, =EJy", M;=GJ;¢,

where
bh3 bh3
- =
12 3
Now we obtain the equations
EJy"' =Myp, GJi¢o =—My'. (1)
Their solutions will be as follows:
G J,
¢ = Asin ax + B cosax, y:—A—f(Asinax—}—Bcosax)—i—C,
where
2 M?

T EJGJ,’

A, B, and C are arbitrary constants which are found from the following
boundary conditions:
at © =0 we have ¢ =0, y =0, ¢y’ = 0. Then we arrive at

B=0, 7%3+C:0, A=0.

As A = B =C = 0, it follows that for all finite values of moment M
there are no forms of equilibrium different from the plane bending form. We
only have to investigate modes of motion and try to find the conditions under
which beam motion with deflection increasing in time is possible.

Before we proceed to this analysis let us remark that in the case of the
moment following to the end section (Fig. 396) the beam also has no equi-
librium modes different than the initial form of plane bending. Only in the
case of “semi-follower” moment shown in the same Fig. 396 by dashed line
the existence of a new equilibrium mode is possible for

M==EIG].

21
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Semi-follower moment . o
Fig. 396 Fig. 397
The “semi-follower” moment can be realized by means of two weights
(Fig. 397). It is interesting to note that the possibility of applying the spec-
ified forces or moments by means of gravity loads is for the present time a
guaranty for the fact that stability of the system can be analyzed by looking
for neighbouring forms of equilibrium in all known cases of loading. Till now
it was not necessary to find modes of motion under loading by gravity forces.
Let’s derive the equations of rod motion. For this it is necessary to consider
the distributed inertial force
%y
ot?
and distributed inertial moment due to the rotation of masses about the rod’s
axis

qin = —pA

%o

o2’

where p is density of the material, and J, is cross-section polar moment of
inertia.

Min = pJp

As it is known

9> M, AM,;
q= v

o220 " T oz
therefore differentiating the first equation of (1) by x twice, and the second

equation once and adding to the right-hand member ¢;» and mi, respectively
we arrive at

oty , 0%p 0%y
EJ e =M a2 — PAG
e % ol
GJ; o M 922 +pJdp 92 (2)

Let’s assume

=Yl i ﬂt =& ﬂ . EJt
y=Ylexp | iw AT , = GJtexp iw oAt

where Y and @ are dimensionless values, depending on the dimensionless
coordinate ¢ = 2/l and w is a dimensionless frequency.
Equation (2) arrives at
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'Y >*o
— —My— —w?Y =0,
8 ¢
9%d 9%y
— + My—5 + K*w’® =0, (3)
o¢ a¢
where Mj is the dimensionless moment, and k geometric characteristics:
M s, FEJ J,

k2 = =2 B (4)

0T JEIG) T GJ A2

The solution of the system (3) by means of functional analysis yields
cumbersome transformations. That is why here it is more convenient to use
a computer. Let’s find functions Y and & in the form of power series

Y= > Al d= Y B
n=0,1,2, n=0,1,2,

Substituting ¥ and @ in equations (3) we arrive at recurrence formulas

L )
A, = n(n — 1) (n — 2)(71 . 3) [szn—él + Afan_g(n — 2)(n — 3)] ’
k2w?
Bucs = Moduca ~ g B ®

We can restrict calculations to 20-30 terms per series.

At the clamped end for z = 0 (¢ = 0) we have y = 0,9y/0z = 0 and
@ =0, hence, Ag = A; = By =0.

At the end of the rod (for ¢ = 1) we have

%y _ 9y cOy 9% Oy
EJ@fAM\p; GJt%ff]\/fa, EJ%fM%.

The last boundary condition expresses the equality of shear force to zero at
the rod’s end. Actually shear force is obtained from the equilibrium condition
of the element (Fig. 398). Equating to zero the sum of moments of forces with
respect to the z; axis we get

M, 3
_OMy %0 oo pr Y 02
Ox oz ox3 oz
In dimensionless form we obtain
&’y dd dY &Y dd
— — Myd = — + My— = —_— — My— =
dCZ 0 Oa d<+ OdC 07 dCS Odc 03

or substituting ¢ = 1,
> Aun(n—1) — My Y B, =0,
> Bun+ Mgy Ayn =0, (6)
> Aun(n—1)(n—2) — Mo »_ Byn = 0.
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Fig. 398

In calculating the coefficients A,, and B, the first three remain undeter-
mined. We must choose them so that the conditions (6) are satisfied. But
equations (6) are homogeneous with respect to Ay, A3z and By. That is why
we can write them in the form

a11As +ajpAs + a;3B; =0,
a1 Ag + agAs + a3 By =0,
a1 As + azpAs + azz By = 0.

In order to obtain a nontrivial solution it is necessary to satisfy the condition

a1 @12 @13
D = 91 G929 Q923 | = 0
asy agz2 @33

The calculation order will be as follows.
First, prescribe the parameter

_EBJJy _ 1dpb
S GL AR 24 2

Then, settle My and w.

Next, suppose that Ay = 1, A3 = By = 0 and using recurrence formulas
(5) determine the coefficients A,, and B, and then the left parts of equations
(6). They are equal respectively to aq1, as; and az1. Then assume that A = 0,
Az =1, B; = 0. Now the left parts of equations (6) give magnitudes of a2,
ag9 and ass. Finally if we assume Ay = A3 = 0 and B; = 1 we find a3, as3
and ags. Calculating the determinant we prove that it is not equal to zero.
Then changing the value of w we seek D = 0 and we find the frequencies of
the natural vibrations for the given moment Mj.

]{72
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Changing M, we watch the behaviour of frequencies and as it was done
in the previous examples we find the conditions of their multiplicity.

For My = 0 we have frequencies of bending (w;) and torsional (w;) natural
vibrations. As Mj increases, frequencies come close and for critical value of
moment My frequencies become multiple (points A in Fig. 399).

The dependence of M., on parameter k is shown in Fig. 400. M., van-
ishes for £ = 0.445. This is the case when the frequency of the first bending
mode w; coincides with the frequency w; of the first mode of torsional vibra-
tions.
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Fig. 399 Fig. 400

It should be noted that the first least frequency always merges with the
second one independently of the fact whether it is interpreted as bending
or torsional mode. For example, if & = 0.05 the first torsional frequency
w1t = 31.4 while the bending frequencies are wy, = 3.5 and wqp = 22. As the
moment increases bending frequencies merge. While parameter k£ increases,
the first torsional frequency decreases and when it becomes less than the
second bending frequency the first bending one merges with it under increase
of Mjy. This is seen from plots shown in Fig. 399.

In the case of follower moment, i.e. when the moment plane rotates to-
gether with the end section, the boundary conditions change and instead of
(6) we have

ZAnn(n— 1) =0,
ZBnn:(), (7)
ZA”n(n —1)(n—2) =0.
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The critical values of moment for conditions (7) are the same as for con-
ditions (6). The coincidence of results is not accidental. It follows from the
mutual conversion of rod loading conditions at the left and right ends just as
it was done for systems considered in problems 145 and 146.

150. The problem entered the literature as the E.L. Nikolai’s problem [6].
The solution of this problem in 1927 revealed for the first time the existence
of such systems where stability analysis can not be performed on the basis of
searching equilibrium states according to Euler’s approach. Actually for the
easiest case when column rigidities in two principal planes are equal we have
the following equations of equilibrium:

EJy' = —-Py+ M2,
EJjz'" =—-Pz— My'. (1)
They are obtained from equations (1) of problem 116 if we replace the
sign of P with the opposite one.
The solution remains unchanged:
y = Acosajxz+ Bsinajz + C cos agx + D sinasgx,

y = Asinayx — Beosagx + Csinasx — D cosasgx

where a;and «s are the roots of the quadric equation

M P

2

Moo 2

a + 27% &7 0 (2)
While deriving equations (1) we assume that displacements y and z refer

to the line of action of force P. Therefore as the origin of z, y and z is at the

point of force P application (Fig. 401) we obtain the boundary conditions:

at x =0 y=2=0,
atz=1 ¢ =2=0.

N
"
<

Fig. 401
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This gives
A+C=0, B+D=0,

—Aaqsinagl 4+ Bag cos gl — Cagsinasgl + Dag cosasl = 0,

Aaq cos aql + Bagsin aql + Cag cos anl + Dagsinagl = 0.
Equating the determinant of the system to zero we get
of + a3 = 20109 cos[(ag — as)l]. (3)

But according to equation (2)

P 2, o (M 2+2P
a0y = — /= o ay = | == —_—
162 EJ7 1 2 EJ EJ,

o (MY, 2P
Gz EJ EJ’

whence equation (3) yields

M1 2+ 4P LM
cos e =— .
EJ EJ 2PEJ
For nontrivial values of moment M the equation can not be satisfied,

since the absolute value of the right side is more than unity. Only in the case
M=0

[4P[?
cos =1,
EJ

and then we obtain an ordinary value for the critical force
P m2EJ
cr T 4[2

So for arbitrarily small but non-zero value of M and arbitrarily large force
P the rod does not have equilibrium states different from the straight one.
Exactly the same result is obtained in the case where the plane of torque
M rotates together with the rod end section while bending. In case of a
“semi-follower” moment, produced by two weights, the system has equilib-
rium states that are different from the initial. We have seen the same in the
solution of problem 137. Thus, we reveal an analogy with the behaviour of
the system considered in the previous problem. However, there we only had
one external load factor: moment M. In the given problem we have two loads:
force P and torque M. If only force P is applied then while it increases the
transfer to a new equilibrium state occurs. But for torque (excluding “semi-
follower”) the transfer to new forms of motion is characteristic. That is why
it is interesting to look for the behaviour of the system in the area of action
of both loads and find out where the type of motion occurs earlier, and where
the static form of equilibrium.
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By differentiating equations (1) twice by z and adding terms correspond-
ing to inertial forces, we obtain

My 0%z 0%y 0%y
EnL & pZd 4
' oat Oz ox? p ot?
o'z 0%y Oz 0%z
EJz ot M 0 P 92 T pA ot? 0- 4)

As we shall see further the behaviour of the system substantially depends
on the ratio of principal bending rigidities. That is why in equations (4)
instead of single rigidity we introduce two: EJ; and E Js.

Now it is more convenient to have the origin of coordinates at the clamped
end (Fig. 402). Regardless of loading conditions at * =0 we have y = 2z =0
and Jy/0x = 0z/0x = 0.

lP
X M
0
"y
/
Sz
Fig. 402 Fig. 403

The shear forces @@y and Q. expressions for the bent rod become more
complicated by insertion of a term containing torque, i.e.
y 2 2
o OMuy B oMy 0ty
Ox Ox? oz ox?
where M, and M,, are bending moments with respect to the movable axes
Y1, 21. It is easy to derive the required relations if we balance the sum of
moments produced by forces acting on element dx with respect axes y; and
z1 (see Fig. 403, where projections of this element on planes xy and zz are
shown). At the end of the rod
oy 0z

@ = P8$’ Q. = P@:B’
therefore at x = [ we have two boundary conditions invariant with moment
M behaviour:
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2%y oy 0%z
EJjJ—+P——-—M— =
‘ om * P o~ M o =0
O Loe O
EJ283+Pa +Mo“!2 :0, (5)
If the plane of torque M action rotates together with the rod’s end section
under bending then M,, = M, = 0 at z = [, and then we have two
additional conditions:
0%y 9%z
o =0 and — =0. 6
Ox? oz? (6)

If the plane of torque M action does not rotate under bending of the rod,
then at & = we have My, = M0z/0x and M,, = —MQ9y/0x and then

0%y 0z
EnL  yE =0,
' 92 oz |,_,
0%z Jy
EJo—+ M- =0. 7
? 0a2 oz |,_, @
Finally, in case of “semi-follower” torque we get
0%y 0z
EJ - M— =0,
" o2 or|,_,
0%z
— =0. 8
ox? |, _, ®)
Let’s apply the dimensionless parameters. For this let’s suppose that
, EJ
y:Ylezwat’ y = 2Zl zwat
EJ

where Y and Z are dimensionless sought functions which depend on x only,
w is dimensionless frequency and

EJ,
a= .
pAl*

As independent variable instead of z we shall take { = z/l. After substi-
tuting , y and z in equation (4) we obtain the system of ordinary differential
equations

Y BT Y
— - + 38— -V =0,
dg¢ s dg
dz By P27 W
=24 My BLz o, 0, (9)

+ —
d¢ dc® k2 d¢? k2

where My and 8 are dimensionless torque and force:
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Ml PP?
]\/[0 = ———— y ﬁ ==
\/EJ1 EJQ EJI
Coeflicient k characterizes the ratio of rigidities
EJ,
EJ,

It is supposed that EJ; is minimal rigidity, therefore £ > 1.
By using dimensionless parameters let’s rearrange the boundary condi-

tions also. oy 7
At (=0we haveY =Z =0, d_C:d_C:

For the rod end, i.e. for ¢ = 1 in case of loading by torque, where the
plane rotates together with the end section, we obtain

d3 dY d:z
ﬂQ— My— =0,
a¢® g d¢?
37 2 dZ d2Y
— t ﬁ — 4+ My— =0, (10)
d¢ k2 d¢ dg
d2Y $z
=0, |—/= =0, (11)
d¢? d¢
If the torque s plane of action does not rotate during the rod’s bending,
then the first two conditions are valid but the last two take the form
—dQY M, 4z —dQZ + M, dy =0 (12)
a0y T e T e T

For the case of “semi-follower” torque again the conditions (10) are valid
and instead of relations (11) we get
d’Y _daz d’Z
Only computer analysis is appropriate for solving the problem. The algo-

rithm was given while solving the previous problems.
Let’s assume that

Y:ZAnCn, Z:ZBnCn,

and substitute Y and Z in equations (9). After that we arrive at the recur-
rence formulas:

Y

¢=1

1
An = T g Mo = D = 2)(n = 3)

—B*An_o(n —2)(n —3) +w’A,_4),

1 | T
B, = P EE Ty — [MoAn,—1(n — 1)( 2)( 3) (14)
g 2
_EBn—g(n —2)(n—3)+ ﬁBn—d
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dy dZ
As at the clamped end Y = Z =0, —— = —— =0 then obviously

¢ d¢
A():Al:B():Bl:O.

Another four coefficients Ao, A3, By and B3 must be chosen in such a way
that they satisfy the boundary conditions at the column end, i.e. at {( = 1.
For this consider relations (10) and also relations (11), or (12), or (13) in
accordance with the conditions of loading.

As coefficients Ao, A3, Bo and Bjs enter in all given equations linearly, the
following four equations in the unknown coefficients can be written as

aj1As + ajpAs + a13B2 +a14B3 = 0,
a1 A + aAs + a3 By +auBs =0,
az1As + aza Az + as3Bs + a3 Bs = 0, (15)
a41 Ao + ag9As + ag3Bo + a4qBs = 0.

The two first equations are obtained from relations (10), and the bottom
two either from (11), (12), or (13) in accordance with the type of torque M.

If for the prescribed magnitudes of parameters My, 3,k and w specify
Ay =1, and A3 = By = B3 = 0, then according to the recurrence formulas
(14) we can determine Ay, By, A5, Bs, ... Then by summing for certain n (for
example n = 30) we determine values of derivatives of functions ¥ and Z at
¢ =1, ie.

dy

i :ZAnn, :ZBnn, ’% _ :ZAnn(n—l),...

The calculated sums are substituted into the relations (10) and (11), (12)
or (13) and we obtain coefficients a1, as1, as1, as1 of system (15). If we
repeat all calculations assuming that A3 = 1, and As = By = Bz = 0,
then obviously we find coefficients a1, a29, ag2, aso. Then we should specify
By =1 and at last Bs = 1. Thus by fourfold repeating of calculations we find
all the coefficients of system (15).

The condition of nontrivial solution existence for Y and Z is the equality
to zero of the determinant

dz
dg

¢=1 ¢=1

ail @12 @13 ai4
@21 G22 A23 G24 | D=0. (16)
a31 (32 A33 A34
Q41 Q42 Q43 Q44
Thus, the analysis of stability is reduced to elaboration of the relations
between My, [, k, and w, for which the condition (16) is valid. For practical
purposes first of all we should fix the parameter k, then 3 and finally M,.
Specifying different w we find such a value for which the determinant D
is equal to zero. Then we change My and again w is determined. Thus we
establish the relation of w and Mj for specified 8 and k. Such a dependence
is shown in Fig. 404 for k = 2.
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Obviously we do not need to plot all the relations or print a lot of cal-
culated data. It is easy to program the algorithm by adding the criteria of
estimating the behaviour of frequency in dependence of My and (. If fre-
quency vanishes it means that we find a new equilibrium state. If frequencies

of the first two modes merge then we find the kind of motion. Naturally the
ratio of rigidities k2 must remain unchanged during calculations.
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Results of searching the critical values of parameters My and 3 are shown
in Fig. 405. For boundary conditions (11) and (12) they turn out to be ab-
solutely equal. In other words, there is no difference between loading by
follower and non-follower torque. For each fixed k = \/EJo/EJ; the sta-
bility domain (Fig. 405) is bounded by the curvilinear quadrangle O ABC.

The point A is common for all curves. Here 3 = g = \/PZQ/(Ejl), which

corresponds to critical force
7T2EJ1
cr — 42

Curves AB define the conditions of transfer to a new equilibrium state and
correspond to bending in the plane of minimal rigidity EJ;. It is interesting
that while torque increases the critical force increases too. This happens
because the applied torque forces the rod to deviate from the plane of minimal
rigidity during bending.

The upper segments of curves AB D, shown in Fig. 405, correspond to the
equilibrium state associated with bending in the plane of maximal rigidity.
The magnitude of parameter 3 at points D is k times greater than at point A.

From the right side the stability domain is bounded by the condition of
transition to the oscillatory mode of motion. The transition boundaries are
shown in Fig. 405 by dashed lines BC.

If £ — 1 the stability domain collapses in a straight-line segment OA.
Point D merges with A, and C with O.

x B

I
2§ —~ k=2

/|

1.4 Y\\
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o \

02 04 06 08 1.0 12 1.4 %

Fig. 406
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For “semi-follower” torque the modes of motion with increasing amplitude
are not found. Only new equilibrium states (w = 0) appear for certain values
of M and P.

The determination of critical states here can be produced analytically,
but there is no need of doing this as there is an according program and it is
easier to compute these calculations by the algorithm already used.

The curves bounding the stability region are shown in Fig. 406 and do
not require explanation.

151. Let’s assume that cross-sections of the strip do not distort. Then
axial strain can be presented as a linear function in y (Fig. 407)
€z = €0 + Y,

where 3¢ is variation of strip curvature in plane xy. Axial stress will be as
follows

0 =E(eg+ sy —at),
where o't is thermal strain.
X

h

Fig. 407

As normal force in a cross-section and bending moment M, are equal to
zero then

/(rrdA:(), /nxydA:O,
A A

whence

o = 7

1 [to/2 12 [+b/2
/ atdy, »x= T3 atydy.
b ) b —b/2

If twisting appears stresses 0, produce the resultant moment with respect
to the z axis (Fig. 407) which is equal to

d d,
M, :/yﬁ o,ydA, ~or M, :ﬁ/nnydA.
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Moreover, the moment of shear stresses occurs in the strip under twisting.
As is well known, it is equal to

1 dy
M, ==bh3G—=.
3 dx

The sum of these moments is equal to zero, therefore
1
=bh3 G + / o.y?dA=0.
3 A

Substituting here o, we find

+b/2 th
—/ (g0 + 2y — at)y?dy = ———

—b/2 6(1+pu)’
where p is the Poisson coefficient. By excluding ¢y, we obtain
+b/2 b2 th
at(y’ —=)dy=—. (1)
/—b/2 12 6(1+ p)

This is the condition of transition to a new equilibrium state.
It should be noted that for the linear law of temperature distribution
along axis y, i.e. for

at = A+ By,

the left side of the expression (1) vanishes for any values of A and B. Hence,
for linear distribution of temperature a new form of equilibrium does not
exist.

a{

Fig. 408
Let’s suppose that the thermal strains in the left half of the strip are
distributed by quadratic law (Fig. 408)

74at1 2
ti—b2 Y.

Then the expression (1) takes the form

@
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O 4at b2 bh?
/ b21 Q(yQ—E)dyZGH—H,
—b/2 H
or
PR LR
Tl B

It should be noted that for a relatively thinner sheet the temperature of
stability loss (buckling) is lower.

