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Preface

A production economist focuses on assessment. Talk to production economists
about a particular firm, and they are likely to ask questions such as: How effi-
cient is the firm in utilizing its input to produce its output? Is the firm using
the right mix of inputs or producing the right mix of outputs given prevailing
prices? How will the firm respond to a price hike in a critical input? How
efficient is the firm in scaling its operations? Has the firm improved its pro-
ductive capability over time? How does the firm compare to its competitors?
A production economist will use an aggregate description of technology to
answer these questions.

A production engineer focuses on optimizing resources. Talk to produc-
tion engineers about a particular firm, and they are likely to ask a completely
different set of questions: How can the firm change its operations to be more
productive? Should the firm outsource production of a subassembly or should
it be made in-house? How can the firm reduce its production lead times?
Should resource capacity be expanded and, if so, which resources should be
acquired? Can the firm’s products be redesigned to improve productive ef-
ficiency? Which plants (or operations within a plant) should produce which
products at what times? A production engineer will use a detailed description
of technology to answer these questions.

Historically, production economists and engineers do not interact with
each other. This is counterproductive because each group could benefit from
the other group’s perspective. Production engineers should be interested in
the production economists’ questions and the tools they use to answer them.
To more accurately answer their questions, production economists should be
interested in adopting the micro-level descriptions of technology used by pro-
duction engineers. The topics in this book bring together under one roof the
economics perspective, which focuses on assessment using an aggregate de-
scription of technology, and the engineering perspective, which focuses on
optimizing resources using a detailed description of technology. This book of-
fers a unified, integrated point of view that bridges the gap between these two
historically distinct perspectives.
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Organization Of This Book

The topics in the book are organized into four main parts:

• Part I: Microeconomic Foundations
• Part II: Efficiency Measurement
• Part III: Productivity and Performance Measurement
• Part IV: Engineering Models of Technology

Due to the integrative and technical nature of the topics presented herein, I
have included an extensive Mathematical Appendix (Part V) that covers (and
in some cases expands) the core material needed to understand the topics in
this book. A detailed overview of the book’s topics is provided in Chapter 1.

I emphasize computational and graphical approaches to develop and illus-
trate the concepts. Computational methods and characterizations facilitate
both practical applications and presentation of results. To make the material
accessible, I provide many examples, figures, and detailed derivations. I have
included many exercises. Some exercises are relatively straightforward; they
ask the reader to confirm his or her knowledge of the core concepts presented.
Other exercises are quite challenging; they ask the reader to extend the core
material in nontrivial ways. To assist the reader, detailed solutions to the ex-
ercises are provided. The usual caveat applies: it is best to try the problems
first!

Intended Audience

For many years I have taught a graduate course in productivity measurement
and analysis at Georgia Tech’s School of Industrial and Systems Engineer-
ing, a course that has drawn students with diverse backgrounds or majors
in engineering, operations research, operations management, economics, and
mathematics. The material in this book grew out of the lectures I developed
to accommodate their many interests.

Engineering and operations research students study a variety of detailed
system representations in their course work and practice. They have modest
exposure to topics in Part I, no exposure to the topics in Part II and III,
and some exposure to the topics in Part IV (if they took a production op-
erations course). My experience teaching these students suggests they enjoy
learning the types of questions economists pose, and the aggregate models the
economists use to obtain answers. The models in Part IV go well beyond the
textbook presentations they learn in other classes.

Economics and operations management students are familiar with some of
the topics in Part I, and have limited exposure to the topics in Parts II–IV. My
experience teaching these students suggests that they enjoy learning about the
nonparametric models of technology discussed in Part I (not emphasized in
traditional microeconomics courses), learning about the practical applications
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of economic ideas and computational methods presented in Parts II and III,
and being exposed to the engineer’s perspective on modeling emphasized in
Part IV.

Mathematics students have virtually no exposure to the main topics in
this book. My experience teaching these students suggests that they enjoy
learning of applications of real and convex analysis, and the style in which the
topics are presented.

This book can also be beneficial to professionals on two fronts. Produc-
tivity handbooks, each with a different focus, describe practical issues and
provide basic formulae that emphasize partial productivity. The contents of
Parts I–III, with their emphasis on formal description, graphical representa-
tion, and computation, provide context for the formulae and models. This
should assist a practitioner to decide which are best suited for the application
at hand. With today’s information systems and the availability of shop-floor
data, it is now possible to develop and implement detailed, dynamic multi-
stage models of technology described in Part IV. These models have been
motivated by and applied to real production systems.
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1

Overview

1.1 Introduction

For the purposes herein, a technology refers to the process by which a pro-
duction system transforms its inputs “x” into its outputs “y”. In this book,
we develop a variety of mathematical models of technology that can be used
for measuring efficiency, productivity, and performance and for optimizing
resources. A mathematical model of technology is a set

T := {(x, y)}

of input-output pairs. Informally, each (x, y) in T represents an input x from
which it is possible to produce output y.

There are two components of a mathematical model of technology. The
first component specifies the acceptable domain of x and y. For example,
are the different inputs and outputs represented as numbers? If so, are these
numbers restricted in any way (e.g., non-negative, bounded)? Are the dif-
ferent inputs and outputs represented as functions of time? If so, are they
real-valued? Vector-valued? Non-negative? Continuous? Differentiable? Con-
tinuously differentiable? The domain is chosen to suit the needs of the analysis.
For example, conventional efficiency, productivity, and performance measure-
ment represent inputs and outputs as non-negative vectors, whereas engineer-
ing models of technology used for optimization represent inputs and outputs
as real-valued functions of time. The choice of domain largely dictates the
mathematical and computational tools used to undertake the analysis.

The second component of a mathematical model is a precise statement of
the rules or axioms A by which membership in T is specified. The axioms A
are applied to a data set

D := {(x1, y1), (x2, y2), . . . , (xN , yN)}

collected from N representative production systems of different firms (or dif-
ferent units of the same firm) to generate an approximation T a to the true
technology set T , symbolically represented as



2 1 Overview

D A−→ T a.

How “close” T a is to T depends on the quantity and quality of the data set
D and the choice of axioms A. (We do not discuss in this book how data are
defined and collected, per se, but the process of data definition and collection
can be time-consuming and iterative.)

An example of a basic, obvious axiom is the rule that all observed input-
output pairs belong to T . Given this axiom, the data set D is a subset of
T a. It is possible to stop here; if so, then T a = D. Arguably, this is the most
conservative approximation to the true technology set. It is certainly simple
enough to define, but it has serious deficiencies. For example, most firms will
typically be rated efficient if this approximation is used. This is because effi-
ciency measurement compares (in some way) a firm’s observed input-output
pair to those in T a to obtain its efficiency rating, and T a here is quite “small.”
Managers of the firms will be pleased at first, but once they realize that almost
all firms are rated efficient, they will desire a more discriminating efficiency
measurement system. This can be achieved by expanding the list of axioms
in A. When this expanded list of axioms is then applied to the data set D, it
will generate a larger technology set T a. Here are some examples.

• Disposability axioms. For most technologies, it is reasonable to assume that
it is possible to dispose of unneeded input or output. There are various
forms. The most common one, strong disposability, requires that an input-
output pair (x, y) belongs to T if there is some observed input-output pair
(xi, yi) such that x is larger than xi and y is smaller than yi.

• Returns-to-scale axioms. For some technologies, it is reasonable to assume
that when input is doubled, tripled, etc., output will be doubled, tripled,
etc., too.

• Convexity axioms. It is often assumed that weighted averages (i.e., convex
combinations) of observed input-output pairs in the technology also belong
to the technology set. A “time-divisibility” argument is sometimes used
to justify this axiom; however, this axiom is generally assumed for its
analytical properties.

As we shall see, an impressively large technology set T a can be generated by
applying just a few, relatively innocuous axioms to a data set D.

1.2 Microeconomic Foundations

Microeconomic foundations of production economics used in this book are the
subject of Part I.

Neoclassical model of technology

Traditional microeconomic analysis represents a technology set via a steady-
state production function Φ(·), the subject of Chapter 2. A production function
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Φ(x1, ..., xn) represents the maximum scalar output y ≥ 0 that can be achieved
using input vector x = (x1, ..., xn) ≥ 0. Typical input categories include cap-
ital (K), labor (L), materials (M), and energy (E). Output y depends on the
industry and represents an aggregation of the many outputs a firm produces.
Standard examples include: tons of steel, kilowatt-hours of electricity, bushels
of corn, barrels of oil, number of printed circuit assemblies, etc. Given that
a production function represents the maximum output, if one assumes the
axiom that output can be freely disposed, then the technology set associated
with Φ(·) is

T := {(x, y) : Φ(x) ≥ y}. (1.1)

Since T is completely characterized by a production function, all other axioms
are formulated in terms of Φ(·). For example, it is typically assumed that Φ(·)
is a non-decreasing function, which implies that the technology exhibits strong
disposability of input. Convexity axioms require that Φ(·) is either concave or
quasiconcave.

Sensitivity analysis of an industry production function enables a produc-
tion economist to answer questions such as:

• What are substitution possibilities among the input factors? For example,
if the output level is to remain unchanged, by what percent must the
capital input be increased to compensate for a 5% decrease in the labor
input?

• How is output affected by a change in an input factor? For example, what
will be the percentage increase in output if the labor input is increased by
5%?

• How is output affected by input scale? For example, what will be the
percentage increase in output if all inputs are increased by 5%?

• How will an industry adjust its consumption of two particular input fac-
tors if their relative prices change and output is to remain the same? For
example, suppose the net effect of a proposed government policy will raise
the labor wage and/or lower the cost of capital investment. In response,
firms can be expected to adjust their labor-capital ratio downwards (i.e.,
substitute capital input for labor input), the degree of which will affect
the employment in this economic sector.

A production function also enables a production economist to compute
measures of technical efficiency. Suppose a firm uses x to produce y. If y =
Φ(x), then the firm is producing at the maximum level possible given its
level of resources. However, if y < Φ(x), then the firm is output inefficient. A
natural measure of output efficiency is

θ∗output :=
y

Φ(x)
. (1.2)

Since θ∗ is a scalar (number) between 0 and 1, one may interpret 100θ∗output

as a grade. For example, a grade of 50% means the firm should be able to
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double its output, whereas a grade of 80% means the firm should be able to
increase its output by 25% (for the given input vector).

Even if the firm is output efficient, i.e., y = Φ(x), it could nonetheless be
input inefficient, that is, it could be that the firm could reduce its inputs and
still achieve the same level of output. Typically, input inefficiency goes hand-
in-hand with output inefficiency. For an observed input-output pair (x, y), one
possible measure of input efficiency is

θ∗input := min{θ : Φ(θx) ≥ y}. (1.3)

Since x was observed to achieve y, which by definition must be less than or
equal to Φ(x), the value of θ∗input must be less than or equal to one. This input
efficiency measure is by no means the only way to measure input efficiency,
though it is the most popular. Consider this measure of input efficiency:

γ∗input := min
{∑n

i=1 γi

n
: Φ(γ1x1, ..., γnxn) ≥ y

}
. (1.4)

Note that θ∗input requires an equiproportional reduction in all input factors
whereas γ∗input does not. Clearly, γ∗input ≤ θ∗input, and so θ∗input is the more
“conservative” of the two. (Which measure would you prefer if you were on
the receiving end of an evaluation?)

An axiomatic model of technology

Output of a neoclassical production function represents an aggregation or
index of a firm’s, industry’s, or nation’s output (over some period of time).
Firms produce a variety of output, and it may be difficult to find an appropri-
ate aggregation of output to serve as an index. For this reason, the neoclassical
model of technology must be extended to accommodate vector-valued output.

We adopt an axiomatic approach in the spirit of the pioneering efforts
of G. Debreu and R.W. Shephard. That is, we formally define a collection
of possible axioms that a well-behaved technology set could plausibly satisfy.
These include different types of the aforementioned disposability, returns-to-
scale, and convexity axioms, as well as the topological properties of closure
and compactness. As previously mentioned, the modeler chooses which axioms
to include in the set of axioms A. When A is applied to a data set D, it will
by definition determine a well-behaved approximation T a to T . This formal
approach to describing technology and how to approximate a technology set
via extrapolation of a given data set are the subject of Chapter 3.

Nonparametric models of technology

Application of these axioms generates what are termed nonparametric models
of technology. In the past two decades, nonparametric models of technology
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have been extensively developed and applied. The main motivation for the
development of these models, apart from their application to vector-valued
output, is that parametric functional forms used to estimate the production
function for the neoclassical model of technology often exhibit properties that
can be refuted by the data.

The most popular nonparametric models of technology include the fixed-
coefficients model due to W.W. Leontief, the constant and variable returns-
to-scale Data Envelopment Analysis (DEA) models pioneered by A. Charnes,
W.W. Cooper and their colleagues, and a model due to G. Hanoch and M.
Rothschild, all developed in Chapter 4. A two-input, single-output model is of-
ten useful as a prototype to communicate and educate managers and engineers
about productivity and efficiency analysis. For this special case, it is possible
to construct each of these nonparametric models of technology directly from
the data.

A neoclassical production function associated with a single-output non-
parametric model is not differentiable. (Each isoquant is piecewise linear.) In
lieu of calculus, linear programming is the main computational tool used to
perform sensitivity, efficiency, and productivity analysis.

Dual characterizations of technology

Under appropriate conditions, it is possible to reconstruct the technology set
by observing the economic behavior of producers. Economists refer to such
reconstructions as dual characterizations of technology.

The cost function (Chapter 5), indirect production function (Chapter 6),
and distance function (Chapter 7) provide three powerful dual characteriza-
tions. Each has enormous value in its own right. A cost function represents
the minimum cost required to achieve a pre-specified output level given input
prices. It can be used to assess effects of a change in output or input prices
on cost. An indirect production function represents the maximum amount of
output a producer can achieve given a budget constraint. In the single output
case, it is possible to graphically compute the cost and indirect production
function.

The distance function underpins much of nonparametric efficiency analysis,
and is the basis for a recent nonparametric approach to measuring productiv-
ity. Essentially, for a given input-output pair (x, y), an input distance function
measures the extent to which the input vector x must be scaled so that it most
efficiently obtains the output vector y. (An analogous concept exists for an
output distance function.) Distance and cost functions are linked via two,
symmetric identities; knowledge of either function uniquely determines the
other, and hence the technology set itself.

Nonconvex models of technology

The properties of convex sets (e.g. separation theorems) are central to eco-
nomic analysis, and are used repeatedly to establish key results in the tradi-
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tional microeconomic theory of production. While extremely useful, the prop-
erty of convexity (e.g., convex sets and quasiconcave functions) is accepted
mainly for its analytical expedience.

Nonconvex sets appear when analyzing even simple extensions to popu-
lar models. We describe three such examples that arise in resource allocation,
producer budgeting, and Data Envelopment Analysis. A generalization of con-
vexity, called projective-convexity, can be used to represent these models (and
more). This is the subject of Chapter 8.

Projective-convexity possesses a general type of separation property, which
can be used to establish a dual characterization of technology. For example,
the multi-dimensional indirect production function represents the maximum
output a producer can achieve given separate budget constraints for each input
category. Production and multi-dimensional indirect production functions are
linked via two, symmetric identities; knowledge of either function uniquely
determines the other, and hence the technology set itself.

1.3 Efficiency Measurement

With microeconomic foundations firmly in place, we are in position to formally
define different types of efficiency and to show how to compute them, the
subject of Part II.

Efficiency analysis

At its core, a measure of efficiency compares an observed input-output pair
(x, y) to its projection (x̂, ŷ) onto the boundary of the technology set T . As
previously discussed, there are several ways to approximate a technology T
from a data set D. There are also several ways to project a point onto a
boundary of a set. Here are some examples:

• The radial measure of output efficiency is

θ∗output := min{θ : (x, y/θ) ∈ T }. (1.5)

Here, (x, y) is projected to (x, y/θ∗output).
• The radial measure of input efficiency is

θ∗input := min{θ : (θx, y) ∈ T }. (1.6)

Here, (x, y) is projected to (θ∗inputx, y).
• The Russell measure of input efficiency is

γ∗input := min
{∑n

i=1 γi

n
: ((γ1x1, γ2x2, . . . , γnxn), y) ∈ T

}
. (1.7)

Here, (x, y) is projected to ((γ∗1x1, γ
∗
2x2, . . . , γ

∗
nxn), y).
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• The hyperbolic measure of joint input-output efficiency is

h∗ := min{h : (hx, y/h) ∈ T }. (1.8)

Here, (x, y) is projected to (h∗x, y/h∗).

When T is characterized by a production function Φ(·) as in (1.1), then the
measures of efficiency (1.5)-(1.7) defined above are identical to their respective
counterparts (1.2)-(1.4).

In addition to these measures of efficiency, there are measures of scale
and cost efficiency. Each of these efficiency measures, with the exception of
the hyperbolic measure, can be computed via linear programming. Formal
definitions and computation models of different types of efficiency are the
subject of Chapter 9.

Two-dimensional projection

As previously noted, graphical representation is a useful tool for educating
managers and engineers about efficiency measurement. It is possible to graph-
ically compute a host of efficiency measures in the multi-input, multi-output
setting from a single graph in the plane. This is the subject of Chapter 10.
This graph can be viewed as a two-dimensional projection of an embedded
single-input, single-output well-behaved technology. It is possible to compute
this projection using a simplex-like pivoting algorithm, which we describe in
detail. For the two-input, single-output special case, we will describe a simple
procedure for generating this projection directly from the data.

Multi-stage efficiency analysis

The models of technology described so far implicitly assume a single produc-
tion stage, namely, inputs are transformed into final outputs used to satisfy
“customer demand.” Within the plant or factory, a production system often
consists of a network of subsystems or stages. Intermediate output of one stage
is used as input to follow-on stages. It represents work-in-process. For such
a system, conventional efficiency measurement determines separate efficiency
measures for each stage and the system as a whole. That is, each stage of each
firm is compared to its peers using data relevant to that stage, and the data
describing the aggregate system are used to compare each firm to its peers.
Unfortunately, this approach can lead to two very undesirable results. First,
it is possible for each stage to be rated 100% efficient while the system as a
whole to be rated inefficient. Second, it is possible for the system as a whole
to be rated near efficient while each subsystem is rated highly inefficient.

We will describe an efficiency measurement framework for a production
system consisting of subsystems or stages in series that will never produce
the two undesirable results mentioned above, because it simultaneously com-
putes efficiencies of each subsystem and the aggregate system. This is the
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subject of Chapter 11. Intermediate outputs, or work-in-process, are explic-
itly represented. A Pareto efficient frontier characterizes the acceptable set of
subsystem efficiencies. Each point in this frontier determines a derived mea-
sure of aggregate efficiency. A “consistent pricing principle” characterizes the
proposed models.

Application of efficiency analysis to the warehouse and
distribution industry

Mathematical models for efficiency measurement have real application. Over
a four-year period, through the auspices of the Material Handling Research
Center at the Georgia Institute of Technology, data were collected from a large
sample of warehouses drawn from a wide array of industries and analyzed.
Several models of technology were developed and analyzed (see Chapter 12).
The main conclusions are that smaller and less automated warehouses tend to
perform more efficiently than larger and more automated warehouses. These
conclusions have been used for design and productivity improvement, which
is of prime importance to equipment vendors, system designers, consultants,
facility engineers, and warehouse managers.

1.4 Productivity and Performance Measurement

Efficiency measurement provides a static assessment of each firm. Productivity
and performance measurement assesses how well a firm improves its efficiency
and technology from one period to the next, the subject of Part III.

Let (x0, y0) and (x1, y1) denote, respectively, a firm’s observed input-
output pairs in two consecutive periods (e.g., last year, this year). By how
much did the firm improve its productive capability? At its core, a productiv-
ity assessment uses a ratio O/I, where O represents a measure of the growth
in aggregate output produced, and I represents a measure of the growth in
aggregate input consumed. For example, if O = 1.15, reflecting a 15% increase
in aggregate output, and I = 1.06, reflecting a 6% increase in aggregate input,
then O/I ∼ 1.09, suggesting a 9% gain in productivity.

Index numbers

A productivity assessment requires a method for aggregating output and in-
put that yield output and input indexes, the ratio of which determines the
productivity index. Consequently, productivity measurement is rooted in the
construction of index numbers, the subject of Chapter 13. We will define and
analyze the most well-known and intuitively appealing price and quantity in-
dexes due to Konus, Laspeyres, Paasche, and Tornqvist. Each price (quantity)
index can be used to immediately generate an implicit quantity (price) index.
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Productivity analysis

We discuss two approaches to productivity measurement (see Chapter 14).
The first approach, commonly referred to as the growth accounting approach
or total factor productivity, is widely used and was developed in the late 1950’s
by R. Solow. It uses a simple formula to measure productivity that is based
on a firm’s own inputs and output. The second approach was developed in the
mid-1990’s by R. Fare, S. Grosskopf, and their colleagues. This approach maps
data sets D0 and D1 collected in consecutive periods to nonparametrically
generate approximations to T 0 and T 1, respectively. It uses distance functions
described in Part I to disentangle the “efficiency effect,” namely, how well a
firm improved its own efficiency, from the “technical change effect,” namely,
how well the technology T 1 improved in comparison to T 0. This approach
yields the same assessment of productivity as the growth accounting approach
if the technology follows the assumptions of the Solow model.

Performance analysis

At first blush, a firm’s observed increase in profits from one year to the next
may lead management to conclude the firm has improved its productivity. This
conclusion can be erroneous for two fundamental reasons. It ignores the “price
effect:” an increase in profits may have more to do with increasing output
prices and decreasing input prices than it does with any productivity gains.
Second, it ignores the “substitution effect:” when input and output prices
change, the choices of inputs and outputs typically change, too. A performance
assessment seeks to cleanse these effects from the raw numbers to obtain a fair
assessment of productivity growth due solely to the firm’s improved capability
to transform input into output. Performance measurement is the subject of
Chapter 15.

We show how to use index numbers to decompose a firm’s performance
into its “profitability,” “productivity,” and “price recovery” components. We
also show how to distribute a firm’s net gain year-to-year into these categories.
The approach we describe adapts the performance measurement system due
to J.W. Kendrick.

Economic analysis of productivity

Firms are constantly looking for ways to innovate, either in the product mar-
ket or in the means of production. Firm productivity can translate into an
increase in market share, output, employment, and profits. The extent to
which this happens will depend on the degree of competition, namely, the
number of competitors and the productivity of each competitor. It is entirely
possible for a firm to increase its productivity, but still see a marked decline
in its competitive position because the competition improved their respective
productivities even more.
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To illustrate how this economic analysis is undertaken, we examine the ef-
fects of productivity by explicitly determining how each firm’s price, output,
labor employed, revenue, profit, and market share are affected by the market
in which firms compete. This is the subject of Chapter 16. In economics par-
lance, we analyze a specific market with consumers and producers and derive
the market’s general equilibrium. We analyze what economists call the com-
petitive, monopolistic competitive, and oligopoly market structures. We will
use the analysis to quantitatively assess how a “productivity laggard” or a
“productivity leader” will fare against its competition.

1.5 Engineering Models of Technology

With today’s information systems, shop-floor data are becoming increasingly
available. This data are used by production engineers to build a detailed
model of technology for the purpose of optimizing resources. In principle, a
production economist can also use detailed models to undertake efficiency,
productivity, and performance assessment. Developing models that can serve
the interests of both the production engineer and economist is the subject of
Part IV.

A production economist typically works with aggregate data that record
the cumulative amounts of inputs and outputs in some predetermined pe-
riod of time (e.g., quarterly, yearly). The time window used by a production
economist is too long to be of use to the production engineer. To capture the
physical phenomena necessary for optimizing resources, a production engineer
needs to know the actual timing of the inputs and outputs within a production
economist’s time window. Consequently, inputs and outputs must incorporate
a time dimension, namely,

x = (x1(·), x2(·), . . . , xn(·)), y = (y1(·), y2(·), . . . , ym(·)).

We will consider two types of functions to describe the flow of inputs and out-
puts over time. An event-based flow z(·) associates a nonnegative real number
z(τ) to an event that occurs at time τ . For example, z(τ) might be the quan-
tity of parts initiated into a production process at time τ or a value associated
with a completed job at time τ . Event-based flows only take on positive values
at those times when events occur. For a rate-based flow z(·), the nonnegative
real number z(τ) represents the rate (quantity per unit time) of flow at time
τ . Rate-based flows sometimes represent a fluid approximation to event-based
flows, and also arise quite naturally when modeling physical processes.

At a detailed level, a production process typically begins with raw materi-
als, parts, subassemblies, and transforms them via several intermediate stages
to produce final outputs sold to end users. The core building block of an en-
gineering model of technology is a production stage or activity. The first step
in building an engineering model of technology, therefore, is to characterize
each activity’s input-output process.
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Dynamic production functions

At a detailed level, each activity’s input-output process is conveniently encap-
sulated by a dynamic production function

x = (x1(·), x2(·), . . . , xn(·)) f−→ y = (y1(·), y2(·), . . . , ym(·)).

A dynamic production function f(·) is a functional, since both its domain
and range are vectors of functions, not vectors of numbers. Since a constant
function of time can be identified with a scalar, a dynamic production function
is not only compatible with but also extends the neoclassical model of (single-
stage) technology.

When an activity’s input-output process is not instantaneous, a lead time
exists between an input start and realized output. For example, it may take
time for paint to dry, to complete an inspection, or to transport product.
When lead times are sufficiently small, they can be ignored. However, when
lead times are significant, they must be accounted for to achieve an accurate
model of technology.

The simplest models assume lead times are pre-specified constants, inde-
pendent of the endogenous behavior of the system. The class of index-based
dynamic production functions can be used to represent constant lead time
processes. This is the subject of Chapter 17. All input and output functions
of an index-based process can be represented in terms of a single (index) func-
tion. There are three practical ways of defining the index to model constant
lead times: indexing “starts,” “outs,” or non-storable services.

Beyond simple, constant lead time models, a wide variety of non-instanta-
neous activity processes can be characterized using distribution-based dynamic
production functions. We will describe the following subclasses:

• constant lead time processes with noninteger lead times and unequal length
time periods;

• time-dependent, lead time processes; and
• continuous lead time processes.

The first subclass extends the familiar textbook models of dynamic, single-
stage, deterministic production systems. The second subclass uses an exoge-
nously specified “time of completion” function. Here, the output realization
depends on the time when input enters the system. The third subclass can
be used to model a distribution of output due to inherent randomness or
system load, for example, the distribution of parts that fail a time-intensive
inspection. Distribution-based dynamic production functions are the subject
of Chapter 18.

Often the true dynamic production function is difficult to represent or is
not tractable for analysis. It is possible to generate linear approximations to
the ideal dynamic production function that yield representations amenable
for computation. These include:
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• Load-dependent lead time processes. Here, the lead time is a function of
the size of the input queue or “system load”—the larger the queue, the
longer the lead time. Such processes arise in manufacturing systems. Given
a pre-determined (single) input curve and the queue discipline, the (sin-
gle) output curve is obtained by integrating a differential equation that
characterizes this process. The linear approximation is accurate as long
as the input curve is close to the chosen input curve used to generate
the approximation. It is possible to extend this formulation to allow the
coefficients that define the linear approximation to depend on the size of
the queue. (This extended formulation uses binary variables, and so this
approximation is no longer linear.)

• Two-point boundary approximation. Here, just two “boundary” input-
output points are used to define the dynamic production function on the
whole input domain. We will describe an application of this approximation
to modeling work flow in a project-oriented production system such as a
naval shipyard.

• Aggregation. Aggregate dynamic production functions arise from serial or
parallel aggregation of individual activities represented by detailed dy-
namic production functions.

• Dynamic activity analysis. This model extends the steady-state activity
analysis models described in Chapter 4 to the dynamic setting.

These approximations are the subject of Chapter 19.

Stochastic model of technology

In a stochastic input-output model, input arrives according to some stochastic
process and the resulting output can also incorporate random phenomena. We
will describe a simple input-output stochastic model in which the output curve
is interpreted as the expected output. Both single input and batch input models
are developed. We will show how to construct a confidence interval, namely,
upper and lower output functions that bound the expected output curve. It
is possible to approximate a confidence interval using a linear approximation
suitable for computation. This is the subject of Chapter 20.

Multi-stage, dynamic models of technology

Using the single-stage dynamic models as building blocks, we provide a frame-
work to model multi-stage systems over time. We describe in detail two ex-
amples from manufacturing and assembly with rework. We also show how to
use multi-stage, dynamic models of technology for efficiency and productivity
measurement. This is the subject of Chapter 21. The multi-stage models we
develop are most useful for short-term production planning.

The basic, continuous-time model of dynamic production involves a net-
work of interrelated activities, each of whose technologies is characterized by a
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dynamic production function. Storable goods used by each activity will either
be acquired from outside the system (i.e., exogenously supplied) or obtained
via intermediate product transfers from other activities within the system.
Material balance constraints are required to ensure that the requisite storable
inputs are available at the time they are used in the production process. Non-
storable services mainly involve the use of different types of equipment and
labor, as well as services obtained from activities within the system. Service
capacity equations are required to ensure that the rates of the aggregate ser-
vices available are sufficient to meet internal, aggregate demand.

Specific models of technology are developed by substituting examples of
the index-based and distribution-based dynamic production functions de-
scribed in Chapters 17 and 18 into the fundamental equations. These fun-
damental equations characterize the technology set T . We will show how to
translate these continuous-time models into suitable discrete-time, linear ap-
proximations amenable for computation.

When non-instantaneous behavior exists, the initial system state contains
relevant information about the work-in-process, namely, the status of the in-
termediate products in the pipeline. To be accurate, a detailed model of tech-
nology must project the future state of this work-in-process. We will describe
two practical approaches to handle these initial conditions.

We will also show how to extend the basic model in several practical ways.
For example, within a stage there are often several alternative processes that
can be used to produce the same output. As another example, there can be
load-dependent lead times. Here, the queue in front of a stage reflects all
product queues. (This extension uses binary variables, but no more than the
ones used to approximate single-input, single-output load-dependent lead time
processes.)

The ideas presented in Part IV are applied to model the flow of work
inside a warehouse for the purpose of optimizing labor resources. This is the
subject of Chapter 22. Specifically, an optimization model is developed that
determines the various times personnel (pickers and packers) report to work
throughout the day, and how to strategically use overtime and part-time staff.
By better matching workers to the timing of work requirements, significant
reductions in both the number of workers and overtime will be achieved. As
a by-product, the model suggests order release guidelines that will improve
labor efficiency and ease demands for space by reducing unnecessary work-in-
process.

1.6 Mathematical Appendix

Our inquiry necessitates the use of mathematics, some basic and some not so
basic. The reader should consult the first chapter to become acquainted with
the basic notation and mathematical constructs used throughout this book.
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Real analysis

Convergence, compactness, continuity, and Lp-spaces constitute the core real
analysis used in this book. We review the basic definitions and properties.

Convex analysis

Separation theory of convex sets in Euclidean space (finite-dimensional spaces)
is essential to modern economic theory, and is used throughout Part I. The
core theorems are presented and proved. Key definitions and properties of
the class of concave (convex) and quasiconcave (quasiconvex) functions are
provided, too.

Optimization

Economists typically assume economic agents (e.g., consumers, producers)
make rational decisions about what to consume, how much to save, invest,
produce, etc. Such problems are formulated as optimization problems, which
involve an objective function that measures the value to the economic agent of
making a particular choice, and a collection of constraints that define feasible
choices.

We define several classes of optimization problems, provide necessary and
sufficient conditions for optimality, and show how to solve convex optimiza-
tion problems via Lagrangian duality and the dual formulation. We illustrate
these concepts with applications to an economic lot size problem and to linear
programming.

Sensitivity analysis

Sensitivity analysis plays a major role in microeconomics. We formally state
and prove the extremely useful Envelope Theorem. We use it to revisit sensi-
tivity analysis of the cost function.

A technology can be described via correspondences, essentially a point-
to-set mapping. We provide the core theory of correspondences. This is used
to prove Berge’s Theorem of the Maximum, which is then used to show the
continuity of the cost and indirect production functions.

1.7 A Word of Advice

As noted in the preface, I have tried to make the material accessible. Accessi-
bility ultimately depends on a reader’s background, motivation, and patience.
In several places, the material requires a careful and thoughtful read. This
should not come as a surprise, since many of the ideas presented in this book
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were either developed by or built on research of the pioneers in production
economics (S.N. Afriat, A. Charnes, W.W. Cooper, G. Debreu, W.E. Diew-
ert, J. Kendrick, T.C. Koopmans, W.W. Leontief, and R.W. Shephard) or by
current leaders of the field (R. Fare, S. Grosskopf, R.C. Leachman and C.A.K.
Lovell). I hope you enjoy the journey.
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Production Functions

A production function Φ(x1, ..., xn) represents the maximum output u that
can be achieved using input vector x = (x1, ..., xn). We shall use the symbol u
instead of y to emphasize that output is a scalar. A production function can
be used by a production economist to undertake different types of sensitivity
analysis and to compute different measures of technical efficiency. We begin
our discussion of production functions by describing popular parametric forms
used for its estimation. Next, we formally describe different ways to estimate
rates of substitution among input factors and to measure scale properties. We
close this chapter with a description of homothetic production functions, a
subclass used often in the theory of productivity analysis.

2.1 Parametric Forms

In standard steady-state productivity analysis, data (xi, ui), i = 1, 2, ..., N ,
are collected for N firms within an industry to estimate the parameters of an
assumed functional form for Φ(·).

Definition 2.1. An isoquant of the production function Φ(·) is the collection
of input vectors

ISOQΦ(u) := {x : Φ(x) = u}

that achieve the same level of output.

Definition 2.2. An input possibility set or upper level set of the pro-
duction function Φ(·) is the collection of input vectors

LΦ(u) := {x : Φ(x) ≥ u}

that achieve at least output level u.

Popular functional forms include the following examples.
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Example 2.3. The Cobb-Douglas function.

Φ(x) = A

n∏
i=1

xαi

i , αi > 0, i = 1, 2, . . . n . (2.1)

In two dimensions we shall work with Φ(K,L) = KaLb, where K and L
denote, respectively, the capital and labor inputs. An example is depicted in
Figure 2.1.
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Fig. 2.1. Isoquants for the Cobb-Douglas production function Φ(K, L) = K1/3L2/3.

Example 2.4. The Constant Elasticity-of-Substitution (CES) function.

Φ(x) = A(
n∑

i=1

αix
ρ
i )

1/ρ, ρ �= 0, ρ ≤ 1. (2.2)

In two dimensions we shall work with Φ(K,L) = (aKρ + bLρ)1/ρ. An example
is depicted in Figure 2.2.

Example 2.5. Translog function.

ln Φ(x) = β0 +
∑

i

βi ln xi +
1
2

∑
i

∑
j

βij ln xi ln xj , (2.3)

where it is further assumed that βij = βji. This function generalizes the
Cobb-Douglas function.

Example 2.6. Generalized quadratic.

Φ(x) = β0 +
∑

i

βi gi(xi) +
1
2

∑
i

∑
j

βij gi(xi)gj(xj) , (2.4)

where it is further assumed that βij = βji and that each gi(·) is a given twice
continuously differentiable function. This function generalizes the translog
function.
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Fig. 2.2. Isoquants for the CES production function Φ(K, L) = (2/3
√

K+1/3
√

L)2.

All of the above functional forms are twice continuously differentiable,
which facilitates analysis via calculus. For the remainder of this chapter, we
assume the production function has the requisite derivatives.

2.2 Rate of Technical Substitution

The Rate of Technical Substitution (RTS) measures the degree of substitution
between two input factors. We motivate its formal definition below by first
examining the two-dimensional setting.

Fix K and L, let u = Φ(K,L), and let ΔK and ΔL represent small
perturbations of K and L, respectively. We wish to find a relationship between
ΔK and ΔL to ensure the new input vector (K +ΔK,L+ΔL) achieves the
same output level u. Since Φ(·) is differentiable,

Φ(K +ΔK,L+ΔL) ≈ Φ(K,L) +ΔK
∂Φ

∂K
+ΔL

∂Φ

∂L
(2.5)

with the error being sufficiently small if both ΔK and ΔL are sufficiently
small, too—see (A.6), p. 446. Since the output level is to remain unchanged,
it follows that

ΔK
∂Φ

∂K
+ΔL

∂Φ

∂L
≈ 0, (2.6)

or

ΔL ≈ −
[∂Φ/∂K
∂Φ/∂L

]
·ΔK. (2.7)

The expression in brackets is the rate of technical substitution between capital
and labor.

When a differentiable function L(K) exists for which

Φ(K,L(K)) = u for all K, (2.8)

then differentiating both sides of (2.8) with respect to K yields
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∂Φ

∂K
+
∂Φ

∂L
L′(K) = 0,

which implies

L′(K) = −∂Φ/∂K
∂Φ/∂L

.

This is a formal way of deriving the change of L with respect to the change
in K given in (2.7).

Example 2.7. Consider the Cobb-Douglas production function Φ(K,L) =
K1/3L2/3 depicted in Figure 2.1, and suppose initially that (K,L) = (1, 1) and
Φ(1, 1) = 1. Since ∂Φ/∂K = 1/3(L/K)2/3 and the ∂Φ/∂L = 2/3(K/L)1/3, the
rate of technical substitution is −0.5L/K. Evaluated at the point (K,L) =
(1, 1), this ratio equals −1/2. Thus, if K increases to 1.01, then L should
decrease to approximately 0.995. (The exact value of L is 0.99503719.) If K
increases to 1.05, then L should decrease to approximately 0.975. (The ex-
act value of L is 0.975900073 and the percentage error is less than 0.1%.)
Keep in mind that the rate of technical substitution is accurate in a small
neighborhood of the original point.

As shown in Figure 2.3, the rate of technical substitution is the slope
of the line tangent to the graph of L(·). For this example, L(K) = K−1/2,
L′(K) = −0.5K−3/2, and the tangent line L when K = 1 is L = −0.5K+1.5.
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Fig. 2.3. The slope of the line L tangent to the isoquant equals the rate of technical
substitution L′(K).

Remark 2.8. One expects the slope L′(K) to be negative for a typical produc-
tion technology. AsK increases, the Law of Diminishing Returns suggests that
each additional increment ΔK to K should result in less of a labor reduction
ΔL, which implies the (negative) slope L′(K) increases with K. Consequently,
L′′(K) is positive, and so it is reasonable to assume that L(·) is a decreasing
convex function (see Remark D.14, p. 478). For the Cobb-Douglas production
function in two dimensions, L(K) is proportional to K−a/b, and so L′(K) is
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proportional to −(a/b)K−(a/b+1), which is always negative, and L′′(K) is pro-
portional to (a/b)(a/b+ 1)K−(a/b+2), which is always positive. Consequently,
L(·) is always a decreasing convex function. For the CES production function
in two dimensions, L(K) = (uρ − aKρ/b)1/ρ. When both K and L are posi-
tive, it can be readily verified that L′(K) is always negative and L′′(K) will
be non-negative only when ρ ≤ 1. Consequently, in order for L(·) to be convex
it is necessary to restrict ρ ≤ 1.

We shall write Φi(x) to denote the ∂Φ/∂xi evaluated at x, which gives the
rate at which output changes per additional unit of factor i consumed. It is
referred to as the marginal product of factor i.

Definition 2.9. The rate of technical substitution between input i and
input j at a given input vector x ∈ IRn

+ is minus the ratio of the marginal
products, denoted by

RTSij(x) := −Φi(x)
Φj(x)

.

Example 2.10. The rate of technical substitution for a generalized Cobb-
Douglas production function is

−αi

αj

xj

xi
. (2.9)

Example 2.11. The rate of technical substitution for a generalized CES pro-
duction function is

−αi

αj

(
xj

xi

)1−ρ

. (2.10)

Remark 2.12. The rates of technical substitution for the generalized CES and
Cobb-Douglas production functions coincide when ρ = 0. While the CES pro-
duction function is not defined for ρ = 0, this observation suggests that the
CES production function “converges” to a Cobb-Douglas production func-
tion as ρ tends to zero. Indeed, this convergence holds when

∑
i αi = 1. (As

we shall learn below, the CES production function always exhibits constant
returns-to-scale, whereas the Cobb-Douglas production function exhibits con-
stant returns-to-scale only when

∑
i αi = 1, and so this condition is necessary.)

To see this, fix an x whose coordinates are all positive, and define

fx(ρ) :=

[∑
i

αix
ρ
i

]1/ρ

.

Since the numerator and denominator of

ln fx(ρ) =
ln
∑

i αix
ρ
i

ρ

tend to zero as ρ tends to zero, L’Hopital’s rule (see A.12, p. 447) applies.
Consequently,
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lim
ρ→0

ln fx(ρ) =
limρ→0

d
dρ [ln

∑
i αix

ρ
i ]

limρ→0
d
dρ [ρ]

= lim
ρ→0

∑
i αix

ρ
i ln xi∑

i αix
ρ
i

=
∑

i

αiln xi.

Since the exponential function is continuous,

lim
ρ→0

fx(ρ) =
∏

i

xαi

i .

Thus, the CES production function converges (pointwise) to the Cobb-
Douglas production function as the parameter ρ approaches zero.

2.3 Elasticity

Consider a production function Φ(·) of one input factor. Suppose output in-
creases by 100 as a result of an increase of 10 in input. Is this a good return
on investment? In absolute terms there is an increase of 10 units of output
for each 1 unit increase in input. The return appears excellent. Suppose, how-
ever, we learn the initial input level was 10 and the initial output level was
10,000. Measured in percentage terms, input increased by 100% while the out-
put increased by only 1%. Using a linear approximation, we estimate an 0.1%
increase in output for each 1% increase in input. From this perspective, most
likely the return would be considered too low. If, on the other hand, the initial
input level was 100 and the initial output level was 100, then the input in-
creased by 10% while the output increased by 100%, yielding a 10% increase
in output for each 1% increase in input. In the second case, the return does
appear to be excellent. This simple example illustrates that to obtain an accu-
rate assessment of the benefit/cost for the response to a change in a variable,
it is often necessary to measure the changes in percentage terms instead of
absolute terms. The following definition conveys this notion.

Definition 2.13. Let f(·) be a differentiable real-valued function of one vari-
able. The elasticity of f(·) evaluated at z is

εf (z) := lim
Δz→0

[
f(z +Δz)− f(z)

f(z)
÷ (z +Δz)− z

z

]
=
zf ′(z)
f(z)

.

(The definition only applies when z and f(z) are both not zero.)

In Definition 2.13, the numerator measures the percentage change in f(·) and
the denominator measures the percentage change in z. Thus, the percentage
change in f(·) is estimated to be εf(z) when Δz = 0.01z. That is, to a first-
order approximation, εf(z) measures the percentage change in f(·) in response
to a 1% change in z.

Example 2.14. The elasticity of f(z) = zγ , γ �= 0, is γ regardless of the value
of z. Suppose z changes by 100δ% to (1 + δ)z. Now
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f((1 + δ)z) = (1 + δ)γzγ ≈ (1 + δγ)zγ

when δ is sufficiently small since f(1 + δ) ≈ f(1) + f ′(1)δ. Consequently,

δεf (z) ≈ (1 + δγ)zγ − zγ

zγ
= δγ.

Remark 2.15. Note that

εf (z) =
d
dz ln f(z)

d
dz ln z

.

Often the “dz” are “canceled” and the elasticity of f(·) evaluated at z is
expressed as d ln f(z)/d ln z. If one interprets d ln f(z) as ln f(z + Δz) −
ln f(z), then as a first-order (Taylor series) approximation,

d ln f(z) ≈ f ′(z)Δz
f(z)

≈ f(z +Δz)− f(z)
f(z)

,

which is indeed the percentage change in f(·).

Measuring a variety of elasticities is central to applied production analysis,
and we now examine a few of the important ones.

2.4 Elasticity of Output, Scale and Returns to Scale

Elasticity of output measures the percentage change in output in response to
a 1% change in factor input i when all other input factors are held constant.
For each scalar z, let

θi
x(z) := Φ(x1, x2, . . . , xi−1, z, xi+1, . . . , xn)

denote the derived production function of input i when all other input factors
are held constant at x.

Definition 2.16. The elasticity of output with respect to input i eval-
uated at x is

εi(x) := εθi
x
(xi) =

xiΦi(x)
Φ(x)

.

Example 2.17. Example 2.14 shows the elasticity of output with respect to
input i for the Cobb-Douglas production function is simply αi.

Example 2.18. The elasticity of output with respect to input i for the CES
production function is αix

ρ
i /
∑

i αix
ρ
i . The elasticity of output for the CES

and Cobb-Douglas production functions coincide when ρ = 0 and
∑

i αi = 1,
as they should.
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Elasticity of scale measures the percentage change in output in response to
a 1% change in all input factors. (When all input factors change proportionally
the scale of operations is said to change.) For each scalar s, let

θ(s) := Φ(sx)

denote the derived production function of the scale of operations, as repre-
sented by s, when the input mix, as represented by x, remains constant.

Definition 2.19. The elasticity of scale evaluated at x is

ε(x) := εθ(1) =
d

ds
ln θ(s)

∣∣∣
s=1

.

Perhaps not too surprisingly, elasticity of scale is intimately related to output
elasticities.

Proposition 2.20. The elasticity of scale equals the sum of the output elas-
ticities.

Proof. Using the chain-rule,

εθ(1) =
∑

i Φi(x)xi

Φ(x)
=
∑

i

εi(x).

Definition 2.21. If ε(x) = 1, then the production function exhibits constant
returns-to-scale at x. If ε(x) > 1, then the production function exhibits
increasing returns-to-scale at x. If ε(x) < 1, then the production function
exhibits decreasing returns-to-scale at x.

Example 2.22. Example 2.17 show the elasticity of scale for the Cobb-Douglas
production function is

∑
i αi. Thus, the returns-to-scale characterization for a

Cobb-Douglas technology is determined by whether the sum of the exponents
is greater, equal or less than 1.

Example 2.23. Example 2.18 shows the elasticity of scale for the CES produc-
tion function is always 1, and hence it always exhibits constant returns-to-
scale.

2.5 Elasticity of Substitution

The elasticity of substitution provides a unit-free measure of the substitutabil-
ity between two inputs. Under suitable conditions, it measures the percentage
change in the factor ratio xi/xj for a 1% change in the factor price ratio pi/pj.
We shall develop this concept for a two-factor production function, with the
extension to general dimensions being straightforward.
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Consider the CES production function

Φ(K,L) = [2/3
√
K + 1/3

√
L]2 (2.11)

depicted in Figure 2.2. Suppose the prices on capital and labor are 4 and 1,
respectively, and the desired output level is 1. Since the output requirement
is fixed, a profit-maximizing producer should select the input vector x∗ to
minimize cost. When we analyze the cost function in Chapter 5, we show
that the ratio of the marginal products of capital and labor, ΦK(x∗)/ΦL(x∗),
must equal the ratio of the factor prices, pK/pL; otherwise, it will be possible
to lower cost. Since the ratio of the marginal products is minus the Rate of
Technical Substitution (see Definition 2.9), −RTS(x∗), and the RTS for the
CES production function given in (2.10) equals−(a/b)(L/K)1−ρ = −2

√
L/K,

the cost-minimum labor-capital ratio equals 4. Substituting L = 4K into
(2.11) with Φ(K,L) = 1, the cost minimizing capital input K∗ = 9/16 and
hence the cost minimizing labor input L∗ = 4K∗ = 9/4.

Now suppose as a result of a proposed government tax or stimulus policy,
the labor wage is expected to increase and/or the cost of capital investment is
expected to decrease thereby lowering the pK/pL ratio by 10% to 3.6. The pro-
ducer is expected to adjust the input mix to accommodate the price changes;
in particular, the producer will substitute capital for labor, resulting in lower
employment in this economic sector. It is desirable to estimate the change,
and the degree of substitution is fundamentally affected by the structure of
the technology. Here, the new RTS equals 3.6, and so the new labor-capital
ratio will equal 1.82 = 3.24. Thus, in response to a 10% decrease in relative
prices the labor-capital ratio declined by 19%. Substituting L = 3.24K into
(2.11) the new cost-minimizing input vector is (K∗, L∗) = (0.6233, 2.0194).

Let m denote the labor-capital ratio. Since the RTS for the CES produc-
tion function is

f(m) := m1−ρ,

whose elasticity is 1−ρ, the percentage change in the RTS for a 1% change in
the labor-capital ratio is approximately 0.5%. Going in the opposite direction,
a 1% change in the RTS should result in approximately a 2% change in the
labor-capital ratio. In our example, the RTS declined by 10%, and so we would
estimate the corresponding decline in the labor-capital ratio to be about 20%.
In fact, it was 19%, which is quite close.

Fix the output level u and for each K, let L(K) denote the (assumed)
unique value of L for which Φ(K,L) = u. Let

m(K) :=
L(K)
K

denote the factor input ratio and let

r(K) := −ΦK(K,L(K))
ΦL(K,L(K))

denote the RTS.
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Definition 2.24. For each x = (K,L) the elasticity of substitution σ(x)
measures the percentage change in the labor-capital ratio in response to a 1%
change in the RTS. Formally,

σ(x) := lim
ΔK→0

m(K+ΔK)−m(K)
m(K)

r(K+ΔK)−r(K)
r(K)

.

By dividing numerator and denominator by ΔK,

σ(x) =
d

dK ln m(K)
d

dK ln r(K)
=
d ln m(K)
d ln r(K)

, (2.12)

where the interpretation of the second identity is discussed in Remark 2.15.
When the elasticity of substitution is high, the isoquant (in a neighborhood

of the point in question) has little curvature. Thus, for a small change in the
relative prices of the two inputs, firms will significantly change their ratio mix.
Substitutability of input is relatively easy. Conversely, when the elasticity
is low, the isoquant has much curvature. Thus, for a small change in the
relative prices of the two inputs, firms will not alter their ratio mix by much.
Substitutability of input is more difficult.

Remark 2.25. As we have seen with the CES or Cobb-Douglas production
functions, sometimes the RTS can be expressed as a function of the ratio
L/K, namely, RTS(x) = f(L/K) for some function f(·). In this case, the
elasticity of substitution (2.12)

σ(x) =
m′(K)
m(K)

r′(K)
r(K)

=
m′(K)
m(K)

f ′(m(K))m′(K)
f(m(K))

= εf (m)−1

is the reciprocal of the elasticity of f(·) with respect to m. For the CES
production function, f(m) = m1−ρ and so σ(x) = 1/(1− ρ).

When ρ = 1 the CES production function is linear, which means that if
both K and L are positive, then the factor price ratio must equal −a/b, the
constant slope of L(K). If the factor price ratio were to change, the new cost
minimal input vector would instantly jump to a boundary point (either K or
L would be zero). The elasticity of substitution can be interpreted as infinite
and indeed σ(x) = +∞.

2.6 Homothetic Production Functions

Homothetic production functions permit a more general returns-to-scale char-
acterization than a constant returns-to-scale technology. This special class of
functions plays an important role in the theory of index numbers (see Chap-
ter 13).
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Definition 2.26. A function F : IR+ → IR+ is said to be a transform if (i)
it is increasing and continuous, (ii) F (0) = 0 and (iii) F (v)→∞ as v →∞.

Remark 2.27. Since F (·) is increasing it has an inverse, which we shall denote
by f(·). The inverse function f(·) is also a transform.

Definition 2.28. A production function Φ(·) is homothetic if it can be rep-
resented as F (φ(·)), where φ(·) is a constant returns-to-scale (linearly homo-
geneous) production function, and F (·) is a transform.

The function φ(·) can be interpreted as an index number.

Example 2.29. A constant returns-to-scale production function φ(·) is trivially
homothetic; simply define F (v) = v. (Note that f(v) = v, too.)

Example 2.30. The general Cobb-Douglas production function Φ(x) = A
∏

i x
αi

i

is homothetic since Φ(x) = F (φ(x)), where φ(x) := A
∏

i x
αi/S
i , F (v) := vS

and S :=
∑

i αi.

Given the unit isoquant of φ(·),

ISOQΦ(1) = {x : φ(x) = 1},

the returns-to-scale characterization is completely provided by the transform
F (·). Each isoquant,

ISOQΦ(u) = {x : Φ(x) = u},

and hence each input possibility set, can be generated from the unit iso-
quant via radial scaling—as in the special case of constant returns-to-scale
technology—except that here, the appropriate scale factor is f(u)/f(1). (Note
this ratio equals u in the constant returns-to-scale special case.) This geomet-
rical fact follows from the definitions:

F (φ(x)) = 1 ⇐⇒ φ(x) = f(1)

⇐⇒ φ
(f(u)
f(1)

x
)

= f(u)

⇐⇒ F (φ(λux)) = u,

where λu := f(u)/f(1). Thus, if x lies on the unit isoquant, then λux lies on
the isoquant corresponding to output u. Consequently, the ratio f(v)/f(u) is
the scale factor that will map ISOQΦ(u) to the ISOQΦ(v).

Example 2.31. Figure 2.4 depicts the input possibility sets associated with a
homothetic production function when F (v) = v2. Notice how the shape of the
isoquants are identical to the unit isoquant, just as in the CRS case; it is only
the output label affixed to each input possibility set that is being changed
via the transform F (·). To achieve twice as much output one need only scale
inputs by a factor of

√
2. The production function exhibits increasing returns-

to-scale with this choice of transform F (·).
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Fig. 2.4. Input possibility sets for a homothetic production function.

As a final remark, we note that the marginal rates of technical substitution
among inputs (for a fixed input vector) for homothetic technologies are inde-
pendent of scale, i.e., they do not change as the input vector is scaled. This
is because the marginal rates of technical substitution (in two dimensions)
define the slope of the isoquant, and the shapes of the isoquant are identical.

2.7 Exercises

2.1. The generalized power function takes the form

Φ(x) = A

n∏
i=1

x
fi(x)
i eg(x).

Verify that this function generalizes the Cobb-Douglas function.

2.2. A function Φ(·) is quasiconcave if each of its upper level sets LΦ(u) is
convex (see Appendix D). Let

φΦ(zi, zj) := Φ(x1, x2, . . . , xi−1, zi, xi+1, . . . xj−1, zj, xj+1, . . . , xn) (2.13)

denote the production function of input factors i and j derived from Φ(·) when
all other factor inputs are kept constant at their original levels given by x.
Show the geometry depicted in Figure 2.3 holds true for the two-dimensional
production function φΦ(zi, zj).
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2.3. When the RTS is not a function of the factor ratio, it is possible to use
the partial derivatives to determine the elasticity of substitution. Let Φij :=
∂2Φ/∂xi∂xj denote the second partial derivatives. Recall that Φij = Φji. Show
that

σ(x) =
−ΦKΦL(KΦK + LΦL)

KL(ΦKKΦ2
L − 2ΦKLΦKΦL + ΦLLΦ2

K)
.

2.4. Show that the elasticity of scale is 2 for the production function described
in Example 2.31.

2.5. Let fk(·), k = 1, 2, . . . , N , denoteN “micro” production functions, and let
εk(x) denote the elasticity of scale of fk at x. Suppose the elasticities of scale
of each fk are identical, i.e., εk(x) := ε(x) for each k. Let wk, k = 1, 2, . . . , N
be positive numbers.

(a) Show that the elasticity of scale of the aggregate production function given
by Φ(x) =

∑
k wkfk(x) evaluated at x equals ε(x).

(b) Show that the elasticity of scale of the aggregate production function given
by Φ(x) =

∏
k fk(x)wk evaluated at x equals (

∑
k wk)ε(x).

2.6. Consider a constant returns-to-scale, single-output technology of four
input factors, capital, labor, materials and energy. At the current input levels
it is known the elasticities of output with respect to labor, materials, and
energy respectively equal 0.10, 0.30, and 0.20. What is the elasticity of output
with respect to capital?

2.7. Prove that the inverse of a transform is also a transform.

2.8. Show that if Φ(·) is differentiable and homothetic, then the marginal rates
of technical substitution are constant along rays through the origin.

2.8 Bibliographical Notes

This material can be found in graduate-level microeconomic textbooks such as
Varian [1992] and Jehle and Reny [2001]. Chambers [1988] provides a thorough
treatment of production functions.
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2.9 Solutions to Exercises

2.1 Set fi(x) = αi for each i and g(x) ≡ 0.

2.2 First argue that when Φ(·) is nondecreasing, differentiable and quasicon-
cave, so is φΦ(·, ·). Next, use the fact that the gradient vector ∇Φ(x) of a
differentiable quasiconcave function induces a supporting hyperplane to the
upper level set (see Theorem D.12, p. 476) to show that in the two-dimensional
(zi, zj)-plane, the line that passes through the point (zi, zj) = (xi, xj) and
whose slope is RTSij(x) supports the input possibility set LφΦ(φΦ(z)) at z.

2.3 First verify the following identities (use the chain rule for the second):

m′(K)
m(K)

=
L′(K)K − L

KL
.

r′(K)
r(K)

=
(ΦKK + ΦKLL

′(K))ΦL − ΦK(ΦLK + ΦLLL
′(K))

ΦKΦL
.

Next, substitute these identities into the definition for σ(x) = m′(K)/m(K)
r′(K)/r(K) and

use the fact that L′(K) = −ΦK/ΦL.

2.4 Fix input vector x. Here, Φ(sx) = F (φ(sx)) = F (sφ(x)) = s2φ2(x). Thus,
the elasticity of scale equals

ε(x) =
d

ds
ln θ(s)

∣∣∣
s=1

=
d

ds
{ln s2 + lnφ2(x)}

∣∣∣
s=1

=
2
s

∣∣∣
s=1

= 2.

In words, when you double the input here the output scales by a factor of
four.

2.5 For both parts let θ(sx) = Φ(sx). As for part (a),

θ′(s)
θ(s)

=
∑

k wkf
′
k(sx)∑

k wkfk(x)
=
∑

k

[ wkfk(x)∑
k wkfk(x)

]f ′
k(sx)
fk(sx)

.

Now use the fact that f ′
k(sx)/fk(sx) evaluated at s = 1 equals εk(x) = ε(x)

for each k. As for part (b),

d

ds
ln θ(s) =

d

ds

[∑
k

wk ln fk(sx)
]

=
∑

k

wk
d

ds
ln fk(sx).

Now use the fact that d/ds ln fk(sx) evaluated at s = 1 equals εk(x) = ε(x)
for each k.

2.6 The elasticity of scale for a constant returns-to-scale technology is one.
It also equals the sum of the output elasticities (Proposition 2.20). Thus,
1 = 0.10+0.30+0.20+ εK, which implies the elasticity of output with respect
to capital is 0.40.
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2.7 Let F (·) be a transform. Since F (·) is increasing its inverse f−1(·) is well-
defined and increasing, too. Moreover, it is easily follows from the properties
of F (·) that f(0) = 0 and that f(v)→∞ as v →∞. It remains to show that
f(·) is continuous. Fix y0 and let x0 = f(y0). Pick ε > 0. We must show there
exists a δ > 0 such that |f(y)− f(y0)| < ε whenever |y − y0| < δ. Set

δ = min
{
F (x0 + ε)− y0

2
,
y0 − F (x0 − ε)

2

}
.

The value of δ is positive since F (·) is increasing so that F (x0− ε) < F (x0) <
F (x0 + ε). If |y − y0| < δ, then by construction

F (x0 − ε) < y0 − δ < y < y0 + δ < F (x0 + ε).

In particular, F (x0 − ε) < y < F (x0 + ε). Since f(·) is increasing, it then
follows that x0 − ε < f(y) < x0 + ε or that |f(y) − x0| = |f(y) − f(y0)| < ε,
as required.

2.8 We may express Φ(x) = F (φ(x)) where φ(·) is linearly homogeneous. Fix
x and let s > 0. We have that

∂Φ(sx)/∂xi

∂Φ(sx)/∂xj
=
F ′(sφ(x))s∂φ(x)/∂xi

F ′(sφ(x))s∂φ(x)/∂xj
=
∂φ(x)/∂xi

∂φ(x)/∂xj
,

which is independent of s.
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Formal Description of Technology

Traditional microeconomic theory of production uses a production function.
Output is an aggregation or index of an industry’s or nation’s output (over
some period of time). Firms, however, produce different outputs, and some-
times it is difficult to find an appropriate aggregation of output to serve as an
index, especially in the services industries. For this and other reasons, a more
general theory of technology is required. There are two components to a the-
ory of production. The primitive elements that describe a technology must be
defined, and the properties or axioms the primitive elements are required to
satisfy must be delimited. In this way, one knows precisely what is and what
is not an acceptable model of technology. In building a theory one wishes to
impose the fewest axioms, and ideally all axioms should be testable, if one
wishes to consider it a scientific theory. Often, some axioms are made for an-
alytical convenience and are not testable, per se. If so, these axioms should
be justified in some way. Finally, the theory should prove fruitful. The theory
we develop in this chapter will provide the basis for the nonparametric mod-
els of technology developed in Chapter 4 and the efficiency and productivity
analysis undertaken in Parts II and III.

3.1 Primitive Elements

In lieu of a production function, a core primitive element of the traditional
microeconomic theory of production, a technology will be described via a
collection of input-output pairs {(x, y)}. As in Chapter 2, an input x is
an n-dimensional nonnegative vector. Output y is now permitted to be an
m-dimensional vector, which we assume is also nonnegative. We will con-
tinue to use the symbol ‘u’ to denote the output when it is single-
dimensional. When we use the symbol y, keep in mind we do not necessarily
mean that m > 1, only that m is permitted to be larger than one.

A technology can be defined in one of two equivalent ways. First, we de-
scribe a technology via a single primitive element T ⊂ IRn

+× IRm
+ , a subset of
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the joint input-output space, which abstractly represents those input-output
pairs (x, y) that are technologically achievable.

Definition 3.1. A technology is a subset T of a joint input-output space
IRn

+ × IRm
+ . It will also be referred to as a technology set.

Embedded in a technology set are the input and output possibility sets.

Definition 3.2. For each y ∈ IRm
+ the input possibility set derived from

the technology set T is

L(y) := {x : (x, y) ∈ T }.

For each x ∈ IRn
+ the output possibility set derived from the technology set

T is
P (x) := {y : (x, y) ∈ T }.

We suppress the functional dependence of the input and output possibility
sets on T .

Remark 3.3. The collection of input possibility sets defines the input possibil-
ity correspondence (or point to set mapping) L : IRm

+ −→ 2IRn

+ . Similarly, the
collection of output possibility sets defines the output possibility correspon-
dence P : IRn

+ −→ 2IRm

+ . See Appendix G for details about correspondences.

A second approach to defining a technology uses the input or output possibility
sets as the primitives.

Definition 3.4. A technology is a family of input possibility sets

F = {L(y) : y ∈ IRm
+}

or a family of output possibility sets

P = {P (x) : x ∈ IRn
+}.

In applications, one first defines the input and output categories and how
they will be measured—a challenging and nontrivial task to be sure—and then
collects an observed input-output data set

D := {(x1, y1), (x2, y2), . . . , (xN , yN )} (3.1)

from representative firms in the industry under consideration. In the single-
output setting, parametric analysis can be undertaken to define a production
function. Given a production function, such as the ones discussed in Chapter
2, then one obvious way to define a technology set T is

T := {(x, y) : Φ(x) ≥ u}. (3.2)

The input possibility sets corresponding to T are
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L(u) := {x : Φ(x) ≥ u},

and the output possibility sets corresponding to T take the special form

P (x) := [0, Φ(x)]

of a closed interval. For the nonparametric models of technology developed
in Chapter 4, the “smallest” technology set consistent with the chosen set of
axioms is represented by a finite set of linear inequalities.

3.2 Input and Output Disposability

We first define concepts pertaining to input and output disposability. We
begin with one of the strongest forms of disposability.

Definition 3.5. A technology set T exhibits

• input free disposability if

(x, y) ∈ T and x′ ≥ x =⇒ (x′, y) ∈ T .

In this case the input possibility sets are said to be nested, since L(y′) ⊂
L(y) whenever y′ ≥ y.

• output free disposability if

(x, y) ∈ T and y′ ≤ y =⇒ (x, y′) ∈ T .

In this case the output possibility sets are said to be nested, since P (x) ⊂
P (x′) whenever x′ ≥ x.

• free disposability if it exhibits free disposability of both input and output.

The following weaker notion of disposability is sometimes used.

Definition 3.6. A technology set T exhibits

• weak input disposability if

(x, y) ∈ T =⇒ (λx, y) ∈ T for all λ ≥ 1.

In this case the input possibility sets are said to be weakly nested, since
L(μy) ⊂ L(y) whenever μ ≥ 1.

• weak output disposability if

(x, y) ∈ T =⇒ (x, μy) ∈ T for all μ ≤ 1;

In this case the output possibility sets are said to be weakly nested, since
P (x) ⊂ P (λx) whenever λ ≤ 1.
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• weak disposability if it exhibits weak disposability of both input and
output.

Remark 3.7. The preceding notions of output disposability presume that all
outputs are “positive.” For a “negative” output such as pollution, less of
this output is preferred. In this case, the inequality sign associated with this
output would simply be reversed in the definitions of disposability. Since this
generalization is easily accommodated in the theory and computations to
follow, and since it will be notationally convenient to ignore it, we shall do so.
In many cases, an alternative approach to representing such output is to take
the reciprocal quantity.

3.3 Efficient Frontiers

Concepts of efficiency and its measurement fundamentally relate to the con-
cepts of an Efficient Frontier. Points in an Efficient Frontier represent a type
of “maximal trade-off.”

Definition 3.8. The Efficient Frontier of an input possibility set L(y)
is

EF(y) := {x ∈ L(y) : if x′ � x, then x′ /∈ L(y)}.

The Efficient Frontier of an output possibility set P (x) is

EF(x) := {y ∈ P (x) : if y′ � y, then y′ /∈ P (x)}.

The Efficient Frontier of a technology set T is

EF := {(x, y) ∈ T : x ∈ EF(y) and y ∈ EF(x)}.

3.4 Axioms for a Well-Behaved Technology

We are now in position to define a well-behaved technology.

Definition 3.9. A technology set T is well-behaved if it satisfies the fol-
lowing axioms:

A1) Each input vector can achieve zero output, and a nonzero output vector
must require at least some nonzero input.

A2) Each output possibility set is compact.
A3) It exhibits free disposability.
A4) Each input possibility set is closed and convex.
A5) The Efficient Frontier of each input possibility set is bounded.
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In mathematical notation, Axiom A1 states that (x, 0) ∈ T for all x ∈ IRn
+

and (0, y) /∈ T for all y ∈ IRm
+ , y �= 0. This is surely a minimal requirement of

a well-behaved technology.
As for Axiom A2, a set S ⊂ IRk is compact if and only S is closed and

bounded. S ⊂ IRk is bounded if there exists a uniform bound on the size
of any vector in the subset. (Size is measured using a suitable norm, e.g.,
the Euclidean norm.) A single input vector can be used to obtain possibly
different output vectors; however, a single input vector should not be able
to produce an arbitrarily large amount of output. Hence the boundedness
postulate. S ⊂ IRk is closed if whenever {xn} ⊂ S such that xn −→ x,
then x ∈ S. (Here, convergence is with respect to a suitable norm, e.g., the
Euclidean norm.) Closure is a reasonable, albeit technical, property imposed
on the technology.

On the input side, axiom A3 is an innocuous condition. One may view an
input vector as an allocation of resources. On the output side, this condition
is a little more tenuous, especially for certain types of physical processes.

As for Axiom A4, the closure property, while reasonable, is assumed for
analytical expedience. The same can be said for the property of convexity. It
does have the following “time-divisibility” justification. Suppose input vectors
x1 and x2 each achieve output level u > 0. Pick a λ ∈ [0, 1], and imagine
operating 100λ% of the time using x1 and 100(1 − λ)% of the time using
x2. At an aggregate level of detail, it is not unreasonable to assume that the
weighted average input vector λx1 +(1−λ)x2 can also achieve output level u.
This convexity property will be used repeatedly. Keep in mind that an input
possibility set can be empty.

Axiom A5 guarantees the cost function is properly defined for all nonneg-
ative prices. Consider the Cobb-Douglas production function of capital and
labor inputs. If, for some reason, the price of labor were zero, then the cost
of achieving a given positive output level u could be made arbitrarily close to
zero but would never actually be equal to zero. This is because for any arbi-
trarily small capital input there is a sufficiently large labor input to achieve
output level u. The substitution possibilities along the isoquant are infinite.
In this example, the points along the isoquant define the Efficient Frontier of
the input possibility set. Boundedness of the Efficient Frontier is one way to
rule out this infinitely substitutable behavior.

Remark 3.10. In general, nonparametric models used to define a technology
will never generate a technology set that is closed. This is why this stronger
axiom is not required.

3.5 Single-Output Technologies

As a test of the usefulness of the theory of technology developed so far, it
should be possible to “extract” a traditional production function from a tech-
nology set associated with a single-output technology. Indeed, this is so.
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Definition 3.11. Let T ⊂ IRn
+× IR+ be a well-behaved, single-output technol-

ogy set. The production function ΦT (·) derived from T is

ΦT (x) := max {u : (x, u) ∈ T }.

It is understood that the technology from which a production function is
derived must be a well-behaved, single-output technology. We shall refer to
ΦT (·) as a derived production function.

Remark 3.12. Given a technology T , and hence the families of input and out-
put possibility sets, F and P , respectively, a derived production function can
also be defined as

ΦT (x) := max {u : u ∈ P (x)} = max{u : x ∈ L(u)}.

It is acceptable to replace the supremum with a maximum in the definition of
the derived production function, since the continuous function f(u) = u will
achieve its maximum on the compact set P (x).

The proof of the following proposition follows immediately from the defi-
nition of a well-behaved technology.

Proposition 3.13. A derived production function satisfies the following prop-
erties.

a) Φ(x) ≥ 0 for every x ∈ IRn
+ and Φ(0) = 0.

b) Φ(x) is finite for every input vector x.
c) Φ(·) is nondecreasing.
d) Φ(·) is upper semicontinuous and quasiconcave.

Suppose one starts with a technology set, extracts the derived produc-
tion function, and then defines the technology generated from this production
function, as in (3.2). It would be most undesirable if the technology set so
generated was not identical to the original technology set. Indeed, it is iden-
tical.

Proposition 3.14. Let T be a well-behaved technology set, let ΦT (·) denote
the derived production function, and let T (ΦT ) be the technology generated
from ΦT (·) given by

T (ΦT ) := {(x, u) : ΦT (x) ≥ u}.

Then T (ΦT ) = T .

Proof. Pick an (x, u) ∈ T . Since ΦT (x) ≥ u by definition of ΦT (·), it immedi-
ately follows that T ⊂ T (ΦT ). As for the reverse inclusion, T (ΦT ) ⊂ T , pick
an (x, u) ∈ T (ΦT ). Since max{v : (x, v) ∈ T } ≥ u and T exhibits output free
disposability, it follows that (x, u) ∈ T , as required. ��
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3.6 Extrapolation of Technology

Additional properties can be assumed, beyond the minimal ones, to define a
well-behaved technology.

3.6.1 Convexity

There are several ways to impose convexity on a technology. We begin with
the most obvious way, which will be central to the applications undertaken.

Definition 3.15. A technology is convex if the technology set T is a convex
subset of IRn

+ × IRm
+ .

A convex technology has the property that

(x1, y1), (x2, y2) ∈ T , λ ∈ [0, 1] =⇒ (λx1 + (1−λ)x2, λy1 + (1− λ)y2)) ∈ T .
Operationally, it is easy to “implement” convexity. One simply takes the

convex hull of the data set D in (3.1). Recall the convex hull of a set is the
smallest convex set that contains the set. It is represented by a set of linear
inequalities, which greatly facilitates computations.

The following proposition established a fundamental relationship between
a convex single-output technology and the derived production function.

Proposition 3.16. The derived production function of a convex technology is
concave.

Proof. Pick (x1, y1), (x2, y2) ∈ T and λ ∈ [0, 1]. Since T is convex,

(λx1 + (1 − λ)x2, λy1 + (1− λ)y2)) ∈ T ,
which immediately implies from the definition of ΦT (·) that

ΦT (λx1 + (1− λ)x2) ≥ λΦ(x1) + (1− λ)Φ(x2).

Thus, the derived production function is concave. ��
The following definition describes a weaker application of convexity.

Definition 3.17. A technology is bi-convex if each input and output possi-
bility set is convex.

Remark 3.18. In the language of sets, an input possibility set defines a y-
section of the technology set, and the output possibility set defines an x-
section. Subsets of an X × Y space are bi-convex if each section is convex.

There is a property called projective-convexity that lies “in between” con-
vexity and bi-convexity. It assumes that if (xi, yi) ∈ T , i = 1, 2, then for
each convex combination λx1 + (1 − λ)x2, λ ∈ [0, 1] of x1 and x2 (or y1 and
y2) there is some convex combination μy1 + (1 − μ)y2, μ ∈ [0, 1], of y1 and
y2 (or x1 and x2) for which (λx1 + (1 − λ)x2, μy1 + (1 − μ)y2) ∈ T , too.
It generalizes convexity, since for a convex set one may take μ = λ. Every
projectively-convex set is bi-convex; merely set x1 = x2 or y1 = y2. Properties
of projective-convexity are explored in Chapter 8.
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3.6.2 Disposability

Extrapolation of technology almost always assumes some form of disposability.
Somewhat similar in spirit to extrapolation defined by the convex hull, the
following set-theoretic operations define different types of “disposable hulls.”

Definition 3.19. The input free disposable hull of a set L ⊂ IRn
+ is

IFDH(L) := {x′ ∈ IRn
+ : x′ ≥ x for some x ∈ L}.

The output free disposable hull of a set P ⊂ IRm
+ is

OFDH(P ) := {y′ ∈ IRm
+ : y′ ≤ y for some y ∈ P}.

The free disposable hull of a set T ⊂ IRn
+ × IRm

+ is

FDH(T ) := {(x′, y′) ∈ IRn
+ × IRm

+ : x′ ≥ x, y′ ≤ y for some (x, y) ∈ T }.

Remark 3.20. The set-theoretic addition of two subsets S and T of a linear
space is S + T = {s+ t : s ∈ S, t ∈ T }. In set-theoretic notation

IFDH(L) = L+ IRn
+

OFDH(P ) =
(
P + IRm

−
)
∩ IRm

+

FDH(T ) =
(
T + IRn

+ × IRm
−
)
∩ IRn

+ × IRm
+ .

The following proposition is easily established from the definitions.

Proposition 3.21. The disposable hull operations have these properties:

a) If S is a set that (i) possesses a particular disposable property and (ii)
contains a respective set (L, P or T ), then S contains the disposable hull
of that set. Thus, each disposable hull is the smallest set that satisfies both
(i) and (ii).1

b) If S ⊂ T , then each disposable hull of S is contained within the corre-
sponding disposable hull of T .

c) The disposable hull of the union of two sets is the union of the disposable
hulls of the two sets.

d) If a set S possesses a particular disposability property, then the disposable
hull of S adds nothing to S; that is, S equals the disposable hull of itself.

Sequential applications of the set-theoretic operations of convexifying and
freely disposing are interchangeable and thus preserve both properties.

Proposition 3.22. Let L ⊂ IRn
+, P ⊂ IRm

+ and T ⊂ IRn
+ × IRm

+ . Then:

a) FDH(Conv(T )) = Conv(FDH(T )).
1 The respective disposable hull operations are closed under arbitrary intersections.

Hence, each disposable hull is the smallest set with the particular disposable
property that contains the given set.
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b) IFDH(Conv(L)) = Conv(IFDH(L)).
c) OFDH(Conv(P )) = Conv(OFDH(P )).

Proof. We shall only prove (a), as the proofs of (b) and (c) are similar.
By definition, (x′, y′) ∈ FDH(Conv(T )) if and only if there exists

(x, y) ∈ Conv(T ) such that x′ ≥ x and y′ ≤ y. By definition of convex
hull, (x, y) ∈ Conv(T ) if and only if there exists (xk, yk) ∈ T and λk ∈ [0, 1],
k = 1, 2, . . . ,K, such that x = x(λ) :=

∑
k λkxk, y = y(λ) :=

∑
k λkyk

and
∑

k λk = 1. Thus, (x′, y′) ∈ FDH(Conv(T )) if and only if there exists
{(x1, y1), (x2, y2), . . . , (xK , yk)} ⊂ T and λk ≥ 0 for each 1 ≤ k ≤ K such
that x′ ≥ x(λ) and y′ ≤ y(λ).

By definition, (x, y) ∈ Conv(FDH(T )) if and only if there exists (x′j , y
′
j) ∈

FDH(T ) and μj ∈ [0, 1], j = 1, 2, . . . , J , such that x =
∑

j μjx
′
j , y =

∑
j μjy

′
j

and
∑

j μj = 1. By definition of the free disposable hull, (x′j , y
′
j) ∈ FDH(T )

if and only if there exists (xj , yj) ∈ T such that x′j ≥ xj and yj ≤ y′j . Let
x(μ) :=

∑
j μjxj and y(μ) :=

∑
j μjyj . Thus, (x, y) ∈ Conv(FDH(T )) if and

only if there exists {(x1, y1), (x2, y2), . . . , (xJ , yJ)} ⊂ T and μj ≥ 0 for each
1 ≤ j ≤ J such that x ≥ x(μ) and y ≤ y(μ).

Since the conditions that characterize each set are identical, these two sets
coincide. ��

Proposition 3.22(a) is the basis for the following definition.

Definition 3.23. The convex, free disposable hull of a technology set T
is

CFDH(T ) := FDH(Conv(T )) = Conv(FDH(T )).

Proposition 3.24. If T ′ is a freely disposable, convex technology that con-
tains the technology set T , then

CFDH(T ) ⊂ T ′.

Thus, CFDH(T ) is the smallest convex, freely disposable technology set that
contains T .

Proof. Since T ′ is convex and contains T it follows that Conv(T ) ⊂ T ′.
Consequently,

CFDH(T ) = FDH(Conv(T )) ⊂ FDH(T ′) = T ′,

as claimed. ��

3.6.3 Constant Returns-to-Scale

Definition 3.25. A technology exhibits constant returns-to-scale if

(x, y) ∈ T =⇒ σ(x, y) = (σx, σy) ∈ T for all σ ∈ IR+.

It will be referred to as a CRS technology.
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Definition 3.26. The constant returns-to-scale hull of a technology set
T is

CRS(T ) := {(x′, y′) : (x′, y′) = σ(x, y) for some (x, y) ∈ T and σ ∈ IR+}.

The following proposition easily follows from the definitions.

Proposition 3.27. The constant returns-to-scale hull has these properties:

a) CRS(T ) is the smallest cone containing T .
b) If T ⊂ T ′, then CRS(T ) ⊂ CRS(T ′).
c) CRS(T

⋃
T ′) = CRS(T )

⋃
CRS(T ′).

d) If a technology set T exhibits constant returns-to-scale, then T = CRS(T ).

Proposition 3.28. The derived production function of a CRS technology is
linearly homogeneous.

Proof. Pick x ∈ IRn
+ and σ > 0. Since T exhibits constant returns-to-scale,

(σx, u) ∈ T ⇐⇒ (x, u/σ) ∈ T .

Consequently,

ΦT (σx) = max{u : (σx, u) ∈ T }
= σmax{(u/σ) : (x, u/σ) ∈ T }
= σmax{v : (x, v) ∈ T }
= σΦT (x),

which establishes the desired result. ��

Definition 3.29. The convex, constant returns-to-scale hull of a tech-
nology T is

CCRS(T ) := CRS(Conv(T )) = Conv(CRS(T )).

The proof of the next proposition follows similar arguments used to establish
the previous propositions and is therefore left to the reader.

Proposition 3.30. Let T ′ be a convex, constant returns-to-scale technology
that contains the technology T . Then

CCRS(T ) ⊂ T ′.

Thus, CCRS(T ) is the smallest convex, constant returns-to-scale technology
that contains the technology T .

We close this subsection with a fundamental result due to R.W. Shephard.
(A homework exercise asks you to prove this result.)

Proposition 3.31. A constant returns-to-scale, quasiconcave production func-
tion is necessarily concave.
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Fig. 3.1. Free disposable hull of the data set.

3.6.4 Example

We illustrate the different hull operations applied to a simple data set D
associated with a single-input, single-output technology provided in Table
3.1.

Table 3.1. Sample input, output data.

Firm x u

1 1.0 2.0
2 4.0 9.0
3 2.0 6.0
4 3.0 8.0

The first extrapolation is to form the free disposable hull of the data set,
namely, T1 := FDH(D). It is depicted in Figure 3.1. A few observations are
in order.

• The technology set T1 is not convex.
• The derived production function is not continuous. There are jumps in

output precisely at the observed input levels. For example, ΦT1(x) = 2 for
every x ∈ [1, 2) but ΦT1(2) = 6.
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• The derived production function is upper semicontinuous and quasicon-
cave.2 An input possibility set associated with an observed output level is
a closed interval. As examples, L(3) = [2,∞) and L(8) = [3,∞).

• The derived production function is bounded. The highest output level is
9 regardless of the input level.
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Fig. 3.2. Free disposable, convex hull of the data set.

A less conservative extrapolation is to take the convex hull of the free
disposable hull of the data set, namely, T2 := Conv(T1). (The technology
set T2 is also the free disposable hull of the convex hull of the data set.) It is
depicted in Figure 3.2. In this case, the derived production function is concave,
piecewise linear, continuous and bounded. Moreover, the derived production
function associated with T2 is (trivially) larger than the one associated with
T1.

The final extrapolation we consider here is the constant returns-to-scale
hull of T2, namely, T3 := CCRS(T2). (That is, the technology T3 is the constant
returns-to-scale, free disposable, convex hull of the data set.) It is depicted
in Figure 3.3. In this case, the derived production function is (obviously) lin-
early homogeneous, concave and continuous. Moreover, the derived produc-
2 Quasiconcavity is only guaranteed in the single-input case. For a typical data set,

it will never hold when there are multiple inputs.
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tion function associated with T3 is (trivially) larger than the one associated
with T2.

Hopefully, this simple example illustrates how far one can extrapolate a
data set to form technology sets with different properties. The “gaps” between
T1, T2 and T3 can be quite “large” for a typical data set. Consequently, the
efficiency and productivity analysis we undertake in Parts II and III can lead to
significantly different conclusions depending on the assumptions the modeler
is willing to make about the technology.
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Fig. 3.3. Constant returns-to-scale, free disposable, convex hull of the data set.

3.7 Exercises

3.1. Suppose each fk(·), k = 1, 2, . . . , N , is quasiconcave. Show that Φ(x) =
mink fk(x) is also quasiconcave.

3.2. For a single-output, well-behaved technology show that P (x) is upper
hemicontinuous.

3.3. Give a simple example of a single-input, single-output technology that is
not lower hemicontinuous.

3.4. Give an example of a two-input, single-output technology set that is not
closed.
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3.5. Let D be a finite data set and let T = FDH(D). For a single-output
technology, show that the derived production function is always upper semi-
continuous and bounded.

3.6. Give an example of a two-input, single-output data set D such that the
derived production function associated with the technology T = FDH(D) is
not quasiconcave.

3.7. Prove Proposition 3.21.

3.8. Prove Proposition 3.27.

3.9. Prove Proposition 3.30.

3.10. Prove Proposition 3.31.

3.8 Bibliographical Notes

The first rigorous modern axiomatic treatment of steady-state production is
due to Shephard [1953, 1970] and Debreu [1959]. Tulkens [1993] discusses some
of the methodological issues pertaining to the free disposable hull. Hackman
and Russell [1995] show how to represent and analyze closeness of two tech-
nologies in a formal way (via the topology of closed convergence).

Consult Bunge [1959, 1973] for a philosopher’s perspective on the ax-
iomatic and scientific method.
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3.9 Solutions to Exercises

3.1 First, the algebraic argument. Pick x, y and λ ∈ [0, 1]. We have

Φ(λx + (1− λy)) = min
k
fk(λx + (1− λy))

≥ min
k

[
min(fk(x), fk(y))

]
since each fk is quasiconcave

= min
[
min

k
fk(x), min

k
fk(y)

]

= min(Φ(x), Φ(y)),

which establishes the quasiconcavity of Φ(·). Now, the set-theoretic argument.
Fix u. As a direct consequence of its definition, it follows that z ∈ L≥

φ (u) if
and only if z ∈ L≥

fk
(u) for each k. Thus, L≥

φ (u) =
⋂

k L
≥
fk

(u). Since each upper
level set of fk(·) is convex and the intersection of convex sets is convex, each
upper level set of Φ(·) is convex. This establishes quasiconcavity.

3.2 Since the correspondence P (·) is obviously compact-valued, we shall use
Theorem G.9, p. 498, to establish the desired result. To this end let xn → x
and pick yn ∈ P (xn). Let e := (1, 1, . . . , 1) ∈ IRn be the vector of ones and
pick δ > 0. Eventually xn ≤ x + δe, which implies that Φ(xn) ≤ Φ(x + δe).
Since yn ∈ P (xn), we have that eventually yn ≤ Φ(xn) ≤ Φ(x + δe). Thus
it is possible to extract a subsequence of the yn that converge to a point y.
(We shall not change notation for the subsequence.) It remains to show that
y ∈ P (x). Pick ε > 0. Eventually yn ≥ y − ε. Since Φ(xn) ≥ yn, it follows
that eventually Φ(xn) ≥ y or, equivalently, xn ∈ L≥

Φ (y). As each upper level
set of Φ(·) is closed, we may conclude that x ∈ L≥

Φ (y) or, equivalently, that
y ∈ P (x), as desired.

3.3 Let Φ(x) =
√
x on [0, 1) and let Φ(x) = 1 +

√
x on [1,∞). Set y = 2.

Obviously y ∈ P (1). However, as xn → 1 from below it is not possible to find
yn ∈ P (xn) such that yn → y. Consequently, this technology does not exhibit
lower hemicontinuity.

3.4 Consider a technology that achieves exactly output rate one as long as
both inputs exceed one. The input possibility set L(1) is the input free dis-
posable hull of the point (1, 1) with the point (1, 1) removed. This technology
is clearly not closed.

3.5 Boundedness follows from the fact that

ΦT (x) = max{yi : xi ≤ x} ≤ max
i
yi <∞.

As for upper semicontinuity,

L(u) =
⋃

{i:yi≥u}
IFDH(xi),
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which is a finite union of closed sets and hence closed.

3.6 Let x1 = (1, 2) and x2 = (2, 1). Consider a technology that achieves ex-
actly output rate one such that L(1) = IFDH(x1)

⋃
IFDH(x2). This upper

level set satisfies all of the usual properties, except that it is not convex.

3.7 We shall only provide the arguments for the input free disposable hull, as
the arguments for the other cases are analogous. We begin with part (a). Say
set S possesses input free disposability and set L ⊂ S. It remains to show that
IFDH(L) ⊂ S. Pick x ∈ L and x′ ≥ x. By definition x′ ∈ IFDH(L). Since
x ∈ S, too, and S possesses input free disposability, it follows that x′ ∈ S,
which establishes the result. A similar argument establishes part (b). As for
part (c), we wish to show that

IFDH(S ∪ T ) = IFDH(S) ∪ IFDH(T ).

Pick x ∈ S ∪ T and x′ ≥ x. By definition x′ ∈ IFDH(S ∪ T ). Since x′

also belongs to both S and T separately, it follows that x′ ∈ IFDH(S),
x′ ∈ IFDH(T ), too. Thus,

IFDH(S ∪ T ) ⊂ IFDH(S) ∪ IFDH(T ).

The reverse inclusion follows directly from part (b), and the fact that both S
and T are obviously subsets of S ∪ T .

3.8 Part (a) follows from the fact that if C is any cone containing T it
must also contain CRS(T ) by virtue of it being a cone. As for part (b),
pick (x′, y′) ∈ CRS(T ). By definition (x′, y′) = σ(x, y) for some (x, y) ∈ T
and σ ∈ IR+. Since T ⊂ T ′, (x, y) ∈ T ′, too, from which it immedi-
ately follows that (x′, y′) ∈ CRS(T ′), as required. As for part (c), pick
(x′, y′) ∈ CRS(T ∪T ′). By definition (x′, y′) = σ(x, y) for some (x, y) ∈ T ∪T ′

and σ ∈ IR+. Without loss of generality, we may assume that (x, y) ∈ T . It
then follows that (x′, y′) ∈ CRS(T ) ⊂ CRS(T ) ∪ CRS(T ′). Thus,

CRS(T ∪ T ′) ⊂ CRS(T ) ∪ CRS(T ′).

The reverse inclusion follows from part (b) and the fact that both T and T ′

obviously belong to their union. As for part (d), by definition T ⊂ CRS(T ).
Pick (x′, y′) ∈ CRS(T ). By definition (x′, y′) = σ(x, y) for some (x, y) ∈ T
and σ ∈ IR+. Since by assumption T exhibits constant returns-to-scale, it
follows that (x′, y′) ∈ T , too, and so T = CRS(T ).

3.9 Pick (x′, y′) ∈ CCRS(T ). By definition (x′, y′) = σ(x, y) for some (x, y) ∈
Conv(T ) and σ ∈ IR+. Since T ′ is a convex set, it contains Conv(T ), and
so (x, y) ∈ T ′, too. Since T ′ also exhibits constant returns-to-scale, it follows
that (x′, y′) ∈ T ′, too, which establishes the desired result.

3.10 First, we show that Φ(·) is super-additive, namely, Φ(x+y) ≥ Φ(x)+Φ(y).
If either Φ(x) or Φ(y) equals zero, then super-additivity follows from the mono-
tonicity of Φ(·). Hereafter, we assume that both Φ(x) and Φ(y) are positive.
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Since Φ(·) exhibits constant returns-to-scale, i.e., it is linearly homogeneous,
then both x/Φ(x) and y/Φ(y) belong to the input possibility set L≥

Φ (1). Since
this input possibility set is convex, it follows that

[ Φ(x)
Φ(x) + Φ(y)

x

Φ(x)
+

Φ(y)
Φ(x) + Φ(y)

y

Φ(y)

]
∈ L≥

Φ (1).

This in turn implies that

Φ
( x+ y

Φ(x) + Φ(y)

)
≥ 1.

Super-additivity now follows from the linear homogeneity of Φ(·). As for con-
cavity, pick x, y and λ ∈ [0, 1]. We have

Φ(λx + (1 − λy)) ≥ Φ(λx) + Φ((1 − λ)y) = λΦ(x) + (1− λ)Φ(y),

as required. (The first inequality follows by super-additivity and the second
equality follows by linear homogeneity.)
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Nonparametric Models of Technology

Parametric forms for the production function are sufficiently differentiable,
which facilitates analysis of technology via calculus. Sometimes, however, a
parametric form exhibits a property that can be refuted by the data. For ex-
ample, the CES function has constant elasticity of substitution and constant
returns-to-scale regardless of the estimated parameters a, b and ρ (hence the
appellation). As another example, the Cobb-Douglas function exhibits multi-
plicative separability of the input factors. The translog function has the fewest
restrictions, which has made it a desirable and often used functional form.

In this chapter, we show how to estimate a production technology with-
out assuming a parametric functional form, namely, via a nonparametric ap-
proach.

4.1 Simple Leontief or Fixed-Coefficients Technology

We begin by describing the basic building block or core “atom” of activity
analysis known as the simple Leontief or fixed-coefficients technology,
so-named for its inventor W.W. Leontief.

A simple Leontief technology is characterized by a technical coefficient
vector a = (a1, a2, . . . , an). Each component of a is positive. If a simple
Leontief technology is to produce at least one unit of output, then the input
level of each factor i, i = 1, 2, ..., n, must be at least ai. More generally, if the
technology is to produce at least u ≥ 0 units of output, then the input level
of factor i must be at least uai.

Example 4.1. Consider a simple Leontief technology using two inputs, capital
and labor, whose technical coefficient vector a = (3, 3). If the input vector
x = (3, 3), then the output produced will be one. If x = (6, 6), then the
output produced will be two, since x = 2a, and if x = (1.2, 1.2), then the
output produced will be 0.4 since x = 0.4a. Now suppose x = (K, 3) for
K > 3. For any choice of u > 1, the vector x is not greater than or equal to
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u ·a, and so this input vector cannot produce an output level higher than one.
Consequently, the output produced will still be one. By the same reasoning,
the output level will also be one if x = (3, L) for L > 3.

What is the output Φ(x) for a simple Leontief technology? Since Φ(x) is
achievable xi ≥ Φ(x)ai for all i, which implies that

Φ(x) ≤ min
i
{xi/ai}. (4.1)

Since the right-hand side of (4.1) is an output level achievable using x, it
follows from the definition of a production function that

Φ(x) = min
i
{xi/ai}. (4.2)

Example 4.2. Continuing with Example 4.1, suppose x = (40, 33). Direct sub-
stitution into (4.2) yields Φ(x) = min{40/3, 33/3} = 11. In words, since
x ≥ 11a = (33, 33), this simple Leontief technology will produce at least 11
units of output with this input vector, i.e., Φ(x) ≥ 11. Since for any value of
u > 11, the input vector x � ua, this input vector cannot produce any output
level higher than 11. Consequently, the technology will produce an output
level of exactly 11, i.e., Φ(x) = 11. For a simple Leontief technology, slack in
any one input does not increase output. In this example, the extra 40−33 = 7
units of capital cannot be used to increase output beyond the level of 11.

It is immediate from (4.2) that Φ(·) exhibits constant returns-to-scale,
which implies that

LΦ(u) = uLΦ(1). (4.3)

Geometrically, the input possibility set LΦ(u) is the radial expansion of the
unit input possibility set LΦ(1). That is, the isoquant of LΦ(u), ISOQΦ(u) =
{x : Φ(x) = u}, is obtained by multiplying each point in the isoquant
ISOQΦ(1) of LΦ(1) by u. The input possibility sets for u = 1 and u = 2
for the simple Leontief technology of Example 4.1 are depicted in Figure 4.1.

Since a simple Leontief technology exhibits constant returns-to-scale, its
elasticity of scale is one. As shown in Figure 4.1, each isoquant is “L-shaped,”
which implies the elasticities of output are each zero. For a simple Leontief
technology, the sum of the output elasticities does not equal the elasticity of
scale. (Keep in mind the production function is not differentiable.) Technically,
both the rate of technical substitution and elasticity of substitution are not
defined. However, it seems intuitive that the elasticity of substitution should
be zero. Indeed, the vector x = ua achieves output rate u at minimum cost
regardless of the factor prices, and so a 1% change in the factor prices will
have no effect on the factor ratios. The elasticity of substitution for the simple
Leontief is defined to be zero. This follows from the fact that the elasticity of
substitution for the CES production function is 1/(1−ρ), which tends to zero
as ρ tends to −∞, and the following remark.
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Fig. 4.1. Example of a simple Leontief technology with a = (3, 3).

Remark 4.3. The CES production function Φ(x) = [
∑

i αix
ρ
i ]

1/ρ converges
pointwise to a simple Leontief technology as ρ tends to −∞. To see this, fix
x and for each i let yi = xi/ai where ai := α

−1/ρ
i . Define

φy(ρ) :=

[∑
i

yρ
i

]1/ρ

,

and let ymin := mini yi. Since the yi are positive (i)
∑

i y
ρ
i ≥ yρ

min and (ii)
yρ

i ≤ y
ρ
min when ρ is negative. Consequently, when ρ is negative,

ymin ≤ φy(ρ) ≤ n1/ρymin.

Since n1/ρ converges to 1 as ρ tends to −∞, it follows immediately that

lim
ρ→−∞

φy(ρ) = ymin = min
i
{xi/ai},

as claimed.

4.2 General Leontief Technology

Consider a system in which resources can be allocated to any one of N simple
Leontief processes Φk(·), 1 ≤ k ≤ N . The system output is the sum of the
outputs of the simple processes. We shall hereafter refer to this “molecular”
system consisting of “N parallel atoms” as a general Leontief technology.
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4.2.1 Production Function

What is the output Φ(x) for a general Leontief technology? An allocation
problem must be solved to determine the maximal output rate, namely, one
must disaggregate the aggregate input vector x into allocations xk to each
process k to maximize the sum of the outputs uk = Φ(xk) of the individual
processes. That is,

Φ(x) = max
{ N∑

k=1

Φk(xk) :
∑

k

xk ≤ x, xk ≥ 0 for all k
}
. (4.4)

The right-hand side of (4.4) is a nonlinear optimization problem. Let ak =
(ak

1 , a
k
2 , . . . , a

k
n) denote the technical coefficient vector for process k. For any

desired output rate uk, it is necessary to allocate at least ukak to process k,
and there is no reason to allocate more input to process k. Consequently, we
may set xk = ukak, which transforms (4.4) into the linear program

Φ(x) = max
{∑

k

uk : Au ≤ x, u ≥ 0
}
. (4.5)

In (4.5), the ith column of the n × N matrix A is the (transpose of) vector
ai. For the general Leontief technology, one solves linear program (4.5) to
determine the production function. The scale of each process or activity k,
uk, is commonly referred to as an activity intensity.

4.2.2 Properties

Proposition 4.4. A general Leontief technology exhibits constant returns-to-
scale.

Proof. Pick s > 0. Using (4.5),

Φ(sx) = max
{∑

k

uk : Au ≤ sx
}

= max
{
s
∑

k

(uk/s) : A(u/s) ≤ x
}

= smax
{∑

k

vk : Av ≤ x
}

= sΦ(x). �� (4.6)

Since (4.3) holds for a constant returns-to-scale technology, it is only nec-
essary to construct the unit input possibility set LΦ(1). To this end, let

A := {a1, a2, . . . , aN}
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denote the set of the intensity vectors, and consider the convex hull (see
Definition C.6, p. 462) of A,

Conv(A) :=
{
x = Au :

N∑
k=1

uk = 1, uk ≥ 0 for each k
}
. (4.7)

Since each point that lies on a line segment joining two intensity vectors aj

and ak can be represented as ujaj + ukak where uj + uk = 1, uj , uk ≥ 0, each
such line segment belongs to the convex hull. In general dimensions, the unit
input possibility set is simply the input free disposable hull (see Definition
3.19, p. 42) of the convex hull of the intensity vectors.

Proposition 4.5. LΦ(1) = IFDH(Conv(A)).
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Fig. 4.2. An example of a general Leontief technology.

Example 4.6. Consider a general Leontief technology consisting of four activ-
ities whose intensity vectors are a1 = (1, 6), a2 = (2, 4), a3 = (4, 2), and
a4 = (8, 1), respectively. Figure 4.2 depicts the isoquants for output levels 1



58 4 Nonparametric Models of Technology

and 1.5. The isoquant ISOQΦ(1) is constructed by sequentially connecting
the intensity vectors, and then adding two rays: one emanating from a1 head-
ing due north and the other emanating from a4 heading due east. The input
possibility set LΦ(1) is obtained by adding each vector in IR2

+ to each vector
in the isoquant. Algebraically,

LΦ(1) =
{
(K,L) : u1

(
1
6

)
+ u2

(
2
4

)
+ u3

(
4
2

)
+ u4

(
8
1

)
≤
(
K
L

)

u1 + u2 + u3 + u4 ≥ 1
}
,

or in matrix notation,

LΦ(1) =
{
(K,L) :

⎡
⎣ 1 2 4 8

6 4 2 1
−1 −1 −1 −1

⎤
⎦
⎛
⎜⎜⎝
u1

u2

u3

u4

⎞
⎟⎟⎠ ≤

⎛
⎝ K

L
−1

⎞
⎠ }

.

It is understood the ui are nonnegative and for convenience we drop these
constraints. The output rate Φ(x) for an input vector x is

Φ(x) = max
{
u1 + u2 + u3 + u4 :

[
1 2 4 8
6 4 2 1

]
⎛
⎜⎜⎝
u1

u2

u3

u4

⎞
⎟⎟⎠ ≤

(
K
L

) }
. (4.8)

In canonical form, the right-hand side of (4.8) is a linear program

max{cTx : Ax ≤ b, x ≥ 0},

where x = (u1, u2, u3, u4)T , cT = (1, 1, 1, 1), b = (K,L)T and

A =

[
1 2 4 8

6 4 2 1

]
.

4.2.3 Graphical Construction

When there are two inputs, the output rate can be graphically determined,
as follows. Since (4.6) holds we know x = sx′ for some x′ ∈ ISOQΦ(1); in
particular, s = Φ(x). The four rays passing through the origin and each of
the intensity vectors together with the x- and y-axis determine five regions,
as depicted in Figure 4.3. (Each region is a convex cone, see Definition C.15,
p. 464.) The slopes of the rays identify the boundaries of the labor-capital
ratio for each region. Let m denote the labor-capital ratio of x and thus x′.
Given m it is easy to identify the region to which x′ belongs, say region r.
Since x′ also belongs to the unit isoquant, we know x′ lies at the intersection
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Fig. 4.3. Computing output for a general Leontief technology with two inputs.

of the line Lr and the line L = mK. The two equations uniquely determine
the coordinates of x′, from which it is easy to determine s. For region 1, the
equation of line L1 is K = a1

1 (the first coordinate of a1), and for region 5,
the equation of line L5 is L = a4

2 (the second coordinate of a4).

Example 4.7. Consider the input vector x = (5.25, 3.75). Its labor-capital ratio
is 5/7, and so x′ falls within region 3. Since x′ also lies on the unit isoquant,
it also belongs to the line L3 determined by points a2 and a3, which is L =
−K + 6. Consequently, x′ lies at the intersection of the two lines L = (5/7)K
and L = −K + 6, which implies x′ = (3.5, 2.5) and s = 1.5. As Figure 4.3
shows, x ∈ ISOQΦ(1.5) and so Φ(x) = 1.5.

Example 4.8. Consider the input vector x = (2, 16). Its labor-capital ratio is
8 and so x′ falls within region 1. Here, x′ lies at the intersection of the lines
L = 8K and K = 1, and so x′ = (1, 8) and s = 2.

Remark 4.9. The function L(·) that implicitly defines the isoquant of a gen-
eral Leontief technology is piecewise linear. A general Leontief technology
belongs to the class of piecewise linear technologies.
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4.3 Nonparametric Constructions

The central question we now address is how to nonparametrically construct a
technology via input possibility sets from observed data (xi, ui) on N firms.
(The parametric approach constructs the technology via the production func-
tion route and some type of estimation technique.) Basically, the goal is to
define level sets La(u) that approximate the true unknown input possibility
sets L(u).

4.3.1 The Hanoch-Rothschild Model of Technology

We begin by assuming the technology is well-behaved. Let

X (u) := {xj}j∈I(u) where I(u) := {j : uj ≥ u}. (4.9)

Since the true input possibility set L(u) is convex and exhibits input free
disposability,

IFDH(Conv(X (u))) ⊂ L(u). (4.10)
The Hanoch-Rothschild approach stops here, namely, it approximates L(u)
with the smallest convex, input free disposable set that is consistent with the
observed data set.
Definition 4.10. The Hanoch-Rothschild model of technology (HR
technology) is given by the family of input possibility sets

FHR := {LHR(u) : u ≥ 0},
where for each u ≥ 0,

LHR(u) := IFDH(Conv(X (u))).

In equation form,

LHR(u) :=
{
z : z ≥

∑
j∈I(u)

λjxj ,
∑

j∈I(u)

λj = 1, λj ≥ 0 for j ∈ I(u)
}
. (4.11)

LHR(u) will be empty when I(u) is empty.

Remark 4.11. Hanoch-Rothschild [1972] developed this simple model as a
means to test whether or not a given data set could be consistent with an up-
per semincontinuous, nondecreasing quasiconcave production function. From
an applications perspective, the HR technology is only useful when the tech-
nology produces a single output.

The following proposition follows from the definition of theHR technology.
Proposition 4.12. The HR technology is the smallest well-behaved technol-
ogy set that contains a given data set.
By construction, each LHR(u) is the most conservative estimate of L(u). The
most “liberal” definition of a technology that is consistent with the data is to
set each L(u) to be IRn

+.1 This construction is hardly useful, however!
1 Less a small neighborhood about zero to be consistent with Axiom A1.
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Remark 4.13. Each input possibility set of an HR technology can be identified
with the input possibility set associated with output rate one of a general
Leontief technology whose intensity vectors are given by the vectors in I(u).
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Fig. 4.4. An input-output data set. The number next to each input vector is the
output rate.

Example 4.14. For the input-output data shown in Figure 4.4, the input pos-
sibility sets for the HR technology for each of the observed output rates are
depicted in Figure 4.5. For example,

L(14) =
{
(K,L) : u4

(
3
2

)
+ u5

(
1
6

)
+ u6

(
4
5

)
≤
(
K
L

)

u4 + u5 + u6 = 1
}
.

Note the data point corresponding to firm 6 does not determine the isoquant
of L(14).

4.3.2 Data Envelopment Analysis Models of Technology

Data Envelopment Analysis (DEA), initially developed in 1978 by
Charnes, Cooper and Rhodes and extended in many ways over the past 25
years, adopts a less conservative approach to extrapolating the data than the
HR-approach. It also can be used in the multi-output setting.

To motivate the DEA approach, consider the following hypothetical exam-
ple. Firm A uses (K,L) = (4, 4) to produce 15. The goal is to measure its input
efficiency. To do so requires an estimate the input possibility set L(15). Data
on two other firms B and C have been collected: firm B uses (K,L) = (1, 5)
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Fig. 4.5. Input possibility sets for the HR technology.

to produce 10 and firm C uses (K,L) = (5, 1) to produce 20. Assuming the
HR technology, as depicted in Figure 4.6(a), firm B is irrelevant and firm C
cannot reveal firm A to be inefficient since the point (4,4) does not lie “on or
above” the point (5,1). Now a 50-50 mixture of the outputs of firms B and
C results in the number 15. DEA assumes that such output is attainable if
a 50-50 mix of the inputs of firms B and C is used. Under this more relaxed
assumption, this “composite” firm will produce 15 and use (K,L) = (3, 3). As
depicted in Figure 4.6(b), this composite firm would reveal firm A to be 75%
efficient.

Charnes, Cooper and Rhodes’ main contribution is to broaden the appli-
cation of convexity to both inputs and outputs.

Definition 4.15. The Variable Returns-to-Scale DEA model of tech-
nology (VRS technology) is the smallest closed convex freely disposable
set that contains the data set D, namely,

T V RS := FDH(Conv(D)).

Definition 4.16. The Constant Returns-to-Scale DEA model of tech-
nology (CRS technology) is the smallest constant returns-to-scale technol-
ogy that contains the V RS technology, namely,

T CRS := CRS(T V RS).
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Fig. 4.6. Comparison between the HR and DEA models of technology. HR tech-
nology convexifies input but not output, while DEA convexifies both input and
output.

Keep in mind that the definitions of T CRS and T V RS do not require output to
be scalar; that is, in stark contrast to the HR technology, these technologies
apply in the multi-output setting.

For each λ ∈ IRN
+ , let

x(λ) :=
N∑

i=1

λixi and y(λ) :=
N∑

i=1

λiyi. (4.12)

With this notation, that

T CRS =
{

(x, y) : x ≥ x(λ), y ≤ y(λ), λi ≥ 0
}
, (4.13)

and

T V RS =
{

(x, y) : x ≥ x(λ), y ≤ y(λ),
∑

i

λi = 1, λi ≥ 0
}
. (4.14)

Remark 4.17. Historically, the first DEA model was the CRS model developed
by Charnes, Cooper and Rhodes in 1978. It was extended by Banker, Charnes
and Cooper in 1984 to the V RS model. In the parlance of DEA, each firm is
called a Decision-Making Unit (DMU).

4.3.3 Graphical Constructions

Given data (xi, ui), i = 1, 2, ..., N , it is possible to graphically construct the
input possibility sets associated with T CRS and T V RS in the case of two inputs
and scalar output. Such graphical depiction is useful to explain concepts to
users, and it is not unusual for a pilot project to involve a single aggregate
output with aggregate inputs measuring some form of capital and labor.
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Fig. 4.7. Input possibility sets for the CRS technology.

We first examine the simplest case corresponding to T CRS . Since

LCRS(u) = uLCRS(1),

it suffices to show how to construct LCRS(1). Let x̂i denote the scaled input
vector xi/ui. Clearly, x̂i ∈ LCRS(1) for each i. Since LCRS(1) is convex, all
convex combinations of the x̂i belong to it, too. That is, the convex hull of the
x̂i is a subset of LCRS(1). Since each input possibility set exhibits input free
disposability, each input vector whose coordinates are at least as large as some
convex combination of the x̂i must also belong to LCRS(1). This collection
of points is precisely the HR-construction applied to the “scaled” data set
(x̂i, 1), i = 1, 2, ..., N . Equivalently, the CRS technology can be identified
with a general Leontief technology in which the intensity vectors are given by
the x̂i.

Example 4.18. For the data given in Figure 4.4, Figure 4.7 depicts the input
possibility sets for the CRS technology. For example, LCRS(20) is the convex,
input free disposable hull of the vectors

x̂1 = (20/10)
(

4
1

)
, x̂2 = (20/10)

(
5
4

)
, x̂3 = (20/12)

(
0.5
2.5

)
,

x̂4 = (20/14)
(

3
2

)
, x̂5 = (20/20)

(
1
6

)
, x̂6 = (20/30)

(
4
5

)
.

The construction of the input possibility set LV RS(u) associated with
T V RS is somewhat more involved. We shall define a set G(u) of input vectors
or generators from which one simply executes the HR-construction; that is,
form the convex hull of G(u) and extend “upwards and outwards.” Formally,
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Fig. 4.8. Input possibility sets for the V RS technology.

LV RS(u) = IFDH(G(u)).

First, if ui ≥ u, then xi belongs to G(u). Next, for each j and k for which
uj > u > uk there exists a unique constant λu

j,k ∈ (0, 1) for which

u = λu
j,kuj + (1− λu

j,k)uk.

Define
xu

j,k := λu
j,kxj + (1− λu

j,k)xk. (4.15)

Each point xj,k also belongs to G(u).
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Example 4.19. For the data given in Figure 4.4, Figure 4.8 depicts the input
possibility sets for each of the observed output rates for the V RS technology.
For example, the set G(20) contains the original data points x5 and x6, as
well as the points marked

x20
1,6 := 1/2 x1 + 1/2 x6, x20

2,6 := 1/2 x2 + 1/2 x6,

x20
3,6 := 5/9 x3 + 4/9 x6, x20

4,6 := 5/8 x4 + 3/8 x6.

Not all points in G(u) will lie on the isoquant of LV RS(u); consider, for ex-
ample, the point x20

2,6 in G(20).

4.4 Exercises

4.1. Graphically depict the input possibility set L(2) associated with a simple
Leontief technology whose intensity vector is a = (2, 1).

4.2. Consider a general Leontief technology consisting of three activities whose
intensity vectors are respectively a1 = (1, 5), a2 = (2, 2) and a3 = (4, 1).

(a) Graphically depict the input possibility set L(2) associated with this tech-
nology.

(b)What is Φ(12, 28)?

4.3. Consider the following input-output data obtained from three firms: x1 =
(2, 4), y1 = 10, x2 = (3, 16), y2 = 20 and x3 = (8, 2), y3 = 20.

(a) Graphically depict LHR(20).
(b)Graphically depict LCRS(20).
(c) Graphically depict LV RS(15).
(d) Input-output data on a fourth firm has been collected: x4 = (9, 7.5), y4 = 20.

Under the CRS technology:
i. What is this firm’s input efficiency?
ii. What is this firm’s output efficiency?

4.4. Prove Proposition 4.5.

4.5. Prove that T CRS is the smallest convex cone containing T V RS .

4.6. Let TF
V RS and TF

CRS denote the technologies associated with the stan-
dard V RS and CRS assumptions, respectively, except that some of the in-
puts are exogenously fixed or non-discretionary—that is, these inputs cannot
be scaled downwards. How do the input and output efficiency measures of
TF

V RS and TF
CRS compare with those for T V RS and T CRS?
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4.7. This exercise explores the nonparametric estimation of concave technolo-
gies (see Alon et. al. [2007]). Let D := {(x1, u1), (x2, u2), . . . , (xN , uN)} denote
a data set of N input-output pairs such that xi > 0 (the coordinates of each
input vector are strictly positive) and each (scalar) output ui is strictly posi-
tive. Let

X := Conv{x1, x2, . . . , xN}+ IRn
+

denote the convex, input free disposable hull of the xi. Let F denote the set
of all functions f : X → IR+ such that f(·) is nondecreasing and concave.

(a) For each x ∈ X , let Φ∗(x) denote the optimal value of the following linear
programming problem:

Φ∗(x) := max
λ≥0

{ N∑
i=1

λiui subject to
N∑

i=1

λixi ≤ x,
N∑

i=1

λi = 1
}
.

Prove that Φ∗(·) ∈ F .
(b) The data set D is said to be concave-representable if there exists a function

Φ(·) ∈ F such that Φ(xi) = ui for each i. Each such Φ(·) is called a
representation of D. Prove that if D is concave-representable, then Φ∗(·)
is its minimal representation, namely, Φ(·) ≥ Φ∗(·) on X for any other
representation Φ(·) of D.

(c) Prove that the data set D is concave-representable if and only if Φ∗(xi) =
ui for each i.

(d) Provide an example of a single-input, single-output data set D that is
concave-representable. Graphically depict Φ∗(·) and provide a representa-
tion Φ(·) of D that does not equal Φ∗(·).

4.5 Bibliographical Notes

Hanoch-Rothschild’s [1972] paper addresses the topic of whether an input-
output data set could ever be reconciled with a well-behaved quasiconcave
production function. They showed that linear programming models could be
used to test this hypothesis, as did Diewert and Parkan [1983]. Activity anal-
ysis is due to Koopmans [1951], Debreu [1951] and Leontief [1953].

Data Envelopment Analysis was first introduced in Charnes et. al. [1978]
and extended in Banker et. al. [1984]. A family of related models has been
developed and applied over the years by many researchers. The monograph by
Fried et. al. [1993] and the recent textbooks by Coelli et. al. [2005] and Cooper
et. al. [2007] provide detailed descriptions, extensions, and many applications.
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4.6 Solutions to Exercises

4.1 It is the input free disposable hull of the point (2,2), which is the set in
the (K,L) space given by {(K,L) : K ≥ 2, L ≥ 2}.

4.2 (a) It is the convex, input free disposable hull of the points (1, 5), (2, 2),
and (4, 1). This set in the (K,L) space is given by the intersection of the four
halfspaces determined by the line parallel to the L axis passing through (1, 5),
the line segment joining (1, 5) and (2, 2), the line segment joining (2, 2) and
(4, 1), and the line parallel to the K axis passing through the point (4, 1), i.e.,

{(K,L) : K ≥ 1, L ≥ −3K + 8, L ≥ −0.5K + 3, L ≥ 1}.

(b) The output rate associated with (12, 28) can be obtained by solving the
linear program

max
{
u1 + u2 + u3 :

[ 1 2 4
5 2 1

][u1

u2

u3

]
≤
[12
28

] }
.

As noted in the text, this linear program can be solved geometrically, as
follows. The labor-capital ratios corresponding to the intensity vectors a1, a2,
and a3 are, respectively, 5, 1 and 0.25. Since the labor-capital ratio of the point
(12, 28) is 7/3, the point (12, 28) lies in the cone {(K,L) : L ≤ 5K, L ≥ K}
spanned by the rays emanating from the origin and passing through the points
a1 and a2, respectively. It follows that the line L = (7/3)K must intersect
the line connecting points a1 and a2 given by L = −3K + 8. The point of
intersection is (1.5, 3.5), which, by construction, has output rate equal to one.
The output rate associated with the point (12, 28) equals the scalar u for
which (12, 28) = u(1.5, 3.5). Here, u = 8 and Φ(12, 28) = 8.

4.3 (a) LHR(20) is the convex, input free disposable hull of the points (3,
16) and (8, 2). This set in the (K,L) space is given by the intersection of the
three halfspaces determined by the line parallel to the L axis passing through
(4, 8), the line segment joining (4, 8) and (8, 2), and the line parallel to the K
axis passing through the point (8, 2), i.e.,

{(K,L) : K ≥ 3, L ≥ −(14/5)K + 122/5, L ≥ 2}.

(b) The point (4, 8), which is twice the first intensity vector, will achieve an
output rate of 20. Thus, LCRS(20) is the convex, input free disposable hull
of the points (3, 16), (4, 8), and (8, 2). This set in the (K,L) space is given
by the intersection of the four halfspaces determined by the line parallel to
the L axis passing through (3, 16), the line segment joining (3, 16) and (4, 8),
the line segment joining (4, 8) and (8, 2), and the line parallel to the K axis
passing through the point (8, 2), i.e.,

{(K,L) : K ≥ 3, L ≥ −8K + 40, L ≥ −(6/4)K + 14, L ≥ 2}.
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(c) The points (3, 16) and (8, 2) obviously belong to LV RS(15). It remains to
determine the additional generators that belong to the set G(15) defined in
the text. Here there are two: since 15 = 0.5(10) + 0.5(20), the midpoint of the
line segment joining points (2, 4) and (3, 16), which is (2.5, 20), is one and the
midpoint of the line segment joining points (2, 4) and (8, 2), which is (5, 3),
is the other. The set LV RS(15) is then the convex, input free disposable hull
of the points {(3, 16), (8, 2), (2.5, 10), (5, 3)}. This set is the intersection of the
four halfspaces determined by the line parallel to the L axis passing through
(2.5, 10), the line segment joining (2.5, 10) and (5, 3), the line segment joining
(5, 3) and (8, 2), and the line parallel to the K axis passing through the point
(8, 2), i.e.,

{(K,L) : K ≥ 2.5, L ≥ −(7/2.5)K + 17, L ≥ −(1/3)K + 14/3, L ≥ 2}.

(d) The point (9, 7.5) lies on the line given by L = (5/6)K, which intersects
the line L = −1.5K + 14 passing through the points (4,8) and (8, 2). The
point of intersection is (6, 5), which, by construction, has output rate of 20.
Now (6, 5) = 2/3(9, 7.5) and so the CRS input efficiency is 2/3. For the CRS
model of technology, the output and input efficiencies are equal, and so the
output efficiency is also 2/3.

4.4 Use (4.5) and the input free disposability of LΦ(1) to argue thatCO({ak})+
IRn

+ ⊂ LΦ(1). To show the reverse inclusion, pick an x in LΦ(1). Use (4.5) to
find a vector u for which x ≥ Au and ũ :=

∑
k u

k ≥ 1. Let λ denote the vector
in IRn

+ whose coordinates are given by λk := uk/
∑

k u
k, 1 ≤ k ≤ n. Write x

as Aλ+ (x− Aλ) and argue that the vector x−Aλ is nonnegative.

4.5 Let C denote an arbitrary convex cone containing T V RS . It is sufficient
to show that T CRS ⊂ C. To this end, pick (x(λ), y(λ)) ∈ T CRS and let
s :=

∑
k λk. The case s = 0 is trivial, so assume s > 0. Let μi := λi/

∑
k λk

for each i. Show that (x(λ), y(λ)) = s(x(μ), y(μ)).

4.6 The input and output efficiency measures of TF
V RS and TF

CRS are higher
than their counterparts for T V RS and TCRS.

4.7 (a) Suppose x1 ≤ x2 with each xi ∈ X . Any feasible choice λ for the linear
program defined by Φ∗(x1) is also feasible for the linear program defined by
Φ∗(x2), which immediately implies that Φ∗(x1) ≤ Φ∗(x2). This establishes
that Φ∗(·) is nondecreasing. It remains to prove that Φ∗(·) is concave. To
this end, pick x1, x2 ∈ X and μ ∈ [0, 1]. Let λ∗i , i = 1, 2, denote optimal
solutions for the linear programs defined by Φ∗(xi), respectively. The vector
μλ∗1+(1−μ)λ∗2 is feasible for the linear program defined by Φ∗(μx1+(1−μ)x2).
This implies that

Φ∗(μx1 + (1− μ)x2) ≥ (μλ∗1 + (1 − μ)λ∗2) · y
= μ(λ∗1 · y) + (1 − μ)(λ∗2 · y)
= μΦ∗(x1) + (1 − μ)Φ∗(x2),

which established concavity.
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(b) Pick a representation Φ(·) of D and pick x ∈ X . For each feasible choice
λ for the linear program that defines Φ∗(x), we have that x ≥

∑
i λixi, which

implies that Φ(x) ≥ Φ(
∑

i λixi) since Φ(·) is nondecreasing. Since Φ(·) is also
concave and Φ(xi) = yi, we have that

Φ(x) ≥ Φ(
∑

i

λixi) ≥
∑

i

λiΦ(xi) =
∑

i

λiyi.

