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Preface

This volume comprises the proceedings of the 8th International Conference on Mul-
tiple Objective and Goal Programming: Theories and Applications (MOPGP08).
This conference was held in Portsmouth, United Kingdom on the 24th–26th Septem-
ber 2008. The conference was attended by 59 delegates. The countries represented
were Belgium, Finland, France, Germany, Italy, Kuwait, Poland, Saudi Arabia,
South Africa, Spain, Switzerland, United Kingdom, and United States.

The MOPGP conference series is now a well-established discussion forum for
practitioners and academics working in the field of multiple objective and goal pro-
gramming. Conferences are held every 2 years, with previous conferences taking
place in Portsmouth, UK in 1994; in Malaga, Spain in 1996; in Quebec City, Canada
in 1998; in Ustron, Poland in 2000; in Nara, Japan in 2002; in Hammamet, Tunisia
in 2004; and in Tours, France in 2006.

The selection of papers published in this volume reflects the breadth of the
techniques and applications in the field of multiple objective and goal program-
ming. Applications from the fields of supply chain management, financial portfolio
selection, financial risk management, insurance, medical imaging, sustainability,
nurse scheduling, project management, and the interface with data envelopment
analysis give a good reflection of current usage. A pleasing variety of techniques
are used, including models with fuzzy, group-decision, stochastic, interactive, and
binary aspects. Additionally, two papers from the upcoming area of multi-objective
evolutionary algorithms are included.

As organisers of the MOGP08 conference, we thank all the participants and pre-
senters at the conference for helping the MOPGP series to continue to define and
develop the state-of-the-art in the field of multiple objective and goal programming.
We also thank the University of Portsmouth and their conference management team
for their support and help in ensuring a smooth running conference. We also thank
the members of the local organising committee – Rania Azmi, Patrick Beullens,
Alessio Ishizaka, Ashraf Labib, Ming Yip Lam, Kevin Willis, and Nerda Zaibidi
from the University of Portsmouth and Ersilia Liguigli from the Politecnico di
Torino – for their hard work and support before and during the conference.

Finally, we thank the referees for their efficiency in producing reports dur-
ing the review process. We hope that this volume will inform the reader in the

v
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start-of-the-art of both theory and application in the area of multiple objective and
goal programming.

Portsmouth, UK and Kuwait City, Kuwait Dylan Jones
August 2009 Mehrdad Tamiz

Jana Ries
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Multi-Objective Stochastic Programming
Approaches for Supply Chain Management

Amir Azaron, Kai Furmans, and Mohammad Modarres

Abstract A multi-objective stochastic programming model is developed to design
robust supply chain configuration networks. Demands, supplies, processing, and
transportation costs are all considered as the uncertain parameters, which will be
revealed after building the sites at the strategic level. The decisions about the optimal
flows are made at the tactical level depending upon the actual values of uncer-
tain parameters. It is also assumed that the suppliers are unreliable. To develop a
robust model, two additional objective functions are added into the traditional sup-
ply chain design problem. So, the proposed model accounts for the minimization of
the expected total cost and the risk, reflected by the variance of the total cost and
the downside risk or the risk of loss. Finally, different simple and interactive multi-
objective techniques such as goal attainment, surrogate worth trade-off (SWT), and
STEM methods are used to solve the proposed multi-objective model.

1 Introduction

A supply chain (SC) is a network of suppliers, manufacturing plants, warehouses,
and distribution channels organized to acquire raw materials, convert these raw
materials to finished products, and distribute these products to customers. The con-
cept of supply chain management (SCM), which appeared in the early 1990s, has
recently raised a lot of interest since the opportunity of an integrated management
of the supply chain can reduce the propagation of unexpected/undesirable events
through the network and can affect decisively the profitability of all the members.

A crucial component of the planning activities of a manufacturing firm is the effi-
cient design and operation of its supply chain. Strategic level supply chain planning

A. Azaron (B)
Institut für Fördertechnik und Logistiksysteme, Universität Karlsruhe (TH), Karlsruhe, Germany
and
Department of Financial Engineering and Engineering Management, School of Science
and Engineering, Reykjavik University, Reykjavik, Iceland
e-mail: amir.azaron@ucd.ir

D. Jones et al. (eds.), New Developments in Multiple Objective and Goal Programming,
Lecture Notes in Economics and Mathematical Systems 638,
DOI 10.1007/978-3-642-10354-4 1, c� Springer-Verlag Berlin Heidelberg 2010
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2 A. Azaron et al.

involves deciding the configuration of the network, i.e., the number, location,
capacity, and technology of the facilities. The tactical level planning of supply chain
operations involves deciding the aggregate quantities and material flows for pur-
chasing, processing, and distribution of products. The strategic configuration of the
supply chain is a key factor influencing efficient tactical operations, and therefore
has a long lasting impact on the firm. Furthermore, the fact that the supply chain
configuration involves the commitment of substantial capital resources over long
periods of time makes the supply chain design problem an extremely important one.

Many attempts have been made to model and optimize supply chain design, most
of which are based on deterministic approaches, see for example Bok et al. (2000),
Timpe and Kallrath (2000), Gjerdrum et al. (2000), and many others. However, most
real supply chain design problems are characterized by numerous sources of tech-
nical and commercial uncertainty, and so the assumption that all model parameters,
such as cost coefficients, supplies, demands, etc., are known with certainty is not
realistic.

In order to take into account the effects of the uncertainty in the production sce-
nario, a two-stage stochastic model is proposed in this paper. Decision variables
which characterize the network configuration, namely those binary variables which
represent the existence and the location of plants and warehouses of the supply chain
are considered as first-stage variables – it is assumed that they have to be taken at the
strategic level before the realization of the uncertainty. On the other hand, decision
variables related to the amount of products to be produced and stored in the nodes
of the supply chain and the flows of materials transported among the entities of the
network are considered as second-stage variables, corresponding to decisions taken
at the tactical level after the uncertain parameters have been revealed.

There are a few research works addressing comprehensive (strategic and tactical
issues simultaneously) design of supply chain networks using two-stage stochas-
tic models. MirHassani et al. (2000) considered a two-stage model for multi-period
capacity planning of supply chain networks, and used Benders decomposition to
solve the resulting stochastic integer program. Tsiakis et al. (2001) considered a two-
stage stochastic programming model for supply chain network design under demand
uncertainty, and developed a large-scale mixed-integer linear programming model
for this problem. Alonso-Ayuso et al. (2003) proposed a branch-and-fix heuristic
for solving two-stage stochastic supply chain design problems. Santoso et al. (2005)
integrated a sampling strategy with an accelerated Benders decomposition to solve
supply chain design problems with continuous distributions for the uncertain param-
eters. However, the robustness of decision to uncertain parameters is not considered
in above studies.

Azaron et al. (2008) developed a multi-objective stochastic programming app-
roach for designing robust supply chains. The objective functions of this model are
(1) the minimization of the sum of current investment costs and the expected
future processing, transportation, shortage, and capacity expansion costs, (2) the
minimization of the variance of the total cost, and (3) the minimization of the finan-
cial risk or the probability of not meeting a certain budget. Then, they used goal
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attainment technique, see Hwang and Masud (1979) for details, to solve the resulting
multi-objective problem.

This method has the same disadvantages as those of goal programming; namely,
the preferred solution is sensitive to the goal vector and the weighting vector given
by the decision maker. To overcome this drawback, we also use interactive multi-
objective techniques with explicit or implicit trade-off information given such as
SWT and STEM methods, see Hwang and Masud (1979) for details, to solve the
problem. The other advantage of this paper over (Azaron et al. 2008) is that we
minimize downside risk or risk of loss instead of financial risk. By applying this
concept, we avoid the use of binary variables to determine the financial risk, which
significantly reduces the computational time to solve the final large scale mixed-
integer nonlinear programming problem.

To the best of our knowledge, only ©-constraint method (Guillen et al. 2005),
fuzzy optimization (Chen and Lee 2004), and goal attainment method (Azaron
et al. 2008) have been used to solve existing multi-objective supply chain design
models. In this paper, we use interactive multi-objective techniques to solve the
problem.

The paper is organized as follows. In Sect. 2, we describe the supply chain design
problem. In Sect. 3, we explain the details of multi-objective techniques to solve the
problem. Section 4 presents the computational experiments. Finally, we draw the
conclusion of the paper in Sect. 5.

2 Problem Description

We first describe a deterministic mathematical formulation for the supply chain
design problem. Consider a supply chain network G D .N;A/, where N is the
set of nodes and A is the set of arcs. The set N consists of the set of suppliers S ,
the set of possible processing facilities P , and the set of customer centers C , i.e.,
N D S [ P [ C . The processing facilities include manufacturing centers M and
warehousesW , i.e., P D M [W . Let K be the set of products flowing through the
supply chain.

The supply chain configuration decisions consist of deciding which of the pro-
cessing centers to build. We associate a binary variable yi to these decisions: yi D 1

if processing facility i is built, and 0 otherwise. The tactical decisions consist of
routing the flow of each product k 2 K from the suppliers to the customers. We let
xk

ij denote the flow of product k from a node i to a node j of the network where

.ij/ 2 A, and zk
j denote shortfall of product k at customer centre j , when it is

impossible to meet demand. A deterministic mathematical model for this supply
chain design problem is formulated as follows (see Santoso et al. (2005) for more
details):

Min
X

i2P

ciyi C
X

k2K

X

.ij/2A

qk
ij x

k
ij C

X

k2K

X

j2C

hk
j zk

j (1a)
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s.t.

y 2 Y � f0; 1gjP j (1b)
X

i2N

xk
ij �

X

l2N

xk
jl D 0 8j 2 P; 8k 2 K (1c)

X

i2N

xk
ij C zk

j � dk
j 8j 2 C; 8k 2 K (1d)

X

j2N

xk
ij � sk

i 8i 2 S; 8k 2 K (1e)

X

k2K

rk
j

 
X

i2N

xk
ij

!
� mjyj 8j 2 P (1f)

xk
ij � 0 8.ij/ 2 A; 8k 2 K (1g)

zk
j � 0 8j 2 C; 8k 2 K (1h)

The objective function (1a) consists of minimizing the total investment, produc-
tion/transportation, and shortage costs. Constraint (1b) enforces the binary nature
of the configuration decisions for the processing facilities. Constraint (1c) enforces
the flow conservation of product k across each processing node j . Constraint (1d)
requires that the total flow of product k to a customer node j plus shortfall should
exceed the demand dk

j at that node. Constraint (1e) requires that the total flow of

product k from a supplier node i should be less than the supply sk
i at that node.

Constraint (1f) enforces capacity constraints of the processing nodes. Here, rk
j and

mj denote per-unit processing requirement for product k at node j and capacity of
facility j , respectively.

We now propose a stochastic programming approach based on a recourse model
with two stages to incorporate the uncertainty associated with demands, supplies,
processing/transportation, shortage, and capacity expansion costs. It is also assumed
that we have the option of expanding the capacities of sites after the realization of
uncertain parameters. Considering � D .d; s; q; h; f / as the corresponding random
vector, the two-stage stochastic model, in Matrix form, is formulated as follows (see
Azaron et al. (2008) for details):

Min cT y C EŒG.y; �/� ŒExpected Total Cost� (2a)

s.t.
y 2 Y � f0; 1gjP j ŒBinary Variables� (2b)

where G.y; �/ is the optimal value of the following problem:

Min qT x C hT z C f T e (2c)
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s.t.

Bx D 0 ŒFlow Conservation� (2d)

Dx C z � d ŒMeeting Demand� (2e)

Sx � s ŒSupply Limit� (2f)

Rx � My C e ŒCapacity Constraint� (2g)

e � Oy ŒCapacity Expansion Limit� (2h)

x 2 RjAj�jKjC ; z 2 RjC j�jKjC e 2 RjP jC ŒContinuous Variables� (2i)

Above vectors c, q, h, f , d , and s correspond to investment costs, process-
ing/transportation costs, shortfall costs, expansion costs, demands, and supplies,
respectively. The matrices B , D, and S are appropriate matrices corresponding to
the summations on the left-hand-side of the expressions (1c)–(1e), respectively. The
notation R corresponds to a matrix of rk

j , and the notation M corresponds to a
matrix with mj along the diagonal. e andO correspond to capacity expansions and
expansion limits, respectively.

Note that the optimal value G.y; �/ of the second-stage problem (2c)–(2i) is a
function of the first stage decision variable y and a realization � D .d; s; q; h; f / of
the uncertain parameters. The expectation in (2a) is taken with respect to the joint
probability distribution of uncertain parameters.

In this paper, the uncertainty is represented by a set of discrete scenarios with
given probability of occurrence. It is also assumed that suppliers are unreliable and
their reliabilities are known in advance. The role of unreliable suppliers is implic-
itly considered in the model by properly way of generating scenarios. It means
that in case of having an unreliable supplier, its supply value is set to zero in the
corresponding scenarios, see Azaron et al. (2008) for more details.

3 Multi-Objective Techniques

As explained, to develop a robust model, two additional objective functions are
added into the traditional supply chain design problem. The first is the minimization
of the variance of the total cost, and the second is the minimization of the downside
risk or the risk of loss. The definition of downside risk or the expected total loss is:

DRisk D
LX

lD1

plMax .Costl ��; 0/ (3)

where pl , �, and Costl represent the occurrence probability of the l th scenario,
available budget, and total cost when the l th scenario is realized, respectively. The
downside risk can be calculated as follows:
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DRisk D
LX

lD1

plDRl

DRl � Costl �� 8l (4)

DRl � 0 8l

The proper multi-objective stochastic model for our supply chain design problem
will be:

Min f1.x/ D cT y C
LX

lD1

pl

�
qT

l xl C hT
l zl C f T

l el

�
ŒExpected Total Cost� (5a)

Min f2.x/ D
LX

lD1

pl

 
qT

l xl ChT
l zlCf T

l el�
LX

lD1

pl

�
qT

l xl ChT
l zl C f T

l el

�!2

ŒVariance� (5b)

Min f3.x/ D
LX

lD1

plDRl ŒDownside Risk� (5c)

s.t.

Bxl D 0 l D 1; : : : ; L (5d)

Dxl C zl � dl l D 1; : : : ; L (5e)

Sxl � sl l D 1; : : : ; L (5f)

Rxl � My C el l D 1; : : : ; L (5g)

el � Oy l D 1; : : : ; L (5h)

cT y C qT
l xl C hT

l zl C f T
l el �� � DRl l D 1; : : : ; L (5i)

y 2 Y � f0; 1gjP j (5j)

x 2 RjAj�jKj�L
C ; z 2 RjC j�jKj�L

C ; e 2 RjP j�L
C ; DR 2 RLC (5k)

3.1 Goal Attainment Technique

Goal attainment method is one of the multi-objective techniques with priori artic-
ulation of preference information given. In this method, the preferred solution is
sensitive to the goal vector and the weighting vector given by the decision maker; the
same as goal programming technique. However, goal attainment method has fewer
variables to work with and is a one-stage method, unlike interactive multi-objective
techniques, so it will be computationally faster.

This method requires setting up a goal and weight, bj and gj .gj � 0/ for
j D 1, 2, 3, for the three mentioned objective functions. The gj relates the rel-
ative under-attainment of the bj . For under-attainment of the goals, a smaller gj

is associated with the more important objectives. When gj approaches 0, then the
associated objectivefunction should be fully satisfied or the corresponding objec-
tive function value should be less than or equal its goal bj . gj , j D 1; 2; 3, are
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generally normalized so that
3P

jD1

gj D 1. The proper goal attainment formulation

for our problem is:

Min w (6a)

s.t.

cT y C
LX

lD1

pl

�
qT

l xl C hT
l zl C f T

l el

�
� g1w � b1 (6b)

LX

lD1

pl

 
qT

l xl C hT
l zl C f T

l el �
LX

lD1

pl

�
qT

l xl C hT
l zl C f T

l el

�!2

�g2w � b2 (6c)
LX

lD1

plDRl � g3w � b3 (6d)

Bxl D 0 l D 1; : : : ; L (6e)

Dxl C zl � dl l D 1; : : : ; L (6f)

Sxl � sl l D 1; : : : ; L (6g)

Rxl � My C el l D 1; : : : ; L (6h)

el � Oy l D 1; : : : ; L (6i)

cT y C qT
l xl C hT

l zl C f T
l el �� � DRl l D 1; : : : ; L (6j)

y 2 Y � f0; 1gjP j (6k)

x 2 RjAj�jKj�L
C ; z 2 RjC j�jKj�L

C ; e 2 RjP j�L
C ; DR 2 RLC (6l)

Lemma 1. If .y�; x�; z�; e�/ is Pareto-optimal, then there exists a b and g pair
such that .y�; x�; z�; e�/ is an optimal solution to the optimization problem (6).

The optimal solution using this formulation is sensitive to b and g. Depend-
ing upon the values for b, it is possible that g does not appreciably influence the
optimal solution. Instead, the optimal solution can be determined by the nearest
Pareto-optimal solution from b. This might require that g be varied parametrically
to generate a set of Pareto-optimal solutions.

3.2 STEM Method

The main drawback of the goal attainment technique to solve ���(5) is that the
prefered solution extremely depends on the goals and weights. To overcome this
drawback, we resort to STEM and SWT methods, which are two main interactive
multi-objective techniques, to solve the multi-objective model.
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In this subsection, we explain the details of the STEM method, which is an
interactive approach with implicit trade-off information given. STEM allows the
decision maker (DM) to learn to recognize good solutions and the relative impor-
tance of the objectives. In this method, phases of computation alternate (interac-
tively) with phases of decision. The major steps of the STEM method to solve the
multi-objective problem are:

Step 0. Construction of a pay-off table:
A pay-off table is constructed before the first interactive cycle. Let f �j , j D 1; 2; 3,
be feasible ideal solutions of the following three problems:

Min fj .x/; j D 1; 2; 3

s.t.

x 2 S .feasible region of (5)/ (7)

In the pay-off table, row j corresponds to the solution vector x�, which optimizes
the objective function fj . A zij is the value taken on by the i th objective fi when
the j th objective fj reaches its optimum f �j .
Step 1. Calculation phase:
At the mth cycle, the feasible solution to the problem ���(8) is sought, which is the
“nearest”, in the MINIMAX sense, to the ideal solution f �j :

Min �

s.t.

� � .fj .x/ � f �j /�j ; j D 1; 2; 3

x 2 Xm (8)

� � 0

where Xm includes S plus any constraint added in the previous (m � 1) cycles;
�j gives the relative importance of the distances to the optima. Let us consider
the j th column of the pay-off table. Let f max

j and f min
j be the maximum and

minimum values; then �j , j D 1; 2; 3, are chosen such that �j D ˛jP

i

˛i
, where

˛j D f max
j
�f min

j

f max
j

.

From the above equations, we conclude that if the value of fj does not vary much
from the optimum solution by varying x, the corresponding objective is not sensitive
to a variation in the weighting values; therefore, a small weight �j can be assigned
to this objective function.
Step 2. Decision phase:
The compromise solution xm is presented to the DM. If some of the objectives are
satisfactory and others are not, the DM relaxes a satisfactory objective f m

j enough
to allow an improvement of the unsatisfactory objectives in the next iterative cycle.
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The DM gives�fj as the amount of acceptable relaxation. Then, for the next cycle
the feasible region is modified as:

XmC1 D

8
ˆ̂<

ˆ̂:

Xm

fj .x/ � fj .x
m/C�fj ; if j D 1; 2; 3

fi .x/ � fi .x
m/; if i D 1; 2; 3; i ¤ j

(9)

The weight �j is set to zero and the calculation phase of cyclemC 1 begins.

3.3 Surrogate Worth Trade-Off (SWT) Method

In this subsection, we explain the details of the SWT method, which is an interactive
approach with explicit trade-off information given. It is a virtue that all the alterna-
tives during the solution process are non-dominated. Thus the decision maker is not
bothered with any other kind of solutions. The major steps in the SWT method to
solve the multi-objective problem (5) are:

Step 1. Determine the ideal solution for each of the objectives in problem (5). Then
set up the multi-objective problem in the form of (10).

Min f1 .x/

s.t.

f2.x/ � "2

f3.x/ � "3 (10)

x 2 S .Feasible region of problem (5)/

Step 2. Identify and generate a set of non-dominated solutions by varying " ’s para-
metrically in problem (10). Assuming �j , j D 2; 3, as the Lagrange multipliers
corresponding with the first set of constraints of problem (10), the non-dominated
solutions are the ones, which have non-zero values for �j .
Step 3. Interact with the DM to assess the surrogate worth function wj , or the DM’s
assessment of how much (from �10 to 10) he prefers trading �j marginal units of
the first objective for one marginal unit of the j th objective fj .x/, given the other
objectives remaining at their current values.
Step 4. Isolate the indifference solutions. The solutions, which have wj D 0 for
all j , are said to be indifference solutions. If there exists no indifference solution,
develop approximate relations for all worth functions wj D _

wj .fj ; j D 2; 3/,
by multiple regressions. Solve the simultaneous equations _

wj .f / D 0 for all j
to obtain f � (f � does not include f1

�/. Then, solve problem (11). Present this
solution to the DM, and ask if this is an indifference solution. If yes, it is a pre-
ferred solution; proceed to Step 5. Otherwise, repeat the process of generating more
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non-dominated solutions around _wj .f / D 0 and refining the estimated f � until it
results in an indifference solution.

Min f1 .x/

s.t.

f2.x/ � f �2 .x/
f3.x/ � f �3 .x/ (11)

x 2 S

Step 5. The optimal solution f1
� along with f � and x� would be the optimal

solution to the multi-objective problem (5).

4 Numerical Experiments

Consider the supply chain network design problem depicted in Fig. 1. A wine com-
pany is willing to design its supply chain. This company owns three customer
centers located in three different cities L, M, and N, respectively. Uniform-quality
wine in bulk (raw material) is supplied from four wineries located in A, B, C, and D.
There are four possible locations E, F, G, and H for building the bottling plants.

For simplicity, without considering other market behaviors (e.g., novel pro-
motion, marketing strategies of competitors, and market-share effect in different
markets), each market demand merely depends on the local economic conditions.
Assume that the future economy is either boom, good, fair, or poor, i.e., four situa-
tions with associated probabilities of 0.13, 0.25, 0.45, or 0.17, respectively. The unit
production costs and market demands under each scenario are shown in Table 1.

The supplies, transportation costs, and shortage costs are considered as deter-
ministic parameters. (475,000, 425,000, 500,000, 450,000) are investment costs for

Wineries Bottling Plants Customer Centers

A

B

C

D

L

N

M

E

F

G

H

Fig. 1 The supply chain design problem of the wine company
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Table 1 Characteristics of the problem

Future
economy

Demands Unit production costs Probabilities

L M N E F G H

Boom 400 188 200 755 650 700 800 0.13
Good 350 161 185 700 600 650 750 0.25
Fair 280 150 160 675 580 620 720 0.45
Poor 240 143 130 650 570 600 700 0.17

Table 2 Pay-off table

Mean 1856986 307077100000 119113

Var 6165288 0 3985288
DRisk 2179694 1495374000 4467.3

building each bottling plant E, F, G, and H, respectively. (65.6, 155.5, 64.3, 175.3,
62, 150.5, 59.1, 175.2, 84, 174.5, 87.5, 208.9, 110.5, 100.5, 109, 97.8) are the unit
costs of transporting bulk wine from each winery A, B, C, and D to each bottling
plant E, F, G, and H, respectively. (200.5, 300.5, 699.5, 693, 533, 362, 163.8, 307,
594.8, 625, 613.6, 335.5) are the unit costs of transporting bottled wine from each
bottling plant E, F, G, and H to each distribution center L, M, and N, respectively.
(10,000, 13,000, 12,000) are the unit shortage costs at each distribution center L, M,
and N, respectively. (375, 187, 250, 150) are the maximum amount of bulk wine that
can be shipped from each winery A, B, C, and D, respectively, if it is reliable. (315,
260, 340, 280) are the capacities of each bottling plant E, F, G, and H, respectively,
if it is built.

We also have the option of expanding the capacity of bottling plant F, if it is built.
(100, 80, 60, 50) are the unit capacity expansion costs, when the future economy is
boom, good, fair or poor, respectively. In addition, we cannot expand the capacity of
this plant more than 40 units in any situation. Moreover, winery D is an unreliable
supplier and may lose its ability to supply the bottling plants. The reliability of this
winery is estimated as 0.9. So, the total number of scenarios for this supply chain
design problem is equal to 4 � 2 D 8.

The problem attempts to minimize the expected total cost, the variance of the
total cost and the downside risk in a multi-objective scheme while making the
following determinations:

(a) Which of the bottling plants to build (first-stage variables)?
(b) Flows of materials transported among the entities of the network (second-stage

variables)?

First, goal attainment technique is used to solve this multi-objective supply chain
design problem (refer to Azaron et al. (2008) to see some results). Then, we use
STEM and SWT methods to solve the problem.

In the beginning, we construct the pay-off table, using STEM method, which is
shown in Table 2.
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Then, we go to the calculation phase and solve the problem (8) using LINGO
10 on a PC Pentium IV 2.1-GHz processor. The compromise solution for the
location (strategic) variables is Œ1; 1; 1; 0�. Then, we go to the decision phase and
the compromise solution is presented to the DM, who compares its objective
vector f 1 D �

f1
1; f2

1; f3
1
� D .2219887; 253346; 39887/ with the ideal one,

f � D �
f �1 ; f �2 ; f �3

� D .1856986; 0; 4467:3/. If f2
1 is satisfactory, but the other

objectives are not, the DM must relax the satisfactory objective f2
1 enough to

allow an improvement of the unsatisfactory objectives in the first cycle. Then,
�f2 D 999746654 is considered as the acceptable amount of relaxation, and the
feasible region is modified as following in the next iteration cycle:

X2 D

8
ˆ̂<

ˆ̂:

X1

f1.x/ � 2219887

f2.x/ � f2.x
1/C 999746654D 1000000000

f3.x/ � 39887

(12)

In this case, three times of the acceptable level of the standard deviation is almost
equal to 1,00,000, and comparing this with the expected total cost implies an
acceptable amount of relaxation for the variance. In the second cycle, the com-
promise solution for the location variables is still Œ1; 1; 1; 0�. This compromise
solution is again presented to the DM, who compares its objective vector f 2 D�
f1

2; f2
2; f3

2
� D .2132615; 1000000000; 4467:3/with the ideal one. If all objec-

tives of the vector f 2 are satisfactory, f 2 is the final solution and the optimal vector
including the strategic and tactical variables would be x2.

The total computational time to solve the problem using STEM method is equal
to 18:47 (mm:ss), comparing to 02:26:37 (hh:mm:ss) in generating 55 Pareto-
optimal solutions using goal attainment technique, see Azaron et al. (2008) for
details.

We also use the SWT method to solve the same problem. Using this method,
the single objective optimization problem for generating a set of non-dominated
solutions is formulated according to (10). Then, "j; j D 2; 3, are varied to obtain
several non-dominated solutions.

For example, by considering "2 D 100000 and "3 D 1000, we obtain a non-
dominated solution for the location variables as Œ1; 1; 1; 0�, which can also be consid-
ered as an indifference solution by the DM. This indifference solution has the same
structure as the STEM compromise solutions, but certainly with different second-
stage variables. The corresponding objective vector is f � D .f1

�; f2
�; f3

�/ D
.2143678; 748031500; 4467:3/. The computational time to get this solution is equal
to 06:39 (mm:ss).

Comparing this solution with the final STEM solution shows that however the
risk has been reduced in the SWT method, but the expected total cost has been
increased, and none of these solutions can dominate the other one.
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5 Conclusion

Determining the optimal supply chain configuration is a difficult problem since a
lot of factors and objectives must be taken into account when designing the network
under uncertainty. The proposed model in this paper accounts for the minimization
of the expected total cost, the variance of the total cost, and the downside risk in
a multi-objective scheme to design a robust supply chain network. By using this
methodology, the trade-off between the expected total cost and risk terms can be
obtained. The interaction between the design objectives has also been shown. There-
fore, this approach seems to be a good way of capturing the high complexity of the
problem.

We used goal attainment, which is a simple multi-objective technique, and STEM
and SWT methods, which are two main interactive multi-objective techniques, to
solve the problem. The main advantage of these interactive techniques is that the
prefered solution does not depend on the goal and weight vectors, unlike tradi-
tional goal programming technique. We also avoided using several more binary
variables in defining financial risk by introducing downside risk in this paper, which
significantly reduced the computational times.

Since the final mathematical model is a large-scale mixed-integer nonlinear pro-
gram, developing a meta-heuristic approach such as genetic algorithm or simulated
annealing will be helpful in terms of computational time.

In case the random data vector follows a known continuous joint distribution, one
should resort to a sampling procedure, for example Santoso et al. (2005), to solve
the problem. In this case, an integration of sampling strategy along with Benders
decomposition technique would be suitable to solve the resulting stochastic mixed-
integer program.
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A Review of Goal Programming
for Portfolio Selection

Rania Azmi and Mehrdad Tamiz

Abstract Goal Programming (GP) is the most widely used approach in the field
of multiple criteria decision making that enables the decision maker to incorporate
numerous variations of constraints and goals, particularly in the field of Portfolio
Selection (PS). This paper gives a brief review of the application of GP and its
variants to Portfolio Selection and analysis problems. The paper firstly discusses
the Multi-Criteria Decision Analysis in PS context in which GP is introduced as an
important approach to PS Problems. An overview of performance measurement in
portfolio selection context is also provided. Amongst the concluding remarks many
issues in PS that may be addressed by GP such as multi-period, different measures
of risk, and extended factors influencing portfolio selection are listed.

1 Introduction

Finance theory has produced a variety of models that attempt to provide some
insight into the environment in which financial decisions are made. By defini-
tion, every model is a simplification of reality. Hence, even if the data fail to
reject the model, the decision maker may not necessarily want to use the model
as a dogma. At the same time, the notion that models implied by finance theory
could entirely be worthless seems rather extreme. Hence, even if the data reject the
model, the decision maker may still want to use the model at least to some degree
(Pastor 2000).

Some researchers involved in the mean-variance analysis of Markowitz (1952)
for Portfolio Selection (PS) have only focused on PS as risk adjusted return with lit-
tle or no effort being directed to the inclusion of other essential factors. Therefore,
the usual portfolio analysis assumes that investors are interested only with returns
attached to specific levels of risk when selecting their portfolios. In a wide variety of
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applications, neither part of this restriction is desirable or important. Consequently,
a portfolio analysis model that includes more essential factors in the analysis of port-
folio problems is a more realistic approach. Some of these factors include liquidity,
asset class, asset region, micro economics, macro economics and market dynamics.

Original PS problems, with risk and return optimisation can be viewed as a
GP with two objectives. Additional objectives representing other factors can be
introduced for a more realistic approach to PS problems.

Charnes et al. developed GP in 1955. GP is a multi-objective programming
technique. The ethos of GP lies in the Simonan concept of satisficing of objec-
tives (Tamiz et al. 1998). Simon introduced the concept of satisficing, a word that
originated in Northumbria1 where it meant “to satisfy”. Satisficing is a strategy
for making decisions in the case that one has to choose among various alterna-
tives which are encountered sequentially, and which are not known ahead of time
(Reina 2005).

GP is an important technique for decision making problems where the decision
maker aims to minimize the deviation between the achievement of goals and their
aspiration levels. It can be said that GP has been, and still is, the most widely used
multi-objective technique in management science because of its inherent flexibil-
ity in handling decision-making problems with several conflicting objectives and
incomplete or imprecise information (Romero 1991; 2004; Chang 2007).

The remaining parts of this paper are organized as follows. Section 2 discusses
the literature on Multi-Criteria Decision in PS context as well as the importance
of GP applications to portfolio problems. Section 3 outlines the available research
papers on GP for PS. An overview of GP variants for PS is given in Sect. 4. An
outline of performance measurement in portfolio selection context is provided in
Sect. 5. Section 6 develops arguments for further exploitation of GP in addressing
some issues in PS, and the concluding remarks are provided in Sect. 7.

2 The Use of Multi-Criteria Decision Analysis in Portfolio
Selection and the Importance of Goal Programming

Optimisation is a process by which the most favourable trade-off between com-
peting interests is determined subject to the constraints faced in any decision
making process. Within the context of portfolio management, the competing inter-
ests are risk reduction and return enhancement among the other interests
(Kritzman 2003).

Present-day theory of portfolio analysis prescribes a way of thinking about
opportunities for investment. Instead of extensive evaluation of a single asset in iso-
lation, the theory prescribes that investment policy can be formulated in a manner in
which a purchase of an asset is done if and only if it will cause a rise in the overall

1 A region in England on the Scottish boarder.
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personal satisfactions. A rise may come about via one of three schemes as follows
(Renwick 1969):

1. The new asset can cause a net increase in total present expected return on the
portfolio.

2. The new asset can cause a net decline in total risk exposure on the entire portfolio.
3. There can be some subjectively acceptable trade off between change in total risk

and change in total expected return on the portfolio.

The first two are the traditional and direct schemes for selecting portfolios. While,
the third one is quite open to many possibilities and consequently has stimulated
many studies in search for better PS for investors.

Markowitz (1952) suggests that investors should consider risk and return together
and determine the allocation of funds among investment alternatives on the basis of
the trade-off between them. Later on the recognition that many investors evaluate
performance relative to a benchmark led to the idea of PS based on return and rel-
ative risk (Cremers et al. 2005). For many investors, both approaches fail to yield
satisfactory results. Chow (1995) emphasizes that the portfolio optimisation tech-
niques can assist in the search of portfolio that best suits each investor’s particular
objectives.

An alternative to Markowitz model is the Mean-Absolute Deviation (MAD)
model, proposed by Konno and Yamazaki (1991). While Markowitz model assumes
normality of stock returns, the MAD model does not make this assumption. The
MAD model also minimizes a measure of risk, where the measure is the mean
absolute deviation (Kim et al. 2005; Konno and Koshizuka 2005). Konno and
Yamazaki (1991) further developed the MAD model into an equivalent GP model.

Konno and Kobayashi (1997) propose a new model for constructing an integrated
stock-bond portfolio, which serves as an alternative to the popular asset allocation
strategy. The fund is first allocated to indexes corresponding to diverse asset classes
and then allocated to individual assets using appropriate models for each asset class.

Their model (Konno and Kobayashi 1997) determines the allocation of the
fund to individual assets in one stage by solving a large scale mean-variance or
mean-absolute deviation model using newly developed technologies in large scale
quadratic programming and linear programming analysis, respectively. Computa-
tional experiments show that the new approach can serve as a more reliable and less
expensive method to allocate the fund to diverse classes of assets.

Konno (2003) shows that there is a possibility to apply standard portfolio opti-
misation methods to the management of small and medium scale fund, where
transaction cost and minimal transaction unit constraints are negligible. He shows
that the use of mean-absolute deviation model can handle concave transaction cost
and minimal transaction unit constraints in an efficient manner using branch and
bound algorithm. Transaction cost is still not negligible for the majority of standard
investors.

Parra et al. (2001) amongst other authors, claim that there has been a grow-
ing interest in incorporating additional criteria beyond risk and return into the
PS process. Multiple criteria PS problems normally stem from multiple-argument



18 R. Azmi and M. Tamiz

investor utility functions. For investors with additional concerns steps can be taken
to integrate them into the portfolio optimisation process more in accordance with
their criteria status.

Chow (1995) mentions that investment practitioners have implicitly sent a mes-
sage that optimisation models have limited relevance in real world investment
decisions. One of the best arguments for this assertion is that few investors allocate
their assets in the proportions indicated by an optimisation model.