152. Let’s return to the solution of problem 123. It is easy to make sure
that the pipeline, clamped by one end, does not have equilibrium states ex-
cept the initial straight configuration. Actually, let’s use from the solution of
problem 123 that

y=Asinazr+ Bcosax+ Cx + D,
but for the different boundary conditions, namely:

atz=0 y=0 and 3y =0,
atz=1 y’=0 and y"” =0,

whence

B+ D=0,
Aa+C =0,
Asinal + Bceosal =0,

Acosal — Bsinal =0.

It follows from the last two relations that nonzero solutions for A and B
exist if

sin? al + cos® al = 0,

which is impossible. Hence, A = B = C = D = 0, and the rod does not have
equilibrium states different than the initial straight one.

It is necessary to look for the modes of motion [16]. It should be noted that
existence of these modes is easily revealed, if the compressed air is applied
through the elastic rubber hose. Just the same oscillatory motion can be
observed in the process of water delivery through a hose lying, for example,
on wet slippery ice during the skating-rink flooding.

Let mass of pipe per unit length be my, and mass of liquid per unit
length be my. The masses of segment dz (Fig. 409) are my dz and mp dz
respectively. The inertial force arising at the segment da during the pipeline’s
transverse motion is equal to

Py

7% (mr + mp) dz.
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y v

As the particle flow rotates with angular velocity d%y/0xdt the Coriolis ac-
celeration appears. The corresponding inertial force will be:

2

—2 ozt

With the same sign we write the expression for force, caused by the curvature
of flow (or by normal acceleration):

vmp dx.

82y

T 922
The resultant of these forces divided by dx gives the intensity of the transverse
“external” load. Hence,
oy 9%y 8%y Oy
Ej = =-"% —2 T o2 :
Dzt~ or2 MT T ML) =205, vmL = vy

Let’s rearrange the equation to the dimensionless form. Assume, that

'U2mL dz .

EJ

y=Ylexp[(e +iw)apt], ag= m, z=1C. (1)
Then we arrive at

'y 5 d*Y dy

— + + 28 (e +iw)— + (e +iw)?Y =0, 2

O PR e+ i) e
where

= 3

= ‘/mT+mL (3)

The first parameter characterizes the flow rate of the liquid through the
pipeline, the second parameter the ratio between the mass of the liquid and
mass of the tube.
At the clamped end Y = 0 and dY/d¢ = 0 for ( = 0. At the free end of
the rod for { = 1 we have
2 3
Y 0 and 7Y

c® dqct
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Now the problem is reduced to determination of this domain of parameters
(B and 3¢ variation, where the real part of exponent index € + iw (1) takes
positive values.

Taking into account that we can commit the determination procedure to
a computer we set

Y =) Cul

It follows from the first two boundary conditions that Cq = C; = 0. Two
other conditions take the form

ZCnn(nfl) =0, ZCnn(nf 1)(n—2)=0. (4)

Assuming the coefficients C'y and C3 as unknowns let’s write the equation
(4) as follows:

aCo+0C3 =0, cCy+dCs =0. (5)
The condition of nontrivial solutions existence is obvious:

ab

Cd‘—ad—bc—O. (6)

Now let’s transform the complex form of the equation to the real-valued
one. Suppose that

Y=Y +iY;

and respectively
Con=An+iBn, Yi =Y A", Yo=) B,("

By substituting Y in equation (2) and separating it on real and imaginary
parts, we obtain recurrence formulas for A, and B,, determination:

1

An = n(n—1)(n —2)(n — 3) (=5 An—2(n = 2)(n = 3)
—2}3 %EAn,‘g(’n, - 3) + (UJQ — EQ)An,Ll
+28xwB,_3(n — 3) — 2weB,_4],
B, = - [~ Bu—aln —2)(n - 3) ™

n(n—1)(n —2)(n — 3)
—2BeB,_3(n—3) + (w? —€?)Bp_4
—203xwA, _3(n—3)—2weA,_4].
Equation (6) can also be split into real and imaginary parts, supposing
a=a1+taz, b=bi1+ib2, c=ci1+ice, d=di+ido.
Then we obtain two equations:
Dy = a1dy — agdy — bycq + baca =0,
DQ = aldg + G,2d1 — b102 - b2C1 =0. (8)
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Specifying Co = 1 (A2 = 1,By = 0) , and C3 = 0 (A3 = B3 = 0), and
comparing equations (4) and (5) we can see that the first sum (4) is equal to
a, and the second is equal to c. Hence for Ao =1 and By = A3 = By = 0 we
have

ay =Y Apn(n—1),
as =Y Byn(n—1
c1 =Y Ann(n—1
¢y =Y Bnn(n—1)(n—2).

If we specify that Cy = 0, and C3 = 1, i.e. accept By = Ay = B3y =
0, A3 =1 and calculate coefficients A, and B,, by the recurrence formulas
(7), then we obtain

by =Y Apn(n—1),
by =Y Bun(n—1),
dy = Apn(n—1)(n—2),
dy = Bun(n—1)(n—2).

This is the procedure for calculating the values entering equation (8). Thus
the algorithm for computer calculations is defined.

At first we must construct a subprogram for calculation of values Dy and
D, (8) for the fixed parameters s, 3, w and ¢. Power series converge quickly
and values A, and B, for n > 30, as a rule, have magnitudes less than
machine zero.

Then for fixed s and 3 we determine such ¢ and w that satisfy the system
(8). The search is accomplished by means of simplest linear interpolation.
Specifying three points in plane €, w, we determine three values of D; and
D, (8) for these points. Using three values of D1 and Dy we draw two planes
in space:

Dy = D;(e,w) and Dy = Do(e,w).

Y

)
)
)(n —=2),
)

The line of their intersection crosses the plane ¢, w at the point with
coordinates corresponding to the roots of equations (8). Then we determine
the next approximation until the prescribed accuracy is satisfied. If we pro-
duce calculations while changing the parameter 3, then we can observe the
variation of frequency w and damping parameter ¢ in dependence on flow
velocity for given s, i.e. for given ratio between masses of media and tube.

Several such curves are shown in Fig. 410. It is significant that in the
problem under consideration we do not observe frequency mergence that we
encountered earlier. It can be explained by the fact that flow velocity is
not only exciting but at the same time the damping factor is appearing in
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presence of Coriolis forces. Damping exists even for very small velocity v, and
the roots of the characteristic equation will not be imaginary but complex.
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Fig. 410

If flow velocity grows then the first frequency w (for small s) increases
and then decreases and vanishes, but value ¢ in all the cases remains negative.
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It means that the increasing deviations of the first mode type do not occur,
but oscillatory or aperiodic damped motion takes place.

The first transition of € to a positive half-plane occurs for frequencies
corresponding to the second mode. The corresponding curves in the plot
(Fig. 410) are noted by index (g2, wa).

Dependence of oscillation frequencies w and critical flow velocity 8 on the
parameter

mr,

g = | —L
mr +mp
appears intricate (Fig. 411). For 3 < 0.545 vibrations of second mode are
excited. For greater s¢ vibrations by third mode occur, revealed by a sharp
frequency increase. Then for greater relative mass of the liquid the vibrations
occur by fourth mode and frequencies increase. In a limiting case where tube
mass is small in comparison with mass of the liquid the frequency and critical
velocity unrestrictedly increase. If rod mass is equal to zero (3¢ = 0) then the
system is stable for any flow velocity.
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153. In this case the rod also can loose its stability of plane bending
mode, but it will happen under large displacements of the considerably bent
rod. That excludes the application of ordinary theory of plane bending mode
stability.

When we talk about lateral buckling of the strip then the word “narrow”
is added not to show that in the opposite case it will not buckle, as it may
seem at first sight, but in order to underline that the beam practically is not
bent in the plane of bending at the moment of stability loss.

The tangling of the device thread (hairspring) is an example illustrating
the fact that the loss of plane bending mode stability may occur also for the
strip being bent in the plane of minimal rigidity.

Everybody knows the plane spiral spring which is installed at the balance
axis of pocket and wrist watches (Fig. 412). A hairspring is also installed at
the measuring cursor axis of many measuring devices: manometers, barom-
eters, airplane speedometers, altimeters, voltmeters, amperemeters among
others.

Fig. 412

The strip of a hairspring installed in a device is bent in the plane of
minimal rigidity. For a certain angle of axis rotation, which is called the angle
of tangling, the hairspring looses its stability of plane bending, it tangles.
That is why the operating angle of rotation is set always lower than the
angle of tangling.

154. The proposed problem provides a rather wide scope of research. On
the one hand, we can restrict ourselves only to stability analysis with respect
to axisymmetric turnover. Such a solution is rather simple. On the other hand,
it is interesting to consider the existence of nonsymmetrical equilibrium states
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and establish the conditions of ring exit from its plane of curvature accom-
panied by torsion. Here it is necessary to derive preliminarily the equilibrium
equations of more general type than are used for stability analysis of the
plane bending mode.

At first let’s consider the stability of the ring with respect to axisymmetric
turnover.

As a result of preliminarily turning inside out the initial hoop (circumfer-
ence) strain € = 2z /R arises at the point A with coordinates z,y (Fig. 413).
Let’s impart small axisymmetric angular deflection ¥ to the ring. Point A
moves to A, and additional elongation arises. The increment of hoop strain
is equal to the ratio of projection of segment AA’ onto the z axis to the radius
R:

Qe 24

[cos(a — ¥) — cosq].

| y v
o
A
A
b 0 *
«—}
R
Lt T
Fig. 413

As angle 0 is small let’s replace sin ¢ with 9 and cos?¥ with 1 — 192/2 and
then

2r 1 9?
Ae== 4 = (y0—a—).
ethae R+R<y Iz)

The elastic strain energy will be

1
UZ_//(E-i-AE)QdAdS,
2 sJA

where integration is produced along the circular arc s and by cross-sectional
area A.
As strain is axisymmetric then € + Ae does not depend upon s, and then

2
E s
:% A<2x—x3+yﬁ> dA,

or
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1192
%@7>

where J, and J, are the area second moments with respect to the principal
axes x and y.
The derivative of U by ¢ is as follows:

TE 2

U=
R

+ JM] ,

oU rE 0
— = |-2(2——)¥J, +2J,9| .
% R [ 2= )0y + ]
The derivative vanishes at ¥ = 0. Hence the ring turned inside-out is in
equilibrium state. In order to establish whether this state is stable or unstable,
let’s take the second derivative.

82U> TF
= — —(—4J, +2J,).
(&92 o—o R (=4 )
. (82U 8*U

— > 0 the equilibrium state is stable, if —2> < 0is
9% ) o0

9¥=0
unstable. Hence the condition of stability of the inside-out ring under the

axisymmetric disturbances is as follows:
Je>2J,, or b>hV2.

Now we pass to a more general analysis of the problem.

Let’s derive the equilibrium equations of the rod bent in its principal plane
in the presence of small disturbances connected with torsion and bending in
the second plane. Let’s do this in a more general form than required for the
given problem in order to apply the obtained equations further.

So let’s consider an element of the beam with small curvature of length ds
(Fig. 414). Six internal force factors occur in a rod cross-section. At the invisi-

ble opposite side the reciprocal force factors having corresponding increments
occur. In order to simplify them they are not shown in the figure.

i

- M+M
\ DO y

Fig. 414
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At undercritical state only the force factors lying in the plane of curvature
My, Qo and Ny are nonzero. After additional bending and torsion of the
beam the additional force factors: Q,, @y, N, M,, M,, and M, arise. We
assume that they are small.

Let’s denote small increments of curvature in planes yz and xz as p and
q, and twist, as r, and derive the linear equations of the deformed element
equilibrium. The principle of linearization is ordinary. Force factors of the
undercritical state are introduced in equilibrium equations with account of
element shape variation, and small additional force factors — disregarding the
shape change, i.e. by the configuration of the undercritical state.

In order to make this procedure more clear let’s derive the first equation
of the equilibrium in greater detail.

The balance of all force projections onto the z axis yields

QxO + Qx - (on + Qz + deO + de)
—(N0+N+dN0+dN)

X <]i% + q) ds — (Qy + dQ,) rds = 0.

If we neglect values of higher infinitesimal order and products of @, by ¢
and of @, by r we obtain

No N
—QLo— Q. —— + N — =0.
QIO Qz R + Nog+ R
At undercritical state @, = N =0, ¢ = 0, and therefore
Ny
wt— =0. 1

By summation of the first and second equation we arrive at

N
Q;0+N0q+E:O.

Similarly, if we balance the sum of force projections onto the axes y and
z and resultant moments with respect to three axes we obtain five additional
equations. Let’s write out the system completely:

N
Q;0+Noq+E=0, (2)
Q, +7Qz0—pNo =0, (3)
N,_Qwoq_%zoa (4)
M,
M;—i—Et—Qy—Mor:O, (5)

M, +Q, =0, (6)
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;M
M, —
R

In addition to equation (1) we obtain two further equilibrium equations
for the undercritical state. Totally we now have three equations:

No

o+ = =0, 8
QxO

Ny — =2 =

0 R 07 (9)

Mj+ Q. =0. (10)

In all the above equations under 1/R we mean the curvature of the beam
in the undercritical state which is dependent on the value of moment M.

The increments of curvature p and ¢ and twist r are proportional to
moments M,,M, and M, :

M,=EJ,p, M,=EJ,q M=GJr

Now from the general equation let’s return to the considered problem. For
the inside-out ring the equations (2)-(7) are simplified, as Ng = Q¢ = 0, and
M, and 1/R are constant. Thus we have

N

, N 11

Q+5 =0, (11)

Q;:(), (12)
o

N - == 13
7 =0 (13)
M

M3’6+#—Qy—]%r:0, (14)

My+Q.=0, (15)

, M,

M{— =5+ Mop=0. (16)

If we differentiate equation (14) by s, taking into account that Q) = 0 we
obtain
1

M)

Ml — Myr' =0,
or
/! 1 /
EJep" + (5 GJi— Mo)r' = 0.

Equation (14) will take the form:

1
GJir' = (]—%EJIf M) p. (17)
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Eliminating r» we arrive at

]{72
P’ tmP= 0,
where
R? 1
k2 = ——(=GJ —=EJ, — My). 18
57 GJt< L= Mo)(5 0) (18)

Therefore we obtain
Asi ks 4B ks
= Asin— cos —
p R R’
1 1 R k k
r= G—Jt(EEJx - ZVIO);(—ACOSES + Bsin;f) +C.

As the ring is closed, functions p and r» must be periodical, i.e. return to
the same values under variation of s by 27 R. Hence k£ must be an integer.
In the case of the inside-out ring

2
My = EEJy,
and from expression (18) we get
EJ EJ,
K =n>=(1- 1— 2—3 19
w1 25 ) (19)

where n is any integer number.

If EJ, = 2EJ,, then n = 0, and we arrive at the case of axisymmetric
overturn of the ring. Now let’s suppose that EJ, > 2EJ,. Then the second
multiplier on the right-hand side of expression (19) will be positive. Let’s
determine the sign of the first multiplier

bh3
E 12 1
1_2_‘]11_1_2#:1_ﬂ
GJy _E s 35
TR

The coefficient of torsion rigidity 3 for a beam of rectangular cross-section
is less than 0.333. Hence, the written expression is negative, and therefore
n? < 0.

Thus, if EJ, > 2EJ, or if b > hv/2 then n? < 0 and nonsymmetrical
equilibrium states do not exist. It means that the condition for stability of
the inside-out ring

b> hy/2

is correct for nonsymmetrical modes of buckling as well as for symmetric
1

ones-.
! The problems that are close to the considered one and connected with ques-
tions of ring overturn under action of distributed and concentrated moments are
considered in detail in [5].
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155. The solution is completely described by the equations obtained for
the previous problem.

If heat is supplied through the internal surface then t; > t9, and the
constant moment arises in the ring

JWo:EJya%,

where « is the coefficient of thermal expansion.
Value k? (18) must be an integer

2
n?o —f <GJt — MO> (EJI MO> ,

T EJ.GJ, \ R R
whence
1 2
My = Z% [EJx +GJ: £ \/(EJI +GJ) +4EJ. GJ; (n?2—1)|.
The least positive value of moment My will be for n =0
EJ,
j\/fot = R .

(The case of n = 0 and My = GJ;/R does not satisfy the condition of
displacement continuity.)

If heat is supplied through the external surface and ¢, > t;, then we ought
to find the least by a negative value of the modulus for moment AMj. This
will be the case for n = 2

1
Mo = 5= [\/(EJI +GJ,)? +12EJ,GJ, — EJ, — GJ,

Thus under internal heating the stability loss occurs by symmetric mode,
and for external heating by nonsymmetrical mode with twisting.

156. The equations obtained in solving problem 154 also give the answer
for the specified question.
As 1/R = 0 the equations (12), (14) and (16) will arrive at

Q,=0, M,—Q,—Myr=0, M/ +Mp=0,

where the axes position corresponds to that shown in Fig. 415.
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Substituting M, = EJ, p and M; = GJyr and excluding r we get

But My = EJ,/R. It should be noted that R is understood here as the
initial radius of the uncut ring but not a radius of curvature at an undercritical
state.

Let’s denote

2
(EJy)
GJ.EJ,
Then

= k2.

ks ks
= Asin— + Bcos—.
P R R
The angle of cross-section rotation with respect to the x axis is determined
by integration of p by s :
R

R ks . ks
ﬁw—Ak (1—COSR>+BkSIHR.

Here the arbitrary constant of integration is already chosen in such a way
that at s = 0 the angle ¥, vanishes.

In order to obtain the transverse displacement in axis y direction we
should integrate the last expression by s once more:

R R k R? k
y:A; (s;sin ;) Bﬁ( cos;f) .

Here the constant of integration is again chosen from the condition that
the displacement at the origin of coordinates is equal to zero. As for s = 27 R
values of ¥, and y are equal to zero and we arrive at the two equations

A(1 — cos 27k) + Bsin2rk =0,
R R
A(2TR — —sm 2rk) + B— . (1—cos2mk)=0.

Equating the determinant to zero we find the least root 27k = 27. Hence,
k =1, and then

ijy_ =1
VGJ EJ,
But
b3h bh®

EJ, EE, EJ, EE’ GJ, =

from which it follows that
LS
K2 68

3,
2(1+ )5h
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Let’s assume that u = 0.3. As regards the coefficient of torsion rigidity 3
it has a complicated dependence on ratio b/h.

The tabulated data of coefficient 3 are given in textbooks on strength of
materials, but they are not suitable for the solution of this transcendental
equation. This is why we use the relation taken from [3]

1[ 192 h 1 i7rb-|
S L — tanh 22| |
B 3[ s i QhJ

=1,3,
After several trial calculations we find the solution of equation (1):

2—116
y = 116,

The straight equilibrium state is stable for
b>116h.

157. In the problem we consider only three geometrical discrepancies (in
plane). While mounting, the discrepancies out of plane will naturally appear
too. But now we refer them to the category of disturbances which for an
unstable equilibrium state guarantee spontaneous growth of displacements
out of plane and the following transformation of the ring axis line to the
space curve.

At first we have to determine forces arising while the construction is
assembled. For this purpose we apply the canonical equation of force method

(Fig. 416)
011X1 + 612X9 + 613 X3 = Ay,
021X1 + 022 X9 + 023 X3 = Ao, (1)
031 X1 + 032X9 + 033 X3 =0,

where X; and X, are the sought forces, and X3 is the sought moment, ;4
are the displacements caused by unit forces [7].
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The unit moments will be
M, =R(1—cos¢); My =—Rsiny; Mz=1,

and coefficients

27
M; M,
o= [ TR Gik=129)
0

EJ,
whence
b11 = 3;23 L 81 = a1 = ba = Sy = 0,
513:531:27TR2, 22:7T_R3, 33:27TR~
EJ, EJ, EJ,
Axes x and y in a cross-section are shown in Fig. 417.
| Y
L :
— R
Fig. 417

Substituting the determined values 8;; in equations (1) and solving them,
we derive

EJ, EJ, EJ, (3
Xl:,]r_Rg(Alir&R)’ XQZW_RéAQ’ X3 _Rz;< ’19R A)

The bending moment in ring cross-sections is determined as follows:

M = X1 M; + XoMy + X3M;

E
;2 [ YR+ (VR — Ajcosyp — Agsinz,b}
Let’s denote:
S VB, AEL A E)
" xEJ’ ' 7REJ, ° #REJ,’
then

FE

M = ; [ 6251111/1+(90—61)cos¢]

Let’s replace the origin of angle 1) to another point and assume that:

) . o — 61

= sin, =costhy, v +vYy=¢
\/ 8 + (60 — 61)? 83 + (60 — 61)?

Now bending moment M, = M of the undercritical state arrives at
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EJ, (1
My = 7 (—200+Acosnp>,
where

A= \/53 + (6 — 61)2.

Thus instead of three independent parameters A, A, and ¢ we obtain
only two. That substantially simplifies the following interpretation of calcu-
lations.