It now follows by the definition of Φ∗(x) that Φ(x) ≥ Φ∗(x). Finally, we
must show that Φ∗(·) is indeed a representation, which boils down to showing
that Φ∗(xi) = yi since we established in (a) that Φ∗ ∈ F . Pick an index i,
1 ≤ i ≤ N . The vector λ ∈ IRN

+ such that λi = 1 and λj = 0 for j �= i
is feasible for the linear program defining Φ∗(xi). Thus, Φ∗(xi) ≥ yi. On the
other hand, we are given that Φ(xi) = yi and we have already established that
Φ(x) ≥ Φ∗(x) for any x ∈ X . It follows then that Φ∗(xi) = yi, as required.
(Here is where we usr the assumption that D is concave-representable so that
such a Φ(·) exists.)
(c) Suppose Φ∗(xi) = yi for each i. By (a) we know that Φ∗(·) ∈ F , which
means that Φ∗(·) is itself a representation. The converse was shown in (b).
(d) Let D = {(1, 2), (2, 3)}. Here, X = [1, 2]. We have established that Φ∗(·) is
the smallest concave nondecreasing function passing through these two points.
Obviously Φ∗(x) = x+ 1 on X . The function

Φ(x) =

{
2x, 1 ≤ x ≤ 1.5,

3, 1.5 ≤ x ≤ 2,

is nondecreasing and concave and also passes through these two points; how-
ever, Φ(x) > Φ∗(x) on (1, 2).
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Cost Function

A cost function represents the minimum cost required to achieve a pre-
determined level of output given the prices for the factors of production. It
is an essential tool of applied production analysis. A well-behaved technology
can be reconstructed by observing the cost minimizing behavior of produc-
ers. We shall use this fundamental duality between the cost and production
functions in Part II.

5.1 Definition

Definition 5.1. The cost function is

Q(y, p) := min{p · x : x ∈ L(y)}. (5.1)

It is understood that the cost function is defined only for those output vectors
that are attainable; that is, the input possibility set must be nonempty.

Technically, the minimum in Definition 5.1 should be replaced with an infi-
mum, unless one proves it is always possible to find an x ∈ L(u) that achieves
the minimal cost. For a well-behaved technology, this will be the case. See the
Appendix to this chapter for a proof.

5.2 Properties

5.2.1 Geometry

Since Q(y, p) represents minimum cost, it follows that p · z ≥ Q(y, p) for each
z ∈ L(y), or

L(y) ⊂ {z : p · z ≥ Q(y, p)}. (5.2)

This means that the input possibility set L(y) lies within the closed halfspace
“lying on or above” the hyperplane
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H(p,Q(y, p)) := {z : p · z = Q(y, p)}.

Since there is a cost minimizer x∗ for which p · x∗ = Q(y, p), the hyperplane
H(p,Q(y, p)) supports L(y).

In the two-dimensional input case with both input prices positive, the set
of points lying on the hyperplane {z : p · z = Q} is equivalent to defining a
line

{(K,L) : L = −(pK/pL)K +Q/pL} (5.3)

with slope −(pK/pL) and intercept Q/pL. This is known as an isocost line.
The slope of the line does not change as the value of Q changes, and so the
lines induced by different values of Q are all parallel. From a geometrical
perspective, to obtain a cost minimizer and minimum cost given prices p
and input possibility set L(y), all one has to do is to plot a line with slope
−(pK/pL) and adjust the intercept so that the line is tangent to the isoquant
ISOQ(y).

Example 5.2. In Figure 5.1, an isocost line associated with the minimal cost is
tangent to the isoquant at the point (3, 2). Two isocost lines associated with
Q-values lower than the minimal cost are also displayed.
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Fig. 5.1. Determining minimal cost.

In the differentiable setting, the rate of technical substitution between K
and L at a cost minimizer x∗ defines the slope of a line tangent to the isoquant
ISOQ(y) at x∗. (See Figure 2.3 on p. 22.) Since there is only one tangent line,
it follows that the rate of technical substitution equals minus the ratio of the
input prices. Since the rate of technical substitution is minus the ratio of the
partial derivatives of the production function, the price vector is proportional
to the gradient vector evaluated at a cost minimizer. This fact extends to the
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general case of n > 2 inputs. We shall verify this fact when we solve for
Q(y, p).

5.2.2 Homogeneity

A function f : IRk −→ IR is linearly homogeneous if f(s · x) = sf(x) for
any positive scalar s. It is obvious that Q(y, p) is linearly homogeneous in p.
Scaling a price vector merely scales the minimum cost, which is a necessary
property of any well-behaved cost function!

5.2.3 Concavity

In addition to being linearly homogeneous, the cost function is also concave.

Proposition 5.3. Q(y, p) is concave in p for fixed y.

Proof. Pick pi ∈ IRn
+, i = 1, 2 and λ ∈ [0, 1]. By definition of the cost function,

Q(y, λp1 + (1− λ)p2) = min{(λp1 + (1− λ)p2) · x : x ∈ L(y)}
= min{λ(p1 · x) + (1− λ)(p2 · x) : x ∈ L(y)}
≥ min{λ(p1 · x) : x ∈ L(y)}+ min{(1− λ)(p2 · x) : x ∈ L(y)}
= λQ(y, p1) + (1− λ)Q(y, p2). �� (5.4)

Concavity of the cost function does not require the input possibility set to
be convex. (The proof above does not use this property.)

Remark 5.4. Concavity ofQ(y, ·) follows from the general fact that a minimum
of concave functions is always concave.

5.3 Example: Cobb-Douglas Technology

Since a Cobb-Douglas function is differentiable, we will determine its cost func-
tion by using the first-order optimality conditions. We motivate this derivation
by first analyzing a two-input, single-output example.

Example 5.5. Consider the production function Φ(K,L) = KL2. Suppose the
cost per unit of capital is 4 and the cost per unit of labor is 12. The desired
output rate is 12. We seek to minimize cost. We have

Q(u, p) = min{pkK + pLL : KL2 ≥ u}
= min

L>0
{ θ(L) := pk(u/L2) + pLL}. (5.5)

At the cost minimizer, (K(u, p), L(u, p)) = (K∗, L∗), the derivative of θ(·) at
L∗ must vanish; thus,
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L∗ = L(u, p) = (2pK/pL)1/3u1/3 = 2. (5.6)

Since Φ(K∗, L∗) = u,

K∗ = K(u, p) = (pL/2pK)2/3u1/3 = 3. (5.7)

Substituting the general solutions for capital and labor, the closed-form ex-
pression for minimum cost is

Q(u, p) = pKK(u, p) + pLL(u, p)

=
{
[(1/2)2/3 + 21/3]p1/3

K p
2/3
L

}
u1/3

= Q(1, p) u1/3. (5.8)

The minimum cost is 36.

Remark 5.6. The cost function given in (5.8) is homogeneous of degree one in
p, as expected, and is also multiplicatively separable in prices and output; that
is, it factors into a product of a function solely of prices and a function solely
of output. Technologies whose cost functions exhibit such a decomposition
are called homothetic, and we shall study them later. Note also the unit cost
function Q(1, p) has a Cobb-Douglas form.

To solve for Q(u, p), we may also use the method of Lagrange multipli-
ers, and transform the constrained problem into an unconstrained one. The
first-order optimality conditions (see E.7, p. 481) ensure that if x∗ is a cost
minimizer whose coordinates are all strictly positive and if the constraint is
tight at the optimum (which it will be), then there must be a positive scalar
λ∗ for which the partial derivatives of the Lagrangian function (see E.10, p.
483)

L((K,L), λ∗) = (pKK + pLL)− λ∗(KL2 − u) (5.9)

with respect to the factor inputs K and L must vanish when evaluated at the
optimum (K∗, L∗). Thus, pK = λL2 and pL = λ2KL, from which it follows
that the ratio pk/pL = 0.5L/K or K = 1.5L. Using the fact that Φ(K,L) = u
we obtain the same solution as before.

The cost function for a general Cobb-Douglas technology admits a very
useful characterization in terms of the cost or expenditure shares.

Definition 5.7. Let x(y, p) denote an optimum choice of inputs to minimize
the cost function Q(y, p). The cost or expenditure share of factor input
i (with respect to x(y, p)) is the ratio

Si(y, p) := pixi(y, p)/Q(y, p).

When the cost minimal input vector is unique, we write Si in lieu of Si(x(y, p)).
The cost shares always sum to one, i.e.,∑

i

Si(x(y, p)) = 1.
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For a general Cobb-Douglas technology,

Q(u, p) = min{ p · x =
∑

i

pixi : A
∏

i

xαi

i ≥ u}.

The Lagrangian function associated with the minimum cost problem is

L(x, λ) = p · x− λ(Φ(x) − u), (5.10)

and the first-order optimality conditions are1

0 = ∇xL(x, λ) = p− λ∇Φ(x). (5.11)

The first-order optimality conditions imply that

pi = λAαix
αi−1
i

∏
j �=i

x
αj

j . (5.12)

Multiplying both sides of (5.12) by xi,

pixi = λuαi, (5.13)

since the constraint must be tight at the optimum. It is immediate from (5.13)
that Si/Sj = αi/αj. Given that

∑
i Si = 1, we arrive at a simple, yet fun-

damental result concerning cost minimization of a Cobb-Douglas technology,
namely, the expenditure shares are fixed a priori as

Si =
αi∑
k αk

. (5.14)

Since pi is known, knowledge of Q(u, p) immediately renders

xi(u, p) =
Q(u, p)Si

pi
.

It remains to find Q(u, p).
To this end, sum both sides of (5.13) over i to obtain

Q(u, p) = λu
∑

i

αi. (5.15)

Keep in mind that λ = λ(u, p) is a function of both u and p. Now we must
find λ(u, p).

From (5.13) and the identity

A
∏

i

(pixi)αi =
[∏

i

pαi

i

]
u,

1 We shall drop the * on λ when solving these equations.



76 5 Cost Function

we have

Aλ
P

i αi

(∏
i

ααi

i

)
u

P
i αi =

[∏
i

pαi

i

]
u.

Thus,

λ(u, p) =
[∏

i(pi/αi)αi/
P

i ai

A1/
P

i ai

]
u1/

P
i αi −1. (5.16)

Using (5.15), we finally arrive at

Q(u, p) =

(∑
i

αi

)[∏
i(pi/αi)αi/

P
i αi

A1/
P

i αi

]
u1/

P
i αi . (5.17)

An observation is in order. An examination of (5.11) shows that the gra-
dient vector of the production function at the cost minimizer must be propor-
tional to the price vector. Equivalently, the ratio of the prices equals the ratio
of the partial derivatives. For the two-dimensional example, it can be veri-
fied that λ∗ = 1, and so ∇Φ(K,L) = (L2, 2KL) at (K∗, L∗) = (3, 2) exactly
coincides with the price vector.

5.4 Sensitivity Analysis

We continue with the single-output setting and examine two types of sensi-
tivities:

• How does the minimum cost vary with output?
• How does the minimum cost vary with factor prices?

For the developments to follow, we recall the concept of elasticity. Let f(·)
be a real-valued differentiable function of scalar x. The elasticity of f(·) with
respect to x measures the percentage change in f(·) for a 1% percentage
change in x, and is

εf(x) =
x

f(x)
f ′(x). (5.18)

When f(x) = xr for some non-zero r, the elasticity of f(·) with respect to x
is easily seen to be r, independent of x.

5.4.1 Sensitivity to Output

The elasticity of cost with respect to output for the cost function given in (5.8)
is 1/3, which implies that the ∂Q/∂u = 1, since here u = 12 and Q(u, p) = 36.

Computing the elasticity of output of the cost function boils down to
computing the partial derivative ∂Q/∂u. In this special case, it is quite easy. In
fact, it turns out that no calculation (other than what was already performed)
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is required! The partial derivative here is 1, which just happens to equal the
optimal Lagrange multiplier λ∗. This is definitely not a coincidence.

In what follows, we assume there is a unique cost minimizer x(u, p), which
is differentiable. (There are a number of conditions that will ensure this is
true.) Thus,

Q(u, p) = p · x(u, p)
and

∂Q(u, p)
∂u

=
∑

i

pi
∂xi(u, p)

∂u
. (5.19)

Since

Φ(x(u, p)) = u, (5.20)

we may differentiate both sides of the equality with respect to u to obtain
that ∑

i

∂Φ

∂xi

∂xi

∂u
= 1. (5.21)

From our previous discussion, we know that

p = λ∗∇Φ(x∗). (5.22)

Substituting (5.22) into (5.19) and using (5.21) yields the conjectured result,
namely,

∂Q

∂u
= λ∗. (5.23)

Remark 5.8. An inspection of (5.17) and (5.16) shows that (5.23) holds for
the general Cobb-Douglas setting, as it should.

5.4.2 Sensitivity to Price: Shephard’s Lemma

Consider the sensitivity of minimal cost to price. Suppose the price of a unit
of capital changes from 4 to 4 + Δπ. By approximately how much will the
minimum cost change when Δπ is small? The answer is

∂Q(u, p)
∂pK

·Δπ,

and so we could directly differentiate the expression in (5.8). Before we un-
dertake that exercise, an examination of (5.8) shows that the elasticity of the
cost function with respect to the price of capital, namely

pK

Q(u, p)
∂Q

∂pK
, (5.24)

is 1/3, which immediately gives us the value of the partial derivative to be
3, since pK = 4 and Q(u, p) = 36. The number 3 just happens to coincide



78 5 Cost Function

with the optimum amount of capital, K∗. Once again, this is definitely not a
coincidence.

Since
∂Q(u, p)
∂pk

=
∑

i

pi
∂xi(u, p)
∂pk

+ xk(u, p), (5.25)

we may differentiate both sides of (5.20) this time with respect to pk to obtain
that ∑

i

∂Φ

∂xi

∂xi

∂pk
= 0. (5.26)

Substituting (5.22) into (5.25) and using (5.26) yields the conjectured result,
namely

∂Q

∂pk
= xk(u, p). (5.27)

This famous result is known as Shephard’s Lemma, and is one of the cor-
nerstone results in applied production analysis.

5.5 Nonparametric Estimation

5.5.1 Leontief Technologies

Consider first a simple Leontief technology. It is clear from Figure 4.1, p. 55,
that choosing x = ua will achieve minimum cost for any price vector since
there is no benefit to adding slack to the inputs. Thus,

Q(u, p) = u(p · a) = u Q(1, p). (5.28)

Consider next a general Leontief technology. For any choice of activity
intensities u = (u1, u2, . . . , uN) choosing x = Au will achieve minimum cost for
any price vector. (Once again, there is no benefit to adding slack to the inputs.)
The activity intensities, however, must satisfy the constraint

∑
k u

k = u.
Consequently, the problem of finding the minimum cost can be reformulated
as

min{p · (Au) :
∑

k

uk = u}. (5.29)

Let Qk(u, p) denote the cost function for the kth simple Leontief process. Since

pTA = (Q1(1, p), Q2(1, p), . . . , QN (1, p)), (5.30)

the minimum cost problem is equivalent to

min

{∑
k

Qk(1, p)uk :
∑

k

uk = u

}
, (5.31)

whose solution is easily seen to be
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Q(u, p) = u min
k
Qk(1, p). (5.32)

Equation (5.32) should not be surprising. Since the general Leontief technol-
ogy exhibits constant returns-to-scale, the cost at any positive level u is simply
u times the cost of achieving output rate one. Since the input possibility set
corresponding to output rate one is the convex, input free disposable hull
of the fixed coefficient vectors ak, the minimum cost to achieve output rate
one corresponds to the activity whose cost (at these prices) is minimum. (If
there are ties, then any weighted combination of such activities will achieve
minimum cost.) From a geometrical perspective, any line (hyperplane) that
supports a piecewise linear isoquant must contain one of the vertices that
define the isoquant.

5.5.2 HR Technology

The input possibility set LHR(u) is the smallest closed, convex, input free
disposable set containing those input vectors that achieve at least output rate
u. Consequently, the minimum cost of achieving output rate u corresponds to
the cost of the activity that achieves output rate u at minimum cost. (Once
again, if there are ties, then any weighted combination of such activities will
achieve minimum cost.)

5.5.3 CRS and V RS Technologies

The input possibility sets for each technology are each characterized by a set
of linear constraints; accordingly, it is possible to formulate a linear program
to obtain the minimum cost for a particular choice of u and p. Linear program-
ming is unnecessary in the scalar output case—the cost function for these two
technologies can be graphically computed.

To this end, we first define the concept of the output-cost set.

Definition 5.9. For each p ≥ 0 the output-cost set is

OCT (p) := {(u, p · x) : (x, u) ∈ T }. (5.33)

An output-cost set represents the collection of all output-cost pairs that are
technologically feasible when cost is measured at prices p. If T is a well-
behaved convex technology, then it is straightforward to show that each
output-cost set will be a convex subset of the output-cost (u, c)-space in IR2

+.
Moreover, each output-cost set will exhibit free disposability—in this con-
text, this means that if (u, c) ∈ OCT (p) and if c′ ≥ c and u′ ≤ u, then
(u′, c′) ∈ OCT (p), too.

With this definition in hand, let T CRS , OCCRS(p) and T V RS , OCV RS(p)
denote the technology and output-cost sets corresponding to the CRS and
V RS technologies, respectively. The output-cost sets corresponding to the
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Table 5.1. Input, output and cost data. Price of each input is 0.10.

Firm x1 x2 u p · x (p · x)/u

1 0.5 1.5 1.0 0.2 0.200
2 3.0 1.0 1.6 0.4 0.250
3 1.2 1.8 2.0 0.3 0.150
4 7.0 1.0 3.0 0.8 0.267
5 2.0 3.0 4.0 0.5 0.125
6 8.5 6.5 5.0 1.5 0.300
7 12.0 8.0 6.5 2.0 0.308
8 11.0 11.0 8.0 2.2 0.275

V RS and CRS technology sets are convex, since each of these technologies is
convex.

Example 5.10. Consider the data shown in Table 5.1. The price vector p =
(0.10, 0.10), and so the cost of each input vector is 10% of the sum of the
two inputs. The output-cost set for the V RS technology is depicted in Fig-
ure 5.2. The piecewise linear, convex “lower boundary” defines the Efficient
Frontier in the output-cost space. The output-cost set for the CRS technol-
ogy is depicted in Figure 5.3. Its Efficient Frontier is defined by the ray that
begins at the origin and passes through the point (4.0, 0.50), which has the
lowest cost-to-output ratio. The definitions of Q(u, p) and the output-cost set
OCT (p) imply that this Efficient Frontier is the graph of the cost function! For
example, consider the minimum cost to achieve output rate 3. Since the line
u = 3.0 intersects the output-cost set at the midpoint of the line segment join-
ing points (2.0, 0.3) and (4.0, 5), the minimum cost to achieve output rate 3.0
for the V RS technology is therefore 0.40. Since the boundary of the output-
cost set for the CRS technology is determined by the line c = 0.125u, the line
u = 3.0 intersects it at the point (3, 0.375). Consequently, the minimum cost
to achieve output rate 3.0 for the CRS technology is 0.375. As for the HR
technology, the minimum cost to achieve output rate 3.0 is 0.5.

5.6 Reconstructing the Technology

For a well-behaved technology, the hyperplane {z : p · z = Q(y, p)} supports
L(y) at a boundary point. Each point that lies on the boundary of L(y) nec-
essarily has a price vector p that supports it. These two statements together
imply that the cost function characterizes the boundary of each input possibil-
ity set. Since the boundary of each input possibility set is sufficient information
to generate the input possibility set itself, the cost function contains enough
information to reconstruct the underlying technology from which it is derived.
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Fig. 5.2. Output-cost set for the V RS technology for the data given in Table 5.1.
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Fig. 5.3. Output-cost set for the CRS technology for the data given in Table 5.1.

Let Q(y, p) denote a cost function derived from some well-behaved tech-
nology whose input possibility sets are given by L(y). Define

L∗(y) =
⋂
p≥0

{z : p · z ≥ Q(y, p)}. (5.34)

Theorem 5.11. L∗(y) = L(y).

Proof. First, it follows from (5.34) that L∗(y) is a closed, convex, input free
disposable set that contains L(y). To show the reverse inclusion, pick an x̄ /∈
L(y). The strict separation theorem (see Corollary C.11, p. 463) guarantees
existence of a price vector p̄ ≥ 0 for which
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p̄ · x̄ < α < p̄ · z for all z ∈ L(y),

which immediately implies that x̄ /∈ L∗(y). Thus, the claim is established. ��

The essence of (5.34) is that the cost function can be used to reconstruct each
input possibility set, the family of which defines the technology.

Here are two applications in the scalar output case.

5.6.1 Outer Approximation of Technology

Suppose input, output and price data

{(x1, u1, p1), (x2, u2, p2), . . . , (xN , uN , pN )}

are given for N firms. Under assumption of cost-minimization on the part of
each firm, we have that pi · xi = Q(ui, pi), from which it follows that

L(ui) ⊂ {z : pi · z ≥ pi · xi}.

Let J(u) := {i : ui ≤ u}. Define

LO(u) =
⋂

i ∈ J(u)

{z : pi · z ≥ pi · xi}.

Clearly, LO(u) is a closed, convex and input free disposable set. Moreover,

L(u) ⊂ LO(u)

due to the nestedness of the input possibility sets. In fact, LO(u) is the largest
closed, convex, input free disposable set containing L(u) consistent with the
data and the assumption of cost minimization. It is often referred to as an
outer approximation to the true input possibility set; the symbol ‘O’ here
refers to outer. Recall that the input possibility set of an HR technology is

LHR(u) = IFDH(Conv(X (u))),

where
X (u) = {xj}j ∈I(u) and I(u) = {i : ui ≥ u}.

LHR(u) is the smallest closed, convex, input free disposable set consistent with
the data, and represents an inner approximation to the true technology.
Thus,

LHR(u) ⊂ L(u) ⊂ LO(u).

See Figure 5.4.
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Fig. 5.4. L(u) represents the true input possibility set. Inner approximation given
by LHR(u). Outer approximation given by LO(u).

5.6.2 Cost and Production

Consider a given vector x0 > 0 and a target level of output u0. Can x0 achieve
u0, i.e., is x0 ∈ L(u0)? If the cost function and price vector p are known, we
know that p·x ≥ Q(u, p) for all x ∈ L(u). However, it is possible that x0 /∈ L(u)
but p ·x0 ≥ Q(u, p), so checking the value of cost of x0 at existing prices, p ·x0,
will not provide a definitive answer.

It certainly would be reasonable to hope that if x0 /∈ L(u), there is some
price system, p0, under which the cost of x0, p0 ·x0, would be strictly less than
the minimum cost of achieving u0 at p0, Q(u0, p0). (The converse is immedi-
ately true by definition of minimal cost.) For a well-behaved technology, the
hope is realized. If x0 /∈ L(u0), then the strict separation theorem (see Corol-
lary C.11, p. 463) guarantees existence of a hyperplane that strictly separates
x0 from L(u0); thus, a p exists for which

p · x0 < α < p · x for all x ∈ L(u). (5.35)

The coordinates of p must all be nonnegative since L(u) exhibits input free
disposability, and clearly α is positive. Thus, we have shown the existence of
a price vector p0 = p/α for which

Q(u0, p0) ≥ 1 and p0 · x0 < 1. (5.36)

To make matters concrete, assume L(u0) is approximated via the HR
technology, and let x1, x2, . . . , xN denote the observed input data (each of
which can be used to obtain at least u0). Let
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P := {p ≥ 0 : p · xi ≥ 1 for all i = 1, 2, . . . , N}. (5.37)

P is defined by a finite set of linear inequalities. Clearly, if Q(u0, p) ≥ 1, then
p ∈ P . Conversely, suppose p ∈ P . By definition of the HR technology, each
z ∈ L(u0) must be at least as large as some convex combination of the xi’s,
i.e.,

z ≥
∑

i

λixi for some λ ∈ IRN
+ . (5.38)

Since the cost of each xi at p is at least one, the cost of z,

p · z ≥ p ·
(∑

i

λixi

)
=
∑

i

λi(p · xi), (5.39)

must be at least one, too. We have just shown that p ∈ P if and only if
Q(u0, p) ≥ 1. Since we have previously argued that x0 /∈ L(u0) if and only if
there exist a p0 for which (5.36) holds, it follows that x0 /∈ L(u0) if and only
if the optimal value to the linear program

min{p · x0 : p ∈ P} (5.40)

is strictly less than one! We will return to this example when we discuss
distance functions.

5.7 Homothetic Technologies

The cost function Q(u, p) associated with a homothetic production function
(see Definition 2.28, p. 29) has an important structural property. It factors
as a product f(u)P (p), where f(·) is a transform and P (·) is homogeneous of
degree one. For a homothetic technology, if the prices remain constant, then
the economies of scale are determined by the transform f(·).

Proposition 5.12. If the production function Φ(·) is homothetic, then
Q(u, p) = f(u)P (p), where f(·) is a transform and P (·) is homogeneous of
degree one.

Proof. Let Φ(x) = F (φ(x)) be a homothetic production function. By defini-
tion of minimum cost and the fact that φ(·) is homogeneous of degree one,

Q(u, p) = min{p · x : F (φ(x)) ≥ u}
= min{p · x : φ(x) ≥ f(u)}

= f(u)
(

min
{
p ·
( x

f(u)

)
: φ
( x

f(u)

)
≥ 1
})

= f(u) min{p · z : φ(z) ≥ 1}
:= f(u)P (p).

Clearly, P (·) is homogeneous of degree one. ��
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Remark 5.13. P (p) is the minimal cost of achieving at least one unit of output
at prices p.

Remark 5.14. Proposition 5.12 shows that the factorability of the cost function
is a necessary condition for a homothetic technology. We shall subsequently
show this factorabilty condition is sufficient to imply the property of homo-
theticity. Thus, homotheticity is equivalent to the factorability of the cost
function.

5.8 Appendix

We prove that the cost function is well-defined. Pick a nonzero p ∈ IRn
+ and a

y ∈ IRm
+ such that L(y) is not empty. We begin by establishing the following

Lemma.

Lemma 5.15. L(y) = IFDH(cl(EF(y))).2

Proof. Pick an x ∈ L(y) and define

F := L(y) ∩ {z ∈ IRn
+ : z ≤ x}.

Let z∗ denote a point in F that minimizes the distance to the origin. Such
a point exists since L(y) is closed by Axiom A4 and hence F is compact.
The point z∗ belongs to the Efficient Frontier EF(y) of L(y); otherwise, it
would be possible to find a point in F closer to the origin. Obviously, x ≥ z∗
and x = z∗ + (x − z∗), which shows that L(y) ⊂ IFDH(cl(EF(y))). The
reverse inclusion IFDH(cl(EF(y))) ⊂ L(y) is an immediate consequence of
EF(y) ⊂ L(y), the closure of L(y), and Axiom A3, the input free disposability
of L(y). ��

Define the cost function as

Q(y, p) := inf{f(x) : x ∈ S},

where f(x) := p · x and S := L(y). The linear function f(·) is continuous.
If S were closed and bounded (and hence compact), then the infimum exists
can be replaced by a minimum. The input possibility set L(y) is closed by
Axiom A4, but clearly not bounded. The idea, however, is to show that it
is possible to restrict the domain of the minimization problem to a compact
subset S of L(y). When p > 0, this is easy: simply pick any z ∈ L(y) and take
S as L(y) ∩ T , where T := {x ∈ IRn

+ : f(x) ≤ f(z)}. (The set T is closed
and bounded since f(·) is continuous.) If any of the components of p are zero,
however, the set L(y) ∩ T will still be unbounded. This is where Axiom A5,

2 Recall that EF(y) is the Efficient Frontier of the input possibility set and that
IFDH(L) is the input free disposable hull of L. See Chapter 3.
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boundedness of the Efficient Frontier, comes to the rescue. Simply take S to
be cl(EF(y)), the closure of the efficient subset EF(y). Obviously, S will be
closed and bounded. To complete the proof, one must show that the minimum
cost defined over S is in fact the true minimum. But this follows immediately
from Lemma 5.15, since for the purpose of minimizing cost there is no need
to consider input vectors “larger” than those in cl(EF(y)). ��

5.9 Exercises

5.1. Consider the production function Φ(K,L) = K0.2L0.4. The price vector
p = (pK , pL) = (1, 2) and desired output rate is 8.

(a) Determine the minimal cost Q(u, p) and the cost minimum input vector.
(b)Determine ∂Q(u, p)/∂u and use it to estimate the increase in cost when

the desired output rate is increased to 8.08.
(c) Determine the elasticity of cost with respect to output.
(d)Determine the exact new minimum cost when desired output is increased

by 1%. Compute the percentage increase and compare with your answer
to part (c).

(e) Determine ∂Q(u, p)/∂pK (with the original numbers) and use it to esti-
mate the increase in cost when pK increases to 1.01. Compute the exact
minimum cost when pK increases to 1.01 and compare your answers.

5.2. For a Cobb-Douglas production function of two input factors, show how
to use (5.14) to easily solve for the minimum cost input vector without directly
using the first-order optimality conditions. Solve problem 5.1(a) using this
technique.

5.3. For the production function Φ(K,L,M) = K0.25L0.15M0.40 suppose it
is known that Q(u, p) = 200. How much of the 200 was spent on the input
factor M?

5.4. For cost-minimizing producers show that the elasticity of cost with re-
spect to the price of an input factor equals the cost share of that input factor.

5.5. Use the method of Lagrange multipliers to derive a closed-form expres-
sion for the cost function for the general CES production function Φ(x) =
[
∑

i αix
ρ
i ]

1/ρ.

5.6. Consider the production function Φ(K,L) = [16K1/3 +9L1/3]3. The cur-
rent input vector is x = (K,L) = (8, 27).

(a) What is the output rate?
(b)What is the rate of technical substitution?
(c) Suppose the labor input decreases by 1%. Explain how to use your answer

to (b) to estimate the capital input required to maintain the current output
level.



5.9 Exercises 87

(d) What is the factor price ratio pK/pL if x is a cost minimizer?
(e) Suppose as a result of a labor bargaining agreement the factor price ratio

declines by 2%. Use the elasticity of substitution to estimate the new cost-
minimizing input vector.

5.7. Consider the input-output data shown in Table 5.2.

Table 5.2. Input-output data for Exercise 5.7.

Firm x1 x2 u

1 2 4 2
2 4 2 3
3 6 6 5
4 8 6 6
5 6 8 7

(a) Suppose the price vector p = (2, 1) and desired output rate is 5. Determine
the minimal cost for the V RS and CRS technologies using the output-cost
set.

(b) Answer (a) when the price vector p = (1, 4).

5.8. Determine the minimal cost function for the technology characterized by
the production function Φ(x1, x2, x3) = x1/a1 + min(x2/a2, x3/a3).

5.9. This exercise generalizes the previous exercise. For this problem the input
vector x = (x1, x2, . . . , xM ) is separated into M subsets of inputs. (Each
component xk ∈ IRnk

+ and
∑M

k=1 n
k = n.) The technology is characterized

by an additively-separable form Φ(x) =
∑

k φ
k(xk). Each component function

φk(·) is a well-behaved production function in its own right. Moreover, each
φk(·) is homothetic, which means its minimal cost function can be represented
as

Qk(uk, pk) = min{pk · xk : φk(xk) ≥ uk} = fk(uk)P k(pk).

(a) Show that

Q(u, p) = min
{∑

k

fk(uk)P k(pk) :
∑

k

uk ≥ u
}
.

(b) Derive an exact expression for Q(u, p) when fk(uk) = uk for all k.
(c) Derive an exact expression for Q(u, p) when fk(uk) = (uk)β , β > 1 for all

k.
(d) Show how to compute Q(u, p) when fk(uk) = (uk)βk , βk > 1 for all k. (It

is not possible to obtain a general closed-form solution.)
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5.10. Determine the minimal cost function for the technology characterized
by the production function Φ(x1, x2, x3, x4) = max{b1x1 +b2x2, b3x3 +b4x4}.

5.11. Use the Envelope Theorem (see Appendix F) to prove (5.23) and Shep-
hard’s lemma.

5.12. Fix u > 0 and a strictly positive price vector p0 ∈ IRn
++. Let x0 be a

cost minimizing input vector for the Q(u, p0) problem. Assume that Q(u, ·) is
differentiable in p. Define ψ(p) := Q(u, p)− p · x0.

(a) Explain why ψ(p) ≤ 0 for all p ∈ IRn
+.

(b) Explain why ψ(p0) = 0.
(c) Use parts (a) and (b) to establish Shephard’s lemma.

5.13. The purpose of this problem is to provide a graphical proof in two
dimensions of the concavity of the cost function with respect to prices. To
simplify matters a bit, assume the well-behaved production function Φ(K,L)
is differentiable so that the isoquant is smooth. Pick pi ∈ IR2

++, i = 1, 2, and
assume that p1 and p2 are not proportional. For each λ ∈ [0, 1] define

pλ := λp1 + (1− λ)p2

Qλ := λQ(u, p1) + (1− λ)Q(u, p2)
Li := {z ∈ IR2

+ : pi · z = Q(u, pi)}, i = 1, 2,

Hi := {z ∈ IR2
+ : pi · z ≥ Q(u, pi)}, i = 1, 2,

Lλ := {z ∈ IR2
+ : pλ · z = Qλ}

Hλ := {z ∈ IR2
+ : pλ · z ≥ Qλ}.

(a) Let z12 be the point of intersection of the lines L1 and L2. Explain why
z12 /∈ L(u).

(b) Intuitively the slope of the line Lλ should be a convex combination of the
slopes of the lines L1 and L2 and should pass through the point z12. Verify
this algebraically.

(c) Provide a graphical illustration of why L(u) ⊂ H1 ∩H2 ⊂ Hλ.
(d)Using the fact that the hyperplane

{z ∈ IRn
+ : pλ · z = Q(u, pλ)}

supports L(u), show how parts (a)-(c) immediately implies (5.4), the con-
cavity of Q(u, ·).

(e) Illustrate this graphical proof of concavity with the following example:
Φ(K,L) =

√
KL, u = 2, p1 = (4, 1), p2 = (1, 4) and λ = 0.5.

5.14. Suppose the set L ⊂ IRn
+ is closed and exhibits input free disposability.

The set L, however, may not be convex. For p ∈ IRn
+ define

Q(p) := inf{ p · z : z ∈ L} (5.41)
Q∗(p) := inf{p · x : x ∈ L∗}. (5.42)
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and define

L∗ := {z ∈ IRn
+ : p · z ≥ Q(p) holds for all p ∈ IRn

+}. (5.43)

(a) Prove that Q∗(p) = Q(p).
(b) Give a concise proof in words why L∗ is closed, convex and exhibits input

free disposability.
(c) Prove that L∗ is the smallest closed, convex and input free disposable set

that contains L.
(d) Is the assumption of convexity for the input requirement sets L(u) unnec-

essarily restrictive for the economic analysis of cost (e.g., the sensitivity of
cost to output, prices, etc.)? What behavior on the part of producers must
be assumed? How much of the underlying technology can be recovered?
Briefly discuss.

5.15. Given a well-behaved production function, the cost function

Q(u, p) := min{p · x : Φ(x) ≥ u}

is concave in p for fixed u.

(a) Prove that for fixed p the cost function is convex in u when the production
function Φ(·) is concave.

(b) Give a concrete example of a production function for which the cost func-
tion is concave in u for fixed p.

5.10 Bibliographical Notes

Shephard [1970], Varian [1992], Jehle and Reny [2001], Mas-Colell et. al. [1995]
and Chambers [1988] provide extensive developments of the theory. Further
reading on duality theory can be found in Fuss and McFadden [1978], Diewert
[1982] and Fare [1988].
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5.11 Solutions to Exercises

5.1 (a) First-order optimality conditions give:

pK = λ0.2K−0.8L0.4,

pL = λ0.4K0.2L−0.6,

which implies that pK/pL = (0.2/0.4)(L/K) or that L∗ = K∗. Since the
desired output rate is 8, we must have L0.2L0.4 = 8, which gives L = 32 = K.
The minimum cost is therefore 1(32) + 2(32) = 96.
(b) Use the fact that ∂Q(u, p)/∂u = λ∗. For example,

1 = λ∗0.2(32−0.8320.4) = 0.05λ∗,

which gives λ∗ = 20. Since the change in output rate is +0.08 the minimum
cost is estimated to increase by (0.08)(20) = 1.6.

(c) The elasticity of cost with respect to output is u∂Q(u,p)/∂u
Q(u,p) = 8(20)/96

= 1.66̄.
(d) The first-order optimality conditions do not change, so once again L∗ =
K∗. Thus, L0.2L0.4 = 8.08, which gives L∗ = 32.535 = K∗ and a minimum
cost of 1(32.535)+2(32.535) = 97.605. Note that 100(97.605−96)/96 = 1.67%,
which is quite close to the answer for part (c), as expected.
(e) Using Shephard’s Lemma, we know that ∂Q(u, p)/∂pK = K∗ = 32.
Thus, the new cost should increase by approximately 32(0.01) = 0.32. To
compute the actual cost, since pL remains unchanged, the first-order opti-
mality conditions imply that L∗ = pKK

∗ = 1.01K∗. Thus, 1.010.4K0.6 = 8,
which gives K∗ = 31.7884 and L∗ = 32.1063. The minimum cost equals
1.01K∗+2(1.01K∗) = 3.03K∗ = 96.3189, which indeed represents an increase
of almost 0.32, as expected.

5.2 Using (5.14), αK = pKK
pKK+pLL , which in turns implies that

L =
pK(1 − αK)

αKpL
K.

Substituting this identity into u = Φ(K,L) yields

u = A
(pK(1− αK)

αKpL

)αL

KαK+αL

from which the value of K∗ and then L∗ can be determined. For problem
5.1(a), we have K/(K + 2L) = 1/3, which immediately gives K∗ = L∗.

5.3 Using (5.14), the cost share for factorM is 0.40/(0.25+0.15+0.40) = 0.50,
which means that 0.5(200) = 100 was spent on factor M .
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5.4 A direct result of Shephard’s Lemma:

pi∂Q(u, p)/∂pi

Q(u, p)
=

pix
∗
i

Q(u, p)
= Si.

5.5 To simplify the derivation, rewrite the minimal cost function as

Q(u, p) = min

{
q · y :

∑
i

yρ
i ≥ v

}
,

where yi := α
1/ρ
i xi, qi := pi/α

1/ρ
i and v := uρ. First-order optimality condi-

tions are
qi = (λρ)yρ−1

i , 1 ≤ i ≤ n. (5.44)

Multiply both sides of (5.44) by yi, sum over i, and use the fact that
∑

i

yρ
i = v (5.45)

to conclude that
Q(u, p) = (λρ)v. (5.46)

It remains to find the expression for (λρ). Use (5.44) to express

yρ
i = (λρ/qi)ρ/(1−ρ),

then use (5.45) to conclude that

v =

[∑
i

q
ρ/(ρ−1)
i

]
(λρ)ρ/(1−ρ).

Thus,

(λρ) = v(1−ρ)/ρ

[∑
i

q
ρ/(ρ−1)
i

](ρ−1)/ρ

and consequently

Q(u, p) = u

[∑
i

α1−r
i pr

i

]1/r

,

where r := ρ/(ρ− 1). Note how the cost function possesses the general CES
form, too.

5.6 (a) Φ(8, 27) = [16(8)1/3 + 9(27)1/3]3 = 593 = 205, 379.
(b) The rate of technical substitution equals

3[16K1/3 + 9L1/3](16/3)K−2/3

3[16K1/3 + 9L1/3](9/3)L−2/3
=

16
9
( L
K

)2/3 = 4.
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(c) If the labor input decreases by 1%, then it decreases by an absolute amount
of 0.27. We know that ΔL ≈ 4ΔK, which implies that ΔK ≈ (0.25)(0.27) =
0.0675. Thus, the capital input required to maintain the current input level
increase to approximately 8.0675. (The actual value is 8.0679.)
(d) The factor price ratio equals the rate of technical substitution, which is 4.

(e) Since pK/pL = (16/9)(L/K)2/3, the elasticity of substitution is the re-
ciprocal of 2/3 or 1.5. (See Remark 2.25, p. 28.) Thus, a 2% decline in the
factor price ratio results in a 3% decline in the labor-capital ratio. Hence,
L = (0.97)(27/8)K = 3.27375K. Substituting this identity into the produc-
tion function, we have 59 = 16K1/3 +9(3.27375K)1/3 = 29.36363K1/3, which
gives K = 8.11198 and L = 26.5566. (The actual values for K and L are
8.11141 and 26.55884, respectively.)

5.7 (a) For this price vector, the points in the V RS output-cost set that de-
fine its efficient frontier are {(0, 8), (2, 8), (3, 10), (7, 20)} (in order of increasing
output). The line u = 5 intersects this set at the midpoint of the line segment
joining points (3, 10) and (7, 20), and hence Q(5, p) = 15 for the V RS tech-
nology. The firm with the highest output per unit of cost is firm 5, and so
Q(5, p) = (5/7)(20) = 14.28 for the CRS technology.
(b) For this price vector, the points in the V RS output-cost set that define
its efficient frontier are {(0, 12), (3, 12), (6, 32), (7, 38)} (in order of increasing
output). The line u = 5 intersects this set two-thirds along the line segment
joining points (3, 12) and (6, 32). Hence, Q(5, p) = 12 + (2/3)(32− 12) = 25.3̄
for the V RS technology. The firm with the highest output per unit of cost is
firm 2, and so Q(5, p) = (5/3)(12) = 20 for the CRS technology.

5.8 By definition

Q(u, p) = min
{
p1x1 + p2x2 + p3x3 : x1/a1 + min(x2/a2, x3/a3) ≥ u

}
.

Let u1 := a1x1 and u2 := min(x2/a2, x3/a3). Given u1 and u2 such that
u1 + u2 ≥ u, the minimal cost is obtained when x1 = a1p1, x2 = a2p2 and
x3 = a3p3. Thus, the minimal cost optimization problem can be reformulated
as

Q(u, p) = min
{
(p1a1)u1 + (p2a2 + p3a3)u2 : u1 + u2 ≥ u

}
.

This problem is a simple linear program whose optimal value is given as

Q(u, p) = min
{
(p1a1), (p2a2 + p3a3)

}
.

(Only one of u1 or u2 needs to be positive—for an explanation see Remark
6.15, p. 107.)

5.9 (a) Let uk := φk(xk). Given the uk, the components of each xk should be
chosen to minimize their respective cost functions

Qk(uk, pk) = min{pk · xk : φk(xk) ≥ uk}.
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Thus, the minimum cost function problem can be reformulated using the uk

as decision variables, i.e.,

Q(u, p) = min

{∑
k

Qk(uk, pk) :
∑

k

uk ≥ u
}
.

The final form uses the fact that each cost function is homothetic.
(b) This is a simple linear program. The solution is to pick only one uk to
be positive. The index chosen coincides with the one whose P k(pk) is the
smallest, i.e.,

Q(u, p) = umin
k
{P k(pk)}.

(c) The optimization problem here is

Q(u, p) = min

{∑
k

P k(pk)(uk)β :
∑

k

uk ≥ u
}
.

Since β > 1, this problem is a well-behaved convex optimization problem. To
ease notational burdens, let γk := P k(pk) for each k. The first-order optimality
conditions are γkβ(uk)β−1 = λ, 1 ≤ k ≤M . Invert these equations to express
uk in terms of λ/β and γk, and then use the fact that

∑
k u

k = u to obtain
the final solution

uk =
γ

1/(1−β)
k∑

k γ
1/(1−β)
k

u.

Notice that since here β > 1, the convexity of the objective function ensures
that all uk will be positive in the optimal solution.
(d) Here, the first-order optimality conditions are γkβk(uk)βk−1 = λ, 1 ≤ k ≤
M . Inverting these equations yields

uk = uk(λ) := (λ/γkβk)1/(βk−1)

for each k. Since
∑

k u
k = u, we seek to find a value of λ for which ψ(λ) :=∑

k u
k(λ) = u. Since ψ(·) is increasing and continuous with ψ(0) = 0 and

ψ(λ) → ∞ as λ → ∞, there is a unique value of λ for which ψ(λ) = u. To
find this value of λ one may perform, for example, a simple bisection search:
essentially, if the current guess for λ is such that ψ(λ) < u, then increase the
lower bound for λ, or if the current guess for λ is such that ψ(λ) > u, then
decrease the upper bound for λ, and continue to move back-and-forth reducing
the interval of uncertainty until the desired level of precision is reached.

5.10 By definition

Q(u, p) = min
{
p1x1 + p2x2 + p3x3 + p4x4 :

max{b1x1 + b2x2, b3x3 + b4x4} ≥ u
}
.
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Let u1 = b1x1 + b2x2 and u2 = b3x3 + b4x4. Given u1 and u2 such that
max{u1, u2} ≥ u, the minimal cost is obtained by choosing values for the xi

to solve the two separable minimal cost problems

min{p1x1 + p2x2 : b1x1 + b2x2 ≥ u1}, min{p3x3 + p4x4 : b3x3 + b4x4 ≥ u2}.

Once again, these are simple linear programs whose optimal values are given
by Q12 := min(p1/b1, p2/b2) and Q34 := min(p3/b3, p4/b4), respectively. Thus,
the minimal cost problem can be reformulated now as

Q(u, p) = min
{
Q12u1 +Q34u2 : max(u1, u2) ≥ u

}
.

The solution here is obvious: set either u1 or u2 to u depending on which value
Q12 or Q34 is lower, i.e.,

Q(u, p) = umin{Q12, Q34} = umin{p1/b1, p2/b2, p3/b3, p4/b4}.

That is, only one of the xi should be chosen positive, and the index chosen
should correspond to the input with the lowest p/b ratio.

5.11 The Lagrangian for the minimum cost problem is

L(x, u, p) = p · x− λ{Φ(x)− u}.

The Envelope Theorem says that

∂Q

∂u
=
∂L(x∗, λ∗, u, p)

∂u
= λ∗i ,

∂Q

∂pi
=
∂L(x∗, λ∗, u, p)

∂pi
= x∗i .

5.12 (a) Since x∗ ∈ L(u) it will always be the case that p · x∗ ≥ Q(u, p) for
any price vector p.
(b) By definition of cost minimizer, p0 · x0 = Q(u, p0).
(c) Since p0 is a strictly positive solution to the optimization problem
max{ψ(p) : p ∈ IRn

+}, the gradient of ψ(·) at p0 must vanish, i.e., ∇ψ(p0) = 0,
which directly implies Shephard’s lemma.

5.13 (a) Since the production function is differentiable, (i) there is a unique
point at which each line Li is tangent to the isoquant of L(u), and (ii) these
tangent points must be different since the price vectors are not proportional.
Thus, the point z12 cannot be either of these tangent points. By definition of
tangency z12 cannot then belong to L(u).
(b) We have

λp1
K + (1− λ)p2

K

λp1
L + (1− λ)p2

L

=
λp1

K

λp1
L

λp1
L

λp1
L + (1− λ)p2

L

+
(1− λ)p2

K

(1− λ)p2
L

(1 − λ)p2
L

λp1
L + (1− λ)p2

L

= μ
p1

K

p1
L

+ (1 − μ)
p2

K

p2
L

,
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where μ ∈ [0, 1]. Furthermore,

pλ · z12 = λ(p1 · z12) + (1− λ)(p2 · z12) = λQ(u, p1) + (1− λ)Q(u, p2) = Qλ,

since z12 ∈ Li, i = 1, 2.
(c) The line Lλ passes through z12 and has slope that lies in between the
slopes of L1 and L2.
(d) Since z12 /∈ L(u), pλ · z12 = Qλ, and L(u) ⊂ H1 ∩H2 ⊂ Hλ, it must be
the case that the line Lλ must be moved “up” to make it tangent to L(u).
Thus, Q(u, pλ) > Qλ, which is precisely the definition of concavity.
(e) The rate of technical substitution is L/K for this production function.
Thus, when the price vector is p1, we must have that 4/1 = L/K or L = 4K,
which implies that

√
K(4K) = 2 or K∗

1 = 1 and L∗
1 = 4. By symmetry, when

the price vector is p2, K∗
2 = 4 and L∗

2 = 1. In each case the minimum cost is 8.
The lines are L = −4K+8 in the first case and L = −0.25K+2 in the second
case. The point of intersection is (1.6, 1.6). When λ = 0.5, the new price vector
is (2.5, 2.5) and the equation of the line Lλ is L = −K + 3.2. When the price
vector is pλ, due to symmetry the cost minimizing input vector is easily seen
to be (2, 2) and so Q(u, pλ) = 10. This is less than pλ · z12 = 8, as it should.

5.14 (a) Here Q(p) is the cost function with the value of output rate u being
suppressed. It follows by definition of Q(p) that L ⊂ {z : p ·z ≥ Q(p)} for any
p ∈ IRn

+. This fact immediately implies that L ⊂ L∗. Since the value of Q∗(p)
is obtained by minimizing “cost” on a larger set L∗ it then directly follows
that Q∗(p) ≤ Q(p). Conversely, if x ∈ L∗, then p · x ≥ Q(p) for each fixed p.
Hence, the infimum of all such p · x over p, which is Q∗(p), must be at least
as large as Q(p).
(b) L∗ is the intersection of closed halfspaces, each of which is closed, convex,
and exhibits input free disposability. Each of these three properties is closed
under arbitrary intersections.
(c) Let C be any closed, convex, and input free disposable set that contains
L. If x /∈ C, then by the separation theorem for convex sets, there exists a
p0 ∈ IRn and scalar α such that p0 ·x < α < p0 ·c for all c ∈ C. Since C exhibits
input free disposability, all of the coordinates of p0 must be nonnegative. Since
C contains L it follows from the definition of Q(p) that p0 · x < Q(p0). This
in turn implies that x /∈ L∗. Thus L∗ ⊂ C, which means that L∗ is indeed
the smallest set possessing the three properties that contains L. In shorthand,
L∗ = Conv(L)!
(d) Under reasonable assumptions, when producers are cost-minimizing, for
purposes of analysis one may just as well work with L∗, the convex hull of L,
as with L. That is, the intersection of all closed halfspaces that contain a set
L is the closed convex hull of L.

5.15 (a) Fix ui ≥ 0, i = 1, 2, and λ ∈ [0, 1]. By definition,

Q(λu1 + (1 − λ)u2, p) = min{p · x : Φ(x) ≥ λu1 + (1− λ)u2}.
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Let x∗i be a cost minimizing input vector associated with the Q(ui, p) problem,
and define x = λx∗1 + (1− λ)x∗2. Since Φ(·) is concave,

Φ(x) ≥ λΦ(x∗1) + (1− λ)Φ(x∗2) ≥ λu + (1− λ)u = u.

Thus, the vector x is feasible for the Q(λu1 + (1 − λ)u2, p) problem. In par-
ticular, this means that

Q(λu1 + (1− λ)u2, p) ≤ p · x
= λ(p · x∗1) + (1− λ)(p · x∗2)
= λQ(u1, p) + (1 − λ)Q(u2, p),

which establishes the convexity of Q(·, p).
(b) Consider Φ(x) = x2 (a one-factor technology). Here, the minimal cost
function is trivially p

√
u, which is obviously concave in u. Notice that the

concavity of the cost function in u here stems from the convexity or increasing
returns-to-scale of the underlying technology.



6

Indirect Production Function

We examine profit-maximizing producers faced with a budget constraint on
inputs. The indirect production function provides a dual representation of
technology, as it can be used to reconstruct the production function, and hence
the technology set. It is also possible, under appropriate conditions, to use
the indirect production function to immediately determine the cost function,
and vice-versa. While we couch the presentation in terms of production, the
development applies to the consumer setting in which output is interpreted as
consumer utility, and the consumer wishes to maximize his utility subject to
a budget constraint on expenditures. Throughout this chapter we make the
following assumption:

Assumption 1 The derived production function Φ(·) is continuous.

Remark 6.1. As a direct application of the Theorem of the Maximum (see
Appendix H), the production function will be continuous if the output corre-
spondence P (·) is continuous.

6.1 Definition

Definition 6.2. For a given price vector p ∈ IRn
+ and budget B ∈ IR+ the

budget set is
B(p,B) := {x ∈ IRn

+ : p · x ≤ B}.

Each input vector x that belongs to the budget set is budget feasible.

Definition 6.3. The indirect production function ΓΦ : IRn
++ × IR++ −→

IR+ is
ΓΦ(p,B) := max{Φ(x) : p · x ≤ B}.1

1 The budget set is compact when prices are positive, and hence an optimal solution
exists by Assumption 1.
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Keep in mind that the indirect production function is defined only for positive
prices and budget.

Since the budget set remains unchanged if all prices and budget are multi-
plied by a positive constant, it is possible to work with normalized prices,
namely p/B, and analyze the normalized indirect production function.

Definition 6.4. The normalized indirect production function ΓΦ :
IRn

++ −→ IR+ is
ΓΦ(p) := ΓΦ(p, 1).

We shall refer to a normalized indirect production function simply as an in-
direct production function. There will be no cause for confusion, since a nor-
malized indirect production function has only one argument. We shall also
drop the subscript Φ and write Γ (·) instead of ΓΦ(·).

Example 6.5. Indirect production function corresponding to the generalized
Cobb-Douglas production function. Let Φ(x) =

∏
i x

αi

i be a generalized Cobb-
Douglas production function with A = 1. In lieu of maximizing Φ(·) directly, it
will be easier to maximize the natural logarithm of Φ(·) and solve for ln (Γ (p)).
The first-order optimality conditions imply that

αi

xi
= λpi for each i, (6.1)

from which it directly follows that

Γ (p) = Φ(x) =
∏

i

( αi

λpi

)αi

.

Since Φ(·) is increasing, the budget constraint will be tight. Given (6.1), this
in turn implies that

1 = p · x =
∑

i

pixi =

(∑
i

αi

)
/λ; (6.2)

thus, λ =
∑

i αi. Consequently,

Γ (p) = a−a
∏

i

(αi

pi

)αi

and Γ (p,B) = BaΓ (p), where a :=
∑

i

αi. (6.3)

6.2 Properties

It follows from its definition that the indirect production function is non-
increasing in prices p and nondecreasing in budget B. As the next theorem
shows, Γ (·) is quasiconvex. A function f(·) is quasiconvex if f(λx+(1−λ)z) ≤
max{f(x), f(z)}. Equivalently, f is quasiconvex if each of its lower level sets
L≤

f (α) := {x : f(x) ≤ α} is convex.
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Proposition 6.6. Γ (·) is quasiconvex under Assumption 1.

Proof. Pick pi > 0, i = 1, 2, pick λ ∈ [0, 1], and let ui := Γ (pi). Without loss
of generality assume that u1 ≤ u2. We must show that Γ (λp1+(1−λ)p2) ≤ u2.
From its definition,

Γ (λp1 + (1− λ)p2) = max{Φ(x) : (λp1 + (1− λ)p2) · x ≤ 1 }. (6.4)

Pick a v larger than u2. If Φ(x) ≥ v, then pi · x > 1, i = 1, 2; otherwise,
Γ (pi) > v > ui, an obvious contradiction. Consequently, if Φ(x) ≥ v, then x is
not budget feasible in (6.4), which implies that Γ (λp1 + (1− λ)p2) < v. Since
v was chosen arbitrarily, the result follows. ��

Remark 6.7. The assumption of quasiconcavity of Φ(·) was not used in the
proof. The indirect production function will always be quasiconvex even if
Φ(·) is not quasiconcave.

Remark 6.8. An alternative proof of Proposition 6.6 uses separation theory,
as follows. Let S denote the intersection of all open halfspaces that contain
L≤

Γ (u). S is obviously convex and L≤
Γ (u) ⊆ S. It remains to establish the

reverse inclusion S ⊆ L≤
Γ (u). To this end, pick a q ≥ 0 such that q /∈ L≤

Γ (u).
By definition of Γ (·), there must exist an x for which q · x ≤ 1 and Φ(x) > u.
Consequently, L≤

Γ (u) is contained in the open halfspace {p > 0 : x · p > 1},
which obviously does not contain q. Thus, q /∈ S, as required. ��

6.3 Duality between the Cost
and Indirect Production Functions

Two additional assumptions will be used for the results of this section.

Assumption 2 The production function Φ(·) is increasing: if x ≥ y and
x �= y, then Φ(x) > Φ(y).

Assumption 3 The production function Φ(·) is strictly quasiconcave: Φ(λx+
(1− λ)z) > min{Φ(x), Φ(z)} for each x, z ∈ IRn

+ and λ ∈ (0, 1).

To solve for Γ (p), one can solve the first-order optimality conditions as we
did in Example 6.5. Under Assumptions 1 and 2, it turns out that knowledge
of the functional form for the cost function Q(u, p) will enable one to directly
solve for Γ (p) and vice-versa.

Proposition 6.9. Under Assumptions 1 and 2,

a) Q(Γ (p,B), p) = B.
b) Γ (p,Q(u, p)) = u.
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Proof. Part (a). Pick a price p > 0, a budget B > 0 and let v := Γ (p,B).
A solution to the producer’s optimization problem necessarily costs no more
than B and achieves at least output rate v. Clearly, then, Q(v, p) ≤ B. It
remains to rule out the possibility that Q(v, p) < B. Suppose, instead, there
exists a z for which p · z < B and Φ(z) ≥ v. Let λ := B/(p · z) and define
ẑ := λz. Clearly, p · ẑ = B, and so ẑ is budget feasible. Since λ > 1 and Φ(·)
is increasing, it follows that Φ(ẑ) > Φ(z) = v. Consequently, Γ (p,B) > v, an
obvious contradiction of the definition of v.

Part (b). Pick a p > 0, a u > 0 and let E := Q(u, p). A solution to the
cost minimization problem min{p · x : Φ(x) ≥ u} achieves output rate u
and costs E. Clearly, then, Γ (p,E) ≥ u. It remains to rule out the possibility
that Γ (p,E) > u. Suppose, instead, there exists a z for which p · z ≤ E and
Φ(z) > u. Since Φ(·) is continuous, it is possible to find a λ < 1 for which
Φ(λz) > u. Define ẑ = λz. We have that Φ(ẑ) > u and p · ẑ < E = Q(u, p),
an obvious contradiction of the definition of minimal cost. ��

Remark 6.10. Here is a geometrical interpretation why these identities hold.
When Φ(·) is continuous and increasing, the hyperplane {x ≥ 0 : p · x = B}
must support the input possibility set LΦ(Γ (p,B)). Our analysis of the cost
function showed that the hyperplane {x ≥ 0 : p·x = Q(u, p)} supports LΦ(u),
too. There is no “gap” between these hyperplanes because the isoquant is not
“thick.”

Example 6.11. Suppose Φ(·) is a general Cobb-Douglas form. The functional
form for Γ (p,B) was obtained in Example 6.5 using the first-order optimality
conditions. Determining Γ (p,B) is trivial with the use of the dual identities
of Proposition 6.9: merely substitute Γ (p,B) for u in the previously derived
cost function formula (5.17) and invert it to obtain

Γ (p,B) =
A∏

i(pi/αi)αi

[
B∑
i αi

]P
i αi

.

Compare with (6.3). If, on the other hand, a formula for Γ (p,B) had been
derived, then one may recover Q(u, p) by substituting it for B in this formula.

6.4 Reconstructing the Technology

For profit-maximizing producers faced with a budget constraint on inputs, it
turns out that knowledge of how their output choice varies with respect to
prices implicitly reveals the underlying technology, too.

Theorem 6.12. The following identity holds under Assumption 1:

Φ∗(x) := inf{Γ (p) : p · x ≤ 1} = Φ(x).2

2 Keep in mind that the minimization problem defined here is with respect to the
price vector p and not x.
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Proof. Pick an x ≥ 0. Since Γ (p) ≥ Φ(x) for each feasible p, the definition of
Φ∗(x) implies that Φ(x) ≤ Φ∗(x). It remains to show the reverse inequality
Φ(x) ≥ Φ∗(x). To this end, pick an arbitrary value of v larger than Φ(x).
Since x /∈ LΦ(v), a nonempty, closed and convex set, it is possible to strictly
separate x from LΦ(v). That is, there exists a q ≥ 0 and α ≥ 0 for which

q · z > α > q · x for all z ∈ LΦ(v). (6.5)

Since Φ(·) is nondecreasing, each component of q must be nonnegative. If need
be, it is possible to perturb q so that each of its components is positive and
(6.5) remains valid. Define p := q/α. Clearly, LΦ(v) ∩ {z ≥ 0 : p · z ≤ 1} is
empty, and so Γ (p) < v. Obviously p · x ≤ 1 and p is positive; consequently,
it follows that Φ∗(x) < v. As v was chosen arbitrarily, the result follows. ��

Proposition 6.6 establishes that each of the lower level sets of Γ (·) is con-
vex. Moreover, each lower level set exhibits input free disposability, and the
family of lower level sets defined by Γ (·) is nested in the obvious way. Direct
arguments or the Theorem of the Maximum (see Appendix H.1) can be used
to show that Γ (·) is continuous and hence each lower level set is closed. Con-
sequently, this family of lower level sets defines a well-behaved technology in
the price space. In this sense, the indirect production function is the dual to
the production function.

6.5 Revealed Preference

We now show how to directly apply Theorem 6.12 to the estimation of Φ(x)
for a given input vector x. Let

D =
{
(p1, B1, Γ (p1, B1)), (p2, B2, Γ (p2, B2)), . . . , (pN , BN , Γ (pN , BN))

}

denote observed data on N firms. Assume the observed prices and budgets
are all positive, and, without changing notation, assume prices have been
normalized by their respective budgets. Let I(x) := {i : pi · x ≤ 1}. As an
immediate consequence of Theorem 6.12,

Φ(x) ≤ min
i∈I(x)

Γ (pi) := Φa(x). (6.6)

Without additional data, one may approximate Φ(x) with Φa(x).
The economic argument for (6.6), often referred to as a Revealed Preference

argument, is this: if pi ·x ≤ 1, then x was budget feasible when the normalized
prices were pi. By the very definition of Γ (pi), it cannot be the case that
Φ(x) > Γ (pi), which leads directly to (6.6). As more data become revealed,
the estimate Φa(x) in (6.6) will converge to the true output value from above.
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6.6 Nonparametric Estimation

As in the previous section, let D denote the observed data set, and assume
the observed prices and budgets are all positive and that the prices have been
normalized by their respective budgets. Let ui := Γ (pi, Bi).

We begin with the HR technology (see p. 60).

Proposition 6.13. Let

u∗(p) := max{ui : p · xi ≤ 1}. (6.7)

If Φ(·) corresponds to the HR technology generated from D, then

ΓΦ(p) = u∗(p).

Proof. It is immediate from their definitions that ΓΦ(p) ≥ u∗(p). We must
show the reverse inequality ΓΦ(p) ≤ u∗(p). Pick a p > 0 and let u := ΓΦ(p).
By definition of the indirect production function,

LHR(u) ∩ {x : p · x ≤ 1} �= ∅. (6.8)

The input possibility set LHR(u) for the HR technology is the convex, input
free disposable hull of those xi for which ui ≥ u. Consequently, it follows from
(6.8) that there is some xi for which ui ≥ u and p · xi ≤ 1. This immediately
implies that u∗(p) ≥ u = ΓΦ(p), as required. ��

As we demonstrated with the cost function, it is possible to graphically
determine Γ (p) for the CRS and V RS nonparametric technologies. Recall the
definition (5.33) of the output-cost set OCT (p): it represents the collection of
all output-cost pairs that are technologically feasible when cost is measured
at prices p. It follows from the definition of the indirect production function
and the output-cost set that

ΓΦ(p) = max
{
u : (u, c) ∈ OCT (p) ∩ {(u, c) : c ≤ 1}

}
,

which is easily determined from the output-cost set.

Example 6.14. Recall Example 5.10 and the data given in Table 5.1. The
output-cost sets for the V RS and CRS technologies are depicted in Fig-
ures 5.2 and 5.3. As shown in Figure 6.1, the value for the indirect produc-
tion function for the V RS and CRS technologies are 5.18 and 8.00, respec-
tively. For the HR technology, the value for the indirect production function
is only 4.
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Fig. 6.1. Computation of the indirect production function from the output-cost set.

6.7 Exercises

6.1. Derive the indirect production function for the simple Leontief technology
Φ(x) = mini xi/ai where a is strictly positive.

6.2. Let x̄ ∈ IRn
++ and consider the Stone-Geary production function Φ(x) =∏n

i=1(xi − x̄i)βi defined on {x ∈ IRn
+ : x ≥ x̄}.

(a) Interpret x̄.
(b) Derive the indirect production function.
(c) What interpretation do the βi have?

6.3. Consider the CES production function Φ(x) = [
∑

i αix
ρ
i ]

1/ρ.

(a) Derive Γ (p,B) using the method of Lagrange multipliers.
(b) Derive the minimum cost function using the duality relationship between

it and the indirect production function.

6.4. Suppose Γ (p,B) = B/(p · a) where a is strictly positive.

(a) Derive the minimum cost function using the duality relationship between
it and the indirect production function.

(b) Derive the direct production function using the duality relationship be-
tween it and the indirect production function.

6.5. For the input-output data of Exercise 5.7 given in Table 5.2 on p. 87:

(a) Suppose the price vector p = (2, 1) and the budget B = 9. Determine
the maximal output for the HR, V RS and CRS technologies using the
output-cost set.

(b) Answer (a) when the price vector p = (1, 4) and B = 35.
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6.6. Assume Φ(·) is strictly quasiconcave, increasing, and differentiable. Let
x(p,B) denote the unique solution to the producer’s maximization problem
and assume the function x is differentiable. Prove Roy’s identity, which states
that

xi(p,B) = −
∂Γ
∂pi

∂Γ
∂B

.

6.7. The dual identities in Proposition 6.9 will hold for parametric models
of technology, since these forms are continuous. Provide an example of a
well-behaved two-input technology for which (i) Q(Γ (p,B), p) < B and (ii)
Γ (p,Q(u, p)) > u.

6.8. Let Φ : IRn → IR be finite-valued, upper semicontinuous and let C ⊂ IRn

be compact. Prove that the sup {Φ(x) : x ∈ C} is achieved.

6.9. Let A be an n ×m matrix, b ∈ IRm and let C := {x ∈ IRn : Ax ≤ b}.
If C is compact and Φ : C → IR is finite-valued, upper semicontinuous and
concave, prove that

ν(b) := max{Φ(x) : x ∈ C} (6.9)

is concave.

6.8 Bibliographical Notes

Shephard [1970], Varian [1992], Jehle and Reny [2001], Mas-Colell et. al. [1995]
and Chambers [1988] provide extensive developments of the theory.
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6.9 Solutions to Exercises

6.1 By definition
Γ (p) = max{Φ(x) : p · x ≤ 1}.

Let u = Γ (p). For the simple Leontief production function x = u · a will be
the most efficient way to achieve u. The budget constraint p · (ua) ≤ 1 implies
that u ≤ 1/(p · a). Thus, Γ (p) can be equivalently expressed as

max{u : u ≤ 1/(p · a)}.

This yields Γ (p) = 1/(p · a) and Γ (p,B) = B/(p · a).

6.2 (a) Each coordinate of x̄ represents a minimal amount of input necessary
for any output to emerge.
(b) By definition

Γ (p,B) = max
x≥x̄

{∏
i

(xi − x̄i)βi : p · x ≤ B
}

= max
y≥0

{∏
i

yβi

i : p · y ≤ B − p · x̄
}
,

where yi := xi− x̄i for each i. (If B is less than or equal to the cost of the min-
imum input vector x̄, then the output is, of course, zero.) This maximization
problem is identical to the one associated with a Cobb-Douglas production
function provided in Example 6.11, except that B is replaced with B − p · x̄,
which represents the discretionary budget.
(c) After netting out the cost of the minimum input vector x̄ from the budget
B, both the indirect production function and cost function here are identical
to the ones associated with the Cobb-Douglas production function. It follows
from the fundamental property (5.14), p. 75, that the βi represent that portion
of the discretionary budget devoted to the respective factor input.

6.3 (a) To simplify the derivation rewrite the indirect production function as

Γ (p,B) = Γ (p̂) =
[
max

{∑
i

yρ
i : q · y ≤ 1

}]1/ρ

,

where yi := α
1/ρ
i xi, qi := p̂i/α

1/ρ
i , and p̂ = p/B represents normalized prices.

First-order optimality conditions are

ρyρ−1
i = λqi, 1 ≤ i ≤ n. (6.10)

Multiply both sides of (6.10) by yi, sum over i, and use the fact that

q · y = 1 (6.11)
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to conclude that
Γ (p) = (λ/ρ)1/ρ. (6.12)

It remains to find the expression for (λ/ρ). Use (6.10) to express

yi = (λ/ρ)1/(ρ−1)q
1/(ρ−1)
i ,

then use (6.11) to conclude that

1 = q · y =
∑

i

qiyi =

[∑
i

q
ρ/(ρ−1)
i

]
(λ/ρ)1/(ρ−1).

Thus,

(λ/ρ) =

[∑
i

q
ρ/(ρ−1)
i

]1−ρ

and consequently

Γ (p,B) = B

[∑
i

α1−r
i pr

i

]−1/r

,

where r := ρ/(ρ − 1). Note how the cost function possesses the general CES
form, too.
(b) The duality relationship u = Γ (p,Q(u, p)) and the solution to part (a)
yields

Q(u, p) = u

[∑
i

α1−r
i pr

i

]1/r

.

This is identical to the solution obtained using the Lagrange multiplier method
of Exercise 5.5, p. 86.

6.4 (a) We have Γ (p,Q(u, p)) = u, which immediately yields Q(u, p) = u(p·a).
(b) The duality relationship implies that

Φ(x) = min{Γ (p) : p · x ≤ 1}

=
[
max{p · a : p · x ≤ 1}

]−1

=
[
max

{∑
i

qi;
∑

i

yiqi ≤ 1
}]−1

,

where qi = piai and yi = xi/ai for each i. Let i∗ be an index for which
yi∗ = mini yi. To achieve the maximum sum of the qi, it is best to simply set
qi∗ = 1/yi∗ and the rest of the qi equal to zero. This immediately implies that
Φ(x) = mini xi/ai, a simple Leontief production technology.
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Remark 6.15. The maximization problem is an example of a linear program.
Since there is only one constraint, only one variable can be positive. To see
this for this specific problem, consider the case when there are only two inputs,
and we seek to maximize q1+q2 subject to the constraint that y1q1+y2q2 ≤ 1.
The feasible region is the set of all points lying inside the triangle formed by
the intersection of the lines q1 ≥ 0, q2 ≥ 0 and q2 ≤ −(y1/y2)q1 + 1/y2.
The optimal solution (q∗1 , q

∗
2) lies on the line given by q2 = −q1 + Φ(x). To

solve this problem geometrically, draw a line in the (q1, q2) space with slope
equal to −1 and “push it” in the northeasterly direction until it is “tangent”
to the feasible region. The value of the intercept will be Φ(x). You will see
that as long as y �= 1, then the tangent point will coincide with one of the
two vertices (also known as extreme points of the feasible region) given by
(0, 1/y2) and (1/y1, 0). (If y = 1, then all points on the line segment joining
these two vertices will be optimal, but this does not negate the claim.) Now
suppose n > 2. If the claim were not true, then there must exist at least two
coordinates of q that are positive such that the corresponding y values do not
both equal one. By restricting attention to these two coordinates, you can use
the previous argument to show a contradiction.

6.5 We shall use the solution to Exercise 5.7, p. 92.
(a) With a budget of 9 the maximal output for the HR technology is 2.
For this price vector, the line c = 9 intersects the output-cost set for the
V RS technology at the midpoint of the line segment joining points (2, 8) and
(3, 10). Hence, the maximal output Γ (p, 9) = 2.5. The boundary of the output-
cost set for the CRS technology is determined by the line c = (20/7)u. The
intersection of this line with the line c = 9 occurs at ((9/20)7, 9) = (3.15, 9),
and so the maximal output Γ (p, 9) = 3.15.
(b) With a budget of 35 the maximal output for the HR technology is 6.
For this price vector, the line c = 35 intersects the output-cost set for the
V RS technology at the midpoint of the line segment joining points (6, 32)
and (7, 38). Hence, the maximal output Γ (p, 35) = 6.5. The boundary of the
output-cost set for the CRS technology is determined by the line c = (12/3)u.
The intersection of this line with the line c = 35 occurs at ((35/12)3, 35) =
(8.75, 35), and so the maximal output Γ (p, 9) = 8.75.

6.6 The Lagrangian for the producer’s maximization problem is

L(x, p,B) = Φ(x) − λ(p · x−B).

As a direct application of the Theorem of the Maximum F.2, p. 492,

∂Γ

∂pi
=
∂L(x∗, p, B)

∂pi
= −λxi(p,B),

∂Γ

∂B
=
∂L(x∗, p, B)

∂B
= λ.

Now use the fact that λ > 0 since Φ(·) is increasing.
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6.7 (a) Consider a two-input, single-output technology described by two input
possibility sets given by L(1) = IFDH((1, 1)) = (1, 1) + IR2

+ and L(2) =
IFDH((2, 2)) = (2, 2) + IR2

+. Set the price vector p = (1, 1) and a budget
B = 1.5. Here, Γ (p,B) = 1 but Q(1, p) = 1 < 1.5.
(b) Consider a two-input, single-output technology described by two input
possibility sets L(1) = IFDH(Conv{(1, 3), (3, 1)}) = Conv{(1, 3), (3, 1)}
+ IR2

+ and L(2) = IFDH((2, 2)) = (2, 2) + IR2
+. (The input possibility set

L(1) corresponds to the unit input possibility set associated with a general
Leontief technology with two “atoms” or intensity vectors given by a1 = (1, 3)
and a2 = (3, 1).) Set the price vector p = (1, 1) and an output rate u = 1.
Here, Q(1, p) = 4 but Γ (p, 4) = 2 > 1.

6.8 Let s = supx∈C Φ(x). We shall first show that s < ∞. If not, then it is
possible to find xn ∈ C such that Φ(xn) ≥ n for all n = 1, 2, . . .. Since the xn

belong to a compact set, it is possible to extract a convergent subsequence.
Without changing notation for the subsequence, we have xn → x. Pick a
positive real number u. Eventually Φ(xn) ≥ u, and since L≥

Φ (u) is closed, it
then follows that x ∈ L≥

Φ (u) or that Φ(x) ≥ u. As u was chosen arbitrarily,
this in turn implies that Φ(x) = ∞, contradicting the finiteness of Φ(·). By
definition of supremum and the fact that s <∞, there exist zn ∈ C such that
Φ(zn) ≥ s(1−1/n), n = 1, 2, . . .. Extract a convergent sequence and let z ∈ C
denote the limit point. Pick ε > 0. Eventually Φ(zn) ≥ s(1 − ε). Once again,
since L≥

Φ (u(1 − ε)) is closed, it follows that z ∈ L≥
Φ (u(1 − ε)), too, or that

Φ(z) ≥ u(1 − ε). As ε was chosen arbitrarily, it follows that Φ(z) ≥ u. This
implies that Φ(z) = u, and the claim has been established.

6.9 The previous exercise establishes that for each b there exists an x ∈ C such
that ν(b) = Φ(x) < ∞. Pick b1, b2, λ ∈ [0, 1] and pick xi, i = 1, 2, such that
Φ(xi) = ν(bi). Since Axi ≤ bi for each i, A(λx1 +(1−λ)x2) ≤ λb1 +(1−λ)b2.
Thus, λx1 +(1−λ)x2 is feasible for the problem defined by ν(λb1 +(1−λ)b2).
Given this and the concavity of Φ(·),

ν(λb1 + (1− λ)b2) ≥ Φ(λx1 + (1− λ)x2)
≥ λΦ(x1) + (1− λ)Φ(x2)
= ν(b1) + ν(b2).

This establishes the concavity of ν(·), as required.
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Distance Functions

A distance function is a remarkably simple yet powerful concept. This func-
tion underpins nonparametric efficiency analysis, and is also the basis for a
nonparametric approach for assessing productivity that we will discuss in Part
III. The distance and cost function are linked via two, symmetric identities;
knowledge of one function is sufficient to determine the other one.

7.1 Definition

7.1.1 Input Distance Function

Let R(x) := {sx : s ≥ 0} denote the ray emanating from the origin and
passing through the point x ∈ IRk

+.

Definition 7.1. The input distance function D : IRn
+ × IRm

+ → IR+ asso-
ciated with a technology set T is

D(x, y) :=

{+∞ if y = 0,
max{s : x/s ∈ L(y)} if R(x) ∩ L(y) �= ∅ and y �= 0,
0 if R(x) ∩ L(y) = ∅.

(7.1)

For notational convenience, we suppress the functional dependence of D(·, ·)
on the technology set T . The input distance function measures how much
x has to be scaled down (or up) to place it on the boundary of the input
possibility set L(y).1 This interpretation only makes sense when the ray R(x)
actually intersects L(y).2 The distance is set to zero when the ray does not
intersect L(y). The distance is set to +∞ when y = 0 since L(0) = IRn

+.

1 A point lies on the boundary of a set if each neighborhood intersects the set and
its complement.

2 The maximum is achieved since L(y) is closed.
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Example 7.2. In Figure 7.1, the distance D(x1, u) = 1.25 and the distance
D(x2, u) = 0.75. For the point x3 = (1, 0) (not shown) the distance would be
D(x3, u) = 0.
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Fig. 7.1. Calculation of the input distance.

Keep in mind the definition of distance applies to the multi-output set-
ting. Since the vector y merely identifies the input possibility set, we shall
sometimes drop the symbol “y” and simply write D(x).

The input distance function completely characterizes the technology. First,
it directly follows from its definition that

L(y) = {x : D(x, y) ≥ 1}.3 (7.2)

Next, it characterizes the boundary of each L(y) since the boundary is {x :
D(x, y) = 1}. Finally, x0 /∈ L(y0) if and only if D(x0, y0) < 1.

7.1.2 Output Distance Function

Definition 7.3. The output distance function O : IRn
+ × IRm

+ → IR+

associated with a technology set T is
3 In terms of the input distance function, P (x) = {y : D(x, y) ≥ 1} and T =
{(x, y) : D(x, y) ≥ 1}.
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O(x, y) :=

{+∞ if x = 0,
min{s : y/s ∈ P (x)} if R(y) ∩ P (x) �= {0} and x �= 0,
0 if P (x) = {0}.

(7.3)

For notational convenience, we suppress the functional dependence of O(·, ·)
on the technology set T . The output distance function measures how much
y has to be scaled down (or up) to place it on the boundary of the output
possibility set P (x). This interpretation only makes sense when the ray R(y)
non-trivially intersects P (x).4 The distance is set to zero when R(y)∩P (x) =
{0}. The distance is set to +∞ when x = 0 since P (0) = IRm

+ .

Remark 7.4. In the single-output setting, the scaled output u/O(x, u) repre-
sents the maximum output the input vector x can achieve.

The output distance function completely characterizes the technology.
First, it follows from its definition that

P (x) = {y : O(x, y) ≤ 1}.5 (7.4)

Next, it characterizes the boundary of each P (x) since the boundary is {y :
O(x, y) = 1}. Finally, y0 /∈ P (x0) if and only if O(x0, y0) > 1.

Example 7.5. Figure 7.2 graphically portrays the calculation of the output
distance for the two-output case. Since y1 /∈ P (x), the output distance
O(x, y1) > 1, whereas the output distance O(x, y2) < 1 since y2 ∈ P (x).
Notice how the boundary of the output possibility set P (x), namely, its Effi-
cient Frontier, is defined by a concave function.

7.2 Properties

Proposition 7.6. The input distance function satisfies the following proper-
ties:

a) Linearly homogeneous in x.
b) Nondecreasing in x.
c) Super-additive in x: D(x1 + x2) ≥ D(x1) +D(x2).
d) Concave in x.
e) Continuous in x.

4 The minimum is achieved since P (x) is closed.
5 In terms of the output distance function, L(y) = {x : O(x, y) ≤ 1} and T =
{(x, y) : O(x, y) ≤ 1}.
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Fig. 7.2. Calculation of the output distance.

Proof. Parts (a) and (b) are immediate consequences of the definition. As for
part (c), if either D(x1) or D(x2) = 0, then super-additivity follows from part
(b). Suppose then that both D(x1) and D(x2) are positive. L(1) is convex,
and so

z :=
D(x1)

D(x1) +D(x2)
x1

D(x1)
+

D(x2)
D(x1) +D(x2)

x2

D(x2)
∈ L(1).

Thus,

1 ≤ D(z) = D
( x1 + x2

D(x1) +D(x2)

)
,

and the result now follows from part (a). Part (d) is a direct consequence of
parts (a) and (c). Part (e) is proved in the Appendix to this Chapter. ��

Proposition 7.7. The output distance function satisfies the following prop-
erties.

a) Linearly homogeneous in y.
b) Nondecreasing in y.
c) Sub-additive in y: O(y1 + y2) ≤ O(y1) +O(y2).
d) Convex in y.
e) Continuous in y.

The proof mirrors the proof of Proposition 7.6 and is omitted.

7.3 Efficiency and Cost

Distance functions are intimately associated with the most common measures
of efficiency. Suppose a firm uses input vector x0 to produce output rate u0. In
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Chapter 2, we discussed how the production function can be used to measure
radial input efficiency as

θ∗ := min{θ : Φ(θx0) ≥ u0},

which can be equivalently expressed as

θ∗ := min{θ : D(θx0, u0) ≥ 1}.

Since D(·, u0) is linearly homogenous, it immediately follows that

θ∗ = min{θ : D(x0, u0) ≥ 1/θ} = min{θ : θ ≥ D(x0, u0)−1} = D(x0, u0)−1.

Consequently, D(x0, u0) is the reciprocal of the radial input efficiency for an
x0 ∈ L(u0).

Radial input efficiency can be measured when there are multiple outputs.
That is, it is possible to define RI(x, y) := min{θ : θx ∈ L(y)}. It only makes
sense to define radial input efficiency when the ray R(x) ∩ L(u) �= ∅. By
the same reasoning as above, RI(x, y) = D(x, y)−1. Analogously, the obvious
definition of radial output efficiency is given by the output distance.

Remark 7.8. Keep in mind the input distance can be less than one and the
output distance can be greater than one. While the reciprocal of the input
or output distance in this case can not be interpreted as an input or output
efficiency, we shall use these distance functions in Chapter 14 to assess a firm’s
input or output productivity change over time.

Remark 7.9. We have shown that the distance function coincides with the
radial input efficiency measure. Continuity of the distance function ensures
that efficiency measurement will not exhibit “jumps,” which would be most
undesirable!

The distance function is also intimately related to the cost function. At
the end of Chapter 5, we showed how the cost function could be applied to
the question of how to determine whether x0 /∈ L(u0). Suppose each input
vector xi ∈ IRn

+, i = 1, 2, . . . , N , produces at least output rate u0. Assuming
the HR technology, and that x0 > 0, the optimal value of the linear program

μ∗(x0) := min{p · x0 : p · xi ≥ 1 for all i, p ≥ 0} (7.5)

was shown to be less than one if and only if x0 /∈ L(u0). Using the concept of
the distance function, we know that x0 /∈ L(u0) if and only if D(x0, u0) < 1.
Since both μ∗(·) and D(·, u0) are linearly homogeneous, it follows that μ∗ =
D(x0, u0). Indeed, the dual linear program to (7.5) is6

6 Given a primal linear program expressed as min{c · x : Ax ≥ b, x ≥ 0}, its dual
linear program is max{b · y : yT A ≤ cT , y ≥ 0} Linear programming duality
states that if both of these two linear programs are feasible, then they both have
optimal solutions and their optimal values coincide.
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μ∗(x0) = max

{∑
i

μi :
∑

i

μixi ≤ x0, μi ≥ 0 for all i

}
. (7.6)

Let θ := (
∑

i μi)−1 and let λi = μi/
∑

i μi for each i.7 Since

∑
i

( μi∑
i μi

)
xi ≤

( 1∑
i μi

)
x0,

it follows that

μ∗(x0) =

[
min{θ :

∑
i

λixi ≤ θx0,
∑

i

λi = 1, λi ≥ 0 for all i}
]−1

= [min{θ : θx0 ∈ L(u0)}]−1

= [min{θ : D(θx0, u0) ≥ 1}]−1

= [min{θ : D(x0, u0) ≥ 1/θ}]−1

= D(x0, u0).

We see that the cost and distance function perspectives generate two dual
linear programs to answer the same question. There is a deeper connection
between the cost and distance functions, to which we now turn.

7.4 Reconstructing the Input Distance Function
from the Cost Function

Since both D(x, y) and Q(y, p) characterize the boundary of L(y), perhaps
it should not be too surprising that these functions are closely related. (The
previous section already demonstrated a connection via the dual linear pro-
grams.) As R.W. Shephard originally demonstrated, the distance and cost
functions determine each other through the following symmetric identities:

Q(y, p) = min
x≥0
{p · x : D(x, y) ≥ 1} (7.7)

D(x, y) = inf
p≥0
{p · x : Q(y, p) ≥ 1}. (7.8)

The first identity is a direct consequence of the definitions of the distance
and cost functions. It is the second identity, first proposed and proved by
Shephard, that requires proof.

Here is Shephard’s interpretation of the symmetric identities. Let

LQ(y) := {p : Q(y, p) ≥ 1},

and let FQ denote the family of upper level sets

7 The sum of the μi will not be zero since x0 > 0.
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FQ :=
{
LQ(y), y ≥ 0

}
.

Shephard showed that for each y the function Q(y, ·) has the same proper-
ties (linearly homogeneous, nondecreasing, concave, and continuous) as the
distance function. Interpreting Q(y, p) as a distance function, FQ is a well-
behaved technology in the price space. Naturally, the technology FQ will have
its own cost function. Interpreting the symbol x as a price vector for the price
space, Shephard’s duality theorem states that the distance function for the
original technology T (in the input space) is the cost function for the tech-
nology FQ (in the price space). Most important, knowledge of either T or FQ

is sufficient to specify both technologies. Technology FQ in the price space is
referred to as the dual technology. Under suitable conditions, therefore, the
“dual technology of the dual technology is the original or primal technology.”

Shephard’s dual identity (7.8) is largely a consequence of the geometry
of closed, convex and input free disposable subsets of IRn

+. In fact, the dual
identity will be an immediate consequence of two Propositions whose geometry
we motivate below.8

Let L denote a closed, convex, and input free disposable subset of IRn
+. We

begin by examining the nature of supporting hyperplanes to points that lie
on the boundary of L.

Proposition 7.10. Let x be a point on the boundary of L. For every δ > 0,
there exists a pδ ∈ IRn

+ for which (i) L ⊂ H≥(pδ, 1) and (ii) pδ · x < 1 + δ.

Here is a geometrical interpretation. The well-known supporting hyperplane
theorem guarantees that each point x on the boundary of L has a supporting
hyperplane H(p,Q). The input free disposability of L implies that both p and
Q are nonnegative. Now suppose Q is positive and let p̂ := p/Q. It readily
follows that L ⊂ H≥(p̂, 1) and p̂ · x = 1.9 Hence,

inf
{p≥0: L⊂H≥(p,1)}

p · x = 1, (7.9)

since p · x ≥ 1 whenever L ⊂ H≥(p, 1).
The assumption that Q > 0 is equivalent to assuming that the hyperplane

H(p,Q) separates L from the origin. It is, however, possible that a point x on
the boundary of L has no supporting hyperplane that separates L from the
origin.

Example 7.11. Take L to be the smallest closed, convex, and input free dis-
posable set containing the points xn := (1 − 1/n, 1/2n), n = 2, 3, . . ., i.e.,
L := IFDH({xn}). Since L is closed the limit point (1, 0) lies in L. The only
support for (1, 0) is of the form ((0, p2), 0).

Note that the vector x in Example 7.11 has at least one zero component; that
is, the index set I(x) := {i : xi = 0} is nonempty. Further, for each ε > 0 and
8 The proofs are somewhat technical—see the Appendix to this Chapter.
9 Recall that H≥(p,α) := {z : p · z ≥ α}—see Definition C.3, p. 462.
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e := (ε, ε, . . . , ε) ∈ IRn, the point (x+ e) lies in the interior of L. The distance
function ensures that a positive constant c exists for which c(x + e) lies on
the boundary of L. Since c(x + e) is a strictly positive vector, a supporting
hyperplane of L at c(x + e) is of the form H(p, 1). If ε is sufficiently small,
then p · x ≈ 1. Proposition 7.10 shows that even if x cannot be supported
directly with a hyperplane that separates L from the origin, the identity (7.9)
is still true.

We now turn our attention to those points x for which the ray R(x) does
not intersect L.

Proposition 7.12. If R(x) ∩ L is empty, then

inf
{p≥0: L⊂H≥(p,1)}

p · x = 0. (7.10)

A geometrical interpretation to Proposition 7.12 is provided by the following
two examples.

Example 7.13. Consider the point x = (0, 1) ∈ IR2 and suppose that L =
(1, 1) + IR2

+. Identity (7.10) holds since p = (1, 0) is feasible and obviously
p · x = 0.

Example 7.14. Consider the point x = (0, 1) ∈ IR2 and suppose that L corre-
sponds to an input possibility set of the Cobb-Douglas technology Φ(K,L) =√
KL. If L ⊂ H≥(p, 1), then both prices pK and pL must be positive and so

p · x �= 0. (If, for example, pL = 0, then L ⊂ H≥(p, 1) implies that K ≥ 1/pK

for all (K,L) ∈ L, which clearly does not hold.) However, there do exist hy-
perplanes H(pn, 1) for which L ⊂ H≥(pn, 1) and pn · x → 0, which is what
the Proposition guarantees.

Let D∗(x, y) denote the value obtained on the right-hand side of (7.8).

Theorem 7.15. Shephard’s Duality D∗(x, y) = D(x, y).

Proof. Fix x ∈ IRn
+ and y ∈ IRm

+ , y �= 0. The identity follows immediately
from Propositions (7.10) and (7.12), since

(i) Q(y, p) ≥ 1 if and only if L(y) ⊂ H≥(p, 1), and
(ii) if R(x) ∩ L(y) �= ∅, then x/D(x, y) lies on the boundary of L(y). ��

Remark 7.16. Identity (7.9) establishes Shephard’s dual identity (7.8) when
the input vector x > 0 and R(x) ∩ L(y) �= ∅, since in this case x/D(x, y) will
belong to the boundary of L(y). A supporting hyperplane of L(y) at x/D(x, y)
necessarily has a positive Q value.
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7.5 Application to Homothetic Technologies

It turns out that whenever the cost (or distance) function factors, that is, it is
multiplicatively separable as defined in Remark 5.6, p. 74, then the production
function must be homothetic. Thus, the property of factorability is equivalent
to the property of homotheticity. We now establish this important fact using
Shephard’s duality theorem.

We begin by assuming the cost function Q(u, p) can be represented as
f(u)P (p). (Keep in mind u ∈ IR+.) Here, the function f(·) is the inverse
of a transform F (·) with its assumed properties, i.e., f(·) = F−1(·). Using
Shephard’s dual identity (7.8) and the factorability of the cost function, the
distance function factors, too, as shown by the following chain of equalities:

D(x, u) = inf{p · x : P (p)f(u) ≥ 1}

=
(

1
f(u)

)
inf
{

(f(u)p) · x : P (f(u)p) ≥ 1
}

=
(

1
f(u)

)
inf{p̂ · x : P (p̂) ≥ 1}

=
f(1)
f(u)

D(x, 1). (7.11)

Now using (7.11) and the relationship between D(·, ·) and Φ(·), the following
identities are established:

Φ(x) = max{u : D(x, u) ≥ 1}
= max{u : f(1)D(x, 1) ≥ f(u)}
= max{u : F (f(1)D(x, 1)) ≥ u}
= F (f(1)D(x, 1))
= F (φ(x)).

Conversely, if the production function is homothetic, then the cost function
must factor; we leave the proof of this fact as an exercise.

As a direct consequence of (7.11),

L(u) = {x : D(x, u) ≥ 1}

=
f(u)
f(1)

{
f(1)
f(u)

x : D
(
f(1)
f(u)

x, 1
)
≥ 1
}

=
f(u)
f(1)

L(1).

This shows that the scaling properties are independent of x, which we have
previously established for homothetic technologies.
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7.6 Appendix

Proof of continuity of the distance function

We begin by establishing the following lemma.

Lemma 7.17. Let x ∈ IRn
+ be non-zero. For each positive integer m define

ym ∈ IRn
+ by ym

i = xi + 1/m for each i. For each positive integer m and each
i define zm ∈ IRn

+ by zm
i = xi − 1/m if xi > 0 or zm

i = 0 if xi = 0.10

a) If D(x) = 0, then D(ym)→ 0.
b) If D(x) > 0, then for each α > 0 eventually D(ym) < D(x)(1 + α).
c) If D(x) > 0, then for each α > 0 eventually D(zm) > D(x)(1 − α).

Proof. Let m∗ denote the first integer m for which zm is nonnegative. It is
understood below that only those zm’s for which m ≥ m∗ will be considered.

Part (a). If the claim is false, then a positive ε and a subsequence {ymk}
exists for which D(ynk) ≥ ε. Since ynk ≤ y1 for each k and D is nondecreas-
ing, {D(ynk)} ⊂ [ε,D(y1)], a compact set. Thus, it is possible to extract a
convergent subsequence D(ynk) → ρ. (We will not change notation for the
subsequence.) Obviously, ρ is positive. We then have

ynk

D(ynk)
→ x/ρ. (7.12)

Since each ynk/D(ynk) ∈ L(y) and L(y) is closed, x/ρ ∈ L(y), which immedi-
ately implies that D(x) is positive, a contradiction.

Part (b). By similar reasoning as in the proof of part (a), if the claim is
false, it will be possible to extract a convergent subsequence {ynk} for which
(7.12) holds with ρ ≥ D(x)(1+α). Since x/ρ ∈ L(y) it follows that ρ ≥ D(x),
a contradiction.

Part (c). The definition of D(·) ensures that D(zm∗
) is positive. The proof

now mirrors the proof of part (b). ��

Now on to the proof of continuity.

Proof. We need to show for each ε > 0 there exists a δ > 0 for which

|D(h)−D(x)| < ε whenever ||h− x|| < δ. (7.13)

When D(x) = 0, (7.13) follows from Lemma 7.17(a) and the fact that ||yn −
x|| = 1/n.

Now suppose D(x) > 0. Fix ε > 0. Set α = ε/D(x). From Lemma 7.17(b,
c), we know we can find an m large enough, say M , for which D(x)(1− α) <
D(zM ) and D(yM ) < D(x)(1 + α). If ||h − x|| ≤ 1/M , then zM ≤ h ≤ yM ,
from which it follows that D(zM ) ≤ D(h) ≤ D(yM ). Thus, |D(h) − D(x)| <
αD(x) = ε whenever ||h − x|| ≤ 1/M , and so the result follows by setting
δ = 1/M . ��
10 We suppress the functional dependence of the ym and the zm on x.
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Remark 7.18. We showed that D(·, u) is concave. It is well known that a con-
cave function is continuous on the interior of its domain. Here, we established
D(·, u) is continuous on all of IRn

+ (minus the origin). Note the proof of con-
tinuity did not use the convexity of the input possibility set.

Remark 7.19. We established continuity of D(·, y) when y is fixed. It would
be desirable to ensure that D(·, ·) is jointly continuous in both y and x. To
make this notion precise requires a definition of how one measures the degree
of closeness of one technology to another. (Recall that a technology can be
represented as a family of sets.) Formally, one needs to impose a suitable
topology on a suitable space of sets. Under a few reasonable assumptions,
D(x, y) will be jointly continuous under the topology of closed convergence.

Proof of Proposition 7.10

For each x ∈ IRn
+ let I(x) := {i : xi = 0}.

Proof. Fix y ∈ IRm
+ , y �= 0. Since D(·) is continuous, for each γ > 0 an ε > 0

exists for which
x̂ :=

x+ e

D(x + e)
∈ Bγ(x),

the open ball of radius γ about x. As x̂ is strictly positive a pε ∈ IRn
+ exists

for which 0 < pε · x̂ = 1. We have

1 =
∑

i

pε
i · x̂i ≥

∑
i/∈I(x)

pε
i · x̂i ≥

∑
i/∈I(x)

pε
i ·

mini/∈I(x) xi + ε

D(x+ e)
. (7.14)

Let

f(x, ε) :=
D(x+ e)

mini/∈I(x) xi + ε
.

It follows from (7.14) that

pε · (x− x̂) ≤
∑

i/∈I(x)

pε
i(xi − x̂i) ≤ f(x, ε)γ . (7.15)

Since ε → 0 as γ → 0, a sufficiently small positive ε(δ) exists for which
pε(δ) · x < 1 + δ, as required. ��

Proof of Proposition 7.12

Proof. Define pn ∈ IRn
+ by setting pn

i = n if i ∈ I(x) or by setting pn
i =

(
∑

i/∈I(x) xi)−1 otherwise. Note that pn · x = 1 for each n. Since pn is strictly
positive a zn exists for which (pn, pn · zn) supports L at zn.

We claim that pn · zn → ∞. If this were not the case, then zn
i → 0 if

i ∈ I(x). Moreover, {
∑

i/∈I(x) z
n
i } would be bounded. This in turn implies
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that the sequence of zn’s is bounded, and therefore possesses a convergent
subsequence. Let ẑ denote a limit point. Since L is closed, ẑ ∈ L. In addition,
ẑi = 0 if i ∈ I(x). Thus, for s sufficiently large, sx ≥ ẑ, which would imply
that R(x) ∩ L is nonempty, a contradiction.

Now set p̂n := pn/(pn ·zn), and observe that L ⊂ H≥(p̂n, 1) and p̂n ·z → 0,
as required. ��

7.7 Exercises

7.1. Consider the input-output data set depicted in Figure 4.4 on p. 61. Let
x = (1, 3).

(a) Determine DHR(x, 20) for the HR technology.
(b)Determine DCRS(x, 20) for the CRS model of technology.
(c) Determine DV RS(x, 20) for the V RS model of technology.
(d)What is the relationship between the answers in (a)-(c)? Explain why this

is so.

7.2. Explicitly define the pn described in Example 7.14.

7.3. Show that if the production function Φ(·) is homothetic, then the cost
function factors.

7.4. Suppose the cost function is Q(u, p) = u(a1p1 + a2p2 +A
√
p1p2).

(a) Use Shephard’s duality theorem to show that Φ(x) = D(x, 1).
(b)Use Shephard’s duality theorem to obtain a closed-form solution for
D(x, 1).

7.5. The input distance function D(·, u) is concave in x for each fixed u. Either
prove that the input distance function is jointly concave in both x and u or
provide a concrete counter-example.

7.8 Bibliographical Notes

Shephard’s [1970] monograph contains a full chapter on the distance function.
The proof of the general duality between the distance and the cost function
is based on Hackman [1986].
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7.9 Solutions to Exercises

7.1 (a) By definition x/DHR(x, 20) lies on the boundary of the input pos-
sibility set LHR(20), which is depicted in Figure 4.5, p. 62. The point x
lies on the line L = 3K. This line intersects the line L = −(1/3)K + 19/3
joining points (1, 6) and (4, 5). The point of intersection is (1.9, 5.7). Thus
DHR(x, 20) = 1/1.9 = 0.526.
(b) By definition x/DCRS(x, 20) lies on the boundary of the input possibility
set LCRS(20), which is depicted in Figure 4.7, p. 64. As described in Example
4.18, p. 64, LCRS(20) is the convex, input free disposable hull of the points
x̂1, . . . , x̂6. The point x lies on the line L = 3K. This line intersects the line
L = −(5/11)K + 50/11 joining points x̂3 = (5/6, 25/6) and x̂6 = (8/3, 10/3).
The point of intersection is (25/19, 75/19). Thus DCRS(x, 20) = 1/(25/19) =
0.76.
(c) By definition x/DV RS(x, 20) lies on the boundary of the input possibility
set LV RS(20), which is depicted in Figure 4.8, p. 65. As described in Example
4.19, p. 64, LV RS(20) is the convex, input free disposable hull of the points
x5, x6 and the points in G(20). The point x lies on the line L = 3K. This
line intersects the line L = −(43/19)K + 157/19 joining points x5 = (1, 6)
and x̂20

3,6 = (37/18, 65/18). The point of intersection is (1.57, 4.71). Thus
DV RS(x, 20) = 1/(1.57) = 0.637.
(d) We have DCRS(x, 20) ≤ DV RS(x, 20) ≤ DHR(x, 20). This must be the
case, as LHR(20) ⊂ LV RS(20) ⊂ LCRS(20).

7.2 We wish to find pn such that (i) L ⊂ H≥(pn, 1) and (ii) pn · x → 0 as
n→∞. To meet the first requirement both prices must be positive. To meet
the second requirement pn

L → 0 as n→∞. Since the first coordinate of x is 0,
the value of pn

K is irrelevant, which gives a degree of freedom. Since the price
of labor here will be low, the amount of labor purchased will be high. Accord-
ingly, pick xn = (1/n, n) as the cost-minimum input vectors corresponding to
the (as-yet chosen) pn. The rate of technical substitution is −ΦK/ΦL = L/K
for this technology, and it coincides with the ratio of the prices pn

K/p
n
L at the

cost minimum input vector. Thus, the choice pn = (n/2, 1/(2n)) for the price
vector will do the job. (The constant of 1/2 normalizes the price vector so
that the minimum cost equals one.)

7.3 Let Φ(x) = F (φ(x)) where F (·) is a transform and φ(·) is homogeneous
of degree one. Let f(·) = F−1(·). We have

Q(u, p) = min{p · x : F (φ(x)) ≥ u}
= min{p · x : φ(x) ≥ f(u)}

= min
{
p · x : φ

(
x

f(u)

)
≥ 1
}

= f(u)min{p · y : φ(y) ≥ 1}
:= f(u)P (p).
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7.4 The structure of the cost function implies that Φ(x) = 0 if any coordinate
of x is zero. (If not, it would be possible to find a price vector p such that
p · x = 0, which would imply that Q(u, p) = 0 for a positive u.) Assume then
that x is strictly positive. (a) By definition of the input distance function

Φ(x) = max{u : D(x, u) ≥ 1}.

By Shephard’s duality theorem,

D(x, u) = inf{p · x : Q(u, p) ≥ 1}
= inf{p · x : u(a1p1 + a2p2 + A

√
p1p2) ≥ 1}

= (1/u) inf{p · x : a1p1 + a2p2 +A
√
p1p2 ≥ 1}

= (1/u)D(x, 1).

Thus,

Φ(x) = max{u : D(x, u) ≥ 1} = max{u : D(x, 1) ≥ u} = D(x, 1).

Remark 7.20. The cost function factors as f(u)P (p) and so the technology is
homothetic. Here, the function f(u) = u. For general homothetic technologies,
we established on p. 117 that Φ(x) = F (f(1)D(x, 1)), which equals D(x, 1)
for this particular f(·).

(b) We have

D(x, 1) = inf{p · x : a1p1 + a2p2 +A
√
p1p2 ≥ 1}.

First-order optimality conditions imply that x1 = λ(a1 +A
√
p1/p2) and x2 =

λ(a2 +A
√
p2/p1). This in turn implies that x1(a2 +A/θ) = x2(a1 +Aθ) where

θ :=
√
p1/p2. It then follows that

0 = (Ax2)θ2 + (a1x2 − a2x1)θ −Ax1,

from which we may conclude that

θ = θ(x1, x2) =
(a1x2 − a2x1) +

√
(a1x2 − a2x1)2 + 4A2x1x2

2Ax2
.

Since p1 = p2θ
2 and a1p1 + a2p2 + A

√
p1p2 = 1, we have that (a1θ

2 + a2 +
Aθ)p2 = 1 or

p2 = p2(θ) =
1

(a1θ2 + a2 +Aθ)
, p1 = p1(θ) =

θ2

(a1θ2 + a2 +Aθ)
.

Finally, we have

Φ(x) = D(x, 1) = p1x1 + p2x2 = p1(θ(x1, x2))x1 + p2(θ(x1, x2))x2.
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7.5 Consider the technology described by the following production function:

Φ(x) =

{
x, 0 ≤ x < 2,

x+ 1, 2 ≤ x <∞.

The definition of input distance implies thatD(1, 1) = D(3, 4) = 1. Let λ = 0.6
and consider the point in the (x, u) space given by 0.6(1, 1) + 0.4(3, 4) =
(1.8, 2.2). To achieve output rate 2.2, it is necessary to achieve at least 3 with
a minimal input of 2. Thus, D(1.8, 2.2) = 0.9 (since 1.8/0.9 = 2). We have
provided an example in which

D(λx1 + (1− λ)x2, λu1 + (1− λ)u2) < λD(x1, u1) + (1− λ)D(x2, u2),

which obviously contradicts the defining property of concavity.
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Nonconvex Models of Technology

As we have seen in earlier chapters, convexity is essential to the microeconomic
theory of production. From a modeling perspective, convexity ensures that a
particular kind of mixing of feasible actions is still feasible, which is often a rea-
sonable assumption. Generally, convexity (in some form) is assumed to exploit
its convenient (e.g. separation) properties. There have been efforts to gener-
alize the concept of convexity, i.e., convex sets and quasiconcave/quasiconvex
functions. These efforts can be categorized into two approaches. The first ap-
proach allows a separation of a point to the set by something other than a
hyperplane. The second approach allows two points in the set to be connected
by a more general path than a line segment or, from a modeling perspective,
to allow a more general kind of mixing of feasible actions.

The first three sections of this chapter describe explicit examples of non-
convex models that arise in resource allocation, producer budgeting and Data
Envelopment Analysis. The final section discusses a generalization of con-
vexity, called projective-convexity, that encompasses the nonconvex models
described herein and shares the benefits of both approaches to generalize con-
vexity described above.

8.1 Resource Allocation

Consider the question of how to represent and measure technology of a sector
(such as agriculture) when output is produced by more than one technique. To
simplify the analysis, we consider only two techniques, whose technologies are
modeled by production functions f1(K1, L1) and f2(K2, L2) with capital (K)
and labor (L) as the factors of production. Both production functions are
nondecreasing, continuous and quasiconcave. We assume that simultaneous
production by both techniques is possible.
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8.1.1 Aggregate Production Function

A producer must decide how to allocate aggregate capital, K, and aggregate
labor, L, to respective techniques to maximize overall output, which we denote
by Φ(K,L). The aggregate production function Φ(·) is obtained as the
value of the following allocation optimization problem:

Φ(K,L) := max{f1(K1, L1) + f2(K2, L2) : K1 +K2 ≤ K, L1 + L2 ≤ L}.
(8.1)

It is understood in (8.1) that the decision variables must be nonnegative.

Proposition 8.1. If f1(·) and f2(·) exhibit constant returns-to-scale, then
the aggregate production function Φ(·) defined in (8.1) is quasiconcave.

Proof. Clearly, Φ(·) exhibits constant returns-to-scale, too, and so its technol-
ogy is completely characterized by the unit input possibility set L≥

Φ (1). We
shall show this set is convex by establishing that

L≥
Φ (1) = Conv

(
L≥

f1
(1) ∪ L≥

f2
(1)
)
. (8.2)

To this end, pick (K̂i, L̂i) ∈ L≥
fi

(1), i = 1, 2, λ ∈ [0, 1] and let

(K,L) = λ(K̂1, L̂1) + (1 − λ)(K̂2, L̂2).

The allocations K̂1, K̂2, L̂1, L̂2 are obviously feasible for (8.1) for this given
choice of (K,L). Consequently,

Φ(K,L) ≥ f1(λ(K̂1, L̂1)) + f2((1 − λ)(K̂2, L̂2))
= λf1(K̂1, L̂1) + (1− λ)f2(K̂2, L̂2)
≥ λ+ (1− λ) = 1.

The second line above follows since each fi(·) is linearly homogeneous. Since
(K,L) ∈ L≥

Φ (1), we have shown that

Conv
(
L≥

f1
(1) ∪ L≥

f2
(1)
)
⊂ L≥

Φ (1). (8.3)

To show the reverse inclusion

L≥
Φ (1) ⊂ Conv

(
L≥

f1
(1) ∪ L≥

f2
(1)
)
, (8.4)

pick a (K,L) for which Φ(K,L) = 1, and let K1,K2, L1, L2 denote a feasible
set of allocations such that

Φ(K,L) = f1(K1, L1) + f2(K2, L2).

Let ui = fi(Ki, Li). First assume both ui are positive. Let (K̂i, L̂i) =
(Ki, Li)/ui, i = 1, 2. Clearly, (K,L) =

∑
i ui(K̂i, L̂i). Since ui ∈ (0, 1],

u1 + u2 = 1 and (K̂i, L̂i) ∈ L≥
fi

(1), it follows that
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(K,L) ∈ Conv
(
L≥

f1
(1) ∪ L≥

f2
(1)
)
. (8.5)

If either of the ui is zero, then (8.5) follows immediately. We have therefore
shown that the isoquant of L≥

Φ (1) is contained within Conv(L≥
f1

(1)∪L≥
f2

(1)).
The reverse inclusion (8.4) now follows, since Φ(·) is homogeneous of degree
one. ��

There is another common setting in which Φ(·) is guaranteed to be quasi-
concave. When both production functions f1(·), f2(·) are concave, then it is
easy to establish that Φ(·) is concave, too, since the constraint set is linear. Is
Φ(·) always quasiconcave? The answer is no, as the following counter-example
demonstrates.

8.1.2 Counter-Example to Quasiconcavity

We examine the following concrete example in which f1(K1, L1) =
√
K1L1

and f2(K2, L2) = K2

√
L2. Both production functions are Cobb-Douglas, ex-

hibit increasing returns-to-scale and are symmetric in that their marginal
returns on capital and labor are reversed but otherwise equal.

Fix (K,L) and let (Ki, Li), i = 1, 2, denote optimal allocations to (8.1).
Since the marginal return on capital is infinite for the first production function
when K1 = 0, and the marginal return on labor is infinite for the second
production function when L2 = 0, it would appear, at first blush, that it
would always be optimal to allocate at least some positive amounts of capital
and labor to both techniques. In fact, this intuition is false: it will always be
the case that only one of the two techniques will be employed; that is, either
(K1, L1) = (0, 0) or (K2, L2) = (0, 0). This will in turn imply that the input
possibility sets of Φ(·) are not convex, and hence Φ(·) is not quasiconcave.

Suppose instead that all optimal allocations are positive. (It would never
pay to allocate a positive amount of one input and a zero amount of the
other input to a technique.) Let μK and μL denote the Lagrange multipliers
for the capital and labor constraints, respectively. The first-order optimality
conditions are

L1

2
√
K1

= μK =
√
L2,

√
K1 = μL =

K2

2
√
L2

,

which imply that K2 = L1.
We shall first examine the case when K ≥ L (the analysis of the reverse

inequality is symmetric). The allocation problem (8.1) reduces to the following
one-dimensional optimization problem

max
0<L1≤L

√
K − L1 L1 + L1

√
L− L1. (8.6)
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Let L1 := αL and K := α0L. Note that α ∈ [0, 1] and α0 ≥ 1. Expressed in
terms of α, the maximization problem in (8.6) becomes

M := L3/2 max
0<α≤1

ξ(α) (8.7)

where
ξ(α) := α

(√
α0 − α+

√
1− α

)
.

Let g(x) :=
√
x. Since g(·) is strictly concave,

√
x < (1 + x)/2, x �= 1.1 (8.8)

Since α is constrained to be positive, we may apply (8.8) to ξ(α) to establish
that

q(α) :=
[
α(

3 + α0

2
− α)

]
> ξ(α).

The quadratic form q(·) is concave and achieves its unconstrained maximum
at α∗ := (3 + α0)/4. The value for α∗ is at least as large as 1 since α0 ≥ 1.
The function q(·) is an increasing function on [0, α∗], and so the constrained
maximum of q on [0, 1] is achieved at 1. As a direct consequence,

M < L3/2q(1) = L3/2 1 + α0

2
≤ α0L

3/2 = K
√
L.

The valueK
√
L is obtained by allocating all resources to the second technique,

which cannot be larger than M . Our original supposition, namely that all
allocations were positive, must be false. We conclude, therefore, that when
K ≥ L the optimal allocation of aggregate resources will be to allocate all
resources to the second technique.

When L ≥ K, one defines α and α0 as K1 = αK and α0 = L/K, and
the arguments above (with K3/2 replacing L3/2) show that when L ≥ K, the
optimal allocation of aggregate resources will be to allocate all resources to
the first technique.

In sum, we have shown that Φ(K,L) = f2(K,L) when K ≥ L and
Φ(K,L) = f1(K,L) when K ≤ L. In particular,

Φ(K,L) = max{f1(K,L), f2(K,L)}.

In terms of the unit input possibility sets,

LΦ(1) =
⋃
i

Lfi(1).

It is the union of two convex sets, which is definitely not convex (for these
particular convex sets).
1 Strict concavity implies that g(x) < g(1) + g′(1)(x − 1) holds for all x �= 1.

Geometrically, the line y(x) := (1 + x)/2 is tangent to the hypograph of g(·) at
the point (1, 1).
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8.2 Producer Budgeting

8.2.1 Multi-Dimensional Indirect Production Function

Suppose the set of inputs I naturally partition into m subsets I1, . . . , Im.
The set Ii could represent inputs (i) available in the ith period, (ii) whose
availability is contingent on the ith state of the world, or (iii) with related
physical characteristics.

Let x = (x1, . . . , xm) ∈
∏m

i=1 IRni
+ denote the vector of quantities of inputs

consumed in each category, let pi ∈ IRni
++ denote the vector of (positive)

prices of the inputs in set Ci, and let bi denote the allocation of the overall
budget B =

∑
i bi to the ith category. The production function Φ(·) is assumed

continuous.

Definition 8.2. The multi-dimensional indirect production function
Γ :
∏m

i=1(Xi × IR)→ IR is

Γ ((p1, b1), . . . , (pm, bm)) := max{Φ(x) : pi · xi ≤ bi, i = 1, 2, . . . ,m}.

As we did with the indirect production function, the price vectors, p1, . . . , pm

can be normalized by their respective budget allocations, b1, . . . , bm, and we
write Γ (p1, . . . , pm) in lieu of Γ ((p1/b1, 1), . . . , (pm/bm, 1)).

The budget allocations bi, i = 1, 2, . . . ,m, are optimal when

Γ ((p1, b1), . . . , (pm, bm)) = ΓΦ((p1, . . . , pm), B).

Viewed as a function of prices, the indirect production function ΓΦ((p1, . . . ,
pm), B) is always quasiconvex. If, however, the budget allocations are not opti-
mal, then nonconvexities may arise, as we now demonstrate with the following
counter-example.

8.2.2 Counter-Example to Quasiconvexity

Let Φ : IR2
+ → IR be a restricted Cobb-Douglas function given by

Φ(x1, x2) =
√
g(x1)x2 (8.9)

where g(x) = min(x, 1). It follows that

Γ (p1, p2) = max{
√
g(x1)x2 : p1x1 ≤ 1, p2x2 ≤ 1}.

In this simple setting, it is straightforward to show that

Γ (p1, p2) =
√
g(1/p1) · 1/p2 =

{
1/p1p2 if p1 ≥ 1,

1/p2 if p1 < 1.

Consider the lower level set L≤
Γ (1). It is the union of the convex set {(p1, p2) :

p1p2 ≥ 1}, which is identical to a Cobb-Douglas unit input possibility set,
with the convex set {(p1, p2) : p2 ≥ 1}. This union is most definitely not
convex. Consequently, Γ (p1, p2) is not quasiconvex.
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8.3 Data Envelopment Analysis with Lower Bounds

8.3.1 Fixed-Charge Technology

Given a set of observed data

D = {(x1, y1), (x2, y2), . . . , (xN , yN)}

on N Decision-Making Units (DMUs), the constant returns-to-scale (CRS)
DEA model of technology is

TCRS = {(x, y) : x ≥
∑

j

λjxj , y ≤
∑

j

λjyj for some λ ≥ 0}. (8.10)

Conceptually, TCRS is the smallest convex, free disposable, constant return-
to-scale technology that contains the data set D.

Let
Rj := {(x, y) = λj(xj , yj) for some λj ≥ 0}

denote the ray emanating from the origin that passes through the observed
data point (xj , yj). Let FDH(S) denote the free disposable hull of the set S
(see Definition 3.19, p. 42). The next proposition follows directly from (8.10).

Proposition 8.3. TCRS = FDH(
∑

j Rj).

Proposition (8.3) shows that points in the CRS technology are generated by
all points obtained as a sum of operations, each of whom represents a scaled
version of an observed operation.

The accuracy of an efficiency rating and its acceptance by management
is critically dependent on how well the constructed efficiency frontier corre-
sponds to the true efficiency frontier. In the application of efficiency analysis
to the warehouse and distribution industry (see Chapter 12), quite often a
scaled component warehouse in the composite warehouse was smaller than
any actual warehouse in the data set. For this industry, using such low inten-
sities in the construction of a composite DMU is certainly not realistic from
either an economic or modeling perspective. Equally as important, managers
often question the meaning of convex combinations that involve what they
perceive to be irrelevant DMUs.

Points in the Fixed-Charge DEA model of technology are also generated by
all points obtained as a sum of operations; however, each operation represents
an appropriately scaled version of an observed operation. That is, the FC
technology eliminates all points in Rj whose λj is positive but too small. Let

Λj(�j) := {0} ∪ [�j,∞)

and let
Tj(�j) := {(x, y) = λj(xj , yj), λj ∈ Λj(�j)}.
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Definition 8.4. The Fixed-Charge DEA model of technology (FC
technology) is

TFC := FDH

⎛
⎝∑

j

Tj(�j)

⎞
⎠ ,

where �j ∈ [0, 1], 1 ≤ j ≤ N .2

The FC technology is algebraically equivalent to

TFC = {(x, y) : x ≥
∑

j

λjxj , y ≤
∑

j

λjyj for some λ ∈
∏
j

Λj(�j)}. (8.11)

We insist that �j ≤ 1 to ensure that the fixed-charge technology TFC contains
the observed data.

The FC technology is so named because it requires the addition of a fixed-
charge integer constraint to the usual linear program. The FC technology
focuses on lower bounds for two reasons. First, scaling upwards can often be
justifiable using the replication argument, and so it is less egregious. Second,
upper bounds are unnecessary for the V RS models. For certain applications,
most notably in which resources are easily scalable (e.g. labor), adding lower
bound restrictions is unnecessary. For other applications, most notably those
that involve capital investments that only make sense above a minimum level,
adding lower bound restrictions is a simple way to avoid unreasonable com-
posites.

We illustrate the technology construction and inherent nonconvexities of
the FC technology with the following example.

Example 8.5. Table 8.1 lists the input and output of three DMUs: DMU1,
DMU2 and the reference DMU0. Figure 8.1 depicts LFC(20) when the lower
bounds are set to 0.00, 0.25, 0.33, 0.60, and 0.75, respectively. (For simplicity
the lower bounds are identical for each DMU.)

Table 8.1. Data for geometrical constructions.

DMU Input 1 Input 2 Output

DMU0 3 2.5 20
DMU1 2 3 40
DMU2 3 1 30

The graphs demonstrate the nonconvexity of the input possibility set—
the left-most and right-most portions of a line segment joining two boundary
2 It is understood that the definition of the FC technology depends on the partic-

ular choice for the �j .
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Fig. 8.1. LF C(20) for different lower bounds.

points will no longer belong to the input possibility set, the degree of which
depends entirely on the size of the lower bounds. The input possibility sets
LFC(20) move to the upper right as the lower bounds increase until � = 1.00.

8.3.2 Nonconvex Geometry of the Fixed-Charge Technology

We restrict attention to the case of two inputs and scalar output, so that we
may show how the input possibility sets in Figure 8.1 are obtained.

The input possibility set LFC(y) is defined as

LFC(y) :=

⎧⎨
⎩x : x ≥

∑
j

λjxj , y ≤
∑

j

λjyj , for some λ ∈
∏
j

Λj

⎫⎬
⎭ .

For each nonempty subset K ⊂ N define the level-subset LFC
K (y) as
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LFC
K (y) :=

⎧⎨
⎩x : x ≥

∑
j∈K

λjxj , y ≤
∑
j∈K

λjyj , λj ≥ �j, for each j ∈ K

⎫⎬
⎭ .

(8.12)
To show how to geometrically construct LFC(y), it is sufficient to show how
to geometrically construct each LFC

K (y), since

LFC(y) =
⋃

K⊂N

LFC
K (y).

Define

x̂K(�) :=
∑
j∈K

�jxj , ŷK(�) :=
∑
j∈K

�jyj , x̃ := x− x̂K(�), λ̂j := λj − �j .