Furthermore, Christiansen and Varnes (2008) present a framework for under-
standing how portfolio decision making is shaped through appropriate decision
making. They find that the identity of decision maker is shaped and influenced by
four factors, which are the formal system and rules, observations of others, the orga-
nizational context, and organizational learning. In practice, the decision maker must
deal with multiple factors and criteria that make it difficult to carry out a traditional
rational decision-making process.

In addition, Rifai (1996) highlights the fact that the survival of any US firm in
the national and international markets depends on the use of scientific techniques
in their decision-making processes. The utilization of scientific techniques requires
certain steps to be followed. The most important steps are identifying, quantify-
ing and solving the problem. He described GP as a very powerful quantitative
model, which, if used properly, can be an excellent tool, particularly for investment
decisions.

Cremers et al. (2005) emphasize the importance of using more approaches to
portfolio formulation, particularly the mean-variance optimisation, and the full-
scale optimisation approaches. They argue that institutional investors typically use
mean-variance optimisation in PS, in part because it requires knowledge of only the
expected returns, standard deviations, and correlations of portfolio’s components,
while other investors prefer to use full-scale optimisation as an alternative to mean-
variance optimisation since computational advances now allow us to perform such
full-scale optimisations. Under this approach, PS process considers as many asset
mixes as necessary in order to identify the weights that yield the highest expected
utility, given any utility function.

Renwick (1969) mentions that investment portfolio behaviour can be character-
ized and classified using combinations of the four interrelated variables, which are
rate of return on total assets, rate of growth of output, capital structure and rate of
retention of available income.

The evidence which Renwick presented in his paper (1969) supports the view
that dividend policy is relevant to the investment decision as well as that finance
does matter for the valuation of corporate assets. Both current and anticipated
future returns on investment, along with the various types of risks associated with
those returns, all interact to determine and characterize the empirical behaviour and
performance of investor portfolios.

Despite the volume of research supporting standard PS, there has always been a
slight undercurrent of multiple objectives in PS, but this is changing.

Generally, in PS problems the decision maker considers simultaneously conflict-
ing objectives such as rate of return, risk and liquidity. Multi-objective programming
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techniques, such as GP, are used to choose the portfolio best satisfying the decision
maker’s aspirations and preferences.

The following figure illustrates the number of publication of research papers in
the area of PS using GP:
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Significant advances have taken place in recent years in the field of GP. A higher
level of computerized automation of the solution and modelling process has brought
use of the already existing and the new analysis techniques within reach of the
average practitioner (Tamiz and Jones 1998).

3 Portfolio Selection Using Goal Programming: Theoretical
and Practical Developments

The ultimate objective of optimal PS is to determine and hold a portfolio which
offers the minimum possible deviation for a given or desired expected return. But
this objective is assuming a stable financial environment. In a world in which an
investor is certain of the future, the optimal PS problem is reduced to that of
structuring a portfolio that will maximize the investor’s return.

Unfortunately, the future is not certain, particularly now like never before and
consequently the solution to the optimal PS problem will depend upon the following
elements (Callin 2008):

(a) A set of possible future scenarios for the world.
(b) A correspondence function, linking possible future scenarios to the returns of

individual securities.
(c) A probabilities function of the likelihood of each of the possible future scenar-

ios of the world.
(d) A way to determine whether one portfolio is preferable to another portfolio.

These elements are considered under different assumptions based on investors’
strategy and their analysis is achievable through GP approach.

Kumar et al. (1978) highlight the fact that standard PS techniques are typically
characterized by motivational assumptions of unified goals or objectives. Therefore,
their immediate relevance to real-world situations, usually marked by the presence
of several conflicting goals, is at best limited.

Nevertheless, with appropriate extensions the standard techniques can form the
basis for accommodating multiple goals. Kumar et al. (1978) address the problem of
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goal conflicts in the PS of Dual-Purpose Funds, and suggest an extension of standard
methodology, in terms of the development of a GP model in conceptual form, which
can be applied for the resolution of inherent clash of interests.

GP in PS context is an analytical approach devised to address financial decision
making problems where targets have been assigned to the attributes of a portfolio
and where the decision maker is interested in minimising the non-achievement of
the corresponding goals.

During the recent years many models concerning PS using GP have been devel-
oped. Amongst the research papers that introduce such models are:

Category Year Author Portfolio selection using goal
programming (GP variants and
applications)

1970s 1973 Lee and Lerro LGP (PS for mutual funds)
1975 Stone and Reback Other variant (nonlinear GP-portfolio

revisions)
1977 Booth and Dash Other variant (nonlinear GP-bank

portfolio)
1978 Kumar et al. LGP (dual-purpose funds)

Muhlemann et al. LGP (portfolio modelling)
1979 Kumar and Philippatos LGP (dual-purpose funds)

1980s 1980 Lee and Chesser LGP (PS)
1984 Levary and Avery LGP (weighting equities in a

portfolio)
1985 Alexander and Resnich LGP (bond portfolios)

1990s 1992 Konno and Yamazaki MAD, PS
1994 Byrne and Lee Spreadsheet optimizer (real estate

portfolio)
1996 Tamiz et al. Two staged GP model for portfolio

selection
1997 Tamiz et al. Comparison between GP and

regression analysis for PS
Watada Fuzzy portfolio selection

1998 Kooros and McManis Multiattribute optimisation for
strategic investment decisions

2000s 2000 Deng et al. Criteria, models and strategies in
portfolio selection

Inuiguchi and Ramik Fuzzy GP and other variant
Ogryczak Linear programming model for

portfolio selection
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2001 Jobst et al. Other variant (alternative portfolio
selection models)

Parra et al. FGP (portfolio selection)
2002 Wang and Zhu Fuzzy portfolio selection

Zopounidis and
Doumpos

Multi-criteria decision aid in
financial decision making

2003 Allen et al. Other variant-portfolio optimisation
Prakash et al. Other variant-polynomial GP

(selecting portfolio with skewness)
Rostamy et al. Other variant
Sun and Yan Other variant-skewness & optimal

portfolio selection
2004 Kosmidou and

Zopounidis
GP, simulation analysis & bank asset

liability management
Pendaraki et al. GP (equity mutual fund portfolios)

2005 Dash and Kajiji Other variant (nonlinear GP for
asset-liability management)

Davies et al. Other variant (polynomial GP-fund
of hedge funds PS)

Deng et al. Minimax portfolio selection
Pendaraki et al. GP-construction of mutual funds

portfolios
Tektas et al. GP-asset and liability management

2006 Bilbao et al. GP-portfolio selection with expert
betas

Sharma and Sharma LGP for mutual funds
2007 Abdelaziz et al. Other variant

Bilbao et al. GP
Gladish et al. Interactive three-stage model-mutual

funds portfolio selection
Li and Xu Other variant (nonlinear GP-portfolio

selection)
Sharma et al. Other variant (credit union portfolio

management)
Wu et al. GP-index investing

Romero claims in a recent paper (2004) that most of GP applications, which
are reported in the literature, use weighted or lexicographic achievement function.
He explains that this election is usually made in a rather mechanistic way without
theoretical justification and if the election of the achievement function is wrong,
then it is very likely that the decision maker will not accept the solution.
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The majority of research papers prior to 2000 develop PS models utilising
weighted and/or lexicographic GP variants. This trend has since changed to the
fuzzy goal programming variant. When attributes and/or goals are in an imprecise
environment and they cannot be stated with precision, it is appropriate to use fuzzy
GP. A primary challenge in today’s financial world is to determine how to proceed
in the face of uncertainty, which arises from incomplete data and from imperfect
knowledge. Volatility is an important challenge too, since estimates of volatility
allow us to assess the likelihood of experiencing a particular outcome.

4 Goal Programming Variants for Portfolio Selection

Romero (2004) mentions that a key element of a GP model is the achievement
function, which measures the degree of minimization of the unwanted deviational
variables of the model’s goals. Each type of achievement function leads to a different
GP variant as follows.

4.1 Weighted Goal Programming in Portfolio Selection Models

The weighted GP for PS model usually lists the unwanted deviational variables,
each weighted according to their importance.

Weighted Goal Programming (WGP) attaches weights according to the relative
importance of each objective as perceived by the decision maker and minimises the
sum of the unwanted weighted deviations (Tamiz and Jones 1995).

For example, the objective function in WGP model for PS seeks to minimise risk
and maximise return by penalising excess risk and shortfalls in return, relative to the
respective targets. Therefore, lower levels of risk and higher levels of return are not
penalised. Additional objectives specifying other portfolio’s attributes, such as liq-
uidity, cost of rebalancing and sectors allocation can be included in the WGP model.

4.2 Lexicographic Goal Programming in Portfolio
Selection Models

The achievement function of the lexicographic GP model to PS is made up of an
ordered vector whose dimension coincides with the q number of priority levels
established in the model. Each component in this vector represents the unwanted
deviational variables of the goals placed in the corresponding priority level.

Lexicographic achievement functions imply a non-compensatory structure of
preferences. In other words, there are no finite trade-offs among goals placed in
different priority levels (Romero 2004).
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The priority structure for the model can be established by assigning each goal or
a set of goals to a priority level, thereby ranking the goals lexicographically in order
of importance to the decision maker. When achieving one goal is equally important
as achieving other goals, such as the goals of risk and return, then they may be
included at the same priority level, where numerical weights represent the relative
importance of the goals at the same priority level (Sharma and Sharma 2006).

Therefore, LGP could deal with many priority levels in PS problem, in which
goal constraints are included according to their importance of achievement in the
model. For example, a PS model using LGP may include the following priority
structure:

1. Maximising the portfolio’s expected return, while minimising some measure-
ment of portfolio’s risk.

2. Minimising other portfolio’s risks (e.g. the systematic risk as measured by Beta
coefficient).

3. Minimising the portfolio’s cost of rebalancing.

C Other priority levels.
Many authors developed lexicographic GP models for PS, particularly during the

1970s and 1980s (for example, Lee and Lerro 1973; Kumar et al. 1978; Levary and
Avery 1984). Other applications of LGP for PS are developed recently within the
mutual funds industry (Sharma and Sharma 2006).

4.3 MINMAX (Chebyshev) Goal Programming in Portfolio
Selection Models

The achievement function of a Chebyshev GP model implies the minimization of the
maximum deviation from any single goal. Moreover, when some conditions hold the
corresponding solution represents a balanced allocation among the achievement of
the different goals (Romero 2004).

The model of MinMax, Chebyshev, GP Portfolio Selection usually seeks the min-
imisation of the maximum deviation from any single goal in PS. In other words, it
seeks the solution that minimizes the worst unwanted deviation from any single
goal.

Some authors focus historically in developing PS models using MinMax GP
variant. Deng et al. (2005), amongst others, develop MinMax GP model for PS.

4.4 Fuzzy Goal Programming in Portfolio Selection Models

While the weighted, lexicographic and MinMax forms of the achievement func-
tion are the most widely used, other recently developed variants, like Fuzzy Goal
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Programming, may represent the decision makers’ preferences or the decision
making circumstances with more soundness.

Fuzzy mathematical programming is developed for treating uncertainties in the
setting of optimisation problems. The fuzzy mathematical programming can be clas-
sified into three categories with respect to the kind of uncertainties treated in the
method (Inuiguchi and Ramik 2000):

1. Fuzzy mathematical programming with vagueness.
2. Fuzzy mathematical programming with ambiguity.
3. Fuzzy mathematical programming with combined vagueness and ambiguity.

Vagueness is associated with the difficulty of making sharp or precise distinctions
in the world; that is, some domain of interest is vague if it cannot be delimited by
sharp boundaries, while ambiguity is associated with one-to-many relations, that is,
situations in which the choice between two or more alternatives is left unspecified
(Inuiguchi and Ramik 2000).

In fuzzy GP Portfolio Selection model, the decision maker is required to specify
an aspiration level for each objective in the model in which aspiration levels are not
known precisely. In this case, an objective with an imprecise level can be treated as
a fuzzy goal (Yaghoobi and Tamiz 2006).

The use of fuzzy models not only avoids unrealistic modelling but also offers a
chance for reducing information costs. Fuzzy sets are used in fuzzy mathematical
programming both to define the objective and constraints and also to reflect the
aspiration levels given by the decision makers (Leon et al. 2002).

In this context, Watada (1997) argues that Markowitz’s approach to PS has dif-
ficulty in resolving the situation where the aspiration level and utility given by the
decision makers cannot be defined exactly. Therefore, he proposes a fuzzy PS to
overcome such difficulty. The fuzzy PS enables obtaining a solution which realizes
the best within a vague aspiration level and the goal given as a fuzzy number, which
is obtained from the expertise of the decision makers.

Gladish et al. (2007) argue that PS problem is characterized by imprecision
and/or vagueness inherent in the required data, in which they proposed a three
stage model, in order to mitigate such problems, based on a multi-index model and
considering several market scenarios described in an imprecise way by an expert.

Gladish et al. (2007) discuss how the proposed fuzzy model allowed the decision
maker to select a suitable portfolio taking into account the uncertainty related to the
market scenarios and the imprecision and/or vagueness associated with the model
data.

On the other hand, Leon et al. (2002) focus on the infeasible instances of different
models, which are suppose to select the best portfolio according to their respective
objective functions. They propose an algorithm to repair infeasibility. Such infea-
sibility, which usually provoked by the conflict between the desired return and the
diversification requirements proposed by the investor, could be avoided by using
fuzzy linear programming techniques.

Parra et al. (2001) deal with the optimum portfolio for a private investor with
emphasis on three criteria, which are expected return of the portfolio, the variance
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return of the portfolio, and the portfolio’s liquidity measured as the possibility of
converting an investment into cash without any significant loss in value. They for-
mulated these three objectives as a GP problem using fuzzy terms since they cannot
be defined exactly from the point of view of the investors. Parra et al. (2001) pro-
pose a method to determine portfolios with fuzzy attributes that are set equal to
fuzzy target values. Their solution is based on the investor’s preferences and on the
GP techniques.

Allen et al. (2003) investigate the notion of fuzziness with respect to funds allo-
cation. They found that the boundary between the preference sets of an individual
investor, for funds allocation between a risk free asset and the risky market portfo-
lio, tends to be rather fuzzy as the investors continually evaluates and shifts their
positions; unless it is a passive buy-and-hold kind of portfolio.

Inuiguchi and Ramik (2000) emphasize in their paper that the real world prob-
lems are not usually so easily formulated as mathematical models or fuzzy models.
Sometimes qualitative constraints and/ or objectives are almost impossible to repre-
sent in mathematical forms. In such a situation, a fuzzy solution satisfying the given
mathematical requirements are very useful in a sense of weak focus in the feasible
area. Inuiguchi and Ramik (2000) applies fuzzy programming in PS problems and
they found that decision maker can select the final solution from the fuzzy solution
considering implicit and mathematically weak requirements.

5 Performance Measurement for Portfolios

Treynor (1965), Sharpe (1966), and Jensen (1968) developed the standard indices to
measure risk adjusted returns for portfolios.

Numerous studies have tested the performance of portfolios (mutual funds) com-
pared to a certain benchmark, usually market index, based on Sharpe, Treynor and
Jensen performance measures (Artikis 2002; Cresson et al. 2002; Daniel et al. 1997;
Lehmann and Modest 1987; Matallin and Nieto 2002; Otten and Schweitzer 2002;
Raj et al. 2003; Zheng 1999).

Bottom-line performance measurement concentrates on the question of how a
portfolio did, both absolutely and relative to a benchmark.

6 Goal Programming and Portfolio Analysis: Other Issues

The traditional portfolio optimisation model by Markowitz has not been used exten-
sively in its original form to construct a large-scale portfolio. The first reason
behind this is in the nature of the required inputs for portfolio analysis, in which
accuracy is needed for returns as well as the correlation of returns. The second rea-
son is the computational difficulty associated with solving a large-scale quadratic
programming problem with dense (covariance) matrix.
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Several researchers have tried to alleviate these problems by using various
approximation schemes to obtain equivalent linear problems (such as
Steuer et al. 2007). The use of index model reduces the amount of required compu-
tation by introducing the notion of factors influencing stock prices. However, these
factors are discounted because of the popularity of equilibrium models such as the
Capital Asset Pricing Model (CAPM).

The CAPM states that the expected return on a security depends only on the sen-
sitivity of its return to the market return, its market beta. However, there is evidence
that market beta does not suffice to describe expected return. In addition, the CAPM
fares poorly in competition with multifactor alternatives. This evidence suggests
that multifactor models should be considered in any research that requires estimates
of expected returns. One popular multifactor model is the Arbitrage Pricing Theory
(Fama 1996).

A factor model is not an equilibrium theory, in which it represents relationships
among security returns. However, when returns are generated by a factor model,
equilibrium in the capital markets will result in certain relationships among the val-
ues of the coefficients of the model. The Arbitrage Pricing Theory (APT), Like
Capital Asset Pricing Models, is an equilibrium theory of the relationships between
security expected returns and relevant security attributes. Unlike CAPM, the APT
assumes that returns are generated by an identifiable factor model. However, it does
not make strong assumptions about investor preferences (Sharpe 1985).

In order to facilitate application of his own covariance approach, Markowitz
first suggested, and Sharpe (1966) later developed a market model formulation in
which the rates of return on various securities are related only through common
relationships with some basic underlying factor (Frankfurter and Phillip 1980).

Although GP and its variants have provided a more pragmatic tool to analyse
PS problems and reach good solutions in terms of the inclusion of the decision
maker’s factors of importance in selecting portfolios, there are still other aspects of
PS problems that can benefit from the application of GP. Some of these issues are
listed and explained below.

6.1 Issues Concerning Multi-Period Returns

GP can be utilised to select portfolios on not only the basis of many factors, but
also based on the future multi-period returns as well as the expected utility of multi-
period returns.

Modem portfolio analysis has its origin in the work of Markowitz, who specified
the portfolio problem in terms of the one-period means and variances of returns.
However, most portfolio problems are multi-period. The appropriateness of one-
period analysis for this class of problems has been seriously questioned in recent
years. As a result, several alternative decision rules and modification of the one-
period analysis have been proposed.
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� Elton and Gruber (1974) evaluate two proposals that have received wide attention
in the economic literature. The first involves selecting portfolios on the basis of
the geometric mean of future multi-period returns. The second involves selecting
portfolios on the basis of the expected utility of multi-period returns. They found
that, when portfolio revision is considered, portfolio decisions based on either the
expected utility of multi-period returns or the geometric mean of multi-period
returns are often different from and inferior to decisions based on considera-
tion of returns sequentially over time. This is true even when the distribution of
returns is expected to be identical in each future period.

� Li and Ng (2000) consider an analytical optimal solution to the mean-variance
formulation in multi-period PS. They extend the Markowitz mean-variance app-
roach to multi-period PS problems. The derived analytical expression of the
efficient frontier for the multi-period PS would enhance investors’ understand-
ing of the trade-off between the expected terminal wealth and the risk. At the
same time, the derived analytical optimal multi-period portfolio policy provides
investors with the best strategy to follow in a dynamic investment environment.

� Samuelson (1969) formulates and solves a many-period generalization, corre-
sponding to lifetime planning of consumption and investment decision in his
paper of Lifetime PS by Dynamic Stochastic Programming.

� Renwick (1969) emphasize almost 40 years ago that there was rarely anything
even approaching unanimous agreement on any particular point of theory or
interpretation of empirical data with relevance to financial analysis.

GP, if properly utilised, could provide a good approach to PS and analysis in today’s
complicated financial markets with multi-period returns.

6.2 Issues Concerning Extended Factors

There are a number of issues which have been introduced into practical PS problems.
These include restriction on the number of assets, transaction and rebalancing costs,
and cash flow or liquidity requirements.

In practice, analysts use models with both common factors, which affect all
securities to a greater or lesser extent, and sector factors, which affect only some
securities within a portfolio. Identification and prediction of truly pervasive factors
is an extremely difficult task. Hence, the goal should be focused on permanent and
important sources of security and portfolio risk and return, not the transitory and
unimportant phenomena that occur in any given period (Sharpe 1985).

Nonetheless, an extended Capital Asset Pricing Models imply that expected
returns may be related to additional security attributes, such as liquidity and rebal-
ancing costs. Some of these may, in turn, be related to sensitivities to major
factors.

GP and its variants provide a practical way to incorporate an extended list of
factors, other than risk and return, in portfolio analysis.
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For example, Steuer et al. (2007) focus on investors whose purpose is to build
a suitable portfolio taking additional concerns into account. Such investors would
have additional stochastic and deterministic objectives that might include dividends,
number of securities in a portfolio, liquidity, social responsibility, and so forth. They
develop a multiple criteria PS formulation.

Despite the acceptance and wide-spread use of the Markowitz framework, and its
numerous extensions, in practice there has been a considerable debate among aca-
demics and practitioners on the validity of including only two factors for Portfolio
Selection problems and equally important the validity of variance as a representative
measure of risk.

6.3 Issues Concerning the Measurement of Risk

The notion of risk has found practical application within the science of Risk Man-
agement and Risk Control. Risk Control deals with limiting or eliminating specific
types of risk, in as much as this is possible by taking an active position in one or
more types of risk. Deciding which types of risk to mitigate is the first dilemma
of a financial institution and demands considerable attention, since focusing on one
particular risk category may lead to a hedged portfolio for a particular source of risk
but may result in exposure to other sources of risk.

An important insight of modern financial theory is that some investment risks
yield an expected reward, while other risks do not. Risks that can be eliminated by
diversification do not yield an expected reward, while risks that cannot be elimi-
nated by diversification do yield an expected reward. Thus, financial markets are
somewhat fussy regarding what risks are rewarded and what risks are not (Corrado
and Jordan 2005).

Diversification reduces risk, but only up to a point since some risk is diversifiable
and some is not as illustrated below:
Average
Annual

Standard
Deviation

(%)

Number of Stocks
In Portfolio

Non-diversifiable Risk

Diversifiable Risk

This issue becomes more challenging when optimisation models are used such
as GP. For example, a GP model may result in minimisation of the risk included in
the model, but the solution may be sensitive to other sources of risks that were not
considered and better measured by another metric.
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According to Sharpe (1966) model, the rate of return on any security is the result
of two factors; a systematic component which is market related, and factors which
are unique to a given security. In any application, however, concern should be not
only with the alpha and beta, but with the level of uncertainty about the estimates
as well.

Hu and Kercheval (2007) emphasize that portfolio optimisation requires balanc-
ing risk and return; therefore, one needs to employ some precise concept of risk. The
construction of an efficient frontier depends on two inputs; a choice of risk measure,
such as standard deviation, value at risk, or expected shortfall, and a probability
distribution used to model returns.

Many authors provide analysis of risk measures beyond the standard deviation,
such as Artzner et al. (1999), Balbas et al. (2009) and Rockafellar et al. (2006).

� For example, Mansini et al. (2007) mention that while some Linear Programs
(LP) computable risk measures may be viewed as approximations to the vari-
ance (e.g., the mean absolute deviation), shortfall or quantile risk measures are
recently gaining more popularity in various financial applications. Therefore,
Mansini et al. (2007) study LP solvable portfolio optimization models based on
extensions of the Conditional Value at Risk (CVaR) measure. The models use
multiple CVaR measures thus allowing for more detailed risk aversion modeling.

� Pflug (2006) researches the measures of risk in two categories, which are risk
capital measures, serve to determine the necessary amount of risk capital in order
to avoid ruin if the outcomes of an economic activity are uncertain and their neg-
ative values may be interpreted as acceptability measures or safety measures, and
pure risk measures, risk deviation measures, which are natural generalizations of
the standard deviation.

� Rockafellar et al. (2006) study general deviation measures systematically for
their potential applications to risk measurement in areas like portfolio optimiza-
tion and engineering.

� Ogryczak and Ruszczynski (2002) analyse mean-risk models using quantiles and
tail characteristics of the distribution. In particular, they emphasise value at risk
(VAR) as a widely used quantile risk measure, which is defined as the maximum
loss at a specified confidence level. Their study included also the worst condi-
tional expectation or Tail VAR, which represents the mean shortfall at a specified
confidence level.

� Artzner et al. (1999), develop a coherent measure of risk, in which they stud-
ied both market risks and nonmarket risks, and then discussed methods of
measurement of these risks.

Economic analysts following the mean-variance maxim have concentrated upon the
problem of portfolios as financial assets with little or no effort being directed to the
inclusion of productive liabilities. Accordingly, the usual portfolio analysis assumes
the absolute level of funds available for investment as fixed and concerns itself only
with the distribution of that given amount over candidate opportunities. In a wide
variety of applications, neither part of this restriction is either essential or desirable.
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As James Tobin, the winner of the Nobel Prize in economics, showed that the
investment process can be separated into two distinct steps, which are the con-
struction of an efficient portfolio, as described by Markowitz, and the decision to
combine this efficient portfolio with a riskless investment (Kritzman 2003), GP
could be by far a very powerful technique for empowering the investment decision
making as well as the investment process in general.

7 Conclusions

Over the last 30 years, GP for Portfolio Selection problems have been deployed
extensively.

This paper has briefly reviewed many of the highlights. GP models for PS allow
incorporating multiple goals such as portfolio’s return, risk, liquidity, expense ratio,
amongst other factors.

There is a huge capacity for future developments and applications of GP for PS
issues.

In particular, GP could be used for incorporating multi-period, extended fac-
tors and different risk measures into the PS analysis. Also, the decision maker
can establish target values not only for the goals but also for relevant achievement
functions.

In this way, a Meta-GP model could be formulated, which allows the decision-
maker to establish requirements on different achievement functions, rather than
limiting their opinions to the requirements of a single variant. In this sense, this
approach could be used as a second stage after GP problem for PS is being solved
(Uria et al. 2002).

Future research is warrant in the area of GP applications to PS, particularly for
Mutual Funds as the need for incorporating extended factors is greatly manifest.
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A Hypervolume-Based Optimizer
for High-Dimensional Objective Spaces

Johannes Bader and Eckart Zitzler

Abstract In the field of evolutionary multiobjective optimization, the hypervolume
indicator is the only single set quality measure that is known to be strictly monotonic
with regard to Pareto dominance. This property is of high interest and relevance for
multiobjective search involving a large number of objective functions. However, the
high computational effort required for calculating the indicator values has so far
prevented to fully exploit the potential of hypervolume-based multiobjective opti-
mization.

This paper addresses this issue and proposes a fast search algorithm that uses
Monte Carlo sampling to approximate the exact hypervolume values. In detail,
we present HypE(Hypervolume Estimation Algorithm for Multiobjective Optimiza-
tion), by which the accuracy of the estimates and the available computing resources
can be traded off; thereby, not only many-objective problems become feasible with
hypervolume-based search, but also the runtime can be flexibly adapted. The exper-
imental results indicate that HypE is highly effective for many-objective problems
in comparison to existing multiobjective evolutionary algorithms.

1 Motivation

By far most studies in the field of evolutionary multiobjective optimization (EMO)
are concerned with the following set problem: find a set of solutions that as a whole
represents a good approximation of the Pareto-optimal set. To this end, the original
multiobjective problem consisting of:

� The decision space X
� The objective space Z D R

n

� A vector function f D .f1; f2; : : : ; fn/ comprising n objective functions fi W
X ! R, which are without loss of generality to be minimized
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� A relation � on Z, which induces a preference relation � on X with a � b W,
f .a/ � f .b/ for a; b 2 X

is usually transformed into a single-objective set problem (Zitzler et al. 2008).
The search space ‰ of the resulting set problem includes all possible Pareto set

approximations,1 i.e., ‰ contains all multisets over X . The preference relation �
can be used to define a corresponding set preference relation � on ‰ where

A � B W, 8b 2 B 9a 2 A W a � b (1)

for all Pareto set approximations A;B 2 ‰. In the following, we will assume
that weak Pareto dominance is the underlying preference relation, i.e., a � b W,
f .a/ � f .b/ (cf. Zitzler et al. 2008).2

A key question when tackling such a set problem is how to define the opti-
mization criterion. Many multiobjective evolutionary algorithms (MOEAs) imple-
ment a combination of Pareto dominance on sets and a diversity measure based
on Euclidean distance in the objective space, e.g., NSGA-II (Deb et al. 2000)
and SPEA2 (Zitzler et al. 2002). While these methods have been successfully
employed in various biobjective optimization scenarios, they appear to have dif-
ficulties when the number of objectives increases (Wagner et al. 2007). As a
consequence, researchers have tried to develop alternative concepts, and a recent
trend is to use set quality measures, also denoted as quality indicators, for search –
so far, they have mainly been used for performance assessment. Of particular inter-
est in this context is the hypervolume indicator (Zitzler and Thiele 1998a, 1999)
as it is the only quality indicator known to be fully sensitive to Pareto dominance,
i.e., whenever a set of solutions dominates another set, it has a higher hypervolume
indicator value than the second set. This property is especially desirable when many
objective functions are involved.

Several hypervolume-based MOEAs have been proposed meanwhile (e.g.,
Emmerich et al. 2005; Igel et al. 2007; Brockhoff and Zitzler 2007), but their
main drawback is their extreme computational overhead. Although there have been
recent studies presenting improved algorithms for hypervolume calculation, cur-
rently high-dimensional problems with six or more objectives are infeasible for
these MOEAs. Therefore, the question is whether and how fast hypervolume-based
search algorithms can be designed that exploit the advantages of the hypervol-
ume indicator and at the same time are scalable with respect to the number of
objectives.

1 Here, a Pareto set approximation may also contain dominated solutions as well as duplicates, in
contrast to the notation in Zitzler et al. (2003).
2 For reasons of simplicity, we will use the term “u weakly dominates v” resp. “u dominates v”
independently of whether u and v are elements of X , Z, or ‰. For instance, A weakly dominates
b with A 2 ‰ and b 2 X means A � fbg and a dominates z with a 2 X and z 2 Z means
f .a/ � z ^ z 6� f .a/.
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2 Related Work

The hypervolume indicator was originally proposed and employed in Zitzler and
Thiele (1998, 1999) to compare quantitatively the outcomes of different MOEAs.
In these two first publications, the indicator was denoted as “size of the space cov-
ered”, and later also other terms such as “hyperarea metric” (Van Veldhuizen 1999),
“S-metric” (Zitzler 1999), “hypervolume indicator” (Zitzler et al. 2003), and “hyper-
volume measure” (Beume et al. 2007) were used. Besides the names, there are also
different definitions available, based on polytopes (Zitzler and Thiele 1999), the
attainment function (Zitzler et al. 2007), or the Lebesgue measure (Laumanns et al.
1999; Knowles 2002; Fleischer 2003).

Knowles (2002) and Knowles and Corne (2003) were the first to propose the inte-
gration of the hypervolume indicator into the optimization process. In particular,
they described a strategy to maintain a separate, bounded archive of nondomi-
nated solutions based on the hypervolume indicator. Huband et al. (2003) presented
an MOEA which includes a modified SPEA2 environmental selection procedure
where a hypervolume-related measure replaces the original density estimation tech-
nique. In Zitzler and Künzli (2004), the binary hypervolume indicator was used
to compare individuals and to assign corresponding fitness values within a general
indicator-based evolutionary algorithm (IBEA). The first MOEA tailored specif-
ically to the hypervolume indicator was described in Emmerich et al. (2005); it
combines nondominated sorting with the hypervolume indicator and considers one
offspring per generation (steady state). Similar fitness assignment strategies were
later adopted in Zitzler et al. (2007) and Igel et al. (2007), and also other search algo-
rithms were proposed where the hypervolume indicator is partially used for search
guidance (Nicolini 2005; Mostaghim et al. 2007). Moreover, specific aspects like
hypervolume-based environmental selection (Bradstreet et al. 2006), cf. Sect. 3.3,
and explicit gradient determination for hypervolume landscapes (Emmerich et al.
2007) have been investigated recently.

The major drawback of the hypervolume indicator is its high computation effort;
all known algorithms have a worst-case runtime complexity that is exponential in
the number of objectives, more specifically O.N n�1/ where N is the number of
solutions considered (Knowles 2002; While et al. 2006). A different approach was
presented by Fleischer (2003) who mistakenly claimed a polynomial worst-case
runtime complexity – While (2005) showed that it is exponential in n as well.
Recently, advanced algorithms for hypervolume calculation have been proposed,
a dimension-sweep method (Fonseca et al. 2006) with a worst-case runtime com-
plexity of O.N n�2 logN/, and a specialized algorithm related to the Klee measure
problem (Beume and Rudolph, 2006) the runtime of which is in the worst case of
order O.N logN CN n=2/. Furthermore, Yang and Ding (2007) described an algo-
rithm for which they claim a worst-case runtime complexity of O..n=2/N /. The fact
that there is no exact polynomial algorithm available gave rise to the hypothesis that
this problem in general is hard to solve, although the tightest known lower bound is
of order�.N logN/ (Beume et al. 2007a). New results substantiate this hypothesis:
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Bringmann and Friedrich (2008) have proven that the problem of computing the
hypervolume is #P -complete, i.e., it is expected that no polynomial algorithm exists
since this would imply NP D P .

The issue of speeding up the hypervolume indicator has been addressed in dif-
ferent ways: by automatically reducing the number of objectives (Brockhoff and
Zitzler 2007) and by approximating the indicator values using Monte Carlo sim-
ulation (Everson et al. 2002; Bader et al. 2008; Bringmann and Friedrich 2008).
Everson et al. (2002) used a basic Monte Carlo technique for performance assess-
ment in order to estimate the values of the binary hypervolume indicator (Wagner
et al. 2007); with their approach the error ratio is not polynomially bounded. In con-
trast, the scheme presented in Bringmann and Friedrich (2008) is a fully polynomial
randomized approximation scheme where the error ratio is polynomial in the input
size. Another study (Bader et al. 2008) – a precursor study for the present paper –
employed Monte Carlo sampling for fast hypervolume-based search. The main idea
is to estimate – by means of Monte Carlo simulation – the ranking of the individuals
that is induced by the hypervolume indicator and not to determine the exact indi-
cator values. This paper proposes an advanced method called HypE (Hypervolume
Estimation Algorithm for Multiobjective Optimization) that is based on the same
idea, but uses a novel fitness assignment scheme for both mating and environmental
selection, that can be effectively approximated.

As we will show in the following, the proposed search algorithm can be eas-
ily tuned regarding the available computing resources and the number of objectives
involved. Thereby, it opens a new perspective on how to treat many-objective prob-
lems, and the presented concepts may also be helpful for other types of quality
indicators to be integrated in the optimization process.