The following equations we take from the solution of problem 154. It
follows from the equations (10) and (8) of problem 154 that

dMy EJ, .
Qzo0 = — ds = R2 ASIH@?
My = s T @ Acosyp.

Further we analyze the conditions of small out-of-plane bending of the
ring. We use the equations (3),(5) and (7) of the same problem

aq,

Q +TQ$O_pN0207

ds

dM, M,

Pr 2t o Mer =
ds + R o or =0,
d M, M,

— ——+ Myp=0;

ds R + op 05

here
p= ]\/[x/(EJx)y T = ]\/ft/(GJt),

p is curvature variation out of plane, and M, is the corresponding bending
moment, r is twist, M; is torsional moment, and @, is out-of-plane shear
force.

In the three above equations we should only replace @.q, Ng, and My
by functions derived earlier, and then transfer the equations to dimensionless
form. After transformations we arrive at

Q,' = —A[(rR)sin ¢ + (pR) cos ¢,
(PR = —g(rR) + @y + (300 + Acos ) OR)

(PR)' =2 (1~ 50— Acos o)(pR).
g

On the left-hand side of the equations_the derivatives of three sought
functions are taken with respect to ¢. Here Q, = QyRZ/(EJI) is the dimen-
sionless shear force, (pR) is the dimensionless increment of curvature and
(rR) is twist. The ratio of rigidities GJ;/(EJ,) is designated as g.
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The equations allow to draw the stability region of the ring plane equi-
librium state in plane A, 6, for fixed parameter g.

In general, the determination of the region bounds is performed as follows.
First, specify magnitudes of A and 6y. The integration of equations can be
started from any value ¢ = ¢, specifying any value of Q9, (pR)? and (rR)°.
When ¢ arrives at the value ¢, + 27 we get three finite values of the sought
functions @27, (pR)*" and (rR)*". Each of them is linear in specified initial
values, i.e.

Q_ff = an@ + a1z (pR)" + ai3 (rR)°
(pR)*™ = a1 QY + aza (pR)° + azs (rR)°
(rR)*" = 03168 +az2 (pPR)® + ags (rR)°.
But as Q_f!’r :ag, (pR)?™ = (pR)°, (rR)*™ = (rR)® then
(a1 — 1) Q% + a12 (pR)® + ar3 (rR)° = 0,
a2162 + (a2 — 1) (pR)® + az3 (rR)° =0,
a31@ + a3z (pR)° + (ags — 1) (rR)° = 0.

The condition of nontrivial solution existence that means an exit of the
ring deflection curve out of plane is the equality to zero of the determinant:

a1 — lais a3
ag1 a2271a23 =D=0.
as1 ass azz — 1

The determinant terms a;, are calculated by ordinary method, ie. by
thrice-repeated integration of differential equations with the initial conditions
Q_g =1, (pR)" = (rR)? =0, then QY =0, (pR)” = 1, (rR)° = 0 and finally
QY = (pR)° = 0,(rR)® = 1. The method is well known as the method of
initial parameters.

It seems that an algorithm can be realized very easily. But during cal-
culations we meet the unforeseen obstacle — a sharp loss of accuracy while
calculating the determinant. We loose at least six to seven significant digits.
And as the terms of determinant D are obtained as a result of numeric in-
tegration, it should be performed with unjustified high accuracy. While the
probable results can be nevertheless obtained, the sense of the dissatisfaction
remains.

That is why it is more preferable to expand functions in trigonometric
series:

(pR) = Ao—l—ZA cosip, (rR) ZB sin ip.
=1
After substitution into equations and collectlng terms we obtain the ex-
istence condition of adjacent space equilibrium states in the form of equality
to zero of the determinant of banded matrix being five terms wide:
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ail @19 0 0 0 0
agy agz az 0 0 0
0 aszzasz azs a3z 0
0 ag2 as2  asq  ags ass

OO OO

0 aji—2Gii—1 a5 ;441 Qiiq2 0

where
a1 =1—00/2, a0 =—A/2, ag1 = A,
agg = —g —1+00/2, ass = A/2, ag, = —A(3g +00/2)/2,
ags = 4g + (1—00/2)(—g +60/2) — A%/12, a4 = A(1— 26)/6,
2 2 Aizoyi=1)

90 T Ty Mm2 T T gy Gl T T g
A% (i—1)* 41 1 6o

wi=g(i—17°+ =+ 1=200)(—g+7 )

a;, g(Z ) + 2 (2_1)2_1—’_( 2 0)( g+ 2)

Ai—2—0y(i —1) AZi—2
e Q; 42 = —— .
2 i ) T2 4

Qj,i+1 =

The calculations were performed with the determinant 10x10 and in fact
they did not demand excessive computer time. The stability regions for sev-
eral values of g = GJ;/(EJ,) are shown in Fig. 418.

The parameters 6y and A are calculated beforehand by means of specified
Ay, Ag, ¥. If the point with coordinates 6y, A appears in the given diagram
to be lower than the corresponding curve the plane equilibrium state of the
ring is stable.

A

T~
N
NS
Ov\\
/)
V%
.
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The antisymmetric modes of equilibrium were also considered:

(pR) =Y Assinip, (rR)=Bo+ ) Bicosip.
=1

i=1

but they gave the greater values of critical parameters 83 and A.

158. The probability of rod buckling to one or another side is determined
by its initial deflection, random imperfections of material and deviations of
force P action line from the rod’s axis.

The extent of random factor influence depends on rigidity of the rod. The
most probable is, obviously, bending in plane of minimal rigidity, i.e. in our
case with respect to the axis z (Fig. 419). We only have to verify whether
bending rigidity changes under variation of moment sign. In the case where
rigidity remains invariant the rod buckling to the right side or to the left
will be equiprobable. If rigidity is different then the most probable will be
bending to the side of minimal rigidity.

z, z
Ja

%

DAL

AC 1

4

&%

S
S

N
)
AN

A

4%
do W‘mﬂm” 2

Fig. 419 Fig. 420

Suppose that the stress-strain diagram of material compression is given
(Fig. 420). The stress o arising in the rod’s cross-sections exceeds the yield
limit (point A in diagram) according to the problem set. Under column bend-
ing the layers disposed at t he concave side are loaded additionally and stresses
increase in accordance with the straight line 1. Layers at the convex side are
unloaded and the relation between ¢ and ¢ is plotted by the straight line 2.
The tangent of the straight line 1 inclination angle we denote as D, and of
straight line 2, as E. It is obvious that E is the modulus of elasticity. As a
result, the diagram of additional bending stress distribution takes the form
of a piece-wise line (Fig. 419). The position of the neutral line z; is derived
from the condition

Yoo
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/AAU dA =0, (1)

as normal force in the cross-section does not change and is permanently equal
to P.

In case of column buckling to the left, the axis z;deflects from the central
axis z to the left also. If the column buckles to the right side, the neutral axis
will move to the right.

Let’s consider the first case. The axis z; is displaced to the left. At the
convex side of column we have

AU:E% (1 > 0),

and at the concave side

Ao = D% (1 <0).

According to expression (1) we have

E/yldA:D/ yldA,

left right

where the first integral is taken by the area disposed at the left side of the axis
21, and the second, at the right side of the axis z; (Fig. 419). Determining
the first moment of the mentioned areas with respect to the axis 27, we find

by = 12_ad(1+2d7\/6d+3d2),

where d= D /E.
If the rod buckles to the right side then the axis z; displaces rightward
by the value

bgz—ad)(2+d—\/1273d2).

21 —

Now let’s determine the moment of stresses Ao with respect to the trans-
verse axis z1. It should be noted that the axis can be taken arbitrarily as the
normal force due to stresses Ao vanishing for specified b;and bs.

While buckling of the column to the left

M'lzll{/ y?dA=D / y%dA}.

left right
The expression can be rewritten as
EJ
My =—=,
P1

where
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2 d
Ji = 5(1(2(1 — b))+ 3 [8a(a + b )3 — 6ab?] .
Eliminating b;, we obtain
8a'd
(1—a)?
While buckling of the column to the right side we similarly obtain:

4 J—
% {1072d+d27(47d)\/12d73d2}.

In the variation range of d from zero to one, we obtain

Jo < Jp.

I = [74+22d 47 — a2+ d)Vod +342].

Jo =

Hence the probability rightward deflection of the column is greater than left-
ward. The column buckling is more probable in the case when it bends in
such a way that the opened side of the shape is at the concave side of the
beam.

159. Loss of stability is possible for tension springs with preliminary tight-
ened coils.

The coils of such springs are tightly compressed. The contact pressure
between coils decreases while increasing the tensile force. Elongation of the
spring occurs only for force which is greater than the force of preliminary

tightening Py (Fig 421).
f P

P A

Po/

‘ A
P

Loss of stability takes place with skewness and bending of coils (Fig. 422).
It turns out that each coil “does not await” the moment, when it can move
away from the neighbouring one, but slides along the surface of contact,
bending in its plane. Work done by force P during its axial displacement
transfers to the energy of coil bending

Fig. 421
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Fig. 422

The schematic model for critical force derivation is shown in Fig. 423.

P
Fig. 423

According to formula (3) (see the solution of problem 53) we have

Q
Csh ’

But @ = PAY. Excluding @ we obtain

A =

P = Csp.

So from relation (4) of the same problem

_ EdY
" 8D3n’
As in the given case we have [ /n = d, then
L _Ed
8D’

160. Let’s consider the system in a configuration deflected from the ver-
tical state configuration.
Equations of equilibrium for the node (Fig. 424a) will be as follows:
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lP
(X,é//\ ‘\t(x,‘1
N, N,
a)
Fig. 424
P = Nysina; + Nysinag, Njcosa; = Ngcosas. (1)

From the triangle ABC (Fig. 424b) we have
(I —Aly)cosaq + (I — Alg) cosas = 2lcosayg,
(I— Aly) sina; = (I — Alp)sin g . (2)

Let’s assume that deflections from the vertical line are small and deflec-
tions in vertical direction are arbitrarily large. Let’s denote as

a2:a+/63 alza_ﬁa

where angle « characterizes the displacement of the node downward, and
small angle § the displacement in horizontal direction. In analogy
Ny=N-AN, Ny=N+AN.
Let’s denote by ¢ the rod stiffness on compression, then
N — AN N+ AN
Ay =———, Al = Sty .
c

Further we substitute oy, a9, N1, Na, Al and Aly in equations (1) and
(2) and linearize them by neglecting small products 3 AN. Only the first
powers of these values are held. As a result instead of (1) and (2) we obtain

P =2Nsina, Nf@sina— AN cosa =0,
N N AN
<l——>cosa:lcosa0, (l—-)ﬁcosa——sinazo.
c c c

The first and the third of the equations allow to determine angle « versus
force P for the symmetric equilibrium state
P
— =sina(l— 3
2cl ( (3)
The second and the forth equations are homogeneous in unknown values

B and AN, characterizing the lateral deflection. Let’s equate the determinant
of this system to zero

cos ap )
cosa /

N sin « — cos «

( N) 1 . =0,
| —— | cosa —=sina
c c
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whence we have
Ny lecos?a=0.
¢
Expressing N through P, we arrive at
P
2cl

or according to relation (3)

. 2
—sinacos“a =0,

cos ag = cos o — cos® av.

The dependence of cos ag upon cos « is plotted in Fig. 425. The plot must
be interpreted in the following way. The angle «g is specified. The system is
not loaded. Here @ = o (point A in Fig. 425). While loading the angle «
decreases and cosa grows. Point B characterizes transfer to a nonsymmetric
shape. The corresponding value of force P can be determined from relation
(3). When angle o becomes small enough, the symmetric equilibrium state
becomes stable again (point C'). Existence of nonsymmetric states is possible
only for cos ag < 2v/3/9 or for ag > 67025

COs Uy

04

23 | A N
9 B C \
0.2

0 0.2 0.4 0.6 0.8 1.0 cosal

Fig. 426

The behaviour of the system in the postcritical state can be analyzed if we
refuse the assumption that the angle « is small. However, here it is easier to
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solve the problem by an energetic approach. If we introduce the displacements
A and f (Fig. 426) then it is easy to derive the following relations from the
analysis of the tetragons CB BBy and ABB1By:

lecosag+ f = (I — Aly)cosay
Isinawo — A = (I — Aly)sin o,
lcosag — f = (I — Aly)cosay,
Isinag — A = (I — Aly)sinay .
Eliminating oy and as, we obtain
Aly =1 —/(Isinag — N2 + (lcosag + f)?,
Aly =1 —/(Isinag — \)? + (lcosag — f)2.

The total potential energy of the system will be
1 1
= Ec(All)Q + EC(AZQP — P)X.

The first derivatives of U by A and f are equal to zero in the equilibrium
state, and stability or instability of the equilibrium state is defined by the
sign of the second derivatives.

We leave to readers the opportunity to perform this analysis themselves.

161. The problem falls into a category of the most difficult, and the
obstacles begin already while determining internal forces.

We assume that the rod’s mass per unit length is m. Let’s determine
interaction forces of segments of length dz (Fig. 427) and other rod elements.
The segments AB and AC generate forces from the left and the right sides
of section dx which are balanced. The remaining C'D = [ — 2z pulls segment
dx rightward and the force is derived by integration of the interaction forces
of segments dx and dx;.

B A c D
|

X dx X

Fig. 427

According to Newton’s law the elementary interaction force is

dm dmq
(1 —x)?’

f

where f is gravitational constant, p is material density, and A is area of cross-
section. If we divide this force by dx, then we obtain the intensity of external
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longitudinal force ¢ in a point A, which is caused by gravitation of the dz;
segment’s mass

_ fp2A%dx,
- (z1 —a)
We integrate by x; from 2z to [ :
l
d
q= prAQ/ —
2z

(21 —2)?’

q=fp*A® (l L ) : (2)

r l—=x

dq (1)

or

The intensity g at the rod ends becomes infinite which seems to be strange
by itself. But that is not at all the case.

Normal compressive force N at the ends of a rod cross-section must vanish,
however we have

N:/ qdz = fp*A*Inz(l— ) |} . (3)
0

And this means that normal force becomes infinite at the rod’s ends as well
as intensity q.

The paradox consists in the fact that we consider a one-dimensional rod,
while it has a transverse measure and determination of forces ought to be
produced with regard to this fact. This, however, is met by technical difficul-
ties.

Let’s restrict ourselves only by the case of rectangular cross-section a x b
and consider two elements dz and dz; (Fig. 428).
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Mass pdx dy dz (point A) is attracted by mass p dzy dy; dz1 (point B) by
force

2
FE dvdydz day dys dz,
T

where r is the distance between points A and B :
= (21— 2)* + (1 —y)* + (21 — 2)%

In order to obtain a projection on axis x, the derived force should be
multiplied by the cosine of the angle between segment AB and axis z, i.e.
by (21 — z)/r. Thus, in order to obtain the correct value dg (1) we have to
preliminarily integrate by y; and y (from zero to a) and by z; and z (from
zero to b) the following expression:

fo*(xzy — x) doy dy1 dz dz
(1 —2)2 + (y1— y)? + (21 — 2)?]

This integration is cumbersome enough but can be produced in elementary
functions. Omitting computation we present the final result as follows

—r)2 2 —

dq:2fp2(x1—m){aln\/(x1 pfta b —a
Ve —z2)2+a2+ ¥ +a

V() — )2+a2~a+bl iz, —2)2+a2+b02-b
—_————— n
Ve —z)2+a2+a Vi —z)2+a2 +b2+b

[l — 22 + 02 —b S
—bm¢gl+;2i_lﬁ+b—2\/(:cl—x)2+62 (4)

L —

+2v/ (z1 — )2+ a? + B + 2x; —2) — 2y/ (21 — )2 + a2
abm

3/2

—aln

ry — X

+2

arctan Vizy —z)2 + a2 +b2| —
ry — X a xry —

}dIl

In order to find the distributed load g(z), the obtained expression should
be integrated by z; from z; = 2x to 1 = [. But we restrict ourselves by the
analysis of the obtained function in the vicinity of the left end of the rod only
as the transverse measure of the rod (a and b) is significant only at relatively
small distances z; — z. Let’s introduce the variable (z; — x)/a = ¢ which

varies from zero to some current value ¢. In order to simplify calculations
let’s also accept b = a, i.e. we will consider a square section. Then:

¢<2+2 W 1-1
= fp%a®2{(¢* - 1) — ¢
1= a2l \/g +2+1 \/c +1+1

2 2
_ 2 _Z 3/2 | Z/r2 3/2 , 42,3
2\/c +2+2\/< +1 3(§ +1) +3(< +2) +3C
+2¢ arctan (g\/g2+2> —7(} (5)
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Relation (2) derived earlier correspondingly yields in the vicinity of the
rod’s left end:
3

q=fp2%, (6)

and the assumption arises that ¢ by relation (6) and ¢ by (5) will be practically
equal when the distance from the rod end is sufficiently large. In fact let’s
calculate and draw a table:

Table 6. The results obtained by relation (5) and(6)

(==z/a 0 1 2 3 4 5
q(6)/(fp%a3) oo 1.0000 0.5 0.3333 0.25 0.2
q(5)/(fp%a®) 2.9732 0.878 04811 0.3274 0.2475 0.1988

Thus, we see that accuracy of distributed load g determined by the simple
relation (6) is adequate if the distance from the left rod end is greater than
5a. Just the same effect takes place near the other end of the rod but g has
the opposite sign.

The length of the rod can be correspondingly separated into three seg-
ments: the main one where expression ( 2) can be used (A < x <! — A) and
two end sections of length A = 5a. This means that all the end peculiarities
can be considered within the limits of one integration step when further we
shall have to integrate the rod deflection curve using a constant integration
step. The two to three hundred steps are enough in case of equal appor-
tionment of length [. Probably the rod length [ will exceed the cross-section
measure a by dozen or hundred thousands of times. But this question will be
discussed later.

Now we can also address the question about compressive force NV in the
rod cross-sections. According to equation (3) we obtain for two segments:

N:/ gdz (z< A),
0

2 2 4 zl-z
N—/O qu—l—fpaln(AlA) (x> A). (7

At I > z > | — A the equations written above must be symmetrically
rearranged from the left to the right end.

Laws of ¢ and N variation along the rod’s length are shown by draft plots
in Fig. 429.

The integral of g by (5) for the left segment can be taken in elementary
functions, but combination of logarithms and arctangents occurs to be so
cumbersome, that it is preferable to use digital integration. For the middle
(main) part of the rod it is easier to use the analytic equations (2) and (3).
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*q

a_s_,:_\ul
.1
Al Jal

Fig. 429 Fig. 430

Let’s turn to the stability analysis and consider rod segment dz in a bent
state (Fig. 430).

Let’s introduce shear force @, bending moment M, normal force N and
external force of intensity ¢, normal to the deflection curve. This arises as a
result of distributed forces ¢ rotation.

It follows from the equilibrium that

dN dM dQ d>w

— — —Q, =4 N—1gq,=0.
dx dzx @ dx+ d.r2+q 0

Whence we arrive at the ordinary differential equation of the compressed and
slightly bent rod deflection curve
tw
EJ = +Nda:2 +q, =0, (8)
where w is transverse deflection.

Now it is necessary to establish dependence ¢,, upon the shape of deflection
curve, and this question makes the considered problem essentially differ from
all problems of compressed rod stability which we have encountered so far.

At undercritical state, forces of mutual attraction of the two rod elements
dz and dz; were directed along the rod axis (along axis ). Under rod bending
they rotate as it is shown in Fig. 431.

w 4
// o
/ ”
0 w Wi dx
x | dx i
X, dx,
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The force
dm dm,
p=f—07 122

produced by the action of mass dm at segment dx rotates by the slope angle

(9)

(w; —w)/(x1— z) during rod bending, and its normal component at segment
dz (only of mass dmy) will be

wy —w  dw
—p — .

T — dx
The “minus” sign is written because the component is directed to the
centre of curvature of the deflection curve, but it was directed to the same
side as the outer normal in deriving equation (8).
If we divide p by dx and integrate by 1 assuming x invariable (as para-
meter) we obtain g, for given z as follows

qn<:c>=—/l(fp2’42 [“’l_w dw]d:cl (10)

r1—x)? |z —2 dz

Apparently the deflection w as a function of z remains under the definite
integral sign, and equation (8) occurs to be the integro-differential. We have
not met such a fact neither in problems of rod stability nor in other problems
of elastic system stability.