The level-subset LFC
K (y) is equivalent to:

LFC
K (y) = x̂K(�)+{x̃ : x̃ ≥

∑
j∈K

λjxj , y− ŷK(l) ≤
∑
j∈K

λjyj , λj ≥ 0}. (8.13)

The set defined in brackets in (8.13) is precisely the definition of the input
possibility set corresponding to output level y− ŷK(�) of the CRS technology
restricted to those firms in the data setK. We shall denote this set as LCRS

K (y−
ŷK(�)), and it is understood that this set coincides with IRm

+ when y ≤ ŷK(�).
Thus,

LFC
K (y) = x̂K(�) + LCRS

K (y − ŷK(�)). (8.14)

Table 8.2 summarizes the essential data required to graphically depict the
input possibility sets. Recall that to construct LCRS

K (u) for any output u > 0,
one calculates the generator points x∗j = (u/yj)xj , for j ∈ K, forms their
convex hull, and extends it by adding the nonnegative orthant to each x∗j .
Here, the generator points are simply

s∗j (y) =

{
x̂K(�) , y ≤ ŷK(�),

x̂K(�) + y−ŷK(�)
yj

xj , y > ŷK(�).
(8.15)

8.3.3 The Low Intensity Phenomenon

We explain why the “low intensity” phenomenon occurs in the CRS technol-
ogy. We first establish a property of partial efficiency scores .

Let θ∗k(Si, Nj) denote the optimum solution of the familiar linear program
to determine radial input efficiency:

P (Si, Nj) : min
{
θk :

∑
s∈Nj

λsxs ≤ θkxk,
∑

s∈Nj

λsys� ≥ yk�, � ∈ Si

}
, (8.16)

except that here the output set is restricted to a subset Si and the set of
DMUs is restricted to a subset Nj . Let S and N denote, respectively, the sets
of all outputs and DMUs.
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Table 8.2. Construction of LF C(20) for different lower bound values.

� = 0.25

i Subset K x̂K(�) ŷK(l) x∗(�, K) s∗i
x̂1 x̂2 x∗

1 x∗
2 s∗i1 s∗i2

(1) {DMU1} 0.50 0.75 10.00 0.50 0.75 1.00 1.50
(2) {DMU2} 0.75 0.25 7.50 1.25 0.42 2.00 0.67
(3) {DMU1, DMU2} 1.25 1.00 17.50 0.13 0.19 1.38 1.19
(4) 0.25 0.08 1.50 1.08
(5) {DMU0} 0.75 0.63 5.00 2.25 1.88 3.00 2.50

� = 0.33

(1) {DMU1} 0.67 1.00 13.33 0.33 0.50 1.00 1.50
(2) {DMU2} 1.00 0.33 10.00 1.00 0.33 2.00 0.66
(3) {DMU1, DMU2} 1.67 1.33 23.33 – – 1.67 1.33
(4) {DMU0} 1.00 0.83 6.66 2.00 1.67 3.00 2.50

� = 0.6

(1) {DMU1} 1.20 1.80 24.00 – – 1.20 1.80
(2) {DMU2} 1.80 0.60 18.00 0.20 0.07 2.00 0.67
(3) {DMU1, DMU2} 3.00 2.40 42.00 – – 3.00 2.40
(4) {DMU0} 1.80 1.50 12.00 1.20 1.00 3.00 2.50

� = 0.75

(1) {DMU1} 1.50 2.25 30.00 – – 1.50 2.25
(2) {DMU2} 2.25 0.75 22.50 – – 2.25 0.75
(3) {DMU1, DMU2} 3.75 3.00 52.50 – – 3.75 3.00
(4) {DMU0} 2.25 1.88 15.00 0.75 0.63 3.00 2.50

Proposition 8.6. For each partition S1, . . . , SK of the set of outputs S and
collection of subsets N1, N2 . . . NL of DMUs N ,∑

i,j

θ∗k(Si, Nj) ≥ θ∗k(S,N).

Proof. Let λ∗(Si, Nj) denote an optimal solution to P (Si, Nj). Extend
λ∗(Si, Nj) to IRN+1 by adding the requisite zeroes in the obvious way, and
let λ̂(Si, Nj) denote the extended vector. Define λ̃ =

∑
i,j λ̂(Si, Nj) and

θ̃k =
∑

i,j θ
∗
k(Si, Nj). The result follows since (λ̃, θ̃k) is a feasible solution

for the original CRS problem involving all outputs and DMUs. ��

Example 8.7. Table 8.3 lists the normalized inputs and outputs of three hy-
pothetical DMUs. We chose DMU0 as the reference unit and used its input-
output values to normalize the data. Using the CRS model, the composite
unit is composed by 0.02 of DMU2 and 1.21 of DMU1. The small intensity as-
sociated with DMU2 is the result of two effects: a scale effect and complement
effect. We now explain each effect.

If DMU0 is compared separately to DMU1 or to DMU2, it will be assessed
as efficient. Stated differently, θ∗0 ({1, 2, 3, 4}, {j}) = 100%, j = 1, 2. (Its FDH



8.4 Projective-Convexity 135

efficiency score is 1.) However, when both DMU1 and DMU2 are considered,
DMU0 is only 13% efficient. Why does this happen? The main problem is that
DMU1 produces very little output 1. If output 1 were not in the model so that
S2 = {2, 3, 4}, and if DMU0 is compared only to DMU1 so that N1 = {1},
then the efficiency score becomes θ∗0(S2, N1) = 100× (0.09/0.68) = 13.2%. On
the other hand, DMU2 produces a disproportional amount of output 1 per
unit of input. So, if S1 = {1} and N2 = {2}, then the efficiency score becomes
θ∗0(S1, N2) = 100 × (1.27/51.6) = 2.5% and not 100% as obtained by the
FDH model. DMU2 complements DMU1, and since DMU2 is exceptionally
productive with respect to output 1, DMU1 can afford to “buy” only a small
portion.

Table 8.3. Normalized data for the example.

Normalized Inputs Normalized Outputs

I1 I2 O1 O2 O3 O4

DMU0 1.00 1.00 1.00 1.00 1.00 1.00
DMU1 0.09 0.04 0.03 0.87 0.82 0.68
DMU2 1.27 0.53 51.60 2.50 0.36 75.40

In this example, DMU1 can reveal DMU0 to be extremely inefficient, if
only S1 is considered; similarly, DMU2 can reveal DMU0 to be extremely
inefficient, if only S2, the complementary set of outputs, is considered. To
reveal DMU0 efficient all outputs must be considered. It turns out that when
all outputs are considered DMU0 is still extremely inefficient. As Proposition
8.6 shows, this result is not an artifact of the particular numbers chosen. The
inefficiencies of DMU0 computed when the output set is restricted to two
complementary subsets can be used to bound the inefficiency of DMU0 when
all outputs are considered, namely,

θ̂0 = θ0(S2, N1) + θ0(S1, N2) = 15.7% > 13% = θ∗0 .

8.4 Projective-Convexity

The defining property of convexity can be formulated in terms of paths. A
set C is convex if for each two points x and y in C, there exists a continuous
path π whose initial point π(0) is x, whose terminal point π(1) is y and whose
coordinate functions πi are given by πi(λ) = (1−λ)xi +λyi. A natural gener-
alization of convexity is to allow a different parameter λ for each coordinate
i. This is the essential idea behind projective-convexity.
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8.4.1 Definitions and characterizations

Let Xi, i = 1, 2, . . . , N , denote finite-dimensional Euclidean spaces.

Definition 8.8. A subset C ⊂
∏N

i=1Xi is projectively-convex (P-convex)
if for each two points x, y in C and each coordinate i and for all λ ∈ [0, 1],
there exist λ1, λ2, . . . , λi−1, λi+1, . . . , λN ∈ [0, 1] such that the point

((1− λ1)x1 + λ1y1, . . . , (1− λ)xi + λyi, . . . , (1 − λN )xN + λNyN)

belongs to C.

Fig. 8.2. Graphical illustration of projective-convexity.

As in the case of convex sets, the defining property of projective-convexity
can be reformulated in terms of (more general) paths. Let [a, b] denote the
line segment joining points a and b.

Definition 8.9. For each two points x, y ∈
∏N

i=1Xi, the rectangle joining
x and y, R[x, y], is

R[x, y] := [x1, y1]× [x2, y2]× . . .× [xN , yN ].

A set C is projectively-convex if for each two points x and y in C, there
exists a path π (not necessarily continuous) for which the image of π lies in
R[x, y] ∩ C and the image of each πi is [xi, yi]. See Figure 8.2(A, B).
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The reason why these sets are called projectively-convex is explained by
the following proposition, which characterizes them in terms of the projection
maps P k :

∏N
i=1Xi −→ Xk, k = 1, 2, . . . , N . Let Ω denote the set of all convex

subsets C ⊂
∏N

i=1Xi expressible as products
∏N

i=1 Ci of convex subsets Ci ⊂
Xi, i = 1, 2, . . . , N . See Figure 8.3(C, D).

Theorem 8.10. A set S ⊂
∏N

i=1Xi is projectively-convex (P-convex) if and
only if it satisfies the following projection property: for every C ⊂ Ω each
projection P k(S ∩ C), k = 1, 2, . . . , N , is convex.

Proof. Suppose S satisfies the projection property. The rectangle R[x, y] ∈ Ω
for each x, y ∈ S. The projection property implies that each P k(S ∩ R[x, y])
is convex, which is equivalent to the defining property of projective-convexity.
Conversely, the intersection of a projectively-convex set with a set in Ω is
projectively-convex. Since the projection of a projectively-convex set is convex,
a projectively-convex set possesses the projection property. ��

Fig. 8.3. Topological properties of projectively-convex sets.

Next, we establish an alternate characterization of closed projectively-
convex sets, which will be required in the sequel. For notational convenience,
we take N = 2.

Theorem 8.11. Let C ⊂ X1 × X2 be a closed set. Then C is projectively-
convex if and only if C ∩R[x, y] is connected for all x, y ∈ C.

Proof. If C is not projectively-convex, then, without loss of generality, there
exist vectors x = (x1, x2), y = (y1, y2) ∈ C and a λ0 ∈ (0, 1) for which

(
{(1− λ0)x1 + λ0y

1} × [x2, y2]
)
∩C = ∅.
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Since both x and y belong to C ∩R[x, y], the set C ∩R[x, y] is disconnected,
since it can be written as a nonempty, disjoint union of two relatively open
subsets.

Conversely, suppose there exist x, y ∈ C for which C ∩ R[x, y] is discon-
nected. Since C ∩ R[x, y] is also compact, it can be written as the disjoint
union of two compact subsets, say A and B. Pick an a ∈ A and b ∈ B that
achieves the minimum Euclidean distance between A and B. Obviously, a �= b
and by construction R[x, y] ∩ C = {a, b}. This immediately shows that C is
not projectively-convex. ��

We now turn to functions. A function is quasiconcave (quasiconvex) if each
of its upper (lower) level sets are convex.

Definition 8.12. A function f :
∏N

i=1Xi −→ IR is projectively-concave
(projectively-convex) if each of its upper (lower) level sets is projectively-
convex.

In practice, the domain of a projectively-concave function or set is determined
by the variables of a particular problem. We note the following facts.

• Every quasiconcave (quasiconvex) function is projectively-concave (pro-
jectively-convex).

• Every projectively-concave (projectively-convex) function is quasiconcave
(quasiconvex) in each of its arguments.

A more general relationship between quasiconcavity and projective-concavity
is recorded in the following proposition, whose proof is an immediate conse-
quence of the definitions.

Proposition 8.13. Suppose ψ : IRN −→ IR is nondecreasing (nonincreasing)
in each of its arguments, and each function ui : Xi → IR is quasiconcave
(quasiconvex) on its domain Xi, i = 1, 2, . . . , N . The function
Φ :
∏N

i=1Xi → IR defined by

Φ(x1, x2, . . . , xN ) := ψ(u1(x1), u2(x2), . . . , uN(xN ))

is projectively-concave (projectively-convex).

Example 8.14. If the ui(·) are quasiconcave (quasiconvex), then the func-
tions Φ(x1, x2, . . . , xN ) = max{u1(x1), . . . , uN(xN )} and Φ(x1, . . . , xN ) =
min{u1(x1), . . . , uN (xN )} are projectively-concave (projectively-convex).

Example 8.15. If the ui(·) are quasiconcave (quasiconvex) and positive, then
Φ(x1, x2, . . . , xN ) =

∏
i ui(xi) is projectively-concave (projectively-convex).

Example 8.16. If the ui(·) are quasiconcave (quasiconvex) and positive, then
Φ(x1, x2, . . . , xN ) =

∑
i ui(xi) is projectively-concave (projectively-convex).

It is fundamental result, first established by G. Debreu, that the sum of qua-
siconcave functions cannot be quasiconcave if at least two of the functions are
quasiconcave but not concave.
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8.4.2 Separation Properties

For the sake of presentation we restrict attention to the space X1 × X2 =
IRn × IRm. The symbols Pn(A) and Pm(A) denote the projections of the set
A ∈ IRn × IRm onto IRn and IRm, respectively. For each a ∈ IRk, let H(a)
denote the closed cone {x ∈ IRk : a · x ≥ 0}.

Definition 8.17. The quadrant generated by (a, b) ∈ IRn × IRm is the
closed cone

Q[a, b] := {(x̂, ŷ) ∈ IRn × IRm : a · x̂ ≥ 0, b · ŷ ≥ 0}.

The translation of the quadrant Q[a, b] to the point (x, y) is the set (x, y) +
Q[a, b]. The quadrant Q[a, b] separates (x, y) from S ⊂ IRn × IRm if

( (x, y) +Q[a, b] ) ∩ S = ∅.

A quadrant is nontrivial if either a or b is not zero.

Theorem 8.18. Separation by Quadrant Let S ⊂ IRn × IRm be a closed,
projectively-convex set. If (x, y) /∈ S, then there exists a nontrivial quadrant
Q[a, b] that separates (x, y) from S.

Proof. Since translations preserve the properties of closure and projective-
convexity, we may assume, without loss of generality, that (x, y) = (0, 0).

Since (0, 0) /∈ S there is a positive ε for which

S ∩ (B1
ε (0)×B2

ε (0)) = ∅, (8.17)

where we let Bi
ε(0) denote the open ball of radius ε about 0 ∈ Xi, i = 1, 2.

Let

A := {x ∈ IRn : there exists a y such that (x, y) ∈ S and ||y|| ≤ ε}.
(8.18)

Assume first that A is not empty. Since the set A can be expressed as the
projection

Pn(S ∩ (IRn ×B2
ε (0))),

it is convex by Theorem 8.10. It is immediate from (8.17) and (8.18) that
A ∩ B1

ε (0) is empty. Since 0 does not belong to the closure of A, a nontrivial
hyperplane exists that strictly separates it from A, i.e., there exists a nonzero
a ∈ X1 such that

H(a) ∩A = ∅. (8.19)

If A itself is empty, then pick an arbitrary nonzero a ∈ IRn and note that
(8.19) holds trivially.

If (x, y) ∈ S such that a · x ≥ 0, then (8.19) and the definition of A (8.18)
imply that ||y|| > ε. Thus the set
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B := {y ∈ IRm : there exists an x such that (x, y) ∈ S and a · x ≥ 0}.
(8.20)

is disjoint from B2
ε (0). Assume first that B is not empty. Since the set B can

be expressed as the projection

Pm(S ∩ (H(a)× IRm)),

it is convex by Theorem 8.10. Since 0 does not belong to the closure of B, a
nontrivial hyperplane exists that strictly separates it from B, i.e., there exists
a nonzero b ∈ X2 for which

H(b) ∩B = ∅. (8.21)

If B is empty, then pick an arbitrary nonzero b ∈ IRm and note that (8.21)
holds trivially.

Now pick an arbitrary (x, y) ∈ S. If a · x ≥ 0, then by definition (8.20)
y ∈ B. But then y /∈ H(b), and thus (x, y) /∈ Q[a, b]. We have found a
separating quadrant, as required. ��

Corollary 8.19. A closed projectively-convex set is the intersection of all
complements of quadrants that contain it.

Convex sets have supporting hyperplanes. Analogously, projectively-convex
sets have supporting quadrants.

Definition 8.20. The quadrant (x, y)+Q[a, b] is said to support S ⊂ IRn×
IRm at (x, y) ∈ S if the interior of (x, y) +Q[a, b] is disjoint from S.

Corollary 8.21. Let S ⊂ IRn × IRm be a closed projectively-convex set. If
(x, y) lies on the boundary of S, then there exists a supporting quadrant to S
at (x, y).

Remark 8.22. Every projectively-convex set S ⊂ IRn × IRm is projectively-
convex when viewed as a subset of IRn+m. Consequently, at least one of the
2n+m orthants generated by a point x not in a closed projectively-convex set
S must be disjoint from S.

Remark 8.23. With the obvious modifications the separating quadrant theo-
rem is valid for locally convex topological vector spaces. The quadrants are
generated by the intersection of halfspaces determined by the continuous lin-
ear functionals.

We now turn to the differentiable setting. For a differentiable quasiconcave
function θ : IRk → IR

∇θ(x1) · (x2 − x1) < 0⇒ θ(x2) < θ(x1) holds for all x1, x2 ∈ IRk. (8.22)

Property (8.22) has a geometrical interpretation: if ∇θ(x) �= 0 and x lies on
the boundary of L≥

θ (θ(x)), then the gradient ∇θ(x) generates a supporting
hyperplane
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{z ∈ IRk : ∇θ(x) · z = ∇θ(x) · x}

to L≥
θ (θ(x)) at x. A differentiable projectively-concave function possesses a

similar geometrical property: if∇xf(x, y) �= 0,∇yf(x, y) �= 0 and (x, y) lies on
the boundary of L≥

f (f(x, y)), then the quadrant Q[−∇xf(x, y), −∇yf(x, y)]
supports L≥

f (f(x, y)) at (x, y). The following theorem establishes this geomet-
rical property.

Theorem 8.24. Let f : IRn × IRm → IR be differentiable and projectively-
concave. Then{

∇xf(x1, y1) · (x2 − x1) < 0
∇yf(x1, y1) · (y2 − y1) < 0

}
⇒ f(x2, y2) < f(x1, y1).

Proof. Suppose to the contrary there exist vectors (x1, y1), (x2, y2) for which
f(x2, y2) ≥ f(x1, y1) but both∇xf(x1, y1)·(x2−x1) and ∇yf(x1, y1)·(y2−y1)
are negative. Since

L≥
f (f(x1, y1)) ∩R[(x1, y1), (x2, y2)]

is connected (Theorem 8.11), there exists an infinite sequence of points

(xk, yk) ∈ L≥
f (f(x1, y1)) ∩R[(x1, y1), (x2, y2)],

k = 1, 2, . . ., not equal to (x1, y1) that converges to (x1, y1). We may write
each (xk, yk) as (x1, y1) + dk where dk := (αk(x2 − x1), βk(y2 − y1)) and
αk, βk ∈ (0, 1). Note that αk → 0, βk → 0 and ||dk|| → 0.3 By construction,

0 ≤ f(xk, yk)− f(x1, y1) (8.23)
= αk∇xf(x1, y1) · (x2 − x1) + βk∇yf(x1, y1) · (y2 − y1) + o(||dk||),

where lim||dk||→0 o(||dk||)/||dk|| = 0. Passing to a subsequence if necessary,
we may assume, without loss of generality, that αk ≥ βk for all k. Thus,
||dk|| ≤ αk||d|| where d = (x2 − x1, y2 − y1). Dividing both sides of (8.23) by
αk||d|| and taking limits produces the desired contradiction. ��

8.4.3 Dual Characterization

The duality between the indirect and direct production functions in the
quasiconcave setting extends in a natural way to the projectively-concave
setting. Once again, we shall develop the duality in the special case of
X1 ×X2 = IRn × IRm, although it holds generally.

Define

Φ∗(x1, x2) := inf{Γ (p1, p2) : pi · xi ≤ 1, i = 1, 2}.
3 The symbol || · || denotes the Euclidean norm in IRn+m.
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Theorem 8.25. If Φ(·, ·) is continuous, nondecreasing and projectively-con-
cave, then Φ(·, ·) = Φ∗(·, ·).

Proof. The definitions of Φ∗(x1, x2) and Γ (p1, p2) imply that Φ∗(x1, x2) ≥
Φ(x1, x2). It remains to show the reverse inequality.

Pick a v > Φ(x1, x2) such that L≥
Φ (v) is not empty. (If no such v exists,

then Φ∗(x1, x2) ≤ Φ(x1, x2), and the result follows.) Since L≥
Φ (v) is closed and

does not contain (x1, x2), there exists a positive ε for which (x̂1, x̂2) /∈ L≥
Φ (v),

where

x̂1 := x1 + ε(1, 1, . . . , 1)
x̂2 := x2 + ε(1, 1, . . . , 1).

Since Φ(·, ·) is projectively-concave, the separation by quadrant Theorem 8.18
guarantees existence of a nontrivial quadrant Q[a, b] such that

(
(x̂1, x̂2) +Q[a, b]

)
∩ L≥

Φ (v) = ∅.

Consequently, if (x̄1, x̄2) ∈ L≥
Φ (v), then either

a · x̄1 > a · x̂1 = a · x1 + ε

n∑
i=1

ai, (8.24)

or

b · x̄2 > b · x̂2 = b · x2 + ε

m∑
i=1

bi. (8.25)

Since Φ(·, ·) is nondecreasing, each component of a and b must be nonnegative.
It follows from (8.24) and (8.25) that, if necessary, it is possible to perturb
both a and b so that (i) each vector is positive and (ii) if (x̄1, x̄2) ∈ L≥

Φ (v),
then either

a · x̄1 > a · x1 (8.26)

or
b · x̄2 > b · x2. (8.27)

Let p̂1 := a/(a · x1) and p̂2 := b/(b · x2). By construction, both p̂1 and p̂2 are
positive and p̂i ·xi ≤ 1, i = 1, 2. Moreover, Γ (p̂1, p̂2) < v in light of (8.26) and
(8.27). We have therefore established that

Φ∗(x1, x2) ≤ Γ (p̂1, p̂2) < v.

As v was chosen arbitrarily, Φ∗(x1, x2) ≤ Φ(x1, x2), as required. ��



8.6 Bibliographical Notes 143

8.5 Exercises

8.1. Show that an input free disposable set in IR2
+ is always projectively-

convex.

8.2. Prove Corollary 8.19.

8.3. Prove Corollary 8.21.

8.4. Let A be an m× n matrix. Consider the following two statements:

(1) There exists an x ∈ IRn such that Ax < 0.
(2) There exists a nonzero y ≥ 0 such that yTA = 0.

Prove that exactly one of these two statements must hold.

8.5. A set S ⊂ IRn is a cone if x ∈ S implies that λx ∈ S for all λ ≥ 0.
If S is also convex, then it is called a convex cone. The polar cone of a (not
necessarily convex) set S ⊂ IRn is

S∗ := {p ∈ IRn : p · x ≤ 0 for all x ∈ S}.

(If S is empty, then S∗ = IRn.)

(a) Let S ⊂ IRn be nonempty. Show that S∗ is a closed, convex cone.
(b) Let S ⊂ IRn be a nonempty, closed convex cone. Show that S = (S∗)∗.

8.6. Prove that every closed, connected, evenly-separable subset of IR2 must
also be projectively-convex.

8.6 Bibliographical Notes

Data Envelopment Analysis with lower bounds is fully developed in Bouh-
nik et. al. [2001] (see also Vlatsa [1995]). Projective-convexity is introduced
and analyzed in Hackman and Passy [1988], and its properties are further
developed in First et. al. [1990, 1992]. General duality theory for projective-
convexity is developed in First et. al. [1993], which also provides sufficient con-
ditions that guarantee that an evenly-separable set will also be projectively-
convex. Multi-dimensional indirect production functions are discussed in
Blackorby et. al. [1978]. Petersen [1990] develops an interesting nonconvex
model of technology.
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8.7 Solutions to Exercises

8.1 Let S ⊂ IR2
+ be input freely disposable, and pick (Ki, Li) ∈ S, i = 1, 2.

If either (K2, L2) ≥ (K1, L1) or (K1, L1) ≥ (K2, L2), then the line segment
joining these two point also belongs to S. Obviously, this line segment defines
an appropriate path connecting the two points. It remains to consider the
case, without loss of generality, when K2 ≥ K1 but L2 ≤ L1. In this setting,
the collections of points {(K,L) : K1 ≤ K ≤ K2, L = L1} and {(K,L) : K =
K2, L1 ≤ L ≤ L2} also belong to S. These points define an appropriate path
connecting the two points.

8.2 Let S be a closed projectively-convex set, and let I denote the intersection
of all complements of quadrants that contain S. By definition, S ⊂ I. To
show the reverse inclusion, pick an (x, y) /∈ S. By Theorem 8.18, there exists a
quadrantQ[a, b] that separates (x, y) from S. Clearly, I ⊂ IRn×IRm \ ((x, y)+
Q[a, b]), and so (x, y) /∈ I.

8.3 Without loss of generality, assume that (x, y) = (0, 0). Pick an infinite
sequence (xi, yi)→ (0, 0) for which (xi, yi) /∈ S for each i = 1, 2, . . .. By The-
orem 8.18, it is possible to find a nontrivial quadrant Q[ai, bi] that separates
(xi, yi) from S. Let āi := ai/||ai|| and b̄i := bi/||bi||. Since the boundary of
the unit ball is compact, we may extract convergent subsequences from {āi}
and {b̄i}; let a and b denote the nonzero limit points. We claim that Q[a, b]
supports S at (0, 0). To establish this, pick an arbitrary (x0, y0) ∈ S. Since
(x0, y0) /∈ (xi, yi) +Q[ai, bi],

min
{
ai · x0 − ai · xi

||ai||
,
bi · y0 − bi · yi

||bi||

}
< 0 for each i. (8.28)

Taking limits in (8.28) shows that min{a · x0, b · y0} ≤ 0, which implies that
(x0, y0) does not belong to the interior of Q[a, b], as required.

8.4 First, we show that both statements cannot simultaneously hold. Suppose
both (1) and (2) hold. It then follows that 0 > yT (Ax) = (yTA)x = 0, an
obvious contradiction. Suppose (1) does not hold. Let V := {v ∈ IRm : v =
Ax} and let Z := IRm

−− = {z ∈ IRm : z < 0}. Clearly, V ∩Z is empty. By the
separation theorem for convex sets, there exists a p ∈ IRm such that p ·v ≥ p ·z
for all v ∈ V and z ∈ Z. Since all the components of z are negative, this
inequality can only hold if all the components of p are non-negative. Moreover,
since the origin lies on the boundary of Z, this inequality also implies that
p · v ≥ 0 for all v ∈ V . This in turn implies that p · v = pT (Ax) = (pTA)x ≥ 0
for all x ∈ IRm, which can only hold true if pTA = 0. The result follows.

8.5 (a) Obviously, 0 ∈ S∗ and so S∗ is nonempty. Pick p1, p2 ∈ S∗ and
λ ∈ [0, 1]. For each x ∈ S,

(λp1 + (1− λ)p2) · x = λ(p1 · x) + (1− λ)(p2 · x) ≤ 0,
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which implies that λp1 + (1 − λ)p2 ∈ S∗. Thus, S∗ is convex. As for closure,
pick an infinite sequence of points p1, p2, . . . in S∗ such that pn → p. Pick
x ∈ S. Since pn · x ≤ 0 for each n and pn → p, it follows by the continuity of
the inner product that p·x ≤ 0, too. This shows that p ∈ S∗, which establishes
closure.
(b) By definition,

(S∗)∗ = {y : y · p ≤ 0 for all p ∈ S∗}.
Clearly, S ⊂ (S∗)∗. To show the reverse inclusion, we show that if x /∈ S then
x /∈ (S∗)∗. Pick x /∈ S. By the separation theorem for convex sets, there exists
a p such that p · x > p · z for all z ∈ S. Since S is a cone, this inequality can
only hold if p · z ≤ 0 for all z ∈ S. This in turn implies that p ∈ S∗. Moreover,
since S is closed, the origin belongs to S, and so p · x > 0, too. Consequently,
x /∈ (S∗)∗, as required.

8.6 Let S ⊂ IR2
+ be closed, connected, and evenly-separable. If S is not

projectively-convex, there exists two points x = (K1, L1), y = (K2, L2) in
S such that the rectangle R[x, y] = {x, y}. Since translations preserve the
properties of closure, connectedness and even-separability, we may assume,
without loss of generality, that x = 0 and y > 0. We now argue that

S ∩ {(K,L) : K ≤ 0, L > 0} = ∅.
Suppose, to the contrary, there exists a z = (K,L) ∈ S such K ≤ 0 and
L > 0. Pick L′ such that L′ < min{L,L2}. The point (0, L′) /∈ S. Each of
the four quadrants defined by translating (0, L′) to the origin contains either
x, y, or z. Consequently, it is not possible to separate (0, L′) from S with
a quadrant, thus contradicting the evenly-separable property of S. A similar
argument shows that

S ∩ {(K,L) : K ≥ 0, L < 0} = ∅
and

S ∩
(
IR2

+ − {(K,L) : K ≤ K2, L ≥ L2}
)

= ∅,
too. For each ε > 0, define the sets

S1(ε) := {(K,L) : K ≤ ε, L ≤ ε},
S2(ε) := {(K,L) : K ≥ K2 − ε, L ≥ L2 − ε}.

We have established that

S ⊂ S1(ε) ∪ S2(ε) (8.29)

for each ε > 0. Since y > 0, it is possible to find an ε such that

S1(ε) ∩ S2(ε) = ∅. (8.30)

Since the sets S1(ε) and S1(ε) are obviously open, (8.29) and (8.30) show that
S can be written as the disjoint union of two open sets, which implies that S
is disconnected, a clear contradiction. The result follows.
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Efficiency Measurement
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Efficiency Analysis

At its core, a measure of efficiency compares an observed input-output pair
(x, y) to its projection (x̂, ŷ) onto the boundary of a technology set T . Obvi-
ously, there are several ways to construct a technology T set from a data set
D, and there are several ways to project a point onto a boundary of a set.
In this chapter, we formalize these notions. In what follows, we suppress the
functional dependence of a particular efficiency measure on T .

9.1 Input and Output Efficiency

We begin with the most commonly used measures for input or output effi-
ciency.

Definition 9.1. The radial measure of input efficiency of an input-
output pair (x, y) ∈ T is

RI(x, y) := min{θ : (θx, y) ∈ T }. (9.1)

Definition 9.2. The radial measure of output efficiency of an input-
output pair (x, y) ∈ T is

RO(x, y) := min{θ : (x, y/θ) ∈ T }. (9.2)

Both measures are well-defined under the standard assumptions of closed in-
put and output possibility sets and the assumption that a given input vector
cannot achieve unlimited output.

Radial measures of input and output efficiency possess the following simple
properties. First, since (x, y) ∈ T , both measures of efficiency are bounded
above by one. Next, as previously discussed in Chapter 7, the input and output
distance functions and the radial measures of input and output efficiency are
related via the following identities:



150 9 Efficiency Analysis

RI(x, y) = D(x, y)−1

RO(x, y) = O(x, y).

Finally, radial measures of input and output efficiency coincide for constant
returns-to-scale technologies.

Proposition 9.3. If T exhibits constant returns-to-scale1, then RI(x, y) =
RO(x, y).

Proof. An immediate consequence of the fact that (θx, y) ∈ T if and only if
(x, y/θ) ∈ T . ��

Radial measures have two distinct benefits. First, they are conservative.
Each seeks an equiproportionate projection: reduction (in the case of input)
or expansion (in the case of output). A firm that is rated 75% input efficient
is being told it is possible to reduce each of inputs by at least 25% and still
achieve the same outputs. Similarly, a firm that is rated 80% output efficient
is being told it is possible to expand each of outputs by at least 25% using
the same level of inputs. Second, radial measures are independent of the unit
of measurement for each of the inputs and outputs.

Radial measures have one serious deficiency. It is possible forRI(x, y) = 1,
suggesting the firm is technically input efficient, when it is also possible to
find an x′ � x for which (x′, y) ∈ T . The firm will prefer to use (x′, y) instead
of (x, y). Similarly, it is possible for RO(x, y) = 1, suggesting the firm is
technically output efficient, when it is also possible to find a y′ � y for which
(x, y′) ∈ T . The firm will prefer to use (x, y′) instead of (x, y). Formally, it
is possible that the radial measures of efficiency will not project onto the
Efficient Frontier of the technology; informally, slacks can be present.

The deficiency of the radial measure of efficiency is overcome with the
following notion of efficiency.

Definition 9.4. A linear measure of input efficiency of an input-
output pair (x, y) is

LI(x, y) := min
{∑

i

wiθi : ((θ1x1, θ2x2, . . . , θnxn), y) ∈ T
}
, (9.3)

where the weights wi are nonnegative and sum to one.

An example of a linear measure of input efficiency is the Russell measure
defined in Chapter 1—see (1.7), p. 6.

Definition 9.5. A linear measure of output efficiency of an input-
output pair (x, y) is

LO(x, y) := min
{∑

i

wiθi : (x, (y1/θ1, y2/θ2, . . . , yn/θn)) ∈ T
}
, (9.4)

where the weights wi are nonnegative and sum to one.
1 This means that (x, y) ∈ T if and only if s(x, y) ∈ T for all s ≥ 0.
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Linear measures of input or output efficiency cannot be higher than their
radial measure counterparts, since the radial efficiency can be defined as a
linear measure with two additional restrictions in either (9.3) or (9.4), namely,
the wi are equal and the θi are constrained to be equal, too.

When the constraints that characterize a technology are linear, the linear
measures of input and output efficiency can be calculated via linear program-
ming. The power of computing now makes solving reasonably-sized convex
programming problems tractable. A natural generalization of the linear mea-
sure is a weighted measure.

Definition 9.6. A convex function f(·) that maps [0, 1] onto [0, 1] such that
f(0) = 0 and f(1) = 1 is an efficiency weighting function.

Remark 9.7. An efficiency weighting function is necessarily nondecreasing.

Definition 9.8. A weighted measure of input efficiency of an input-
output pair (x, y) is

WI(x, y) := min
{∑

i

wifi(θi) : ((θ1x1, θ2x2, . . . , θnxn), y) ∈ T
}
, (9.5)

where the weights wi are nonnegative and sum to one and each fi(·) is an
efficiency weighting function.

Definition 9.9. A weighted measure of output efficiency of an input-
output pair (x, y) is

WO(x, y) := min
{∑

i

wifi(θi) : (x, (y1/θ1, y2/θ2, . . . , yn/θn)) ∈ T
}
, (9.6)

where the weights wi are nonnegative and sum to one and each fi(·) is an
efficiency weighting function.

Remark 9.10. A weighted measure of input or output efficiency is additively-
separable in each input or output. It is a special case of a convex measure of
input or output efficiency defined by replacing

∑
i wifi(θi) in (9.5) or (9.6)

with a general convex function of the θi.

9.2 Scale Efficiency

Let
RICRS(x, y), ROCRS(x, y), RIV RS(x, y), ROV RS(x, y)

denote the radial measures of input and output efficiency corresponding to
the CRS and V RS technologies. Since T V RS ⊂ T CRS , it follows that

RIV RS(x, y) ≤ RICRS(x, y) and ROV RS(x, y) ≤ ROCRS(x, y).

By Proposition 9.3,RICRS(x, y) = ROCRS(x, y) but, in general,RIV RS(x, y)
�= ROV RS(x, y).
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Definition 9.11. The input-based scale efficiency is the ratio

SI(x, y) :=
RICRS(x, y)
RIV RS(x, y)

,

and the output-based scale efficiency is the ratio

SO(x, y) :=
ROCRS(x, y)
ROV RS(x, y)

.

It is useful to decompose overall input or output efficiency into the prod-
uct of its pure technical efficiency component, RIV RS(x, y) or ROV RS(x, y),
when no assumption about returns-to-scale is made, and its scale component,
SI(x, y) or SO(x, y):

RICRS(x, y) = RIV RS(x, y) SI(x, y), (9.7)
ROCRS(x, y) = ROV RS(x, y) SO(x, y). (9.8)

This decomposition defines overall input or output efficiency via the CRS
technology.

Example 9.12. Suppose RICRS(x, y) = 0.54 and RIV RS(x, y) = 0.90. Then
SI(x, y) = 0.60. In this case, the lion’s share of input inefficiency is due to
inappropriate scale, as opposed to pure technical input efficiency. Suppose,
instead, that RICRS(x, y) = 0.54 and RIV RS(x, y) = 0.60. Then SI(x, y) =
0.90. In this case, the lion’s share of input inefficiency is due to pure technical
input inefficiency as opposed to inappropriate scale.

9.3 Cost Efficiency

We turn now to discussing concepts and measures of efficiency pertaining to
cost when data

D = {(x1, y1, p1), (x2, y2, p2), . . . , (xN , yN , pN )},

on inputs, outputs and prices for N firms are given.
A natural measure for cost efficiency is to take the ratio of minimum to

actual cost.

Definition 9.13. Cost efficiency is the ratio

C(xi, yi, pi) :=
Q(yi, pi)
pi · xi

.

Cost inefficiencies arise from two sources: (i) inefficient use of input and (ii)
incorrect choice of input mix based on factor prices. The first source of cost
inefficiency is measured by RI(x, y). To isolate the second source of cost
inefficiency, a natural approach is to take the ratio of the minimum cost to
the cost of the technically input efficient vector x/D(x, y). Either technology
T CRS or T V RS can be used to determine RI(x, y) = D(x, y)−1.
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Definition 9.14. Allocative efficiency is the ratio

A(xi, yi, pi) :=
Q(yi, pi)
pi · x̂i

,

where x̂i := xi/D(xi, yi) for each i.

Note that A(xi, yi, pi) = C(xi, yi, pi)D(yi, xi).
It is useful to decompose cost efficiency into the product of its alloca-

tive component, A(xi, yi, pi), and its input efficient component, RI(x, y) =
D(x, y)−1:

C(xi, yi, pi) = A(xi, yi, pi) D(x, y)−1.

Example 9.15. Figure 9.1 illustrates the decomposition of cost efficiency into
its allocative and technical efficiency components. The point x̂ is technically
efficient but not allocatively efficient. The degree of allocative inefficiency is
measured by the gap between the dotted line and the isocost line associated
with minimum cost.
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Fig. 9.1. Decomposition of cost efficiency into its allocative and technically efficient
components.

9.4 Joint Input-Output Efficiency

We briefly mention the possibilities to define a joint input-output measure.
Here is but one example:

Definition 9.16. Joint input-output efficiency is

HT (x, y) := min{θ : (θx, y/θ) ∈ T }.
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9.5 Computing Input Efficiency

We are given a data set D that contains input, output and price data for
N firms. There are n inputs and m outputs. All factor prices are assumed
positive. Some of the components of the input-output pair (xi, yi) can be zero,
but no input or output vector is identically equal to zero. Following convention,
(x0, y0) denotes the input-output pair for which a particular efficiency is being
computed. It is commonly referred to as the reference firm. Keep in mind
that (x0, y0) corresponds to (xi, yi) for some index i, 1 ≤ i ≤ N .

For notational convenience, let

x(λ) :=
∑

i

λixi, y(λ) :=
∑

i

λiyi, e := (1, 1, . . . , 1) ∈ IRN .

With this notation, the constraints
∑N

i=1 λixi ≤ θx0,
∑N

i=1 λiyi ≥ y0, and∑N
i=1 λi = 1 can be respectively expressed in compact form as x(λ) ≤ θx0,

y(λ) ≥ y0 and e(λ) = 1. For the remainder of this chapter, all vectors z will
be represented as columns. The transpose of vector z, denoted by zT , is z
expressed as a row vector.

9.5.1 CRS Technology

The radial measure of input efficiency, RICRS(x0, y0), can be computed via
the linear program

(PCRS) : min
(θ,λ)≥0

{θ : x(λ) ≤ θx0, y(λ) ≥ y0}.

(P ) can be represented in the canonical form

min
z≥0
{cT z : Az ≥ b}, (9.9)

where

zT := (θ, λ1, λ2, . . . , λN ) ∈ IRN+1
+ ,

cT := (1, 0, 0, . . . , 0) ∈ IRN+1
+ ,

b :=
( 0
y0

)
∈ IRn+m,

A :=

[
x0 −x1 −x2 . . . −xN

0 y1 y2 . . . yN

]
.

A is an (n+m)× (N + 1).
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Let μ ∈ IRn
+ denote the dual variables associated with the input con-

straints, θx0−x(λ) ≥ 0, let ν ∈ IRm
+ denote the dual variables associated with

the output constraints, y(λ) ≥ y0, and let ζT := (μ, ν) denote the vector of
dual variables. The dual linear program to the primal linear program (9.9) is

max
ζ≥0
{bT ζ : ζTA ≤ cT }. (9.10)

Accordingly, the dual linear program of (PCRS) is

(DCRS) : max
μ≥0, ν≥0

{νT y0 : νT yi − μTxi ≤ 0 for all i, μTx0 = 1}.2 (9.11)

There is a natural economic interpretation to (DCRS). The components
of the dual vector ν can be thought of as the prices (per unit revenues) of
the outputs, whereas the components of the dual vector μ can be thought
of as the prices (per unit cost) of the inputs. Consequently, the expression
νT yi − μTxi is the profit of firm i given this pricing system. The constraints
of (DCRS) simply say that for a pricing system associated with a constant
returns-to-scale technology to be valid, the economic profit of each firm can-
not be positive. (If the profit were positive, then the firm would scale its
input-output vector arbitrarily high to make infinite profits.) Given a pric-
ing system, the profit equation is unaffected by multiplying all prices by a
positive scale, i.e., it is homogeneous of degree zero, and so, without loss of
generality, prices can be normalized by setting the cost of the reference firm,
μTx0, to one. The revenue of the reference firm will then correspond to its
input efficiency.

The dual linear program (9.11) is equivalent to the following linear frac-
tional programming problem

(LFCRS) : max
μ≥0, ν≥0

{ νT y0
μTx0

:
νT yi

μTxi
≤ 1 for all i

}
. (9.12)

The interpretation of (LFCRS) is related to scoring in multi-criteria decision-
making, as follows. Efficiency is measured as the ratio of aggregate output to
aggregate input. To (linearly) aggregate the vectors of input and output, one
needs weights (the dual variables). Suppose the manager of a firm is permitted
to choose the weights that will make his firm look as efficient as possible.
However, the weights he chooses must ensure that the efficiency ratios of each
firm is bounded above by one. The bound of one reflects the physical axiom
that the transformation of input to output for any engineering system can
result in a possible loss but cannot create a positive gain. The dual variables
are referred to as multipliers or weights, and the dual formulation is referred
to as the multiplier formulation.
2 Since the dual variable of the last dual constraint μT x0 is θ, which is necessarily

positive, complementary slackness implies this dual constraint must be tight.
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Remark 9.17. Historically, Problem (LFCRS) was defined first by Charnes,
Cooper and Rhodes [1978] as the vehicle for defining input efficiency. Charnes
and Cooper [1961] pioneered linear fractional programming, and so they knew
how to transform problem (LFCRS) into (DCRS). Since an efficiency ratio
remains unaffected if the dual variables are scaled (it is homogeneous of degree
zero), the denominator μTx0 can be set to one, without loss of generality. Next,
they took the dual to (DCRS) to arrive at (PCRS), and then interpreted the
constraints as defining the smallest convex cone containing the original input-
output data, namely, TCRS.

9.5.2 V RS Technology

The radial measure of input efficiency, RIV RS(x0, y0), can be computed via
the linear program

(PV RS
input) : min

θ≥0, λ≥0
{θ : x(λ) ≤ θx0, y(λ) ≥ y0, e(λ) = 1}.

As before, let μ and ν denote the dual variables associated with the input and
output constraints, respectively, and let η denote the dual variable associated
with the constraint e(λ) =

∑
i λi = 1. The dual linear program of (PV RS

input) is

(DV RS
input) : max

μ≥0, ν≥0
{νT y0 + η : νT yi + η − μTxi ≤ 0 for all i, μTx0 = 1}.

(9.13)
Since the dual variable η is associated with an equality constraint, there are
no constraints on its sign in the dual formulation. It turns out that the sign of
the optimal dual variable η∗ can be used to characterize the returns-to-scale
for an input-output pair that is both radially input and output efficient.

9.5.3 HR Technology

The radial measure of input efficiency, RIHR(x0, y0), can be computed by
solving the linear program

(PHR
input) : min

θ≥0, λ≥0
{θ :

∑
i∈I(y0)

λixi ≤ θx0, e(λ) = 1}, (9.14)

where I(y0) := {i : yi ≥ y0}. Once again, μ and η respectively denote the
dual variables associated with the input and equality constraints. The dual
linear program of (PHR

input) is

(DV RS
input) max

μ≥0
{η : μTx0 ≤ 1, −μTxi + η ≤ 0 for each i ∈ I(y0)}, (9.15)

which is equivalent to3

3 Set p = μ/η. (The dual variable η must be positive since the efficiency cannot
be zero.) The first constraint can be expressed as pT x0 ≤ 1/η. Maximizing η is
equivalent to minimizing pT x0.
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min
p≥0
{pTx0 : pTxi ≥ 1}. (9.16)

Recall that this dual linear program has been previously interpreted—see
(5.40), p. 84 and (7.5), p. 113.

9.6 Computing Output Efficiency

CRS technology. As we have noted several times, the radial measures of in-
put and output efficiency for a constant returns-to-scale technology are equal.

VRS technology. The output efficiency, ROV RS(x0, y0), is the following
linear program:

(PV RS
output) max

γ≥0, λ≥0
{γ : x(λ) ≤ x0, y(λ) ≥ γy0, e(λ) = 1}.4 (9.17)

HR technology. In the single-output setting, output efficiency is simply the
ratio of the observed to maximum output, namely, y0/Φ(x0). Consequently,
the computation of output efficiency is synonymous with computing the pro-
duction function. For the HR technology, it is not possible to formulate a
single linear program to compute Φ(x0). Fortunately, a sequence of linear
programs can be solved to compute Φ(x0).

As we previously discussed in Section 7.1.1, the input distance function
characterizes the technology, since

(x, y) ∈ T ⇐⇒ D(x, y) ≥ 1.

Since (x, y) ∈ T if and only if Φ(x) ≥ y, it follows that

Φ(x0) = max{yi : D(xi, yi) ≥ 1}. (9.18)

The input distance equals the reciprocal of the radial measure of input effi-
ciency, which can be computed via the linear program (PHR

input). Thus, at most
N linear programs need to be solved to compute Φ(x0).

Remark 9.18. For each x, the function D(x, ·) is a decreasing function of y,
and so a bisection search algorithm can be used to solve for Φ(x0). Computa-
tionally, roughly ln N (instead of N) linear programs will have to be solved.
Keep in mind that one has to solve this problem for each firm in the database.
Given the size of the typical data and the speed of today’s computers, this
gain in computational efficiency may be unnecessary.

Remark 9.19. It is possible to formulate a single mathematical programming
problem to solve for Φ(x0). Let BN := {0, 1}N denote the collection of all
vectors in IRN whose components are either zero or one (i.e. binary). Assume
4 The nonlinear program represented by minimizing θ is converted to a linear pro-

gram by simply maximizing γ := θ−1.
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the labels have been arranged so that y1 ≤ y2 ≤ . . . ≤ yN . The following
binary-linear program can be solved to compute Φ(x0):

max
λ≥0, z∈BN

{
∑

i

ziyi : x(λ) ≤ x0, e(λ) = 1,
∑

i

zi = 1, λi ≤
i∑

j=1

zj for each i}.

(9.19)
To see why the formulation (9.19) works, first note that there will be exactly
one i for which z∗i = 1, say i∗. The constraint λi ≤

∑i
j=1 zj ensures that

λi = 0 for all i < i∗. Thus, x(λ∗) will be a convex combination of input
vectors that achieve at least output rate yi∗ . If some of the yi are equal, it is
always possible to set the zi so that i∗ will correspond to the lowest index,
thus ensuring that LHR(yi∗) will include all input vectors xi that achieve
output rate yi∗ as required by the HR technology.

Given the size of the typical data and the speed of today’s computers, it
is possible to solve this binary-linear program very quickly, thus obviating the
need to solve a sequence of linear programs.

9.7 Computing Cost Efficiency

The computation of cost efficiency boils down to solving for the minimal cost

Q(yi, pi) = min{pix : (x, yi) ∈ T }.

The constraint set (x, yi) ∈ T is linear for each of the CRS, V RS, and HR
technologies, and so one may calculate Q(yi, pi) by solving an appropriate
linear program.

Remark 9.20. In the single-output setting, we showed in Chapter 5 how to
graphically compute Q(y, p) for the CRS and V RS technologies.

9.8 Computing Joint Input-Output Efficiency

For the computational models to follow in this section, let μ := θλ, γ := θ2,
and note that θx(λ) = x(μ) and θy(λ) = y(μ).

Consider first the CRS technology. The hyperbolic measure of efficiency,
HCRS(x0, y0), can be computed by solving the following nonlinear program-
ming problem

min
λ≥0,θ≥0

{θ : x(λ) ≤ θx0, y(λ) ≥ y0/θ}. (9.20)

The optimal value of Problem (9.20) is the square root of the optimal value
of the following linear program

min
μ≥0,γ≥0

{γ : x(μ) ≤ γx0, y(μ) ≥ y0}. (9.21)
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Remark 9.21. A comparison of (9.21) with (9.9) shows that the hyperbolic
measure of efficiency for the CRS technology is simply the square root of the
radial measure of input or output efficiency.

As for the V RS technology, the hyperbolic measure of efficiency, HV RS

(x0, y0), can be computed by solving the nonlinear programming problem

min
λ≥0,θ≥0

{θ : x(λ) ≤ θx0, y(λ) ≥ y0/θ, e(λ) = 1}. (9.22)

This is equivalent to the nonlinear program

min
μ≥0,θ≥0

{γ : x(μ) ≤ γx0, y(μ) ≥ y0,
∑

i

μi =
√
γ}. (9.23)

We now turn to the HR technology.

Proposition 9.22. HHR(x0, y0) = min
1≤i≤N

{max{D(x0, yi)−1, y0/yi}}.

Proof. Let
ρi := max{D(x0, yi)−1, y0/yi}. (9.24)

The definitions of ρi and D(x0, yi) imply that (ρix0, y0/ρi) ∈ T HR. Conse-
quently,H(x0, y0) ≤ ρi for each index i, and soH(x0, y0) ≤ mini ρi. It remains
to show the reverse inequality H(x0, y0) ≥ mini ρi.

To this end, pick a θ for which (θx0, y0/θ ∈ T HR). Obviously, (i) θx0 ∈
LHR(y0/θ). The way in which the HR technology is defined implies that
(ii) LHR(y0/θ) = L(yi) for some index i. By (i) and (ii), and the definition
of the input distance function, it follows that θ ≥ D(x0, yi)−1. By (ii) alone,
y0/θ ≥ yi or, equivalently, θ ≥ y0/yi. Clearly, then, θ ≥ ρi and so θ ≥ min

1≤i≤N
ρi.

Since θ was chosen arbitrarily, the result follows. ��

9.9 Exercises

The exercises use the input-output data displayed in Table 9.1.

9.1. Assume the HR model of technology. For Firm 5:

(a) Determine the radial measure of input efficiency.
(b) Determine the radial measure of output efficiency.
(c) Determine the cost efficiency when the prices of capital and labor are

equal.
(d) Determine the allocative efficiency when the prices of capital and labor

are equal.
(e) Determine the linear measure of input efficiency (see Definition 9.4) when

wK = wL = 0.5.
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Table 9.1. Input-output data for Exercises.

Firm Capital Labor Output

1 2 6 50
2 4 2 50
3 5 9 150
4 8 4 200
5 8 8 50

(f) Determine the weighted measure of input efficiency (see Definition 9.8)
when fK(θK) = θ2K , fL(θL) = θ2L, wK = 0.80 and wL = 0.20.

(g) Determine the hyperbolic measure of efficiency.
(h)Write down the linear program to compute the radial measure of input

efficiency.

9.2. Assume the CRS model of technology. For Firm 5:

(a) Determine the radial measure of input efficiency.
(b)Determine the radial measure of output efficiency.
(c) Determine the cost efficiency when the prices of capital and labor are

equal.
(d)Determine the allocative efficiency when the prices of capital and labor

are equal.
(e) Determine the linear measure of input efficiency (see Definition 9.4) when

wK = wL = 0.5.
(f) Determine the weighted measure of input efficiency (see Definition 9.8)

when fK(θK) = θ2K , fL(θL) = θ2L, wK = 0.80 and wL = 0.20.
(g) Determine the hyperbolic measure of efficiency.
(h)Write down the linear program to compute the radial measure of input

efficiency.

9.3. Assume the V RS model of technology. For Firm 5:

(a) Determine the radial measure of input efficiency.
(b)Determine the radial measure of output efficiency.
(c) Determine the cost efficiency when the prices of capital and labor are

equal.
(d)Determine the allocative efficiency when the prices of capital and labor

are equal.
(e) Determine the linear measure of input efficiency (see Definition 9.4) when

wK = wL = 0.5.
(f) Determine the weighted measure of input efficiency (see Definition 9.8)

when fK(θK) = θ2K , fL(θL) = θ2L, wK = 0.80 and wL = 0.20.
(g) Determine the hyperbolic measure of efficiency.
(h)Write down the linear program to compute the radial measure of input

efficiency.
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9.10 Bibliographical Notes

The monographs of Fare et. al. [1985, 1994] provide numerous linear program-
ming models to measure a vast array of efficiency measures. These books also
contain a superb summary of the early pioneering work in this field, which
includes Debreu [1951], Farrell [1957], Farrell and Fieldhouse [1962] and Afriat
[1967, 1972]. See also Russell [1985] and Sengupta [1989]. The Russell mea-
sure of input efficiency was introduced in Fare and Lovell [1978]. Banker [1984]
introduced the concept of the most productive scale size. Varian [1984] also
discusses the nonparametric approach and connects it to Afriat’s earlier works.
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9.11 Solutions to Exercises

9.1 (a) The input possibility set LHR(50) is the convex, input free disposable
hull of the input vectors x1 = (2, 6) and x2 = (4, 2). The line passing through
these two points is L = −2K+10. The labor-capital ratio of x5 is L = K. The
line L = K intersects the line passing through points x1 and x2 at (10/3, 10/3).
Thus, the input efficiency is (10/3)/8 = 5/12 = 0.4166̄.
(b) To determine output efficiency, we must identify the largest value of yi

for which x5 ∈ LHR(yi). Since x5 ≥ x4 it immediately follows that x5 ∈
LHR(200), and so output efficiency is 50/200 = 0.25.
(c) The slope of the isocost line is minus the ratio of the factor prices, which
is −(pK/pL) = −1. The minimum isocost line is a line with this slope that is
tangent to LHR(50). The tangent point is x2 = (4, 2) and thus the isocost line
is L = −K + 6. This line intersects the line L = K at the point (3, 3). Hence,
the cost efficiency is 3/8 = 0.375. (Alternatively, one can normalize prices so
that pK = pL = 1, and so the cost efficiency is the ratio of minimum cost,
which is 6, to the cost of x5, which is 16.)
(d) By definition, cost efficiency equals the product of allocative efficiency
and technical efficiency. Since cost efficiency = 0.375 and technical efficiency
= 5/12, allocative efficiency is 0.9.
(e) All points (K,L) ∈ LHR(50) such that (K,L) ≤ (8, 8) are candidates to
determine this linear measure of input efficiency. Here, the only points that
matter belong to the Efficient Frontier, which is defined by the line segment
joining points x1 and x2. Each point on this line segment is of the form
(K,−2K + 10) (as long as 2 ≤ K ≤ 4). Thus, we seek to

min

{
0.5

(
K

8
+

10− 2K
8

)
: 2 ≤ K ≤ 4

}
.

Since the objective function is linear, at least one of the endpoints defining
the line segment will be an optimal solution. The solution is easily seen to
be x2 = (4, 2) with linear efficiency score of 0.5(4/8 + 2/8) = 0.375. Note
that this point does not equal (10/3, 10/3), which is used to define the radial
measure of input efficiency.
(f) Again, all points (K,L) ∈ LHR(50) such that (K,L) ≤ (8, 8) are candidates
to determine this weighted measure of input efficiency. Here, the only points
that matter belong to the Efficient Frontier, which is defined by the line
segment joining points x1 and x2. Each point on this line segment is of the
form (K,−2K + 10) (as long as 2 ≤ K ≤ 4). Thus, we seek to

min

{
0.8
(
K

8

)2

+ 0.2
(

10− 2K
8

)2

: 2 ≤ K ≤ 4

}
.

This problem is equivalent to minimizing the convex quadratic function
1.6K2− 8K + 20 on [2, 4]. Setting the derivative equal to zero, the solution is
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K = 2.5 and thus L = −2K+10 = 5. The objective function value is 0.15625,
but this does not have a practical interpretation as the radial measure of input
efficiency does.
(g) We shall use (9.24). We have ρi = 1 for i = 1, 2, 5, since y5/yi = 1 in
each of these cases. Consider ρ4. The input possibility set LHR(200) is the
input free disposable hull of x4. The point x5 lies on the boundary of this
set (contained in the line K = 8). Thus, D(x5, 200) = 1 and so ρ4 = 1, too.
(Notice that y5/y4 = 0.25 does not matter here.) Finally, we consider ρ3. To
compute this, we need to determine the input possibility set LHR(150). It is
easily seen to be the convex, input free disposable hull of the input vectors x3

and x4. The line passing through these two points is L = −(5/3)K+52/3. The
labor-capital ratio of x5 is L = K. The line L = K intersects the line passing
through points x3 and x4 at (6.5, 6.5). Thus, D−1(x5, 150) = 6.5/8 = 0.8125.
Since y5/y3 = 1/3, we have that ρ3 = 0.8125. Hence, HHR(x5, y5) = 0.8125.
(h) The linear program to compute the radial measure of input efficiency is

min
{
θ : 2λ1 + 4λ2 + 5λ3 + 8λ4 + 8λ5 ≤ 8θ,

6λ1 + 2λ2 + 9λ3 + 4λ4 + 8λ5 ≤ 8θ,
λ1 + λ2 + λ3 + λ4 + λ5 = 1,

λi ≥ 0, 1 ≤ i ≤ 5
}
.

9.2 (a) The input possibility set LCRS(50) is the convex, input free disposable
hull of the vectors (y5/yi)xi, i = 1, 2, . . . , 5. Here, firms 3 and 4 determine
this set, i.e., LCRS(50) is the convex, input free disposable hull of the vectors
x̂3(50) := (50/150)(5, 9) = (5/3, 3) and x̂4(50) := (50/200)(8, 4) = (2, 1).
The line passing through these two points is L = −6K + 13. The labor-
capital ratio of x5 is L = K. The line L = K intersects the line passing
through points x̂3(50) and x̂4(50) at (13/7, 13/7). Thus, the input efficiency
is (13/7)/8 = 13/56 = 0.2321.
(b) Since the CRS model of technology satisfies constant returns-to-scale, the
output and input efficiencies are the same. Thus, output efficiency is 0.2321.
(c) The slope of the isocost line is minus the ratio of the factor prices, which
is −(pK/pL) = −1. The minimum isocost line is a line with this slope that
is tangent to LCRS(50). The tangent point is x̂4(50) = (2, 1) and thus the
isocost line is L = −K + 3. This line intersects the line L = K at the point
(1.5, 1.5). Hence, the cost efficiency is 1.5/8 = 3/16 = 0.1875. (Alternatively,
one can normalize prices so that pK = pL = 1, and so the cost efficiency is
the ratio of minimum cost, which is 3, to the cost of x5, which is 16.)
(d) By definition, cost efficiency equals the product of allocative efficiency
and technical efficiency. Since cost efficiency = 3/16 and technical efficiency
= 13/56, allocative efficiency is 21/26 = 0.8077.
(e) All points (K,L) ∈ LCRS(50) such that (K,L) ≤ (8, 8) are candidates to
determine this linear measure of input efficiency. Here, the only points that
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matter belong to the Efficient Frontier, which is defined by the line segment
joining points x̂3(50) and x̂4(50). Each point on this line segment is of the
form (K,−6K + 13) (as long as 5/3 ≤ K ≤ 2). Thus, we seek to

min
{

0.5
(
K

8
+

13− 6K
8

)
: 5/3 ≤ K ≤ 2

}
.

Since the objective function is linear, at least one of the endpoints defining
the line segment will be an optimal solution. The solution is easily seen to
be x̂4(50) = (2, 1) with linear efficiency score of 0.5(2/8 + 1/8) = 3/16. Note
that this point does not equal (13/7, 13/7), which is used to define the radial
measure of input efficiency.
(f) Again, all points (K,L) ∈ LCRS(50) such that (K,L) ≤ (8, 8) are candi-
dates to determine this weighted measure of input efficiency. Here, the only
points that matter belong to the Efficient Frontier, which is defined by the
line segment joining points x̂3(50) and x̂4(50). Each point on this line segment
is of the form (K,−6K + 13) (as long as 5/3 ≤ K ≤ 2). Thus, we seek to

min

{
0.8
(
K

8

)2

+ 0.2
(

13− 6K
8

)2

: 2 ≤ K ≤ 4

}
.

This problem is equivalent to minimizing the convex quadratic function 8K2−
31.2K + 33.8 on [5/3, 2]. Setting the derivative equal to zero, the solution is
K = 1.95 and thus L = −6K + 13 = 1.30. The objective function value is
0.0528, but this does not have a practical interpretation as the radial measure
of input efficiency does.
(g) Following Remark 9.21, HCRS(x5, y5) =

√
0.2321 = 0.4818.

(h) The linear program to compute the radial measure of input efficiency is

min
{
θ : 2λ1 + 4λ2 + 5λ3 + 8λ4 + 8λ5 ≤ 8θ,

6λ1 + 2λ2 + 9λ3 + 4λ4 + 8λ5 ≤ 8θ,
50λ1 + 50λ2 + 150λ3 + 200λ4 + 50λ5 ≥ 50,

λi ≥ 0, 1 ≤ i ≤ 5
}
.

9.3 (a) The input possibility set LV RS(50) is identical to LHR(50). Hence,
the radial measure of input efficiency is the same and equals 0.4166̄ = 5/12.
(b) The input possibility set LV RS(200) is the input free disposable hull of
the input vector x4. As x5 ≥ x4 it follows that x5 ∈ LV RS(200). Since 200 is
the highest output, we conclude that the output efficiency is 50/200 = 0.25.
(Not surprisingly, since LV RS(200) is identical to LHR(200).)
(c)-(f) The cost, allocative, linear, and weighted input efficiencies are identical
to those assuming the HR model of technology, since LV RS(50) is identical
to LHR(50).
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(g) The nonlinear program to compute the hyperbolic measure of efficiency is

min
{
θ : 2λ1 + 4λ2 + 5λ3 + 8λ4 + 8λ5 ≤ 8θ,

6λ1 + 2λ2 + 9λ3 + 4λ4 + 8λ5 ≤ 8θ,
50λ1 + 50λ2 + 150λ3 + 200λ4 + 50λ5 ≥ 50/θ,

λ1 + λ2 + λ3 + λ4 + λ5 = 1,

λi ≥ 0, 1 ≤ i ≤ 5
}
.

The optimal solution for λ is λ∗1 = 0.429285, λ∗2 = 0.282860, and λ∗4 =
0.287855. This identifies the point ((4.29285, 4.29285), 93.17821) ∈ T V RS to
which (x5, y5) is being compared. The implied (optimal) θ is 4.29285/8 =
50/93.17821 = 0.53661.

Remark 9.23. With the construction of the two-dimensional projection (see
Chapter 10), this calculation will be almost trivial!

(h) The linear program to compute the radial measure of input efficiency is

min
{
θ : 2λ1 + 4λ2 + 5λ3 + 8λ4 + 8λ5 ≤ 8θ,

6λ1 + 2λ2 + 9λ3 + 4λ4 + 8λ5 ≤ 8θ,
50λ1 + 50λ2 + 150λ3 + 200λ4 + 50λ5 ≥ 50,

λ1 + λ2 + λ3 + λ4 + λ5 = 1,

λi ≥ 0, 1 ≤ i ≤ 5
}
.
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The Two-Dimensional Projection

Much of the conceptual understanding of DEA models of technology and
their corresponding efficiency measures can be understood by examining a
two-dimensional projection embedded in the technology. A two-dimensional
projection is an example of a well-behaved single-input, single-output tech-
nology. We shall show how to compute this projection, thereby permitting a
graphical determination of the input, output, and joint input-output efficiency
measures from a single graph in the plane.

10.1 Definition

Definition 10.1. The two-dimensional projection associated with
(x0, y0) ∈ T is the set

T (x0, y0) := {(α, β) ∈ IR2
+ : (αx0, βy0) ∈ T }.

The two-dimensional projection is defined relative to a particular point in the
technology. It is never empty as it always contains the point (1, 1).

The variable α defines an input scale on x0 and the variable β defines
an output scale on y0. As such, it will be useful in what follows to think
of the two-dimensional projection as defining a single-input, single-output
technology with α denoting the level of input and β denoting the level of
output. To formalize this interpretation, define

P(x0, y0) := {(x, y) ∈ IRn
+ × IRm

+ :

x = αx0, y = βy0 for some (α, β) ∈ IR2
+}. (10.1)

Each point in P (x0, y0) can be identified with a point in the (α, β)-plane.
With this identification in mind,

T (x0, y0) = P(x0, y0) ∩ T . (10.2)
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Technically, P(x0, y0) ∩ T ⊂ IRn
+ × IRm

+ , but since every point in this set is
uniquely characterized by two scalars, α and β, we may think of it as a subset
of the two-dimensional (α, β) space. With this understanding there is no need
to formally write down this identification.

10.2 Characterizations

The basic properties of the two-dimensional section are inherited from the
technology itself.

Proposition 10.2. A two-dimensional projection inherits the properties of
closure, convexity and free disposability from the technology set T .1

Proof. The properties of closure and convexity are a direct consequence of the
fact that the set T ∩P(x0, y0) is both closed and convex. The property of free
disposability is obvious. ��

Definition 10.3. The Efficient Frontier of the two-dimensional pro-
jection T (x0, y0) is the collection of points (α, β) ∈ T (x0, y0) such that there
does not exist an (α′, β′) ∈ T (x0, y0) for which α′ ≤ α and β′ ≥ β and
(α′, β′) �= (α, β).

Proposition 10.4. If the technology set T is closed and exhibits free dispos-
ability, then each two-dimensional projection T (x0, y0) is the free disposable
hull of its efficient frontier.

We proceed to characterize the two-dimensional projections derived from
the V RS, CRS and HR technologies. Define

αm := min{α : (α, β) ∈ T V RS(x0, y0)}, (10.3)
βm := max{β : (αm, β) ∈ T V RS(x0, y0)}, (10.4)
βM := max{β : (α, β) ∈ T V RS(x0, y0)}, (10.5)
αM := min{α : (α, βM ) ∈ T V RS(x0, y0)}. (10.6)

The maxima and minima are achieved since (i) the output constraints, y(λ) ≥
βy0, guarantee there is a finite bound on β, and (ii) T V RS(x0, y0) is closed
(Proposition 10.2).

Definition 10.5. The production function ΦV RS
(x0,y0)

: [αm, αM ] → IR+ de-
rived from the two-dimensional projection associated with the VRS
technology is

ΦV RS
(x0,y0)

(α) := max{β : (α, β) ∈ T V RS(x0, y0)}.
1 A two-dimensional projection exhibits free disposability whenever (α, β) ∈
T (x0, y0) and α′ ≥ α and β′ ≤ β, then (α′, β′) ∈ T (x0, y0), too.
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Let
Gr(ΦV RS

(x0,y0)
) := {(α,ΦV RS

(x0,y0)
(α))}

denote the graph of the function ΦV RS
(x0,y0)

(·). The following proposition follows
directly from the definitions.

Proposition 10.6. Gr(ΦV RS
(x0,y0)

) is the Efficient Frontier of T V RS(x0, y0) and
T V RS(x0, y0) is the free disposable hull of Gr(ΦV RS

(x0,y0)
).

Define the convex polytope2

C := {(λ, α, β) ≥ 0 : x(λ) ≤ αx0, y(λ) ≥ βy0,
e(λ) = 1, α ≤ αM , β ≤ βM}. (10.7)

Let P (·) denote the projection of IRN
+ × IR+ × IR+ onto IR+ × IR+; that is, if

c = (λ, α, β), then P (c) = (α, β). It follows from the definitions that

T V RS(x0, y0) = P (C). (10.8)

Proposition 10.7. The production function ΦV RS
(x0,y0)

(·) is nondecreasing, con-
cave and piecewise linear. If ΦV RS

(x0,y0)
(·) is not constant, then it is an increasing

function.

Proof. Strong disposability of input immediately implies that ΦV RS
(x0,y0)

(·) is
nondecreasing. As for concavity, pick distinct points αi ∈ [αm, αM ], i = 1, 2,
and a λ ∈ [0, 1]. By definition, for each i = 1, 2,

(αi, Φ
V RS
(x0,y0)

(αi)) ∈ T V RS(x0, y0).

Since T V RS(x0, y0) is convex,
(
λα1 + (1 − λ)α2, λΦ

V RS
(x0,y0)

(α1) + (1− λ)ΦV RS
(x0,y0)

(α2)
)
∈ T V RS(x0, y0),

which immediately implies that

ΦV RS
(x0,y0)

(λα1 + (1 − λ)α2)) ≥ λΦV RS
(x0,y0)

(α1) + (1− λ)ΦV RS
(x0,y0)

(α2).

This establishes concavity of ΦV RS
(x0,y0)

(·).
It remains to establish that ΦV RS

(x0,y0)
(·) is piecewise linear and an increasing

function if it is not constant. Let V denote the subset of extreme points of
T V RS(x0, y0) that belong to Gr(ΦV RS

(x0,y0)
). The set V is nonempty since it

contains the point (αM , βM ). It follows from (10.8) that each v ∈ V must
be the projection of some extreme point of C. Since C is a polytope, it has
only a finite number of extreme points. Consequently, the set V is finite. Since
2 The constraint e(λ) = 1 can be expressed via two inequalities, namely, e(λ) ≥ 1

and e(λ) ≤ 1.
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Gr(ΦV RS
(x0,y0)

) contains only a finite number of extreme points, it consists of a
sequence of line segments, the endpoints of which belong to V . This shows
that ΦV RS

(x0,y0)
(·) is piecewise linear.

Finally, suppose ΦV RS
(x0,y0)

(·) is not constant and is not increasing. Given
that ΦV RS

(x0,y0)
(·) is nondecreasing, there must exist α1 < α2 such that

ΦV RS
(x0,y0)

(α1) = ΦV RS
(x0,y0)

(α2) := β.

By definition of αM , βM , it must be the case that β < βM . The line seg-
ment joining (α1, β) to (αM , βM ) must belong to T V RS(x0, y0). Since the line
segment also lies above the point (α2, β), it follows that β < Φ(α2), a clear
contradiction. ��

Remark 10.8. T V RS(x0, y0) is a convex polyhedron, since it is the intersection
of the halfspaces defined by the lines containing adjacent points in V and the
nonnegativity constraints on α and β. The points in V define the vertices of
this convex polyhedron.

We now provide a geometric characterization of T CRS(x0, y0).

Proposition 10.9. The two-dimensional projection associated with the CRS
technology is the constant returns-to-scale hull of the two-dimensional projec-
tion associated with the V RS technology, i.e.,

T CRS(x0, y0) = CRS(T V RS(x0, y0)).

Moreover, there exists an m > 0 such that

T CRS(x0, y0) = {(α, β) ∈ IR2 : 0 ≤ β ≤ mα},

and the line y = mx is tangent to the boundary of T V RS(x0, y0).

Proof. It follows from the definitions that

T V RS(x0, y0) = {(α, β) : x(λ) ≤ αx0, y(λ) ≥ βy0, e(λ) = 1, λi ≥ 0},
T CRS(x0, y0) = {(α, β) : x(μ) ≤ αx0, y(μ) ≥ βy0, μi ≥ 0}.

Consequently, if (α, β) ∈ T V RS(x0, y0) and s > 0, then s(α, β) ∈ T CRS (set
μi = sλi). This shows that

CRS(T V RS(x0, y0)) ⊂ T CRS(x0, y0).

Conversely, if (α, β) ∈ T CRS(x0, y0) and μ �= 0, then (1/
∑

i μi)(α, β) ∈
T V RS . This shows that

T CRS(x0, y0) ⊂ CRS(T V RS(x0, y0)),

which establishes the first claim.
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Since T CRS(x0, y0) is a constant returns-to-scale, free disposable technol-
ogy in IR2

+,
T CRS(x0, y0) = {(α, β) : 0 ≤ β ≤ m̂α}

for some finite positive value m̂. Since the constant returns-to-scale technology
T CRS(x0, y0) contains T V RS(x0, y0), it must contain C, and so m̂ ≥ m. It
remains to show the reverse inequality m̂ ≤ m. Pick a point (α, β) for which
β = m̂α, α �= 0. Since (α, β) ∈ T CRS(x0, y0) there exists a nonnegative
λ for which x(λ) ≤ αx0 and y(λ) ≥ βy0. Obviously, λ �= 0. Now define
s := (

∑
i λi)−1 and μi := sλi for each i. Note that

∑
i μi = 1. It follows that

(sα, sβ) ∈ T V RS(x0, y0) and that m̂ ≤ m, as required. ��

Proposition 10.10. Fix (x0, y0) ∈ T HR. The two-dimensional projection
T HR(x0, y0) is the free disposable hull of the set {(αi, βi), 1 ≤ i ≤ N}, where
(αi, βi) := (D(x0, yi)−1, yi/y0) for each i.

Proof. It follows from the definition of the input distance function that each
(αi, βi) ∈ T HR(x0, y0). Consequently, the free disposable hull of the (αi, βi)
is contained in T HR(x0, y0). It remains to show the reverse inclusion. Pick
an (α, β) ∈ T HR(x0, y0). Since αx0 ∈ LHR(βy0), obviously α ≥ D(x0, yi)−1.
Moreover, the HR technology implies that LHR(βy0) = LHR(yi) for some
index i and so β ≤ yi/y0. Thus, (α, β) belong to the free disposable hull of
(αi, βi), and the result now follows. ��

10.3 Computing Efficiency

Given the two-dimensional projection the computation of the radial measures
of input and output efficiency are easily obtained via the following identities:

RI(x0, y0) := min{α : (α, 1) ∈ T (x0, y0)}, (10.9)
RO(x0, y0) := [max{β : (1, β) ∈ T (x0, y0)}]−1. (10.10)

Remark 10.11. We have previously argued that the input and output effi-
ciencies associated with T CRS are equal. This fact follows directly from the
two-dimensional projection, since (RI(x0, y0), 1) and (1,RO(x0, y0)−1) must
both lie on the line y = m̂x. In particular,

m̂ = RI(x0, y0)−1 = RO(x0, y0)−1.

The hyperbolic measure of efficiency can also be easily computed from the
two-dimensional projection. This is because

H(x0, y0) = max{α : (α, 1/α) ∈ T (x0, y0)}.

To graphically compute the hyperbolic measure, simply find the point of in-
tersection of the curve β = 1/α with the boundary of the two-dimensional
projection.
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10.4 Scale Characterizations

Definition 10.12. The most productive scale size (mpss) is the scalar
value

s∗ := max{β/α : (αx0, βy0) ∈ T V RS}.

Proposition 10.13. The reciprocal of the mpss equals the input and output
efficiencies for T CRS.

Proof. Let m̂ be the slope of the line y = m̂x that characterizes T CRS(x0, y0).
Clearly, the mpss equals m̂, andRI(x0, y0) = m̂−1, as noted in Remark 10.11.

For the following definition, let (αi, βi), i = 1, 2, denote the endpoints
of the line segment contained in the intersection of T V RS(X0, Y0) with
T CRS(X0, Y0). Without loss of generality, we assume that (α1, β1) ≤ (α2, β2).
(Typically, the line segment collapses to a single point, in which case β1 = β2.)

Definition 10.14. Assume that (1, 1) lies on the boundary of T V RS(x0, y0).
If 1 < β1, then (x0, y0) exhibits increasing returns to scale. If 1 > β2, then
(x0, y0) exhibits decreasing returns to scale. Finally, if β1 ≤ 1 ≤ β2, then
(x0, y0) exhibits constant returns to scale.

10.5 Example

The example data are displayed in Figure 4.4 on p. 61, which was used to
generate the input possibility sets for the HR, CRS and V RS technolo-
gies displayed in Figures 4.5, 4.7 and 4.8, respectively. We shall explain how
to generate the two-dimensional projection associated with the data point
(x2, y2) = ((5, 4), 10) for each technology.

We begin with the V RS technology. The proof of Proposition 10.6 estab-
lished that T V RS(x2, y2) is a convex polyhedron and is the free disposable
hull of Conv(V ), where V denotes the finite set of extreme points or vertices
of T V RS(x2, y2). Obviously, if we can generate a finite set V ′ that contains V ,
then T V RS(x2, y2) will be the free disposable hull of Conv(V ′), too. We shall
compute a set of points that contains all vertices of the C defined in (10.7),
and take V ′ to be the projection of these points onto the (α, β) plane. Since
each vertex of T V RS(x2, y2) is the projection of some vertex of C, it directly
follows that V ⊆ V ′. One may think of the set V ′ as candidate vertices.

The set T V RS(x2, y2) is the projection of the set C onto the (α, β) plane
(see Definitions 10.7 and 10.8). Let r ∈ IR2

+ denote the vector of slack variables
associated with the input constraints defined so that x(λ) + r = αx0, and let
q ≥ 0 denote the slack variable associated with the output constraint defined
so that y(λ)− q = βy0. Define

Ĉ := {(α, β, λ, r, q) ≥ 0 : x(λ)+r = αx0, y(λ)−q = βy0, e(λ) = 1}. (10.11)
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Clearly, there is a one-to-one correspondence between the points (α, β, λ) ∈ C
to the points (α, β, λ, r, q) ∈ Ĉ. Let p denote a vertex of C and let p̂ denote
the point in Ĉ that corresponds to p. Since there are four constraints that
define Ĉ (two inputs, one output, and the constraint on λ), the vector p̂ will
have at most four positive coordinates.3 Since the coordinates α and β of p̂
will be positive, we conclude that at most two of the λi components of p̂ can
be positive.

First consider the case when two of the λi components of p̂ are positive, say
components k and l. In this case, none of the slack variables can be positive;
in particular, this means that x(λ) = λkxk + λlxl = αx2 and y(λ) = βy2.
In order for x(λ) = αx2, exactly one of the vectors xk or xl must lie above
the ray R(x2) = {sx : s ≥ 0} while the other vector must lie below the
ray R(x2). (Neither point can lie on the ray; otherwise, both points would
lie on the ray, which in turn would imply that p is not a vertex.) In Figure
10.1, there are three points that lie above the ray (points 3, 5 and 6) and two
points that lie below the ray (points 1 and 4). Consequently, there are six line
segments that will intersect the ray as shown in the figure. The intersection
of each line segment with the ray determines a unique λ vector (and thus α
and β) that in turn generates a possible vertex of C. Table 10.1 shows the λ
values as well as the corresponding α values and β values for the V RS and
HR technologies.

Example 10.15. Consider the line segment joining points 1 and 6. It in-
tersects the ray at point x16 = 0.45(4, 1) + 0.55(4, 5) = (4, 3.2). Since
(4, 3.2) = 0.8(5, 4), the α value equals 0.80. Under the V RS technology
the corresponding y value is 0.45(10) + 0.55(30) = 21, which implies that
βV RS = 21/10 = 2.10. Under the more conservative HR technology, the cor-
responding y value is the minimum of the y-values of 10 and 30, and this is
why βHR = 1.0.

It is possible that a vertex p has only one positive λi value. To cover this
possibility, for each index i we set λi = 1 and find the smallest value of αi so
that xi ≤ αix2. Obviously, αi = max{xk

i /x
k
2 , k = 1, 2}. The corresponding

y-value is simply yi. We denote such points by x+
i and the relevant data are

shown in Table 10.1.

Example 10.16. Consider x4 = (3, 2). Here, α4 = max{3/5, 2/4} = 0.60. Of
course, (3, 2) ≤ 0.60(5, 4) = (3, 2.4) := x+

4 with equality in the first input.
The y-value here is y4 = 14 and so βV RS = βHR = 1.40.

The (α, β) points in Table 10.1 corresponding to the V RS and HR
technologies are plotted in Figure 10.2, which also depicts T V RS(x2, y2),
T HR(x2, y2) and T CRS(x2, y2), as well as the radial input and output effi-
ciency measures and the hyperbolic measure of efficiency.
3 A well-known fact of linear programming. See Theorem C.29, p. 468.
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Fig. 10.1. Graphical determination of the two-dimensional projection for data point
2.

Table 10.1. Computing the two-dimensional projection.

λ1 λ2 λ3 λ4 λ5 λ6 α βV RS βHR

x13 0.4884 0.5116 0.4419 1.102 1.000
x43 0.1600 0.8400 0.5200 1.368 1.200
x45 0.9286 0.0714 0.5714 1.443 1.400
x15 0.7027 0.2973 0.6216 1.297 1.000
x46 0.4737 0.5263 0.7053 2.242 1.400
x16 0.4500 0.5500 0.8000 2.100 1.000
x+

1 1.0000 0.8000 1.000 1.000
x2 1.000 1.0000 1.000 1.000
x+

3 1.0000 0.6250 1.200 1.200
x+

4 1.000 0.6000 1.400 1.400
x+

5 1.0000 1.5000 2.000 2.000
x+

6 1.0000 1.2500 3.000 3.000

Remark 10.17. The boundary of T V RS(x2, y2) (excluding the points where
β = 0) is characterized by a finite number of adjacent line segments whose
slopes are decreasing. The slope of the first line segment is infinity—this will
always be the case when the yi > 0—and the slope of the last line segment
(technically, a ray) is zero.
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Fig. 10.2. The two-dimensional section for data point 2.

Remark 10.18. The two-dimensional projection T HR(x2, y2) is not convex.
The input possibility sets are each convex, however, as they should. Each
two-dimensional projection of an HR technology will have the “staircase”
shape as depicted in the figure.

As shown in the figure, the points (0.44, 1) and (1, 2.5) lie on the boundary
of T V RS(x2, y2), and so RIV RS(x2, y2) = 0.44 and ROV RS(x2, y2) = 0.40.
The vertex of T V RS(x2, y2) with the maximum β to α ratio corresponds to the
point (0.64, 1.69). Thus, the mpss is 1.69/0.64 = 2.64 and RICRS(x2, y2) =
ROCRS(x2, y2) = 0.64/1.69 = 0.38. With respect to the HR technology,
RIHR(x2, y2) = 0.44 and ROHR(x2, y2) = 0.71.

10.6 Extensions

It is possible to construct other useful two-dimensional projections.

1. Partial productivity. Fix an (x, y) ∈ T V RS . For each input i and output
j, define the set
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{(α, β) : ((x1, . . . , αxi, . . . , xn), (y1, . . . , βyj , . . . , ym)) ∈ T V RS}.

2. Rate of technical substitution. Fix an (x, y) ∈ T V RS . For each input i and
input j, i < j, and define the set

{(α, β) : ((x1, . . . , αxi, . . . , βxj , . . . , xn), y)) ∈ T V RS}.

3. Rate of output substitution. Fix an (x, y) ∈ T V RS . For each output i and
output j, i < j, and define the set

{(α, β) : (x, (y1, . . . , αyi, . . . , βyj, . . . , ym)) ∈ T V RS}.

10.7 Pivoting Algorithm

In this section, we describe a pivoting algorithm to compute a set of extreme
points E ⊂ T V RS(x0, y0) such that

T V RS(x0, y0) = FDH(Conv(E)).

In lieu of using general notation, we shall describe the algorithm for the ex-
ample data shown in Figure 10.1 and reference point (x0, y0) = (x2, y2). It
will be useful to be familiar with the terminology and results presented in
Appendix C.5.

Here is an overview. We know from our previous calculations that the
vertices for the two-dimensional section are shown in Figure 10.2. Presented
in northeasterly order, they are (0.44, 0), (0.44, 1.10), (0.52, 1.37), (0.64, 1.69),
(0.80, 2.10) and (1.25, 3.00). The algorithm proceeds in two phases, I and II,
respectively.

Phase I of the algorithm determines αm, the minimum value of α, equal to
0.44 in the example. As explained in Appendix C.5, it is sufficient to examine
only the vertices of the convex polyhedron Ĉ, that is, the α value associated
with one of the vertices of C will be the minimum value of α we seek. There
are too many vertices to examine one-by-one. The simplex algorithm of lin-
ear programming generates “adjacent” vertices whose corresponding α values
continue to decrease until the optimum is found. Moving from one vertex to
an adjacent vertex is known as executing a pivot operation.

At the end of Phase I, a vertex of Ĉ whose projection onto the two-
dimensional section is (0.44, 0) is found. Phase II then executes a sequence of
pivot operations that will generate a sequence of vertices of Ĉ whose respective
projections onto the two-dimensional projection are (0.44, 1.10), (0.52, 1.37),
(0.64, 1.69), (0.80, 2.10) and (1.25, 3.00).

Before we describe Phases I and II, we begin by describing the relationship
between a vertex of Ĉ and the so-called simplex tableau, and then describe
how one executes a pivot operation.
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10.7.1 Vertices and the Simplex Tableau

The equations that define the unprojected two-dimensional section Ĉ in
(10.11) for the example data may be expressed in the canonical polyhedral
set form Ax = b given by

2
664

5.0 0.0 −4.0 −5.0 −0.5 −3.0 −1.0 −4.0 −1.0 0.0 0.0
4.0 0.0 −1.0 −4.0 −2.5 −2.0 −6.0 −5.0 0.0 −1.0 0.0
0.0 10.0 −10.0 −10.0 −12.0 −14.0 −20.0 −30.0 0.0 0.0 1.0
0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0

3
775

0
BBBBBB@

α
β
λ
r1

r2

q1

1
CCCCCCA

=

0
BB@

0
0
0
1

1
CCA ,

(10.12)

where for notational convenience we let λ = (λ1, λ2, λ3, λ4, λ5, λ6)T . The ini-
tial basis is set to B1 = {α, r2, q1, λ2}. The basis matrix B1 corresponding to
this basis is4

B1 =

⎡
⎢⎢⎣

5.0 0.0 0.0 −5.0
4.0 −1.0 0.0 −4.0
0.0 0.0 1.0 −10.0
0.0 0.0 0.0 1.0

⎤
⎥⎥⎦ , (10.13)

whose inverse is

B−1
1 =

⎡
⎢⎢⎣

0.2 0.0 0.0 1.0
0.8 −1.0 0.0 0.0
0.0 0.0 1.0 10.0
0.0 0.0 0.0 1.0

⎤
⎥⎥⎦ . (10.14)

By multiplying both sides of Ax = b by B−1
1 , the new canonical polyhedral

set form is
(B−1

1 A)x = B−1
1 b,

which is represented in the first four rows of Table 10.2. The symbol “RHS”
stands for the right-hand side of the equality constraints and represents B−1

1 b.
In lieu of writing the variable names next to the numbers (as is usually writ-
ten in equation form), the variable names are given in the column headings.
This representation is standard (for those familiar with the simplex algorithm
in linear programming) and each set of four rows in Table 10.2 is called a
tableau.

Remark 10.19. The four columns associated with the basis, namely, α, λ2, r2
and q1, are marked in bold. These four columns, when permuted to match
the order of the basis B1, namely, α, r2, q1 and λ2, correspond to the 4 × 4
identity matrix. This is not surprising, as B−1

1 B1 = I.

Each tableau identifies a vertex of the convex polyhedron Ĉ. In the stan-
dard form (see Definition C.25, p. 467), all variables are constrained to be
4 A basis matrix is an ordered subset of the columns of the A matrix corresponding

to the ordered list of the variables in the basis.
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Table 10.2. Tableaux associated with Phase I.

Basis α β λ1 λ2 λ3 λ4 λ5 λ6 r1 r2 q1 RHS

α 1.00 0.00 0.20 0.00 0.90 0.40 0.80 0.20 -0.20 0.00 0.00 1.00

r2 0.00 0.00 -2.20 0.00 2.10 -0.40 5.20 1.80 -0.80 1.00 0.00 0.00
q1 0.00 10.00 0.00 0.00 -2.00 -4.00 -10.00 -20.00 0.00 0.00 1.00 10.00
λ2 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 1.00

α 1.00 0.00 1.14 0.00 0.00 0.57 -1.43 -0.57 0.14 -0.43 0.00 1.00
λ3 0.00 0.00 -1.05 0.00 1.00 -0.19 2.48 0.86 -0.38 0.48 0.00 0.00
q1 0.00 10.00 -2.09 0.00 0.00 -4.38 -5.05 -18.29 -0.76 0.95 1.00 10.00

λ2 0.00 10.00 2.05 1.00 0.00 1.19 -1.48 0.14 0.38 -0.48 0.00 1.00

α 1.00 0.00 0.00 -0.56 0.00 -0.09 -0.60 -0.65 -0.07 -0.16 0.00 0.44
λ3 0.00 0.00 0.00 0.51 1.00 0.42 1.72 0.93 -0.19 0.23 0.00 0.51
q1 0.00 10.00 0.00 1.02 0.00 -3.16 -6.56 -18.14 -0.37 0.47 1.00 11.03
λ1 0.00 0.00 1.00 0.49 0.00 0.58 -0.72 0.07 0.19 -0.23 0.00 0.49

non-negative. Only the basic variables may have positive values. Non-basic
variables are all variables not in the basis. Each non-basic variable has value
equal to zero. The values of the variables associated with the vertex in the
first tableau in Table 10.2 are (α, r2, q1, λ2) = (1.00, 0.00, 10.00, 1.00) and
(β, λ1, λ3, λ4, λ5, λ6, r1) = (0, 0, 0, 0, 0, 0, 0).

10.7.2 Pivot Operation

Basis B1 and B2 are adjacent if their respective list of variables differ in exactly
one place. For example, the bases in the first and second tableaus in Table
10.2 are B1 = (α, r2, q1, λ2) and B2 = (α, λ3, q1, λ2), respectively. They are
adjacent since their entries differ only in the second element. Moving from a
vertex to an adjacent vertex is executing a pivot operation. In the parlance of
the simplex algorithm, to obtain B2 from B1 one “pivots in” the variable λ3

and “pivots out” the variable r2.
Executing a pivot operation is best illustrated by showing how to generate

the 2nd tableau in Table 10.2 from the first tableau. The basis matrix B2

corresponding to this basis (constructed from the columns in the first tableau
associated with the same order as the basis) is

B2 =

⎡
⎢⎢⎣

1.00 0.90 0.00 0.00
0.00 2.10 0.00 0.00
0.00 −2.00 1.00 0.00
0.00 1.00 0.00 1.00

⎤
⎥⎥⎦ , (10.15)

whose inverse is
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B−1
2 =

⎡
⎢⎢⎢⎢⎣

1 − 0.90
2.10 0 0

0 1
2.10 0 0

0 − 2.00
2.10 0 0

0 − 1.00
2.10 0 1

⎤
⎥⎥⎥⎥⎦ . (10.16)

The second tableau (viewed as a matrix) is obtained by multiplying the first
tableau by B−1

2 .

Remark 10.20. Generating the second tableau from the first tableau can also
be obtained by applying a sequence of familiar row operations to a system of
linear equations. In effect, to obtain the second tableau we seek to transform
the column associated with the variable λ3, as follows:

⎛
⎜⎜⎝

0.90
2.10
−2.00
1.00

⎞
⎟⎟⎠ =⇒

⎛
⎜⎜⎝

0.00
1.00
0.00
0.00

⎞
⎟⎟⎠ . (10.17)

To obtain a zero in the first element in the column multiply the second row by
−0.90/2.10 and add it to the first row. Similarly, to obtain zeroes in the third
and fourth elements in the column (i) multiply the second row by 2.00/2.10
and add it to the third row and (ii) multiply the second row by −1.00/2.10
and add it to the fourth row. To obtain a one in the second row, divide the
second row by 2.10.

The third basis (α, λ3, q1, λ1) is obtained by pivoting in the variable λ1 for
the variable λ2. Accordingly, the basis matrix B3 corresponding to this basis
(constructed from the columns in the second tableau associated with the same
order as the basis) is

B3 =

⎡
⎢⎢⎣

1.00 0.00 0.00 1.14
0.00 1.00 0.00 −1.05
0.00 0.00 1.00 −2.09
0.00 0.00 0.00 2.05

⎤
⎥⎥⎦ , (10.18)

whose inverse is

B−1
3 =

⎡
⎢⎢⎢⎢⎣

1 0 0 − 1.14
2.05

0 1 0 1.05
2.05

0 0 1 2.09
2.05

0 0 0 1
2.05

⎤
⎥⎥⎥⎥⎦ . (10.19)

The third tableau (viewed as a matrix) is obtained by multiplying the second
tableau by B−1

3 .
The pivot element is the number in each tableau inside the square. It is

associated with the column of the variable entering the basis and the row of
the variable that is leaving the basis. How does one select the pivot element?
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Fix the variable that has been selected to enter the basis. We must decide
which variable will leave the basis. In the standard form of each tableau,
the RHS values must always be non-negative. Given this requirement, the
interpretation (provided in Remark 10.20) of the pivot operation as a sequence
of row operations shows that the pivot element must always be positive. In
the column associated with λ3 in the first tableau there are two possible pivot
elements, namely, those associated with variables r2 and λ2, respectively. If
one had chosen the pivot element associated with λ2, the resulting value of the
right-hand side for r2 would be -1.00, which is not allowed. In order to ensure
that all right-hand side values are non-negative, one performs the ratio test
to select the pivot element: for each possible pivot element (in the column of
the variable entering the basis) take the ratio of the right-hand side value to
the pivot element and select the pivot element that has the smallest value.
Here, one would compute the ratios 0.00/2.10 and 1.00/1.00 and therefore
the ratio test would require that the first one be chosen as the pivot element.
(Ties can be broken arbitrarily.)

10.7.3 Phase I

The purpose of Phase I of the algorithm is to compute αm, the minimum value
of α (see Definition 10.3). This problem is a linear programming problem.
As explained in the overview at the beginning of this section, the algorithm
executes a sequence of pivot operations.

We now describe how to select the variable that will enter the basis. (Once
this has been determined the ratio test will determine which variable must
leave the basis.) We know the pivot element must have a positive value. If we
select a column whose entry in the α row is positive, the resulting value for the
variable α cannot increase. If all of the entries in the RHS column are positive,
the resulting α value will decrease. For example, as a result of executing the
pivot to obtain the second tableau in Table 10.2, the new RHS value for α is
1.00 + (−0.90/2.10)(0.00) = 1.00. The value for α did not decrease because
the RHS value was zero. Now consider the pivot to obtain the third tableau:
the new RHS value for α is

1.00 + (−1.14/2.05)(1.00) = 0.44,

which is lower than before because the RHS value was positive. We conclude
that if the goal is to decrease the value of α, then only those columns whose
entry in the α row is positive should be considered.5 In principle, any valid
column will work; in practice, one selects the column with the largest (abso-
lute) value, which generates the steepest (local) change. Finally, if there are
no more columns with positive entries, then a vertex has been found that
achieves the lowest α value.
5 On the other hand, if the goal is to decrease the value of α, then only those

columns whose entry in the α row is negative should be considered.
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To summarize, here are the steps associated with Phase I to find the min-
imum α value:

Step 1. Select the first basis and set up the first tableau as previously de-
scribed in the first subsection.

Step 2. Select the next pivot element.

(a) Pick the column (variable to enter the basis) that has the largest value
in the entry associated with the α row (here the first row). Break ties
arbitrarily. If there is no such column, Phase I is complete.

(b) Perform the ratio test as described above. Consider only those ratios as-
sociated with positive entries. If there is no such entry then the problem
would be unbounded, which may happen in general but not for the prob-
lems we consider here. Select the row (variable to leave the basis) that
achieves the minimum ratio.

Step 3. Execute the pivot. Form the basis matrix associated with the basis
variables as illustrated above. Make sure to maintain the order. Multiply the
tableau (viewed as a matrix) by the inverse of the basis matrix. Alternatively,
execute the row operations as described in Remark 10.20.

Step 4. Repeat Steps 2 and 3.

At the end of Phase I the first vertex of the two-dimensional section has
been found. In our example, it is the point (0.44, 0) = (αm, 0). The value for
β will always be zero as this variable never enters the basis in Phase I.

10.7.4 Phase II

Phase II generates a sequence of vertices that can be used to generate the
various two-dimensional sections. Please refer to Table 10.3, which shows the
sequence of tableaus so generated. (The first tableau in this table is identical
to the last tableau of Phase I, except that the second and third rows have
been interchanged so that the α and β rows will appear consecutively.)

The first step in Phase II is to obtain the point (αm, βm), which equals
(0.44, 1.10) in the example (see Definition 10.4). This is achieved by automat-
ically selecting the variable β to enter the basis. After executing the pivot the
second tableau in Table 10.3 is generated.

The subsequent steps of Phase II are identical to Phase I with one crit-
ical exception, namely, the choice of which variable to enter the basis. This
is because the objective now is not to minimize the value of α. Let (α1, β1)
denote the current vertex and let (α2, β2) denote a candidate adjacent vertex.
Intuitively, the goal should be to find the adjacent vertex (α2, β2) that will
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Table 10.3. Tableaux associated with Phase II.

Basis α β λ1 λ2 λ3 λ4 λ5 λ6 r1 r2 q1 RHS

α 1.00 0.00 0.00 -0.56 0.00 -0.09 -0.60 -0.65 -0.07 -0.16 0.00 0.44

q1 0.00 10.00 0.00 1.02 0.00 -3.16 -6.56 -18.14 -0.37 0.47 1.00 11.03
λ3 0.00 0.00 0.00 0.51 1.00 0.42 1.72 0.93 -0.19 0.23 0.00 0.51
λ1 0.00 0.00 1.00 0.49 0.00 0.58 -0.72 0.07 0.19 -0.23 0.00 0.49

α 1.00 0.00 0.00 -0.56 0.00 -0.09 -0.60 -0.65 -0.07 -0.16 0.00 0.44
β 0.00 1.00 0.00 0.10 0.00 -0.31 -0.66 -1.81 -0.04 0.05 0.10 1.10
λ3 0.00 0.00 0.00 0.51 1.00 0.42 1.72 0.93 -0.19 0.23 0.00 0.51

λ1 0.00 0.00 1.00 0.49 0.00 0.58 -0.72 0.07 0.19 -0.23 0.00 0.49

α 1.00 0.00 0.16 -0.48 0.00 0.00 -0.72 -0.64 -0.04 -0.02 0.00 0.52
β 0.00 1.00 0.54 0.37 0.00 0.00 -1.05 -1.78 0.06 -0.08 0.10 1.37

λ3 0.00 0.00 -0.72 0.16 1.00 0.00 2.24 0.88 -0.32 0.40 0.00 0.16
λ4 0.00 0.00 1.72 0.84 0.00 1.00 -1.24 0.12 0.32 -0.40 0.00 0.84

α 1.00 0.00 -0.36 -0.36 0.73 0.00 0.91 0.00 -0.27 0.09 0.00 0.64
β 0.00 1.00 -0.91 0.69 2.02 0.00 3.47 0.00 -0.58 0.73 0.10 1.69
λ6 0.00 0.00 -0.82 0.18 1.14 0.00 2.55 1.00 -0.36 0.45 0.00 0.18

λ4 0.00 0.00 1.82 0.82 -0.14 1.00 -1.55 0.00 0.36 -0.45 0.00 0.82

α 1.00 0.00 0.00 -0.20 0.70 0.20 0.60 0.00 -0.20 0.00 0.00 0.80
β 0.00 1.00 0.00 1.10 1.95 0.50 2.70 0.00 -0.40 0.50 0.10 2.10
λ6 0.00 0.00 0.00 0.55 1.08 0.45 1.85 1.00 -0.20 0.25 0.00 0.55

λ1 0.00 0.00 1.00 0.45 -0.08 0.55 -0.85 0.00 0.20 -0.25 0.00 0.45

α 1.00 0.00 1.00 0.25 0.62 0.75 -0.25 0.00 0.00 -0.25 0.00 1.25
β 0.00 1.00 2.00 2.00 1.80 1.60 1.00 0.00 0.00 0.00 0.20 3.00
λ6 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 1.00
r1 0.00 0.00 5.00 2.25 -0.38 2.75 -4.25 0.00 1.00 -1.25 0.00 2.25

maximize the slope (β2 − β1)/(α2 − α1) of the line segment joining these ad-
jacent vertices. It remains to figure out how to know which column (variable)
to select to achieve this objective.

The coordinates of the vertex associated with the second tableau in Table
10.3 is (0.44, 1.10). The new vertex in the third tableau is (0.52, 1.37), which is
obtained by executing the pivot associated with the pivot element 0.58 shown
in the tableau. Notice that the new α value is

0.52 = 0.44 +
(0.09

0.58

)
0.49, (10.20)

and the new β value is

1.37 = 1.10 +
(0.31

0.58

)
0.49. (10.21)



10.8 Exercises 183

The slope of the line segment joining these adjacent vertices is

Δβ

Δα
:=

1.37− 1.10
0.52− 0.44

=
(0.31
0.58 )0.49

(0.09
0.58 )0.49

=
0.31
0.09

. (10.22)

We make two observations. First, in general, the slope of the line segment
joining adjacent vertices is the ratio of the entries in the β row to the α row,
i.e., (−0.31)/(−0.09). Second, as Figure 10.2 clearly indicates, the sequence
of vertices generated must move in the northeasterly direction, that is, the
new α and β values must increase. For this to happen, the variables that will
both enter and leave the basis must each have a negative value in the element
corresponding to the α and β rows, respectively—examine equations (10.20)
and (10.21) in conjunction with Remark 10.20. Since we seek to maximize the
slope (10.22), the variable that will enter the basis is the one whose ratio of
the (negative) β entry to its (negative) α entry is the largest. (Ties can be
broken arbitrarily.) In the second tableau, only the variables λ2, λ4, λ5, λ6,
r1 and r2 can be considered. The variables λ2 and r2 can be eliminated as
their respective β entries are not negative. Of the remaining variables, the
ratios 0.31/0.09, 0.66/0.60, 1.81/0.65, 0.04/0.07 are computed and the ratio
0.31/0.09 is, indeed, the highest. Consequently, the variable λ4 will enter the
basis. The next step is to perform the ratio test to determine which variable
leaves the basis, which is λ1 in the example. A pivot is executed and the
process continues. It stops at the last tableau since there is no adjacent vertex
of (1.25, 3.00) in the northeasterly direction. (In fact, at this point an extreme
direction has been found.)

Remark 10.21. Phase II may generate vertices of Ĉ that do not project into
vertices of the two-dimensional section. It is possible that the slopes of the
line segments joining a sequence of vertices are equal; thus, the vertices in the
interior of the sequence will project onto the interior of the line segment joining
the outermost vertices of this sequence. From the geometric perspective, when
this happens all such vertices of Ĉ belong to a face of Ĉ whose projection maps
onto a line segment in the two-dimensional section.

10.8 Exercises

10.1. The vertices of a two-dimensional section T V RS(X0, Y0) are (0.25, 0),
(0.25, 0.50), (0.50, 4) and (2, 10).

(a) Graphically depict T V RS(X0, Y0) and T CRS(X0, Y0) (on the same graph).
(b) Determine the V RS input efficiency.
(c) Determine the V RS output efficiency.
(d) Determine the hyperbolic efficiency HV RS(X0, Y0).
(e) Determine the CRS input efficiency.
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(f) Determine the CRS output efficiency.
(g) Determine the hyperbolic efficiency HCRS(X0, Y0).

10.2. The vertices of a two-dimensional section T V RS(X0, Y0) are (0.10, 0.20),
(0.25, 0.75) and (1, 1).

(a) What is the most productive scale size?
(b)Characterize the returns-to-scale for the reference firm.

10.3. The input-output data for this exercise is given in Table 10.4. (It is the
same data used for Exercise 9.1.)

Table 10.4. Input-output data for Exercise 10.3.

Firm Capital Labor Output

1 2 6 50
2 4 2 50
3 5 9 150
4 8 4 200
5 8 8 50

(a) Determine the two-dimensional section T HR(x5, y5) using the graphical
approach described in Section 10.5.

(b)Use your answer to (a) to determine the input, output and hyperbolic
efficiencies for Firm 5 assuming the HR model of technology.

(c) Determine the two-dimensional section T V RS(x5, y5) using the graphical
approach described in Section 10.5.

(d)Use your answer to (c) to determine the input, output and hyperbolic
efficiencies for Firm 5 assuming the V RS model of technology.

(e) Use your answer to (c) to determine the input, output and hyperbolic
efficiencies for Firm 5 assuming the CRS model of technology.

(f) Use your answer to (c) to determine the mpss associated with Firm 5.

10.4. For the data given in Table 10.4 determine the two-dimensional section
T V RS(x5, y5) using the pivoting algorithm described in Section 10.7.
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10.9 Bibliographical Notes

Banker [1984] discusses the two-dimensional projection as a device to com-
municate the concepts of efficiency. The algorithm for computing the two-
dimensional projection is due to Hackman et. al. [1994]. Rosen et. al. [1998]
show how to apply the two-dimensional projection to examine marginal rates
of substitution among inputs. A pivoting algorithm that computes a general
Efficient Frontier can be found in Hackman and Passy [2002].
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10.10 Solutions to Exercises

10.1 (a) The set T V RS(X0, Y0) is
{

(α, β) ≥ 0 : α ≥ 0.25, β ≤ 14α− 3, β ≤ 4α+ 2, β ≤ 10
}
.

The set T CRS(X0, Y0) is the smallest convex cone in IR2
+ containing T V RS(X0, Y0),

and is {
(α, β) ≥ 0 : β ≤ 8α

}
.

(b) The line β = 14α − 3 passing through points (0.25, 0.50) and (0.5, 4)
intersects the line β = 1 at the point (2/7, 1), and so the input efficiency for
the V RS model of technology is 2/7.
(c) The line α = 1 intersects the line β = 4α + 2 passing through points
(0.50, 4) and (2, 10) at the point (1, 6), and so the output efficiency for the
V RS model of technology is 1/6.
(d) The curve β = 1/α intersects T V RS(X0, Y0) at a point lying on the line
segment joining points (0.25, 0.50) and (0.5, 2). The point of intersection must
therefore satisfy β = 1/α and β = 14α − 3. The α value of the point of
intersection is the positive root of the quadratic equation 14α2− 3α− 1. The
positive root is α = (3 +

√
9 + 4(14))/2(14) = 0.3951 and so β = 2.5311.

Consequently, HV RS(X0, Y0) is 0.3951.
(e) The line β = 8α passing through origin and (0.5, 4) intersects the line
β = 1 at the point (1/8, 1), and so the input efficiency for the CRS model of
technology is 1/8.
(f) The line α = 1 intersects the line β = 8α passing through the origin
and (0.50, 4) at the point (1, 8), and so the output efficiency for the CRS
model of technology is 1/8. (We also directly know that the input and output
efficiencies for the CRS model are identical.)
(g) The curve β = 1/α intersects T CRS(X0, Y0) at a point lying on the line
segment joining the origin and (0.50, 4). The point of intersection must there-
fore satisfy β = 1/α and β = 8α. The α value of the point of intersection
is the positive root of the quadratic equation 8α2 − 1. The positive root is
α =

√
1/8 = 0.3536 and so β = 2.8281. Consequently, HCRS(X0, Y0) is

0.3536. (We also directly know that the hyperbolic efficiency in this setting is
the square root of the input/output efficiency.)

10.2 (a) Thempss is the maximum of the following ratios 0.20/0.10, 0.75/0.25
and 1/1, which is 3.
(b) The vertex associated with the mpss is (0.25, 0.75). Since 0.25 < 1, the
returns-to-scale for the reference firm is decreasing.

10.3 Table 10.5 shows the final calculations used to answer these questions.
Here is how they are obtained. The point x+

1 = (6, 6) has output 50 in both
the HR and V RS models. The point x+

2 = (4, 4) has output 50 in both
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the HR and V RS models. The point x+
3 = (9, 9) has output 150 in both

the HR and V RS models. The point x+
4 = (8, 8) has output 200 in both

the HR and V RS models. The line L = −2K + 10 joining points x1 and
x2 intersects the line L = K (that passes through the origin and x5) at
x12 = (1/3)x1 + (2/3)x2 = (10/3, 10/3), and this input vector has output of
50 in both the HR and V RS models. The line L = −(1/3)K + 20/3 joining
points x1 and x4 intersects the line L = K (that passes through the origin and
x5) at x14 = (1/2)x1+(1/2)x2 = (5, 5), and this input vector has output of 50
in theHRmodel but (1/2)(50)+(1/2)(200) = 125 in the V RS model. The line
L = 7K − 26 joining points x2 and x3 intersects the line L = K (that passes
through the origin and x5) at x23 = (2/3)x2+(1/3)x3 = (13/3, 13/3), and this
input vector has output of 50 in the HR model but (2/3)(50) + (1/3)(150) =
250/3 in the V RS model. The line L = −(5/3)K + 52/3 joining points x3

and x4 intersects the line L = K (that passes through the origin and x5) at
x34 = (1/2)x3 + (1/2)x4 = (6.5, 6.5), and this input vector has output of 150
in the HR model but (1/2)(150) + (1/2)(200) = 175 in the V RS model.

Table 10.5. Computing the two-dimensional projection for Exercise 10.3.

λ1 λ2 λ3 λ4 λ5 α βV RS βHR

x12 2/3 1/3 0.4166̄ 1.0 1.0
x14 1/2 1/2 0.6250 2.5 1.0
x23 2/3 1/3 0.5416̄ 1.6̄ 1.0
x34 1/2 1/2 0.8125 3.5 3.0
x+

1 1.0 0.7500 1.0 1.0
x+

2 1.0 0.5000 1.0 1.0
x+

3 1.0 1.1250 3.0 3.0
x+

4 1.0 1.0000 4.0 4.0
x5 1.0 1.0000 1.0 1.0

(a) The vertices that define the staircase shape of T HR(x5, y5) are (0.416̄, 0),
(0.416̄, 1), (0.8125, 1), (0.8125, 3), (1, 3) and (1, 4).
(b) It is obvious that input efficiency is 0.416̄ and output efficiency is 0.25.
As for the hyperbolic efficiency the curve β = 1/α intersects T HR(x5, y5)
along the line segment joining points (0.8125, 1) and (0.8125, 3). The point of
intersection is obviously (0.8125, 1.2308) and the hyperbolic efficiency for the
HR model is therefore 0.8125.
(c) The vertices that characterize T V RS(x5, y5) are (0.416̄, 0), x12 = (0.4166̄, 1),
x14 = (0.625, 4), x34 = (0.8125, 3.5), and x4 = (8, 4). Therefore,

T V RS(x5, y5) = {(α, β) ≥ 0 : α ≥ 0.4166̄, β ≤ 7.2α− 2,

β ≤ 5.3̄K − 0.83̄, β ≤ 2.6̄ + 1.3̄, β ≤ 4
}
.
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(d) The line β = 1 intersects T V RS(x5, y5) at the point (0.416̄, 1) and so
the input efficiency for the V RS model is 0.416̄. The line α = 1 intersects
T V RS(x5, y5) at the point (1, 4) and so the output efficiency for the V RS
model is 0.25. As for the hyperbolic efficiency, the curve β = 1/α intersects
the line β = 7.2α− 2. The α value of the point of intersection is the positive
root of the quadratic equation 7.2α2 − 2α− 1. The positive root is α = (2 +√

4 + 4(7.2))/2(7.2) = 0.5366, and so β = 1.8636. The hyperbolic efficiency
for the V RS model is therefore 0.5366.

Remark 10.22. The point of intersection is

(α̂, β̂) := (0.5366, 1.8636) = 0.42429x12 + 0.57571x14.

Since x12 = (1/3)x1 + (2/3)x2 and x14 = (1/2)x1 + (1/2)x4, it follows that
the actual point (x̂, ŷ) ∈ T V RS used to determine the hyperbolic efficiency
measure for the V RS model is

0.42929(x1, y1) + 0.28286(x2, y2) + 0.28786(x4, y4),

which equals ((4.29285, 4.29285), 93.1782). By construction, we have
4.29285/8 = 50/93.1782 = 0.5366.

(e) The set T CRS(x5, y5) is the smallest convex cone in IR2
+ containing

T V RS(x5, y5). It is given by
{
(α, β) ≥ 0 : β ≤ (3.5/0.8125)α = (56/13)α = 4.3077α

}
.

The line β = 1 intersects T CRS(x5, y5) at the point (13/56, 1) and so the input
efficiency for the V RS model is 0.2321. The line α = 1 intersects T CRS(x5, y5)
at the point (1, 56/13) and so the output efficiency for the V RS model is
0.2321, too—we knew this directly. As for the hyperbolic efficiency, the curve
β = 1/α intersects the line β = (56/13)α. The α value of the point of intersec-
tion is the positive root of the quadratic equation (56/13)α2−1. The positive
root is α =

√
13/56 = 0.4818 and so β = 2.0755. The hyperbolic efficiency

for the V RS model is therefore 0.4818.

Remark 10.23. The point of intersection is

(α̂, β̂) := (0.4818, 2.0755) = 0.5930x34.

Since x34 = (1/2)x3 + (1/2)x4, it follows that the actual point (x̂, ŷ) ∈ T V RS

used to determine the hyperbolic efficiency measure for the CV RS model is

0.2965(x3, y3) + 0.2965(x4, y4) = ((3.8545, 3.8545), 103.7750).

By construction, we have 3.8545/8 = 50/103.7750 = 0.4818.

(f) The mpss is the slope 56/13.
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Remark 10.24. Notice how almost trivial it is to determine the various effi-
ciency measures once the vertices of the two-dimensional section are deter-
mined.

10.4 The equations that define the unprojected two-dimensional section Ĉ in
(10.11) for the problem data can be expressed in the canonical polyhedral set
form Ax = b given by

2
664

8.0 0.0 −2.0 −4.0 −5.0 −8.0 −8.0 −1.0 0.0 0.0
8.0 0.0 −6.0 −2.0 −9.0 −4.0 −8.0 0.0 −1.0 0.0
0.0 50.0 −50.0 −50.0 −150.0 −200.0 −50.0 0.0 0.0 1.0
0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0

3
775

0
BBBBBB@

α
β
λ
r1

r2

q1

1
CCCCCCA

=

0
BB@

0
0
0
1

1
CCA ,

(10.23)

where for notational convenience we let λ = (λ1, λ2, λ3, λ4, λ5)T . The initial
basis is set to B1 = {α, r2, q1, λ2}. The sequence of pivots associated with
Phase I are shown in Table 10.6.

Table 10.6. Tableaux associated with Phase I.

Basis α β λ1 λ2 λ3 λ4 λ5 r1 r2 q1 RHS

α 1.00 0.00 0.75 0.50 0.38 0.00 0.00 -0.13 0.00 0.00 1.00

r2 0.00 0.00 4.00 -2.00 4.00 -4.00 0.00 -1.00 1.00 0.00 0.00
q1 0.00 50.00 0.00 0.00 -100.00 -150.00 0.00 0.00 0.00 1.00 50.00
λ5 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 1.00

α 1.00 0.00 0.00 0.88 -0.38 0.75 0.00 0.06 -0.19 0.00 1.00
λ1 0.00 0.00 1.00 -0.50 1.00 -1.00 0.00 -0.25 0.25 0.00 0.00
q1 0.00 50.00 0.00 0.00 -100.00 -150.00 0.00 0.00 0.00 1.00 50.00

λ5 0.00 0.00 0.00 1.50 0.00 2.00 1.00 0.25 -0.25 0.00 1.00

α 1.00 0.00 0.00 0.00 -0.38 -0.42 -0.58 -0.08 -0.04 0.00 0.42
λ1 0.00 0.00 1.00 0.00 1.00 -0.33 0.33 -0.17 0.17 0.00 0.33
q1 0.00 50.00 0.00 0.00 -100.00 -150.00 0.00 0.00 0.00 1.00 50.00
λ2 0.00 0.00 0.00 1.00 0.00 1.33 0.67 0.17 -0.17 0.00 0.67

The sequence of pivots associated with Phase II are shown in Table 10.7.
The first tableau in this table is identical to the last tableau of Phase I, except
that the second and third rows have been interchanged so that the α and β
rows will appear consecutively. All of the information obtained graphically to
determine the two-dimensional projection is contained in this table. The bases
identify which input vectors are used to generate the vertices. For example, the
vertex (0.625, 2.5) is a 50-50 mixture of the points x1 and x4. The ratio of the β
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to α rows identify the slopes of the line segments joining adjacent vertices. For
example, the pivot element marked in the second tableau corresponds to the
β/α ratio of (−3.00)/(−0.416̄) = 7.2, which is the slope of the line segment
joining vertices (0.416̄, 1) and (0.625, 2.5). Also, the pivot element marked
in the third tableau corresponds to the β/α ratio of (−2.00)/(−0.0375) =
5.3̄, which is the slope of the line segment joining vertices (0.625, 2.5) and
(0.8125, 3.5).

Table 10.7. Tableaux associated with Phase II.

Basis α β λ1 λ2 λ3 λ4 λ5 r1 r2 q1 RHS

α 1.00 0.00 0.00 0.00 -0.38 -0.42 -0.58 -0.08 -0.04 0.00 0.42

q1 0.00 50.00 0.00 0.00 -100.00 -150.00 0.00 0.00 0.00 1.00 50.00
λ1 0.00 0.00 1.00 0.00 1.00 -0.33 0.33 -0.17 0.17 0.00 0.33
λ2 0.00 0.00 0.00 1.00 0.00 1.33 0.67 0.17 -0.17 0.00 0.67

α 1.00 0.00 0.00 0.00 -0.38 -0.42 -0.58 -0.08 -0.04 0.00 0.42
β 0.00 1.00 0.00 0.00 -2.00 -3.00 0.00 0.00 0.00 0.02 1.00
λ1 0.00 0.00 1.00 0.00 1.00 -0.33 0.33 -0.17 0.17 0.00 0.33

λ2 0.00 0.00 0.00 1.00 0.00 1.33 0.67 0.17 -0.17 0.00 0.67

α 1.00 0.00 0.00 0.31 -0.38 0.00 -0.38 -0.03 -0.09 0.00 0.63
β 0.00 1.00 0.00 2.25 -2.00 0.00 1.50 0.38 -0.38 0.02 2.50

λ1 0.00 0.00 1.00 0.25 1.00 0.00 0.50 -0.13 0.13 0.00 0.50
λ4 0.00 0.00 0.00 0.75 0.00 1.00 0.50 0.13 -0.13 0.00 0.50

α 1.00 0.00 0.38 0.41 0.00 0.00 -0.19 -0.08 -0.05 0.00 0.81
β 0.00 1.00 2.00 2.75 0.00 0.00 2.50 0.13 -0.13 0.02 3.50

λ3 0.00 0.00 1.00 0.25 1.00 0.00 0.50 -0.13 0.13 0.00 0.50
λ4 0.00 0.00 0.00 0.75 0.00 1.00 0.50 0.13 -0.13 0.00 0.50

α 1.00 0.00 0.75 0.50 0.38 0.00 0.00 -0.13 0.00 0.00 1.00
β 0.00 1.00 3.00 3.00 1.00 0.00 3.00 0.00 0.00 0.02 4.00
r2 0.00 0.00 8.00 2.00 8.00 0.00 4.00 -1.00 1.00 0.00 4.00
λ4 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 1.00
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Multi-Stage Efficiency Analysis

In this chapter, we explore systems that consist of several stages arranged in
series. Succeeding stages (or subsystems) use a mixture of exogenous inputs
and intermediate outputs of preceding stages. We explore how to (i) assess the
efficiency of each stage within the aggregate system, and (ii) analyze possible
tradeoffs of the subsystem efficiencies.

As a starting point, one can treat each subsystem as a system in its own
right. In this manner, the technology set for each subsystem is constructed
using the relevant input-output data from its own peers, and the technology
set of the aggregate system is constructed using aggregated inputs and out-
puts without regard to intermediate input-output factors that link the various
stages. As we subsequently demonstrate, adopting this approach makes it pos-
sible for the aggregate system to be rated very inefficient while each subsystem
is rated efficient, and for the aggregate system to be rated near efficient while
each subsystem is rated highly inefficient.

We describe an expansion of the ordinary technology sets to develop a cor-
responding efficiency measurement framework that simultaneously computes
the efficiency of each subsystem and the aggregate system. The measurement
framework has the following properties:

• If each subsystem is rated efficient, then so must the aggregate system.
• Each subsystem’s efficiency and the aggregate efficiency cannot exceed the

efficiency obtained using the classical DEA approach, and can be expected
to be far lower.