3 HypE: Hypervolume Estimation Algorithm
for Multiobjective Optimization

When considering the hypervolume indicator as the objective function of the under-
lying set problem, the main question is how to make use of this measure within a
multiobjective optimizer to guide the search. In the context of a MOEA, this refers
to selection and one can distinguish two situations:

1. The selection of solutions to be varied (mating selection)
2. The selection of solutions to be kept in the population (environmental selection)

In the following, we outline a new algorithm based on the hypervolume indicator
called HypE. Thereafter, the two selection steps mentioned above as realized in
HypE are presented in detail.
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3.1 Algorithm

HypE belongs to the class of simple indicator-based evolutionary algorithm, as for
instance discussed in Zitzler et al. (2007). As outlined in Algorithm 1, HypE reflects

Algorithm 1 HypE Main Loop
Require: reference set R � Z, population size N 2 N, number of generations gmax, number of

sampling points M 2 N

1: initialize population P by selecting N solutions from X uniformly at random
2: g 0

3: while g � gmax do
4: P 0 matingSelection.P; R;N;M/

5: P 00  variation.P 0; N /

6: P  environmentalSelection.P [ P 00; R;N;M/

7: g gC 1

a standard evolutionary algorithm that consists of the successive application of mat-
ing selection, variation, and environmental selection. As to mating selection, binary
tournament selection is proposed here, although any other selection scheme could
be used as well, where the tournament selection is based on the fitness proposed
in Sect. 3.2. The procedure variation encapsulates the application of mutation and
recombination operators to generate N offspring. Finally, environmental selection
aims at selecting the most promising N solutions from the multiset-union of parent
population and offspring; more precisely, it creates a new population by carrying
out the following two steps:

1. First, the union of parents and offspring is divided into disjoint partitions using
the principle of nondominated sorting (Goldberg 1989; Deb et al. 2000), also
known as dominance depth. Starting with the lowest dominance depth level, the
partitions are moved one by one to the new population as long as the first par-
tition is reached that cannot be transferred completely. This corresponds to the
scheme used in most hypervolume-based multiobjective optimizers (Emmerich
et al. 2005; Igel et al. 2007; Brockhoff and Zitzler 2007).

2. The partition that only fits partially into the new population is then processed
using the novel fitness scheme presented in Sect. 3.3. In each step, the fitness val-
ues for the partition under consideration are computed and the individual with the
worst fitness is removed – if multiple individuals share the same minimal fitness,
then one of them is selected uniformly at random. This procedure is repeated
until the partition has been reduced to the desired size, i.e., until it fits into the
remaining slots left in the new population.

The scheme of first applying non-dominated sorting is similar to other algorithms
(e.g., Igel et al. 2007; Emmerich et al. 2005). The differences are: (1) the fitness
assignment scheme for mating, (2) the one for environmental selection, and (3) the
method how the fitness values are determined. The estimation of the fitness values
by means of Monte Carlo sampling is discussed in Sect. 3.4.
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3.2 Basic Scheme for Mating Selection

To begin with, we formally define the hypervolume indicator as a basis for the fol-
lowing discussions. Different definitions can be found in the literature, and we here
use the one from Zitzler et al. (2008) which draws upon the Lebesgue measure
as proposed in Laumanns et al. (1999) and considers a reference set of objective
vectors.

Definition 1. Let A 2 ‰ be a Pareto set approximation and R � Z be a reference
set of mutually nondominating objective vectors. Then the hypervolume indicator
IH can be defined as

IH .A;R/ WD 	.H.A;R//; (2)

where
H.A;R/ WD fz 2 Z I 9a 2 A 9r 2 R W f .a/ � z � rg (3)

and 	 is the Lebesgue measure with 	.H.A;R// D R
Rn 1H.A;R/.z/d z and 1H.A;R/

being the characteristic function of H.A;R/.

The set H.A;R/ denotes the set of objective vectors that are enclosed by the front
f .A/ given by A and the reference set R. It can be further split into partitions
H.S;A;R/, each associated with a specific subset S � A:

H.S;A;R/ WD
h\

s2S

H.fsg; R/
i

n
h [

a2AnS
H.fag; R/

i
: (4)

The set H.S;A;R/ � Z represents the portion of the objective space that is jointly
weakly dominated by the solutions in S and not weakly dominated by any other
solution in A. The partitions H.S;A;R/ are disjoint and the union of all partitions
is H.A;R/ which is illustrated in Fig. 1.

f (b)

H ({a, b, c,d},A,R}

H ({d},A,R}

H ({b, c},A,R}

H (A,R}

R = {r}

f (a)

f (c)

f (d)

Fig. 1 Illustration of the notions of H.A;R/ and H.S;A;R/ in the objective space for a Pareto
set approximation A D fa; b; c; dg and reference set R D frg
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r

f (b)

f (a)

f (c)

f (d)

H4(c,A,R) = H ({a, b, c, d},A,R)

+ H ({b, c, d},A,R)
H3(c,A,R) = H ({a, b, c},A,R)

+ H ({c, d},A,R)
H2(c,A,R) = H ({b, c},A,R)

H1(c,A,R) = H ({c},A,R)

Fig. 2 Illustration of the notions of H.A;R/ and Hi.a; A;R/ in the objective space for a Pareto
set approximation A D fa; b; c; dg and reference set R D frg

In practice, it is infeasible to determine all distinctH.S;A;R/ due to combinato-
rial explosion. Instead, we will consider a more compact splitting of the dominated
objective space that refers to single solutions:

Hi .a; A;R/ WD
[

S�A
a2SjS jDi

H.S;A;R/: (5)

According to this definition, Hi .a; A;R/ stands for the portion of the objective
space that is jointly and solely weakly dominated by a and any i�1 further solutions
from A, see Fig. 2. Note that the sets H1.a; A;R/;H2.a; A;R/; : : : ;HjAj.a; A;R/
are disjoint for a given a 2 A while the sets Hi .a; A;R/ and Hi .b; A;R/ may
be overlapping for fixed i and different solutions a; b 2 A. This slightly differ-
ent notion has reduced the number of subspaces to be considered from 2jAj for
H.S;A;R/ to jAj2 for Hi .a; A;R/.

Now, given an arbitrary population P 2 ‰ one obtains for each solution a con-
tained in P a vector .	.H1.a; P;R//; 	.H2.a; P;R//; : : : ; 	.HjP j.a; P;R/// of
hypervolume contributions. These vectors can be used to assign fitness values to
solutions; while most hypervolume-based search algorithms only take the first com-
ponents, i.e., 	.H1.a; P;R//, into account, we here propose the following scheme
to aggregate the hypervolume contributions into a single scalar value.

Definition 2. Let A 2 ‰ and R � Z. Then the function Ih with

Ih.a; A;R/ WD
jAjX

iD1

1

i
	.Hi .a; A;R// (6)

gives for each solution a 2 A the hypervolume that can be attributed to a with
regard to the overall hypervolume IH .A;R/.
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r

f (b)

f (a)

f (c)

f (d)

Ih(a,P,R)

Ih(c,P,R)

1

1/2
1

1/2

1/3

1/3
1/4

1/3

1/2

Fig. 3 Illustration of the basic fitness assignment scheme. The fitness of two individuals a and c
of a Pareto set approximation A D fa; b; c; dg is set to Fa D Ih.a; A;R/ and Fb D Ih.b; A;R/

respectively (diagonally hatched areas)

The motivation behind this definition is simple: the hypervolume contribution of
each partitionH.S;A;R/ is shared equally among the dominating solutions s 2 S .
That means the portion of Z solely weakly dominated by a specific solution a is
fully attributed to a, the portion ofZ that a weakly dominates together with another
solution b is attributed half to a and so forth – the principle is illustrated in Fig. 3.
Thereby, the overall hypervolume is distributed among the distinct solutions accord-
ing to their hypervolume contributions as the following theorem shows (the proof
can be found in the appendix). Note that this scheme does not require that the solu-
tions of the considered Pareto set approximationA are mutually non-dominating; it
applies to nondominated and dominated solutions alike.

Next, we will extend and generalize the fitness assignment scheme with regard
to the environmental selection phase.

3.3 Extended Scheme for Environmental Selection

In EMO, environmental selection is mostly carried out by first merging parents and
offspring and then truncating the resulting union by choosing the subset that repre-
sents the best Pareto set approximation. The number k of solutions to be achieved
usually equals the population size, and therefore the exact computation of the best
subset is computationally infeasible. Instead, the optimal subset is approximated in
terms of a greedy heuristic (Zitzler and Künzli 2004; Brockhoff and Zitzler 2007):
all solutions are evaluated with respect to their usefulness and the least important
solution is removed; this process is repeated until k solutions have been removed.
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r

1
3

2

a = 1

a =

1
3

a =

f (b)

f (a)

f (c)

f (d)
Ih(c,P,R)

a = 0

Fig. 4 The figure shows for A D fa; b; c; dg and R D frg (1) which portion of the objective
space remains dominated if any two solutions are removed from A (shaded area), and (2) the
probabilities ˛ that a particular area that can be attributed to a 2 A is lost if a is removed from A

together with any other solution in A

The key issue with respect to the above greedy strategy is how to evaluate the use-
fulness of a solution. The scheme presented in Definition 2 has the drawback that
portions of the objective space are taken into account that for sure will not change.
Suppose, for instance, a population with four solutions as shown in Fig. 4; when
two solutions need to be removed (k D 2), then the subspaces H.fa; b; cg; P;R/,
H.fb; c; d g; P;R/, and H.fa; b; c; d g; P;R/ remain weakly dominated indepen-
dently of which solutions are deleted. This observation led to the idea of considering
the expected loss in hypervolume that can be attributed to a particular solution when
exactly k solutions are removed. In detail, we consider for each a 2 P the average
hypervolume loss over all subsets S � P that contain a and k � 1 further solu-
tions; this value can be easily computed by slightly extending the scheme from
Definition 2 as follows.

Definition 3. Let A 2 ‰, R � Z, and k 2 f0; 1; : : : ; jAjg. Then the function I k
h

with

I k
h .a; A;R/ WD

kX

iD1

˛i

i
	.Hi .a; A;R//; (7)

where

˛i WD
i�1Y

jD1

k � j
jAj � j (8)

gives for each solution a 2 A the expected hypervolume loss that can be attributed
to a when a and k � 1 uniformly randomly chosen solutions from A are removed
from A.
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{a, b, c}

{a, c,d}
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considering
I a A R

3 of 6 sets
contain a and c6 of 10 sets

contain a

1 of 3 sets
contains a,c and e

1
2

a2 = 1 1
2 3

1
6

·a3 ==1a1 =

H({a, c, e},A,R) is
lost with probabilty:

H({a, c},A,R) is
lost with probabilty:

H({a},A,R) is
lost in any case

{a, b,d}

Fig. 5 Illustrates the calculation of ˛i when removing a and two other individuals from the set
A D fa; b; c; d; eg. Each subset of three individuals that contains a is considered equally likely;
therefore, the chance of losing a and c is 3=6 and the probability of losing a, c, and e is .1=2/.1=3/

The correctness of (7) can be proved by mathematical induction (Bader and Zitzler
2008). In the following example we illustrates the calculation of ˛i to put the idea
of expected loss across:

Example 1. Out of five individuals A D fa; b; c; d; eg, three have to be removed
and we want to know I 3

h
.a; A;R/ (see Fig. 5). To this end, the expected shares of

Hi .a; A;R/ that are lost when removing a – represented by ˛i – have to be deter-
mined. The first coefficient is ˛1 D 1, because H1.a; A;R/ is lost for sure, since
the space is only dominated by a. Calculating the probability of losing the partitions
dominated by a and a second individual H2.a; A;R/ is a little bit more involved.
Without loss of generality we consider the space dominated only by a and c. In
addition to a, there are two individuals to be removed out of the remaining four
individuals. Since we assume, by approximation every removal is equally proba-
ble, the chance of removing c and thereby losing the partition H.fa; cg; A;R/ is
˛2 D 1=2. Finally, for ˛3 three points including a have to be taken off. The proba-
bility of removing a and any other individual was just derived to be 1=2. Out of three
remaining individuals, the chance to remove one particular, say e, is 1=3. This gives
the coefficient ˛3 D .1=2/.1=3/. For reasons of symmetry, these calculations hold
for any other partition dominated by a and i �1 points. Therefore, the expected loss
of Hi .a; A;R/ is ˛i	.Hi .a; A;R//. Since i points share the partitionHi .a; A;R/,
the expected loss is additionally multiplied by 1=i .

Notice that I 1
h
.a; A;R/ D 	.H1.a; A;R// and I jAj

h
.a; A;R/ D Ih.a; A;R/, i.e.,

this modified scheme can be regarded as a generalization of the scheme presented in
Definition 2 and the commonly used fitness assignment strategy for hypervolume-
based search (Knowles and Corne 2003; Emmerich et al. 2005; Igel et al. 2007;
Bader et al. 2008).
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The fitness values I k
h
.a; A;R/ can be calculated on the fly for all individuals

a 2 A by a slightly extended version of the “hypervolume by slicing objectives”
(Zitzler 2001; Knowles 2002; While et al. 2006) algorithm, which traverse recur-
sively one objective after another. It differs from existing methods in that it allows
(1) to consider a set R of reference points and (5) to compute all fitness values, e.g.,
the I 1

h
.a; P;R/ values for k D 1, in parallel for any number of objectives instead

of subsequently as in Beume et al. (2007). Basically, the modification concerns also
considering solutions, which are dominated according to a particular scanline. A
detailed description of the extended algorithm can be found in Bader and Zitzler
(2008).

Unfortunately, the worst case complexity of the algorithm is O.jAjn/ which
renders the exact calculation inapplicable for problems with more than about five
objectives. However, in the context of randomized search heuristics one may argue
that the exact fitness values are not crucial and approximated values may be suffi-
cient. These considerations lead to the idea of estimating the fitness values by Monte
Carlo sampling, whose basic principle is described in the following section.

3.4 Estimating the Fitness Values Using Monte Carlo Sampling

To approximate the fitness values according to Definitions 2 and 3, we need to
estimate the Lebesgue measures of the domains Hi .a; P;R/ where P 2 ‰ is the
population. Since these domains are all integrable, their Lebesgue measure can be
approximated by means of Monte Carlo simulation.

For this purpose, a sampling space S � Z has to be defined with the following
properties: (1) the hypervolume of S can easily be computed, (2) samples from the
space S can be generated fast, and (3) S is a superset of the domainsHi .a; P;R/ the
hypervolumes of which one would like to approximate. The latter condition is met
by setting S D H.P;R/, but since it is hard both to calculate the Lebesgue measure
of this sampling space and to draw samples from it, we propose using the axis-
aligned minimum bounding box containing theHi .a; P;R/ subspaces instead, i.e.:

S WD f.z1; : : : ; zn/ 2 Z j 81 � i � n W li � zi � uig; (9)

where
li WD mina2P fi .a/

ui WD max.r1;:::;rn/2R ri
(10)

for 1 � i � n. Hence, the volume V of the sampling space S is given by V DQn
iD1 maxf0; ui � li g.
Now givenS , sampling is carried out by selectingM objective vectors s1; : : : ; sM

from S uniformly at random. For each sj it is checked whether it lies in any partition
Hi .a; P;R/ for 1 � i � k and a 2 P . This can be determined in two steps: first,
it is verified that sj is “below” the reference set R, i.e., it exists r 2 R that is dom-
inated by sj ; second, it is verified that the multiset A of those population members
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dominating sj is not empty. If both conditions are fulfilled, then we know that –
givenA – the sampling point sj lies in all partitionsHi .a; P;R/ where i D jAj and
a 2 A. This situation will be denoted as a hit regarding the i th partition of a. If any
of the above two conditions is not fulfilled, then we call sj a miss. Let X .i;a/

j denote
the corresponding random variable that is equal to 1 in case of a hit of sj regarding
the i th partition of a and 0 otherwise.

Based on the M sampling points, we obtain an estimate for 	.Hi .a; P;R// by
simply counting the number of hits and multiplying the hit ratio with the volume of
the sampling box:

O	�Hi .a; P;R/
� D

PM
jD1X

.i;a//
j

M
V: (11)

This value approaches the exact value 	.Hi .a; P;R//with increasingM by the law
of large numbers. Due to the linearity of the expectation operator, the fitness scheme
according to (7) can be approximated by replacing the Lebesgue measure with the
respective estimates given by (11):

OI k
h .a; P;R/ D

kX

iD1

˛i

i

 PM
jD1X

.i;a//
j

M
V

!
: (12)

Note that the partitionsHi .a; P;R/ with i > k do not need to be considered for the
fitness calculation as they do not contribute to the I k

h
values that we would like to

estimate, cf. Definition 3.

4 Experiments

4.1 Experimental Setup

HypE is implemented within the PISA framework (Bleuler et al. 2003) and tested
in two versions: the first, denoted by HypE, uses fitness-based mating selection as
described in Sect. 3.2, while the second, HypE*, employs a uniform mating selec-
tion scheme where all individuals have the same probability of being chosen for
reproduction. Unless stated otherwise, for sampling the number of sampling points
is fixed to M D 10;000 and kept constant during a run.

On the one hand, HypE and HypE* are compared to three popular MOEAs,
namely NSGA-II (Deb et al. 2000), SPEA2 (Zitzler et al. 2002), and IBEA (in
combination with the "-indicator) (Zitzler and Künzli 2004). Since these algorithms
are not designed to optimize the hypervolume, it cannot be expected that they per-
form particularly well when measuring the quality of the approximation in terms
of the hypervolume indicator. Nevertheless, they serve as an important reference as
they are considerably faster than hypervolume-based search algorithms and there-
fore can execute a substantially larger number of generations when keeping the
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available computation time fixed. On the other hand, we include the sampling-based
optimizer proposed in Bader et al. (2008), here denoted as SHV (sampling-based
hypervolume-oriented algorithm); finally, to study the influence of the nondomi-
nated sorting we also include a simple HypE variant named RS (random selection)
where all individuals of the same dominance depth level are assigned the same
constant fitness value. Thereby, the selection pressure is only maintained by the
nondominated sorting carried out during the environmental selection phase.

In this paper, we focus on many-objective problems for which exact hypervolume-
based methods (e.g., Emmerich et al. 2005; Igel et al. 2007) are not applicable.
Therefore, we did not include these algorithms in the experiments. However, the
interested reader is referred to Bader and Zitzler (2008) where HypE is compared to
an exact hypervolume algorithm.

As basis for the comparisons, the DTLZ (Deb et al. 2005), and the WFG (Huband
et al. 2006) test problem suites are considered since they allow the number of objec-
tives to be scaled arbitrarily – here, ranging from 2 to 50 objectives. For the DTLZ
problem, the number of decision variables is set to 300, while for the WFG problems
individual values are used.3

The individuals are represented by real vectors, where a polynomial distribution
is used for mutation and the SBX-20 operator is used for recombination (Deb 2001).
The recombination and mutation probabilities are set according to Deb et al. (2005).

For each benchmark function, 30 runs are carried out per algorithm using a pop-
ulation size of N D 50. Either the maximum number of generations was set to
gmax D 200 (results shown in Table 1) or the runtime was fixed to 30 min for each
run (results shown in Fig. 6). For each run, the hypervolume of the last popula-
tion is determined, where for less than six objectives these are calculated exactly
and otherwise approximated by Monte Carlo sampling. For each algorithm Ai , the
hypervolume values are then subsumed under the performance score P.Ai /, which
represents the number of other algorithms that achieved significantly higher hyper-
volume values on the particular test case. The test for significance is done using
Kruskal–Wallis and the Conover Inman post hoc tests (Conover 1999). For a full
description of the performance score, please see Zamora and Burguete (2008).

4.2 Results

Table 1 shows the performance score and mean hypervolume of the different algo-
rithms on six test problems. In 18 instances, HypE is better than HypE*, while vice
versa HypE* is better than HypE only in four cases. HypE reaches the best per-
formance score overall. Summing up all performance scores, HypE yields the best

3 The number of decision variables (first value in parenthesis) and their decomposition into position
(second value) and distance variables (third value) as used by the WFG test function for different
number of objectives are: 2d (24, 4, 20); 3d (24, 4, 20); 5d (50, 8, 42); 7d (70, 12, 58); 10d (59,9,50);
25d (100, 24, 76); 50d (199,49,150).
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Fig. 6 Hypervolume process over 30 min of HypE and SHV for 100; 1,000; 10,000 and 100,000
samples each, denoted by the suffices 100, 1k, 10k and 100k respectively. The test problem is
WFG9 for three objectives and NSGA-II, SPEA2, and IBEA are shown as reference. The numbers
at the right border of the figures indicate the total number of generations reached after 30 min. The
results are split in two figures with identical axis for the sake of clarity
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total (33), followed by HypE* (55), IBEA (55) and SHV, the method proposed in
Bader et al. (2008) (97). SPEA2 and NSGA-II reach almost the same score (136
and 140 respectively), clearly outperforming random selection (217). For five out
of six testproblems HypE obtains better hypervolume values than SHV. On DTLZ7
however, SHV as well as IBEA outperform HypE. This might be due to the discon-
tinuous shape of the DTLZ7 testfunction, for which the advanced fitness scheme
does not give an advantage.

The better Pareto set approximations of HypE come at the expense of longer
execution time, e.g., in comparison to SPEA2 or NSGA-II. We therefore investigate,
whether the fast NSGA-II and SPEA2 will not overtake HypE given a constant
amount of time. Figure 6 shows the hypervolume of the Pareto set approximations
over time for HypE using the exact fitness values as well as the estimated values for
different samples sizes M .

Even though SPEA2, NSGA-II and even IBEA are able to process twice as many
generations as the exact HypE, they do not reach its hypervolume. In the three
dimensional example used, HypE can be run sufficiently fast without approximat-
ing the fitness values. Nevertheless, the sampled version is used as well to show the
dependency of the execution time and quality on the number of samplesM . ViaM ,
the execution time of HypE can be traded off against the quality of the Pareto set
approximation. The fewer samples are used, the more the behavior of HypE resem-
bles random selection. On the other hand by increasing M , the quality of exact
calculation can be achieved, increasing the execution time, though. For example,
with M D 1;000, HypE is able to carry out nearly the same number of generations
as SPEA2 or NSGA-II, but the Pareto set is just as good as when 100;000 samples
are used, needing only a fifteenth the number of generations. In the example given,
M D 10;000 represents the best compromise, but the number of samples should be
increased in two cases: (1) when the fitness evaluation take more time, and (2) when
more generations are used. The former will affect the faster algorithm much more
and increasing the number of samples will influence the execution time much less.
(ii) More generations are used. In the latter case, HypE using more samples might
overtake the faster versions with fewer samples, since those are more vulnerable to
stagnation.

In this three objective scenario, SHV can compete with HypE. This is mainly
because the sampling boxes that SHV relies on are tight for small number of objec-
tives; as this number increases, however, experiments not shown here indicate that
the quality of SHV decreases in relation to HypE.

5 Conclusion

This paper proposes HypE, a novel hypervolume-based evolutionary algorithm.
Both its environmental and mating selection step rely on a new fitness assign-
ment scheme based on the Lebesgue measure, where the values can be both exactly
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calculated and estimated by means of sampling. In contrast to other hypervolume
based algorithms, HypE is thus applicable to higher dimensional problems.

The performance of HypE was compared to other algorithms against the hyper-
volume indicator of the Pareto set approximation. In particular, the algorithms were
tested on test problems of the WFG and DTLZ test suite. Simulations results show
that HypE is a competitive search algorithm; this especially applies to higher dimen-
sional problems, which indicates using the Lebesgue measure on many objectives is
a convincing approach.

A promising direction of future research is the development of advanced adaptive
sampling strategies that exploit the available computing resources most effectively.

HypE is available for download at http://www.tik.ee.ethz.ch/sop/! download/
supplementary/hype/.
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Minimizing Vector Risk Measures

Alejandro Balbás, Beatriz Balbás, and Raquel Balbás

Abstract The minimization of risk functions is becoming very important due to its
interesting applications in Mathematical Finance and Actuarial Mathematics. This
paper addresses this issue in a general framework. Vector optimization problems
involving many types of risk functions are studied. The “balance space approach” of
multiobjective optimization and a general representation theorem of risk functions is
used in order to transform the initial minimization problem in an equivalent one that
is convex and usually linear. This new problem permits us to characterize optimality
by saddle point properties that easily apply in practice. Applications in finance and
insurance are presented.

1 Introduction

General risk functions are becoming very important in finance and insurance. Since
the seminal paper of Artzner et al. (1999) introduced the axioms and properties of
their “Coherent Measures of Risk”, many authors have extended the discussion. The
recent development of new markets (insurance or weather linked derivatives, com-
modity derivatives, energy/electricity markets, etc.) and products (inflation-linked
bonds, equity indexes annuities or unit-links, hedge funds, etc.), the necessity of
managing new types of risk (credit risk, operational risk, etc.) and the (often legal)
obligation of providing initial capital requirements have made it rather convenient
to overcome the variance as the most important risk measure and to introduce
more general risk functions allowing us to address far more complex problems.
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1 It has been proved that the variance is not compatible with the Second Order Stochastic Domi-
nance if asymmetries and/or heavy tails are involved. See Ogryczak and Ruszczynski (2002) for a
very interesting analysis on the compatibility of more complex risk functions.
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Hence, it is not surprising that the recent literature presents many interesting con-
tributions focusing on new methods for measuring risk levels. Among others,
Föllmer and Schied (2002) have defined the Convex Risk Measures, Goovaerts
et al. (2004) have introduced the Consistent Risk Measures, and Rockafellar et al.
(2006a) have defined the General Deviations and the Expectation Bounded Risk
Measures.

Many classical actuarial and financial problems lead to optimization problems
and have been revisited by using new risk functions. So, dealing with Portfolio
Choice Problems, Mansini et al. (2007) use the Conditional Value at Risk (CVaR)
and other complex risk measures in a discrete probability space, Alexander et al.
(2006) compare the minimization of the Value at Risk (VaR) and the CVaR for
a portfolio of derivatives, Calafiore (2007) studies “robust” efficient portfolios in
discrete probability spaces if risk levels are given by standard deviations or abso-
lute deviations, and Schied (2007) deals with Optimal Investment with Convex Risk
Measures.

Pricing and hedging issues in incomplete markets have also been studied (Föllmer
and Schied 2002; Nakano 2004; Staum 2004; etc.) as well as Optimal Reinsurance
Problems involving the CVaR and stop loss reinsurance contracts (Cai and Tan
2007), and other practical problems.

Risk functions are almost never differentiable, which makes it rather difficult
to provide general optimality conditions. This provokes that many authors must
look for concrete properties of the special problem they are dealing with in order to
find its solutions. Recent approaches by Rockafellar et al. (2006b) and Ruszczynski
and Shapiro (2006) use the convexity of many risk functions so as to give gen-
eral optimality conditions based on the sub-differential of the risk measure and the
Fenchel Duality Theory (Luenberger 1969). The present article follows the ideas
of the interesting papers above, in the sense that it strongly depends on Classical
Duality Theory, but we attempt to use more properties of many risk functions that
will enable us to yield new and alternative necessary and sufficient optimality con-
ditions. Furthermore, since there is not any consensus with respect to “the best risk
measure” to use in many practical applications, and the final result of many prob-
lems may critically depend on the risk measurement methodology we draw on, a
second important difference between our approach and the previous literature is
that we will deal with the simultaneous minimization of several risk functions, i.e.,
we will consider multiobjective problems. Bearing in mind the important topics of
Mathematical Finance and Actuarial Mathematics that involve the minimization of
risk measures, the discovery of new simple and practical rules seems to be a major
objective.

The article’s outline is as follows. Section 2 will present the general properties
of the vector risk measure 
 D .
1; 
2; : : : ; 
r / and the optimization problem we
are going to deal with. Since 
 is not differentiable in general, the optimization
problem is not differentiable either, and Sect. 3 will be devoted to overcome this
caveat. We will use the Balance Space Approach of multiobjective optimization
(Balbás et al. 2005) and the Representation Theorem of Risk Measures so as to
transform the initial optimization problem in an equivalent one that is differentiable
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and often linear. This goal is achieved by following and extending an original
idea of Balbás et al. (2009).2 However, the new problem involves new infinite
dimensional Banach spaces of �-additive measures, which provokes high degree
of complexity when dealing with duality and optimality conditions. Therefore, the
Mean Value Theorem (Lemma 3) is one of the most important results in this sec-
tion and in the whole paper, since it will absolutely simplify the dual problem. As
a consequence, Theorem 4 characterizes the optimal solutions by saddle points of
a bilinear function of the feasible set and the sub-gradients of the risk measures
to be simultaneously optimized. This seems to be profound finding whose proof
is based on major results in Functional Analysis. Besides, the provided neces-
sary and sufficient optimality conditions are quite different if one compares with
those of previous literature. They are very general and easily apply in practical
situations.

Section 4 presents two classical examples of Actuarial and Financial Mathemat-
ics that may be studied by minimizing risks. They are the Optimal Reinsurance
Problem and the Portfolio Selection Problem. The novelty is given by the form of
the problems, the level of generality of the analysis and the high weakness of the
assumptions. The two examples are very important in practice, but this is not an
exhaustive list of the real-world issues related to the optimization of risk functions.
Another very interesting topics, like credit or operational risk, may be considered.

The last section of the paper points out the most important conclusions.

2 Dealing with Vector Risk Functions

Consider a probability space .�;F ; �/ composed of the set of states of the word
�, the �-algebra F indicating the information available at a future date T , and
the probability measure �. Consider also p 2 Œ1;1/ and q 2 .1;1� such that
1=pC 1=q D 1, and the corresponding Banach spaces Lp and Lq . It is known that
Lq is the dual space of Lp (Luenberger 1969). We will deal with a vector


 D .
1; 
2; : : : ; 
r /

of risk functions

j W Lp �! IR

such that the following condition holds:3

2 Balbás and Romera (2007) also dealt with an infinite-dimensional linear optimization problem
that allows us to hedge the interest rate risk, and Balbás et al. (2009) used Risk Measures Rep-
resentation Theorems so as to extend the discussion and involve more general and complex sorts
of risk.
3 Hereafter IE .x/ will denote the mathematical expectation of the random variable x.
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Assumption I. There exists ~j 2 IR, j D 1; 2; : : : ; r , such that

�
q

.�j ;~j /
D ˚

z 2 Lq I �IE .yz/ � ~j � 
j .y/ 8y 2 Lp
�

(1)

is � .Lq; Lp/-compact.4

Proposition 1. Fix j 2 f1; 2; : : : ; rg.
.a/ The sets �q

.�j ;~j /
,

�.�j ;~j / D ˚
.z; k/ 2 Lq � ��1; ~j

� I � IE .yz/� k � 
 .y/ 8y 2 Lp
�

(2)

and
�IR
.�j ;~j /

D
n
k 2 IRI .z; k/ 2 �.�j ;~j / for some z 2 Lq

o

are convex. Moreover,�q

.�j ;~j /
is the natural projection of�.�j ;~j / onLq , whereas

�IR
.�j ;~j /

is its natural projection on IR.

.b/ Under Assumption I the set �.�j ;~j / is compact when endowed with the

topology Q� , product topology of �� and the usual one of the real line. Furthermore,
�IR
.�j ;~j /

is also compact and�.�j ;~j / is included in the Q�-compact set �q

.�j ;~j /
�

�IR
.�j ;~j /

.

Proof. .a/ is trivial, so let us prove .b/. Since the inclusion�.�j ;~j / � �
q

.�j ;~j /
�

�IR
.�j ;~j /

is obvious it is sufficient to show that �IR
.�j ;~j /

is compact and �.�j ;~j /

is closed.
To see that�IR

.�j ;~j /
is compact let us prove that it is closed and bounded. To see

that it is closed let as assume that .kn/n2IN is a sequence in �IR
.�j ;~j /

that converges

to k 2 IR. Take a sequence .zn; kn/n2IN � �.�j ;~j /. Since �q

.�j ;~j /
is compact

take an agglomeration point z of .zn/n2IN. Then it is easy to see that .z; k/ is an
agglomeration point of .zn; kn/n2IN. Thus,

�IE .yzn/� kn � 
j .y/

for every n 2 IN and every y 2 Lp leads to

�IE .yz/ � k � 
j .y/

for every y 2 Lp , and .z; k/ 2 �.�j ;~j /, i.e., k 2 �IR
.�j ;~j /

.

4 In order to simplify the notation, henceforth the � .Lq; Lp/ topology will be denoted by ��.
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To see that �IR
.�j ;~j /

is bounded it is sufficient to prove that it is bounded from

below, since ~j is an obvious upper bound. Expression (2) leads to

�IE .0/� k � 
j .0/ ;

for every k 2 �IR
.�j ;~j /

, and IE .0/ D 0 implies that k � �
j .0/ for every k 2
�IR
.�j ;~j /

.

To see that �.�j ;~j / is closed consider the net .zi ; ki /i2I � �.�j ;~j / and its
limit .z; k/. Then,

�IE .yzi /� ki � 
j .y/

for every i 2I and every y 2 Lp leads to

�IE .yz/ � k � 
j .y/

for every y 2 Lp , so .z; k/ 2 �.�j ;~j /. �

Remark 1. As a consequence of the latter result and its proof Assumption I implies
that �IR

.�j ;~j /
is a bounded closed interval

�IR
.�;~/ D �

~0;j ; ~j

� � ��
j .0/ ; ~j

�
: (3)

Furthermore, as shown in the proof above, ~0;j � �
j .0/.

We will also impose the following assumption:

Assumption II. The equality


j .y/ D Max
n
�IE .yz/ � kI .z; k/ 2 �.�j ;~j /

o
(4)

holds for every y 2 Lp and every j D 1; 2; : : : ; r .5

Next let us provide a proposition with a trivial (and therefore omitted) proof.

Proposition 2. Under Assumptions I and II 
j is a convex function for j D
1; 2; : : : ; r .

5 Assumptions I and II frequently hold. For instance, they are always fulfilled if 
j is expectation
bounded or a general deviation, in the sense of Rockafellar et al. (2006a) (in which case ~0;j D
�j D 0), and often fulfilled if 
j is coherent (Artzner et al. 1999) or consistent Goovaerts et al.
(2004). Furthermore, many convex risk measures (Föllmer and Schied 2002) also satisfy these
assumptions.

Particular examples are the Absolute Deviation, the Standard Deviation, Down Side Semi-
Demiations, the CVaR, the Wang Measure and the Dual Power Transform (Wang 2000, see also
Cherny 2006).
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Consider now a convex subset X included in an arbitrary vector space and a
function

f W X �! Lp

such that

 ı f W X �! IRr

is convex. Possible examples arise when f is concave and 
 is decreasing (for
instance, if every 
j is a coherent measure of risk) or if f is an affine function,
i.e.,

f .tx1 C .1 � t/ x2/ D tf .x1/C .1� t/ f .x2/

holds for every t 2 Œ0; 1� and every x1; x2 2 X . We will deal with the multiobjective
optimization problem 	

Min 
 ı f .x/
x 2 X : (5)

3 Saddle Point Optimality Conditions

Since (5) is convex, for every Pareto solution x0 2 X there exists ˛ D .˛1; ˛2; : : : ;

˛r / � .0; 0; : : : ; 0/ such that
Pr

jD1 ˛j D 1 and x0 2 X solves

(
Min

Pr
jD1 ˛j 
j ı f .x/

x 2 X : (6)

The very well-known scalarization method consists in choosing an “adequate ˛”
and then solving the problem (6) above. “Adequate ˛” means that ˛ must be selected
according to the decision maker preferences.

However, in this paper we will follow an alternative approach based on the notion
of “Balance Point” (Galperin and Wiecek 1999 or Balbás et al. 2005, among others),
since it will allow us to provide saddle point necessary and sufficient optimality
conditions for (5).