Let’s transform the equation to dimensionless form. We specify X = z/l
and X; = x1/l as independent variables. The deflection w is replaced with
product In and derivative d( )/dz is denoted as ()’. Then equation (8) arrives
at

dX,
X, — X)?

nIV) 4 GN, ! G/ =% -7 —0, (11)

X
where G is a parameter characterizing stability
G = fpP A2 )(EJ), N, = N/(fp?A%). (12)

Let’s denote the step of integration by AX and AX;. It must be small
enough in order to produce integration with acceptable accuracy, and at the
same time it must be large enough in order to consider the peculiarities of the
end effect within the limits of segment AX near the ends of the rod that in
turn depends on the ratio [/a. It should be interpreted in the following way.
For example, if we specify AX = 0.01, then at least (5a¢) must keep within
the limits of 0.017, which follows from the above given table. It means that
the ratio {/a should exceed 500. The condition is obviously fulfilled.

According to expression (7), function N, will be

X 1—X>

AX 1 - AX (13)

> = AN, —Hn(
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where AN, is the dimensionless force at the end of the first section AX
obtained by integration of ¢ by (5) and then transformed to dimensionless
form, ie.

B prAQ AX - prAQ AX .
AN = /O 2{}dX = ==— /0 2{} d¢;

AX
AN, :/ 2 {}d¢.
0

Here figure brackets contain just the same expression as in equation (5).
The integral can be taken numerically until ( = 10, for example, and then in
dependence on the specified number of steps (or of AX value) is supplemented
to the end of section AX by an analytical expression.

For the square cross-section the part of AN,, which is determined nu-
merically up to ¢ = 10 (X = 10a), is equal to 3.87784. For another shape
of cross-section it will have another value. It does not depend on rod length.
The second part of AN, depends upon the number of steps (i.e. on AX) and
upon the ratio l/a.

According to (2) near the left rod end we have

[p*A% 1
1 X’
and in dimensionless form it will be ¢, = 1/X.

For example, let’s divide the length [ into 500 segments, then AX = 0.002.
And let’s assume the ratio [ /a as equal to 10*, then 10a is equal exactly to
half of the segment AX and the second part of AN, will be defined by the
integral

ax 4
/ — dX =1In2.
axje X

q (14)

Finally for such separation we have
AN, = 3.8778 +1n2 = 4.571.

So one more dimensionless parameter [/a appears as we see. It can be
explained by the fact that the edge peculiarity, which does not depend on
length [, has a different degree of influence on rod stability in dependence
upon the rod length. But, by all probabilities, this influence is not essential.

The question arises, what needs to be done with equation (11). And we
shall apply the following algorit hm.

Let’s expand 7, in series by powers of Xy = X; —X rightward and leftward
from the point of coordinate X.

At first, rightward:

n, = 77+77/X2 +?1277NX22 +?1577WX23 +2_];IT71VX;1

1 1
Vx5 VIy6
X X
+12077 5+ 72077 5
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Let’s restrict our approximation by the sixth derivative. Then the last
term of equation (11) will take the form

=X 11 1 1
7G/ iy //X —_ = —_ IVX - VX2
. RmXeng g gy Xt g X

1
+%nwxg]dxg. (15)
Here again singularity occurs at Xo = 0. Let’s analyze the first component
by taking the integral of this component along two intervals: the first interval
from Xo =0 to X9 = AX and the second from X9 = AX to Xo =1—-X

1-X AX 1-X
1 1 dX,
XQ_dXQ = XQ_dXQ +/ -
/o X3 0 X3 ax X2
The first integral needs to take into account the shape of the rod cross-

section. For this we use the earlier obtained equation (4), which in dimen-

sionless form gives:
1 dg

X2 dXy’
and then the integral can be taken by parts

AX AX dq

Xo—dXy = — Xo—=

0 X2 0 dXQ

But in accordance with (14) qgo = 1/AX at Xy = AX and for Xo =0 it
has a peak but finite value. As a result

AX
dXs = —Xaq, |8% + / q:dXo
0

AX 1
/ Xo—dXy = -1+ ANI,

X2

0 2

and the integral is equal to

=X 1-X
/ —dXs =1In

Therefore expression (15) arrives at

1 1-X 1
—G[=1n"(-1+ AN, +1 +=p"(1-X
A n—~ )+ )
1 1 1
+—nM)(1 - X))+ —nV)(1 - X)? + —nV D1 - X)4].
U A" i vt A )l
If X = 1, then we must assume zero value for the multiplier near n”

enclosed in round brackets as the length of the rod’s right part is equal to
zero.

For the left part of the rod (leftward from the point of coordinate X) we
obtain an analogous expression, where we should write X instead of 1 — X
and the signs of n” and V) must be reversed, i.e.
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X 1
17 1 AN 1 _ = //IX
[ 571 (=1+ + nAX) i
1 1 1
—_ (IV)X _ (V)X3 —_ (VI)X4
Y 360" * 880" )

Here at X = 0 the term in round brackets ought to be equal to zero also as
the left part is absent.

The integral part of equation (11) is replaced with the sum of the last two
expressions. Let’s preliminarily introduce the notation Y = . Then:

G [(1_ ) -{—XﬂY(IV)— i[(l— X)S_XS]Y///
2880 360
2 2 1" G /
+{1——[(1—X) + X" —=(1-2X)Y
48 6
+GT,.Y =0

where the coefficient T, is formed from three parts: the expression N, and
two components, obtained for the right and left part of the rod:

— X X
) - ( L+ AN, +In—=).

At X = 0 the third component is equal to zero, and at X = 1 the second
component vanishes. For the remaining values of X, laying within the interval
from X = AX to X =1 — AX, we obtain after easy transformations

(1—
T,=1+1In 3;
T AY
We only have to rewrite the equation in a traditional form:

YUV 4 fY" 4 BY" 4+ AY' 4 foY =

1
TzzNI—Q( 1+ AN, +1n

where

f3:8§17X)37X3 fQ_@G[(1—X)2+X2}—48

(1-X)+Xx4 77 G  (1-X)*+Xx*
1—2X 2880
= 48— =Ty,
h 80(17X)4+X4’ Jo (1-X)4+ x4

At the ends of the rod we have Y = Y’ = 0. Further, as usual in such
problems we integrate the equation twice specifyingat X = 0 in turn Y'” =1
and Y” = 0 and then vice versa Y = 0 and Y” = 1. Then, varying G by
steps we find such value of it when the determinant of the two following
equations vanishes:

Y (1) =a11Y"(0) + a12Y""(0) = 0,
Y/(].) = a21Y”(0) + GQQY”/(O) =0.
As a result of the search we obtain the critical value of the parameter:

G., = 43.85.
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First of all, in such a problem it is interesting to know the actual length of
a rod which can keep straight under the conditions of self-gravitation. Let’s
calculate for a steel rod of square cross-section:
G EJ G E
fp2A T 12fp?
with gravitation constant f = 6.672 - 10~ Nm? /kg?, modulus of elasticity
E =19.6-101°N/m?, and density p = 7800kg/m3.

The calculation gives us l.,, = 13,300 km. The result is really astronomic.
But that was expected.

In conclusion, it must be admitted that the energy method provides more
facilities in determination of the critical parameter. And this can be used
here as the system is conservative. This analysis was carried out simultane-

2 _
lcr_

ously with the above considered as an alternative but not without creative
gambling [2].

The rod mass is divided into n parts. The variation of external force po-
tential under rod bending by the specified mode can be determined by pair
consideration of mutual displacements of n masses. The energy of bending can
be derived if the deflection curve shape is given. Particularly, if we roughly
suppose that the rod bends taking the form of a quadratic parabola arc then
the value of the critical parameter is determined even without computer cal-
culations and is G, = 72. Such an approximation explicitly is not sufficient.
We can determine the energy of bending by finite-difference method, speci-
fying the deflections w of elementary masses, and then choose the deflections
from the condition that the total potential energy has minimal value. The
accuracy of calculations as well as their awkwardness is defined by number
n. But the result is reached rather quickly. For n = 32 and for n = 80 the
values of G., coincide to the third significant digit. The critical parameter
occurs equal to 49.7.

It seems that this value is probably more trustworthy than the above ob-
tained. Because after all we solved the integro-differential equation approxi-
mately and it should be remembered that transformations were complicated
enough. In such cases even under the highest extent of check-up, nobody is
insured against possible mistakes.

162. The result obtained in the previous problem indicates that the in-
terest in such problems is not in the area of their practical application, but
exclusively in peculiarities which are connected with the integral behaviour
of external forces under small disturbances of a system.

Let’s consider the self-gravitating ring (Fig. 432a). Obviously, the forces
of the particles’ mutual attraction due to their complete symmetry can be
reduced to a uniformly distributed load of intensity g. It seems that the load
can be easily determined, in any case without those “adventures”, which
accompanied us during the solution of the previous problem. The ring is not
a straight rod and the end effects should not appear.
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ds
>\Fdo¢

a) b)
Fig. 432

Let’s denote ring mass per unit of arc length as m. The gravity force of
element R dy mass (Fig. 432b) attraction to the mass of element ds, according
to Newton’s law is:

f

Multiplying this expression by sin(¢/2) we derive the radial component
of the force. If we divide the expression by ds then we shall find the intensity
of the force. And at last eliminating r = 2Rsin(yp/2), we obtain

_ fm? T dyp _fm? @\ j2r
7R /0 sin(p/2) 2R ln(tanz;) 0 (1)

So the one-dimensional scheme of gravity force determination is not suit-
able for the ring by the same reason as for the rod. We obtain infinity. It
is necessary to integrate with respect to the cross-sectional area, as it was
shown in Fig. 428 for the straight rod.

But we want to hold it off for now and shall not jump yet into the ocean
of computations. The expected result is obvious enough. As equation (1)
prompts

mdsm Rdy

2

2
Ik ©
R

where K is an unknown dimensionless coefficient which depends upon the
shape of the ring’s cross-section.

Now let’s consider small deflections of the ring from its plane circular
state. They are defined by the displacements v and w (Fig. 433), and the
angle of rotation of the arc element is

q:

dw U

" Rdp R’
Under small disturbances, load ¢ varies and obtains small additional com-
ponents: normal g, and tangential g;, respectively. It is necessary to calculate
these.
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3

Fig. 433 Fig. 434

Let’s fix an arbitrarily chosen point A with the angular coordinate ¢ and
denote its deflections as ug and wy (Fig. 434). The deflections of some point
B will be v and w.

The distance between points A and B is r and the distance between points
A’ and B’ is equal to r + Ar. It is easy to ascertain that

Ar = (w +w0)sin% + (u—ug)cos%.

The vertical and horizontal components of gravity force per unit length
of mass A’ by mass B’ are as follows

2Rd

dg, = ({qi—m;é;[R+wo—(R+w)cosa+usina],
2
Rd

dgo = %[(R—l—w)shla—ucosa—i—uo].

If we project the forces onto the normal and tangent direction to the arc
element at point A’, we obtain

d(q+gn) =
2 d [ d
:% _(R+wo) —(R+w)cosa+usina — <di¢0 —uo> Sina] ;
dgy =
Rda [(d
_ (f;zir)cz (di; —u0> (1-—cosa)— (R+w)sina— ucosa—i—uo}
As
A
(r+ Ar)70 = (1= 370),
then

fm?da

mm(l —cosa) +wy — wcos &

d(q+qn) =
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. (dwo > .
+us1na— — —Up |SsSIn«
dy

3 3
—% (w+ wp) (1—cosa) — —2(u — up)sin of ;

fm?da
8R2sin® (a/2)

d’wo

[-Rsina + ( iy

)

dqr =
—wsin a — ucosa + ug

3 . 3
+5(w+w0)sma+5(u7 up) (1+ cosa)].

Now it is necessary to integrate these equations with respect to « from
zero to 2m for fixed up and wq, but for variable v and w.

As it is usually done, it is natural to assume that the deflections u and w
obey the periodicity condition, which provides that the ring deflection curve
is non-stretched while bending:

wg = Acosny, w=Acosn(p+ a),
A

up = ——sinny, u=-——-sinn(p+ a).
n n

Further, in order to simplify calculations, we preset n = 2. However, it can
not be excluded that the number of waves n may differ but such probability
is small.

Since we analyze stability according to a one-dimensional scheme we in-
evitably meet with the already known improper integral (1). That is why we
use expression (2) written above. If we compare it with equation (1) then it
is easy to conclude that the transfer to a three-dimensional scheme reduces
this integral into the quantity 4K.

After rather cumbersome integration with respect to a we obtain

fm 104
I = "gpo “— A(24K — 3 —)cos2p,
qt = J;ZLQ A— sin2¢.

We only have to derive the equations of equilibrium for the bent ring. But
this work has been done in solving problem 134.
Let’s rewrite equation (2) of problem 134:
EJ d®sx EJ 1dx 1dg, 1

Rdp " Rdp " RETD ®)

where s¢ is the curvature variation

3A
= RQ(d'_sOQ +w) :—Ecos&p.
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Now we only have to substitute s, ¢, and ¢; into equation (3) and find
the condition of critical state. If we write it in traditional form, then we shall
obtain

26K EJ
Qer =~ 3

11 R3’
and if we substitute ¢ from (2), then we arrive at

<fm2R2> 26
EJ ). 11

The result is extremely comforting. The unknown was cancelled and there
is no need to carry out a complicated integration in order to find it.
For square cross-section we get

[PPR?Y 13
E ), 66

Finally let’s calculate the critical radius of the steel ring of square cross-
section. The required data are given in the previous problem.
The result is the following: R., = 3083 km.

163. Let’s imagine that balls BB have turned by a certain small angle ¢
with respect to the axis OA (Fig. 435). After that the inertial forces of the
balls will not remain parallel to the axis OA and the pair of forces creates
the moment

M = mw?la2a,

which will twist the rod O A. But as we have a = ¢a/l, then

M = 2mw?a?yp.
o
d .
y Y
I . i
y 1
X
C |48 h
dmcoZQOL Z
dmm2C
Fig. 435 Fig. 436
On the other hand, for the twisted rod we have

Nf:%so,
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where GJ), is torsional rigidity of the rod; therefore it yields
w = \/ _GJp_ ]
2mla?

This is the critical angular velocity for the given system. If velocity exceeds
this value then the rod OA is twisted.

164. Let’s assume that some section disposed at a distance ( from the
axis has turned by angle ¢ under rod torsion (Fig. 436). Let’s separate the
rod’s element d{ dy h located at a distance y from the rod axis. If the section
rotates by angle ¢ then elementary inertial force dm w?( gives the transverse
component dm w2(a.

The elementary torsional moment of this force will be

dM = dmw?*Cay .
But we know that

dm :lhdg’dy, a = <p£,
g

¢

where 7 is the specific weight of the rod material. Then the torsional moment
in the cross-section x is determined as follows:

+b/2 pl Bh 1
M:/ /1m2@y2dydg=1—w2/ wdC.
—b/2 Jo 9 g 12 0

The normal force in the same cross-section is obtained by integration of
the expression

WA dm = Lhw?¢ d¢ dy
g

that yields

+b/2 pl 20k
N:/ / L hw¢d¢dy = 252 (12— 2?),
—b/2 Jz 9

From the condition of rod torsion we have
dp _ M,
de ~ C’
where C' is torsional rigidity. In the given case the magnitude of C' depends
on force N (see problem 28):
==-bh’G+——, C==<bh°G+——w (" —2").
3 ST 3 ATV AU
In the previous problem the rods’ O A had circular section and their rigidity
did not depend on tensile force. Now we obtain

dy v b3h Q/l
—C ==— dcg.
da:C g 127 190 ¢
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Let’s differentiate both parts of the equation with respect to z :
d d b3h
rd Grrd
But it follows from the relation for C' that
yb%h 5 1dC
g 12 zdx’
that is why

A (pde) _dC
Id:v dx dx 7
Independent of the type of function C the solution of the equation will be
d
p==z |:A/ T‘TC + B:|

where A and B are arbitrary constants.
Let’s evaluate an integral

/ dx 1[ 1+k1 1+ kx
==|-—+4+=h
22C ybh pl z 2 1—kx

bh3 202 _ 22 2
[ G+-= p 24w ( )] T
where it is denoted
'yb h 1yb3h
g W, k=== ?
p=gbiG oy pg 24"

Thus we arrive at
k 1+ kx
=—(—-1+ =zl
( + xnl_k

For x = 0 we have ¢ = 0, from which A = 0. Then for z = [ we have M; =0
(dp/dz =0), and then B = 0.
Hence for any angular velocity w, the rod remains straight.?

) + Bz.

165. A thin homogeneous disk rotating about the axis perpendicular to its
plane can loose its stability. For disks of ordinary thickness the critical speed
wer is higher than its value under which the disk is ruptured. If we consider
a very thin metallic or, even better rubber, disk, then by experiment we can
obtain the buckling mode shape presented in Fig. 437.

We can explain the occurrence of such an equilibrium state by the fol-
lowing. Assume that the disk is perfectly balanced and suppose that some
external disturbance caused some deflection of the disk in its plane in such a

2 While the author was preparing the first edition of this monograph L.I. Balabuch
proved that a prismatic rod of arbitrary cross-section shape does not have a
critical angular velocity at all.
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way that disk balance was upset. If the center of disk gravity has been dis-
placed rightward as shown in Fig. 437, then the compressive radial stresses
arise to the left of the immovable axis. That is why for sufficiently large an-
gular speed of disk the buckling can appear at this region; as a result the
disbalance will increase more yet. If this process does not cause the failure
of the disk then its mode shape after stability loss will be something like the
one shown in Fig. 437.

K‘Iection curve of diameter

Fig. 437

166. Let’s determine force P which we need to apply in order to deflect
the ring from its axis by some small value w (Fig. 438). Obviously

n o
P= ZNicos(zz — o)
1

wherei is the number of spokes, and NN; is normal force in spoke cross-sections.




4. Stability

If we denote elongation of i’s spoke as A; then
_ EAA;
i — I .
But
2
A= wcos(i—ﬂ - o),
n

thus we get
EA L, 27
P =w— = .
w El cos” (i - o)

It can be shown that
" 2T n
20,4T _n
Zcos (4 - ©y) 5
1
and then
EAn

P = w2
Yol

Part II. Solutions

The critical angular speed is determined by the condition [10]

— 2 L py—
P=nw,w=w )

2

from which we have

B EAn
Wer =\ omi

357

167. Under certain pressure (in the area of appreciable elongations) the
spherical equilibrium state becomes unstable. If local contraction of the
sphere wall arises due to some cause then it continues to progress. Wall t hick-
ness becomes non-uniform and the sphere slightly elongates (Fig. 439a). The
phenomenon is analogous to the process of necking of a tensed specimen. The
same can be observed during blowing up of a volleyball bladder. A similar
phenomenon is observed while blowing up a bicycle inner tube (Fig. 439b).
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168. If some external reason causes the local necking of the specimen the
cylindrical shape can be restored by a small tensile force after the reason that
caused the necking is removed. Thus up to certain value of tensile force the
cylindrical form of the specimen is stable.

For sufficiently large tensile force even infinitely small local necking will
cause in the vicinity of necking stress growth of such magnitude that the
rod will not be able to restore its cylindrical form even if the reason that
caused the necking is removed. The contraction will progress and the neck
will be generated at the specimen. The cylindrical equilibrium state becomes
unstable.

169. The presented shape of the tested specimen does not leave doubts
that its failure is preceded by local loss of stability. In reality it is not neces-
sarily realized in pure form. Particular conditions are required for that. But
the average statistical regularity of the wooden structure predetermines the
regularity of wave formation as well.

Wood has layer structure. Soft relatively thick layers alternate with thin
and rigid ones. Maximal stress arises in rigid layers. Local deflection of the
layer causes deflection of neighbouring ones too. The shape of local bending
is the same for all rigid layers, but it is shifted in phase. As a result, the
inclined strip of the “fault” or “shear” (it is difficult to find a name) occurs.
The cracks are generated in this region later. The angle of strip inclination
as well as critical stress are defined by the ratio of layer thickness and by the
ratio of their modulus of elasticity [14]. Naturally, this kind of failure can be
realized not only in the case of wood testing but under certain conditions in
case of laminar composite testing, too.
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170. This is an often posed question and seems to be old-fashioned. The
unexpressed tonality of a passive perception of the environment reverberates
in it. Let’s see, they say, how nature is rich and what it gives to us? But in our
time side by side with the question “what s 1t made from” the question “how
15 1t made” is of great significance. For example, sprayed liquid aluminium at
cooling speed at about 10° degrees per second does not have enough time to
crystallize. Clinkering in inert medium under high pressure of the amorphous
metal obtained by such method makes possible to manufacture aluminium
details of strength at least one and a half times higher than the ones produced
by traditional methods. This is expensive but in aviation and space-rocket
production we cannot do without it.