• The methodology described herein provides the recipe on how to obtain
the operational improvements at all levels of the hierarchy, as it explicitly
integrates the computation of the various efficiencies.

The approach described in this chapter expands the technology sets of
each subsystem by allowing each to acquire resources from the other in ex-
change for delivery of the appropriate (intermediate or final) product, and to
form composites from both subsystems. Managers of each subsystem will not
agree to vertical integration initiatives unless each subsystem will be more
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efficient than what each can achieve by separately applying conventional ef-
ficiency analysis. A Pareto efficient frontier characterizes the acceptable set
of efficiencies of each subsystem from which the managers will negotiate to
select the final outcome.

Three proposals for the choice for the Pareto efficient point are discussed:
the one that achieves the largest equiproportionate reduction in the classical
efficiencies, the one that achieves the largest equal reduction in efficiency, and
the one that maximizes the radial contraction in the aggregate consumption of
resources originally employed before integration. We show how each choice for
the Pareto efficient point determines a derived measure of aggregate efficiency.
We introduce a “consistent pricing principle” and show it characterizes the
proposed models. An extensive numerical example is used to illustrate exactly
how the subsystems can significantly improve their operational efficiencies via
integration beyond what would be predicted by conventional analysis.

11.1 A Representative Multi-Stage System

We limit our application to two stages in series, and we make the following
simplifying assumptions:

• Technology. Each subsystem 1 uses capital and labor to produce an inter-
mediate product used by subsystem 2 to produce final product. Subsystem
2 also requires capital and labor, which are assumed to be completely trans-
ferable resources between stages. All technologies described herein exhibit
constant returns-to-scale.

• Market. Each subsystem 2 has a unique supplier given by its subsystem
1. There is a market for the intermediate product, and the transfer price
subsystem 1 charges subsystem 2 is the prevailing market price. Compet-
itive markets exist so that either subsystem is a price-taker in the input
and output markets. That is, it may expand or contract its output without
affecting its price or cost of inputs.

• Organization. Each subsystem is viewed as a profit center, and each man-
ager is given decision-making authority. Although we do not explicitly
model the incentive scheme for the managers, we assume each manager is
highly motivated to improve his own system’s efficiency. Efficiency can be
thought of as the proxy for performance, which is why each manager will
not consent to an acquisition of resources unless he directly benefits from
it. From an organizational perspective, the modeling approach described
herein is viewed as a natural starting point for efficiency improvement.

To ease notational burdens and to make concrete the conceptual discus-
sions to follow, we shall analyze multi-stage systems such as the one depicted
in Figure 11.1. Each DMUj (j = 1,...,N) consists of two subsystems in series.
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Subsystem 1j (hereafter abbreviated S1j) uses capital K1j and labor L1j to
produce intermediate product Ij . Subsystem 2j (hereafter abbreviated by S2j)
uses capital K2j and labor L2j together with Ij to produce final output Fj .
Constant returns-to-scale (CRS) will be assumed throughout. The models we
develop will be illustrated with a 10 DMU numerical example. The data on
inputs and outputs for S1j , (K1j , L1j, Ij), and S2j , (K2j, L2j , Ij , Fj) for the
example are given in Table 1.

Fig. 11.1. Aggregate DMU with two stages in tandem.

Table 11.1. Data for the numerical example.

DMU K1 K2 K L1 L2 L I F

1 32 81 113 67 83 150 46.928 64.941
2 96 28 124 40 81 121 47.431 46.492
3 79 51 130 89 79 168 79.694 67.388
4 41 80 121 35 26 61 32.978 31.124
5 99 8 107 33 74 107 45.921 35.018
6 72 29 101 15 36 51 24.861 29.146
7 21 88 109 64 23 87 32.250 34.049
8 60 39 99 71 49 120 64.659 45.176
9 7 86 93 80 16 96 21.531 21.062

10 10 40 50 33 11 44 12.519 10.189

11.2 Description of Multi-Stage Technology

11.2.1 Classical Models of Technology

For a given data set of input-output pairs (Xj , Yj) ∈ IRn
+ × IRm

+ , j =
1, 2, . . . , N , the classical CRS technology T is
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T := {(X,Y ) :
∑

j

λjXj ≤ X,
∑

j

λjYj ≥ Y },

where we now and hereafter suppress the nonnegativity constraints imposed
on the intensity variables (the λj ’s). Given the technology set T and (X0, Y0) ∈
T , the classical (CL) radial measure of input efficiency is

θCL
0 := Min {θ0 : (θ0X0, Y0) ∈ T }.

For the multi-stage systems depicted in Figure 11.1, the classical descriptions
of the technology sets for each subsystem are

T1 :=
{

((K, L), I) :
P

j λ1jK1j ≤ K,
P

j λ1jL1j ≤ L,
P

j λ1jIj ≥ I
}
,

T2 :=
{

((K, L, I), F ) :
P

j λ2jK2j ≤ K,
P

j λ2jL2j ≤ L,
P

j λ2jIj ≤ I,
P

j λ2jFj ≥ F
}
.

For each Decision-Making Unit (DMU0) in the data set, the classical measures
of input efficiency for each stage are

θCL
10 := Min{θ10 : ((θ10K10, θ10L10), I0) ∈ T1},
θCL
20 := Min{θ20 : ((θ20K20, θ20L20, θ2I0), F0) ∈ T2}.

Computational results are reported in Table 2.

Table 11.2. Classical efficiency evaluation for S1j and Sj2.

S1j S2j

DMUj θCL
1j Benchmarks θCL

2j Benchmarks

1 1.00 1 1.00 1
2 0.943 5,8 1.00 2
3 0.973 5,8 1.00 3
4 0.958 5,8 0.904 3,6

5 1.00 5 1.00 5
6 1.00 6 1.00 6
7 0.941 1,9 1.00 7
8 1.00 8 1.00 8
9 1.00 9 0.918 1,7
10 0.748 1,9 0.735 1,7

11.2.2 Expanded Model of Technology

A numerical example using one of the DMUs in the data set will be used
to explain how to expand the technology to provide better opportunities for
each subsystem to improve its efficiency. (The model used to generate this
example is formally described in the next section.) In what follows, we make
the following assumptions:
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1. Each stage is managed as a profit center.
2. S1j may sell its intermediate product on the open market for the same

price it charges S2j .
3. Both S1j and S2j may sell any amount of their respective outputs on the

open market without affecting input cost or price.

The observed S25 of DMU5 uses 8 units of capital, 74 units of labor and
45.92 units of intermediate product to produce 35.02 units of final product.
The manager of S25 (hereafter named ‘M25’), while always looking to im-
prove efficiency, is content for now as his system is rated efficient by clas-
sical efficiency analysis. Now suppose the manager of S15 (hereafter named
‘M15’) comes to M25 with the following proposal: “I can show you how to
increase your output by 6.3%, while simultaneously reducing your cost of in-
puts by 11.75%. Interested?” That is, M15 is proposing a way for M25 to use
(K,L, I) = (7.06, 65.29, 40.52) to produce F = 37.23 instead of M25’s current
production plan that uses (K,L, I) = (8, 74, 45.92) to produce F = 35.02.
To expand his output by 6.3%, M25 would normally expect (under CRS) to
have to increase his inputs by 6.3%, and so, in effect, M15 is offering M25 to
consume only 100(1 - 0.1175)/1.063 = 83% of his input to achieve the same
output level. While M25 is obviously intrigued by M15’s proposal, M25 de-
mands an explanation as to how M15 proposes to accomplish this seemingly
impossible task, as M25 knows that both S15 and S25 were rated input efficient
by classical analysis. M15 obliges with the following explanation.

Using classical descriptions of technology for each subsystem, M15 found
a composite subsystem 1 process that uses (34.48, 40.80) units of capital and
labor to produce 37.16 units of intermediate product, and a composite sub-
system 2 process that uses (37.04, 45.98, 31.76) units of capital, labor and
intermediate product to produce the 37.23 units of final product, which M15

promised to deliver toM25. The total amounts of capital and labor required by
these two composite processes are 71.52 and 86.78, respectively. With the 7.06
units of capital and 65.29 units of labor acquired from M25, M15 still needs
64.46 units of capital and 21.49 units of labor, which he possesses as these
totals represent only 65.1% of his current capacity of (99, 33) units of capital
and labor. With respect to the intermediate product, M25 notes that while he
is now purchasing 45.92-40.52 = 5.40 less units of intermediate product from
M15, the difference between what the subsystem 2 composite requires and
what the subsystem 1 composite currently produces of intermediate product
is also 5.40 = 37.16 - 31.76 units, which M15 will sell on the open market to
compensate him for the loss in revenue from M25. M25 is satisfied that M15’s
proposal is conceptually sound.

M25 now understands why M15 is so eager to offer this proposal to M25:
under the proposal,M15 will be able to free up 34.9% of his inputs, a consider-
able savings, while still producing his same level of output. Since M15 cannot
achieve this savings without M25’s consent, M25 realizes he must understand
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exactly how M15 was able to devise this seemingly ingenious plan, so that he
will be in position to negotiate with M15 a better deal for himself.

11.2.3 Expanded Subsystem Technology Sets

For every DMUj , the manager of S1j now realizes that the classical efficiency
analysis constructed the efficient frontier using only subsystem 1 processes. It
does not consider the possibility that M1j may have the options of adopting
an alternative subsystem 2 production process and acquiring resources from
M2j (as long as M2j would agree). With these options, the technology set for
S1j , which defines the collection of input pairs (K,L) that can produce at
least Ij , has been expanded.

Under the CRS assumption, M10 knows that ω20((K20, L20, I0), F0) ∈
T2 for all ω20 ≥ 0. In order to entice M20 to agree, M10 selects a value
θ20 < 1, and offers M20 the opportunity to achieve the input-output point of
ω20((θ20K20, θ20L20, θ20I0), F0). In order for M10 to meet his obligation to
M20 and his objective, namely to produce I0 with resources (K,L), he must
find two composite processes ((K̂1, L̂1), Î1) ∈ T1 and ((K̂2, L̂2, Î2), F̂ ) ∈ T2
for which the following four inventory balance equations must hold:

[E1] Capital. The supply of capital fromM10 and M20, K+ω20(θ20K20), must
be no smaller than the demand for capital by both composite subsystems,
K̂1 + K̂2.

[E2] Labor. The supply of labor from M10 and M20, L + ω20(θ20L20), must
be no smaller than the demand for labor by both composite subsystems,
L̂1 + L̂2.

[E3] Intermediate Product. The supply of intermediate product from M20 and
the composite Stage 1 process, Î1 + ω20(θ20I0), must be no smaller than
the demand for intermediate product by M10 and the composite Stage 2
process, I0 + Î2.

[E4] Final Product. The supply of final product from the composite Stage 2
process, F̂ , must be no smaller than the demand for final product by M20,
ω20F0.

Let T E
1 (θ20) denote the collection of input-output pairs ((K,L), I0) that

satisfy the inventory balance equations [E1]–[E4] listed above for DMU0.
Given θ20, it would make sense for M10 to find the least amount of capi-
tal and labor to satisfy his own output requirement of I0. Accordingly, he
should solve the following linear programming model, which we shall denote
as the Acquisition (AQ) model:

θAQ
10 (θ20) := min θ10 (11.1)

∑
j

λ1jK1j +
∑

j

λ2jK2j ≤ θ10K10 + ω20[θ20K20],
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∑
j

λ1jL1j +
∑

j

λ2jL2j ≤ θ10L10 + ω20[θ20L20],

∑
λ1jIj + ω20[θ20I0] ≥ I0 +

∑
λ2jIj ,∑

λ2jFj ≥ ω20F0.

In the proposal of M15 to M25 that was described in Section 2.3, M15 selected
θ25 = 0.83, and solved the AQ model, whose solution was ω25 = 1.063 with
θAQ
15 (θ25) = 0.651.

Now that M20 understands how M10 was able to achieve his objective,
M20 realizes he can play the same game. Let T E

2 (θ10) denote the collection
of input-output pairs ((K,L, I), F0) that satisfy analogous four inventory
balance requirements as described above. Given θ10 it would make sense for
M20 to find the least amount of capital and labor to satisfy his own output re-
quirement of F0. Accordingly, he would solve his own Acquisition (AQ) model,
namely, the following linear programming model:

θAQ
20 (θ10) := min θ20 (11.2)

∑
j

λ1jK1j +
∑

j

λ2jK2j ≤ θ20K20 + ω10[θ10K10],

∑
j

λ1jL1j +
∑

j

λ2jL2j ≤ θ20L20 + ω10[θ10L10],

∑
λ1jIj + θ20I0 ≥

∑
λ2jIj + ω10I0,∑

λ2jFj ≥ F0.

For example, suppose M25 selects θ15 = 0.9. Solution of his AQ model gives
ω15 = 0.686 and θAQ

25 (θ15) = 0.697. Note how much better off M25 is and
worse off M15 is as compared to M15’s original proposal. Both managers will
agree that either proposal will outperform the classical analysis.

We emphasize the following point about describing the subsystem tech-
nologies. Since we allow the possibility of one subsystem manager to acquire
resources from the other, as long as they can agree, the potential acquisition
of resources consistent with the “θ10—θ20 agreement” must now be embedded
in the respective descriptions of technology given by T E

1 (θ20) and T E
2 (θ10) to

reflect the set of all production possibilities.

11.3 Pareto efficient Frontiers

For the serial system we discuss here, a gain by one manager is a loss by the
other manager. Regardless of the final choice for how the two subsystems shall
vertically integrate, the agreed-upon choice for θ10 and θ20 should minimally
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result in a Pareto efficient outcome; that is, (θ10, θ20) = (θAQ
10 (θ20), θ

AQ
20 (θ10)).

Otherwise, neither manager, M10 nor M20, would agree to the vertical inte-
gration.

The efficient frontier corresponding to DMU5 in our example is depicted
in Figure 11.2.1 When θ15 is set to 1.00, θ25 is at its lowest value 0.66. On the
other hand, when θ25 is set to 1.00, θ15 is assigned its lowest value 0.43.

Fig. 11.2. Efficient frontier for DMU5, θ15 vs. θ25.

Two remarks concerning the Acquisition Models (11.1) and (11.2) that
determine the Pareto efficient frontier are in order. First, it is not necessary
to solve both Acquisition Models, as there is a one-to-one correspondence be-
tween the solutions for each Acquisition Model—the solution to Model (11.2)
can be obtained from the solution to Model (11.1) by dividing λ∗1j and λ∗2j by
ω∗

20, and setting ω∗
10 = (ω∗

20)
−1. Second, the solutions to either Model (11.1)

or Model (11.2) must necessarily lie below their respective classical efficiency
counterparts, since the linear program to compute θCL

10 is a special case of
Model (11.1) in which ω20 = 0 and λ2j = 0 and the linear program to com-
pute θCL

20 is a special case of Model (11.2) in which ω10 = 0 and λ1j = 0. From
an economic perspective, M20 would never agree to a proposal from M10 if the
proposed θ20 exceeds what he could achieve on his own, and M10 would never
offer a proposal to M20 in which he receives an efficiency θ10 that exceeds
what he could achieve on his own, too.
1 This frontier was constructed using the pivoting algorithm described in Hackman

and Passy (2002).
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In principle, any point on the Pareto efficient frontier is a candidate. There
are three natural choices:

1. Select the point that achieves the largest equiproportionate reduction in
the respective classical single-stage efficiencies θCL

10 and θCL
20 . For example,

the 45o line in Figure 11.2 intersects the frontier at the equiproportional
point θ15 = θ25 = 0.762, a point which might be considered as fair for
both subsystems.

2. Select the point that achieves the largest equal reduction in efficiency.
(When θCL

10 = θCL
20 = 1, as is the case for DMU5, these two choices will

obviously coincide.)
3. Select the point that achieves for the vertically integrated unit the largest

radial contraction in the aggregate amounts of capital and labor originally
employed, which we more fully discuss in the next section.

11.4 Aggregate Efficiency

11.4.1 Measures of Aggregate Input Efficiency

From the perspective of an aggregate DMU, the classical model of technology
is

TA :=
{

((K, L), F ) :
P

j λj(K1j + K2j) ≤ K, (11.3)
P

j λj(L1j + L2j) ≤ L,
P

j λjFj ≥ F
}
.

For the aggregate DMU0 (denoted hereafter as A0), the classical model ig-
nores the intermediate product I0 as it represents internal production. The
corresponding classical input efficiency measure is

θCL
A0 := Min{θA0 : ((θA0(K10 +K20), θA0(L10 + L20)), F0) ∈ TA}.

Färe and Grosskopf [1996] provide an in-depth development of models of
technology for general multi-stage systems. One of their basic models (Färe
and Grosskopf [1996, pp. 20-23]) allows complete transferability (CT) of capital
and labor flows between the stages. Applied to the two-stage systems we
analyze in this chapter, their model is formulated as

T CT
A := {((K,L), F ) :

∑
j

λ1jK1j +
∑

j

λ2jK2j ≤ K,

∑
j

λ1jL1j +
∑

j

λ2jL2j ≤ L,

∑
j

λ1jIj −
∑

j

λ2jIj ≥ 0,

∑
j

λ2jFj ≥ F}.
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The third constraint above represents inventory balance of intermediate prod-
uct to ensure that the supply of I produced by the composite S1 will be suf-
ficient to satisfy the demand for I by the composite S2. Assuming complete
transferability of resources, the Färe-Grosskopf measure of input efficiency
would be computed as

θCT
A0 := Min{θA0 : ((θA0(K10 +K20), θA0(L10 + L20)), F0) ∈ T CT

A }.

11.4.2 Derived Measure of Aggregate Efficiency

For each Pareto efficient point (θ10, θ20), letK(θ10, θ20) and L(θ10, θ20) denote,
respectively, the aggregate amounts of capital and labor which the vertically
integrated unit would use to produce both F0 and I0. A natural choice for a
derived measure of aggregate input efficiency is

θD
A0(θ10, θ20) := Max

{K(θ10, θ20)
K10 +K20

,
L(θ10, θ20)
L10 + L20

}
.

We now show how to compute K(θ10, θ20) using both Acquisition Models
(11.1) and (11.2). (The derivation for L(θ10, θ20) is analogous.) First suppose
that ω20 ≤ 1. Examine the right-hand side of the first constraint in (11.1). In
return for delivering ω20F0 units of final product to S20 and meeting its own
requirements of producing I0, S10 uses ω20[θ20K20] units of capital it acquires
from S20 and θ10K10 for its own production needs. For the vertically integrated
unit to produce a total of F0, S20 will have to produce the remaining amount
(1−ω20)F0 by its own production process and thereby consume (1−ω20)K20

units of capital. In this case,

K(θ10, θ20) = θ10K10 + ω20[θ20K20] + (1− ω20)K20.

Now suppose ω20 ≥ 1. Since ω10 = ω−1
20 ≤ 1, we shall examine the right-hand

side of the first constraint in (11.2). Here, in return for delivering ω10I0 units
of intermediate output to S10, S20 uses ω10[θ10K10] of capital it acquires from
S10, and θ20K20 units for its own production needs. For S10 to produce a
total of I0, it will need (1−ω10)K10 units of capital to produce the remaining
amount (1− ω10)I0 using its current production process. In this case,

K(θ10, θ20) = ω10[θ10K10] + θ20K20 + (1− ω10)K10.

To summarize, we have

K(θ10, θ20) =

{
θ10K10 + ω20[θ20K20] + (1− ω20)K20, ω20 ≤ 1,

ω10[θ10K10] + θ20K20 + (1− ω10)K10, ω10 ≤ 1,

L(θ10, θ20) =

{
θ10L10 + ω20[θ20L20] + (1− ω20)L20, ω20 ≤ 1,

ω10[θ10L10] + θ20L20 + (1− ω10)L10, ω10 ≤ 1.
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A numerical example will help explain our proposed derived measure of
aggregate efficiency. We solved Model (11.1) for DMU3 with θ23 = 0.9. The
result is θ13 = 0.9667 and ω23 = 0.1439. The two composite subsystems
constructed by the linear program are, respectively,

((K̂1, L̂1), Î1) = ((70.88, 83.87), 76.38)
((K̂2, L̂2), Î2), F̂2) = ((12.09, 12.39, 7.01), 9.696).

Now consider the four inventory balance equations [E1]–[E4] associated with
this Pareto efficient point (θ13 = 0.9667, θ23 = 0.9):

70.88 + 12.09 ≤ (0.9667)[79] + 0.1439[0.90 · 51] = 82.97,
83.87 + 12.39 ≤ (0.9667)[89] + 0.1439[0.90 · 79] = 96.26,

76.38 + 0.1439[0.90 · 79.694] ≥ [79.694] + 7.01,
9.696 ≥ 0.1439(67.39).

Note how S13 is only promising to deliver 14.39% of final output; the remain-
ing 85.61% must be produced by S23 using its own production process. The
derived capital in this case is

(0.9667)[79] + 0.1439[0.90 · 51] + (1− 0.1439) · 51 = 126.63,

and the derived labor is

(0.9667)[89] + 0.1439[0.90 · 79] + (1− 0.1439) · 79 = 163.89.

When (126.63, 163.89) is compared to the original values of (130, 168), we
obtain θD

A3 = 0.9755.
The derived aggregate measure of efficiency is measured along the Pareto

efficient frontier corresponding to Models (11.1) and (11.2). It can never
be larger than 1.0. Conceptually, any point on the Pareto efficient frontier
could be used to define the aggregate efficiency. As discussed at the end of
the last section there are two obvious choices: the equiproportional solution,
(θ10 = ρθCL

10 , θ20 = ρθCL
20 ), where ρ ≤ 1, and the equal contraction solution in

which θ10 = θ20. We propose a third alternative: Minimize θD
A0 on the Pareto

efficient frontier, which we shall denote by θP
A0. To compute θP

A0, a bi-level
programming problem, we iteratively solve Model (11.2) (resp. Model (11.1))
for different θ10 (resp. θ20) values.

11.4.3 Computational Results

Table 3 reports the computational results for each measure of aggregate effi-
ciency. First, we compare θCT

Aj to θCL
Aj for j = 1, ..., 10. In stark contrast to the

relative efficiency nature of DEA, when additional flexibility of transferring
resources between stages is available, the CT model is able to use this flexibil-
ity to identify potential improvement opportunities for all DMUs. Indeed, the
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relevant benchmarks, which report the reference sets for each of the evaluated
DMUs, contain both S1j and S2j stages (first and second rectangular brackets,
respectively, in column 5 of Table 3). From a measurement perspective, it will
always be the case that θCT

Aj ≤ θCL
Aj .

Table 11.3. Aggregate efficiency measures.

Classical Efficiency Complete Transferability Expanded Technology
DMUj θCL

Aj Benchmarks θCT
Aj Benchmarks θP

Aj Benchmarks

1 1.00 1 0.983 [1,8], [6] 0.988 [8], [6]
2 0.829 1,6 0.777 [5,8] [1] 0.842 [8] [1]
3 0.922 1,6 0.899 [1,8], [6] 0.953 [1], [6]
4 0.893 6 0.853 [5], [1,7] 0.922 [5], [1]

5 0.710 1,6 0.666 [5,8], [1] 0.781 [8], [6]
6 1.00 6 0.956 [5], [1,7] 0.981 [5], [7]
7 0.799 1,6 0.751 [5,8], [1] 0.867 [8], [6]
8 0.854 1,6 0.816 [8], [1,6] 0.868 [-], [6]
9 0.480 1,6 0.449 [5,8], [1] 0.621 [8], [6]
10 0.486 1,6 0.456 [5,8], [1] 0.712 [8], [6]

When comparing θCT
Aj to θP

Aj in Table 3, we see that θP
Aj > θCT

Aj always
holds. (We have been unable to establish any definitive relationship between
θCL

Aj and θP
Aj .) Thus, for our numerical example, the CT model indeed finds the

maximal possible contraction from the point of view of the aggregate DMU.
From an organizational perspective, it may not be possible to implement this
solution. We know it is impossible to achieve a better result than θP

Aj along the
Pareto efficient frontier. Consequently, to implement the solution proposed
by θCT

Aj when it is smaller than θP
Aj will require either M1j or M2j to consent

to a restructuring that would make him worse off than he can achieve by
negotiating directly with the manager of the other subsystem. When consent is
required, it would make more sense for an aggregate manager to select a Pareto
efficient point that both managers will accept. Table 4 records the Pareto
efficient points for the two stages and their corresponding θD

Aj values. For every
DMUj , the minimal value for the derived aggregate efficiency (θP

Aj) is given
in a box and the equiproportional choice is highlighted in boldface. Observe
the wide disparity in efficiencies for each stage corresponding to the Pareto
aggregate efficiency. Since the equiproportionate choice seems to sacrifice little
in the way of aggregate efficiency, it is a practical alternative that is easier for
the managers to agree on.
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Table 11.4. Derived aggregate efficiency along the Pareto frontier of the two stages.

DMU Measures Efficiency Values

θ11 1.000 0.9999 0.9865 0.9703 0.9272

1 θ21 0.9837 0.9837 0.9865 0.9900 1.000

θD
A1 0.991 0.990 0.989 0.988 0.990

θ12 0.9428 0.9409 0.9344 0.8358 0.8037 0.7638 0.7427 0.7014 0.5196

2 θ22 0.7970 0.7980 0.800 0.8358 0.8500 0.8600 0.8800 0.9000 1.000

θD
A2 0.924 0.923 0.919 0.861 0.845 0.842 0.844 0.867 0.892

θ13 0.9731 0.9718 0.9667 0.9288 0.8408 0.766 0.5266

3 θ23 0.8753 0.8800 0.9000 0.9288 0.9500 0.9600 1.000

θD
A3 0.986 0.981 0.976 0.953 0.958 0.961 0.965

θ14 0.9580 0.9436 0.9292 0.8936 0.5912

4 θ24 0.8600 0.8700 0.8800 0.8936 0.900

θD
A4 0.986 0.947 0.922 0.952 0.952

θ15 1.000 0.8924 0.7608 0.6922 0.6511 0.5547 0.4318

5 θ25 0.6600 0.7000 0.7608 0.8000 0.8300 0.9000 1.000

θD
A5 1.000 0.908 0.819 0.781 0.781 0.843 0.892

θ16 1.000 0.9827 0.9612 0.9523 0.7469 0.6419

6 θ26 0.9000 0.9300 0.9612 0.9750 0.9900 1.000

θD
A6 1.000 0.981 0.981 0.981 0.982 0.988

θ17 0.9416 0.8728 0.7666 0.7367 0.6962 0.5793

7 θ27 0.4917 0.6250 0.7666 0.800 0.85 1.000

θD
A7 0.988 0.930 0.867 0.879 0.888 0.985

θ18 0.9976 0.9055 0.8401 0.6560 0.4822 0.1625

8 θ28 0.8170 0.8300 0.8401 0.8740 0.9155 1.000

θD
A8 0.927 0.919 0.913 0.892 0.868 0.907

θ19 1.000 0.8086 0.6005 0.5424 0.4719 0.3966 0.1618

9 θ29 0.3402 0.400 0.500 0.5424 0.600 0.700 0.9065

θD
A9 0.825 0.771 0.687 0.621 0.723 0.813 0.913

θ1,10 0.7476 0.7000 0.5589 0.5226 0.4896 0.4386

10 θ2,10 0.3351 0.4000 0.5589 0.65 0.6670 0.6967

θD
A,10 0.949 0.821 0.712 0.726 0.763 0.809

11.5 A Consistent Pricing Principle

The dual linear fractional program to each manager’s Acquisition Model, also
known as the multiplier formulation, provides an alternative means to under-
stand the tradeoff inherent in the Pareto efficient frontier for managers M10

and M20. For M10, the multiplier formulation is

θAQ
10 := max

πII0
πKK10 + πLL10

(11.4)

πIIj

πKK1j+πLL1j
≤ 1, j = 1, . . . , n,

πF Fj

πKK2j+πLL2j+πIIj
≤ 1, j = 1, . . . , n,
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πFF0

πKK20 + πLL20 + πII0
≥ θ20,

and for M20, the multiplier formulation is

θAQ
20 := max

πFF0

πKK20 + πLL20 + πII0
(11.5)

πIIj

πKK1j+πLL1j
≤ 1, j = 1, . . . , n,

πF Fj

πKK2j+πLL2j+πIIj
≤ 1, j = 1, . . . , n,

πII0
πKK10 + πLL10

≥ θ10.

The last constraint in each model ensures a lower bound on the efficiency of the
counterpart subsystem. As the lower bound parameter varies it changes the
efficiency in the obvious way. For example, raising θ20 lowers S10’s efficiency
in (11.4), and raising θ10 lowers S20’s efficiency in (11.5).

Observe that there is a single multiplier πK for both K1 and K2, a single
multiplier πL for both L1 and L2, and a single multiplier πI that is used to
weigh the intermediate factor both when it is an output (of the first stage)
and when it is an input (to the second stage). Since the capital, labor and
intermediate product are freely transferable between stages, their respective
weights in the multiplier formulation should be the same. We shall call this the
Consistent Pricing Principle. Consistent pricing holds for the Färe-Grosskopf
model as well. There, the linear fractional programming dual is

θCT
20 := max

πFF0

πK(K10 +K20) + πL(L10 + L20) + πII0

πIIj

πKK1j+πLL1j
≤ 1, j = 1, . . . , n,

πF Fj

πKK2j+πLL2j+πIIj
≤ 1, j = 1, . . . , n.

In an ordinary application of DEA, M10 would prefer a larger value of the
multiplier πI , whereas M20 would prefer a smaller value of πI . When both
output-input ratios appear in the same optimization, necessarily there will be
a tradeoff between the measurement of efficiency of both stages. The consistent
pricing principle leads to a natural conflict between the efficiency measures of
the two stages. A weighting scheme that might make M10 efficient might very
well make M20 look inefficient, and vice-versa. Thus, there will be a need to
coordinate the choice for this multiplier. Regardless of the weighting scheme
ultimately agreed upon, it should not be possible to select an alternative set
of weights that would make both stages at least as efficient while making one
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of them more efficient. That is, it should minimally result in a Pareto efficient
outcome; otherwise, neither manager M10 nor M20 would agree to the vertical
integration.

11.6 Extensions

Technology: The basic model assumed constant returns-to-scale and computed
standard radial measures of efficiency. It can be easily extended to the vari-
able returns-to-scale models or, more generally, to other technologies used to
generate measures of efficiency that eliminate the slacks in resource use.

Structure: The basic model contains just two stages. An obvious extension
is to increase the number of serial stages in the model. Such an extension is
possible as the notion of Pareto efficient frontier and the definition of Pareto
aggregate efficiency easily generalize. The main (and significant) difficulty here
is the time it will take to compute the various measures.

Choice of variables: The model can also be extended to allow more flexibil-
ity in the definition of the inputs and outputs. First, it is straightforward to
incorporate additional input and output factors. Second, the model can be
extended to allow the presence of inputs and outputs that are not completely
transferable in some subsystems. For example, some inputs are specific to a
particular subsystem and can not be shared. In this case, for the purpose of
modeling and computing a subsystem’s efficiency, it will be easier to work
with the multiplier formulation using the consistent pricing principle.

Transaction costs: The basic model assumes no transaction costs when re-
sources are moved between the two stages. These costs can be formulated by
either adding some terms to the balance equation of the capital or by applying
a certain “depreciation” term on each amount that is transferred.

11.7 Bibliographical Notes

This chapter is adapted from Golany et. al. [2006]. See references cited therein
to recent attempts to model some form of multi-stage efficiency.

Färe and Grosskopf [1996] and [2000] develop a general multi-stage model
with intermediate inputs-outputs, coined network DEA. In their framework,
each internal stage’s technology is modeled using a single-stage DEA model.
The two-stage model of the flow of material described in this chapter is a
special case of Färe and Grosskopf’s multi-stage framework. However, the
proposed aggregate efficiency measure is fundamentally different. In particu-
lar, in cases when the proposed aggregate efficiency is higher, it necessarily
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follows that it will not be possible to disaggregate the Fare-Grosskopf ag-
gregate efficiency measure into separate efficiency measures for which each
submanager will consent. If there is an aggregate manager who may unilater-
ally reallocate resources without consent of the submanagers, then assessing
aggregate efficiency using the Färe-Grosskopf framework may lead to superior
results for the whole system. However, as we have noted, due to the linkage of
inputs and outputs between the stages, in such a context one subsystem’s effi-
ciency can be vastly improved at the expense of potential improvement in the
other subsystem, which may render meaningless the assessment of subsystem
efficiency.



17

Index-Based Dynamic Production Functions

An economist typically works with aggregate data that record the cumulative
amounts of inputs and outputs in some predetermined period of time (e.g.,
quarterly, yearly). With today’s information systems, detailed shop-floor data
are becoming increasingly available, which opens the door to a refined de-
scription of technology.

At a micro-level, the exact shape of the input curve must be known to
project realized output rates over time. Within an activity or stage of pro-
duction, this dynamic input-output process is conveniently encapsulated by a
dynamic production function

x = (x1(·), x2(·), . . . , xn(·)) f−→ y = (y1(·), y2(·), . . . , ym(·)).

Each xi(t) represents the quantity of input i at time t, and each yj(t) rep-
resents the quantity of output j realized at time t. A dynamic production
function f(·) is a functional, since both its domain and range are vectors of
functions, not vectors of numbers. A dynamic production function defines a
recipe with more flexible elements than a steady-state production function.

We begin by describing a motivating example of non-instantaneous be-
havior. Next, we define the class of functions used to model all flows of goods
and services. The simplest description of dynamic production assumes in-
stantaneous transformations. This assumption can be relaxed to incorporate
constant lead times. Index-based dynamic production functions will be used
to model these processes, and three practical ways of indexing to incorporate
constant lead times will be described.

17.1 A Motivating Example

Consider a production system that takes two time periods to transform a unit
of input into a unit of output. In the first three time periods, system input
was observed to be 24, 48 and 96 units, respectively. What would be your
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answer to the following question: “How much total output has emerged by
the end of the first, second, and third time periods?”

The production system description is (purposely) ambiguous, but we begin
with an “obvious” answer, namely, no units of output will be realized in each
of the first two periods and 24 units of output will be realized by the end of
the third period. Even this simple answer makes the implicit assumption that
there was no input in the two periods prior to the first period; otherwise, these
two input numbers should be included as output in the first two periods. For
simplicity, we shall assume that there was no input prior to the first period.

Further investigation reveals that the system operates one 8-hour shift per
day, say from 9:00am to 5:00pm, and the first three time periods correspond
to Monday through Wednesday. The process involves a heating (light manu-
facturing) operation that requires a cooling period of exactly 16 hours before
the semi-finished part is completed as a finished product. (Another example
is a painting operation that requires parts to dry.) All semi-finished parts are
stored in a room while cooling, and this room is available 24 hours a day.
Since the production process occurs round-the-clock, we define a time period
to correspond to a single 24-hour day, say 9:00am to 9:00am.

The length of each time period is 24 hours. Let xi(τ), τ ∈ [0, 24], denote
the input curve in each period (day) i = 1, 2, 3. The total or cumulative input
in each period is

xi :=
∫ 24

0

xi(τ)dτ.

The shape of the input in each period i is

si(τ) := xi(τ)/xi, τ ∈ [0, 24).

It represents normalized input in that
∫ 24

0 si(τ)dτ = 1 for each i. We know
that x1 = 24, x2 = 48 and x3 = 96 and that si(τ) = 0 if 8 ≤ t ≤ 24 for each i,
but, as yet, no further information about the shapes of the input curves are
known. Let Y (t) denote the cumulative output obtained due to input in the
time interval [0, t]. (Here, t ∈ [0,∞) represents a point in time.) From what
we have learned so far,

Y (8) = 0, Y (24) = Y (32) = 24, Y (48) = Y (56) = 72, Y (72) = 168.

Suppose competitive pressures and transportation lead times dictate that
shipping occurs 24 hours a day. In particular, suppose a sizeable percentage of
the shipping activity occurs during the third shift, 1:00am - 9:00am, each day.
(A one-day time period consisting of three 8-hr shifts is consistent with the
original description.) It is useful now to view the overall production process
as consisting of three stages in series:

light manufacturing −→ cooling −→ shipping.

Shipping cannot ship a semi-finished part and so it will be necessary to de-
termine Y (t) for t ∈ [16, 24), i.e., between 1am–9am. However, it will not be
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possible to obtain these values unless the actual shapes, si(τ), of each input
curve are known. If each si(τ) is “front-loaded,” so that most input occurred
early in each shift, then

Y (16) ≈ Y (24) = 24, Y (40) ≈ Y (48) = 72, Y (56) ≈ Y (72) = 168.

If, on the other hand, each si(τ) is “back-loaded,” so that most input occurred
later in each shift, then

Y (0) ≈ Y (16) = 0, Y (24) ≈ Y (40) = 24, Y (48) ≈ Y (56) = 72.

The shape (or distribution) of input over time can have an enormous effect
on how output emerges over time.

At an atomic level, the production process, although relatively short, is
not instantaneous. The follow-on cooling operation takes 16 hours, which is
too significant to ignore. To simplify matters, we have conveniently assumed
it took exactly 16 hours for each part to cool. Suppose all parts belong to a
product family, each part is identical from the light manufacturing perspective,
but parts require different times to cool with the maximum time to cool
being 16 hours. To keep track of exact inventories of completed parts, the
input curves associated with each part within the family must be known. If
the number of parts in the product family is large and if customer demands
exhibit a high degree of substitution, then one may wish to model only the
aggregate input curve associated with all parts in the family and keep track
of only the aggregate inventory of completed parts. For example, it may be
computationally necessary to reduce the number of variables in a formulation
used for planning purposes (when considering all of the product families and
the many other aspects to the process). If this is indeed the case, then it will be
appropriate to view aggregate output as emerging continuously over a 16-hour
period, the distribution of which depends on how the aggregate input function
disaggregates into components associated with each part in the family.

Output emerging continuously over time can also arise when modeling
processing times that are random. For example, one possible outcome of a
testing or inspection process is a failed part that requires rework. The testing
or inspection time typically depends on the type of diagnosis. Estimating the
output of failed parts over time is required for planning resource requirements
for a rework activity.

17.2 Input-Output Domain

We describe the class of functions we use to model the flows of goods and
services. Points in time are modeled by the interval (−∞,∞). Unless otherwise
stated, each function of time is (i) finite-valued and nonnegative, and (ii) has
compact support, i.e., the points in time where the function is positive is
contained in a closed and bounded interval of time. There are two fundamental
types of functions of time, event-based and rate-based flows. We describe each
below.
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17.2.1 Event-Based Flows

For discrete-parts manufacturing systems, the flows of inputs and outputs are
event-based at the microscopic level. An event-based flow z(·) associates a
nonnegative real number z(τ) to an event that occurs at time τ . For example,
z(τ) might be the quantity of parts initiated into a production process at time
τ or a value associated with a job completed at time τ . Event-based flows
only take on positive values at those times when events occur. We assume the
number of event occurrences in a bounded interval of time is finite.

We shall integrate event-based functions, but cannot use the ordinary (Rie-
mann) integral, since the integral of an event-based function is always zero.
For an event-based function z(·) a summation takes the place of an integral.
For instance, the integral of z(·) on the interval (−∞, t] simply adds up all
the values associated with the events that occur on or before time t, namely,

Z(t) :=
∑
τi≤t

z(τi). (17.1)

The function Z(·) is a step-function whose “jumps” occur at the times τi. The
integral of z(·) on the time interval (s, t] is the difference Z(t)− Z(s).

17.2.2 Rate-Based Flows

For a rate-based flow z(·), the nonnegative real number z(τ) represents the
rate (quantity per unit time) of flow at time τ . Rate-based flows sometimes
represent a fluid approximation to event-based flows, and also arise quite
naturally when modeling physical processes. We shall insist a rate-based flow
is piecewise continuous, and the number of its discontinuities in any bounded
time interval is finite. The intervals between adjacent discontinuity points
define the pieces on which the rate-based flow is continuous. We shall often
refer to the cumulative flow associated with a rate-based flow z(·), which is
defined as the (Riemann) integral

Z(t) :=
∫ t

−∞
z(τ)dτ.

While it is certainly possible to imagine a “mixed” flow, in the develop-
ments to follow, a flow is either rate-based or event-based. Let D denote the
set of all functions of time that are either event- or rate-based. A dynamic
production function is a map from X ⊂ Dn into Dm.

17.3 Instantaneous Processes

A dynamic production function is instantaneous if the outputs at time t are
solely a function of the inputs at time t, and possibly other exogenous infor-
mation that is t-dependent. It has the form
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y(t) = [f(x)](t) = Φ(x(t), t) := (Φ1(x(t), t), . . . , Φm(x(t), t)).

Example 17.1. Consider a single-input, single-output process characterized by

y(t) = ax(t),

where a unit of input instantaneously results in a units of output. The constant
a could be less than one to model yield loss common to industries such as
semiconductor manufacture.

Example 17.2. Another example from productivity measurement is a single-
input, single-output process characterized by

y(t) = A(t)φ(x(t)) = A(0)egtx(t);

here, output at time t is proportional to the input rate at time t, and the pro-
portionality constant changes over time to reflect productivity improvements.

17.4 Index-Based Processes

17.4.1 Definition

Typically, when there are several inputs (e.g., multiple materials, subassem-
blies, machine and labor services), there is definite linkage in their use, espe-
cially in discrete-parts manufacturing. For example, in an assembly process,
there is a well-defined recipe for the number of parts or subassemblies needed
to make a finished product. The following definition captures this notion.

Definition 17.3. A dynamic production function is index-based if each in-
put vector x(·) in its domain X has the form

x(t) = (x1(t), x2(t), . . . , xn(t)) = ([ξ1(z)](t), [ξ2(z)](t), . . . , [ξn(z)](t)),

and the corresponding output vector has the form

[f(x)](t) = y(t) = (y1(t), y2(t), . . . , yn(t))
= ([ψ1(z)](t), [ψ2(z)](t), . . . , [ψn(z)](t)),

where ξi : D → D and ψi : D → D are each one-to-one. That is, the compo-
nents of each input vector and resulting output vector are uniquely determined
by a single function z(·) called the index; the shape of any one input or out-
put curve completely determines the shape of all remaining input and output
curves.

It is, of course, possible to define processes with several indexes, but we shall
not explore this generalization.

The computational advantage of an index-based process can be consider-
able, since the structure of the input-output transformation reduces to speci-
fying n+m independent transformations that often possess relatively simple
forms.



300 17 Index-Based Dynamic Production Functions

17.4.2 Fixed Proportions, Instantaneous Model

The simplest, classic example of an index-based process is the straightforward
extension of a simple Leontief process to the dynamic setting. We call it a
fixed proportions dynamic model. The production process is instanta-
neous and the inputs and outputs are in constant proportions. The input,
output vectors are, respectively,

x(t) = (a1, a2, . . . , an)z(t), (17.2)
y(t) = (u1, u2, . . . , um)z(t). (17.3)

The vectors a = (a1, a2, . . . , an) and u = (u1, u2, . . . , um) are the technical
coefficients that characterize this technology. The index z(·) is called the
intensity of this process.

Example 17.4. An example from semiconductor manufacturing illustrates the
use for vector-valued output. In semiconductor wafer manufacturing, each
wafer consists of many die. In an ideal world, all die on the wafer would have
identical characteristics. Due to (random) fluctuations, die on a single wafer
are not identical and must be classified into different “bins” based on key
operating characteristics. In this setting, z(·) indexes the amount of wafer
starts and the uk represent the (expected) proportion of die that will be
classified into bin k, after accounting for yield loss. See Leachman et. al.
[1996] and Leachman [2002] for a detailed description.

More generally, the technical coefficients could be functions of time,
namely, each ai = ai(·) and uj = uj(·), in which case the input and out-
put vectors are, respectively,

x(t) = (a1(t), a2(t), . . . , an(t))z(t), (17.4)
y(t) = (u1(t), u2(t), . . . , um(t))z(t). (17.5)

For this more general description, the inputs and output are in constant pro-
portions at each point in time; however, these proportional constants may
vary over time.

Example 17.5. Technical coefficients can change over time due to productivity
improvements. Required inputs per unit of intensity can decline due to learn-
ing, operational improvements, etc., and the outputs per unit of intensity can
increase due to better yields.

17.4.3 Fixed Proportions, Constant Lead Time Models

We describe three practical ways to use indexing to incorporate constant
lead times into the fixed proportions dynamic model characterized by (17.2)
and (17.3).
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Indexing Non-storable Services

Here, z(·) indexes the non-storable labor and machine services, which are
simultaneously used to produce a single output. The storable inputs, such as
materials and subassemblies, are assumed to be withdrawn from inventory
“just-in-time” for their use, but each may require a constant lead time for
transportation, inspection, etc.

Let �k ≥ 0 denote the lead time for the kth storable input. In this setting
we have xi(t) = aiz(t) for the ith non-storable service input, and xk(t) =
akz(t + �k) for the kth storable input, since its withdrawal from inventory
occurs exactly �k time units before its use. As in the motivating example of
Section 17.1, we assume output emerges a constant lead time ρ ≥ 0 after use
of the non-storable services; consequently, y(t) = z(t− ρ).

Example 17.6. A production process uses two raw (storable) materials and
one machine service to produce a single output. The relevant data are:

• 12 units of material 1 are required per unit of output, and it takes 2 hours
to transport this material to the machine station. Here, a1 = 12 and �1 = 2.

• 18 units of material 2 are required per unit of output, and it takes 3 hours
to transport this material to the machine station. Here, a2 = 18 and �2 = 3.

• 2 hours of machine service are required per unit of output. Here, a3 = 2.
• After machining has taken place, it takes 5 hours to inspect the semi-

finished output, after which the completed output is available to service
demand. Here, ρ = 5.

Between hours 100 and 102, a total of 32 hours of machine services has
been consumed, uniformly spread over this period. Here, x3(t) = 16 for
t ∈ [100, 102], and z(t) = 16 for t ∈ [100, 102] since x3(t) = z(t). In words,
8 units are being machined at a constant rate during this two-hour period of
time. Given a lead time of 2 hours for material 1 (and the just-in-time as-
sumption), the withdrawal rate of material 1 input is x1(t) = 12(8) = 96
for t ∈ [98, 100]. Similarly, given a lead time of 3 hours for material 2
(and the just-in-time assumption), the withdrawal rate of material 2 input
is x2(t) = 18(8) = 144 for t ∈ [97, 99]. Given that it takes 5 hours to inspect
the semi-finished output as it emerges from the machining process, the final
output rate is y(t) = 8 for t ∈ [105, 107]. In terms of this index,

z(t) = 16 for t ∈ [100, 102],
x1(t) = 6z(t+ �1) = 6z(t+ 2),
x2(t) = 9z(t+ �2) = 9z(t+ 3),
x3(t) = z(t),
y(t) = 0.5z(t− ρ) = 0.5z(t− 5).
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Indexing “Outs”

A second approach to indexing is to let z(·) index the output or “outs” of the
process in which case y(t) = z(t). On the input side, xi(t) = aiz(t + ρ) for
the ith non-storable service input, since its usage occurs exactly ρ time units
before the product emerges as output, and xk(t) = akz(t+ �k + ρ) for the kth

storable input, since its withdrawal from inventory occurs exactly ρ+ �k time
units before the product emerges as output.

Example 17.7. Consider the same data provided in Example 17.6. Between
hours 105 and 107, a total of 16 units of completed output has emerged,
uniformly spread over this period. Here, z(t) = 8 for t ∈ [105, 107]. The
function z(·) here does not equal the z(·) function in the previous example
since here it is being used to index output and not machine services. The
consumption of resources has not changed, i.e., it is still the case that

x1(t) = 12(8) = 96, t ∈ [98, 100],
x2(t) = 18(8) = 144, t ∈ [97, 99],
x3(t) = 16, t ∈ [100, 102].

What has changed, however, is how these functions relate to the chosen index.
In terms of this index,

z(t) = 8 for t ∈ [105, 107],
x1(t) = 12z(t+ �1 + ρ) = 12z(t+ 7),
x2(t) = 18z(t+ �2 + ρ) = 18z(t+ 8),
x3(t) = 2z(t+ ρ) = 2z(t+ 5),
y(t) = z(t).

Example 17.8. Consider the same data provided in Example 17.6, except that
now two simultaneous semi-finished outputs emerge after machining in a 3:1
ratio, i.e., a total of 12 units of semi-finished output 1 and a total of 4 units of
semi-finished output 2 emerge uniformly over the interval [100, 102]. In this
example, it takes 5 hours to inspect output 1 (as before), whereas now it takes
9 hours to inspect output 2.

The notion of outs in this example cannot apply simultaneously to both
outputs, since there are two nonequal ρ’s, i.e., ρ1 = 5 and ρ2 = 9. It has to
apply to one of the outputs, from which the other output and inputs can be
determined. If output 1 is chosen as the index, then

z(t) = 6, t ∈ [105, 107],
x1(t) = 16z(t+ 7), t ∈ [98, 100],
x2(t) = 24z(t+ 8), t ∈ [97, 99],
x3(t) = (8/3)z(t+ 5), t ∈ [100, 102],
y1(t) = z(t), t ∈ [105, 107],
y2(t) = (1/3)z(t− 7), t ∈ [109, 111].
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On the other hand, if output 2 is chosen as the index, then

z(t) = 2, t ∈ [97, 99],
x1(t) = 48z(t), t ∈ [97, 99],
x2(t) = 72z(t− 1), t ∈ [98, 100],
x3(t) = 8z(t− 3), t ∈ [100, 102],
y1(t) = 3z(t+ 4), t ∈ [105, 107],
y2(t) = z(t), t ∈ [109, 111].

Indexing “Starts”

For the special case when the storable lead times are all identical, say �i = �,
then a third approach to indexing is to let z(·) index the “starts” of the process
in which case xk(t) = akz(t) for the kth storable input and xi(t) = aiz(t− �)
for the ith non-storable service input, since the usage of the non-storable
service occurs exactly � units after the withdrawal of the storable inputs. On
the output side, y(t) = z(t− �− ρ).

Example 17.9. Suppose the data in Example 17.6 is changed so that �1 = �2 =
2.5 (the average of 2 and 3). The machine services are still consumed uniformly
over the interval [100, 102]. Since the function z(·) now indexes starts,

z(t) = 8 for t ∈ [97.5, 99.5],
x1(t) = 12z(t), t ∈ [97.5, 99.5],
x2(t) = 18z(t), t ∈ [97.5, 99.5],
x3(t) = 2z(t− 2.5), t ∈ [100, 102],
y(t) = z(t− 7.5), t ∈ [105, 107].

When the storable lead times are not all identical, then the notion of a start
cannot apply to all inputs simultaneously—it has to apply to one of the inputs,
from which the other inputs and output can be determined. Suppose the lead
times �1 = 2 and �2 = 3, as before. If input 1 is chosen as the index, then

z(t) = 96, t ∈ [98, 100],
x1(t) = z(t), t ∈ [98, 100],
x2(t) = 1.5z(t+ 1), t ∈ [97, 99],
x3(t) = (1/6)z(t− 2), t ∈ [100, 102],
y(t) = (1/12)z(t− 7), t ∈ [105, 107].

On the other hand, if input 2 is chosen as the index, then

z(t) = 144, t ∈ [97, 99],
x1(t) = (2/3)z(t− 1), t ∈ [98, 100],
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x2(t) = z(t), t ∈ [97, 99],
x3(t) = (1/9)z(t− 3), t ∈ [100, 102],
y(t) = (1/18)z(t− 8), t ∈ [105, 107].

Remark 17.10. Under restrictive assumptions, the notion of starts and outs
for the whole process can apply and can be used to index the consumption
of non-storable resources, the withdrawal of storable inputs, and subsequent
final output. In general, one can still speak of starts and outs and use them
to index the process: in the case of starts, one of the inputs is chosen as the
index; in the case of outs, one of the outputs is chosen as the index. When
the consumption of non-storable resources is chosen as the index, all inputs
and outputs can be related to it (as long as lead times are constant).

17.5 Exercises

17.1. Consider the data of Example 17.6. Suppose between the hours of 205
and 209, a total of 192 hours of machine services has been consumed, uniformly
spread over this period. Ignore the previous input described in this example.

(a) What are the specific values for z(·), x1(·), x2(·), x3(·) and y(·) if z(·) is
used to index the non-storable services?

(b)What are the specific values for z(·), x1(·), x2(·), x3(·) and y(·) if z(·) is
used to index the outs?

(c) Suppose, as in Example 17.8, ρ1 = 5 and ρ2 = 9.
(i) What are the specific values for z(·), x1(·), x2(·), x3(·) and y(·) if z(·)

is used to index output 1?
(ii) What are the specific values for z(·), x1(·), x2(·), x3(·) and y(·) if z(·)

is used to index output 2?
(d) Suppose, as in Example 17.9, �1 = �2 = 2.5. What are the specific values

for z(·), x1(·), x2(·), x3(·) and y(·) if z(·) is used to index the starts?
(e) Suppose, as in Example 17.9, �1 = 2 and �2 = 3.

(i) What are the specific values for z(·), x1(·), x2(·), x3(·) and y(·) if z(·)
is used to index input 1?

(ii) What are the specific values for z(·), x1(·), x2(·), x3(·) and y(·) if z(·)
is used to index input 2?

17.2. A production process uses two raw (storable) materials and one machine
service to produce two outputs. The relevant data are:

• Two simultaneous semi-finished outputs emerge after machining in a 2:1
ratio.

• 9 units of material 1 are required per unit of aggregate output, and it takes
1 hour to transport this material to the machine station. Here, a1 = 9 and
�1 = 1.
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• 27 units of material 2 are required per unit of aggregate output, and it
takes 4 hours to transport this material to the machine station. Here,
a2 = 27 and �2 = 4.

• 3 hours of machine service are required per unit of aggregate. Here, a3 = 3.
• After machining has taken place, it takes 8 hours to inspect semi-finished

output 1 and 12 hours to inspect semi-finished output 2. Here, ρ1 = 8 and
ρ2 = 12.

• Between hours 100 and 110, a total of 900 hours of machine services has
been consumed, uniformly spread over this period.

(a) What are the specific values for x1(·), x2(·), x3(·), y1(·) and y2(·)?
(b) What is the general form for the functions x1(·), x2(·), x3(·), y1(·) and

y2(·) in terms of the index z(·) when the index is chosen to represent the
(i) non-storable machine service?
(ii) output 1?
(iii) output 2?
(iv) input 1?
(v) input 2?

17.6 Bibliographical Notes

See Hackman [1990] for an in-depth discussion of acceptable properties of
dynamic production functions.
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17.7 Solutions to Exercises

17.1 (a) We have

z(t) = 48, t ∈ [205, 209],
x1(t) = 288, t ∈ [203, 207],
x2(t) = 432, t ∈ [202, 206],
x3(t) = 48, t ∈ [205, 209],
y(t) = 24, t ∈ [210, 214].

(b) All functions remain unchanged, except that now z(t) = 24, t ∈ [210, 214].
(c) For (i),

z(t) = 18, t ∈ [210, 214],
y1(t) = 18, t ∈ [210, 214],
y2(t) = 6, t ∈ [214, 218].

All other functions remain unchanged. As for (ii), now z(t) = 6, t ∈ [210, 214].
All other functions remain unchanged from their values in (i).
(d) Here,

z(t) = 24, t ∈ [202.5, 206.5],
x1(t) = 288, t ∈ [202.5, 206.5],
x2(t) = 432, t ∈ [202.5, 206.5].

All other functions remain the same.
(e) Only the z(·) function changes. For part (i), z(t) = 288, t ∈ [203, 207],
whereas for part (ii), z(t) = 432, t ∈ [202, 206].

17.2 (a) The specific values are:

x1(t) = 270, t ∈ [99, 109],
x2(t) = 810, t ∈ [96, 106],
x3(t) = 90, t ∈ [100, 110],
y1(t) = 20, t ∈ [108, 118],
y2(t) = 10, t ∈ [112, 122].

(b) For part (i):

x1(t) = 3z(t+ 1),
x2(t) = 9z(t+ 4),
x3(t) = z(t),
y1(t) = (2/9)z(t− 8),
y2(t) = (1/9)z(t− 12).
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For part (ii):

x1(t) = (27/2)z(t+ 9),
x2(t) = (81/2)z(t+ 12),
x3(t) = (9/2)z(t+ 8),
y1(t) = z(t),
y2(t) = (1/2)z(t− 4).

For part (iii):

x1(t) = 27z(t+ 13),
x2(t) = 81z(t+ 16),
x3(t) = 9z(t+ 12),
y1(t) = 2z(t+ 4),
y2(t) = z(t).

For part (iv):

x1(t) = z(t),
x2(t) = 3z(t+ 3),
x3(t) = (1/3)z(t− 1),
y1(t) = (2/27)z(t− 9),
y2(t) = (1/27)z(t− 13).

For part (v):

x1(t) = 3z(t− 3),
x2(t) = z(t),
x3(t) = (1/9)z(t− 4),
y1(t) = (2/81)z(t− 12),
y2(t) = (1/81)z(t− 16).
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Productivity and Performance Measurement
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Index Numbers

A price index is a measure that summarizes the change in the prices of a
basket of goods (or a group of inputs) from one time period to the next. A
Consumer Price Index (CPI) is used by policy makers to estimate the inflation
rate, which is then used, for example, to make cost-of-living adjustments.
A price index is also constructed to measure the difference in prices in two
different locations, in which case it could be used to compensate an employee
for relocation. A Producer Price Index (PPI) is used by policy makers and
businesses to estimate the price changes that affect the production side of
the economy. In the United States, the Bureau of Labor Statistics (BLS) and
the Bureau of Economic Analysis (BEA) compute a host of indexes for many
categories (e.g., materials, energy, labor productivity).

While price indexes are most relevant for consumers, quantity indexes can
be used to measure a firm’s performance. A quantity index is a measure that
summarizes the change in the quantities of outputs produced (or products
consumed) or inputs used. The ratio of the growth in aggregate output to the
growth in aggregate input can be used to assess a firm’s productivity from
one year to the next. Such a computation presupposes a rational method
for aggregating the outputs and inputs, which is equivalent to constructing
separate quantity indexes for output and input.

In this chapter, we develop several price and quantity indexes and explain
the rationale for each. In the next two chapters, we show how to apply these
indexes to assess a firm’s productivity and overall performance from one year
to the next.

13.1 Motivating Example

Consider the following price-quantity data collected for a consumer or pro-
ducer for two time periods, t = 0 (“last year”) and t = 1 (“current year”),
displayed in Table 13.1. On the producer side, the goods may either be out-
puts, in which case the prices correspond to the per-unit revenues the firm
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receives, or inputs, in which case the prices correspond to the per-unit costs
the firm pays. The outputs or inputs can also belong to a category, e.g., prod-
uct group, materials, labor, etc. The goal is to obtain a reasonable estimate
of the price and quantity changes over the two periods. In the discussion to
follow, the price-quantity data corresponds to a representative consumer.

Table 13.1. Price-quantity data for motivating example.

Period 0 Period 1
Price Quantity Price Quantity

Good 1 1.00 2 0.70 10
Good 2 2.00 3 2.25 4
Good 3 1.50 8 1.80 5

The consumer spent E0 = 20 in period 0, E1 = 25 in period 1 for an
expenditure ratio of 1.25. The number 1.25, or equivalently 100(1.25− 1) =
25%, cannot be used to assess increases in the cost-of-living, aggregate price,
or aggregate quantity for three fundamental reasons. First, the expenditure
ratio suffers from substitution bias, since it ignores the “substitution effect”—
the consumer will adjust his choices of goods to purchase when prices change.
Second, the expenditure ratio suffers from utility bias, since it ignores the
“utility effect”—the consumer has preferences for the goods purchased. For
example, the consumer may strongly prefer the consumption bundle in period
1 to the one purchased in period 0, in which case there is an “apples-oranges”
problem. The third problem, quality bias, is always lurking in the shadows.
Suppose a unit of good i in period 1 is “better” than a unit of good i in period
0. It is tacitly assumed that quantities are measured in quality-adjusted units,
which, in practice, is a difficult task. For certain goods (e.g. computers), it is
possible to form a hedonistic index to measure the quality changes (e.g.,
some weighted combination of factors such as CPU speed, memory, etc.). For
government services, this task is so difficult the BEA often assumes no quality
change has occurred. To the extent a price index understates the quality effect,
it will overstate the price effect.

We now present several possible ways to construct a price index:

• Average level of prices. The average price levels are

(1.00 + 2.00 + 1.50)
3

= 1.5000,
(0.70 + 2.25 + 1.80)

3
= 1.5833,

in periods 0 and 1, respectively. The ratio of the average price levels is
1.5833/1.500 = 1.0556, suggesting a 5.56% price increase. This index suf-
fers from a fatal flaw: it is not invariant to a change in the unit of measure-
ment. Consider how the index changes if the prices of good 1 are multiplied
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by 10 due to a change in the units used to measure the quantities: the new
index equals (11.05/3)/(13.50/3) = 0.8185, suggesting an 18.15% decline
in prices.

• Average or geometric average of price ratios. The fatal flaw associated with
the use of the average level of prices can be overcome by instead taking
the ratio of (i) the average of the price ratios, or (ii) the geometric average
of the price ratios. In case (i), the index is calculated as

(0.70/1.00) + (2.25/2.00) + (1.80/1.50)
3

= 1.0083,

and in case (ii), the index is calculated as

(0.70
1.00

)1/3(2.25
2.00

)1/3(1.80
1.50

)1/3

= 0.9813.

There is a statistical justification for either index. If the price ratios are
independently and symmetrically distributed about a common mean, and
this distribution is normal, the maximum likelihood estimator for the com-
mon mean corresponds to the first index. If the natural log of the price
ratios are independently and symmetrically distributed about a common
mean, and this distribution is normal, the maximum likelihood estimator
for the common mean corresponds to the second index. It has long been
empirically established that price ratios are not so distributed; price move-
ments are co-mingled through the general equilibrium of the economy.

• Weighted average of the price ratios. The indexes mentioned so far do not
use any quantity information, and thus have no hope of avoiding the utility
bias. The next index weights the price ratios by the expenditure shares in
period 0, which were

(1.00)(2)
20

= 0.10,
(2.00)(3)

20
= 0.30,

(1.50)(8)
20

= 0.60,

for goods 1, 2 and 3, respectively. The index is calculated as

(0.10)
(0.70

1.00

)
+ (0.30)

(2.25
2.00

)
+ (0.60)

(1.80
1.50

)
= 1.1275, (13.1)

suggesting a price or cost-of-living increase of 12.75%.1 This index is known
as the Laspeyres price index, and is more commonly calculated as the ratio
of what it would cost in year 1 to purchase the same goods in year 0,
namely,

(0.70)(2) + (2.25)(3) + (1.80)(8) = 22.55,

to the expenditure in year 0, namely, 20. The index (13.1) is constructed
“forward in time.” A similar index is constructed by going “backwards in

1 Of course, the average price ratio is a weighted average of the price ratios, albeit
with equal weights.
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time,” namely, by interchanging the roles of period 0 with period 1 and
taking the reciprocal2, as follows:
{

(0.28)
(1.00

0.70

)
+ (0.36)

(2.00
2.25

)
+ (0.36)

(1.50
1.80

)}−1

= 0.9804, (13.2)

suggesting a cost-of-living or price decrease of 1.96%. This index is known
as the Paasche price index, and is more commonly calculated as the ratio
of the expenditure in year 1, namely, 25, to what it would cost in year 0
to purchase the same goods in year 1, namely,

[1.00(10) + 2.00(4) + 1.50(5)] = 25.50.

Both the Laspeyres and Paasche indexes have merit, but they lead to
dramatically different estimates, 1.1275 and 0.9804, respectively.3 A com-
promise is to take the geometric mean of these two indexes,√

(1.1275)(0.9804) = 1.0514,

now known as the Fisher ideal index, which suggests a cost-of-living or
price increase of 5.14%.

• Weighted geometric mean of price ratios. The most commonly used in-
dex of this type uses the average expenditure shares as the weights.4 The
average expenditure shares are

(0.10 + 0.28)
2

= 0.19,
(0.30 + 0.36)

2
= 0.33,

(0.60 + 0.36)
2

= 0.48,

for the goods 1, 2 and 3, respectively. Known as the Tornqvist price index
it is calculated as(0.70

1.00

)0.19(2.25
2.00

)0.33(1.80
1.50

)0.48

= 1.0803,

suggesting a cost-of-living or price increase of 8.03%.

So far, we have discussed price indexes. Interchanging the roles of prices
and quantities leads to analogous quantity indexes. There is also an implicit
method to obtaining a quantity index: Associate with each price index P
the quantity index Q defined by the identity P · Q = E1/E0. For the given
price-quantity data, the
2 The reciprocal is necessary. Consider what would happen if the prices in year

1 were twice the prices in year 0 and the quantities purchased were identical.
Without taking the reciprocal, the index would suggest a price decline of 50%.

3 This is largely due to the dramatic swings in the price components from one
period to the next in the example data. These two indexes differ in practice by
at most 1%. These indexes can lead to quite different results if the price-quantity
data correspond to different locations within the same year.

4 Of course, the geometric average of the price ratios is a weighted geometric mean
albeit with equal weights.
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• implicit Laspeyres quantity index is 1.1086, since (1.1275)(1.1086) = 1.25;
• implicit Paache quantity index is 1.2750, since (0.9804)(1.2750) = 1.25;
• implicit Fisher ideal price index is 1.1889, since (1.0514)(1.1889) = 1.25;
• implicit Tornqvist price index is 1.1571, since (1.0803)(1.1571) = 1.25.

Similarly, one may associate with each quantity index Q the implicit price
index P so that Q · P = E1/E0. Implicit indexes are convenient since, by
construction, the product of the price and quantity indexes fully accounts for
the growth (or decline) in the expenditure ratio. They are also useful when a
portion of the detailed price-quantity data is not available.

To be concrete in the developments to follow, we shall interpret the price-
quantity data in the producer context. We let pt, xt and Φ(xt), denote the
price vectors, input vectors, and maximal outputs for periods t = 0, 1. All
economic variables (e.g., prices, quantities) are assumed positive.

13.2 Price Indexes

13.2.1 Konus Price Index

Definition 13.1. The Konus price index is

PK(p0, p1, x) :=
Q(Φ(x), p1)
Q(Φ(x), p0)

,

where Q(u, p) denotes the minimal cost (expenditure) function.

The Konus price index does not suffer from substitution bias or utility bias:
it tackles the substitution bias via the expenditure function, which incorpo-
rates changes in quantities purchased due to price changes, and it tackles the
utility bias by insisting that expenditures are compared for the same level of
output.The output levels u0 and u1 will not, in general, coincide, and they
certainly may not equal the output level u := Φ(x) corresponding to the
arbitrarily chosen quantity vector x.

The Konus index depends on the particular choice of x. There is one
useful setting in which the Konus index is independent of x, namely, when the
technology satisfies homotheticity. A function Φ(·) is homothetic if and only if
it can be represented as F (φ(x)) where φ(·) exhibits constant returns-to-scale
and F (·) is a suitable transform—see Definition 2.28.

Theorem 13.2. PK is independent of x if and only if Φ(·) is homothetic.

Proof. A production function Φ(·) is homothetic if and only if the cost function
factors as Q(u, p) = Λ(u)P (p), where Λ(·) is strictly increasing and P (·) is
homogeneous of degree one. (We established this result as an application of
the duality between the cost and distance function—see Section 7.4.) If the
expenditure function factors, then obviously the Konus index is independent
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of x. Conversely, suppose the Konus index is independent of x. Fix p0 and
note that Q(u, p0) > 0. We may express the cost function as

Q(u, p) = Q(u, p0)
( Q(u, p)
Q(u, p0)

)
:= f(u)P (p).

Clearly, f(·) and P (·) have the requisite properties, which shows that the
expenditure function factors, as required. ��

The following Proposition establishes easy-to-compute, natural bounds on
the Konus price index.

Proposition 13.3. For any choice of x,

min
i
p1

i /p
0
i ≤ PK(p0, p1, x) ≤ max

i
p1

i /p
0
i .

Proof. Fix x or u. For each i = 0, 1, let yi denote an optimum solution to the
Q(u, pi) cost minimization problem. By definition of the yi and the Konus
price index,

PK(p0, p1, x) =
p1 · y1

p0 · y0
, (13.3)

p1 · y1 ≤ p1 · y0, (13.4)
p0 · y0 ≤ p0 · y1. (13.5)

Thus,

PK(p0, p1, x) ≥
∑

i

(
p1

i

p0
i

)[
p0

i y
1
i

p0 · y1

]
≥ min

i
p1

i /p
0
i , (13.6)

PK(p0, p1, x) ≤
∑

i

(
p1

i

p0
i

)[
p0

i y
0
i

p0 · y0

]
≤ max

i
p1

i /p
0
i , (13.7)

since a convex combination of positive numbers is bounded below (above) by
the minimum (maximum) of those positive numbers. ��

13.2.2 Laspeyres and Paasche Price Indexes

Considerably sharper bounds can be achieved if instead of selecting an arbi-
trary x in Proposition (13.3), somewhat more hospitable choices, namely, x0

or x1, are chosen.

Definition 13.4. The Laspeyres-Konus price index is PK(p0, p1, x0) and
the Paasche-Konus price index is PK(p0, p1, x1).
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Definition 13.5. The Laspeyres price index is

PL(p0, p1, x0, x1) :=
p1 · x0

p0 · x0
.

The Paasche price index is

PP (p0, p1, x0, x1) :=
p1 · x1

p0 · x1
.

We suppress the functional dependence of the prices and quantity bundles,
and simply denote the Laspeyres and Paasche price indexes as PL and PP ,
respectively.

The following Corollary to Proposition 13.3 shows how the use the Laspeyres
and Paasche price indexes to respectively bound the Laspeyres-Konus and
Paasche-Konus indexes.

Assumption 4 Each xt is a cost (expenditure) minimizer, namely, each xt

satisfies
pt · xt = Q(Φ(xt), pt). (13.8)

Corollary 13.6. Under Assumption 4,

min
i
p1

i /p
0
i ≤ PK(p0, p1, x0) ≤ PL,

PP ≤ PK(p0, p1, x1) ≤ max
i
p1

i /p
0
i .

If Φ(·) is homothetic, then PK is independent of x by Theorem 13.2, in
which case

PK(p0, p1, x0) = PK(p0, p1, x) = PK(p0, p1, x1)

for each choice of x. As an immediate consequence of Corollary 13.6, we have:

Corollary 13.7. If Φ(·) is homothetic, then

PP ≤ PK(p0, p1, x) ≤ PL

holds for each choice of x.

Remark 13.8. Under the homothetic setting, the Paasche price index lies below
the Laspeyres price index, which typically occurs in practice. However, if Φ(·)
is not homothetic, it is possible that PP > PL.

Remark 13.9. The Paasche and Laspeyres price indexes will bound the Konus
price index as in Corollary 13.7 if the homothetic condition is replaced by the
condition u0 = u1 = u. However, this last condition is a bit much to expect
for observed data.
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Given the available data the indexes, PP and PL, are easy to construct.
Can any statement be made about the relationship between PP , PL, and
PK when Φ(·) is not homothetic? Under reasonable regularity conditions, the
following relationships exist:

(i) If PL ≤ PP , then for each μ ∈ [0, 1], the value μPL + (1 − μ)PP must
coincide with a Konus price index for some choice of x, which, moreover,
can be taken to be a convex combination x = λx0 + (1 − λ)x1 of x0 and
x1 for some λ ∈ [0, 1].

(ii) If PP ≤ PL, then there is at least one value of μ ∈ [0, 1] for which the
value μPL + (1 − μ)PP will coincide with a Konus price index for some
choice of x, which, moreover, can be taken to be a convex combination
x = λx0 + (1− λ)x1 of x0 and x1 for some λ ∈ [0, 1].

Assumption 5 Φ(·) is continuous, strictly quasiconcave and increasing.

Theorem 13.10. Under Assumption 5,

a) if PP ≥ PL, then for each value of μ ∈ [0, 1] there exists a λμ ∈ [0, 1] such
that

PK(p0, p1, λμx
0 + (1− λμ)x1) = μPP + (1 − μ)PL.

b) if PP ≤ PL, then there exists a λ ∈ [0, 1] such that

PP ≤ PK(p0, p1, λx0 + (1− λ)x1) ≤ PL.

Proof. Let
ψ(λ) := PK(p0, p1, λx0 + (1 − λ)x1).

The Theorem of the Maximum, Appendix H, guarantees that Q(Φ(x), p), and
hence PK , will be continuous in x as long as Φ(·) is continuous and is well-
behaved. Continuity of PK in x implies continuity of ψ(·) on [0, 1]. Since ψ(·)
is continuous, its image ψ[0, 1] must be an interval.5 Corollary 13.6 implies
this interval contains the interval [PL, PP ] in the case of part (a) and intersects
the interval [PP , PL] in the case of part (b). The result follows. ��

13.3 Fisher and Tornqvist Price Indexes

13.3.1 Fisher Ideal Price Index

In this section we make the following assumption:

Assumption 6 Φ(x) =
√
xTAx, and Φ(·) is restricted to an open domain

S ⊂ Rn
+ on which xTAx > 0 and Φ(·) is concave. Without loss of generality,

A is taken to be symmetric so that A = AT .6

5 A continuous image of a connected set is connected, and a subset of the real line
is connected if and only if it is an interval.

6 If A is not symmetric, replace it with 1/2(A + AT ).
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Since Φ(·) exhibits constant returns-to-scale, and thus is homothetic, the
Konus index equals the ratio Q(1, p1)/Q(1, p0). In fact, we show below the
Konus index equals the Fisher ideal index.

Definition 13.11. The Fisher ideal price index is PF :=
√
PP PL.

Lemma 13.12. If p · z = Q(1, p), then p = (p · z)zTA.

Proof. By definition,

Q(1, p) = min{p · x :
√
xTAx ≥ 1} = min{p · x : xTAx ≥ 1}.

Since z is a cost minimizer, first-order optimality conditions imply that p =
2λzTA. Thus, p · z = 2λ(zTAz) = 2λ, since the constraint must be tight at
the optimum, and the result follows. ��

Theorem 13.13. PF = PK under Assumption 6.

Proof. Let zi = xi/Φ(xi) and note that pi · zi = Q(1, pi). Using Lemma 13.12,

p1 = (p1 · z1)zT
1 A and p0 = (p0 · z0)zT

0 A. (13.9)

Thus,

PL =
p1 · x0

p0 · x0
=
p1 · z0
p0 · z0

=
(p1 · z1)(zT

1 Az0)
p0 · z0

, (13.10)

PP =
p1 · x1

p0 · x1
=
p1 · z1
p0 · z1

=
p1 · z1

(p0 · z0)(zT
0 Az1)

. (13.11)

Since A is symmetric,

PL · PP =
(
p1 · z1
p0 · z0

)2

=
(
Q(1, p1)
Q(1, p0)

)2

, (13.12)

and the result follows. ��

13.3.2 Tornqvist Price Index

In this section, we assume Φ(·) is homothetic so that PK = Q(1, p1)/Q(1, p0).
We also make the following assumption:

Assumption 7 The unit cost function Q(1, p) has the translog form, i.e.,

ln Q(1, p) = a0 +
∑

i

ai ln pi + 1/2
∑

i

∑
j

aij ln pi ln pj, (13.13)

where aij = aji.7

7 Since a well-behaved cost function is also homogeneous of degree one, it must also
be true that

P
i ai = 1 and that

P
i aij =

P
j aij = 0.
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Let h(z) := a0 + aT z + 1/2 zTAz denote a quadratic form with A sym-
metric. An examination of (13.13) shows that ln Q(1, p) = h(z(p)) where
z(p) := (ln p1, ln p2, . . . , ln pn). By the chain rule

∂h(z(p))
∂pk

=
∂h(z(p))
∂zk

1
pk

; (13.14)

it therefore follows that

∂h(z)
∂zk

= pk
∂ln Q(1, p)

∂pk
=
pk

∂Q(1,p)
∂pk

Q(1, p)
= ε

Q(1,p)
i , (13.15)

the elasticity of cost Q(1, p) with respect to input i. We use this fact below.
Since Φ(·) is homothetic, the Konus index equals the ratio Q(1, p1)/

Q(1, p0). In fact, we show below the Konus price index equals the Tornqvist
price index.

Definition 13.14. The Tornqvist price index is

PT :=
∏

i

(
p1

i

p0
i

)(S1
i +S0

i )/2

,

where St
i denotes the expenditure share of good i in period t = 0, 1.

Lemma 13.15. Let h(z) = a0+aT z+1/2 zTAz denote a quadratic form with
A symmetric. For each choice of z1 and z0,

h(z1)− h(z0) = 1/2 [∇h(z1) +∇h(z0)] · (z1 − z0) . (13.16)

Proof. Since ∇h(zi) = aT + ziA, the right-hand side of (13.16)

= 1/2 [(aT + zT
1 A) + (aT + zT

0 A)] · (z1 − z0)
= aT (z1 − z0) + 1/2 {zT

1 Az1 + zT
1 Az0 − zT

0 Az1 − zT
0 Az0}

= (aT z1 + 1/2 zT
1 Az1)− (aT z0 + 1/2 zT

0 Az0)
= h(z1)− h(z0).��

Theorem 13.16. If Φ(·) is homothetic and Assumptions 4 and 7 hold, then
PT = PK .

Proof. Let zi = z(pi), i = 1, 2. The following string of identities follow
from Lemma 13.15, identity (13.15) and Shephard’s Lemma (5.4.2), namely,
∇pQ(1, pi) = xi:

ln Q(1, p1)− ln Q(1, p0) = h(z1)− h(z0)
= 1/2 [ ∇h(z1) +∇h(z0) ] · (z1 − z0)

= 1/2
∑

k

[
∂h(z1)
∂zk

+
∂h(z0)
∂zk

] (
zk
1 − zk

0

)
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= 1/2
∑

k

⎡
⎣ p1

k
∂Q(1,p1)

∂pk

Q(1, p1)
+
p0

k
∂Q(1,p0)

∂pk

Q(1, p0)

⎤
⎦ (ln

p1
k

p0
k

)

= 1/2
∑

k

[
p1

kx
1
k

Q(1, p1)
+

p0
kx

0
k

Q(1, p0)

] (
ln
p1

k

p0
k

)

= 1/2
∑

k

(S1
k + S1

k)
(

ln
p1

k

p0
k

)
.

Taking the exponential of each side proves the claim. ��

13.4 Implicit Quantity Indexes

As mentioned in the motivating example, price indexes can be used to con-
struct implicit quantity indexes, which we denote by Q̂. The rule is this: given
the price index P its associated implicit quantity index is defined via the
identity P · Q̂ = E1/E0. Examples include:

implicit Laspeyres quantity index = Q̂L :=
E1/E0

PL
.

implicit Paasche quantity index = Q̂P :=
E1/E0

PP
.

implicit Fisher ideal quantity index = Q̂F :=
E1/E0

PF
.

implicit Tornqvist quantity index = Q̂T :=
E1/E0

PT
.

13.5 Quantity Indexes

Analogous quantity indexes can be constructed by simply interchanging the
roles of p and x in the formulae presented. Examples include:

Laspeyres quantity index = QL :=
x1 · p0

x0 · p0
.

Paasche quantity index = QP :=
x1 · p1

x0 · p1
.

Fisher ideal quantity index = QF :=
√
QLQP =

√
x1 · p0

x0 · p0

x1 · p1

x0 · p1
.

Tornqvist quantity index = QT :=
∏

i

(
x1

i

x0
i

)(S1
i +S0

i )/2

.
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Example 13.17. For the data provided in the motivating example, we have

QL =
1.00(10) + 2.00(4) + 1.50(5)
1.00(2) + 2.00(3) + 1.50(8)

=
25.50
20.00

= 1.2750,

QP =
0.70(10) + 2.25(4) + 1.80(5)
0.70(2) + 2.25(3) + 1.80(8)

=
25.00
22.55

= 1.1086,

QF =
√
QLQP =

√
(1.2750)(1.1086) = 1.1889,

QT =
(

10
2

)0.19(4
3

)0.33(5
8

)0.48

= 1.1914.

Remark 13.18. For the example data, you will note a relationship between
the implicit Laspeyres, Paasche, and Fisher ideal quantity indexes and the
(direct) Laspeyres, Paasche, and Fisher ideal quantity indexes. You will be
asked to show in an exercise that Q̂L = QP , Q̂P = QL and Q̂F = QF .

13.6 Implicit Price Indexes

The quantity indexes can be used to construct implicit price indexes, which
we denote by P̂ . The rule is this: given the quantity index Q its associated
implicit quantity index is defined via the identity P̂ · Q = E1/E0. Examples
include:

implicit Laspeyres price index = P̂L :=
E1/E0

QL
.

implicit Paasche price index = P̂P :=
E1/E0

QP
.

implicit Fisher ideal price index = P̂F :=
E1/E0

QF
.

implicit Tornqvist price index = P̂T :=
E1/E0

QT
.

Example 13.19. For the data in the motivating example, we have

P̂L =
25/20
1.2750

= 0.9804,

P̂P =
25/20
1.1086

= 1.1275,

P̂F =
25/20
1.1889

= 1.0514,

P̂T =
25/20
1.1914

= 1.0492.
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Remark 13.20. For the example data you will note a relationship between the
implicit Laspeyres, Paasche, and Fisher ideal price indexes and the (direct)
Laspeyres, Paasche, and Fisher ideal price indexes. You will be asked to show
in an exercise that P̂L = PP , P̂P = PL and P̂F = PF .

13.7 Exercises

Exercises 13.1-13.7 use the price-quantity data given in the Table 13.2:

Table 13.2. Price-quantity data for Exercises 13.1–13.7.

Period 0 Period 1
Price Quantity Price Quantity

Good 1 2.50 40 2.25 50
Good 2 1.50 60 1.65 54
Good 3 0.20 150 0.21 140
Good 4 3.20 50 2.80 80

13.1. Determine the following price indexes:

(a) Ratio of the average price levels.
(b) Average of the price ratios.
(c) Geometric average of the price ratios.
(d) Laspeyres price index.
(e) Paasche price index.
(f) Fisher ideal price index.
(g) Tornqvist price index.

13.2. Determine the following implicit quantity indexes:

(a) Implicit Laspeyres quantity index.
(b) Implicit Paasche quantity index.
(c) Implicit Fisher ideal quantity index.
(d) Implicit Tornqvist quantity index.

13.3. Determine the appropriate bounds on the Konus price index:

(a) When there are no assumptions.
(b)PK(p0, p1, xi) when each xi, i = 0, 1, is an expenditure (or cost) minimizer.
(c) When the utility (or production) function is homothetic.

13.4. Determine the following quantity indexes:

(a) Ratio of the average quantity levels.
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(b)Average of the quantity ratios.
(c) Geometric average of the quantity ratios.
(d) Laspeyres quantity index.
(e) Paasche quantity index.
(f) Fisher ideal quantity index.
(g) Tornqvist quantity index.

13.5. Determine the following implicit price indexes:

(a) Implicit Laspeyres price index.
(b) Implicit Paasche price index.
(c) Implicit Fisher ideal price index.
(d) Implicit Tornqvist price index.

13.6. Compare your answers to Exercises 13.1 and 13.5. Show that:

(a) PL = P̂P .
(b)PP = P̂L.
(c) PF = P̂F .

13.7. Compare your answers to Exercises 13.2 and 13.4. Show that:

(a)QL = Q̂P .
(b)QP = Q̂L.
(c) QF = Q̂F .

13.8. Suppose consumer utility (producer output) is Φ(x1, x2) =
√
x1 + x2.

Further suppose that base prices p0 = (1, 2) and period 1 prices p1 = (2, 1),
and that the consumer/producer spent 10 to achieve maximum utility/output.

(a) Determine the Konus cost-of-living index PK(p0, p1, u) as a general func-
tion of u.

(b)Determine the value of the Konus cost-of-living index when u = u0.
(c) Graphically depict the value of the Konus cost-of-living index as a function

of the utility/output u. Discuss its properties and explain its shape.

13.9. Given appropriate data satisfying a number of reasonable assumptions
it is possible to estimate the Konus cost-of-living index PK(p0, p1, x̂) via a non-
parametric approach. This problem suggests how to undertake this task. Sup-
pose data D = {(pt, xt)}Nt=1 for the observed price and input vectors has been
collected over N periods. The data satisfies producer maximization, namely,
in each period the producer maximized his output subject to his budget con-
straint. The expenditure in each period is pt · xt. The production function
Φ(·) is assumed increasing and strictly quasiconcave. (Strict quasiconcavity
ensures that the output maximizing input vector is unique.) In what follows,
assume x̂ does not coincide with any observed data.

(a) Let p and z denote generic observed price and input vectors chosen in a
particular period (assumed to satisfy output maximization). The vector z
is revealed preferred to vector y �= z if p·y ≤ p·z. Explain why Φ(z) ≥ Φ(y).
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(b) Use your answer to (a) to identify which observed consumption vectors xt,
t = 1, 2, . . . , N , are revealed preferred to the vector x̂.

(c) Use your answer to (b) to explicitly define an approximation L(D, x̂) to
L≥

Φ (Φ(x̂)).
(d) Use your answer to (c) to estimate PK(p0, p1, x̂). Provide a specific formula

in terms of the data.

13.8 Bibliographical Notes

The material in this chapter is drawn from several chapters in two mono-
graphs, Diewert and Nakamura [1993] and Diewert and Montmarquette [1983].
In particular, Diewert [1987] contains thorough references to the early litera-
ture on this subject. See also the original works of Konus [1939], Malmquist
[1953]. For practical issues concerning the consumer price index, see the Boskin
Commission Report [1996] and Gordon [2000].
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13.9 Solutions to Exercises

13.1 (a) 6.91/4
7.4/4 = 0.9338.

(b) (1/4)(2.25/2.50 + 1.65/1.50 + 0.21/0.20 + 2.8/3.2) = 0.9813.
(c) [(0.9)(1.10)(1.05)(0.875)]1/4 = 0.9766.
(d) PL = [2.25(40) + 1.65(60) + 0.21(150) + 2.80(50)]/380 = 0.9487.
(e) PP = 455/[2.50(50) + 1.50(54) + 0.20(140) + 3.20(80)] = 0.9286.
(f) PF =

√
(0.9487)(0.9286) = 0.9386.

(g) The average expenditure shares are (1/2)(100/380 + 112.5/455) = 0.2552,
(1/2)(90/380 + 89.1/455) = 0.2163, (1/2)(30/380 + 29.4/455) = 0.0718, and
(1/2)(160/380 + 224/455) = 0.4567, respectively. Thus, PT = (0.90)0.2552

(1.1)0.2163(1.05)0.0718(0.875)0.4567 = 0.9382.

13.2 Here E1/E0 = 455/380 = 1.1974.
(a) Q̂L = 1.1974/0.9487 = 1.2621.
(b) Q̂P = 1.1974/0.9286 = 1.2895.
(c) Q̂F = 1.1974/0.9386 = 1.2757.
(d) Q̂T = 1.1974/0.9382 = 1.2763.

13.3 min{0.9, 1.1, 1.05, 0.875} = 0.875 and max{0.9, 1.1, 1.05, 0.875} = 1.1.
Moreover, PL = 0.9487 and PP = 0.9286.
(a) 0.875 ≤ PK ≤ 1.1.
(b) 0.875 ≤ PK(p0, p1, x0) ≤ 0.9487 and 0.9286 ≤ PK(p0, p1, x1) ≤ 1.1.
(c) 0.9286 ≤ PK ≤ 0.9487.

13.4 (a) (50+54+140+80)/4
(40+60+150+50)/4 = 1.08.

(b) (1/4){50/40 + 54/60 + 140/150 + 80/50} = 1.1708.
(c) [(50/40)(54/60)(140/150)(80/50)]1/4 = 1.1385.
(d) QL = [2.50(50) + 1.50(54) + 0.20(140) + 3.20(80)]/380 = 1.2895.
(e) QP = 455/[2.25(40)+ 1.65(60) + 0.21(150) + 2.80(50)] = 1.2621.
(f) QF =

√
(1.2895)(1.2621) = 1.2762.

(g) QT = (50/40)0.2552(54/60)0.2163(140/150)0.0718(80/50)0.4567 = 1.2762.

13.5 (a) P̂L = 1.1974/1.2895 = 0.9286.
(b) P̂P = 1.1974/1.2621 = 0.9487.
(c) P̂F = 1.1974/1.2757 = 0.9386.
(d) P̂T = 1.1974/1.2762 = 0.9383.

13.6 (a)

P̂P =
p1 · x1/p0 · x0

p1 · x1/p1 · x0
=
p1 · x0

p0 · x0
= PL.
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(b)

P̂L =
p1 · x1/p0 · x0

p0 · x1/p0 · x0
=
p1 · x1

p0 · x1
= PP .

(c)

P̂F =
p1 · x1

p0 · x0

√
p0 · x0

p0 · x1

p1 · x0

p1 · x1
= PF .

13.7 (a)

Q̂P =
p1 · x1/p0 · x0

p1 · x1/p0 · x1
=
p0 · x1

p0 · x0
= QL.

(b)

Q̂L =
p1 · x1/p0 · x0

p1 · x0/p0 · x0
=
p1 · x1

p1 · x0
= QP .

(c)

Q̂F =
p1 · x1

p0 · x0

√
p0 · x0

p1 · x1

p0 · x1

p1 · x1
= QF .

13.8 (a) In general,

Q(u, p) = min{p1x1 + p2x2 :
√
x1 + x2 ≥ u}.

First, we assume that both x1 and x2 will be positive in the optimal solution.
If so, then first-order optimality conditions imply that

p1 = λ
1

2
√
x1
,

p2 = λ,

which yields x1 = p2
2/4p

2
1. Using the fact that Φ(x) = u, this in turn implies

that x2 = u − p2/2p1. This solution only makes sense if u ≥ p2/2p1. If u ≤
p2/2p1, then x2 = 0 and x1 = u2. (Due to the square root, x1 will always be
positive in the solution since

√
ε >> ε so that p1/

√
ε < p2/ε for sufficiently

small ε.) We conclude that

Q(u, p) =

{ p2
2

4p1
+ p2(u − p2

2p1
), if u ≥ p2

2p1
,

p1u
2, otherwise,

=

{p2u− p2
2

4p1
, if u ≥ p2

2p1
,

p1u
2, otherwise.

Now substituting in p0 and p1 for p we obtain that
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Q(u, p0) =

{2u− 1, if u ≥ 1,

u2, otherwise,

Q(u, p1) =

{u− 0.125, if u ≥ 0.25,

2u2, otherwise,

from which the Konus cost-of-living index is Q(u, p1)/Q(u, p0).
(b) Since the minimum cost in the base period is 10, it follows from the
expression for Q(u, p0) that u = 5.5. Substituting this value for u in the
expression for Q(u, p1), we obtain that Q(u, p1) = 5.375. Hence the Konus
cost-of-living index is 5.375/10 = 0.5375.
(c) An examination of the functional form for the cost functions show that
the Konus cost-of-living index is indeed a function of the choice of u. This
is not too surprising as the cost function does not factor (the function Φ(·)
is not homothetic). Explicitly, PK(p0, p1, u) = 2 on (0, 0.25], (u − 0.125)/u2

on [0.25, 1] and (u − 0.125)/(2u − 1) on [1,∞). It may be verified that this
function of u is strictly decreasing, differentiable and convex whose limit value
is 0.5. In particular, we see that for very low values of u, the cost-of-living, as
measured by this index, is high. Again, this is because to achieve a very low
utility only good 1 will be purchased. The fact that its price has doubled is
therefore bad.

13.9 (a) By assumption Φ(z) = Γ (p, p·z). Moreover, since p·y ≤ p·z it follows
that the input vector y is budget-feasible for the optimization problem defined
by Γ (p, p · z). Consequently, it must be the case that Φ(z) ≥ Φ(y); otherwise,
z would not be an optimal solution.
(b) By part (a) it is only necessary to check if pt · x̂ ≤ pt · xt; if so, then
Φ(x̂) ≤ Φ(xt) and xt would be revealed preferred to x̂.

(c) The most obvious choice to approximate L≥
Φ (Φ(x̂)) is to take L(D, x̂) to

be the convex, input free disposable hull of those xt for which pt · x̂ ≤ pt · xt.
(d) As discussed in Chapter 5, for any choice of price vector p,

Q(p) := min{p · x : x ∈ L(D, x̂)} = min{p · xt : xt ∈ L(D, x̂)}.

Accordingly, we estimate the Konus cost-of-living index as

PK(p0, p1, x̂) ≈ Q(p1)
Q(p0)

=
min{p1 · xt : xt ∈ L(D, x̂)}
min{p0 · xt : xt ∈ L(D, x̂)} .
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Productivity Measurement

To estimate productivity growth, the production function Φ(·) now incorpo-
rates a time dimension, as follows. Given the input vector x(t) = (x1(t), . . . ,
xn(t)) chosen at time t, the realized output y(t) at time t equals Φ(x(t), t). In
this chapter, we make the following assumption:

Assumption 8 The production function is

y(t) = Φ(x(t), t) = A(t)φ(x(t)), (14.1)

where A(·) and φ(·) are both continuously differentiable and φ(·) is linearly
homogeneous.1

Suppose A(·) is increasing with time. If x(t) = x is constant, then output
increases without increasing inputs. Alternatively, if a desired output level
y(t) = y is constant, then fewer inputs are required to achieve it. From this
perspective, A(t) represents the technical progress of the core technology φ(·)
through time. Productivity growth is defined as the (instantaneous) growth
rate of A(·). It will be measured as the difference between the growth rate
in output and a weighted average of the growth rates of the factor inputs.
This difference is sometimes referred to as the Solow residual, so named after
Robert M. Solow, who pioneered the theoretical framework used to measure
productivity.

Before we proceed to show how to measure productivity growth, we es-
tablish a few basic properties about growth rates. All functions examined
hereafter are assumed to be continuously differentiable.

14.1 Growth Rates

Definition 14.1. The growth rate of a real-valued function of one variable
z(·) from time t to time t+Δt is the ratio
1 Analysis of productivity growth in a general case is developed in the exercises.
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z(t+Δt)− z(t)
Δt z(t)

.

The instantaneous growth rate of z(·) at time t is

γz(t) := lim
Δt→0

z(t+Δt)− z(t)
Δt z(t)

.

It can be positive or negative. The instantaneous growth rate equals

γz(t) =
d

dt
ln z(t) =

z′(t)
z(t)

=
ż

z
, (14.2)

where we use ż to represent the time derivative of z(·) and suppress the
functional dependence on t. For convenience, we shall drop the modifier in-
stantaneous when referring to a function’s growth rate.

Example 14.2. Suppose a dollar at time 0 is continuously compounded at the
fixed, annual interest rate of r, and let z(t) represent the amount of money at
time t. Here, z(t) = ert and γz(t) = r for all t. More generally, if interest is
accruing at a rate of r(τ) at time τ ∈ [0, t], then

z(t) = e
R t
0 r(τ)dτ ,

and γz(t) = r(t) for all t.

It follows from (14.2) that γf∗g = γf +γg, γf÷g = γf −γg, and γfα = αγf .
More generally, consider the growth rate of the function

θ(t) := h(x1(t), . . . , xn(t)).

By direct calculation,

γθ(t) =
d

dt
ln h(x1(t), . . . , xn(t)))

=

∑
i

∂h
∂xi

ẋi

h(x)

=
∑

i

[
xi

∂h
∂xi

h(x)

]
ẋi

xi

=
∑

i

εhi γi, (14.3)

where εhi denotes the elasticity of h(·) with respect to xi. Identity (14.3) shows
that the growth rate of θ(·) is the weighted sum of the growth rates of each
xi(·) with the weights given by the elasticities.

Example 14.3. When h(x1, x2) = x1 ∗ x2, then εhi = 1, i = 1, 2, and when
h(x1, x2) = x1 ÷ x2, then εh1 = 1 and εh2 = −1, as it must.
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14.2 Growth Accounting Approach

It follows from (14.1) and (14.3) that

γy = γA +
∑

i

εφi γxi . (14.4)

This immediately implies that productivity growth

γA = γy −
∑

i

εφi γxi (14.5)

can be measured as a residual, as we originally claimed. It remains to estimate
the growth rates of the inputs and output from data and to pin down the
elasticities, to which we now turn.

Suppose at each time t a firm can sell all the output it can make for Rt

per unit, and it faces factor prices pt. It seeks to choose factor inputs xt to
maximize economic profit given by

max
x
{R [Aφ(x)] − p · x}, (14.6)

where for notational convenience we suppress the functional dependence on
time. First-order optimality conditions imply that

pi = RA
∂φ

∂xi
. (14.7)

Since φ(·) is linearly homogeneous, the economic profit must be zero if a
maximum is to exist. (A reasonable return to capital is included in the firm’s
cost so the firm makes profit in the usual business sense.) This fact together
with (14.7) imply that

εφi =
xi

∂φ
∂xi

φ(x)
=

pixi

R [Aφ(x)]
=

pixi

p · x := Si, (14.8)

where Si denotes, as before, the cost share of input i, the proportion of total
cost attributable to the ith factor of production. Substituting (14.8) into (14.5)
(and bringing back the time index), we have

Ȧ(t)
A(t)

=
ẏ(t)
y(t)

−
∑

i

Si(t)
ẋi(t)
xi(t)

. (14.9)

The weighted average of the growth rates of the factor inputs in (14.9) is a
convex combination since the cost shares are non-negative and sum to one.

Let us examine (14.9) more closely. First, suppose there is only one factor
of production. Then, the productivity growth rate is simply the growth rate
of the ratio of output to input, which is commonly referred to as a partial
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productivity measure. The most common partial productivity measure is labor
productivity, the growth in the ratio of output per person-hour. When there
are several factors of production, then an increase in one partial productivity
measure could be the result of a decrease in another partial productivity
measure. For example, output per person-hour could increase because the
firm purchased significant increases in capital that was used to substitute for
the labor input. To address these concerns, total factor productivity measures,
such as (14.9), attempt to consider all relevant (variable) factors of production.

Suppose data on inputs, outputs, and cost shares from two distinct periods,
labeled t = 0 (the base period) and t = 1, have been collected. We shall
assume the cost share for factor i is constant over the time interval [0, 1] so
that Si(t) = Si for all t ∈ [0, 1]. Integrating both sides of (14.9) from 0 to 1,

ln
A(1)
A(0)

= ln
y(1)
y(0)

−
∑

i

Si ln
xi(1)
xi(0)

,

or, equivalently,
A(1)
A(0)

=
y(1)
y(0)

∏
i

(
xi(0)
xi(1)

)Si

. (14.10)

Given the present index of productivity, A(0), the new index is obtained via
(14.10). The cost shares need not be constant over the time frame, and so one
often substitutes the average (Si(0) + Si(1))/2 for each Si.

Example 14.4. Suppose at time 0 a firm used 100 units of capital and 100
units of labor to produce 1100 units of output. At time 1 the firm used 106
units of capital and 91 units of labor to produce 1133 units of output. The
cost share of labor is two-thirds for both periods. (The price of labor relative
to capital significantly increased from period 0 to period 1.) The growth in
the index of productivity is

1133
1100

[(100
106

)1/3(100
91

)2/3]
= 1.0757.

When the percentage changes in the inputs or output are small, there
is a back-of-the-envelope way to accurately estimate the growth in this in-
dex of productivity. Observe that output increased by 3%, the capital in-
put increased by 6% and the labor input decreased by 9%. Given the
cost shares, the percentage growth in the aggregate input is approximately
(+6)(1/3)+ (−9)(2/3) = −4. Since output increased by 3 percent, the overall
percentage growth in productivity is approximately 3 − (−4) = 7. (The ac-
curacy will be better when the percentage changes in input and output are
closer to zero.)
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14.3 Multi-Output Productivity Measurement

The Tornqvist index can be used to develop an index of productivity when
there are multiple outputs (as well as multiple inputs). In this section, we
make the following assumption:

Assumption 9 The technology T t at time t is characterized by two index
functions, one with respect to input and the other with respect to output, such
that

T t = {(x, y) : g(y) ≤ A(t)f(x)},
where f(·) and g(·) are linearly homogeneous, translog functions with f(·)
concave and g(·) convex.

We seek to measure A1/A0.
We assume firms are profit maximizers. Let wt and pt denote, respectively,

the vector of prices on outputs and inputs in period t = 0, 1. In each period
t = 0, 1, the firm solves the following optimization problem:

max{wt · yt − pt · xt : g(yt) ≤ Atf(xt)}. (14.11)

The proof of Theorem 13.16, p. 232, shows that

ln
f(x1)
f(x0)

= 1/2
∑

k

⎡
⎣ x1

k
∂f(x1)

∂xk

f(x1)
+
x0

k
∂f(x0)

∂xk

f(x0)

⎤
⎦ (ln

x1
k

x0
k

)
, (14.12)

ln
g(y1)
g(y0)

= 1/2
∑

k

⎡
⎣ y1

k
∂g(y1)

∂yk

g(y1)
+
y0

k
∂g(y0)

∂yk

g(y0)

⎤
⎦ (ln

y1
k

y0
k

)
. (14.13)

Profit maximization implies both cost minimization in x for fixed y and rev-
enue maximization in y for fixed x. First, consider cost minimization. Think
of yi as fixed and Φ(x) = af(x). We have previously shown in (14.8) that the
elasticity of Φ(·) with respect to xi equals the cost share for constant returns-
to-scale technologies. Since the elasticity of Φ(·) equals the elasticity of f(·),
it follows from (14.12) that

ln
f(x1)
f(x0)

= 1/2
∑

k

(S1
k + S0

k)
(

ln
x1

k

x0
k

)
. (14.14)

Using an exactly analogous argument applied to revenue maximization, we
have

ln
g(y1)
g(y0)

= 1/2
∑

k

(R1
k + R0

k)
(

ln
y1

k

y0
k

)
, (14.15)

where Rt
k denotes the revenue share of output k in period t = 0, 1. Since

both f(·) and g(·) are homogeneous of degree one, it must be the case that
g(yt) = Atf(xt) for each t = 0, 1. It directly follows that
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A(1)
A(0)

=
g(y1)/g(y0)
f(x1)/f(x0)

=

∏
k(y1

k

y0
k
)(R

1
k+R0

k)/2

∏
k(x1

k

x0
k
)(S1

k+S0
k)/2

. (14.16)

An extensive example of the use of multi-output productivity measurement is
provided in Chapter 15.

14.4 Nonparametric Approach

Measures of productivity introduced so far can be calculated by each firm.
They are firm-specific and absolute since there is no comparison of how well
the firm is improving its productivity relative to other firms. If data from rep-
resentative firms are available, it is possible to assess changes in productivity
and efficiency relative to the industry as a whole.

We describe a nonparametric approach for (i) measuring productivity
change between periods t and t+1, and (ii) decomposing productivity change
into its “technical change” and “efficiency change” components. The measures
are defined and computed via distance functions.

14.4.1 Input Productivity Change

Let T t, Dt(x, u) and T t+1, Dt+1(x, u) denote, respectively, the technology
sets and its associated distance function in periods t and t + 1. The input
possibility sets characterizing these technologies can be defined using any of
the nonparametric constructions introduced so far.

Let (xt, ut) and (xt+1, ut+1) denote the input-output data for a particular
firm in periods t and t + 1. We begin by showing how to measure the input
productivity change due solely to the input technical change—that is, we
exclude the input productivity change due to the (possible) improvement in
input efficiency and concentrate on how to measure the degree to which input
possibility sets have improved by “moving closer to the origin.” To eliminate
the efficiency effect, let

x̂k :=
xk

Dk(xk, uk)
, k = t, t+ 1, (14.17)

denote the adjusted input.
If the input possibility sets have improved from period t to t+1, less input

will now be required to achieve the same level of output. From the definition
of the input distance function, it will then follow that

(i) Dt+1(x̂t, ut) > 1.
(ii) Dt(x̂t+1, ut+1) < 1.
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A measure of input technical change should be less than one to indicate a
productivity improvement with respect to input.2 Accordingly either

Dt(x̂t+1, ut+1) or Dt(x̂t+1, ut+1)−1

could be used as a measure of the input technical change between periods t and
t+1. In case (i), one is looking “forward in time;” that is, how period t’s input-
output pair would be assessed from the perspective of period t+1’s technology,
very much in the spirit of the Laspeyres index discussed in Chapter 13. In
case (ii), one is looking “backward in time;” that is, how period t+ 1’s input-
output pair would be assessed from the perspective of period t’s technology,
very much in the spirit of the Paasche index discussed in Chapter 13. Since
either measure could be appropriate, in the spirit of the Fisher ideal index,
the measure of input technical change between periods t and t+ 1 “splits the
difference” and takes the geometric mean

√
Dt(x̂t+1, ut+1) Dt+1(x̂t, ut)−1 (14.18)

of these two measures. Substituting the definitions of x̂t and x̂t+1 in (14.17)
into (14.18), and using the fact that D(·, u) is linearly homogeneous in x, we
formally have:

Definition 14.5. The measure of input technical change between pe-
riods t and t+1 is

√
Dt(xt+1, ut+1)
Dt+1(xt+1, ut+1)

Dt(xt, ut)
Dt+1(xt, ut)

.

Example 14.6. Consider the single-output technology characterized by the
production function defined in (14.1). In this special case, the measure of
technical change must equal At/At+1. Pick a positive input vector x and a
positive output u. By the definition and the linear homogeneity property of
the distance function, for the functional form given in (14.1),

u = Akφ
( x

Dk(x, u)

)
=⇒ Dk(x, u) =

Akφ(x)
u

, k = t, t+ 1. (14.19)

Consequently, Dk(x, u)/Dk+1(x, u) = At/At+1 for each k = t, t+1. Thus, each
measure of input technical change, Dt(x̂t+1, ut+1) or Dt+1(x̂t, ut)−1, equals
At/At+1, and obviously so will their geometric mean.

Let RIk(xk, uk), k = t, t+1, denote the radial measures of input efficiency
corresponding to each period (see Definition 9.1, p. 149). With respect to
measuring the input productivity change due to the input efficiency change, a
natural choice is to take the ratio RIt(xt, ut)/RIt+1(xt+1, ut+1). If the input

2 This is a matter of convention.
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efficiency has improved, this ratio will be less than one. A priori, however, the
efficiency change could be less than, equal to, or greater than one. We have
previously shown that the radial measure of input efficiency RI(x, u) is the
reciprocal of the distance D(x, u).

Definition 14.7. The measure of input efficiency change between pe-
riods t and t+1 is

RIt(xt, ut)
RIt+1(xt+1, ut+1)

=
Dt+1(xt+1, ut+1)
Dt(xt, ut)

.

Finally, the measure of the overall productivity change is given as follows:

Definition 14.8. The measure of input productivity change between
periods t and t+1 is the product of the input technical change and the input
efficiency change. Substituting the definitions for the input technical and effi-
ciency change, 14.5 and 14.7, respectively, the formula for input productivity
change is √

Dt+1(xt+1, ut+1)
Dt+1(xt, ut)

Dt(xt+1, ut+1)
Dt(xt, ut)

.

Remark 14.9. By definition, input productivity change is decomposable into
its input technical change and input efficiency change components.

14.4.2 Output Productivity Change

In the single-output setting, a similar development undertaken in the previous
section can be used to develop an analogous measure of output productivity
change, and decompose it into its output technical change and output effi-
ciency change components. We shall use the output distance function O(u, x)
(see Definition 7.3, p. 110). Recall that the scaled output u/O(x, u) represents
the maximum output the input vector x can achieve.

As before, we begin by showing how to measure the output productiv-
ity change due solely to the output technical change—that is, we exclude
the output productivity change due to the (possible) improvement in output
efficiency and concentrate on how to measure the degree to which output pos-
sibility sets have improved by “moving away from the origin.” To eliminate
the efficiency effect, let

ûk :=
uk

Ok(xk, uk)
, k = t, t+ 1, (14.20)

denote the adjusted output.
If the output possibility sets have improved from period t to t + 1, more

output will be produced for the same level of input. From the definition of
the output distance function, it will then follow that
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(i) Ot+1(xt, ût) < 1.
(ii) Ot(xt+1, ût+1) > 1.

A measure of output technical change should be greater than one to indicate
a productivity improvement with respect to output.3 Accordingly either

Ot(xt+1, ût+1) or Ot+1(xt, ût)−1

could be used as a measure of the output technical change between periods t
and t+ 1 depending on whether one is looking forward in time or backwards
in time. Once again, since either measure could be appropriate, in the spirit
of the Fisher ideal index, the measure of output technical change between
periods t and t+ 1 “splits the difference” and takes the geometric mean√

Ot(x̂t+1, ut+1) Ot+1(x̂t, ut)−1 (14.21)

of these two measures. Substituting the definitions of ût and ût+1 in (14.20)
into (14.21), and using the fact that O(x, ·) is linearly homogeneous in u, we
formally have:

Definition 14.10. The measure of output technical change between
periods t and t+1 is√

Ot(xt+1, ut+1)
Ot+1(xt+1, ut+1)

Ot(xt, ut)
Ot+1(xt, ut)

.

With respect to measuring the output productivity change due to the
output efficiency change, a natural choice is to take the ratio of the output
distance in period t + 1 to the output distance in period t, since the output
distance O(x, u) can be interpreted as the radial measure of output efficiency.
If the output efficiency has improved, this ratio will be greater than one. A
priori, however, the efficiency change could be less than, equal to, or greater
than one.

Definition 14.11. The measure of output efficiency change between
periods t and t+1 is

Ot+1(xt+1, ut+1)
Ot(xt, ut)

.

Finally, the measure of the overall productivity change is given as follows:

Definition 14.12. The measure of output productivity change be-
tween periods t and t+1 is the product of the output technical change
and the output efficiency change. Substituting the definitions for the output
technical and efficiency change, (14.21) and (14.11), respectively, the formula
for output productivity change is√

Ot+1(xt+1, ut+1)
Ot+1(xt, ut)

Ot(xt+1, ut+1)
Ot(xt, ut)

.

3 This is a matter of convention.
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Remark 14.13. By definition, output productivity change is decomposable into
its output technical change and output efficiency change components.

14.5 Exercises

14.1. What was the growth in the price of labor to price of capital ratio from
period 0 to period 1 in Example 14.4?

14.2. Assume cost-minimizing behavior on the part of the producer and as-
sume the technology exhibits constant returns-to-scale.

Table 14.1. Data for Exercise 14.2.

Period 0 Period 1
K L pK pL y K L pK pL y

60 400 1.5 0.4 2450 65 384 1.6 0.5 2989

(a) Use (14.9) and average cost shares to estimate the productivity growth of
the firm for the data provided in Table 14.1.

(b)Use (14.10) and average cost shares to estimate the productivity growth
of the firm for the data provided in Table 14.1.

(c) Compute the Laspeyres, Paasche, and Fisher ideal quantity indexes, and
use these to provide another explanation for the estimate of productivity
growth obtained in parts (a) and (b).

14.3. Use (14.16) to estimate the productivity growth for the data provided
in Table 14.2.

Table 14.2. Data for Exercise 14.3.

Period 0 Period 1
K L pK pL y1 y2 R1 R2 K L pK pL y1 y2 R1 R2

305 120 2 3 75 125 8.0 2.96 315 110 2.1 2.7 90 115 7.2 2.7

14.4. A firm’s production function is Φ(K,L) = AKαL1−α. The firm is a
price-taker. The price of its output is R and the prices of the inputs are pK

and pL, respectively.

(a) Determine the necessary conditions on the parameters R, A, α, pK , and
pL to ensure an optimal profit exists.
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(b) What are the optimal choices for factor inputs?
(c) Examine the setting when α = 0.5, pK = 4 and pL = 1.

14.5. This problem extends the estimation of productivity for a more general
production function of the form y(t) = Φ(x(t), t). Here, the symbol “t” denotes
time, which is taken to be a nonnegative real number. Given an input vector
x = x(t) the (primal) rate of technical change is defined as

τ :=
∂Φ/∂t

Φ
.

We assume the producer is a profit-maximizer, namely, at each instant of time
the producer optimizes the profit function

max{R(t)Φ(x(t), t) − p(t) · x(t)},

where R(t) is the net revenue per unit of output and p(t) is the vector of prices
at time t, which the producer takes as given. (Assume sufficient conditions on
Φ(·) to ensure that a unique solution exists, is differentiable, etc.) The gross
profit margin, GPM , measures the profit in relation to net revenue, as is
defined as

GPM :=
R(t)Φ(x(t), t) − p(t) · x(t)

R(t)Φ(x(t), t)
= 1− p(t) · x(t)

R(t)Φ(x(t), t)
.

(a) Approximate τ using Δt and interpret this approximation.
(b) Show that when y(t) = Φ(x(t), t) = A(t)φ(x(t)) that τ = Ȧ/A.
(c) Use the chain-rule to show that

τ =
ẏ

y
−
∑

i

εΦi
ẋi

xi
,

where εΦi is the elasticity of output with respect to factor i.
(d) Show that

εΦi = (1 −GPM)Si,

where Si represents the cost share of factor i.
(e) Use parts (c) and (d) to determine a formula for τ , and show that it

reduces to the formula given in the text when the production function
exhibits constant returns-to-scale at each point in time.

14.6. This problem assumes the setup of Exercise 14.5. Let Q(y(t), p(t), t)
denote the minimal cost function assumed to be appropriately differentiable.
Given the output rate y(t) and price vector p(t), the (dual) rate of cost dimu-
nition is defined as

γ :=
∂Q/∂t

Q
.

(a) Approximate γ using Δt and interpret this approximation.
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(b) Let ε denote the elasticity of cost with respect to output. Use the Envelope
Theorem to show that γ = −ε · τ , where τ is the rate of technical change.

(c) If one has access to input data and a means to parametrically estimate the
production function, one can, in principle, estimate τ via Exercise 14.5.
Often, however, input data are not available but price and cost data are.
Suppose at each point in time the production function is known to exhibit
constant returns-to-scale. Explain how to estimate τ given only price and
cost data as well as a means to estimate a parametric form for the cost
function.

14.6 Bibliographical Notes

Solow [1957] is the classic reference. Fare et. al. [1994] introduced the non-
parametric approach to measuring productivity and decomposing it into its
efficiency and technical change components. Their work is based in part on
Caves et. al. [1982]. Grosskopf [1993] provides a thorough, accessible treat-
ment of the material pertaining to the nonparametric approach discussed in
this chapter.

Consult Christopher and Thor [1993] and P.T. Harker [1995] for discussion
of practical issues pertaining to productivity measurement and implementa-
tion of productivity measures to a variety of industrial settings.



14.7 Solutions to Exercises 253

14.7 Solutions to Exercises

14.1 The total cost in period 0 is 100pK + 100pL of which 2/3 is due to
labor cost. Therefore, 100pL = 2(100pK) or pK/pL = 2. The total cost in
period 1 is 106pK +91pL of which 2/3 is due to labor cost. Therefore, 91pL =
2(106pK) or pK/pL = 2.3297. The growth rate in the factor price ratio is thus
(2.3297− 2)/2 = 16.48%.

14.2 (a) We have ẏ/y ≈ (2989− 2450)/2450 = 0.22, K̇/K ≈ (65 − 60)/60 =
0.083̄, and L̇/L ≈ (384− 400)/400 = −0.04. The average cost share of capital
is 0.5[1.5(60)/(1.5(60) + 0.4(400)) + 1.6(65)/(1.6(65) + 0.5(384))] = 0.3557.
Thus,

Ȧ/A ≈ 0.22− [0.3557(0.083̄) + 0.6443(−0.04)] = 0.2161,

a 21/64% improvement in productivity.
(b) We have

A(1)
A(0)

=
2989
2450

(60
65
)0.3557(400

384
)0.6443 = 1.2174,

which suggests a 21.75% improvement in productivity.
(c) Here, QL = p0 · x1/p0 · x0 = 251.1/250 = 1.0044, QP = p1 · x1/p1 · x0 =
296/296 = 1.000, and QF =

√
(1.0044)(1.0000) = 1.0022. Thus, the quantity

index suggests an almost imperceptible increase in input used, yet output grew
by 22%. This leaves a productivity gain of 22% as the resulting explanation.

14.3 The total revenue equals total cost = 970 in period 0 and the total
revenue equals total cost = 958.5 in period 1. The average revenue share for
good 1 is 0.5[8(75)/970 + 7.2(90)/958.5] = 0.6267 and the average cost share
for capital is 0.5[2(305)/970 + 2.1(315)/958.5] = 0.6595. Thus,

A(1)
A(0)

=

(
90
75

)0.6267( 115
125

)0.3733

(
315
305

)0.6595( 110
120

)0.3405 =
1.0867
0.9917

= 1.0958,

suggesting a 9.58% productivity gain.

14.4 (a) The firm seeks to maximize its profit rate given by

RAKαL1−α − pKK − pLL.

Regardless of the output rate chosen, the firm must minimize cost to achieve
that output rate. For a Cobb-Douglas technology, we know that each cost
share equals the ratio of the exponent in the production function correspond-
ing to that factor to the sum of the exponents, i.e., pKK/(pKK + pLL) = α.
This implies that cost minimizing factor ratio is L/K = [(1− α)/α]pK/pL or
that

L =
[1− α

α

pK

pL

]
K.
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Since the profit function is homogeneous of degree one (i.e., exhibits constant
returns-to-scale), the optimal profit has to be zero (otherwise the firm could
make infinite profit). Substituting the cost minimizing factor ratio identity
into the profit equation yields

0 =

(
RA
[1− α

α

pK

pL

]α
− pK

α

)
K.

Consequently, the expression inside the parentheses must be zero.
(b) Assuming the condition of part (a) holds, then any choice of (K,L) that
satisfies the cost minimizing factor ratio will achieve an optimal profit of zero.
The scale of output is the one remaining decision for the firm.
(c) Here the condition simplifies to [RA

√
4−8] = 0, which implies that RA =

4. The profit function is therefore 4
√
KL− 4K−L. The minimum cost factor

ratio is L = 4K, which results in a profit of zero. Suppose, for example, that
RA = 5, then the optimal profit when L = 4K is 2K, which can be made
arbitrarily high. On the other hand, if say RA = 3, then the optimal profit
when L = 4K (best) if −2K, and so the best choice is to set K = L = 0.

14.5 (a)

τ ≈ Φ(x(t), t +Δt)− Φ(x(t), t)
Φ(x(t), t)

.

For a fixed input vector x = x(t), it locally measures the percentage change
in output that is attributable to productivity (positive or negative) over time.

(b) Here,

τ =
Ȧ(t)φ(x(t))
A(t)φ(x(t))

=
Ȧ

A
.

(c) By the chain rule,

ẏ

y
=

d

dt
lnΦ(x(t), t) =

∑
i(∂Φ/∂xi)ẋi + ∂Φ/∂t

Φ(x(t), t)

=
∑

i

(xi(∂Φ/∂xi)
Φ

) ẋi

xi
+ τ

=
∑

i

εΦi
ẋi

xi
+ τ.

(d) First-order optimality conditions imply thatR∂Φ/∂xi = pi. Thus,R(∂Φ/∂xi)xi =
pixi, which yields

εΦi =
(∂Φ/∂xi)xi

Φ
=
pixi

RΦ
= (1−GPM)

pixi

p · x = (1−GPM)Si.



14.7 Solutions to Exercises 255

(e) Putting it all together, we have

τ =
ẏ

y
− (1−GPM)

∑
i

Si
ẋi

xi
.

When the production function exhibits constant returns-to-scale, the profit
must be zero (otherwise it would be infinite). Consequently, GPM = 0, and
the formula for τ above reduces to the one developed in the chapter.

14.6 (a)

γ =
Q(y(t), p(t), t+Δt)−Q(y(t), p(t), t)

Q(y(t), p(t), t)
.

For a fixed output rate y = y(t) and price vector p = p(t), it locally measures
the percentage change in minimal cost that is attributable to productivity
(positive or negative) over time.
(b) Fix y = y(t) = Φ(x(t), t) and p = p(t). The Lagrangian for the cost
minimization problem at time t is

L(x, λ, p, y, t) = p · x− λ(Φ(x, t) − y).

Application of the Envelope Theorem F.2, p. 492, yields

∂Q

∂t
= −λ∗ ∂Φ(x∗, t)

∂t
,

∂Q

∂y
= λ∗.

Thus,
∂Q

∂t
= −∂Q

∂y

∂Φ(x∗, t)
∂t

.

Substituting this identity into the definition of γ and using the fact that
y = Φ(x∗, t), we have

γ = −∂Q/∂t
Q

=
[ y
Q

∂Q

∂y

]
·
[∂Φ/∂t

Φ

]
= ε · τ.