So, consider that d D .d1; d2; : : : ; dr / is composed of strictly positive numbers
and plays the role of “direction of preferential deviations” (Galperin and Wiecek
1999). Let us suppose the existence of a Pareto solution of (5) in the direction of d .
According to Galperin and Wiecek (1999) d can be chosen by the decision maker
depending on her/his preferences, and it indicates the marginal worsening of a given
objective with respect to the improvement of an alternative one. If we assume the
existence of “an ideal point” ‡ 2 IRr whose coordinates are the optimal values of
(5) when 
j substitutes 
,6 Balbás et al. (2005) have shown that if .x�; �/ is a

6 This assumption may be significantly relaxed (see Balbás et al. 2005), but it simplifies the
exposition.
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solution of the scalar problem

8
<

:

Min 
d C ‡ � 
 ı f .x/
 2 IR; x 2 X

(7)

then x� is a Pareto solution of (5) that satisfies


 ı f �x�� D ‡ C d�:

Conversely, for every Pareto solution x� of (5) such that


j ı f �x�� > ‡j ;

j D 1; 2; : : : ; r , there exist d1; d2; : : : ; dr > 0 and � > 0 such that .x�; �/ solves
(7).7

Equation (4) clearly implies the equivalence between (7) and

8
<̂

:̂

Min 
dj  C IE

�
f .x/ zj

�C kj C ‡j � 0; 8 �zj ; kj

� 2 �.�j ;~j /; j D 1; 2; : : : ; r:

 2 IR; x 2 X
(8)

The solutions of (8) will be characterized by a saddle point condition. In order
to reach this result we need some additional notations and a crucial instrumental
lemma. Hereafter C

�
�.�j ;~j /

�
, j D 1; 2; : : : ; r , will represent the Banach space

composed of the real-valued ��-continuous functions on the ��-compact space

�.�j ;~j /. Similarly, M
�
�.�j ;~j /

�
will denote the Banach space of �-additive

inner regular measures on the Borel �-algebra of �.�j ;~j / (Horvàth 1966 or Luen-

berger 1969), and P
�
�.�j ;~j /

�
� M

�
�.�j ;~j /

�
will be the set of inner regular

probabilities. Recall that M
�
�.�j ;~j /

�
is the dual space of C

�
�.�j ;~j /

�
.

Lemma 1 (Mean Value Theorem). Fix j 2 f1; 2; : : : ; rg. If � 2 P
�
�.�j ;~j /

�

then there exist z� 2 �q

.�j ;~j /
and k� 2 �~0;j ; ~j

�
such that .z� ; k�/ 2 �.�j ;~j /,

Z

�
q

.�j ;~j /

IE .yz/ d�q .z/ D E .yz�/ (9)

holds for every y 2 Lp and

7 Moreover, this converse implication would also hold even if (5) were not a convex problem.
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Z ~j

~0;j

kd�IR .k/ D k� : (10)

Proof. Consider the natural projections �q 2 P


�

q

.�j ;~j /

�
and �IR 2 P �~0;j ; ~j

�

of �, and the function

Lp 3 y �!  .y/ D
Z

�
q

.�j ;~j /

IE .yz/ d�q .z/ 2 IR:

It is obvious that  is linear so let us prove that it is also continuous. If �q

.�j ;~j /
were bounded then there would exist M 2 IR such that kzkq � M for every z 2
�

q

.�j ;~j /
. Then the Hölder inequality (Luenberger 1969) would lead to

jIE .yz/j � kykp kzkq � kykp M

for every y 2 Lp and every z 2 �q

.�j ;~j /
, and

j .y/j �
Z
M kykp d�q .z/ D M kykp

for every y 2 Lp. Whence  would be continuous (Horvàth 1966 or Luenberger
1969). Let us see now that �q

.�j ;~j /
is bounded. Since it is ��-compact the set

	
IE .yz/ I z 2 �q

.�j ;~j /

�
� IR is bounded for every y 2 Lp because

Lq 3 z �! IE .yz/ 2 IR

is ��-continuous. Then the Banach–Steinhaus Theorem (Horvàth 1966) shows that
�

q

.�j ;~j /
is bounded.

Since  is continuous the Riesz Representation Theorem (Horvàth 1966) shows
the existence of z� 2 Lq such that (9) holds.

Besides, the inequalities

~0;j �
Z ~j

~0;j

kd�IR .k/ � ~j

are obvious, so the existence of k� 2 �~0;j ; ~j

�
satisfying (10) is obvious too.

It only remains to show that .z� ; k�/ 2 �.�j ;~j /. Indeed, (9) and (10) imply
that
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�IE .yz�/� k� D �
Z

�
q

.�j ;~j /

IE .yz/ d�q .z/�
Z ~j

~0;j

kd�IR .k/

D
Z

�.�j ;~j /

.�IE .yz/ � k/ d� .z; k/

�
Z

�.�j ;~j /


 .y/ d� .z; k/

D 
j .y/

for every y 2 Lp. �
Theorem 1 (Saddle Point Theorem). Take x� 2 X and � 2 IR. .x�; �/ solves

(8) if and only if there exist
�

z�j ; k�j
�

2 �.�j ;~j /, j D 1; 2; : : : ; r and

	� 2
8
<

:	 D .	1; 	2; : : : ; 	r/ I
rX

jD1

dj	j D 1; 	j � 0; j D 1; 2; : : : ; r

9
=

;

such that
	�j
�
dj 

� C ‡j C IE
�
f
�
x�
�

z�j
�C k�j

� D 0;

j D 1; 2; : : : ; r , and

rX

jD1

	�j
�
IE
�
f
�
x�
�

z�j
�C k�j

� �
rX

jD1

	�j
�
IE
�
f .x/ z�j

�C k�j
�

(11)

for every x 2 X . If so,


j ı f �x�� D � �k�j C IE
�
f
�
x�
�

z�j
��

holds for every j D 1; 2; : : : ; r , and

	�j
�
k�j C IE

�
f
�
x�
�

z�j
�� � 	�j

�
kj C IE

�
f
�
x�
�

zj

��
(12)

holds for every j D 1; 2; : : : ; r and every
�
zj ; kj

� 2 �.�j ;~j /,
8

8 Notice that (11) and (12) show that
�
x�;

�
z�

j ; k
�

j

��

is a Saddle Point of the function

X �…r
jD1�.
j ;~j / 3

�
x;
�
zj ; kj

�� �!
rX

jD1

	�

j

�
IE
�
f .x/ zj

�C kj
� 2 IR:
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Proof. The constraints of (8) are valued on the Banach space C
�
�.�j ;~j /

�
, j D

1; 2; : : : ; r . Accordingly, the Lagrangian function

L W X � IR�
rY

jD1

M
�
�.�j ;~j /

�
�! IR

of (8) becomes (Luenberger 1969)

L
�
x; ;

�
�j

�r
jD1

�
D 

0

@1 �
rX

jD1

dj

Z

�.�j ;~j /

d�j

�
zj ; kj

�
1

A

�
rX

jD1

Z

�.�j ;~j /

IE
�
f .x/ zj

�
d�j

�
zj ; kj

�

�
rX

jD1

Z

�.�j ;~j /

kjd�j

�
zj ; kj

�

�
rX

jD1

‡j

Z

�.�j ;~j /

d�j

�
zj ; kj

�
;

that may simplify to

L
�
x; ;

�
�j

�r
jD1

�
D 

0

@1 �
rX

jD1

dj	j

1

A

�
rX

jD1

Z

�.�j ;~j /

IE
�
f .x/ zj

�
d�j

�
zj ; kj

�

�
rX

jD1

Z

�.�j ;~j /

kjd�j

�
zj ; kj

�

�
rX

jD1

‡j	j ;

if 	j D R
�.�;~/

d�j

�
zj ; kj

� � 0 for j D 1; 2; : : : ; r . It is clear that the infi-
mum

Inf
n
L
�
x; ;

�
�j

�r
jD1

�
W  2 IR; x 2 X

o
(13)

can only be finite if
Pr

jD1 dj	j D 1. Thus, the dual problem of (8), given by (13),
becomes (Luenberger 1969)
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8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

Max �Pr
jD1‡j	j

C


Infx2X

	
�Pr

jD1

R
�.�j ;~j /

�
IE
�
f .x/ zj

�C kj

�
d�j

�
zj ; kj

���

	j D R
�.�j ;~j /

d�j

�
zj ; kj

�
; j D 1; 2; : : : ; r

Pr
jD1 dj	j D 1

�j � 0; j D 1; 2; : : : ; r

:

(14)
dj > 0, j D 1; 2; : : : ; r implies that (8) satisfies the Slater Qualification,9 so, if
(8) (or (7)) is bounded, then the dual problem above is solvable and there is no
duality gap (the optimal values of (8) and (14) coincide) (Luenberger 1969). If (7)
were unbounded then taking a feasible solution .x; / with  < 0 we would have
‡ � 
 ı f .x/ � d > 
 ı f .x/, against the election of ‡ .

Take �� D
�
��j
�r

jD1
solving (14) and 	�j D ��j

�
�.�j ;~j /

�
, j D 1; 2; : : : ; r .

Take
�

z�j ; k�j
�

2 �.�j ;~j /, j D 1; 2; : : : ; r satisfying the conditions of the Mean

Value Theorem (previous lemma) for

Q��j D ��j
	�j

if 	�j > 0, and
�

z�j ; k�j
�

2 �.�j ;~j /,if 	
�
j D 0. According to Luenberger (1969), a

(8)-feasible element .x�; �/ solves (8) if and only if

�Pr
jD1 	

�
j

�
IE
�
f .x�/ z�j

�
C k�j

�
� �Pr

jD1 	
�
j

�
IE
�
f .x/ z�j

�
C k�j

�

for j D 1; 2; : : : ; r and every x 2 X , and

	�j
�
dj 

� C IE
�
f .x�/ z�j

�
C k�j C ‡j

�
D 0; j D 1; 2; : : : ; r:

Then, if 	�j ¤ 0, bearing in mind the constraint of (7) we have


j ı f �x�� � �dj C ‡j D �IE
�
f
�
x�
�

z�j
� � k�j ;

so
� �k�j C IE

�
f
�
x�
�

z�j
�� � 
j ı f �x�� � � �kj C IE

�
f
�
x�
�

zj

��

for every
�
zj ; kj

� 2 �.�j ;~j /, holds from the definition of�.�j ;~j /,. �

9 That is, there is a least one feasible solution of (8) satisfying all the constraints in terms of strict
inequalities. Indeed, dj > 0, j D 1; 2; : : : ; r implies that one only have to take a value of  large
enough.
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4 Applications

This section is devoted to present two practical applications. The first one may be
considered as “classical” in Financial Mathematics, while the second one is “classi-
cal” in Actuarial Mathematics. Both lead to optimization problems that perfectly fit
on (5), so the theory above absolutely applies. The two examples are very important
in practice, but this is far of being an exhaustive list of the real-world issues related
to the optimization of risk functions. Another very interesting topics, like pricing
and hedging issues, credit risk or operational risk, etc., may be considered.

4.1 Portfolio Choice

The optimal portfolio selection is probably the most famous multiobjective opti-
mization problem in finance. Let us assume that

y1; y2; : : : ; yn 2 Lp

represent the random returns of n available assets,10 and denote by x D .x1; x2; : : : ;

xn/ 2 IRn the portfolio composed of the percentages invested in these assets. If 
 is
the (IRr-valued) vector risk function used by the investor then he/she will select that
strategy solving 8

<

:

Min 

�Pn

iD1 xiyi

�
Pn

iD1 xi D 1Pn
iD1 xi IE .yi / � r0

(15)

r0 2 IR denoting the minimum required expected return. If some short-sale restric-
tions must be imposed then constraints such as xi � 0 for some (or all) subscripts
must be added. Similarly, additional equality or inequality constraints reflecting sev-
eral market-linked or agent-linked restrictions may arise. It is obvious that (15) is a
particular case of (5).

4.2 Optimal Reinsurance

The “Optimal Reinsurance Problem” is classical in Actuarial Mathematics. Many
authors have dealt with it by using different “Premium Principles”, and a quite gen-
eral approach may be found in Kaluszka (2005), where the author uses even some

10 That is, yi will be the final pay-off received at a future date t D T if one invests one dollar in
the i th-security at the initial date t D 0.
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coherent measures of risk to price the insurance. However, the minimized risk func-
tions are usually classical deviations (standard deviation or absolute deviation) or
classical down side semi-deviations. More recently Cai and Tan (2007) minimize
the Value at Risk and the Conditional Tail Expectation (Artzner et al. 1999) for
a very particular case, since they only deal with the Expected Value Principle and,
more importantly, stop–loss reinsurance contracts. We will show below that the gen-
eral approach of this paper may apply to minimize general risk functions in the
optimal reinsurance problem and we do not need to be constrained by any kind of
reinsurance contract.

Consider that an insurance company receives the fixed amount S0 (premium) and
will have to pay the random variable y0 2 Lp within a given period Œ0; T � (claims).
Suppose also that a reinsurance contract is signed in such a way that the company
will only pay x 2 Lp whereas the reinsurer will pay y0 � x. If the reinsurer
premium is given by the convex function,11

� W Lp �! IR

and �1 is the highest amount that the insurer would like to pay for the contract, then
the insurance company will chose x (optimal retention) so as to solve

8
<

:

Min 
 .S0 � x � � .y0 � x//

� .y0 � x/ � �1

0 � x � y0

(16)


 being a vector risk function. Notice that

x �! S � x � � .y0 � x/

is a concave function, so (16) is included in (5) and the developed theory obviously
applies.

5 Conclusions

The minimization of risk functions is becoming very important in Mathematical
Programming, Mathematical Finance and Actuarial Mathematics, which provokes
a growing interest in this topic that is becoming the focus of many researchers.

Since risk functions are not differentiable there are significant difficulties when
they are involved in minimization problems. Convex programming and duality

11 Insurance premiums are usually given by convex functions. See for instance Deprez and Gerber
(1985).
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methods have been proposed. This paper has also followed this line of research,
though there are two major differences. On the one hand, we deal with multiobjec-
tive problems, which is far more realistic due to the lack of consensus with respect to
the risk function to be used in many applications. Secondly, the provided necessary
and sufficient optimality conditions are quite different if one compares with previous
literature. Indeed, they are related to saddle point properties of a bilinear function of
the feasible set and the sub-gradient of the risk measures to be optimized. This seems
to be profound finding whose proof is based on the weak�-compactness of the sub-
gradient of the risk measure, the duality theory in general Banach spaces and a given
Mean Value Theorem for risk measures. The yielded optimality conditions easily
apply in practice. Interesting applications in finance and insurance have been given.
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Multicriteria Programming Approach
to Development Project Design with an Output
Goal and a Sustainability Goal�

Enrique Ballestero

Abstract Especially intended for managers faced with development project design,
this paper proposes a multicriteria decision making (MCDM) model with two
objectives, output maximization and sustainability to be attained as much as pos-
sible. This proposal is motivated because: (a) aggressive managers seek to optimize
the project output by using deterministic methods such as capital budgeting tech-
niques and mathematical programming models; (b) conservative managers seek
sustainability by using replicas of running development projects, which have proven
reliable in practice; (c) few managers use stochastic models to ensure sustainability
as these models require unavailable information on random variables and complex
feedback. Then, this proposal is to articulate the aggressive output standpoint and
the conservative replica standpoint into a two-objective programming model look-
ing for a compromise solution between both goals. A numerical example on farm
project design is developed in detail and discussed.

1 Introduction

Development projects are often designed as replicas of currently running projects
which inspire confidence concerning sustainability. This is viewed as a practical
way of sustainable design easier and less cumbersome than the design attempts
based on stochastic models such as classical expected utility maximization (Von
Neumann and Morgenstern 1947; Arrow 1965). Consequently, the proposition in
this paper does not deal with risk and stochastic aspects at all. In contrast, the
proposition establishes an objective of safety and sustainability, this objective being
articulated into a multiobjective model by considering replicas of a reliable pattern.
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First, project managers have often difficulties in finding statistical data to measure
risk by variance and covariance matrices (see Ballestero 2006). In other decision
making scenarios such as for example portfolio choice, the analyst can use time
series of prices and returns from daily observations on the markets, these data being
precise and reliable. In contrast, time series are not generally available for develop-
ment project design. Managers can analyze some real world cases (either historical
or current in nature) related to their projects but nothing else. Available case studies
on development projects hardly provide time series concerning all critical variables
involved in each project. On the other hand, many project managers are not used to
handling stochastic models in the framework of design.

This paper proposes an approach to development project design relying on
multiobjective programming. Objectives in this model are as follows:

1. To maximize the project’s output when potential impacts on sustainability are
ignored, namely, when adverse consequences resulting from risk/uncertainty
inherent in the development project are overlooked. This maximization objective
is often considered by aggressive managers who use capital budgeting techniques
and deterministic programming models in the certainty context.

2. To achieve sustainability/safety as much as possible by designing the project as a
replica of a running development project which has proven reliable. This objec-
tive is often considered by conservative managers who devise a development
project as a replica of another existing project, because the existing pattern is
viewed as a high standard of sustainability/safety.

Indeed, sustainability of the project means that the investment can be maintained
at a satisfactory operational level now and in the future up to a reasonable time
horizon.

Potential users of the paper are development project managers and financial
consultants especially interested in design.

Our proposal is relevant as development project design is relevant. Also, the
replica-based statement is new. In fact, no similar approaches where replicas of
development projects play a critical role combined with deterministic optimization
are currently found in the decision making literature. Therefore, references to pave
the way for reading the paper should be few. Concerning multiobjective program-
ming in general, suitable references are Caballero et al. (1997) and Steuer (2001).
Regarding sustainable clean development projects to be selected by multiple criteria
approaches, see Lenzen et al. (2007). Concerning trust in construction projects, an
empirical analysis is Khalfan et al. (2007).

2 Methodology

This chapter deals with development project design by multiobjective programming.
Consider a development project P to be drawn up. Let (q1; q2; : : : ; qi ; : : : ; qn) be
the vector describing the characteristics of this project. These characteristics are
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viewed as investments of particular resources in the project. Therefore, qi is quantity
of the i th resource to be invested. Let .q�1 ; q�2 ; : : : ; q�i ; : : : ; q�n/ be the vector describ-
ing the characteristics of the running development projectP �, which is taken by the
project manager as a pattern of sustainable design. Then, the decision variables are
defined as follows:

xi D qi=q
�
i I i D 1; 2; : : : ; n (1)

Decision variables (1) define a replica of pattern P �.
For technical reasons, some characteristics can be excluded from the vector as

they require values fixed a priori by the project manager.

2.1 First Objective: Output Maximization

In Chap. 1, Sect. 1, this objective is stated by maximizing a capital budgeting mea-
sure (for example, Net Present Value) as output achievement. This maximization
is often formulated by linear programming (LP) or another mathematical program-
ming model. This means that risk/uncertainty is not considered. In other words, all
the data are then viewed as nonrandom variables although they were random in
nature. An advantage of LP is simplicity; however, the random negative impacts
on the project’s safety/sustainability are disregarded. Accepting this limitation, the
project manager states the following LP model:

max
nX

iD1

riqi D max
nX

iD1

riq
�
i xi (2)

subject to
nX

iD1

aij q
�
i xi � cj I j D 1; 2; : : : ; m (3)

together with the non-negativity conditions. As the characteristics have the meaning
of particular resources to be invested in the project, each riqi in (2) represents a
capital budgeting measure such as Net Present Value. Sometimes, the project man-
ager can estimate these measures in terms of relative importance by using indexes ri
of benefit. In economics and management science, benefits are defined as the pos-
itive contribution to an economic value from an entrepreneurial activity or project.
In any case, the ri benefit indexes should be expressed in appropriate units for
aggregation.

Constraints (3) are referred to limited resources (physical, financial, environmen-
tal, etc.). Thus, they are classified in technical constraints and budget constraints.
Each coefficient aij measures a cost per unit associated with the i th characteristic in
the context of the j th constraint. Parameter cj also means a cost in the j th context.

Solution to deterministic linear program (2) to (3) is denoted as: xa D .x1a;

x2a; : : : ; xia; : : : ; xna/.
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2.2 Second Objective: Sustainability

In Chap. 1, Sect. 2, this objective involves designing development project P as an
exact or scale replica of an existing reliable (sustainable) development project,
namely, the P � pattern. This pattern is regarded by the project manager as a real
world model of sustainability. Therefore, the project manager’s second goal is to
produce a counterpart of development project P � that resembles the pattern as
closely as possible. Accordingly, the second objective is stated as follows: to achieve
either an exact or scale replica xb D .x1b; x2b ; : : : ; xib; : : : ; xnb/ on a scale smaller,
equal or larger than the P � original, namely,

x1b D x2b D : : : D xib D : : : D xnb D � (4)

where � is a positive parameter. In the special case � D 1, we would have an exact
replica.

Once the pattern has been chosen, the constraint system (3) together with the
scale replica condition (4) is solved leading to the xb replica vector. Notice that this
vector solution lies on the frontier given by the constraint system (3).

2.3 Compromise Solution

The next purpose is to obtain a ‘satisficing’ compromise solution to the two-
objective problem formulated from the first and the second objectives. In other
words, the project manager looks for a compromise between output maximization
(unrelated to the pattern) and the replica design, so that both play their role in the
development project design. This suggests the following:

Assumption 1. Compromise solution. This is the frontier point where the line
defined by the following vector:

xc D ˛xa C ˇxbI˛; ˇ � 0; ˛ C ˇ D 1 (5)

intercepts frontier (3).

Meaning. Equation (5) means a compromise between xa and xb , namely, between
solutions to the first and the second objective, respectively. Weights ˛ and ˇ

of the convex combination are decided by the project manager to reflect prefer-
ences for output maximization (unrelated to the pattern) and for the replica design,
respectively.

From (3) to (4), we get:

� � cj

,
nX

iD1

aijq
�
i I j D 1; 2; : : : ; m (6)
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To determine vector xb by (4), we specify � as the lowest right hand side value in the
set of constraints (6). By introducing this � value into (4), vector xb is determined
as a frontier point. On the other hand, the xa vector is the standard solution to
the LP problem (2) to (3). Now, vectors xa and xb just obtained are introduced
into (5), together with weights ˛ and ˇ previously established from the manager’s
preferences. Thus, vector xc is determined.

Finally, we should determine the frontier point xf D.x1f ; x2f ; : : : ; xif ; : : : ; xnf /,
where vector xc intercepts frontier (3). This final solution is given by:

xf D 	xc (7)

where parameter 	 is obtained by:

max	 (8)

subject to

	

nX

iD1

aijq
�
i .˛xia C ˇxib/ � cj I j D 1; 2; : : : ; mI	 � 0: (9)

2.4 Feedback

Weights ˛ and ˇ in (5) can be modified from their initial values, thus obtaining
new solutions to be evaluated in terms of output achievement and resemblance to
the pattern. Suppose ˛ and ˇ change to ˛0 D .1 C "/˛ and ˇ0 D .1 � ˛ � "˛/,
respectively, other things being equal. This change in weights leads to a new vector
xc’, the difference between both the old and the new vector being:

xc
0 � xc D "˛ .xa � xb/

Therefore, the difference between both vectors tends to zero either if " tends to
zero, or if .xa � xb/ tends to zero, other things being equal. Usually in sensitivity
analysis, " is small, and "˛ is still smaller than " since ˛ < 1. In Sect. 4, further
research on this issue from empirical information is foreseen.

3 An Illustrative Example

A fictitious case of development project design in agriculture is here presented, with
numerical values taken from unpublished discussion notes used by the author. This
is to decide farm areas of meadows, dry farming and orchards. To make their deci-
sion, the project managers attempt to imitate to a certain extent an already running
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agricultural project which has proven reliable and sustainable. In other words, this
pattern is technically, economically and environmentally considered as an example
of sustainability. Pattern P � has the following characteristics: q�1 D 255:57 ha of
meadows; q�2 D 125:35 ha of dry farming; and q�3 D 273:83 ha of orchards.

Objectives (as defined in Chap. 1) are as follows.

3.1 First Objective: Output Maximization (Unrelated
to the Pattern)

This is the solution to deterministic LP (2) to (3). Benefit indexes r1 D 8:30, r2 D
5:93, and r3 D 9:49 in objective function (2) are estimated by the project managers
from a capital budgeting perspective. Each index is expressed in monetary units per
hectare. Therefore, the following LP model is formulated.

max.8:30 	 255:57 	 x1 C 5:93 	 125:35 	 x2 C 9:49 	 273:83 	 x3/

subject to [see (3)]

– Land constraint:
255:57 	 x1 C 125:35 	 x2 C 273:83 	 x3 � 772:80 size units.

– Investment costs:
67:05 	 255:57 	 x1 C 53:18 	 125:35 	 x2 C 35:84 	 273:83 	 x3 � 41924:19

monetary units.
– Environmental constraint:
273:83 	 x3 � 282:34 size units.

Non-negativity conditions: x1 � 0, x2 � 0, x3 � 0.
By solving this LP model, we obtain:

xa D .1:856; 0; 1:031/

Hence, output maximization (first objective) yields the following solution.

– Meadows: 1:856�255:57 D 474:34 ha
– Dry farming: 0�125:35 D 0 ha
– Orchards: 1:031�273:83 D 282:32 ha

3.2 Second Objective: Sustainability (Related to the Pattern)

By applying (6) to the numerical data, we get:

� � 772:80=.255:57C 125:35C 273:83/ D 772:80=654:75D 1:18
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� � 41924:19=.67:05 	 255:57C 53:18 	 125:35C 35:84 	 273:83/
D 41924:19=33616:15D 1:25

� � 282:34=273:83D 1:031

Therefore, � D 1:031. From chain (4), we have:

xb D .1:031; 1:031; 1:031/:

Hence, the second objective yields the following sizes:

– Meadows: 1:031 	 255:57 D 263:49 ha
– Dry farming: 1:031 	 125:35 D 129:24 ha
– Orchards: 1:031 	 273:83 D 282:32 ha

3.3 Compromise Solution and Final Solution on the Frontier

They require the following tasks.
First step. Establish weights ˛ and ˇ according to the project manager’s prefer-

ences for output maximization (first objective) and for replica (second objective). In
our example, ˛ D 0:45 and ˇ D 0:55, namely, the project manager slightly prefers
the sustainability objective to the output maximization objective.

Second step. Compute the xc compromise vector. From (5) with the numerical
expressions of xa and xb obtained in Sects. 3.1 and 3.2, respectively, we get:

xc D 0:45	.1:856; 0; 1:031/C0:55	.1:031; 1:031; 1:031/D .1:402; 0:567; 1:031/

Third step. Compute parameter 	 by the auxiliary LP model (8) to (9), namely:
max	

subject to

	 	 .255:57 	 1:402C 125:35 	 0:567C 273:83 	 1:031/ D 711:70	 � 772:80

	 	 .67:05 	 255:57 	 1:402C 53:18 	 125:35 	 0:567C 35:84 	 273:83 	 1:031/
� 41924:19

	 	 273:83 	 1:031 � 282:34

together with the non-negativity condition 	 � 0. By solving this auxiliary model,
we get 	 D 1:000086 
 1.

Fourth step. Determine the final solution xf from (7) on the frontier, namely:

xf D .1 	 1:402; 1 	 0:567; 1 	 1:031/ D .1:402; 0:567; 1:031/
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Therefore, development project P is sized as follows:

– Meadows: 1:402 	 255:57 D 358:31 ha
– Dry farming: 0:567�125:35 D 71:07 ha
– Orchards: 1:031�273:83 D 282:32 ha

3.4 Comparison of Results

Let us compare the sizes given by the final xf solution to the sizes given by the xa

and xb solutions.

– Meadows: 24.45% smaller than the respective xa result. Moreover, 26.47% larger
than the respective xb result.

– Dry farming: This increases from zero (in vector xa) to 0.567 (in vector xf ).
Moreover, 45% smaller than the respective xb result.

– Orchards: here, all three solutions coincide. This is because: (a) the sizes given
by the xa and xb solutions are both equal to 231.99; then, the compromise value
between LP and the replica is also 231.99; and (b) the compromise point is
brought to the frontier by the factor 	 D 1:000086 
 1, so that the compromise
value does not increase.

In short, we have:

(a) With the xf solution, the extremely unbalanced results given by LP are avoided.
This occurs with dry farming. While the LP solution was no dry farming, this
abrupt result is substantially mitigated in the xf solution. Also, meadows is
reduced by around 25% over the LP result, thus correcting the too large size
resulting from LP.

(b) However, the xf solution allows the project manager to propose an original
design to a certain extent. Indeed, project P has turned out to be far from being
an exact replica of the pattern.

4 Concluding Remarks

A major result has been to articulate aggressiveness and conservatism in devel-
opment project design. Aggressiveness involves maximizing the project’s output,
while conservatism involves replica projects from the axiom: “if the pattern has
proven sustainable, then its replica will be probably sustainable”. Solutions obtained
from the two-objective programming model depend on the ˛=ˇ preference ratio.
Preference weights ˛ and ˇ have a clear meaning to the manager and they are
straightforwardly elicited as occurs in decision making approaches whenever the
number of weights does not exceed two. Moreover, the initial solution can be evalu-
ated and modified by feedback –an appealing procedure to managers. By moving
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parameters ˛ and ˇ in (5), the project manager can analyze tradeoffs between
output achievement and resemblance to the pattern. This allows the project man-
ager to adjust the solution to convenient output levels or resemblance. In any case,
the final solution (vector xf ) lies on the frontier of constraints (3). Certainly,
the two-objective programming model developed above is not the only possible
way of addressing the aggressiveness versus conservatism dilemma in development
project design. A goal programming model with similar scope and purpose can be
also proposed. In short, the paper has shown how development project design can
be deterministically addressed (without difficult stochastic treatment) in terms of
output optimization and sustainability by the replica-based approach.

Further research can be conducted on the following issues:

(a) To develop real world case studies, where managers really proposes different (˛,
ˇ) weights leading to different results, which are discussed through sensitivity
analysis.

(b) To introduce utility functions related to compromise programming (CP). For
this purpose, a theorem connecting bi-attribute utility and CP could be applied
in the above two-criterion framework (Ballestero and Romero 1998, Chap. 6).

(c) To extend the proposition in such a way, that instead of existing object, a ficti-
tious reference object created on the basis of some existing (or fictitious) objects
could be taken into consideration. This extension is suggested to the author by
an anonymous referee.

Acknowledgements Thanks are given to an anonymous referee for their suggestions to improve
the paper.
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Automated Aggregation and Omission
of Objectives for Tackling Many-Objective
Problems

Dimo Brockhoff and Eckart Zitzler

Abstract Many-objective problems pose various challenges in terms of decision
making and search. One approach to tackle the resulting problems is the automatic
reduction of the number of objectives such that the information loss is minimized.
While in a previous work we have investigated the issue of omitting objectives,
we here address the generalized problem of aggregating objectives using weighted
sums. To this end, heuristics are presented that iteratively remove two objectives and
replace them by a new objective representing an optimally weighted combination of
them. As shown in the paper, the new reduction method can substantially reduce the
information loss and thereby can be highly useful when analyzing trade-off sets after
optimization as well as during search to reduce the computation overhead related to
hypervolume-based fitness assignment.

1 Introduction

In evolutionary multiobjective optimization, several challenges emerge when con-
sidering scenarios involving a large number of objectives – with respect to both
search and decision making (Fleming et al. 2005; Hughes 2007; Sülflow et al. 2007).
For tackling the resulting problems, some recent studies propose to automatically
and adaptively reduce the number of objectives by means of corresponding dimen-
sionality reduction techniques as suggested by Purshouse and Fleming (2003).
One approach (Deb and Saxena 2006; Saxena and Deb 2007) uses principal com-
ponent analysis (PCA) to determine a small subset of the objectives such that
most of the variance of the solutions in the objective space is explained. Another
approach (Brockhoff and Zitzler 2007b, 2009) was proposed by the authors of this
paper and differs fundamentally from the work by Deb and Saxena (2006) and
Saxena and Deb (2007) in the way the information loss caused by the dimensionality
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reduction is quantified; it aims at changing the underlying dominance structure as
little as possible by minimizing the ı-error (Brockhoff and Zitzler 2007b, 2009),
i.e., the maximum error that one makes in wrongly assuming that one solution dom-
inates another one. Both approaches reduce the objective set by omitting selected
objectives.

In this paper, we generalize the ideas of objective reduction in Brockhoff and
Zitzler (2007b, 2009) by considering aggregations of several objectives and thereby
make use of the fact that when aggregating objectives instead of omitting them less
information is lost, i.e., the ı-error can be further decreased. In this context, the main
goal can be restated as follows: find a minimum set of new objectives where each
of them represents a weighted sum of the original objectives such that the domi-
nance structure between solutions is (mostly) preserved. Clearly, this formulation
also captures the omission of objectives as weights can be set to 0. We present
a greedy algorithm to approximate the optimal solution to the problem of find-
ing a minimum objective subset that preserves most of the dominance structure. It
works by iteratively selecting a pair of objectives that is integrated into a new objec-
tive using weighted-sum aggregation. To validate the usefulness of the proposed
approach, we apply it, on the one hand, to analyze and visualize high-dimensional
Pareto set approximations and, on the other hand, to speed up the search process
in hypervolume-based multiobjective optimization as suggested in Brockhoff and
Zitzler (2007a). The experimental results indicate that especially with a large num-
ber of objectives the new method can better preserve the problem characteristics and
has advantages over the existing methods.

2 Objective Reduction by Aggregating Objectives

In a multiobjective setting, k objective functions fi W X ! Z (1 � i � k)
that map a solution x 2 X from the decision space X to its objective vector
f .x/ D .f1.x/; : : : ; fk.x// have to be optimized simultaneously. We consider,
without loss of generality, minimization problems only. The goal is to compute or
approximate the set of Pareto optimal solutions with respect to a given dominance
structure. Here, we assume that the underlying dominance structure is given by the
weak Pareto dominance relation �F 0 , i.e., a solution x 2 X is at least as good as or
weakly dominating a solution y 2 X (x �F 0 y) with respect to a set F 0 of objec-
tive functions if 8fi 2 F 0 W fi .x/ � fi .y/. We call two solutions incomparable
if neither weakly dominates the other one, comparable if one dominates the other,
and indifferent if they are mutually dominating each other. A solution x� 2 X is
called Pareto optimal if for any other solution x 2 X , x� is either weakly dominat-
ing x or is incomparable to x with respect to the set of all objectives. The set of all
Pareto optimal solutions is called Pareto(-optimal) set, for which an approximation
is sought.

Although the entire set of objectives F WD ff1; : : : ; fkg is of interest, the reduc-
tion to a smaller set F 0 � F might be necessary in practice, e.g., in terms of decision



Automated Aggregation and Omission of Objectives 83

f1 f2 f3 f4

1

2

3

b

c

a

f3 f4

1

2

3
b

a

c

f1 0.4· f3 + 0.6· f4

1

2

3

b

c

a

Fig. 1 Parallel coordinates plot for the three solutions a (solid), b (dashed), and c (dotted) in
Examples 1–3: (left) original objectives; (middle) with respect to the objective subset ff3; f4g;
(right) original objective f1 and aggregated objective 0:4f3 C 0:6f4 . For details, see text

making where a small set of objectives can be easier taken into account than many
objectives or in terms of search when the computation time highly depends on the
number of objectives.1 In this case of objective reduction, the question arises how
the weak dominance relation changes if objectives are omitted. This question has
been already answered in detail in previous studies (Brockhoff and Zitzler 2007b,
2009; Brockhoff et al. 2007): the only possible changes if objectives are omitted are
that comparable solutions can become indifferent and incomparable solutions can
become comparable or indifferent. In other words, only new comparabilities can be
introduced by omitting objectives.

Example 1. The left-hand side of Fig. 1 shows the parallel coordinates plot of three
solutions a (solid line), b (dashed) and c (dotted) that are pairwisely incomparable.
If the first objective f1 is omitted, all three solutions remain mutually incomparable,
i.e., the problem structure is preserved. If we, however, omit any two objectives,
the dominance relation between the three solutions will change, e.g., if we omit
in addition to f1 also f2, the solution a becomes weakly dominated by solution c
considering minimization of the objectives, cf. the middle plot of Fig. 1.