Nowadays we should look for the highest strengths in the domain of thin
fibres, which provide a basis for composite materials. Thin glass fibre, carbon
fibre, and boric fibre have an ultimate stress of up to 3500 MPa. But we
ought to remember that high ultimate stress is not the sole benefit. In many
cases it gives way to other merits, for example specific weight. Just due to
this reason, steel fibre which frequently is just as strong is moved to the
second position in comparison with glass and carbon fibres. Artificially grown
filamentary crystals of metals and their chemical compounds that are widely
spread in nature and are generally considered as substances of mineral origin
have extremely high ultimate stress. Among them we can find such ones that
in common perception are considered as precious stones — sapphire (AlyO3)
and garnet (Al5Y3015).

But we should warn the reader against the conceptions “strength of spec-
imen” and “strength of construction”.

Specimen strength under test conditions is actually determined by the
ultimate stress value. Let’s consider a detail produced of the same material
as the tested specimen. The detail’s strength under work conditions is deter-
mined not only by the ultimate stress value but by another characteristics
too. As for the strength of detail produced of the same material then it is
determined not only by the ultimate stress value under work conditions, but
by another characteristics too. The elongation at rupture is the most essential
among them. Some other characteristics are important too, for example the
sensitivity to local stresses, the impact toughness etc., but they cannot be
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obtained so unambiguously as the first one. Therefore the detail produced of
materials with higher ultimate stress frequently turns out to be less durable
under working conditions than just the same one but produced of materials
with lower ultimate stress.

The ultimate stress of some steels can be raised to up to 2800 MPa by heat
treatment methods in combination with, for example, intermediate mechani-
cal hardening. But the significance of the obtained result cannot be estimated
by this criterion alone.

171. Wood bears greater load under tension along the fibres. For example,
dry fir-tree wood has an ultimate stress in compression of 7,. = 55 M Pa, and
in tension 0,4 = 72 MPa, for beech it is 7,. = 67 MPa, and 0, = 82 MPa.

This property of wood follows from its anisotropy. Rigid layers interchange
with soft ones. Under longitudinal compression the rigid layers bear the main
load. Under sufficiently high forces in these layers local buckling appears,
which cause quick rupture of the specimen. Textolite and some other types
of composite materials have the same property.

172. It is well known that the modulus of elasticity of steel is equal to
200 GPa, but only few people are aware of materials with higher modulus
of elasticity. The according reference data in ascending order of elasticity
modulus are given in Table 7:

Table 7. Elasticity modulus of some materials

Cobalt and nickel 210 GPa
Rhodium 290 GPa
Beryllium 290 GPa
Wolfram and molybdenum 350 GPa
Whiskers (filamentary crystals):

Sapphire 500 GPa
Graphite 690 GPa

Diamond takes priority over the non-constructional materials:

E =1050 GPa.

173. The elasticity modulus for some rubber types reaches values of
0.4 — 0.5 MPa. The least modulus of elasticity among the metals is found for
lead (E = 18 GPa) and calcium (E = 21 GPa).

174. The answer to this question depends upon the magnitude of consid-
ered strains. Usually we assume that rubber does not obey Hook’s law. This
may be the case for strains of about 100% and more.

For the case of strains of less than 10— 20% we can assume with accuracy
sufficient for practical purposes that all types of rubber, as a rule, follow
Hook’s law. No other materials have such large strains up to proportional
limit.
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175. Small cracks as well as larger cracks and structural defects exist in
a glass medium just as in any material. Glass is very sensitive to defects.
Under loading they easily grow and cause quick failure. The behaviour of
window glass and glass dishes under loading, especially under impact, clearly
indicates that. Thus, glass has the worst reputation as a constructional ma-
terial. However, forces of molecular cohesion of glass allow its ultimate stress
to reach that of steel and even exceed it. Tests of thin fibers undoubtedly
confirms this.

Thin glass fibre can not develop large cracks. This is an inherent charac-
teristic of fiber. If there is a large crack, fiber does not exist. But also if fiber
exists, then there is no large crack, and we have high strength. We do not
know what is the cause and what the effect. But though fiber is strong it is
sensitive to microdefects.

The boundary of two media is obviously an obstacle for crack propagation.
If fibers are combined in a bundle by compound material the growing crack
may only be able to progress through the cross-section of one fiber but not
any further. It will be blocked by the compound material. That is the cause
of the significant difference in strength, for example, of a fiberglass plastic
fishing-rod and a glass tube of the same diameter.

176. The reduced elasticity modulus of the rope is lower than the elasticity
modulus of its component threads because elongation of the rope in tension
occurs not only due to the elongation of threads, but also due to their partial
bending and twisting. The reduced modulus of elasticity of the rope while
stretching does not remain constant, i.e. a diagram of rope elongation is
not linear even for elastic strains. During the initial stage of stretching the
threads are packed and clearances between them gradually decrease. Local
deformations gain a more noticeable role during further stretching. They
occur in zones of mutual contact of threads.

177. According to the set of the problem, displacements of the beam are
proportional to the acting loads. Hence, we can use the reciprocity principle
for displacements.

X
B g A
7;77'—1 | R ° K_ER'LT
Ox
P
Fig. 440

The displacement of the cross-section with coordinate x can be measured
placing an indicator under point A and loading the beam at x cross-section
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(Fig. 440). Moving the weight, we measure 6, at point A for different values
of z. The obtained relation §, = f(x) represents the deflection curve of the
beam.

If the weight P is so big that it is difficult to move it then we can decrease
it. Afterwards, according to the specified condition we can determine the
deflection curve for a given value of force P by proportionally increasing the
measured deflections.

178. Fibres composing a thread are shorter than the thread itself. That
is why the strength of a thread depends not only upon the strength of the
individual fibres but upon their mutual cohesion as well. The latter is defined
by forces of friction between fibres. For a twisted thread each fibre is whipped
and tightened by neighbouring ones, and cohesion forces of fibres are much
higher than for untwisted thread.

Cohesion forces strongly depend on the length of fibres. That is why a
long-stapled cotton costs more than short-stapled cotton.

It is interesting that threads twisted of artificial fibre have lower rupture
strengths than untwisted ones. Artificial fibre has greater length, being equal
to the thread length. Therefore, fibres need no interconnection, and twisting
yields to rising of additional stresses only, which results in quicker rupture.

The problem under consideration has something in common with the
item we encountered in solving problems 17 and 175. A twisted or plaited
rope represents a special kind of composite that was intuitially found by
humans in ancient times. Air is a cohesive medium that ideally prevents crack
growth. The only trouble is that despite this “cohesive medium” fiber length
is inefficient. Twisting and plaiting provide friction between neighbouring
fibres and decrease length.

179. The student has hopefully now mastered the concepts of strength
and rigidity. Though alloyed steel has higher strength, its modulus of elas-
ticity E is approximately the same as for other types of steel, i.e. about
200 GPa. That is why the exchange of ordinary steel by alloyed steel causes
no improvement in our case.

180. Let’s consider two states of an elastic body (not necessarily a cylin-
der) laying on a rigid plane.

The first state: the body is under action of its weight. The second state:
the body is under action of a certain pressure p, uniformly distributed along
its surface. According to the reciprocity theorem the work done by the first
system of forces at the displacements caused by the second system of forces
is equal to the work done by the second system of forces at the displacement
of the first system.

For the first specified state of the elastic body the work done by weight
forces at displacements caused by the pressure is
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/’dewp,

14

where v is specific weight, ydV is the weight of elementary volume, and
wy, is vertical displacement of some point of an elastic body under action
of uniform pressure p. Naturally, this displacement is measured with respect
to the rigid plane. But elastic elongations for all points of the body under
uniform pressure will be constant and equal to

p
— £ 1-2).
€ E( 1)

Hence, vertical displacement w,, is proportional to the distance from the rigid
plane. Then

/ﬂywpdV:'y/wpdV:’wa;,
v v

*

where wy is the displacement of the elastic body centroid.
If the centroid of the elastic body is at a distance H from the foundation,
then

* VA
wszE(l—Zp).

Thus,

H
/'ywpdV = 'yVEp(l —2p).
v

On the other side, according to the reciprocity theorem this quantity is
equal to the work done by pressure p at the sought volume variation AV,
caused by forces of its weight, i.e.

H
Wfp(l —2p) =pAYV,

which yields

1—2p
T
If we rotate the body in such a manner that the center of gravity will
occur at different height, then AV will change respectively.
Naturally, the obtained solution is valid for any body independent upon
its shape. Obviously, for the given cylinder during transfer from state I to
state I'1 (Fig. 157) its volume will increase by

H 124
p(o-Rr)—£.
(2 R) 3

AV =~VH
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181. The problem solution is similar to the previous one
pAVp = PA(AB),,
where AVp is the sought volume variation caused by forces P, and A(AB),

is the variation of distance between points A and B caused by pressure p.
Obviously, we have

A(AB), = -p—2(4B),

where AB is the distance between points of force application. Hence, the
sought volume variation is equal to

1-2
Avp:—PABT“.

182. The explanation is faulty. According to the cited considerations the
tube, independent of its cross-section shape, must always decrease its cur-
vature under action of internal pressure, i.e. straighten itself up. However,
experience shows that a tube of circular cross-section does not react to inter-
nal pressure at all, and a tube having cross-section with reversal arrangement
of longer and shorter axes under action of internal pressure does not decrease
its curvature but increases it.

The author of the above given explanation did not take into consideration
that besides forces P; and P, acting upon surfaces S; and Sy there exists one
more force acting at the tube bottom. The moment of this force is exactly
equal to the difference of moments of forces P, and P,, thus the bending
moment in any cross-section of the tube vanishes. Therefore we do not need
to calculate magnitudes of these forces in order to check the above men-
tioned. The surface of the tube to the right from an arbitrary cross-section
AA (Fig. 441) represents a closed surface, and pressure will give only tensile
force in the cross-section which is equal to the product of pressure and section
area “in clearance”.

Fig. 441
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The forces of pressure will not produce the bending moment at all for
any tube shape. The distortion of the cross-sectional contour is the necessary
condition of tube operation. Under action of internal excessive pressure the
contour of the tube’s cross-section tends to have circular shape independently
of its initial configuration. Here the shorter axis of section will slightly increase
and the longer one will decrease, and the whole contour will take such form
as is roughly shown by the dashed line in Fig. 441. Due to that fact each
longitudinal fibre of the tube will have a certain displacement parallel to the
shorter axis of the cross-section. In Fig. 441 this displacement for fibre mn is
denoted as w.

When the fibre mn moves by value w it will transfer to the arc of the
larger radius and tensile stresses will arise in it. In fibres lying below the
neutral axis compressive stresses will occur. Thus the tube will straighten
itself.

The above said explains why a tube of circular cross-section does not react
to internal pressure. In this case the contour of the cross-section is only tensed
and the value of w will be infinitesimally small. That is why the curvature
change of the tube of circular cross-section is insignificant and is not observed
during ordinary experiments.

If the larger axis of the cross-section is in the plane of tube symmetry,
then the value of w will have an opposite sign and tube curvature under
internal pressure will not decrease but increase.

183. In the proposed problem the calculations are produced correctly.
There is no reason to search for any algebraic mistake. We deal with the sur-
prise, which the “momentless” theory of shells may present to unsophisticated
researcher while deriving displacements.

Here we can use two ways in order to find displacements.

The first method: Assuming that the principle of initial dimensions invari-
ability is valid we consider also bending moments and shear forces in addition
to tensile forces. In other words we depart from the “momentless” condition.

The second method: Remaining within the frames of the “momentless”
shell theory we construct the equilibrium equations for the deformed shell
the shape of which is distorted by arising displacements. This method is
often used while deriving displacements of so-called “soft” shells — shells that
weakly resist bending.

184. Let’s consider one section of the shaped cylinder (Fig. 442). Let’s
denote the internal pressure as p and admissible stress by dadam.
The thickness of the cylindrical part of the section is determined by ad-
missible stress as follows:
5 — pr

Tadm
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Fig. 442

The supporting internal wall works in tension and is under action of forces
transmitted to it from two adjacent circular cylinders. The force pr is acting
per unit height of cylinder. The tensile force in a wall is

2pr sin(B — «).

The admissible stress for the wall is supposed to be the same as for the
circular cylinder. That is why thickness of the wall is

2pr si —
b prsin(f — « .
T adm
Now let’s find construction weight per unit length of the shaped cylinder
P =~n(20ré + ah),

where v is specific weight of the material and n is the number of sections.
After substitution of 6 and h we obtain

2 16r +sin(8 - a)]. (1)

adm

P =2yn

Let’s determine the volume of the internal chamber per unit of height.

1
The volume of sector ABC' is equal to 557“2, and for triangle O AB we

1
have 307 sin(8 — «), therefore

1 1
V =2n —2ﬁr2+5arsin(ﬁ—a) ,

or
V =nr[fr + asin(f — «)).

Returning to relation (1) we arrive at

p=o—Ly
Tadm




5. Various Questions and Problems Part II. Solutions 367

This means that for a given volume of compressed gas the construction
weight can not be changed by varying of quantities a, (3, a, and n. The ordi-
nary smooth cylinder has the same weight for the same volume of the chamber
but is easier in production. Thus the proposed construction does not meet
our expectations.

An objection is expected. The conclusion that the construction shows
no promise is made on the basis of the assumption that the stress state is
uniaxial. But the shaped cylinder is tensed in axial direction, too...

This is quite true. Therefore the condition of strength should be written
in the following form

Oeq =01 — 03 < Tadm>

where ¢, is maximal principal stress. It is positive and can be either circum-
ferential or axial stress depending on the fact which of them is greater. o3 is
the least of three principal stresses and is equal to zero.

Now let’s imagine that for some ratio of parameters the axial stress occurs
to be greater than circumferential, and that we made a mistake considering
the lesser one, the circumferential stress. But if construction is unpromising
for the less stress condition then it will be even more unpromising for the
greater one.

185. The question set in the problem does not specify how the load P
was applied to the spring. Was it applied gradually or suddenly? If load was
applied gradually, by increment portions, so that in any moment of loading
the system was in equilibrium state, then expression (1) is not valid. The
position energy lost by weight will not be P?/c, but P?/(2¢) and balance of
energies will be retained.

If load was applied suddenly, then the weight will have the kinetic energy
too, which is equal to difference of energies (1) and (2). Further weight will
have oscillatory motion about its equilibrium state until its kinetic energy is
dissipated.

186. In the best case we obtain the following answer on the question set
in the problem.

The rotation angle of the coil in the axial plane is determined by twisting
of the spring arc segment of length AB, if cross-section B is assumed as
conditionally immovable, i.e.

Ml PRI
- éJf:B - gJ/:B (lap = 27Rnap) .

However, this answer is wrong. Coils of the spring do not rotate in the
axial plane at all (¢ = 0).

“But we can not agree with this” an inquisitive reader might say. If we
consider an infinitesimal coil segment of length ds (Fig. 443), then, obviously,
one cross-section rotates in the axial plane with respect to another. Therefore,

Y
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if we assume that some cross-section is immovable then another one will surely
rotate in the axial plane. This means, the statement that angle v is equal to
zero at any cross-section is incorrect.

However, we should not forget that the considered element of the coil
rotates also in plane y;z; by angle 9 (angle of the coils’ inclination variation).
Thus if the cross section (2) is twisted in the axial plane by the angle

M; ds

d
v =G

ds
then simultaneously it rotates backward in the same plane by the angle ﬁE

(see Fig. 443).

Fig. 443
The angle of cross-section (2) rotation in the axial plane is obviously
ds
dp =dp — 99—
b =dp -9,

but it is known that

P 2
Y= i ,

GJp

and as M; = PR, then, evidently, dy» = 0.

We can make sure that this conclusion is valid applying different but more
simple arguments.

Let’s consider an arbitrary cross-section of the coil. If it really rotates
in the axial plane of the spring by the supposed angle v, then it would
“fulfil” that depending upon the fact whether the lower or upper spring end is
immovable or not. But the cross-section “knows nothing” about these details,
and it has no choice but to keep its place.

187. Let’s consider the spring as a space beam. Torque M; = PRcosa
and bending moment M, = PRsina arise in each coil cross-section of the
tensed spring (Fig. 444).

Let’s preliminarily derive the increase of spring height AH :
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Al - / MMy ds / MMy ds
EJ GJ,
l l

where Mi, and M7y, are bending moment and torque caused by unit forces
applied instead of forces P, which accordingly are equal to

Mip = Rsina, My = Rcosa
hence

PR ., PR
AH = i
7 T ar

where [ is the length of spring coils.

I

Fig. 444

Let’s find the angle of the spring’s upper end rotation in the horizontal
plane with respect to its lower end. If we apply unit moments to the spring
ends (Fig. 445a), we arrive at

My, = —cosa, My =sina,
My My ds /]Wt]kflt ds
Ap = [ ————— s — 2
o= [FERE o @
1 1
A PRI L L ) si
@ = —— — —)sinacos .
7 GJ, BJ°

Let’s consider the spring involute (Fig. 445b). Obviously we have
R*p% + H? =12
As [ is constant then
2Rp?AR + R*2pAp + 2HAH =0,

where A denotes the increment of the corresponding variable.
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Ro
b)
Fig. 445
From this expression we obtain
R H
AR=——Ap ———AH .
277 Ry?
Substituting here Ay and AH we get:
PR, 1 1 PHRI (sin® 2
AR = — —— — ——)cosasina— = == .(3)
¢ GJ, EJ 2 EJ GJ,
It follows from the triangle shown in Fig. 445b that
pR

l= and H = pRtana.

cosa
Besides it we obviously have

p=2mn, Ap=21An,

where n is the number of coils. If we eliminate [, H, and ¢ from (1), (2), and
(3) we get:

PR3 [sin®a cos?a

AH =2

™ osa ( EJ + GJp ) ’

1 1
An = PR*n (G—Jp — E_J> sin av,
2PR?si PR3
AR = — ]Z'Jj,ma + E}; sin (1 — tan® @) .
If the spring is coiled with round wire having the diameter d then
wd4 wdt

Gl =X~ EJj=GcO+ n=Z,
P 32 D

and then we arrive at
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64PR3>n 1+ pcos?a

Gdt  (1+ p)cosa’
32PR*n psina

Gmd* (14 p)’

32PR3 sina 1+ 2ucos? a
C Gmd* 1+p cos2a

AH =+

An = +

AR =

The signs of the right part of the obtained relations indicate that under
spring tension its length increases (AH > 0), the number of coils increases
(An > 0) and the radius decreases (AR < 0). If angle « is small then we get

64PR’n
AH = it
An — 32PR*n  pa
Grd* 1+u’
32PR3 1+ 2u

T Gndt 1+

188. In order to obtain the characteristics with decreasing stiffness for the
shaped spring we should provide its preliminary compression, for example,
by means of the second spring (Fig. 446). The number of operating coils will
increase under loading of such a system.

IP

TOLeReY




372 5. Various Questions and Problems Part II. Solutions

189. The given configuration of the system is not the equilibrium state.
If we try to determine the reaction of the lower support disregarding defor-
mation of the system we would obtain a result of no practical sense:

R = +o00.

Actually, by equating to zero the sum of all force moments about the
upper hinge (Fig. 447), we obtain:

Rx0+Pa=0,

from which we find the above value of reaction R.

Hence, it is necessary to consider the displacement of the lower roller in
order to determine the reaction. Let’s assume that the system equilibrium
occurs under angular displacement ¢ of the lower support (Fig. 448).

Obviously, from the equilibrium condition we have P = Ry. The line
segment AB has increased as a result of frame deformation by

2
a(l—cosgo)z%.

Fig. 448

On the other hand, the same value can be obtained by multiplying
moment diagrams of specified forces by moment diagrams of unit forces
(Fig. 449). Thus we get

Ra® 5 e, ap?
As displacements of the frame are small, the quantity of ¢ /2 in brackets

is negligibly small in comparison with unity and we can neglect it. Further
substituting P/ R instead of ¢ on the right-hand side of the equation we arrive

at
s/3P2EJ
R= 10a2
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P
R(Pa\lm%:;;% M] p p
3 E f
- Rep f
Ra{[TI="TR oI |4
Fig. 449 Fig. 450

190. A system, similar to the one shown in Fig. 169, can have new equi-
librium shape modes under large displacements.

Particularly, if stress in the rod does not exceed the proportional limit,
then under P > 3.2E.J/I? the beam has two additional equilibrium states (2
and 3) (Fig. 450) besides the main initial one. State 2 is stable, and state 3 is
unstable. If P > 7.1E.J/I? the unstable equilibrium states 4 and 5 (Fig. 450)
are possible etc. Naturally, if we gradually increase force P the state 1 can
not transform into state 2 or any other one. However, if we preliminarily bend
the beam in such a way that its free end occurs at the left of the clamped
end, and afterwards load it by force P > 3.2E.J/I?, then the beam will take
equilibrium state 2.