(c) When the production function exhibits constant returns-to-scale, ε = 1.
Thus, given a parametric form for the cost function, one may differentiate it
to obtain an estimate of γ and hence τ .
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Performance Measurement

Index numbers can be used to measure and decompose a firm’s performance
from one period to the next. We shall illustrate with an example from the
furniture industry.

15.1 A Manufacturing Example

Furniture manufacturing is labor intensive. The stages of production typically
involve a wood cutting operation to set the pattern, a trimming operation to
smooth the edges, an assembly operation to connect the different component
pieces of wood, a sanding operation, and a finishing operation to stain the
wood. The machinery used include lathes, sanders, and jigsaws. As for the
material categories, wood (e.g., cherry, poplar) is obviously needed for both
sofas and tables, and sofas need fabric and cushioning. A majority of the
production labor is used for the finishing operation, and the finisher commands
the highest wage.

Steeples Furniture1 is a small company that manufactures sofas and tables
for the high-end market. The input-output data for the base year (“Year 0”)
and the subsequent year (“Year 1”) are shown in Table 15.1. A few observa-
tions are in order. In the base year:

• The sofa product line generated 75% of total revenue.
• Labor cost accounted for 50% of the total cost, with materials and capital

accounting for approximately 30% and 20%, respectively.
• Average inventory equates to approximately a five week time supply.

Steeples Furniture used a 20% cost per dollar of inventory per year to
account for the handling, storage, and financing.

• Steeples Furniture used a 15% cost per dollar of book value of machinery
to account for maintenance and economic depreciation.

1 Not a real firm.
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In the subsequent year:

Table 15.1. Input-output price-quantity data.

Year 0 Year 1

Output/Input Value Quantity Price Value Quantity Price

OUTPUT
Sofas 600,000 300 2,000.00 720,800 340 2,120.00
Tables 200,000 80 2,500.00 235,200 84 2,800.00
Total Revenue 800,000 956,000

INPUT
Materials

wood 64,000 4,000 16.00 85,000 4,250 20.00
fabric 105,000 3,500 30.00 126,000 4,000 31.50
cushioning 31,000 12,400 2.50 37,365 14,100 2.65
Total Materials 200,000 248,365

Labor
woodcutter 48,000 2,400 20.00 56,175 2,675 21.00
lathe operator 8,000 400 20.00 8,820 420 21.00
assembler 48,000 2,400 20.00 56,175 2,675 21.00
sander 8,100 450 18.00 8978 475 18.90
finisher 207,900 7,425 28.00 273,280 8,540 32.00
Total Labor 320,000 403,428

Capital
inventory 15,000 75,000 0.20 7,500 50,000 0.15
machinery 105,000 700,000 0.15 110,500 850,000 0.13
Total Capital 120,000 118,000

Total Cost 640,000 769,793

PROFIT 160,000 186,207

• Average price of wood jumped to $20 per board-feet from $16, an increase
of 25%. The average price increase of fabric and cushioning was more
modest at 5% and 6%, respectively.

• Shortage of skilled labor drove up the price of labor. Wood cutters, lathe
operators, assemblers, and sanders all received a 5% increase in their real
(gross) hourly wage. To maintain its reputation for quality, Steeples Fur-
niture wished to retain the services of its finishers, who commanded an
approximate 15% increase in their real (gross) hourly wage.

• Due to their excellent reputation for quality, Steeples Furniture was able
to increase the price of their sofas and tables by an average of 6% and
12%, respectively, to partially offset the increases in the cost of labor and
materials. (The increase in the cost of wood affects the cost of a table
far more than the cost of a sofa.) Due to the price increase of wood,
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the company chose to aggressively market its sofa product lines in an
attempt to partially shift its output mix. Even with the price increases,
the company saw an increase of demand of almost 15% for their sofa
product lines and 5% for their table product lines.

• Steeples Furniture spent $255,000 = $850,000 - ($700,000)(0.85) to up-
grade its machinery. The capital cost was lowered to 13% from 15% due
to the improved quality of the machinery.

• Steeples Furniture worked hard to lower its average inventory to less than
a three week time supply. With less inventory, there was less storage cost,
and coupled with lower financing costs, the company lowered its inventory
cost to 15% from 20%.

15.2 Performance Indexes

So how well did Steeples Furniture perform year-to-year? As a first step, Table
15.2 records the performance indexes with respect to value, quantity, and price
for the outputs and inputs. Here is how the indexes are computed.

Table 15.2. Performance indexes.

Output/Input V 1/V 0 Q1/Q0 P 1/P 0

OUTPUT
Sofas 1.2013 1.1333 1.0600
Tables 1.1760 1.0500 1.1200
Total Revenue 1.1950 1.1125 1.0742

INPUT
Materials

wood 1.3281 1.0625 1.2500
fabric 1.2000 1.1429 1.0500
cushioning 1.2053 1.1371 1.0600
Total Materials 1.2418 1.1163 1.1125

Labor
woodcutter 1.1703 1.1146 1.0500
lathe operator 1.1025 1.0500 1.0500
assembler 1.1703 1.1146 1.0500
sander 1.1084 1.0556 1.0500
finisher 1.3145 1.1502 1.1429
Total Labor 1.2607 1.1346 1.1111

Capital
inventory 0.5000 0.6667 0.7500
machinery 1.0524 1.2143 0.8667
Total Capital 0.9833 1.1458 0.8582

Total Cost 1.2028 1.1310 1.0635
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• Column V 1/V 0. On the revenue (output) side, this column records the
ratio of the revenue in period 1 to the revenue in period 0. For example,
total revenue in period 1 was 956,000, it was 800,000 in period 0, and
so the ratio is 956,000/800,000 = 1.1950. On the input side, this column
records the ratio of the expenditures in period 1 to the expenditures in
period 0. For example, for the materials input category, the expenditure
in period 1 was 248,365, it was 200,000 in period 0, and so the ratio is
248,365/200,000 = 1.2418.

• Column Q1/Q0. This column records the Laspeyres quantity index,

QL :=
p0 · x1

p0 · x0
, (15.1)

which is the ratio of the revenue/cost of an individual output/input or out-
put/input category in period 1 using period 0’s prices to the revenue/cost
of the output/input in period 0. For example, the total revenue in period
1 using period 0’s prices is 2,000(340) + 2,500(84) = 890,000, which when
divided by 800,000 (the revenue received in period 0) yields 1.1125. For
the materials input category,

p0 · x1 = 16.00(4, 250) + 30.00(4, 000) + 2.50(14, 100) = 223, 250,

which when divided by p0 · x0 = 200, 000 yields 1.1163.

Remark 15.1. The Laspeyres quantity index associated with a group of
categories is the weighted sum of the Laspeyres quantity indexes for each
group with the weights corresponding to the cost shares in the base period.
For example, the Laspeyres quantity index for total cost is 1.1310, which
can be calculated as(

200, 000
640, 000

)
1.1163 +

(
320, 000
640, 000

)
1.1346 +

(
120, 000
640, 000

)
1.1458.

• Column P 1/P 0. This column records the implicit Laspeyres price index,
PL, which by definition satisfies the following equality:

PL · QL =
p1 · x1

p0 · x0
. (15.2)

Since QL = p0 · x1/p0 · x0,

PL =
x1 · p1

x1 · p0
, (15.3)

and so the implicit Laspeyres price index is the Paasche price index. Since

x1 · p1

x1 · p0
=
p1 · x1

p0 · x0
/
p0 · x1

p0 · x0
,
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one computes an entry in the P 1/P 0 column by simply taking the ratio
of the entries in the V 1/V 0 and Q1/Q0 columns. For example, the price
index for total revenue is calculated as 1.195/1.1125 = 1.0742. Similarly,
the price index for the materials input category is 1.2418/1.1163 = 1.1125.

With regard to total revenue, there was a 19.5% growth, of which
100(0.1125/0.195) = 58% is attributable to output growth and 42% is at-
tributable to price growth. With regard to the materials input category, there
was a 24.2% growth, of which 100(0.1163/0.2418) = 48% is attributable to
input growth and 52% is attributable to price growth.

For each column in the table, an index of greater than one shows an in-
crease, whereas an index of less than one shows a decrease. Generally speaking,
one prefers indexes of greater than one for output and less than one for in-
put. Naturally, if output is increasing, one may expect an increase in input.
If the input increase is less than the output increase, a productivity gain
takes place. While productivity gains are desirable, the firm must respond to
price changes in both output and inputs, perhaps shifting production to more
profitable product lines.

15.3 Productivity Assessment

A productivity index

Productivity Index =
Output Index
Input Index

(15.4)

takes the general form of the ratio of an Output Index to an Input Index. The
theory of index numbers suggests several possibilities for the output/input in-
dexes: Laspeyres quantity index, Paasche quantity index, Fisher ideal quantity
index, and the Tornqvist quantity index.

Consider first the use of the Laspeyres quantity index. It has already been
calculated—the index for each output/input is recorded in column Q1/Q0 in
Table 15.2. With respect to output it is 1.1125 and with respect to input it is
1.1310. Using the Laspeyres quantity index, the productivity assessment for
Steeples Furniture is 1.1125/1.1310 = 0.9836.

Next, consider the use of the Tornqvist quantity index. It takes the general
form ∏

k

(z1
k

z0
k

)(S1
k+S0

k)/2

, (15.5)

where zt
k denotes the quantity of (input, output) factor k used in period t

and St
k denotes the cost or revenue share for factor k in period t = 0, 1.

Table 15.3 displays the relevant calculations. Using the Tornqvist quantity
index, the productivity assessment for Steeples Furniture is 1.1121/1.1304 =
0.9838, which is remarkably close to the productivity assessment obtained
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using the Laspeyres quantity index. Note how the capital inventory input
ratio is 0.6667 but its productivity factor is 0.9933, which contributes ever so
slightly to increasing the productivity ratio. The reason for this is that the
Tornqvist index, rightfully so, accounts for the fact that the huge reduction in
capital inventory input used in the subsequent year corresponds to an input
whose average cost share is only 1%.

Table 15.3. Calculation of the Tornqvist quantity index.

Output/Input ratio S0 S1 Subindex

OUTPUT
Sofas 1.1333 0.7500 0.7540 1.0987
Tables 1.0500 0.2500 0.2460 1.0122
OUTPUT INDEX 1.1121

INPUT
Materials

wood 1.0625 0.1000 0.1104 1.0064
fabric 1.1429 0.1641 0.1637 1.0221
cushioning 1.1371 0.0484 0.0485 1.0062
MATERIALS INDEX 1.0350

Labor
woodcutter 1.1146 0.0750 0.0730 1.0081
lathe operator 1.0500 0.0125 0.0115 1.0006
assembler 1.1146 0.0750 0.0730 1.0081
sander 1.0556 0.0127 0.0117 1.0007
finisher 1.1502 0.3248 0.3550 1.0487
LABOR INDEX 1.0671

Capital
inventory 0.6667 0.0234 0.0097 0.9933
machinery 1.2143 0.1641 0.1435 1.0303
CAPITAL INDEX 1.0234

INPUT INDEX 1.1304

15.4 Performance Ratios

In what follows, we let xt
k, pt

k and Et
k denote, respectively, the input, price

and expenditure of input k in period t = 0, 1; we drop the superscript when
referring to an input category. We let R∗, Q∗ and P∗ denote the performance
indexes, respectively, associated with total revenue—for Steeples Furniture,
these ratios are 1.1950, 1.1125 and 1.0742, respectively. Keep in mind

R∗ = Q∗ · P∗.
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Table 15.4 records performance ratios to measure the extent to which
an input factor or input category contributed to Steeples Furniture’s prof-
itability year-to-year, and to decompose the measure of profitability into its
productivity and price recovery components. Here is how the columns are
computed.

Table 15.4. Performance ratios.

Input Profitability Productivity Price Recovery

Materials
wood 0.8998 1.0471 0.8594
fabric 0.9958 0.9734 1.0230
cushioning 0.9914 0.9784 1.0134
Total Materials 0.9623 0.9966 0.9656

Labor
woodcutter 1.0211 0.9981 1.0230
lathe operator 1.0839 1.0595 1.0230
assembler 1.0211 0.9981 1.0230
sander 1.0781 1.0539 1.0230
finisher 0.9091 0.9672 0.9399
Total Labor 0.9479 0.9805 0.9668

Capital
inventory 2.3900 1.6687 1.4323
machinery 1.1355 0.9162 1.2394
Total Capital 1.2153 0.9709 1.2517

Total Cost 0.9935 0.9836 1.0101

15.4.1 Profitability Ratio

For input k the change in profitability is the ratio

R∗

E1
k/E

0
k

, (15.6)

which divides the growth in total revenue by the growth in the expenditure
for this input. With regard to an input category, the denominator in (15.6) is
the ratio of the total expenditure on inputs in this category in period 1 to the
total expenditure on inputs in this category in period 0. For the material input
category, the change in profitability is 1.195/1.2418 = 0.9623. The growth
in revenue was 19.5%, but the growth in the material input expenditure was
24.2%. The index is less than one, indicating a negative change in profitability
for this input category. The change in profitability can also be calculated as
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R∗ E0
k

E1
k

, (15.7)

which divides the projected expenditure in period 1 to accommodate the ob-
served growth in total revenue by the actual expenditure in period 1. For
example, 200,000 was spent on materials in period 0. Given the 19.5% in-
crease in total revenue, i.e., 100(R∗ - 1), the projected expenditure on ma-
terials in period 1 to accommodate this increase in total revenue would be
239,000. The actual expenditure was 248,365 (which is higher) and so the
ratio is 239,000/248,365 = 0.9623.

15.4.2 Productivity Ratio

For input k the change in productivity is the ratio

Q∗

x1
k/x

0
k

, (15.8)

which divides the growth in aggregate output (as measured by the quantity
index) to the growth in the usage for this input. With regard to an input
category, the denominator in (15.8) is the Laspeyres quantity index (15.1)
for that category. For the material input category, the change in productivity
is 1.1125/1.1163 = 0.9966. The growth in aggregate output is measured as
11.3%, but the growth in the material input expenditure was 11.6%, slightly
higher. The index is less than one, indicating a negative change in productivity
for this input category. The change in productivity can also be calculated as

Q∗ x0
k

x1
k

, (15.9)

which divides the projected usage in period 1 to accommodate the observed
growth in total output by the actual quantity in period 1. For example, 4,000
board-ft of wood was used in period 0. Given the 11.3% increase in aggregate
output, i.e., 100(Q∗ - 1), the projected usage of wood in period 1 to accommo-
date this increase in total output would be 4,450. The actual usage was 4,250
(which is lower) and so the ratio is 4,450/4,250 = 1.0471. Here, the index is
greater than one, indicating a productivity increase for this input.

15.4.3 Price Recovery Ratio

For input k the change in price recovery is the ratio

P∗

p1
k/p

0
k

, (15.10)

which divides the growth in aggregate price (as measured by the price index)
by the growth in the prices for this input. With regard to an input category,
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the denominator in (15.10) is the implicit Laspeyres price index (15.3) for that
category, which we have shown equals the Paasche price index. For the ma-
terial input category, the change in price recovery is 1.0742/1.1125 = 0.9656.
The growth in aggregate price is measured as 7.4%, but the growth in the ma-
terial input category price was 11.3%. The index is less than one, indicating a
negative change in price recovery for this input category. The change in price
recovery can also be calculated as

P∗ p0
k

p1
k

, (15.11)

which divides the projected price in period 1 to keep it in line with the observed
growth in total price by the actual price in period 1. For example, the unit
price of wood was 16.00 in period 0. Given the 7.4% increase in aggregate
price, i.e., 100(P∗ - 1), the projected unit price of wood in period 1 to keep it
in line with this increase in total price would be 17.19. The actual unit price
was 20.00 (which is much higher) and so the ratio is 17.19/20.00 = 0.8594.
Here, the index is less than one, indicating a negative price recovery for the
wood input.

Remark 15.2. The product of the change in productivity and the change in
price recovery always equals the change in profitability. This is not an accident.
Indeed, for input k the product of (15.8) and (15.10) yields

Q∗ · P∗

p1
kx

1
k/p

0
kx

0
k

=
R∗

E1
k/E

0
k

, (15.12)

which equals (15.6). For an input category, the product of the change in
productivity and the change in price recovery equals

Q∗

p0 · x1/p0 · x0

P∗

p1 · x1/p0 · x1
=

R∗

E1/E0
, (15.13)

which equals the change in profitability for the input category.

When analyzing the performance ratios for Steeples Furniture with regard
to profitability, the material and labor input categories contributed negatively,
which is attributable for the most part to the lack of price recovery as op-
posed to lack of productivity. The capital input category, on the other hand,
contributed very positively to profitability, which is attributable to price re-
covery. (Recall Steeples Furniture took steps to lower its cost of inventory and
invested to upgrade the quality of its machinery, thereby lowering its cost of
maintenance/economic depreciation.)

15.5 Distribution of Net Gain

Steeples Furniture had a profit of 160,000 in the base year, which increased to
186,207 in the subsequent year. Given the overall revenue growth of 19.5%, if
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profits had stayed in line, i.e., experienced the same rate of growth, the profit
in year 1 would have been 1.195(160,000) = 191,200. There is a net gain of
186,207 - 191,200 = -4993.

• How should one distribute this net gain (loss) among the different inputs?
• How much of an input’s contribution to net gain is attributable to pro-

ductivity versus price recovery?

Table 15.5 shows how to do this. Here is how each column is calculated.

Table 15.5. Distribution of net gain.

Input Net Gain Productivity Price Recovery

Materials
wood (8,520) 3,200 (11,720)
fabric (525) (3,188) 2663
cushioning (320) (763) 443
Total Materials (9,365) (751) (8,614)

Labor
woodcutter 1,185 (100) 1,285
lathe operator 740 500 240
assembler 1,185 (100) 1,285
sander 702 461 241
finisher (24,840) (7,831) (17,009)
Total Labor (21,028) (7,070) (13,958)

Capital
inventory 10,425 6,688 3,737
machinery 14,975 (10,688) 25,663
Total Capital 25,400 (4,000) 29,400

Total Cost (4,993) (11,821) 6,828

15.5.1 Net Gain

The net gain due to input k or input category is

R∗E0
k − E1

k, (15.14)

which merely subtracts the actual expenditure in period 1 on this input (input
category) from the projected expenditure to accommodate the growth in total
revenues. For the material input category, the projected expenditure in year
1 would be 200,000(1.195) = 239,000. The actual expenditure was 248,365.
The difference is 239,000 - 248,365 = 9,365.
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15.5.2 Net Gain Due to Productivity

The net gain due to productivity for input k is

Q∗E0
k − p0

kx
1
k, (15.15)

which subtracts the expenditure in period 1 on this input using the based
period’s prices to the projected expenditure on this input to accommodate
the growth in aggregate output. The net gain due to productivity for an
input category is

Q∗E0 − p0 · x1. (15.16)

The use of base period prices attempts to separate out the price effect to fo-
cus just on the quantity effect. With regard to the wood input, at base period
prices the expenditure on wood in period 1 would have been 16.00(4,250) =
68,000. The projected increase in the expenditure on wood to accommodate
the 11.3% increase in aggregate output is (1.1125)64,000 = 71,200. The dif-
ference is 71,200 - 68,000 = 3,200. For the wood input the net gain due to
productivity is quite positive. With regard to the material input category, the
net gain due to productivity is (1.1125)200,000 - [16.00(4,250) + 30.00(4,000)
+ 2.50(14,100)] = -751.

Remark 15.3. By multiplying and dividing (15.15) by E0
k or (15.16) by E0,

the net gain due to productivity can also be easily calculated using the per-
formance indexes in Table 15.2 as either E0

k [Q∗ − (Q1/Q0)k] for input k or
E0[Q∗ − (Q1/Q0)] for an input category. (Here, the symbols (Q1/Q0)k or
(Q1/Q0) refer to the entries in Table 15.2 corresponding to input k or the
input category. Recall this column records the Laspeyres quantity index.) For
example, for the wood input, we calculate 64,000[1.1125 - 1.0625] = 3,200,
and for the materials input category, we calculate 200,000[1.1125 - 1.1163] =
-751.

15.5.3 Net Gain Due to Price Recovery

The net gain due to price recovery is defined so that the sum of it and
the net gain due to productivity equals the net gain. For example, for the
materials input category, -9,365 = -751 + -8,614.

Remark 15.4. One could calculate the net gain due to price recovery analo-
gously to how the net gain due to productivity is calculated, but then the net
gain cannot be decomposed into its productivity and price recovery compo-
nents. Consider, for example, the wood inputs. Using the method of calcula-
tion described in Remark 15.3, the net gain due to price recovery could be
calculated as 64,000[1.0742 - 1.2500] = -11,251, which is close to -11,720. For
the materials input category, the net gain due to price recovery could be cal-
culated as 200,000[1.0742 - 1.1125] = -7660, which is less close to -8,614. The
reason for this discrepancy is that the indexes are by design multiplicative,
i.e., R∗ = Q∗ · P∗, not additive, i.e., R∗ �= Q∗ + P∗.
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With regard to the distribution of the net gain, the wood material input
and the finisher labor input contributed quite negatively. On the other hand,
Steeples Furniture did reasonably well on the other labor inputs, and its efforts
with regard to the capital input were essential to only losing 4993 in projected
profits.

15.6 Exercises

15.1. Provide a precise statement of the aggregation of the Laspeyres quantity
indexes discussed in Remark 15.1 and prove this aggregation is valid.

15.2. Show how to obtain the numbers recorded for the capital inputs and
total capital in Table 15.2.

15.3. How would the numbers recorded in Table 15.2 change if the P 1/P 0

column were computed using the Paasche price index and the Q1/Q0 were
computed as the implicit Paasche quantity index?

15.4. Show how to obtain the numbers recorded for the material inputs and
materials index in Table 15.3.

15.5. Compute the Tornqvist price index for output and each factor category
for Steeples Furniture.

15.6. Show how to obtain the profitability, productivity, and price recovery
numbers recorded for the capital inputs and total capital in Table 15.4.

15.7. Show how to obtain the net gain, productivity, and price recovery num-
bers recorded for the material inputs and total materials in Table 15.5.

15.7 Bibliographical Notes

The performance measurement discussed here is an adaptation of the Amer-
ican Productivity Center’s Productivity Measurement System. See Kendrick
[1984].
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15.8 Solutions to Exercises

15.1 Let xt = (xt
1, x

t
2, . . . , x

t
M ) and pt = (pt

1, p
t
2, . . . , p

t
M ) denote the input

and price vectors in periods t = 0, 1, respectively. Here, xt
j and pt

j denote the
sub-vector of inputs and prices corresponding to category j, j = 1, 2, . . . ,M .
The Laspeyres quantity index PL is p0 · x1/p0 · x0. The Laspeyres quantity
index for category j is P j

L = p0
j · x1

j/p
0
j · x0

j , and the cost share in period 0 for
category j is S0

j = p0
j · x0

j/p
0 · x0. Thus, the Laspeyres quantity index can be

written as

p0 · x1

p0 · x0
=
∑n

i=1 p
0
ix

1
i∑n

i=1 p
0
ix

0
i

=

∑M
j=1 p

0
j · x1

j∑M
j=1 p

0
j · x0

j

=
M∑

j=1

( p0
j · x0

j∑M
j=1 p

0
j · x0

j

)(p0
j · x1

j

p0
j · x0

j

)

=
M∑

j=1

S0
jP

j
L,

as claimed in the numerical example in the Remark.

15.2 For column V 1/V 0: inventory = 7, 500/15, 00 = 0.5000, machinery
= 110, 500/105, 000 = 1.0524 and Total Capital = 118, 000/120, 000 =
0.9833. For column Q1/Q0: inventory = 50, 000/75, 000 = 0.6667 and ma-
chinery = 850, 000/700, 00 = 1.2143. To compute the numbers for Total
Capital, we first compute the cost shares in the base period, which are
[0.20(75, 000)/(0.20(75, 000)+ 0.15(700, 000))] = 0.125 for inventory and 1−
0.125 = 0.875 for machinery. For Total Capital we then compute 0.125(0.6667)+
0.875(1.2143) = 1.1458. For column P 1/P 0: inventory = 0.5000/0.6667 =
0.7500, machinery = 1.0524/1.2143 = 0.8667, and Total Capital = 0.9833/
1.1458 = 0.8582.

15.3 The Paasche price index is equivalent to the implicit Laspeyres price
index and the implicit Paasche quantity index is the Laspeyres quantity index.
So the numbers will not change.

15.4 For the Output/Input ratio column: wood = 4, 250/4, 000 = 1.0625, fab-
ric = 4, 000/3, 500 = 1.1429, and cushioning = 14, 100/12, 400 = 1.1371. For
column S0: wood = 64, 000/640, 000 = 0.1000, fabric = 105, 000/640, 000 =
0.1641, and cushioning = 31, 000/640, 000 = 0.0484. For column S1: wood =
85, 000/769, 793 = 0.1104, fabric = 126, 000/ 769, 793 = 0.1637, and cushion-
ing = 37, 365/769, 793 = 0.0485. For the Subindex column, we first compute
the average cost shares, which are 0.1052, 0.1639 and 0.04845 for wood, fabric
and cushioning, respectively. Thus, wood = (1.0625)0.1052 = 1.0064, fabric
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= (1.1429)0.1639 = 1.0221 and cushioning = (1.1371)0.04845 = 1.0062. The
Materials Index = (1.0064)(1.0221)(1.0062) = 1.0350.

15.5 The materials Tornqvist price index =

(20.00
16.00

)0.1052(31.50
30.00

)0.1639(2.65
2.50

)0.04845 = 1.0349.

(The average cost shares are computed for the previous exercise.) The other
indexes are computed similarly: the output price index = 1.0746, the price
index for labor = 1.0463, the price index for capital = 0.9736, and the input
price index = 1.0542.

15.6 For the Profitability column:R∗, the V 1/V 0 ratio in Table 15.2, is 1.1950.
Thus, inventory = 1.1950/0.5000 = 2.3900, machinery = 1.1950/0.9833 =
1.1355, and Total Capital = 1.1950/0.9833 = 1.2153. For the Productivity
column: Q∗, the Q1/Q0 ratio in Table 15.2, is 1.1125. Thus, inventory =
1.1125/0.6667 = 1.6687, machinery = 1.1125/1.2143 = 0.9162, and Total
Capital = 1.1125/1.1458 = 0.9709. For the Price Recovery column, by defini-
tion (P 1/P 0)(Q1/Q0) = V 1/V 0. Thus, inventory = 2.3900/1.6687 = 1.4323,
machinery = 1.1355/0.9162 = 1.2394 and Total Capital = 1.2153/0.9709 =
1.2517.

15.7 For the Net Gain column: R∗ = 1.1950, and so wood = 1.1950(64, 000)−
85, 000 = −8, 520, fabric = 1.1950(105, 000) − 126, 000 = −525, cushion-
ing = 1.1950(31, 000) − 37, 365 = −320, and Total Materials = −8, 520 −
525 − 320 = −9, 365. For the Productivity column: Q∗ = 1.1125, and so
wood = 1.1125(64, 000)− 16.00(4, 250) = 3, 200, fabric = 1.1125(105, 000)−
30.00(4, 000) = −3, 188, cushioning = 1.1125(31, 000)− 2.50(14, 100) = −763,
and Total Materials = 3, 200− 3, 188− 763 = −751. By definition, the entries
recorded in the Price Recovery column are such that the sum of productiv-
ity and price recovery equals the net gain. Thus, wood = −8, 520− 3, 200 =
11, 720, fabric =−525−(−3, 188) = 2, 663, cushioning =−320−(−763) = 443,
and Total Materials = −9, 365− (−751) = −8, 614.
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Economic Analysis

Up to now, we have ignored the market aspects of the story. Our focus has
been on different ways to model technology and assess a firm’s efficiency and
productivity. We argue this is a critical first step to improving a firm’s pro-
ductivity. Firms are constantly looking for ways to innovate, either in the
product market or in the means of production. In this chapter, we consider
how a firm’s price, output, labor employed, revenue, profit, and market share
are affected by the market in which the firm competes. In the parlance of eco-
nomics, we will analyze a specific market with consumers and producers, and
derive the market’s general equilibrium under a variety of different market
structures. We use the analysis to quantitatively assess how a “productivity
laggard” or a “productivity leader” would fare against its competition.

16.1 Market Structure and Equilibrium

Our market consists of N firms, each one producing a unique good or service.
Labor is the sole variable factor of production. The labor elasticity of output
is constant across firms, but the marginal product can be different due to
different levels of productivity. To make matters concrete, we assume producer
i’s production function is

Φi(Li) = AiL
a
i , (16.1)

where elasticity of output parameter a is positive and less than one. The
parameter Ai can be viewed as a productivity index, which is permitted to
be different for each firm.

Loosely worded, a market structure defines what information each pro-
ducer is assumed to incorporate in his decision-making. In all market struc-
tures we study here, producer i maximizes his profit, πi(p, w), which depends
on the prevailing prices for the goods or services, p, and the prevailing wage
rate, w, which influences his cost of production. In doing so, producer i deter-
mines his supply to the market, Si(p, w), termed the supply schedule, and his
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corresponding demand for labor, Li(p, w), termed the labor demand schedule.
The supply and labor demand schedules will depend on the market structure.

In this chapter, we examine three market structures:

• Competitive market structure. Here, the producer is a price-taker in that
he does not consider how his price affects consumer demand or is affected
by what other producers are charging. He merely assumes he can sell as
much output as he desires at the prevailing price. Thus, his supply and
labor demand schedules are only functions of his own price and the wage.

• Monopolistic competitive market structure. Here, each producer considers
how his price affects consumer demand for his product. He does so only
indirectly, since he assumes his product market represents a small fraction
of the overall market.

• Oligopoly market structure. Here, there are few producers, so each pro-
ducer considers how all prices directly affect his demand. In this market
structure, a Nash equilibrium in prices will be determined, and the sup-
ply and labor demand schedules of each producer are now (non-trivial)
functions of all prices and the wage.

Analysis of the producer side of the market determines supply and demand
for labor as a function of prices and wage. To determine the equilibrium level
of prices, wage, and outputs of each good, we have to examine the consumer
side of the market. Our market consists of M consumers, each one of which in-
elastically supplies one unit of labor.1 Each consumer has identical preferences
for the goods or services given by the CES utility function

U(x1, x2, . . . , xN ) :=

[
N∑

i=1

(qixi)r

]1/r

. (16.2)

The parameter r is assumed positive and less than one. Each qi represents a
quality index, and so qixi can be thought of as quality-adjusted consumption.
Given the prevailing prices p for the goods or services and her assumed budget
(or income) I, each consumer determines her demand for each good or service
i to maximize her overall utility. When summed over all consumers, this deter-
mines the aggregate demand, Di(p, w, I) for product i. Each consumer owns
an equal share of each firm. Consequently, each consumer’s income derives
from two sources: her wage and the dividends she receives.

Definition 16.1. An equilibrium is a vector of prices p and a wage rate w
such that the following properties hold:

A. Each producer maximizes his profit given p and w and the prevailing market
structure.

B. Each consumer maximizes her utility given p and w.
1 We shall not consider the “labor/leisure” choice here.
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C. Supply equals aggregate demand for each good or service i:

Si(p, w) = Di(p, w, I); (16.3)

that is, the product markets clear.
D. The labor market clears, namely,

N∑
i=1

Li(p, w) = M. (16.4)

E. Each consumer’s income matches expectations, namely,

I = w + (1/M)
∑

i

πi(p, w). (16.5)

16.2 Competitive Market Structure

16.2.1 Consumers

Each consumer maximizes her utility subject to her budget constraint. For-
mally, the consumer’s optimization problem is

Γ (p, I) := max
x

{
[

N∑
i=1

(qixi)r ]1/r :
N∑

i=1

pixi ≤ I
}
. (16.6)

As mentioned before, the q coefficients can be thought of as indexes of qual-
ity associated with each product. Since the utility function exhibits constant
returns-to-scale,

Γ (p, I) = Γ (p, 1)I and x(p, I) = x(p, 1)I.

To ease subsequent notational burdens, we use quality-adjusted units and
prices, respectively given by

x̂i := qixi, p̂i := pi/qi. (16.7)

It is sufficient to optimize U r in lieu of U . Accordingly, first-order opti-
mality conditions imply existence of a positive μ such that

rx̂r−1
i = μp̂i, (16.8)

which in turn implies that

x̂i =
(μ
r

)1/(r−1)

p̂
1/(r−1)
i . (16.9)

Using (16.9), and the fact that the budget must be tight at the optimum,



274 16 Economic Analysis

I =
∑

i

p̂ix̂i = (
μ

r
)1/(r−1)

∑
i

p̂
r/(r−1)
i . (16.10)

Together, (16.9) and (16.10) show that consumer demand for product i is

x̂i =

[
p̂
1/(r−1)
i∑
i p̂

r/(r−1)
i

]
I . (16.11)

The demand schedule, aggregated over all M consumers, is therefore

Di(p̂, w, I) =

[
p̂
1/(r−1)
i∑
i p̂

r/(r−1)
i

]
(IM). (16.12)

16.2.2 Producers

In quality-adjusted units, the producer’s profit maximization problem is

πi(p̂, w) := max
Li

{ p̂i[ÂiL
a
i ] − wLi },

where we let Âi := qiAi denote the quality-adjusted productivity index. First-
order optimality conditions imply that

p̂iÂiaL
a−1
i = w. (16.13)

This in turn implies the labor employed and supply schedules are

Li(p̂, w) = (p̂iÂia/w)1/(1−a), (16.14)

Si(p̂, w) = Â
1/(1−a)
i [p̂ia/w]a/(1−a). (16.15)

Let Ci, Ri and πi = Ri − Ci denote the optimal cost, revenue and profit.
Multiplying both sides of (16.13) by Li shows that it will always be true in
this setting that

aRi = Ci (16.16)

πi = (1− a)Ri =
[ (1− a)

a

]
Ci. (16.17)

16.2.3 Equilibrium

Equilibrium conditions (A) and (B) are automatically met if the supply and
demand schedules derived in the previous sections are maintained. Since labor
is supplied inelastically and all income I is spent,∑

i

πi =
∑

i

Ri −
∑

i

Ci

= MI − w
∑

i

Li

= MI − wM, (16.18)
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and so condition (E) is automatically met. In our special setting, we can say
more. In light of (16.17), conditions (D) and (E) imply that

I = w + (1/M)
[ (1− a)

a

∑
i

wLi

]
= w/a. (16.19)

In particular, (16.19) shows that the equilibrium wage to income ratio always
equals a, and the equilibrium dividend to income ratio always equals (1− a).
We shall now make use of these facts when analyzing condition (C).

Condition (C) says the product markets must clear in equilibrium. Let

Pi := p̂i/I (16.20)

denote the price-income ratio. Equating the supply schedule (16.15) to the
demand schedule (16.12), and using (16.19),

Pi =
(M/Δ)(1−a)(1−r)/(1−ar)

A
(1−r)/(1−ar)
i

, (16.21)

where
Δ :=

∑
i

Pr/(r−1)
i . (16.22)

Substituting (16.21) into (16.22), we obtain that

Δ =
E(1−ar)/(1−r)

M (1−a)r/(1−r)
, (16.23)

where
E :=

∑
i

Â
r/(1−ar)
i . (16.24)

Substituting (16.23) into (16.21), the equilibrium price-income ratios are

P∗
i = (M/E)1−a ∗ ξi, (16.25)

where

ξi :=
1

Â
(1−r)/(1−ar)
i

. (16.26)

The relative equilibrium prices are fixed a priori, given by the vector ξ. Sub-
stituting (16.26) into (16.14), and using (16.19) and (16.20), the equilibrium
labor employed by producer i is

L∗
i = Â

r/(1−ar)
i M/E . (16.27)

It follows that the equilibrium (quality-adjusted) output by producer i
is

S∗
i = qiAiL

∗ a
i = ÂiL

∗ a
i = Â

1/(1−ar)
i (M/E)a. (16.28)

Using (16.17) and (16.19), the equilibrium profit-income ratios are

π∗
i /I = (1 − a)L∗

i . (16.29)
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Remark 16.2. Equations (16.29) and (16.27) show that in equilibrium the ratio
of the profits of firm i to firm j is the a priori constant

(Âi/Âj)r/(1−ar). (16.30)

Since Âi is the product of the firm’s quality and productivity indexes, as a
firm’s relative product quality and/or productivity increases, its relative profits
increase (as one would expect).

16.2.4 Comparative Statics

We begin by examining the following question: What happens when the num-
ber of firms grows? To examine this question, we imagine the existing firms
are replicated so that the constant E in (16.24) grows linearly in the num-
ber of firms. It is clear from (16.26)-(16.29) that the price-income ratio, labor
employment levels, outputs, and the profit-income ratio all decline when E in-
creases. But is our consumer worse off? It might be tempting to say so, but we
must be careful: the number of products the consumer purchases may increase
with the number of firms and, as we shall see, consumers like variety.

To investigate, we examine the consumer’s equilibrium level of utility. The
per-capita demand for good i is the aggregate demand S∗

i (16.28) divided by
the number of consumers M . Substituting S∗

i /M into the consumer’s utility
function (16.2) and using (16.24),

U∗ =
E(1−ar)/r

M1−a
, (16.31)

which is increasing in E , and so the consumer is in fact better off. The elasticity
of U∗ with respect to E depends critically on the elasticity of output parameter
a and the degree of substitution parameter r. When r → 0 the substitution
among products is virtually nil, and so the consumer is far better off (in
relative terms) with an increase in product variety. When r → 1 products are
virtual substitutes for one another, and so the consumer is much less better off
(in relative terms) with an increase in product variety. When a → 0, output
elasticity is so low the consumer needs an increase in product variety to see
any increase in utility.

What happens when the number of firms remains the same but the number
of consumers increases? It is clear from (16.26)-(16.29) that the price-income
ratio, labor employment levels, outputs, and the profit-income ratio all in-
crease when M increases. However, from (16.31) we see that consumer utility
decreases since 0 < a < 1.

What happens when the number of firms and consumers both increase at
the same rate? All levels remain the same, but since there is an increase in
product variety, the consumer is far better off. In particular, the elasticity of
U∗ with respect to the scale factor is (1 − ar)/r − (1 − a) = (1− r)/r.
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16.3 Monopolistic Competitive Market Structure

In a monopolistic competition, producers incorporate the shape of the con-
sumer’s demand function when they seek to maximize their profits.

Suppose producer i employs Li units of labor at a cost of wLi. The (quality-
adjusted) supply is ÂiL

a
i . The producer knows the form of the consumer’s

demand function, as specified in (16.12), and therefore knows that the equi-
librium price that will clear his market is

ÂiL
a
i = Λp̂

1/(r−1)
i , (16.32)

Λ :=
IM∑

i p̂
r/(r−1)
i

. (16.33)

We assume there are enough firms so that each producer does not consider
how his decision will affect Λ, and therefore each producer determines his
labor demand schedule as a function of Λ. Given that the labor market must
clear, a unique equilibrium value for Λ will emerge.

In this setting, the producer’s profit function is

πi(Λ,Li) = p̂i[ÂiL
a
i ]− wLi

= Λp̂
r

r−1
i − wLi

= [Λ1−rÂr
i ]L

ar
i − wLi. (16.34)

Since the form of the profit function

βiL
b
i − wLi

is identical to the competitive case, it can be readily verified that in equilib-
rium

I = w/ar . (16.35)

Moreover, the labor employed by producer i is

Li =

[
Λ1−rÂr

i

w/ar

]1/(1−ar)

∝ Â
r/(1−ar)
i , (16.36)

where the symbol ∝ means “proportional up to a positive constant.” Since∑
i

Li = M, (16.37)

it follows from (16.36) that the equilibrium labor employed by producer
i is

L∗
i = Â

r/(1−ar)
i (M/E), (16.38)

where E is defined as before in (16.24). Since (16.38) is identical to (16.27),
the labor employed and thus the equilibrium outputs for producer i remain
unchanged. Equating (16.36) to (16.38) and using (16.35),
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Λ1−r = (M/E)1−arI . (16.39)

From (16.32),

p̂i =

(
Λ

ÂiLa
i

)1−r

, (16.40)

and so it now follows from (16.38) and (16.39) that the equilibrium price-
income ratios are

P∗
i =

(M/E)1−a

Â
(1−r)/(1−ar)
i

. (16.41)

These ratios are identical to (16.26). Consequently, the equilibrium price-
income ratios remain unchanged, too.

It can be readily verified that the form of equation (16.17) remains the
same, except that here the constant a must be replaced with ar. The equi-
librium profit-income ratios are therefore

π∗
i /I = (1− ar)L∗

i . (16.42)

Since r < 1, in equilibrium the incomes, prices, and firm profit’s all increase
(relative to the competitive setting), but outputs and hence utility remain
unchanged since the price-income ratios do not change. What does change
here is the relative proportion of income attributable to wage, which now
declines from a to ar.

16.4 Social Planner’s Perspective

In this section, we dispense with price mechanisms altogether and consider
how a social planner would allocate resources to maximize consumer utility. A
social planner must decide how to divide the consumer’s unit of labor among
the different firms so as to produce the vector of quantities that maximize her
utility. Formally, the social planner solves

max

⎧⎨
⎩
[∑

i

(AiL
a
i )r

]1/r

:
∑

i

Li = 1

⎫⎬
⎭ .

It is sufficient to optimize U r in lieu of U . For this modified problem, the
Lagrangian is

L(L,w) :=
∑

i

(AiL
a
i )r − w

(∑
i

Li − 1

)
.

Since the social planner’s problem is a well-behaved concave optimization
problem, it can be solved by first fixing the Lagrange multiplier w, opti-
mizing L to obtain the solution vector L(w), and then finding w for which
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∑
i Li(w) = 1. Since the Lagrangian is additively-separable in the Li’s, each

product market can be solved separately. An inspection of each product sub-
problem reveals that it is precisely equivalent to the producer’s problem in the
non-competitive setting (when M = 1). Thus, the optimal labor allocations
(demands) selected by the social planner are identical to what is obtained in
both market structures. Since the social planner will achieve the maximum
utility for each consumer, we conclude that the utility previously obtained
in the competitive or monopolistically competitive market structure is at the
highest possible level.

16.5 Oligopoly Market Structure

In this setting, each producer knows the demand schedule given in (16.12).
Producer i takes the other producer’s prices as given and selects his price
to maximize his profits. In contrast to the monopolistic competitive environ-
ment previously analyzed, however, here each producer specifically accounts
for the fact that the price he selects affects the denominator of the expression
in brackets in (16.12).

16.5.1 Profit Maximization Formulation

It will be convenient for the developments to follow to parameterize the profit
optimization problem in a slightly different way. (As before, all units are
quality-adjusted.) Define

Λi :=
∑
j �=i

p̂
r/(r−1)
j , (16.43)

Hi :=
p̂

r/(r−1)
i

p̂
r/(r−1)
i + Λi

=
1

1 + Λip̂
r/(1−r)
i

. (16.44)

Knowledge of all other prices is subsumed in the parameter Λi, which the
producer takes as given. The variable Hi represents the producer’s share of
income.

Since Hi uniquely determines p̂i (for given value of Λi), we shall use it in
lieu of p̂i as our producer’s decision variable. The equilibrium prices must be
positive, which ensures that Hi ∈ (0, 1). In particular,

p̂i(Λi,Hi) =
[
1−Hi

HiΛi

](1−r)/r

. (16.45)

The producer’s revenue, Ri, is (IM)Hi, and his supply, Si, is Ri/pi. Using
(16.45), and the fact that Si = ÂiL

a
i , the labor employed is
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Li(Λi,Hi) =
H1/ar

i Λ
(1−r)/ar
i

Â
1/a
i (1−Hi)(1−r)/ar

(IM)1/a. (16.46)

The producer’s profit function is

πi(Λi,Hi) := (IM)Hi − wLi(Λi,Hi). (16.47)

16.5.2 Equilibrium

Using the fact that

d lnLi

dHi
= (1/ar)

[
1
Hi

+
1− r

1−Hi

]
,

the first-order optimality condition ∂πi/∂Hi = 0 implies that

(ar/w)(IM) = Li(Λi,Hi)
[

1
Hi

+
1− r

1−Hi

]
. (16.48)

The equilibrium values for Λi and Hi are not independent, a fact we shall use
shortly. Substituting (16.45) into (16.43),

Λi =
∑
j �=i

HjΛj

1−Hj
. (16.49)

Add HiΛi/(1−Hi) to both sides of (16.49) to obtain that

Λi = (1 −Hi)G, (16.50)

where
G :=

∑
k

HkΛk

1−Hk
. (16.51)

Substituting (16.50) into (16.46) shows that

Li(Λi,Hi) ∝ H1/ar
i Â

−1/a
i . (16.52)

Since the labor market must clear, the equilibrium labor demand is thus

L∗
i (Λi,Hi) =

H1/ar
i Â

−1/a
i

Δ
M, (16.53)

where

Δ :=
∑

i

H1/ar
i Â

−1/a
i . (16.54)

Substituting (16.53) into (16.48) shows that the equilibrium values for the H’s
must satisfy the following three sets of equations:
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(Iar/w)Δ = Â
−1/a
i H1/ar

i

[
1
Hi

+
1− r

1−Hi

]
, (16.55)

∑
i

Hi = 1, (16.56)

Δ =
∑

i

H1/ar
i Â

−1/a
i . (16.57)

It remains to show that a solution to (16.55)-(16.57) exists. We shall show
there is a unique solution. Define

κ := (Iar/w). (16.58)

The constant κ is inversely proportional to the wage-income ratio. The right-
hand side of (16.55) is a strictly increasing, continuous function of Hi and its
value is zero at zero. Hence, for each value of

η := κΔ, (16.59)

there is a unique solution to (16.55), which we shall denote by Hi(η). Since
Hi(·) is strictly increasing and continuous, there exists a unique positive value,
η∗, for which ∑

i

Hi(η∗) = 1. (16.60)

Consequently, Hi(η∗), i = 1, 2, . . . , N , and

Δ(η∗) :=
∑

i

Â
−1/a
i Hi(η∗)1/ar, (16.61)

κ(η∗) := η∗/Δ(η∗) (16.62)

define the unique solution to (16.55)-(16.57).
Not surprisingly, the equilibrium wage-income and price-income ratios re-

main unchanged. That is, as the income scales, the prices and wage scale in
exactly the same proportion. From (16.45), the equilibrium price-income ratio
can be expressed as

P∗
i = p̂∗i /I =

[ 1−Hi

Hi(ΛiIr/(1−r))

](1−r)/r

, (16.63)

and from (16.46), the labor employed by producer i can be expressed as

L∗
i (Λi,Hi) =

H1/ar
i [ΛiI

r/(1−r)](1−r)/ar

A
1/a
i (1 −Hi)(1−r)/ar

M1/a. (16.64)

As I changes, the wage adjusts so that κ remains unchanged. This in turn
implies the values for Hi’s and hence the L∗

i ’s remain unchanged. Thus, the
ΛiI

r/(1−r) term in (16.64) remains constant, which implies the P∗
i ’s remain
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unchanged, too. It follows then that one of the prices can be taken as the
numeraire and set equal to one, which will then completely determine all
other prices, incomes, and the other economic variables of interest.

It remains to devise a procedure to find the Hi’s, Δ, and κ, the subject of
the next subsection. Once these variables have been determined, the economic
variables of interest are easily obtained, as follows:

• Take the wage rate as the numeraire and set its value to 1.
• The income I is κ/ar via (16.58).
• Δ determines labor employed by producer i, L∗

i , via (16.53).
• Labor employed by producer i, L∗

i , determines the firm’s output as AiL
∗ a
i .

• The market share for producer i, Hi, determines its revenue as (IM)Hi,
which in turn determines the firm’s price, pi, by dividing it by the output
it produces.

16.5.3 Algorithm to Compute the Equilibrium

To find the unique equilibrium, one performs a bisection search on η until
(16.60) is satisfied (to a desired degree of accuracy). Informally, if

∑
i

Hi(η) < 1,

then increase the lower bound for η; if the opposite holds true, then lower
the upper bound for η. The monotonicity and continuity of Hi(·) ensures that
this procedure will converge to the unique solution.

For each candidate value of η, it still remains to find the value for Hi(η)
that solves (16.55). Again, bisection search can be used. Informally, if the
right-hand side of (16.55) exceeds η for a particular value of Hi, then increase
the lower bound for Hi; if the opposite holds true, then increase the lower
bound for Hi. This bisection search must be performed for each of the N
product markets. For the special case ar = 1/2, the N bisection searches
are unnecessary, since the nonlinear equation (16.55) can be transformed into
a quadratic equation by multiplying both sides by 1−Hi. There will be two
positive roots, but since both Hi and 1−Hi must be positive, the smaller root
will be the correct solution. To see this, note that the form of the quadratic
equation (dropping the subscript i) is

0 = η − (e+ η)H + erH2 , (16.65)

where e = A−1/a. The larger positive root is

(e+ η) +
√

(e+ η)2 − 4erη
2er

. (16.66)

Since r < 1 the expression inside the square root exceeds (e−η)2 (which shows
that the smaller root will be indeed positive). It may then be verified that the
numerator exceeds 2e, which shows that the larger root will exceed one.



16.5 Oligopoly Market Structure 283

Remark 16.3. When ar = 1/3, the nonlinear equation (16.55) may be trans-
formed into a cubic equation for which a closed form solution also exists.

16.5.4 Comparison to Competitive and Monopolistic Competitive
Market Structures

In the competitive and monopolistic competitive market structures the labor
employed by producer i is

L∗
i =

Â
r/(1−ar)
i∑

i Â
r/(1−ar)
i

M. (16.67)

Comparing (16.67) to (16.53), in order for the labor employment levels to be
identical it must be the case that

Hi =
Â

r/(1−ar)
i∑

i Â
r/(1−ar)
i

, (16.68)

which implies that
Hi = L∗

i /M . (16.69)

In the competitive market structure, identity (16.69) must hold because

Hi =
R∗

i∑
i R

∗
i

=
wL∗

i /a∑
i wL

∗
i /a

=
L∗

i∑
i L

∗
i

= L∗
i /M . (16.70)

In general, identity (16.69) will not hold for an oligopoly market structure,
since it is no longer the case that the producer’s first-order optimality condi-
tion implies that

aRi = wLi. (16.71)

In particular, substituting (16.68) into (16.55) does not render (16.55) imme-
diately true.

Remark 16.4. In the special case when the firms are identical, so that Ai = A,
the solution for the oligopoly setting will trivially satisfy (16.69), as the labor
employed for each firm must be identical.

In conclusion, when the producers incorporate all of the information about
prices into their respective profit maximization problem, the equilibrium so-
lution will be different and must lead to an inferior allocation of resources
from the consumer’s perspective. (The previous allocations were the best, as
they coincided with the social planner’s solution.)
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16.6 Productivity Analysis

We briefly examine the importance of productivity to a firm in a market place.
To ease the burdens of computing the equilibrium in the oligopoly market
structure, we fix a = 0.8 and r = 0.625 so that ar = 0.5. We set M = 1 so
that labor employed by a firm equals its labor share. We analyze markets with
N = 3, N = 5 and N = 10 firms. We shall think of firm 1 as the reference
firm. For simplicity all remaining firms are identical. The quality index for
each firm is set to one. The productivity index for all remaining firms is also
set to one.

16.6.1 Analysis of a Productivity Laggard

In this subsection, we analyze the situation in which firm 1 is a “productivity
laggard.” Here, we set A1 = 0.5. Table 16.1 shows the relevant market analysis.

With respect to firm 1, its

• profit is 40% of its competition,
• labor and market share are half of what it would be if it could match the

productivity of its competition, and
• output is 25% of its competition.

These trends persist even when the number of firms decline. A sizable produc-
tivity deficit, therefore, cannot be overcome even if there are fewer competitors
in the market place.

16.6.2 Analysis of a Productivity Leader

In this subsection, we analyze the situation in which firm 1 is a “productivity
leader.” Here, we set A1 = 2. Table 16.2 shows the relevant market analysis.

With respect to firm 1, its

• its profit, output, labor, and market shares are approximately two and
one-half times that of its competitors, and

• its output is four times that of its competitors.

These trends persist as the number of firms grows. A sizable productivity ad-
vantage, therefore, maintains profitability even when there is increased com-
petition.

16.7 Exercises

16.1. (An example of a constant returns-to-scale technology.) An economy
consists of two producers and two consumers. Each producer converts raw ma-
terial m into its output. The production functions for the firms are Y1 = 2m
and Y2 = 3m, respectively. Consumer 1 owns firm 1 and consumer 2 owns
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Table 16.1. Market analysis when A1 = 0.5.

Monopolistic
N = 3 Competitive Competition Oligopoly

Firm 1 Other Firms Firm 1 Other Firms Firm 1 Other Firms

Labor 0.174 0.413 0.174 0.413 0.217 0.391
Output 0.123 0.493 0.123 0.493 0.147 0.472
Price 1.762 1.047 2.819 1.676 3.214 2.077

Revenue 0.217 0.516 0.347 0.826 0.474 0.981
Profit 0.043 0.103 0.174 0.413 0.257 0.589

Market Share 0.174 0.413 0.174 0.413 0.195 0.403

Monopolistic
N = 5 Competitive Competition Oligopoly

Firm 1 Other Firms Firm 1 Other Firms Firm 1 Other Firms

Labor 0.095 0.226 0.095 0.226 0.106 0.223
Output 0.076 0.305 0.076 0.305 0.083 0.301
Price 1.562 0.929 2.499 1.486 2.662 1.643

Revenue 0.119 0.283 0.190 0.452 0.222 0.495
Profit 0.024 0.057 0.095 0.226 0.115 0.272

Market Share 0.095 0.226 0.095 0.226 0.101 0.225

Monopolistic
N = 10 Competitive Competition Oligopoly

Firm 1 Other Firms Firm 1 Other Firms Firm 1 Other Firms

Labor 0.045 0.106 0.045 0.106 0.047 0.106
Output 0.042 0.166 0.042 0.166 0.043 0.166
Price 1.342 0.798 2.148 1.277 2.208 1.333

Revenue 0.056 0.133 0.089 0.212 0.095 0.221
Profit 0.011 0.026 0.045 0.106 0.049 0.115

Market Share 0.045 0.106 0.045 0.106 0.046 0.106

firm 2. Each consumer also owns 10 units of raw material. The utility func-
tions for the consumers are U1(x1, x2) = x0.4

1 x0.6
2 and U2(x1, x2) = x0.5

1 x0.5
2 ,

respectively. Determine the competitive equilibrium for this economy, namely,
the market-clearing prices for each of the two goods; the profit-maximizing
outputs, revenues, costs, and profits for each of the two firms; the incomes
and quantities purchased of the two goods that maximizes each consumer’s
utility. (Take the price of the raw material as the numeraire and set its value
to be 1.)

16.2. Answer Exercise 16.1 when the production functions exhibit decreasing
returns-to-scale and are given by Y1 = 2

√
m and Y2 = 3

√
m, respectively.

16.3. Consider the competitive economy examined in this chapter, except that
consumer’s utility is now given by the Cobb-Douglas function

U(x1, . . . , xN ) = Πi x
βi

i , 0 < βi < 1,
∑

i

βi = 1.
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Table 16.2. Market analysis when A1 = 2.

Monopolistic
N = 3 Competitive Competition Oligopoly

Firm 1 Other Firms Firm 1 Other Firms Firm 1 Other Firms

Labor 0.543 0.228 0.543 0.228 0.447 0.277
Output 1.227 0.307 1.227 0.307 1.050 0.358
Price 0.553 0.930 0.885 1.489 1.164 1.743

Revenue 0.679 0.285 1.086 0.457 1.222 0.623
Profit 0.136 0.057 0.543 0.228 0.775 0.347

Market Share 0.543 0.228 0.543 0.228 0.495 0.253

Monopolistic
N = 5 Competitive Competition Oligopoly

Firm 1 Other Firms Firm 1 Other Firms Firm 1 Other Firms

Labor 0.373 0.157 0.373 0.157 0.322 0.169
Output 0.908 0.227 0.908 0.227 0.809 0.242
Price 0.513 0.863 0.821 1.381 0.957 1.505

Revenue 0.466 0.196 0.746 0.314 0.774 0.364
Profit 0.093 0.039 0.373 0.157 0.451 0.194

Market Share 0.373 0.157 0.373 0.157 0.347 0.163

Monopolistic
N = 10 Competitive Competition Oligopoly

Firm 1 Other Firms Firm 1 Other Firms Firm 1 Other Firms

Labor 0.209 0.088 0.209 0.088 0.192 0.089
Output 0.572 0.143 0.572 0.143 0.534 0.145
Price 0.457 0.769 0.731 1.230 0.786 1.280

Revenue 0.261 0.110 0.418 0.176 0.420 0.186
Profit 0.052 0.022 0.209 0.088 0.228 0.096

Market Share 0.209 0.088 0.209 0.088 0.200 0.089

(a) Characterize the competitive equilibrium.
(b) Show that the competitive equilibrium coincides with the social planner’s

allocation.

16.4. (A more general version of Exercise 16.3.) In this problem, we examine a
competitive economy with non-identical consumers and producers. The own-
ership shares of the consumers are also permitted to be different. The economy
has two producers with respective production functions Φ1(L1) = 10L0.25

1

and Φ2(L2) = 20(L2)2/3. There are three consumers in the economy with
respective utility functions U1(x1, x2) = x0.8

1 x0.2
2 , U2(x1, x2) = x0.5

1 x0.5
2 and

U3(x1, x2) = x0.3
1 x0.7

2 . The ownerships shares are as follows: consumer 1 owns
20% of firm 1 and 40% of firm 2, consumer 2 owns 50% of firm 1 and 10% of
firm 2, and consumer 3 owns 30% of firm 1 and 50% of firm 2. Determine the
competitive equilibrium for this economy, namely, the market-clearing prices
for each of the three goods; the profit-maximizing outputs, revenues, costs,
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and profits for each of the two firms; the incomes and quantities purchased of
the three goods that maximizes each consumer’s utility. (Take the wage rate
as the numeraire and set its value to be 1.)

16.5. (The general version of Exercise 16.4.) The production function for pro-
ducer i, i = 1, 2, . . . , N , is

Φi(Li) = AiL
ai

i .

(In Exercise 16.4, a1 = 1/4, a2 = 2/3, A1 = 10 and A2 = 20.) Each of the M
consumers has a (possibly different) Cobb-Douglas utility function given by

Uc(x1, . . . , xN ) = Πi x
βc

i

i , 0 < βc
i < 1,

∑
i

βc
i = 1

for consumer c = 1, 2, . . . ,M . (In Exercise 16.4, β1
1 = 0.8, β1

2 = 0.5 and
β1

3 = 0.3.) The ownership shares of the consumers are also permitted to be
different, i.e., the ownership share of consumer c, c = 1, 2, . . . ,M , in firm
i, i = 1, 2, . . . , N , is T c

i . (In Exercise 16.4, (T 1
1 , T

1
1 ) = (0.2, 0.4), (T 2

2 , T
2
2 ) =

(0.5, 0.1), (T 3
1 , T

3
3 ) = (0.3, 0.5).) In what follows, take the wage rate as the

numeraire and set its value to be 1.

(a) Define a set of equations (in terms of generic parameters) that can be
solved to determine the competitive equilibrium.

(b) There are N market clearing conditions, one for each product market,
and 1 market clearing condition for the labor market for a total of N + 1
equations. However, there are only N prices to be determined. Verify that
the system of market clearing conditions contains a redundant equation.

16.6. (Open-ended computational exercise.) Analyze the competitive, monop-
olistic competition, and oligopoly market structures for a concrete numerical
example of the economy analyzed in this chapter. Set the wage rate to be 1
and pick values for a and r so that ar = 0.5. Is it true that the allocations of
labor are the same for the competitive and monopolistic competition market
structures, but are different for the oligopoly market structure? If so, how
much worse off is the consumer? How do the outputs change?

16.8 Bibliographical Notes

General equilibrium theory can be found in graduate-level microeconomic
texts such as Varian [1992] and Mas-Collel et. al. [1995]. Starr [1997] provides
an accessible treatment of all aspects to this topic. Debreu [1959] remains a
classic on this subject. Discussion of market structures appears in industrial
organization texts such as Tirole [1988] and Shy [1995] and the handbook
edited by Schmalensee and Willig [1989].
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16.9 Solutions to Exercises

16.1 Because the production functions are linear in m, the profit functions
are also linear in m. (Since there is only one factor of production, linearity
implies constant returns-to-scale.) That is,

Π(p1,m1) := p1(2m1)−m1 = (2p1 − 1)m1,

Π(p2,m2) := p2(3m2)−m2 = (3p2 − 1)m2.

Profits cannot be infinite; in fact they must be zero. Thus, it must be the
case that p1 = 0.5 and p2 = 0.3̄. Since profits are zero, all income of each
consumer derives from the value of their raw material, which is 10. Since each
consumer has a Cobb-Douglas utility, their expenditures shares are given by
the respective exponents. See (5.14), p. 75. That is, consumer 1 will spend 40%
of his income or 4 on good 1 and 60% or 6 on good 2, whereas consumer 2 will
spend 50% of his income or 5 on both goods 1 and 2. Thus, total expenditure
by the consumers on good 1 is 9 and 11 on good 2. This immediately implies
that firm 1’s revenue is 9 and firm 2’s revenue is 11. Since p1 = 0.5 and
p2 = 0.3̄, it follows that the output of firm 1 is 18 and the output of firm 2 is
33, and that consumer 1 purchases 4/0.5 = 8 units of good 1 and 6/0.3̄ = 18
units of good 2, whereas consumer 2 purchases 5/0.5 = 10 units of good 1 and
5/0.3̄ = 15 units of good 2.

16.2 In this problem the profit functions for each producer are now

Π(p1,m1) := p1(2
√
m1)−m1,

Π(p2,m2) := p2(3
√
m2)−m2.

First-order optimality conditions imply that (2p1)/(2
√
m1) = 1 or m1 = p2

1

and (3p2)/(2
√
m2) = 1 or m2 = 2.25p2

2. Substituting these expressions back
into the profit function, we have that Π1 = p2

1, R1 = 2p2
1, C1 = p2

1 and
Π2 = 2.25p2

2, R2 = 4.5p2
1, C2 = 2.25p2

2, where Ri and Ci denote the revenue
and cost, respectively, for firm i = 1, 2. Consumer 1’s income is now 10 + p2

1

and consumer 2’s income is now 10 + 2.25p2
2. Consumer 1 spends 40% of his

income on good 1 and 60% on good 2, whereas consumer 2 spends 50% of his
income on each good. Hence, the total expenditure on good 1 is

0.4(10 + p2
1) + 0.5(10 + 2.25)p2

2 = 0.4p2
1 + 1.125p2

2 + 9,

which must equal the revenue 2p2
1 of firm 1, and the total expenditure on good

2 is
0.6(10 + p2

1) + 0.5(10 + 2.25)p2
2 = 0.6p2

1 + 1.125p2
2 + 11,

which must equal the revenue 4.5p2
2 of firm 2. We conclude that

1.6p2
1 − 1.125p2

2 = 9,
−0.6p2

1 + 3.375p2
2 = 11.
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The solution is p2
1 = 9.0476 and p2 = 4.8677. The incomes for consumers 1

and 2 are 19.0476 and 20.9524, respectively. With the exponent of 0.5 for the
production function and setting the price of the raw material to one, we have
profit = cost = labor employed. Since the cost equals the total raw material
of 20, profit equals 20, too, which further implies that total incomes (the sum
of the value of raw material and profit) must equal 40, which it does. Table
16.3 provides the rest of the answers.

Table 16.3. Equilibrium results for Exercise 16.2.

Firm 1 Firm 2

Output 6.0158 9.9283
Price 3.0079 2.2063

Revenue 18.0952 21.9048
Cost 9.0476 10.9524
Profit 9.0476 10.9524

Units purchased by consumer 1 2.5330 5.1800
Units purchased by consumer 2 3.4829 4.7483

16.3 (a) We shall take the wage rate as numeraire and set its value to 1.
Equation (16.19) is still valid, and so each consumer’s income equals 1/a. For
the Cobb-Douglas utility function, we know that the consumer’s expenditure
share on good i is βi. See (5.14), p. 75. Hence, each consumer spends βi(1/a)
on good i. Since there are M identical consumers, the total expenditure by
all consumers on good i is βi(M/a). This total expenditure must equal the
revenue, Ri, obtained by firm i, which by (16.16) equals Ci/a = Li/a. (Keep in
mind w = 1.) Thus, the total labor employed by firm i, Li, equals βiM . (Since
consumers are identical, each producer employs 100βi% of each consumer’s
unit of labor.) This quantity must also equal Li(p, 1) = (piAia)1/(1−a) given
in (16.14). (Here, there are no quality-adjusted units.) Thus,

βiM = (piAia)1/(1−a), i = 1, 2, . . . , N.

This can be used to solve for the unique set of market-clearing prices. Given
that Li = βiM , it is straightforward to determine the profit-maximizing out-
put, revenue, cost, and profit for each firm, as well as the units purchased by
each (identical) consumer for each good (= aggregate output divided by M).
(b) We set M = 1. The social planner’s optimization problem is

max
L≥0

{∏
i

(ALa
i )βi :

∑
i

Li = 1

}
.

To solve for the optimal Li, one may equivalently solve the optimization prob-
lem

max
L≥0

{∏
i

Lβi

i :
∑

i

Li = 1
}
.
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The optimal value equals ΓΦ(p, 1), where Φ(L1, L2, . . . , LN) =
∏

i L
βi

i and
p = (1, 1, . . . , 1) ∈ IRN

+ . Since the optimal choice for the Li must also be a
cost-minimizing choice, and since the production function is Cobb-Douglas,
the amount expended on labor input i must be equal to βi. (This conclusion
can be reached, of course, by directly using Lagrange multipliers.) And, this
is the solution obtained in part (a).

16.4 Let Rc
i denote the expenditure on good i by consumer c. (It also equals

the revenue obtained by firm i from consumer c.) Let Ri =
∑

cR
c
i denote the

revenue obtained by firm i (aggregating over all consumers). From (16.17),
πi = (1−ai)Ri, and so π1 = (0.75)R1 and π2 = (0.3̄)R2. Since the consumer’s
utility function is Cobb-Douglas, the expenditure on good i by consumer c
will equal βc

i of the consumer’s income Ic. Thus,

R1
1 = (0.8){1 + (0.2)(0.75)R1 + (0.4)(0.3̄)R2},

R2
1 = (0.5){1 + (0.5)(0.75)R1 + (0.1)(0.3̄)R2},

R3
1 = (0.3){1 + (0.3)(0.75)R1 + (0.5)(0.3̄)R2},

R1 =
∑

c

Rc
1 = 1.6 + 0.375R1 + 0.173̄R2,

R1
2 = (0.2){1 + (0.2)(0.75)R1 + (0.4)(0.3̄)R2},

R2
2 = (0.5){1 + (0.5)(0.75)R1 + (0.1)(0.3̄)R2},

R3
2 = (0.7){1 + (0.3)(0.75)R1 + (0.5)(0.3̄)R2},

R2 =
∑

c

Rc
2 = 1.4 + 0.375R1 + 0.3̄R2.

Thus,

0.625R1 − 0.173̄R2 = 1.6,
−0.375R1 + 0.840R2 = 1.4,

from which we obtain R1 = 3.4493 and R2 = 3.2065. Using (16.16) and
w = 1, we have Li = aiRi, from which we compute the Li. Given the Li, we
compute the outputs Yi = AiL

ai

i and the market-clearing prices pi = Ri/Yi.
The revenues, costs, and profits are computed easily from these. Consumer
incomes are 1.9449, 2.4004, and 2.3105, respectively. Table 16.4 provides the
rest of the answers.

16.5 (a) We use the notation of the solution to Exercise 16.4. By the argu-
ments provided there, we have

Rc
i = βc

i

⎧⎨
⎩1 +

∑
j

T c
j (1− aj)Rj

⎫⎬
⎭ ,
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Table 16.4. Equilibrium results for Exercise 16.4.

Firm 1 Firm 2

Output 9.6364 33.1888
Price 0.3579 0.0966

Revenue 3.4493 3.2065
Cost 0.8623 2.1377
Profit 2.5869 1.0688

Units purchased by consumer 1 4.3469 4.0262
Units purchased by consumer 2 3.3530 12.4224
Units purchased by consumer 3 1.9365 16.7403

which implies that
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This is a linear system of N equations in the N unknowns, the Ri, which has
a unique solution.
(b) By (16.16), Ri = Li/ai, which implies that

∑
i aiRi =

∑
i Li = M . Now

summing up both sides of (16.72) over i, we have

∑
i

Ri =
∑

i

(∑
c

βc
i

)
+
∑

i

⎧⎨
⎩
∑

j

(∑
c

βc
iT

c
j

)
(1 − aj)Rj

⎫⎬
⎭

=
∑

c

(∑
i

βc
i

)
+
∑

j

(∑
i

∑
c

βc
iT

c
j

)
(1− aj)Rj

= M +
∑

j

(∑
c

(∑
i

βc
i

)
T c

j

)
(1 − aj)Rj

= M +
∑

j

(∑
c

T c
j

)
(1− aj)Rj

= M +
∑

j

(1 − aj)Rj .

In this derivation we have used the fact that
∑

i β
c
i = 1 for each consumer c

and that
∑

c T
c
j = 1 for each firm j. Subtracting

∑
k Rk from both sides of

the last equation yields
∑

i aiRi = M , a redundant equation.
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Engineering Models of Technology
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Index-Based Dynamic Production Functions

An economist typically works with aggregate data that record the cumulative
amounts of inputs and outputs in some predetermined period of time (e.g.,
quarterly, yearly). With today’s information systems, detailed shop-floor data
are becoming increasingly available, which opens the door to a refined de-
scription of technology.

At a micro-level, the exact shape of the input curve must be known to
project realized output rates over time. Within an activity or stage of pro-
duction, this dynamic input-output process is conveniently encapsulated by a
dynamic production function

x = (x1(·), x2(·), . . . , xn(·)) f−→ y = (y1(·), y2(·), . . . , ym(·)).

Each xi(t) represents the quantity of input i at time t, and each yj(t) rep-
resents the quantity of output j realized at time t. A dynamic production
function f(·) is a functional, since both its domain and range are vectors of
functions, not vectors of numbers. A dynamic production function defines a
recipe with more flexible elements than a steady-state production function.

We begin by describing a motivating example of non-instantaneous be-
havior. Next, we define the class of functions used to model all flows of goods
and services. The simplest description of dynamic production assumes in-
stantaneous transformations. This assumption can be relaxed to incorporate
constant lead times. Index-based dynamic production functions will be used
to model these processes, and three practical ways of indexing to incorporate
constant lead times will be described.

17.1 A Motivating Example

Consider a production system that takes two time periods to transform a unit
of input into a unit of output. In the first three time periods, system input
was observed to be 24, 48 and 96 units, respectively. What would be your
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answer to the following question: “How much total output has emerged by
the end of the first, second, and third time periods?”

The production system description is (purposely) ambiguous, but we begin
with an “obvious” answer, namely, no units of output will be realized in each
of the first two periods and 24 units of output will be realized by the end of
the third period. Even this simple answer makes the implicit assumption that
there was no input in the two periods prior to the first period; otherwise, these
two input numbers should be included as output in the first two periods. For
simplicity, we shall assume that there was no input prior to the first period.

Further investigation reveals that the system operates one 8-hour shift per
day, say from 9:00am to 5:00pm, and the first three time periods correspond
to Monday through Wednesday. The process involves a heating (light manu-
facturing) operation that requires a cooling period of exactly 16 hours before
the semi-finished part is completed as a finished product. (Another example
is a painting operation that requires parts to dry.) All semi-finished parts are
stored in a room while cooling, and this room is available 24 hours a day.
Since the production process occurs round-the-clock, we define a time period
to correspond to a single 24-hour day, say 9:00am to 9:00am.

The length of each time period is 24 hours. Let xi(τ), τ ∈ [0, 24], denote
the input curve in each period (day) i = 1, 2, 3. The total or cumulative input
in each period is

xi :=
∫ 24

0

xi(τ)dτ.

The shape of the input in each period i is

si(τ) := xi(τ)/xi, τ ∈ [0, 24).

It represents normalized input in that
∫ 24

0 si(τ)dτ = 1 for each i. We know
that x1 = 24, x2 = 48 and x3 = 96 and that si(τ) = 0 if 8 ≤ t ≤ 24 for each i,
but, as yet, no further information about the shapes of the input curves are
known. Let Y (t) denote the cumulative output obtained due to input in the
time interval [0, t]. (Here, t ∈ [0,∞) represents a point in time.) From what
we have learned so far,

Y (8) = 0, Y (24) = Y (32) = 24, Y (48) = Y (56) = 72, Y (72) = 168.

Suppose competitive pressures and transportation lead times dictate that
shipping occurs 24 hours a day. In particular, suppose a sizeable percentage of
the shipping activity occurs during the third shift, 1:00am - 9:00am, each day.
(A one-day time period consisting of three 8-hr shifts is consistent with the
original description.) It is useful now to view the overall production process
as consisting of three stages in series:

light manufacturing −→ cooling −→ shipping.

Shipping cannot ship a semi-finished part and so it will be necessary to de-
termine Y (t) for t ∈ [16, 24), i.e., between 1am–9am. However, it will not be
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possible to obtain these values unless the actual shapes, si(τ), of each input
curve are known. If each si(τ) is “front-loaded,” so that most input occurred
early in each shift, then

Y (16) ≈ Y (24) = 24, Y (40) ≈ Y (48) = 72, Y (56) ≈ Y (72) = 168.

If, on the other hand, each si(τ) is “back-loaded,” so that most input occurred
later in each shift, then

Y (0) ≈ Y (16) = 0, Y (24) ≈ Y (40) = 24, Y (48) ≈ Y (56) = 72.

The shape (or distribution) of input over time can have an enormous effect
on how output emerges over time.

At an atomic level, the production process, although relatively short, is
not instantaneous. The follow-on cooling operation takes 16 hours, which is
too significant to ignore. To simplify matters, we have conveniently assumed
it took exactly 16 hours for each part to cool. Suppose all parts belong to a
product family, each part is identical from the light manufacturing perspective,
but parts require different times to cool with the maximum time to cool
being 16 hours. To keep track of exact inventories of completed parts, the
input curves associated with each part within the family must be known. If
the number of parts in the product family is large and if customer demands
exhibit a high degree of substitution, then one may wish to model only the
aggregate input curve associated with all parts in the family and keep track
of only the aggregate inventory of completed parts. For example, it may be
computationally necessary to reduce the number of variables in a formulation
used for planning purposes (when considering all of the product families and
the many other aspects to the process). If this is indeed the case, then it will be
appropriate to view aggregate output as emerging continuously over a 16-hour
period, the distribution of which depends on how the aggregate input function
disaggregates into components associated with each part in the family.

Output emerging continuously over time can also arise when modeling
processing times that are random. For example, one possible outcome of a
testing or inspection process is a failed part that requires rework. The testing
or inspection time typically depends on the type of diagnosis. Estimating the
output of failed parts over time is required for planning resource requirements
for a rework activity.

17.2 Input-Output Domain

We describe the class of functions we use to model the flows of goods and
services. Points in time are modeled by the interval (−∞,∞). Unless otherwise
stated, each function of time is (i) finite-valued and nonnegative, and (ii) has
compact support, i.e., the points in time where the function is positive is
contained in a closed and bounded interval of time. There are two fundamental
types of functions of time, event-based and rate-based flows. We describe each
below.
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17.2.1 Event-Based Flows

For discrete-parts manufacturing systems, the flows of inputs and outputs are
event-based at the microscopic level. An event-based flow z(·) associates a
nonnegative real number z(τ) to an event that occurs at time τ . For example,
z(τ) might be the quantity of parts initiated into a production process at time
τ or a value associated with a job completed at time τ . Event-based flows
only take on positive values at those times when events occur. We assume the
number of event occurrences in a bounded interval of time is finite.

We shall integrate event-based functions, but cannot use the ordinary (Rie-
mann) integral, since the integral of an event-based function is always zero.
For an event-based function z(·) a summation takes the place of an integral.
For instance, the integral of z(·) on the interval (−∞, t] simply adds up all
the values associated with the events that occur on or before time t, namely,

Z(t) :=
∑
τi≤t

z(τi). (17.1)

The function Z(·) is a step-function whose “jumps” occur at the times τi. The
integral of z(·) on the time interval (s, t] is the difference Z(t)− Z(s).

17.2.2 Rate-Based Flows

For a rate-based flow z(·), the nonnegative real number z(τ) represents the
rate (quantity per unit time) of flow at time τ . Rate-based flows sometimes
represent a fluid approximation to event-based flows, and also arise quite
naturally when modeling physical processes. We shall insist a rate-based flow
is piecewise continuous, and the number of its discontinuities in any bounded
time interval is finite. The intervals between adjacent discontinuity points
define the pieces on which the rate-based flow is continuous. We shall often
refer to the cumulative flow associated with a rate-based flow z(·), which is
defined as the (Riemann) integral

Z(t) :=
∫ t

−∞
z(τ)dτ.

While it is certainly possible to imagine a “mixed” flow, in the develop-
ments to follow, a flow is either rate-based or event-based. Let D denote the
set of all functions of time that are either event- or rate-based. A dynamic
production function is a map from X ⊂ Dn into Dm.

17.3 Instantaneous Processes

A dynamic production function is instantaneous if the outputs at time t are
solely a function of the inputs at time t, and possibly other exogenous infor-
mation that is t-dependent. It has the form
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y(t) = [f(x)](t) = Φ(x(t), t) := (Φ1(x(t), t), . . . , Φm(x(t), t)).

Example 17.1. Consider a single-input, single-output process characterized by

y(t) = ax(t),

where a unit of input instantaneously results in a units of output. The constant
a could be less than one to model yield loss common to industries such as
semiconductor manufacture.

Example 17.2. Another example from productivity measurement is a single-
input, single-output process characterized by

y(t) = A(t)φ(x(t)) = A(0)egtx(t);

here, output at time t is proportional to the input rate at time t, and the pro-
portionality constant changes over time to reflect productivity improvements.

17.4 Index-Based Processes

17.4.1 Definition

Typically, when there are several inputs (e.g., multiple materials, subassem-
blies, machine and labor services), there is definite linkage in their use, espe-
cially in discrete-parts manufacturing. For example, in an assembly process,
there is a well-defined recipe for the number of parts or subassemblies needed
to make a finished product. The following definition captures this notion.

Definition 17.3. A dynamic production function is index-based if each in-
put vector x(·) in its domain X has the form

x(t) = (x1(t), x2(t), . . . , xn(t)) = ([ξ1(z)](t), [ξ2(z)](t), . . . , [ξn(z)](t)),

and the corresponding output vector has the form

[f(x)](t) = y(t) = (y1(t), y2(t), . . . , yn(t))
= ([ψ1(z)](t), [ψ2(z)](t), . . . , [ψn(z)](t)),

where ξi : D → D and ψi : D → D are each one-to-one. That is, the compo-
nents of each input vector and resulting output vector are uniquely determined
by a single function z(·) called the index; the shape of any one input or out-
put curve completely determines the shape of all remaining input and output
curves.

It is, of course, possible to define processes with several indexes, but we shall
not explore this generalization.

The computational advantage of an index-based process can be consider-
able, since the structure of the input-output transformation reduces to speci-
fying n+m independent transformations that often possess relatively simple
forms.
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17.4.2 Fixed Proportions, Instantaneous Model

The simplest, classic example of an index-based process is the straightforward
extension of a simple Leontief process to the dynamic setting. We call it a
fixed proportions dynamic model. The production process is instanta-
neous and the inputs and outputs are in constant proportions. The input,
output vectors are, respectively,

x(t) = (a1, a2, . . . , an)z(t), (17.2)
y(t) = (u1, u2, . . . , um)z(t). (17.3)

The vectors a = (a1, a2, . . . , an) and u = (u1, u2, . . . , um) are the technical
coefficients that characterize this technology. The index z(·) is called the
intensity of this process.

Example 17.4. An example from semiconductor manufacturing illustrates the
use for vector-valued output. In semiconductor wafer manufacturing, each
wafer consists of many die. In an ideal world, all die on the wafer would have
identical characteristics. Due to (random) fluctuations, die on a single wafer
are not identical and must be classified into different “bins” based on key
operating characteristics. In this setting, z(·) indexes the amount of wafer
starts and the uk represent the (expected) proportion of die that will be
classified into bin k, after accounting for yield loss. See Leachman et. al.
[1996] and Leachman [2002] for a detailed description.

More generally, the technical coefficients could be functions of time,
namely, each ai = ai(·) and uj = uj(·), in which case the input and out-
put vectors are, respectively,

x(t) = (a1(t), a2(t), . . . , an(t))z(t), (17.4)
y(t) = (u1(t), u2(t), . . . , um(t))z(t). (17.5)

For this more general description, the inputs and output are in constant pro-
portions at each point in time; however, these proportional constants may
vary over time.

Example 17.5. Technical coefficients can change over time due to productivity
improvements. Required inputs per unit of intensity can decline due to learn-
ing, operational improvements, etc., and the outputs per unit of intensity can
increase due to better yields.

17.4.3 Fixed Proportions, Constant Lead Time Models

We describe three practical ways to use indexing to incorporate constant
lead times into the fixed proportions dynamic model characterized by (17.2)
and (17.3).
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Indexing Non-storable Services

Here, z(·) indexes the non-storable labor and machine services, which are
simultaneously used to produce a single output. The storable inputs, such as
materials and subassemblies, are assumed to be withdrawn from inventory
“just-in-time” for their use, but each may require a constant lead time for
transportation, inspection, etc.

Let �k ≥ 0 denote the lead time for the kth storable input. In this setting
we have xi(t) = aiz(t) for the ith non-storable service input, and xk(t) =
akz(t + �k) for the kth storable input, since its withdrawal from inventory
occurs exactly �k time units before its use. As in the motivating example of
Section 17.1, we assume output emerges a constant lead time ρ ≥ 0 after use
of the non-storable services; consequently, y(t) = z(t− ρ).

Example 17.6. A production process uses two raw (storable) materials and
one machine service to produce a single output. The relevant data are:

• 12 units of material 1 are required per unit of output, and it takes 2 hours
to transport this material to the machine station. Here, a1 = 12 and �1 = 2.

• 18 units of material 2 are required per unit of output, and it takes 3 hours
to transport this material to the machine station. Here, a2 = 18 and �2 = 3.

• 2 hours of machine service are required per unit of output. Here, a3 = 2.
• After machining has taken place, it takes 5 hours to inspect the semi-

finished output, after which the completed output is available to service
demand. Here, ρ = 5.

Between hours 100 and 102, a total of 32 hours of machine services has
been consumed, uniformly spread over this period. Here, x3(t) = 16 for
t ∈ [100, 102], and z(t) = 16 for t ∈ [100, 102] since x3(t) = z(t). In words,
8 units are being machined at a constant rate during this two-hour period of
time. Given a lead time of 2 hours for material 1 (and the just-in-time as-
sumption), the withdrawal rate of material 1 input is x1(t) = 12(8) = 96
for t ∈ [98, 100]. Similarly, given a lead time of 3 hours for material 2
(and the just-in-time assumption), the withdrawal rate of material 2 input
is x2(t) = 18(8) = 144 for t ∈ [97, 99]. Given that it takes 5 hours to inspect
the semi-finished output as it emerges from the machining process, the final
output rate is y(t) = 8 for t ∈ [105, 107]. In terms of this index,

z(t) = 16 for t ∈ [100, 102],
x1(t) = 6z(t+ �1) = 6z(t+ 2),
x2(t) = 9z(t+ �2) = 9z(t+ 3),
x3(t) = z(t),
y(t) = 0.5z(t− ρ) = 0.5z(t− 5).
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Indexing “Outs”

A second approach to indexing is to let z(·) index the output or “outs” of the
process in which case y(t) = z(t). On the input side, xi(t) = aiz(t + ρ) for
the ith non-storable service input, since its usage occurs exactly ρ time units
before the product emerges as output, and xk(t) = akz(t+ �k + ρ) for the kth

storable input, since its withdrawal from inventory occurs exactly ρ+ �k time
units before the product emerges as output.

Example 17.7. Consider the same data provided in Example 17.6. Between
hours 105 and 107, a total of 16 units of completed output has emerged,
uniformly spread over this period. Here, z(t) = 8 for t ∈ [105, 107]. The
function z(·) here does not equal the z(·) function in the previous example
since here it is being used to index output and not machine services. The
consumption of resources has not changed, i.e., it is still the case that

x1(t) = 12(8) = 96, t ∈ [98, 100],
x2(t) = 18(8) = 144, t ∈ [97, 99],
x3(t) = 16, t ∈ [100, 102].

What has changed, however, is how these functions relate to the chosen index.
In terms of this index,

z(t) = 8 for t ∈ [105, 107],
x1(t) = 12z(t+ �1 + ρ) = 12z(t+ 7),
x2(t) = 18z(t+ �2 + ρ) = 18z(t+ 8),
x3(t) = 2z(t+ ρ) = 2z(t+ 5),
y(t) = z(t).

Example 17.8. Consider the same data provided in Example 17.6, except that
now two simultaneous semi-finished outputs emerge after machining in a 3:1
ratio, i.e., a total of 12 units of semi-finished output 1 and a total of 4 units of
semi-finished output 2 emerge uniformly over the interval [100, 102]. In this
example, it takes 5 hours to inspect output 1 (as before), whereas now it takes
9 hours to inspect output 2.

The notion of outs in this example cannot apply simultaneously to both
outputs, since there are two nonequal ρ’s, i.e., ρ1 = 5 and ρ2 = 9. It has to
apply to one of the outputs, from which the other output and inputs can be
determined. If output 1 is chosen as the index, then

z(t) = 6, t ∈ [105, 107],
x1(t) = 16z(t+ 7), t ∈ [98, 100],
x2(t) = 24z(t+ 8), t ∈ [97, 99],
x3(t) = (8/3)z(t+ 5), t ∈ [100, 102],
y1(t) = z(t), t ∈ [105, 107],
y2(t) = (1/3)z(t− 7), t ∈ [109, 111].
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On the other hand, if output 2 is chosen as the index, then

z(t) = 2, t ∈ [97, 99],
x1(t) = 48z(t), t ∈ [97, 99],
x2(t) = 72z(t− 1), t ∈ [98, 100],
x3(t) = 8z(t− 3), t ∈ [100, 102],
y1(t) = 3z(t+ 4), t ∈ [105, 107],
y2(t) = z(t), t ∈ [109, 111].

Indexing “Starts”

For the special case when the storable lead times are all identical, say �i = �,
then a third approach to indexing is to let z(·) index the “starts” of the process
in which case xk(t) = akz(t) for the kth storable input and xi(t) = aiz(t− �)
for the ith non-storable service input, since the usage of the non-storable
service occurs exactly � units after the withdrawal of the storable inputs. On
the output side, y(t) = z(t− �− ρ).

Example 17.9. Suppose the data in Example 17.6 is changed so that �1 = �2 =
2.5 (the average of 2 and 3). The machine services are still consumed uniformly
over the interval [100, 102]. Since the function z(·) now indexes starts,

z(t) = 8 for t ∈ [97.5, 99.5],
x1(t) = 12z(t), t ∈ [97.5, 99.5],
x2(t) = 18z(t), t ∈ [97.5, 99.5],
x3(t) = 2z(t− 2.5), t ∈ [100, 102],
y(t) = z(t− 7.5), t ∈ [105, 107].

When the storable lead times are not all identical, then the notion of a start
cannot apply to all inputs simultaneously—it has to apply to one of the inputs,
from which the other inputs and output can be determined. Suppose the lead
times �1 = 2 and �2 = 3, as before. If input 1 is chosen as the index, then

z(t) = 96, t ∈ [98, 100],
x1(t) = z(t), t ∈ [98, 100],
x2(t) = 1.5z(t+ 1), t ∈ [97, 99],
x3(t) = (1/6)z(t− 2), t ∈ [100, 102],
y(t) = (1/12)z(t− 7), t ∈ [105, 107].

On the other hand, if input 2 is chosen as the index, then

z(t) = 144, t ∈ [97, 99],
x1(t) = (2/3)z(t− 1), t ∈ [98, 100],
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x2(t) = z(t), t ∈ [97, 99],
x3(t) = (1/9)z(t− 3), t ∈ [100, 102],
y(t) = (1/18)z(t− 8), t ∈ [105, 107].

Remark 17.10. Under restrictive assumptions, the notion of starts and outs
for the whole process can apply and can be used to index the consumption
of non-storable resources, the withdrawal of storable inputs, and subsequent
final output. In general, one can still speak of starts and outs and use them
to index the process: in the case of starts, one of the inputs is chosen as the
index; in the case of outs, one of the outputs is chosen as the index. When
the consumption of non-storable resources is chosen as the index, all inputs
and outputs can be related to it (as long as lead times are constant).

17.5 Exercises

17.1. Consider the data of Example 17.6. Suppose between the hours of 205
and 209, a total of 192 hours of machine services has been consumed, uniformly
spread over this period. Ignore the previous input described in this example.

(a) What are the specific values for z(·), x1(·), x2(·), x3(·) and y(·) if z(·) is
used to index the non-storable services?

(b)What are the specific values for z(·), x1(·), x2(·), x3(·) and y(·) if z(·) is
used to index the outs?

(c) Suppose, as in Example 17.8, ρ1 = 5 and ρ2 = 9.
(i) What are the specific values for z(·), x1(·), x2(·), x3(·) and y(·) if z(·)

is used to index output 1?
(ii) What are the specific values for z(·), x1(·), x2(·), x3(·) and y(·) if z(·)

is used to index output 2?
(d) Suppose, as in Example 17.9, �1 = �2 = 2.5. What are the specific values

for z(·), x1(·), x2(·), x3(·) and y(·) if z(·) is used to index the starts?
(e) Suppose, as in Example 17.9, �1 = 2 and �2 = 3.

(i) What are the specific values for z(·), x1(·), x2(·), x3(·) and y(·) if z(·)
is used to index input 1?

(ii) What are the specific values for z(·), x1(·), x2(·), x3(·) and y(·) if z(·)
is used to index input 2?

17.2. A production process uses two raw (storable) materials and one machine
service to produce two outputs. The relevant data are:

• Two simultaneous semi-finished outputs emerge after machining in a 2:1
ratio.

• 9 units of material 1 are required per unit of aggregate output, and it takes
1 hour to transport this material to the machine station. Here, a1 = 9 and
�1 = 1.
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• 27 units of material 2 are required per unit of aggregate output, and it
takes 4 hours to transport this material to the machine station. Here,
a2 = 27 and �2 = 4.

• 3 hours of machine service are required per unit of aggregate. Here, a3 = 3.
• After machining has taken place, it takes 8 hours to inspect semi-finished

output 1 and 12 hours to inspect semi-finished output 2. Here, ρ1 = 8 and
ρ2 = 12.

• Between hours 100 and 110, a total of 900 hours of machine services has
been consumed, uniformly spread over this period.

(a) What are the specific values for x1(·), x2(·), x3(·), y1(·) and y2(·)?
(b) What is the general form for the functions x1(·), x2(·), x3(·), y1(·) and

y2(·) in terms of the index z(·) when the index is chosen to represent the
(i) non-storable machine service?
(ii) output 1?
(iii) output 2?
(iv) input 1?
(v) input 2?

17.6 Bibliographical Notes

See Hackman [1990] for an in-depth discussion of acceptable properties of
dynamic production functions.
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17.7 Solutions to Exercises

17.1 (a) We have

z(t) = 48, t ∈ [205, 209],
x1(t) = 288, t ∈ [203, 207],
x2(t) = 432, t ∈ [202, 206],
x3(t) = 48, t ∈ [205, 209],
y(t) = 24, t ∈ [210, 214].

(b) All functions remain unchanged, except that now z(t) = 24, t ∈ [210, 214].
(c) For (i),

z(t) = 18, t ∈ [210, 214],
y1(t) = 18, t ∈ [210, 214],
y2(t) = 6, t ∈ [214, 218].

All other functions remain unchanged. As for (ii), now z(t) = 6, t ∈ [210, 214].
All other functions remain unchanged from their values in (i).
(d) Here,

z(t) = 24, t ∈ [202.5, 206.5],
x1(t) = 288, t ∈ [202.5, 206.5],
x2(t) = 432, t ∈ [202.5, 206.5].

All other functions remain the same.
(e) Only the z(·) function changes. For part (i), z(t) = 288, t ∈ [203, 207],
whereas for part (ii), z(t) = 432, t ∈ [202, 206].

17.2 (a) The specific values are:

x1(t) = 270, t ∈ [99, 109],
x2(t) = 810, t ∈ [96, 106],
x3(t) = 90, t ∈ [100, 110],
y1(t) = 20, t ∈ [108, 118],
y2(t) = 10, t ∈ [112, 122].

(b) For part (i):

x1(t) = 3z(t+ 1),
x2(t) = 9z(t+ 4),
x3(t) = z(t),
y1(t) = (2/9)z(t− 8),
y2(t) = (1/9)z(t− 12).
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For part (ii):

x1(t) = (27/2)z(t+ 9),
x2(t) = (81/2)z(t+ 12),
x3(t) = (9/2)z(t+ 8),
y1(t) = z(t),
y2(t) = (1/2)z(t− 4).

For part (iii):

x1(t) = 27z(t+ 13),
x2(t) = 81z(t+ 16),
x3(t) = 9z(t+ 12),
y1(t) = 2z(t+ 4),
y2(t) = z(t).

For part (iv):

x1(t) = z(t),
x2(t) = 3z(t+ 3),
x3(t) = (1/3)z(t− 1),
y1(t) = (2/27)z(t− 9),
y2(t) = (1/27)z(t− 13).

For part (v):

x1(t) = 3z(t− 3),
x2(t) = z(t),
x3(t) = (1/9)z(t− 4),
y1(t) = (2/81)z(t− 12),
y2(t) = (1/81)z(t− 16).
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Distribution-Based Dynamic Production

Functions

Distribution-based processes can be used to model the non-instantaneous be-
havior described in Section 17.1. To ease notational burdens, we shall con-
fine our attention to single-input, single-output dynamic production func-
tions. Accordingly, we drop the subscripts i and j and furthermore take
Φ(z(τ), τ) = φ(z(τ), τ) = z(τ).

18.1 Description

18.1.1 Overview

Let the rate-based index z(τ) denote the rate of starts at time τ so that
z(τ)Δτ represents an input batch of starts in the interval [τ, τ +Δτ ]. Assume
that an input batch at time τ will eventually result in a total of Φj(z(τ), τ)Δτ
units of output j, 1 ≤ j ≤ m, and will consume a total of φi(z(τ), τ)Δτ units
of input i, 1 ≤ i ≤ n.

Output realizations and input consumptions are not instantaneous but
occur over time, as follows. The proportion of the total quantity of output j
that will emerge in the next t′ units of time is W y

j (t′, τ), and the proportion of
the total input i consumed over the next t′ units of time is W x

i (t′, τ). (These
proportions are allowed to depend on τ .) Thus, for t > τ , the input batch at
time τ will result in

[Φj(z(τ), τ)Δτ ]W
y
j (t− τ, τ)

units of output j by time t and will consume

[φi(z(τ), τ)Δτ ]W x
i (t− τ, τ)

units of input i by time t. Total outputs produced and total inputs consumed
up to time t are the respective sums of the outputs produced and inputs
consumed due to all such input batches up to time t. They are given, respec-
tively, as
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∑
τ

[Φj(z(τ), τ)Δτ ]W
y
j (t− τ, τ), (18.1)

∑
τ

[φi(z(τ), τ)Δτ ]W x
i (t− τ, τ), (18.2)

where the sum is over τ = kΔτ, k = . . . ,−2,−1, 0, 1, 2, . . . , k ≤ t/Δτ.
The limits of (18.1) and (18.2) as Δτ → 0, assuming they exist, are

Yj(t) :=
∫ t

−∞
Φj(z(τ), τ)W

y
j (t− τ, τ)dτ, (18.3)

Xi(t) :=
∫ t

−∞
φi(z(τ), τ)W x

i (t− τ, τ)dτ, (18.4)

where Yj(t) and Xi(t) denote, respectively, the cumulative amount of output
j and input i up to time t.

When the index z(·) is event-based, z(τ) denotes a batch of starts at time
τ that will result in a total of Φj(z(τ), τ) units of output j and consume a total
of φi(z(τ), τ) units of input i. The integrals (18.3) and (18.4) are replaced by
the corresponding summations

Yj(t) :=
∑
τk≤t

Φj(z(τk), τk)W y
j (t− τk, τk), (18.5)

Xi(t) :=
∑
τk≤t

φi(z(τk), τk)W x
i (t− τk, τk). (18.6)

18.1.2 Definition

The functions Φj(·) and φi(·) are called transforms. Given z(·) and a trans-
form ξ : R2

+ → R+ the function of time ξ(z(·), ·) is assumed to preserve
the flow type of the index z(·). Each function W y

j , 1 ≤ j ≤ m, and W x
i ,

1 ≤ i ≤ n, is called a cumulative lead time distribution, which will be
formally defined below.

Definition 18.1. A dynamic production function is distribution-based if
there are cumulative lead time distributions W y

j (·) and W x
i (·) and transforms

Φj(·) and φi(·) such that the cumulative output and input functions have the
forms (18.3) and (18.4) when the index z(·) is rate-based or have the forms
(18.5) and (18.6) when the index z(·) is event-based.

Example 18.2. Consider the transforms

Φj(z(τ), τ) = αj(τ)z(τ), φi(z(τ), τ) = βi(τ)z(τ). (18.7)

It follows from (18.3)-(18.6) that the resulting production functionals Yj :=
Fj(z), Xi := Ξi(z) are each linear in z(·). That is, for nonnegative scalars c1
and c2,
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Fj(c1z1 + c2z2) = c1Fj(z1) + c2Fj(z2),
Ξi(c1z1 + c2z2) = c1Ξi(z1) + c2Ξi(z2).

The linearity of Fj(·) and Ξi(·) with respect to z(·) is not synonymous with
linearity of the output Yj(·) and input Xi(·) functions of time given z(·).
Linear production functionals are, in effect, the continuous-time extension of
the basic nonparametric steady-state models we developed and analyzed in
Parts I and II.

Definition 18.3. A distribution-based dynamic production function is linear
if its transforms satisfy (18.7).

18.1.3 Lead Time Density

Loosely speaking, a lead time density is the derivative of a cumulative lead
time distribution. A lead time density is either rate- or event-based. A rate-
based (event-based) lead time density can be viewed as a family {w(·, τ), τ ≥
0} of probability density (mass) functions on IR+.

Below, additional properties are imposed to ensure w(·, τ) is close to
w(·, τ ′) when τ is sufficiently close to τ ′, which will be sufficient to ensure
the integrals (18.3)-(18.6) exist. These technical properties and the remarks
that follow can be skipped on first reading.

Definition 18.4. A rectangular partition of IR2
+ is a collection of disjoint

rectangles whose union is IR2
+ such that each rectangle in the partition has

positive area and the number of rectangles in the partition that intersect any
compact (i.e., bounded and closed) C ⊂ IR2

+ is finite.

Definition 18.5. A function w : IR2
+ → IR+ is a rate-based lead time

density if it satisfies the following properties:

(i) w(·, τ) is piecewise continuous and
∫∞
0

w(t, τ)dt = 1 for each τ ≥ 0.
(ii) There is a rectangular partition of IR2

+ such that w(·) is continuous on
each rectangle in the partition.

Definition 18.6. A function w : IR2
+ → IR+ is an event-based lead time

density if it satisfies the following properties:

(i) w(·, τ) is event-based and
∑

ti
w(ti, τ) = 1 for each τ ≥ 0.

(ii) The set of occurrence times of all events of the family of functions
{w(·, τ), τ ≥ 0} in any bounded time interval is finite.

(iii) w(t, ·) is piecewise continuous for each t ≥ 0.

For a lead time density w(·, ·), we denote its integral on [0, u] by

W (u, τ) :=

{∫ u

0
w(t, τ)dt if w(·) is rate-based,∑

0≤ti≤u w(ti, τ) if w(·) is event-based.

This is the cumulative lead time distribution corresponding to w(·, ·).



312 18 Distribution-Based Dynamic Production Functions

Remark 18.7. When w(·, τ) is rate-based, W (·, τ) is differentiable everywhere
except at the discontinuity points of w(·, τ) (of which there are not too many),
and when w(·, τ) is event-based, W (·, τ) is piecewise continuous (more specif-
ically, it is right-continuous with continuous left limits).

The technical conditions (ii) of (18.5) and (ii) and (iii) of (18.6) are au-
tomatically satisfied for a piecewise constant lead time density, a special but
still quite general case.

Definition 18.8. A lead time density is piecewise constant if there is a
partition of IR+ into nonempty intervals for which the subfamily of functions
{w(·, τ), τ ∈ I} are all identical for each interval I in the partition. The
number of intervals that intersect any bounded interval is finite. When the
family of functions {w(·, τ), τ ≥ 0} are all identical the lead time density is
constant.

For most of our numerical examples, we assume a constant lead time density
w(·, ·), and to ease notational burdens we shall, with a slight abuse of notation,
suppress the irrelevant τ , and simply refer to w(u) and its integral W (u) on
the interval [0, u]. For a constant lead time density, the function W (t− τ) of
τ will be piecewise continuous.

18.1.4 Technical Remarks

Remark 18.9. Fix a lead time density w(·, ·). For a fixed t ≥ 0, define

θw(τ) :=
{
W (t− τ, τ), if τ ∈ [0, t],
0, if τ > t.

Condition (ii) of (18.5) and conditions (ii) and (iii) of (18.6) ensure that θw(τ)
is piecewise continuous, which guarantees (along with the compact support)
that the integrals (18.3)-(18.6) exist. When w(·, ·) is event-based, θw(τ) will
be a step-function whose jumps consist of all τ ∈ [0, t] for which τ is a jump of
the function w(t, ·). If no conditions are imposed on the relationship between
the w(·, τ)’s, then θw(τ) could be pathological; in particular, when z(·) is rate-
based the integrals (18.3)-(18.6) may not exist. For example, when w(·, ·) is
event-based, depending on the spatial arrangement of all times corresponding
to all events, the function θw(τ) can be event-based, rate-based, or even mixed.

Remark 18.10. When wy(·), wx(·) and z(·) are all rate-based both a generic
output function Y (t) and input functionX(t) will be differentiable everywhere
except at a finite number of points. At the differentiable points, it may be
shown that the output and input rates are given by

y(t) =
dY

dt
=
∫ t

−∞
Φ(z(τ), τ)wy(t− τ, τ)dτ, (18.8)

x(t) =
dX

dt
=
∫ t

−∞
Φ(z(τ), τ)wx(t− τ, τ)dτ. (18.9)



18.2 Constant Lead Time Processes 313

When z(·) is rate-based and wy(·) is event-based, y(t) can be rate- or event-
based depending once again on the spatial arrangement of all times corre-
sponding to all events. For example, in Chapter 18 we shall show that when
z(·) is rate-based and wy(·) is event-based and constant, then y(t) is

∑
τj

Φ(z(t− τj), t− τj)wy(τj), (18.10)

where the summation is over all τj such that t − τj is an occurrence time of
an event.

18.2 Constant Lead Time Processes

18.2.1 Description

Suppose � is a positive constant lead time and W (t) = 1 if t ≥ � and 0
otherwise. For this choice of W (·), the cumulative output in (18.3) is

Y (t) =
∫ t−�

−∞
z(τ)dτ = Z(t− �).

Here we assume that no input was consumed prior to time 0 so that Y (t) = 0
if t ≤ �. The output curve

y(t) = z(t− �),
is an instantaneous process shifted by the constant lead time �.

Example 18.11. Suppose z(t) = 200t, t ∈ [0, 1], and the lead time is constant
at � = 0.5. Then:

Z(t) =

{
100t2, 0 ≤ t ≤ 1,

100, 1 ≤ t.

Y (t) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ t ≤ 0.5,

100(t− 0.5)2, 0.5 ≤ t ≤ 1.5,

100, 1.5 ≤ t.

Consider now constant, event-based lead time densities with more than
one event. Specifically, there are positive constants 0 < �1 < . . . < �n and
w1, w2, . . . , wn for which

∑n
j=1 wj = 1 and

W (u) =

⎧⎪⎪⎨
⎪⎪⎩

0, if u < �1,∑i
j=1 wj , if u ∈ [�i, �i+1], 1 ≤ i ≤ n− 1,

1, if u ≥ �n.
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Fix a t > �n. For this choice of W (·), the output in (18.3) on p. 310 is

Y (t) = Z(t− �n) + [Z(t− �n−1)− Z(t− �n)](1−W1)
+ [Z(t− �n−2)− Z(t− �n−1)](1 −W2)
+ . . .+ [Z(t− �1)− Z(t− �2)](1−Wn−1)

=
n∑

j=1

wjZ(t− �j), (18.11)

where Wi :=
∑i

j=1 wj , i = 1, 2, . . . , n, denotes the partial sums. The output
rate is

y(t) =
n∑

j=1

wjz(t− �j), (18.12)

which is a convex combination of input rates at various times prior to time
t and is consistent with (18.10). A probabilistic interpretation of (18.12) will
be provided in Chapter 20.

18.2.2 Integer Lead Times

Suppose there are three events corresponding to �1 = 2, �2 = 5, and �3 = 8
and w1 = 0.25, w2 = 0.70, and w3 = 0.05. The interpretation is that 25% of
the time an entering part will emerge as output in exactly 2 units of time,
70% of the time an entering part will emerge as output in exactly 5 units of
time, and 5% of the time an entering part will emerge as output in exactly 8
units of time. Assume that each unit of input produces a unit of output. Fix
the input curve as

z(t) = 100 · 1[0,1](t) + 200 · 1[1,2](t) + 300 · 1[2,3](t) + 400 · 1[3,4](t),

so that no input is consumed prior to time 0 and 100, 200, 300, and 400 units
are started uniformly within the periods 1, 2, 3 and 4, respectively. The output
curve is

y(t) = 0.25z(t− 2) + 0.70z(t− 5) + 0.05z(t− 8). (18.13)

As a result of this input—and the fact that the longest lead time is 8—
output will emerge over the first 12 intervals of time [t − 1, t], 1 ≤ t ≤ 12.
Let

zt :=
∫ t

t−1

z(τ)dτ,

yt :=
∫ t

t−1

y(τ)dτ,
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denote, respectively, the cumulative input and cumulative output consumed
over the interval [t − 1, t] for positive integers t. In the example, zt = 100t,
t = 1, 2, 3, 4. It follows from (18.13) that

yt = 0.25
∫ t

t−1

z(τ − 2)dτ + 0.70
∫ t

t−1

z(τ − 5)dτ + 0.05
∫ t

t−1

z(τ − 8)dτ

= 0.25zt−2 + 0.70zt−5 + 0.05zt−8, t = 1, 2, . . . .

(Keep in mind z(t) = 0 for t ≤ 0.) In matrix form, the cumulative outputs in
each of the first 12 intervals [t− 1, t], 1 ≤ t ≤ 12, are:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0

0.25 0 0 0
0 0.25 0 0
0 0 0.25 0

0.70 0 0 0.25
0 0.70 0 0
0 0 0.70 0

0.05 0 0 0.70
0 0.05 0 0
0 0 0.05 0
0 0 0 0.05

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
z1
z2
z3
z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
25
50
75
170
140
210
285
10
15
20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that
∑12

t=1 yt = 1000 =
∑12

t=1 zt, as it should.
Suppose t = 23. All parts that enter by time 15 will emerge by time 23,

95% of the parts that enter between times 15 and 18 will emerge by time 23,
and 25% of the parts that enter between times 18 and 21 will emerge by time
23. No part that enters between time 21 and 23 will emerge as output by time
23. Thus,

Y (23) = Z(15) + 0.95[Z(18)− Z(15)] + 0.25[Z(21)− Z(18)]
= 0.05Z(15) + 0.70Z(18) + 0.25Z(21).

This is just the integral over [0, 23] of both sides of (18.13).

18.2.3 Noninteger Lead Times

Consider the data provided in Section 18.2.2, except that the lead times for
the three events are now �1 = 2.21, �2 = 5.63, and �3 = 8.42. The output
curve is

y(t) = 0.25z(t− 2.21) + 0.70z(t− 5.63) + 0.05z(t− 8.42).

It follows once again from (18.13) that
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yt = 0.25
∫ t

t−1

z(τ−2.21)dτ+0.70
∫ t

t−1

z(τ−5.63)dτ+0.05
∫ t

t−1

z(τ−8.42)dτ.

(18.14)
When the lead times are noninteger, the integrals in (18.14) can be calculated,
as follows. For the first integral

∫ t

t−1

z(τ − 2.21)dτ =
∫ (t−1)+0.21

t−1

z(τ − 2.21)dτ +
∫ t

(t−1)+0.21

z(τ − 2.21)dτ

=
∫ (t−1)+0.21

t−1

zt−3dτ +
∫ t

(t−1)+0.21

zt−2dτ

= 0.21zt−3 + 0.79zt−2.

A similar calculation yields
∫ t

t−1

z(τ − 5.63)dτ = 0.63zt−6 + 0.37zt−5,

∫ t

t−1

z(τ − 8.42)dτ = 0.42zt−9 + 0.58zt−8,

from which we obtain

yt = 0.25{0.21zt−3 + 0.79zt−2}+ 0.70{0.63zt−6 + 0.37zt−5}
+ 0.05{0.42zt−9 + 0.58zt−8}

= 0.021zt−9 + 0.029zt−8 + 0.441zt−6 + 0.259zt−5

+ 0.1975zt−3 + 0.0525zt−2.

The yt are also a linear combination of the zt. In matrix form, the cumulative
outputs within each of the first 12 intervals [t− 1, t], 1 ≤ t ≤ 12, are:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0

0.1975 0 0 0
0.0525 0.1975 0 0

0 0.0525 0.1975 0
0.259 0 0.0525 0.1975
0.441 0.259 0 0.0525

0 0.441 0.259 0
0.029 0 0.441 0.259
0.021 0.029 0 0.441

0 0.021 0.029 0
0 0 0.021 0.029

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
z1
z2
z3
z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

19.75
44.75
69.75
120.65
116.90
165.90
238.80
184.30
12.90
17.90

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The cumulative output up to time t = 12,
∑12

t=1 yt = 991.6, equals the cu-
mulative input up to time t = 12,

∑12
t=1 zt, less 8.4. The gap between the
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cumulative output and input is a result of the fact that 5% of the starts from
time 3.58 to 4, i.e., 0.05{(4 − 3.58)400} = (0.021)400 = 8.4, will not yet be
realized as output by time 12. Another way to see this is that the sum of
the elements in each column equals one, except that last one, which equals
0.979 = 1− 0.021.

Remark 18.12. If the column lengths extend to infinity, then the sum of the
elements in each column must add to one.

Remark 18.13. In general, when z(·) is rate-based, constant over each interval
(t− 1, t), then

∫ t

t−1

z(τ − �)dτ = (�− �−)zt−�+ + (�+ − �)zt−�− .

Here, �+ is the smallest integer no smaller than � and �− is the largest integer
no larger than �. The expression (�− �−) is just the fractional part of the lead
time � and (�+ − �) is the remainder from one. For example, when � = 5.63,
�− = 5 and �+ = 6 and so (�− �−) = 0.63 and (�+ − �) = 0.37.

Remark 18.14. There are two common proposals to model noninteger lead
times. Suppose, for example, the natural lead time is 14 hours but the natural
period of time is 8 hours, which represents a shift. Measured in units of shifts,
the lead time is 1.75. One obvious fix is to simply subdivide each 8 hour block
into four two-hour blocks. This proposal, however, will increase the number
of variables and constraints by a factor of four. If the lead time were 13 hours,
then hourly time periods will be used, thereby increasing the variables and
constraints by a factor of 8. (In the example, if time is broken up in intervals of
length 0.01 instead of 1, then the lead times will be 221, 563 and 842 units of
time. The number of variables and constraints will increase by a factor of 100!)
There is a second fundamental problem with this approach. On such a small
scale, the variation of input rates over time it permits can be impractical on
the shop floor. Constraints could be added to limit such variability, but again
at the expense of complicating the model and increasing the computational
burdens.

A second proposal is to round the lead time up to the nearest integer,
in this case 1.75 becomes 2. This builds a buffer to ensure that promised
inventory will be available to fulfill demand. Inflating lead times is not an un-
common practice of implementing Manufacturing Resources Planning (MRP)
systems. Unfortunately, this proposal creates unnecessary work-in-process in
the system. (If the difference between the actual and rounded-up lead times
are sufficiently close, then this may be not be too costly.)

The example of this subsection shows that neither common proposal is nec-
essary. After appropriate pre-processing, it will be unnecessary to complicate
the model and increase computational burdens to accommodate noninteger
lead times.
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18.2.4 Non-Integer Lead Times with Unequal Length Periods

In this section, we fix time points, t1, t2, . . ., not necessarily integer, such that
the (rate-based) input curve is constant on each interval of time (ti−1, ti). The
lead times �k need not be integer, either. Using unequal length intervals of
time in a model is quite practical, especially if the model is intended to guide
relatively short-term actions. For example, certain days may run two shifts,
whereas other days may run only one shift. Natural time periods used for
tactical planning models such as weeks may differ in capacity due to vacations,
holidays, or planned shutdowns.

We illustrate the computations by modifying the data provided in Section
18.2.3, as follows. The constant rate on the interval (0, 0.70) is 100, the con-
stant rate on the interval (0.70, 1.65) is 2.55.5̄, and the constant rate on the
interval (1.65, 4) is 327.6̄. The cumulative input curve is

Z(t) =

⎧⎪⎪⎨
⎪⎪⎩

100t, 0 ≤ t ≤ 0.70,
168.42t− 47.89, 0.70 ≤ t ≤ 1.65,
327.6̄t− 310.65, 1.65 ≤ t ≤ 4,

1000, 4 ≤ t.

These numbers were constructed so that Z(1) = 100, Z(2) = 300 and Z(4) =
1000, as in Section 18.2.3. We shall let z1, z2, and z3 denote the constant rates
within each period of time. Keep in mind that

(a) the periods no longer correspond to the intervals (0, 1), (1, 2), and (2,
3)—the period lengths here are 0.70, 0.95, and 2.35, respectively;

(b)Z(0.7) = 0.70z1 = 70, Z(1.65) = 0.70z1 + 0.95z2 = 230, and Z(4) =
0.70z1 + 0.95z2 + 2.35z3 = 1000; and,

(c) the slopes of the piecewise linear, increasing Z(·) curve for the three seg-
ments are z1 = 100, z2 = 168.42, and z3 = 327.6̄, respectively.

Once again, the cumulative output curve (18.11) is

Y (t) = 0.25Z(t− 2.21) + 0.70Z(t− 5.63) + 0.05Z(t− 8.42).

The computation of Y (t) for integer t, 1 ≤ t ≤ 12, requires the computation
of the following Z(·) values:

Z(0.79) = Z(0.70) + (0.79− 0.70)z2 = 0.70z1 + 0.09z2 = 85.16.
Z(1.79) = Z(1.65) + (1.79− 1.65)z2 = 0.70z1 + 0.95z2 + 0.14z3 = 275.87.
Z(2.79) = Z(1.65) + (2.79− 1.65)z2 = 0.70z1 + 0.95z2 + 1.14z3 = 603.54.
Z(3.79) = Z(1.65) + (3.79− 1.65)z2 = 0.70z1 + 0.95z2 + 2.14z3 = 931.21.
Z(4.79) = Z(5.79) = · · · = Z(11.79) = 0.70z1 + 0.95z2 + 2.35z3 = 1000.

Z(0.37) = 0.37z1 = 37.
Z(1.37) = Z(0.70) + (1.37− 0.70)z2 = 0.70z1 + 0.67z2 = 182.84.
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Z(2.37) = Z(1.65) + (2.37− 1.65)z2 = 0.70z1 + 0.95z2 + 0.72z3 = 465.92.
Z(3.37) = Z(1.65) + (3.37− 1.65)z2 = 0.70z1 + 0.95z2 + 1.72z3 = 793.59.
Z(4.37) = Z(5.37) = · · · = Z(11.37) = 0.70z1 + 0.95z2 + 2.35z3 = 1000.

Z(0.58) = 0.58z1 = 58.
Z(1.58) = Z(0.70) + (1.58− 0.70)z2 = 0.70z1 + 0.88z2 = 218.21.
Z(2.58) = Z(1.65) + (2.58− 1.65)z2 = 0.70z1 + 0.95z2 + 0.93z3 = 534.73.
Z(3.58) = Z(1.65) + (3.58− 1.65)z2 = 0.70z1 + 0.95z2 + 1.93z3 = 862.40.
Z(4.58) = Z(5.58) = · · · = Z(11.58) = 0.70z1 + 0.95z2 + 2.35z3 = 1000.

Given the expressions for these Z(·) values, it is straightforward to determine
expressions for the Y (t) and yt. For example,

Y (6) = 0.25Z(3.79) + 0.70Z(0.37)
= 0.25[0.70z1 + 0.95z2 + 2.14z3] + 0.70[0.37z1]
= 0.434z1 + 0.2375z2 + 0.535z3 = 258.70,

Y (7) = 0.25Z(4.79) + 0.70Z(1.37)
= 0.25[0.70z1 + 0.95z2 + 2.35z3] + 0.70[0.70z1 + 0.67z2]
= 0.665z1 + 0.7065z2 + 0.5875z3 = 377.99,

y7 = Y (7)− Y (6)
= 0.231z1 + 0.469z2 + 0.0525z3 = 119.29.

In matrix form, the cumulative outputs at each point in time t, 1 ≤ t ≤ 12,
are: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y (1)
Y (2)
Y (3)
Y (4)
Y (5)
Y (6)
Y (7)
Y (8)
Y (9)
Y (10)
Y (11)
Y (12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0

0.175 0.0225 0
0.175 0.2375 0.035
0.175 0.2375 0.285
0.434 0.2375 0.535
0.665 0.7065 0.5875
0.665 0.9025 1.0915
0.694 0.9025 1.7915
0.7 0.9465 2.2325
0.7 0.95 2.279
0.7 0.95 2.329

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ z1z2
z3

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

21.29
68.97
150.89
258.70
377.99
576.14
808.41
960.91
976.75
993.12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The cumulative output up to time t = 12, Y (12) = 993.12, equals the cumula-
tive input up to time t = 12, Z(12), less 6.68. The gap between the cumulative
output and input is a result of the fact that 5% of the starts from time 3.58
to 4, i.e., 0.05{(4− 3.58)327.6̄} = 6.68, will not yet be realized as output by
time 12.
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Remark 18.15. Fix time points, t1, t2, . . ., not necessarily integer, such that
the (rate-based) input curve is constant on each interval of time (ti−1, ti). For
each real number x, let

ι(x) := max{i : ti ≤ x} (18.15)

denote the highest index associated with those ti no larger than x. The cu-
mulative curve Z(·) is a piecewise linear function; its slope on the interval
[ti−1, ti] is zi. Consequently, for real numbers a and b, a < b,
∫ b

a

z(τ)dτ = Z(b)− Z(a)

= [Z(tι(b)) + (b− tι(b))zι(b)+1] − [Z(tι(a)) + (a− tι(a))zι(a)+1]
= [Z(tι(b))− Z(tι(a))] + {(b− tι(b))zι(b)+1 − (a− tι(a))zι(a)+1}

=
ι(b)∑

k=ι(a)+1

zk(tk − tk−1) + {(b− tι(b))zι(b)+1 − (a− tι(a))zι(a)+1}.

If a and b happen to belong to the same interval [ti−1, ti] for some i, then
ι(a) = ι(b) and

∫ b

a
z(τ)dτ = (b − a)zι(a)+1. If, for example, a = 1.41 and

b = 3.08 in the example above, then ι(a) = 1, ι(b) = 2 and
∫ 3.08

1.41

z(τ)dτ = Z(3.08)− Z(1.41)

= [Z(1.65) + (3.08− 1.65)z3]− [Z(0.70) + (1.41− 0.70)z2]
= [Z(1.65)− Z(0.70)] + {1.43z3 − 0.71z2}
= z2 + {1.43z3 − 0.71z2}
= 0.29z2 + 1.43z3.

18.3 Time-Dependent Lead Time Processes

18.3.1 Description

Let � : IR+ → IR+ be a continuous function, and for each τ ∈ IR+ define
W (t, τ) = 1 if t ≥ �(τ) and 0 otherwise. With this choice for the lead time
distribution, an input that arrives at time τ will be completed exactly �(τ)
units of time later. Using the fact thatW (t−τ, τ) = 1 if and only if t ≥ τ+�(τ),
the output in (18.3) is

Y (t) =
∫
{τ : τ+�(τ)≤t}

z(τ)dτ.