To quantify how much the dominance relation is changed, the ı-error has been
proposed in Brockhoff and Zitzler (2007b, 2009), which will be explained in the
following and used throughout the paper. If we change the set of objectives under
consideration to the new set F 0, e.g., when omitting some objectives or aggregat-
ing them, we might wrongly assume for a solution pair that the first solution x is
weakly dominating the second one y although this is not the case with respect to
the entire set of objectives F , cf. Example 1. In this case, we make an error for the
solution pair x; y. The idea of the ı-error of Brockhoff and Zitzler (2007b, 2009) is
the observation that we would not make an error by assuming x �F 0 y if the entire

1 This is the case, e.g., in hypervolume-based evolutionary algorithms where the computation time
per generation is exponential in the number of objectives (Brockhoff and Zitzler 2007a; Bringmann
and Friedrich 2008). Also if the objective values have to be computed by time-consuming
simulations, a lower number of objectives will speed up the evaluation time.
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set of objectives would induce the same relation already. In particular, if we make
the objective vector of x better by an additional term of maxfi2F ffi .x/�fi .y/g, the
resulting solution is weakly dominating y with respect to all objectives and the rela-
tion between the two solutions is preserved when changing to the objective set F 0.
The resulting relation when we change the objective values as described above, is
the additive "-dominance relation of Laumanns et al. (2002). We say a solution x
is weakly "-dominating another solution y with respect to the entire objective set
F if 8fi 2 F W f .x/ � " � f .y/. With this additive "-dominance relation, the
ı-error for a solution pair can be defined as in Brockhoff and Zitzler (2007b, 2009)
as the smallest ı value ı D maxfi2Fffi .x/� fi .y/g such that x ı-dominates y with
respect to the entire objective set F 0 if x weakly dominates y with respect to the
new objective set F 0. The maximum of this error over all solution pairs is referred
to as the maximum ı-error of the new objective set F 0 in Brockhoff and Zitzler
(2007b, 2009). In addition, we propose the average ı-error here which is defined as
the ı-error averaged over all solution pairs:

Definition 1. Given two sets of objectives F 0 and F and a set of solutions A � X ,
the maximum ı-error of Brockhoff and Zitzler (2007b, 2009) is defined as

ımax.A;F 0;F/ D max
x; y 2 A
x 6�F y
x �F 0 y

max
fi2F

ffi .x/ � fi .y/g

and the average ı-error is defined as

ıavg.A;F 0;F/ D 1

n.n � 1/
P

x; y 2 A
x 6�F y
x �F 0 y

max
fi2F

ffi .x/� fi .y/g:

Note that if both error measures are meant or if it is clear from the context which
measure we are referring to, we will use the term ı-error in the remainder.

Example 2. Consider again the solutions a and c of Fig. 1 if the objectives f1

and f2 are omitted. Since solution c is now weakly dominating a although it
is not weakly dominating a with respect to all objectives we make an error of
ı D maxfi2F ffi .c/ � fi .a/g D 2. If we consider the maximum ı-error over all
solution pairs the error is ımax D 2 for the set ff3; f4g of remaining objectives.
Note that no pair of objectives yields a smaller maximum error than ımax D 1 which
is reached for the sets ff1; f3g and ff2; f3g. In terms of the average ı-error, the set
ff3; f4g yields an error of ıavg D 2=6 – we only assume once a wrong dominance
relation, namely for c �ff3;f4g a.

We have seen that the omission of objectives introduces new comparabilities and
information about the original dominance structure gets lost. As an alternative, the
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number of objectives can also be reduced by the aggregation of objectives and
thereby keeping more of the information about the original objectives as we will
see in the following. In this study, we consider the simplest case of objective aggre-
gation: the weighted sum approach. An aggregated objective is a linear combination
of the original ones f a

i D P
fj2F wi;j fj where we assume that the non-negative

weights wi;j (1 � j � k) for each of the new objectives sum up to 1. This formal-
ism also contains the omission of objectives as an aggregation where all weights are
either 1 or 0.

Example 3. Once again, we consider the example of Fig. 1. As we have seen above,
no objective pair can preserve the weak Pareto-dominance relation entirely. How-
ever, if we allow the aggregation of objectives, a set of two aggregated objectives can
be found that preserves the dominance relation completely. The right-hand plot of
Fig. 1 shows the parallel coordinate plot for such a set ff1; 0:4f3 C0:6f4g. All three
solutions are still pairwisely incomparable, i.e., the original dominance relation is
preserved.

When aggregating objectives, the only change in the dominance structure is the
introduction of comparabilities – exactly as with the omission of objectives. If for a
pair a;b 2 X of solutions, a �F b holds, b will stay dominated with respect to any
set of aggregated objectives. If, however, for a pair a 6�F b holds, the aggregation
can introduce the domination of a if for all newly introduced objectives f a

i .a/ 6>
f a

i .b/ holds due to the choice of the weights.
In Brockhoff and Zitzler (2007b, 2009), given a set A � X of solutions and

a ka 2 N, the problem of finding the best objective subset F 0 � F of size ka

that minimizes the resulting (maximum) ı-error was introduced as the ka-EMOSS
problem. Here, we generalize this problem to finding the best set of ka aggre-
gated objectives such that the resulting ı-error is minimized and denote it as the
OptimalAggregationProblem:

Definition 2. Given a ka 2 N, a set A � X of solutions, and a chosen ı-error
(either ı D ımax or ı D ıavg). Let F D ff1; : : : ; fkg be the set of all objectives. The
OptimalAggregationProblemwith respect to ı is defined as follows: Find a
set of weight vectors W D fw D .w1; : : : ;wk/ 2 Œ0; 1�k j P1�i�k wi D 1g with
jW j D ka such that the ı-error of the set of aggregated objective vectors

ı
�
A;

[

.w1;:::;wk/2W

n kX

iD1

wifi

o
;F
�

is minimal.

In the remainder of the paper, we will refer to the problem of finding the optimal
aggregation with respect to the maximum error as OAmax and denote the opti-
mal aggregation problem with respect to the average ı-error as OAavg. For both
problems, we propose a greedy heuristic in the following.
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3 A Greedy Heuristic for Finding the Best Aggregation

As the special case of ka-EMOSS is already NP-hard (Brockhoff and Zitzler 2007b,
2009), we assume that the generalized problems OAmax and OAavg are also too com-
plex to solve them exactly. To solve the OAmax and OAavg problems, we, therefore,
propose a greedy approximation algorithm the idea of which is to iteratively aggre-
gate objective pairs until the desired number of objectives is reached – in other
words, the algorithm resembles the approach of hierarchical clustering.

Note that other non-greedy approximation algorithms for the problem of finding
the best aggregation might be developed as well. For the special case of the ka-
EMOSS problem, López Jaimes et al. (2008) for example proposed to use feature
selection algorithms known from machine learning recently. These algorithms have
been shown to result in smaller ı-errors than the simple greedy algorithms proposed
in Brockhoff and Zitzler (2007b, 2009). However, in accordance with Brockhoff
and Zitzler (2007b, 2009), we propose only simple greedy algorithms here to show
the principles and the usefulness of the approach of objective aggregation – while
keeping in mind that advanced algorithms have to be developed, applied and tested
in future work.

3.1 Main Procedure

Algorithm 1 shows the pseudo code of the aggregation procedure. Starting with the
original objectives, i.e., with k weight vectors containing exactly one 1-entry and
otherwise zeros (W ), the ı-error equals 0. Then, in each step of the while-loop,
the objective pair the aggregation of which yields the smallest error is aggregated
and the corresponding weight vectors and the ı-error are adjusted. To this end, for
each objective pair, represented by the weight vectors in W , the weight ˛ when
optimally aggregating this objective pair is computed. Optimally in this case, means
that the ı-error is minimized when deleting the objective pair2 q; r and adding a new
objective fnew D ˛q C .1� ˛/r. How the optimal weight ˛ can be computed in the
function aggregateOptimally.A;F 0;F/ such that the ı-error is minimized
will be explained in detail in the following.

3.2 Optimally Aggregating Two Objectives

Let us consider, without loss of generality, the case that f1 and f2 in a set of
objectives F 0 have to be aggregated optimally, i.e., we have to find the weight
˛ 2 Œ0; 1� such that the ı-error between the original objective set F and the new set
F 0 nff1; f2g[fnew is minimal where fnew D f̨1 C.1�˛/f2 is the new aggregated

2 For simplicity, we use the term objective and the corresponding weight vector interchangeably
throughout the paper.
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Algorithm 1 A greedy heuristic for the problems OAmax and OAavg
Require: solution set A � X with set of objectives F D ff1; : : : ; fkg

number of desired objectives ka 	 1
Init:
W D fw 2 Rk j Pk

iD1 wi D 1^ 9i 2 f1; : : : ; kg W wi D 1g
ı D 0

while jW j > ka do
ıbest D C1
for all q; r 2 W; q ¤ r do
˛ D aggregateOptimally.q; r; A;W;F/
W 0 D W n fq; rg [ f˛qC .1� ˛/rg
ı0 D ımax/avg

 
A;

S

.w0

1;:::;w
0

k2W 0/

fPk
iD1 w0

i fi g;F
!

if ı0 � ıbest then
Wbest D W 0

ıbest D ı0

end if
end for
W D Wbest

ı D ıbest

end while
return .W; ı/

objective. In the following, we will use for the current set of objectives excluding
the two objectives that have to be aggregated the term remaining objectives and call
the objective set F 0rem WD F 0 n ff1; f2g.

The idea behind the function aggregateOptimally.A;F 0rem [ ffnewg;F/ is
to determine for each solution pair a;b 2 A a function �.a;b/ W Œ0; 1� ! RC0 that
gives for each possible weight ˛ 2 Œ0; 1� the ı-error that is introduced if the objective
pair is aggregated to the new objective fnew. Figure 3 gives some examples how this
�.a;b/ function can look like. How this function�.a;b/ can be computed is explained
later on in detail. The best weight ˛opt over all solution pairs and the corresponding
ı-error ıopt can then be computed as

˛opt D argmin
˛2Œ0;1�

�A.˛/;

ıopt D min
˛2Œ0;1�

�A.˛/;

where, depending on the problem to solve,

�A.˛/ D �A;max.˛/ D max
a;b2A

�.a;b/.˛/

for OAmax and

�A.˛/ D �A;avg.˛/ D 1

jAj.jAj � 1/

X

a;b2A

�.a;b/.˛/
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for OAavg. In other words, if the error depending on the weight ˛ is known for
all solution pairs, the maximum ı-error �A;max is computed as the maximum over
all solution pairs whereas the average ı-error�A;avg is the ı-error averaged over all
solution pairs. The optimal weight is then chosen in the best weight interval, i.e.,
the weight interval with the minimal ı-error, see again Fig. 3 for an illustration. We
would like to mention already here, that the choice of ˛opt is not unique – most of
the time it is rather an optimal weight interval than a single value. We will discuss
the actual choice of ˛opt in the interval with smallest ı-error later and decide to
fix the center of the optimal interval as the optimal weight for the moment.

Now, we explain how to determine the function �.a;b/. To this end, we fix a
and b and distinguish between two situations: (a) ı.fa;bg;F 0rem;F/ D 0, i.e., even
if we omit the objectives f1 and f2, we make no error. In this case, ˛ can be chosen
arbitrarily in Œ0; 1� and the ı-error is 0, i.e., 8˛ 2 Œ0; 1� W �.a;b/.˛/ D 0. (b) a and b
are standing with respect to the remaining objectives F 0rem in a different relationship
than with respect to the entire objective set F , i.e., it depends on the choice of ˛
which error we make. In this case (i) a �F 0

rem
b but a 6�F b and/or (ii) b �F 0

rem
a but

b 6�F a can hold.
Assume first that (i) holds but not (ii). In this case, we need to choose ˛ such that

a 6�F 0 b holds with respect to the new objective set F 0 D F 0rem [ ffnewg to make no
error, or in other words, we need to ensure that fnew.a/ > fnew.b/. This inequality
can be rewritten as

fnew.a/ > fnew.b/

() f̨1.a/C .1 � ˛/f2.a/ > f̨1.b/C .1 � ˛/f2.b/

() ˛.f1.a/ � f1.b/C f2.b/ � f2.a// > f2.b/ � f2.a/ (1)

yielding – depending on the precise objective values of a and b – an interval S �
Œ0; 1� of ˛, where the ı-error is zero. For all other choices of ˛, we make an error
that is the same as if we would omit f1 and f2 entirely. Therefore

�
.i/

.a;b/
D
	

0 if ˛ 2 S;
ımax/avg.fa;bg;F 0rem;F/ else;

where the ı error in the else case again depends on the problem to solve. Examples
of this function for different solution pairs can be seen in Fig. 3.

The case where (ii) but not (i) holds follows analogously by changing the roles
of a and b and yields a similar function�.i i/

.a;b/
as above.

What remains to investigate is the case where both (i) and (ii) hold. In this case,
we make an error with any choice of ˛: either a �ffnewg b and the error is �.i/

.a;b/

as in case (i) or b �ffnewg a and the error is �.i i/

.a;b/
. In case both a �ffnewg b and

b �ffnewg a holds, i.e., if a and b are indifferent with respect to fnew, the resulting

error is the maximum of both errors�.i/

.a;b/
and �.i i/

.a;b/
. Thus,

�.a;b/.˛/ D maxf�.a;b/g :
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a

b

f1

f2 fnew

α
10 αc αc

a

b

α
10

Δ{a,b}(α)

Fig. 2 Illustration of aggregation of two objectives that is optimal for two solutions a and b: (left)
original objectives; (middle) resulting aggregated objective values fnew D f̨1C .1� ˛/f2 for all
choices of 0 � ˛ � 1; (right) corresponding ımax-error for all choices of ˛

Example 4. The left-hand plot of Fig. 2 shows two solutions a and b with two objec-
tives f1; f2, the aggregation of which to the new objective fnew D f̨1 C .1 � ˛/f2

causes an error for all choices of ˛ 2 Œ0; 1�. The reason why we make an error for
all choices of ˛ is that the two solutions become comparable for any choice of ˛
although they are incomparable with respect to the original objectives. The result-
ing dominance relation changes from b �ffnewg a to a �ffnewg b when ˛ is increased,
cf. the middle plot of Fig. 2. The value ˛c for which both solutions are indifferent
(the intersection point ˛c in the middle plot of Fig. 2), can be computed when the
inequality in (1) is changed to an equality. The resulting ı-errors for each choice of
˛ (indicated as “➀” and “➁” in Fig. 2) are shown in the rightmost plot of Fig. 2.

Note that in the biobjective Example 4, the set of remaining objectives is empty.
In the following example, the set of three objectives has to be reduced by one objec-
tive as it would be the case within a run of Algorithm 1, i.e., the set of remaining
objectives always contains one objective. In addition, we consider more than one
solution pair here.

Example 5. Consider four solutions a;b; c;d 2 A with the objective vectors
f .a/ D .1; 8; 4/, f .b/ D .6; 2; 7/, f .c/ D .3; 4; 4/, and f .d/ D .0; 7; 7/. In
the following, we illustrate the progress of Algorithm 1 if the average ı-error has to
be minimized and the objective set has to be reduced to ka D 2 objectives. After ini-
tialization, the algorithm computes the optimal choice of ˛ for each objective pair.
Figure 3 shows the computation for the objective pair .f1; f2/ in more detail: for
each solution pair x; y, the �.x;y/ function is computed (left plot of Fig. 3) and the
average over all these functions is taken as the overall error function �A (right-
hand plot of Fig. 3). The optimal choice of ˛ has to lie in the interval indicated by
the arrow in the right-hand plot of Fig. 3. For the other two objective pairs .f1; f3/

and .f2; f3/, similar �A functions can be obtained, see Fig. 4. The best intervals
with an error of ıavg D 0 can be obtained when aggregating f1 and f2 with an
˛ 2 .0:5; 0:65/ and when aggregating f2 and f3 with an ˛ 2 .0:6; 0:65/.

Note that it is not specified in Algorithm 1 how the ˛ value has to be chosen
within an optimal interval. Although each choice yields the same ı-error in the
current aggregation step, the choice within the optimal interval might influence the
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ΔA,avg(α)

Fig. 3 Computation of ı-errors dependent on the weight for all solution pairs (left) and corre-
sponding ı-error averaged over all solution pairs (right) if the first two objectives in Example 5 are
aggregated. The arrow in the right-hand plot indicates the optimal weight interval

0

1

2

3

4

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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4f1 and f2 f1 and f3 f2 and f3

α α α

Fig. 4 Illustration of the ı-errors averaged over all solutions for the objective pairs f1; f2 (left),
f1; f3 (middle), and f2; f3 (right) of Example 5. The optimal intervals are indicated by arrows

errors we make when aggregating other objectives in a future step of the algorithm.
Therefore, we compare different strategies experimentally in Sect. 4.1.

4 Experimental Validation

After presenting the aggregation heuristic for the OAmax and OAavg problems, three
main questions remain open: (1) is it important how to choose the weight within the
optimal interval found by the aggregation heuristics? (2) how much can the ı-error
be reduced by the new aggregation heuristics in comparison to simply omitting
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objectives? and (3) what can be gained by aggregating objectives instead of omitting
them during the search? This section is addressing these three questions experimen-
tally before we apply the proposed aggregation heuristics afterwards to a real-world
problem of optimizing a radar waveform to show their usefulness with respect to
visualization.

4.1 The Influence of Different Weight Choices
Within the Optimal Interval

As discussed above, the weight choice within the optimal interval found by the pro-
posed aggregation heuristics might have an influence on the overall ı-error although
in the current step, all choices lead to the same ı-error. To investigate the influ-
ence of different weight choices on the overall resulting error, we compare four
variants of the greedy OAmax heuristic: If the optimal objective pair and the cor-
responding optimal weight interval is found, we either choose the weight in the
middle of this interval (variant “CENTER”), uniformly at random within the inter-
val (“UNIFORM”), or as the center of the left (“LEFT”) or right (“RIGHT”) half of
the interval.
Settings: To perform the comparison, we created 3 � 51 random instances by
choosing the objective values uniformly at random in Œ0; 1�: 51 solution sets of
50 solutions with 4 objectives, 51 sets of 100 solutions with 6 objectives, and 51
sets of 200 solutions with 8 objectives. These instances have been handed over to
the greedy OAmax algorithm that had to reduce the objective set to 30% and 60%
of the original objectives.3 The resulting maximum ı-errors have been ranked for
all four variants “CENTER”, “UNIFORM”, “LEFT”, and “RIGHT” (rank 1: best,
rank 4: worst) and then compared by means of the Kruskal–Wallis test with the addi-
tional Conover–Inman procedure for multiple comparisons as described in Conover
(1999, pp. 288–290). All tests have been performed on the basis of a p-value
of 0.05.
Results: Without any exception, no significant difference between the algorithm
variants could be observed. Apparently, the greedy property of the algorithm, i.e.,
not looking ahead to weight choices in future steps of the algorithm, does not allow
for different behavior between the four variants. In other words, a significantly bet-
ter choice in one step might be outweighed by a worse choice in one of the next
steps and vice versa. Since the four variants do not show significant differences, we
decided to use the “CENTER” variant exclusively in the following due to its slightly
faster implementation.

3 More precisely, to 1 and 2 objectives for the 4-objective instances, to 1 and 3 for the 6-objective
instances, and to 2 and 4 for the 8-objective instances.
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4.2 Comparison Between Aggregation and Omission

To experimentally validate the proposed aggregation heuristics for the OAmax and
OAavg problems, we compare them with the ka-EMOSS heuristic from Brockhoff
and Zitzler (2007b, 2009) that, starting with an empty objective set, iteratively
chooses the objective that minimizes the overall ı-error until the desired number
of objectives is reached.
Settings: For the comparison, Pareto set approximations of 18 test problem instances
have been generated by running the Indicator-Based Evolutionary Algorithm IBEA,
proposed in Zitzler and Künzli (2004), for 100 generations with the standard set-
tings of the PISA package (Bleuler et al. 2003). The only parameter that changed
over the different problem instances was the population size which was chosen as
100 for the 5-objective problems and as 200 for the 15-objective problems. In addi-
tion to the DTLZ2, DTLZ3, DTLZ7 (Deb et al. 2005),4 WFG3, WFG6, WFG8
(Huband et al. 2006)5 and three instances of the 0-1-knapsack problem with 100
(KP100), 250 (KP250), and 500 (KP500) items (Laumanns et al. 2004) with 5 and
15 objectives each, we also considered two instances of a network processor design
problem called EXPO (Künzli et al. 2004) with 3 and 4 objectives. The Pareto
set approximations for the EXPO instances had 43 solutions and 143 solutions
respectively.

Based on these test instances, the three considered greedy algorithms for the
ka-EMOSS, the OAmax, and the OAavg problem respectively were used to reduce
the objectives to 90%, 60%, and 30% of the number of original objectives, i.e., to
1, 3, and 4 for the 5-objective problems and to 4, 9, and 13 for the 15-objective
problems. The EXPO instances had to be reduced to 1 and 2 (3-objective) and to
1, 2, and 3 objectives (4-objective) respectively. Table 1 shows the resulting normal-
ized6 ı-errors for all three algorithms and, in addition, the ı-error averaged over all
solution pairs for the new heuristics proposed in Sect. 3.
Results: For all considered problem instances, except when the 15-objective DTLZ2
problem is reduced to 4 objectives (b15 � 30%c D 4), the aggregation heuristic opti-
mizing the maximum error yields lower or the same errors than the heuristic that
omits objectives. Therefore, we conclude that the error can, in general, be decreased
for the same number of objectives when aggregation is allowed. For example, the
preservation of the entire dominance relation (ı D 0) can be achieved for the reduc-
tion to 60% of the original objectives for 4 of the 12 DTLZ and knapsack problem
instances if aggregation is allowed whereas the ka-EMOSS heuristic cannot find
objective subsets of this sizes without making an error. Note that the only case

4 The number of decision variables has been set to 250.
5 For all WFG problems, the number of decision variables has been also fixed to 250 and the
number of position variables has been chosen to 168 and the number of distance variables to 82
such that it can be kept constant over all numbers of objectives.
6 The ı-errors have been normalized to the objective values of each instance such that the difference
between the highest and lowest objective value equals 1 for every objective.
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Fig. 5 Normalized parallel coordinates plot of the used WFG3 instance with 5 objectives and 100
solutions

where the omission of objectives yields a smaller error than both aggregation heuris-
tics occurs for a reduction to 30%, i.e., a small number of objectives. This might be
due to the fact that the greedy heuristic for objective omission creates the objective
subset by adding objectives greedily instead of reducing the number of objectives
step-by-step as the greedy aggregation heuristics do.

As expected, the aggregation heuristic optimizing the average error performs bet-
ter with respect to the average error and worse with respect to the maximum error
in most cases compared to the heuristic optimizing the maximum error. The next
section will show that a low average ı-error is beneficial when visualizing solution
sets of many-objective problems.

Furthermore, we would like to point out that the Pareto set approximations of
the WFG test problem instances are seemingly of a certain shape where only a few
objectives are necessary to describe the trade-offs between the objectives. Figure 5
shows as an example the used set of objective vectors for the WFG3 instance with
5 objectives in a normalized parallel coordinates plot. By looking at the objectives
f4 and f5, we can observe that this objective pair induces all incomparabilities
between the solutions due to their opposing nature in the found region of the search
space. Therefore, the results of the WFG test problems in Table 1 might not be as
representative for real-world applications as for the other problems.

4.3 Objective Reduction During Search

After showing how the proposed objective reduction algorithms can be applied in
decision making scenarios, it remains to investigate whether aggregating the objec-
tives automatically can also be beneficial during search. Purshouse and Fleming
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(2003) have been the first to propose the idea of using objective reduction techniques
during search – mainly to deal with problems such as the lower selection pressure
or the more complicated density estimation if many objectives have to be optimized
simultaneously. Especially if the computation time of the optimizer highly depends
on the number of objectives, e.g., in hypervolume-based search algorithms where
the exact calculation of the hypervolume indicator is exponential in the number of
objectives,7 objective reduction seems to be highly beneficial. Similar to the study
in Brockhoff and Zitzler (2007a), where omitting objectives during search has been
shown to significantly improve hypervolume-based algorithms, we investigate in the
following what can be gained by using the proposed aggregation heuristic within a
hypervolume-based evolutionary algorithm instead of simply omitting objectives.
Basic Algorithm The basis of this study is the Simple Indicator-Based Evo-
lutionary Algorithm (SIBEA) proposed in Zitzler et al. (2007) which uses the
hypervolume indicator IH , originally proposed in Zitzler and Thiele (1998), to
guide the search.8 The algorithm works as follows. After the initial population P
is formed by � randomly selected solutions, new generations are performed until
a given time limit T is reached. A generation starts with a random selection of
� solutions in P that are then recombined and mutated to � offsprings. These off-
springs are inserted in the population P and the population of the next generation
is determined by the following procedure: after a non-dominated sorting of P , the
non-dominated fronts are, starting with the best front, completely inserted into the
new populationP 0 until the size of P 0 is at least �. For the first frontF the inclusion
of which yields a population size larger than �, the solutions x in this front with the
smallest indicator loss d.x/ WD IH .F /�IH .F nfxg/ are successively removed from
the new population where the indicator loss is recalculated every time a solution is
removed.

In addition, SIBEA can apply various objective reduction strategies to improve
the running time of the hypervolume computation. To this end, every G genera-
tions an objective reduction is performed, i.e., it is decided which objectives are
chosen for optimization and which ones are neglected during the next G gener-
ations. This objective reduction has already been shown to be beneficial during
search due to the high computation time for the hypervolume losses in high dimen-
sions (Brockhoff and Zitzler 2007a). The incorporation of the greedy ka-EMOSS
algorithm of Brockhoff and Zitzler (2007b, 2009) and the aggregation heuris-
tics for the OAmax and OAavg problems yields three modified versions of SIBEA.
EveryGD 50 generations, we compute the best objective subset (for the ka-EMOSS
based SIBEAka-EMOSS) or the best aggregation (versions denoted by SIBEAmax and
SIBEAavg) on the current population and consider only the computed objectives

7 The #P-hardness proof of Bringmann and Friedrich (2008) implies that no exact polynomial
algorithm for the hypervolume indicator exists unless P D NP .
8 The hypervolume indicator or S-measure of a solution set A 
 X is informally defined as the
space that is dominated by the solutions in A which itself is dominating a reference set. Here,
we use only a single reference point and refer to Beume et al. (2007) for an exact definition. The
hypervolume indicator has always to be maximized.
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for the next 50 generations of SIBEA. We use the greedy ka-EMOSS algorithm
based SIBEAka-EMOSS version for the comparison with the new aggregation approach
since it showed the best performance in the exhaustive comparison of Brockhoff and
Zitzler (2007a).
Settings The comparison of the three versions is performed with the following set-
tings. 11 runs for each combination of problem [scaled DTLZ2BZ, scaled DTLZ3BZ,
and DTLZ7 as in Brockhoff and Zitzler (2007a) with 5, 10, and 15 objectives]
and objective set size (ka D 2; 3; 4) are performed where the computation time
is set to T D 15min on a 64-bit AMD Linux machine with four cores. After-
wards, the hypervolume indicator values of the populations after the time T has
been reached are computed with respect to all objectives and the non-parametric
Kruskal–Wallis test followed by the Conover–Inman procedure for multiple test-
ing (see pages 288–290 of Conover 1999) is used to support the hypothesis that
one algorithm “systematically” produces larger hypervolume indicator values than
another one by ranking all values and comparing the rank sums. The significance
level has been set to p D 0:05 and the reference points of the hypervolume com-
putation are chosen as rDTLZ2 D .50; : : : ; 50/, rDTLZ3 D .25000; : : : ; 25000/, and
rDTLZ7 D .170; : : : ; 170/. Table 2 shows both the ranking of the mean values (in
brackets) and a ranking given by the outcomes of the statistical tests: for each algo-
rithm A, the number of other algorithms that statistically outperform A is shown.
For both rankings, lower numbers are better. Figure 6 shows, in addition, the box
plots of the achieved hypervolume values for the problem instances with 15 objec-
tives where the statistical tests do not support the hypothesis of differences in the
mean values.

To also compare the runs with different numbers of aggregated objectives against
each other, we decided to run the algorithms again for 11 runs with different ran-
dom seeds and compare all algorithms for all objective subset sizes against each
other for each of the three problems and each number of original objectives. The
same statistical Conover–Inman test after the mandatory Kruskal–Wallis test has
been performed; test problem instances and reference points are the same as before.
Table 3 shows the rankings of the mean of the hypervolume indicator values (again
in brackets) and the number of algorithms that produce significantly higher hyper-
volume values as before – now by comparing all 9 different algorithms for each
number of original objectives.
Results The results of the statistical tests support the main conclusion that the
aggregation has some advantages over the omission of objectives especially if the
objective set is reduced to only two objectives. However, the advantage diminishes
when more objectives are involved during the search. Except for the DTLZ3BZ prob-
lem with 10 objectives, the omission heuristic always performs better with respect
to the mean values than the aggregation heuristics if the objective set is reduced to
4 objectives. In addition, we can observe from the box plots in Fig. 6 that the omis-
sion heuristic becomes better with increasing ka whereas both aggregation heuristics
become better when the size of the reduced objective set is decreased. One expla-
nation for that is the high running time of the aggregation heuristics: the running
time of 15 min is mainly used for deriving the aggregation in every 50th generation.
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Fig. 6 Boxplots of hypervolume indicator values for the objective reduction heuristics applied
during search: (top) DTLZ2BZ; (middle) DTLZ3BZ; (bottom) DTLZ7 with 15 objectives each
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Table 2 Ranking of the hypervolume indicator values for the SIBEA versions with greedy ka-
EMOSS heuristic (IH;ka -EMOSS) and the aggregation heuristics with maximum (IH;max) and average
ı-error (IH;avg) based on the Kruskal–Wallis test with subsequent Conover–Inman procedure when
the three algorithms are compared for each pair of original objective number and the number of
aggregated objectives. The rank corresponds to the number of algorithms that significantly produce
better hypervolume indicator values. In addition, the ranking of the means is given in brackets.
Lower values are always better

# Original
objectives

# Aggre-
gated
objectives

Scaled DTLZ2BZ Scaled DTLZ3BZ DTLZ7

IH;ka-EMOSS IH;max IH;avg IH;ka-EMOSS IH;max IH;avg IH;ka-EMOSS IH;max IH;avg

5 2 2(3) 0(2) 0(1) 2(3) 0(2) 0(1) 2(3) 0(2) 0(1)
5 3 0(1) 1(2) 1(3) 0(1) 2(3) 0(2) 0(1) 2(3) 1(2)
5 4 0(1) 2(3) 1(2) 0(1) 1(3) 1(2) 0(1) 2(3) 1(2)

10 2 2(3) 1(2) 0(1) 2(3) 0(2) 0(1) 2(3) 0(2) 0(1)
10 3 2(3) 0(1) 0(2) 2(3) 0(1) 1(2) 2(3) 1(2) 0(1)
10 4 0(1) 1(2) 2(3) 1(2) 2(3) 0(1) 0(1) 1(2) 2(3)

15 2 2(3) 0(2) 0(1) 1(3) 0(1) 0(2) 2(3) 0(2) 0(1)
15 3 2(3) 0(2) 0(1) 0(1) 0(2) 0(3) 2(3) 0(1) 0(2)
15 4 0(1) 0(3) 0(2) 0(1) 2(3) 1(2) 0(1) 0(2) 2(3)

Table 3 Ranking of the hypervolume indicator values for the SIBEA versions with greedy ka-
EMOSS heuristic (IH;ka -EMOSS) and the aggregation heuristics with maximum (IH;max) and average
ı-error (IH;avg) over all number of aggregated objectives for each problem instance based on the
Kruskal–Wallis test with subsequent Conover–Inman procedure. The rank corresponds to the num-
ber of algorithms that significantly produce better hypervolume indicator values and the ranking of
the means are given in brackets

# Original
objectives

# Aggre-
gated
objectives

Scaled DTLZ2BZ Scaled DTLZ3BZ DTLZ7

IH;ka -EMOSS IH;max IH;avg IH;ka-EMOSS IH;max IH;avg IH;ka-EMOSS IH;max IH;avg

5 2 3(4) 0(1) 0(2) 7(9) 0(3) 0(1) 5(7) 0(3) 0(4)
5 3 0(3) 4(5) 4(6) 3(6) 1(4) 0(2) 0(1) 5(6) 2(5)
5 4 5(7) 8(9) 7(8) 3(5) 5(8) 3(7) 0(2) 7(9) 7(8)

10 2 8(9) 1(4) 0(2) 5(8) 0(3) 0(2) 6(8) 1(3) 0(1)
10 3 6(8) 0(1) 1(3) 5(7) 0(1) 2(4) 4(5) 1(4) 0(2)
10 4 4(5) 4(6) 5(7) 4(6) 6(9) 4(5) 4(6) 6(7) 8(9)

15 2 7(9) 0(3) 1(4) 1(6) 0(1) 0(2) 5(8) 0(4) 0(3)
15 3 7(8) 0(1) 0(2) 0(4) 1(5) 1(7) 2(7) 0(2) 0(1)
15 4 4(6) 4(5) 4(7) 0(3) 7(9) 7(8) 1(5) 4(6) 7(9)

For example on the DTLZ3BZ problem with 15 objectives, most of the aggregation
runs are performing 200–350 generations only whereas almost all SIBEAka-EMOSS

runs (except the ones running with four objectives) are able to run for 1,000
generations or more.
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When comparing the algorithms over all possible numbers of desired objectives,
it turns out that, except for the DTLZ2BZ with 15 objectives, no other algorithm
produces significantly higher hypervolume values than SIBEAavg that reduces the
number of objectives to ka D 2. However, with respect to the mean hypervolume
indicator values, this aggregation heuristic is assigned only twice the best rank and
four times the second best. Nevertheless, we can also conclude in this comparison
that the aggregation heuristics are often performing better and overall not worse than
the greedy omission heuristic.

5 Application to a Real-World Problem

To show the advantages of the proposed aggregation heuristics with respect to
visualization, we apply the objective omission approach of Brockhoff and Zitzler
(2007b, 2009) and the aggregation heuristics to the problem of finding good wave-
forms for aircraft radars as proposed by Hughes (2007). The problem is formulated
with 9 objectives in total and the set of more than 22;000 known non-dominated
solutions builds the basis of our analysis. We follow the approach of Brockhoff
and Zitzler (2007b, 2009) and reduce this set to 107 solutions that yields an
"-approximation of the entire set for " D 0:062.

Visualizing the set of all known non-dominated solutions is a crucial task in deci-
sion making. For the radar waveform problem, the high number of both solutions
and objectives makes the visualization difficult. Even the visualization as a paral-
lel coordinates plot does not provide much information to the decision maker, see
Hughes (2007) for the plot. Here, we argue that our objective reduction techniques
can help to gain a detailed understanding of the problem itself by plotting lower
dimensional projections of the non-dominated solutions. General dimensionality
reduction techniques such as PCA do not take into account the Pareto-dominance
relation between the solutions when reducing the dimensionality of data. Thus, the
dominance relation is not preserved and many solutions dominate each other as
can be seen in Table 4. In contrast, our approach of objective aggregation takes the
Pareto-dominance relation into account and reduces the number of objectives while
the dominance relation is changed as little as possible. Figure 7 shows the 2D plots
of all known non-dominated solutions for the radar problem if different kinds of
reduction techniques are applied.