191. Let’s take two arbitrarily oriented systems of coordinates where one
of them XY Z has its origin at point A and the second one, xyz its origin at
point B (Fig. 451).

Zlp,

593

%

Fig. 451

The force P components along the axes XY Z are denoted as P,, P, P.,
so that

P,=Pl, P,=Pm, P,=Pn,

where [, m,n are the directional cosines of force P in the basis XY Z.

The components of point B displacement in the basis xyz are denoted as
z, y, z. The displacement components will relate with force components by
the linear equations:
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P, = Pl=cyz 4 Coyy + Cz22,
Py = Pm = cye® + cyyy + ¢y 2, (1)
P, =Pn=cT+cyy+ Ciz2,

where c;4, Cyy, ... are certain constant coefficients characterizing correspond-
ing stiffnesses. For example, c,, is a force which we must apply at point A
along the x direction, in order to obtain displacement of point B along y
direction as equal to unity.

Taking the square of both parts for each equation (1) and summarizing
them we obtain

2

2 2 2 2 2 2 2 2
pP7 = (Cxx + cxy + sz)x + (ny + ny + Czy)y

+(Ciz + ciz + sz)ZQ + 2(szczy + CyaCyy + Cmczy)ﬂ?y
+2(ConCor + CyaCys + ConCaz)T2 4 2(CoyCrs + CyyCyz + CoyCaz)yz.

Thus we see that the displacement vector at point B will describe a surface
of second order with the center at the same point. It can be a single-napped
or double-napped hyperboloid or ellipsoid. According to the physical nature
of the problem the surface should not have infinitely distant points; hence it
will be ellipsoid or those surfaces in the ellipsoid will be degenerate.

It is clear that the considered above does not serve as exact proof, but
only is a simple guess. The rigorous proof, that is not given here due to
necessary cumbersome calculations, consists in the following. By rotation of
coordinate systems XY Z and zyz the equations (1) are transformed in such
a way that the six coeflicients c,y, cys, €22, Cons ¢y, and ¢,y vanish. For this
purpose three angles of rotation of the first system and three angle of rotation
of the second one are chosen in a proper way. Then

Pl =cyz, Pm=cyy, Pn=c;,z,

from which we obtain the equation of the ellipsoid eliminating I, m, n

+ + — 1.
%)2 (L (e

ny CZZ

192. If the cross-section of the ring rotates in the axial plane by angle ¢
then circumferential elongation e = A/a occurs at point A with coordinates
p, (Fig. 452). But according to Fig. 452 we have

A= plsin(a +¢) —sina], a= R + psinep.
As p is considerably less than R we assume that a ~ R. Therefore, we

arrive at

_ Lo o) g
=" [sin(a + ¢) — sine],
co=F

[sin(a+ ¢) — sin a]. (1)

oo
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Fig. 452

Stresses ¢ produce bending moments in a ring cross-section with respect
to the horizontal diameter, and this reads

M = /rrydA,
F

where dA and y are equal to
dA=pdadp, y=pcos(a+y).

Then we obtain

ro2n
E
JVI:E//pS[sin(a+<p)fsina]oos(a+<p)dpda (2)
00
or
E 4
M:—Twsinga‘

4R

On the other hand, M = mR as follows from the one-half of the ring
equilibrium condition (Fig. 452). Hence,

4mR?
Enrt’

For 0 < ¢ < m/2 the moment m increases, attaining under ¢ = 7/2 its
maximum value
Emrt

4R? "

Further growth of angle ¢ requires a lower moment. For ¢ = 7, i.e. when
the ring has turned inside-out, m = 0. In this case the ring is in unstable
equilibrium state, and under infinitely small deflection returns to its initial
state.

At ¢ > 7 the moment m < 0. This means that in order to keep a ring in
the given state it is necessary to apply the moment of reversed sign.

sing =

Mmax =
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We can consider the magnitude of moment m., obtained above as a
critical value of moment under which the so-called “overturn” of the ring will
occur.

193. The relation (1) of the previous problem obtained for stresses o
o= E}% [sin(a+ ) — sine]
changes by introduction of the additional term
T psin o
E—=FE——
R R 7
which represents the preliminary bending stresses. Now we have

o= E% sin(a + ).

Instead of the relation (2) we get

|

r 27
M = R / p° sin(a + ¢)cos(a+ ¢)dpdp =0.
00
It means that the ring having specified preliminary stresses will turn inside-
out in the axial plane without applying external forces. Such a ring can be
regarded as an elastic mechanism. The reader can easily testify the above
said by experiment.
There are proposals to use the described phenomenon for measuring the
so-called internal damping arising in materials under deformation.

194. The given problem can be solved in frames of a static approach.

Let’s derive the law of balancing moment variation at the cable shaft end
disregarding the dynamic effect, caused by nonuniform rotation of the shaft.
The moment at the shaft entrance is constant. Let’s simplify the problem
assuming that axes of shaft and braid represent a single plane curve of variable
curvature 1/p along its length. Neglecting the friction forces we derive the
equilibrium equation of the shaft element of length ds (Fig. 453). Reactions
of the braid acting on the element are normal to the surface of the shaft and
do not produce a moment with respect to the x axis. That is why by equating
to zero the sum of moments with respect to the axis x we obtain

S P

Hence, if friction forces are absent then the moment M, changes along s
only so far as the moment M, exists, i.e. a bending moment in the plane
perpendicular to the plane of the shaft curvature. Let’s consider a point A
with polar coordinates 7 and % in the shaft’s cross-section (Fig. 454). Normal
stress at this point can be presented in the form of two summands. The first
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one is the stress which occurs in the shaft due to its distortion by the shape
of the braid, i.e.

1
o' = Ersin(= — =),
p

z

Fig. 453

The second term represents the stresses which occurs at point A after
shaft rotation in the braid by angle .
At first we find the displacement of point A along the y axis (Fig. 454):

rsin(¢¥ + @) — rsing.

Fig. 454

Relative elongation along axis x will be
LA .
F [sin(¢ + @) — sin ],

and stress

o' = E = [sin(¢ + ¢) — sinv].

o I3
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Total stress is

1 1
o, =0 +o0" =Er [- sin(yp + ) — — siny| .
P Po

Now let’s find the bending moment M, :

M, = /(J'Z dA,
A
or
R 2w
1 1
M, = //ET [- sin(v + ) ——sin | rcos(¥ + @)r dip dr,
5 p Po
whence
EJ
M, =—sinyp.
Po
Equation (1) will take the form
dM, EJ .
—= =—siny.
ds  ppo

We integrate the equation by s, assuming that all cross-sections have turned
by the same angle ¢

S
. ds
M,=FEJsing [ — +C.
) PPo

If at one shaft end (for s = 0) moment M; is applied, then the balancing
moment My at s = [ will be as follows:

l

d
M, = M, +EJsingp/—s.
PPo

Thus we see that the balancing moment at the shaft end has an additional
component varying proportionally to the sine of the shaft’s rotation angle.
If we specify equal values of moments M; and Ms then under shaft rotation
the equilibrium conditions will not be fulfilled and rotation at exit will not
be uniform.
Moment M, will not depend on angle ¢ if
1
ds

PPo
0

The sufficient condition for normal operation of the speedometer shaft is
1/py = 0, ie. as long as the cable shaft is straight before placing it into a
braid.
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195. Under rod tension all fibres are stressed equally. Let’s denote the
tensile force in each of them as N. Let’s multiply N by the number of fibres
n in the monolayer, by sin ¢, and by the average radius r of (+¢) monolayer.
Then we obtain the moment of forces N about the axis of the rod: Nnr sing.
The monolayer (—¢) produces a moment of reverse sign: Nn(r — h)siny,
where h is thickness of the monolayer. We see that the moments are not
balanced. And the same happens with every pair of (£¢) monolayers. A
torque arises and it causes rod twisting. In order to avoid this we should either
decrease the number of fibres in strands during winding of (+¢) monolayers
into a simple proportion

T — h
M(ag) = M)~ oE—
(+¢)
or include additionally the last a (—¢) monolayer with the number of fi-
bres chosen for compensation of the moments produced by all pairs of (£¢)

monolayers.

196. Under tube bending the volume of the internal chamber does not
change. This means that the energy of compressed gas also does not change.
Hence the delivered gas has no way to influence the frequency of vibration
other than of by its own mass. But it is negligibly small.

Thus the frequency of rod vibration does not depend upon pressure.

197. It is convenient to consider mass M movement in principal coordi-
nates z,y (Fig. 455). They possess the property that force applied along axis
x causes deflection only along axis x and force applied along axis y causes
displacement along axis y only. In our case axes x and y are rotated by angle
22.5° with respect to the vertical and horizontal axes (see problem 41).

VA
Fig. 455

It is easy to derive that force P, directed by axis x causes the displacement

of mass
P _
6, = —— (5 — 3v2),
A V2)

and force P, causes the displacement
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P,
6, = T2 (5 +32).

Now we write the equations of motion as follows

RV S L S
SEJ . 0,
B 5-3/2
6EJ 1
———=y+Y =0. 1
B 543027 (1)

Forces X and Y are the components of total friction force T. If mass M
is moving, the resultant force T is directed along the tangent to the mass
trajectory and then

T Y

—_—, Y =T—F/——.
/ 2 2 ) 2
T +Y r +Y

If = y = 0, then we have two possibilities. The first: in case of small
deflection the friction force can keep the mass in a certain range of immobility,
and then

X=T

6EJ 1 6EJ 1

— sz, Y=Y =—mr—xy. 2
B 5-32 TR 54307 @

But the resultant of these forces cannot be greater than T. Therefore, the

relations (2) are correct only under the condition

VXEF+Y2<T,

which corresponds to the mass stop, i.e. the final point of the trajectory.
If this condition is not satisfied then force T must be decomposed by axes
z and y in the components

X Y,
X= - T—— Y= L

e e————3
VXE+Y?E VXY

Let’s transform the equations (1) to dimensionless form by denoting

X=X =—

r=1I¢, y=lIn, t=odt,
where 7 is dimensionless time.
We assume that
6EJ
then equation (1) can be rearranged in the following form

&¢
dr2

— (5+3V2),

+122¢(+ X, =0,

d2
v, =0. (3)
dr?
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In case of motion, ie. for d{/dr # 0 or dn/dr # 0, the dimensionless
components of friction force Xy and Yy are defined by the relations

a 4n
dr dr
Xo="To , Yo=To ;
d¢ ., dn. , \/ d¢., dn.,
\/(dT) +(dT) (dT) + (dT)
where Ty = T'»*/(MI).
d
In case il d_C =0 for V/12.22¢* 412 < T, the integration is stopped.
T T
If
\/12.22¢% + 02 > Ty
then
12.2¢ n

B e T Y e

The system of equations (3) is integrated by 7 numerically. The step
of integration must be chosen as much less than the least period of free
vibrations. Obviously, from the first of the equations (3) w? = 12.2 and the
corresponding dimensionless period of free vibrations will be 27 /w = 1.8. The
step A7 is chosen as equal to 0.01. The initial deflections {, and 7y of mass

M must be chosen in such a way that \/12.2%3 + n2 > Ty, otherwise the
system in the initial state will be self-inhibiting. In other words mass M must
be moved off the ellipse of self-braking. The equation for the ellipse follows

from the condition \/12.22¢2 +n3 =T, or

(To/12.2)2 T} '
Let’s specify Ty = 0.01; ¢, = ng = 0.01.
The ellipse of immobility for given Ty and the trajectory of mass move-
ment for the specified initial deflection are shown in Fig. 456.

198. The problem does not pose general difficulties. Naturally, the beam
obtained by the described method will oscillate near its equilibrium state as
an ordinary beam clamped at both ends, and the deflection A has no influence
on its frequency.

Let’s write the equation of movement of the elastic beam (Fig. 457)

_49%
g ot?’

where y is the deflection with respect to the equilibrium state.

EJyV) =
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Assuming y = Y sinwt, we obtain

2
yUV) gty — o (ot = L
a (a* =57

whence

Y = Asinax + Bcos ax + C sinh ax + D cosh azx.

This function must satisfy the following boundary conditions:

atx=0 Y =0andY =0,
at x =1 Y =0andY' = 0.




5. Various Questions and Problems Part II. Solutions 383

Equating to zero the determinant of the obtained homogeneous system
we arrive at the following transcendental equation:

cosalcoshal = 1.

E
From which al = 4.73 or w = 4.732, /g_r;]’
q

Up to this point everything was done as usual. But in this problem the
length [ itself depends on gq.
The shape of the beam deflection curve in its initial equilibrium state
reads as a curve of the fourth order
q 4
EJ ( 24
As yo and y(, vanish at z = 0, then Co = C; = 0. At x = we have y, =0
and yg = 0. It yields
EJ(24 9 + 12 )
But at z = [ the deflection is equal to h. From which the length [ is
determined as:
B 72EJh.
q

Now let’s return to the relation for frequency in which we exclude 14 :

42
73\/’ 63\/’

The vibration eigenfrequency of the beam constructed in such a way oc-
curred to be neither dependent on mass of the beam nor on its rigidity, and
is defined only by h.

These fact seems to be of great interest.

If we paraphrasing Gardner’s sophism about interesting numbers [9] we
can say that there are no uninteresting problems, since, otherwise, all known
problems should be separated into two classes - interesting and uninterest-
ing. But one can find among the uninteresting problems at least one most
uninteresting, and it would force us to treat it with interest and transfer it
into the class of interesting. Acting further by such a way we should come to
the conclusion that there are no uninteresting problems among those known
to us.

Yo = +C3$ + CQI' + Chx +Co)

Yo =

199. The described phenomenon is well known and in the last years was
named “negativism”. However, it would be useless to search for examples of
such kind among conservative systems.

Recall that we call systems “conservative” if work done by forces is de-
termined only by the initial and final system states and does not depend
upon the way of transition from one state to another. Such systems loaded
by gravitational forces are obvious examples of this type.
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A system is nonconservative if the work done by forces depends on the
type of transition from one state to another. Forward and backward transition
in such systems can be chosen in such a way that in case of a closed cycle
(deflection and returning to initial state) useful work will be done. In any
case the energy conservation principle is not broken here. It is clear that the
energy is taken from the sources which are related to the external forces. For
example, if forces arise due to hydro- or aerodynamic flow, then the kinetic
energy of flow partially transforms into work done during the cycle of system
deflection and returning to its initial state.

Let’s consider the simplest model illustrating the difference between con-
servative and nonconservative systems.

Two rigid rods are joined by a hinge (Fig. 458a). Elastic springs holding
the rods in vertical position are installed on hinges.

P

a) b)
Fig. 458

If at the free end of the upper rod a weight of mass M is applied, then by
deviation of the system from its vertical state the force Mg produces work:

Mg\ = Mgl(2 — cos ¢, — cos ¢y).

The main idea is that work is determined only by magnitudes of angles
¢, and ¢, and does not depend on the consequences of their changing.

Now let us consider a nonconservative system. We change the method
of loading. Let’s suppose that force P is produced by jet thrust of a rocket
engine, installed at the end of the rod (Fig. 458b). During rotation of the
upper rod the force is always directed along its axis.

It is not possible to determine the work done by force P under the de-
flection of rods by the specified angles ¢; and ¢,. Besides the quantities of
angles ¢; and ¢, we must know in what way they have been changed until
they have reached their final values.
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Suppose, for example, that we turned both rods from their initial state
by the same angle ;. Force P will turn but will not produce any work. Then
let’s turn the upper rod further to the magnitude of angle ¢,. The force P
will turn but again it will not produce work. Thus, by the specified order of
angular displacement the work done by force P is equal to zero.

Let’s consider another consequence of loading. Let’s turn only the lower
rod by the angle ¢,, and leave the upper rod vertical. The force P will produce
work through the distance [(1—cos ¢, ). Now let’s turn the upper rod by angle
5. The force will turn but again it will not produce any work. Thus total
work is equal to PI(1 — cospy).

By combining the order of angle change for the transition to the specified
state ¢;, p, we can obtain the work done by force P, not only the positive
but the negative as well. For this purpose it is sufficient, for example, to turn
the upper rod by angle ¢, — ¢, and then turn both rods by the angle ¢;.

Now let’s consider the example of negativism.

1
S

v A
Fig. 459 Fig. 460

The elastic rod is stretched (stretched !) by the follower force P (Fig. 459).
A rigid lever of length [/2 is attached to the rod’s end. The end of the lever
can be loaded by force (). We apply the weight Q) at the bowl and under its
action point A moves to the state A’, and weight, contrary to expectations,
does not move down but moves up. But that is possible only under certain
conditions. Let’s determine these.

At first, the differential equation of the rod deflection curve needs to be
written. Beforehand, the force @ and its moment are brought to the end of

the rod (Fig. 460)
EJy" = Py + M(x),
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where M (z) means the bending moment due to force @ and horizontal com-
pounent of force P. As M (z) is linear along z, it is more convenient to rewrite
the equation as follows

y 1 — Ky =0 (k* = P/(EJ)).
Its solution will be
y= Asinhkx+ Bcoshkx +Cz+ D.
For x = 0 function y =0 and 3’ = 0. Then
y = A(sinhkx — kz) + B(coshkz — 1).
Now we should satisfy the boundary conditions at the rod’s end. For x = [
EJy" =Ql/2, EJy' =Q.

Now we can determine constants A and B

kl kl
= Q(cosh kl — — sinh k1), :Q(— cosh kl — sinh k).
kP 2 kP 2
Let’s derive the deflection
l
AA" = Yot = St

After easy transformations we get

l 1 kl
AA = % [(E +z> sinh kl — cosh kl| .

The condition of negativism is AA" > 0 or
1 ki
— +—)tanh kl > 1.
(kl + 4) anh kl >

It is satisfied for kI > 2.4 or P > 5.76EJ /I*.

It would not be out of place to give one more example of negativism [17]
(Fig. 461).

The compressive follower force P and moment M are applied to the free
end of the clamped rod. If force P < 72EJ/I2, the system behaves “natu-
rally”: the end cross-section rotates towards the direction of moment action.
But under P > n2E J/I?, negativism occurs and the end cross-section rotates
against the moment.

200. Assume that the cylinder turned inside-out has its original shape, i.e.
the shape of a cylinder of radius R. Let’s analyze stresses which will appear
in it under this condition.

The relative elongation in circumferential direction for layers that are at
a distance z from the median surface (Fig. 462) will be determined by change
of the cylinder curvature from 1/R to —1/R.
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7
Fig. 461

If the length of the fibre in element dy before deformation (Fig. 462) was
(R + 2)dg,
then for the cylinder turned inside-out it will be

(R— z)de.

Fig. 462

The relative elongation in circumferential direction will be
(R—2z)de — (R + z)dy 2
= ~ —zZ

ct (R+ 2)dy T 'R
The relative elongation in axial direction ¢, is equal to zero. Hence, we obtain
zE 2
oy = 1_—M2(8t+u€x) ~ T 2R
E 2E 2
Oz = 1—_;3(81 + pee) = M 2R

Thus, we come to the conclusion, that in order to preserve its cylindrical
shape for the inside-out cylinder, it is necessary to apply at its ends the
stresses o,, shown in Fig. 463.
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Fig. 463

Obviously, the actual shape of the inside-out cylinder will be just the same
as the cylinder would have being loaded at its ends by the reverse system of
forces (Fig. 464). The resultant moment M of stresses ¢, at unit arc length
of the section contour will be as follows

h/2 .
Eh 2
M= - p2dz = p——"—=.
/” ST MR
—h/2

Fig. 464 Fig. 465
Let’s separate a strip of unit width from the cylinder by two axial sections,
as it is shown in Fig.465. We can consider the strip as a beam on elastic
foundation, because the radial component of forces T', acting upon the strip
from neighbouring parts of the shell, is proportional to the deflection of the
strip w.
Force T per unit length becomes

w
= —Fh,
R
and its radial component is
T w
= —— =——Fh.
I="RT R

The negative sign of ¢ is taken because the load is directed opposite to
the deflection. But
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EJ
V) — g Ly
1—p R?
where
EJ Eh3

1—p?  12(1—p2)
is the strip rigidity under the constrained bending. Then we have

12(1 — p?

(1v) 4, _ 4 _
w + 4k"w = 0, k™ = ohe

Solving the equation, we get
w = (Asinkz + Bcoskz) exp(—kx) + (Csin kx + D cos kz) exp(+kz).