While not required, inputs after time τ are often always completed after any
input prior to time τ . This will occur when the time-of-completion func-
tion
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ρ(τ) := τ + �(τ)

is increasing in which case

Y (t) =
∫ ρ−1(t)

0

z(τ)dτ = Z(ρ−1(t)).

Constant lead time applies when �(τ) = �, in which case ρ−1(t) = (t− L).
For the following two examples we fix the input curve as

z(t) = 100 · 1[0,1](t) + 200 · 1[1,2](t) + 300 · 1[2,3](t) + 400 · 1[3,4](t),

so that no input is consumed prior to time 0 and 100, 200, 300 and 400 units
are started uniformly within the periods 1, 2, 3 and 4, respectively. As before,
zt denotes the cumulative input consumed over the interval [t−1, t] for positive
integers t so that zt = 100t, t = 1, 2, 3, 4, for this example.

18.3.2 First-In, First-Out Example

In this example, we set the time-of-completion function to

ρ(τ) = (t− 1) +
√
τ − t− 1, τ ∈ [t− 1, t], t = 1, 2, . . . .

If an input starts at time τ ∈ [0, 1], then it will emerge as output at time
ρ(τ) =

√
τ and its lead time �(τ) is

√
τ − τ . For example, if the input starts

at time τ = 0.16, then it will emerge as output at time ρ(0.16) = 0.4 and
its lead time �(0.16) is 0.24. If an input starts at time τ = 1.16 ∈ [1, 2], then
it will emerge as output at time ρ(1.16) = 1 +

√
1.16− 1 = 1.4 and its lead

time �(1.4) is 0.24. With this time-of-completion function, all input that starts
within the time interval [t− 1, t] will emerge as output within this same time
interval; moreover, the lead time for an input that starts at time τ will be
identical to the lead time for starts at times τ − 1, τ − 2, etc.

Table 18.1 records a sample of start-times, time-of-completion, and lead
times. The start-time and time-of-completion should be interpreted in relation
to the interval [t− 1, t], i.e., the start-time and time-of-completion represent
the amount of time after time t − 1. The lead time for a start τ units after
time t−1 is

√
τ−τ , which reaches its maximum at τ = 0.25. Thus, lead times

are increasing for the first quarter of the time interval and decrease thereafter.
To determine the cumulative output Y (t) in (18.16), it remains to deter-

mine ρ−1(t). Pick a t ∈ [0, 1]. The unit of output that emerges at time t must
have been started at the time τ = ρ−1(t) for which

√
τ = t. Obviously, this

value is t2. Pick a t ∈ [1, 2]. The unit of output that emerges at time t must
have been started at the time τ = ρ−1(t) for which 1+

√
τ − 1 = t. This value

is 1 + (t− 1)2. The general formula is therefore

ρ−1(t) = (n− 1) + (t− n− 1)2, t ∈ [n− 1, n], n = 1, 2, . . . .

For example, when t = 2.9, ρ−1(t) = 2 + (2.9− 2)2 = 2.81, and so

Y (2.9) = Z(2.81) = 100 + 200 + (0.81)300 = 543.
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Table 18.1. Start-times, time-of-completion, and lead times for example 18.3.2.

Start-time Time-of-Completion Lead time

0.00 0.00 0.00
0.01 0.10 0.09
0.04 0.20 0.12
0.09 0.30 0.21
0.16 0.40 0.21
0.25 0.50 0.25
0.36 0.60 0.24
0.49 0.70 0.21
0.64 0.80 0.16
0.91 0.90 0.09
1.00 1.00 0.00

18.3.3 Leapfrog Example

For this example, the time-of-completion function is

ρ(τ) =

⎧⎪⎪⎨
⎪⎪⎩

τ + τ2, 0 ≤ τ ≤ 1,
τ + (τ − 1)2, 1 ≤ τ ≤ 2,
τ + (τ − 2)2, 2 ≤ τ ≤ 3,
τ + (τ − 3)2, 3 ≤ τ ≤ 4.

For example, if an input starts at time 1.1, then its time-of-completion is
ρ(1.1) = 1.11 and its lead time is 0.01; if an input starts at time 1.5, then its
time-of-completion is ρ(1.5) = 1.75 and its lead time is 0.25; if an input starts
at time 1.9, then its time-of-completion is ρ(1.9) = 2.71 and its lead time
is 0.81. With this time-of-completion function, all input that starts within
the time interval [t− 1, t] will emerge as output continuously within the time
interval [t− 1, t+ 1]. That is, it takes two units of time to complete all starts
within a single period of time; moreover, the lead time for an input that starts
at time τ will be identical to the lead time for starts at times τ −1, τ −2, etc.

In this example, starts early in the interval emerge quickly, whereas starts
late in the interval emerge more slowly. Because of this, starts late in one
interval will emerge after starts at the beginning of the next interval. For
example, the time-of-completion for a start at time τ = 1.9 is 2.71, whereas
the time-of-completion for a start at time τ = 2.1 is 2.11. This services system
does not preserve the “First-In, First-Out (FIFO)” discipline.

Since the system is not FIFO, the cumulative output Y (t) cannot be de-
termined via (18.16). Instantaneous output at time t ∈ [n − 1, n] emerges
as a result of two input streams: instantaneous starts some time ago within
the current period [n − 1, n] and instantaneous starts some time ago within
the previous period [n− 2, n− 1]. In effect, there are two ρ−1(t)’s, which we
label ρ−1

current(t) and ρ−1
previous(t). The calculations are best illustrated with a

concrete example.
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Pick a t ∈ [0, 1]. The unit of output that emerges at time t must have been
started at the time τ = ρ−1

current(t) for which τ + τ2 = t. (There is no starts
prior to time 0, and so there is no ρ−1

previous(t) when t ∈ [0, 1].) This value is

ρ−1
current(t) = −0.5 + 0.5

√
4t+ 1 = 0.5

(√
4t+ 1− 1

)
, t ∈ [0, 1].

For example, if t = 0.5, then ρ−1
current(0.5) = 0.366. The corresponding lead

time �(0.366) = 0.5− 0.366 = 0.134. Now pick a t ∈ [1, 2]. The flow of output
that emerges at time t as a result of starts within [1, 2] must have been started
at the time τ = ρ−1

current(t) for which τ + (τ − 1)2 = t. This value is

ρ−1
current(t) = 0.5 + 0.5

√
4t− 3 = 1 + 0.5

(√
4t− 3− 1

)
, t ∈ [1, 2].

For example, if t = 1.8, then ρ−1
current(1.8) = 1.5247. The corresponding lead

time �(1.5247) = 1.8 − 1.5247 = 0.2753. The flow of output that emerges at
time t as a result of starts within [0, 1], however, must have been started at
the time τ = ρ−1

previous(t) for which τ + τ2 = t. This value is

ρ−1
previous(t) = −0.5 + 0.5

√
4t+ 1 = 0.5

(√
4t+ 1− 1

)
, t ∈ [1, 2].

For example, if t = 1.8, then ρ−1
previous(1.8) = 0.9318. The corresponding lead

time for this start is �(0.9318) = 1.8 − 0.9318 = 0.8682. One may repeat the
calculation to show that the general formulae are

ρ−1
current(t) = (n− 1) + 0.5

(√
4t− (4n− 5)− 1

)
, t ∈ [n− 1, n], n ≥ 1,

ρ−1
previous(t) = (n− 2) + 0.5

(√
4t− (4n− 9)− 1

)
, t ∈ [n− 1, n], n ≥ 2.

For this production process, the lead times for units emerging exactly one
time unit apart will be identical, and hence there corresponding start-times
will be offset by exactly one time unit. For example, when t = 2.8,

ρ−1
current(2.8) = 2 + 0.5(

√
4.2− 1) = 2.5247,

ρ−1
previous(2.8) = 1 + 0.5(

√
8.2− 1) = 1.9318,

and so

Y (2.8) = Z(1.9318) + 0.5247z3
= z1 + (0.9318)z2 + 0.5247z3
= 100 + (0.9318)200 + (0.5247)300 = 443.77.

Similarly, when t = 4,

ρ−1
current(4) = 3 + 0.5(

√
5− 1) = 3.618,

ρ−1
previous(4) = 2 + 0.5(

√
9− 1) = 3,
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and so

Y (4) = Z(3) + 0.618z4
= z1 + z2 + z3 + (0.618)z4
= 100 + 200 + 300 + (0.618)400 = 847.21.

It will not be until time 5 that all 1000 input starts will be realized as output.

Remark 18.16. Since it takes two time units to complete all starts within a
single period, two ρ−1(·) functions are required to represent cumulative out-
put. They can be re-labeled ρ−1

0 (·) and ρ−1
−1(·), respectively, where ‘0’ and

‘−1’ denote the current and previous periods. If instead it took three units of
time to complete all starts within a single period of time, then three ρ−1(·)
functions, ρ−1

0 (·), ρ−1
−1(·), ρ−1

−2(·), will be required.

18.4 Continuous Lead Time Processes

18.4.1 Description

For computational purposes, all rate-based flows in previous examples were
piecewise continuous; the points of discontinuity defined a natural time grid,
which we now formally define.

Definition 18.17. A time grid G := {ti} is a finite or countably infinite
collection of points in time such that

. . . t−2 < t−1 < t0 := 0 < t1 < t2 < . . . ,

and the number of ti in any bounded interval is finite. Period i refers to
the interval [ti−1, ti) and its length is ti − ti−1. A uniform time grid has
identical period lengths and a standard time grid has period lengths equal
to 1.

Fix a time grid G, and let z(·) be a rate-based flow whose points of discon-
tinuity belong to G. For each interval [tk−1, tk], define the scale (cumulative
input) as

zk :=
∫ tk

tk−1

z(τ)dτ, (18.16)

and the shape as

sk(τ) := z(τ)/zk. (18.17)

By construction
∫ tk

tk−1
sk(τ)dτ = 1 for all k. Conceptually, z(·) can be identified

by the collection {(zk, sk(·))} of scales and shapes. In what follows, the shapes
{sk(·)} are given and remain fixed; the scales {zk} will be allowed to vary.
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Let W (·, ·) be a cumulative lead time density as defined in Chapter 17.
Replacing Φ(z(τ), τ) with z(τ) in (18.3) on p. 310, the cumulative output is

Y (t) =
∫ t

−∞
z(τ)W (t − τ, τ)dτ. (18.18)

Under the assumptions above, Y (t) is a linear combination of the zk and the
weights can be pre-computed. To see this, using the definitions above,

Y (t) =
∑

k:tk≤t

∫ tk

tk−1

z(τ)W (t− τ, τ)dτ

=
∑

k:tk≤t

zk

∫ tk

tk−1

sk(τ)W (t − τ, τ)dτ

=
∑

k:tk≤t

zkΠk(t), (18.19)

where, for each k,

Πk(t) :=
∫ tk

tk−1

sk(τ)W (t − τ, τ)dτ. (18.20)

The Πk(·) can be pre-computed.
Examples in the next section apply the following useful special case:

• The time grid G is uniform with common period length L := tk − tk−1.
• The shapes sk(·) are identical in that there exists a single shape curve s(·)

defined on [0, L] such that sk(τ) = s(τ − tk−1) on [tk−1, tk] for all k.
• The lead time distribution does not depend on the arrival time τ . Accord-

ingly, the second argument of W (·) will be suppressed.

Under these assumptions, for t ≥ tk−1,

Πk(t) =
∫ L

0

s(τ)W ((t − tk−1)− τ)dτ := Π̂(t− tk−1). (18.21)

The weight Πk(t) on the variable zk in (18.19) depends only on the difference
t− tk−1. When t coincides with a time grid point ti > tk−1, we let

Π̂i−(k−1) := Π̂(ti − tk−1),

and write

Y (ti) =
∑
k≤i

zkΠ̂i−(k−1). (18.22)

Here, Π̂i−(k−1) represents the percentage of total output that will emerge by
the end of period i ≥ k as a result of the input in period k.
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Example 18.18. Suppose it takes a maximum of three time units for out-
put to continuously emerge. As a result of input in a period, output will
emerge during this period, one period after, two periods after, and three peri-
ods after this period. Suppose the respective percentages are 0.10, 0.20, 0.30
and 0.40. Then, for example, Y (t7) = 0.10z7 + 0.20z6 + 0.30z5 + 0.40z4 and
Y (t2) = 0.10z2 + 0.20z1 + 0.30z0 + 0.40z−1. As we have previously noted,
when production is not instantaneous, output after time 0 could be a result
of input prior to time 0, which is past history and must be pre-specified. We
shall discuss this in detail in Chapter 19.

18.4.2 Examples

In this section, we use a continuous lead time model to answer the question
posed in Section 17.1. We assume a standard time grid.

We shall compute the Π̂k for the following concrete examples. For the
shape curve s(τ), τ ∈ [0, 1], we examine three cases:

• Constant loading (C): s(τ) = 1 for all τ ∈ [0, 1].
• Front loading (F): s(τ) = 2(1− τ).
• Back loading (B): s(τ) = 2τ .

As for the lead time distribution W (·), we assume the maximal lead time is 2
periods and examine three analogous cases:

• Uniform (U): W (t) = t/2.
• Early (E): W (t) = 1− (1− t/2)2.
• Late (L): W (t) = t2/4.

In each case W (t) = 1 when t ≥ 2. In this setting, there are only two numbers
to compute for each of the 3 · 3 = 9 scenarios, namely, Π̂1 and Π̂2, since
Π̂3 = 1. (This is because W (3 − τ) = 1 for each τ ∈ [0, 1] and

∫ 1

0
s(τ)dτ by

definition equals one.)
Set Π̂0 := 0 and let π̂k := Π̂k − Π̂k−1, k = 1, 2, 3. Each π̂k reflects the

percentage of total output that will emerge in the kth period following the
input in any one period, and can be viewed as the probability mass function
corresponding to the cumulative distribution given by Π̂ . Table 18.2 shows
the π̂k’s for the 9 scenarios.

Table 18.2. Probability mass functions for each scenario.

U E L
π̂1 π̂2 π̂3 π̂1 π̂2 π̂3 π̂1 π̂2 π̂3

C 1/4 1/2 1/4 5/12 1/2 1/12 1/12 1/2 5/12
F 1/3 1/2 1/6 13/24 5/12 1/24 1/8 7/12 7/24
B 1/6 1/2 1/3 7/24 7/12 1/8 1/24 5/12 13/24
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Remark 18.19. Due to “time-reversibility,” i.e., moving backwards in time
from 1 to 0 instead of moving forward in time from 0 to 1, there are four
pairs of scenarios in which the π̂k’s for one of the scenarios is the reverse of
the π̂k’s for its matching pair. For example,

(π̂BE
1 , π̂BE

2 , π̂BE
3 ) = (π̂FL

3 , π̂FL
2 , π̂FL

1 ).

The same relationship holds for the scenario pairs “CE-CL,” “FU-BU,” “FE-
BL.” The scenario “CU” has no matching pair.

Example 18.20. Consider scenario “FL.” We have

Π̂1 =
∫ 1

0

[2(1− τ)] (1 − τ)
2

4
dτ

= (1/2)
∫ 1

0

(1 − τ)3dτ

= −(1/8)(1− τ)4
∣∣∣1
0

= 1/8,

Π̂2 =
∫ 1

0

[2(1− τ)] (2 − τ)
2

4
dτ

= (1/2)
∫ 1

0

(4 − 8τ + 5τ2 − τ3)dτ

= (1/2)[4τ − 4τ2 + (5/3)τ3 − τ4/4
∣∣∣1
0

= 17/24.

Thus π̂1 = 1/8, π̂2 = Π̂2 − Π̂1 = 17/24− 1/8 = 7/12, and π̂3 = Π̂3 − Π̂2 =
1− 17/24 = 7/24.

In the example of Section 17.1, the cumulative input in each of the first
three periods is 24, 48 and 96, respectively. Using the π̂k’s in Table 18.2 and
equation (18.22), the outputs in each period and the cumulative outputs at the
end of each of the first three periods for each scenario are shown in Tables 18.3
and 18.4. There is a wide discrepancy (in percentage terms) in the projected
output curve across scenarios, and there is a huge gap between the projected
output curves shown in Table 18.3 and the instantaneous output curve given
by (24, 72, 168).

Example 18.21. For scenario “FL,” the π̂ vector is (1/8, 7/12, 7/24). This
means that 3 of the 24 starts in period 1 will emerge as output by time
1, 14 will emerge as output by time 2, and 7 units will emerge as output by
time 3. Symbolically we represent this as

24 starts in period 1 −→ 24(1/8, 7/12, 7/24) = (3, 14, 7, 0, 0, · · ·).
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Furthermore, 9 of the 72 starts in period 2 will emerge as output by time 2,
42 units will emerge as output by time 3, and 21 units will emerge by time 4,
i.e.,

72 starts in period 2 −→ 72(0, 1/8, 7/12, 7/24) = (0, 9, 42, 21, 0, 0, · · ·).
Finally, 21 of the 168 starts in period 3 will emerge as output by time 3, 98
units will emerge as output by time 4, and 49 units will emerge by time 5,
i.e.,

168 starts in period 3 −→ 168(0, 0, 1/8, 7/12, 7/24) = (0, 0, 21, 98, 49, 0, 0, · · ·).
Summing the components of these three respective vectors, the output curve
over the first 5 periods is

(3, 14, 7, 0, 0) + (0, 9, 42, 21, 0) + (0, 0, 21, 98, 49) = (3, 23, 70, 98, 49).

(The first three components of this output curve are recorded in Table 18.3
under scenario “FL.”)

If the input-output transformation is as in scenario “BL,” total output
by time 3 will be only 64. If, on the other hand, one erroneously assumes
the input-output transformation is instantaneous, total output by time 3 will
be projected as 254, a three-fold increase. If the true scenario is “BL” but
the (implicit) instantaneous model is assumed, then projected output will
fall far short of actual output, leaving many customers unsatisfied (or extra
unexpected costs to service the demand).

Table 18.3. Outputs in each period for each scenario.

U E L
1 2 3 1 2 3 1 2 3

C 6 24 54 10 32 66 2 16 42
F 8 28 60 13 36 73 3 20 47
B 4 20 48 7 28 59 1 12 37

To summarize, when lead times are significant in relation to the pe-
riod length, a nontrivial dynamic production function is necessary to model
the production process. The class of distribution-based dynamic production
functions is conceptually simple and can capture a wide variety of non-
instantaneous input-output processes.

Remark 18.22. Left unanswered is how to obtain the lead time distribution
W (·, ·). Practical approaches include using shop-floor statistics or simulation.
Use of shop-floor statistics implicitly assumes the past production system
will be reasonably representative of the future production system. Simulation
implicitly assumes that the choice of input(s) over time is representative of
future choices over time.
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Table 18.4. Cumulative outputs at end of each period for each scenario.

U E L
1 2 3 1 2 3 1 2 3

C 6 30 84 10 42 108 2 18 60
F 8 36 96 13 49 122 3 23 70
B 4 24 72 7 35 94 1 13 50

18.5 Exercises

18.1. Suppose z(t) = 50, t ∈ [0, 3], and the constant lead time is � = 2.
Determine Z(·) and the corresponding cumulative output curve Y (·).

18.2. Suppose

z(t) = 50 · 1[0,3)(t) + 75 · 1[3,4)(t) + 175 · 1[4,9)(t) + 50(t− 9) · 1[9,12)(t)

+ 90(t− 12)2 · 1[12,16](t).

(a) Suppose the constant lead time is � = 2. Determine Z(·) and the corre-
sponding cumulative output curve Y (·).

(b) Suppose the constant lead time is � = 2.2. Determine values for Z(12),
Y (12) and Y (17).

18.3. Consider Example 18.2.2.

(a) Determine an expression for Y (36) in terms of the Z(·) variables.
(b) Determine an expression for y36 =

∫ 36

35 y(τ)dτ in terms of the zt.
(c) Suppose the values of zt are now zt = 50t2, t = 1, 2, 3, 4. Determine the

new output vector y = (y1, y2, . . . , y12) and cumulative output over the
time interval [0, 12].

18.4. Consider Example 18.2.3.

(a) Determine an expression for Y (18) in terms of the Z(·) variables.
(b) Determine an expression for y18 =

∫ 18

17 y(τ)dτ in terms of the zt.
(c) Suppose the values of zt are now zt = 10t3, t = 1, 2, 3, 4. Determine the

new output vector y = (y1, y2, . . . , y12) and cumulative output over the
time interval [0, 12]. Explain the difference between the cumulative input
and the cumulative output.

18.5. Consider Example 18.2.4.

(a) Derive the expression for Y (8) and y8.
(b) Suppose the values of zt are now z1 = 80, z2 = 180, and z3 = 400.

Determine the new output vector y = (y1, y2, . . . , y12) and cumulative
output over the time interval [0, 12]. Explain the difference between the
cumulative input and the cumulative output.
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18.6. Suppose there are three events with w1 = 0.15, w2 = 0.60, and w3 =
0.25. Suppose z(·) is a rate-based flow, constant on each interval of time
(t− 1, t], t = 1, 2, . . . . Let zt denote the constant rate in period t.

(a) Suppose �1 = 1, �2 = 3, and �3 = 4. Determine the yt in terms of the zt.
(b) Suppose �1 = 1.2, �2 = 3.35, and �3 = 4.72. Determine the yt in terms of

the zt.
(c) Suppose �1 = 1.2, �2 = 3.35, and �3 = 4.72, except that here z(·) is a

rate-based flow, constant on each interval of time 1.5(t−1, t], t = 1, 2, . . . .
That is, the period lengths for the input curve are now 1.5 time units. Let
zt denote the constant rate in period t and determine the yt in terms of
the zt.

18.7. Consider Example 18.3.2. Determine the value of Y (2.7).

18.8. Consider Example 18.3.3. Determine the value of Y (3.4).

18.9. Consider Example 18.3.3, except that here

ρ(τ) =

⎧⎪⎪⎨
⎪⎪⎩

τ +
√
τ, 0 ≤ τ ≤ 1,

τ +
√
τ − 1, 1 ≤ τ ≤ 2,

τ +
√
τ − 2, 2 ≤ τ ≤ 3,

τ +
√
τ − 3, 3 ≤ τ ≤ 4.

(a) Derive expressions for ρ−1
current(t) and ρ−1

previous(t).
(b)Determine the value for Y (3.8).
(c) Determine the value for Y (4).

18.10. Consider the probability mass functions provided in Table 18.2.

()a Show how to obtain the π̂ values for scenario “FE.”
(b)Determine the outputs in each of the first five periods for scenario “FE.”
(c) Determine the cumulative output by time 4 for scenario “BE.”

18.11. Consider the continuous lead time model in which s(t) = 3(1 − t)2,
t ∈ [0, 1], and W (t) = 1− (1− t/2)3, t ∈ [0, 2].

(a) What is the maximal lead time?
(b)Determine the probability mass function.
(c) Determine the outputs over the first five periods (when the inputs are

z1 = 24, z2 = 48 and z3 = 96, as in the motivating example).
(d)Determine the cumulative output by time 3.

18.12. How will your answers to parts (b) and (c) of Exercise 18.10 change if
the initial conditions are z0 = 144, z−1 = 192 and z−2 = 72?
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18.6 Solutions to Exercises

18.1 The specific values are:

Z(t) =

{
50t, 0 ≤ t ≤ 3,

150, 3 ≤ t.

Y (t) =

{ 0, 0 ≤ t ≤ 2,

50(t− 2), 2 ≤ t ≤ 5,

150, 5 ≤ t.

18.2 (a) The specific values are:

Z(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

50t, 0 ≤ t ≤ 3,

150 + 75(t− 3), 3 ≤ t ≤ 4,

225 + 175(t− 4), 4 ≤ t ≤ 9,

1100 + 25(t− 9)2, 9 ≤ t ≤ 12,

1325 + 30(t− 12)3, 12 ≤ t ≤ 16,

3245, 16 ≤ t.

Y (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ t ≤ 2,

50(t− 2), 2 ≤ t ≤ 5,

150 + 75(t− 5), 5 ≤ t ≤ 6,

225 + 175(t− 6), 6 ≤ t ≤ 11,

1100 + 25(t− 11)2, 11 ≤ t ≤ 14,

1325 + 30(t− 14)3, 14 ≤ t ≤ 18,

3245, 18 ≤ t.

(b) Z(12) = 1325, Y (12) = Z(9.8) = 225 + 25(9.8− 9)2 = 241, and Y (17) =
Z(14.8) = 1325 + 30(14.8− 12)3 = 1983.56.

18.3 (a) Y (36) = 0.25Z(34) + 0.70Z(29) + 0.05Z(28).(b) y36 = 0.25z34 +
0.70z29 + 0.05z28.
(c) Here zT = (50, 200, 450, 800) and

yT = (0, 0, 12.5, 50, 112.5, 235, 140, 315, 562.50, 10, 22.5, 80).

With respect to the cumulative values, Y (12) = 1500 = z1 + z2 + z3 + z4.
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18.4 (a) Y (18) = 0.25Z(15.79) + 0.70Z(12.37) + 0.05Z(9.58).
(b)

y18 = 0.021z9 + 0.029z10 + 0.441z12 + 0.259z13 + 0.1975z15 + 0.0525z16.

(c) Here, zT = (10, 80, 270, 2560) and

yT = (0, 0, 1.975, 16.325, 57.525, 522.365, 25.13, 105.21, 782.4,
1131.49, 9.51, 79.91).

With respect to the cumulative values,

Y (12) = 2866.24 = z1 + z2 + z3 + z4 − 53.76.

The gap is due to the fact that 5% of the starts over the interval [3.58, 4], i.e.,
0.05[0.42(2560)] = 53.76, will not be completed by time 12.

18.5 (a) Y (8) = 0.665z1 + 0.9025z2 + 1.0915z3 and y8 = 0.196z2 + 0.504z3.
(b) Here,

yT = (0, 0, 18.05, 70.75, 170.75, 291.47, 415.37, 652.25, 934.57,
1119.37, 1138.6, 1158.6).

The cumulative output is 1158.6, which equals the cumulative input of 1167
less 8.4. This gap is due to fact that 5% of the starts in the interval, i.e.,
[3.58, 4] = 0.05[(4− 3.58)400] = 8.4, will not be completed by time 12.

18.6 (a) yt = 0.15zt−1 + 0.60zt−2 + 0.25zt−4.
(b) Here,

yt = 0.15
∫ t

t−1

z(τ − 12.)dτ + 0.60
∫ t

t−1

z(τ − 3.35)dτ

+ 0.25
∫ t

t−1

z(τ − 4.72)dτ

= 0.15[0.2zt−2 + 0.8zt−1] + 0.60[0.35zt−4 + 0.65zt−3]
+ 0.25[0.72zt−5 + 0.25zt−4]

= 0.18zt−5 + 0.28zt−4 + 0.39zt−3 + 0.03zt−2 + 0.12zt−1.

(c) We have

Y (t) = 0.15Z(t− 1.2) + 0.60Z(t− 3.35) + 0.25Z(t− 4.72).

Since the period lengths = 1.5, a generic point in time t corresponds to t/1.5
time periods and belongs to the time interval [1.5(t/1.5)−, 1.5(t/1.5)+]. For
example, t = 4.8 corresponds to 4.8/1.5 = 3.2 time periods and belongs to
the time interval [4.5, 6.0]. Accordingly,
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Z(t) = z1 + z2 + · · ·+ z(t/1.5)− + [(t/1.5)− (t/1.5)−]z(t/1.5)+ .

Thus,
Y (8) = 0.15Z(6.8) + 0.60Z(4.65) + 0.25Z(3.28),

where

Z(6.8) = z1 + z2 + z3 + z4 + (0.8/1.5)z5,
Z(4.65) = z1 + z2 + z3 + (0.15/1.5)z4,
Z(3.28) = z1 + z2 + (0.28/1.5)z3.

Consolidating terms,

Y (8) = z1 + z2 + 0.796̄z3 + 0.21z4 + 0.08z5.

Similarly,
Y (7) = 0.15Z(5.8) + 0.60Z(3.65) + 0.25Z(2.28),

where

Z(5.8) = z1 + z2 + z3 + (1.3/1.5)z4,
Z(3.65) = z1 + z2 + (0.65/1.5)z3,
Z(2.28) = z1 + (0.78/1.5)z2.

Consolidating terms,

Y (8) = z1 + 0.88z2 + 041z3 + 0.13z4.

Finally,

y8 = Y (8)− Y (7) = 0.12z2 + 0.386̄z3 + 0.08z4 + 0.08z5.

18.7 First we calculate ρ−1(2.7) = 2 + (0.7)2 = 2.49. Thus,

Y (2.7) = Z(2.49) = Z(2) + 0.49z3 = z1 + z2 + 0.49z3
= 100 + 200 + (0.49)(300) = 447.

18.8 First, we calculate the respective ρ−1(3.4)’s as

ρ−1
current(3.4) = 3 + 0.5(

√
4(3.4)− 11− 1) = 3.3062,

ρ−1
previous(3.4) = 2 + 0.5(

√
4(3.4)− 7− 1) = 2.7845.

Thus,

Y (3.4) = Z(2.7845) + 0.3062z3
= z1 + z2 + 0.7845z3 + 0.3062z4
= 100 + 200 + (0.7845)300 + (0.3062)400 = 657.83.
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18.9 (a) Pick a t ∈ [0, 1]. The unit of output that emerges at time t must
have been started at the time τ = ρ−1

current(t) for which τ +
√
τ = t. (There is

no starts prior to time 0, and so there is no ρ−1
previous(t) when t ∈ [0, 1].) The

solution is obtained by defining u :=
√
τ , solving u2 + u = t for u and then

setting τ = u2. We obtain:

ρ−1
current(t) = (−0.5 + 0.5

√
4t+ 1)2 = 0.25(

√
4t+ 1− 1)2, t ∈ [0, 1].

For example, if t = 0.5, then ρ−1
current(0.5) = 0.134. The corresponding lead

time �(0.134) = 0.5− 0.134 = 0.366. Now pick a t ∈ [1, 2]. The flow of output
that emerges at time t as a result of starts within [1, 2] must have been started
at the time τ = ρ−1

current(t) for which τ +
√
τ − 1 = t. The solution is obtained

by defining u :=
√
τ − 1, solving (u2 + 1) + u = t for u and then setting

τ = 1 + u2. We obtain:

ρ−1
current(t) = 1 + 0.25(

√
4t− 3− 1)2, t ∈ [1, 2].

For example, if t = 1.8, then ρ−1
current(1.8) = 1.2753. The corresponding lead

time �(1.2753) = 1.8 − 1.2753 = 0.5247. The flow of output that emerges at
time t as a result of starts within [0, 1], however, must have been started at
the time τ = ρ−1

previous(t) for which τ +
√
τ = t. This value is

ρ−1
previous(t) = 0.25(

√
4t+ 1− 1)2, t ∈ [1, 2].

For example, if t = 1.8, then ρ−1
previous(1.8) = 0.8682. The corresponding lead

time for this start is �(0.8682) = 1.8 − 0.8682 = 0.9318. One may repeat the
calculation to show that the general formulae are given by

ρ−1
current(t) = (n− 1) + 0.25

(√
4t− (4n− 5)− 1

)2

, t ∈ [n− 1, n], n ≥ 1,

ρ−1
previous(t) = (n− 2) + 0.25

(√
4t− (4n− 9)− 1

)2

, t ∈ [n− 1, n], n ≥ 2.

(b) When t = 3.8,

ρ−1
current(3.8) = 3 + 0.25(

√
4(3.8)− 11− 1)2 = 3.2753,

ρ−1
previous(3.8) = 2 + 0.25(

√
4(3.8)− 7− 1)2 = 2.8682,

and so

Y (3.8) = Z(2.8682) + 0.2753z4
= z1 + z2 + (0.8682)z3 + 0.2753z4
= 100 + +200 + (0.8682)300 + (0.2753)400 = 670.58.
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(c) When t = 4,

ρ−1
current(4) = 3 + 0.25(

√
4(4)− 11− 1)2 = 3.382,

ρ−1
previous(4) = 2 + 0.25(

√
4(4)− 7− 1)2 = 3,

and so

Y (4) = Z(3) + 0.382z4
= z1 + z2 + z3 + (0.382)z4
= 100 + 200 + 300 + (0.382)400 = 752.80.

18.10 (a) We have:

Π̂1 =
∫ 1

0

[2(1− τ)]
[
1−
(

1− 1− τ
2

)2
]
dτ

=
∫ 1

0

[1.5− 2.5τ + 0.5τ2 + 0.5τ3]dτ

= 1.5τ − 2.5τ2/2 + 0.5τ3/3 + 0.5τ4/4
∣∣∣1
0

= 13/24.

Π̂2 =
∫ 1

0

[2(1− τ)]
[
1−
(

1− 2− τ
2

)2
]
dτ

=
∫ 1

0

[2− 2τ − 0.5τ2 + 0.5τ3]dτ

= 2τ − τ2 − 0.5τ3/3 + 0.5τ4/4
∣∣∣1
0

= 23/24.

Thus, π̂1 = Π̂1 = 13/24, π̂2 = Π̂2 − Π̂1 = 23/24 − 13/24 = 5/12, and
π̂3 = Π̂3 − Π̂2 = 1− 23/24 = 1/24.
(b) Using the notation of the chapter,

24(13/24, 5/12, 1/24)−→ (13, 10, 1, 0, 0),
48(13/24, 5/12, 1/24)−→ (0, 26, 20, 2, 0),
96(13/24, 5/12, 1/24)−→ (0, 0, 52, 40, 4),

and so yT = (13, 36, 73, 42, 4) and Y T = (13, 49, 122, 164, 168).
(c) Using the notation of the chapter,

24(7/24, 7/12, 1/8)−→ (7, 14, 3, 0, 0),
48(7/24, 7/12, 1/8)−→ (0, 14, 28, 6, 0),
96(7/24, 7/12, 1/8)−→ (0, 0, 28, 56, 12),
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and so yT = (7, 28, 59, 62, 12) and Y T = (7, 35, 94, 156, 168). The cumulative
output by time 4 is 156.

18.11 (a) The maximal lead time is 2 time units.
(b) We have:

Π̂1 =
∫ 1

0

[3(1− τ)2]
[
1−
(

1− 1− τ
2

)3
]
dτ

= 3
∫ 1

0

[(7/8)− (17/8)τ + (5/4)τ2 + τ3/4− τ4/8− τ5/8]dτ

= 3[(7/8)τ − (17/16)τ2 + (5/12)τ3 + τ4/16− τ5/40− τ6/48
∣∣∣1
0

= 59/80 = 0.7375.

Π̂2 =
∫ 1

0

[3(1− τ)2]
[
1−
(

1− 2− τ
2

)3
]
dτ

= 3
∫ 1

0

[1− 2τ + τ2 + τ3/8 + τ4/4− τ5/8]dτ

= 3[τ − τ2 + τ3/3− τ4/32 + τ5/20− τ6/48
∣∣∣1
0

= 477/480 = 0.99375.

Thus, π̂1 = Π̂1 = 59/80, π̂2 = Π̂2 − Π̂1 = 477/480− 59/80 = 41/160, and
π̂3 = Π̂3 − Π̂2 = 1− 477/480 = 1/160.
(c) Using the notation of the chapter,

24(59/80, 41/160, 1/160)−→ (17.7, 6.15, 0.15, 0, 0),
48(59/80, 41/160, 1/160)−→ (0, 35.4, 12.3, 0.3, 0),
96(59/80, 41/160, 1/160)−→ (0, 0, 70, 8, 24.6, 0.6),

and so yT = (17.7, 41.55, 83.25, 24.9, 0.6). (d) We have
Y T = (17.7, 59.25, 142.5, 167.4, 168), and so the cumulative output by time 3
is 142.5.

18.12 The 144 starts in [−1, 0] will result in outputs of 78, 60, and 6 in
periods 0, 1, and 2. The 192 starts in [−2,−1] will result in outputs of 104,
80, and 8 in periods -1, 0, and 1. The 72 starts in [−3,−2] will result in
outputs of 39, 30, and 3 in periods -2, -1, and 0. The total output realized as
a result of starts before time 0 is therefore therefore 78 + 184 + 72 = 334,
with an additional 68 units to emerge as output by time 1 and another 6 units
to emerge by time 2. Thus, the new output vector is yT = (81, 42, 73, 42, 4).
(The 334 units of output could have been used to service demand; if not, they
would be added to the inventory counts.)



19

Dynamic Production Function Approximations

In this chapter, we describe several approximations to the true dynamic pro-
duction function that yield representations amenable for computation. We
begin with a description of processes with load-dependent lead times that
arise in manufacturing systems. Next, we show how to approximate an ideal
description by using just two “boundary” input-output points. An application
of this two-point boundary approximation to project-oriented production sys-
tems, such as a naval shipyard, is provided. We briefly describe serial and
parallel aggregation of detailed dynamic production functions, and show how
to extend the steady-state activity analysis models to the dynamic setting.

19.1 Load-Dependent Processes

Shop-floor statistics can be gathered to estimate a lead time distribution. If
a system is reasonably stable and if projected input is reasonably consistent
with the past input, then a distribution-based dynamic production function
will provide a useful and practical model of the output process.

It is both realistic and practical to allow the distribution of lead time to
depend on the time at which an input enters the system, since input that
enters the system during a normally congested time can be expected to take
longer to complete than an input that enters the system at an off-peak time.
For capacity-constrained systems, the time it takes to complete an input (or
input batch) depends on factors such as availability of key resources, which
are often “τ -dependent” (e.g., which day of the week, which shift), and the
amount of work-in-process or “load” currently in the system. When the lead
time is a function of the system load, the process time for a part is no longer
independent of past inputs to the system. Below, we describe a simple model to
incorporate “load-dependent lead times,” and show how to approximate it to
arrive at another example of a linear, distribution-based dynamic production
function.



338 19 Dynamic Production Function Approximations

19.1.1 Formulation

Let x(t) and y(t) denote, respectively, the instantaneous input and output
rates at time t. We assume the input function x(·) is continuous and deter-
ministic. By definition, the difference between the cumulative input, X(t), and
the cumulative output, Y (t), at time t ≥ 0,

q(t) := X(t)− Y (t), (19.1)

is the number of units still in the system at time t, which is the work queue
at time t. We assume the instantaneous rate at which input is completed (i.e.,
leaves the system) at time t is solely a function of the work queue, and is given
by π(q(t), t)q(t) for some continuous, positive function π : IR+× IR+ → IR++.
One interprets π(q(t), t)q(t)Δt as the proportion of the current queue that
will be completed in the next Δt units of time. For example,

π(q(t), t) = e−λ(t)q(t)

is a convenient and reasonable functional form. Under these modeling assump-
tions,

change in queue︷ ︸︸ ︷
q(t+Δt)− q(t) ≈

flow in︷ ︸︸ ︷
x(t)Δt −

flow out︷ ︸︸ ︷
π(q(t), t)q(t)Δt,

which, as Δt→ 0, reduces to the differential equation

q̇(t) =
dq

dt
= x(t) − q(t)π(q(t), t). (19.2)

When the interval [ti−1, ti] is sufficiently small,

π(q(t), t) ≈ π(q(ti−1), ti−1) := πi

on the interval [ti−1, ti]. Setting π(q(t), t) to the constant πi (known at time
ti−1), the nonlinear differential equation (19.2) becomes an ordinary differen-
tial equation whose solution on [ti−1, ti] is

q(t) = q(ti−1)e−πi(t−ti−1) +
∫ t

ti−1

x(τ)e−πi(t−τ)dτ, ti−1 ≤ t ≤ ti. (19.3)

Construct a uniform time grid whose period lengths equal Δ. Approximate
the input function x(·) with the function

x̂(t) := xi for t ∈ [i− 1, i],

where xi is taken to be the average of the function x(·) on the interval [i−1, i].
(The maximum or minimum of x(·) on this interval will also be reasonable
choices; since x(·) is continuous, all three estimates will be close when Δ is
sufficiently small.) Let q0 := q(0) and let π0 := π(q0, 0). For sufficiently small
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Δ, (19.3) will be an excellent approximation to the solution for q(·) on the
interval [0, Δ]. In particular,

q1 := q(Δ) ≈ e−π0Δq0 + x1
1− e−π0Δ

π0
.

We can sequentially continue the process and define

πi := π(qi−1, (i− 1)Δ), i = 1, 2, . . . , (19.4)

and calculate

qi+1 := q((i+ 1)Δ) ≈ qie
−πiΔ + xi+1

1− e−πiΔ

πi
, i = 1, 2, . . . . (19.5)

19.1.2 Example

We take π(q(t), t) = e−0.01q(t) and approximate the queue process via a stan-
dard time grid. The input vector for the first six periods is

x = (x1, x2, x3, x4, x5, x6) = (25, 30, 35, 40, 45, 45).

The initial queue size is q(0) = 100. Using (19.4) and (19.5), we have

π0 = π(q(0), 0) = e−0.01(100) = 0.3679,

q1 = e−π0q0 + x1
1− e−π0

π0
= (0.6922)(100) + 25

[
1− 0.6922

0.3679

]
= 90.14,

π1 = e−0.01(90.14) = 0.4060,

q2 = e−π1q1 + x2
1− e−π1

π1
= (0.6663)(90.14) + 30

[
1− 0.6663

0.4060

]
= 84.72,

π2 = e−0.01(84.72) = 0.4286,

q3 = e−π2q2 + x3
1− e−π2

π2
= (0.6514)(84.72) + 35

[
1− 0.6514

0.4286

]
= 83.65,

π3 = e−0.01(83.65) = 0.4332,

q4 = e−π3q3 + x4
1− e−π3

π3
= (0.6484)(83.65) + 40

[
1− 0.6484

0.4322

]
= 86.78,

π4 = e−0.01(86.78) = 0.4199,

q5 = e−π4q4 + x5
1− e−π4

π4
= (0.6571)(86.78) + 45

[
1− 0.6571

0.4199

]
= 93.77,

π5 = e−0.01(93.77) = 0.3915,

q6 = e−π5q5 + x6
1− e−π5

π5
= (0.6760)(93.77) + 45

[
1− 0.6760

0.3915

]
= 100.63.

As before, let yt denote the cumulative output that emerges in period t,
i.e., over the interval [t − 1, t]. Inventory balance states that the queue at
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time t equals the starting queue at time t − 1 plus the new input minus the
output. The inventory balance equations are

qt = qt−1 + xt − yt,

or equivalently,
yt = qt−1 + xt − qt, t = 1, 2, . . . ,

from which we obtain the yt as y1 = 34.86, y2 = 35.42, y3 = 36.07, y4 = 36.87,
y5 = 38.01, and y6 = 38.14. The average queue L is 91.38 and the average
input rate λ is 36.6̄. Using Little’s Law L = λW , the average time in the
system (cycle-time) W is approximately 2.5 periods.

Each πi depends on x1, x2, . . . , xi−1 through qi−1. If the πi’s are exoge-
nously specified so that they are independent of the xi’s, then it follows from
the recursive equations (19.4) and (19.5) that each qi is a linear function of the
xi’s and so are the output and cumulative output functions. This observation
can be used to obtain a linear functional approximation to the output curve,
as described in the next section.

19.1.3 Linear Approximation

Let x̄ denote a baseline input function, and let the π̄’s denote the solution
obtained from (19.4) and (19.5) using x̄. If each input function x(·) is in a
neighborhood of x̄(·), then the (constant) π̄’s in (19.4) and (19.5) can be used
to obtain the queue function q(·) for x(·) and thus the output curve.

We continue with data provide in the example of Section 19.1.2. Fix x̄ to
be the input vector x of this example. Let qk

t denote the amount in queue at
time t due to the starts in period k = 0, 1, . . . , t. Here, q0t is the number of
units of the original queue at time 0 still in the system at time t. All units in
the queue at time t must have been started sometime before time t, and so
by definition

t∑
k=0

qk
t = qt.

Let yk
t denote the cumulative amount of output in period t completed from

queue qk
t . To determine the values of the yk

t and qk
t , it is necessary to describe

the queue discipline. We examine two possibilities in the following examples.

Example 19.1. Assume that withdrawal from inventory follows the “First-In,
First-Out (FIFO)” discipline. That is, output in any period is sequentially
taken from the earliest queues of starts. First, we determine qt and yt. The
calculations are easiest to explain using the example data. (We leave it to an
exercise to algebraically express these derivations.) The results are displayed
in Tables 19.1 and 19.2.

The queue q0 at time 0 is 100 and the cumulative output in period 1 is
y1 = 34.86. Thus, the remaining initial queue at time 1 is q01 = 100− 34.86 =
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Table 19.1. Queue matrix qk
t for example 19.1.

Period

Queue due to: 0 1 2 3 4 5 6

Initial inventory 65.14 29.72 0 0 0 0
Starts in period 1 25.00 25.00 18.65 0 0 0
Starts in period 2 0 30.00 30.00 11.78 0 0
Starts in period 3 0 0 35.00 35.00 8.77 0.00
Starts in period 4 0 0 0 40.00 40.00 10.63
Starts in period 5 0 0 0 0 45.00 45.00
Starts in period 6 0 0 0 0 0 45.00

Queue at end of period: 100 90.14 84.72 83.65 86.78 93.77 100.63

Table 19.2. Output matrix yk
t for example 19.1.

Period

Output due to: 1 2 3 4 5 6

Initial inventory 34.86 35.42 29.72 0 0 0
Starts in period 1 0 0 6.35 18.65 0 0
Starts in period 2 0 0 0 18.22 11.78 0
Starts in period 3 0 0 0 0 26.23 8.77
Starts in period 4 0 0 0 0 0 29.37
Starts in period 5 0 0 0 0 0 0
Starts in period 6 0 0 0 0 0 0

Output at end of period: 34.86 35.42 36.07 36.87 38.01 38.14
Cumulative output at end of period: 34.86 70.28 106.35 143.22 181.23 219.37

65.14. None of the 25 starts in period 1 emerges as output by time 1; they
all enter a queue and so q11 = 25. With respect to output, all 34.86 units are
taken from the initial queue, which implies that y0

1 = 34.86 and y1
1 = 0.

The output in period 2 is y2 = 35.42. All of this output is taken from
the initial queue whose size at time 2 is now q02 = 65.14 − 35.42 = 29.72.
None of the 25 starts in period 1 or 30 starts in period 2 emerge as output
by time 2; they all enter their respective queues and so q12 = 25 and q22 = 30.
With respect to output, all 35.42 units are taken from the initial queue, which
implies that y0

2 = 35.42, y1
2 = y2

2 = 0.
The output in period 3 is y3 = 36.07. This quantity is first drawn from

the queue of initial starts whose size at the beginning of this period is 29.72.
The remaining output of 36.07 - 29.42 = 6.35 is withdrawn from the queue
of starts from period 1 whose size at the beginning of this period is 25. None
of the 30 starts in period 2 or 35 starts in period 3 emerge as output by time
3; they all enter their respective queues and so q23 = 30 and q33 = 35. With
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respect to output, we have y0
2 = 29.72, y1

2 = 6.35, and y2
3 = y3

3 = 0. The
process continues.

Next, we convert the entries in Table 19.2 to percentages of the respec-
tive starts—see Table 19.3. For example, the entries in the third column are
obtained as 29.72/100 and 6.35/25, respectively; the entries in the fourth
column are obtained as 18.65/25 and 18.22/30, respectively, and so on. We
can use these percentages to estimate the output in each period as a linear
combination of the starts, as follows:

y1 = 0.349q0,
y2 = 0.354q0,
y3 = 0.297q0 + 0.254x1,

y4 = 0.746x1 + 0.607x2,

y5 = 0.393x2 + 0.749x3,

y6 = 0.251x3 + 0.734x4.

These equations will be reasonably accurate as long as the input vector x is
reasonably close to x̄ and the initial queue size is about 100.

Table 19.3. Percentage of starts in period k emerging as output in period t for
example 19.1.

Period

1 2 3 4 5 6

Initial inventory 0.349 0.354 0.297 0 0 0
Starts in period 1 0 0 0.254 0.746 0 0
Starts in period 2 0 0 0 0.607 0.393 0
Starts in period 3 0 0 0 0 0.749 0.251
Starts in period 4 0 0 0 0 0 0.734
Starts in period 5 0 0 0 0 0 0
Starts in period 6 0 0 0 0 0 0

Example 19.2. In this example, we examine the case when inventory with-
drawal is simultaneously taken from each queue in the same proportions. To
ease notational burdens, define

αi := e−πi , i = 0, 1, . . . ,

βi := 1− 1− e−πi

πi
, i = 0, 1, . . . .

Using the notation of Example 19.1,
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qk
t = αkq

k
t−1, 0 ≤ k ≤ t− 1,

qt
t = qt −

t−1∑
k=0

qk
t = xt − yt

t,

yk
t = (1− αk)qk

t−1 = qk
t−1 − qk

t , 0 ≤ k ≤ t− 1,

yt
t = yt −

t−1∑
k=0

yk
t = βtxt .

Table 19.4. Queue matrix qk
t for example 19.2.

Period

Queue due to: 0 1 2 3 4 5 6

Initial inventory 69.22 46.12 30.05 19.48 12.80 8.65
Starts in period 1 20.92 13.94 9.08 5.89 3.87 2.62
Starts in period 2 0 24.66 16.07 10.42 6.85 4.63
Starts in period 3 0 0 28.45 18.45 12.12 8.19
Starts in period 4 0 0 0 32.56 21.40 14.47
Starts in period 5 0 0 0 0 36.76 24.85
Starts in period 6 0 0 0 0 0 37.26

Queue at end of period: 100 90.14 84.72 83.65 86.78 93.77 100.63

Table 19.5. Output matrix yk
t for example 19.2.

Period

Output due to: 1 2 3 4 5 6

Initial inventory 30.78 23.10 16.07 10.57 6.68 4.15
Starts in period 1 4.08 6.98 4.86 3.19 2.02 1.25
Starts in period 2 0 5.34 8.59 5.65 3.57 2.22
Starts in period 3 0 0 6.55 10.00 6.33 3.93
Starts in period 4 0 0 0 7.44 11.16 6.93
Starts in period 5 0 0 0 0 8.24 11.91
Starts in period 6 0 0 0 0 0 7.74

Output at end of period: 34.86 35.42 36.07 36.87 38.01 38.14
Cumulative output at end of period: 34.86 70.28 106.35 143.22 181.23 219.37

These equations are best illustrated with the example data. The results
are displayed in Tables 19.4 and 19.5. The α and β vectors are

α = (α0, α1, α2, α3, α4, α5) = (0.692, 0.666, 0.651, 0.648, 0.657, 0.676),
β = (β0, β1, β2, β3, β4, β5) = (0.163, 0.178, 0.187, 0.186, 0.183, 0.172).
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The queue q1 at time 1 is 90.14 of which

(0.6922)(100) = 69.22 = q01

is due to the initial queue with the remaining queue

q11 = 90.14− 69.22 = 20.92

due to the starts in period 1. With respect to output,

y0
1 = (0.3078)(100) = 100− 69.22 = 30.78

of the initial queue of 100 emerge as output by time 1, and thus

y1
1 = 34.86− 30.78 = 4.08 = (0.163)(25)

units of output emerge as output by time 1 due to the starts in period 1.
Moving to the next period, we have α1 = 0.6663 and β1 = 0.178. The queue
q2 at time 2 is 84.72 of which

(0.6663)(69.22) = 46.12 = q02

is due to the initial queue,

(0.6663)(20.92) = 13.94 = q12

is due to the starts in period 1 with the remaining queue

q22 = 84.72− (46.12 + 13.94) = 24.66

due to the starts in period 2. With respect to output,

y0
2 = (0.3337)(69.22) = 69.22− 46.12 = 23.10

of the remaining queue of 69.22 (of the initial queue of 100) emerge as output
by time 2,

y1
2 = (0.3337)(20.92) = 20.92− 13.94 = 6.98

of the remaining queue of 20.92 (of the 25 starts in period 1) emerge as output
by time 2, and thus

y2
2 = 35.42− (23.10 + 6.98) = 5.34 = (0.178)(30)

units of output emerge as output by time 2 due to the starts in period 2. The
remaining calculations proceed accordingly.

Next, we convert the entries in Table 19.5 to percentages of the respec-
tive starts—see Table 19.6. For example, the entries in the second column
are obtained as 23.10/100, 6.98/25, and 5.34/30, respectively; the entries in
the third column are obtained as 16.07/100, 4.86/25, 8.59/30, and 6.55/35,
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respectively, and so on. We can use these percentages to estimate the output
in each period as a linear combination of the starts, as follows:

y1 = 0.308q0 + 0.163x1,

y2 = 0.231q0 + 0.279x1 + 0.178x2,

y3 = 0.161q0 + 0.194x1 + 0.286x2 + 0.187x3,

y4 = 0.106q0 + 0.128x1 + 0.188x2 + 0.286x3 + 0.186x4,

y5 = 0.067q0 + 0.081x1 + 0.119x2 + 0.181x3 + 0.279x4 + 0.183x5,

y6 = 0.042q0 + 0.050x1 + 0.074x2 + 0.112x3 + 0.173x4 + 0.265x5 + 0.183x6.

Table 19.6. Percentage of starts in period k emerging as output in period t for
example 19.2.

Period

1 2 3 4 5 6

Initial inventory 0.308 0.231 0.161 0.106 0.067 0.042
Starts in period 1 0.163 0.279 0.194 0.128 0.081 0.050
Starts in period 2 0 0.178 0.286 0.188 0.119 0.074
Starts in period 3 0 0 0.187 0.286 0.181 0.112
Starts in period 4 0 0 0 0.186 0.279 0.173
Starts in period 5 0 0 0 0 0.183 0.265
Starts in period 6 0 0 0 0 0 0.183

The linear equations that translate the input vector x and initial queue
q0 into outputs yt over time in Examples 19.1 and 19.2 will be reasonably
accurate as long as the input vector x is sufficiently close to x̄ and the initial
queue size is about 100. (The initial queue size is a known value at time 0.)
There are several, common ways to measure closeness.

Example 19.3. The input vector x is sufficiently close to the input vector x̄ if
|xt − x̄t| < εt for all t. Here, the εt represent the allowable tolerances within
each period.

Example 19.4. The input vector x is sufficiently close to the input vector x̄ if∑
t ωt|xt − x̄t| < ε. Here, the ωt represent the relative importance of being

sufficiently close in each time period and ε represents the degree of tolerance.

Example 19.5. The input vector x is sufficiently close to the input vector x̄ if∑
t ωt(xt − x̄t)2 < ε. This is a nonlinear (convex) extension to the previous

example. The use of the square ensures a more uniform distribution of error.

There can be several candidate input curves represented by x̄c(·), c =
1, 2, . . . , C. The coefficients that translate each candidate input curve x̄c and
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initial queue q0 into the output curve can be computed, as in Examples 19.1
and 19.2. If the input curve x(·) is in the neighborhood of x̄c, then that system
of linear equations should be used to represent the input-output process.

19.1.4 Load-Dependent, Linear Approximation

We have described a single-input, single output technology in which the dis-
tribution of output depends on the system load or work queue q(τ) at time
τ . An approximation that expresses the input-output transformation via a
collection of linear equations has been developed. The coefficients that char-
acterize this linear system presuppose knowledge of the input curve, either its
exact shape or the neighborhood of which pre-specified candidate input curve
it lies in. It is desirable and practical to allow the coefficients of the linear sys-
tem to depend on the input curve. In this section, we extend the continuous
lead time representation of Section 18.4 to represent this more general model
of technology.

For a continuous lead time process, the cumulative output at time t is

Y (t) =
∫ t

−∞
z(τ)W (t− τ, τ)dτ,

where z(·) is the index of starts and W (·, ·) is a lead time distribution. For a
discrete-time approximation using a standard time grid, cumulative output is

Yt =
∑
τ≤t

zτΠτ,t. (19.6)

See Section 18.4, p. 325. In (19.6), the input-output transformation is repre-
sented via a system of linear equations. The parameter Πτ,t can be an exoge-
nous function of τ -dependent information, but, as written, is not a function
of the work queue

qτ = qτ−1 + zτ − yτ (19.7)

at time τ . Conceptually, theW (·, τ) in (19.6) can be replaced withW (·, q(τ), τ)
so that

Yt =
∑
τ≤t

zτΠq(τ),τ,t. (19.8)

In (19.8), the lead time distribution is now permitted to be a function of
the q(τ) and other exogenous state information at time τ . Expression (19.8)
appears innocuous. Unfortunately, without further approximation, this more
general input-output representation is no longer characterized by a linear sys-
tem; consequently, it is not directly amenable for computation via optimiza-
tion software. The difficulty lies in an inherent recursion. If the subsequent
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distribution of output due to starts at time τ depends on the work queue
q(τ), then it follows from (19.7) that q(τ) itself depends on the prior history
of input {z(s) : s ≤ τ} up to time τ . (Revisit Examples 19.1 and 19.2.)

Here is a practical way to represent the lead time distribution as a function
of the work queue. Let yτ,t denote the output in period t due to the input in
period τ ≤ t, and let yt denote the output in period t as a result of all past
input including the initial queue, q0. Let

0 := q0 < q1 < q2 < · · · < qL

denote pre-specified queue levels. (The last level, qL, is sufficiently high to
bound above any realized queue size.) For each τ , t such that τ ≤ t, the new
model for output is

yτ,t := zτΠ
�
τ,t, if q(τ) ∈ [q�−1, q�), (19.9)

yt :=
∑
τ≤t

yτ,t + q0Π0,t. (19.10)

The parameters Π0,t define the initial lead time distribution, which is a func-
tion of the initial queue q0. In (19.6), yτ,t = zτΠτ,t, independent of q(τ); in
(19.9), Πτ,t is replaced with Π�

τ,t if q(τ) ∈ [q�−1, q�).
It remains to implement the logical expression (19.9). This can be achieved

by using binary variables and adding two sets of linear constraints, as follows.

• Output constraints. For each τ , t such that τ ≤ t, and each � = 1, 2, . . . , L,
add these two constraints:

yτ,t ≤ zτΠ
�
τ,t + M(1− ξτ,�), (19.11)

yτ,t ≥ zτΠ
�
τ,t − M(1− ξτ,�), (19.12)

where M is a sufficiently large number, and

ξτ,� :=

{
1, if q(τ) ∈ [q�−1, q�),

0, otherwise.
(19.13)

If ξτ,� = 0, then (19.11) and (19.12) constrain yτ,t to lie in the interval
(−M,M), which, to all intents and purposes, is equivalent to (−∞,∞). In
this case, the constraints (19.11) and (19.11) are automatically satisfied.
On the other hand, if ξτ,� = 1, then (19.11) and (19.12) constrain yτ,t

to lie both above and below zτΠ
�
τ,t. Obviously, this can only happen if

yτ,t = zτΠ
�
τ,t.

• Queue constraints. The logical variables ξτ,� must be linked to the queue
values, the qτ , so as to be consistent with their intended purpose. In con-
junction with the logical constraints

L∑
�=1

ξτ,� = 1, for each τ, (19.14)
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this is accomplished by adding two new constraints for each time period
τ :

qτ ≤
L∑

�=1

ξτ,�q
�, (19.15)

qτ ≥
L∑

�=1

ξτ,�q
�−1. (19.16)

Suppose qτ ∈ (q�̂−1, q�̂). Since the ξτ,� are binary variables, for each τ ,
(19.7) implies there will be exactly one index �(τ) such that ξτ,�(τ) = 1.
To satisfy constraints (19.15) and (19.16), the only choice for �(τ) is �̂.

In sum, the proposed load-dependent, continuous lead time model uses con-
straints (19.7) and (19.11)-(19.16). An extension to the multiple product case
is described in Section 21.6.6, p. 414.

Remark 19.6. Presumably, the lead time distribution is a continuous function
of the queue size. When there are a finite number of queue levels, the lead
time distribution does not change between the queue levels. Ostensibly, this
presents a problem when qτ = q�̂ for some �̂, since either ξτ,�̂ = 1 or ξτ,�̂+1 = 1
is consistent with (19.14)-(19.16). In practice, the queue levels q� are perturbed
by a rational ε so that no realized queue value will precisely equal a queue
level.

Remark 19.7. The number of binary variables is L · T . At present, to be com-
putationally tractable, this number should be no more than several hundred.
For typical values of T , the number of different lead time distributions will be
on the order of 10 or so. (The number of additional constraints is order L · T ,
which is modest for reasonable values of L and T .)

19.2 Two-Point Boundary Approximation

In this section, the cumulative index function Z(·) is bounded above by ZU (·)
and bounded below by ZL(·), so that the domain D of the index of the dynamic
production function is

D := {Z(·) : ZL(t) ≤ Z(t) ≤ ZU (t)}. (19.17)

Assume the corresponding cumulative output functions Y U (·) := [F (ZU )](·)
and Y L(·) := [F (ZL)](·) are known. The goal is to extend F [·] to all of D. We
call such an extension a two-point boundary approximation and denote
the approximation as F a[·]. In what follows all functions of time are assumed
differentiable. We let T in, T out denote, respectively, the finite points in time
beyond which there is no further input nor output; of course, 0 ≤ T in ≤ T out.
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For starters, the approximation F a[·] should satisfy the following two basic
properties:

[F a(ZL)](·) = Y L(·), [F a(ZU )](·) = Y U (·), (19.18)

Y L(·) ≤ [F a(Z)](·) ≤ Y U (·) for each Z(·) ∈ D. (19.19)

It is also reasonable to insist F a[·] is continuous, namely, the “distance” be-
tween [F a(Z)](·) and [F a(Z ′)](·) should be small when the “distance” between
Z(·) and Z ′(·) is sufficiently small. Assuming continuity is not sufficient to pin
down an exact choice for F a[·]. We shall define a distance measure that will
uniquely determine F a[·].

19.2.1 Relative Area Ratio

Consider a cumulative input curve Z(·) ∈ D. One simple way to measure how
Z(·) lies between its boundary curves, ZU (·) and ZL(·), on the interval [0, t]
is the relative area ratio

r[Z;ZU ;ZL](t) :=

∫ t

0
[Z(τ) − ZL(τ)]dτ∫ t

0
[ZU (τ) − ZL(τ)]dτ

. (19.20)

The value r[Z;ZU ;ZL](t) is between 0 and 1. If this function of time is close
to 1, then it indicates that Z(·) is close to ZU (·), and if this function of time is
close to 0, then it indicates that Z(·) is close to ZL(·). Analogously, a measure
of how [F a(Z)](·) lies between its boundary curves, [F (ZU )](·) and [F (ZL)](·),
on the interval [0, t] is the relative area ratio

r[F a(Z);Y U ;Y L](t) :=

∫ t

0
([F a(Z)](τ) − Y L(τ))dτ∫ t

0
(Y U (τ) − Y L(τ))dτ

. (19.21)

This value is between 0 and 1. If the function of time is close to 1, then
[F a(Z)](·) is close to Y U (·), and if this function of time is close to 0, then
[F a(Z)](·) is close to Y L(·). The respective relative area ratio functions of time
uniquely determine the input function Z(·) or the output function F a(Z)(·).

Output can be an intermediate good required by a follow-on activity or can
be a final good. Let X(·) denote the cumulative input function obtained from
all consumers of this output. For each Z(·) ∈ D, the set of feasible cumulative
input functions is

Ω(Z) := {X(·) : X(t) ≤ [F a(Z)](t), t ≥ 0}.

The relative area function r[F a(Z);Y U ;Y L] provides a useful way to mea-
sure the “size” of Ω(Z), namely, the degree to which [F a(Z)](·) constrains
the possible choices for X(·). From this perspective, it seems reasonable to
insist that the degree to which [F a(Z)](·) constrains the possible choices for
X(·) over time, as measured by r[F a(Z);Y U ;Y L](·), should be closely in line
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with how Z(·) fits between its boundary curves over time, as measured by
r[Z;ZU ;ZL](·). In fact, [F a(Z)](·) is uniquely determined if we insist these
two measures are identical, i.e.,

r[F a(Z);Y U ;Y L](t) = r[Z;ZU ;ZL](ρ(t)), (19.22)

where ρ(·) is a differentiable, strictly increasing function of time such that

(i) ρ(0) = 0,
(ii) ρ(t) ≤ t for all t ≥ 0, and
(iii) ρ(T out) = T in.

Since production may not be instantaneous, there is a need to incorporate the
function ρ(·) in (19.22) to model the possibility that output realizations over
the interval [0, t] are a result of input over the interval [0, ρ(t)], where ρ(t) can
be less than t.

19.2.2 Linear Approximation

Identity (19.22) can be expressed as

∫ t

0

([F a(Z)](τ) − Y L(τ))dτ = Rρ(t)
∫ ρ(t)

0

[Z(τ) − ZL(τ)]dτ, (19.23)

where

Rρ(t) :=

∫ t

0
(Y U (τ) − Y L(τ))dτ∫ ρ(t)

0 [ZU (τ) − ZL(τ)]dτ
. (19.24)

Differentiating both sides of (19.23) with respect to t,

[F a(Z)](t) − Y L(t) = Rρ(t)ρ
′
(t)[Z(ρ(t)) − ZL(ρ(t))]

+R′
ρ(t)

∫ ρ(t)

0

[Z(τ) − ZL(τ)]dτ. (19.25)

To uniquely determine ρ(·) and F a(Z)(·), we assume the cumulative output
up to time t is a function of the quantity of cumulative input up to time
ρ(t) but does not depend on the structure of the input before time ρ(t). For
this assumption to hold, the integral on the right-hand-side of (19.25) must
vanish, which implies the derivative R′

ρ(t) must always be zero. Thus, Rρ(t)
in (19.24) is a constant, say equal to R. Any one value for ρ(t) will determine
the constant R from which the identity (19.24) implicitly determines ρ(t) for
all t. In particular, since ρ(T in) = T out, it follows that

R =

∫ T out

0
[Y U (τ)− Y L(τ)]dτ∫ T in

0 [ZU (τ) − ZL(τ)]dτ
. (19.26)

Consequently, ρ(·) is implicitly defined via the identity
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∫ t

0
[Y U (τ) − Y L(τ)]dτ∫ T out

0 [Y U (τ) − Y L(τ)]dτ
=

∫ ρ(t)

0
[ZU (τ) − ZL(τ)]dτ∫ T in

0 [ZU (τ) − ZL(τ)]dτ
(19.27)

for all 0 ≤ t ≤ T out.
Using R′

ρ(t) = 0 and Rρ(·) = R in (19.25), for each Z(·) ∈ D it follows
that

[F a(Z)](t) − Y L(t) = Rρ
′
(t)[Z(ρ(t))− ZL(ρ(t))]. (19.28)

Since (19.28) holds for Z(·) = ZU (·), it is also true that

[Y U (t)− Y L(t)] = Rρ
′
(t)[Z(ρ(t))− ZL(ρ(t))]. (19.29)

Dividing each side of (19.28) by the corresponding sides of (19.29) yields

[F a(Z)](t) − [F a(ZL)](t)
Y U (t)− Y L(t)

=
Z(ρ(t))− ZL(ρ(t))
ZU (ρ(t)) − ZL(ρ(t))

. (19.30)

The approximate dynamic production function uniquely determined from
(19.30) is

[F a(Z)](t) = Y L(t) +
(

Y U (t)− Y L(t)
ZU (ρ(t)) − ZL(ρ(t))

)
[Z(ρ(t))−ZL(ρ(t))], (19.31)

where ρ(·) is (implicitly) defined by (19.27).
The function ρ(·) is a nonlinear function of time; however, it is easily pre-

computable. The function [F (Z)](·) is always a linear function of the underling
z(·) variables when Z(·) is piecewise linear, thus facilitating computational
analyses. We illustrate how this works with an example in the next section.

19.2.3 Example

The boundary curves for the example are as follows:

ZU (t) =

⎧⎨
⎩

3t, 0 ≤ t ≤ 2,
2t+ 2, 2 ≤ t ≤ 6,

14, 6 ≤ t ≤ 8.

ZL(t) =

⎧⎨
⎩

0, 0 ≤ t ≤ 2,
t− 2, 2 ≤ t ≤ 5,

3.6̄t− 15.3̄, 5 ≤ t ≤ 8.

Y U (t) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ t ≤ 3,
2.5t− 7.5, 3 ≤ t ≤ 7,

2t− 4, 7 ≤ t ≤ 12,
20, 12 ≤ t ≤ 15.
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Y L(t) =

⎧⎨
⎩

0, 0 ≤ t ≤ 5,
0.5t− 2.5, 5 ≤ t ≤ 9,
3t− 25, 9 ≤ t ≤ 15.

For this example, T in = 8 and T out = 15. A standard time grid will be used.
In discrete-time the zt variables represent the constant rates in each period t.
Given these boundary curves, we will show how to express [F a(Z)](·) defined
in (19.31) as a linear function of the zt variables.

To compute the ρ(·) function, it is necessary to compute the cumulative
area between the boundary curves as a function of time. These two curves,
denoted respectively by A1(·) and A2(·), are as follows:

A1(t) =

⎧⎪⎪⎨
⎪⎪⎩

1.5t2, 0 ≤ t ≤ 2,
0.5t2 + 4t− 4, 2 ≤ t ≤ 5,

−0.83̄t2 + 17.3̄t− 65.83̄, 5 ≤ t ≤ 6,
−1.83̄t2 + 29.3̄t− 110, 6 ≤ t ≤ 8.

A2(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ t ≤ 3,
1.25t2 − 7.5t+ 11.25, 3 ≤ t ≤ 5,

t2 − 5t+ 5, 5 ≤ t ≤ 7,
0.75t2 − 1.5t− 7.25, 7 ≤ t ≤ 9,
−0.5t2 + 21t− 108.5, 9 ≤ t ≤ 12,
−1.5t2 + 45t− 252.5, 12 ≤ t ≤ 15.

For future reference,

A1(2) = 6, A1(5) = 28.5, A1(6) = 36.6̄, A1(8) = 44,

A2(2) = 6, A2(5) = 5, A2(7) = 19, A2(9) = 20, A2(12) = 71.5, A2(15) = 85.

Example 19.8. The derivation for the functional form for A2(·) on the interval
[3, 5] is obtained by integrating the difference in the boundary curves

∫ t

3

(2.5τ − 7.5)dτ = 1.25τ2 − 7.5τ
∣∣∣t
3

= 1.25t2 − 7.5t+ 11.25.

The functional form for A2(·) on the interval [5, 7] is obtained by first inte-
grating the difference in the boundary curves to obtain the incremental area
∫ t

5

[(2.5τ − 7.5)− (0.5τ − 2.5)]dτ =
∫ t

5

[(2τ − 5)dτ = τ2 − 5τ
∣∣∣t
5

= t2 − 5t,

and then adding A(5) = 5 to this expression to obtain the cumulative area.
The remaining functional forms are derived in the same fashion.

We illustrate the calculations for three different values of t, t = 4, t = 5,
and t = 8. Fix t = 4. The total area between the boundary curves ZU (·) and
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ZL(·) is 44; the total area between the boundary curves Y U (·) and Y L(·) is 85.
Since A2(4) = 1, the relative area ratio at time t is 1/85, which implies that
ρ(t) must satisfy A1(ρ(t)) = (1/85)44 = 0.5176. Since A1(2) = 6, it follows
that

1.5(ρ(t))2 = 0.5176⇒ ρ(t) = 0.5875.

Now ZU (0.5875) = 1.7625,ZL(0.5875) = 0, Y U (4) = 2.5, and Y L(4) = 0. Fur-
thermore, Z(0.5875) = 0.5875z1. Substituting these quantities into (19.31),

[F a(Z)](4) =
2.5

1.7625
{
0.5875z1

}
= 0.83̄z1.

Fix t = 5. Since A2(5) = 5, the relative area ratio at time t is 5/85, which
implies that ρ(t) must satisfy A1(ρ(t)) = (5/85)44 = 2.5882. Since A1(2) = 6,
it follows that

1.5(ρ(t))2 = 2.5882⇒ ρ(t) = 1.3136.

Now ZU (1.3136) = 3.9407, ZL(1.3136) = 0, Y U (5) = 10, and Y L(5) = 0.
Furthermore, Z(1.3136) = z1 + 0.3136z2. Substituting these quantities into
(19.31),

[F a(Z)](5) =
10

3.9407
{
z1 + 0.3136z2

}
= 2.5376z1 + 0.7958z2.

Fix t = 8. Since A2(8) = 28.75, the relative area ratio at time t is 28.75/85,
which implies that ρ(t) must satisfy A1(ρ(t)) = (28.75/85)44 = 14.8823. Since
A1(2) = 6 < 14.8823 < A1(5), it follows that

0.5(ρ(t))2 + 4ρ(t)− 4 = 14.8823⇒ ρ(t)

= −4 +
√

16 + 4(18.8823)(0.5) = 3.3324.

Now ZU (3.3324) = 8.6648, ZL(3.3324) = 1.3324, Y U (8) = 12, and Y L(8) =
1.5. Furthermore, Z(3.3324) = z1 + z2 + z3 + 0.3324z4. Substituting these
quantities into (19.31),

[F a(Z)](8) = 1.5 +
(

12− 1.5
8.6648− 1.3324

){
z1 + z2 + z3 + 0.3324z4 − 1.3324

}
= 1.4320z1 + 1.4320z2 + 1.4320z3 + 0.4760z4 − 0.4080.

19.2.4 Extensions

Generically, consider two boundary curves BL(·) and BU (·) such that 0 ≤
BL(·) ≤ BU (·), and let

B := {B(·) : BL(·) ≤ B(·) ≤ BU (·)}.
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For each B(·) ∈ B let M[B;BL, BU ](t) denote a nonnegative scalar measure
of how B(·) “fits” between the two boundary curves on the interval [0, t]. It
is natural to insist the measure is constant at each boundary curve, and we
assumeM has been normalized so that

M[BU ;BL, BU ](·) = 1, M[BL;BL, BU ](·) = 0.

With this normalization, it is then natural to insist thatM be nondecreasing
in B(·), namely,

M[B;BL, BU ] ≤M[B′;BL, BU ] if B(·) ≤ B′(·).

Given ρ(·) and a measure M[·], the abstraction of (19.22) is to insist the
measure of how the cumulative output curve [F a(Z)](·) fits between its two
boundary curves, [F a(ZU )](·), [F a(ZL)](·), on the interval [0, t] should be
identical to the measure of how the cumulative input curve Z(·) fits between
its two boundary curves, ZU (·), ZL(·), on the interval [0, ρ(t)]. That is, the
approximate dynamic production function F a[·] is implicitly defined by the
following identity

M[F a(Z);Y L, Y U ](t) =M[Z;ZL, ZU ](ρ(t)). (19.32)

Different approximations are obtained depending on the choices for ρ(·) and
M[·].

There is a simple way to generate a valid measure M[·]. Let δ[f, g](t)
denote a measure of distance between two functions of time f(·) and g(·) on
the interval [0, t] such that

(i) δ[f, g] ≥ 0,
(ii) δ[f ′, g](t) ≥ δ[f, g](t) whenever f ′(·) ≥ f(·) ≥ g(·), and
(iii) the function of time δ[f, g](·) is differentiable.

Each δ[f, g](·) induces a valid measureM[·] simply by forming the ratio

M[B;BL, BU ](t) :=
δ[B,BL](t)
δ(BU , BL)(t)

. (19.33)

(Assume the denominator is never zero.) A common measure of distance for
integrable f(·) and g(·) is the Lp-norm, p ≥ 1, defined by

δ[f, g](t) :=
(∫ t

0

|f(τ)− g(τ)|p w(τ) dτ
)1/p

, (19.34)

where w(·) can be interpreted as some appropriate weighting function of time.
With this choice for δ[f, g], identity (19.32) becomes

∫ t

0 [F (Z)(τ) − Y L(τ)]p w(τ)dτ∫ t

0 [Y U (τ) − Y L(τ)]p w(τ)dτ
=

∫ ρ(t)

0 [Z(τ)− ZL(τ)]p w(τ)dτ∫ ρ(t)

0 [ZU (τ)− ZL(τ)]p w(τ)dτ
. (19.35)
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(In our previous development, the parameter p = 1 and w(·) ≡ 1.) The identity
(19.35) can be expressed as

∫ t

0

([F a(Z)](τ) − Y L(τ))w(τ)dτ = Rρ(t)
∫ ρ(t)

0

[Z(τ) − ZL(τ)]w(τ)dτ,

(19.36)
where

Rρ(t) :=

∫ t

0
(Y U (τ) − Y L(τ))w(τ)dτ∫ ρ(t)

0 [ZU (τ)− ZL(τ)]w(τ)dτ
. (19.37)

Differentiating both sides of (19.36) with respect to t, we have

[F a(Z)(t)− Y L(t)]p w(t) = Rρ(t)ρ
′
(t)[Z(ρ(t))− ZL(ρ(t))]p w(ρ(t))

+ R
′
ρ(t)

∫ ρ(t)

0

[Z(τ)− ZL(τ)]p w(τ)dτ. (19.38)

Once again, to uniquely determine ρ(·) and [F a(Z)](·), we assume the
cumulative output up to time t is a function of the quantity of cumulative
input up to time ρ(t) but does not depend on the structure of the input before
time ρ(t). As before, for this assumption to hold the integral on the right-
hand-side of (19.38) must vanish, which implies the derivative R′

ρ(t) must
always be zero. Thus, Rρ(t) in (19.37) is a constant, say equal to R, and

∫ t

0

[Y U (τ) − Y L(τ)]p w(τ)dτ = R

∫ ρ(t)

0

[ZU (τ) − ZL(τ)]p w(τ)dτ. (19.39)

Since ρ(T input) = T output, it follows that

R =

∫ T output

0 [Y U (τ) − Y L(τ)]p w(τ)dτ∫ T input

0
[ZU (τ) − ZL(τ)]p w(τ)dτ

, (19.40)

from which we conclude that ρ(·) is implicitly defined via the identity

∫ t

0
[Y U (τ) − Y L(τ)]p w(τ)dτ∫ T output

0
[Y U (τ)− Y L(τ)]p w(τ)dτ

=

∫ ρ(t)

0
[ZU (τ) − ZL(τ)]p w(τ)dτ∫ T input

0
[ZU (τ) − ZL(τ)]p w(τ)dτ

(19.41)
for all 0 ≤ t ≤ T output.

Using the fact that R′
ρ(t) = 0 and Rρ(·) = R in (19.38), for each Z(·) ∈ D

it follows that

[F a(Z)(t)− Y L(t)]p w(t) = Rρ
′
(t)[Z(ρ(t)) − ZL(ρ(t))]p w(ρ(t)). (19.42)

Since (19.42) holds for Z(·) = ZU (·), it is also true that

[Y U (t)− Y L(t)]p w(t) = Rρ
′
(t)[Z(ρ(t)) − ZL(ρ(t))]p w(ρ(t)). (19.43)
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Dividing each side of (19.42) by the corresponding sides of (19.43) yields the
identity

[F a(Z)](t)− Y L(t)
Y U (t)− Y L(t)

=
Z(ρ(t))− ZL(ρ(t))
ZU (ρ(t))− ZL(ρ(t))

. (19.44)

The approximate dynamic production function uniquely determined from
(19.44) is

[F a(Z)](t) = Y L(t) +
(

Y U (t)− Y L(t)
ZU (ρ(t))− ZL(ρ(t))

)
[Z(ρ(t))−ZL(ρ(t))], (19.45)

where ρ(·) is (implicitly) defined by (19.41).

Remark 19.9. The parameter p and weighting function w(·) do not appear in
(19.44), which is identical to (19.30); however, F a[·] is very much dependent
on them, as they determine the function ρ(·).

Once again, if Z(·) is piecewise linear, then F a(Z)(·) will be a linear func-
tion of the underling z(·) variables, thus facilitating computational analyses.

19.3 Application to Project-Oriented Production
Systems

19.3.1 Description

In a project-oriented production system, several large concurrent projects
are simultaneously carried out subject to inflexible capacities for resources
such as skilled labor and equipment. In a naval shipyard, for example, as
many as ten ships may in overhaul at the same time, and each ship undergoes
thousands of activities over a period of up to many months. Effective manage-
ment is essential since labor costs can be staggering—potentially thousands
of workers with specialized skills are employed. In such organizations, high-
est levels of management do not schedule individual projects; rather, they
are responsible for securing new business, negotiating prices and due dates,
and planning project milestones. In a naval shipyard, examples of important
milestones are when to dock and undock the ships, power-up nuclear sys-
tems, light-off boilers, or push steam through the turbines. The planning of
project milestones is no easy task. On the one hand, milestone dates must
not overload shop labor; otherwise, customer commitments (due dates) are
not met. On the other hand, milestone dates should avoid under-utilizing
shop labor; otherwise, productivity is reduced, risking budget overruns. The
process of setting milestone dates proceeds iteratively. An initial set of mile-
stone dates is proposed, an analysis of which milestones cannot be met and
which resources are under-utilized or exceed capacity is undertaken, and new
milestones are then proposed. This process is also used to suggest where to
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economically expand capacity to increase productivity. Depending on prob-
lem size, resource-constrained scheduling algorithms/software can be used for
management of project-oriented production systems. In this section, we show
how to represent project execution via a continuous-time model that can be
approximated via a set of linear equalities. This data structure can be manip-
ulated easily and quickly by methods of linear programming to perform the
required analyses.

In industrial project networks, typically there are many groups of similar
activities in parallel—collections of activities that represent the same kind of
work and can be scheduled at the same time. Parallel activities frequently
use the same type of resources. In the shipyard context, there are groups
of rip-out, repair, and re-installation activities. There is strict precedence
among these activities: no re-installation work can begin before all of the
repair work has been completed, and no repair work can begin until all rip-
out has been completed. For data reduction purposes, groups of detailed rip-
out, repair, and re-installation activities can be combined into corresponding
rip-out, repair and re-installation aggregate activities. At the aggregate level,
production at the rip-out, repair and re-installation aggregate activities can
(and typically do) overlap in time. Therefore, it is inaccurate at the aggregate
level to maintain strict precedence between these aggregate activities. At the
aggregate level, it is necessary to develop a general work flow model that
permits, but reasonably constrains, simultaneous resource use by consecutive
activities.

Conceptually, an aggregate activity produces intermediate output used by
a follow-on aggregate activity. For example, the repair aggregate produces re-
paired equipment needed as input by the re-installation aggregate. Naturally,
the rate at which the re-installation aggregate can use repaired equipment
depends on the rate of supply of repaired equipment produced by the repair
aggregate. From this perspective, the rates of resource consumption at suc-
cessive aggregate activities are linked by a material balance constraint. The
output of the repair aggregate is represented, not surprisingly, by a dynamic
production function using a two-point boundary approximation.

19.3.2 Detailed Activities

For each detailed activity l, let ESl denote its earliest start-time, LSl denote
its latest start-time, dl denote its fixed duration, and ak

l denote the total
amount of resource k it consumes. (The earliest and latest start-times are
computed given a set of key milestone dates.) At the detailed level, it is
assumed that an activity consumes its resources at a constant rate between
its start-time Sl and finish-time Sl + dl. Consequently, the input vector for
activity l is

xl(τ) = (a1
l , a

2
l , . . . , a

n
l )zl(τ), (19.46)

where the index function is of the form
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zl(τ) = (1/dl) · 1[Sl,Sl+dl](τ). (19.47)

The index zl(τ) is called the operating intensity for activity l. The cumulative
intensity Zl(t) =

∫ t

0
zl(τ)dτ measures the fraction of the resources required by

activity l that has been consumed by time t. By construction, Z(t) eventually
reaches its maximum value of one.

With respect to the dynamic production function, each activity l produces
a unique product labeled (l,m) for each activity that immediately follows it.
Let

ym
l (τ) = [f (l,m)

l (zl)](τ)

denote the output of ‘product’ (l,m) produced by activity l at time τ . Since
activitym uses only one unit of product (l,m) at rate zm(·), a material balance
constraint

∫ t

0

ym
i (τ)dτ ≥

∫ t

0

zm(τ)dτ (19.48)

should ensure that the start-time Sm of activity m cannot be earlier than the
finish-time of activity l; that is,

Sl + dl ≤ Sm. (19.49)

One obvious choice for the dynamic production function is

ym
l (τ) = [f (l,m)

l (zl)](τ) =

{
1, if τ = Sl + dl,

0, otherwise.
(19.50)

Substituting (19.50) and (19.47) into (19.48) yields constraint (19.49). For
this choice of dynamic production function, the outputs produced by activity
l are event-based.

Instead of using the obvious event-based dynamic production function, the
following rate-based dynamic production function will prove a superior choice:

ym
l (τ) = [f (l,m)

l (zl)](τ) = (1/dm) · 1[Sl+dl,Sl+dl+dm](τ). (19.51)

Substituting (19.51) and (19.47) into (19.48) also yields constraint (19.49).
With this choice of dynamic production function, however, the cumulative
output curve is piecewise linear and represents the earliest operating intensity
of activity m consistent with the finish-time of activity l.

19.3.3 Aggregate Activities

At the aggregate level, each activity Ai represents an aggregation of a number
of parallel detailed activities l. Each detailed activity l is assigned to exactly
one aggregate, indicated by l ∈ Ai. Activity Ai produces an intermediate
product for use by activity Aj if there exists an l ∈ Ai and m ∈ Aj such
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that detailed activity l is an immediate predecessor of activity m. Aggregate
activities are formed only if the detailed activities within the aggregate use
the same mix of resources. That is, the ratios

a1
l∑

l∈Ai
a1

l

,
a1

l∑
l∈Ai

a1
l

, . . . ,
an

l∑
l∈Ai

an
l

:= αi
l

are independent of resource k = 1, 2, . . . , n. For example, suppose there are
three detailed activities within aggregate Ai. If αi

1 = 0.20, αi
2 = 0.30, and

αi
3 = 0.50, then detailed activities 1, 2, and 3 consume, respectively, 20%,

30%, and 50% of the total amount of each resource used by all three activ-
ities. By construction,

∑
l∈Ai

αi
l = 1. For many industrial project networks,

this requirement is not restrictive, as there are many parallel activities using
identical or near-identical mixes of resources.

This resource-use requirement implies that the input of resource k by ag-
gregate activity Ai is

xk
i (τ) =

∑
l∈Ai

xk
l

=
∑
l∈Ai

ak
l zl(τ)

=

(∑
l∈Ai

ak
l

)[∑
l∈Ai

ak
l∑

l∈Ai
ak

l

zl(τ)

]

=

(∑
l∈Ai

ak
l

)∑
l∈Ai

αi
lzl(τ)

:= ak
i zi(τ). (19.52)

In (19.52), ak
i represents the total amount of resource k used by all detailed

activities within Ai, and zi(·) is the aggregate operating intensity of Ai. Since
zi(·) is a convex combination of detailed operating intensities, it follows that
Zi(t) eventually reaches one, too. Moreover,Zi(t) represents the fraction of the
total resources required to complete all detailed activities within Ai consumed
by time t.

For each detailed activity l, let

zL
l (·) := (1/dl) · 1[LSl,LSl+dl](·),
zE

l (·) := (1/dl) · 1[ESl,ESl+dl](·)

denote, respectively, the operating intensities associated with the late- and
early-start schedules, and let

zL
i (·) :=

∑
l∈Ai

αi
lz

L
l (·),

zE
i (·) :=

∑
l∈Ai

αi
lz

E
l (·)
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denote, respectively, the aggregate operating intensities of Ai associated with
the late- and early-start schedules of its detailed activities. For each feasible
schedule of detailed activities,

ZL
i (t) ≤ Zi(t) ≤ ZE

i (t). (19.53)

Thus, the ZL
i (·) and ZE

i (·) define boundary curves for the feasible domain of
the cumulative aggregate operating intensity Zi(·).

19.3.4 Aggregate Dynamic Production Function

Let Aj be an aggregate activity that immediately follows Ai. At the aggregate
level, the material balance constraint is of the form

[F (i,j)
i (Zi)](t) ≥ Zj(t). (19.54)

The output of ‘product’ (i, j) of Ai is defined to be the earliest aggregate
operating intensity for Aj consistent with the start-times for the detailed
activities within Ai, formally,

[F (i,j)
i (Zi)](·) :=

∑
m∈Aj

αj
m[F (l,m)

l (zl)](·). (19.55)

Substituting (19.55) into (19.54) yields a necessary constraint: The cumulative
aggregate operating intensity of Aj cannot be “earlier” than the cumulative
aggregate operating intensity for Aj obtained by setting each of the detailed
operating intensities in Aj to their earliest start-times consistent with the
finish-times of their predecessor detailed activities in Ai. It represents the
ideal production function for this setting. Note that

[F (i,j)
i (ZL

i )](·) = ZL
j (·) and [F (i,j)

i (ZE
i )](·) = ZE

j (·); (19.56)

that is, this production function maps the boundary curves of Ai onto the
boundary curves of Aj .

There is a fundamental problem with the definition (19.55) of the ag-
gregate production function: it incorporates knowledge of the schedules (i.e.
start-times) for the detailed activities within Ai. A model for the aggregate
production function must be independent of such knowledge, so as to not de-
feat the point of aggregation. At this point, it is necessary to approximate the
ideal production function. A reasonable starting point is to represent the fea-
sible domain Di for Ai as the collection of all nondecreasing, nonnegative Zi(·)
that satisfy (19.53). In light of (19.56), a two-point boundary approximation
may can be used.

Remark 19.10. In application, the decision variables are the Zi(·). These func-
tions are constrained to be nondecreasing and piecewise linear, and the mate-
rial balance constraints are applied at discrete points in time. Consequently,
the material balance constraints are linear in the decision variables.
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19.4 Aggregation of Dynamic Production Functions

19.4.1 Serial Aggregation

Dynamic production functions can be obtained via composition of detailed
dynamic production functions when modeling output flow of a network of
activities in series. We briefly outline this type of aggregation.

In manufacturing systems, it is not uncommon for activities to be arranged
in series, commonly referred to as a flow line. In a flow line, output of each
activity in the series (except for the last one) is used immediately as input
by its successor activity, etc. There are no buffers of inventory between the
successive activities.1 Consider N serial activities. The input domain of each
activity is index-based, and the unique, cumulative output curve of activity
i = 1, 2, . . . , N is represented by a dynamic production function [Fi(Zi)](·).
Starting from the input curve Z1(·) to the first activity, the flow of output
across the flow line can be conceptually represented as

Z1 −→ F1(Z1) −→ Z2 = F2

(
F1(Z1)

)
−→ Z3 = F3

(
F2

(
F1(Z1)

))

−→ · · · −→ FN

(
FN−1

(
FN−2

(
· · ·
)))

.

Letting
F := FN ◦ FN−1 ◦ · · · ◦ F1

denote the compositions of the functions F1, F2, . . . , FN , the dynamic produc-
tion function for the flow line is

[F(Z1)](·) := [(FN ◦ FN−1 ◦ · · · ◦ F1)(Z1)](·).

Example 19.11. In a simple setting, suppose the input of resource k =
1, 2, . . . , n and output of each activity i at time τ are, respectively,

xk
i (τ) = ak

i zi(τ),
yi(τ) = [fi(zi)](·) = zi(τ − �i).

Let xk(τ) denote the input of resource k consumed by the flow line at time τ .
Then,

[F(Z1)](τ) = Z1

(
τ −

N∑
j=1

�j

)
,

xk(τ) =
N∑

i=1

ak
i z1

(
τ −

i∑
j=1

�j

)
.

1 In some flow lines, buffers of inventory between activities do exist; if so, the
description below does not apply.
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This type of serial aggregation has been successfully applied in the semi-
conductor industry. See Leachman et. al. [1996] and Leachman [2002] for a
detailed description.

19.4.2 Parallel Aggregation

It is also possible to aggregate activities in parallel, as follows. We adopt
the setup of the previous subsection. Let λi(·), i = 1, 2, . . . , N , be weighting
functions such that for each i

(i) λi(·) ≥ 0 for all t ≥ 0, and
(ii)
∑N

i=1 λi(t) = 1 for all t ≥ 0.

An example of a dynamic production function obtained via parallel aggrega-
tion is

[F(Z1, Z2, . . . , ZN)](·) :=
N∑

i=1

λi(t)[Fi(Zi)](·).

Here, the aggregate output is a time-varying, convex combination of the out-
puts of the detailed activities.

19.5 Estimation via Dynamic Activity Analysis

Application of activity analysis yields yet another, practical way to estimate
an output curve via a linear production functional. Let x1(·), x2(·), . . . , xN (·)
denote a representative sample of input functions, and let y1(·), y2(·), . . . , yN (·)
denote the corresponding observed output functions.

19.5.1 Basic Model

If the input function x(·) is restricted to be a linear combination of the xi(·),
then it must be of the form

x(·) =
N∑

i=1

λixi(·), λi ≥ 0, i = 1, 2, . . . , N. (19.57)

If the dynamic production function is linear on this domain, it follows that

y(·) = f

[
N∑

i=1

λixi

]
(·) =

N∑
i=1

λif [xi](·) =
N∑

i=1

λiyi(·). (19.58)

In this approximation, a great deal of information about the input-output
process via {(xi(·), yi(·))} is used to approximate the dynamic production
function. For example, this approach permits a very detailed simulation-based
approach to arrive at each yi(·). The cost is that the possible shapes of the
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input function are restricted to be linear combinations of a representative
sample of input functions. Arguably, this may not be too egregious.

The input-output model characterized by (19.57) and (19.58) exhibits con-
stant returns-to-scale. Variable returns can be modeled by adding the condi-
tion that

∑
i λi = 1.

19.5.2 Extensions

The first extension to the basic dynamic activity analysis models described
above is to let the vector λ be a function of time, namely,

λ(·) = (λ1(·), λ2(·), . . . , λn(·)) ≥ 0,

in which case, for each t ≥ 0,

x(t) =
N∑

i=1

λi(t)xi(t), y(t) =
N∑

i=1

λi(t)yi(t) (19.59)

in the constant returns-to-scale model. The variable returns-to-scale model
adds the condition

∑
i λi(t) = 1 for all t ≥ 0.

The second extension recognizes that inputs xi and outputs yi in (19.59)
can each be a vector of functions to model a multi-input, multi-output system,
as in

xi(·) = (x1
i (·), x2

i (·), . . . , xn
i (·)), yi(·) = (y1

i (·), y2
i (·), . . . , ym

i (·)). (19.60)

A discrete-time approximation yields a sequence of independent CRS-DEA
or VRS-DEA models described in Chapter 4. For example, consider a standard
time grid G. For each t = 1, 2, . . ., let (xt

i, y
t
i) denote the ith pair of input and

output vectors in period t, and define

xt(λt) :=
N∑

i=1

λt
ix

t
i, yt(λt) :=

N∑
i=1

λt
iy

t
i . (19.61)

Suppressing the time index t, these expressions are identical to (4.12) on p.
63. The technology is then characterized by the collection

{
(x1(λ1), y1(λ1)), (x2(λ2), y2(λ2)), . . . , (xt(λt), yt(λt)), . . .

}
.

No restrictions on the λt (other than non-negativity) yield a constant returns-
to-scale model. A variable returns-to-scale model adds the conditions

∑
i λ

t
i =

1 for each t.
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19.6 Exercises

19.1. Assume q0 := q00 and the yt are given. Derive algebraic expressions for
the qk

t and the yk
t displayed in Tables 19.1 and 19.2. Show the computations

using your formulae for k = 1 and k = 2 (i.e., the first two periods).

19.2. Consider the load-dependent, lead time model in which π(q(t), t) =
e−0.02q(t), q(0) = 40, and x = (x1, x2, x3, x4) = (20, 30, 25, 10). (A standard
time grid is used.) Use the approximation discussed in Section 19.1.2 to answer
the following questions.

(a) Determine the qt and yt for the first four periods t = 1, 2, 3, 4.
(b)Assuming the FIFO discipline, replicate Tables 19.1, 19.2, and 19.3 for this

example; that is, determine the qk
t and yk

t and show how to express the yt

as linear functions of the xt.
(c) Assuming the simultaneous withdrawal, replicate Tables 19.4, 19.5, and

19.6 for this example; that is, determine the qk
t and yk

t and show how to
express the yt as linear functions of the xt.

19.3. Consider the following boundary curves:

ZU (t) =
{

5t, 0 ≤ t ≤ 2,
2t+ 6, 2 ≤ t ≤ 5.

ZL(t) =
{

t, 0 ≤ t ≤ 4,
12t− 44, 4 ≤ t ≤ 5.

Y U (t) =

⎧⎨
⎩

0, 0 ≤ t ≤ 3,
4t− 8, 2 ≤ t ≤ 5,
t+ 7, 5 ≤ t ≤ 9.

Y L(t) =

⎧⎨
⎩

0, 0 ≤ t ≤ 2,
2t− 4, 2 ≤ t ≤ 7,
3t− 11, 7 ≤ t ≤ 9.

For this example, T in = 5 and T out = 9. A standard time grid will be used.

(a) Determine A1(·) and A2(·).
(b)Determine ρ(t) for t = 3, 4, 5, 6, 7, 8.
(c) Express Y (t) = [F a(Z)](t) defined in (19.31) as a linear function of the zt

variables for t = 3, 4, 5, 6, 7, 8.
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19.7 Bibliographical Notes

The idea for the relative area ratio in the context of shipyard planning origi-
nates with Boysen’s [1982] dissertation and refined in Leachman and Boysen
[1985]. Consult the latter paper for detailed explanations of the shipyard plan-
ning problem and the development of a linear programming model to solve
it. The formal development of the two-point boundary approximation refines
and extends the presentation found in Hackman and Leachman [1989].

Descriptions of and extensions to the dynamic activity analysis models
presented in Section 19.5.2 can be found in Fare et. al. [1996]. De Mateo et.
al. [2006] embed the model of Section 19.5.2 into a dynamic DEA model that
explicitly accounts for the cost of adjustment on capacities over time, budget
constraints, etc.

Riano [2002] describes an iterative scheme to obtain a load-dependent
lead time distribution that contains explicit approximations to the underlying
queue process. See also Riano et. al. [2007].
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19.8 Solutions to Exercises

19.1 There are a number of ways to express the respective queues and out-
puts. To simplify the subsequent notation, define cumulative input and output
values, respectively, as Xt :=

∑t
k=1 xk and Yt :=

∑t
k=1 yk, t = 1, 2, . . . . For

the respective queue values, we define:

qk
t := max

{
min

(
q0 +Xk − Yt, xk

)
, 0
}
, k ≤ t, t = 1, 2, . . . .

The calculations for k = 1 and k = 2 are:

q11 = max{min(125− 34.86, 25), 0} = 25,
q12 = max{min(125− 70.28, 25), 0} = 25,
q13 = max{min(125− 106.35, 25), 0} = 18.65,
q14 = max{min(125− 143.22, 25), 0} = 0,
q15 = max{min(125− 181.23, 25), 0} = 0,
q16 = max{min(125− 219.37, 25), 0} = 0,
q21 = 0,
q22 = max{min(155− 70.28, 30), 0} = 30,
q23 = max{min(155− 106.35, 30), 0} = 30,
q24 = max{min(155− 143.22, 30), 0} = 11.78,
q25 = max{min(155− 181.23, 30), 0} = 0,
q26 = max{min(155− 219.37, 30), 0} = 0.

For the respective output values, we define:

yk
t := min

{
max

(
yt −

k−1∑
j=0

qj
t−1, 0

)
, qk

t−1

}
, k < t, t = 1, 2, . . .

yt
t := min

{
max

(
yt −

k−1∑
j=0

qj
t−1, 0

)
, xt

}
, t = 1, 2, . . . .

The calculations for k = 1 and k = 2 are:

y1
1 = min{max(34.86− 100, 0), 25} = 0,
y1
2 = min{max(35.42− 65.14, 0), 25} = 0,
y1
3 = min{max(36.07− 29.72, 0), 25} = 6.35,
y1
4 = min{max(36.87− 0, 0), 18.65} = 18.65,
y1
5 = min{max(38.01− 0, 0), 0} = 0,
y1
6 = min{max(38.14− 0, 0), 0} = 0,
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y2
1 = 0,
y2
2 = min{max(35.42− 90.14, 0), 30} = 0,
y2
3 = min{max(36.07− 54.72, 0), 30} = 0,
y2
4 = min{max(36.87− 18.65, 0), 30} = 18.22,
y2
5 = min{max(38.01− 0, 0), 11.78} = 11.78,
y2
6 = min{max(38.14− 0, 0), 0} = 0.

19.2 (a) Using (19.4) and (19.5), we have:

π0 = π(q(0), 0) = e−0.02(40) = 0.4493,

q1 = e−π0q0 + x1
1− e−π0

π0
= (0.6381)(40) + 20

[
1− 0.6381

0.4493

]
= 41.63,

π1 = e−0.02(41.63) = 0.4349,

q2 = e−π1q1 + x2
1− e−π1

π1
= (0.6473)(41.63) + 30

[
1− 0.6473

0.4349

]
= 51.27,

π2 = e−0.02(51.27) = 0.3586,

q3 = e−π2q2 + x3
1− e−π2

π2
= (0.6986)(51.27) + 25

[
1− 0.6986

0.3586

]
= 56.83,

π3 = e−0.02(56.83) = 0.3209,

q4 = e−π3q3 + x4
1− e−π3

π3
= (0.7255)(56.83) + 10

[
1− 0.7255

0.3209

]
= 49.78.

Using the inventory balance equation

yt = qt−1 + xt − qt, t = 1, 2, . . . ,

we obtain the yt as y1 = 18.37, y2 = 20.36, y3 = 19.44, and y4 = 17.05.
(b) The tables are shown below. Accordingly, the expressions for the yt in
terms of the xt are:

y1 = 0.459q0,
y2 = 0.509q0,
y3 = 0.032q0 + 0.909x1,

y4 = 0.091x1 + 0.507x2.

(c) The α and β vectors for this problem are:

α = (α0, α1, α2, α3) = (0.6381, 0.6473, 0.6986, 0.7255),
β = (β1, β2, β3, β4) = (0.1945, 0.189, 0.1595, 0.1446).
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Table 19.7. Queue matrix qk
t for Exercise 19.2(b).

Period

Queue due to: 0 1 2 3 4

Initial inventory 21.63 1.27 0 0
Starts in period 1 20.00 20.00 1.83 0
Starts in period 2 0 30.00 30.00 14.78
Starts in period 3 0 0 25.00 25.00
Starts in period 4 0 0 0 10.00

Queue at end of period: 40 41.63 51.27 56.83 48.78

Table 19.8. Output matrix yk
t for Exercise 19.2(b).

Period

Output due to: 1 2 3 4

Initial inventory 18.37 20.36 1.27 0
Starts in period 1 0 0 18.17 1.83
Starts in period 2 0 0 0 15.22
Starts in period 3 0 0 0 0
Starts in period 4 0 0 0 0

Output at end of period: 18.37 20.36 19.44 17.05
Cumulative output at end of period: 18.37 38.73 58.17 75.22

Table 19.9. Percentage of starts in period k emerging as output in period t for
Exercise 19.2(b).

Period

1 2 3 4

Initial inventory 0.459 0.509 0.032 0
Starts in period 1 0 0 0.909 0.091
Starts in period 2 0 0 0 0.507
Starts in period 3 0 0 0 0
Starts in period 4 0 0 0 0

The tables are shown below. Accordingly, the expressions for the yt in
terms of the xt are:

y1 = 0.362q0 + 0.195x1,

y2 = 0.225q0 + 0.284x1 + 0.189x2,

y3 = 0.125q0 + 0.157x1 + 0.244x2 + 0.160x3,

y4 = 0.079q0 + 0.100x1 + 0.155x2 + 0.231x3 + 0.145x4.
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Table 19.10. Queue matrix qk
t for Exercise 19.2(c).

Period

Queue due to: 0 1 2 3 4

Initial inventory 25.52 16.52 11.54 8.37
Starts in period 1 16.11 10.43 7.29 5.29
Starts in period 2 0 24.32 16.99 12.33
Starts in period 3 0 0 21.01 15.24
Starts in period 4 0 0 0 8.55

Queue at end of period: 40 41.63 51.27 56.83 48.78

Table 19.11. Output matrix yk
t for Exercise 19.2(c).

Period

Output due to: 1 2 3 4

Initial inventory 14.48 9.00 4.98 3.17
Starts in period 1 3.89 5.68 3.14 2.00
Starts in period 2 0 5.68 7.33 4.66
Starts in period 3 0 0 3.99 5.77
Starts in period 4 0 0 0 1.45

Output at end of period: 18.37 20.36 19.44 17.05
Cumulative output at end of period: 18.37 38.73 58.17 75.22

Table 19.12. Percentage of starts in period k emerging as output in period t for
Exercise 19.2(c).

Period

1 2 3 4

Initial inventory 0.362 0.225 0.125 0.079
Starts in period 1 0.195 0.284 0.157 0.100
Starts in period 2 0 0.189 0.244 0.155
Starts in period 3 0 0 0.160 0.231
Starts in period 4 0 0 0 0.145

19.3 (a) The two curves A1(·) and A2(·) are:

A1(t) =

⎧⎨
⎩

2t2, 0 ≤ t ≤ 2,
0.5t2 + 6t− 6, 2 ≤ t ≤ 4,
−5t2 + 50t− 94, 4 ≤ t ≤ 5.

A2(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ t ≤ 2,
t2 − 4t+ 4, 2 ≤ t ≤ 5,

−0.5t2 − 11t− 33.5, 5 ≤ t ≤ 7,
−t2 + 18t− 58, 7 ≤ t ≤ 9.
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The critical values for the respective areas areA1(2) = 8, A1(4) = 26,A1(5) =
31, and A2(5) = 9, A2(7) = 19, A2(9) = 23.
(b)

A2(3) = 1⇒ A1(ρ(3)) = (1/23)31 = 1.3478
⇒ 2(ρ(3))2 = 1.3478⇒ ρ(3) = 0.8209.

A2(4) = 4⇒ A1(ρ(4)) = (4/23)31 = 5.3913
⇒ 2(ρ(4))2 = 5.3913⇒ ρ(4) = 1.6418.

A2(5) = 9⇒ A1(ρ(5)) = (9/23)31 = 12.1304
⇒ 0.5(ρ(5))2 + 6(ρ(5))− 6 = 12.1304

⇒ ρ(5) = −6 +
√

36 + 4(18.1304)(0.5)⇒ ρ(5) = 2.501.
A2(6) = 14.5⇒ A1(ρ(6)) = (14.5/23)31 = 19.5435

⇒ 0.5(ρ(6))2 + 6(ρ(6))− 6 = 19.5435

⇒ ρ(6) = −6 +
√

36 + 4(25.5435)(0.5)⇒ ρ(6) = 3.3320.
A2(7) = 19⇒ A1(ρ(7)) = (19/23)31 = 25.6087

⇒ 0.5(ρ(7))2 + 6(ρ(7))− 6 = 25.6087

⇒ ρ(6) = −6 +
√

36 + 4(25.6087)(0.5)⇒ ρ(6) = 3.9608.
A2(8) = 22⇒ A1(ρ(8)) = (22/23)31 = 29.6522

⇒ −5(ρ(8))2 + 50(ρ(8))− 94 = 29.6522

⇒ ρ(8) = 50−
√

2500− 4(123.6522)(5)⇒ ρ(8) = 4.4808.

(c) The cumulative outputs are:

Y (3) = 2 +
4− 2

4.1045− 0.8209
[Z(.8209)− 0.8209]

= 0.6091Z(0.8209)+ 1.5
= 0.5z1 + 1.5.

Y (4) = 4 +
8− 4

8.209− 1.6418
[Z(1.6418)− 1.6418]

= 0.6091Z(1.6418)+ 3
= 0.6091[z1 + 0.6418z2] + 3
= 0.6091z1 + 0.3909z2 + 3.

Y (5) = 6 +
12− 6

11.002− 2.501
[Z(2.501)− 2.501]

= 0.7058Z(2.501) + 4.2348
= 0.7058[z1 + z2 + 0.501z3] + 4.2348
= 0.7058z1 + 0.7058z2 + 0.3536z3 + 4.2348.

Y (6) = 8 +
13− 8

12.664− 3.332
[Z(3.332)− 3.332]

= 0.5358Z(3.332) + 6.2147
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= 0.5358[z1 + z2 + z3 + 0.332z4] + 6.2147
= 0.5358z1 + 0.5358z2 + 0.5358z3 + 0.1779z4 + 6.2147.

Y (7) = 10 +
14− 10

13.9216− 3.9608
[Z(3.9608)− 3.9608]

= 0.4016Z(3.9608)+ 8.4094
= 0.4016[z1 + z2 + z3 + 0.9608z4] + 8.4094
= 0.4016z1 + 0.4016z2 + 0.4016z3 + 0.3859z4 + 8.4094.

Y (8) = 13 +
15− 13

14.9616− 9.7696
[Z(4.4808)− 9.7696]

= 0.3852Z(4.4808)+ 9.2368
= 0.3852[z1 + z2 + z3 + z4 + 0.4808z5] + 9.2368
= 0.3852z1 + 0.3852z2 + 0.3852z3 + 0.3852z4 + 0.1852z5 + 9.2368.
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A Stochastic Input-Output Model

In this chapter, we develop a stochastic input-output model in which the
formula for Y (t) in (18.3) is the expected cumulative output by time t. Using
this model, we provide “confidence interval curves” to bound the expected
cumulative output curve. Analogous development holds for the cumulative
input X(t). To simplify the notation, we assume there is no input prior to
time 0. We use the convention that all expectations below are assumed to
exist. Consult Appendix I for a review of basic definitions and properties
from probability required for the modeling development that follows.

20.1 Input-Output Model with Single Inputs

Instead of viewing the input-output process as a deterministic process, we now
view it as a stochastic process described as follows. Input events of the system
are governed by a Poisson process {N(t), t ≥ 0} whose intensity function is
denoted quite naturally by z(t). That is,

Z(t) = E[N(t)] =
∫ t

0

z(τ)dτ. (20.1)

We assume a single input eventually results in a single output. (The next
section relaxes this assumption.) When input i enters the system at time Ti,
its process or lead time is a random variable Wi with cumulative distribution

P (Wi ≤ t) = W (t, Ti),

where W (·) is a cumulative lead time distribution as defined on p. 310. We
further assume the Wi are independent and independent of the times Ti.
We may view this process as a collection of pairs {(Ti, Wi)}∞i=1 for which
T1 < T2 < . . . .

Fix a point in time t > 0, and let Y (t) denote the cumulative output by
time t, which is now random. Under the present setup, an input i will be
counted as output by time t if and only if Ti +Wi ≤ t. Thus,
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Y (t) =
N(t)∑
i=1

1(Ti +Wi ≤ t), (20.2)

where 1(A) denotes the indicator function of the event A, i.e., 1(A) equals
one if A it true, 0 if A is false.

We will now derive an expression for the expected cumulative output
E[Y (t)] by time t. It will be useful to imagine a system observer who faith-
fully records on separate index cards, one for each input, the input time on
one side and the process time on the opposite side, but not the event index.
(The system observer keeps track of the event index.) Now suppose we are
informed that N(t) = n. Our system observer hands us a sealed envelope con-
taining an index card randomly chosen from the set of n index cards. What
is the probability this input will have been completed by time t? Let T̃ and
W̃ denote, respectively, this input’s arrival and process times listed on the
index card. Now suppose we are permitted to open the sealed envelope and
observe the arrival time but not the process time. If we learn that T̃ = τ , then
the conditional probability this input will have been completed by time t is
W (t − τ, τ). Since we are unable to open the sealed envelope, to determine
the total probability of this input having been completed by time t, we need
to weight this conditional probability by the probability the arrival time for
this input is τ and sum over all τ . Therefore,

P (T̃ + W̃ ≤ t | N(t) = n) =
∫ t

0

P (T̃ + W̃ ≤ t | N(t) = n, T̃ = τ)g(τ)dτ,

(20.3)
where g(·) denotes the conditional probability density function of T̃ given
N(t) = n. Using an important property of Poisson processes, g(·) is the deriva-
tive of the cumulative distribution function given in (I.3), p. 508, where Z(·)
replaces Λ(·). Consequently,

g(τ) =
z(τ)
Z(t)

, τ ∈ [0, t]. (20.4)

Note that the constant n does not appear on the right-hand side of (20.4).
Substituting (20.4) into (20.3), we conclude that

P (T̃ + W̃ ≤ t | N(t) = n) =
∫ t

0

W (t− τ, τ) z(τ)
Z(t)

dτ

:= pt. (20.5)

The probability pt is constant, independent of n and which index card we
were handed. Consequently, identifying the index cards with the n inputs, we
see that each of the n inputs will have the same probability pt of having been
completed by time t. Identifying “success” with “output achieved by time t,”
and thinking of pt as the probability of success, we have shown, conditioned on
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N(t) = n, the random variable Y (t) is binomially distributed with parameters
n and pt. That is,

P (Y (t) = k | N(t) = n) =
(
n
k

)
pk

t (1− pt)n−k, 0 ≤ k ≤ n. (20.6)

Since the mean of this binomial distribution is npt, it follows that

E[Y (t) | N(t)] = N(t)pt, (20.7)

which is the expected cumulative output by time t conditioned on N(t).
Conditioning on N(t), and using (I.6) and (20.7), the expected cumulative

output by time t is

E[Y (t)] = E(E[Y (t) | N(t)]) = E(N(t)pt).

Therefore, by (20.1), (20.5), and the fact that pt is a constant,

E[Y (t)] = Z(t)pt =
∫ t

0

z(τ)W (t − τ, τ)dτ. (20.8)

Remark 20.1. When N(t) and the Ti are deterministic, it directly follows from
(20.2) that

E[Y (t)] =
N(t)∑
i=1

W (t− Ti, Ti).

In summary, we have provided a stochastic model in which the Y (t) in the
formula (18.3) is the expected output E[Y (t)] when Φ(z(t), t) = z(t). A similar
interpretation holds for the input process X(t) given in (18.4).

20.2 Input-Output Model with Batch Input

In this section we show that the Y (t) in (18.3) is the expected output for
general Φ(z(t), t). As in the previous section, the input process is a Poisson
process, but now each input event corresponds to an input batch consisting
of individual parts.1 Let Bi denote the size of batch i corresponding to the
occurrence time Ti. This batch size can be random and depend on Ti; if so, we
assume this random variable has finite mean and variance, and is independent
of the process time(s) and any other input batch. For example, the randomness
could reflect the yield associated with a deterministic input batch.

We used the lead time distribution W (·, τ) to determine the probability
of the departure time of a single input that arrived at time τ . An input event
now corresponds to an input batch of individual parts. We shall consider two
possibilities.
1 When the arrival times of the input events are governed by a Poisson process,

but the events correspond to batch input (as described above), the overall input
process is called a compound Poisson process.
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20.2.1 Simultaneous Batch Case

For the simultaneous batch case, all parts in the batch are completed at the
same time, and soW (·, τ) denotes the cumulative distribution of the departure
time of the entire batch. For this case, the cumulative output by time t is

Y (t) =
N(t)∑
i=1

Bi1(Ti +Wi ≤ t). (20.9)

We now derive an expression for the expected cumulative output E[Y (t)]
up to time t. For a fixed t > 0, suppose N(t) = n, that is, n input batches have
occurred by time t. Let Ỹ1, Ỹ2, . . . , Ỹn denote the outputs obtained from the
n input batches sequentially chosen at random. Note that Y (t) =

∑N(t)
i=1 Ỹi.

Recalling our system observer, the Ỹi’s are independent, identically distributed
random variables whose distribution coincides with the distribution of the
output Ỹ of a randomly chosen input batch. Let T̃ denote the occurrence
time with density (20.4), and let B̃ and W̃ denote its batch size and lead
time, respectively. In the simultaneous case,

Ỹ = B̃ 1(T̃ + W̃ ≤ t),

and

E[Ỹ | T̃ ] = E[B̃ 1(T̃ + W̃ ≤ t) | T̃ ],
= E[B̃ | T̃ ] P (W̃ ≤ t− T̃ | T̃ ),
= E[B̃ | T̃ ]W (t− T̃ , T̃ ). (20.10)

(The second line uses the assumption of independence of the input batch.) It
then follows that

E[Ỹ ] = E
(
E[Ỹ | T̃ ]

)
=
∫ t

0

E[B̃ | T̃ = τ ]W (t − τ, τ) z(τ)
Z(t)

dτ . (20.11)

Thus, the expected output up to time t is

E[Y (t)] = E (E[Y (t) | N(t)]) (20.12)
= E[N(t)Ỹ ] (20.13)
= Z(t)E[Ỹ ] (20.14)

=
∫ t

0

E[B̃ | T̃ = τ ]W (t − τ, τ)z(τ)dτ . (20.15)

Note that (20.15) is consistent with (20.8) when the batch size is identically
1, as it should.
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20.2.2 Independent Batch Case

For the independent batch case, the lead times for the parts in the batch
are assumed to be independent, identically distributed random variables with
cumulative distribution W (·, τ). For this case, the output is

Y (t) =
N(t)∑
i=1

⎧⎨
⎩

Bi∑
j=1

1(Ti +Wij ≤ t)

⎫⎬
⎭ , (20.16)

where Wij denotes the process time of the jth part in the ith batch.
We now derive an expression for the expected cumulative output E[Y (t)]

up to time t for this case. For a fixed t > 0, suppose N(t) = n, that is, n
input batches have occurred by time t. Adopting the notation of the previous
section, in the independent batch case

Ỹ =
B̃∑

j=1

1(T̃ + W̃j),

where W̃j denotes the process time for the jth part in the batch, and

E[Ỹ | T̃ ] = E
(
E[Ỹ | T̃ , B̃]

)

= E
(
B̃ W (t− T̃ , T̃ ) | T̃

)

= E[B̃ | T̃ ]W (t− T̃ , T̃ ).

The expression (20.17) is identical to (20.10) for the simultaneous batch case.
Thus, identities (20.11)-(20.15) apply, from which we conclude that the ex-
pected outputs in these two cases are identical.

Remark 20.2. Suppose at time τ an input batch of size 100 enters the system
and W (t − τ, τ) = 0.50 for some t > τ . In the simultaneous batch case, the
observed output at time t due to this input batch is either 100 or 0. Its ex-
pected value is, of course, 50, its variance is (100)2(0.5)− (50)2 = 2500, and
thus its standard deviation is 50. In the independent batch case, the observed
cumulative output could be any number between 0 and 100 and is governed
by a binomial distribution with parameters 100 and 0.5. Its expected value is
50, too, but its variance is 100(0.5)(1− 0.5) = 25, and thus its standard devi-
ation is only 5. While the expected cumulative output is the same regardless
of the input batch model (simultaneous or independent), the variabilities of
these output processes are significantly different. The first case has a higher
variance—it’s “all-or-nothing” after all.
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20.3 Confidence intervals

20.3.1 Without Batch Input

We begin by examining the case when Φ(z(τ), τ) = z(τ) and the expected
output for the single input case is given by (20.8). We shall determine the
distribution of Y (t) by computing its moment generating function φY (t)(·).

We have established that conditioned on N(t) = n the output Y (t) is
binomially distributed with parameters N(t) and pt—see (20.6). Applying
(I.4), p. 509,

E[euY (t) | N(t)] = [1 + p(eu − 1)]N(t)

= eûN(t),

where

û := ln [1 + p(eu − 1)].

Consequently,

φY (t)(u) = E[euY (t)]

= E
(
E[euY (t) | N(t)]

)

= E[eûN(t)]
= φN(t)(û).

Since the input N(t) is a Poisson random variable with mean Z(t), we can
apply (I.5), p. 509, to obtain that

φN(t)(û) = eZ(t)(eû−1)

= eZ(t)[pt(e
u−1)]

= e(Z(t)pt)(e
u−1).

These chain of equalities yield the identity

φY (t)(u) = e(Z(t)pt)(e
u−1). (20.17)

We have shown that Z(t)pt = E[Y (t)]—see (20.8). Comparing (20.17) to (I.5),
and using the fact that the moment generating function uniquely characterizes
the distribution, we conclude that Y (t) is a Poisson random variable with
mean given in (20.8).

Since the distribution for Y (t) is known, for a fixed α ∈ (0, 1), it is possible
to determine the smallest value Y U

α (t) for which

P (Y (t) > Y U
α (t)) ≥ 1− α. (20.18)

Similarly, let Y L
α (t) be the largest value for which
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P (Y (t) < Y L
α (t)) ≤ α. (20.19)

In lieu of the expected output curve E[Y (·)], one may use either Y U
α (·), a “lib-

eral” estimate, or Y L
α (·), a “conservative” estimate. The liberal or conservative

choices provide reasonable bounds to the true output curve.