The number of solution pairs that remain non-dominated increases from the PCA
plot over the one with original objectives only to the aggregated objective plots of
the maximum error and average error versions of the proposed greedy heuristic.
Note that only PCA was applied directly to the set of all non-dominated solutions;
for the other three reduction approaches, the reduced set of 107 points has been
used – whereas the evaluation has been performed with respect to all points.
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Table 4 Comparison of reduction to 2 objectives for the radar waveform problem with the reduced
set of 107 points (above) and the set of all known non-dominated points (below): number of solu-
tion pairs (total 5,671 and � 2:6 � 108 respectively) for that we wrongly assume comparability
together with the maximum and average ı-errors

# Comparable ımax ıavg

solution pairs

107 solutions Exact algorithm for ka-
EMOSS (Brockhoff and
Zitzler, 2007b, 2009)

2,835 0.9935 0.111005

PCA 2,525 0.9797 0.088250
Greedy aggregation with
maximum ı-error

872 0.8898 0.022609

Greedy aggregation with
average ı-error

585 0.9638 0.015443

all solutions Exact algorithm for ka-
EMOSS

130,084,321 1.0000 0.087803

PCA 134,147,513 0.9999 0.081457
Greedy aggregation with
maximum ı-error

49,189,796 0.9902 0.019601

Greedy aggregation with
average ı-error

32,471,066 0.9983 0.012444

6 Conclusions

Within this study, we proposed a generalization of a recently proposed framework
for reducing the number of objectives in multiobjective problems with a high num-
ber of objectives. Instead of simply omitting the objectives, we allow to aggregate
some of the objectives to achieve a reduced set of objectives that preserves most of
the problem structure. The proposed heuristics to find a good aggregation have been
compared to the previously presented approaches of objective omission and showed
better performance in terms of objective set sizes during decision making and in
terms of the achieved quality of the Pareto set approximations during optimization.
Another aspect of many-objective problems, the visualization of high dimensional
objective vectors, has also been covered in this paper by applying the proposed
methods to a radar waveform problem.

Although we showed the usefulness of automatically finding a good aggregation
of the original objectives both in decision making and search, the proposed aggrega-
tion heuristics might also be helpful in other scenarios, e.g., if an initial weighting of
the objectives within the well-known weighted sum method is sought. Furthermore,
the objective reduction algorithms can, in principle, be applied within any multiob-
jective evolutionary algorithm. However, the application of the proposed methods
to these scenarios remains future work.
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illustrations. Dimo Brockhoff has been supported by the Swiss National Science Foundation (SNF)
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Fig. 7 Two-dimensional plots of all known non-dominated solutions of the radar waveform
problem where the objectives are chosen with respect to PCA (upper left), the exact ka-EMOSS
algorithm from Brockhoff and Zitzler (2007b, 2009) (upper right), and the greedy aggregation
algorithm with maximum error (lower left) and average error (lower right)
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Trade-Off Analysis in Discrete Decision
Making Problems Under Risk

Maciej Nowak

Abstract The paper considers a discrete stochastic multi-attribute decision mak-
ing problem. This problem is defined by a finite set of alternatives A, a set of
attributes X and a set E of evaluations of alternatives with respect to the attributes. In
the stochastic case the evaluation of each alternative with respect to each attribute
is characterized by a random variable. Thus, the comparison of two alternatives
leads to the comparison of two vectors of probability distributions. In the paper a
new interactive procedure for solving this problem is proposed. At each iteration a
candidate alternative is proposed to the decision maker. If he/she is satisfied with
the proposal, the procedure ends. Otherwise, the decision maker is asked to select
the attribute to be improved and the attributes that can be decreased, ordered lex-
icographically starting with the one to be decreased first. The relations between
distributions of trade-offs are used to generate a new proposal. An example is
presented to illustrate the proposed technique.

1 Introduction

Interactive approach is probably the most often used method for solving multi-
attribute decision making problems. It assumes that the decision maker (DM) is
capable of defining attributes that influence his/her preferences and to provide pref-
erence information with respect to a given solution or a given set of solutions (local
preference information). Two main advantages are usually mentioned for employ-
ing interactive techniques. First, such methods need much less a priori information
about the DM’s preferences. Second, as the DM is closely involved in all phases of
the problem solving process, he/she puts much reliance in the generated solution,
and as a result, the final solution has a better chance of being implemented.
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The kind of local preference information required varies for each interactive pro-
cedure. Two main paradigms are employed when the information about the DM’s
preferences is collected: direct and indirect. According to the first one, the DM
expresses his/her preferences in relation to the values of attributes. Such approach
is used in techniques proposed by Benayoun et al. (1971), Wierzbicki (1980),
Steuer (1986), and Spronk (1981). Indirect collection of preferences means that the
decision maker has to determine the trade-offs among attributes at each iteration,
given the current candidate solution. The classical method by Geoffrion et al. (1972)
is an example of such approach. These two classes are not disjoint. The methods
proposed by Zionts and Wallenius (1976) and Kaliszewski and Michalowski (1999)
combine both approaches.

This paper focuses on discrete multi-attribute decision making problems under
risk. By “discrete” we mean that a finite number of alternatives are explicitly known.
Evaluations of the alternatives with respect to attributes are characterized by random
variables. Various approaches have been proposed for such problem. Keeney and
Raiffa (1976) suggest multiattribute utility function approach for this problem. They
show that if the additive independence condition is verified, then a multiattribute
comparison of two alternatives can be decomposed into one-attribute comparisons.
In practice, however, both the estimation of one-attribute utility functions and the
assessment of the synthesis function are difficult. Saaty and Vargas (1987) pro-
posed a version of the AHP that introduces uncertainty. Various techniques based
on the outranking approach were also suggested: Dendrou et al. (1980), Martel
et al. (1986), and D’Avignon and Vincke (1988).

In this paper stochastic dominance (SD) rules are used for comparing distribu-
tional evaluations. Huang et al. (1978) showed that if the additive independence
condition is verified, then the necessary condition for multi-attribute stochastic
dominance (MSD) is the verification of stochastic dominance with respect to each
attribute. In practice the MSD rule is very rarely verified. Zaras and Martel (1994)
suggested weakening the unanimity condition and accepting a majority attribute
condition. They proposed MSDr – multiattribute stochastic dominance for a reduced
number of attributes. This approach is based on the observation that people tend to
simplify the multiattribute problem by taking into account only the most important
attributes. The procedure consists of two steps. First, the SD relations are verified
for each pair of alternatives with respect to all attributes. Next, the multiattribute
aggregation is realized – the ELECTRE I methodology is used to obtain the final
ranking of alternatives.

Interactive procedures for discrete multi-attribute decision making problems
based on stochastic dominance have been proposed in Nowak (2004, 2006). The
first is an extension of the STEM method. In each step a candidate alternative,
which has a minimal distance to the ideal solution, is generated. A min–max rule is
used for measuring this distance. The decision maker examines the evaluations of
the candidate alternative with respect to attributes and selects the one that satisfies
him/her. Then the limit of concessions, which can be made on average evaluations
with respect to this attribute, is defined. The procedure continues until a satisfactory
solution is found. The INSDECM procedure proposed in Nowak (2006) combines
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the SD approach and mean-risk analysis. It is assumed that the decision maker is
able to express his/her requirements defining the restrictions based both on average
evaluations and on scalar risk measures.

Sometimes the DM is not able to express his/her preferences directly – by defin-
ing the minimum or maximum values for one or more distribution characteristics.
Often he/she is able to choose only that attribute which should be improved and the
attributes that can be decreased without defining the limits of such concessions. In
such a case trade-offs can be used for identifying a new proposal. The aim of this
paper is to propose an interactive technique using dialog scenario of this type.

The paper is structured as follows. The problem is formulated in Sect. 2. Section 3
provides basic information about point-to-point trade-offs. In Sect. 4 an interactive
procedure is presented. The next section gives a numerical example. The last section
consists of conclusions.

2 Formulation of the Problem

The decision situation considered in this paper may be conceived as a problem
(A, X, E) where A is a finite set of alternatives ai ; i D 1; 2; : : :; m, X is a finite
set of attributes Xp; p D 1; 2; : : :; n, and E is a set of evaluations of projects with
respect to attributes Xp

i , i D 1; 2; : : :, m;p D 1; 2; : : :; n. We assume that the
attributes are defined in such a way that a larger value is preferred to a smaller one.

This work focuses on decision making problems under risk. Thus, we will
assume that the evaluation of ai with respect to Xp is a random variable with a
cumulative probability distribution function F p

i .x/ defined as follows:

F
p
i .x/ D Pr

�
X

p
i � x

�

The attributes are supposed to be probabilistically independent, and are also sup-
posed to satisfy the preference independence condition. Thus, the overall com-
parison of two alternatives can be decomposed into one-attribute comparisons of
probability distributions.

Two main approaches are usually used for such comparisons: mean-risk mod-
els and stochastic dominance. The former is based on two criteria: one measuring
expected outcome and another one representing variability of outcomes. The latter
is based on an axiomatic model of risk-averse preferences and leads to conclusions
that are consistent with the axioms. In fact, mean-risk approaches are not capable
of modeling even the entire gamut of risk-averse preferences. Moreover, for typ-
ical statistics used as risk measures, the mean-risk approach may lead to inferior
conclusions (Ogryczak and Ruszczyński 1999).

In this paper we will use stochastic dominance rules for modeling preferences
of the DM in relation to each attribute. First stochastic dominance and second
stochastic dominance are defined as follows:
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Definition 1. (FSD – First Degree Stochastic Dominance).
X

p
i dominatesXp

j by FSD rule (Xp
i �FSD X

p
j ) if and only if

F
p
i .x/ ¤ F

p
j .x/ and F p

i .x/-F
p
j .x/ � 0 for all x 2 R

Definition 2. (SSD – Second Degree Stochastic Dominance).
X

p
i dominatesXp

j by FSD rule (Xp
i �SSD X

p
j ) if and only if

F
p
i .x/ ¤ F

p
j .x/ and

xR
�1

�
F

p
i .y/-F

p
j .y/

�
dy � 0 for all x 2 R

The FSD is the most general relation. If Xp
i �FSD X

p
j , then Xp

i is preferred
to Xp

j within all models preferring larger outcomes. The use of SSD requires more
restrictive assumptions. If Xp

i �SSD X
p
j , then Xp

i is preferred to Xp
j within all

risk-averse preference models that prefer larger outcomes.
In this paper we assume that the DM is risk averse. Thus we will assume thatXp

i

dominates Xp
j by stochastic dominance rule .Xp

i �SD X
p
j / if Xp

i �FSD X
p
j or

X
p
i �SSD X

p
j . We will use this rule for comparing evaluations of alternatives with

respect to attributes, and for analyzing relations between distributions of point-to-
point trade-offs.

3 Point-to-Point Trade-Offs

A trade-off is defined for a particular solution and for a selected pair of the attributes.
It specifies the amount by which the value of one attribute increases while that of the
other one decreases when a particular solution is replaced by another given solution.

Let us start with a decision making problem under certainty. For a pair of alterna-
tives ai and aj and a pair of attributes Xp and Xq , a point-to-point trade-off is the
ratio of a relative value increase in one attribute (Xp) per unit of value decrease in
the reference attribute (Xq) when the alternative ai is replaced by the alternative aj .

T
pq

ji D X
p
j � X

p
i

X
q
i � X

q
j

Let us assume that the DM analyzes the alternative ai and decides that the evaluation
with respect toXp should be improved, while the evaluation with respect toXq can
be decreased. In this case we will look for alternatives aj such that Xp

j >X
p
i and

X
q
j � X

q
i , and choose the one for which the increase of Xp is maximal. If such

alternatives do not exist, then an alternative maximizing point-to-point trade-off will
be proposed.

In the stochastic case the situation is much more complicated, as various situ-
ations have to be taken into account when a point-to-point trade-off for a pair of
alternatives (aj ; ai ) and a pair of attributes (Xp; Xq) is computed. In fact, such a
trade-off is a random variable whose distribution is a mixture of four distributions:
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X
p
i , Xq

i , Xp
j , Xq

j . In this paper we will assume that the attributes are probabilisti-
cally independent and satisfy independence conditions allowing us to use an additive
utility function. To generate probability distribution of point-to-point trade-off T pq

ji
we have to analyze the following cases:

1. Xp
j > X

p
i and Xq

i > X
q
j ,

2. Xp
j > X

p
i and Xq

i D X
q
j ,

3. Xp
j > X

p
i and Xq

i < X
q
j ,

4. Xp
j D X

p
i and Xq

i > X
q
j ,

5. Xp
j D X

p
i and Xq

i D X
q
j ,

6. Xp
j D X

p
i and Xq

i < X
q
j ,

7. Xp
j < X

p
i and Xq

i > X
q
j ,

8. Xp
j < X

p
i and Xq

i D X
q
j ,

9. Xp
j < X

p
i and Xq

i < X
q
j .

Only the first case describes the classical trade-off situation. Cases (2) and (3)
describe situations in which it is possible to improve the value of Xp without
decreasing Xq . For such situations we will assume that T pq

ji D M , where M is
a “big number”. If (4), (5), or (6) takes place, then we will assume that T pq

ji D 0,
as replacing ai by aj will not change the value of Xp. And finally for cases (7),
(8), and (9) we will assume that T pq

ji D �M , as replacing ai by aj will decrease
the value of Xp. Thus for given Xp

i ; X
q
i ; X

p
j ; X

q
j , the value of trade-off will be

computed as follows:

T
pq

ji D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

X
p

j
�X

p

i

X
q

i
�X

q

j

ifXp
j > X

p
i andXq

i > X
q
j

M ifXp
j > X

p
i and Xq

i � X
q
j

0 ifXp
j D X

p
i

�M ifXp
j < X

p
i

Let us consider the following example. Alternatives a1 and a2 are evaluated with
respect to attributes X1 and X2. Distributions of alternatives with respect to attri-
butes are presented in Table 1. To generate the distribution of T 12

21 , we have to
consider all possible combinations of the values X1

1 , X2
1 , X1

2 , X2
2 (Table 2).

Table 1 Example 1 – evaluations of alternatives

Distributions for X1 Distributions for X2

a1 a2 a1 a2

100 20 0:5

150 0:5 0:25 30 0:75

200 0:5 40 0:5

250 0:75 50 0:25
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Table 2 Example 1 – generation of distribution of T 1221
X1
1 X1

2 X2
1 X2

2 Prob. T 1221

1 100 150 30 20 0.046875 5.00
2 100 150 30 40 0.046875 M
3 100 150 50 20 0.015625 1.67
4 100 150 50 40 0.015625 5.00
5 100 250 30 20 0.140625 15.00
6 100 250 30 40 0.140625 M
7 100 250 50 20 0.046875 5.00
8 100 250 50 40 0.046875 15.00
9 200 150 30 20 0.046875 –M
10 200 150 30 40 0.046875 –M
11 200 150 50 20 0.015625 –M
12 200 150 50 40 0.015625 –M
13 200 250 30 20 0.140625 5.00
14 200 250 30 40 0.140625 M
15 200 250 50 20 0.046875 1.67
16 200 250 50 40 0.046875 5.00

Let us again assume that the DM analyzes the alternative ai and decides that
the evaluation with respect to Xp should be improved, while the evaluation with
respect to Xq can be decreased. Assuming that a set of potential new proposals
has been generated, the following question arises: how can distributions of point-to-
point trade-offs be compared to identify a new proposal? In this paper SD rules are
employed for comparison of these distributions. We will assume that the decision-
maker is risk-averse, and as a result, FSD and SSD rules can be used for the analysis
of relations between distributions of point-to-point trade-offs.

4 The Procedure

The main ideas of the procedure are as follows:

– A candidate for most preferred solution is presented to the DM at each iteration
– If the DM is satisfied with the proposal – the procedure ends
– Otherwise – the DM is asked to select the attribute to be improved and the

attributes that can be decreased, ordered lexicographically starting with the one
to be decreased first

– Information about relations between trade-offs distributions is used to generate a
new candidate

To start the procedure we have to identify the first proposal. In the approach pre-
sented here, SD rules and min–max criterion are employed in this phase. The first
proposal is identified in the following steps:
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1. Identify SD relations between distributional evaluations for each pair of alterna-
tives and for each attribute.

2. For each alternative compute:

d i D max
p2f1;:::;ng

fdp
i g

where:

d
p
i D card D

p
i

D
p
i D faj W Xp

j �SD X
p
i g

3. Choose the alternative for which Ndi is minimal.

In our problem the evaluations of alternatives with respect to attributes are expressed
by probability distributions. In such a case it is not easy for the DM to compare alter-
natives. On the one hand, the DM is usually interested in maximizing the expected
outcomes, on the other hand, however, he/she finds the variability of outcomes very
important as well. In the approach presented here, as in the INSDECM procedure
(Nowak 2006), it is assumed that the decision maker is able to specify the method
of data presentation. For each attribute he or she may choose one or more scalar
measures to be presented to him or her. Both expected outcome measures (mean,
median, mode) and variability measures (standard deviation, semideviation, proba-
bility of getting outcomes not greater or not less than target value) can be chosen.
Moreover, the DM may change his/her mind while the procedure is in progress, and
specify other sets of measures at successive iterations. For example, while initially
the DM may be interested mainly in the expected outcomes, in subsequent phases
of the procedure he/she may focus on risk measures.

Let us denote:

A.l/ – the set of alternatives considered at iteration l , A.1/ D A
B – the set of potential new proposals
as – the candidate alternative

At each iteration the following steps are executed:

1. Ask the DM to specify the data he/she is interested in – the parameters of dis-
tributional evaluations such as mean, standard deviation, probability of getting
a value not less (not greater) than Ÿ, etc.

2. Compute values of parameters for each alternative under consideration, identify
the best value of each parameter.

3. Present the data to the DM:

– The values of parameters for the candidate alternative as

– Best values of parameters attainable within the set of alternatives

4. Ask the DM whether he/she is satisfied with the proposal. If the answer is YES
– the procedure ends – the proposal is assumed to be the final solution of the
problem.
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5. If the DM is not satisfied with the proposal, ask him/her to specify the attribute
be improved first and to set the order of the remaining attributes, starting from
the one that can be decreased first. Let p be the number of the attribute that the
DM would like to improve, while fq1; q2; : : :; qn�1g is the order of the attributes
that can be decreased.

6. Identify the set of alternatives satisfying the requirements expressed by the DM:

A.lC1/ D
n
ai W ai 2 A.l/; ai ¤ as ;:Xp

s �SD X
p
i

o

If the set A.lC1/ is empty, notify the DM that it is not possible to find an alter-
native satisfying his/her requirements, unless previous restrictions are relaxed.
Then ask the DM whether he/she would like to relax the previous requirements.
If the answer is NO, return to 5. Otherwise, generate the set of alternatives to
be considered in the next phases of the procedure:

A.lC1/ D
n
ai W ai 2 A.1/; ai ¤ as ;:Xp

s �SD X
p
i

o

7. Assume: B D A.lC1/, k D 1.
8. Generate probability distributions of trade-offs T p qk

i s for each i such that
ai 2 B.

9. Compare distributions of trade-offs with respect to SD rules and identify the set
of non-dominated distributions. If the number of non-dominated distributions
is equal to 1, assume the corresponding alternative to be the new proposal and
go to 13.

10. Identify the alternatives with dominated trade-offs and exclude them from the
set B.

11. If k < n � 1, assume k WD k C 1 and go to 8.
12. The trade-offs for each pair of attributes have been compared, and the set of

potential new proposals B still consists of more than one alternative. As the
analysis of trade-offs has not provided a clear recommendation for the new
proposal, analyze the relations between alternatives with respect to attributes.
Start from attribute Xp and identify the set of alternatives with non-dominated
evaluations according to SD rules. If the number of such alternatives is equal
to 1, assume the corresponding alternative to be a new proposal and go to 13.
Otherwise exclude from B the alternatives that are dominated according to SD
rules with respect to attribute Xp. Next, analyze relations with respect to other
attributes. In this phase of the procedure use a reversed lexicographic order of
attributes: qn�1; qn�2; : : :; q1. For each attribute identify the dominated alterna-
tives using SD rules and exclude them from B. Continue until B consists of one
alternative. If all attributes have been considered and B still consists of more
than one alternative, assume any of them to be a new proposal as .

13. Assume l WD l C 1 and go to 1.
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5 Numerical Example

To illustrate our procedure let us consider the project selection problem. Ten pro-
posals are evaluated with respect to four attributes. The evaluations of alternatives
with respect to attributes are presented in Table 3. We assume that the DM is risk-
averse. To identify the first proposal, stochastic dominance relations were identified
(Table 4).

The first proposal is the alternative a6, as d61 D 5, d62 D 5, d63 D 3, d64 D 5,
and d6 D 5. We assume: l D 1,

A.0/ D A D fa1; a2; a3; a4; a5; a6; a7; a8; a9; a10g :

Iteration 1:

1. The DM decides that for each attribute means should be presented in the dialog
phase of the procedure.

2. The data are presented to the decision maker (Table 5).
3. The DM is not satisfied with the proposal.
4. The DM would like to improve the evaluation with respect to attribute X2.
5. The DM sets the order of other attributes starting from the one that can be

decreased first: X3, X4, X1.
6. The alternatives with evaluations that are not dominated by the evaluation of

alternative a6 with respect to attribute X2 are identified:

A.1/ D fa1; a4; a5; a7; a9; a10g

7. To identify a new proposal we analyze the relations between point-to-point
trade-offs for pairs of attributes: .X2; X3/, .X2; X4/, .X2; X1/. The set of
potential new proposals is:

B D A.1/ D fa1; a4; a5; a7; a9; a10g :

8. We start to analyze point-to-point trade-offs with the pair of attributes .X2; X3/.
We generate distributions of trade-offs for each pair .ai ; a6/ such that ai 2 A.1/

and analyze SD relations (Table 6).
9. As distributions of trade-offs for the pairs .a4; a6/, .a5; a6/, .a9; a6/, .a10; a6/

are dominated, the alternatives a4, a5, a9 and a10 are excluded form the set of
potential new proposals:

B D Bn fa4; a5; a9; a10g D fa1; a7g :

10. As the set B consists of more than one alternative, we analyze relations between
trade-offs distributions for the next pair of attributes .X2; X4/. Unfortunately no
SD relations can be identified for this pair of alternatives. The same situation is
for attributes .X2; X1/.
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Table 3 Evaluations of alternatives with respect to attributes
X1 Projects

1 2 3 4 5 6 7 8 9 10

1 1/7 1/7

2 3/7 1/7 2/7 1/7

3 1/7 1/7 2/7 2/7

4 2/7 1/7 2/7

5 2/7 3/7 1/7 3/7 1/7 1/7 2/7 1/7

6 1/7 1/7 2/7 1/7 2/7 1/7

7 1/7 2/7 1/7 1/7 2/7 3/7 1/7

8 2/7 2/7 1/7 1/7 1/7 1/7

9 3/7 2/7

10 2/7 1/7 1/7

X2 Projects

1 2 3 4 5 6 7 8 9 10

1 1/7 3/7

2 3/7 2/7 3/7 1/7

3 1/7 1/7 1/7 4/7 1/7

4 1/7 1/7 1/7

5 1/7 2/7 1/7

6 1/7 1/7 1/7 2/7 1/7 1/7

7 1/7 1/7 1/7 4/7 2/7

8 2/7 1/7 3/7 2/7 2/7 3/7 3/7

9 3/7 1/7 1/7 1/7 2/7

10 1/7 1/7

X3 Projects

1 2 3 4 5 6 7 8 9 10

1 2/7 1/7

2 1/7 3/7 2/7

3 1/7 4/7 1/7 1/7 1/7

4 3/7 1/7 1/7 2/7

5 2/7 1/7 1/7 2/7

6 1/7 2/7

7 1/7 2/7 1/7 2/7 2/7

8 1/7 4/7 2/7 2/7 3/7 2/7

9 1/7 3/7 1/7 1/7 1/7 3/7

10 2/7 2/7 1/7

X4 Projects

1 2 3 4 5 6 7 8 9 10

1 2/7

2 1/7

3 3/7 1/7

4 1/7 1/7

5 2/7 2/7 1/7 1/7

6 1/7 1/7 1/7 3/7 3/7

7 1/7 1/7 1/7 1/7

8 1/7 4/7 4/7 1/7 3/7 2/7 3/7 3/7 1/7 1/7

9 2/7 1/7 1/7 1/7 1/7 1/7

10 1/7 1/7 2/7 1/7 1/7 1/7 3/7 1/7 1/7
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Table 4 Stochastic dominance relations between distributional evaluations
X1 Projects

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 FSD

a2 FSD FSD FSD FSD FSD FSD FSD FSD

a3 FSD SSD FSD FSD FSD

a4 FSD FSD FSD FSD FSD FSD FSD FSD

a5 FSD SSD FSD FSD FSD

a6 FSD

a7 FSD FSD FSD

a8

a9 FSD SSD SSD FSD FSD FSD

a10 SSD FSD

X2 Projects

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 FSD FSD FSD FSD FSD FSD FSD FSD FSD

a2 FSD

a3 FSD FSD

a4 FSD FSD FSD FSD FSD

a5 FSD FSD SSD FSD FSD FSD

a6 FSD SSD FSD

a7 FSD FSD FSD FSD FSD FSD FSD SSD

a8

a9 FSD SSD SSD FSD

a10 FSD FSD FSD

X3 Projects

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 FSD FSD SSD

a2

a3 FSD FSD SSD FSD SSD SSD FSD FSD FSD

a4 FSD FSD FSD FSD FSD

a5 FSD

a6 FSD FSD FSD FSD FSD

a7 FSD FSD SSD FSD SSD SSD FSD FSD

a8 FSD FSD SSD FSD SSD FSD FSD

a9 FSD FSD SSD

a10 FSD

X4 Projects

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 SSD

a2 FSD SSD FSD FSD FSD FSD FSD FSD

a3 FSD FSD FSD FSD FSD FSD FSD

a4

a5 FSD FSD FSD FSD FSD FSD

a6 FSD FSD SSD FSD

a7 FSD FSD FSD

a8 FSD FSD FSD FSD FSD FSD FSD FSD FSD

a9 FSD

a10 FSD FSD SSD FSD
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Table 5 Data presented to the DM at iteration 1

Mean

X1 X2 X3 X4

a6 5,714 5,000 7,714 7,571
Max 8,143 8,429 8,429 9,000

Table 6 Iteration 1 – SD relations between trade-offs for attributes .X2; X3/

T 2 316 T 2346 T 2 35 6 T 2 37 6 T 2 39 6 T 2 310 6

T 2 31 6 SSD FSD FSD FSD
T 234 6 SSD FSD FSD
T 235 6 SSD
T 237 6 FSD FSD FSD FSD
T 239 6
T 2 3106 SSD

11. As relations between trade-offs for each pair of attributes have been analyzed
and the set of potential new proposals still consists of more than one alternative,
we analyze relations between the alternatives a4 and a7 with respect to the
attribute that should be improved, that is, X2. As X2

1 �FSD X2
7 , we assume the

alternative a1 to be a new proposal.

The procedure is continued in the same way, until the DM is satisfied with the
proposal.

6 Conclusions

In many cases, the DM faced with a candidate solution is able to answer the sim-
plest questions only: which attribute should be improved and which attributes can
be decreased. In such a situation trade-offs can be used for generation of a new
proposal. When the evaluations of alternatives with respect to attributes are charac-
terized by random variables, a point-to-point trade-off is characterized by a random
variable as well.

In this paper a new interactive procedure based on the treatment of trade-offs has
been proposed. The procedure requires a limited amount of preference information
from the DM.

The procedure presented in this work can also be applied for mixed problems,
i.e. problems in which evaluations with respect to some attributes take the form of
probability distributions, while the remaining ones are deterministic.

The proposed technique may be useful for various types of problems in which
uncertain outcomes are compared. It has been designed for problems with up to
moderate number of discrete alternatives (not more than hundreds) and can be
applied in such areas as, for example, inventory models, evaluation of investment
projects, production process control, and many others.
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Interactive Multiobjective Optimization
for 3D HDR Brachytherapy Applying
IND-NIMBUS

Henri Ruotsalainen, Kaisa Miettinen, and Jan-Erik Palmgren

Abstract An anatomy based three-dimensional dose optimization approach for
HDR brachytherapy using interactive multiobjective optimization is presented in
this paper. In brachytherapy, the goals are to irradiate a tumor without causing
damage to healthy tissue. These goals are often conflicting, i.e. when one target is
optimized the other one will suffer, and the solution is a compromise between them.
Our interactive approach is capable of handling multiple and strongly conflicting
objectives in a convenient way, and thus, the weaknesses of widely used optimiza-
tion techniques (e.g. defining weights, computational burden and trial-and-error
planning) can be avoided. In addition, our approach offers an easy way to navigate
among the obtained Pareto optimal solutions (i.e. different treatment plans), and
plan quality can be improved by finding advantageous trade-offs between the solu-
tions. To demonstrate the advantages of our interactive approach, a clinical example
of seeking dwell time values of a source in a gynecologic cervix cancer treatment is
presented.

1 Introduction

Radiation’s delivery in high-dose-rate (HDR) intracavitary brachytherapy using
an afterloading unit is realized by using temporarily implanted catheters: a pro-
grammable remote unit moves a single radioactive source along catheters. This
system produces a high-dose region centered on the planning target volume while
sparing the adjacent bladder and bowel. The flexibility of this system allows it to be
tailored to a variety of different patient anatomy and cancer types because a wide
variety of dose distributions can be generated from a given implant simply by adjust-
ing the length of time (dwell time) that the source dwells at any location within a
catheter (dwell position). In clinics, this flexibility allows the full benefit of the use
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of three-dimensional (3D) planning system based on computer tomography (CT) or
magnetic resonance imaging (MRI).

However, the increased flexibility in treatment applications and imaging increases
also the complexity in the treatment planning. A patient domain can be divided into
three different parts based on a patient anatomy: a planning target volume (PTV),
dose sensitive organs at risk (OARs) and healthy normal tissue (NT). The OARs and
NT are typically near the PTV, and thus, they may be unnecessarily overdosed. To
maintain a complete coverage of the PTV and simultaneously reduce the dose to NT
and OARs, the dose distribution should be as conformal as possible to the relevant
anatomy.

Recently, there has been interest in using multiobjective optimization in brachy-
therapy treatment planning (e.g. Yu, 1997; Lahanas et al., 1999; Yu et al., 2000;
Lessard et al., 2006). This is because the aim of brachytherapy is to treat the tumor
without affecting healthy tissue but, naturally, increasing the dose in the tumor also
increases the unwanted dose in surrounding healthy tissue. Thus, when one tar-
get is optimized, the other will suffer, and the solution is a compromise between
them. This trade-off is complex, and optimization tools capable of handling multiple
and conflicting objectives are naturally required. The multiobjective optimization
approaches presented in the literature are based on using objective weights defined
beforehand, where the final objective function is expressed as a weighted sum of
the conflicting objectives (e.g. Milickovic et al., 2002; Lahanas and Baltas, 2003).
In these cases, objectives are often formulated as using penalties where exceed-
ing predefined upper limits for doses are penalized (e.g. Lahanas et al., 2003b).
Unfortunately, it is typically hard to predefine the priorities or weights of the opti-
mization targets. Moreover, sometimes information about objectives and even the
practical relevance of the objective functions can become blurred if the objectives
are expressed as a sum. Furthermore, penalizing only the overdose should not be
the actual goal as we argue in this paper. Alternatively, evolutionary algorithms (e.g.
Lahanas et al., 2001; Milickovic et al., 2001) have been used, too. These methods
have their own difficulties because they are very time consuming requiring a lot
of calculation when computing a large set of approximating solutions. The simi-
lar optimization methods and methods for comparing different solutions have been
studied also in a similar context in intensity modulated radiotherapy (IMRT) treat-
ment planning in Romeijn et al. (2004), Craft et al. (2005), Hoffmann et al. (2006),
Holder (2006), Craft et al. (2007), Thieke et al. (2007), Monz et al. (2008), Craft
and Bortfeld (2008) and Ehrgott and Winz (2008).

To overcome some shortcomings of currently used approaches, we exploit an
interactive multiobjective optimization method for 3D HDR brachytherapy opti-
mization in this paper. The real multiobjective nature of the problem is taken into
account in the problem formulation and in the interactive solution process. For some
reason, interactive multiobjective optimization methods have not been studied in the
field of brachytherapy optimization before. The studies where brachytherapy treat-
ment plan has been optimized are based on a priori methods or a posteriori methods.
However, according to our knowledge, an interactive multiobjective optimization
method is ideal for brachytherapy optimization, and we demonstrate the advantages
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of our interactive approach by an example of a treatment plan of cervical cancer.
In this study, our interactive approach is used to determine the dwell time values
needed to fulfill the prescribed dose to the tumor and to minimize dose in each
organ at risk. In our approach, the decision maker’s (i.e. treatment planner’s) knowl-
edge and preferences are used during the iterative optimization process to direct the
search in order to find the most preferred plan, that is, the best Pareto optimal solu-
tion, as it is called, between the conflicting treatment planning targets. This makes
treatment planning times shorter, and good trade-offs between the targets can be
found to improve the treatment plan’s quality. Furthermore, the interactive approach
improves the decision makers control over treatment: with this system, the treatment
planner plays directly with the compromises between target coverage and protection
of organs at risk instead of with dwell positions, dwell times, and objective weights.
This approach brings the planning process near to the real clinical issues avoiding
artificial simplifications, and when compared to the currently used trial-and-error
method, our approach guarantees the mathematical optimality of the final solution,
i.e. treatment plan. Here, by mathematical optimality we refer to Pareto optimal-
ity which means that any of the targets cannot be improved without impairing at
least one other target at the same time. Pareto optimality is not guaranteed by trial-
and-error method used at the clinics in which some of the targets could still be
improved without deteriorating other targets. It is important to point out that these
kinds of tools are designed to assist human treatment planners in their work, not to
replace them.

2 Methods

2.1 Dose Calculation

Before optimization, the dose distribution in a patient needs to be calculated. The
dose D.xi / D Di at the i th sampling point xi is calculated by

Di D
pX

jD1

tjdij ; (1)

where p is the number of sources, tj is the dwell time of the j th source dwell
position and dij is the kernel value, i.e. dose value, for the i th dose calculation point
and j th source dwell position. The dose rate matrix dij can be calculated using the
following equation according to TG43 (Nath et al., 1995; Rivard et al., 2004):

dij D Skƒˆan.; rij /g.rij /=r
2
ij ; (2)

where Sk is the air kerma strength, ƒ is the dose-rate constant, ˆan.; rij / is the
anisotropy function, g.rij / is the radial dose functions, and rij the distance between
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the dwell position j and the dose calculation point i (point source). In this paper,
we use (1) for dose calculations (anisotropy of a patient is neglected). In interactive
multiobjective optimization, the dwell times tj are the decision variables.