As the cylinder is long enough, we can restrict ourselves to analyzing the
deflections in the region of a single contour. Discarding the increasing part
of the solution, i.e. assuming C' = D = 0, we obtain

w = (Asinkz + Bcoskz) exp(—kx).
Constants A and B are determined from the conditions:

J
w’ =M,

te=0 My=7"
at T b 1—#2

atz=0 Q=M =0 (w"" =0),

or
Eh3 Eh3 2
o 2k A= = A+ B =0,
12(1— 12) 12(1 - p?) R
whence
U
A=-B=-7—
k2R’
w:ﬁ%exp(_kx)(COSkx—siﬂkI), Wmax = W |z=0 = ]{,‘éle
But as
pe = N30 =)
Rh
then
wmax = h !
3(1— p?)
For p=1/2
Wmax = h/3

The exaggerated shape of the inside-out cylinder is shown in Fig. 466.
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Fig. 466

201. Let’s find the roots of the characteristic equation
ho
4 z 2 4
— 4k* = 0.
« a” +

Solving it we get

ho ho\ 2
2 _ x x o 4
« 5 i\/<2 ) 4k .

The summand specified in the problem set can be neglected in case

hﬂx 2
<< 2k°,
2D
which after substitution of values D and k arrives at the condition
FE h
0, << -

It is easy to establish that this condition is not always valid in many practical
problems. That is why we should not forget this circumstance while analyzing
the boundary effect.

In case of extremely small thickness, i.e. for shells with negligibly small
bending rigidity (soft shells), the boundary effect can be studied only if we
consider the component containing the second derivative of w. In this equa-
tion (1) (see the problem set) limit transfer is possible. Multiplying all mem-
bers of the equation by D and equating it to zero, we arrive at

" @2, )4 M
W Pw= g TR
E
here 3° = .
where 3 R0,
This yields
1
v Aepan T Bewthon +?(hiz - %)‘

If we discard the increasing part of w and determine A in such a way that at
x = 0 the variable w vanishes, we obtain

w=R (5L %) (1 expl-m))

The damping rate is defined by the value 3.
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202. Let’s consider the problem by suggesting that no forces are applied
to the exit (closure) loop (Fig. 180, on the right). It is natural to assume
that at distance [ the angle of twisting 8 remains constant, and uniformly
distributed load of intensity ¢ appears between strands at the same segment.
A similar situation was encountered for problem 126. The line of contact is
straight, and the axial line of each strand is a helical curve having a radius
that is equal to the radius of the strand cross-section.

Thus, the twist represents two equally inscribed helical curves within each
other. Naturally, they can coincide only within certain geometric limits. In
other words, each rod bent by a helical curve must reserve free space for
another one.

At an arbitrarily chosen contact point A (Fig. 467) the surface of each rod
bent in helical fashion has a negative Gaussian curvature. The first principal
line of curvature S; represents the circle of radius R. The radius of the second
principal line of curvature Sy is defined by the difference:

p(S2) = R/sin” 3 — R,

where the first component at the right-hand side is the radius of the curvature
of the rod’s central helical curve. Thus, p(Ss) = R/ tan? 3.

Axis of twist
Fig. 467

The normal v at point A is simultaneously the surface normal of the
second spiral rod, and the sequence of contact points A forms the axis of the
twist. This is the vertical straight line, shown in Fig. 467.

It isnot difficult to understand that the second rod will fit in the aperture
formed by the first one only in case that the curvature of curve S, is greater
than the curvature of Sy, i.e. if 3 < 45°. This is the existence condition of the
contact between the rods along the common straight line — the axis of twist.

The above can also be interpreted slightly differently. Let’s imagine that
we have cut the twist by the plane perpendicular to its axis. In the section
we obtain neighbour cross-sections of two twisted rods. These will be two
contacting circles if 5 = 0 (Fig. 468a).
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Fig. 468

As twist angle increases the two osculating circles are transformed into
two sections that appear like ellipses (Fig. 468b). For 8 = 45° their curvature
in the point of contact (Fig. 468c) vanishes, and for 3 > 45° the two-thread
spring of compact coiling is formed by the twin, and its cross-section is shown
in Fig. 468d.

Let’s assume that 8 < 459 and cut the twin by the cross-section common
for the two strands. The internal forces in this common section are self-
balanced, and their resultant is reduced to moments M; and M, and force
Q1 (Fig.469).

Fig. 469

The moments M; and M, are neither torque nor bending. They arise in
sections that are not perpendicular to the strands’ axis.
It follows from the equilibrium condition that

Q1R = M. (1)

Let’s plot the imaginary cylindric surface of radius R with the axis coinciding
with the axis of the twin (Fig. 470). The deflection curve of each of the two
strands will occur on the cylinder surface as a helical line. At the initial refer-
ence point of z the moments M; and M, are applied, their vectors are shown
in Fig. 470 together with force Q1. Moreover, the contact load of intensity ¢
appears in radial direction of the built cylinder.
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Now it is necessary to select such values of My, My, )1 and ¢ so that at
an arbitrarily chosen point B (Fig. 470) moments M;, My and force @QQ; are
the same as at point O, independent of z and .

Let’s choose x1, y1, 21 as a moving coordinate system with origin at point
B. The component of forces in x; axis direction is equal to zero, because @)1
and ¢ are perpendicular to the axis x;. The components in axes y; and
z1 direction are as follows

Yip = —Qicosy —/ gsin(p — ¥)d¢,
0

Z1p = —Q1sing +/ q cos(p — P)d¢;
0

9 and ¢ are connected by the obvious relation:

¢ =Ry cot 3, d¢ = Rcot 3 di.

X
Deflection
curve of

Axis of twist

Fig. 470

If we eliminate d( after integration we obtain
Yip = —Q1cosp — qRcot B(1 — cosy),
Z1p = —Q1sin ¢ + gR cot Bsin p.

The component along the y; axis must equal —@)1, and the component
along the z; axis vanishes. Both conditions are valid if

Q1 = gR cot 5. (2)

Now let’s find the components of moment by axes x1, y1, and 2
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T

Mpe, = My — Q1R(1— cosp) + / qR sin(p — 1)d(,
0

x

Mpy, = Mycosp + Qi sin o — / g(z — ) cos(p — W)dg,
0

T

Mp,, = Mysing — Qixcosyp — / gz — ¢)sin(p — ¢)d¢.
0

Expressing ¢ through ¢ and by integration we arrive at
Mpa, = M; — Q1R(1— cosy) + qR* cot (1 — cos p),
Mpy, = Mscosp + Qixsin ¢ — gRcot B[z sin ¢ — R(1 — cos ¢) cot 3],
Mpg., = Mysing — Qqxzcosp — gRcot B(—z cos ¢ + Rsing cot 3).

But Mp,, must be equal to M1; Mp,, = Ms, and Mp,, must be equal to
zero independent of z and ¢. It is easy to establish that these requirements
are fulfilled if in addition to condition (2) one more will be ensured:

My = qR? cot? 3. (3)

Now, after analyzing the section normal to the twin axis let’s consider the
sections normal to the strands’ axes and determine the bending moment M,
and torque M; (Fig. 471), and also tensile N and shear @ forces.

Fig. 471

It is obvious from the equilibrium conditions that
My = My cos B — M, sin 3;
My = M cos 3+ M, sin 3,
Q@=Q1cos3, N =Q;sing.

Using the relations (1)-(3) we obtain
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M, = qoR*(cot’ 3 — 1),

M, = 2qoR* cot S, (4)
Q = qoRcot 3,
N = QOR,

where ¢q is contact load, brought to the axial line of the strand:

qo = q cos (3.

On the other hand, the bending moment is related with the curvature
variation, and torque is related with the twist of the rod. Then we have

sin” 8 sin (3 cos 8

My=EJ=—=, M, =GJ,—— (5)

Here E'J is bending rigidity, GJ, is torsional rigidity, sin’ B/ R is the curvature
of the helical line and sin 3 cos 3/R its twist.

Let’s substitute here M}, and M; from (4) and after eliminating gg, we
obtain

1
V2 +1
where e = EJ/(GJ,). For tubular or solid circular sections e = 1+ p (u is
Poisson’s ratio). If 4 = 0.5, then 3 ~ 26.6".

Substituting 3 from (6) into the relations (5) and (4), we derive'

EJ 1 M*GJ Vv2e+1

tan 8 =

(6)

M, = . —

"7 2Re+ 1’ T oR e+l
_GJp 1 _GJp 1
=Y RS e 1 TR+ 1
Q= Glpy2et1

AR et1

203. It follows from the equilibrium conditions that
mw?(l+u) = P = f(u).

We solve the equation in u graphically (Fig. 472). The points of straight
line mw?(I+u) intersection with curve P = f(u) are the roots of the equation.
Drawing several straight lines we determine the dependence of mw?l in u
(Fig. 472).

For mw?l = 1.0 the ball changes its position stepwise by moving from the
point that is characterized by the displacement magnitude v = 1.8 to the
point u = 7. The reverse change occurs under mw?! = 0.8.

It is clear that the direct jump can occur also at mw?l < 1.0 (but greater
than 0.8), if only a sufficiently large deviation is applied to the ball.

! See also [8].
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204. The height of point O location of the deformed system above the
horizontal plane will be H — w. Then the slope angle of rods with respect to
the horizon will be

H-w
a= T
We denote compressive force as in rods N, then from the equilibrium condi-
tions obviously follows
H—w
T
On the other hand, force N is defined by the value of each rod shortening
EAA]
N=—.
l

From the purely geometric considerations (Fig. 473) we express Al

through w as

P=3Na=3N

Al = — =220
COS ¢
Al
\
AW T~
H| | S~
\ a, o =
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As angles ag and « are small we arrive at

2
-
Alml|l - —2%

.
2

Substituting gy and a we obtain

w w

Al = n (H — > ).
Then force N will be

N EA L mo b,

12 2

Finally force P will be expressed as follows

pP= 3lE3Aw(H — w)(H — 7“—2”).

The obtained relation can be rewritten in dimensionless form
PB w w 1w

spams - HC 72w
and plotted as the curve presented in Fig. 474.

Pr’
3EAH®

Fig. 474

397

The curve has two extremal points A and B. In the first segment O A
the deflection increases simultaneously with the load growth. When force P
reaches the magnitude corresponding to the first extremum, the deflection
changes stepwise (AC as it is shown by arrows). Under further increase of
load the deflection w continues to increase. If we now unload the system then
rods will take their free state under the deflection w/H = 2, i.e. the nodal
point of rods will occur below the immovable horizontal plane by value H.
Applying a load of opposite sign we may cause the reverse jump of the system

BD and return it to its initial state.
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The segment AB of the curve corresponds to unstable equilibrium states.
Thus, for values of force P laying between two extrema (Fig. 474)

LEAH3<P<+LEAH3
VR v3 B

the system has three equilibrium states: two of them are stable and the third
one, intermediate, is unstable.

Particularly, at P = 0 this unstable state corresponds to the position of
rods in a horizontal plane (w/H = 1). Under the slightest deviation of rods
with respect to this disposition the system will take either the upper or lower
position.

205. Let’s suppose that under the load action the rectangular cross-
section is not deformed and rotates by angle ¢ about some point O, disposed
at distance ¢ from the axis of rotation (Fig. 475).

Fig. 475

Let’s consider point A with coordinates x and y in a section of the spring.
After cross-section rotation the point will take a new position A’ that is closer
to the axis of symmetry by

A= [zcos(a— ¢) — ysin(a — ¢)] — [z cos @ — ysin a].
As angles o and 3 are small we can write:

cosa~1—=a’

5 sina = «;

1 .
cos(a—p)m1-(a—y)’, sinfa—g¢)~(a—g)
and then we obtain
L
A=zp(a— 5)—1—1/90.

The circumferential relative elongation corresponding to the displacement
A will be
A A

[ - =~ s
C—xcosa+y51na cC— T




5. Various Questions and Problems Part II. Solutions 399

o (a—p/2) + yp
C— X '

& =

Stress o¢ is equal to 0y = Eey.
Now let’s determine normal force in the axial section of the spring

c—a +h/2
N = / / oy dx dy.
c—b —h/2
Substituting the expression for o; obtained above we have
c—a+h/2

+
/ / TAT ) TR e dy
C— X

c—b—h/2
% b
= Fho(a ——2)(a— b+cln—).
a

But considering the equilibrium conditions for one-half of the ring (Fig. 476)
we make sure that N = 0. From this condition we find

b—a
In(b/a)’

Now let’s find moment M

c—a+h/2
M = / / oy [z sin(a — ) + ycos(a — ¢)] dx dy,
c—b —h/?2
c—a +h/2
M=E / / zrola = 9/2) +ye [z(a — @) +y] dz dy,
EAEA c—w

2 2
M = Eh Lp(a—g)(a—go) b——a—+2ca—2cb+czln—b +h2apln—b .
2 2 2 a a
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On the other hand, it follows from the equilibrium condition for the one-half
ring (Fig. 476), that

™ P ™ P P
oM = /—b2sin 0d0 — | —a’sinfdh, M = — (b— a).
27h 2ma 2m
0 0

Thus we arrive at

= (0 a) = Bhgl(a—£) (a—y)

27
2 2 2
X b—fa—+2canCb+021n2 +h—<pln—b]
2 2 a a
If we eliminate ¢ from the relation and substitute H/(b— a) and w/(b — a),

where w is the spring deflection, instead of o and ¢ correspondingly we get

2rEh w
P :mw ’V(H— 5)(H—w)(—

ln; 12 aJ'

By direct numeric calculation it is possible to establish that for 1 < b/a < 4
the following relation is valid

lota 1 1 b
2b—a b 12 e
In—

a

Therefore
TEh b w
P=— 1—[(H——) H - hQ}.
6(b—a)2wna 2 ( w)+
The obtained relationship between force P and spring deflection w is

nonlinear and depending on the ratio H/h can have different character.
Some curves of the dependence of Py on w/h

6(b—a)’
0o=7P
7 Eh*1n(b/a)
are shown in Fig. 477 for different H/h, i.e.

n=g (-8 (6-5) )

Let’s analyze how the form of the spring characteristic Py = f(w/h)
changes depending on H/h. The curve corresponding to H/h = 0 represents
a characteristic of the plane disk spring. The increase of height H causes first
of all the increase of initial spring rigidity and then the disruption of curve
monotonicity.
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Fig. 477

For the value H/h = V2 (it is easy to determine from the analysis of the
obtained relation) the segment with negative derivative between two extreme
points appears in the characteristic of the spring. This segment may be called
a segment of negative stiffness, because the increase of deflection in the given
case occurs during the decrease of the load. Such a regime of spring operation
is unstable, and forces corresponding to points of extrema will be critical for
the given spring. Since the force reaches its first extremum, the spring will
stepwise change its deflection omitting the unstable region. Further operation
will follow the right stable increasing part of the characteristic. Unloading of
the spring will cause the reverse jump of the deflection, corresponding to the
second critical force.

Further increase of spring height H gives, as shown in Fig. 477, even
greater distortion of the characteristic and for H/h > 2v/2 the last one be-
gins to intersect the abscissa axis. Hence, under the force P = 0 the spring
has three forms of equilibrium, two of which are stable and the third one
— intermediate — being unstable. Such a spring after clicking out and un-
loading does not return to its initial state and keeps the residual deflection,
corresponding to the point of curve intersection with the abscissa axis.

Compare the solutions of this problem with those of problem 204.
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206. Let’s consider the equilibrium condition of the tube in the deviated
state (Fig. 478).

If we denote the distance from the upper edge of the piston to the hinge
at the beginning of loading as H, then, obviously, we have

P cos ¢

P(H — )sin ¢ = cp, (1)

C1
from which we obtain

P 1 - \/1 4c .
—_— = — cotop|.
Hcy 2cos clHQSO ¢

Let’s denote:

P 4c
— =p, 5
HCl ClH

Then we arrive at

Y (2)

p= {1:!: 17)\<pcot<p].

2cosp

Under various A the dependence p on ¢ has different character. This de-
pendence is shown in Fig. 479 for values A = 0.5, 1.0, and 1.2 under 0 < ¢ < 7.
The obtained curves correspond to the equilibrium states, representing the
deflected configuration with respect to vertical line. In addition, the vertical
equilibrium state exists also (equation (1) is always satisfied at ¢ = 0). In
Fig. 479 this equilibrium state is represented by points on the axis of ordi-
nates. In case of A = 0.5 and, in general, for all values of interval 0 < A <1
the curves p = p(¢) intersect the axis of ordinates at two points, the lower
of which corresponds to the first critical value of parameter p. For A = 0.5

P., =0.147. In general,

1 — He, 1
P ==(1=VI-N\), or Py =—2 [1—/1- .
3(1=V1=%), o 2 [ clHQ]
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Fig. 479

Now we must analyze the stability of the specified equilibrium states.
The criterion of equilibrium state stability is the condition of total potential
energy minimum

2 2
Cy 1A
UZ% +IT + P(H — A)cosp.
The first two components of the relation are the strain energy, and the last
one is the variation of external force P potential. As A = (Pcosyp)/c1, we
obtain

2 2 2
P
U= | PHcosp — ——= 2

2 201

The condition dU/de = 0 is the equilibrium condition (condition of energy
extremum), and as it should be expected, it is the same as obtained earlier
in equation (1). The condition of energy minimum can be written as

d*U

W>O,
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or
2

P
¢— PHcosyp +— cos2¢ > 0.
€1

According to the relations (2) we have

A
1 —pcos p + p? cos?2p > 0.

Analyzing the obtained curves we notice that some segments of these
curves satisfy the stability condition and some of them not. In Fig. 479 the
segments corresponding to unstable equilibrium are drawn by dashed lines.
The stability condition for the axis of ordinates yields

A 2
.- 0
1 p+p >0,

whence we obtain
1 1
p<—2(1—\/1—/\) and p > 5(1—!-\/1—/\).

For example, at A = 0.5 the vertical state of the tube is unstable under
the condition

0.853 > p > 0.147.

In Fig. 479 the increase of angle ¢ as a function of force P in case of
A = 0.5 is shown by arrows. At the beginning, the angle ¢ remains equal
to zero. Under p = 0.147 the tube deflects from the vertical and further, as
force P increases, the angle ¢ asymptotically verges towards the value ¢ = 7.
Under that for ¢ > /2 the piston will be pulled from the tube by force P.
In the real system the displacement of the piston and, therefore, the increase
of force P also are restricted by tube length.

The plotted curves show that angle ¢ can also asymptotically verge to-
wards the value 7/2, for example, for case A = 0.5 when p > 0.853. It means
that for sufficiently large force the shortening of the spring, being in the
tube, increases so much, and at the same time the arm of force P decreases
so quickly, that the force is not able to turn the tube below the horizontal.
For the limit at ¢ = 7/2 the shortening of spring (P cos ¢)/c;1 is equal to H,
which is easy to establish. However, these equilibrium states are unstable.

In case of A > 1, i.e. for sufficiently great stiffness of the helical spring, or
for sufficiently small height or stiffness of the second spring c;, the vertical
state of the tube remains stable under any value of load P, though deflected
forms of tube equilibrium exist also. The tube will take such equilibrium state
if certain external load imparts sufficiently great lateral deflection to it.

The branches of curves p = p(¢) for negative values of p are plotted in
Fig. 479 also. These curves show that for 7/2 < ¢ < 7 the tube can have an
equilibrium state under force of another sign. It is easy to imagine this type
of equilibrium if we consider that theoretically the piston can move in the
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tube by values greater than H. For A > H force P having another sign will
hold the tube in the specified state of equilibrium.

Thus we have considered the equilibrium states for 0 < ¢ < m. However,
the whole variety of possible states is not exhausted by that. Analysis of
this question could be continued by extending the area of angle ¢ variation
beyond the limits of 7 to the right and beyond the limit of zero to the left.

The considered problem is an example of the simplest nonlinearity, where
we can easily get full solution and visually show its multiple-valuedness. And
in the general case, the solution of nonlinear problems is one of the most
difficult and actual problems of contemporary mathematics and mechanics.

207. By reduced flexural rigidity here and in other similar cases we mean
the coefficient of proportionality in the moment-curvature equation for bend-
ing:

1 M
p (EJ),

The most convenient way to determine it for the given example is the

energy method.

Let’s consider a structural cell of the rod by length 2a (Fig. 480). Forces
of preliminary tightening in sections I and I[ are not shown.

Fig. 480

If bending moment M is applied to the section, then the initially straight
thread will take the form of a broken line, which is one of a series of regular
polygon sides. Points A and B will come closer by value 2a192/2, and the
potential energy of the upper bent rod will increase by Sav?. Two halves of
the lower rod will obtain the same increment of energy. Thus

2509 = M2—;9,

where the right side of the equation represents the work of moments M done
at the reciprocal angular displacement of sections [ and 17 .
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As radius p of thread curvature we, naturally, take the apothem formed
a
by the thread polygon: p = 7" Excluding ¥ we find

1
;zﬁ, (EJ), = Sa*.