Example 20.3. We examine V ar[Y (3)] for the motivating example describe in
Section 17.1. When the batch size is identically one, V ar[Y (3)] = E[Y (3)];
the mean values are provided in Table 18.4. In the constant loading, uniform
distribution ‘CU’ case, the V ar[Y (3)] = 84. When α is set to 0.025 in (20.18)
and (20.19), the exact values for Y U

0.0.25(3) and Y L
0.0.25(3) are 102 and 66,

respectively.

20.3.2 With Batch Input

When inputs arrive in batches, it is difficult to determine the entire distribu-
tion of Y (t). As a practical alternative, we shall use the variance to provide
confidence intervals on Y (t), as follows. Conditioned on N(t) = n, we know
that Y (t) has the same distribution as the sum of independent, identically
distributed random variables with finite mean and variance. If there are a
large number of input batches, then the distribution of Y (t) conditioned on
N(t) = n is approximately normal. The unconditioned distribution of Y (t)
will be approximately normal, too. Assuming Y (t) is normally distributed, a
confidence interval takes the form

(
E[Y (t)]− κ(t)σY (t), E[Y (t)]− κ(t)σY (t)

)
,

where σ2
Y (t) denotes the variance of Y (t) and κ(t) is the number of standard

deviations selected to ensure the requisite coverage at time t. For example,
κ(t) would be set to 1.96 to ensure a 95% coverage, which corresponds to the
choice of α = 0.025 in (20.18) and (20.19).

Example 20.4. Instead of using the exact Poisson distribution in Example 20.3,
a simple approximation is to use the standard deviation of

√
84 ≈ 9 to ap-

proximate the 2-sigma coverage interval corresponding to α = 0.025. In this
example, the 2-sigma coverage interval is calculated as [84−2(9), 84+2(9)] =
[66, 102], which is exact for this case.

Recalling that Ỹ denotes the output obtained from a randomly chosen
input batch conditioned on N(t), the variance of cumulative output is

V ar[Y (t)] = E[V ar(Y (t) | N(t))] + V ar(E[Y (t) | N(t)])
= E[N(t)V ar(Ỹ )] + V ar(N(t)E[Ỹ ])
= E[N(t)](E[Ỹ 2]− (E[Ỹ ])2) + (E[Ỹ ])2V ar(N(t))
= Z(t)E[Ỹ 2]. (20.20)
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The first line above applies the conditional variance formula (I.7), p. 510, the
second line uses the fact that Y (t), conditioned on N(t), is the sum of N(t)
independent, identically distributed random variables each with distribution
identical to Ỹ , the third line uses the independence of N(t) and Ỹ , and the
fourth line uses the fact that E[N(t)] = V ar[N(t)] = Z(t).

It remains to compute E[Ỹ 2]. In the simultaneous batch case, where all
parts in the batch are completed at the same time, Ỹ = B̃ 1(T̃ + W̃ ≤ t), and
so

E[Ỹ 2 | T̃ ] = E[B̃2 1(T̃ + W̃ ≤ t) | T̃ ]
= E[B̃2 | T̃ ]W (t− T̃ , T̃ ).

It follows that

E[Ỹ 2] = E
(
E[Ỹ 2 | T̃ ]

)

=
∫ t

0

E[Ỹ 2 | T̃ = τ ]
z(τ)
Z(t)

dτ

=
∫ t

0

E[B̃2 | T̃ = τ ]W (t− τ, τ) z(τ)
Z(t)

dτ .

Using this expression in (20.20), we conclude that

V ar[Y (t)] =
∫ t

0

E[B̃2 | T̃ = τ ]W (t − τ, τ)z(τ)dτ . (20.21)

Remark 20.5. Since Y (t) is a Poisson random variable, V ar[Y (t)] = E[Y (t)].
When the batch size is identically one, (20.21) reduces to (20.8), as it should.

In the independent batch case, where the departure times for the parts
in the batch are independent and identically distributed, the conditional
distribution of Ỹ given both T̃ and B̃ is binomial with parameters B̃ and
W (t− T̃ , T̃ ). Applying (I.1) and (I.2), p. 507,

E[Ỹ | T̃ , B̃] = B̃W (t− T̃ , T̃ ),
V ar[Ỹ | T̃ , B̃] = B̃W (t− T̃ , T̃ )(1−W (t− T̃ , T̃ )).

The definition of variance implies that

E[Ỹ 2 | T̃ , B̃] = V ar[Ỹ | T̃ , B̃] +
(
E[Ỹ | T̃ , B̃]

)2

.

Putting the last three identities together, we conclude that

E[Ỹ 2 | T̃ , B̃] = [B̃W (t− T̃ , T̃ )(1−W (t− T̃ , T̃ ))] + [B̃W (t− T̃ , T̃ )]2,

and so
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E[Ỹ 2 | T̃ ] = E
(
E[Ỹ 2 | T̃ , B̃]

)

= E[B̃ | T̃ ]W (t− T̃ , T̃ )(1 −W (t− T̃ , T̃ ))
+E[B̃2 | T̃ ]W (t− T̃ , T̃ )2. (20.22)

Since

E[Ỹ 2] =
∫ t

0

E[Ỹ 2 | T̃ = τ ]
z(τ)
Z(t)

dτ ,

it follows from (20.20) and (20.22) that

V ar[Y (t)] =
∫ t

0

E[B̃ | T̃ = τ ]W (t − τ, τ)(1 −W (t− τ, τ))z(τ)dτ

+
∫ t

0

E[B̃2 | T̃ = τ ]W (t− τ, τ)2z(τ)dτ . (20.23)

When the batch size is identically one, (20.23) reduces to (20.8), as it should—
see Remark 20.5.

Remark 20.6. It will be left to an exercise to verify that the variance (20.23)
in the independent batch case is always less than the variance (20.21) in the
simultaneous batch case.

Example 20.7. We calculate V ar[Y (3)] for the motivating example described
in Section 17.1. In this example we consider the simultaneous batch case
for which the batch size, B, is constant and time-invariant. We analyze the
constant loading, uniform distribution ‘CU’ case. For this case z(t) = zi if
t ∈ [i−1, i), and the lead time distribution is defined as W (t, τ) = W (t) = t/2
for t ∈ [0, 2]. (The lead time distribution is independent of the arrival time
τ .) Accordingly, if an input batch arrives at time τ ∈ [0, 3], the probability of
it completing by time 3 is

W (3− τ) =
{

1, 0 ≤ τ ≤ 1,
(3− τ)/2, 1 ≤ τ ≤ 3.

From (20.21),

V ar[Y (3)] = B2

∫ 3

0

W (3− τ)z(τ)dτ

= B2

[
z1

∫ 1

0

1 dτ + z2

∫ 2

1

(
3− τ

2

)
dτ + z3

∫ 3

2

(
3− τ

2

)
dτ

]

= B2
{
z1 + (3/4)z2 + (1/4)z3

}
. (20.24)

As a check, when B = 1 and (z1, z2, z3) = (24, 48, 96), V ar(Y (3)) = E[Y (3)] =
84, as it should. When B = 10, the expected output E[Y (3)] is 840 and its
standard deviation is

√
8400 ≈ 92, and so the 2-sigma coverage interval is

[656, 1024].
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Remark 20.8. The expression in braces in (20.24) is the expected output by
time 3 if the batch size is one. In the notation of Chapter 18, the expected
output here is Π3z1 +Π2z2 +Π1z3.

Example 20.9. We continue with Example 20.7, except that here we consider
the independent batch case. From (20.23),

V ar[Y (3)] = B

∫ 3

0

W (3− τ)(1−W (3− τ))z(τ)dτ +B2

∫ 3

0

W (3− τ)2z(τ)dτ.
(20.25)

The first integral on the right-hand side of (20.25) is

B

[
z1

∫ 1

0

0dτ + z2

∫ 2

1

(
3− τ

2

)(
1− 3− τ

2

)
dτ

+ z3

∫ 3

2

(
3− τ

2

)(
1− 3− τ

2

)
dτ

]
,

and the second integral on the right-hand side of (20.25) is

B2

[
z1

∫ 1

0

1 dτ + z2

∫ 2

1

(
3− τ

2

)2

dτ + z3

∫ 3

2

(
3− τ

2

)2

dτ

]
,

which after integration yields

V ar[Y (3)] = B
{

(1/6)z2 + (1/6)z3
}

+B2
{
z1 + (7/12)z2 + (1/12)z3

}
.

As a check, when B = 1 and (z1, z2, z3) = (24, 48, 96), V ar(Y (3)) = E[Y (3)] =
84, as it should. When B = 10, the expected output E[Y (3)] is 840 and its
standard deviation is

√
6240 = 79, and so the 2-sigma coverage interval is

[682, 998].

Remark 20.10. As promised, the variance in the simultaneous batch case is
larger than the variance in the independent batch case. Consequently, the
corresponding 2-sigma coverage interval is larger, too.

20.3.3 Linear Approximation

In the discrete-time setting with a standard time grid, the variances (20.21)
and (20.23) can be represented in the form

V ar[Y (t)] =
t∑

i=1

zi

∫ i

i−1

ξt(τ)si(τ)dτ :=
t∑

i=1

ziΥit,

and so

σY (t) :=

√√√√ t∑
i=1

ziΥit .
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The standard deviation is not linear, but can be approximated by taking a
first-order Taylor series expansion about the standard deviation derived from
some average trajectory z̄ to obtain

σY (t) ≈

√√√√ t∑
i=1

z̄iΥit +
∑t

i=1 (zi − z̄i)Υit

2
√∑t

i=1 z̄iΥit

,

=

∑t
i−1 ziΥit

2σ̄Y (t)
+ σ̄Y (t)/2, (20.26)

where σ̄Y (t) denotes the standard deviation of Y (t) when z = z̄.
This approximation is linear in the zi. Since E[Y (t)] is linear in the zi, a

projected output of the form

E[Y (t)] + κ(t)σY (t)

will be linear in the zi, too.

20.4 Exercises

20.1. Let X1 denote a binomial random variable with parameters n = 50
and p = 0.04. Let X2 denote a Poisson random variable with parameter
λ = 50(0.04) = 2. Compare the probabilities P (X1 = k) and P (X2 = k) for
k = 0, 1, 2.

20.2. Let N(·) denote a time-homogeneous Poisson process with intensity
function λ(t) = λ = 0.5.

(a) What is the expected number of arrivals in the time interval [0, 10]?
(b) What is the probability that there will be no arrivals in this time interval?
(c) What is the probability that there will be at least 3 arrivals in this time

interval?
(d) Answer parts (a)-(c) when the time interval is [100, 110].

20.3. Let N(·) denote a Poisson process with intensity function λ(t) =
√
t.

(a) What is the expected number of arrivals in the time interval [0, 4]?
(b) What is the probability that there will be at least 2 arrivals in this time

interval?
(c) Suppose it is known that there were 20 arrivals in this time interval. What

is the probability that the arrival time of a randomly chosen arrival oc-
curred in the first half of this time interval?

(d) Answer parts (a)-(c) when the time interval is [4, 8].

20.4. The moment generating function of a discrete random variable X is
φX(u) = [1 + 0.2(eu − 1)]10.



384 20 A Stochastic Input-Output Model

(a) What is the mean and variance of X?
(b)What is the probability that X ≤ 2?

20.5. The moment generating function of a discrete random variable X is
φX(u) = e0.5(eu−1).

(a) What is the mean and variance of X?
(b)What is the probability that X ≤ 2?

20.6. Let Xi, i = 1, 2, . . . , be independent, identically distributed binomial
random variables with parameters n = 10 and p = 0.4, and let N be a Poisson
random variable with mean λ = 2. Consider the random sum X =

∑N
i=1Xi.

Determine the variance of X .

20.7. Suppose system inputs in the time interval [0, 1] follow a time-homogeneous
Poisson process with rate λ = 10.

(a) Suppose an input that enters the system at time τ ∈ [0, 1] will emerge as
output by time 1 with probability 1− τ .
(i) What is the expected number of inputs in the time interval [0, 1]?
(ii) What is the expected output by time 1?

(b)Answer part (a) when an input that enters the system at time τ ∈ [0, 1]
will emerge as output by time 1 with probability (1− τ)2.

20.8. Answer Exercise 20.7 when the inputs arrive deterministically at times
0.1(i− 1), i = 1, 2, . . . , 10.

20.9. Suppose system inputs in the time interval [0, 1] follow a Poisson process
with intensity function z(τ) = 20τ .

(a) Suppose an input that enters the system at time τ ∈ [0, 1] will emerge as
output by time 1 with probability 1− τ .
(i) What is the expected number of inputs in the time interval [0, 0.5]?
(ii) What is the expected output by time 0.5?
(iii) What is the expected number of inputs in the time interval [0, 1]?
(iv) What is the expected output by time 1?

(b)Answer part (a) when an input that enters the system at time τ ∈ [0, 1]
will emerge as output by time 1 with probability (1− τ)2.

20.10. Assume a batch size of identically one. For the constant loading, uni-
form distribution ‘CU’ case described in the motivating example of Section
17.1, determine a 2-sigma coverage interval for the output Y (2).

20.11. Consider the front loading, late distribution ‘FL’ case described in the
motivating example of Section 17.1 with a constant batch size B.

(a) Assume the simultaneous batch case.
(i) Express V ar[Y (3)] in terms of the zi.
(ii) Verify that V ar[Y (3)] = E[Y (3)] when B = 1.
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(ii) Approximate σY (3) as a linear function of the zi. Use z̄ = (24, 48, 96).
(b) Assume the independent batch case.

(i) Express V ar[Y (3)] in terms of the zi.
(ii) How does the variance here compare to the variance calculated in the

simultaneous batch case?
(iii) Verify that V ar[Y (3)] = E[Y (3)] when B = 1.
(iv) Approximate σY (3) as a linear function of the zi. Use z̄ = (24, 48, 96).

20.12. Show that the variance (20.23) in the independent batch case is always
less than the variance (20.21) in the simultaneous batch case.

20.5 Bibliographical Notes

Expression (20.8) can be viewed as a type of transient Little’s Law. See Riano
et. al. [2007] for a proof under more general conditions.
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20.6 Solutions to Exercises

20.1 For the random variable X1, we have P (X1 = 0) = (0.96)50 = 0.12989,
P (X1 = 1) = 50(0.04)(0.96)49 = 0.27060, and P (X1 = 2) = (1225)(0.04)2

·(0.96)48 = 0.27623. For the random variable X2, we have P (X2 = 0) = e−2 =
0.13534, P (X2 = 1) = 2e−2 = 0.27067, and P (X2 = 2) = 2e−2 = 0.27067.
These respective values are quite close.

20.2 (a) N(10) is a Poisson random variable with mean 0.5(10) = 5.
(b) P (N(10) = 0) = e−5 = 0.00674.
(c)

P (N(10) ≥ 3) = 1− P (N(10) < 3)
= 1− [P (N(10) = 0) + P (N(10) = 1) + P (N(10) = 1)]
= 1− [e−5 + 5e−5 + 52e−5/2] = 0.87535.

(d) N(110) − N(100) is a Poisson random variable with mean 0.5(10) = 5.
Hence, all of the answers remain the same.

20.3 (a) Λ(t) =
∫ t

0
λ(τ)dτ = (2/3)t3/2. Since Λ(4) = 5.3̄, N(4) is a Poisson

random variable with mean 5.3̄.
(b)

P (N(4) ≥ 2) = 1− P (N(9) < 2)
= 1− [P (N(9) = 0) + P (N(9) = 1)]

= 1− [e−5.3̄ + 5.3̄e−5.3̄] = 0.96942.

(c) This probability equals Λ(2)/Λ(4) = 1.88562/5.3̄ = 0.35356.
(d) Since Λ(8) = 15.08494 and Λ(4) = 5.3̄, N(8) − N(4) is a Poisson ran-
dom variable with mean 9.75161. P (N(8) − N(4) ≥ 2) = 1 − [e−9.75161 +
9.75161e−9.75161] = 0.99937. The probability that the arrival time of a ran-
domly chosen arrival occurred in the time interval [4, 6] is [Λ(6)−Λ(4)]/[Λ(8)−
Λ(4)] = 0.45783.

Remark 20.11. As time progresses, the square root function flattens out and
approximates a linear function, and so this probability will converge to 0.5.

20.4 (a) The form of this moment generating function matches the one for the
binomial distribution with parameters n = 10 and p = 0.2. Thus, the mean is
(10)(0.2) = 2 and the variance is (10)(0.2)(1− 0.2) = 1.6.
(b) P (X ≤ 2) = 0.810 + 10(0.2)(0.8)9 + 45(0.2)2(0.8)8 = 0.67780.

20.5 (a) The form of this moment generating function matches the one for
the Poisson distribution with parameter λ = 0.5. Thus, both the mean and
variance equal 0.5.
(b) P (X ≤ 2) = e−0.5 + 0.5e−0.5 + 0.25e−0.5/2 = 0.98561.
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20.6 We apply the conditional variance formula (I.7), p. 510, with Y = N .
We have E[Xi] = 10(0.4) = 4, V ar[Xi] = 10(0.4)(1− 0.4) = 1.6, and E[N ] =
V ar[N ] = 2. Since V ar[X | N ] = NV ar[Xi] and E[X | N ] = NE[Xi], we
have

V ar[X ] = E(V ar[X | N ]) + V ar(E[X | N ])
= E[1.6N ] + V ar[4N ]
= 1.6(2) + 16(2) = 35.2.

20.7 (a) System input in the time interval [0, 1] is a Poisson random variable
with mean 10. The expected output is 10

∫ 1

0
(1− τ)dτ = 5.

(b) System input does not change. The expected output in this case is
10
∫ 1

0
(1− τ)2dτ = 10/3.

20.8 Ten inputs arrive deterministically. In the first case, expected output
is 1 + 0.9 + 0.8 + · · · + 0.1 = 5.5. In the second case, expected output is
1 + 0.92 + 0.82 + · · ·+ 0.12 = 3.85.

Remark 20.12. If N inputs arrive deterministically at times ti = (i − 1)/N ,
i = 1, 2, . . . , N , each with weight equal to 10/N (so that the total input
equals 10), then the sum of the output as computed above will converge to
the answers for Exercise 20.7, 5 and 10/3, respectively, as N →∞.

20.9 (a) (i) Z(0.5) =
∫ 0.5

0
20τdτ = 2.5. (ii) Expected output is

∫ 0.5

0

20τ(1− τ)dτ = 20[τ2/2− τ3/3
∣∣∣0.5

0
= 5/3.

(iii) Z(1) =
∫ 1

0
20τdτ = 10. (iv) Expected output is
∫ 1

0

20τ(1− τ)dτ = 20[τ2/2− τ3/3
∣∣∣1
0

= 10/3.

(b) The input process does not change. As for the expected output,

E[Y (0.5)] =
∫ 0.5

0

20τ(1− τ)2dτ = 20[τ2/2− 2τ3/3 + τ4/4
∣∣∣0.5

0
= 55/48.

E[Y (1)] =
∫ 1

0

20τ(1− τ)2dτ = 20[τ2/2− 2τ3/3 + τ4/4
∣∣∣1
0

= 5/3.

20.10 For the ‘CU’ case with a batch size of one, V ar[Y (2)] = E[Y (2)], which
equals 30 from Table 18.4. When α is set to 0.025 in (20.18) and (20.19), the
exact values for Y U

0.0.25(3) and Y L
0.0.25(3) are 41 and 19, respectively.

Remark 20.13. The standard deviation is
√

30 = 5.4772. An approximate 2-
sigma coverage interval is therefore [30− 2(5.4772), 30+ 2(5.4772)] = [19, 41],
which is identical to the exact coverage interval.
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20.11 For the ‘FL’ scenario, s(t) = 2(1−t), which means that z(τ) = z1[2(1−
τ)] if τ ∈ [0, 1], z(τ) = z2[2(2 − τ)] if τ ∈ [1, 2], and z(τ) = z3[2(3 − τ)] if
τ ∈ [2, 3]. The lead time distribution is W (t) = t2/4 for t ∈ [0, 2].
(a) (i) In the simultaneous batch case,

V ar[Y (3)] = B2

∫ 3

0

W (3− τ)z(τ)dτ

= B2
[
z1

∫ 1

0

2(1− τ) · 1 dτ + z2

∫ 2

1

[(3 − τ)2/4][2(2− τ)]dτ

+z3
∫ 3

2

[(3− τ)2/4][2(3− τ)]dτ
]

= B2{Π̂3z1 + Π̂2z2 + Π̂1z3}
= B2{z1 + (17/24)z2 + (1/8)z3}.

The next-to-last line follows the observation in Remark 20.8, p. 382, and
the last line uses the π̂i numbers in Table 18.4. (ii) When B = 1 and z =
(z1, z2, z3) = (24, 48, 96), V ar[Y (3)] = E[Y (3)] = 70, as it should. (iii) Using
(20.26), σY (3) approximately equals

B2z1 +B2(17/24)z2 +B2(1/8)z3
2B
√

70
+B
√

70/2.

(b) (i) In the independent batch case,

V ar[Y (t)] = B

∫ t

0

W (t− τ)(1 −W (t− τ))z(τ)dτ

+ B2

∫ t

0

W (t− τ)2z(τ)dτ

= B

∫ 3

0

W (3− τ)z(τ)dτ

+(B2 −B)
∫ 3

0

W (3− τ)2z(τ)dτ. (20.27)

Using the observation in Remark 20.8, the first integral on the right-hand side
of (20.27) evaluates to

B[Π̂3z1 + Π̂2z2 + Π̂1z3] = B[z1 + (17/24)z2 + (1/8)z3].

The second integral on the right-hand side of (20.27) is

(B2 −B)
[
z1

∫ 1

0

2(1− τ)dτ + z2

∫ 2

1

2(2− τ)[(3 − τ)2/4]2dτ

+ z3

∫ 2

1

2(3− τ)[(3 − τ)2/4]2dτ
]
,
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which evaluates to

(B2 −B)[z1 + (43/80)z2 + (1/48)z3].

Thus,

V ar[Y (3)] = B2z1 + [(43/80)B2 + (41/240)B]z2 + [(1/48)B2 + (5/48)B]z3.
(20.28)

(ii) When B = 1 and z = (z1, z2, z3) = (24, 48, 96), V ar[Y (3)] = E[Y (3)] =
70, as it should. (iii) Let σ̄Y (3) denote the square root of the expression (20.28)
for V ar[Y (3)] evaluated at z = (24, 48, 96). Using (20.26), σY (3) approximately
equals

B2z1 + [(43/80)B2 + (41/240)B]z2 + [(1/48)B2 + (5/48)B]z3
σ̄Y (3)

+ σ̄Y (3)/2.

20.12 In the independent batch case,

V ar[Y (t)] =
∫ t

0

E[B̃ | T̃ = τ ]W (t − τ, τ)(1 −W (t− τ, τ))z(τ)dτ

+
∫ t

0

E[B̃2 | T̃ = τ ]W (t− τ, τ)2z(τ)dτ

=
∫ t

0

E[B̃ | T̃ = τ ]W (t − τ, τ)z(τ)dτ +
∫ t

0

(
E[B̃2 | T̃ = τ ]− E[B̃ | T̃ = τ ]

)
W (t− τ, τ)2z(τ)dτ.

The value
E[B̃2 | T̃ = τ ]− E[B̃ | T̃ = τ ]

is nonnegative since B̃2 ≥ B̃ ≥ 1. Since W (t − τ, τ)2 ≤ W (t − τ, τ) ≤ 1 and
z(τ) ≥ 0, it follows that

V ar[Y (t)] ≤
∫ t

0

E[B̃ | T̃ = τ ]W (t− τ, τ)z(τ)dτ

+
∫ t

0

(
E[B̃2 | T̃ = τ ]− E[B̃ | T̃ = τ ]

)
W (t− τ, τ)z(τ)dτ

=
∫ t

0

E[B̃2 | T̃ = τ ]W (t− τ, τ)z(τ)dτ

= V ar[Y (t)] in the simultaneous batch case.
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Multi-Stage, Dynamic Models of Technology

A production process typically begin with raw materials, parts, subassemblies,
and transforms them via several intermediate stages to produce final outputs
sold to end users. At the “molecular level” a production process is a network
of activities or stages. Each activity’s input-output process is characterized
by a dynamic production function. The multi-stage models developed in this
chapter are most useful for short-term production planning.

Storable goods are all raw materials, purchased parts or subassemblies, and
intermediate or final products produced by activities. Storable goods used by
an activity will either be acquired from outside the system (i.e., exogenously
supplied) or obtained via intermediate product transfers from other activities
within the system. Material balance constraints are required to ensure that
the requisite storable inputs are available at the time they are used in the
production process. Service capacity equations are required to ensure that
the rates of the aggregate machine and labor services available are sufficient
to meet internal aggregate demand.

We begin by describing a basic, continuous-time model of dynamic produc-
tion involving a network of interrelated activities. Next, we develop specific
models by substituting the instantaneous, constant lead time, multi-event
lead time, and distribution-based dynamic production functions into the fun-
damental equations. Practical considerations, such as how to handle initial
conditions, are also discussed. We show how to translate these continuous-
time models into their discrete-time counterparts suitable for computation.
Two examples from manufacturing and assembly with rework are described
in detail. We describe several practical extensions to the basic model. We close
this chapter with a discussion of how to connect the models described herein
to efficiency and productivity analysis.
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21.1 Basic Model

21.1.1 Primitives

A production system consists of N producing activities, labeled 1, 2, . . . , N ,
and two non-producing activities, labeled 0 and N + 1, respectively.1

• Producing activities. Each producing activity i supplies a unique storable
product also labeled i. (No services are produced internally.) Each produc-
ing activity’s technology is governed by a dynamic production function.
The vector

xi = (x1
i (·), x2

i (·), . . . , xn
i (·))

denotes the inputs used by activity i, and

yi(·) = [fi(xi)](·)

denotes the output produced by activity i from input xi. Each component
of xi and the output yi are functions of time.

• Non-producing activities. Activity 0, the source activity, supplies the ex-
ogenous services, raw materials, and purchased parts or subassemblies from
outside vendors to the producing activities. The source activity does not
provide any product made by a producing activity. Activity N+1, the sink
activity, receives outputs from the producing activities. (An intermediate
product will not be sent to the sink activity if it is not “sold” to an end
user.)

Let vi,j(t) denote the transfer of product i by activity i sent to activity j
at time t, and let vm

0,j(t) denote the transfer of material m by activity 0 sent
to activity j at time t. Transfers of product may not be instantaneous. Let

v̂i,j(t) = ti,j [vi,j ](t)

denote the transfer of product i by activity i received by activity j at time t,
and let

v̂m
0,j(t) = tm0,j [v

m
0,j ](t)

denote the transfer of material m by activity 0 received by activity j at time
t.2 Conceptually, each ti,j [ · ] is a dynamic production function.3

1 These labels are replaced with more descriptive names in actual applications.
2 The transformation functions v̂i,j(·) = [ti,j(vi,j ](·) implicitly assume there are

no “joint” constraints on the vi,j(·), to achieve, for example, economies of trans-
portation. The detailed modeling of such transformations is beyond the scope of
this chapter.

3 Activities labeled ‘ij’ could be introduced and the symbol t could be replaced
with an f . Such notation is cumbersome, excessively so when extensions of the
basic model are described. For notational simplicity, we do not identify these
special transfer functions with separate activities.
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Below, we define sets of constraints that define the technology T for the
basic model. First, some notation. The vector x̃ = (x̃1, x̃2, . . . , x̃n) denotes an
exogenous system input vector, and the vector ỹ = (ỹ1, ỹ2, . . . , ỹN ) denotes a
feasible vector of outputs obtained from the system. The letter ‘s’ will denote
a generic service input, the letter m will denote a generic material input, and
the letters i, j will denote generic products produced by the system. All flows
are rate-based. For a generic rate-based flow h(·), its corresponding cumulative
flow will be denoted by the upper case letter H , i.e., H(t) =

∫ t

−∞ h(τ)dτ . (All
integrals are assumed to exist.)

For the basic model, (x̃, ỹ) ∈ T if there exists producing activity input
vectors xi, transfers sent vi,j(·), and transfers received v̂i,j(·) such that the
material balance and service capacity constraints (21.2)-(21.6) defined in the
next section are satisfied.

21.1.2 Material Balance and Service Capacity Constraints

For two points in time s, t, s < t, material balance can be conceptually repre-
sented as

I(t) = I(s) + FlowIn[s, t]− FlowOut[s, t]. (21.1)

In (21.1), I(t) denotes the inventory (amount stored) of a generic good at time
t, FlowIn[s, t] denotes the cumulative amount of this good “flowing in” during
the time interval [s, t], and FlowOut[s, t] denotes the cumulative amount of
this good “flowing out” during the time interval [s, t]. We adopt standard
convention and assign time 0 as the point in time when new production takes
place. All flows prior to time 0 are assumed known, as well as the initial
inventory I(0) at time 0.

Remark 21.1. When production processes are not instantaneous, FlowIn[0, t]
will be the result of decisions made prior to time 0.

Let Im
i (t) and Ij

i (t) denote, respectively, the inventory of material m and
product j stored at activity i at time t. The material balance constraints are
as follows:

• For each producing activity i and for all t ≥ 0:

Ii
i (t) = Ii

i (0) +
∫ t

0

yi(τ)dτ −
N+1∑
j=1

∫ t

0

vij(τ)dτ ≥ 0. (21.2)

These constraints ensure that the production of product i is sufficient to
meet all system-wide demands.

• For each producing activity i, (internally produced) product j �= i, and for
all t ≥ 0:

Ij
i (t) = Ij

i (0) +
∫ t

0

v̂j,i(τ)dτ −
∫ t

0

xj
i (τ)dτ ≥ 0. (21.3)
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These constraints ensure that there is sufficient supply of product j at
activity i to support its usage in activity i’s production process.

• For each producing activity i, (exogenously supplied) material m, and for
all t ≥ 0:

Im
i (t) = Im

i (0) +
∫ t

0

v̂m
0,i(τ)dτ −

∫ t

0

xm
i (τ)dτ ≥ 0. (21.4)

These constraints ensure that there is sufficient supply of material m at
activity i to support its usage in activity i’s production process.

• For each product i and for all t ≥ 0:

Ii
N+1(t) = Ii

N+1(0) +
∫ t

0

v̂i,N+1(τ)dτ −
∫ t

0

ỹi(τ)dτ ≥ 0. (21.5)

These constraints ensure that final demands, as represented by the output
vector ỹ, are met.

The service capacity constraints are as follows:

• For each service s and for all τ ≥ 0:

N∑
i=1

xs
i (τ) ≤ x̃s(τ). (21.6)

21.2 Index-Based Models

21.2.1 Instantaneous Processes

In this model, production is instantaneous and the inputs used by each activ-
ity are in constant proportions. (See the description of the fixed proportions
dynamic model on p. 300.) Since each activity produces a unique output and
production is instantaneous, the index zi(·) will be measured in units of out-
put. Consequently, the input vector is

xi(τ) = (a1
i , a

2
i , . . . , a

n
i )zi(τ), (21.7)

and the output is

yi(τ) = [fi(xi)](τ) = zi(τ). (21.8)

Transfers of product and raw materials are instantaneous. Inventory arrives
just-in-time for its use. There are no other constraints on transfers. Conse-
quently,

v̂i,j(τ) = vi,j(τ) = ai
jzj(τ), 1 ≤ i, j ≤ N, (21.9)

v̂m
0,i(τ) = vm

0,i(τ) = am
i zi(τ), 1 ≤ i ≤ N, all m, (21.10)

v̂i,N+1(τ) = vi,N+1(τ) = ỹi(τ), 1 ≤ i ≤ N. (21.11)
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Given (21.7)-(21.11), the material balance constraints (21.3)-(21.5) are au-
tomatically satisfied and therefore can be ignored. Material balance constraint
(21.2) and service capacity constraint (21.6) become, respectively,

• For each producing activity i and for all t ≥ 0:

Ii
i (t) = Ii

i (0) +
∫ t

0

zi(τ)dτ −
N∑

j=1

∫ t

0

ai
jzj(τ)dτ −

∫ t

0

ỹi(τ)dτ ≥ 0. (21.12)

• For each service s and for all τ ≥ 0:
N∑

i=1

as
izi(τ) ≤ x̃s(τ). (21.13)

21.2.2 Constant Lead Time Processes

In some production processes, a product cannot be released to inventory for
subsequent use for a period of time after it has been produced (the services
have been applied). For example, a fixed amount of time may be required for
a part to dry after a painting operation or to inspect and grade output. We
assume that no scarce resources are consumed by these operations; otherwise,
such resource consumption must be included in the model. In this model,
inputs used by each activity are still in constant proportions, but output by
activity i emerges a constant �i units of time after application of resources. In
this setting, zi(·) indexes “starts,” i.e., when application of service resources
and withdrawal of intermediate products and materials begins. The input
vector xi is still represented as

xi(τ) = (a1
i , a

2
i , . . . , a

n
i )zi(τ), (21.14)

but the output is now

yi(τ) = [fi(xi)](τ) = zi(τ − �i). (21.15)

In some production processes, a period of time elapses after a product has
been withdrawn from inventory until it is used as input at a follow-on activity.
Examples include transportation time or time to complete inspection. Once
again, no scarce resources are consumed by these operations. Transfers of
product sent from producing activity i to producing activity j are received a
constant �i,j units of time later. Transfers of material m sent from the source
activity 0 to producing activity i are received a constant �m0,i units of time
later. There are no other constraints on transfers. Consequently,

v̂i,j(τ) = vi,j(τ − �i,j), 1 ≤ i, j ≤ N, (21.16)
v̂m
0,i(τ) = vm

0,i(τ − �m0,i), 1 ≤ i ≤ N, all m, (21.17)
v̂i,N+1(τ) = vi,N+1(τ − �i,N+1), 1 ≤ i ≤ N. (21.18)

Given (21.14)-(21.18), the material balance constraints (21.2)-(21.5) and
service capacity constraint (21.6) become, respectively,



396 21 Multi-Stage, Dynamic Models of Technology

• For each producing activity i and for all t ≥ 0:

Ii
i (t) = Ii

i (0) +
∫ t

0

zi(τ − �i)dτ −
N+1∑
j=1

∫ t

0

vij(τ)dτ ≥ 0. (21.19)

• For each producing activity i, (internally produced) product j �= i and for
all t ≥ 0:

Ij
i (t) = Ij

i (0) +
∫ t

0

vj,i(τ − �j,i)dτ −
∫ t

0

aj
izi(τ)dτ ≥ 0. (21.20)

• For each producing activity i, (exogenously supplied) material m, and for
all t ≥ 0:

Im
i (t) = Im

i (0) +
∫ t

0

vm
0,i(τ − �m0,i)dτ −

∫ t

0

am
i zi(τ)dτ ≥ 0. (21.21)

• For each product i and for all t ≥ 0:

Ii
N+1(t) = Ii

N+1(0) +
∫ t

0

v̂i,N+1(τ − �i,N+1)dτ −
∫ t

0

ỹi(τ)dτ ≥ 0. (21.22)

• For each service s and for all τ ≥ 0:

N∑
i=1

as
i zi(τ) ≤ x̃s(τ). (21.23)

21.2.3 Multi-Event, Constant Lead Time Processes

Following the description of multi-event, constant lead time processes in Sec-
tion 18.2.1, p. 313, in this section the output rate is

yi(τ) =
∑

r

wy
i,rzi(τ − �yi,r), (21.24)

and the input vector is

xi(τ) = (a1
i , a

2
i , . . . , a

n
i )

(∑
r

wx
i,rzi(τ − �xi,r)

)
. (21.25)

In (21.24) and (21.25), the weights wy
i,r and wx

i,r are positive constants that
respectively sum to one, and the lead times �yi,r and �xi,r are positive. Similarly,
for activities i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , N + 1}, i �= j,

v̂i,j(τ) =
∑

r

wi,j,rvi,j(τ − �i,j,r), (21.26)
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and for all materials m

v̂m
0,i(τ) =

∑
r

w0,i,rv
m
0,i(τ − �0,i,r). (21.27)

In (21.26) and (21.27), the respective weights some to one and the lead times
are all positive.

It is straightforward to substitute identities (21.24)-(21.27) into (21.2)-
(21.6) to obtain the material balance and system capacity constraints. For
example, the expressions on the left-hand side below are replaced by the ex-
pressions on the right-hand side

∫ t

0

zi(τ − �i)dτ ←−
∫ t

0

∑
r

wy
i,rzi(τ − �yi,r)dτ, (21.28)

∫ t

0

vj,i(τ − �j,i)dτ ←−
∫ t

0

∑
r

wj,i,rvj,i(τ − �j,i,r)dτ, (21.29)

N∑
i=1

as
izi(τ) ←−

N∑
i=1

as
i

(∑
r

wx
i,rzi(τ − �xi,r)

)
(21.30)

in equations (21.19), (21.20), and (21.23), respectively.

21.2.4 Continuous Lead Time Based Processes

Following the description of continuous lead time processes in Section 18.4, p.
324, in this section the cumulative output is

Yi(t) =
∫ t

−∞
zi(τ)W

y
i (t− τ, τ)dτ, (21.31)

and the input vector is

xi(τ) = (a1
i , a

2
i , . . . , a

n
i )
(∫ t

−∞
zi(τ)wx

i (t− τ, τ)dτ
)
. (21.32)

In (21.31) and (21.32), the W y
i (·, ·) and wx

i (·, ·) are cumulative lead time
distributions and lead time densities, respectively. Similarly, for activities
i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , N+1}, i �= j, the cumulative product transfers
are

V̂i,j(τ) =
∫ t

−∞
vi,j(τ)Wi,j(t− τ, τ)dτ, (21.33)

and for all materials m

V̂ m
0,i(τ) =

∫ t

−∞
vm
0,i(τ)W

m
i,j(t− τ, τ)dτ. (21.34)
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In (21.33) and (21.34), the Wi,j(·, ·) and Wm
i,j(·, ·) are cumulative lead time

distributions.
It is a bit less straightforward to substitute identities (21.31)-(21.34) into

(21.2)-(21.6) to obtain the material balance and system capacity constraints.
Since the expressions for output and transfers above are defined in terms of
their cumulative values, it is necessary to subtract the cumulative amount
up to time 0 to ensure that only flow in the interval [0, t] is counted. For
example, the expressions on the left-hand side of (21.28)-(21.30) are replaced
respectively by the expressions

Yi(t)− Yi(0) =
∫ t

−∞
zi(τ)W

y
i (t− τ, τ)dτ −

∫ 0

−∞
zi(τ)W

y
i (−τ, τ)dτ,

V̂j,i(t)− V̂j,i(0) =
∫ t

−∞
vj,i(τ)Wj,i(t− τ, τ)dτ −

∫ 0

−∞
vj,i(τ)Wj,i(−τ, τ)dτ,

as
i

(∫ t

−∞
zi(τ)wx

i (t− τ, τ)dτ
)

above in equations (21.19), (21.20) and (21.23), respectively.

21.2.5 Initial Conditions

The current time 0 marks the point in time when new calculations/decisions
can be made. When all production processes are instantaneous, all information
about the past decisions is conveniently encapsulated in the (initial) inven-
tories at time 0. However, when production processes are not instantaneous,
outputs and transfers could be realized after the current time 0 as a result of
prior decisions before the current time 0. The past is no longer summarized
by the initial inventories; it is necessary to project, in some way, the flow after
the current time 0 as a result of decisions made prior to time 0.

We describe two approaches for making the requisite projections.

Approach I: Apply model’s projections to prior decisions

In this approach, all values of variables associated with time τ < 0 are con-
sidered part of the past and are pre-specified. For example, in the constraints
(21.19)-(21.23) associated with the constant lead time model, values of index
zi(·) are pre-specified for −�i ≤ τ ≤ 0, values for intermediate product trans-
fers vi,j(·), 1 ≤ i, j, ≤ N , are pre-specified for −�i,j ≤ τ ≤ 0, and values for
raw material transfers vm

0,N+1(·) are pre-specified for −�m0,N+1 ≤ τ ≤ 0.

Remark 21.2. In the constant lead time model, it is possible to go one step fur-
ther. As previously mentioned, intermediate product or raw material transfers
were sent prior to the current time 0 ostensibly to support planned produc-
tion after the current time 0 when the model was previously run. Suppose
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that all previously planned production that required transfers prior to the
current time 0 is frozen, i.e., not permitted to change, and suppose all in-
ventory arrives just-in-time. In addition to constraints (21.16)-(21.18), these
assumptions imply that

ṽi,j(τ) = ai
jzj(τ), ṽm

0,i(τ) = am
i zi(τ), ṽi,N+1(τ) = ỹi(τ).

It then follows that the values of index zi(·) must now be pre-specified for
−�i ≤ τ ≤ maxj,m{�j,i, �m0,i}. Constraints (21.20)-(21.22) are now automati-
cally satisfied, and constraint (21.19) becomes: for each producing activity i
and for all t ≥ 0,

Ii
i (t) = Ii

i (0)+
∫ t

0

zi(τ − �i)dτ −
N∑

j=1

∫ t

0

ai
jzj(τ + �i,j)dτ −

∫ t

0

ỹi(τ + �i,N+1)dτ.

(21.35)
This constraint can also be expressed as

Ii
i (t) = Ii

i (0) +
∫ t−�i

−�i

zi(τ)dτ −
N∑

j=1

∫ t−�i,j

−�i,j

ai
jzj(τ)dτ −

∫ t−�i,N+1

−�i,N+1

ỹi(τ)dτ.

(21.36)
In this setting, there is no inventory of product i at activity j �= i; however,
there are pipeline inventories in the amounts of∫ t

t−�i,j

aj
izi(τ)dτ and

∫ t

t−�m
0,i

am
i zi(τ)dτ

throughout the system.

With new information available at time 0, it can be economically bene-
ficial to change previously planned production. When new calculations are
permitted after time 0, requiring that the index zi(·) be frozen after time 0 is
unnecessarily restrictive. The drawback of the first approach is that it applies
the model of the input-output transformation to what occurred prior to the
current time 0. With today’s information systems, it can be possible to know
how the flows prior to the current time 0 have in actuality progressed through
the system. This information is not being used in the first approach. For ex-
ample, suppose a 100 units were started in the interval (−3,−2). Suppose that
as a result of this input—according to the model—there should be a queue of
60 units at time 0, 40 of which should emerge as output in the interval (0, 1).
Suppose we know that, in actuality, the queue only contains 30 units, half as
much. It would be more accurate—ceteris paribus—to project only 20 units
of output emerging in the interval of (0, 1). It could be the case that the other
30 units had already emerged as output ahead of schedule. If this is the case,
then this output is already counted as completed inventory (as of time 0) and
should not be double-counted. It could be the case that the other 30 units had
been removed from the system due to poor quality, which means such input
will never emerge as output.
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Approach II: Use shop-floor information to make independent
projections

In this approach, shop-floor information is used to obtain the status of all
stages of the work-in-process, including the current account of completed out-
put. Given this additional information, one has to model how this work-in-
process will emerge as output, which could entail different transformations
than the ones used in the model. While more accurate, it requires additional
“bean-counting.”

To adopt this approach in the prior model formulations, all values of the
variables prior to the current time 0 are set to zero. Flow functions are added to
the equations to project future flow as a function of past flow. For example, in
the constant lead time model, cumulative output on the interval [0, t] becomes

∫ t

0

yi(τ)dτ = F̃i(t) +
∫ t−�i

0

zi(τ)dτ. (21.37)

Here, F̃i(·) represents the projected schedule of output after the current time 0
due to prior decisions before the current time 0. Similarly, in the multi-event,
constant lead time model, cumulative output on the interval [0, t] becomes

∫ t

0

yi(τ)dτ = F̃i(t) +
∑

r

∫ t−�i,r

0

wy
rzi(τ)dτ. (21.38)

For the continuous lead time model,

Yi(t)− Yi(0) = F̃i(t) +
∫ t

0

zi(τ)W
y
i (t− τ, τ)dτ. (21.39)

With respect to the constraints involving the transfers received, the projected
flow functions added to these constraints are represented as either Ṽj,i(t) and
Ṽ m

0,i(t).

Remark 21.3. Adopting Approach I to project cumulative output for the con-
tinuous lead time model,

Yi(t) − Yi(0) =
∫ t

−∞
zi(τ)W

y
i (t− τ, τ)dτ −

∫ 0

−∞
zi(τ)W

y
i (−τ, τ)dτ

=
∫ 0

−∞
zi(τ) [W y

i (t− τ, τ) −W y
i (−τ, τ)] dτ +

∫ t

0

zi(τ)W
y
i (t− τ, τ)dτ.

If the model is perfectly accurate, then the appropriate projected flow function
to use for Approach II is

F̃i(t) :=
∫ 0

−∞
zi(τ) [W y

i (t− τ, τ)] −W y
i (−τ, τ)] dτ.
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21.3 Computational Models

The continuous-time models developed in the previous section are impractical
from a computational perspective. A discrete-time approximation is used to
generate a computational model.

An appropriate time grid G is selected. The zi(·), the transfers vi,j(·),
vm
0,i(·), the exogenous inputs x̃, and the final outputs ỹi(·) are each constrained

to be constant on each period [tk−1, tk). Consequently, their corresponding
cumulative functions, Zi(·), Vi,j(·), V m

0,i(·), Ỹ i(·) are each piecewise linear with
constant slope on each period.

It is standard practice to maintain material balance only at the time grid
points tk. The following example illustrates this practice could lead to a pro-
duction plan that appears feasible, but is, in fact, not achievable.

Example 21.4. A standard time grid is assumed. All flows prior to time 0 are
zero. There are no initial inventories. Two units of product i are required
per unit of product j, i.e., ai

j = 2. Activity i’s production plan calls for a
constant rate of 100 starts in period 1 and activity j’s production plan calls
for a constant rate of 40 starts in period 4, i.e.,

zi(τ) = 250 · 1[0,1)(·) and zj(τ) = 40 · 1[3,4)(·).

If production processes are instantaneous, this production plan is (easily)
feasible: by the end of period 1 there will be 250 units of product 1 in inventory;
this level will remain constant until time 3 at which point the inventory of
product 1 will be drawn down at a constant rate of 80 to 170 by the end of
period 4. At the time grid points, the projected inventories of product i are
Ii
i (1) = 250, Ii

i (2) = Ii
i (3) = 250, Ii

i (4) = 170, respectively.
Suppose processes are not instantaneous. Output of product i emerges

after a constant lead time of 1.7 time units, and it takes a constant 1.8 time
units for activity j to inspect product i before it can be used as input. In the
notation of the constant lead time model, �i = 1.7 and �i,j = 1.8. Inventory of
product i is sent to activity j just-in-time, and there are no other constraints
on transfers. Consequently,

yi(τ) = zi(τ − 1.7) and vi,j(τ) = 2zj(τ + 1.8),

and the inventory of product i at activity i at time t is

Ii
i (t) =

∫ t

0

yi(τ)dτ −
∫ t

0

vi,j(τ)dτ

=
∫ t

0

zi(τ − 1.7)dτ − 2
∫ t

0

zj(τ + 1.8)dτ

=
∫ t−1.7

0

zi(τ)dτ − 2
∫ t+1.8

1.8

zj(τ)dτ

=
∫ t−1.7

0

100 · 1[0,1)(·)dτ − 2
∫ t+1.8

1.8

40 · 1[3,4)(·)dτ.
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In this case, the inventories of product i at activity i at the time grid points
are, respectively:

Ii
i (1) =

∫ −0.7

0

250 · 1[0,1)(·)dτ − 2
∫ 2.8

1.8

40 · 1[3,4)(·)dτ = 0− 0 = 0,

Ii
i (2) =

∫ 0.3

0

250 · 1[0,1)(·)dτ − 2
∫ 3.8

1.8

40 · 1[3,4)(·)dτ = 75− 64 = 11,

Ii
i (3) =

∫ 1.3

0

250 · 1[0,1)(·)dτ − 2
∫ 4.8

1.8

40 · 1[3,4)(·)dτ = 250− 80 = 170.

These inventories are all positive and all appears well. However, at the pro-
duction level, the production plan simultaneously calls for an output schedule
of product i and a transfer schedule of product i to activity j of

yi(τ) = 250 · 1[1.7,2.7)(·) and vi,j(τ) = 80 · 1[1.2,2.2)(·).

Obviously, activity i cannot meet its required transfer schedule on the interval
[1.2, 1.7] because it will not have produced any output by this time! This
production plan is most definitely not feasible, even though the projected
inventories at the time grid points are all non-negative (as required).

All flow functions in the example, namely, zi(τ), yi(τ), vi,j(τ), and v̂i,j(τ),
are step functions. Consequently, their respective cumulative functions are
all piecewise linear. A linear combination of piecewise linear functions is also
piecewise linear. Consequently, the FlowIn[0, t] and FlowOut[0, t] functions
in (21.1) are also piecewise linear, and thus I(t) is piecewise linear, too. The
following proposition provides necessary and sufficient conditions that ensure
I(t) ≥ 0 for all (relevant) time t.

Proposition 21.5. Let G ⊂ [0, T ] be a time grid and assume that T ∈ G.
Let H(·) be a piecewise linear function defined on [0, T ] whose points of non-
differentiability (the “breakpoints”) belong to G. If H(tk) ≥ 0 for all tk ∈ G,
then H(t) ≥ 0 for all t ∈ [0,∞).

Proof. Pick an arbitrary period [tk−1, tk] and t ∈ (tk−1, tk). Let sk denote
the constant slope of H(·) on the interval [tk−1, tk]. Since H(·) is piecewise
linear, H(t) = H(tk−1) + sk(t − tk−1). If sk ≥ 0, then clearly H(t) ≥ 0, too.
Suppose sk < 0. Since H(·) is piecewise linear, it is also true that H(t) =
H(tk)− sk(tk − t), which immediately implies that H(t) ≥ 0 in this case. As
t was chosen arbitrarily, the result follows. ��

In light of Proposition 21.5, an explanation of the problem illustrated by
Example 21.4 is simple. Let Gi

i denote the time grid whose points in time are
used to ensure material balance of product i at activity i holds for all time. The
points in time when Zi(·) changes its slope belong to the set of positive inte-
gers, and so, by Proposition 21.5, this set belongs to Gi

i . In addition, the points
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in time when Yi(·) changes its slope belong to the set {1.7, 2.7, 3.7, . . .}, and
the points it time when Vi,j(·) changes its slope belong to the set {1.2, 2.2, . . .}.
By Proposition 21.5, both of these sets of points must also be added to Gi

i .
With an expanded set Gi

i , additional constraints are imposed, which renders
the production plan of Example 21.4 infeasible.

Example 21.6. For the multi-event, lead time model, t ∈ Gi
i if and only if

either t or t − �yi,r belong to G. Similarly, t ∈ Gj
i if and only if either t or

t+ �j,i,r belong to G. One may use the derivation in Remark 18.15 on p. 320
to calculate all necessary integrals.

With respect to the service constraints

∑
i

as
i

(∑
r

wx
i,rzi(τ − �xi,r)

)
≤ x̃s(τ),

each side of this inequality is a step function. The points in time when the
left-hand side function may change its rates are {τ : τ − �xi,r ∈ G} and the
points in time when the right-hand side may change its rates belong to G.
Accordingly, the service constraints must be evaluated for all τ such that
either τ or τ − �xi,r belong to G.

The capacities of some services (e.g. labor) can be adjusted to meet the
demand within a period of time. In such cases, it is only necessary to ensure
that the total demand for the service does not exceed its supply within a period
of time. (This relaxation of the detailed τ -constraints implicitly assumes there
will be no excessively high spikes of demand within the period of time.) In
this case, the service constraint for service s becomes: for each period k,

∫ tk

tk−1

∑
i

as
i

(∑
r

wx
i,rzi(τ − �xi,r)

)
≤
∫ tk

tk−1

x̃s(τ)dτ := xs
k.

The integrals on the left-hand side can be computed using the derivation in
Remark 18.15 on p. 320. The right-hand side values are exogenously specified
parameters.

Example 21.7. For the continuous lead time model, the cumulative flows, in
general, will not be piecewise linear. Without further restrictions, material
balance cannot be guaranteed at all points in time. Since the model will be
run frequently, if computational time is an issue, then the time grid G should
have more time grid points earlier in the planning horizon. For this model, one
may use expressions of the form (18.19) on p. 325 to calculate the necessary
integrals.
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21.4 A Manufacturing Example

21.4.1 Production Process Description

A manufacturer produces several products fabricated from sheet metal. The
production system consists of five production centers in series: stamping,
drilling, assembly, finishing (painting) and packaging. The company operates
one shift per day, seven days per week, 365 days per year. A shift equals eight
hours. Additional information:

• A central storage facility receives all raw materials from the vendors and
transports the materials to the different production centers. Limited space
(in square feet) is available to store raw materials at central storage. The
(key) raw materials (e.g. sheet metal) are supplied by three different ven-
dors.

• Each center uses specialized equipment and skilled labor generic to its task.
Each center also uses unskilled labor. The pool of unskilled labor can be
used by any center at any time. There are a fixed number of machines at
each center.

• Limited space (in square feet) is available to store inventory of completed
semi-finished parts at each center.

• Stamped and drilled parts for any product can be subcontracted. The sub-
contractor ships the semi-finished parts to the manufacturer for assembly,
finishing, and packaging. Either subcontractor has capacity to fulfill any
requirements by the manufacturer.

• All parts drilled in-house are inspected. The inspection crew’s capacity is
sufficient to meet all demand. Statistical data are available on the percent
of parts passing inspection. Failed parts are discarded.

• There are no transportation lead times between centers.
• The manufacturer currently employs a fixed number of full-time employees

of each skill type and a number of unskilled laborers. Labor can be hired
or dismissed only at the beginning of the planning horizon, which is 12
weeks.

• Daily demands for final packaged product over the planning horizon are
pre-specified and must be met at all times.

21.4.2 Formulation

We formulate a dynamic model of production that can be used by manage-
ment to plan short-term production levels at each center and subcontracting
requirements.

A standard time grid t = 1, 2, . . . , T = 84 is adopted. The length of each
period is one day. Product flows across the production centers in series:

stamp −→ drill −→ assembly −→ finish −→ package (21.40)
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In addition, there is a central storage activity C that stores all incoming
materials from the three vendors, and transports all outbound materials to the
different production centers. An instantaneous, index-based dynamic model
of production will be used.

The decision variables, state variables, and parameters are as follows:

• Decision variables. There are two sets of decision variables: in-house pro-
duction variables and transfers from the subcontractors. Let zi,p,t denote
the constant rate of starts (in-house) of semi-finished product p at pro-
duction center i = stamp, drill, assembly, finish, package in period t; let
vp

SDj ,A,t denote the constant rate of stamped/drilled semi-finished prod-
uct p sent by subcontractor j = 1, 2 to the assembly production center in
period t; and let vm

Mj ,C,t denote the constant rate of material m sent by
vendor j = 1, 2, 3 to central storage in period t.

• State variables. Let Ip
i,t denote the inventory of completed semi-finished

product p at production center i at time t, and let Im
C,t denote the inventory

of material m at central storage at time t.
• Parameters. There are three sets of parameters: technical coefficients, ca-

pacities, and final product requirements. (Given the short cycle times, no
production lead time parameters will be necessary.)
– Technical coefficients: Let ap

i,q denote the number of units of semi-
finished product p required per unit of product q at production center
i, ae

i,p denote the number of units of skilled labor type e required per
unit of product p at production center i, au

i,p denote the number of units
of unskilled labor required per unit of product p at production center
i, am

i,p denote the number of units of raw material m required per unit
of product p at production center i, as

i,p denote the number of units of
machine service s required per unit of product p at production center
i, and let πp

drill ∈ [0, 1] denote the probability of an in-house drilled
semi-finished product p passing inspection at the assembly production
center.

– Capacities: Let x̃e
t denote the pool of skilled labor type e available in

period t, x̃u
t denote the pool of unskilled labor available in period t, x̃s

i,t

denote the amount of machine service s available at production center i
in period t, x̃m

t denote the available supply of raw material m available
in period t, x̃sq

i,t denote the capacity in square feet to store semi-finished
product at production center i in period t, let αi

p denote the square
feet required by semi-finished product p at production center i, and let
αm denote the square feet required by material m at central storage
C.

– Final product requirements: Let ỹp
t denote the number of units of final

packaged product p required in period t.

The material balance, service, and storage capacity constraints are as fol-
lows:
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• Material balance constraints: For each t,

Ip
stamp,t = Ip

stamp,0 +
t∑

τ=1

zp
stamp,τ −

∑
q

ap
drill,q

(
t∑

τ=1

zdrill,q,τ

)
≥ 0,

Ip
drill,τ = Ip

drill,0 +
t∑

τ=1

πp
drillz

p
drill,τ +

t∑
τ=1

vp
SD1,A,τ

+
t∑

τ=1

vp
SD2,A,τ −

∑
q

ap
assemble,q

(
t∑

τ=1

zassemble,q,τ

)
≥ 0,

Ip
assemble,t = Ip

assemble,0 +
t∑

τ=1

zp
assemble,τ −

∑
q

ap
finish,q

(
t∑

τ=1

zfinish,q,τ

)
≥ 0,

Ip
finish,t = Ip

finish,0 +
t∑

τ=1

zp
finish,τ −

∑
q

ap
package,q

(
t∑

τ=1

zpackage,q,τ

)
≥ 0,

Ip
package,t = Ip

packge,0 +
t∑

τ=1

zp
package,τ −

t∑
τ=1

ỹp
τ ≥ 0,

Im
C,t = Im

C,0 +
t∑

τ=1

(
vm

M1,C,τ + vm
M2,C,τ + vm

M3,C,τ

)

−
t∑

τ=1

(∑
i

∑
p

am
i,pzi,p,τ

)
≥ 0.

• Service capacity constraints: For each t, production center i, and machine
service s or labor type e,

∑
p

as
i,pzi,p,t ≤ x̃s

i,t,

∑
p

ae
i,pzi,p,t ≤ x̃e

i,t,

and for each t,
∑

i

∑
p

au
i,pzi,p,t ≤ x̃u

t .

• Storage capacity constraints: For each t, production center i or storage
center C,

∑
p

αp
i Ii,p,t ≤ x̃sq

i,t,

∑
m

αmIm
C,t ≤ x̃sq

t .
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21.4.3 Extensions

We extend the formulation to accommodate the following information:

• The constant shipping lead times for vendors 1, 2, and 3 are, respectively,
4, 5, and 10 days.

• The lead time for subcontractor one is a constant 2 days and the lead time
for subcontractor 2 is 3 days.

• The inspection crew at the drilling production center is given one day to
perform inspections.

• Regardless of where the parts were stamped and drilled, there is a one
delay before assembly begins to process incoming receipts.

• It takes two days for the paint to dry in the finishing center.

A constant lead time model will be used. With respect to initial conditions,
we shall adopt Approach I: the values of all variables defined below before
time 0 are pre-specified parameters. Furthermore, we shall assume that all
production variables after the current time 0 that required transfers prior to
the current time 0 are frozen. See Remark 21.2, p. 398.

Only the material balance constraints for drilling, finishing, and central
storage in the formulation above change. In this setting, these constraints
become: for each t,

Ip
drill,t = Ip

drill,0 +
t∑

τ=1

πp
drillz

p
drill,τ−1 +

t∑
τ=1

vp
SD1,A,τ−2

+
t∑

τ=1

vp
SD2,A,τ−3 −

∑
q

ap
assemble,q

(
t∑

τ=1

zassemble,q,τ+1

)
≥ 0,

Ip
finish,t = Ip

finish,0 +
t∑

τ=1

zp
finish,τ−2 −

∑
q

ap
package,q

(
t∑

τ=1

zpackage,q,τ

)
≥ 0,

Im
C,t = Im

C,0 +
t∑

τ=1

(
vm

M1,C,τ−4 + vm
M2,C,τ−5 + vm

M3,C,τ−10

)

−
t∑

τ=1

(∑
i

∑
p

am
i,pzi,p,τ

)
≥ 0.

Finally, we extend the previous formulation to accommodate the following
information:

• The lead times (for each material m) for vendor 1 follow this distribution:
materials arrive 20% of the time in 3 days, 50% of the time in 4 days, and
30% of the time in 5 days.

• The lead times (for each material m) for vendor 2 follow this distribution:
materials arrive 65% of the time in 5 days and 35% of the time in 10 days.
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• The lead times (for each material m) for vendor 3 follow this distribution:
materials arrive 25% of the time in 5 days, 60% of the time in 10 days,
and 15% of the time in 20 days.

Only the central storage constraint in the above formulation changes. Re-
place the left-hand side below with the right-hand side:

vm
M1,C,τ−4 ←− 0.20vm

M1,C,τ−3 + 0.50vm
M1,C,τ−4 + 0.30vm

M1,C,τ−5,

vm
M2,C,τ−4 ←− 0.65vm

M2,C,τ−5 + 0.35vm
M2,C,τ−10,

vm
M3,C,τ−4 ←− 0.25vm

M3,C,τ−5 + 0.60vm
M3,C,τ−10 + 0.15vm

M3,C,τ−20.

Remark 21.8. The new material balance constraints include expected transfers
of materials from the vendors. It does not account for risk. A more conservative
approach is to hedge the empirical distributions. For example, with respect
to vendor 1,

vm
M1,C,τ−4 ←− 0.10vm

M1,C,τ−3 + 0.40vm
M1,C,τ−4 + 0.50vm

M1,C,τ−5

could be a suitable choice. The most conservative approach is to use the
maximum lead time, e.g.,

vm
M1,C,τ−4 ←− vm

M1,C,τ−5.

This approach maintains maximum internal customer service at the expense
of possibly too much inventory. Since the maximum lead time for vendor 3 is
significant in relation to the average lead time, the most conservative approach
can be too costly.

21.5 Assembly with Rework Example

21.5.1 Production Process Description

A manufacturer assembles several hundred finished products in its final as-
sembly plant. The plant normally operates two 8-hour shifts per day, five days
per week. A third shift and/or weekend operations are possible, if required. A
high-level planning system determines monthly target requirements for each
final product. For some products, the monthly target requirements are broken
down even further within the month. Within the plant there are four stages
of production: initial assembly, test, rework, and final assembly. Additional
information:

• Initial assembly consists of attaching basic components. The initial as-
sembly area consists of up to four identical assembly lines of two-three
workstations. Assembly cycle time ranges from 4.0 to 8.0 minutes. After
a product has been initially assembled, it awaits to be tested. There is a
limited capacity to store assembled products.
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• When a product is scheduled for testing, it is routed via conveyor to an
Automated Storage and Retrieval System (AS/RS) for testing. The capac-
ity of the AS/RS is several thousand lots. Testing consists of conducting a
sequence of software programs, some of which are run several times. Test-
ing does not involve labor resources. The time to complete a successful
test depends on the type of product, and ranges from a few hours up to 48
hours. (For certain products, there is some degree of flexibility with respect
to the length of test.) Testing occurs continuously, that is, a test is not
stopped when the plant is not operating, e.g., on third shifts, weekends,
holidays, scheduled downtime. The exact times when each product begins
and fails each test (if it does) are recorded; all such records are stored in
a database. If a product fails its test, it awaits rework.

• The rework area consists of individual workstations where each worker
diagnoses and executes the required rework, mainly consisting of reassem-
bling or inserting new components. Rework cycle time ranges from 5.0 to
10.0 minutes. When rework has been completed, the product awaits to
be tested. There is a limited capacity to store reworked products. Rework
does not change the probability distribution of success or failure over time.

• The final assembly area consists of identical workstations, where each
worker attaches final components and packages the product. Final assem-
bly cycle time ranges from 3.0 to 5.0 minutes.

21.5.2 Formulation

We formulate a dynamic model of production that can be used by the manu-
facturer to plan short-term production levels by shift for the initial, final, and
rework areas to meet end-of-month target requirements for finished products.
In addition, it can assist senior-level management to answer the following
operational, tactical and strategic questions:

• Should we increase manufacturing productivity by reducing test lead time?
What will be the cost of customer dissatisfaction and potential future
rework?

• Should we purchase better components?
• Should we increase the AS/RS capacity?

There are four production activities: initial assembly, test, rework, and
final assembly. The outputs of the test facility are both pass and failed parts,
and separate inventories must be counted to ensure that rework only works
on failed parts and final assembly only works on parts that have passed the
test. A standard time grid t = 1, 2, . . . , T is adopted. The length of each time
period is a shift, only those shifts that are operational are represented, and T
represents the number of operational shifts remaining in the planning horizon.

With respect to the starts variables, let

• zinitial,p,τ denote starts in initial assembly of product p in period τ ,
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• zrework,p,τ denote starts in rework of product p in period τ , and
• zfinal,p,τ denote starts in final assembly of product p in period τ .

There are no starts variables in the test activity, as all transfers into the test
area immediately begin their respective tests.

With respect to the inventory state variables, let

• Ip
initial,t denote the inventory of initial assembled part p (awaiting testing)

at time t,
• I

(p,fail)
test,t denote the inventory of part p that has failed its test (awaiting

rework) at time t,
• I

(p,pass)
test,t denote the inventory of part p that has passed its test (awaiting

final assembly) at time t, and
• Ip

final,t denote the inventory of finished part p (awaiting delivery) at time
t.

A continuous-time lead time model is adopted for the test activity. Let

• π(p,pass) denote the probability of part p passing each test,
• �p denote the length of time, not necessarily integer, of the test for product

p, and
• W p(t, τ) denote probability that part p that began test at time τ will have

failed by time τ + t. Note that W p(�p, τ) = 1− π(p,pass).

Remark 21.9. In this setting, the cumulative lead time distribution W (·, τ) is
dependent on τ . For example, consider a τ corresponding to second shift on
Fridays, and suppose τ+1 corresponds to the first shift the following Monday.
That is, Friday’s third shift and the weekend shifts are not operational. Even
if the test took say 6 shifts (48 hours), here W p(2, τ) = 1.

Let
Πp

t−τ,τ =
∫ τ

τ−1

W p(t− u, u)du

denote the proportion of test starts of product p in period τ that will fail by
time t. The material balance constraints are as follows: For each t,

Ip
IA,t = Ip

IA,0 +
t∑

τ=1

zinitial,p,τ −
t∑

τ=1

vp
initial,test,τ ≥ 0,

I
(p,fail)
test,t = I

(p,fail)
test,0 +

∑
τ≤t

Πp
t−τ,τv

p
initial,test,τ

+
∑
τ≤t

Πp
t−τ,τv

p
rework,test,τ −

t∑
τ=1

vp
test,rework,τ ≥ 0,

I
(p,pass)
test,t = I

(p,pass)
test,0 +

∑
τ≤t

π(pass,p)vp
initial,test,τ−�p
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+
∑
τ≤t

π(p,pass)vp
rework,test,τ−�p

−
t∑

τ=1

vp
test,final,τ ≥ 0,

Ip
rework,t = Ip

rework,0 +
t∑

τ=1

vp
test,rework,τ −

t∑
τ=1

vp
rework,test,τ ≥ 0,

Ip
test,t = Ip

test,0 +
t∑

τ=1

vp
initial,test,τ +

t∑
τ=1

vp
rework,test,τ

−
t∑

τ=1

vp
test,rework,τ −

t∑
τ=1

vp
test,final,τ ≥ 0,

Ip
final,τ = Ip

final,0 +
t∑

τ=1

zfinal,p,τ −
t∑

τ=1

ỹp
τ ≥ 0.

The raw material, service, and storage capacity constraints are similar to
the previous example and will be left to the reader.

Remark 21.10. A simpler model to formulate is to include all shifts, opera-
tional or not. The z·,·,τ variables must be set to zero for those non-operational
periods τ . The benefit of this approach is that the Π parameters do not de-
pend on τ , which can reduce implementation error. The disadvantage of this
approach is that it includes additional material balance constraints that are
not needed.

21.5.3 Extensions

Suppose the period lengths are taken to equal one day? Let s(·), τ ∈ [0, 1],
denote the distribution of starts in each period (day) t. (See Section 18.4, p.
324.) For example, if s(τ) = 1.5, τ ∈ [0, 2/3], s(τ) = 0, τ ∈ (2/3, 1], then
the production rate within each period is constant over the first two shifts
(i.e., two-thirds of each day). Without further information, this is a natural
choice for s(·). A more general form is s(·, t), which permits this distribution
to depend on the day. In this case, the Π parameters become

Πt−τ,τ =
∫ 1

0

s(u)W (t− u, u)du.

21.6 Extensions to the Basic Model

21.6.1 Material Balance Constraints

The material balance constraints (21.2)-(21.5) of the basic model can be ex-
tended to accommodate the following phenomena (and more):

• Activities may produce several products.
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• Several activities may produce the same product.
• Activities may transfer product they do not produce.
• Activities may receive product they do not use.
• Intermediate or final products produced by the system can be obtained

externally (e.g., via a subcontractor).

The more flexible material balance constraints are as follows. For each activity
i = 1, 2, . . . , N + 1, product or material k, and for all t ≥ 0:

0 ≤ Ik
i (t) =

Initial inventory︷ ︸︸ ︷
Ik
i (0) +

Transfers In︷ ︸︸ ︷
N∑

j=0

∫ t

0

v̂k
j,i(τ)dτ +

Production︷ ︸︸ ︷∫ t

0

yk
i (τ)dτ

−

Transfers Out︷ ︸︸ ︷
N+1∑
j=1

∫ t

0

vk
i,j(τ)dτ −

Usage︷ ︸︸ ︷∫ t

0

xk
i (τ)dτ −

Final demand︷ ︸︸ ︷∫ t

0

ỹk(τ)dτ . (21.41)

In (21.41), it is understood that when i = N + 1, the yk
N+1(·), vk

N+1,j(·), and
xk

N+1(·) are all zero.

Remark 21.11. Realff et. al. [2004] use an example of this general type of
material balance constraint in their “reverse production system” design model
for carpet recycling.

21.6.2 Transfers of Product or Materials

The material balance constraints (21.41) can be further extended to accom-
modate the following phenomena:

• There can be several mechanisms (e.g., alternate shipping modes or routes)
to transfer product.

• There can be several sources (e.g. vendors) to acquire raw materials.

Let r denote a generic transfer mechanism or exogenous supply source. Let
vk

i,j,r(τ) denote the transfer of product or material k sent by activity i to
activity j via transfer mechanism r at time τ , and let v̂k

i,j,r(τ) = tki,j,r[vi,j,r](τ)
denote the transfer of product or material k received by activity i to activity
j via transfer mechanism r. In (21.41), one replaces vk

i,j(τ) and v̂k
i,j(τ) with

vk
i,j,r(τ) and v̂k

i,j,r(τ), respectively, and sums over both j and r.

21.6.3 Activity Constraints

Practical models include many specialized constraints depending on the ap-
plication. For example:

• There can be limited capacity to store products.
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• A machine may only be able to produce one product at a time.
• There can be a setup time to prepare a machine for production (e.g., clean,

test) or a changeover time to prepare a machine for the next product’s
production run (e.g., reconfigure machine settings).

One simple model to accommodate the first constraint is
∑

k

γk
i I

k
i (τ) ≤ x̃γi(τ). (21.42)

In (21.42), the parameters γk
i represent conversion factors that translate units

of inventory into units of storage (e.g., square feet, cubic feet). The left-hand
side represents the usage of the service input ‘γi’ at time τ , and the right-hand
side x̃γi(τ) represents the available service capacity of input γi at time τ .

The second constraint is an example of a machine scheduling constraint,
appropriate from the shop floor perspective. Both this constraint and the
third one can be represented in a mathematical programming formulation
by introducing (binary) logical variables and constraints (see, for example,
Wolsey and Nemhauser [1999]). Introducing such variables and constraints
can make the problem difficult to solve. If setup and changeover times are not
too significant, this class of physical phenomena can be ignored in the model
of technology. Alternatively, a projection of the amount of setup/changeover
time per period can be deducted from the available capacity of this resource.

21.6.4 Service Output

An activity may produce a service s that cannot be stored. This can be ac-
commodated by adding constraints of the form

∑
j

vs
i,j(τ) ≤ ys

i (τ), (21.43)

and ∑
j

v̂s
j,i(τ) ≥ xs

i (τ). (21.44)

In (21.43), the vi,j(τ) represent an allocation of the service s output of activity
i to the other activities at time τ . The v̂j,i(τ) permit a possible time lag in
the receipt of this service.

21.6.5 Alternate Production Processes

Often several processes can be used to manufacture a product within a work
center or plant. Furthermore, how this product is manufactured can be irrel-
evant to final customers or to activities that use this product as intermediate
product input. In this case, product inventory does not distinguish the source
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of production. To properly account for product inventory, all output pro-
duced by the different processes must be aggregated, and to properly account
for resource use, all resources consumed by the separate processes must be
aggregated, too.

To be concrete, suppose there are N alternate processes to produce prod-
uct i. Let xin(·) and yin(·) = [fin(xin)](·) denote, respectively, the input vector
and output of product i produced by process n = 1, 2, . . . , N . Let activity i
be identified with production of product i by all processes. Let xk

i (τ) denote
the aggregate input of resource k by all processes, and let yi(τ) denote the
aggregate output produced by all processes. In the material balance constraint
for product i,

∑N
n=1 yin(τ) replaces yi(τ), and in the resource constraint as-

sociated with resource k,
∑N

n=1 x
k
in

(τ) replaces xk
i (τ).

Remark 21.12. Aggregating output, as described above, can be modeled by
introducing a consolidation activity, as follows. Activity in, n = 1, 2, . . . , N ,
produces product ‘in’. There is no inventory of product in. This activity’s
input-output process is characterized by the dynamic production function
yin(·) = [fin(xin)](·). This activity’s output is immediately transferred to and
instantaneously received by activity i, i.e.,

yin(·) = vin,i(·) = v̂in,i(·).

Activity i uses no service resource to produce its output; rather, it instanta-
neously consolidates all intermediate product input, i.e.,

yi(·) =
N∑

n=1

v̂in,i(·).

The constraints associated with the basic model or its extensions can now be
applied without further ad-hoc adjustments.

21.6.6 Load-Dependent, Multi-Product, Single-Stage Model

In Section 19.1.4, we described a practical way to represent a load-dependent
single-input, single-output process. Here, we show how to extend this formu-
lation when there are multiple products flowing through a single stage. (The
extension involving multiple stages is relatively straightforward.) We shall
assume a discrete-time approximation using a standard time grid.

Let zi,τ and yi,τ denote, respectively, the starts and output of product i
in period τ . The work queue of product i at time τ is

qi,τ := qi,τ−1 + zi,τ − yi,τ . (21.45)

The stage work queue at time τ is a weighted sum of the product work queues,
and is defined as
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qτ :=
∑

i

βi,τ qi,τ . (21.46)

The weights βi,τ are pre-specified and are chosen to reflect the relative im-
portance of each product on the aggregate workload at this stage. Let yi,τ,t

denote the output of product i in period t due to the input in period τ ≤ t,
and let yi,t denote the output in period t as a result of all past input including
its initial queue, q0,i. Let

0 := q0 < q1 < q2 < · · · < qL

denote pre-specified stage queue levels. (The last level, qL, is sufficiently high
to bound above any realized queue size.) For each τ , t such that τ ≤ t, the
new model for output for product i is

yi,τ,t := zi,τΠ
�
τ,t, if q(τ) ∈ [q�−1, q�), (21.47)

yi,t :=
∑
τ≤t

yi,τ,t + q0,iΠ0,t. (21.48)

The parameters Π0,t define the initial lead time distribution, which is a func-
tion of the initial queue q0. It remains to implement the logical expression
(21.47). This can be achieved with the use of binary variables and adding two
sets of linear constraints, as follows.

• Output constraints. For each τ , t such that τ ≤ t, and each � = 1, 2, . . . , L,
add these two constraints:

yi,τ,t ≤ zi,τΠ
�
τ,t + M(1− ξτ,�), (21.49)

yi,τ,t ≥ zi,τΠ
�
τ,t − M(1− ξτ,�), (21.50)

where M is a sufficiently large number, and

ξτ,� :=

{
1, if q(τ) ∈ [q�−1, q�),

0, otherwise.
(21.51)

If ξτ,� = 0, then (21.49) and (21.50) constrain yi,τ,t to lie in the interval
(−M,M), which, to all intents and purposes, is equivalent to (−∞,∞). In
this case, the constraints (21.49) and (21.49) are automatically satisfied.
On the other hand, if ξτ,� = 1, then (21.49) and (21.50) constrain yi,τ,t

to lie both above and below zi,τΠ
�
τ,t. Obviously, this can only happen if

yi,τ,t = zi,τΠ
�
τ,t.

• Queue constraints. The logical variables ξτ,� must be linked to the queue
values, the qτ , so as to be consistent with their intended purpose.4 In
conjunction with the logical constraints

4 These constraints are identical to the ones presented in Section 19.1.4, but we
reproduce them here for completeness.
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L∑
�=1

ξτ,� = 1, for each τ, (21.52)

this is accomplished by adding two new constraints for each time period
τ :

qτ ≤
L∑

�=1

ξτ,�q
�, (21.53)

qτ ≥
L∑

�=1

ξτ,�q
�−1. (21.54)

Suppose qτ ∈ (q�̂−1, q�̂). Since the ξτ,� are binary variables, for each τ ,
(21.45) implies there will be exactly one index �(τ) such that ξτ,�(τ) = 1.
To satisfy constraints (21.53) and (21.54), the only choice for �(τ) is �̂.

With respect to material balance constraints, for each product i and each
period t,

Ii,t = Ii,0 +
∑
τ≤t

yi,τ −
∑
τ≤t

vi,N+1,τ . (21.55)

In sum, in addition to the standard service constraints, the proposed load-
dependent, multi-product, single-stage continuous lead time model uses con-
straints (21.45) and (21.49)-(21.55).

Remark 21.13. Modeling the lead time distribution as a function of system
load is a nontrivial task. A practical way to capture this phenomena is via
an iterative, simulation-optimization approach. The basic idea is as follows.
The first step uses shop-floor statistics to estimate an initial candidate lead
time distribution, W 0(·, ·). Next, the model of technology is optimized to
produce a production plan of starts, z1, for the activities. This production
plan is input to a simulation model that estimates the new candidate lead time
distribution, W 1(·, ·). This new distribution is used to model of technology,
another optimization is undertaken to yield a new production plan, z2, which
leads to W 2(·, ·) and so forth. There are two conceptual problems:

• Lack of convergence. There are no guarantees that this iterative process
will converge to a limiting distribution W∞(·, ·).

• Lack of uniqueness. Even if a limiting distribution is guaranteed to exist,
it need not be unique. That is, the limit distribution may depend on the
initial candidate distribution.

Problems aside, this approach can be very effective for simultaneously rep-
resenting and optimizing a technology. See Hung and Leachman [1996] for
an example of how to successfully use this approach for production planning
in the semiconductor industry, an extremely sophisticated and challenging
manufacturing environment.



21.7 Efficiency and Productivity Measurement 417

21.7 Efficiency and Productivity Measurement

We have described a number of descriptions for technology T = {(x̃, ỹ)}
involving a network of interrelated activities. Given T , in principle, one may
undertake efficiency and productivity measurement, as described in Parts I
and II.

21.7.1 Input and Output Efficiency

The radial measure of input and output efficiency use, respectively, the in-
put distance function DT (x̃, ỹ) and output distance function OT (x̃, ỹ). In this
setting, the distance functions are identical to their counterparts previously
defined in Part I, except that here their arguments are now vector-valued func-
tions of time. Since inputs and output occur over time, Russell-type measures
of distance (with time-varying weights) should also be investigated.

21.7.2 Cost and Allocative Efficiency

For a given set of (time-varying) prices, the traditional cost function

Q(ỹ, p̃) = min
{ n∑

i=1

∫ T

0

pi(τ)x̃i(τ)dτ : (x̃, ỹ) ∈ T
}

can be computed, which can be used to assess cost and allocative efficiency,
as described in Parts I and II.

When the production process involves a network of activities that generate
intermediate products (i.e., work-in-process), the cost of holding inventory

∑
i,p

∫ T

0

ci,p(τ)I
p
i (τ)dτ

is normally added. The constant ci,p(τ) incorporates the value of product p
at activity i and the “time value of money.”

For final products (or finished goods inventory), sometimes the customer
will accept product later, in which case the customer order is on backorder.
Missing customer due dates can be expensive (e.g., loss of goodwill that re-
duces future demands), and can represent a different cost than the traditional
inventory holding cost. To differentiate these costs and to permit backorders,
final product inventories at activity N + 1 are permitted to be negative. In
the cost function, one replaces

∑
p

∫ T

0

cN+1,p(τ)I
p
N+1(τ)dτ

with
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∑
p

∫ T

0

cN+1,p(τ)max{Ip
N+1(τ), 0}dτ −

∑
p

∫ T

0

bN+1,p(τ)min{Ip
N+1(τ), 0}dτ.

The constant bN+1,p(τ) incorporates the cost of not meeting customer demand
of product p and the “time value of money.”

21.7.3 Productivity Assessment

The distance functions DT (x̃, ỹ) and OT (x̃, ỹ) may be used to calculate tech-
nical and efficiency change, as described in Part II.

21.7.4 Computation

All discrete-time approximations of technology described in this chapter yield
a set of linear inequalities in the core index variables. Coupled with an appro-
priate objective function, the measures of efficiency and productivity listed
above can be computed via mathematical programming software. For exam-
ple, if the objective functions are all linear and there are no complicating
constraints that require integer variables, linear programming can be used; if
the objective functions are all convex (concave) and there are no complicating
constraints that require integer variables, convex (concave) programming can
be used; finally, if integer variables are needed, then integer programming op-
timization software must be used, or a heuristic algorithm must be developed
or applied. In the last case, it may not be possible to guarantee an optimal
solution in reasonable amount of time. However, a provably good solution can
often be obtained in a satisfactory amount of time.
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Optimizing Labor Resources

Within a Warehouse

We apply the ideas presented in Part IV to develop a dynamic, multi-stage
model of warehouse operations to optimize labor resources.

22.1 Introduction

In today’s marketplace, warehouse systems store thousands of stock keeping
units (skus), have tight delivery times and demands for value-added services.
In lieu of simply throwing more money at the problem, competitive pressures
force warehouse managers to squeeze the most out of their labor, capital,
space, and information to meet these increased demands.

A retrofit of an existing facility (or a new design) begins by forecasting
the short-, medium- and long-term requirements, which are largely dictated
by the number of skus, their different sizes, the number of lines, customer
order patterns, and customer service requirements. A design consists of two
interrelated components: a physical design—the configuration of labor, capital
and space; and a material flow design—the inbound and outbound processes,
namely, how product is received (unloaded, staged, transported to storage)
and shipped (picked, packed, and loaded). For a given set of requirements,
there are many possible designs due to the myriad of substitution possibilities
among resource categories. Examples include:

• Information vs. Labor. Use of bar-codes, light aids, or a paperless Ware-
house Management System (WMS) to reduce labor requirements.

• Capital vs. Labor. Use of a semi-automated or automated picking system
(e.g., carousel, miniload, or A-frame) to replace a walk-and-pick system.
Use of conveyor and sortation equipment to replace manual assembly.

• Capital vs. Space. Use of narrow or very narrow aisle trucks, overhead con-
veyor, mezzanines, person-aboard AS/RS, or facility expansion to create
more space.
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The most economical choice depends in large part on the availability and
cost of land and labor, the type of inventory, and the customer service time
window. Each of the above options requires a significant expenditure, so any
recommendation for change should be economically justified relative to the
best use of the current design.

There are a number of practical ways to significantly improve a current
system without a major capital expenditure. Each is designed to reduce cost by
simply taking work out of the system. In this chapter, we develop a dynamic
model of a warehouse system for the purpose of labor staffing and workforce
scheduling. We shall concentrate on the picking/shipping process, as it rep-
resents the largest share of the operations cost. We develop an optimization
model that will determine the various times personnel (pickers and packers)
report to work throughout the day, and how to strategically use overtime and
part-time staff. By better matching workers to the timing of work require-
ments, significant reductions in both the number of workers and overtime
will be achieved. As a by-product, the model suggests order release guidelines
that will improve labor efficiency and ease demands for space by reducing
unnecessary work-in-process.

22.2 System Description

We begin by describing the class of warehouse systems we have in mind, and
the sources of inefficiencies that commonly occur. Our generic system covers
the key aspects found in conventional facilities, but is concrete enough to
illustrate the optimization-based approach.

22.2.1 Business Environment

Our example facility ships a large variety of product to small businesses via
parcel post and to large corporate clients via trailers. The facility houses over
25,000 sku’s and ships about two million lines per year. Product is stored in
shelving, case flow rack, or pallet rack, and a walk-and-pick system is used
for order picking. The average lines per order is 4.0 with 40% of all orders
being single-line but with many orders involve many lines. Broken case picking
represents 75% of all lines with the remainder being full case lines.

The business has seen a tremendous growth in sku’s. The facility, which
at one time had ample space, is now cramped. During peak times, there is a
large amount of work-in-process, which has slowed workers down and increased
order cycle times. Since expansion of the facility is not possible, management
would like to increase the use of space, which they feel would increase labor
productivity. Management also feels they can increase business if they could
extend the order cutoff time from 6:00pm to 7:00-8:00pm, but this would
require a reduction in the order cycle time. (Any order, if received by 6:00pm,
will be processed and shipped for next day delivery.) Finally, there has been a
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significant increase in overtime use, which management would obviously like
to reduce.

22.2.2 Material Flow

Approximately 20 trailers depart the same time each day. Each trailer follows
the same route, and each stop corresponds to a corporate customer. Trailer
departure times are set primarily according to route distances in that the
trailers with the longest routes leave first. Some departure times are set to
satisfy the customer’s receiving time window. There are three “route waves”
of trailer departures centered around the times 7:30pm, 10:00pm, and 2:00am.

There are three distinct zones that respectively fulfill the broken case, full
case, and full pallet picking requirements. As orders arrive into the system, the
WMS prints and routes the suborders to each zone. Order batching occurs
within the broken and full case zones. Order pickers manually assemble a
batch of orders to roughly correspond to an hour’s worth of work. Orders
are prioritized according to their route wave. Lines are picked to totes, and
partitions are used to maintain order integrity. When a batch has been picked,
bar-code labels are affixed, and the totes are then dropped onto conveyors that
route them to their appropriate check/pack station. All packers check product
to ensure accuracy. Some packers pack product into cases; others must use a
shrink-wrap machine. Packers stage completed product onto pallets that await
loading onto trailers.

22.2.3 Workforce Schedule

Most order pickers and all packers report at 3:30pm. Some order pickers report
at noon to build up a queue of work in front of the packers. Full-time workers
are scheduled for 40-hr work weeks and receive full benefits. There are a few
part-timer workers who work less than 25 hours per week and who do not
receive full benefits. Labor markets are tight, but management feels that they
can hire part-time workers. Since a part-time worker hour is cheaper than a
full time worker hour, management would like to hire part-timers, but it does
not know the best times during the day or week for them to be scheduled.

22.2.4 Sources of Inefficiency

If

• all order-lines arrived early enough in the day,
• if there were enough staging capacity, and
• if all order-lines arrived smoothly throughout the day with little variability

from day-to-day,
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then it would be possible to efficiently assign workers to the pick and pack
stages to smooth material flow, and to build the pallets for each route and
stage them well in advance of loading. Scheduling the workforce would be
relatively easy.

Unfortunately, this is not the case. Approximately 25% of all lines arrive
early (before 2:00pm), but the majority (over 50%) arrive in the last two
hours. Variability of demand within each day and each week is reasonably
high. Within each week Mondays and Fridays are the light-demand days.
There is one highly seasonal period (December-January).

In recognition of the significant workload that must be completed each
evening by 7:30pm (the first route wave), the second shift begins at the usual
time of 3:30pm. Due to the high variability of demand, and since a worker-
hour cannot be inventoried, the number of full time workers is hired to meet
peak demand. Normal labor capacity is high on days when demand is low,
which results in a significant amount of idle time. Normal labor capacity is
insufficient on days when demand is high, which results in a significant amount
of overtime to complete the workload associated with the final route wave.
(Some labor inefficiency is inevitable with an inflexible workforce schedule.)

Order pickers naturally first pick those orders associated with the first
route. During the first few hours of the second shift, however, it is often the
case that the arrival queue is empty for those orders. Since order pickers
are measured against strict productivity standards, they do not wish to be
idle, so they continue to pick orders for the second and third route waves, if
necessary. Essentially, then, the facility operates an implicit push order release
policy. This causes a high degree of work-in-process that congests the system,
as vast numbers of totes are staged on conveyor or even on the floor. Labor
inefficiency results, as packers must search for the totes that belong to the
early route waves.

Some work-in-process is inevitable, since a strict pull system will not work
for the following reasons. With so many sku’s, the facility’s footprint is large,
which necessitates order batching to achieve picking efficiency. On the ship-
ping side, all orders for all customers on a route must be accumulated before
the trailer may depart. Reducing the batch size will lower work-in-process
but, while helpful, it does not attack a root problem. As is well-known in
manufacturing, an imbalance among production rates along a production line
will either result in too much work-in-process or possible starvation in front
of a stage. For a warehouse system, production rates for pick and pack stages
are determined by the amount of labor assigned. To ensure that the packing
stage will never be starved, there is a natural tendency to assign too many
workers to picking “to be on the safe side.”

Labor staffing determines aggregate capacity. Workforce scheduling de-
termines the flow of labor, namely, who should work where and when. To
make it work, however, an order release policy must be determined that will
strategically build the right work-in-process, which is possible since a signif-
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icant number of lines do arrive early enough. The next section develops an
optimization model to achieve this objective.

22.3 An Optimization Model

Conceptually, the process flow of a warehouse system is analogous to the pro-
cess flow of a manufacturing system. That is, raw material is processed through
a variety of value-added production stages, building up work-in-process that
eventually is transformed into final output for use by the end customer. There
are three main production or processing stages: picking, packing, and loading.
The picking stage takes the raw material “customer-lines” that are “stored” in
the Warehouse Management System (WMS) and transforms them into phys-
ical product stored in totes. The packing process transforms the totes into
packaged quantities stored on pallets that await loading onto trailers accord-
ing to the route schedule. The loading process transforms the pallets that are
staged on the floor onto the trailers for shipment. There is work-in-process
between the pick and pack stages (the totes) and between the pack and load
stages (the pallets).

The optimization model we develop below takes the queue of line arrivals
as known for each day d ∈ D. It determines the amount and flow of work-
ers, which defines the labor capacities. It determines which lines should be
processed when (the production schedule) to meet the due dates (the trailer
departure times). The production schedule will be consistent with labor ca-
pacities and space constraints. The objective of the optimization is to meet
the requirements at minimum labor cost.

The set D could correspond to the actual line arrivals for every day in a
past week, month, season, etc. We shall assume that D has been partitioned
into subsets Di. The labor capacities and flow of workers will be constant for
each d ∈ Di. For example, D1 could correspond to all Mondays and Fridays,
and D2 could correspond to all Tuesdays, Wednesdays and Thursdays. The
optimization model is separately formulated for each Di.

Since the optimization model assumes knowledge of the line arrivals, which
in actuality management will not know, the production schedule output pro-
vides order release guidelines. We will discuss this in more detail in the sub-
sequent section.

22.3.1 Parameters

The parameter classes involve space conversion factors, labor rates, capacities,
and the customer lines.

• Space conversion factors.
– ToteLines[r, z, p] denotes the average number of lines per tote on each

route r, in pick zone z, using packing process p. These parameters are
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used to convert lines into requirements for space to store tote work-in-
process between the pick and pack stages. (It would be more accurate
to record conversion factors at the customer-line level, which is often
difficult and expensive to estimate.)

• Labor rates.
– PickRate[z] denotes the average pick rate for each zone z measured in

lines per hour.
– PackRate[p] denotes the average pack rate for each process p measured

in lines per hour.
• Labor types and costs. A worker of type “H” works H consecutive hours.

For full time workers H ≥ 8 and for part time workers H ≤ 4.
– CH denotes the cost per hour of an H type worker.
– CO denotes the cost per overtime hour.
– PartT imeBound denotes the maximum number of part time workers

the company may hire.
• Capacities.

– ToteCapacity[p] denotes the tote capacity of work-in-process between
the pick and pack stages.

– ProcessRateBound[p] denotes the bound on the production rate of
process p. Some packing processes require a machine and/or there can
be a limit on the size of a crew.

• Customer lines.
– LINES[r, z, p, t, d] denotes the cumulative number of customer lines

for route r in zone z requiring process p up to time period t on day
d. This represents the queue of arrivals that can be inducted into the
system.

– Sr denotes the period by which all lines for route r must be packed.
• Earliest start times.

– τrp denotes the earliest period by which any lines on route r requiring
process p can be packed. These parameters ensure that there will be
sufficient space to stage pallets awaiting loading, since a pallet must be
preset on the floor to store even a single line.

22.3.2 Decision Variables

The decision variable classes determine the production schedule, labor capac-
ities, and workforce schedule.

• Production quantities. The rate of induction of order-lines and subsequent
processing will determine the amount of labor required to meet the ship-
ping due dates.
– Pick[z, r, p, t, d] denotes the number of lines in zone z on route r requir-

ing process p that are picked within period t on day d. PICK[z, r, p, t, d]
denotes the cumulative number of such lines up to time t.
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– Pack[r, p, t, d] denotes the number of lines on route r requiring process
p that are packed within period t on day d. PACK[z, r, p, t, d] denotes
the cumulative number of such lines up to time t.

• Labor capacities.
– Labor[H, t,Di] denotes the (integer) number of workers who begin their

shift at the beginning of period t for each day d ∈ Di and who work
for H consecutive periods.

• Labor assignments.
– Pickers[z, t,Di] denotes the (integer) number of workers assigned to

pick zone z in period t for each day d ∈ Di.
– Packers[t,Di] denotes the (integer) number of workers assigned to pack

zone z in period t for each day d ∈ Di.

22.3.3 Constraints

The constraint classes involve labor, inventory, space, and process bound re-
quirements.

• Labor requirements.

A production schedule for picking and packing requires a minimum amount
of labor hours, and must not exceed the amount of workers assigned to
the respective picking and packing zones. For all zones z, periods t, and
days d,

∑
r

∑
p

Pick[r, z, p, t, d]
PickRate[z]

≤ Pickers[z, t, d]. (22.1)

∑
r

∑
p

Pack[r, p, t, d]
PackRate[z]

≤ Packers[t, d]. (22.2)

Workforce assignments cannot exceed the total amount of full and part
time workers actually present during each period.

∑
z

Pickers[z, t, d] + Packers[t, d] ≤
∑
H

t∑
τ=t−H+1

Labor[H, τ,Di].

(22.3)
The number of part time workers cannot exceed the maximum amount
that can be hired. For all periods t,

∑
H≤4

Labor[H, t,Di] ≤ PartT imeBound. (22.4)
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• Inventory requirements.

No line can be packed until it has been picked. To be conservative a one-
period lead time is assumed between the pick and pack stages; that is, only
those lines that have been picked prior to the beginning of a period can be
packed during the period. For all routes r, packing processes p, periods t,
and days d,

∑
z

PICK[r, z, p, t− 1, d] ≥ PACK[r, p, t, d]. (22.5)

All lines for a route must be packed by its due date Sr. For all routes r,
packing processes p, and days d,

PACK[r, p, Sr, d] =
∑

z

LINES[r, z, p, Sr − 1, d]. (22.6)

• Space requirements.

To control congestion, the work-in-process in front of each packing process
is bounded. The work-in-process is the difference between the cumulative
number of totes picked and packed. For all packing processes p, periods t,
and days d,

∑
r

∑
z PICK[r, z, p, t, d]− PACK[r, p, t, d]

ToteLines[p]
≤ ToteCapacity[p].

(22.7)
The limits on pallet staging capacity, proxied by the earliest packing start
times for each route, must not be exceeded. For all routes r, packing pro-
cesses p, periods t < τrp, and days d,

PACK[r, p, t, d] = 0. (22.8)

(The variable PACK[r, p, t, d] only enters the first equation as long as
t ≤ Sr.)

• Process rate bounds.

The limits on how much can be packed must not be exceeded. For all
packing processes p, periods t, and days d,∑

r

Pack[r, p, t, d] ≤ ProcessRateBound[p]. (22.9)

22.3.4 Objective Function

Since there are no capital expenditures (by fiat), and since space is given and
accounted for in the constraints, the workforce schedule and labor staffing are
chosen to minimize the cost of labor.

MIN
∑
H

∑
t

[CH min(H, 8) + CO max(H − 8, 0)] ∗Labor[H, t,Di] (22.10)
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22.4 Implementation

22.4.1 Computational Issues

The prototype optimization model has linear constraints and objective, but
uses integer variables for labor staffing and workforce scheduling. Integer vari-
ables are used to model the reasonable requirement that if a worker is assigned
to a zone for a period, then all of that worker’s time for the period cannot
be used elsewhere. It is not practical from either a management or efficiency
perspective to assume that workers are freely movable, minute-by-minute.

Generally, the computational time grows exponentially with the number
of integer variables. With three possible worker assignments in any period—
broken or full case picking and packing—and using 30-minute periods, the
number of integer variables required to model the possibilities for labor staffing
and workforce scheduling is about 150 for each cluster of days Di. Since the use
of integer variables poses computational difficulties, any reasonable limitation
that reduces the number of such variables will be beneficial. Here are some
options:

• Limit shift length. As a reasonable starting point, assume that a full time
worker can work at most 12 hours per day, thus limiting a worker’s over-
time to 4 hours per night. Assume that a part time worker must work 4
hours per shift. Thus H can take on 6 values.

• Expand period length. Expand the period length to say 1 or 2 hours. Since
a worker’s time is billed to the zone for the entire period regardless of
actual use, lengthening the time period will lead to an incremental loss in
labor efficiency.

• Limit shift starting times. Assume that a full time worker can begin his
shift at any time between noon and 6:30pm, and that a part time worker
can begin his shift at either noon, 2pm, 4pm, 6pm, 8pm, 10pm. (Recall
that the third route wave departs at 2:00am.)

• Implement worker waves. A worker wave is a block of time during the
day in which all assignments are frozen. A worker wave eases the burdens
associated with managing a highly variable flow of workers. For example,
in lieu of a workforce schedule that results in 12, 4 and 8 pickers assigned
to a pick zone in three consecutive periods, a smoother assignment would
assign 8 pickers in each period. To establish the worker waves, one could
first solve a few problems to see where natural breaks occur in the schedule.

• Solve one day at a time. One could solve the prototype model for each
day of the week but only use one day at a time. By examining the output,
one can observe the general trend to obtain a suitable labor staffing and
workforce schedule for that day and every other day in the week. Pooling
all days for a week results in a loss of labor efficiency, but the weekly
schedule is easier to manage.
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22.4.2 Using the Prototype Model: A Case Study

To illustrate how to use the prototype model, all options discussed above were
implemented on a real data set, with the exception of expanding the period
length. The total cost was measured in worker hours with the cost of a regular
time worker hour being set to 1.0, the cost of an overtime hour being set to 1.5,
and the cost of a part time worker hour being set to 0.4. (Part time workers
are not paid full benefits.) A maximum of 10 part time workers could be hired.
The earliest start time for packing any lines associated with the second route
wave was set at 8:00pm and was set at 10:00pm for the third route wave.

The optimization model was separately run for each of 19 days within a
peak month. An AMPL front-end for model maintenance was used in con-
junction with the CPLEX mixed-integer linear programming engine. Here are
the steps:

• Step 1: Determine the worker waves. Four worker waves revealed them-
selves naturally: noon-4:30pm, 4:30pm-8:30pm, 8:30pm-12:30am, 12:30am-
2:30am.

• Step 2: Determine sensible start times for workers. The worker waves were
fixed and the model was run again for each day. The start times for most
full time workers were at noon, 4:30pm and 6:30pm, and the start times
for most part time workers were at 4:00pm and at 10:00pm. These start
times were subsequently fixed.

• Step 3: Determine baseline full time staff to handle non-peak days. The
worker waves and start times were fixed, and the model was run again for
each day. The results showed that no part time workers were hired and no
overtime was used for those days whose line total was less than 8,000 lines.
With respect to full time workers 7-8 were hired at noon, 14-16 were hired
to start at 4:30pm, and 4-5 were hired to start at 6:30pm. Since the model
does not include down time for dinner, breaks, and sick time/vacation, it
wad decided to add 15% to the workforce. Since the data were collected
for the peak month (in which some overtime and temporary workers are
to be expected), and since most days throughout the year fell below the
8,000 line level, it was decided to set a baseline full time staff to meet the
8,000 line level, as follows: 9@noon, 18@4:30pm, and 6@6:30pm.

• Step 4: Determine temporary and part time staff to handle peak days. The
model was then run again for each day with the baseline staff fixed and
only permitting additional full time workers to be hired at 6:30pm. These
workers would be viewed as temporary staff required to meet the peak
demand during the peak month.

• Step 5: Determine order release guidelines.

22.4.3 Benefits and Other Applications

Using the optimization-based approach is a systematic way to staff labor and
schedule the workforce.
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The following results were reported to management:

• Labor staffing: the total number of lines, the theoretical minimum number
of full-time equivalent workers, the optimum labor cost, the distribution
of the labor staffing, and the amount of overtime for each day.

• Workforce schedule: the number of workers assigned to each pick and pack
zone within each worker wave for each day.

• Order release guidelines: cumulative number of lines picked for each route.
For example, roughly 20% of all lines for route 1 should be released and
picked by 2:00pm, 35% by 4:00pm, and 80% by 6:00pm; the corresponding
numbers for route 2 are 5%, 15%, and 20% respectively.

• Packing guidelines: cumulative number of lines packed for each route. For
example, roughly 60% of all route 1 lines that have been picked by 2:00pm
should be packed by this time, 70% by 4:00pm, and 80% by 6:00pm; for
route 2 roughly 40% of all lines that have been picked by 8:00pm should
be packed by this time and 80% should be packed by 10:00pm.

After reviewing the results, it was determined that (i) due to the late line
arrivals and early departure time for the first route wave, a strategic use of
part timer workers at 4:00pm helped to reduce the overall need for full time
staff at 4:30pm; and (ii) the 6:30pm start times for the full time workers and
the 10:00pm start times for the 4-hour part timers helped to eliminate the
overtime used by the original 3:30pm crew to handle occasional peak loads
for the third route wave.

The projected benefits included a 20% reduction in full time staff for nor-
mal days (41 down to 33), and an 80% reduction in overtime hours for peak
days (100 down to 20). Once the core model has been built, a number of
scenarios can be examined to assess additional economic benefits, such as:

• Reorganizing routes and route departure times.
• Extending the order cutoff time.
• Adding staging capacity.
• Increasing packing efficiency.
• Using 3 or 4 day work weeks.

22.5 Bibliographical Notes

This application was jointly undertaken with John J. Bartholdi. For an in-
depth description of warehouse systems, consult Bartholdi and Hackman
[2007], Frazelle [2001], Tompkins and Smith [1998], Mulcahy [1993], or Jenkins
[1990].
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Notation and Mathematical Preliminaries

A.1 Logical Statements

• The notation := is shorthand for by definition. This means the object
to the left of := is by definition equal to whatever is written to the right
of :=.

• Let A and B denote two sets of logical conditions. The statement A if and
only if B and symbolized by A⇐⇒ B represents two logical statements:
– the if part which means that if B holds, then A must hold. Also

expressed as “B implies A” and symbolized by A⇐= B.
– the only if part, which means that A holds only if B holds or, equiv-

alently, if B holds, then A must hold. Also expressed as “A implies B”
and symbolized by A =⇒ B.

A.2 Sets

A set is taken as a primitive concept. The objects that constitute a set are
called the elements of the set.

Membership

• x ∈ S means x is an element of S or x belongs to S.
• x /∈ S means x is not an element of S or x does not belong to S.
• {a, b, c, . . . , z} denotes the set whose elements are those listed inside the

braces, i.e., a, b, c up to z—the meaning of “up to” must be clear in the
context. For example, given that the symbol n is a positive integer, the set
{1, 2, . . . , n} is the set of integers from 1 up to n.

• {x : P (x)} means the set of all x for which the proposition P (x) is true.
The symbol {x ∈ S : P (x)} means the set of all x ∈ S for which the
proposition P (x) is true.
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• S ⊂ T means every element of S is also an element of T . The set S is said
to be a subset of T or contained in T .

• S = T means the sets S and T are equal, namely, S ⊂ T and T ⊂ S.

Union, intersection, complements

• S ∪ T is the set of all elements x that belong to S or T , otherwise known
as the union of the sets S and T . It can also be expressed as {x : x ∈
S or x ∈ T }.

• S ∩ T is the set of all elements x that belong to both S and T , otherwise
known as the intersection of the sets S and T . It can also be expressed
as {x : x ∈ S and x ∈ T }.

• A set S is said to meet the set T if their intersection S ∩ T is not empty.
• S\T is the set of elements x that belong to S but do not belong to T ,

known as the complement of T with respect to S. It can also be
expressed as {x : x ∈ S and x /∈ T }.

Sum and product

• S+T is the set {s+t : s ∈ S, t ∈ T }, known as the sum or set-theoretic
addition of the sets S and T . The sets S and T must be such that the
sum makes sense.

• (x, y) is an ordered pair taken to be a primitive concept. Two ordered
pairs (x1, y1), (x2, y2) are equal if x1 = x2 and y1 = y2.

• S × T is the set {(x, y) : x ∈ S and y ∈ T }, known as the carte-
sian product of the sets S and T . More generally,

∏N
i=1 Si is the set

{(x1, x2, . . . , xN ) : xi ∈ Si for every i = 1, 2, . . . , N}, the cartesian prod-
uct of the sets S1, S2, . . . , SN . If the Si are identical to a set S, then

∏N
i=1 Si

is denoted by SN and is called the N -fold cartesian product of S.

Families

• A set F = {Si}i∈I whose elements Si are sets for each i ∈ I is called
a family of sets. The set I is known as the index set, which can be
uncountable. A family is said to be a finite family of sets when the index
set is finite. The index set will often be suppressed from the notation.

• Let F be a family of sets. If F ′ ⊂ F , i.e., every set in the family F ′ is also
a member of F , then F ′ is said to be a subfamily of F .

• Given a family {Si}i∈I of sets, its intersection is the set {x : x ∈
Si for every i ∈ I} and its union is the set {x : x ∈ Si for some i ∈ I}.
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Finite-dimensional spaces

• The symbols IR, IR+, IR−, IR++ and IR−− denote, respectively, the set of
real numbers, the set of nonnegative numbers, the set of negative numbers,
the set of positive numbers, and the set of negative numbers.

• The symbols IRn, IRn
+, IRn

−, IRn
++ and IRn

−− denote, respectively, the n-fold
cartesian product of the sets IR, IR+, IR−, IR++ and IR−−.
– IRn

+ is called the nonnegative orthant of Rn.
– IRn

++ is called the positive orthant of Rn.
– IRn

− is called the nonpositive orthant of Rn.
– IRn

−− is called the negative orthant of Rn.

Supremum and infimum

• Let S be a subset of the real line.
– A real number α is said to be an upper bound of S if x ≤ α for every

x ∈ S. A set S ⊂ IR is not guaranteed to have an upper bound; if it
does, however, the set S is said to be bounded above.

– A real number α is said to be a lower bound of S if x ≥ α for every
x ∈ S. A set S ⊂ IR is not guaranteed to have a lower bound; if it does,
however, the set S is said to be bounded below.

Remark A.1. As a logical consequence of the definitions, every real number
is both an upper bound and lower bound of the empty set.

• Let S be a subset of the real line.
– If S is bounded above, then an upper bound of S is said to be a

supremum or least upper bound of S if it is less than any other
upper bound of S. If the supremum of S also belongs to S, it is said
to be a maximum of S.

– If S is bounded below, then a lower bound of S is said to be an infimum
or greatest lower bound of S if it is greater than any other lower
bound of S. If the infimum of S also belongs to S, it is said to be a
minimum of S.

Remark A.2. A fundamental property of the real number system, called
completeness, guarantees that every nonempty set of real numbers that is
(i) bounded above has a supremum and (ii) bounded below has an infimum.
The supremum and infimum must be unique, and will be respectively
denoted by supS and inf S.

Special sets

• ∅ denotes the set without any elements, otherwise known as the empty
set.

• N denotes the set of positive integers {1, 2, 3, . . . }.
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• Z denotes the set of integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.
• The notation for intervals of the real line are as follows:

– (a, b) denotes the set {x : a < x < b}, referred to as the open interval
between a and b;

– [a, b) denotes the set {x : a ≤ x < b} and (a, b] denotes the set
{x : a < x ≤ b}. Both sets are referred to as half-open intervals
between a and b;

– [a, b] denotes the set {x : a ≤ x ≤ b}, referred to as the closed
interval between a and b.

• R(x) denotes the set {sx : s ≥ 0}, which is the ray emanating from
the origin and passing through the point x ∈ IRn

+.
• A nonempty set S ⊂ IRn is a cone (with vertex zero) if x ∈ S implies that

λx ∈ S for all λ ≥ 0.

A.3 Vectors

Representation

• Each x ∈ IRn is called a point or vector. Each x ∈ IRn will sometimes be
written as a row vector x = (x1, x2, . . . , xn) and sometimes be written
as a column vector ⎛

⎜⎜⎜⎝
x1

x2

...
xn

⎞
⎟⎟⎟⎠ .

The entry xi is called the ith coordinate of x.
• xT denotes the transpose of the vector x. If x is understood to be a

column (row) vector, then xT is x written as a row (column) vector.

Special vectors

• The zero vector is the point in IRn whose coordinates all equal zero. It
will be denoted by the zero symbol 0.

• x ∈ IRn is nontrivial if x �= 0.
• The sum vector is the point in IRn whose coordinates all equal the number

one. It will be denoted by the letter e.
• The ith unit or coordinate vector is the point in IRn whose coordinates

all equal zero except coordinate i, whose value equals the number one. It
will be denoted by the symbol ei.
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Addition and multiplication

• Let x, y ∈ IRn. The symbol x+ y denotes the sum of the two vectors x
and y, which is defined to be the vector z ∈ IRn whose ith coordinate zi

is xi + yi.
• Let α ∈ IR and let x ∈ IRn. The symbol αx denotes the multiplication

of the real number α with the vector x ∈ IRn, which is defined to be
the vector y ∈ IRn whose ith coordinate yi is αxi.

• x · y =
∑n

i=1 xiyi is called the dot or inner product of the vectors
x, y ∈ IRn. See Remark A.5, p. 443.

Relationships

• For x, y ∈ IRn:
– x ≥ y means that xi ≥ yi for each i = 1, 2, . . . , n.
– x � y means that x ≥ y and x �= y.
– x > y means that xi > yi for each i = 1, 2, . . . , n.
– x ≤ y means that xi ≤ yi for each i = 1, 2, . . . , n.
– x � y means that x ≤ y and x �= y.
– x < y means that xi < yi for each i = 1, 2, . . . , n.

A.4 Correspondences

Relations

• A relation φ of a set S into a set T is a subset of S×T ; that is, a relation
φ is a set of ordered pairs (x, y) where x ∈ S and y ∈ T .

• dom(φ) is the domain of a relation φ, which is defined to be the set
{x ∈ S : (x, y) ∈ φ for some y ∈ T }.

• range(φ) is the range of a relation φ, which is defined to be the set
{y ∈ S : (x, y) ∈ φ for some x ∈ S}.

• φ(x) denotes the image of x ∈ S with respect to the relation φ, which is
defined to be the set {y ∈ T : (x, y) ∈ φ}.

• φ(A) denotes the image of A ⊂ S with respect to the relation φ, which is
defined to be the set {y ∈ T : (x, y) ∈ φ for some x ∈ A}.

Definition

• A relation φ of S into T is called a correspondence if dom(φ) = S.
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A.5 Functions

Definition

• A correspondence φ of S into T is called a function or mapping if for
every x ∈ S there is a unique y ∈ T such that (x, y) ∈ φ. That is, for
every x ∈ S, the image of x with respect to φ, φ(x), consists of a single
element. The unique element y is called the value of φ at x. With slight
abuse of notation, we write y = φ(x) and use the symbol φ(x) to denote
y. We write f : S → T to denote a mapping f of S into T .

Remark A.3. Let 2T denote the set of all nonempty subsets of the set T .
A correspondence φ of S into T can be thought of as a mapping of S into
2T .

Indicator Function

• For a fixed A ⊂ IRn
+ define

1A(t) :=

{
1 if t ∈ A,

0 if t /∈ A.

The function 1A(·) is called the indicator function of the set A. It will
also be denoted as 1(t ∈ A). The indicator function of the set A takes on
the value 1 if the event A is true and takes on the value 0 if the event A
is false. For example, the function

20 · 1[2,5](·) = 20 · 1(2 ≤ t ≤ 5)

is zero everywhere on the real line, except on the interval [2, 5] where it
takes on the value of 20.

Sequences

• A mapping x : N → S of the positive integers N into a set S is called
a sequence of points in S. It will be denoted by the expression {xn} or
the expression x1, x2, . . . , xn, . . .. (In context there will be no confusion as
to whether we are referring to a sequence or a set whose only element is
xn.) A subsequence of the sequence x is the restriction of x to a subset
K ⊂ N such that for each n ∈ N there is an k ∈ K such that k ≥ n. It
will be denoted by the expression xnk

: k = 1, 2, . . . .
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Level sets

• The level sets of a function f : S → IR at α ∈ IR are defined as:

L≥
f (α) := {x ∈ S : f(x) ≥ α} (upper level set).

L>
f (α) := {x ∈ S : f(x) > α} (strict upper level set).

L≤
f (α) := {x ∈ S : f(x) ≤ α} (lower level set).

L<
f (α) := {x ∈ S : f(x) < α} (strict lower level set).

Graphs

• The graph of the function f : S → IR is the set

Gr(f) := {(x, f(x)) ∈ S ×R : x ∈ S}.

• The hypograph of the function f : S → IR is the set

hypo(f) := {(x, γ) ∈ S ×R : γ ≤ f(x)}.

It is the collection of all points in S × IR that “lie on or below” the graph
of f(·).

• The epigraph of the function f : S → IR is the set

epi(f) := {(x, γ) ∈ S ×R : γ ≥ f(x)}.

It is the collection of all points in S × IR that “lie on or above” the graph
of f(·).

Monotonicity

• Let S ⊂ IRn and let f : S → IR.
– f(·) is said to be nondecreasing on S if f(y) ≥ f(x) whenever y ≥ x.
– f(·) is said to be increasing on S if f(y) > f(x) whenever y � x.
– f(·) is said to be nonincreasing on S if f(y) ≤ f(x) whenever y ≥ x.
– f(·) is said to be decreasing on S if f(y) < f(x) whenever y � x.

Homogeneity

• Let S be a cone in IRn. A function f : S → IR is homogeneous of degree
k if f(λx) = λkf(x) for every x ∈ S and λ ≥ 0.

• A function is linearly homogeneous if it is homogeneous of degree one.
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A.6 Matrices

Definitions

• A matrix is a rectangular array of real numbers. If the matrix has m rows
and n columns, it is called an m×n matrix. The entry in row i and column
j of a matrix A is denoted by aij . For example, the matrix

A =
[

1 3 4
2 8 5

]
(A.1)

has two rows and three columns.
• The transpose of an m × n matrix A, denoted by the symbol AT , is

the n× n matrix whose (i, j)th entry is aji. The ith column of A becomes
the ith row of AT .

Remark A.4. A row vector x ∈ IRn can be thought of as an 1× n matrix,
and its transpose, xT , can be thought of as an n × 1 matrix. Similarly,
a column vector x ∈ IRn can be thought of as an n × 1 matrix, and its
transpose, xT , can be thought of as an 1× n matrix.

Addition and multiplication

• Let A and B be two m× n matrices. The sum of A and B is the matrix
whose (i, j)th entry is aij + bij .

• Let A be an m × n matrix and let λ ∈ IR. The symbol λA denotes the
m× n matrix whose (i, j)th entry is λaij .

• Let A be an m × n matrix and let x ∈ Rn. The symbol Ax denotes the
multiplication of the m× n matrix A with the vector x ∈ IRn. It is
defined to be the vector y ∈ IRm whose coordinates are given by

yi :=
n∑

j=1

aijxj .

This multiplication is often written down as
⎛
⎜⎜⎜⎝
y1
y2
...
ym

⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎝
x1

x2

...
xn

⎞
⎟⎟⎟⎠ .

For example, the multiplication of the matrix A given in (A.1) with the
vector xT = (4, 1, 3) is

[
1 3 4
2 8 5

]⎛
⎝4

1
3

⎞
⎠ =

(
(1)(4) + (3)(1) + (4)(3)
(2)(4) + (8)(1) + (5)(3)

)
=
(

19
31

)
.
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The multiplication of a matrix A with a vector x only makes sense when
the number of columns of A equals the number of coordinates of x.

Remark A.5. The dot product of two vectors x and y can be represented via
matrix multiplication. If x, y are column vectors, then x · y = xT y = yTx.
If, on the other hand, x, y are row vectors, then x · y = xyT = yxT .

• Let A be an m× n matrix and let B be an n× p matrix. The symbol AB
denotes the multiplication of the matrix A with the matrix B. It is
defined to be the m× p matrix C whose (i, j)th entry is

cij :=
n∑

k=1

aikbkj .

This multiplication is often written down as
⎡
⎢⎢⎢⎣
c11 c12 . . . c1p

c21 c22 . . . c2p

...
... . . .

...
cm1 cm2 . . . cmp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
b11 b12 . . . b1p

b21 b22 . . . b2p

...
... . . .

...
bn1 bn2 . . . bnp

⎤
⎥⎥⎥⎦ .

The ith column of C is the multiplication of the matrix A with the column
vector given by the ith column of the matrix B. For example,

[
1 3 4
2 8 5

]⎡
⎣ 2 7 3 5

6 5 2 6
0 3 1 4

⎤
⎦ =

[
20 34 13 39
52 69 27 78

]
.

The multiplication of a matrix A with a matrix B only makes sense when
the number of columns of A equals the number of rows of B.

• Let A be an n×m matrix. It is possible to subdivide A into submatrices
as follows:
– An n× k matrix B consisting of k ≤ m columns of A ordered from left

to right as they appear in A is called a column submatrix of A. The
notation A = [A1 A2] means that A1 and A2 are column submatrices
of A consisting, respectively, of the first k1 columns of A and the last
m− k1 columns of A.

– A k × m matrix B consisting of k ≤ n rows of A ordered from top
to bottom as they appear in A is called a row submatrix of A. The

notation A =
[
A1

A2

]
means that A1 and A2 are row submatrices of A

consisting, respectively, of the first k1 row of A and the last n − k1

columns of A.
– Since each submatrix can be further subdivided into its own submatri-

ces, it is possible to subdivide an n×m matrix A as
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A =
[
A11 A12

A21 A22

]
.

The number of rows of A11 and A12 respectively equals the number of
rows of A12 and A22. Likewise, the number of columns of A11 and A12

respectively equals the number of columns of A21 and A22.
• The product of two (appropriately dimensioned) subdivided matrices A

and B can be multiplied in the following way:
[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=
[
A11B11 A12B12

A21B21 A22B22

]
.

Rank

• Vectors xi ∈ IRn, i = 1, 2, . . . ,m, are said to be linearly independent if
there does not exist real numbers αi, i = 1, 2, . . . , n, such that

∑
i αixi = 0.

(If the vectors are linearly independent, then m ≤ n.)
• The rank of an m × n matrix A is the maximum number of linearly

independent rows or, equivalently, the maximum number of linearly inde-
pendent columns of A.

• The matrix A is said to be of full rank if its rank equals min{m,n}.

Special matrices

• A square matrix has the same number of rows as columns.
• A square matrix A is symmetric if A = AT .
• The square matrix A is called the identity matrix if aij = 0 if i �= j and

aii = 1 for each i. It is denoted by the symbol I.
• A square matrix A is called nonsingular if there is a matrix B, called the

inverse matrix, such that AB = BA = I. The inverse of a square matrix,
if it exists, is unique, and is denoted by the symbol A−1. (A nonsingular
matrix must be of full rank.)

• An n × n symmetric matrix A is positive definite if xTAx > 0 for all
x �= 0. An n × n symmetric matrix A is negative definite if xTAx < 0
for all x �= 0.

A.7 Differentiability

Please Note: Throughout this section S shall denote a nonempty set in IRN

with nonempty interior, and f : S → IR shall denote a real-valued function
defined on S. Also, ||x|| := (

∑n
i=1 x

2
i )

1/2, known as the Euclidean norm of
the vector x ∈ IRn.
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Subgradients

• The vector x̄∗ is a subgradient of f(·) at x̄ ∈ S if

f(x) ≥ f(x̄) + x̄∗ · (x− x̄) (A.2)

holds for all x ∈ S.
• Vector x̄∗ is a supergradient of f(·) at x̄ ∈ S if

f(x) ≤ f(x̄) + x̄∗ · (x− x̄) (A.3)

holds for all x ∈ S.