2.2 Objective Function Formulation

The aim of brachytherapy treatment planning is to obtain a plan which covers the
PTV with at least some specified dose valueDPTV, which is case-specific depending
on the type of the tumor. In addition to this, there is an upper bound for the dose
in NT and the OAR which should not be exceeded. We denote these bounds by
DNT and DOAR. Traditionally in optimization, dwell times t are sought so that the
above-mentioned requirements are fulfilled, that is

Di � DPTV; i 2 IPTV;

Di � DNT; i 2 INT;

Di � DOAR; i 2 IOAR;

(3)

where IPTV, INT and IOAR present indexes of sampling points located in a region
PTV, NT and OAR, respectively. In the literature, several different objective func-
tions have been used to fulfill these requirements; variance based objective functions
(e.g. Lahanas et al., 2003a) or dose volume histogram based objective functions (e.g.
Lahanas et al., 2003b), for example. In addition, the formulation used in Lessard and
Pouliot (2001) and Lessard et al. (2002) is well known. However, let us point out
that even though (3) describes an acceptable solution, it is important to carefully
think what should actually be optimized: the goal is that the dose in NT and OAR
should be as low as possible (minimized), not only under the predefined bounds.

Now, based on the fact that we want to minimize the dose in NT and OAR
(i.e. not only the dose exceeding limits DNT and DOAR), objective functions can
be formulated (in a discrete form) as

f1.t/ D jI QPTVj
jIPTVj ; (4)

f2.t/ D 1

jINTj
X

i2INT

Di ; (5)

f3.t/ D 1

jIOARj
X

i2IOAR

Di (6)

and
f4.t/ D max

i2IPTV

Di ; (7)
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where t is a vector of dwell time values, and jIPTVj, jIOARj and jINTj denote num-
ber of sampling points, i.e. size of the set, in a region (PTV, OAR and NT). Because
of the computational reasons, all the sampling points are situated on the surface of
the region, and thus a maximum dose inside the PTV is not an objective but it is con-
trolled later. Here, jI QPTVj represents the number of sampling points in the PTV that
have a dose value bigger than the dose limit DPTV. Thus, the function f1 represents
a percentual volume where the dose is higher or equally high to the prescribed dose
DPTV in the PTV, and it is maximized. The functions f2 and f3 are the averaged
doses on the surface of NT and the OAR, respectively, to be minimized. If there are
multiple OARs (as also here in the example), there are as many objective functions
each similar to f3. The objective function f4 describes the maximum dose on the
surface between the PTV and NT (because the sampling points are situated on the
surface of the PTV). With these objective functions, the unwanted dose in NT and
the OAR is really minimized, not only penalized if it exceeds predefined upper lim-
its for doses as it is often presented in the literature, see Lahanas et al. (2003b), for
example.

2.3 Multiobjective Optimization

2.3.1 Multiobjective Optimization Problem

A multiobjective optimization problem can be defined as follows (Miettinen, 1999)

minimize ff1.t/; f2.t/; : : : ; fk.t/g
subject to t 2 S; (8)

where t is a vector of decision variables from the feasible set S � Rn defined
by linear, nonlinear and box constraints. We can denote an objective vector by
f.t/ D .f1.t/; f2.t/; : : : ; fk.t//

T . Furthermore, we denote the image of the feasible
set by f.S/ D Z and call it a feasible objective set. In multiobjective optimiza-
tion, optimality is understood in the sense of Pareto optimality (Miettinen, 1999).
A decision vector t 0 2 S is Pareto optimal if there does not exist another decision
vector t 2 S such that fi .t/ � fi .t

0/ for all i D 1; : : : ; k and fj .t/<fj .t
0/ for

at least one index j . These Pareto optimal solutions form a Pareto optimal set. All
the solutions are equally good from a mathematical point of view, and they can
be regarded as equally valid compromise solutions of the problem. There exists no
trivial mathematical tool in order to find the best solution in the Pareto optimal set
because vectors cannot be ordered completely. That is why we need some additional
information.

Typically, a decision maker, who is an expert in the field from where the problem
has arisen (here, a treatment planner), is needed in order to find the best or most
satisfying solution, called the final one. The decision maker can participate in the
solution process, and, in one way or another, determine which of the Pareto optimal
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solutions is the most satisfying to be the final solution. It can be useful for the
decision maker to know the ranges of objective function values in the Pareto optimal
set. An ideal objective vector z� 2 Rk gives lower bounds for the objective functions
in the Pareto optimal set and it is obtained by minimizing each objective function
individually subject to the constraints. A nadir objective vector znad giving upper
bounds of objective function values in the Pareto optimal set is usually difficult to
calculate, and thus its values are usually only approximated by using pay-off tables,
for example (see Miettinen, 1999 for details).

According to Miettinen (1999), the methods developed for multiobjective opti-
mization can be divided into four classes depending on the role of the decision
maker. There are methods for use when no decision maker is available. In these
methods, the final solution is some neutral compromise solution. In the three other
classes, the decision maker participates in the solution process beforehand, after-
wards or iteratively: these methods are called the a priori, a posteriori and interactive
methods, respectively. It can be difficult for the decision maker to specify prefer-
ences before the solution process has started and, on the other hand, generating
many Pareto optimal solutions for the decision maker to compare can be compu-
tationally costly. It is also problematic to compare many solutions without setting
too much cognitive load on the decision maker. Consequently, and encouraged by
experiences reported in Ruotsalainen et al. (2006), we concentrate in this paper on
interactive methods.

2.3.2 The Interactive Multiobjective Optimization Method NIMBUS

In this paper, we integrate an anatomy based 3D HDR brachytherapy dose calcula-
tion model with an interactive multiobjective optimization method. The method we
use is NIMBUS (Miettinen, 1999; Miettinen and Mäkelä, 2006, 1995). This method
has been successfully used in external radiotherapy treatment planning optimization
in an academic case with a simple pencil beam model in Ruotsalainen et al. (2006).

In interactive multiobjective optimization methods, the information given to and
required from the decision maker must be easily understandable. The NIMBUS
method is based on the idea of classification of objective functions. It is known that
classification can be considered an acceptable task for human decision makers from
a cognitive point of view (Larichev, 1992). In NIMBUS, the decision maker partic-
ipates in the solution process iteratively and continuously. Finally, he/she decides
which of the Pareto optimal solutions obtained is the most desired one. During
the solution process, the decision maker classifies objective functions at the current
Pareto optimal point into up to five classes. The classes are the following:

– I imp functions whose values should be improved
– I asp functions whose values should be improved up to a desired aspiration level Oz
– I sat functions whose values are satisfactory
– I bound functions whose values can be impaired up to a given bound �
– I free functions whose values can change freely
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Since all the solutions considered are Pareto optimal, the decision maker cannot
make a classification where all the objective function values should improve with-
out allowing at least one of the objective functions to be impaired. The aspiration
levels and the bounds are elicited from the decision maker during the classification
procedure if they are needed.

By classifying the objective functions, the decision maker gives preference
information about how the current solution should be improved. Based on that, a
scalarized single objective optimization problem (a subproblem, as we call it) can
be formed, and it can be solved with an appropriate solver. Here, we use a syn-
chronous NIMBUS method (Miettinen and Mäkelä, 2006). In this method, there are
four different subproblems available, so the decision maker can choose whether to
see one to four new solutions after each classification. Each subproblem generates a
new Pareto optimal solution that satisfies the preferences given in the classification
as well as possible, but the preferences are taken into account in slightly differ-
ent ways (Miettinen and Mäkelä, 2002). The decision maker can use any solution
obtained so far as a starting point for a new classification, and interesting solu-
tions can also be saved in a database, so that the solution process can be continued
later from any of them. Alternatively, the decision maker can generate a desired
number of Pareto optimal intermediate solutions between any two solutions. This
capacity differs from many other approaches used in treatment planning where inter-
mediate solutions are only approximated, see, e.g. Monz et al. (2008). For more
information about the NIMBUS algorithm, the scalarizations used and ways of aid-
ing comparison of Pareto optimal solutions generated with different visualizations,
see Miettinen and Mäkelä (2006).

3 Results

3.1 Problem Settings

Here, a clinical example of seeking dwell time values of a source in a gynecologic
cervix cancer treatment is presented. In the example, Fletcher–Suit intracavitary
applicator system was used to deliver the radiation, and there were 17 possible dwell
positions (resolution of 5 mm in three applicators). Thus, the number of continuous
decision variables was 17. In addition, the number of sampling points in computa-
tions was 508. The problem contained box constraints for the decision variables (i.e.
dwell times). In the example, there were two OARs (bladder and rectum, sigma was
not adjacent to the tumor), and thus, there were two objective functions similar to
f3 (f bladder

3 and f rectum
3 ).

In the example, all the simulations were carried out with the mathematical soft-
ware Matlab R R2006b after the patient geometry (anatomy and sampling points)
was generated with a treatment planning software (BrachyVision R, Varian Med-
ical Systems, software version 7.3.10) at the Kuopio University Hospital. The
optimization was done with a personal computer (Pentium R 4 CPU 3.00 GHz with
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2 GB central memory). For interactive multiobjective optimization, an implementa-
tion of the NIMBUS method, called IND-NIMBUS R was used Miettinen (2006).
A global optimization method (computation time was minutes per classification with
the presented PC) was used to solve the formed subproblem in IND-NIMBUS. This
optimization method does not require continuity of the objective functions.

3.2 Fletcher–Suit Applicator Example

The optimization problem used for the demonstration of the proposed interactive
multiobjective optimization approach has the form

optimize ff1.t/; f2.t/; f
bladder

3 .t/; f rectum
3 .t/; f4.t/g

subject to t 2 S; (9)

where t is a vector of continuous decision variables, and S D Œ0; 100� � Œ0; 100� �
� � � � Œ0; 100� � R17. Objective functions f1 � f4 are defined in Sect. 2.2: the value
of f1 represents the percentual value of sampling points in the PTV which has a
dose value higher than the dose limit DPTV (7 Gy), and values f2; f

bladder
3 ; f rectum

3

represent averaged dose values in NT, bladder, and rectum, respectively (in gray).
Finally, f4 is the maximum dose on the surface between the PTV and NT (in gray).

3.2.1 Interactive Solution Process

The interactive solution process (i.e. moving from one Pareto optimal solution to
another) was guided by preference information of a treatment planner, who was
acting as a decision maker. Before the solution process, the decision maker had the
following desires: the percentual value of sampling points in the PTV that have a
dose value higher than the dose limit DPTV should be maximized (f1). At the same
time, the averaged doses in NT and both OARs should be minimized (f2, f bladder

3 ,
f rectum

3 ). Since the objective function f4 shows the maximum dose on the surface
between the PTV and NT, the decision maker wanted to minimize it, too. At the
very beginning, the objective functions had the initial values (generated by IND-
NIMBUS) f1 D 0:58; f2 D 9:89; f bladder

3 D 1:96; f rectum
3 D 3:13 and f4 D 96:80

(initial solution f.t1/). As can be seen from the initial objective function values f.t1/,
the f1 value was certainly too low (f1 D 0:58, i.e. 58% of the PTV received higher
dose thanDPTV which was 7 Gy). Nevertheless, the objective functions f2; f

bladder
3

and f rectum
3 were in a good level and, thus, the dose in NT and the OARs was low but,

as said, at the same time the dose in the PTV was too low and the tumor would not
be treated properly. Thus, the decision maker wanted to search for a better solution
in an iterative way. He started to classify the functions and generated new solutions
(see classes in Sect. 2.3.2), and in this way declared his preferences and steered
the solution process interactively and iteratively towards the most satisfying Pareto
optimal solutions.
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Table 1 Summary of interactive solution process. Bounds and aspiration levels used are denoted
as superscripts in the classification notation

Solution f1.�/ f2.Gy/ f bladder
3 .Gy/ f rectum

3 .Gy/ f4.Gy/

Ideal 1 0 0 0 0
Nadir 0 25.82 4.64 7.72 744.33

Initial solution
f.t 1/ 0.58 9.89 1.96 3.13 96.80

1st classification I asp 0:70 I free I bound 2:00 I asp 2:00 I free

f.t 2/ 0.58 9.55 1.98 2.74 135.89

2nd classification I imp I free I bound 2:00 I asp 2:00 I free

f.t 3/ 0.83 11.18 2.67 3.29 55.18
f.t 4/ 1.00 15.86 3.34 4.05 109.89
f.t 5/ 0.79 11.57 2.55 3.24 76.85

Intermediate sol.a

f.t 6/ 0.64 9.87 2.12 2.86 64.23
f.t 7/ 0.69 10.02 2.24 2.90 62.11
f.t 8/ 0.71 10.44 2.36 3.04 52.23
f.t 9/ 0.73 10.50 2.35 3.15 52.23
f.t 10/ 0.76 10.87 2.45 3.22 54.00
a Intermediate solutions between f.t 2/ and f.t 3/

In the 1st classification, as said, he wanted to obtain a better value to f1 (aspi-
ration level 0.70) and simultaneously maintain the good values of f3 and f4 (save
the OARs). Thus, he set a bound to f bladder

3 , and an aspiration level to f rectum
3 . The

bound and aspiration level both were 2.00. At the same time, he had to allow some
other targets (f2 and f4) to get worse. That is, the classification was f1 W I asp 0:70,
f2 W I free, f bladder

3 W I bound 2:00, f rectum
3 W I asp 2:00 and f4 W I free, and he wanted to

generate one new solution (solutions are collected in Table 1). After the first clas-
sification, the decision maker obtained a better solution (f.t2/) because the rectum
(f rectum

3 D 2:74), which he considered very important, obtained smaller dose value
than in solution f.t1/, but still f1 was too low according to his preferences. Because
of this reason, he decided to do a 2nd classification using the solution f.t2/ as a
starting point of the classification. In this classification, the decision maker wanted
to improve f1 as much as possible, and again, he set a bound to f bladder

3 , and an aspi-
ration level to f rectum

3 to maintain the good levels of these objectives. In addition,
the decision maker allowed f2 and f4 to change freely. Therefore, the classifica-
tion was f1 W I imp, f2 W I free, f bladder

3 W I bound 2:00, f rectum
3 W I asp 2:00 and f4 W I free.

After the second classification, the decision maker obtained three new solutions hav-
ing excellent f1 values, but, at the same time, values of other objectives were not
so good (Table 1). That is why he wanted to generate five intermediate solutions
between the solutions f.t2/ and f.t3/, which had good values of objectives f bladder

3

and f rectum
3 , and f1, respectively. Intermediate solutions represent compromise solu-

tions between the conflicting treatment planning targets, and the decision maker was
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able to choose the best Pareto optimal solution according to his knowledge to be the
final solution, i.e. the final treatment plan. That solution was f.t9/, in which the
objective values were f1 D 0:73; f2 D 10:50; f bladder

3 D 2:35; f rectum
3 D 3:15

and f4 D 52:23. As can be seen in Figs. 1 (left) and 2, all the requirements of the

Fig. 1 Left, the final dose distribution with interactive multiobjective optimization (solution f.t 9/)
from three different point of views (x, y, and z-direction), and right, for comparison, solution
obtained with BrachyVision R� optimization
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Fig. 2 For comparison, dose volume histograms of OARs. Dose volume histogram values start to
decrease faster in IND-NIMBUS solution than in solution obtained with Brachyvision R�

treatment plan were taken into account as well as possible: harmful dose in rectum
and bladder was minimized and the prescribed dose in the PTV was delivered. Thus,
the treatment plan was clinically acceptable.

All the solutions obtained and steps taken by the decision maker during the
solution process are collected in Table 1. In this table, the starting point of a new
classification and the final solution are given in bold face. Let us add that a more
thorough description of a typical process of classifying objective functions in a
radiotherapy case and steering the optimization process is presented in Ruotsalainen
et al. (2006).

3.2.2 Comparison and Discussion

In this example, we have shown how our interactive approach can handle the
strongly conflicting objective functions in a cervix cancer case. As can be seen
in Fig. 3 (a display of IND-NIMBUS software), the solutions obtained can be
compared and carefully studied during the interactive solution process. Thus, the
decision maker is better prepared to make the final decision, i.e. choose the final
treatment plan, after analyzing the isodose maps (Fig. 1), dose volume histograms
(Fig. 2), graphical information (Fig. 3), and numerical information (Table 1 and
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Fig. 3 All the solution obtained during the optimization process can be compared also with a
graphical tool in IND-NIMBUS. On the left, the final solution f.t 9/ presented with bars describing
objective function values, and, on the right, all 10 solutions generated. On the lower-right, best
candidates, that is, solutions used in classifications and generating intermediate solutions

Fig. 3). Compared to the trial and error method or methods demanding a large
database of Pareto optimal solutions, our approach makes treatment planning times
shorter, and a good trade-offs between the objectives can be found to improve the
treatment plan’s quality. A good example of this trade-off information can be seen
in Table 1: when comparing solutions f.t1/ and f.t2/, the dose in the rectum could
be decreased without losing the target coverage, for example.

For comparison, in Figs. 1 (right) and 2, a treatment plan obtained with the
BrachyVision R optimization tool is presented. Further, in Table 2, there are tar-
get’s 90% dose value and OARs’s 2 cm3 dose volume histogram point values
presented. When comparing the two solutions, it can be seen from Fig. 2 that dose
volume histogram values start to decrease faster in IND-NIMBUS solution than in
BrachyVision R solution. However, from Table 2 we can see that dose (2 cm3) in
bladder and rectum is smaller in solution obtained with BrachyVision R, but, at the
same time, the PTV (90%) is covered with radiation better and the dose in sigma
(2 cm3) is smaller in the solution obtained with interactive multiobjective optimiza-
tion. These results are one evidence more showing that the radiotherapy objectives
are in conflict, and tools capable to help the decision maker (treatment planner) in
navigating among different optimal treatment plans are needed.
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Table 2 Comparison of target 90% values and OAR 2 cm3 values

Interactive method (Gy) BrachyVision R�(Gy)

Target 90% 7.32 7.23
Bladder 2 cm3 5.24 5.06
Rectum 2 cm3 5.64 5.01
Sigma 2 cm3 1.38 1.61

4 Conclusions

In this paper, we have presented a new interactive multiobjective optimization
approach for anatomy based 3D HDR brachytherapy optimization. In this research,
the multiobjective nature of the problem has been genuinely taken into account in
the problem formulation and in the interactive solution process which was directed
by a treatment planner. We have demonstrated the advantages of our interactive
approach by an example of a clinical gynecologic cancer.

In this study, our interactive approach has been used to determine the dwell time
values needed to fulfill the prescribed dose to the tumor and to minimize dose in
each organ at risk. In our approach, the decision maker’s (i.e. treatment planner’s)
knowledge and preferences are used during the iterative optimization process to
direct the search in order to find the most preferred treatment plan. This can make
treatment planning times shorter and improve the treatment plan’s quality. In addi-
tion, let us point out that our interactive approach is capable of handling multiple
and strongly conflicting objectives in a convenient way, and thus, it offers a possibil-
ity to navigate among the obtained Pareto optimal solutions (i.e. different treatment
plans).

In the presented example, there were 17 continuous decision variables and 508
sampling points. The amount of variables can easily be increased even to hundreds
in more complex cases and there can be thousands of sampling points. In addi-
tion, there were only box constraints for variables. However, it is easy to add any
other constraints to our interactive multiobjective optimization approach if needed.
In addition, the idea of classifying objective functions is practical and computation
is fast also with different numbers of objective functions. The number of objective
functions can be increased, but naturally the cognitive load of the decision maker
increases.

Finally, let as add that this approach brings the planning process near to the
real clinical issues: with this system, the treatment planner plays directly with the
compromises between a target coverage and protection of organs at risk instead
of with dwell positions, dwell times, and objective weights. Whenever a trial-and-
error method is used, there are no guarantees for the (Pareto) optimality of the final
solution. Opposite to this, our approach avoids this shortcoming. These kinds of
tools are not intended to replace human treatment planners, but to support them in
their work.
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Miettinen K, Mäkelä MM (1995) Interactive bundle-based method for nondifferentiable multiob-
jective optimization: NIMBUS. Optimization 34:231–246
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Ruotsalainen H, Boman E, Miettinen K, Hämäläinen J (2006) Interactive multiobjective optimiza-
tion for IMRT. Working Papers W-409. http://hsepubl.lib.hse.fi/pdf/wp/w409.pdf
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Multicriteria Ranking Using Weights
Which Minimize the Score Range

Chris Tofallis

Abstract Various schemes have been proposed for generating a set of non-subjective
weights when aggregating multiple criteria for the purposes of ranking or selecting
alternatives. The maximin approach chooses the weights which maximise the low-
est score (assuming there is an upper bound to scores). This is equivalent to finding
the weights which minimize the maximum deviation, or range, between the worst
and best scores (minimax). At first glance this seems to be an equitable way of
apportioning weight, and the Rawlsian theory of justice has been cited in support.

We draw a distinction between using the maximin rule for the purpose of assess-
ing performance, and using it for allocating resources amongst the alternatives. We
show that it has a number of drawbacks which make it inappropriate for the assess-
ment of performance. Specifically, it is tantamount to allowing the worst performers
to decide the worth of the criteria so as to maximise their overall score. Further-
more, when making a selection from a list of alternatives, the final choice is highly
sensitive to the removal or inclusion of alternatives whose performance is so poor
that they are clearly irrelevant to the choice at hand.

1 Introduction

One of the most influential works in the area of moral and political philosophy in
the last 50 years has been John Rawls’s A Theory of Justice (1971). Rawls rejects
the utilitarian idea of “the greatest good for the greatest number”. This is a con-
cept which the multi-criteria decision community would recognize as being fraught
with difficulties. These include the fact that “the good” is likely to be a multi-factor
concept, and that we are also dealing with multiple stakeholders holding different
views. It is important to note that even if there were agreement on how to measure
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and then aggregate the overall good of the population, it does not follow that maxi-
mizing it would provide any form of social justice unless of course such justice was
built into the definition of “the good”. Rawls viewed “justice as fairness” and felt
that the worst off should not be made even worse. In particular, if public resources
are to be distributed unequally, then the worst off should benefit the most. Rawls
referred to this as the “difference principle”.

Rawls has been cited in support of using the maximin rule for weighting cri-
teria by Pettypool and Karathanos (2004). They proposed the rule for the pur-
pose of appraising the work of employees under a number of criteria. Butler and
Williams (2002) use the maximin rule in sharing out the fixed costs associated with
shared facilities. In support of it they cite work based on experiment and survey:

A variety of fairness criteria are discussed in the seminal paper of Yaari and Bar-Hillel (1984).
They conducted a series of experiments to see which of nine possible criteria were consid-
ered most fair by a sample of people questioned. In relation to needs, an allocation based
on minimizing the maximum inequality was overwhelmingly considered the most fair.

One field where the minimax concept is widely used is in location problems.
When choosing locations for emergency facilities (police, ambulance, firefighting)
or other public offices or services, this method selects locations so as to minimize the
maximum travel time or distance to any person who is being served. The method has
been criticized (e.g. Ogryczak 1997) because if there is a single recipient (or a small
cluster) that is located far from the vast majority, then a location may be selected
which is far from all recipients. There is thus seen to be a disproportionate effect on
the decision by a tiny minority of the recipients. We shall see that a similar difficulty
arises when applying the minimax concept to multicriteria weighting.

The minimax objective is also used as an alternative to least squares in regres-
sion. It involves minimizing the largest deviation or residual. This is an appropriate
objective if the error distribution is uniform; this can arise when the errors arise as
a result of rounding, e.g. a digital measurement device will have a limited number
of digits to display. This type of regression is not appropriate if there are outliers in
the data, as these will severely distort the resulting model.

Another application of the maximin objective is in the allocation of highway
patrol officers to districts so as to ensure that all districts experience a reduction
in speeding; the aim was to maximize the minimum reduction in the number of
speeding offences (Rardin 1998, p. 158). In the field of scheduling jobs numerous
objectives are used, one of these is to minimize the maximum lateness (Rardin 1998,
p. 605). It is also used to minimize maximum congestion or bottlenecks. Du (1996)
surveys the field of minimax applications.

2 Geometric Representation

The maximin concept has been used in the assessment of performance by a number
of authors. For example, Karsak and Ahiska (2005) and Karsak (2004) consider the
problem of attaching weights to the various outputs (criteria of the type “more is
better”) when there is a single input. To create an efficiency score each output is
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divided by the input and then weights are attached to each of these ratios. In DEA
(data envelopment analysis) each alternative has its own weights. These are chosen
so as to optimize the score for that alternative. Because this method attaches differ-
ent weights for each alternative, this leads to the generation of an efficient frontier
which is made up of piecewise linear segments. In DEA all the alternatives on the
frontier are given the same score of 100%. In an effort to increase the discrimination
between such units and identify a preferred alternative, they seek a common set of
weights to be used across all alternatives. These non-negative weights are chosen
so as to maximize the minimum score (maximin), subject to the condition that all
scores do not exceed 100%. In criterion space a set of common weights corresponds
to a line or plane.

Figure 1 shows an example involving two criteria. According to DEA, points A,
B and C are ranked first with the maximum score, and ABC delineates the DEA
frontier. In DEA alternative P has a score given by the ratio OP=OP0, where P0 is the
point where the ray OP intersects the frontier. Because P0 lies between A and B, the
corresponding weights are determined by the slope of the line AB. Point T however
would be assessed relative to the line segment BC, which corresponds to a different
set of criteria weights. Of the points shown in Fig. 1, P would have the lowest score.
If we now depart from the piecewise frontier in favour of a single set of common
weights based on the maximin rule, we shall have a single extended line frontier.
We shall have to choose weights which maximize P’s score, and so the frontier will
be AB (extended). Notice that the particular line segment and hence weights, are
chosen by reference to the worst performing alternative. This in itself is strange
because the frontier is supposed to represent best practice, and yet its location is
crucially influenced by an alternative displaying worst practice.

Troutt et al. (1993) use the maximin rule as a way of further ranking those alter-
natives which have all been given the same 100% efficiency score from a data
envelopment analysis. This differs from the above in that only efficient alternatives
are considered at this second stage. Hence the worst performers cannot influence

Fig. 1 Having a common set of weights (with an upper limit to the overall score) means that a line
such as AB or BC acts as the frontier. The slope of such a line determines the weights
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Fig. 2 When we attempt to project alternative R onto the frontier we find that its “target” (R0)
does not lie between observed efficient units – i.e. it is not naturally enveloped. This leads to a
horizontal frontier and a zero weight for criterion 1

the resulting weights. This is a definite improvement. The alternatives which will
now influence the position of the linear frontier will be those that are at the ends
of the frontier. In a two dimensional setting these will be points A and C, but in
higher dimensions they will be the points on the perimeter of the frontier. Such
points have very high scores in one criterion but are weak in the others, and are
sometimes referred to as “mavericks”. They contrast with good all-rounders. One
might also include in this second stage those alternatives which are Pareto-optimal
even though they do not appear on the convex hull, for example point D in Fig. 2.
Such points are also “good all-rounders”.

Now consider what happens when alternative P is removed from Fig. 1. Q now
has the lowest score. This forces facet BC (extended) to act as the new frontier.
Unit A was previously ranked first equal (maximum score), but now it slides down
the rankings below B, C, T, S and Q! Karsak and Ahiska (2005) used the maximin
method in a selection problem: to choose a particular piece of equipment from a
number of competing alternatives. Expressed in these terms the removal of a point
such as P corresponds to removing an irrelevant alternative – one that would never be
selected because of its poor performance. Yet its removal causes huge changes in the
rankings. This violates the axiom of decision theory known as Sen’s property alpha
(Sen 1969), also known as the Chernoff condition (Chernoff 1954), which states that
the removal or addition of an irrelevant alternative should not affect the decision.
The selection decision should be independent of irrelevant alternatives. The removal
of such unwanted points could for example arise in an initial screening stage, where
alternatives which do not measure up to certain minimum standards are removed
from further consideration. They could also be removed from simple dominance
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arguments. A memorable illustration of the principle is an anecdote attributed to the
philosopher Sidney Morgenbesser:

After finishing dinner, Sidney Morgenbesser decides to order dessert. The waitress tells
him he has two choices: apple pie and blueberry pie. Sidney orders the apple pie. After a
few minutes the waitress returns and says that they also have cherry pie, at which point
Morgenbesser says “In that case I’ll have the blueberry pie.”

Troutt (1997, and references therein) has written a number of papers applying
the maximin approach to DEA with both multiple inputs and multiple outputs. He
calls the resulting scores the MER – the maximin efficiency ratios. He makes the
following observation:

When the MER model was first discussed (without subsequent benefit of theoretical justifi-
cation), some critics argued that “optimal” multipliers should not be based on least efficient
units. While that criticism has intuitive merit, it may be noted that a reverse perspective
is actually more fruitful. Namely, the minimum efficiency, as well as the average (or any
other summary statistic) depends on the weights. Such weights or multipliers may, or may
not, in general, maximize the likelihood of the resulting aggregate measure. Thus, from the
maximum likelihood perspective the procedure appears intuitive. However, this apparent
“contradiction of intuitions” continues to be interesting and not yet fully resolved.

Troutt and Zhang (1993) also note that “a possible objection is that the resulting
weights may be overly influenced by the worst performers”. They try to address
this by saying “choices of weights which increase the minimum ratio frequently
increase the average ratio as well, and conversely. Hence the maximin aggregation
principle appears similar in expected performance to maximization of the average,
which clearly depends on the performance data of the whole set of [alternatives]”.
This is not a persuasive argument because in the maximization of the average each
point has equal influence, whereas in the maximin case this is far from being true.
They also try to address the issue by first noting that using maximin leads to all
scores being squeezed into the narrowest range – which is true. It is then argued that
the range is a measure of dispersion, as is the variance, so one would expect similar
performance to minimizing the variance of the scores, and variance does depend on
all of the data. Once again, this conclusion does not follow because the calculation
of variance is based on all observations whereas the range is not.

To help us understand why we would not expect similar scoring performance let
us draw some parallels with methods of fitting models to data. Consider the devi-
ations from the 100% score as being residuals, and consider that we are fitting a
linear model which is constrained not to have any data points lying above it. It now
becomes clear that the maximin approach corresponds to fitting using the Cheby-
shev or L1 norm, and the minimization of the average residual corresponds to the
L1 norm. It is well established that these fitting approaches produce very different
models and so we cannot expect to obtain similar performance as claimed above.
Specifically, the L1 norm is less sensitive to outliers than least squares regression,
whereas the Chebyshev norm is more sensitive to outliers than least squares.
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3 Can the Maximin Approach Produce a Single
Winning Alternative?

Pettypool and Karathanos (2004) propose the maximin approach for reward sys-
tems where there are multiple measures of reward and contribution involved. They
provide a numerical example which includes three reward measures (outputs) and
two contribution measures (inputs). Despite the fact that there are only seven alter-
natives, maximin still does not produce a single winner. Looking at Fig. 1 would
seem to indicate that in the case of two outputs there will normally be three alter-
natives which will appear at the extremes of the score range. This is because the
frontier line needs to come in as close as possible to the data points in order to keep
the score range narrow. In this case P gets the lowest score, with A and B getting
the highest score. As the number of criteria are increased, the higher dimensional-
ity of the problem means that the frontier will have more dimensions and so more
observations will lie upon it. Hence, although having a single set of common crite-
ria weights will reduce the number scoring 100%, we cannot rely on the maximin
approach to produce a single winner.

4 Criteria Can be Completely Ignored

Consider the set of alternatives displayed in Fig. 2. In this case R will have the lowest
score as it has the worst performance on both criteria. Its score will be maximised by
referring to the horizontal dashed line as a frontier. R is not fully enveloped by a pair
of frontier units in the way that P was in Fig. 1, and this causes difficulties. We shall
now show that using the extension of this horizontal line as a frontier to assess all
other alternatives leads to criterion 1 being completely ignored in the assessment i.e.
a zero weight will be applied. The demonstration involves the similar right-angled
triangles R0YA O, and RYR O. The angle subtended at the origin is the same for both
triangles, and the cosine of this angle equates to OYR=OR D OYA=OR0. Therefore
OR=OR0 D OYR=OYA. But OR=OR0 is precisely the score for R and OYR=OYA

is the ratio of values on criterion 2. Thus the values on criterion 1 play no part
in the assessment of R. The same argument applies to the assessment of the other
alternatives.

5 Conclusion

At first sight using the maximin rule to choose a set of common weights might seem
an attractive approach to an analyst. One reason is that it is not subjective, but more
importantly, it reduces the likelihood of being confronted by those who fare badly
from the resulting rankings – this is because the method focuses on raising their
score. Thus the analyst may be able to avoid having to argue with low scorers about
the weights chosen.
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However, this paper has shown that a number of serious drawbacks arise when
using this rule in assessing performance. Any choice of weights corresponds to
deciding how much each criterion is worth in terms of utility or value. It is clear that
the maximin rule is allowing those who performed worst to effectively determine
these utility values. This is as sensible as allowing the worst performing student to
decide how much weight to attach to each of the various assessments taken by the
class.

Next consider the problem of selecting from a set of alternatives. To ease the
decision a common way to reduce the number of alternatives is to use screening or
filtering. This is simply the removal of those alternatives which are clearly inade-
quate because they do not meet certain minimal standards. This step is carried out
for convenience and should not affect the final decision. However, when used in
conjunction with the maximin rule such a process will remove the worst performers
and so lead to a different set of weights and a different ranking of the remaining
alternatives. Decisions based on the maximin rule are highly sensitive to the inclu-
sion or exclusion of alternatives whose performance is so poor as to be completely
irrelevant to the selection decision.

We also showed that when the worst performing alternative is not naturally
enveloped by units on the frontier (a common occurrence with real data), then cer-
tain criteria will be given zero weight and so be completely ignored in the analysis.
Given that the criteria will have been carefully selected as being appropriate at the
start, it is strange that they are now being dismissed.

Whilst, the maximin approach has been used in the allocation of resources in
order to reduce inequality, its use to assess such a situation of need is a different
matter entirely. The stage of evaluation to determine who is most in need or most
deserving is separate from the stage of assigning resources or rewards. Rawls’ dif-
ference principle may be of use in the allocation stage but not in the assessment
stage. To persist in using it for both would be to minimise the apparent need of the
worst off and thereby reduce the resources allocated to them.
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In Search of a European Paper Industry
Ranking in Terms of Sustainability by Using
Binary Goal Programming

Roberto Voces, Luis Diaz-Balteiro, and Carlos Romero

Abstract Sustainability is a multidimensional concept in continuous evolution.
However, the suitability of using several indicators of a diverse nature to charac-
terise and quantify this concept has been widely accepted. Within this orientation,
in this work, the paper industry’s sustainability in a significant number of European
countries has been analysed. To achieve this purpose, a set of economic, environ-
mental and social indicators have been defined for the year 2004. With the help of a
binary goal programming model, these indicators were aggregated into a synthetic
index that measures the overall sustainability of the industry analysed. In this way,
a “ranking” according to the sustainability of the paper industry in the European
countries studied has been obtained.