208. If we consider the spokes as a continuous elastic medium, then for
any point of the rim the force acting from the side of the spokes will be
proportional to radial displacement w of the corresponding point of the rim.
Thus we have a problem of the ring based on elastic foundation analysis. The

EA
n/(2nR) spokes fall per unit of rim length. The force = w acts from the

direction of each spoke on the rim, where [ is the length of spoke (I = R),
and A is area of spoke cross-section.
Thus, the force acting on unit of rim length is equal

from which
EAn

. 1
27 R? (1)
Now let’s derive a differential equation of the ring deflection curve. The

angle ¢ referred to the top of the ring we choose as an independent variable
(Fig. 481).

k=

Fig. 481

Let’s separate from the ring an elementary segment of length Rdy and
apply the internal forces N, Q) and M to its cross-sections. The force kwR dy
will act from the side of the spokes on this segment. Consider the equilibrium
of the elementary segment. If we balance all forces in the radial direction we
obtain

d
99 _ Ny kRw.
dg

It follows from the condition of equality to zero of all force projections
onto the axis tangent to the circle arc that
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dN
d—(p +Q=0.
Let’s equate to zero the sum of moments of forces with respect to point
O
dN dM
% e Y

and eliminate Q and N from these equations. Then we arrive at

e _dM M
dy dy de3

The curvature variation A(1/p) is related to the bending moment M by
the following equation

M= EJAR),
p

but we know that

()

As for positive deflection w directed out of the circle center the curvature
of the ring decreases, then at the right side of the relation we place a minus
sign. The curvature variation in the relation consists of two terms. The first

component w/R? corresponds to the curvature variation due to simple ex-
2

tension of the ring. The second component EF that is equal to d?w/ds>
2
represents an ordinary curvature variation the same as we had in straight
beam bending.
Now after substitution of M the differential equation arrives at its final

form

d5w d3w o dw
AL S )
dg® dp? dp
where
Rk
2

= — 1. 2

a EJ + ( )

The solution of the equation is
w = Cy + C4 cosh ap cos By + Co sinh ap sin By
+ C3coshaysin e + Cysinhap cos By,

where

Since the ring deforms symmetrically with respect to the vertical axis, the
function w must be even, i.e. if we change the sign of ¢ from plus to minus
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it must remain unchanged. That is why the arbitrary constants Cs and Cy,
staying near odd functions, are supposed to be equal to zero. The remaining
constants are determined from the conditions:

dw
to=m, — =0,
a) at p =1, iy
P
b) at p =, Q:_Ea

™

0) /wd;p:O.

0

The latter condition means that under wheel loading the upper and the
lower points remain in vertical line. Really, if we consider an element of the
wheel rim before and after deformation (Fig. 482), then it is easy to establish
that the condition of its inextensibility will be written as follows

dv+ wdp =0,

where v is the displacement at a tangent to the arc of contour, or

v:—/wdap.

Fig. 482

As the displacement in tangent direction at points ¢ = 0 and ¢ = =
vanishes, then it yields the condition ¢).

If C3 = C4 = 0 the expression for bending moment yields

EJ d?w
M = —E(w + m)
and shear force
1dM
Q=—"—".
R dy

Thus we arrive at
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EJ
M = —F(CO — 2a6C1 sinh ap sin B + 2a8C5 cosh vy cos Bp),

409

EJ
Q= Qaﬁ?[(aCl + BC3) cosh awp sin B + (BC1 — aCy) sinh ap cos By).

Now if we expand the boundary conditions a), b), and ¢) we obtain
a) Cy(asinh arm cos fm — Bcosh amr sin )
+Cs(Bsinham cos B + acosh arsin fr) = 0;
b) Cy(acosh o sin B 4 Bsinh ar cos Gr)

P R?®

—Cy(asinh amr cos B — B cosh arrsin fr) = — BT —57
o

c) Com+ 5 (asinhamcos B + 8 cosharsin )
a?+ g
Co : .
+ 5 (avcosh amsin B — @sinh ar cos fr) = 0.
a? +
After solution of these equations:
PR®
Co=——,
07 2ra2EJ’
Cr P E a cosh am sin B + (sinh an cos B
! 4EJ of a(sinh? am + sin® ) ’
Cr P i?’ asinhamcos 7 — B coshamsin B7
7 4EJ af a(sinh? am + sin® Br)

Finally the relations for w and M take the form

PR3 2

PR 1
M = - (—2 + A;sinhaypsin S + By cosh agpcosﬁcp) ,
ma
where for the sake of abbreviation we denote:
A — acosh ar sin B + (sinh ar cos B
' a(sinh? ar + sin® Br) ’
asinhar cos Br — Bcoshamsin Br

a(sinh? ar + sin® Br)

B, =

The force, falling at one spoke, obviously, will be equal to

P EA
s = ———W.
R
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Let’s produce numerical calculations. From the relations (1) and (2) as-
suming that the moduli of elasticity of rim and spokes are equal, we obtain

2 _ R?*An 1 (m-0.2%/4) - 36 - 312
2w J 27 -0.3

Further according to (3) we calculate

[24.04 — 1 [24.04 + 1
a=|—F5— =339, = T+:3'539'

Now we find

a +1=2577.7, a =24.04.

1
sinh am = cosharn =~ 5 exp 10.66 ,

sinBr = —0.992, cos fr = +0.1223.
According to (6), we have

A; = —0.245exp(—10.66), By = +0.326 exp(—10.66).
The relations (5) and (7) can be rewritten as follows

M = P[—0.00855 + 3.80 exp(—10.66) sinh aqp sin By
—5.05exp(—10.66) coshaypcos fp] Nem,

P, = P[0.0278 + 0.514 exp(—10.66 ) cosh cwp cos By
+ 0.683 exp(—10.66) sinh awp sin 3] N.
From the above we see that for small values of ¢ the second and the third
components in square brackets are too small, and M and P, practically do not

change. Applying these expressions we draw the diagram of bending moment
M and force in spokes P, (Fig. 483).

—0.085 P,N':cm

+0.278 P, N

Under the load P = 400N we obtain M., = 880 N-cm; maximal force
in the spoke is Pspax = 112 N. It is clear that the obtained result does
not take into account the preliminary stretching of spokes, which is applied
while assembling. Naturally, this preliminary stretching must exceed P, ax
by absolute value.

The analyzed problem was for the first time solved by N.E. Zhukovsky.
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209. Analyzing the problem of arrow speed dependence upon bow-string
deflection w (Fig. 484) we use the results of problem 141, which are typical for
large deflections of elastic rod analysis. The elastic beam shown in Fig. 369
can be considered similar to half of a bow arc.

At s = [ the equation (5) of problem 141 solution takes the form

ﬁ:FWL)_FWO)- (1)

x,x' S
- N
h
\
\| L
P a .
!
h »y
Fig. 484 Fig. 485

The curvature of the beam is equal to zero (d{/ds = 0) at s = [ . Therefore
from relation (4) of problem 141 it follows that

kcost, =0, ie = % 2)
At s =0 ¢ = 6. From this condition using relation (3) of problem 141 we
obtain

6
sin?z = ksin . (3)

At first let’s consider the first stage of beam bending — tension of the
bow-string (see Fig. 485). In this case, as it is seen from Fig. 369, 6 = 0.
Therefore it follows from (3’), that 4 = 0.

And for this case we also have

rp = a, yL:h

The relations (5) and (7) of problem 141 give

B pn
B=1y=5 =F(3),
a 2 T h 2
7=383)-1 1=F

Let’s specify several values of k. Then, using tables of elliptical integrals,
we determine (3, a/l, and h/l from the corresponding equations. The results
are presented in Table 8.
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Table 8. Results of numeric calculations

arcsin k 0 59 10° 15°
8 1.571 1.574 1.583 1.598
a/l 1 0.990 0.967 0.931
h/l 0 0111 0.219 0.324

Interpolating the obtained data for given quantity A/l = 0.3 we find the
following quantities:

P1 a
/3Z¢EJLw, 7 = 0.945.

Thus we obtain the force P; in the stretched bow-string and the length of
bow-string a, which remains unchanged under further system deformation.

Now let’s consider the second stage of beam bending. Here the value v,
is not equal to zero and remains unknown. We shall determine this value in
the following way. Let’s specify values of & and 1,. From equation (3’) we

o
find 6 using the condition ksiny, = sin—2. Then from (1’) we determine

8= F(3) - F().

The equations (6) of problem 141 yield

/
%I‘ kcosty

o~ E\

2 T 2
=[E(z)— E(gy)] -1, -
S[EG) — Ewo)] -
and it follows from the equations (7) of problem 141 that

y/
cosé—i-—lL sind,

7
!

! /
T
&cosé——lf;sin(s.

l
Finally we determine the length of the bow-string (Fig. 486)

~[g ~I8

xl
X
h
Y Y
3
w
a
P P S r
5 8
;Q y




5. Various Questions and Problems Part II. Solutions 413

Ty
a frd
cosé’
whence
a zr/l
I cosé’

This ratio must be equal to 0.945. Under a constant k we specify several values
of ¥ and repeat calculations until the value a/l becomes equal to 0.945. The

same calculations we produce for several values of k. The results are compiled
in Table 9.

Table 9. Results of numeric calculations
arcsink  15% 20 25 30"  35°
Uy 6° 159 20 219 23°
x/l 0.943 0.932 0.906 0.883 0.850
y/l 0.294 0325 0.366 0.425 0.472
B8 1.493 1.358 1.299 1.317 1.326
Then we calculate the deflection w (Fig. 486)
w oa yr h
— = —sind +=— — —,
LT T
and from the equilibrium condition for forces (Fig. 486) we get the force Q :

12
Q = 2Psin 6, %J =23%sin 6.

For the same values of k and 1, we obtain the results given in Table 10.

Table 10. Results of numeric calculations

w/l  QI*/(EJ)

0.045 0.24
0.192 0.651
0.337 0.967
0.459 0.22
0.585 0.54

The curve for the dependence of dimensionless load QI*/(EJ) upon di-
mensionless displacement w/! is plotted in Fig. 487. The area bounded by
this curve at the interval 0 — w/l gives the amount of elastic strain energy
transmitted to the arrow while shooting. The integral energy curve is shown
in Fig. 487 also. This curve is obtained by simple planimetry of the first plot.

Now let’s proceed to numerical calculations. At the prescribed value w/!

= 0.6 (see Fig. 487)

l
UL =0.53,

EJ
EJ 108 .7 .24
—0.53— — 053 ———M= N
U 0531 0.53 61 60 6950 N cm
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or ur or
EJ EJ EJ
15 /
[0 / y )
ur
05 / EJ
w
0 03 7 n

Fig. 487

Let’s equate this energy to the kinetic energy of the arrow:

U:va’ Y E’
2 m
2. - 981
v = \/% = 5800 cm/s = 58 m/s.

In reality the speed v will be less because some part of energy transfers to
the kinetic energy of the bow-string and arc of the bow. The force @) which
should be applied in order to impart the calculated speed to the arrow will
be also obtained by the curve plotted in Fig. 487:

05 . 724

1
LA -1 = 1.6—~————— =350 N.
EJ 17“:06 6, Q=167 =350
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Index

Admissible stress, 365
Alloyed steel, 362
Aluminium, 105
Amorphous metal, 359
Angle

— of rotation, 118

— of shear, 118, 122

— of tangling, 321

— of twisting, 118

— twist, 14, 38
Angular speed, 356
Angular velocity, 316
Anisotropy, 39, 360
Atmosphere pressure, 233
Axes of inertia

— principal

—— central, 119

Banded matrix, 332
beam

— Bernoulli, 154, 155
— Timoshenko, 154
Bending

— in plane, 47

— mode, 284

— moment, 231, 257, 394
— nonuniplanar, 242
— stress, 34, 250
Bending moment, 375
Bessel functions, 295
Bifurcation point, 268
Bolt, 3, 8, 83, 92, 221
Boundary conditions, 230
Bow-string, 411
Braid, 376

Brittle

— filaments, 10
Buckling, 41, 42

— mode, 43, 237

— safety factor, 50
Bundle

— of filaments, 10, 97

Cable shaft, 376

Center

— of twist, 118

Circular cylinder, 366
Circumferential stress, 367
Clamped rod, 257, 291
Clearance, 47

Coefficient

— of friction, 13, 115
Coefficient of torsion rigidity, 329
Cohesion forces, 362

Coils of spring, 367

Column, 233

— buckling, 42, 335

— cantilever, 48

— Euler, 44, 45

Composite material, 39, 95
— “filament-matrix” type, 40
— cells, 39

— crosshatch reinforced, 40
— model, 40

— one-directional reinforced, 40
Compression, 4

— uniaxial, 38

Conservative system, 383
Continuum

— elastic homogeneous, 9, 95
Contraction, 358

Cooling, 11, 105

Coriolis acceleration, 316
Crack, 358, 361

Critical force, 41, 43, 226, 251
Critical load, 46

Critical moment, 233
Critical temperature, 42
Critical velocity, 320
Cross-section, 13

— circular, 13

— constant, 5, 83, 84

— narrow rectangular, 15

— polygon, 12, 112
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— thin strip, 113

— variable, 5

— weakened, 37

Curvature, 236

— of ring, 257

Curvilinear equilibrium state, 273
Cylinder

— thin-walled, 34, 38

Dead force, 288

Deflection, 39

— curve, 47, 251

— lateral, 46, 48
Deformation

— hoopential, 107

— of thread, 8

— plastic, 38

Design

— constructive, 9, 95
Determinant, 222

Diagram

— elongation, 10, 98

— elongation test, 98

— tension or compression, 105
Disk, 355

Disk spring, 400
Displacement, 3, 10, 98

— axial, 5

— elastic

—— mutual, 95

— full, 3

— linear

—— axial, 84

—— full, 81

— mutual, 8, 14
Distributed load, 277
Distributed rod, 292
Distribution

— of forces, 7-9

—— in threaded joint, 93, 94
— of forses

—— in thin tube, 108

— of secondary tangential stresses, 15
— of stresses, 12, 14

—— uniform, 8, 90

Dynamic criterion of stability, 286

Eigenfrequency, 291, 383
Elastic constants, 39

Elastic strain energy, 322, 413
Elasticity modulus, 360

— shear, 39

— tensile, 39, 40

Elliptical integral, 270, 278, 411
Elongation, 39, 83
— circumferential, 374

— thermal, 85
Energy

— elastic

—— strain, 5
— method, 43
— potential
—— strain, 3

Energy conservation principle, 384
Energy of bending, 349

Epure

— of displacements, 6

— of torque, 13, 115

Equation

— transcendental, 46
Equilibrium equations, 325
Equilibrium mode, 240, 275, 294
Euler

— force, 47, 232

Fibers, 9, 95
Fibre
— artificial fibre, 362
— boric fibre, 359
— carbon fibre, 359
— glass fibre, 359, 361
— steel fibre, 359
Filament
— flexible, 7, 86
- rigid, 11
Filaments
— brittle, 10
— brittle elastic, 97
Filler, 9, 95
Finite-difference method, 349
Fit, 11, 12, 108
Flexible
— filament, 7
Flow velocity, 318
Follower force, 287, 386
Force
— buoyant Archimede’s, 44
— compressive, 47
— follower, 57
— normal, 257
— shear, 394
— tensile, 13, 394

— tightening, 42
Force method, 329
Free wbratlons 381
Frequency, 292, 301, 311, 383
Friction, 12, 13, 107




Gaussian curvature, 391
Geometrical adjectives, 120
— nonconventional, 120
Glass, 361

Glued joint

— strength, 14

Glued spot, 116
Gravitational constant, 340
Gravity force, 351

Half-wave mode, 284
Heating, 11, 104

— constrained, 234

— homogeneous, 5, 84
Hook’s law, 360
Hoop strain, 322

Impact toughness, 359
Inclusions, 9

Inertial force, 236, 289, 301, 315
Inertial moment, 301
Inextensibility condition, 408
Instability, 268

Internal pressure, 235

Isotropy, 40

Joint
— rivet, 7

Kinetic energy, 367, 414

Law

— Hooke’s, 88

— Pascal, 36

— twoness

—— tangential stresses, 13, 112
Layer structure, 358

Linear interpolation, 318
Load

— critical, 47, 48, 50

—— uniformly distributed, 50
Local buckling, 360
Longitudinal-transverse bending, 267

Mass per unit length, 289
Method of initial parameters, 332
Mode of vibrations, 292

Modulus

— elasticity, 4, 84

— shear, 14

Mohr’s integral, 133

Moment

— bending, 34

— of frictional forces, 114
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— torque, 13, 15, 38
— twisting, 120
Moment diagram, 372

Neck, 358

Netting

— wire

—— of “halffang” braiding, 39
Newton’s law, 340, 350
Nonconservative system, 384
Nut, 4, 8, 95, 221

Pipeline, 315

Plate, 220

— anisotropic, 39
Plywood, 39

Poisson’s ratio, 39, 395
Potential energy, 247, 349
Power series, 318
Preliminary tightening, 336
Pressure, 33, 36

— contact, 13, 107

— external

— uniform, 35

— inernal, 10

— internal, 34

— internal and external, 34
— of gas, 257

— of liquid, 257

Principal stress, 367

Recess, 37

— annular groove, 37

Reciprocity principle for displacements,
361

Reciprocity theorem, 362

Reknagel’s apparatus, 36

Rigidity

— bending, 39, 48

— in compression, 6

— tension, 7

— torsional, 13, 113, 114

Rim, 406

Ring, 11, 257, 277, 322, 331, 374

Rivet, 7, 88

Rocket engine, 237

Rod, 46

— rubber, 10

— slender, 41

— straight, 3

— twisted, 14

Rope

— flexible, 48

Rotation angle, 230
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Rubber

- rod, 10

Rubber thread, 258
Rubber-cord, 10, 99

Safety factor

— yield, 35

Sag, 7

Screw, 94, 95

Section modulus, 132, 241
Self-gravitating ring, 349
Semi-follower moment, 300, 306
Shaft, 13, 114

Shaped cylinder, 365
Shear, 231

— angle, 118, 122

— force, 257, 394

— pure, 37

Shear stress, 314

Sheet, 8, 40

Shell

— rubber, 11

Slippage, 108, 114
Spacer, 4, 83

Specific weight, 263, 363
Specimen

— cylindrical, 4, 84
Spoke, 356, 406

Spring, 286, 367

Stability, 43, 51, 52, 268, 403
Steelyard, 82

Stiffness, 4, 41, 81

— characteristics, 40
Strain, 5

Stream, 237

Strength, 117, 359

— criterion

—— maximum shear stress, 35
—— maximum shear stresses, 34
— criterium

—— energetic, 34

— of glued joint, 14
Stress

— bending, 34

— breaking, 14

— breaking point, 10, 97
hoop, 12

— normal, 15

—— diagram, 37

—— local, 38

— principal, 33

residual, 105

— state, 33

—— all-round uniform tension, 37

—— biaxial, 34

— — triaxial, 34

— — uniaxial, 34

— tangential, 12, 14, 15, 112, 114, 117,
120

—— twoness law, 13

— tensile, 15

— ultimate, 359

Stress-strain diagram, 334

Strip, 15, 38, 264, 313

— thin, 13

Sylphon, 235

Temperature, 314

— periodically changing, 12
Temperature loading, 225
Tension

— diagram, 37, 38

— preliminary, 3, 82

— spring, 336

Test

— elongation, 10

—— diagram, 98

— tensile, 39, 40

—— of one-way reinforced composite, 40
Theorem

— parallel axis, 127
Theory

— of elasticity, 95

— of motion stability, 268
Thermal expansion

— coeflicient of, 327
Thermal strain, 313
Thin-walled

— panel, 231

— sphere, 11

Thread, 8, 361

Tightening, 4, 83, 95
Tightness, 11, 13, 105, 115
Torque, 13, 113, 231, 306
Torsion, 12, 15, 43

— pure, 15

— specific angle, 113

— unconstrained, 14, 120
Torsional moment, 300
Torsional rigidity, 264, 354
Torsional stiffness, 230
Torsional vibrations, 304
Transcendental equation, 223, 246, 293
Truss

— plane, 3

Tube, 12, 13, 114, 234, 318, 364, 402
— thick-walled, 45




— thin, 12, 107

— thin-walled, 34, 35
Twisted rods, 391
Twisting, 313
Twisting moment, 114
Two-ply, 10

Uniform pressure, 363
Unstable equilibrium, 404

Vessel
— thin-walled

Index

—— sphere, 34
Vibration, 291

Weight, 48

Weight density, 284
Wire, 39

— absolutely flexible, 36
Wood, 358

Work, 384

— of force, 6, 86

Yield limit, 334

421