Remark A.6. Here is a geometrical interpretation. Suppose S ⊂ IR so that
f(·) is a function of one variable. If the real number x̄∗ is a supergradient
of f(·) at x̄, then the line

y = x̄∗(x− x̄) + f(x̄) (A.4)

passes through the point (x̄, f(x̄)) and lies on or above the graph of f(·),
i.e., y = y(x) ≥ f(x) for all x ∈ S. Figure A.1 depicts a supergradient of
a nondifferentiable function f(·) at the point 3.

• The subdifferential of f(·) at x̄ is the collection of all subgradients of
f(·) at x̄, and the superdifferential of f(·) at x̄ is the collection of all
supergradients of f at x̄. Both the subdifferential and superdifferential are
denoted by the symbol ∂f(x̄).
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Fig. A.1. Example of a supergradient.
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“Little oh” o(·) functions

The little oh functions are standard notational devices in analysis defined as
follows:

• Let α ∈ IR. The symbol “o(α)” is a generic expression for any real-valued
function h(α) that satisfies the property that h(α)/α→ 0 as α→ 0.

• Let d ∈ IRn. The symbol “o(||d||)” is a generic expression for any real-
valued function h(d) that satisfies the property that h(d)/||d|| → 0 as
||d|| → 0. This says that as ||d|| → 0 the remainder term o(||d||) goes to 0
faster than ||d|| does. For example, the function yn of the scalar y is o(y)
as long as n > 1.

• Let d ∈ IRn. The symbol “o(||d||2)” is a generic expression for any real-
valued function h(d) that satisfies the property that h(d)/||d||2 → 0 as
||d|| → 0. This says that as ||d|| → 0 the remainder term o(||d||2) goes to
0 faster than ||d||2 does. For example, the function yn of the scalar y is
o(y2) as long as n > 2.

Remark A.7. The sum or difference of two o(·) functions and a scalar mul-
tiple of an o(·) function are still o(·) functions.

Differentiable functions

• A function f(·) is differentiable at x in the interior of S if there exists a
vector ∇f(x), called the gradient vector, for which

f(x+ d) = f(x) +∇f(x) · d+ o(||d||) (A.5)

holds for all d for which x+ d ∈ S. A function f(·) is differentiable if it is
differentiable at each point in the interior of S.

• When S ⊂ IR and f(·) is differentiable at x, the derivative of f(·) at x is
denoted by the symbol f ′(x).

• Suppose f(·) is differentiable at x. The linear function f(x) +∇f(x) · d of
d ∈ IRn is called the first-order Taylor series approximation of f(·)
at x.

Remark A.8. Often d refers to the direction between x and another vector
y, and one wishes to approximate the function f(·) near x in the direction
d. One may use (A.5) to write

f(x+ αd) = f(x) + α∇f(x) · d+ o(α). (A.6)

(It is understood that α is sufficiently small so that x+ αd ∈ S.)

• Suppose f(·) is differentiable at x. The partial derivative of f(·) with
respect to xi at x is defined as

∂f(x)
∂xi

:= lim
α→0

f(x+ αei)− f(x)
α

. (A.7)

It coincides with the ith coordinate of the vector ∇f(x).
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Remark A.9. Differentiability of f(·) at x guarantees existence of all par-
tial derivatives. The converse, however, is not true: the existence of all
partial derivatives at a point does not guarantee that the function will be
differentiable at that point.

• If a first-order Taylor series approximation exists, it should be unique; that
is, there can only be one gradient vector. Furthermore, every supergradient
or subgradient must coincide with the gradient.

Theorem A.10. If f(·) be differentiable at x, then (a) ∇f(x) is unique,
and (b) if x∗ is a subgradient or supergradient, then x∗ = ∇f(x).

• The following two well-known theorems have many applications.

Theorem A.11. Mean-value theorem. Suppose f(·) is differentiable
and S is open. For every x1 and x2 in S there exists an x = λx1+(1−λ)x2

for which
f(x2) = f(x1) +∇f(x) · (x2 − x1). (A.8)

Theorem A.12. L’Hôpital’s rule. Let f(·) and g(·) be two real-valued
differentiable functions defined on S ⊂ IR such that a ∈ S. If f(a) =
g(a) = 0, and if the limit of the ratio f ′(x)/g′(x) as x approaches a exists,
then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

. (A.9)

Twice differentiable functions

• A function f(·) is twice differentiable if it is differentiable and each
partial derivative is differentiable.

• For a twice differentiable function f(·) the Hessian matrix H(x) is the
n × n matrix whose (i, j)th entry is ∂(∂f(x)/∂xj)

∂xi
. It is more commonly

denoted by the symbol ∂2f(x)
∂xi∂xj

.

Remark A.13. The Hessian matrix is symmetric. That is, ∂2f(x)
∂xi∂xj

= ∂2f(x)
∂xj∂xi

so that H(x) = H(x)T .

• A twice differentiable function f(·) is twice continuously differentiable
if H(x) is continuous for every x ∈ S.

Remark A.14. As a consequence of Taylor’s theorem, for twice continu-
ously differentiable functions

f(x+ d) = f(x) + d · ∇f(x) + 1/2 dTH(x)d + o(||d||2) (A.10)

holds for all d for which x+ d ∈ S.
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• Let f(·) be a twice differentiable function at x. The quadratic function
f(x) + ∇f(x) · d + 1

2d
TH(x)d of d ∈ realn is called the second-order

Taylor series approximation of f(·) at x.

Remark A.15. Often d refers to the direction between x and another vector
y, and we wish to approximate the function f(·) near x in the direction d.
We then use (A.10) to write

f(x+ αd) = f(x) + α∇f(x) · d+ 1/2 α2dTH(x)d+ o(α2). (A.11)

A useful property is the following second-order form of Taylor’s theorem.

Theorem A.16. Second-order form of Taylor’s theorem. Assume
f(·) is twice-differentiable and S is open. For each x1 and x2 in S there
exists an x = λx1 + (1− λ)x2 for which

f(x2) = f(x1)+∇f(x1) · (x2−x1)+1/2 (x2−x1)TH(x)(x2−x1). (A.12)



B

Real Analysis

B.1 Linear Spaces

Vectors in IRn can be added together and multiplied by a scalar. These
addition and multiplication operations are commutative, associative, and
distributive. In addition, a vector x ∈ IRn has “length,” often given by
||x|| :=

√∑n
i=1 x

2
i . A linear space is any set that possesses these types of

operations, and a norm abstracts the notion of length.

B.1.1 Definition

Definition B.1. A nonempty set L of elements x, y, z, . . . is a real linear
or vector space if it satisfies the following properties:

a) Any two elements x, y ∈ L uniquely determine a third element x+ y ∈ L,
called the sum of x and y, such that
– x+ y = y + x (commutativity);
– (x+ y) + z = x+ (y + z) (associativity);
– There exists an element 0 ∈ L, called the zero element, such that

x+ 0 = x for every x ∈ L;
– For every x ∈ L there exists an element −x ∈ L, called the negative

of x, such that x+ (−x) = 0.
b) For any real number α and element x ∈ L there exists a unique element

αx ∈ L, called the product of α and x, such that
– α(βx) = (αβ)x;
– 1x = x.

c) The addition and multiplication laws satisfy the following two distribu-
tive laws:
– (α+ β)x = αx + βx;
– α(x + y) = αx+ αy.

The elements of L are called points or vectors and the real numbers α, β, . . .
are called scalars.
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B.1.2 Examples

Example B.2. The real line with the usual arithmetic operations of addition
and multiplication is a linear space.

Example B.3. The set of ordered n-tuples x = (x1, x2, . . . , xn) of real numbers
with addition and scalar multiplication defined coordinatewise by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) := (x1 + y1, x2 + y2, . . . , xn + yn)
α(x1, x2, . . . , xn) := (αx1, αx2, . . . , αnxn)

is a linear space. Of course, this space is recognized as IRn.

Example B.4. The set IR∞ of all infinite sequences x = (x1, x2, . . . , xk, . . . ) of
real numbers with addition and scalar multiplication defined coordinatewise
is a linear space.

Example B.5. There are a number of subsets of IR∞ that define linear spaces.
Here are a few notable examples.

• The subset �1 of IR∞ is the collection of all x such that
∑∞

i=1 |xi| < ∞.1

Here, one needs to verify that if x, y ∈ �1, then

∞∑
i=1

|xi + yi| <∞.

This follows since the triangle inequality |a+ b| ≤ |a|+ |b| holds for any
two real numbers a and b.

• The subset �2 of IR∞ is the collection of all x such that
∑∞

i=1 x
2
i < ∞.

Here, one needs to verify that if x, y ∈ �1, then

∞∑
i=1

(xi + yi)2 <∞.

This follows since (a+ b)2 ≤ 2(a2 + b2) for any two real numbers a and b.
• The subset �∞ of IR∞ is the collection of all x such that supi xi < ∞.

Each sequence x ∈ �∞ is uniformly bounded, i.e., for each x ∈ �∞,
there exists a B > 0 such that |xi| < B for all i.

Example B.6. Let S ⊂ IRn. The set L of all mappings f : S −→ R with
addition and multiplication defined by

(f + g)(x) := f(x) + g(x),
(αf)(x) := αf(x)

is a linear space. Since the elements of this space are functions, this space is
an example of a function space.
1 The symbol | · | means take the absolute value.
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Example B.7. Here are some notable function spaces that are linear spaces.

• The set L1 consisting of all functions f : IR −→ IR such that
∫∞
−∞ |f(x)|dx <

∞. Such functions are called integrable functions.
• The set L∞ consisting of all bounded functions f : IR −→ IR.
• The set C[0, 1] consisting of all continuous functions f : [0, 1] −→ IR. Since

[0, 1] is compact, the set C[0, 1] ⊂ L∞.

Example B.8. The set of all m×n matrices is a linear space with addition and
multiplication defined in the usual way.

B.2 Linear Independence and Dimension

Definition B.9. A linear combination of the elements x1, x2, . . . , xn of a
linear space L is an element of the form λ1x1 + λ2x2 + · · · + λnxn for some
real numbers λ1, λ2, . . . , λn. A linear combination is nontrivial if not all of
the λi are zero.

Definition B.10. The distinct elements x1, x2, . . . , xn of a linear space L are
said to be linearly dependent if there exists a nontrivial linear combina-
tion of the xi that equals zero. If no such linear combination exists, then the
elements x1, x2, . . . , xn are said to be linearly independent.

Definition B.11. A linear space L is said to be n-dimensional or of di-
mension n if there exists n linearly independent elements in L, but any n+1
distinct elements in L are linearly dependent. If n linearly independent ele-
ments can be found in L for every integer n, then L is said to be infinite-
dimensional; otherwise, L is said to be finite dimensional. Any set of n
linearly independent elements of an n-dimensional space is called a basis of L.

Example B.12. IRn is n-dimensional.

Example B.13. All of the examples of function spaces are infinite-dimensional.

B.3 Normed Linear Spaces

B.3.1 Definition

Definition B.14. A norm defined on a linear space L is a finite real-valued
mapping on L, denoted by the symbol || ||, that possesses the following prop-
erties:

a) ||x|| ≥ 0 for all x ∈ L and ||x|| = 0 if and only if x = 0.
b) ||αx|| = |α|||x|| for all x ∈ L and α ∈ IR.
c) ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ L (Triangle Inequality).
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Remark B.15. A function f : L −→ IR is convex if f(λx + (1 − λ)y) ≤
λf(x) + (1 − λ)f(y) for every x, y ∈ L and λ ∈ [0, 1]. Properties (b) and
(c) imply that a norm is a convex function. A convex function that satisfies
property (b) automatically satisfies property (c).

B.3.2 Examples

Here are some notable examples of normed linear spaces.

Example B.16. The absolute value function is a norm defined on the real line.

Example B.17. On IRn three common norms are used:

• �1 norm defined by ||x|| :=
∑n

i=1 |xi|.
• �2 norm defined by ||x|| :=

√∑n
i=1 x

2
i . Here, one must verify the inequal-

ity √√√√ n∑
i=1

(xi + yi)2 ≤

√√√√ n∑
i=1

x2
i +

√√√√ n∑
i=1

y2
i ,

also known as the Minkowski inequality for p = 2. By squaring both sides,
the inequality holds if and only if the Cauchy-Schwarz inequality

( n∑
i=1

xiyi

)2

≤
( n∑

i=1

x2
i

)( n∑
i=1

y2
i

)

holds. The Cauchy-Schwarz inequality follows here since it can be readily
verified that

( n∑
i=1

xiyi

)2

=
( n∑

i=1

x2
i

)( n∑
i=1

y2
i

)
− 1/2

n∑
i=1

n∑
j=1

(xiyj − xjyi)2.

• sup norm defined by ||x|| := max
1≤i≤n

|xi|.

Example B.18. For p ≥ 1 let Lp denote the set of all functions f : IR −→ IR
such that

∫∞
−∞ |f(x)|p dx <∞. The Lp-norm defined on Lp is

||f ||p :=
(∫ ∞

−∞
|f(x)|p dx

)1/p

.

It can be shown that Lp is a linear space and that ||f ||p is, in fact, a norm.2

2 When p = 1 this is simple. When p = 2 one establishes the integral version of
Cauchy-Schwarz inequality.
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B.4 Metric Spaces

The operation of taking limits is used throughout these notes, and is a fun-
damental operation of mathematical analysis in general. The concept of limit
is inexorably tied to a notion of “closeness,” which can make sense if the
underlying space is equipped with a distance or “metric” to measure the de-
gree of closeness between points in the space. In this section, we make precise
the notion of distance for a normed linear space and establish fundamental
properties about limits.3

B.4.1 Definition

The Euclidean distance between two points in X = IRn is defined as

d(x, y) :=

√√√√ n∑
i=1

(xi − yi)2. (B.1)

It equals the �2-norm of the vector x − y. Given the definition of a norm, it
follows immediately that this distance function d(·, ·) defined on X ×X has
the following three properties:

a) d(x, y) ≥ 0 for every x, y ∈ X and d(x, y) = 0 if and only if x = y;
b) d(x, y) = d(y, x) for every x, y ∈ X (Symmetry);
c) d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X (Triangle Inequality).4

Definition B.19. A function d(·, ·) defined on a linear space X that satisfies
properties (a)-(c) above is called a metric, the number d(x, y) is called the
distance between points x, y ∈ X, and the pair (X, d) is called a metric
space. The set X is said to be equipped with the metric d.

Every normed linear space X with norm || · || becomes a metric space
(X, d) by defining the metric d(x, y) := ||x − y|| for every x, y ∈ X . The
metric d so defined will be referred to as the metric induced from this norm.
Given a normed linear space X with norm || · || and induced metric d, it
is natural to measure the degree of closeness of two points x and y by the
distance d(x, y) = ||x − y|| and to say that x and y are “close” if d(x, y) < ε
for “sufficiently small” ε.

The same set X can be “metrized” in a number of different ways. For
example, consider IRN equipped with the metrics d1, d2, and d∞ respectively
induced from the �1, �2, or �∞ norms. What determines the degree of closeness
between points depends on the metric chosen.

In the subsections to follow, X shall denote a nonempty metric space and
S shall denote a subset of X.
3 Several definitions, concepts, and results introduced in this section apply to gen-

eral topological spaces.
4 Follows from the triangle inequality for a norm and the identity ||x− z|| = ||(x−

y) + (y − z)||.
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B.4.2 Open and Closed Sets

Definition B.20. Let x ∈ X and let r be a positive real number. The set

B(x, r) := {y ∈ X : d(x, y) < r}

is called the open ball of radius r centered at x, and the set

B[x, r] := {y ∈ X : d(x, y) ≤ r}

is called the closed ball of radius r centered at x.

Definition B.21. Let x ∈ X. A set U ⊂ X is an open neighborhood of x
if U = B(x, r) for some r.

Definition B.22. S is said to be open if for every x ∈ S there exists an
open neighborhood U of x such that U ⊂ S. A set S is said to be closed if its
complement X\S = {y ∈ X : y /∈ S} is open.

Example B.23. The subset S = (0, 1) of the real line is open, whereas the
subset S = (0, 1] is not, since every neighborhood of one contains a point not
in S. The subset S = [0, 1] is closed.

Example B.24. The infinite intervals (−∞,∞), (a,∞), (−∞, b) are open.

Example B.25. The subset S = {0, 1, 1
2 ,

1
4 ,

3
4 ,

1
8 ,

7
8 ,

1
16 ,

15
16 , . . . , } of the real line

is closed.

Proposition B.26. Open and closed sets have the following union and inter-
section properties:

a) A union of a arbitrary family of open sets is open.
b) An intersection of a finite number of open sets is open.
c) An intersection of a arbitrary family of closed sets is closed.
d) A union of a finite number of closed sets is closed.

The following proposition characterizes the open sets on the real line
equipped with the absolute value metric.

Proposition B.27. Every open set of the real line is the union of a finite or
countable number of pairwise disjoint open intervals.

B.4.3 Closure and Boundary

Definition B.28. A point x is said to be a limit point of the set S if each of
its neighborhoods (minus the point itself) meets S; that is, S∩(U\{x}) �= ∅ for
every neighborhood U of x. The symbol S′ will denote the set of limit points
of the set S.
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A limit point of a set may or may not belong to the set, as the following
example illustrates.

Example B.29. The points 0 and 1 are the only two limits points for the set S
defined in Example B.25. If these two points are removed from S, each point
will still be a limit point of S.

Definition B.30. The closure of a set S is the union of S with S′. The
symbol cl(S) will denote the closure of S.

Proposition B.31. The closure operation has the following properties:

a) cl(S) is closed.
b) cl(S) ⊂ cl(T ) whenever S ⊂ T .
c) cl(S) is the smallest closed set containing S.
d) S is closed if and only if S = cl(S).
e) cl(cl(S)) = cl(S).
f) cl(S ∪ T ) = cl(S) ∪ cl(T ).

Remark B.32. Part (e) implies that the closure operation only needs to be
performed once, and part (f) implies that the closure of a finite union of sets
is the union of the closures of each set. By part (b), the closure of a finite
intersection of sets is a subset of the intersection of the closures of each set;
however, the former set can be a strict subset of the latter set. Consider,
for example, the sets S = [0, 1/2) and T = [1/2, 1]: cl(S ∩ T ) = ∅ but
cl(S) ∩ cl(T ) = {1/2}.

Definition B.33. The boundary of the set S is the set of all points x ∈ S
for which each of its neighborhoods meets both S and its complement X\S.
The symbol ∂S will denote the boundary of S. A point x ∈ ∂S is said to
belong or lie on the boundary of S.

Example B.34. Figure B.4.3 depicts the same triangle with some, none, or all
of its boundary included in the set. In (a), none of its boundary is included,
and therefore the triangle is an open set; in (b), all of the boundary is included,
and therefore the triangle is a closed set; finally, in (c), some but not all of
the boundary is included, and so the triangle is neither open nor closed.

Proposition B.35. The boundary of S possesses the following properties:

a) ∂S = ∂(X\S).
b) cl(S) = S ∩ ∂S.
c) S is closed if and only if ∂S ⊂ S.
d) S is open if and only if ∂S ∩ S = ∅.
e) ∂S = cl(S) ∩ cl(X\S).

Definition B.36. The interior of the set S is the set S\∂S, namely, the set
of all points in S that do not lie on the boundary of S. The symbol int(S) will
denote the interior of S.
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(a) Open Set

�
�
��

�
�

(b) Closed Set

�
�
�

(c) Not Open - Not Closed

Proposition B.37. The interior of S has the following properties:

a) int(S) is open.
b) int(S) is the largest open set contained within S.

B.4.4 Convergence and Limits

Definition B.38. An infinite sequence {xn} ⊂ X is said to converge to a
point x ∈ X if for every ε > 0 there exists an Nε such that xk ∈ B(x, ε) for
all k > Nε. The notation xn −→ x will be used to denote this convergence or
xn

d−→ x will be used when it is important to emphasize the metric. The point
x is called the limit point of the convergent sequence. An infinite sequence
{xn} ⊂ X that does not converge is said to diverge.

Proposition B.39. Convergent sequences of a metric space have the follow-
ing properties:

a) The limit point of a convergent sequence is unique.
b) If a sequence {xn} converges to x, then so does every subsequence of {xn}.

The following proposition provides an equivalent, useful definition of a
closed set.

Proposition B.40. S is closed if and only if whenever the infinite sequence
{xn} ⊂ S converges, its limit point belongs to S.

Proposition B.41. On IRn xn
d1−→ x⇐⇒ xn

d2−→ x⇐⇒ xn
d∞−→ x.5

Remark B.42. This proposition shows that a metric is not an intrinsic tool for
analyzing convergence properties of sequences.

B.4.5 Completeness

Often, one wishes to establish that a particular sequence converges. To show
that a sequence converges in a complete metric space, it is sufficient to show
that eventually all of the remaining points in the sequence can be made arbi-
trarily close to one another. In a complete metric space, one does not have to
know what the limit is in order to prove that it exists.
5 The d1, d2 and d∞ metrics are the ones respectively induced from the �1, �2 and

�∞ norms.
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Definition B.43. Let (X, d) be a metric space. A sequence of points {xn} ⊂
X is said to be a Cauchy sequence if for every ε > 0, there exists an integer
Nε such that d(xn, xm) < ε for all n,m > Nε.

Remark B.44. For a Cauchy sequence, lim
m,n−→∞

d(xn, xm) = 0.

Definition B.45. A metric space (X, d) is said to be complete if every
Cauchy sequence converges to a point in X.

Example B.46. Here are some notable examples of complete metric spaces:

• IRn.
• The Lp spaces.
• The space of real-valued continuous functions of one variable defined on a

closed and bounded set under the sup norm.

Proposition B.47. A closed subset of a complete metric space is itself a com-
plete metric space.

B.4.6 Compactness

Definition B.48. A family F = {Uα} is a cover of S if S ⊂ ∪αUα. If every
set in a cover is open, then the cover is said to be an open cover. A subcover
of a cover is a subfamily of F that also covers S.

Definition B.49. S is compact if every open cover of S has a finite subcover.

Definition B.50. The diameter of S is defined to be

diam(S) := sup{d(x, y) : x, y ∈ S}.

Definition B.51. S is bounded if its diameter diam(S) is finite.

Remark B.52. If X is a normed linear space and d is the metric induced from
the norm on X , then S ⊂ X is bounded if S ⊂ B(0, r) for some finite real
number r.

The following theorem provides an equivalent definition of compactness in
IRn equipped with any of the three metrics d1, d2 or d∞.

Theorem B.53. Heine-Borel Theorem Let S ⊂ IRn. S is compact if and
only if S is closed and bounded.

Corollary B.54. A closed subset of a compact set in IRn is itself compact.

One of the most useful properties of compact subsets of complete metric
spaces (such as IRn) is given in the following theorem.

Theorem B.55. Let X be a complete metric space and let S ⊂ X be compact.
Every infinite sequence {xn} ⊂ S has a convergent subsequence.
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B.4.7 Continuity

Definition B.56. Let (X, d) be a metric space and let f : X −→ IR. The
real-valued function f defined on X is said to be continuous at the point
x0 ∈ X if for every ε > 0 there exists a δ > 0 such that

|f(x)− f(x0)| < ε whenever d(x, x0) < δ.

The mapping f(·) is said to be continuous on X if it is continuous at every
point x0 ∈ X.

Remark B.57. This definition is consistent with the usual definition of a con-
tinuous real-valued function of one variable. In this case, X = S ⊂ IR and the
metric d is the absolute value metric. In this setting, f(·) is continuous at x0

if for every ε > 0 there exists a δ > 0 such that

|f(x)− f(x0)| < ε whenever |x− x0| < δ.

More generally, if X is a subset of IRn equipped with the metric d induced
from the usual norms (Euclidean, sup, or �1), then |x − x0| is replaced with
||x− x0||.

Definition B.58. Let (X, d) be a metric space and let f : X −→ IR.

• The real-valued function f(·) defined on X is said to be upper semicon-
tinuous at the point x0 ∈ X if for every ε > 0 there exists a δ > 0 such
that

f(x)− f(x0) < ε whenever d(x, x0) < δ.

The mapping f(·) is said to be upper semicontinuous on X if it is
upper semicontinuous at every point x0 ∈ X.

• The real-valued function f(·) defined on X is said to be lower semicon-
tinuous at the point x0 ∈ X if for every ε > 0 there exists a δ > 0 such
that

f(x)− f(x0) > ε whenever d(x, x0) < δ.

The mapping f(·) is said to be lower semicontinuous on X if it is lower
semicontinuous at every point x0 ∈ X.

The following proposition is central to our study, and so we shall supply
the proof.

Proposition B.59. Let (X, d) be a metric space and let f : X −→ IR.

a) The mapping f(·) is upper semicontinuous on X if and only if every upper
level set L≥

f (α) = {x ∈ X : f(x) ≥ α} is closed.
b) The mapping f(·) is lower semicontinuous on X if and only if every lower

level set L≤
f (α) = {x ∈ X : f(x) ≤ α} is closed.
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Proof. We shall only prove part (a), as the proof of part (b) follows by con-
sidering the negative of the function f(·).

Suppose first that f is upper semicontinuous. We must show each upper
level set is closed. Pick an α ∈ IR for which the upper level set L≥

f (α) is
nonempty,6 and let {xn} be an infinite sequence of points in the upper level
set that converges to the point x0. We must show that x0 ∈ L≥

f (α). Pick an
ε > 0 and use the upper semicontinuity of f(·) at x to find a δ > 0 such
that f(x) − f(x0) < ε whenever d(x, x0) < δ. Since xn −→ x0 eventually
d(xn, x0) < δ for all n sufficiently large. This means that f(xn) < f(x0) + ε
for all n sufficiently large. Since f(xn) ≥ α for every n and since ε was chosen
arbitrarily, it now follows that f(x0) ≥ α, as required. (If f(x0) < α, then
ε = (α− f(x0))/2 will lead to a contradiction.)

Now suppose each upper level set is closed. Pick an x0 ∈ X . We must
show f(·) is upper semicontinuous at x0. Pick an ε > 0 and set α := f(x0).
Since x0 /∈ L≥

f (α + ε), a closed set, there must exist a δ > 0 such that the
open ball B(x0, δ) centered at x0 does not intersect L≥

f (α+ε). But this means
that f(x) < α+ ε = f(x0) + ε whenever d(x, x0) < δ, which establishes upper
semicontinuity. ��

The following proposition makes clear the connection between these dif-
ferent concepts of continuity. The proof is an immediate consequence of the
definitions.

Proposition B.60. Let (X, d) be a metric space and let f : X −→ IR. The
mapping f(·) is continuous on X if and only if it is both upper semicontinuous
and lowersemicontinous on X.

Theorem B.61. Let (X, d) be a metric space and let f : X −→ IR. If S ⊂ X
is compact, then f(S) is compact.

Remark B.62. This theorem is true for arbitrary topological spaces X and Y .
That is, if f : X −→ Y and S ⊂ X is compact, then f(S) ⊂ Y is compact.

Definition B.63. Let (X, d) for a metric space, let f : X −→ IR and let
S ⊂ X.

• The function f(·) is said to attain its minimum on S if there exists an
xm ∈ S such that

f(xm) = inf{f(x) : x ∈ S}.

By definition of infimum f(xm) ≤ f(x) for all x ∈ S.
• The function f(·) is said to attain its maximum on S if there exists an

xM ∈ S such that
f(xM ) = sup{f(x) : x ∈ S}.

By definition of supremum f(xM ) ≥ f(x) for all x ∈ S.

6 Recall that the empty set is closed.
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Theorem B.64. Let (X, d) for a metric space and let f : X −→ IR. If S ⊂ X
is compact, then f(·) attains both its minimum and maximum on S.

Remark B.65. In light of this theorem, when S is compact it is acceptable to
replace the “inf” with a “min” and write min{f(x) : x ∈ S} and the “sup”
with a “max” and write max{f(x) : x ∈ S}.

B.4.8 Connectedness

Definition B.66. Two sets A and B are said to be separated if A �= B �= ∅
and cl(A) ∩B = A ∩ cl(B) = ∅.

Definition B.67. S is said to be connected if there does not exist a decom-
position S = A ∪B such that A and B are separated.

The following proposition characterizes connected subsets of the real line
equipped with the absolute value metric.

Proposition B.68. A nonempty subset S ⊂ IR is connected if and only if it
consists of a single element or is an interval.

As the following theorem shows, continuous functions preserve the prop-
erty of connectedness.

Theorem B.69. Let f : X −→ IR be continuous on X. If S ⊂ X is connected,
then f(S) is a connected subset of the real line.

B.5 Bibliographical Notes

Classic references are Kelly [1955], Kolmogorov and Fomin [1970], and Royden
[1968]. An accessible but less general treatment of these concepts can be found
in the excellent text by Bazarra et. al. [1993].
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Convex Sets

Convexity is essential to modern economic analysis. In this chapter, we es-
tablish basic properties about convex sets and the basic separation theory in
Euclidean space (finite-dimensional spaces) used throughout this book.

C.1 Definition and Examples

Geometrically, a set S ⊆ IRn is convex if it contains the line segment joining
any of its two points. See Figure C.1.
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(d) Convex Sets
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(e) A nonconvex set

Fig. C.1. Example of a convex set and a nonconvex set.

Definition C.1. A set S ⊆ IRn is convex if λx1 + (1 − λ)x2 ∈ S for each
λ ∈ [0, 1] and x1, x2 ∈ S.

Example C.2. The following sets are examples of convex sets:

• {(x1, x2) ∈ IR2 : x2
1 + x2

2 ≤ 9}. It is the collection of points that lie on or
inside the circle with center (0, 0) and radius 3.



462 C Convex Sets

• Bε(x) := {y ∈ IRn : ||y−x|| ≤ ε, the closed ball of radius ε about x ∈ IRn.
Here, || · || denotes the Euclidean norm. Convexity follows from the triangle
inequality of the norm.

• {x ∈ IRn : Ax ≤ b}, where A is an m× n matrix and b ∈ IRm. (One may
replace ≤ with <, =, ≥ or >.)

An important class of convex sets are hyperplanes and their associated
closed and open halfspaces.

Definition C.3. A hyperplane in IRn is the set defined by

H(p, α) := {x ∈ IRn : p · x = α}

for some nontrivial p ∈ IRn and real number α. The vector p is called the
normal to the hyperplane. Each hyperplane H(p, α) induces four halfspaces
defined as:

H≥(p, α) := {x : p · x ≥ α} (all points lying on or above the hyperplane).

H>(p, α) := {x : p · x > α} (all points lying above the hyperplane).

H≤(p, α) := {x : p · x ≤ α} (all points lying on or below the hyperplane).

H<(p, α) := {x : p · x < α} (all points lying below the hyperplane).

Definition C.4. A convex combination of points x1, x2, . . . , xN is a weighted
average of the form

∑N
i=1 λixi in which

∑N
i=1 λi = 1 and each λi is nonnega-

tive.

A routine induction argument shows that a convex combination of points in
a convex set S also belong to S.1

Proposition C.5. The following sets are convex:

(a)An intersection of a family of convex sets.
(b) A finite algebraic sum of convex sets.
(c) The closure of a convex set.
(d)The interior of a convex set.

C.2 Convexification

Often one is given a collection of points S that is not convex, and then “con-
vexifies” this set by adding to it all convex combinations of its elements.

Definition C.6. The convex hull of a set S is the collection of all convex
combinations of points in S. It will be denoted by Conv(S).

Proposition C.7. Conv(S) is the intersection of all convex sets that contain
S.
1 Note that the

Pn+1
i=1 λixi can be expressed as λz + (1 − λ)y, where λ =

Pn
i=1 λi,

z =
Pn

i=1(λi/λ)xi and y = xn+1.
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Remark C.8. Conv(S) is the smallest convex set containing S. That is, if F
is convex and S ⊆ F then Conv(S) ⊆ F .

Proof. Let S denote the intersection of all convex sets F that contain S. It is
convex by Proposition C.5 (a). It immediately follows that S is the smallest
convex set containing S. In particular, S ⊆ Conv(S) since Conv(S) is itself a
convex set that contains S. Since an arbitrary convex set F that contains S
includes all convex combinations of points in S, Conv(S) ⊆ F , from which it
follows that Conv(S) ⊆ S. Thus, Conv(S) = S, as claimed. ��

C.3 Separation of a Convex Set and a Point

C.3.1 Strict Separation

Lemma C.9. Let X be a nonempty, closed subset of IRn. If X does not con-
tain the origin, then there exists a nontrivial point x∗ ∈ X that minimizes the
Euclidean distance from X to the origin, i.e.,

0 < x∗ · x∗ ≤ x · x for all x ∈ X.

Proof. Pick a nonzero z ∈ X , and let E denote the collection of points in X
whose norm is bounded by the norm of z. E is closed and bounded and hence
compact. Since the (quadratic) function f(x) = x ·x is continuous, it achieves
its minimum over E, say at x∗. Clearly, x∗ satisfies the requisite properties.
��

Theorem C.10. Strict Separation Theorem Let X be a nonempty, closed
convex subset of IRn that does not contain the origin. Then there exists a
(nontrivial) p ∈ IRn and an α > 0 such that 0 < α < p · x for all x ∈ X.

In Theorem C.10, the hyperplane H(p, α) is said to strictly separate the
origin from X . That is, X is contained in the closed halfspace H≥(p, α) but
the origin does not belong to this closed halfspace.

Proof. Lemma C.9 guarantees the existence of a nonzero point a ∈ X for
which

a · a ≤ ((1 − t)a+ tb) · ((1 − t)a+ tb) = (a · a) + 2ta · (b− a) + t2(b · b)

for all b ∈ X and t ∈ [0, 1]. Since the function f(t) := 2ta · (b − a) + t2(b · b)
is nonnegative on [0, 1] and since f(0) = 0, its derivative at zero, 2a · (b− a),
must be nonnegative. Thus, a · b ≥ a · a > 0, and the result follows by taking
p to be a and setting α = p · p/2. ��

Corollary C.11. Let X be a nonempty, closed convex subset of IRn. For each
x0 �∈ X there exists a (nontrivial) p0 ∈ IRn and γ ∈ IR such that p0 ·x0 < γ <
p0 · x for all x ∈ X.
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In Corollary C.11, the hyperplane H(p0, γ) is said to strictly separate x0

from X . That is, X is contained in the closed halfspace H≥(p0, γ) but x0 does
not belong to this closed halfspace.

Proof. Apply Theorem C.10 to the set X − x0 = {y : y + x0 ∈ X}. Set
γ := α+ p · x0. ��

Corollary C.12. A closed convex set X ⊂ IRn is the intersection of all closed
halfspaces that contain it.

Proof. Let S denote the intersection of all closed halfspaces that contain X .
Clearly,X ⊂ S. If X �= S, then there exists a z ∈ S such that z /∈ X . However,
the strict separation theorem guarantees existence of a closed halfspace that
contains X but not z, which implies z /∈ S, a contradiction. ��

C.3.2 Supporting Hyperplanes

Theorem C.13. Supporting Hyperplane Theorem Let X be a nonempty
closed convex subset of IRn. For each x0 that lies on the boundary of X there
exists a nontrivial p0 ∈ IRn such that p0 · x0 ≤ p0 · x for all x ∈ X.

Remark C.14. Equivalently, in terms of sets, X ⊂ H≥(p0, p0 · x0) and X ∩
H(p0, p0 · x0) �= ∅. The hyperplane H(p0, p0 · x0) is said to support X at x0,
hence the name of the theorem.

Proof. Since x0 lies on the boundary of X , it is possible to find an infinite
sequence of points {xn} not in X that converges to x0. Corollary C.11 guar-
antees the existence of a sequence of nontrivial {pn}’s for which

pn · xn ≤ pn · z for all z ∈ X.

Let p̂n = pn/||pn||. Since the p̂n’s belong to the boundary of the unit ball,
which is compact, it is possible to extract a convergent subsequence {p̂nk

} →
p0. Clearly, p0 is nonzero since its norm is one. Moreover, since the inner
product is continuous p̂nk

· xnk
→ p0 · x0 and p̂nk

· z → p0 · z for each z ∈ X .
The result now follows from the easily established fact that if {an} and {bn}
are two infinite sequences of numbers such that (i) an ≤ bn for all n and (ii)
an → a and bn → b, then a ≤ b. ��

C.3.3 Polar Cones

Definition C.15. The polar cone of a set S ⊂ IRn is defined as

S∗ := {p ∈ IRn : p · x ≤ 0 for all x ∈ S}.

If S is empty, then S∗ := IRn.
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A cone that is also convex is called, quite naturally, a convex cone. The
following characterization of nonempty, closed convex cones is at the heart of
the dual characterizations of technology.

Theorem C.16. If S is a nonempty closed convex cone, then S = S∗∗.

Proof. By definition,

S∗ = {p : p · x ≤ 0 for all x ∈ S},
S∗∗ = {y : y · p ≤ 0 for all p ∈ S∗}.

Inspection of these two definitions shows that S ⊂ S∗∗. To establish the reverse
inclusion S∗∗ ⊂ S, we shall show that if x /∈ S, then x /∈ S∗∗. If x /∈ S, then
by Theorem C.10 there exists a nontrivial p for which p ·x > p ·z for all z ∈ S.
Since S is a cone, it must be the case that p · z ≤ 0 for all z ∈ S, which shows
that p ∈ S∗. Since S is also closed, the origin belongs to S, which implies that
p · x > 0. Thus, x /∈ S∗∗, as claimed. ��

C.4 Polyhedra

Corollary C.12 shows that any closed convex set is the intersection of all
closed halfspaces that contain it. For a polyhedron only a finite number of
closed halfspaces is needed to represent it.

C.4.1 Definition and Examples

Definition C.17. A polyhedron S ⊂ IRk is a finite intersection of closed
halfspaces (and hence closed and convex). That is,

S = {x ∈ IRk : ai · x ≤ bi, 1 ≤ i ≤M},

where the ai ∈ IRk are nontrivial and each bi ∈ IR.

Since an equation a · x = b can be represented via two inequalities, namely,
a · x ≥ b and a · x ≤ b, a polyhedron can be expressed via a finite number of
inequalities and/or equalities.

Example C.18. Let A be an n ×m matrix and let b ∈ IRm. Sets of the form
{x ∈ IRn : Ax ≤ b}, {x ∈ IRn : Ax = b, x ≥ 0} or {x ∈ IRn : Ax ≥ b, x ≥ 0}
are examples of polyhedron. Since IRn

+ = {x ∈ IRn : x ≥ 0}, the last set, for
example, can be expressed as {x ∈ IRn

+ : Ax ≥ b}.
Definition C.19. A polytope is a bounded polyhedron (and hence compact
and convex).

Example C.20. The subset of the plane defined by

{(x1, x2) : x1 + x2 ≤ 5, 2x1 + x2 ≤ 9, x1 + 2x2 ≤ 9, x1 ≥ 0, x2 ≥ 0}

is a polytope. See Figure C.2.
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Fig. C.2. Example of a polytope.

C.4.2 Extreme Points and Directions

Definition C.21. Let C be a convex set. A point c ∈ C is an extreme point
of C if it cannot be represented as a convex combination of two other points
in C. Equivalently, c is an extreme point if whenever c = λc1 + (1−λ)c2 with
c1, c2 ∈ C and λ ∈ (0, 1), then c1 = c2 = c.

Example C.22. In Figure C.2, the points (0, 4.5), (1, 4), (4, 1) and (4.5, 0) are
the extreme points of this polytope.

Each point in the polytope in Figure C.2 can be represented as a convex
combination of the four extreme points. This is true for polytopes, since they
are compact, but not true for unbounded polyhedron, as the following example
illustrates.

Example C.23. Consider the subset of the plane defined by

C := {(x1, x2) : −x1 + 2x2 ≤ 0, 2x1 − x2 ≤ 0, x1 ≥ 0, x2 ≥ 0}

and depicted in Figure C.3. C is a convex cone with a single vertex, namely,
the origin.

Obviously, the set C in Figure C.3 cannot be represented as a convex combi-
nation of its extreme points. However, each point in C can be represented as
a nonnegative linear combination of the vectors d1 := (2, 1) and d2 := (1, 2),
i.e., for each c ∈ C there exists μ1, μ2 ≥ 0 such that c = μ1d1 + μ2d2. The di

here are called extreme directions of C.

Definition C.24. Let S ⊂ IRn be nonempty and closed.
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Fig. C.3. Example of an unbounded polyhedron.

• A nontrivial vector d ∈ IRn is a direction of S if for each x ∈ S the set
{x+ λd : λ ≥ 0} is contained within S.

• Two directions d1 and d2 are distinct if there does not exist a positive α
for which d1 = αd2.

• A direction d of S is an extreme direction if it cannot be expressed as
a positive linear combination of two distinct directions.

Geometrically, d is a direction of S if for each x ∈ S the ray emanating from x
and passing through d also belongs to S. Obviously, a direction is unique up
to a positive scalar multiplication, hence the definition of distinct direction.
Algebraically, an extreme direction d has the property that whenever d =
λ1d1 + λ2d2 for two directions d1, d2 with λ1, λ2 > 0, then d1 = αd2 for some
positive α.

C.4.3 Characterization of Extreme Points and Directions

It will be useful for the development to follow to define a standard format for
a polyhedron.

Definition C.25. The standard format for a polyhedron is the representa-
tion given by {x : Ax = b, x ≥ 0}. The matrix A is of full rank.

Remark C.26. By removing redundant equations, we may assume the rank of
A is m when A is an m× n. Moreover, m ≤ n.

Every polyhedron S can be equivalently expressed in the standard format. For
example, the inequality a ·x ≤ b can be transformed to an equality by adding
a nonnegative slack variable s so that a · x + s = b. Similarly, the inequality
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a · x ≥ b can be transformed into an equality by adding a nonnegative slack
variable t so that a · x − t = b. In either case, note that the dimension of x
increases by one and a column corresponding to the coordinate vector ek+1 is
added to the end of the original matrix A. In this book, the economic variables
of interest are almost always nonnegative. However, if a variable, say xj , is
originally “unrestricted,” namely, it is not constrained to be nonnegative,
then one simply replaces it with the difference of two nonnegative variables
x+

j − x−j . Again, the dimension of x will increase by one and the jth column
of A is multiplied by minus one and inserted into the original matrix A next
to the jth column.

Definition C.27. Let S be a nonempty polyhedron in standard format. Sup-
pose the columns of A can be permuted so that A = [B N ] such that the
submatrix B is an m×m invertible matrix satisfying B−1b ≥ 0. The vector

x =
[
xB

xN

]
=
[
B−1b

0

]

is called a basic feasible solution for S with basis B.

Remark C.28. An arbitrary selection of m columns from the n columns of A
will not necessarily be linearly independent.

Theorem C.29. Let S be a nonempty polyhedron in standard format. A point
x is an extreme point of S if and only if it is a basic feasible solution of S for
some basis B.

Corollary C.30. The number of extreme points of S is finite.

Proof. The number of ways to select m columns from the n columns in A is(
n
m

)
= n!

(n−m)!m! , which is finite.2

The proof of the following proposition is immediate from the definitions.

Proposition C.31. Let S be a nonempty polyhedron in standard format. The
nonzero vector d is a direction of S if and only if d ≥ 0 and Ad = 0.

Characterizing the extreme directions of S takes a little more work. We
motivate with the following example. Consider the polyhedron in the plane
defined by {(x1, x2) : −x1 + x2 ≤ 1, −x1 + 2x2 ≤ 10, x1 ≥ 0, x2 ≥ 0}. See
Figure C.4. There is one extreme direction given by d = (10, 10) − (8, 9) =
(2, 1). In standard format the polyhedron is represented as⎧⎪⎪⎨

⎪⎪⎩
(x1, x2, s1, s2) :

[
−1 1 1 0
−1 2 0 1

]
⎛
⎜⎜⎝
x1

x2

s1
s2

⎞
⎟⎟⎠ =

(
1
10

)
⎫⎪⎪⎬
⎪⎪⎭
.

2 n! denotes “n factorial,” i.e., n(n − 1)(n − 2) · · · 1.
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Fig. C.4. Example of an extreme direction of a polyhedron.

Construct the basis from the first two columns3 so that

B =
[
−1 1
−1 2

]
and B−1 =

[
−2 1
−1 1

]
.

Now multiply both sides of the equation Ax = b by B−1 to obtain

[
1 0 −2 1
0 1 −1 1

]
⎛
⎜⎜⎝
x1

x2

s1
s2

⎞
⎟⎟⎠ =

(
8
9

)
.

Consistent with Theorem C.29, the extreme point (8, 9) is a basic feasible
solution with basis B. Note how the third column has nonpositive entries
(in fact, negative entries). The extreme direction that is generated from this
nonpositive nonbasic column is

d :=

⎛
⎜⎜⎝

2
1
1
0

⎞
⎟⎟⎠

and is constructed in the following way. One multiplies the nonbasic column
by minus one and places these two entries at the “top” of d. This produces
the subvector (2, 1)T . To complete the definition of d—keep in mind it has
four entries—one places a one in the third position, since this is the position
3 The x1 and x2 entries must be positive so this is the only basis.
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of the nonbasic column, and places zeroes everywhere else (the last position of
d in this case). That d = (2, 1, 1, 0)T is a direction of the polyhedron is easily
verified since Ad = 0.

Remark C.32. That d is a direction is no mystery. Here is the algebraic proof.
Let j denote the index of the nonbasic column whose entries are nonpositive,
and let aj denote the nonbasic column. (In this example j = 3.) Let êj denote
the jth unit vector ej truncated by removing the first m zeroes. The length
of the vector êj is n − m. (Here, eT

j = (0, 0, 1, 0) and êT
j = (1, 0).) In this

notation,

d =
(
−B−1aj

êj

)
and B−1Nêj = B−1aj .

(Keep in mind the nonbasic column is obtained after multiplying A by B−1.)
We have

B−1Ad = B−1[B N ]d = [I B−1N ]
(
−B−1aj

êj

)
= −B−1aj +B−1aj = 0, 4

which implies that Ad = 0; otherwise, B would not be invertible.

It can be shown that the d so constructed is, in fact, an extreme direction.
Thus, if a nonbasic column associated with a basic feasible solution has non-
positive entries, then it generates an extreme direction of the polyhedron.
Conversely, every extreme direction can be generated in this fashion. This
characterizes extreme directions. For proofs of these facts, see Bazarra et al.
[1993], p. 59.

Proposition C.33. The number of extreme directions is finite.

Proof. For every choice of matrix B there are n−m choices for the nonbasic
column. Thus, the number of extreme directions is bounded above by (n −

m)
(
n
m

)
, which is finite. ��

C.4.4 Representation Theorem for Polyhedra

The following theorem characterizes nonempty polyhedra via extreme points
and extreme directions. For a proof, see Bazarra et al. [1993], pp. 60–61.

Theorem C.34. Let S be a nonempty polyhedron in standard format. Let
x1, x2, . . . , xK be the extreme points of S and let d1, d2, . . . , dL be the extreme
directions of S. Then x ∈ S if and only if there exists a λ = (λ1, λ2, . . . , λK) ≥
0 and μ = (μ1, μ2, . . . , μL) ≥ 0 such that

x =
K∑

k=1

λkxk +
L∑

�=1

μ�d� and
K∑

k=1

λk = 1.

4 Algebraically [A1 A2]

„
a1

a2

«
= A1a1 + A2a2 whenever Ai is an m × ni matrix

and ai is an ni-dimensional vector, i = 1, 2.
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Corollary C.35. S has at least one extreme direction if and only if S is
unbounded.

Proof. Clearly, if S has an extreme direction, it is unbounded. Now suppose
S has no extreme directions. Then x must belong to the convex hull of a finite
number of points, and so its norm must be finite.5

A separate proof establishes that a nonempty polyhedron S will always have
at least one extreme point—see Bazarra et al. [1993], p. 58.

C.5 Application to Linear Programming

A linear programming problem is the minimization or maximization of a linear
function over a polyhedron. Without loss of generality, we consider the linear
program

(P ) : min{cTx : Ax = b, x ≥ 0}. (C.1)

We make the following assumptions:

Assumption 10 (i) A is an m × n matrix of full rank m. (ii) The feasible
region {x : Ax = b, x ≥ 0} is not empty.

Let x1, x2, . . . , xK denote the extreme points and d1, d2, . . . , dL denote the
extreme directions of the feasible region.

Theorem C.36. Under Assumption 10:

a) The linear program (P ) has a finite optimal solution if and only if cTd� ≥ 0
for 1 ≤ � ≤ L.

b) If the linear program (P ) has a finite optimal solution, then at least one
extreme point is an optimal solution.

Proof. As a direct application of the representation theorem, the linear pro-
gramming problem (P ) can be reformulated as

(P ′) min

(
KX

k=1

λk(cT xk) +
LX

�=1

μ�(c
T d�) :

X
k

λk = 1, λk, μ� ≥ 0 for all k, �

)
.

(C.2)

If cT d� < 0 for any �, then by choosing μ� to be arbitrarily large, the objective
function can be made to equal an arbitrarily large negative number, which
implies that (P ) has no finite solution.

Conversely, suppose cT d� ≥ 0 for all �. Pick a point (λ, μ) ∈ IRK
+ × IRL

+ in
the feasible region for (P ′). The point (λ, 0) is feasible and will have an ob-
jective function value no higher than (λ, μ). Consequently, under the assumed
hypothesis, without loss of generality one may consider only those points in
5 Repeated application of the triangle inequality for norms shows that ||x|| =
||

PK
k=1 λkxk|| ≤

PK
k=1 λk||xk|| ≤

PK
k=1 ||xk||.
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the feasible region for (P ′) such that μ = 0. It now follows that the optimal
objective function value equals

min
1≤k≤K

cTxk,

which completes the proof of part (a) and immediately proves part (b). ��

Remark C.37. If the number of extreme points is small in number and there
is a way to determine each one, then the linear program can be solved by
enumeration. In general, the number of extreme points is too large for this
approach to be practical. It is possible to start with an extreme point and exe-
cute pivoting operations or pivots to sequentially move from one extreme
point to an adjacent extreme point in such a manner that the objective func-
tion never decreases. Since there are a finite number of extreme points, the
algorithm will eventually terminate, as long as it does not move to an extreme
point already visited. In the language of linear programming, the algorithm
must not cycle. There are a number of proven, simple ways to avoid cycling.

C.6 Bibliographical Notes

The classic references on convexity and linear programming are Rockafellar
[1970] and Dantzig [1963], respectively. Bazarra et. al. [1993] provides an in-
depth, accessible coverage of this material.



D

Concave, Convex Functions

and Generalizations

The classes of concave (convex) and quasiconcave (quasiconvex) functions
are essential to modeling economic problems. Here, we establish their basic
properties.1

In this chapter, S denotes a nonempty convex set in IRn with nonempty
interior, and f(·) denotes a real-valued function defined on S.

D.1 Definitions

Definition D.1. The function f(·) is concave if for each x1 and x2 in S

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2)

holds for all λ ∈ [0, 1]. The function f(·) is strictly concave if the inequality
holds as a strict inequality for all λ ∈ (0, 1) and x1 �= x2. A function f(·) is
convex or strictly convex if −f(·) is concave or strictly concave.

Proposition D.2. The following functions are concave or convex:

a) A finite, positive linear combination of concave (convex) functions is con-
cave (convex).

b) The minimum of a finite collection of concave functions is concave, and
the maximum of a finite collection of convex functions is convex.

Theorem D.3. Characterization of concave (convex) functions via
level sets.

a) f(·) is concave if and only if hypo(f) is convex.
b) f(·) is convex if and only if epi(f) is convex.

1 Consult Bazarra et. al. [1993] for more detail on this subject matter.
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Every concave (convex) function has at least one supergradient (subgradi-
ent) at each point in the interior of S. Conversely, if each point in the interior
of S has at least one supergradient, then f(·) is concave on the interior of S
(but not necessarily on all of S).

Theorem D.4. If f(·) is concave, then the superdifferential ∂f(x̄) is not
empty for each x̄ in the interior of S.

Proof. The point (x̄, f(x̄)) lies on the boundary of hypo(f), which is a convex
set. It has a supporting hyperplane, which can be identified with a point
(ξ, μ) ∈ IRn × IR for which

ξ · x̄+ μf(x̄) ≤ ξ · x+ μγ for all (x, γ) ∈ hypo(f).

Since x̄ lies in the interior of S, x̄ − δξ ∈ S for sufficiently small positive
δ, which shows that μ cannot be zero. Since γ can take on arbitrarily high
negative values, we conclude that μmust be negative. The vector x̄∗ = ξ/(−μ)
belongs to the superdifferential of f(·) at x̄. ��

Theorem D.5. If the superdifferential ∂f(x̄) is not empty for each x̄ in the
interior of S, then f(·) is concave on the interior of S.

Proof. Let x1 and x2 be two points that lie in the interior of S, and pick a
point x̄ = λx1 + (1− λ)x2 that lies in the interior of the line segment joining
these two points. Since the interior of S is convex, there is a supergradient of
f(·) at x̄. Accordingly,

f(x1) ≤ f(x̄) + x̄∗ · (x1 − x̄) = f(x̄) + (1− λ)x̄∗ · (x1 − x2), (D.1)
f(x2) ≤ f(x̄) + x̄∗ · (x2 − x̄) = f(x̄)− λx̄∗ · (x1 − x2). (D.2)

Now multiply the first equation by λ, the second by (1−λ), and add to obtain
the desired result. ��

Theorem D.6. A concave function is continuous on the interior of its do-
main.

D.2 Quasiconcavity and Quasiconvexity

The properties of convex sets make them extremely useful as modeling ap-
proximations. It is possible to retain the analytical power of convexity with
the following class of functions.

Definition D.7. The function f(·) is quasiconcave if each upper level set
L≥

f (α) is convex. The function f(·) is quasiconvex if each lower level set
L≤

f (α) is convex.
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Fig. D.1. Example of a quasiconcave function that is not concave.

Example D.8. An example of function that is not concave but is quasiconcave
is depicted in Figure D.1. Each upper level is a closed interval. The hypograph
is not convex, and so this function is not concave.

Theorem D.9. If f(·) is concave (convex), then f(·) is quasiconcave (quasi-
convex).

Proof. The result follows from the easily verified fact that each upper (lower)
level set of a concave (convex) function is convex. ��

An equivalent definition of quasiconcavity (quasiconvexity) is stated in the
following theorem.

Theorem D.10. Characterization of quasiconcavity (quasiconvexity).

a) f(·) is quasiconcave if and only if

f(λx1 + (1− λ)x2) ≥ min{f(x1), f(x2)}

holds for each x1 and x2 in S and for all λ ∈ [0, 1].
b) f(·) is quasiconvex if and only if

f(λx1 + (1− λ)x2) ≤ max{f(x1), f(x2)}

holds for each x1 and x2 in S and for all λ ∈ [0, 1].
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D.3 Differential Characterizations

There are a number of powerful characterizations for concavity and quasicon-
cavity (convexity and quasiconvexity) when the function under consideration
is sufficiently differentiable.

Theorem D.11. Let f(·) be differentiable.

a) If f(·) is concave, then for all x ∈ S

f(x) ≤ f(x̄) +∇f(x) · (x− x̄). (D.3)

b) If f(·) is convex, then for all x ∈ S

f(x) ≥ f(x̄) +∇f(x) · (x− x̄). (D.4)

Proof. Theorem D.4 established that a concave (convex) function has at least
one supergradient (subgradient) at each point in the interior of S. It therefore
follows that when f(·) is differentiable at x, the superdifferential (subdiffer-
ential) of f(·) at x must exactly coincide with the gradient vector. The result
follows from the definition of superdifferential (subdifferential). ��

We turn to establishing a characterization of differentiable quasiconcave
(quasiconvex) functions.

Theorem D.12. Suppose S is open and f(·) is differentiable. Then:

a) f(·) is quasiconcave if and only if for each x ∈ S the hyperplane H(p, α)
supports the upper level set L≥

f (f(x)) at x from below, where p := ∇f(x)
and α := ∇f(x) · x. That is,

L≥
f (f(x)) ⊂ H≥(∇f(x),∇f(x) · x).

b) f(·) is quasiconvex if and only if for each x ∈ S the hyperplane H(p, α)
supports the lower level set L≥

f (f(x)) at x from above, where p := ∇f(x)
and α := ∇f(x) · x. That is,

L≤
f (f(x)) ⊂ H≤(∇f(x),∇f(x) · x).

Proof. It is sufficient to establish part (a). Pick x1 and x2 in S and, without
loss of generality, assume that f(x1) ≤ f(x2). Set d = x2 − x1.

Suppose first that f(·) is quasiconcave. Due to the quasiconcavity of f(·),
we know L≥(f(x1)) is convex, from which it follows that f(x1 + αd) ≥ f(x1)
for all α ∈ [0, 1]. Since f(·) is differentiable, we also know that

f(x1 + αd) = f(x1) + αd · ∇f(x1) + o(α)

for sufficiently small α. This can only be true if d ·∇f(x1) = (x2−x1) ·∇f(x1)
is nonnegative, as required.
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To establish the converse, we argue by contradiction. Define the function

θ(γ) := f(x1 + γd)− f(x1), γ ∈ [0, 1].

We suppose a γ exists for which θ(γ) < 0, and then show this leads to a
contradiction. Note that θ(0) = 0 and θ(1) ≥ 0. Since θ(·) is continuous
it achieves its minimum on [0, 1], say at γ∗. Clearly, γ∗ ∈ (0, 1). The set
θ−1{0} ∩ [0, γ∗] is compact and therefore achieves its supremum, say at γm.
Obviously, θ(γm) = 0 and γm �= γ∗. The continuity of θ(·) ensures that θ(γ) <
0 for all γ ∈ (γm, γ

∗). Invoking the Mean-Value Theorem A.11, p. 447, there
exists a λ ∈ [γm, γ

∗] such that

θ(γ∗) = θ(γm) + (γ∗ − γm)θ′(λ) = (γ∗ − γm)θ′(λ).

This in turn implies that

0 > θ′(λ) = λ∇f(xλ) · d,

where xλ := x1 + λd. Thus, ∇f(xλ) · d is negative. Since θ(λ) < 0, it follows
that f(x2) ≥ f(xλ), and so x2 ∈ L≥(f(xλ)). Now we invoke the assumption
that the gradient ∇f(xλ) supports L≥(f(xλ)) at xλ to obtain that

∇f(xλ) · (xλ) ≤ ∇f(xλ) · x2

or, equivalently,
0 ≤ (1− λ)∇f(xλ) · d.

This implies that ∇f(xλ) · d is nonnegative. Obviously, ∇f(xλ) · d cannot
be both negative and nonnegative, and so the desired contradiction has been
reached. ��

We now come to a very important characterization of twice continuously
differentiable concave (convex) functions.

Theorem D.13. Suppose S is open and f(·) is twice differentiable on S.
Then, f(·) is concave (convex) if and only if the Hessian matrix is negative
(positive) semidefinite at each point in S.

Proof. Suppose first that f(·) is concave. Pick an x ∈ S and a d ∈ Rn. Since
S is open, we may assume x + αd ∈ S for all sufficiently small α. Since the
gradient vector is a supergradient,

f(x+ αd) ≤ f(x) + α∇f(x) · d.

As α → 0, it must be the case that dTH(x)d ≤ 0 in (A.11), p. 448, which
shows that H(x) is indeed negative semidefinite. The converse is an immediate
consequence of the second-order form of Taylor’s theorem (A.16), p. 448. ��
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Remark D.14. As a special case of Theorem D.13, we note the important, well-
known fact from ordinary calculus about a twice continuously differentiable
function f(·) of a single variable, namely, that f(·) is concave (convex) if and
only if its second derivative is always nonpositive (nonnegative).

Remark D.15. When f(x) = a+ c · x+ 1/2 xTQx is quadratic the Hessian is
Q, which is independent of x. Without loss of generality, we may assume Q is
symmetric. (If not, replace it with the symmetric matrix 1/2(Q+QT ).) Thus,
a quadratic function is concave (convex) if and only if Q is negative (positive)
semidefinite. It is a fact of linear algebra that a matrix Q is negative (positive)
semidefinite if and only if all of its eigenvalues are non-positive (non-negative).
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Optimality Conditions

Not surprisingly, economists assume economic agents (e.g., consumers, pro-
ducers) make rational decisions about what to consume, how much to save,
invest, produce, etc. Such problems are formulated as optimization problems,
which typically involve an objective function that measures the value to the
economic agent of making a particular choice, and a collection of constraints
that define what choices are feasible. In this chapter, we define classes of opti-
mization problems, provide necessary and sufficient conditions for optimality,
and show how to solve such problems.

E.1 Unconstrained Problems

Definition E.1. Let f : IRn → IR.

• If f(x∗) ≥ f(x) for all x ∈ IRn, then x∗ is a global maximizer.
• If f(x∗) ≥ f(x) for all x in some neighborhood of x, then x∗ is a local

maximizer.
• If f(x∗) > f(x) for all x in some neighborhood of x (excluding x∗ of

course), then x∗ is a strict local maximizer.

Definition E.2. The gradient at x is said to vanish if ∇f(x) = 0.

Theorem E.3. Suppose f : IRn → IR is differentiable at x∗. If x∗ is a local
maximizer, then the gradient at x∗ vanishes.

Proof. If ∇f(x∗) �= 0, then the direction d = ∇f(x∗) has positive norm. For
α sufficiently small, x∗ +αd lies in the neighborhood where x∗ is a maximum,
and thus f(x∗ + αd) ≤ f(x∗). Since f(·) is differentiable at x∗,

f(x∗ + αd) = f(x∗) + α∇f(x∗) · d+ o(α) = f(x∗) + α||∇f(x∗)||2 + o(α),

which contradicts the local maximality of x∗ for α sufficiently small. ��
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Theorem E.3 is an example of a necessary condition. The following theorem
establishes a sufficient condition for x∗ to be a strict local maximizer.

Theorem E.4. Suppose f : IRn → IR is twice continuously differentiable at
x∗. If ∇f(x∗) = 0 and H(x∗) is negative definite, then x∗ is a strict local
maximizer.

Proof. If x∗ is not a strict local maximizer, then there exists an infinite se-
quence xk converging to x∗ for which f(xk) ≥ f(x∗), xk �= x∗. Let dk = xk−x∗
for each k. Using (A.10), p. 447, and the fact that ∇f(x∗) vanishes,

f(x∗ + dk) = f(x∗) + 1/2 dT
kH(x∗)dk + o(||dk||2).

Since f(xk) ≥ f(x∗),

1/2 dT
kH(x∗)dk + o(||dk||2) ≥ 0,

or, equivalently,

1/2 d̂T
kH(x∗)d̂k +

o(||dk||2)
||dk||2

≥ 0 (E.1)

where d̂k := dk/||dk||. The {d̂k}’s belong to the unit ball, which is compact,
and so we may extract a convergent subsequence, say d̂nk

→ d̂. By letting
nk →∞ in (E.1), we conclude that

d̂TH(x∗)d̂ ≥ 0.

This contradicts the negative semidefiniteness of H(x∗). ��

Remark E.5. Theorems E.3 and E.4 both hold if f : IRn → IR is defined on
an open set S ⊆ IRn.

E.2 Problems with Inequality Constraints

We consider the general maximization problem defined by

(P ) : {max f(x) : gi(x) ≥ 0, i = 1, 2, . . . ,m}. (E.2)

In this section we make the following assumptions.

Assumption 11

• f(·) and each gi(·) are real-valued, differentiable functions defined on an
open set S ⊆ IRn.

• The vectors ∇gi(x), i ∈ I(x), are linearly independent,1 where I(x) := {i :
gi(x) = 0} for each feasible x. (This condition is an example of what is
termed a constraint qualification.)

1 This means that if
P

i∈I(x) μi∇gi(x) = 0, then each μi = 0.
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Let g(x) denote the vector (g1(x), . . . , gm(x)) and ∇g(x) denote the vector
(∇g1(x), . . . ,∇gm(x)).

Definition E.6. Vectors x ∈ S and λ ∈ IRm are said to satisfy the comple-
mentary slackness conditions if λigi(x) = 0 for i = 1, 2, . . . ,m.

Definition E.7. A vector x∗ is said to satisfy the first-order optimality
conditions [or the (KKT) conditions] if

i) x∗ is feasible for (P ).
ii) There exists a non-negative vector λ∗ ∈ IRm for which (x∗, λ∗) satisfies

the complementary slackness conditions.
iii)∇f(x∗) + λ∗ · ∇g(x∗) = 0.

The following theorem establishes the Karush-Kuhn-Tucker (KKT) Nec-
essary Conditions for a vector x∗ to be a local maximizer of (P ).

Theorem E.8. Under Assumption 11, if x∗ is a local maximizer of (P ), then
x∗ satisfies the (KKT) conditions.

Proof. Let A denote the matrix whose rows consist of the vector ∇f(x∗) and
∇gi(x∗) for i ∈ I(x∗). We first establish the claim that there cannot be a
vector d ∈ IRn for which Ad > 0. To this end consider the set

F = {d ∈ IRn : ∇gi(x∗) · d > 0 for all i ∈ I(x∗)}, (E.3)

and suppose F is non-empty. Pick a d ∈ F . For each i ∈ I(x∗), there exists
a δ > 0 for which g(x∗ + αd) ≥ 0 for all α ∈ [0, δ]. For each i /∈ I(x∗), the
continuity of gi ensures existence of a neighborhood about x∗ for which gi(x∗)
remains positive. Given that S is open, there exists a δ∗ > 0 for which x+αd is
feasible for (P ) for all α ∈ [0, δ∗]. Since x∗ is a local maximum, it immediately
follows that ∇f(x∗) · d cannot be positive. Thus, the claim has been shown.

If the system Ad > 0 has no solution, then application of the separation
theorem for convex sets shows there must exist a nonnegative vector y for
which yTA = 0.2 That is,

y0∇f(x∗) +
∑

i∈I(x∗)

yi∇gi(x∗) = 0. (E.4)

With a slight abuse of notation extend y to all of IRm+1 by defining yj = 0
for j /∈ I(x∗) so that

y0∇f(x∗) +
m∑

i=1

yi∇gi(x∗) = 0. (E.5)

The linear independence assumption ensures that y0 is positive, and so we
may divide both sides of (E.5) by y0 to obtain the desired result. ��
2 See Exercise 8.4, p. 143.
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The (KKT ) conditions are extremely useful for identifying possible (local)
solutions to (P ). When the set S is closed, one must also check the boundary
of S. In many economic problems, it will be clear a solution exists and cannot
lie on the boundary.

We now establish an example of sufficient conditions for optimality of (P ).
The statement below only assumes that each gi(·) is quasiconcave.

Theorem E.9. Suppose f(x) = cTx is linear and each gi(·) is quasiconcave.
Under Assumption 11, if x∗ satisfies the (KKT ) conditions, then x∗ is optimal
for (P ).

Proof. Using Theorem D.12, we know the gradient ∇gi(x∗) induces a sup-
porting hyperplane to the upper level set L≥

gi
(gi(x∗)) at x∗. In particular, for

each k ∈ I(x∗), we have that

∇gk(x∗) · (z − x∗) ≥ 0

for each feasible z. Since λ∗k = 0 for each k /∈ I(x∗) it then follows that

m∑
k=1

λ∗k∇gk(x∗) · (z − x∗) ≥ 0

for each feasible z. Since the inner product

(∇f(x∗) + λ∗ · ∇g(x∗)) · (z − x∗)

is obviously zero, it now follows that

∇f(x∗) · (z − x) ≤ 0.

Optimality follows from the linearity of f(·) since ∇f(x∗) = cT . ��

E.3 Lagrangian Duality

We once again consider problem (P ). In this section, we impose the following
additional assumptions.

Assumption 12

• f(·) and each gi(·) are concave.3

• S is convex.
• (P ) has a finite optimal solution.
• Slater’s condition holds, namely, there exists an x ∈ S for which gi(x) >

0 for each i.
3 Concavity is not required for several of the results below.
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Under Assumptions 11 and 12, problem (P ) is intimately related to an
unconstrained problem defined by the Lagrangian function.

Definition E.10. The function

L(x, λ) := f(x) +
m∑

i=1

λigi(x) = f(x) + λ · g(x) (E.6)

defined on S × IRm is called the Lagrangian function. The point (x∗, λ∗) ∈
S × IRm is called a saddle point of the Lagrangian if

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) (E.7)

holds for all (x, λ) ∈ S × IRm
+ .

In the developments to follow, we shall find it convenient to use the fol-
lowing two expressions for a given (x∗, λ∗):

Condition A: L(x, λ∗) ≤ L(x∗, λ∗) holds for all x ∈ S.

Condition B: L(x∗, λ∗) ≤ L(x∗, λ) holds for all λ ∈ IRm
+ .

Lemma E.11. Under Assumptions 11 and 12, if (x∗, λ∗) is a saddle point of
the Lagrangian, then (x∗, λ∗) satisfies complementary slackness.

Proof. Setting λ = 0 in Condition B and noting that λ∗ · g(x∗) is always
nonnegative shows that (x∗, λ∗) satisfies complementary slackness. ��

Theorem E.12. Under Assumptions 11 and 12, if (x∗, λ∗) is a saddle point
of the Lagrangian, then x∗ is an optimal solution to (P ).

Proof. For Condition B to hold each gi(x∗) must be nonnegative, since each
λi may take on arbitrarily large positive values. Thus, x∗ is feasible. Lemma
E.11 (complementary slackness), Condition A, and the fact that λ∗ · g(x) is
nonnegative for each feasible x shows that f(x) ≤ f(x∗) for each x ∈ S. Since
x∗ is feasible, it is obviously optimal. ��

Theorem E.13. Under Assumptions 11 and 12, if x∗ is an optimal solution
to (P ), then a λ∗ exists for which (x∗, λ∗) is a saddle point of the Lagrangian.

Proof. Define the set

C ≡ {(α, β) ∈ IR× IRm : α ≤ f(x)−f(x∗), β ≤ g(x) for some x ∈ S}. (E.8)

C is convex and does not intersect the convex cone D = IR++× IRm
+ . The sep-

aration theorem for convex sets ensures existence of a (non-trivial) hyperplane
{(α, β) : α∗α+ β∗ · β = γ} that (weakly) separates C from D, namely,

α∗α+ β∗ · β ≥ γ ≥ α∗ᾱ+ β∗ · β̄ (E.9)
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holds for all (α, β) ∈ D and (ᾱ, β̄) ∈ C. Since there exists points in C that
can take on arbitrarily high negative values, (E.9) can only hold if (α∗, β∗) ≥
0. Furthermore, since (0, 0) ∈ C and the left-hand side of the inequality in
(E.9) can be arbitrarily close to 0, it follows that γ = 0. Slater’s condition
ensures that α∗ �= 0. Now set λ∗ = β∗/α∗, and use the right-hand side of
(E.9) to establish that f(x) − f(x∗) + λ∗g(x) ≤ 0, which is Condition A.
Since (0, g(x∗)) ∈ C the right-hand side of (E.9) shows that λ∗ · g(x∗) ≤ 0.
Since λ∗ · g(x∗) is always non-negative, complementary slackness holds, and
Condition B immediately follows. ��

We turn to the differentiable setting. A real-valued, differentiable concave
function h(·) defined on an open convex set S is characterized by the following
intuitive geometrical property: for all x ∈ S and y ∈ S,

h(y) ≤ h(x) +∇h(x) · (y − x). (E.10)

Note that if ∇h(x∗) = 0, then x∗ maximizes h(·) on S. A necessary condition
for x∗ to be a local maximizer is that its gradient must vanish; for concave
functions defined on open sets this property is sufficient for x∗ to be a global
maximum.

Theorem E.14. Suppose f(·) and each gi(·) are differentiable. Under As-
sumptions 11 and 12, x∗ optimizes (P ) if and only if x∗ satisfies the first-order
optimality conditions.

Proof. If x∗ optimizes (P ), then obviously it is feasible. From Theorem E.13
a λ∗ exists for which (x∗, λ∗) is a saddle point of the Langrangian. Comple-
mentary slackness follows from feasibility and Condition B. Condition A and
complementary slackness shows that x∗ optimizes L(·, λ∗) on S, an open set.
The gradient of L(·, λ∗) must vanish, which is condition (iii).

As for the converse, the function L(·, λ∗) is concave and its gradient at x∗

vanishes. Consequently, x∗ optimizes L(·, λ∗). Feasibility of x∗ and comple-
mentary slackness now show that x∗ optimizes (P ). ��

Definition E.15. The dual problem to problem (P ) is given as

(D) : inf
λ≥0

V (λ) (E.11)

where
V (λ) := supx∈S L(x, λ). (E.12)

for each λ ∈ IRm
+ . We say that (x∗, λ∗) solves (D) if V (λ∗) ≤ V (λ) for all

λ ≥ 0 and V (λ∗) = L(x∗, λ∗).

Theorem E.16. Weak duality Under Assumptions 11 and 12, the optimal
objective function value for (D) is an upper bound to the optimal objective
function value for (P ).
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Proof. Observe that V (λ) ≥ f(x) for each feasible x and nonnegative λ. ��

Theorem E.17. Strong duality Under Assumptions 11 and 12, the optimal
objective function values for the primal (P ) and dual (D) problems coincide;
that is, f(x∗) = V (λ∗) for respective optimal solutions x∗ and λ∗. In particu-
lar, x∗ solves the maximization problem defined by V (λ∗) and (x∗, λ∗) satisfies
the complementary slackness condition.

Proof. Let x∗ denote an optimal solution to (P ). By Theorem E.13, a λ∗

exists for which (x∗, λ∗) is a saddle point of the Lagrangian. Proposition E.11
(x∗, λ∗) and Condition A immediately implies that V (λ∗) ≤ f(x∗). The result
now follows from Theorem E.16. ��

For many optimization problems it is possible to efficiently solve for V (λ)
for a given λ. It is often the case that the number of decision variables in
the dual problem is far less than the number of decision variables in the
primal problem. Consequently, solving the dual problem can be much easier
from a computational perspective. The following theorem shows that the dual
problem is a convex minimization problem.

Theorem E.18. Under Assumptions 11 and 12, the function V (·) is convex.

Proof. Pick λi ∈ IRm
+ , i = 1, 2, and an δ ∈ [0, 1]. By definition,

V (δλ1 + (1− δ)λ2) = sup
x
{ f(x) + (δλ1 + (1 − δ)λ2) · g(x) }

= sup
x
{ δ [f(x) + λ1 · g(x)] + (1− δ)[f(x) + λ2 · g(x)] }

≤ δ { sup
x

[f(x) + λ1 · g(x)] }+ (1− δ){ sup
x

[f(x) + λ2 · g(x)] }

= δV (λ1) + (1− δ)V (λ2).

If the objective function is smooth (i.e., sufficiently differentiable), then there
are several relatively simple algorithms to solve this type of problem. In gen-
eral, the objective function may not be smooth. However, the past 20 years
has seen a number of efficient algorithms developed to solve such nonsmooth
convex minimization problems.

Remark E.19. From a practical perspective, it is often unnecessary to find
the optimal solution, a near-optimal solution will suffice. Theorem E.16 then
becomes an important tool: the ratio of V (λ) to f(x) for a feasible x and any
choice of λ provides an a posteriori bound on how good x is. For example, if
V (λ)/f(x) = 1.02, then f(x∗) ≤ 1.02f(x), which implies that f(x∗) is within
2% of the optimal objective function value.
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E.4 Application of Duality to Economic Lot Sizes

We consider the following optimization problem:

(P ) : min

{∑
i

(
ai

xi
+ bixi) :

∑
i

rixi ≤ R
}
. (E.13)

This problem has very special structure—an additively-separable objective
function and constraint—we shall shortly exploit, and is common to many
of the economic optimization problems we shall formulate in this book. The
function fi(x) := ai/xi + bixi arises in a variety of contexts, and is commonly
referred to as an EOQ form. In an inventory context, the (positive) decision
variable xi refers to how much quantity to order of product i. Parameter ai

denotes the setup cost for making a single order, bi denotes the holding cost
penalty per unit time, ri denotes the resource required by item i (typically
cash or space), and R denotes the maximum resource available. For future
reference, we note now that

• The unconstrained minimum of fi(xi) is achieved at x∗i =
√
ai/bi and

fi(x∗i ) = 2
√
aibi.

• The aggregate demand for resource in the unconstrained problem
is
∑

i ri
√
ai/bi.

Since there are possibly many items, but only one resource constraint, we
shall tackle this problem via duality. First, we shall express this problem in
canonical form (E.2) as

max

{
−
∑

i

(
ai

xi
+ bixi

)
: R −

∑
i

rixi ≥ 0

}
. (E.14)

The Lagrangian is

L(x, λ) = −
∑

i

(
ai

xi
+ bixi

)
+ λ

(
R−

∑
i

rixi

)

= λR −
∑

i

[
ai

xi
+ (bi + λri)xi

]
, (E.15)

and the dual objective function is

V (λ) = sup
x

{
λR −

∑
i

[
ai

xi
+ (bi + λri)xi

] }

= λR− inf
x

{ ∑
i

[
ai

xi
+ (bi + λri)xi

] }

= λR− 2
∑

i

√
ai(bi + λri). (E.16)
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Since −
√
ai(bi + λri) is convex and the sum of convex functions is convex,

V (·) is convex, too, as required. It is obviously differentiable.
We seek to minimize V (·) on [0,∞). Its derivative is

V ′(λ) = R−
∑

i

airi√
ai(bi + λri)

, (E.17)

which is clearly a strictly increasing function of λ whose limiting value is R.
If the derivative at zero is negative, then eventually the derivative must cross
zero at a unique point, and this point will indeed be the optimal solution to
the dual problem. It is possible, however, that the derivative never vanishes,
which can only happen if the derivative at zero is nonnegative. From (E.17)

V ′(0) = R−
∑

i

ri
√
ai/bi ,

which is precisely the difference between the supply of the resource, R, and
the aggregate demand for the resource for the unconstrained problem. Thus,
if the aggregate demand in the unconstrained problem does not violate the
constraint, the optimal value of the dual variable is indeed zero, and the solu-
tion for the dual problem will coincide with the solution of the unconstrained
problem. (Note that the optimum dual variable in this case must be zero by
complementary slackness.)

Let us assume that resource is scarce so that V ′(0) < 0. To find the point
λ∗ at which V ′(λ∗) = 0, one merely performs a bisection search, informally
expressed as: if V ′(λ) < 0, increase the lower bound for λ; if V ′(λ) > 0,
decrease the upper bound for λ; otherwise, stop (when V ′(0) is sufficiently
close to zero).

We close here by providing an interpretation to the bisection search from
the primal problem’s perspective. The aggregate demand for resource for a
given value of λ is

x(λ) :=
∑

i

airi
bi + λvi

.

At the optimum value λ∗, we know complementary slackness holds, which
means here that λ∗[R − x(λ∗)] = 0. Thus, the constraint will be tight when
supply is scarce. Since x(·) is a decreasing function, there is obviously a unique
value for λ∗, and it may be found by performing a bisection search. But note
that V ′(λ) given in (E.17) is precisely the difference between the supply, R,
and the aggregate demand, x(λ), and so this is the same bisection search.

E.5 Application of Duality to Linear Programming

We apply Lagrangian duality to establish the familiar duality of linear pro-
gramming. Consider the linear programming problem defined as
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max
x≥0
{cTx : Ax ≤ b}, (E.18)

where A denotes an m by n matrix (of full rank). We assume the linear pro-
gram has an optimal solution. Then the dual problem (D) may be expressed
as

min
y≥0
{yT b : yTA ≥ cT }, (E.19)

and it has an optimal solution whose objective value coincides with that of
the primal problem.

To derive the linear programming duality from Lagrangian duality, we
begin by expressing the problem as an instance of problem (P ), namely, as

max{cTx : b −Ax ≥ 0, x ≥ 0}.

Let y denote the dual variables associated with the constraints b − Ax ≥ 0,
let ν denote the dual variables associated with the nonnegativity constraints,
which are essential to include, and let λ = (y, ν). The Lagrangian here is

L(x, λ) = cTx+ yT (b−Ax) + νTx = (cT − yTA+ νT )x + yT b,

and the dual objective function V (λ) is

V (λ) = sup
x

[ (cT − yTA+ νT )x+ yT b ]. (E.20)

Since a finite optimal solution is assumed to exist for problem (P ), Theorem
(E.17) ensures that the dual problem (D) also has a finite optimal solution.
Since x may chosen arbitrarily in (E.20), a finite optimal solution for (D) can
only exist if

cT − yTA+ νT = 0, (E.21)

which implies that V (λ) = yT b. Since both y and ν are nonnegative and since
νT = yTA− cT , the dual variables must satisfy yTA ≥ cT . To conclude, when
minimizing over the dual variables λ in problem (D), it is sufficient to restrict
attention to the domain where yTA ≥ cT , and on this domain V (λ) = yT b.
The linear programming dual problem (E.19) immediately follows from the
definition of (D), and Theorem E.17 guarantees it has an optimal solution
whose objective value coincides with that of the primal problem.

Remark E.20. Using the fact that an equality constraint may be written as
two linear inequalities, the dual linear program to the linear program defined
by

min {cTx : Ax = b}
is

min
y∈IRm

{yT b : yTA ≥ cT }. (E.22)

That is, it is the same dual linear program as before, except that the dual
variables are now unconstrained.
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Remark E.21. Linear programming duality holds under much weaker condi-
tions than what is assumed here. Lagrangian duality is, however, a convenient
means for remembering the form of the dual linear program!

E.6 Bibliographical Notes

The classic reference on Lagrangian duality and convexity is Rockafellar
[1970]. Bazarra et. al. [1993] provides a more accessible treatment, and also
covers the basics of linear programming.
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Envelope Theorem

Sensitivity analyzes play a major role in economics. In this chapter, for a
general class of optimization problems we show how to obtain the sensitivity
of the optimal value to a change in a problem parameter.

F.1 Statement and Proof

We consider the general optimization problem given by

M(a) := max
x∈IRn

{F (x, a) : gk(x, a) ≥ 0, k = 1, . . . ,K}. (F.1)

The vector a is viewed as representing the parameters of the optimization
problem, and we shall be interested to see how M(a) varies with changes in
the coordinates of a.

Example F.1. The producer’s cost minimization problem is, of course, a special
case of (F.1): identify a with (u, p), M with Q, F (x, a) with −p · x, and
gk(x, a) = xk for k = 1, 2, . . . n, and gn+1(x, a) with Φ(x)− u.

For the statement and proof to follow, we make the following assumptions:

Assumption 13

• A ⊂ IRm is open.
• F (·, ·) and each gk(·, ·) are differentiable on IRn × A.
• For each a ∈ A:

– there is a unique solution x(a);
– x(·) is differentiable on A;
– the first-order optimality (KKT ) conditions are satisfied;
– there is an open neighborhood Na containing a for which the set of

binding constraints I(a) := {j : gj(x(a), a) = 0} does not change.
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The Lagrangian for the optimization problem is

L(x, λ, a) = F (x, a) +
∑

k

λkgk(x, a), (F.2)

where we have explicitly denoted its dependence on a. For each a, let λ(a)
denote a vector of Lagrange multipliers that satisfy the (KKT ) conditions.

Theorem F.2. Envelope Theorem Under Assumption 13,

∂M(a)
∂an

=
∂L(x(a), λ(a), a)

∂an
. (F.3)

Proof. It is worthwhile to recall how Shephard’s Lemma, Section 5.4.2, p. 77,
was established. We began by using the chain rule, then used the facts that
the gradient of the Lagrangian (with respect to x) must vanish, and that the
constraint must be tight at the optimum. A similar approach will be used in
this more general setting.

Fix a ∈ A. From the chain rule1

∂M

∂an
=
∑

i

∂F

∂xi

∂xi

∂an
+

∂F

∂an
. (F.4)

Since x(a) and λ(a) jointly satisfy the (KKT ) conditions,

∂F

∂xi
= −

∑
k

λk(a)
∂gk

∂xi
for all i = 1, 2, . . .K. (F.5)

Substituting (F.5) into (F.4) and interchanging the order of summation, we
obtain that

∂M

∂an
= −

∑
k

λk(a)

[∑
i

∂gk

∂xi

∂xi

∂an

]
+

∂F

∂an
. (F.6)

Since there is a neighborhood of a for which the set of tight constraints does
not change, ∑

i

∂gk

∂xi

∂xi

∂an
+

∂gk

∂an
= 0 for all k ∈ I(a), (F.7)

which shows that the expression in the brackets for k ∈ I(a) in (F.6) is
identically −∂gk/∂an. Since λk(a) = 0 when k /∈ I(a), we may substitute
−∂gk/∂an for the expression in brackets for all k to obtain

∂M

∂an
=
∑

k

λk(a)
∂gk

∂an
+

∂F

∂an
=

∂L

∂an
, (F.8)

which completes the proof. ��
1 Keep in mind that the partial derivatives to follow are evaluated at the points a,

(x(a), a), and (x(a), λ(a), a) where appropriate.
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F.2 Application to Sensitivity Analysis of Cost

We consider the sensitivity analysis of the cost function Q(u, p). Fix u and p
and let x∗ = x(u, p) and λ∗ = λ(u, p). The Lagrangian of the cost minimization
problem is

L(x, λ, p, u) = p · x − λ(Φ(x) − u). (F.9)

As an immediate application of the Theorem F.2,

∂Q(u, p)
∂pi

=
∂L(x∗, λ∗, p, u)

∂pi
= x∗i , (F.10)

and
∂Q(u, p)
∂u

=
∂L(x∗, λ∗, p, u)

∂u
= λ∗ . (F.11)

F.3 A Monopoly Pricing Example

We consider a very special case of our general optimization problem in which
the dimension of both x and a is one and there are no constraints. In such
a case the Envelope theorem reduces to the statement that M ′(a) = ∂F/∂a.
Here is an interpretation. When a changes, it directly affectsM(·) via its direct
effect on F (·, ·), but it also indirectly affects M(·) since the optimal choice x(a)
will change. Theorem F.2 says that since x(a) is an optimal choice, this indirect
effect will be negligible.

To make matters concrete, we shall consider a monopoly pricing prob-
lem and derive the Envelope theorem graphically. To this end, we consider a
monopolist who faces the inverse demand curve

P = e−Q/4, (F.12)

and whose marginal cost, c, is constant. The monopolist’s profit function is
[e−Q/4] ∗Q − c ∗Q, which may be equivalently expressed as

π(Q, a) := a ∗Q − Q2/4, (F.13)

where we have set a = e− c. The monopolist, of course, will choose the value
for output, Q(a), to optimize π(·, ·), and we let M(a) = π(Q(a), a) denote
the corresponding optimal profit. We want to examine how M(·) varies with
the parameter a. Note that an increase (decrease) in a due to an increase
(decrease) in e shifts the inverse demand curve outward (inward), which will
lead to an increase (decrease) in profit (and output) for the monopolist. The
same effects will hold if there is a decrease (increase) in the unit marginal
cost.

For each fixed value for Q, the profit function, viewed as a function πQ(·)
of a, is obviously linear and increasing in a. It intersects the y-axis at −Q2/4,
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the x-axis at Q/4, and the vertical line x = a for any value of a. The optimal
choice Q(a) will be that value for Q whose line y = πQ(a) intersects the
vertical line x = a at the highest point.

Now fix values for a and Q, say at ā and Q̄. When will it be the case that
Q̄ equals Q(ā)? For any Q the two lines y = πQ(a) and y = πQ̄(a) intersect
at the point a = (Q+ Q̄)/4. Consequently,

Q̄ = Q(a) =⇒
{

(Q+ Q̄)/4 ≤ ā if Q ≤ Q̄,

(Q+ Q̄)/4 ≥ ā if Q ≥ Q̄ .
(F.14)

Since one choice for Q is Q̄, it then follows from (F.14) that

Q(ā) = 2ā and M(a) = a2. (F.15)

Obviously, M ′(a) = 2a. More importantly, we see from (F.15) that M ′(a)
also equals Q(a), which just happens to equal the slope of the line πQ(a)(a).
In other words,

M ′(a) =
∂π(Q(a), a)

∂a
, (F.16)

exactly as predicted by Theorem (F.2)!

F.4 Bibliographical Notes

Consult the graduate microeconomic textbooks previously mentioned.
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Correspondence Theory

The cost function, Q(u, p), and indirect production function, Γ (p), define two
parametric optimization problems. In the first case, the parameters are given
by the required output, u, and prices, p, whereas in the second case the pa-
rameters are given simply by the prices p. It is often desirable to know how
such functions vary with respect to their parameters. For example, are the cost
and indirect production functions continuous in prices? It is also desirable to
know how the optimal solutions of these optimization problems vary with re-
spect to the parameters. For example, how do the cost-minimizing inputs or
the output-maximizing inputs vary with respect to output and/or prices? In
general, there can be several optimal solutions. Consequently, these questions
cannot be answered by applying the usual notion of continuity of functions.
For such analyses, a function must be replaced with the concept of a corre-
spondence, and continuity of a function must be replaced with the concept of
upper or lower hemicontinuity of a correspondence. Correspondences can be
viewed as a point to set mapping. The input and output possibility sets of a
technology are examples of correspondences.

In what follows, sets S and T will denote metric spaces. If it is useful,
think of S ⊂ IRn and T ⊂ IRm.

G.1 Core Concepts

Definition G.1. A relation φ of a set S to T is a subset of S × T . The
domain of the relation φ is the set

dom(φ) := {x ∈ S : there exists a y ∈ T with (x, y) ∈ φ}.

A relation φ of S into T is a correspondence if the domain of φ is S. We
shall identify the correspondence φ with a point to set mapping fφ : S −→ 2T

defined by1

1 Here 2Y denotes the power set of the set Y , namely, the collection of all subsets
of Y .
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fφ(x) := {y ∈ T : (x, y) ∈ φ},

and with slight abuse of notation simply refer to fφ as φ. Thus, φ(x) ⊂ T for
each x ∈ S.

Definition G.2. Let φ(·) be a correspondence from S to T . Let A ⊂ S and
B ⊂ T .

• The image of A under φ is

φ(A) := ∪x∈S φ(x).

• The image of a point x ∈ S under φ is φ({x}) and will be denoted by
φ(x).

• φ is single-valued if φ(x) is single-valued for each x ∈ S. A single-valued
correspondence φ can be identified with a function from S into T , and with
slight abuse of notation we shall denote this function by φ, too.

• The graph of φ is

Gr(φ) := {(x, y) ∈ S × T : y ∈ φ(x)}.

• The upper or strong inverse of B is

φ+(B) := {x ∈ S : φ(x) ⊂ B}.

• The lower or weak inverse of B is

φ−(B) := {x ∈ S : φ(x) ∩B is not empty.}

Definition G.3. A correspondence φ from S to T is upper hemicontinu-
ous (u.h.c.) at x ∈ S if φ(x) is nonempty, and for every open neighborhood
U of φ(x) there exists a neighborhood V of x for which φ(z) ⊂ U for all z ∈ V .
The correspondence φ is u.h.c. if it is u.h.c. at every x ∈ S.

Theorem G.4. Characterization of u.h.c. Let φ be a correspondence from
S into T . The following assertions are equivalent:

a) φ is u.h.c.
b) φ+(G) is open for every open set G ⊂ T .
c) φ−(F ) is closed for every closed set F ⊂ T .

Proof. (a) =⇒ (b). Pick an open G ⊂ T and an x ∈ φ+(G). Since G is an open
neighborhood of φ(x), by (a) we know there exists an open neighborhood V
of x for which φ(V ) ⊂ G, which implies in particular that V ⊂ φ+(G). Thus,
φ+(G) is open.

(b) =⇒ (a). Pick an x ∈ S and let U be an open neighborhood of φ(x). By
(b) the set V := φ+(U) is an open neighborhood of x for which φ(z) ⊂ U for
all z ∈ V , which implies φ is u.h.c. at x.

(b)⇐⇒ (c). The definitions of φ+ and φ− imply that
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φ+(G) = (φ−(Gc))c

holds for allG ⊂ T . (Here, the symbol ‘c’ denotes complement of the respective
set in either S or T .) That is, φ(x) ⊂ G if and only if φ(x) ∩ Gc = ∅ if and
only if x /∈ φ−(Gc). Now take G to be open and recall the complement of an
open (closed) set is closed (open). ��

Definition G.5. Let φ(·) be a correspondence from S to T .

• φ is closed at x if for every sequence (xn, yn) ∈ S × T for which yn ∈
φ(xn), xn −→ x and yn −→ y, it follows that y ∈ φ(x).

• φ is closed if it is closed at every x ∈ S.
• φ is closed-valued if φ(x) is closed for every x ∈ S.
• φ is compact-valued if φ(x) is compact for every x ∈ S.

A correspondence φ is closed if and only if its graph Gr(φ) is closed in
S×T . In particular, a closed correspondence is closed-valued. The converse is
in general not true. If, on the other hand, the correspondence is u.h.c., then a
closed-valued correspondence must also be closed, as the following proposition
shows.

Proposition G.6. Let φ(·) be a correspondence from S to T .

a) Suppose φ is closed-valued. If φ is u.h.c., then φ is closed.
b) Suppose T is compact. If φ is closed, then φ is u.h.c.

Proof. Part (a). We shall show that the complement of Gr(φ) (in S) is open.
Pick a point (x, y) /∈ Gr(φ). We need to find an open neighborhoodN of (x, y)
such that if (x′, y′) ∈ N , then y′ /∈ φ(x′).

Since y /∈ φ(x), a closed set, there exists an open sets A and B for which
y ∈ A ⊂ B and B∩φ(x) = ∅. Let U denote the complement of B (in T ). Since
U is open and φ is u.h.c. we know V := φ+(U) is open, too. By construction,
φ(z) ∩ A = ∅ for each z ∈ V . Thus, we have found an open neighborhood
N := V ×A that fulfills the requisite properties.

Part (b). If φ is not u.h.c., then we can find an x ∈ S, an open neighborhood
U containing φ(x), and a sequence xn −→ x such that for each n a yn ∈ φ(xn)
exists for which yn /∈ U . The complement of U is compact since T is compact,
and so we may extract a convergent subsequence of the {yn}’s whose limit
point y obviously does not belong to U . Thus, φ is not closed. ��

The following corollary summarizes the conditions under which u.h.c. is
equivalent to closure of the graph.

Corollary G.7. Let φ(·) be a closed-valued correspondence from S to T and
suppose T is compact. Then φ is u.h.c. if and only if φ is closed.

Continuous functions preserve the topological property of compactness;
that is, the continuous image of a compact set is compact. The following
proposition shows that the same can be said for upper hemicontinuous corre-
spondences.
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Proposition G.8. Let φ(·) be a correspondence from S to T . If φ is u.h.c.,
then φ(E) is compact for every compact E ⊂ S.

Proof. Let E ⊂ S be compact and let {Uα}α∈A be an open cover of φ(E),
which is also an open cover of φ(x) for each x ∈ S. Since φ(x) is compact we
may extract a finite subcover, and let Ux denote the union of the open sets in
this finite subcover. The u.h.c. of φ ensures each Vx := φ+(Ux) is open, and
so {Vx} as x ranges over E is an open cover of E. Since E is compact, we may
extract a finite subcover, say {Vxi}i∈I . Clearly,

φ(E) ⊂ φ(
⋃
i∈I

Vxi) =
⋃
i∈I

φ(Vxi ) ⊂
⋃
i∈I

Uxi .

Since each Uxi is a union of a finite number of the Uα’s, we have shown a
finite subset of the Uα’s exists that covers φ(E), as required. ��

G.2 Characterization by Sequences

Theorem G.9. Characterization of u.h.c. by sequences The compact-
valued correspondence φ from S to T is u.h.c. at x if and only if Φ(x) is
nonempty, and for every sequence xn −→ x and every sequence yn ∈ φ(xn),
there is a convergent subsequence of the yn’s whose limit y belongs to φ(x).

Proof. (=⇒) Let E denote the collection of the xn’s plus x. E is compact since
xn −→ x, and so φ(E) is compact by Proposition G.8. Thus, we can extract a
convergent subsequence of the yn’s with limit point y. Since a compact set is
closed, φ is closed by Proposition G.6(a), which immediately implies y ∈ φ(x),
as required.

(⇐=) If the conclusion is false, then we can find an x ∈ S, an open neigh-
borhood U containing φ(x), and a sequence xn −→ x such that for each n a
yn ∈ φ(xn) exists for which yn /∈ U . By assumption, there exists a convergent
subsequence of the yn’s with limit point y ∈ φ(x). However, this is not possi-
ble, since obviously y /∈ U and so y /∈ φ(x). A contradiction has been reached.
��

Definition G.10. A correspondence φ from S to T is lower hemicontinu-
ous (l.h.c.) at x ∈ S if Φ(x) is nonempty, and for every open neighborhood
U that meets φ(x) there exists a neighborhood V of x for which φ(z) meets U
for all z ∈ V . The correspondence φ is l.h.c. if it is l.h.c. at every x ∈ S.

The following theorem characterizes l.h.c. in a manner analogous to The-
orem G.4. Its proof is left as an exercise.

Theorem G.11. Characterization of l.h.c. Let φ be a correspondence from
S into T . The following assertions are equivalent:

a) φ is l.h.c.
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b) φ+(F ) is closed for every closed set F ⊂ T .
c) φ−(G) is open for every open set G ⊂ T .

Theorem G.12. Characterization of l.h.c. by sequences The correspon-
dence φ from S to T is l.h.c. at x if and only if Φ(x) is nonempty, and for
every sequence xn −→ x and y ∈ φ(x), there exists a sequence yn ∈ φ(xn) for
which yn −→ y.

Proof. (=⇒) Pick an x ∈ S, y ∈ φ(x) and a sequence xn −→ x. Let Uk

denote the open ball centered at y with radius of 1/k and let Vk := φ−(Uk),
k = 1, 2, . . .. For each k an nk exists for which xn ∈ Uk for all n ≥ nk. We
may pick the nk’s to form an increasing sequence. For each integer n < n1

pick yn ∈ φ(xn) arbitrarily, and use the l.h.c. of φ to pick a yn ∈ φ(xn) ∩ Vk

for each integer n ∈ [nk, nk+1). By construction, yn ∈ φ(xn) and obviously
yn −→ y.

(⇐=) If the conclusion is false, then we can find an x ∈ S, an open neigh-
borhood U that meets φ(x) and a sequence xn −→ x such that φ(xn)∩U = ∅
for each n. Pick a y ∈ φ(x) ∩ U . The limit point of any convergent sequence
of yn’s for which yn ∈ φ(xn) necessarily lies in the complement of U , and so
cannot converge to y. A contradiction has been reached. ��

Proposition G.13. A single-valued correspondence φ from S to T is contin-
uous if it is u.h.c. or l.h.c.

Proof. A function is continuous if the inverse image of an open set is always
open. The result is a direct consequence of Theorem G.4(b), Theorem G.11(c),
and the fact that φ is single-valued. ��

G.3 Bibliographical Notes

Hildebrand [1974] is the definitive reference concerning correspondence theory.
Border [1985] provides a list of the main facts with some proofs.
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Theorem of the Maximum

The following lemma we state without proof.

Lemma H.1. Let {an} be an infinite sequence of real numbers. If every sub-
sequence of {an} contains a subsequence that converges to the real number a,
then an −→ a.

Theorem H.2. Theorem of the Maximum Let f : S ×T → IR be contin-
uous, let γ be a compact-valued, continuous correspondence from T to S, and
define

m(π) := max{f(x, π) : x ∈ γ(π)},
μ(π) := {x ∈ γ(π) : f(x, π) = m(π)}.

a) The function m : T → IR is continuous.
b) μ(·) is a compact-valued, u.h.c. correspondence from T to S.

Proof. Part (a). First note that m(·) is well-defined since γ(·) is compact-
valued. Let πn → π. We shall show that m(πn)→ m(π).

Since γ(·) is u.h.c. we may extract a convergent subsequence {xnk
} whose

limit point x ∈ γ(π). Since f(·, ·) is continuous and x is feasible for the maxi-
mum problem defined by π, we have

m(πnk
) = f(xnk

, πnk
)→ f(x, π) ≤ m(π). (H.1)

Pick a z ∈ γ(π) and use the l.h.c. of γ(·) to find a sequence zn → z for
which zn ∈ γ(πn). Since znk

is feasible for the maximum problem defined by
πnk

,
f(znk

, πnk
) ≤ m(πnk

). (H.2)

Since the left-hand side of (H.2) converges to f(z, π) and z was chosen arbi-
trarily, it follows from (H.1) that

m(π) = max{f(z, π) : z ∈ γ(π)} ≤ f(x, π) ≤ m(π),
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and thus
m(πnk

) = f(xnk
, πnk

)→ f(x, π) = m(π).

We have shown the sequence of real numbers {m(πn)} contains a subse-
quence that converges to m(π). The arguments above apply to any subse-
quence of the {πn}’s, and so the result now follows from Lemma H.1.

Part (b). μ(·) is a correspondence since γ(·) is compact-valued. It is closed-
valued since f(·, ·) is continuous, and thus compact-valued, since closed subsets
of compact sets are compact. We shall use Theorem G.12, p. 499, to prove
u.h.c. of μ(·).

To this end, let πn → π and xn ∈ μ(πn). Using the l.h.c. of γ(·) we may
extract a subsequence {xnk

} for which xnk
→ x ∈ γ(π). Since both f(·, ·) and

m(·) are continuous (by part a),

m(πnk
) = f(xnk

, πnk
)→ f(x, π) = m(π),

which shows that x ∈ μ(π), as required by Theorem G.12. ��

H.1 Application to the Indirect Production Function

The indirect production function is defined as

Γ (p) := max{Φ(x) : p · x ≤ 1}, (H.3)

and measures the maximum output (utility) that can be achieved when there
is a budget constraint. In (H.3), we assume that all prices are positive and
that Φ(·) is continuous.

Definition H.3. The budget correspondence B from IRk
++ into IRk

+ is
defined as

B(p) := {x ∈ IRk
+ : p · x ≤ 1}. (H.4)

Definition H.4. The Marshallian demand correspondence DM from
IRk

++ into IRk
+ is defined as

DM (p) := {z ∈ B(p) : Γ (p) = Φ(z)}.

If Φ(·) is also strictly quasiconcave, namely,

Φ((λx + (1 − λ)y) > min{Φ(x), Φ(y)}

for each x, y ∈ IRk
+ and λ ∈ (0, 1), then there must be a unique maximum

in (H.3), which would imply that DM (·) is single-valued. (Otherwise, a non-
trivial convex combination of two distinct maximizers would be budget feasible
and would yield a higher output.) If it can be shown that B(·) is continuous,
then as a direct application of the Theorem of the Maximum H.2 it follows
that Γ (·) is continuous and DM (·) is u.h.c. and thus continuous by (G.13).
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Proposition H.5. The correspondence B(·) in (H.4) is continuous.

Proof. Clearly, B(·) is compact-valued, and so we shall use Theorems G.9 and
G.12 to establish the u.h.c. and l.h.c., respectively.

To establish u.h.c., let pn → p and xn ∈ B(pn). B(·) is closed since the
dot product is a continuous function of its arguments. By Theorem G.9, it is
sufficient to show the xn’s are bounded. Since the coordinates of p are positive
and pn converges to p, the coordinates of each pn are eventually bounded below
by a positive number. Since pn · xn ≤ 1 for all n, it easily follows the xn’s are
bounded, as required.

To establish l.h.c., let pn → p and pick x ∈ B(p). Without loss of generality
we shall assume p · x = 1. (Divide each pn and p by p · x.) For each n and
coordinate i, 1 ≤ i ≤ k, define xi

n = (pi/pi
n)xi. By construction,

pn · xn =
∑

i

pi
nx

i
n = p · x = 1,

and so xn ∈ B(pn). Clearly, xn → x, as required by Theorem G.12. ��

H.2 Application to the Cost Function

Let F = {LΦ(u) : u ≥ 0} be a well-behaved technology. In addition to
the usual properties on Φ(·) that hold for a well-behaved technology, in this
section we make the following assumption:

Assumption 14 Φ(·) is continuous, strictly quasiconcave and increasing.

The cost function is defined as

Q(u, p) = min{p · x : Φ(x) ≥ u}. (H.5)

If all prices are positive, the cost function has a minimum. This is because it
is possible to constrain the feasible region of (H.5) to the compact domain

{x ∈ IRk
+ : p · x ≤ p · e(u)},

where e ∈ IRk denotes the vector whose coordinates are identically 1 and
where e(u) := e/D(e, u) for all u > 0. (Here D(·, ·) is the input distance
function for F .) If some prices are zero, however, then an additional property
must be assumed to ensure that (H.5) has a minimum. In this case, we assume
that the Efficient Frontier is bounded, see Axiom A.5, p. 38.

Definition H.6. The cost feasible correspondence γ from IR+ × IRk
++

into IRk
+ defined as

γ(u, p) := {x ∈ IRk
+ : Φ(x) ≥ u and p · x ≤ p · e(u)}.
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Definition H.7. The Hicksian demand correspondence DH from IRk
++

into IRk
+ is defined as

DH(p) := {z ∈ γ(u, p) : Q(u, p) = p · z}.

Since Φ(·) is strictly quasiconcave and increasing, there must be a unique
maximum in (H.5), which would imply that DH(·) is single-valued.1 If it can
be shown that γ(·, ·) is continuous, then as a direct application of the Theorem
of the Maximum (see H.2, p. 501), it follows that Q(·, ·) is jointly continuous
and DH(·) is u.h.c. and thus continuous by (G.13).

Under the conditions herein the input distance function is continuous in
u. We state the following Lemma without proof.

Lemma H.8. Under Assumption 14, for each x ∈ IRk
++ the function f(u) :=

D(x, u)−1 is continuous in u.

Proposition H.9. The correspondence γ from IR+ × IRk
++ into IRk

+ defined
by

γ(u, p) := {x ∈ IRk
+ : Φ(x) ≥ u and p · x ≤ p · e(u)}

is continuous.

Proof. Clearly, γ(·, ·) is compact-valued, and so we shall use Theorems G.9
and G.12 to establish the u.h.c. and l.h.c., respectively. Let pn → p, un → u,
and define bn := pn · e(un) for each n and b := p · e(u). Note that bn → b
by Lemma H.8. Let p̂n = pn/bn and p̂ = p/b. Of course p̂n → p̂. With this
notation,

γ(un, pn) = L(un) ∩ B(p̂n).

To establish u.h.c., let xn ∈ γ(un, pn). Since the correspondence B(·) in
Proposition H.5 is u.h.c. we may extract a subsequence {xnk

} whose limit
point x ∈ γ(p̂). The continuity of Φ(·) ensures x ∈ L(u) since Φ(xnk

) ≥ unk

for each k. Thus, a convergent subsequence of the xn’s has been found whose
limit point lies in γ(u, p), as required by Theorem G.9.

To establish l.h.c., pick x ∈ γ(u, p). Since γ(·, ·) is compact-valued, for each
n a vector zn exists that minimizes the distance from x to γ(un, pn). Since
zn ∈ γ(un, pn), and we have proved that γ(·, ·) is u.h.c., it follows that we
may extract a convergent subsequence {znk

} whose limit point z ∈ γ(u, p).
The result will follow if we can show that z = x.

If this were not so, then y := (x + z)/2 �= x and y ∈ γ(u, p) since γ(u, p)
is convex. For δ > 0 let yδ := y/(1 + δ). The value Φ(y) exceeds u since Φ(·)
is strictly quasiconcave. Let ε := (Φ(y)− u)/2. There exists an Nε for which

Φ(y) > u+ ε ≥ un, for all n ≥ Nε. (H.6)

1 Otherwise, it would be possible to scale down a non-trivial convex combination
of two distinct minimizers to still achieve the required output but at a lower cost.
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Since Φ(·) is increasing and continuous,

Φ(yδ) ≥ u+ ε (H.7)

for δ sufficiently small. Using the triangle inequality, we have

||yδ − x|| ≤
1

1 + δ
( 1/2 ||z − x||+ δ| x|| ). (H.8)

It follows from (H.8) that we may pick a δ sufficiently small for which

||yδ − x|| < (2/3) · ||z − x|| (H.9)

and (H.7) hold, and we now assume δ has been so chosen. It follows from
(H.9) (and the continuity of the norm) that an M exists for which

||yδ − x|| < (3/4) · ||zn − x|| for all n ≥M. (H.10)

Since pn → p an Nδ exists for which

p̂n · x ≤ p̂ · x+ δ for all n ≥ Nδ,

p̂n · z ≤ p̂ · z + δ for all n ≥ Nδ.

It is clear that p̂nyδ ≤ 1 for all n ≥ Nδ. Let N = max{Nε, Nδ,M}. From
(H.6) and (H.10), we have found a point yδ ∈ γ(uN , pN ) that is closer to x
than zN is to x, an obvious contradiction. ��

H.3 Bibliographical Notes

Hildebrand [1974] contains a thorough and abstract development of corre-
spondence theory and the Theorem of the Maximum. Border [1985] provides
a somewhat condensed, less abstract treatment. Starr’s [1997] presentation is
more focused but very accessible.



I

Probability Basics

In this chapter, we review only the basic material on probability that is re-
quired for understanding the models presented in Chapter 20.

I.1 Binomial Random Variables

Suppose n independent experiments or trials are performed, each of which
results in a “success” or “failure.” The probability of success is a constant
p ∈ (0, 1) and the probability of failure is 1− p. Let X represent the number
of successes that occur in these n experiments. The random variable X is
said to have the binomial distribution with parameters n and p. Its
probability mass function is

P (X = k) =
(
n
k

)
pk(1− p)n−k, k = 0, 1, 2, . . . , n .

Here (
n
k

)
:=

n!
k!(n− k)!

counts the number of unordered groups of k objects that can be selected from
a set of n objects.

For a binomially distributed random variable X with parameters n and p,
its mean, E[X ], and variance, V ar[X ] = E[(X − E[X ])2], are

E[X ] = np, (I.1)
V ar[X ] = np(1− p). (I.2)

I.2 Poisson Random Variables

A Poisson random variable X with mean λ > 0 has the probability mass
function
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P (X = i) = e−λλ
i

i!
, i = 0, 1, 2, . . . .

The mean, E[X ], and variance, V ar[X ], both equal λ. It turns out that the
Poisson probability mass function closely approximates a binomial probabil-
ity mass function under the following conditions. Let X1 denote a binomial
random variable with parameters n and p such that n is “large,” p is “small”
and their product λ = np is of “moderate” magnitude, and let X2 denote a
Poisson random variable with parameter λ. Then P (X1 = k) ≈ P (X2 = k).

I.3 Poisson Processes

A stochastic process {N(t), t ≥ 0} is a counting process if N(t) records the
total number of occurrences of an event up to time t (e.g., customer orders,
arrivals to a queue). Let T1 < T2 < . . ., denote the event occurrence times,
often called the arrival times. (Assume the arrival times are distinct.) N(t)
simply counts the number of Ti in the time interval [0, t], and N(t) − N(s)
counts the number of arrivals in the interval (s, t]. A counting process has
independent increments if the number of arrivals in disjoint time intervals
are independent random variables.

A Poisson process N(t) is a counting process that has independent in-
crements and N(t)−N(s), 0 ≤ s < t, is a Poisson random variable with mean
Λ(t)− Λ(s), where Λ(t) = E[N(t)]. We will assume that

Λ(t) =
∫ t

0

λ(τ)dτ,

where λ(·) is the intensity function of the Poisson process. The Poisson
process is time-homogenous with rate λ if the intensity function λ(·) = λ
is constant. In such a case Λ(t) = λt and E[N(t)] = Λ(t) = λt.

A Poisson process N(t) has the following powerful property that actually
uniquely characterizes it. Conditioned on N(t) − N(s) = n arrivals in the
interval (s, t], the unordered set of arrival times has the same distribution as
n independent and identically distributed random variables having cumulative
distribution function

G(τ) :=

⎧⎨
⎩

Λ(τ)−Λ(s)
Λ(t)−Λ(s) , s ≤ τ ≤ t,

1, τ > t.
(I.3)

(When s = 0, Λ(s) = 0, too.) Here is an interpretation. Imagine a system
observer tasked with observing the arrival times. He faithfully record the times
on separate index cards, but not the event index. (The observer keeps track
of the event index.) He informs us there were n index cards obtained in the
interval [0, t], and he hands us a sealed envelope containing an index card
randomly chosen from the set of n index cards. Let T̃ denote the time listed
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on this first index card. The property above implies that P (T̃ ≤ τ) = G(τ). If
we were handed a second index card and then a third, and so on, these times
would have the same distribution as G(τ).

I.4 Moment Generating Functions

The moment generating function

φX(u) := E[euX ]

(for u in some neighborhood of 0) of a random variable X is so named be-
cause all of the moments of X , namely, E[Xk], k = 1, 2, . . . , can be obtained
by successively differentiating φX(t) and evaluating it at zero. For example,
E[X ] = φ′X(0) and E[X2] = φ′′X(0). Since the variance, V ar[X ], of X equals
E[X2]−(E[X ])2, it too can be obtained from the moment generating function.

It turns out that the moment generating function of a random variable
X uniquely determines its distribution. That is, if φX(·) matches a known
functional form for a certain type of distribution, then X must have this type
of distribution with the parameters identified through its moment generating
function.

The discrete random variable X has the binomial distribution with par-
ameters n and p if and only if its moment generating function is

φX(u) = [1 + p (eu − 1)]n. (I.4)

A random variable X has the Poisson distribution with mean λ > 0 if and
only if its moment generating function is

φX(u) = eλ(eu−1). (I.5)

I.5 Conditional Expectation and Variance

Let E[X | Y ] denote the function of the random variable Y whose value at
Y = y is E[X | Y = y]. Note that E[X | Y ] is itself a random variable. A
fundamental property of conditional expectation that we repeatedly exploit
is that for all random variables X and Y

E[X ] = E (E[X | Y ]) . (I.6)

If Y is a discrete random variable, then (I.6) states that

E[X ] =
∑

y

E[X | Y = y] P (Y = y),

whereas if Y is a continuous random variable with probability density function
fY (y), then (I.6) states that
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E[X ] =
∫ ∞

−∞
E[X | Y = y] fY (y)dy.

The conditional variance of X given the random variable Y is defined by

V ar[X | Y ] := E
[
(X − E[X | Y ])2 | Y

]
.

It can be shown that the unconditioned variance of X can be expressed as

V ar[X ] = E (V ar[X | Y ]) + V ar (E[X | Y ]) . (I.7)

I.6 Bibliographical Notes

For additional background material on stochastic processes, consult Ross
[1985]. For a definitive reference on point processes, consult Serfozo [1990].
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activity intensity 56
aggregate operating intensity, definition

359
allocative efficiency 153

bi-convex technology 41
budget feasible 97
budget set 97

Cobb-Douglas production function 20
expenditure shares 75

Consistent Pricing Principle 204
constant elasticity-of-substitution

(CES) production function 20
constant returns-to-scale

general Leontief technology 56
simple Leontief technology 54

constant returns-to-scale technology
43

convex
technology 41

convex hull
of the data set 41

convex technology 41
correspondence

input possibility 36
output possibility 36

cost efficiency
decomposition 153
definition 152

cost function 71
Cobb-Douglas 74
factorability 85
general Leontief 78

homothetic 84
HR technology 79
properties 71
simple Leontief 78
VRS and CRS Efficient Frontiers 80

cost or expenditure share 74

Data Envelopment Analysis 61
Constant Returns-to-Scale (CRS)

technology 62
multiplier formulation, CRS 155
Variable Returns-to-Scale (VRS)

technology 62
with lower bounds 131

Decision-Making Unit (DMU) 63
derived production function 44

definition 40
from the two-dimensional projec-

tion associated with the VRS
technology 168

properties 40
disposability

free 37
input free 37
output free 37
weak 38
weak input 37
weak output 37

disposable hull
convex, free 43
free 42
input free 42
output free 42

duality
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application to homothetic technolo-
gies 117

between a projectively-concave
and multi-dimensional indirect
production functions 141

between the cost and distance
functions 114

between the cost and indirect
production functions 99

between the production and cost
functions 80

between the production and indirect
production functions 100

dynamic production function 11, 295
distribution-based 310
index-based 299
instantaneous 298
linear 311
two-point boundary approximation

348

efficiency
input 4
output 3

efficiency change
input 248
output 249

efficiency weighting function 151
Efficient Frontier

of a technology 38
of an input possibility set 38
of an output possibility set 38

elasticity
definition 24
of cost 76
of output 25
of scale 26
of substitution 28

elasticity of cost 76
elasticity of output

simple Leontief 54
elasticity of scale

simple Leontief 54
equilibrium

definition 272
event-based flow 10, 298

First-In, First-Out service discipline
322, 340

fixed proportions dynamic model 300,
394

fixed-coefficients technology 53
flow line, description 361
free disposability 37
free disposable hull 42
function

cost 71
production 2, 19

generalized quadratic production
function 20

Hanoch-Rothschild model of technology
60

homothetic production function 29

index
hedonistic 224

indirect production function
definition 97
for the Cobb-Douglas technology 98
properties 99

input
exogenously fixed 66
non-discretionary 66

input curve
shape 296

input distance function
definition 109
properties 111

input efficiency 4
linear measure of 150
radial measure of 149
Russell measure of 4
weighted measure of 151

input free disposability, definition 37
input free disposable hull 42
input possibility correspondence 36
input possibility set

definition 36
Efficient Frontier 38
family 36
inner approximation 82
outer approximation 82

input-output data set 36
instantaneous growth rate 242
intensity 300
inventory balance equations



Index 519

work queue 340
isocost line 72

joint input-output efficiency 153
joint input-output space 36

Lagrangian function 74
Cobb-Douglas cost function 75

law of diminishing returns 22
lead time density

constant, definition 312
event-based, definition 311
piecewise constant, definition 312
rate-based, definition 311

linear program
for testing output 84
general Leontief technology 56

Little’s queuing law 340

marginal product, definition 23
material balance, definition 393
most productive scale size 172

nested, definition 37
normalized indirect production function

98

output-cost set 79
output distance function

definition 110
properties 112

output efficiency 3
radial measure of 149, 150
weighted measure of 151

output free disposability, definition 37
output free disposable hull 42
output possibility correspondence 36
output possibility set 36

Efficient Frontier 38
family 36

Pareto efficient Frontier
multi-stage efficiency analysis 197

partial efficiency scores 133
period

definition 324
pipeline inventories 399
pivot element 179
price index

Fisher ideal 231

Konus cost-of-living 227
Laspeyres 229
Laspeyres-Konus 228
Paasche 229
Paasche-Konus 228
Tornqvist 232

production function
aggregate 126
Cobb-Douglas 20
constant elasticity-of-substitution

(CES) 20
definition 2, 19
derived from a well-behaved

technology 40
fixed-coefficients 54
general Leontief 56
generalized quadratic 20
homothetic 29
indirect 97
input possibility set of 19
multi-dimensional indirect 129
normalized indirect 98
quasiconcave 60
translog 20
upper level set of 19
upper semicontinuous 60

productivity change
input 248
output 249

project-oriented production systems,
description 356

projectively-convex (P-convex) set
136

projectively-convex (projectively-
concave) function 138

quadrant 139

radial input efficiency 113
radial output efficiency 113
rate of technical substitution

Cobb-Douglas production function
23

constant elasticity of substitution
(CES) production function 23

definition 23
rate-based flow 10, 298
ratio test 180
rectangle joining two points 136
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reference firm 154
relative area ratio 349
returns-to-scale

constant 26, 172
decreasing 26, 172
increasing 26, 172

scale efficiency
input-based 152
output-based 152

Shephard’s Lemma 78
simple Leontief technology 53
strict precedence, among activities

357

tableau 177
technical change

input 247
output 249

technical coefficient vector 53
technical coefficients 300
technology

bi-convex 41
constant returns-to-scale 43
constant returns-to-scale hull 44
convex 41
convex constant returns-to-scale hull

44
CRS DEA model 62
Data Envelopment Analysis 61
definition 36
Efficient Frontier 38
fixed-charge 131
fixed-coefficients 53
Hanoch-Rothschild (HR) 60
inner approximation 82

outer approximation 82
piecewise linear 59
projectively-convex 41
sections 41
set 36
simple Leontief 53
VRS-DEA model 62
well-behaved 38

technology set 36
time grid

definition 324
standard, definition 324
uniform, definition 324

time-divisibility 39
time-of-completion function 320
time-reversibility 327
transform, definition 29
transforms

distribution-based processes 310
translog production function 20
two-dimensional projection 167

derived production function 168
Efficient Frontier 168

utility function
multi-dimensional indirect 129

weak disposability, definition 38
weak input disposability, definition 37
weak output disposability, definition

37
weakly nested, definition 37
well-behaved technology

axioms of 38
work queue 338, 414