1 Introduction

The term “sustainability” is easy to understand intuitively, although it is not at all
easy to conceptualise, to measure or to formalize rigorously. Different international
forums related to sustainable development have recognized that the term implies
ecological and economic dimensions (Diaz-Balteiro and Romero 2008). However,
from an entrepreneurial perspective, the concept of sustainability is more question-
able. In fact, from a business undertaking point of view, sustainability on many
occasions is linked to components related to competitiveness, innovation and the
marketing of companies, and with this combination of ideas, a certain company
is able to differ from its competitors in order to improve its economic perfor-
mance. Thus, nowadays, the diverse environmental components of some firms are
not only included through several environmental quality systems, but also in their
own strategies (Aulı́ 2002).
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In this paper, we have attempted to characterize the sustainability of the paper
industry at a European level, but not by trying to distinguish the firms that show
tangible results in some aspects like the “triple bottom”, eco-efficiency, or the instal-
lation of certain environmental management systems. On the contrary, we have
defined a set of indicators that permit the characterization of the managerial real-
ity of these industries under sustainability terms. The proposed approach has been
applied to the paper industries of a significant number of European countries. To
undertake this task, the methodology used has been based on a goal programming
(GP) model with binary variables. This approach has been successfully applied in
forestry systems (Diaz-Balteiro and Romero 2004a, b). It should be noted that this
type of orientation, defining sustainability by using a set of indicators, appeared
in the mid 1980s and was consolidated after the 1992 United Nations Conference
on Environment and Development in Rı́o de Janeiro. After that Conference, differ-
ent lists of sustainability indicators have been proposed for their application, for
instance, to different forest contexts (Castañeda 2000). However, the proposed indi-
cators have not been defined at an entrepreneurial level. Consequently, there are
few papers explicitly dealing with this topic in the forest industry. One exception to
this trend is the work of Hart et al. (2000), in which different cases corresponding
to multinational firms were analysed. They mainly focused on qualitative aspects,
related to how some of these firms managed their forests. A similar approach can
be found in Johnson and Walck (2004), who described five criteria necessary for
integrating sustainability into forest industries. The complexity of selecting a rep-
resentative set of key indicators has already been approached by several authors
in their research on sustainability associated with forest management problems
(Mendoza and Prabhu 2000a, b).

2 Sustainability Indicators

In order to define the sustainability of an industry or of a group of industries, it is
necessary to measure different types of indicators: economic, social, environmental,
etc. Nowadays, it is necessary to link sustainability at the entrepreneurship level
not only to the existence of the firm as a simple supplier of goods with a market
value, but also to another group of attributes (social, environmental) that can provide
it with a higher added value as a function of the consumers’ perceptions. In the
last few years, these intangible attributes have been integrated into expressions like
“corporate social responsibility”.

Although we have incorporated all these attributes into this study, the industrial
nature of the activities considered imposes the prevalence of economic indicators.
Also, the scant level of the disaggregation of environment information, which still
awaits an adequate treatment, should be underlined. In short, fourteen indicators
encompassed in the above perspectives have been selected and are shown in Table 1.
In this way, we aimed to include the different aspects of the value chain of the
European paper industry which determine a greater or lesser sustainability.
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Table 1 Indicators used in this study

Indicator Sources Type

1 Dependence on industrial roundwood UNECE More is better
2 Investment rate Eurostat More is better
3 Intensity in labour force Eurostat More is better
4 Unitary average wage Eurostat More is better
5 Gross value added per employee Eurostat More is better
6 Energy efficiency Eurostat Less is better
7 Innovative enterprises Eurostat; Statistik Austria More is better
8 Effects of innovation Eurostat; Statistik Austria More is better
9 Acquisition of built-in technology Eurostat More is better
10 Patent applications Eurostat More is better
11 Gross value added Eurostat More is better
12 External competitiveness UN Comtrade database More is better
13 Total waste Eurostat Less is better
14 Environmental protection expenditure Eurostat; Statistics Sweden;

Czech Statistical Office
More is better

The selection of these indicators was conditioned, firstly, by the information
available at a European level. The statistical sources used, such as Eurostat databases,
are mainly of an international nature. Similarly, United Nations statistical data of
wood products and international trade have been used because the paper industries
are integrated into these databases. Nevertheless, when necessary, different National
Offices of Statistical data have been consulted.

Next, we have analyzed the meaning of the fourteen indicators selected, which
can be classified into two classes or categories: “less is better”, or “more is better”,
since a reduction or an increment in the indicators’ values supports the sustainability
of the industry. The dependence of industrial roundwood gives valuable information
about the different national market strategies for this input, and it is defined by
the quotient between imports and apparent consumption. It should be remembered
that the latter is equal to the sum of national production plus the imports less the
exports.

The investment rate provides information on the intensity in the use of the capital
factor for this industry in each country, measured as the quotient between invest-
ment and value added at factor cost. On the other hand, the following indicators
present, direct or indirectly, labour use as a production factor. Thus, the intensity of
the labour force (percentage of labour costs in total production) gives information
on the intensity in the use of labour as a production factor for the paper industry
in each country. The more traditional sectors, of a lesser complexity and vitality,
also use this factor more intensively (Fonfrı́a 2004). For that reason, in this study it
was preferable for this indicator to reach its lowest possible value. Conversely, the
unitary average wage indicator shows workers’ earnings for this industrial sector in
each country. Without analysing the differences associated with the national income
per capita, a higher value of this indicator is considered as being more sustainable
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from a social point of view. Finally, the gross added value per person employed
shows an approach to the traditional “average product of labour” concept.

Regarding energy efficiency, this indicator represents a marginal cost, because it
covers the amount of energy that it is necessary to buy in order to obtain an addi-
tional metric ton of product. Logically, a greater sustainability is reached when the
value of this indicator is a low one.

Next, we show four indicators related to innovation. First, the percentage of inno-
vative firms with regard to the total number of firms could be the indicator that shows
the penetration rate of innovative activities in the paper industry. Also, the percent-
age of the total turnover of the paper industry in each country due to innovative
firms supplies information about the real importance of those innovative activities
in the final outputs of this sector. Actually, the number of patent applications to the
European Patent Office in the reference year (2003) is a widely used indicator of
the output due to the innovative activities developed in each country, and it has been
used in this research. Finally, it has been considered to be appropriate to incorpo-
rate the acquisition of built-in technology into this group of indicators, because this
is the principal way to incorporate innovation, mainly in small and medium-sized
firms. These indicators have been considered as belonging explicitly to the category
“more is better”, since the higher the figures, the more the paper industry will be
sustainable. This is because it is usually recognized that a good way to achieve a
greater sustainability of firms could be by increasing the results associated with the
ICDCi (Paech 2007).

The gross value added as a percentage with respect to the paper industry in the
manufacturing sector constitutes an indicator that shows the relative weight of this
industrial sector in the total manufacturing activity of each country. It has been con-
sidered that a reduced contribution of value added implies a reduced allocation of
resources compared to other more productive and dynamic industrial sectors. In
this context, a complementary indicator could be the revealed comparative advan-
tage index (Balassa index). This has been defined as the relationship between the
importance of the exports of a certain industrial sector with respect to the total
industrial exports in a particular country, and, over a wider area that might be the
whole world, Europe, or, in this case, the cluster of European countries analyzed.
It represents an external competitiveness indicator, and if this index has a larger
value than the unit, a competitive advantage does exist, or, in a contrary sense, it
does not.

Finally, in this investigation we included two indicators related to some envi-
ronmental characteristics of these firms. First, the waste generated by them gives
information on the pollutants produced by their industrial activity. To allow a com-
parison between the different countries, this figure is divided up between the value
added corresponding to each specific paper industry. It has been assumed that “less
is better”, because, in this way, the sustainability of these firms increases. The
last indicator in Table 1 shows the quotient between the total current expenses for
environmental protection and the number of employees. Here, only the expendi-
ture on environment protection that exclusively affects the period in which it was
incurred, without any future economic projection, will be included. For the purpose
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of comparing the different figures corresponding to the European countries included
in this analysis, this value is distributed between the number of employees. It should
be mentioned that, at the moment of carrying out this study, the data corresponding
to Italy for the year 2004 was not available, so that, and only for this indicator and
country, the year adopted was 2003.

3 Methodology

As specified above, for the purpose of aggregating the different sustainability indi-
cators previously defined into a synthetic index that measures the sustainability of
the different countries, an analytic procedure based on GP with binary variables
was used (Diaz-Balteiro and Romero 2004b). Thus, we have considered the general
case in which there are n countries, evaluating each one of them according to m
sustainability indicators, applying the analysis made in the previous section. In this
context, a key question was to determine the ranking of the n countries in terms of
sustainability.

On these lines, the sustainability indicators were measured in different units, and
also with very different absolute values. For that reason, a first stage in our work
consisted of appropriately normalising the m indicators. We did so by applying
the procedure suggested in Diaz-Balteiro and Romero (2004a, b). The proposed
procedure adapted to our context is summed up in the following formulae:

Rij D 1 � R�j �Rij

R�j � R�j

D Rij �R�j

R�j � R�j

8i; j (1)

Where Rij is the normalised value reached by the ith country when it is evaluated
according to the j th indicator;Rij is the result reached by the i th country when it is
evaluated according to the jth indicator;R�j is the optimum or ideal value for the j th
sustainability indicator. This ideal value represents the maximum value if the indi-
cator is of the “more is better” type, or the minimum value if the indicator is of the
“less is better” type. In the same way, R�j is the worst value or anti-ideal value for
the j th sustainability indicator.

With this normalisation system, the indicators do not have any dimension and
they are all them bounded between 0 and 1. The same procedure was applied in
order to normalise the aspiration levels (“targets”) of the different indicators. These
aspiration levels are exogenous and they are determined by means of expert judge-
ments, as well as from the experience accumulated by the authors. Once this point
has been achieved, the following GP model was defined:
Achievement function:

Min
mX

jD1

�
˛jnj C ˇjpj

�
(2)

Goal and constraints:
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nX

iD1

RijXi C nj � pj D tj j 2 f1 : : :mg (3)

nX

iD1

Xi D 1

Xi 2 f0; 1g i 2 f1; : : : ; ng (4)

n � 0 p � 0

where nj y pj are the deviation variables that measure the discrepancies between
the value reached by the j th indicator with respect to the aspiration level tj . On the
other hand, ˛j and ˇj are the preferential weights associated with both deviation
variables.Xi are binary variables that take on the value 1 if the i th country is chosen,
otherwise they take on the value 0. By solving the model (2)–(4) the country with
the most sustainable paper industry was determined. Applying this procedure in
an iterative way, the “ranking” of the countries analysed in sustainable terms was
obtained.

In short, the application of the preceding model provides an apparently attrac-
tive solution, because it implies the greatest aggregated effectiveness. Nevertheless,
this kind of solution can produce highly deviated results for some of the indica-
tors selected, which could be unacceptable when classifying the sustainability for
this industry in the countries chosen. To solve this problem, another GP model has
been proposed in order to obtain the most balanced solution associated with the
achievement of the different goals (Tamiz et al. 1998), with the following analytic
expression:
Achievement function

Min D

Goal and constraints: �
˛jnj C ˇjpj

� �D � 0 (5)

where D represents the maximum deviation between an indicator and its aspiration
level. However, if we wished to merge both GP models in only one single formu-
lation, then it would be necessary to set up an extended GP (EGP) model, with the
following analytic expression (Romero 2004):
Achievement function:

Min .1 � 	/ D C 	

mX

jD1

�
˛jnj C ˇjpj

�
(6)

subject to:
Goals and constraints from the model defined by (5).

In this case, for 	 D 1, the most efficient solution, or the one with a better average
result has been obtained, while for 	 D 0 the most balanced solution has been
elicited. For intermediate values of the control parameter 	, compromises between



In Search of a European Paper Industry Ranking in Terms of Sustainability 147

both solutions, if they exist, will be obtained. For the resolution of this model, the
software LINGO 10 (Lindo Systems 2007) was applied.

4 Results and Conclusions

Once the national values and the normalised aspiration levels for the 14 indicators
used in this analysis had been obtained, the EGP model shown in the (6) was applied.
Table 2 shows the final ranking of the 17 countries, according to the different val-
ues of control parameter 	. In the first place, it can be verified how the ranking
associated with the most efficient solution .	 D 1/, is different to the ranking asso-
ciated with the most balanced solution .	 D 0/. These differences are in some
cases remarkable, as can be seen in countries like Romania or the Czech Repub-
lic, which notably change their position in the ranking. The country with the most
sustainable paper industry was either Portugal or Sweden, according to the different
solutions obtained. Conversely, the country with the least sustainable paper industry
was Latvia.

It has also been attempted to find out the sensitivity of the solution shown in
Table 2, when the preferential weights conferred on some indicators were modi-
fied. For this purpose, a sensitivity analysis was developed for four indicators, while
the other weights corresponding to the rest of the indicators remained unchanged.
The results obtained were different depending on the indicator selected. Thus,
whereas changes in the weights associated with the indicator related to expenses for

Table 2 Results according to parameter 	 values

	 D 0 	 D 1

Portugal Sweden
Romania Portugal
Sweden Finland
The Slovak Republic Austria
Finland Germany
Czech Republic France
United Kingdom Spain
Hungary United Kingdom
Lithuania Estonia
France The Slovak Republic
Austria Italy
Spain Cyprus
Italy Hungary
Cyprus Czech Republic
Germany Lithuania
Estonia Romania
Latvia Latvia
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environmental protection or to the gross value added per employee did not cause
any remarkable changes in the ranking, if a larger weight was given to the indicator
measuring the waste generated as a function of the gross value added, the solution
was modified irrespective of the value of control parameter 	.

We should like to end this paper by indicating that the procedure followed to
obtain an overall measurement of paper industry sustainability in some European
countries permits an easy integration of different indicators of a highly diverse
nature. Thus, and remembering that, to a certain extent, the selection of those indica-
tors has been conditioned by the data available, it would be necessary to stress that
the GP method applied has shown itself to be very flexible, allowing us to obtain
the best solution from an aggregated point of view, the best solution from a bal-
anced perspective, or compromises between these two solutions. Finally, this work
could be extended in several directions. For example, the models could be replicated
by trying to introduce different preferential weights for each indicator considered.
These weights could be obtained by means of judgements from experts. Another
possible expansion of this research would consist of adapting the analysis at a more
disaggregated level, for instance at a managerial one, or analysing in more detail
certain industrial subgroups.
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Nurse Scheduling by Fuzzy Goal Programming

Mehrdad Tamiz and Mohammed Ali Yaghoobi

Abstract This paper develops a fuzzy goal programming model to plan and allo-
cate nurses to hospital wards. It is applied to a hospital ward in Kerman, Iran. The
monthly schedule developed by the proposed model takes into account both hospital
objectives and nurses’ preferences. First, the nurses’ preferences are obtained via a
questionnaire. Then, the objectives and the nurses’ preferences are divided into two
major parts in the proposed model: hard constraints and fuzzy goals. The resulting
schedule, by solving the proposed model, is implemented and is much preferred
to the current schedule. Moreover, the proposed model is easily applicable, takes a
short time to solve, and can be extended to include other objectives or preferences.

1 Introduction

Nurse scheduling problems are challenging problems in large hospitals and diffi-
cult to resolve fairly (Bester et al. 2007). The aim of nurse scheduling is usually
to assign different kinds of working shifts to nurses having different skills in terms
of some legal and policy constraints, and attempting to achieve an acceptable trade
off between some objectives. Objectives are due to hospital requirements or nurses’
preferences. Amongst legal and policy constraints are continuous patient care and
minimum number of nurses with appropriate nursing skills in each shift, mini-
mum or maximum restrictions on the number of working hours per month. On the
other hand, some of nurses’ preferences and hospital objectives are more day shifts
than night shifts, more day shifts than evening shifts and at most three continu-
ous night shifts. Nurse’ preferences can be attained by distributing a questionnaire
to all of them and analyzing it by some appropriate statistical tools. Because of
different objectives, model of nurse scheduling usually leads to a multi-objective
programming model.
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Several approaches are suggested to deal with a multi-objective programming
model in healthcare (Aickelin and White 2004; Azaeiz and Al-Sharif 2005; Bard
and Purnomo 2005; Bester et al. 2007; Blake and Carter 2002). Blake and Carter
(2002) describe the application of goal programming (GP) to strategic resource
allocation in an acute care hospital. Chu et al. (2000) also used GP models for
nurse allocation for maternal and child health services in Hong Kong aiming at
an equitable allocation of nurses of different ranks, with different work functions,
at different centers. Azaiez and Al-Sharif (2005) developed a zero-one GP model
adapted to Riyadh Al-Kharj hospital program in Saudi Arabia. Topaloglu and
Ozkarahan (2004) suggested an implicit GP model for the tour scheduling problem
considering the employee work preferences. A general review of nurse schedul-
ing models and solution approaches can be found in Bester et al. (2007), Burke
et al. (2004), and Sitompul and Randhawa (1990).

As stated above, there are many researches that use GP for nurse scheduling.
However, in conventional GP models the decision maker is required to specify a
precise aspiration level for each of the objectives. In general, especially in large-
scale problems, this is a difficult task for the decision maker(s). Applying fuzzy
set theory in GP can help the decision maker to specify imprecise aspiration levels
(Narasimhan 1980; Yaghoobi and Tamiz 2007). This paper develops a fuzzy goal
programming (FGP) model for nurse scheduling. The model is based on the current
requirement of Ayatolah Kashani (AK) hospital in Kerman, Iran. In the developed
model legal and policy constraints as well as nurses’ preferences are divided into
two major parts: hard constraints and fuzzy goals. Then, a similar approach to the
one developed by the authors (Yaghoobi et al. 2008; Yaghoobi and Tamiz 2007) is
employed for solving the resulting model. Comparison of the schedule made by the
developed model with the one made manually shows an improved performance.

2 Problem Statement: The Case Study

Our study is based on the current situation of AK. It is a large hospital involving
many wards. Every ward has a certain number of nurses of different ranks or levels.
It is the task of each ward to schedule its nurses’ duties. In fact, a specified staff
member of each ward, usually head nurse, assigns nurses to the shifts in terms of
individual nurse preferences and hospital requirements.

Our focus is on the maternity ward (MW) which is active 24 h a day. However,
due to hospital policy, each day is partitioned into three shifts: day shift, evening
shift, and night shift. Day shift is from 6 AM to 12 PM; evening shift is from 12 to 6
PM; night shift is from 6 PM to 6 AM of the next day. A minimum number of nurses
are required to cover the shifts in MW; four for day shift; three for evening shift;
four for night shift. The total number of nurses that work in MW is 19. Moreover,
they are divided into two levels: level A and level B. Level A includes nurses with
15 or more years of experience. On the other hand, level B includes nurses with less
than 15 years of experience. Due to the acute task for nurses in MW, it is required
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to have at least two nurses of level A in any night shift, and at least one in each day
and evening shifts.

Schedule is made for a 1 month period at a time. Prior to scheduling, each nurse
is asked to select (optional) 3 days off (holidays) during the month. The schedule
must assign only one shift to each nurse per day. Also, a night shift must be fol-
lowed by a day off. Note that a day off can be selected by a nurse, assigned by the
schedule after a night shift, or assigned by the schedule to avoid extra nurses than
the required minimum for each shift. Every nurse must work for 176 h per month
and any additional hours are paid overtime.

It is the task of head nurse in MW to allocate nurses to different shifts fairly
so that both nurses’ preferences and hospital policies are achieved by as much as
possible. At present, MW nurse scheduling is performed manually. Indeed, it is
done through trial and error. It takes two to three working days for a head nurse to
build the schedule each month.

2.1 Legal and Policy Restrictions

The legal and policy restrictions are as follows:

� Three shifts a day must be covered.
� A nurse must not work for more than six consecutive days.
� A nurse must not be assigned to more than one shift per day.
� The minimum demand for the number of nurses must be met for each shift.
� A nurse must not work the day after a night shift.
� Some nurses cannot do night shifts due to health reasons.
� A nurse must not work for more than three consecutive night shifts.
� Nurse preferences for 3 days off selection must be taken into account.

Also there are some other policies that the managers wish to be satisfied if possible.
They are as follows:

� More day and evening shifts than night shifts assign per month per nurse.
� More day shifts than evening shifts assign per month per nurse.
� Day shift should not follow evening shift in the previous day.
� All nurses get the same number of night shifts and the same number of week-

ends off.

2.2 Nurses’ Preferences

To obtain nurses’ preferences, a questionnaire was distributed to all 19 nurses. The
following set of preferences was established.

� All nurses like to get the same share of night shifts.
� Almost all nurses prefer no more than three consecutive night shifts.
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� All nurses prefer to get the same share of day offs during weekends and public
holidays.

� Almost all nurses prefer to have more day shifts than evening shifts.
� Almost all nurses do not prefer a day shift following an evening shift.

3 Fuzzy Goal Programming

A useful tool for dealing with imprecision is fuzzy set theory (Zadeh 1965). An
objective with an imprecise aspiration level can be treated as a fuzzy goal. Ini-
tially, Narasimhan incorporated fuzzy set theory in GP in 1980 and presented an
FGP model (Narasimhan 1980). Hannan simplified the Narasimhan’s method to an
equivalent simple linear programming in 1981 (Hannan 1981). These pioneering
works led to extensive research in the use and application of FGP to real life prob-
lems. To solve FGP problems various models based on different approaches have
been proposed. A survey and classification of FGP models has been presented by
Chanas and Kuchta (2002). There are three types of fuzzy goals which are the most
common. The following FGP model contains these fuzzy goals.

OPTIMIZE cix �
�
gi i D 1; : : : ; i0

cix �
�
gi i D i0 C 1; : : : ; j0

cix D� gi i D j0 C 1; : : : ; K

x 2 X;

(1)

where OPTIMIZE means finding an optimal decision x such that all fuzzy goals are

satisfied (Hannan 1981; Yaghoobi and Tamiz 2007), cix D
nP

jD1

cijxj ; i D 1; : : : ; K,

gi is the aspiration level for the goal i , X is an optional set of hard constraints
as found in linear programming and the symbol � is a fuzzifier representing the
imprecise fashion in which the goals are stated.

The fuzzy goals can be identified as fuzzy sets defined over the feasible set with
the membership functions. For the three types of fuzzy goals in model (1), lin-
ear membership functions are defined as follows (Hannan 1981; Narasimhan 1980;
Yaghoobi and Tamiz 2007):

�i D

8
ˆ̂<

ˆ̂:

1 cix � gi

1 � cix � bi

�iR
gi � cix � gi C�iR i D 1; : : : ; i0;

0 cix � gi C�iR

(2)

�i D

8
ˆ̂<

ˆ̂:

1 cix � gi

1 � bi � cix

�iL
gi ��iL � cix � gi i D i0 C 1; : : : ; j0;

0 cix � gi ��iL

(3)
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Fig. 1 Linear membership functions: (a) i D 1; : : : ; i0, (b) i D i0 C 1; : : : ; j0 and (c) i D
j0 C 1; : : : ; K

�i D

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

0 cix � gi ��iL

1 � bi � cix

�iL
gi ��iL � cix � gi

1 � cix � bi

�iR
gi � cix � gi C�iR

0 cix � gi C�iR

i D j0 C 1; : : : ; K; (4)

where�iL and�iR are chosen constants of the maximum admissible violations from
the aspiration level gi . They are either subjectively chosen by the decision maker or
are tolerances in a technical process. The above membership functions are depicted
in Fig. 1.

Indeed, all of the above membership functions belong to the class of problems
with piecewise linear concave membership functions.

Recently in (Yaghoobi et al. 2008), a model based on the weighted variant of GP
(Romero 2004) is proposed to solve the FGP model (1) as follows:

min z D
i0X

iD1

wi

pi

�iR
C

j0X

iDi0C1

wi

ni

�iL
C

KX

iDj0C1

wi



pi

�iR
C ni

�iL

�

s.t.
cix � pi � gi i D 1; : : : ; i0

�i C pi

�iR
D 1 i D 1; : : : ; i0

cix C ni � gi i D i0 C 1; : : : ; j0

�i C ni

�iL
D 1 i D i0 C 1; : : : ; j0

cix C ni � pi D gi i D j0 C 1; : : : ; K

�i C pi

�iR
C ni

�iL
D 1 i D j0 C 1; : : : ; K

�i ; ni ; pi � 0 8i
x 2 X;

(5)
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where wi denotes the weight of the ith fuzzy goal and �i is a model variable which
determines the degree of membership function for the ith fuzzy goal (Yaghoobi
et al. 2008). ni and pi are negative and positive deviational variables.

For this case study, we use the lexicographic variant of GP (Romero 2004)
instead of weighted GP as used in model (5). Therefore, to solve the FGP model (1)
the following achievement function is used over the constraints of model (5).

Lexmin z D
0

@
i0X

iD1

pi

�iR
;

j0X

iDi0C1

ni

�iL
;

KX

iDj0C1



pi

�iR
C ni

�iL

�1

A (6)

4 The Fuzzy Goal Programming Model for Scheduling Model

The aim of this section is to develop the FGP model for nurse scheduling in MW.
The model takes into account both hospital objectives and nurses’ preferences
as well as the legal and policy restrictions. The following binary (0,1) decision
variables are used in the model.

XDi;j D 1 if nurse j is working during day shift in day i.
D 0 otherwise.

XEi;j D 1 if nurse j is working during evening shift in day i.
D 0 otherwise.

XNi;j D 1 if nurse j is working during night shift in day i.
D 0 otherwise.

XXi;j D 1 if nurse j has a day off after a night shift in day i.
D 0 otherwise.

XTi;j D 1 if nurse j has a day off (holiday assigned by the schedule) in day i;
0 otherwise.

XHi;j D 1 if nurse j has a day off (holiday selected by the nurse) in day i;
0 otherwise.

Legal and policy restrictions, hospital objectives and nurses’ preferences are cat-
egorized in two major groups: hard constraints and fuzzy goals. Note that in the
model under consideration, there are 19 nurses .j D 1; : : : ; 19/ and 30 days in the
month .i D 1; : : : ; 30/

4.1 Hard Constraints

Constraint set 1: States that the number of nurses in every day shift should be
equal to 4.

19X

jD1

XDi;j D 4; i D 1; : : : ; 30: (7)
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Constraint set 2: States that the number of nurses in every evening shift should be
equal to 3.

19X

jD1

XEi;j D 3; i D 1; : : : ; 30: (8)

Constraint set 3: States that the number of nurses in every night shift should be
equal to 4.

19X

jD1

XNi;j D 4; i D 1; : : : ; 30: (9)

Constraint set 4: Since a nurse must not work the day after a night shift, every day
4 nurses should have a day off.

19X

jD1

XXi;j D 4; i D 1; : : : ; 30: (10)

Constraint set 5: Assigning one shift per day per nurse.

XMi;j C XEi;j C XNi;j C XXi;j C XT i;j C XHi;j D 1; j D 1; : : : ; 19I
i D 1; : : : ; 30: (11)

Constraint set 6: Avoid more than six consecutive work days for every nurse.

5X

sD0

�
XXiCs;j C XT iCs;j C XHiCs;j

� � 1; j D 1; : : : ; 19I i D 1; : : : ; 25: (12)

Constraint set 7: Every nurse is entitled to have at least 1 day off during the
weekends and public holidays in the month.

XT3;j C XT4;j C XT5;j C XT11;j C XT12;j C XT18;j C XT19;j C XT25;j

CXT26;j C XT27;j � 1; j D 1; : : : ; 19: (13)

Note that the indices of the variables in the above constraint refer to the weekend
and public holiday days in the calendar month of the planning month. That is, days
4, 5, 11, 12, 18, 19, 25 and 26 are weekends, and days 3 and 27 are public holidays.

Constraint set 8: Every nurse should have a day off after a night shift.

XNi;j � XXiC1;j D 0; j D 1; : : : ; 19I i D 1; : : : ; 29: (14)

Constraint set 9: No more than three consecutive night shifts.

XNi�6;j C XNi�4;j C XNi�2;j C XNi;j � 3; j D 1; : : : ; 19I i D 7; : : : ; 30:

(15)
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Constraint set 10: For fairness, scheduling maximum and/or minimum working
shifts are considered per nurse per month as follows:

30X

iD1

XDi;j � 3; j D 1; : : : ; 19; (16)

30X

iD1

XEi;j � 3; j D 1; : : : ; 19; (17)

30X

iD1

XNi;j � 6; j D 1; : : : ; 19I j ¤ 15; (18)

30X

iD1

XNi;j � 7; j D 1; : : : ; 19; (19)

30X

iD1

XTi;j � 6; j D 1; : : : ; 19; (20)

30X

iD1

XHi;j � 3; j D 1; : : : ; 19: (21)

It should be noted that nurse 15 cannot work night shifts due to a specific illness.
The following constraint exempts nurse 15 from night shifts.

30X

iD1

XNi;15 D 0: (22)

Constraint set 11: The required minimum number of nurses of level A per shift is
determined by the following constraints.

10X

jD1

XDi;j � 1 i D 1; : : : ; 30; (23)

10X

jD1

XEi;j � 1 i D 1; : : : ; 30; (24)

10X

jD1

XNi;j � 2 i D 1; : : : ; 30: (25)

It should be noted that j D 1; : : : ; 10 represent nurses belonging to level A and
j D 11; : : : ; 19 represent level B nurses.
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Constraint set 12: Prior to scheduling every nurse can select up to 3 days off as
leave. As an example, the following constraints show that nurses 3 and 6 requested
day 28, 29 and 2, 3 off respectively:

XH28;3 D 1;

XH29;3 D 1;

XH2;6 D 1;

XH3;6 D 1:

(26)

The other requests for leave are treated in the same way.

4.2 Fuzzy Goals

Fuzzy goal 1: One of the important issues explored from the questionnaire shows
that the nurses are very sensitive to have a fair distribution of days off. Because of
the problem structure, it is almost impossible to assign equal number of days off to
all nurses. However, we can try to do that as much as possible by using a fuzzy goal
as follows:

30X

iD1

�
XT i;j C XHi;j

�D� 7 j D 1; : : : ; 19: (27)

The above fuzzy goal states that the number of days off for every nurse should
be approximately seven, where we consider a maximum of 2 days for admissible
violations. Therefore, the above fuzzy goal based on model (5) should be rewritten
as follows:

30P
iD1

�
XT i;j C XHi;j

�C n1j � p1j D 7 j D 1; : : : ; 19;

n1j

2
C p1j

2
� 1 j D 1; : : : ; 19;

n1j ; p1j � 0 j D 1; : : : ; 19;

(28)

and
19P

jD1

�
n1j

2
C p1j

2

�
should be minimized in the achievement function.

Fuzzy goal 2: One of the major nurses’ preferences is to have more day shifts than
evening shifts. Furthermore, the number of day shifts required by the MW in a
month is more than evening shifts. Thus, it is expected that a fair schedule should
assign more day shifts than evening shifts per nurse. To this end, the following
fuzzy goal is proposed. It should be noted that fuzzy goal (29) tries to assign more
day shifts than evening shifts in an almost equally manner to every nurse.

30X

iD1

�
XDi;j � XEi;j

�D� 2 j D 1; : : : ; 19: (29)
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In fact, fuzzy goal (29) states that every nurse should have approximately 2 day
shifts more than evening shifts per month. A maximum of 1 day is considered for
admissible violations. Therefore, the above fuzzy goal based on model (5) should
be rewritten as follows:

30P
iD1

�
XMi;j � XEi;j

�C n2j � p2j D 2 j D 1; : : : ; 19;

n2j

1
C p2j

1
� 1 j D 1; : : : ; 19;

n2j ; p2j � 0 j D 1; : : : ; 19;

(30)

and
19P

jD1

�
n2j

1
C p2j

1

�
should be minimized in the achievement function.

Fuzzy goal 3: Another nurses’ preference is to have a very few, if any, day shifts
following an evening shift. To take into account this preference, a fuzzy goal is sug-
gested. At first, the day shifts follow an evening shift are counted using the following
equation.

XEi;j C XDiC1;j C n3i;j � p3i;j D 1: i D 1; : : : ; 29I j D 1; : : : ; 19;

n3i;j ; p3i;j � 0 j D 1; : : : ; 19:
(31)

Indeed, when p3i;j equals 1 in (31), it shows that 1 day shift (in day iC1) following

an evening shift is assigned to nurse j . Thus,
29P

iD1

p3i;j counts the number of day

shifts following evening shifts for nurse j . Hence, to avoid day shift following an
evening shift a fuzzy goal is suggested as follows:

29X

iD1

p3i;j �
�
0 j D 1; : : : ; 19: (32)

This fuzzy goal states that the number of day shifts following evening shifts should
be approximately 0. A maximum of 3 days is considered for admissible violation.
Therefore, the above fuzzy goal based on model (5) should be rewritten as follows:

30P
iD1

p3i;j � p4j D 0 j D 1; : : : ; 19;

p4j

3
� 1 j D 1; : : : ; 19;

p4j � 0 j D 1; : : : ; 19;

(33)

and
19P

jD1

�
p4j

3

�
should be minimized in the achievement function.
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5 Results and Discussion

The complete FGP model described in Sect. 4 can be employed to build the sched-
ule. In other words, the resulting schedule can be obtained by solving the following
program.

Lex min z D
0

@
19X

jD1



n1j

2
C p1j

2

�
;

19X

jD1



n2j

1
C p2j

1

�
;

19X

jD1



p4j

3

�1

A

s:t:

constraints W (34)

.7/�.26/;

.28/; .30/; .31/; .33/:

In model (34), fuzzy goals 1–3 are set to priority levels 1–3 respectively. Indeed,
model (34) is a multi-objective mixed integer programming problem that can be
solved by optimisation packages such as LINGO (Schage 1999) with the use of the
lexicographic methodology. It only requires a few minutes to solve the model to
optimality for different calendar months. Table 1 shows a typical result comparison
between a schedule developed by the head nurse (called manual schedule) and the
resulting schedule of the developed model (called model schedule).

For a better comparison, some items of Table 1 are depicted in Figs. 2 and 3.
Figures 2 and 3 depict the unfairness of the distribution of night and day offs dur-

ing weekends among nurses by manual schedule. It can be seen that the distribution
obtained by the model is much preferred. Note that in Fig. 3a the nurses that are not
present in the horizontal axis do not have any days off during the weekends.

In addition, the nurse scheduling of January 2008 in MW was generated by
the proposed model. The schedule was welcomed by both nurses and hospital

Table 1 The results of comparison between manual and model schedules

Item Manual schedule Model schedule

Too many nurses work in some day shifts Yes No
Too many nurses work in some evening shifts Yes No
Too many nurses work in some night shifts No No
Does every nurse have more day shifts than

evening shift?
No Yes

Does every nurse have more day shifts than
night shift?

No Yes

Number of nurses with off shift each day Uneven Even
Distribution of day shifts among nurses Unfair Fair
Distribution of evening shifts among nurses Unfair Fair
Distribution of night shifts among nurses Unfair Fair
Distribution of public holidays and days off Unfair Fair
Distribution of off weekends Unfair Fair
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managers. Moreover, the easy structure of the FGP model is such that it can be
extended to include other objectives or preferences. Also, it has the potential of
being implemented for similar or even different hospital wards elsewhere.

6 Concluding Remarks

This paper has developed a fuzzy goal programming model for obtaining nurse
scheduling for a maternity ward in a hospital in Kerman, Iran. The monthly schedule
developed by the proposed model takes into account both hospital’s requirements
and nurses’ preferences. Amongst hospital objectives are continuous patient care
and minimum number of nurses with appropriate nursing skills in each shift.
Amongst the nurses’ preferences are more day shifts than night shifts, more day
shifts than evening shifts and at most three continuous night shifts. The objectives
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and nurses’ preferences are divided into two major parts in the proposed model:
hard constraints and fuzzy goals. Then a fuzzy goal programming based on the
previous research of the authors is developed (Yaghoobi et al. 2008; Yaghoobi
and Tamiz 2007). The resulting shifts are implemented and are much preferred to
the current schedule as they are fairer shift distributions for the nurses as well as
satisfying all the hospital’s requirements.

The proposed model is easily applicable, takes a short time to solve, and can
be extended to include other objectives and/or preferences as well as other hospital
staff such as the Doctors.

At the time of writing this paper, the authors are experimenting with applying
other variants of GP to the same problem in order to make a comprehensive study
in comparing their performances.

As a possible extension to the problem it would be a good idea to study the actual
demand on the number of different skilled nurses required during each shift. For this
study the numbers are given by the hospital and are fixed for all the shifts.
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